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Preface

This volume contains the papers presented at the 14th International Conference on
Similarity Search and Applications (SISAP 2021) held between September 29 and
October 1, 2021. The conference was hosted by TU Dortmund, Germany. Due to
the COVID-19 pandemic and international travel restrictions around the globe, SISAP
2021 was planned as a “hybrid or virtual” event, and in August 2021 it was decided that
it would be held as an online conference only due to rapidly increasing incidences in
Germany despite a good vaccination rate.

SISAP is an annual forum for researchers and application developers in the area
of similarity data management. It focuses on the technological problems shared by
numerous application domains, such as data mining, information retrieval, multimedia,
computer vision, pattern recognition, computational biology, geography, biometrics,
machine learning, and many others that make use of similarity search as a necessary
supporting service.

From its roots as a regional workshop in metric indexing, SISAP has expanded to
become the only international conference entirely devoted to the issues surrounding
the theory, design, analysis, practice, and application of content-based and feature-
based similarity search. The SISAP initiative has also created a repository1 serving the
similarity search community, for the exchange of examples of real-world applications,
source code for similarity indexes, and experimental testbeds and benchmark data sets.

SISAP 2021 continued the two-year tradition of the SISAP Doctoral Symposium,
for which a technical program was assembled to give PhD students an opportunity to
present their research ideas in an international research venue. The Doctoral Symposium
provides a forum that facilitates interaction among PhD students and stimulates feedback
from more experienced researchers. This year’s SISAP also included a single special
session, on the topic of search in graph-structured data. Again in keeping with previ-
ous years, the reviewing process for the special session was integrated with the main
conference program to ensure the same quality of acceptance.

The call for papers welcomed full research papers and short research papers, as
well as position and demonstration papers, with all manuscripts presenting previously
unpublished research contributions.

We received 44 submissions from authors based in 16 different countries. The
Program Committee (PC) was composed of 55 members from 20 countries. Each
submission received at least four reviews, and the papers and reviews were thoroughly
discussed by the chairs and PC members. Based on the reviews and discussions, the
PC chairs accepted 23 full papers and 5 short papers, resulting in an acceptance rate
of 52% for the full papers and a cumulative acceptance rate of 64% for full and short
papers. These rates are a little higher than usual, however the PC chairs are confident
that this does not reflect a drop in standards, but rather is an artifact of the context of the
COVID-19 pandemic. After a separate review by the Doctoral Symposium Program

1 https://www.sisap.org/.

https://www.sisap.org/
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Committee members, three Doctoral Symposium papers, giving a clear sample of
emerging topics in similarity search and applications, were accepted for presentation
and included in the program and proceedings.

The proceedings of SISAPare published bySpringer as a volume in theLectureNotes
in Computer Science (LNCS) series. For SISAP 2021, as in previous years, extended
versions of selected excellent papers were invited for publication in a special issue of
the journal Information Systems. The conference also conferred a Best Paper Award, a
Best Student Paper Award, and a Best Doctoral Symposium Paper Award, as judged by
the PC chairs and the Steering Committee.

We would like to thank all the authors who submitted papers to SISAP 2021. We
would also like to thank all members of the PC and the external reviewers for their effort
and contribution to the conference. We want to extend our gratitude to the members of
the Organizing Committee for the enormous amount of work they have done, and our
sponsors and supporters for their generosity. Finally, we thank all the participants in the
online event, who make up the thriving SISAP community.

September 2021 Nora Reyes
Richard Connor

Nils Kriege
Daniyal Kazempour

Ilaria Bartolini
Erich Schubert
Jian-Jia Chen
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Organizing Similarity Spaces Using
Metric Hulls

Miriama Jánošová, David Procházka, and Vlastislav Dohnal(B)

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{x424615,xprocha6,dohnal}@fi.muni.cz

Abstract. A novel concept of a metric hull has recently been introduced
to encompass a set of objects by a few selected border objects. Following
one of the metric-hull computation methods that generate a hierarchy of
metric hulls, we introduce a metric index structure for unstructured and
complex data, a Metric Hull Tree (MH-tree). We propose a construction
of MH-tree by a bulk-loading procedure and outline an insert operation.
With respect to the design of the tree, we provide an implementation of
an approximate kNN search operation. Finally, we utilized the Profime-
dia dataset to evaluate various building and ranking strategies of MH-tree
and compared the results with M-tree.

Keywords: Metric-hull tree · Metric hull · Index structure ·
Nearest-neighbor query · Similarity search

1 Introduction

Content-based retrieval systems have become often applied to complement tra-
ditional retrieval systems. Such systems allow processing complex data, such as
photos, medical images, protein sequences or audio recordings, and support sim-
ilarity queries. Such search requests compare data items based on the similarity
of their content or descriptors extracted from the content rather than the iden-
tity of data. The challenge is managing the ever-growing complex data efficiently
and evaluating the similarity queries faster than by the sequential scan. Many
indexing structures were proposed ranging from clustering-based ones [7,22],
space-partitioning methods [4,6] to transformation techniques [1].

Complex data are thus expressed as descriptors capturing important fea-
tures from their content, e.g., color histogram, texture, shape [21] or more pro-
found vectors computed by convolutional networks [10]. Thus, the descriptors are
often high-dimensional spaces1 [18]. The problem of dimensionality curse then
arises [5]. It leads to visiting many data partitions by an index due to frequent
overlaps among them, whereas useful information is contained in a few of them.

1 Or even distance spaces where no implicit coordinate system is defined.

The publication of this paper and the follow-up research was supported by the ERDF
“CyberSecurity, CyberCrime and Critical Information Infrastructures Center of Excel-
lence” (No. CZ.02.1.01/0.0/0.0/16 019/0000822).

c© Springer Nature Switzerland AG 2021
N. Reyes et al. (Eds.): SISAP 2021, LNCS 13058, pp. 3–16, 2021.
https://doi.org/10.1007/978-3-030-89657-7_1
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4 M. Jánošová et al.

So the index must employ further filtering constraints to make query evaluation
efficient [12,20].

A novel concept of metric hulls has been introduced recently [2]. The purpose
of the metric hull is to embrace a set of metric objects. The metric hull is defined
as a set of objects selected out of the set to encompass. We build upon this
concept to create a hierarchical search structure where a metric hull represents
each node. Since the authors also provide a test of whether a metric object is
part of the hull or not, such a structure is viable. We perceive the metric hull as
an alternative to the metric ball used by M-tree [7] or Slim-tree [22]. However, it
bounds data much tighter without any additional information. As a result, node
overlaps can be reduced. The issue of intersecting balls surrounding Voronoi cells
is studied in VD-tree [13].

This paper proposes a metric access method that organizes data in metric
hulls and addresses the issue of large node overlaps without the need for external
pivots, as was applied in Pivoting M-tree [19]. We take advantage of algorithms
to construct metric hulls incrementally [2] to build a hierarchy of metric hulls.
Next, the issue of comparing and ordering metric hulls with respect to a similarity
query is studied here in this paper. We test different variants of such and evaluate
the performance of approximate k-nearest neighbors search.

The remaining parts of the paper are structured as follows. In the next
section, there is a concise summary of metric space indexing and similarity
queries, and more importantly the concept of metric hulls. Related work of
indexing structures is surveyed in Sect. 3. The core of this paper is the proposal
of Metric Hull Tree, presented in Sect. 4. Performance evaluation on a real-life
high-dimensional data is described in Sect. 5. Contributions of this paper and
possible future extensions are summarized in the last section.

2 Preliminaries

A metric space M is a pair M = (D, d), where D is a domain of objects, and d is
a distance function (metric) d : D×D → R

+
0 satisfying metric postulates, namely

non-negativity, the identity of indiscernibles, symmetry, and triangle inequality.
A set of data objects to be queried, so-called database, is denoted as X ⊆ D.

We distinguish two common retrieval operations, specifically, the range query
(range(q, r)) – returning database objects, such that their distance to q is smaller
than the distance r; and the k-nearest neighbors query (kNN(q)) – retrieving k
database objects closest to the query object q; when there are more objects at the
distance of the k-th nearest neighbor, the ties are solved arbitrarily. Nowadays,
approximate evaluation of similarity queries (e.g., approximate kNN(q)) loosens
the restrictions on returning the genuine answer at much lower search costs. Such
evaluation can be implemented by an early termination strategy that stops the
search when a predefined number of data objects are visited. The identification
of the most relevant data parts is thus the center of interest.

A more advanced data processing technique is the Similarity Group By (SGB)
query [11]. It groups data by respecting similarity constraints, e.g., distance
threshold. However, the disadvantage of such queries is that the obtained groups
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are mere lists of objects. Thus, there is no compact representation of such groups.
Hence, the objective of [2] was to examine properties of objects’ groups’ repre-
sentations, where the hull representation proved to be the most compact.

2.1 Hull Representation

Let C be a group of objects from database C ⊆ X. Formally, the hull repre-
sentation [2] is defined as H(C) = {pi | pi ∈ C} and any other object o ∈ C is
covered by hull. Each pi corresponds to a boundary object of C referred to as
hull object.

Let H be a hull representation H = {p1, . . . , ph} and an object o ∈ D. Assume
pNN to be the nearest hull object of H to o, i.e., NN = argmini=1..h(d(o, pi)).
We say the object o is covered by H if and only if

∑

i=1..h,i �=NN

d(pi, o) ≤
∑

i=1..h

d(pi, pNN ). (1)

By the original definition, the smallest hull consists of three objects. If |H| < 3,
the hull objects are the only objects covered.

Antol et al. [2] proposed two algorithms for hull computation for a set of
objects C. First, the Basic Hull Algorithm starts with selecting the furthest
object in O and gradually adds additional objects that are furthest objects from
the already selected ones. E.g., the third object has the maximum sum of dis-
tances to the previous two. This procedure terminates when the whole set C is
covered by H. In the worst case, each o ∈ C becomes a hull object. Second, the
Optimized Hull Algorithm is an improvement to the basic one, which reduces the
number of hull objects. After selecting the initial three hull objects, the proce-
dure is modified: instead of adding the furthest not-yet-covered object of to H,
the algorithm tries to replace some existing hull object with of to increase the
coverage of C. This leads to fewer hull objects without compromising the fact
that each object of C is covered by the resulting H.

3 Existing Metric Access Methods

In this section, we overview existing metric indexes relevant to this work. We
start with structures organizing objects into metric balls. The first disk-oriented
and dynamic structure built in the bottom-up fashion is the M-tree [7]. Data
objects are grouped into leaf nodes that are, in turn, represented by metric balls
(i.e., a routing object and a covering radius). Further levels group metric balls
into larger ones ending with l entries in the root node. The disadvantage is major
overlaps among such ball regions. A slim-down algorithm in Slim-trees [22] has
later optimized such an issue. The tree compactness is measured by the fat factor
there. Additional objects are included in internal nodes to further split balls into
hyperplanes in M+-tree [25] and BM+-tree [26]. Pivoting M-tree [19] selects a
fixed set of pivots that are globally used to define ranges on distances within
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which objects reside – spherical cuts. This resembles Linear AESA principle [24],
which recomputes distances to fixed pivots and stores them in arrays to fast
array-range filtering.

The other methods partition the data space by hyperplanes. GH-tree [3,23] is
the binary hyper-plane tree that was later generalized to recursive Voronoi tree,
call GNAT [6]. The dynamic version is EGNAT [15], which bulk-loads the tree
and then allows minor updates. Since metric balls provide a simple yet efficient
way of filtering tree branches, they were incorporated into Voronoi diagrams in
NOBH-tree [16]. A common disadvantage of Voronoi-diagram-based indexes is
the difficulty of redefining the partitioning at reasonable costs when the tree
becomes unbalanced. This is tackled in VD-tree [13]. The objects are swapped
between Voronoi cells to reduce overlaps, which is analogous to the slim-down
algorithm [22].

The concept of metric ball regions is widely used and proved advanta-
geous when combined with Voronoi partitioning or pivot-based filtering (Linear
AESA). This paper exploits the brand new proposal of metric hulls that can
bound a set of objects tightly by outliers. Metric hulls are an alternative to
selecting external pivots and consequential definition of constraints on distances
for each individual tree nodes.

4 MH-Tree – The Proposed Method

This section describes the proposed Metric Hull Tree (MH-tree) that represents
data partitions by metric hulls. The hulls are constructed bottom-up by following
the grounds of Incremental Hull Algorithm [9]. Literally, it gradually merges
hulls until only one final hull representation is obtained. However, the original
merging procedure needs to be generalized to support larger arity than two and
any capacity of leaf buckets.

4.1 Structure and Bulk Loading

The MH-tree is a hierarchical tree structure composed of two node types, as
depicted in Fig. 1. Each Leaf node encapsulates a bucket – a storage of [c, 2c]
objects. Each leaf node is rooted for an internal node and represented there by
a metric hull. The Internal node manages up to a pairs of a hull representation
(Hi) and a pointer (ptri) to a leaf node. Each hull is constructed by calling the
Optimized Hull Algorithm, see Sect. 2.1 and [2].

We construct the MH-tree by a bulk-loading procedure. Firstly, we group
the database objects into leaf nodes containing c objects. Secondly, a closest
leaf nodes are merged, thus obtaining a level of internal nodes. This merging
is repeated until one node is obtained, becoming the root of the MH-tree. This
procedure creates a balanced a-ary tree. We present it in pseudo-code in Algo-
rithm 1. If there are too few objects (incapable of forming at least two leaves),
we create just one leaf node that forms the root. In the following, we detail the
sub-algorithms.
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Fig. 1. A schema of MH-tree structure.

Algorithm 1: BulkLoad(X, c, a)
Input: a database X, bucket capacity c, arity a
Output: a root node of MH-tree

1 if |X| < 2c then
2 root ← create a new leaf node;
3 root.H ← compute Optimized Hull representation of X;
4 root.bucket ← X;
5 return root;

6 nodes ← CreateLeafNodes(X, c);
7 while |nodes| �= 1 do
8 nodes ← MergeNodes(nodes, a);

9 root ← nodes[0];
10 return root;

The database X is clustered by forming compact clusters of c objects. Thus,
� |X|

c � leaf nodes are created. Algorithm 2 presents the pseudo-code of Create-
LeafNodes. The procedure starts with selecting the furthest object of from a
random object in X (Lines 7–8), a new cluster’s nucleus. The second object in
the cluster is the nearest neighbor of of . To add the next object, we execute 1NN
queries for each object already assigned to the cluster and choose the neighbor
that minimizes the sum of distances to objects already in the cluster. This is
repeated until the cluster contains c objects (Lines 9–12). The next cluster is
formed by analogy but omitting the already clustered objects. If there are fewer
than c unprocessed objects, they get assigned to closest clusters directly, i.e.,
some clusters can contain more than c objects. Finally, the leaf nodes storing
the clusters’ objects in buckets are returned.

The motivation of Algorithm 2 is to create compact clusters of up to 2c
objects also for data with outliers and/or overlapping clusters. Here, agglomera-
tive clustering linking closest objects/clusters would create much more overlaps
among hulls. In particular, whenever a cluster exceeds c objects, it is taken out
and forms a leaf node. Consequently, the remaining objects would very likely be
outliers. They would group to a hull that would span over all the other nodes.

The next bulk-loading stage is merging leaf nodes to create a balanced struc-
ture of internal nodes. It is specified in Algorithm 3. By analogy we start with
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Algorithm 2: CreateLeafNodes(X, c)
Input: a database X, bucket capacity c
Output: a set of leaf nodes

1 leafNodes ← ∅;
2 while X �= ∅ do
3 if |X| < c then
4 foreach o ∈ X do
5 add o to the closest node in leafNodes;

6 break

7 of ← the furthest object in X for a randomly picked object from X;
8 X ← X \ of ; cluster ← { of };
9 while |cluster| < c do

10 NNs ← { on | ∃oc ∈ cluster : on ∈ 1NN(oc) };

11 o ← argmin
on∈NNs

∑

oc∈cluster

d(on, oc);

12 X ← X \ o; cluster ← cluster ∪ { o };

13 leaf ← create a new leaf node;
14 leaf .bucket ← cluster;
15 leafNodes ← leafNodes ∪ { leaf };

16 return leafNodes;

the furthest leaf node (nf ) and execute the aNN(nf ) query to get a cluster of a
near leaf nodes, nf inclusively. These nodes form an internal node for the next
tree level. We repeat this procedure until all nodes are processed. The identifi-
cation of furthest and close nodes is based on a comparison of nodes’ hulls. We
consider the distance between hulls H1 and H2 to be defined as:

d(H1,H2) = min
∀h1∈H1,∀h2∈H2

d(h1, h2). (2)

So, the furthest node is thus the node whose hull is furthest from the hull of
a randomly picked node (out of not-yet-processed ones). The outcome of Algo-
rithm 3 is a list of nodes constituting the next level of MH-tree. We apply it
until only one node is returned – the root node.

To create the hull representations we utilize the Optimized Hull Algorithm
(called from Algorithm 3). When merging leaf nodes, the Optimized Hull Algo-
rithm is invoked on the objects of the leaf node’s bucket to obtain a hull. In this
course, we would collect all objects from the previously merged nodes to create
a hull. But the computational requirements would grow steeply then. Instead, in
the next generations we gather the hull objects from all hulls in the internal node
and compute the new hull on them solely. This practice introduces imprecision
of hulls – some objects stored in the sub-tree may not be covered. We address
this issue on the kNN search algorithm.
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Algorithm 3: MergeNodes(N , a)
Input: a set of nodes N (at the same level of the tree), arity a
Output: a set of internal nodes of the upper level

1 level ← ∅; notProc ← N ;
2 while notProc �= ∅ do
3 if |notProc| ≤ a then
4 create a new internal node nNode;
5 foreach node ∈ notProc do
6 H ← call Optimized Hull Algo on node;
7 ptr ← pointer to node;
8 nNode.HullChildPairs ← nNode.HullChildPairs ∪ { (H, ptr) };

9 level ← level ∪ {nNode };
10 break

11 nf ← extract the furthest node from notProc;
12 C ← execute (a − 1)NN(nf ) query on notProc;
13 notProc ← notProc \ C;
14 create a new internal node nextNode;
15 foreach node ∈ C ∪ {nf } do
16 H ← call Optimized Hull Algo on node;
17 ptr ← pointer to node;
18 nextNode.HullChildPairs ← nextNode.HullChildPairs ∪ { (H, ptr) };

19 level ← level ∪ {nextNode };

20 return level ;

4.2 Searching in the MH Tree

We outline the kNN search algorithm in Algorithm 4. We assume a limit on the
number of visited data objects is passed, so the Stop function can terminate the
search early. Such limitation together with the imprecisions introduced during
the building procedure result in acquiring an approximate result. The algorithm
starts from the root node and maintains a queue of nodes to be inspected. This
queue is ordered by the “likelihood” of the node to contain relevant data. It can
be defined as a lower bound or upper bound distance for the query object q to
the nearest/furthest object in a node’s hull H. We define it using the hull objects
exclusively, so the lower and upper bound are defined as

dl(q,H) = min
∀h∈H

d(q, h); (3)

du(q,H) = max
∀h∈H

d(q, h). (4)

The actual definition of Rank function is investigated in the experiments in
Sect. 5.

The exact evaluation of the kNN query can be obtained by setting the approx-
imate limit to 100%. Even though this being a straightforward solution, it leads
to scanning the whole database. Rather, the check comparing the distance to
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Algorithm 4: ApproximateKNNSearch(q, k, Rank, limit)
Input: a query object q, number of nearest neighbors k, rank function Rank,

approximation parameter limit
Output: a set of nearest neighbors found

1 answer ← ∅; // ordered set by objects’ distances from q
2 PQ ← create a priority queue with the priority determined by Rank;
3 insert the root node into PQ with zero priority;
4 while PQ is not empty do
5 // early termination after a certain percentage of visited objects
6 if Stop(limit) then
7 break

8 node ← extract the node with highest priority from PQ;
9 if node is a leaf node then

10 foreach o ∈ node.bucket do
11 if |answer| < k then
12 add o into answer;
13 continue;

14 ok ← the kth object from query object q in answer;
15 if d(q, o) < d(q, ok) then
16 insert o in answer and remove ok from answer;

17 else
18 foreach pair ∈ node.HullChildPairs do
19 insert pair.ptr into PQ with the priority rank(q, pair.H, k);

20 return answer;

the kth nearest-neighbor candidate and the distance to the hull of PQ’s head
element must be defined. Since the current bulk-loading algorithm does ensure
coverage such a test may not be ensuring result correctness. Our primary aim
in this paper is to show the viability of the application of metric hulls to index-
ing, and we do not study the exact evaluation. A promising direction to define
a more efficient exact-search algorithm is presented in [8]. The author exploits
transformation of a metric space by multiple pivots, and defines a constraint on
distance of an object in such a pivot space.

4.3 Dynamicity

After bulk-loading the MH-tree, we can insert new objects to corresponding leaf
nodes. Firstly, we locate the most suitable leaf Nbl by executing kNN search
algorithm with the newly inserted object as the query object (Algorithm 4).
When a leaf node is extracted from the search queue (Line 8), we stop the
search and insert the new object o into the leaf node’s bucket. Next, if o is not
covered by the node’s hull H = {h1, . . . , hl}, it is updated with linear costs: ∀i,
try to replace hi with o and test whether hi is covered by such updated hull. If
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so, this hull is stored in the leaf’s parent. Otherwise, o is added as a new hull
object, i.e., the new hull H ∪ {o} is stored. The hulls of parent nodes need not
be updated, since the closeness of hulls to an object is addressed in the tree
traversal (by the Rank function).

If the capacity of the leaf Nbl is double exceeded, we split the leaf into two
new nodes N1 and N2 by these steps: (i) we identify an outlier in Nbl’s bucket
(the furthest object from a random one), and halve the bucket’s objects (incl. o)
according to the distance from the outlier – c + 1 objects closest to the outlier
from the bucket of N1 and the remaining objects are stored in the bucket of N2.
The new nodes are linked to Nbl’s parent if there is room for them. Otherwise,
a new internal node is created and roots the new leaf nodes. So, the MH-tree
becomes unbalanced then. If the structure becomes highly unbalanced, it should
be rebuilt from scratch.

5 Experimental Evaluation

This section provides an experimental study of the proposed Metric Hull Tree
and compares its performance with M-tree with Slim-down.

We used the Profimedia [14] dataset in the experiments. It consists of a
series of 4096-dimensional vectors extracted from Photo-stock images using a
convolutional neural network. To measure the similarity between the data, we
utilize the Euclidean distance. Our experiments were executed upon two sizes of
Profimedia dataset – 10,000 and 100,000 objects.

To compare the performance, we execute kNN queries and measure the
acquired recall. Specifically, we employ the approximate kNN search with an
early termination strategy of visiting a certain percentage of database objects.
The evaluation starts with the approximation parameter set to 5%, continued
by a gradual increase of it in five percentage-point steps up to 100%. To quan-
tify the trade-off between the accuracy and the efficiency of the approximate
search, we compute recall = |S∩Sa|

S , where the set S corresponds to the result
of (precise) kNN query and set Sa to the result of approximate kNN query.

The pivotal part of effective search in MH-tree is the selection of the ranking
function in priority queues. Naturally, we exploit just hull objects to define the
ranking function. In the following sections, we study the influence of various
ranking functions on recall in a shallow tree configuration, where we examine
the ranking of the leaf nodes solely, and in deep tree configuration, where we
take into consideration the ranking of both internal and leaf nodes. Lastly, we
compare the best definition of ranking function in MH-tree with M-tree.

5.1 Ordering Leaf Nodes

We analyse the way of ordering leaf nodes by comparing their hulls to an object,
e.g., a query object. The most encouraging way uses the distance from the query
object to the nearest hull object. Formally, the rank of a leaf node is defined as
follows

rankLEAF (q,H) = min
∀h∈H

d(q, h). (5)
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Fig. 2. Average recall of MH-tree and M-tree for 1NN and 50NN queries: (a, b) ranking
leaf nodes in shallow structures, and (c, d) final ranking of both types of nodes in
hierarchical structures. All results are on 10,000 Profimedia images.

To determine the efficiency of the rankLEAF function, we evaluate the shallow
configurations of MH-tree as well as M-tree, i.e., the root node referencing all leaf
nodes. In Fig. 2 ((a) and (b)), we provide the comparison for 1NN and 50NN
queries varying the approximation limit. Regarding the 1NN query (Fig. 2a),
the MH-tree surpasses the performance of the M-tree in the first 50% of vis-
ited objects. After that, the M-tree manages to gather faster growth of recall.
However, the performance of both approaches is more or less the same.

On the contrary, the average recall of the 50NN query (Fig. 2b) reveals a
much better performance of the MH-tree. It reaches 80% recall while visiting
20% of the database only. The M-tree manifests almost linear growth.

We also tested another variant of leaf-node ranking functions, e.g., the dis-
tance to the furthest hull object and average distance to all hull objects, but
this nearest variant performed the best. All results are available in the bache-
lor’s thesis [17].

5.2 Ordering Internal Nodes

To efficiently traverse also deep MH-tree structures, i.e., the multi-level ones, we
need to determine the best-ranking strategy with respect to both leaf and inter-
nal nodes. Firstly, we examined ordering based solely on the distance between
the query and the node without taking into consideration whether or not the
query is covered by the node’s hull representation. Such ranking roughly corre-
sponds to RankLEAF . However, we experienced only a linear growth of recall to
the number of visited nodes for the 50NN query. Thus, to improve navigation,
the rank used in the priority queue needs to be more sophisticated.

The rank(q,H, k) function, defined in Table 1, computes the rank depend-
ing on whether or not the query object is covered by the hull and also on the
number of neighbors k to be retrieved. We included the ranking of leaves there
for completeness. For 1NN queries, it is more convenient to prefer hulls that
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Table 1. The definition of the most efficient rank function rank(q,H, k).

Conditions Value

Node type k covered rank(q,H, k)

Internal 1 YES − max∀h∈H d(q, h)

NO max∀h∈H d(q, h)

> 1 YES − min∀h∈H d(q, h)

NO min∀h∈H d(q, h)

Leaf min∀h∈H d(q, h)

are closer overall, so the furthest hull object is used. Whereas the nearest one
is the best performing for any k > 1, since we do not know how many objects
are present there in advance. Notably, the covered condition provides a better
ordering of hulls that contain the query object, so hulls with q more to its center
are preferred. More details are in the bachelor’s thesis [17].

Figure 2c presents the average recall of the MH-tree and M-tree in the 1NN
query. Notice that the recall has almost doubled per the same amount of visited
nodes compared to Fig. 2a. Therefore, the rank is able to reflect the performance
of rankLEAF while proving that it is also able to navigate the tree effectively.
We observe similar behavior when comparing Figs. 2d and 2b on 50NN queries.
The MH-tree achieves significantly better recall than M-tree. The difference in
MH-tree’s performance on 50NN when being shallow or deep is marginal, proving
the node navigation by the rank function is robust.

5.3 Comparison

We compare the MH-tree with M-tree on 100,000 objects from Profimedia. The
M-tree was built with the slim-down algorithm [22] to make it as efficient and
compact as possible. To validate the quality and performance of the structures,
we set the structure parameters to obtain similar trees. They are summarized in
Table 2. We report the values of fat-factor [22] that quantifies overlaps of covering
regions representing tree nodes. The fat factor is a relative quantity computed
as an average performance of zero-radius range queries for each database object.
If the search for an object visits exactly one node per level, the fat factor is zero.
In the worst case, all tree nodes are visited. The fat factor then grades the tree
with one.

In Figs. 3a and 3b, we summarize the average recall of MH-tree compared to
M-tree in 1NN and 50NN queries. The recall of MH-tree rises much steeper than
M-tree’s up to visiting 15% of the database. For example, MH-tree provides 88%
recall for 50NN queries compared to 29% of M-tree. Figures 3c and 3d showcase
the details on performance of various kNN queries when approximation is fixed
to 10% and 20% of dataset. The recall of M-tree deteriorates with increasing k.
MH-tree’s recall is more steady. The results manifest that the MH-tree is able
to outperform the M-tree even on large datasets significantly.
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Table 2. Features of MH-tree and M-tree build on 100,000 Profimedia images.

Params Building statistics

Arity Leaf cap. Height Internal
nodes

Leaf
nodes

Routing
objects

Fat
factor

Building
time (s)

MH-tree 100 100 2 11 1000 3262 0.03 1548

M-tree 100 200 3 51 2546 2596 0.56 67
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Fig. 3. Average recall of MH-tree and M-tree in 1NN and 50NN queries in Deep tree
structure (a), (b). Average recall of MH-tree, M-tree for varying k in the kNN queries
(c), (d). All results are on 100,000 Profimedia images.

The negative point is the construction costs that are quite high and can only
be amortized when managing mostly static data. We did not focus on optimizing
the building routine, but the concept of hulls can eliminate node overlaps to a
large extent.

6 Conclusions

MH-tree is an index structure build upon the novel concept of metric hulls.
We proposed algorithms for building a hierarchy of metric hulls that organizes
data objects into leaf nodes, which are gradually merged into internal nodes
constrained by metric hulls. In addition to such a bulk-loading procedure, we
outlined the dynamic insertion of new objects. The fat factor of MH-tree is
by one order of magnitude smaller than of M-tree with slimming-down. This
proves the compactness of metric hull representation. Admittedly, this can also
be accounted to the building process of MH-tree that groups close objects pri-
marily.

We proposed and analysed a node-ranking function that orders nodes by their
closeness to a query object. The bases of leaf and internal nodes’ ranking differ
– the distance to the closest hull object is taken as the measure for leaf nodes.
In contrast, the distance to the furthest hull object is the means for internal
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nodes. We also showed that coverage of the query object by a hull needs to be
employed in order to navigate deeper tree structures effectively. In addition, we
achieved the highest recall when distinguishing between retrieval of one neighbor
and multiple nearest neighbors.

Finally, we compared the best-performing setup of MH-tree with the M-tree
built by the slim-down algorithm. The results showcase that MH-tree outper-
forms M-tree significantly – fewer nodes are visited for the same recall or vise
versa. Specifically, the performance of MH-tree was higher by 20–30% on average
compared to M-tree per the same amount of visited objects on smaller datasets.
The differences were even more pronounced on larger data, 30–40% higher aver-
age recall of MH-tree depending on the number of extracted neighbors.

The future work would focus on generating representations with more hull
objects, thus keeping the hulls even more compact. This could result in a sig-
nificant improvement in approximate search. In addition, formulating mature
ranking strategies could lead to a finer-grained tree traversal. Lastly, we will
compare MH-tree with techniques using external pivots, e.g., Pivoting M-tree.
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5. Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: index
structures for improving the performance of multimedia databases. ACM Comput.
Surv. 33(3), 322–373 (2001). https://doi.org/10.1145/502807.502809

6. Brin, S.: Near neighbor search in large metric spaces. In: Proceedings of the Inter-
national Conference on Very Large Data Bases (1995)

7. Ciaccia, P., Patella, M., Zezula, P.: M-tree: an efficient access method for similarity
search in metric spaces. In: Proceedings of the 23rd International Conference on
Very Large Data Bases (VLDB), pp. 426–435. Morgan Kaufmann (1997)

8. Hetland, M.L.: Comparison-based indexing from first principles. arXiv preprint
arXiv:1908.06318 (2019)

9. Jánošová, M.: Representing sets of unstructured data. Master thesis, Masaryk Uni-
versity, Faculty of Informatics (2020). https://is.muni.cz/th/vqton/

10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep
convolutional neural networks. Commun. ACM (2017). https://doi.org/10.1145/
3065386

https://doi.org/10.1007/s11042-012-1271-1
https://doi.org/10.1016/j.patrec.2021.05.011
https://doi.org/10.1016/j.patrec.2021.05.011
https://doi.org/10.1007/978-3-540-30192-9_5
https://doi.org/10.1007/978-3-540-30192-9_5
https://doi.org/10.1145/1183579.1183583
https://doi.org/10.1145/502807.502809
http://arxiv.org/abs/1908.06318
https://is.muni.cz/th/vqton/
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
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Abstract. The set similarity join (SSJ) is an important operation in
data science. For example, the SSJ operation relates data from differ-
ent sources or finds plagiarism. Common SSJ approaches are based on
the filter-and-verification framework. Existing approaches are sequential
(single-core), use multi-threading, or Map-Reduce-based distributed par-
allelization. The amount of data to be processed today is large and keeps
growing. On the other hand, the SSJ is a compute-intensive operation.
None of the existing SSJ methods scales to large datasets. Single- and
multi-core-based methods are limited in terms of hardware. MapReduce-
based methods do not scale due to too high and/or skewed data repli-
cation. We propose a novel, highly scalable distributed SSJ approach. It
overcomes the limits and bottlenecks of existing parallel SSJ approaches.
With a cost-based heuristic and a data-independent scaling mechanism
we avoid intra-node data replication and recomputation. A heuristic
assigns similar shares of compute costs to each node. A RAM usage
estimation prevents swapping, which is critical for the runtime. Our app-
roach significantly scales up the SSJ execution and processes much larger
datasets than all parallel approaches designed so far.

1 Introduction

A major challenge in data science today is to compare and relate data of similar
nature. One important operation to relate data is the join operation known
from relational databases. The join operation finds all record pairs from two
tables, which fulfill a given predicate. For basic predicates, such as equality,
there exist efficient methods to compute the join. However, for many real-world
problems the predicate is more complex: it involves similarity. If we assume that
records are represented by sets, we could use existing set similarity measures
to compare them pairwise. Given a collection of records (sets) R, formed over
the universe U of tokens (set elements), and a similarity function between two
records, sim : P(U) × P(U) → [0, 1]; the set similarity self-join (SSJ) of R
computes all pairs of sets (r, s) ∈ R × R whose similarity exceeds a user-defined
threshold θ, 0 < θ ≤ 1, i. e., all pairs (r, s) with sim(r, s) ≥ θ. Without loss of
generality, we focus on the Jaccard similarity function sim(r, s) = |r∩s|

|r∪s| and the
self-join.
c© Springer Nature Switzerland AG 2021
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A naive approach to compute the SSJ compares all possible pairs. Since the
complexity of such an approach is quadratic, it is not feasible even for small
datasets. The most prominent approaches in the literature to compute the SSJ
more efficiently are based on the filter-and-verification framework. Filter-and-
verification-based approaches do not reduce the worst-case complexity (which is
quadratic), but reduce the practical compute effort when favorable input data
characteristics are present. The framework first generates candidate pairs by
creating and probing an inverted index [1] and verifies the candidates in a second
step. Sophisticated filters such as the prefix filter keep the number of candidate
pairs low [2]. This method is efficient on single cores [6]. However, it does not
scale easily to large datasets.

We proposed a novel data-parallel filter-and-verification approach using
multi-threading [5]. It significantly scales up the SSJ computation. However,
the number of available CPU cores limits scalability. The maximum amount of
input we could process with this method on our hardware was roughly 25 GB.
To compute the SSJ on larger datasets, various MapReduce-based distributed
approaches evolved. The MapReduce programming paradigm requires indepen-
dently computable work shares. The approaches use existing filters from the
filter-and-verification framework to replicate and group data into such indepen-
dent shares. We showed that the amount of data these approaches can process is
limited [3]. In our experimental setup, the maximum possible input was roughly
12 GB, which is even smaller than what the multi-threaded approach could pro-
cess. Users cannot shift the limit by adding more compute nodes due to high
and skewed data replication.

The input dataset size and scalability limitations of the previously mentioned
approaches motivate our novel distributed-parallel SSJ approach, which pushes
these limits significantly. We experimentally show that our new approach scales
to hundreds of gigabytes and that it is robust against unfavorable data character-
istics1. We use existing filter-and-verification techniques as a basis and leverage
intra-node multicore parallelization by default. The major advances compared
to existing distributed approaches are as as follows. First, our approach avoids
intra-node replication since replication is the main bottleneck of the MapReduce
approaches due to our previous analysis. It assures that each record is present
only once in the main memory of each node. Each node runs only one single
multi-threaded SSJ instance in order to efficiently share commonly used data,
such as the inverted index. Second, it avoids recomputation, i. e., the repeated
validation of the same candidate record pair. Third, it removes algorithmic data
dependencies that lead to a skewed execution load as observed in MapReduce
approaches using prefix filtering [3].

Our approach solely requires a standard shared nothing architecture for a
distributed execution. Our approach is generic, thus it is independent of a specific
distributed system. The quadratic nature of the SSJ problem implies that scaling
up to larger input dataset sizes may require adding a quadratic number of nodes
in the worst case. To avoid the worst case, our distributed-parallel approach

1 Our implementation is available at https://github.com/fabiyon/dist-ssj-sisap.

https://github.com/fabiyon/dist-ssj-sisap
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Fig. 1. Schematic dataflow of our distributed-parallel SSJ approach.

uses techniques to distribute the compute load evenly among nodes. However,
depending on the dataset size, token distribution, and similarity threshold, the
demand for compute nodes might still be high. Modern cloud computing allows
to obtain a high number of compute nodes for a limited timeframe. Thus, we
may safely assume that it is realistic today to have hundreds or even thousands
of compute nodes available for just one operation. The main contributions of
this paper are as follows:

– We introduce a cost-based heuristic to break down the SSJ computation into
units that are computed independently in parallel.

– We additionally provide a data-independent scaling mechanism that allows
to further subdivide each unit if necessary and a RAM usage estimation to
avoid swapping.

– We experimentally verify that our distributed SSJ approach scales to hun-
dreds of gigabytes of input data.

In the following section, we introduce our solution in detail. Section 3 exper-
imentally shows its behavior on large datasets and large numbers of compute
nodes. Section 4 concludes this paper. We provide an extended version of this
paper with an additional description of experimental datasets as well as com-
prehensive tables and figures of our experimental results [4].

2 Distributing Filter-and-Verification-Based SSJ

Figure 1 provides an overview on our distributed-parallel SSJ approach. Step (1)
preprocesses and tokenizes the raw input data. In addition, we require this step
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to compute a statistic of the lengths of all records. The length statistic consists of
tuples {(l, |Rl|)} where l is a record length and |Rl| is the number of the records
with this length. Step (2), referred to as optimizer, realizes the major part of our
distributed SSJ approach. It generates parameters for each node to distribute
the compute workload. Step (3) computes the SSJ based on the parameters of
the optimizer. We require the tokenized input data and the length statistics to
be available on every compute node. The join is an extension of our multicore
SSJ as described in [5]. The extension includes the set of parameters from the
optimizer. The parameters limit the records to be indexed and joined on each
node such that the result is complete and free of duplicates.

Our solution assumes that each node runs exactly one instance of the multi-
core SSJ, exclusively using the nodes’ hardware resources. By instance, we refer
to the main thread of our multicore SSJ together with the worker threads it
spawns during execution. We choose this setup to share common data structures
such as inverted indexes. As it is common in MapReduce-based distributed sys-
tems, SSJ instances cannot communicate with each other and do not share data
during execution. The instances have all information for the execution available
before the beginning of the join computation. Each instance indexes and probes
only subsets of the input dataset to independently compute a partial join result.

In the following, we introduce the optimizer. It runs before the actual join
computation and divides the SSJ computation into independently computable
units. The optimizer consists of a data-dependent cost-based heuristic and a
data-independent scaling mechanism. Furthermore, we provide estimations of
RAM demand and cost distribution and a heuristic to find suitable optimizer
parameters. We first describe our cost-based heuristic.

2.1 Data-Dependent Cost-Based Heuristic

One goal of our cost-based heuristic is to avoid the cross product by only regard-
ing record pairs with matching lengths. Regarding lengths to filter out hope-
less pairs is a common technique, which most filter-and-verification approaches
use [1]. This filter is effective on datasets with varying lengths and cheap to
apply by using the length statistic computed beforehand. As discussed in the
introduction, we focus on the Jaccard similarity function and the self-join.

Regarding Jaccard similarity and a record r, the length of a similar record s

has to be in the interval [�θ · |r|�; � |r|
θ 	]. In the self-join case, the probe record

set is equal to the index record set. To avoid duplicates and unnecessary recom-
putation, we subsequently consider only probe records larger than the length
of an index record r: [|r|; � |r|

θ 	]. Figure 2 shows this length relationship for a
similarity threshold of θ = 0.7. For each record length on the y axis, it shows
on the x axis, which record lengths have to be considered as join candidates.
Now consider that we index the lengths on the y axis and probe the lengths on
the x axis. Then each square in the figure represents a pair of index and probe
lengths (i, p), which has to be joined for a complete result without duplicates.
Each square can potentially be joined independently. However, for our heuristic,
we choose to group squares with the same index lengths together and refer to
them as slices.
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Fig. 2. Example join matrix for θ = 0.7. Squares with the same index length compose
one slice.

Table 1. Symbol reference.

R Input dataset

θ Similarity threshold

|r| Number of tokens in r

|Rl| Number of records with length l

P(l) Prefix length of length l: P(l) = l − �θ · l� + 1

i Index prefix length

p Probe prefix length

rid Record ID

n Node parameter for cost-based heuristic

m Modulo: data-independent scaling parameter

modgroup Group parameter to check if a record is in a sub slice

indexLengths Set of index lengths for one SSJ instance

probeLengths Set of probe lengths for one SSJ instance

For each slice i, we estimate the probe costs C(i) as follows:

C(i) = P(i) · |Ri| ·
� i

θ �∑

p=i

P(p) · |Rp| (1)

Table 1 serves as a symbol reference for the symbols we use in the equation
and throughout this paper. For the cost estimation we assume that each probe
of the inverted index causes a cost of the length of the postings list. We do not
know the exact sizes of the postings lists a priori, because they are dependent
on the token distribution. Instead, we assume the worst case, where all index
records of the probed length are contained in the postings list. With regard to
an index length i, the possible probe lengths p are in [i, � i

θ 	]. The total number
of probes of one slice is the sum over the prefix of p (denoted as P(p)) multiplied
by the number of records with this length |Rp| for all probe lengths. The number
of index tokens of the slice is computed the same way and multiplied.
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Table 2. Example of input data lengths, matching probe lengths, number of records,
and corresponding slice costs for θ = 0.7.

Index length i Probe lengths {p} |Ri| C(i)

1 1 10 100

2 2 30 900

3 3, 4 80 86 400

4 4, 5 500 1 800 000

5 5, 6, 7 400 1 416 000

6 6, 7, 8 200 568 000

7 7, 8 190 581 400

8 8 150 202 500

Example 1. Table 2 shows the cost computation for a hypothetical dataset. The
dataset has eight length values as shown in the first column. The second column
shows matching probe lengths for each index length. |Ri| shows the hypothetical
length count per index length. Column C(i) shows the resulting slice costs. 
�

Example 1 highlights that slices can exhibit uneven costs. Thus, we assign
sets of slices to compute nodes with the intention to distribute the costs evenly.
We use a greedy heuristic to achieve an even cost distribution. We assume that
the user chooses a seed number of compute nodes n (the total number of compute
nodes for the SSJ computation can be higher depending on further parameters).
We sort the slice costs C(i) in ascending order. Then we assign each slice to each
node in a round robin fashion. Thus, the first node receives the slice with the
largest cost, the second node receives the second-largest, and when the last node
is reached, the first node obtains the next slice again. The following example
shows our greedy cost distribution heuristic:

Example 2. Consider again Table 2 and n = 2. The highest cost appears for
i = 4. Thus, we assign this slice to the first node. The next highest cost appears
for i = 5. Thus, we assign it to the second node. The third one is i = 7, assigned
to node 1, and so on. This approach generates the following index and probe
lengths:

Node 1: index lengths 2, 4, 7, 8, probe lengths 2, 4, 5, 7, 8, total costs 2 584 800
and

Node 2: index lengths 1, 3, 5, 6, probe lengths 1, 3, 4, 5, 6, 7, 8, total costs
2 070 500. 
�
As discussed before, our cost estimation cannot consider the specific sizes of

the postings lists. The estimation assumes that all records with matching lengths
are present in the postings lists, which is only the worst case and pessimistic.
On the other hand, the heuristic ignores the costs for the verification. The ver-
ification is dependent on the number of candidates, which we cannot estimate



Scaling Up Set Similarity Joins 23

a priori without actually computing the join. Thus, our heuristic potentially
underestimates the costs if a dataset has many candidates. In our experiments,
we show the strengths and limits of our approach. Next, we introduce the second
part of the optimizer, the data-independent scaling mechanism.

2.2 Data-Independent Scaling Mechanism

The scaling mechanism subdivides each slice (cf. Subsect. 2.1) by partitioning
its probe records. Our join computation assigns subsequent integer record IDs
(rids) to each input record. We use the modulo function to assign a probe record
to one partition as shown in the following equation:

isRecordInProbeSubset(rid,m,modgroup) = (rid mod m
?= modgroup) (2)

The user-defined parameter m sets the number of sub slices to generate. The
modgroup is in the interval [0,m − 1] and determines the sub slice a record is
assigned to. The following example illustrates how our scaling approach assigns
records to sub slices:

Example 3. Assume m = 2. One sub slice receives all records where the func-
tion returns true for modgroup = 0 and another sub slice obtains the ones
for modgroup = 1. We ordered the records in our input datasets by ascending
record lengths. Thus, we expect this approach to be robust against length skew
in the input data. It assigns records of all probe lengths to each sub slice round
robin. 
�

The scaling mechanism together with the cost-based heuristic form the main
building blocks of the optimizer of our SSJ approach. To find suitable parameter
values for m and n, we next discuss how to evaluate the quality of concrete
instances of these parameters. We start with an estimation of RAM demand.

2.3 RAM Demand

Our heuristic and the scaling mechanism do not guarantee that the computa-
tion of one (sub) slice stays within the RAM size of a given compute node. If
the SSJ computation allocates more memory than the system physically pro-
vides, swapping occurs. Swapping leads to severe runtime penalties, which we
must avoid. The main idea to avoid RAM overutilization is to find optimization
parameters m and n such that the RAM usage stays within system limits. With
the heuristic from Sect. 2.1, a concrete value for n, a similarity threshold θ, and
the length statistics of a concrete dataset {(r, |Rl|)} we compute sets of lengths
indexLengths and probeLengths for each node. We use these length sets for RAM
demand estimations subsequently.

We use an extension of our multicore SSJ on each compute node [5]. The
extension includes the parameters indexLengths, probeLengths, m, and modgroup
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to limit the index and probe records. Considering the extended multicore SSJ,
the inverted index, probe records, and candidates demand the largest parts of
main memory. Without loss of generality, we estimate the demands for all three
categories for our concrete SSJ implementation. The estimation is applicable to
possible other join implementations by adjusting the size factors of the employed
data structures.

First, we focus on the inverted index. Our implementation of the inverted
index holds the postings list entries in a struct of 12 Bytes. The number of
postings list entries is the prefix length times the number of records P(l) · |Rl|
for each index length l. We can estimate the size of the inverted index (in Bytes)
as follows:

indexRamDemand(indexLengths) =
∑

l∈indexLengths

P(l) · |Rl| · 12 (3)

Similarly, we estimate the RAM demand for the probe records. One record
in our implementation uses 60 Bytes plus each token stored as 4 Byte integer.
We estimate the space requirement for the probe records (in Bytes) as follows:

probeRamDemand(probeLengths,m) =
∑

l∈probeLengths

|Rl| · (60 + l · 4)
m

(4)

Lastly, we focus on the candidate size. Our SSJ uses 12 Bytes to store each
candidate record in main memory until verification. Each thread keeps a local
list of candidates for its subset of probe records. In the worst case, all indexed
records are candidates. However, it is pessimistic to assume that all threads hold
all index records as candidates at the same time. In our experiments, we found
that it is safe to assume 1

3 to 2
3 of the index records to be present on each thread

at a time on our datasets. Thus, we include a candidate factor candFact in our
estimation. We estimate the candidate RAM demand (in Bytes) as follows:

candidateRamDemand(indexLengths, numberThreads, candFact) =
∑

l∈indexLengths

|Rl| · 12 · numberThreads · candFact (5)

To avoid swapping, the sum of all demands must stay below the system
limit of a compute node leaving space for other storage needs and the operating
system. We found the static space demand to be below 4 GB on the system we
run our experiments on and thus consider this value in the following.

Example 4. Consider the dataset ORKU with scaling factor 100, θ = 0.6,
m = 64, n = 8, and numberThreads = 24. Over all slices, we can compute
a maximum index RAM demand of 21 GB, 2 GB for the probe records, and
up to 10 GB for candidates. We estimate the total demand including the static
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demand to be 37 GB. In fact, on our system with 32 GB RAM, this parameter
combination leads to heavy swapping. The runtime of each slice is above 12 h.
When we changed the parameters to m = 16 and n = 32 (which equals the total
number of nodes in the previous configuration, 512) the total estimated RAM
demand decreases to 24 GB. The maximum runtime per slice in this configura-
tion is 300 s and no swapping occurs. The example motivates that it is crucial to
find a suitable parameter configuration, which keeps the memory demand below
the system limit to achieve an acceptable runtime for the join operation. 
�

Note that our data-independent scaling approach focuses only on probe
records. In case the set of indexLengths contains solely one length and the corre-
sponding indexRamDemand exceeds the available main memory, our approach
does not provide a means to further reduce the index size. However, if an index
exceeds available main memory it is possible to partition the index records, i.e.,
with a modulo function in the same way as we applied it to the probe records. We
do not elaborate on further reducing the index size, because we cannot observe
such an extreme index skew within our experiments even on highly enlarged
datasets. Next, we discuss the cost distribution among the compute nodes.

2.4 Cost Distribution Quality

Even without swapping, the choice of parameter n might be crucial for the
runtime depending on the length distribution of the input dataset. Example 5
illustrates and motivates the need for an appropriate parameter choice.

Fig. 3. AOL×10 runtimes. Fig. 4. ENRO×10 runtimes.

Example 5. Figures 3 and 4 visualize the runtimes of AOL and ENRO, both
increased with scaling factor 10, for θ = 0.6 varying both parameters m and n.
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The circle sizes represent the runtime. The same color marks combinations of
parameters with the same total number of nodes. For example, the parameter
combination m = 8 and n = 4 uses 32 nodes in total. Parameter combination
m = 4 and n = 8 also uses 32 nodes and therefore has the same color assigned.
The numbers above the circles are the maximum runtimes over all slices in sec-
onds followed by the total number of nodes in brackets. For ENRO×10 a higher
n is beneficial for an improved runtime. That is, the runtime with parameters
m = 2 and n = 16 is lower than with parameters m = 8 and n = 4 for the same
total amount of nodes of 32. On the other hand, for AOL×10, a higher value
of n does not lead to improved runtimes. A higher m parameter is effective for
both datasets. The effectiveness of parameter m on both datasets is expected,
because it linearly scales the number of probe records. 
�

Table 3. Example for input data length skew. Columns show hypothetical input data
lengths, matching probe lengths, and the number of records for AOL and ENRO for
θ = 0.6.

Index length i Probe lengths {p} AOL |Ri| ENRO |Ri|
1 1 2705785 149

2 2, 3 2026952 361

3 3, 4, 5 2051010 594

4 4, 5, 6 1457075 814

5 5, 6, 7, 8 849944 1029

6 6, 7, 8, 9, 10 445489 1141

7 7, 8, 9, 10, 11 225401 1301

8 8, 9, 10, 11, 12, 13 117962 1386

In Example 5, the length distributions of the datasets are essential for the
efficiency of parameter n regarding runtime. AOL shows significantly more short
records than ENRO. For example, in AOL there are 1.4 to 2.7 million records
with the lengths 1 to 4, which corresponds to roughly 80% of the total number of
records in AOL. ENRO has only 149 to 814 records in this length range, which
corresponds to less than 1% of the records in ENRO. Table 3 lists matching
probe lengths and record counts of AOL and ENRO for a low similarity threshold
θ = 0.6. The slices of AOL for i ∈ 1, 2, 3, 4 are large in relation to the number of
total records, while the slices of ENRO remain small. The cost-based heuristic is
less effective for AOL due to its skewed record lengths. Furthermore, depending
on the choice of n, this length skew results in cost skew over the slices. In this
example, the costs for AOL are less skewed for n = 4 compared to higher values
of n.

To evenly distribute the compute costs over the nodes, we aim to find the
best n out of a given value range regarding a distribution quality function.
Given one n, we can compute the maximum cost deviation over all slices with
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max{C(i)} ÷ min{C(j)} for i, j ∈ [0;n − 1]. Given a valueRange for n, we can
then minimize this deviation as follows:

min
n∈valueRange

=
{

max
i∈[0;n−1]

{C(i)} ÷ min
j∈[0;n−1]

{C(j)}
}

(6)

Example 6. Consider AOL×10, θ = 0.6, and n ∈ {4, 8, 16, 32}. Using Eq. 6,
n = 4 has the lowest maximum cost deviation of 4.16. For higher values of n
the deviation varies between 200 and 230 000. For ENRO×10 and the same
parameters, the lowest deviation is 1.02 for n = 4, followed by 1.05 for n = 8,
1.09 for n = 16, and 1.21 for n = 32. For both datasets, our cost distribution
quality estimation chooses a good value for parameter n. Our estimation might
not necessarily lead to the optimal parameter value regarding runtime, but it
avoids unfavorable values. 
�

In the following subsection, we discuss how to use these cost distribution
considerations together with the RAM estimation to find suitable parameter
values m and n.

2.5 Finding Suitable Parameter Values

Our approach uses the two parameters m and n. Based on the previous discussion
about RAM demand and cost distribution we propose the following strategy to
determine parameter values, which avoid RAM overutilization and cost skew. We
assume that the user chooses a total number of compute nodes t as a seed, which
should preferably be a power of two for practical reasons. For each possible m and
n (such that m·n = t) we compute the estimated demand for RAM (cf. Sect. 2.3)
and the minimum and maximum cost over all slices (cf. Sect. 2.4). We can prune
all parameter combinations with a RAM demand above the system limit. We
then choose the parameter combination (m,n) with the lowest cost deviation. In
case all parameter combinations are pruned, we set the total number of nodes
t = t · 2 and re-run the previous computation until a suitable combination is
found. If the resulting t is above the number of available compute nodes, the
computation should be split into subsequent phases. The described strategy finds
only the minimum m parameter value with respect to t. Users may increase m
to achieve lower runtimes. In our experiments, we show the applicability of our
approach to find suitable parameters.

3 Experiments

This section presents our experimental analysis. We focus on scalability, varying
the parameters m and n, the input dataset sizes, and the similarity threshold
θ. Based on the shortcomings of manually choosing parameter values, we subse-
quently discuss our strategy to find suitable parameter values m and n.

To compute the join on one slice we use a multicore C++ SSJ implementation
running it on each compute node by extending our previous multicore SSJ with
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the parameters indexLengths, probeLengths, m, and modgroup. By default, we
run the multicore SSJ with the optimal parameters [5]. We enable the position
filter and set the number of threads to 24, which is optimal on our hardware:
Each node is equipped with two Xeon E5-2620 2 GHz of 6 cores each (with hyper-
threading enabled, i. e., 24 logical cores per node), 24 GBs of RAM, and two 1 TB
hard disks. Whenever we report runtimes, we refer to the maximum runtime over
all slices since the maximum runtime determines the overall runtime.

As input datasets, we use the 10 real-world and two synthetic datasets (cf.
extended paper [4]). Since we focus on larger datasets, we use only increased
datasets with the scaling factors 10, 25, 50, and 100. We start our experiments
with a scaling factor of 10, because these are the largest datasets joinable with
both the MapReduce and the multicore approaches so far. Our novel distributed
approach is able to compute the join on much larger datasets as we show subse-
quently.

3.1 Impact of Cost-Based Heuristic

In this experiment, we show how the runtime develops varying parameter n. We
do not set parameter m. Thus, the probe records per slice remain complete with
regard to the probeLengths computed with the heuristic from Sect. 2.1. We use
all datasets increased by factor 10, θ ∈ {0.6, 0.75, 0.9}, n ∈ {4, 8, 16, 32} and
compare it to the non-distributed multicore SSJ (cf. Fig. 5).

Fig. 5. Maximum runtimes over all slices for n ∈ {4, 8, 16, 32} for three exemplary
datasets AOL, KOSA, and ORKU. n = 1 represents the multicore SSJ without dis-
tributed parallelization. Thresholds θ ∈ {0.6, 0.75, 0.9}.

For all datasets and all thresholds, n = 4 significantly reduces all runtimes
compared to n = 1. The speedups vary between 1.8 (AOL×10, θ = 0.75) and
13.9 (ORKU×10, θ = 0.6). The average speedup over all datasets and thresholds
is 3.7. For higher values of n the speedups decrease. Adding more than 8 or 16
nodes leads to only small runtime decreases for most datasets and thresholds.
This effect is due to the nature of our heuristic. Recall that one slice consists
of an index length and all its possible probe lengths. The length skew of the
input datasets and the similarity threshold determine the largest and potentially
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slowest slice, which cannot be further partitioned with the heuristic. AOL×10 is
exemplary for this circumstance. As we discussed in Sect. 2.4, AOL has roughly
80% of its records within the length range 1 to 4. n values higher than 4 are not
beneficial for this dataset. Other datasets show different length distributions,
which lead to optimal n values higher than 4.

KOSA×10 also shows a limited scalability for θ = 0.6, but for a different
reason than length skew. We observe that amongst all slices for each n there
exists one slice with a runtime between 130 and 150 s, while all other slices have
lower runtimes. The reason for the outlier slices in KOSA×10 are their high
number of candidates compared to all other slices. The runtimes of KOSA×10
show a limitation of our heuristic. It optimizes the runtime based on length
information and is thus not robust against candidate skew by design.

3.2 Impact of Data-Independent Scaling Mechanism

In this experiment, we study how the scaling parameter m influences the run-
times. We continue to use the datasets using scaling factor 10 and fix parameter
n to 8, since this parameter setting showed good runtimes in the previous exper-
iment. We again use θ ∈ {0.6, 0.75, 0.9} and vary m ∈ {2, 4, 8}. The results
indicate that m ≥ 2 is beneficial to achieve a lower runtime for all datasets and
thresholds, including AOL×10 and KOSA×10, which showed scalability bound-
aries for n ≥ 4 in the previous experiment (cf. Fig. 6).

Fig. 6. Maximum runtimes for exemplary datasets over all slices for n = 8, θ ∈
{0.6, 0.75, 0.9}, m ∈ {2, 4, 8}. m = 1 indicates runtimes without the scaling mecha-
nism.

Since the modulo function evenly distributes different probe lengths among
sub slices we expect the runtimes to scale linearly with m, which experimen-
tal results partially confirm. Regarding the minimum, maximum, and average
speedups for m ∈ {2, 4, 8} in relation to m = 1, grouped by θ, there is a max-
imum speedup close to the optimum m for each threshold group. The averages
over all thresholds for m = 2 are close to the optimum 2. The average speedups
for larger values for m decrease.
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3.3 Impact of Dataset Size

In this subsection, we investigate how the runtimes evolve when increasing the
dataset size by scaling factors s ∈ {10, 25, 50, 100}. We statically set n = 8 and
m = 64. We compare the maximum runtimes per slice for s ∈ {25, 50, 100}
relative to maximum runtime for s = 10.

In many cases, the runtime does not increase linearly with the dataset size.
A non-linear runtime increase is expected, because the SSJ has a quadratic
complexity. A perfectly linear runtime relative to s = 10 would be s

10 for s ∈
{25, 50, 100}. Only few combinations of datasets, θ, and s fall in this category. For
ENRO and θ = 0.9, ORKU and θ = 0.9, and SPOT (all thresholds) the relative
runtimes for s ∈ {25, 50, 100} are better than linear. ENRO and θ = 0.75, FLIC
and θ ∈ {0.75, 0.9}, LIVE and θ = 0.9, ZIPF and θ ∈ {0.75, 0.9} are close
to linear. We can observe that the runtimes of higher thresholds increase more
linearly than the ones of lower thresholds relative to s. This runtime behavior
can be explained by the prefix filter, which is more effective for higher thresholds.

With our approach, it is possible to compute the SSJ on all datasets of all
sizes in our evaluation and all thresholds except ENRO-100 and θ = 0.6. We
manually stopped the computation after 12 h. In Sect. 2.3, we discussed that
for ORKU×100 the parameter combination n = 8 and m = 64 is not optimal,
because it causes swapping. We next discuss our proposed parameter finding
strategy.

3.4 Discussion of Parameter Finding Strategy

The previous experiment on enlarged datasets highlights that the manually
assigned parameters m = 64 and n = 8 are not suitable for ORKU×100
and θ = 0.6, because the runtime exceeds 12 h. In Sect. 2.3, we discussed
the same example and concluded that swapping occurs. When we apply the
parameter strategy from Sect. 2.5 to the equal number of total nodes as before
(t = 8 ·64 = 512), it suggests m = 32 and n = 16. The runtime of this parameter
combination is 1314 s, so the strategy avoids the worst case. We furthermore
expect the strategy to choose the parameter combination with the smallest cost
deviation. In the example in Sect. 2.4, we discussed that for AOL×10 θ = 0.6
n = 4 is better than a larger n. Running the parameter finding strategy for
t = 16, it indeed suggests the parameter value n = 4.

4 Conclusion

In this paper we introduced our novel distributed SSJ approach. We showed
experimentally that it scales the computation to potentially hundreds of compute
nodes if needed. Our method computes the SSJ on our hardware on datasets
up to roughly 240 GB, which is much larger than the ones which could be
computed with existing parallel methods so far. We discussed how to a priori
estimate limits of parameter values from which we cannot expect an efficient
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execution, especially regarding main memory usage. We proposed a parameter
finding strategy, which avoids poor parameter values leading to either RAM
overutilization or a skewed cost distribution. One remaining challenge is to better
estimate or manipulate the maximum number of candidates of each slice, which
occur at one instance of time.

Acknowledgements. This work was supported by a research grant from LexisNexis
Risk Solutions.
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Abstract. Similarity search is a fundamental problem for many data
analysis techniques. Many efficient search techniques rely on the trian-
gle inequality of metrics, which allows pruning parts of the search space
based on transitive bounds on distances. Recently, cosine similarity has
become a popular alternative choice to the standard Euclidean metric,
in particular in the context of textual data and neural network embed-
dings. Unfortunately, cosine similarity is not metric and does not satisfy
the standard triangle inequality. Instead, many search techniques for
cosine rely on approximation techniques such as locality sensitive hash-
ing. In this paper, we derive a triangle inequality for cosine similarity
that is suitable for efficient similarity search with many standard search
structures (such as the VP-tree, Cover-tree, and M-tree); show that this
bound is tight and discuss fast approximations for it. We hope that this
spurs new research on accelerating exact similarity search for cosine sim-
ilarity, and possible other similarity measures beyond the existing work
for distance metrics.

Keywords: Cosine similarity · Triangle inequality · Similarity search

1 Introduction

Similarity search is a fundamental problem in data science and is used as a build-
ing block in many tasks and applications, such as nearest-neighbor classification,
clustering, anomaly detection, and of course information retrieval. A wide class of
search algorithms requires a metric distance function, i.e., a dissimilarity measure
d(x, y) that satisfies the triangle inequality d(x, y) ≤ d(x, z) + d(z, y) for any z.
Intuitively, this is the requirement that the direct path from x to y is the shortest,
and any detour over another point z is at least as long. Many dissimilarity mea-
sures such as the popular Euclidean distance and Manhattan distance satisfy this
property, but not all do: for example the squared Euclidean distance (minimized,
e.g., by the popular k-means clustering algorithm) does not, even on univariate
data: d2Euclid(0, 2) = 22 = 4 but d2Euclid(0, 1) + d2Euclid(1, 2) = 12 + 12 = 2.
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The triangle inequality d(x, y) ≤ d(x, z) + d(z, y) is a central technique in
accelerating similarity search because it allows us to compute a bound on a
distance d(x, y) without having to compute it exactly if we know d(x, z) and
d(z, y) for some object z. With trivial rearrangement and relabeling of y and z,
we can also obtain a lower bound: d(x, y) ≥ d(x, z) − d(z, y). Given a maximum
search radius ε, if d(x, z)−d(z, y) > ε, we can then infer that y cannot be part of
the search result. This technique is often combined with a search tree, where each
subtree Z is associated with a routing object z, and stores the maximum distance
dmax(z) := maxy∈Z d(z, y) for all y in the subtree. If d(x, z) − dmax(z) > ε, none
of the objects in the subtree can be part of the search result, and we can hence
skip many candidates at once. This technique can also be extended to k-nearest
neighbor and priority search, where we can use the minimum possible distance
d(x, z) − dmax(z) to prioritize or prune candidates.

Metric similarity search indexes using this approach include the ball-tree [15],
the metric tree [20] aka. the vantage-point tree [21], the LAESA index [11,17],
the Geometric Near-neighbor Access Tree (GNAT) [3] aka. multi-vantage-point-
tree [2], the M-tree [5], the SA-tree [13] and Distal SAT [4], the iDistance
index [7], the cover tree [1], the M-index [14], and many more. (Neither the
k-d-tree, quad-tree, nor the R-tree belong to this family, these indexes are
coordinate-based, and require lower-bounds based on hyperplanes and bounding
boxes, respectively). While they differ in the way they organize the data (e.g.,
with nested balls in the ball tree, M-tree, and cover tree, by splitting into ball-
and-remainder in the VP-tree, or by storing the distances to reference points in
LAESA and iDistance), all of these examples rely on the triangle inequality for
pruning candidates as central search technique, and should not be used with a
distance that does not satisfy this condition, as the search results may otherwise
be incomplete (this may, however, be acceptable for certain applications).

In this paper, we introduce a triangle inequality for cosine similarity that
allows lifting most of these techniques from metric distances to cosine similarity,
and we hope that future research will allow extending this to other popular
similarity functions.

2 Cosine Distance and Euclidean Distance

Cosine similarity (which we will simply denote as “sim” in the following) is
commonly defined as the cosine of the angle θ between two vectors x and y:

sim(x,y) := simCosine(x,y) :=
〈x,y〉

‖x‖2 · ‖y‖2
=

∑
i xiyi

√∑
i x2

i · √∑
i y2

i

= cos θ

Cosine similarity has some interesting properties that make it a popular choice
in certain applications, in particular in text analysis. First of all, it is easy to see
that sim(x,y) = sim(αx,y) = sim(x, αy) for any α > 0, i.e., the similarity is
invariant to scaling vectors with a positive scalar. In text analysis, this often is a
desirable property as repeating the contents of a document multiple times does
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not change the information of the document substantially. Formally, cosine sim-
ilarity can be seen as being the dot product of L2 normalized vectors. Secondly,
the computation of cosine similarity is fairly efficient for sparse vectors: rather
than storing the vectors as a long array of values, most of which are zero, they
can be encoded for example as pairs (i, v) of an index i and a value v, where
only the non-zero pairs are stored and kept in sorted order. The dot product of
two such vectors can then be efficiently computed by a merge operation, where
only those indexes i need to be considered that are in both vectors because in
〈x,y〉 =

∑
i xiyi only those terms matter where both xi and yi are not zero.

In popular literature, you will often find the claim that cosine similarity is
more suited for high-dimensional data. As we will see below, it cannot be superior
to Euclidean distance because of the close relationship of the two, hence this must
be considered a myth. Research on intrinsic dimensionality has shown that cosine
similarity is also affected by the distance concentration effect [12] as well as the
hubness phenomenon [16], two key aspects of the “curse of dimensionality” [22].
The main difference is that we are usually using the cosine similarity on sparse
data, which has a much lower intrinsic dimensionality than the vector space
dimensionality suggests.

Consider the Euclidean distance of two normalized vectors x and y. By
expanding the binomials, we obtain:

dEuclidean(x,y) :=
√

∑

i
(xi − yi)2 =

√
∑

i
(x2

i + y2
i − 2xiyi)

=
√

‖x‖2 + ‖y‖2 − 2 〈x,y〉 =
√

〈x,x〉 + 〈y,y〉 − 2 〈x,y〉 (1)

if ‖x‖ = ‖y‖=1 :=
√

2 − 2 · sim(x,y) (2)

where the last step relies on the vectors being normalized to unit length. Hence
we have an extremely close relationship between cosine similarity and (squared)
Euclidean distance of the normalized vectors:

sim(x,y) = 1 − 1
2d2Euclidean

(
x

‖x‖ , y
‖y‖

)
. (3)

While we can also compute Euclidean distance more efficiently for sparse
vectors using the scalar product form of Eq. 1, this computation is prone to a
numerical problem called “catastrophic cancellation” for small distances (when
〈x,x〉 ≈ 〈x,y〉 ≈ 〈y,y〉 that can be problematic in clustering (see, e.g., [9,18]).
Hence, working with cosines directly is preferable when possible, and additional
motivation for this work was to work directly with a triangle inequality on the
similarities, to avoid this numerical problem (as we will see below, we cannot
completely avoid this, unless we can afford to compute many trigonometric func-
tions).

In common literature, the term “cosine distance” usually refers to a dissimi-
larity function defined as

dCosine(x,y) := 1 − sim(x,y) , (4)

which unfortunately is not a metric, i.e., it does not satisfy the triangle inequality.
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There are two less common alternatives, namely:

dSqrtCosine(x,y) :=
√

2 − 2 sim(x,y)
(

= dEuclidean

(
x

‖x‖ , y
‖y‖

) )
(5)

darccos(x,y) := arccos(sim(x,y)) . (6)

which are less common (but, e.g., available in ELKI [19]) and which are metric.
Equation 5 directly follows from Eq. 3, while the second one is the angle between
the vectors itself (the arc length, not the cosine of the angle), for which we easily
obtain the triangle inequality by looking at the arc through x, y, z. We will use
these metrics below to obtain a triangle inequality for cosines.

3 Constructing a Triangle Inequality for Cosine Similarity

Because the triangle inequality is the central rule to avoiding distance compu-
tations in many metric search indexes (as well as in many other algorithms), we
would like to obtain a triangle inequality for cosine similarity. Given the close
relationship to squared Euclidean distance outlined in the previous section, one
obvious approach would be to just use Euclidean distance instead of cosine. If
we know that our data is normalized (which is a best practice when using cosine
similarities), we can make the computation slightly more efficient using Eq. 5,
but we wanted to avoid this because (i) computing the square root takes 10–
50 CPU cycles (depending on the exact CPU, precision, and input value) and
(ii) the subtraction in this equation is prone to catastrophic cancellation when
the two vectors are similar, i.e., we may have precision issues when finding the
nearest neighbors. Hence, we would like to develop techniques that primarily
rely on similarity instead of distance, yet allow a similar pruning to the (very
successful) metric search acceleration techniques.

Using Eq. 5 and the triangle inequality of Euclidean distance, we obtain
√

1 − sim(x,y) ≤
√

1 − sim(x, z) +
√

1 − sim(z,y)

sim(x,y) ≥ 1 − (√
1 − sim(x, z) +

√
1 − sim(z,y)

)2

sim(x,y) ≥ sim(x, z) + sim(z,y) − 1

− 2
√(

1 − sim(x, z))(1 − sim(z,y)
)

(7)

which, unfortunately, does not appear to allow much further simplification. In
order to remove the square root, we can approximate it using the smaller of the
two similarities sim⊥(x,y, z) := min{sim(x, z), sim(z,y)}:

sim(x,y) ≥ sim(x, z) + sim(z,y) − 1 − 2(1 − sim⊥(x,y, z))
sim(x,y) ≥ sim(x, z) + sim(z,y) + 2 sim⊥(x,y, z) − 3 (8)

This is highly efficient to compute, a strict bound to Eq. 7, but unfortunately
also a rather loose bound if one of the similarities is high, but the other is not.
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Besides the relationship to squared Euclidean distance, there is another way
to obtain a metric from cosine similarity, namely by using the arc length as in
Eq. 6 (i.e., using the angle θ itself, rather than the cosine of the angle):

darccos(x,y) := arccos(sim(x,y))

This also yields a metric on the sphere that satisfies the triangle inequality:

arccos(sim(x,y)) ≤ arccos(sim(x, z)) + arccos(sim(z,y))

and, hence,

sim(x,y) ≥ cos(arccos(sim(x, z)) + arccos(sim(z,y))) (9)

Computationally, the trigonometric functions involved here are even more expen-
sive (60–100 CPU cycles each), hence using this variant directly is not for free.
However, this can be further transformed (c.f., angle addition theorems) to the
following equivalent triangle inequality for cosine similarity:

sim(x,y) ≥ sim(x, z) · sim(z,y)

−
√

(1 − sim(x, z)2) · (1 − sim(z,y)2) . (10)

This triangle inequality is tighter than the one based on Euclidean distance, and
hence we can expect better pruning power than using an index for Euclidean
distance or dSqrtCosine (Eq. 5) in a metric index; while the computational cost has
been reduced to the low “overhead” of Euclidean distances. Equation 9 suggests
that it is the tightest possible bound we can obtain because it is directly using
the angles, rather than the chord length as used by Euclidean distance. This
bound yields a very interesting insight: while the triangle inequality for Euclidean
distances – and in the arc lengths – was additive, the main term of this equation
in the cosine domain is multiplicative.

We also investigated approximations to further reduce the computation over-
head. By approximating the last term using the smaller similarity only, we get

sim(x,y) ≥ sim(x, z) · sim(z,y) + min{sim(x, z)2, sim(z,y)2} − 1 (11)

which is a cheap bound, tighter than Eq. 8, but still too loose.
We can also expand and approximate the last term using both the smaller

and the larger value sim�(x,y, z) := max{sim(x, z), sim(z,y)}:
√

(1 − sim(x, z)2) · (1 − sim(z,y)2)

=
√

(1 − sim(x, z)) · (1 + sim(x, z)) · (1 − sim(z,y)) · (1 + sim(z,y))

≤
√

(1 + sim�(x,y, z))2 · (1 − sim⊥(x,y, z))2

= (1 + sim�(x,y, z)) · (1 − sim⊥(x,y, z))
= 1 + sim�(x,y, z) − sim⊥(x,y, z) − sim(x, z) · sim(z,y)

and hence obtain the inequality

sim(x,y) ≥ 2 · sim(x, z) · sim(z,y) − 1 − | sim(x, z) − sim(z,y)| (12)

but this approximation is strictly inferior to Eq. 11.
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A B

C
D A B

CD

Fig. 1. Illustration of Ptolemy’s (in-) equality in Euclidean space, and a simple coun-
terexample for it in angular space.

3.1 Opposite Direction

The opposite direction of the triangle inequality is often as important as the
first direction. For distances and the angles, it is simply obtained by moving one
term to the other side and renaming. It can then be simplified as before

arccos( sim(x,y)) ≥ arccos(sim(x, z)) − arccos(sim(z,y))
sim(x,y) ≤ cos(arccos(sim(x, z)) − arccos(sim(z,y)))

sim(x,y) ≤ sim(x, z) · sim(z,y) +
√

(1 − sim(x, z)2) · (1 − sim(z,y)2) (13)

It is interesting to see that Eqs. 10 and 13 together imply that

| sim(x,y) − sim(x, z) · sim(z,y)| ≤
√

(1 − sim(x, z)2) · (1 − sim(z,y)2)

i.e., a symmetric error bound for sim(x,y) ≈ sim(x, z) · sim(z,y).

3.2 Angles are Not Ptolematic

Recently, people have also looked into using the Ptolemaic inequality for simi-
larity search [6,10]. Ptolemy’s inequality states that for a rectangle of ordered
points A, B, C, D with diagonals AC and BD:

d(A,B) · d(C,D) + d(B,C) · d(D,A) ≥ d(A,C) · d(B,D)

i.e., the two products of opposing sides sum to more than the product of diag-
onals. If the four points are concyclic (as illustrated in Fig. 1), this becomes an
equality. While this has some interesting properties for data indexing, it does
not appear to be suitable for angular space, as shown by the counter example
illustrated in Fig. 1, despite the similarity of the setting. The key difference is
that we are interested in the arc lengths, whereas Ptolemy’s inequality uses the
chord lengths. For a simple counter example, we place the four points equally
spaced on the equator (or any other great circle) of a 3d sphere for illustrative
purposes (the example will also work in 2 dimensional data) The rectangle (on
the sphere) becomes a great circle, and as we spaced them equally the angle from
one to the next is π

2 . The diagonals connect antipodal points, and hence have
angle π. It is easy to see that π

2 · π
2 + π

2 · π
2 = π2

2 �≥ π2, and hence angles are
not Ptolemaic. Using the cosines of the angles and Eq. 4, we get 1 − cos π

2 = 1
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(a) Euclidean-based (b) Arccos-based (c) Difference

Fig. 2. Euclidean vs. Arccos-based triangular inequalities

respectively 1 − cos π = 2 and 1 + 1 �≥ 4. Only when using the Euclidean equiv-
alency via Eq. 5 we obtain

√
2 respectively 2 we have 2 + 2 ≥ 4. The recent

results in Ptolematic indexing hence will supposedly not easily transfer to angu-
lar space (i.e., to arc length not chord length), but remain usable for such data
via Euclidean distance at a potential loss in numerical accuracy. It may also be
possible to find a similar equation for the angular case.

4 Experiments

Table 1 summarizes the six bounds that we compare concerning their suitability
for metric indexing. Note that we will not investigate the actual performance in
a similarity index here, but plan to do this in future work. Instead, we want to
focus on the bounds themselves concerning three properties:

1. how tight the bounds are, i.e., how much pruning power we lose
2. whether we can observe numerical instabilities
3. the differences in the computational effort necessary

Table 1. Triangle inequalities/bounds compared

Name Eq. Equation

Euclidean (7) sim(x, z) + sim(z,y) − 1 − 2
√

(1 − sim(x, z))(1 − sim(z,y))

Eucl-LB (8) sim(x, z) + sim(z,y) + 2 · min{sim(x, z), sim(y, z)} − 3

Arccos (9) cos(arccos(sim(x, z)) + arccos(sim(z,y)))

Mult (10) sim(x, z) · sim(z,y) − √
(1 − sim(x, z)2) · (1 − sim(z,y)2)

Mult-LB1 (11) sim(x, z) · sim(z,y) + min{sim(x, z)2, sim(y, z)2} − 1

Mult-LB2 (12) 2 · sim(x, z) · sim(z,y) − | sim(x, z) − sim(z,y)| − 1
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(a) Euclidean inequality (b) Arccos inequality (c) Mult inequality

(d) Eucl-LB inequality (e) Mult-LB2 inequality (f) Mult-LB1 inequality

Fig. 3. Lower bounds for the similarity sim(x,y) given sim(x, z) and sim(z,y) using
different inequalities from Table 1.

4.1 Approximation Quality

In Fig. 2, we plot the resulting lower bound for the similarity sim(x,y) given
sim(x, z) and sim(z,y) using the Euclidean-based bound (Eq. 7) in Fig. 2a and
the Arccos-based bound (Eq. 9) in Fig. 2b. A striking difference is visible in the
negative domain: if x and z are opposite directions, and z and y are also opposite,
then x and y must in turn be similar. The Arccos-based bound produces positive
bounds here, while the Euclidean-based bound can go down to −7. But in many
cases where we employ cosine similarity, our data will be restricted to the non-
negative domain, so this is likely not an issue, and could maybe be solved with a
simple sign check. Upon closer inspection, we can observe that the bounds found
by the Arccos-based approach tend to be substantially higher in particular for
input similarities around 0.5. Figure 2c visualizes the difference between the two
bounds. We can see that the Euclidean bounds are never higher than the Arccos
bound, which is unsurprising as the latter is tight, and the first is a proper lower
bound. But we can also see that the difference between the two (and hence the
pruning power) can be as big as 0.5. This maximum is attained when the input
cosine similarities are 0.5 (i.e., the known angles are 60◦): The Euclidean bound
is −1 then, while the Arccos-based bound is 0. In the typical use case of cosine
on non-negative values, both bounds are effectively trivial. However, there still
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Eucl-LB
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Fig. 4. Relationships between lower bounds

(a) Eucl-LB inequality (b) Mult-LB2 inequality (c) Mult-LB1 inequality

Fig. 5. Differences between simplified bounds and the tight arccos bound.

is a substantial difference for larger input similarities. Averaging over a uniform
sampled grid of input values, considering only those where both bounds are non-
negative, the average Euclidean bound is 0.2447, while the average Arccos-based
bound is 0.3121, about 27.5% higher. Hence, using the Arccos-based bound is
likely to yield better performance.

In the following, we focus on the non-negative domain, to improve the read-
ability of the figures. In Fig. 3, we show all six bounds from Table 1. Figure 3a
is the Euclidean bound, Fig. 3b is the Arccos bound we just saw. Figure 3c is
the multiplicative version (Eq. 10), which yields no noticeable difference to the
Arccos bound (mathematically, they are equivalent). Figure 3d is the simpli-
fied bound derived from cosine, whereas Fig. 3e and Fig. 3f are the two bounds
derived from the multiplicative version of the Arccos bound. We observe that
Mult-LB1 (Fig. 3f) is the best of the lower bounds, but also that none of the
simplified bounds is a very close approximation to the optimal bounds in the
first row. We obtain the following relationship of the presented lower bounds
(c.f., Fig. 4):

Eucl-LB ≤ Euclidean ≤ Arccos = mult

Eucl-LB ≤ Mult-LB2 ≤ Mult-LB1 ≤ mult = Arccos

In Fig. 5 we compare the three simplified bounds (we already compared the
Euclidean bound to the tight Arccos bound in Fig. 2c). While the Mult-LB1
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Fig. 6. Mult inequality

bound is the best of the simplified bounds, the divergence from the arccos bound
can be quite substantial, at least when the two input similarities are not very
close. As it can be seen from the isolines in the figures (at steps of 0.1), even if
we would consider a bound that is worse by 0.1 or 0.2 acceptable, there remains
a fairly large region of relevant inputs (e.g., where one similarity is close to 1.0,
the other close to 0.8), where the loss in pruning performance may offset the
slightly larger computational cost of using the Mult bound instead.

4.2 Numerical Stability

Mathematically, the Mult bound (Eq. 10) is equivalent to the arccos bound,
but more efficient to compute. Given the prior experience with the numeri-
cal problem of catastrophic cancellation, we were concerned that this equation
might be problematic because of the (1 − sim2) terms. Fortunately, if sim2 → 1,
when the problem occurs, the entire square root will become negligible. We
have experimented with some alternatives (such as expanding the square root
to

√
(1 + sim(x, z)) · (1 − sim(x, z)) · (1 + sim(z,y)) · (1 − sim(z,y))), but could

not find any benefits. We also compared Mult with the Arccos bound in Fig. 6.
While the result appears largely chaotic, the values in this plot are all in the mag-
nitude of 10−16, i.e., they are at the expected limit of floating-point precision.
Hence, there does not appear to be a numerical instability in this inequality.

4.3 Runtime Experiments

We benchmarked the different equations using Java 11 with double precision
floats and the Java Microbenchmarking Harness JMH 1.32.1 The experiments
1 https://openjdk.java.net/projects/code-tools/jmh/.

https://openjdk.java.net/projects/code-tools/jmh/
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Table 2. Runtime benchmarks for the different equations

Name Eq. Duration Std. dev. Accuracy

Euclidean (7) 10.361 ns ±0.139 ns ©
Eucl-LB (8) 10.171 ns ±0.132 ns −−
Arccos (9) 610.329 ns ±3.267 ns ++

Arccos (JaFaMa) (9) 58.989 ns ±0.630 ns ++

Mult (recommended) (10) 9.749 ns ±0.096 ns ++

Mult-variant a 10.485 ns ±0.022 ns ++

Mult-LB1 (11) 10.313 ns ±0.025 ns −
Mult-LB2 (12) 8.553 ns ±0.334 ns −−
Baseline (sum) 8.186 ns ±0.146 ns n/a
aEquation 10 expanded using (1 − x2) = (1 + x)(1 − x) to obtain the variant
sim(x, z)·sim(z,y)−√

(1+ sim(x, z))(1− sim(x, z))(1+ sim(z,y))(1− sim(z,y))

were performed on an Intel i7-8650U using a single thread, and with the CPU’s
turbo-boost disabled such that the clock rate is stable at 1.9 GHz to reduce
measurement noise as well as heat effects. As a baseline, we include a simple
add operation to measure the cost of memory access to a pre-generated array
of 2 million random numbers. Because trigonometric functions are fairly expen-
sive, we also evaluate the JaFaMa library for fast math as an alternative to the
JDK built-ins. JMH is set to perform 5 warmup iterations and 10 measurement
iterations of 10 s each, to improve the accuracy of our measurements. We try to
follow best practices in Java benchmarking (JMH is a well-suited tool for micro-
benchmarking in Java), but nevertheless, the results with different programming
languages (such as C) can be different due to different compiler optimization, and
the usual pitfalls with runtime benchmarks remain [8]. Table 2 gives the results
of our experiments. In these experiments, the runtime benefits of the simplified
equations are minuscule. Apparently, the CPU can alleviate the latency of the
square root to a large extend (e.g., via pipelining), and compared to the memory
access cost of the baseline operation, the additional 1.6 nanoseconds will likely
not matter for most applications. The benchmark, however, clearly shows the
benefit of the “Mult” version over the “Arccos” version, which mathematically
is equivalent but differs considerably in run time. While the use of JaFaMa as
replacement reduces the runtime considerably, the much simpler “Mult” version
still wins hands-down and hence is the version we ultimately recommend using.
While “Mult-LB2” is marginally faster, it is also much less accurate and hence
useful, as seen in Sect. 4.1.

5 Conclusions

In this article, we introduce a triangle inequality for cosine similarity. We study
different ways of obtaining a triangle inequality, as well as different attempts
at finding an even faster bound. The experiments show that a mathematically
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equivalent version of the Arccos-based bound is the best trade-off of accuracy
(as it has optimal accuracy in our experiments) as well as run-time, where it is
only marginally slower than the less accurate alternatives.

Hence, the recommended triangle inequalities for cosine similarity are:

sim(x,y) ≥ sim(x, z) · sim(z,y) −
√

(1 − sim(x, z)2) · (1 − sim(z,y)2)

sim(x,y) ≤ sim(x, z) · sim(z,y) +
√

(1 − sim(x, z)2) · (1 − sim(z,y)2)

We can not, however, rule out that there exists a more efficient equation that
could be used instead. As this paper shows, there can be more than one version
of the same bound that performs very differently due to the functions involved.

We hope to spur new research in the domain of accelerating similarity search
with metric indexes, as this equation allows many existing indexes (such as M-
trees, VP-trees, cover trees, LAESA, and many more) to be transformed into
an efficient index for cosine similarity. Integrating this equation into algorithms
will enable the acceleration of data mining algorithms in various domains, and
the use of cosine similarity directly (without having to transform the similarities
into distances first) may both allow simplification as well as optimization of algo-
rithms. Furthermore, we hope that this research can eventually be transferred
to other similarity functions besides cosine similarity. We believe it is a valuable
insight that the triangle inequality for cosine distance contains the product of
the existing similarities (but also a non-negligible correction term), whereas the
triangle inequality for distance metrics is additive. We wonder if there exists a
similarity equivalent of the definition of a metric (i.e., a “simetric”), with sim-
ilar axioms but for the dual case of similarity functions, but the results above
indicate that we will likely not be able to obtain a much more elegant general
formulation of a triangle inequality for similarities.
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2. Bozkaya, T., Özsoyoglu, Z.M.: Indexing large metric spaces for similarity search
queries. ACM Trans. Database Syst. 24(3), 361–404 (1999). https://doi.org/10.
1145/328939.328959

3. Brin, S.: Near neighbor search in large metric spaces. In: Dayal, U., Gray, P.M.D.,
Nishio, S. (eds.) International Conference on Very Large Data Bases, VLDB, pp.
574–584. Morgan Kaufmann (1995)
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Abstract. In this short paper, we propose the first cost model for a class of
index structures designed for reverse nearest neighbor (RNN) search, so-called
self pruning approaches. These approaches use estimations of the nearest neigh-
bor distances of database objects for pruning. We will particularly detail our cost
model for R-Trees but our concepts can easily applied to any tree-like index struc-
ture that implements a self pruning strategy. Our cost model estimates the number
of disk accesses of a given RNN query and, thus, allows to predict the required
I/O costs in any hardware environment. We further explore three variants regard-
ing the trade-off between estimation accuracy and model efficiency/storage over-
head. Preliminary experiments on synthetic data confirm that the estimations are
accurate compared to the exact query costs.

1 Introduction

Reverse nearest neighbor (RNN) queries are prevalent in many practical applications
since they determine the set of data objects influenced by the query. Specifically, an
RNN query retrieves those objects from the database having the query as one of their
nearest neighbors (NNs). Variants of this basic query introduce the parameter k spec-
ifying the number of NNs that are considered (i.e., the query must be among the
kNNs of a true hit), and/or a distinction between query set and answering set (so-
called bi-chromatic scenario compared to the “normal” case that is referred to as mono-
chromatic).

Beside a plethora of index structures and algorithms especially designed to opti-
mize RNN query processing, to the best of our knowledge, no work has been done
for estimating the costs of these approaches so far. Predicting the costs for processing
a given query is mandatory for (relational) query optimizers. A cost model allows to
generate efficient query plans and enables effective scheduling. Thus, this work is a
first step towards the practical use of the existing query processing algorithms and their
respective data structures in real database systems.

In this short paper, we sketch the idea for a general cost model for RNN queries for a
rather general class of query processing algorithms. Existing algorithms for RNN query
processing can be classified according to the applied strategy of pruning objects from
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the search space. Self pruning approaches typically rely on special index structures that
usually offer a higher selectivity and, hence, are more efficient. In turn, these methods
are usually less flexible than mutual pruning approaches in terms of query parametriza-
tion and database updates. Since both pruning strategies are rather different paradigms,
we focus on self pruning methods only. We explore a general way to estimate the num-
ber of index pages that need to be accessed for a given query which allows to predict
the I/O costs on any hardware environment. The cost model will be explained using a
concrete instance of self pruning methods, the RdNN tree [1] which basically uses a
member of the R-Tree family. However, we want to emphasize that our general idea is
independent of the used index and can be adapted to any tree-like index implementing a
self pruning method very easily. The reason for this is that the only basic assumption of
our cost model is that information on the size of the page regions, e.g. minimum bound-
ing rectangles (MBRs) in case of an R-Tree, of index nodes is know. This information
typically contains only a very few numbers and can easily be materialized in the cache.

The remainder is organized as follows. Section 2 gives an overview of related work.
In Sect. 3, we explain our new cost model for RNN query processing using self prun-
ing methods. Some preliminary experiments are presented in Sect. 4. Finally, Sect. 5
concludes the paper.

2 Related Work

Self pruning approaches like [1,2] are usually designed on top of a tree-like index struc-
ture. They are based on the observation that if the distance between any database object
o and the query q is smaller than the kNN distance of o, o is part of the result set, i.e.,
a RNN of q. Otherwise, o can be pruned. Consequently, self pruning approaches try to
exactly compute or (conservatively) approximate the kNN distance of each index entry
e. If this estimate is smaller than the distance of e to the query q, then e can be pruned.
Often, self pruning approaches simply pre-compute kNN distances of database points
and propagate maxima of these distances to higher level index nodes for pruning. The
major limitation of these approaches is that the pre-computation is time and memory
consuming and less flexible to database updates. These methods are usually limited to
one specific or very few values of k. Approaches like [3–9] try to overcome these limita-
tions by using approximations of kNN distances (for any k) but this yields an additional
refinement overhead – or only approximate results.Mutual pruning approaches such as
[10,11] use other points to prune a given index entry e. For instance, [11] iteratively
constructs Voronoi hyper-planes around the query q from a nearest neighbor ranking
w.r.t. q. Points and index entries that are beyond k Voronoi hyper-planes w.r.t. q can be
pruned. Mutual pruning approaches need an additional refinement of candidates (i.e., a
kNN query for not pruned objects) to compute the final results.

As mentioned above, to the best of our knowledge, there are no cost models for RNN
algorithms proposed so far. However, there are a lot of cost models for other query types
on R-Trees, including NN queries (e.g. [12–14]) and spatial join queries (e.g. [15,16]).
Closest to our work is the method for range queries independently proposed by [17] and
[18]. Both approaches assume that the MBR of each node in the underlying R-Tree is
given and estimate the disc accesses using the concept of the Minkowski sum. We will
revisit details on this model later.
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Fig. 1. Visualization of an RdNN-Tree (b) as an extension of the R*-Tree (a).

3 A Cost Model for Self Pruning Approaches

For a positive integer k and a query object q, a k-NN query retrieves the set NN(q, k)
including those k points having the smallest distance dist(., .) to q. In case of ties,
this set may have more than k elements. The distance between p and its kNN is called
kNN-distance (denoted by kNNdist(p)) of p. A RkNN query with query object q can
be defined as those objects having q as one of their kNN, i.e., RNN(q, k) = {o ∈
DB|o ∈ NN(q, k)}. If k is clear from context, we omit it and use NN, NNdist(.),
and RNN instead of kNN, kNNdist(.), and RkNN.

The basic observation behind self-pruning approaches is that an object p qualifies
for a given RNN query if and only if dist(p, q) ≤ NNdist(p). Thus, materializing
(exact or approximate) NN-distances of all database objects provides a powerful and
very selective pruning possibility. Self-pruning approaches use any conventional index,
e.g. an R*-tree (as in the RdNN-Tree [1]), to organize the data objects but addition-
ally stores the pre-computed NN-distances. For a data page of the index containing
a set of database objects, an approximation of the NN-distances of all points of this
page needs to be derived and this approximation needs to be conservative for producing
exact results. This can easily be done by aggregating the maximum of all NN-distances
in that page. For directory pages of a tree-based index containing child pages each
associated with a NN-distance estimate of its corresponding sub-tree, the procedure
is similar: the maximum NN-distance of all child nodes need to be aggregated. Thus,
each node N of the index aggregates the maximum NN-distance of all objects repre-
sented by N . The extension of an R*-Tree to an RdNN-Tree is visualized in Fig. 1.
The aggregated maximum NN-distance of each node N , denoted by NNdist(N), is
visualized as box with rounded corners around the corresponding page regions (PRs).
These distances can be used during query processing: node N may contain a true hit
if for the minimum distance MINDIST between an object q and the PR of N it
holds: MINDIST (q,N) ≤ NNdist(N). In this case, the subtree of N needs to be
traversed. Else, node N can be pruned.
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Fig. 2. Range query with radius ε and the page region of an arbitrary index page (left) and the
corresponding spatially extended region a.k.a. Minkowski sum (right).

We will show our ideas using the RdNN, assuming that the PRs of the underlying
index are minimum bounding rectangles (MBRs), the distance approximations of direc-
tory nodes are conservative, and the index is tree-based in the following but our ideas
can be extended to any other shapes, approximations, and indexes. The basic obser-
vation of our approach is that the situation depicted in Fig. 1(b) is related to the cost
model for (aka ε-)range queries [17,18] which estimates the probability of an inter-
section between the query (circle around q with radius ε) and the PRs of each level
of the tree, i.e., the probability that the corresponding subtree needs to be traversed.
For this purpose, the PRs are spatially extended by the radius ε as it is done in self-
pruning approaches. However, for ε-range queries the spatial extend of all PRs is fixed
to ε, while for the RdNN-Tree each PR has its own aggregated maximum NN-distance
specifying the spatial extend.

Our cost model basically estimates for each node in the index tree the probability
of being traversed when a given query is launched in order to determine the average
amount of nodes that need to be accessed. It is based on the same assumptions claimed
in [17,18]; the most basic assumption is that we have information on the PRs of each
node in the index. We first start with revisiting the cost model of range queries.

For a range query with radius ε, the access probability of a node N with page region
N.Reg1 is given by

PR(Access(N)) =
V ol(N.Reg spatially extended by ε)

V ol(data space)
,

where V ol(.) computes the volume of a region. The page region N.Reg spatially
extended by the query radius ε correspond to a bounding box with rounded corners
such that the edges have distance ε to the original page region N.Reg. This region is
known as the Minkowski sum. The idea is visualized in Fig. 2.

In order to be able to compute the probability of accessing a given node N , we need
to compute the volume of the Minkowski sum of the page region N.Reg of N and ε
(corresponding to the numerator in the above formular). Let N.e be the edge length of
the page region of N , then the volume of the Minkowski sum of N.Reg and ε is

1 As mentioned above, our method is not restricted to the exact geometry of page regions.
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V ol(N.Reg spatially extended by ε) = V olMinkowski(N.Reg, ε)

=
∑

0≤i≤d

(d

i

)
· 2d−i · N.ei · V (Sphere(d−i)(ε))

2d−i
=

∑

0≤i≤d

(d

i

)
· N.ei · V (Sphere(d−i), ε).

where Sphere(d−i)(ε) is a (d − i)-dimensional sphere of radius ε. The volume of this
sphere, V ol(Sphere(d−i)(ε)), can be computed using the Gamma function:

V ol(Sphere(d−i)(ε)) =
π

d−i
2 · εd−i

Γ (d−i
2 + 1)

.

The Minkowski volume can be used to calculate the volume of any node N of the
index and can be used to compute the probability that N needs to be accessed. In order
to estimate the costs for the entire index, we need to determine the access probabilities
for all index nodes. For that purpose, we need the edge lengths N.e of all index nodes
N . One way to get this is to materialize these values which is typically not a significant
overhead and can often even be hold in main memory. If the overhead of storing and
updating this information is too large, [17] and [18] offer a way to estimate these val-
ues. This estimation is done level-wise: the number of nodes Ni on level i of the tree,
denoted by Card(Ni), can recursively be obtained from the average storage utilization.
Under the assumption that the MBR of each node Ni is a hyper-cube with equal edge
length Ni.e and that its expected volume is V ol(Ni) = V ol(data space) /Card(Ni)
we can estimate the average edge length of Ni as

Ni.e = d

√
V ol(data space)

Card(Ni)
.

Thus, the total number of index nodes (i.e., pages) accessed while processing an
ε-range query can be approximated as:

# page accesses =
indexheight∑

i=1

Card(Ni) · V olMinkowski( d

√
V ol(data space)

Card(Ni)
, ε).

For the transformation of this model from range queries to RNN queries we first
explore the relationship between these two query types. Intuitively, range queries
retrieve those objects o that are enclosed in a sphere centered at the query object q
having the query range ε as radius, i.e., dist(q, o) ≤ ε. When a self pruning approach
is implemented using pre-computed NN-distances, RNN queries retrieve those objects
o that are the center of a sphere which has the NN-distance of o as radius and in which
q is enclosed, i.e., dist(q, o) ≤ NNdist(o). It should be mentioned, however, that this
relationship cannot be used to process RNN queries like range queries in general. Only
the aggregation and materialization of the NN-distances in the index as proposed in the
literature enables to build this relationship.
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During the processing of a range query, a page must be accessed if its page region
(e.g. MBR) intersects with the query range, i.e., the sphere with radius ε centered at q.
For a RNN query, a page must be accessed if the Minkowski sum of its page region
and its maximum NN-distance includes the query. Thus, for any node N in the index,
we need to use its maximum NN-distance, NNdist(N) to compute the Minkowski
volume:

V olMinkowski(N.e, NNdist(N)) =
∑

0≤i≤d

(d

i

)
· N.ei · V ol(Sphere(d−i)(NNdist(N))).

The edge length can be approximated as described above. The remaining challenge
now is that while for range queries, the radius ε is fixed in all Minkowski volumes, the
aggregated maximum NN-distances of the nodes on level index i can be rather different.
In the following, we propose three variants to solve this.

Variant 1: The first variant accounts for the variation of NN-distances and sums up all
Minkowski volumes of all index nodes. Note that this requires to have access to all NN-
distance values of all nodes Ni on all levels i of the index which could be materialized
(for small data sets even in the cache). The number of page accesses is

# page accesses =

indexheight∑

i=1

∑

n∈Ni

V olMinkowski(
d

√
V ol(data space)

Card(n)
, NNdist(n)).

Variant 2: If the index is large and pre-computing/materialization of NN-distances
for all index entries is not an option, the necessary information needs to be fetched
from disc involving a huge overhead of I/O accesses (all nodes of the tree need to be
accessed). We can circumvent this by taking the NN-distance of the root Root of the
index which is the maximum NN-distances of all data objects. Obviously, this comes to
the cost of decreasing the accuracy of the estimation. If M is the number of all nodes
of the index, then, we can estimate the number of page accesses by

# page accesses = M · V olMinkowski( d

√
V ol(data space)

Card(Ni)
, NNdist(Root)).

Variant 3: The variants discussed above basically trade-off the accuracy of the estima-
tion and the costs for obtaining the estimation (in terms of storage overhead or, if the
required information needs to be fetched from disc, in terms of time). As a compromise
we propose to aggregate the average NN-distances for each index level which causes
much less overhead to maintain and materialize than in Variant 1 but should give better
estimates than Variant 2. The average NN-distance of all nodes Ni of level i is

NNdistavgi =

∑
Ni

NNdist(Ni)
Card(Ni)

.

Then the number of page accesses can be calculated as

# page accesses =

indexheight∑

i=1

Card(Ni) · V olMinkowski(
d

√
V ol(data space)

Card(Ni)
, NNdistavgi ).
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Fig. 3. Accuracy of the estimation w.r.t. varying data size.

Fig. 4. Accuracy of the estimation w.r.t. varying k.

4 Preliminary Empirical Study

We evaluate how accurate our model can estimate the real page accesses for a given
query and report absolute and relative estimation errors for all three variants discussed
above for the RdNN-tree implementation of ELKI [19] with a page size of 8K. We
used a 3D synthetic data sets with 10 clusters of equal size each following a Gaussian
distribution with random mean and standard deviation and an additional 10% uniformly
distributed noise. In all runs, we used 50% of the database points and another 50% of
randomly generated points as query objects and averaged the results.

Figure 3 displays the accuracy w.r.t. the database size (k = 1). Both the absolute
and relative error is considerably small and stable and only grows slowly with increas-
ing database size. Variant 2 that only considers the root node overestimates the costs
while all other estimations are conservative. Figure 4 depicts the accuracy of the model
variants w.r.t. the query parameter k. The database size is fixed at 200,000 points. Here,
all estimates are conservative. With increasing k, the error increases most likely because
the kNN distance exponentially contributes to the Minkowski volume.

We also conducted first experiments on the impact of the data dimensionality (omit-
ted due to space limitations). The results show low effects of the data dimensionality as
long as it is moderate (>20), but we assume that a potential break-down of the index
may not be accommodated adequately in the cost model.
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5 Discussion

In this short paper, we present a first cost model for RNN query processing algo-
rithms using self pruning.We described three different variants that explore the trade-off
between estimation accuracy and efficiency/storage overhead. The cost model estimates
the number of page accesses for RNN queries on a given index and, thus, is independent
of any hardware environment. Our preliminary results confirm that the accuracy of the
cost model is promising in a broad range of settings.
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Abstract. In the ongoing multimedia age, search needs become more
variable and challenging to aid. In the area of content-based similarity
search, asking search engines for one or just a few nearest neighbours to
a query does not have to be sufficient to accomplish a challenging search
task. In this work, we investigate a task type where users search for one
particular multimedia object in a large database. Complexity of the task
is empirically demonstrated with a set of experiments and the need for
a larger number of nearest neighbours is discussed. A baseline approach
for finding a larger number of approximate nearest neighbours is tested,
showing potential speed-up with respect to a naive sequential scan. Last
but not least, an open efficiency challenge for metric access methods is
discussed for datasets used in the experiments.

Keywords: Similarity search · Known-item search · Data indexing

1 Introduction

Deep learning here, deep learning there, deep learning everywhere! Words that
have come to mind of a multimedia retrieval researcher since 2012. Besides other
retrieval challenges, similarity search [5,6,29] has also been significantly affected
by the impressive deep learning paradigm [9]. The cornerstone of the general sim-
ilarity search approach, similarity space (U, σ) consisting of a descriptor universe
U and a similarity measure σ, started to be narrowed to “just” vector spaces
with a cheap bin-to-bin similarity measure used during a deep model training
process. In other words, a similarity of any multimedia data objects x, y is now
often modeled with a cheap similarity function (usually linear time complex-
ity) evaluated for their vector representations vx, vy ∈ Rn obtained from a deep
model1. Regardless of deep learning trends, there still exists a need for querying
a large database for similar objects to a query object, assuming database objects
are mapped to descriptors S ⊂ U . For a query q, applications usually require
a set of most similar objects from a multimedia database. Assuming a popular
approach to model similarity with a distance function δ, two popular similarity
queries are range(vq, θ) = {vo ∈ S|δ(vq, vo) < θ}, and k nearest neighbours query
kNN(vq, S) = {X ⊂ S : |X| = k,∀vx ∈ X,∀vy ∈ S − X : δ(vq, vx) ≤ δ(vq, vy)}.

1 In the following text, we follow the notation x, vx to formally distinguish objects
and their descriptors, where descriptors are means of object similarity evaluations.
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The aforementioned similarity queries are useful for search needs initiated
with a query object addressing the contents of multimedia objects2. Usually,
users provide either a text query for a text-multimedia cross modal search app-
roach [14,22], or an example multimedia object. The ultimate problem is whether
the provided query is good enough to ensure desired objects in the result set, i.e.,
in the set of the most similar objects to the query. The problem can be divided
to two sub-problems – whether the user can provide a sufficient query object
(or detailed text description), and whether the system implements a similarity
model consistent with user expectation of similarity between two objects. In this
paper, we further consider user need aspects [28], but we keep general formal
specification of search needs. Let C be a subset of database objects representing
some target class/topic. The search problem complexity differs if users want to
find just an arbitrary item x ∈ C (i.e., high precision is sufficient), or all items
from C are required (i.e., high precision and also recall are necessary). Due to
potentially high variability of objects in C, it is way more challenging to find all
dataset instances of the class.

A special variant of the all-instance search task is for |C| → 1, which corre-
sponds to search need for a very narrow class of objects. In extreme case, only
one multimedia object (e.g., image or shot) is required, which is referred to as
known-item search (KIS). Although unique properties of a single searched object
might seem as an advantage for the search engine, users often do not actively
remember all the specific details for query formulation. On the other hand, there
is an assumption that users can rely on (limited) passive knowledge of the known
item when refining and browsing candidate result sets. The passive knowledge
can include also a temporal context of the item in the case of video sequences.
The complexity of a KIS task depends also on the number of similar dataset
objects matching provided (potentially imperfect) query description. For exam-
ple, searching for some specific scene of a surfing person would be way more
easier if there are no other scenes of people surfing in the database. In case there
exist near-duplicates (e.g., some small audio-visual transformations of the target
object), multiple instances could be considered as the correct result. From this
perspective, known-item search can be generalized from |C| = 1 to |C| ≥ 1, but
the set consists just of near-duplicate objects satisfying the need for one searched
multimedia object. This is the main difference from an ad-hoc search task with a
specific narrow search focus, where different objects can fulfill the specification.

In this paper, we argument that known-item search is often very challenging
even with a state-of-the-art text-image search model (demonstrated in Sect. 3).
In order to find a searched known item, an interactive search approach [25,27]
is therefore a preferred option as reported by respected evaluation campaigns
[10,16]. In the last decade, several interactive search systems were designed and
tested [1,11–13,19,24]. To deal with a known-item search task, users can either
iteratively reformulate queries after unsuccessful inspection of top ranked items
(kNN queries with low k), or, use advanced visualization [4], relevance feedback

2 We consider challenging content-based search cases, where users do not know unique
structured attributes (e.g., filename or ID) of searched multimedia objects.
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[7] or other exploration methods when top ranked result set inspection fails.
With a single query available, a substantial portion of the database has to be
considered for inspection to guarantee a higher chance for success. Therefore,
finding a larger set of (approximate) nearest objects to a query represents a
suitable search step. At the same time, larger numbers of nearest neighbours
represent a challenge for query processing methods.

2 Known-Item Search

Imagine a large collection of funny videos, where a user wants to find one partic-
ular scene which made the user laugh for days. Definitely, the user might want
to find this one particular scene again in the future, which would restrict the
set of all funny scenes to one searched instance. Another example might be a
memory of some experience, captured by a wearable camera to a personal lifelog
database [10]. Again, the search need might focus just on the one specific mem-
ory. These examples illustrate that known-item search tasks are natural part
of the set of possible search needs. The tasks are also well-suited for compar-
ative evaluations [17] and benchmarking as the ground truth is determined by
the one searched item (e.g., image or temporal segment), compared to partially
unknown ground truth of more generally formulated Ad-hoc search tasks eval-
uated at TRECVID [3] (KIS tasks used to be evaluated at TRECVID in the
past). We note that the discussed near-duplicates might be a missing part of
ground truth for KIS tasks as well. Nevertheless, in an automatic evaluation of
ranked lists the missing near-duplicates might achieve similar ranks as the avail-
able correct objects and also this approximation issue represents a consistent
obstacle for all compared methods.

2.1 Problem Formulation

Known-item search corresponds to a search scenario, where a user has just a
mental picture of an existing multimedia object from a given database. Either the
known object has been seen before, or a specific enough description (potentially
including hand-drawn sketches) of the object was provided to the user. In the
context of this paper, a generalized KIS task can be formulated as:

Definition 1. Let DB be a multimedia collection, the task is to find one t ∈
CT ⊂ DB, where CT contains one known target object and its near-duplicates
differing from the target object by a small audio-visual transformation, negligible
for the search need (e.g., different encoding or minor image enhancement).

For automatic evaluations analyzing ranking of database objects with respect
to a query, the top ranked t ∈ CT is considered, optimistically assuming that
users do not overlook a correct item in a displayed ranked result set. For search
needs targeting just a part of a multimedia object (e.g., segment of a video), the
definition can be modified by using an appropriate data representation unit.
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2.2 Ranking Model Evaluation

In order to measure known-item search effectiveness of a model (U, δ), a set of
pairs B = {[qi, CTi

]}ni=1 can be created for a multimedia database DB, where
qi represents a user defined query addressing selected CTi

⊂ DB presented in
some convenient form to the user in advance. We remind that near-duplicates
might be missing in ground truth, which limits objects evaluated as correct. For
each query qi, all database objects o ∈ DB are ranked with respect to δ(vqi , vo)
and the rank ri of the top ranked object t ∈ CTi

is stored. Either the average
of all ranks ri can be computed, or an empirical cumulative graph detailing
effectiveness for growing rank is reported using

FB(r) =
|{ri : ri ∈ Ranks, ri ≤ r}|

|Ranks| ,

where Ranks represents all obtained top ranks ri for all benchmark pairs [qi, CTi
]

and a tested model (U, δ). For example, see the cumulative graph in Fig. 1 illus-
trating the percentage of findable known items when users browse a ranked list
up to a rank r, provided that a correct item is not overlooked (which is generally
not guaranteed [15]).

3 Experiments

This section presents an evaluation benchmark dataset and several experiments
demonstrating challenges of effective and efficient known-item search.

3.1 Known-Item Search Benchmark Set

We analyze the performance of two respected text-image search approaches
CLIP [22] and W2VV++ [14] (its BERT variant [15]) for a benchmark set
comprising 327 pairs [qi, CTi

], where all sets CTi
are subsets of a 20K bench-

mark image dataset extracted from the V3C1 collection [23]. The search need
(i.e., known item) was represented by one randomly selected image and no near-
duplicates were considered during benchmark construction (i.e., |CTi

| = 1). Free-
form text descriptions (queries) for target images were provided by human anno-
tators. Each annotator observed a target image for the whole annotation time
(i.e., perfect memory was assumed). Although the size 20000 objects does not
conform to the idea of big data, it might still represent for example a personal
image database where known-item search can be expected.

Both CLIP and W2VV++ BERT text-image search approaches provide func-
tions fvisual, ftext for joint image and text embedding to R

n (n = 2048 for
BERT, n = 640 for CLIP). Using the functions, all database images (including
known items) and text queries qi were transformed to n-dimensional vectors.
For ranking of the 20K images with respect to qi, a similarity model based on
1 − σcos(fvisual(o), ftext(qi)) can be utilized to identify the rank of ti ∈ CTi

. For
all 327 pairs, Fig. 1 shows the performance of both compared models, revealing
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more effective known-item search performance for the recently released CLIP
model. Nevertheless, there were individual benchmark pairs (about 30%) where
the CLIP model was outperformed by W2VV++ BERT.

Fig. 1. Performance of text-image search models for the benchmark set, first 1000
ranks.

For both models, it is apparent that finding “just” one or ten nearest neigh-
bours is not sufficient to solve all known-item search tasks even for the relatively
small 20K dataset (though the performance of the new CLIP model is impres-
sive!). With 100 nearest neighbours, more than 65% (75% for CLIP) of known
items ti searched by the query qi would be directly findable in the result set.
However, to provide a chance to solve 90% of all tasks by one query, hundreds
of nearest neighbours are necessary for the 20K dataset. There also exist queries
where even thousands of nearest neighbours are not enough. We emphasize that
all the presented numbers are bound to the dataset size, for larger datasets the
numbers of necessary nearest neighbours are significantly higher [15].

With the growing number of the nearest objects it becomes way more difficult
to find the target with sequential result set browsing. Indeed, known-item search
is a challenge that cannot be easily solved with just a single ranked list and scroll
bar (at least yet). On the other hand, efficient construction of a larger candidate
set is a promising first step that can be followed by a plethora of interactive
search approaches. Assuming that the user cannot remember more details to
extend/change the query, there are still options to inspect results for text query
subsets, provide relevance feedback for displayed set of images, browse images
in an exploratory structure, etc. However, these methods are beyond the scope
of this paper.
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3.2 Upper Performance Estimates for kNN Browsing

Before we proceed to a large candidate set selection study in the next section,
we investigate kNN based browsing with small candidate sets to solve KIS tasks
for the small 20K dataset. To analyze the search strategy, we run simulations
for the 327 benchmark pairs and the W2VV++ BERT model.

Each simulated search session started with a text query qi. From the result,
top ranked k items were selected as a display Dj out of which one item qj ∈ Dj

was selected as a new query object for the next display presenting kNN(vqj , S).
This process was repeated until the target item ti was found or the maximal
limit of iterations was reached. The automatic selection (i.e., simulation of user
interaction [7,8]) of the new query considered two optimistic options based on
kNN(vti , D′)), where ti ∈ CTi

is the searched target image and D′ are descriptors
of images on the current display. We consider an IDEAL user automatically
selecting as the new query the most similar object from the display D to the
target ti. In addition, we consider also a randomized TOP user, where the new
query object is selected randomly from kNN(vti , D′)), k = 8. To prevent from
cycles, once selected queries qj were removed from the dataset in a given search
session.

Fig. 2. Browsing simulations using 16 kNN displays, browsing performance (“stairs”)
related to performance of the W2VV++ BERT text search model (first 1000 ranks).

Figure 2 compares the W2VV++ BERT text search model fine-grained rank-
ing (i.e., browsing the original ranked set) with iterative reformulations providing
always 64 nearest objects for one selected query object (IDEAL or TOP) from
the current display. For each iteration, the graph shows the increase of solved
tasks for the whole display at once (therefore the staircase pattern). For the
IDEAL user and |D| = k = 64 the kNN browsing would boost the performance
compared to the original ranked set. However, the IDEAL user is too optimistic,
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real users are not 100% consistent with the similarity model. Furthermore, for
smaller display size |D| = 8, even the IDEAL user performance is worse than the
original ranking. For the randomized TOP user and display size 64, the perfor-
mance of kNN browsing has a similar performance effect as sequential search of
the original ranked list. However, even the randomized TOP user is still rather
optimistic, real users may select from a display also less similar items to ti ∈ CTi

.
To sum up the simulations, kNN based browsing with IDEAL selections and

small k = 8 is not effective enough, while, for k = 64, such browsing would be a
competitive strategy with respect to the original ranking. However, to the best
of our knowledge selections by real users are usually not ideal which decreases
recall gains by the kNN browsing strategy. The effect of less optimal selections
is illustrated by the performance drop between IDEAL and TOP users in Fig. 2.
kNN browsing by the TOP user and k = 64 resulted in “just” similar effectiveness
as sequential browsing of the original ranked list, where users do not have to
select a good example query in each iteration. In other words, top ranked 1000
items for a text query could be browsed directly. For more effective browsing,
advanced models based on relevance feedback were proposed [7], maintaining
relevance scores for all objects in the database. In order to make the maintenance
process more efficient, a larger candidate set can be selected for the models (e.g.,
10% of top ranked items guaranteeing 90% of searched items).

3.3 A Baseline Study for Efficient Candidate Set Selection

In order to find top k nearest neighbours in a high-dimensional space effi-
ciently, one popular option is dimension reduction. Figure 3 shows a comparison
of dimension reduction techniques [21] for both models CLIP and W2VV++
BERT. We consider principal component analysis with data centering as a first
step (PCA) and without centering using only Singular Value Decomposition
(SVD). We compare effects of both approaches, provided that PCA might harm
data by subtracting mean values to center (normalized) data vectors. The graph
shows that reduction of the dimension to 128 does not affect the performance
of the BERT variant regardless the reduction technique. However, the benefits
of the CLIP model seem to vanish with the dimension reduction using SVD.
Furthermore, PCA reduction to 128 dimensions (or even 256) significantly dete-
riorated the performance of the CLIP model which might be caused by specific
properties of the text-image similarity space (see the next section).

Focusing just on the W2VV++ BERT model, Fig. 4 presents ranking perfor-
mance for decreasing number of dimensions selected after SVD. We may observe
that up to 64 dimensions, the performance of the model does not deteriorate. In
other words, 32 times smaller dataset of descriptors and faster computation can
be achieved with a standard pre-processing technique. Furthermore, even lower
dimensional versions are useful for approximate search in a filter and refine mode.
For the data, 50% of the database can be filtered with the 16 dimensional version
of descriptors and the remaining part can be refined with the 64 dimensional ver-
sion. This simple approach would reduce computation costs using a bin-to-bin
measure like −σcos(vx, vy) from 64 · DBSize to 16 · DBSize + 48 · DBSize/2
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Fig. 3. Comparison of PCA and SVD for first 1000 ranks.

bin-to-bin operations. Please note that intermediate results for filtering can be
re-used for refining and there emerge additional sorting costs for the refined half
of the database. Allowing a small drop in recall, approximate 1000 most similar
objects could be computed by refining just 10% of the 20K database filtered
with 16 dimensional vectors, resulting in 16 · DBSize + 4.8 · DBSize bin-to-
bin operations. At the same time, the approximate filtering approach still allows
easy parallelization of the computation. We note that a bin-to-bin distance func-
tion for the first a dimensions of (normalized) data vectors can lower bound the
distance for b > a dimensions (e.g., for a similarity model based on squared
Euclidean distance

∑a
i=1 (vxi

− vyi
)2 ≤ ∑b

i=1 (vxi
− vyi

)2). Hence an optimal
kNN query processing strategy [26] could be tested instead of a fixed hard filter
of x% of the database.

Fig. 4. Performance for decreasing dimensionality of descriptors after SVD. On the
right, the effect of refining of 10% of database filtered with 16 dimensional vectors.
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4 Is There a Room for Competitive Metric Indexing?

Using the single-space-for-all approach (e.g., (Rn, σcos)) for various application
domains reminds the motivation of the metric space approach providing one
access method for different metric spaces. The question raised in this section
is, whether general distance-based metric indexing [6,29] can provide a com-
petitive approach to methods presented in the previous section. Since metric
indexing relies on lower bound estimation LB(vq, vo) = |δ(vp, vq) − δ(vp, vo)|
from precomputed distances between objects vo, vp, vq ∈ R

n, we show distance
distributions for the example models from Sect. 2. For normalized vectors, the
cosine similarity is transformed to the Euclidean distance using L2(vx, vy) =√

2 · (1 − σcos(vx, vy)). Figure 5 shows several L2 distance distributions for CLIP
and W2VV++ BERT models for the 20K benchmark dataset:

– Image-image variant shows the distance distribution histogram for all pairs
of images in the 20K dataset.

– Text-image variant shows the distance distribution histogram for pairs
between all text query vector representations and vectors of all images.

– Text-target variant shows the distance distribution histogram for pairs
between all text query vector representations and their corresponding tar-
get item.

– Distance at rank 2000 variant shows the histogram of distances at rank 2000
from all 327 result sets for all benchmark queries.

Fig. 5. Distance distribution histograms for CLIP and BERT, 20K benchmark dataset
was used. All histograms are normalized, x axis is scaled and does not start at 0.

In the figure, all the selected distance distribution histograms appear in the
right part of the possible spectrum, indicating high intrinsic dimensionality [6].
Whereas the W2VV++ BERT model has a similar distance distribution for
image-image and text-image pairs, for the CLIP model the two histograms are
significantly different. We hypothesise that this inconsistency is caused by dif-
ferent concepts used to design and train the CLIP model. Nevertheless, for both
models the necessary distance from query to the searched item is high as well
as distances between potentially indexed images. For a fixed high k, the dis-
tances at rank k are even higher. This questions filtering power of exact metric
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filtering rules and leads to the need for approximate search methods. Although
there have been proposed and empirically tested efficient approximate search
approaches for metric spaces (e.g., pivot tables [18], permutation approaches [2],
or M-Index [20]), the question is whether metric search methods could outper-
form (for the discussed KIS problem and high k) the simple sequential SVD based
filtering approach for W2VV++ BERT (see the previous section) or could deal
with specifics of the CLIP based similarity space. We leave this open question
as well as all the descriptors of the benchmark dataset for the metric indexing
community.

5 Conclusions

In this paper, we focused on the known-item search problem where a larger
number of nearest neighbours may be necessary to achieve a high recall. After
a brief introduction of the problem, experimental evaluations with two state-
of-the-art text-image search models were presented. The difficulty of the task
was demonstrated with a benchmark dataset comprising hundreds of query-
target pairs. An analysis of browsing performance with simulated user actions
provided additional motivation for larger candidate sets. A baseline model for
high-dimensional vectors was studied and an open challenge for metric indexing
community was provided in the form of a new benchmark dataset accessible at
github repository https://github.com/soCzech/KIS-Neighbours.
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Abstract. In the domain of approximate metric search, the
Permutation-based Indexing (PBI) approaches have been proved to be
particularly suitable for dealing with large data collections. These meth-
ods employ a permutation-based representation of the data, which can be
efficiently indexed using data structures such as inverted files. In the lit-
erature, the definition of the permutation of a metric object was derived
by reordering the distances of the object to a set of pivots. In this paper,
we aim at generalizing this definition in order to enlarge the class of
permutations that can be used by PBI approaches. As a practical out-
come, we defined a new type of permutation that is calculated using
distances from pairs of pivots. The proposed technique permits us to
produce longer permutations than traditional ones for the same number
of object-pivot distance calculations. The advantage is that the use of
inverted files built on permutation prefixes leads to greater efficiency in
the search phase when longer permutations are used.

Keywords: Permutation-based indexing · Metric space · Metric
search · Similarity search · Approximate search · Planar projection

1 Introduction

Searching a database for objects that are most similar to a query object is
a fundamental task in many application domains, like multimedia information
retrieval, pattern recognition, data mining, and computational biology. In this
context, the Metric Search framework [24] provides us with a wide class of index-
ing and searching techniques for similarity data management. A common factor
in all these approaches is that they are applicable on generic metric spaces, i.e.
these techniques are not specialised for a particular type of data. A metric space
is a pair (D, d) formed by a domain D and a distance function d : D × D → R

that satisfies the metric postulates of non-negativity, identity of indiscernibles,
symmetry, and triangle inequality [24]. In a general metric space we cannot use
any algebraic function, e.g. sum of two objects or product by scalars, but the
only operation that can be exploited is calculating the distance between any
two objects. Therefore any technique that aims mapping a metric object o ∈ D
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to another (more tractable) space, e.g. a vector space, must rely only on algo-
rithms that use the distances of the object o to other metric objects, e.g. a set
of reference objects selected within the space.

Many approximate metric search approaches employ transformations of the
original metric space to overcome the curse of dimensionality, which affects exact
metric search techniques whose performance may be not better than a sequential
scan for spaces with high intrinsic dimensionality [18,23]. Successful examples of
approximate methods are the Permutation-based Indexing (PBI) techniques that
transform the metric data into permutations of a set of integers {1, . . . , N}, which
are then indexed and searched using data structures like prefix trees [13,19] and
inverted files [3,20]. The original definition of permutation-based representation of
a metric object was derived by computing the distances of the object to a set of piv-
ots (reference objects) and then by reordering the pivot identifiers according these
distances [4,9,10]. This characterization have been adopted in several research
papers that further investigated the properties of this data representations and
ways to efficiently index them, e.g. [2,13–15,17–19]. Moreover, some alternative
permutation-based representations have been defined in the literature [1,21], but
only for representing objects of specific metric spaces.

In this work, we aim at generalizing the definition of permutation associated
with a metric object, by introducing the concept of permutation induced by a
transformation f : (D, d) → R

N . The function f simply projects the metric
objects of D into an N -dimensional vector space. This function typically relies
only on some distance calculations to transform the objects, such as distances
to a set of pivots as done in traditional permutations, but the way distances
are combined and exploited to represent objects may be different from what is
done in the traditional approach. We believe that this generalization can open
up new lines of research, on the one hand, to understand theoretically what
properties the function f should have in order to generate permutations that
have good performance for the approximate search, and on the other hand,
to define alternative permutation-based representations. In this paper, we have
started investigating the latter aspect by defining permutations that rely on
distances of objects to pairs of pivots. In this way, for a fixed set of n pivots, we
can generate permutations with length N > n, while the length of traditional
permutations is fixed equal to the number of pivots n. The advantage of having
longer permutations (at the same cost in terms of original distance computations)
is the more efficiency at searching time when using inverted index build upon
permutation prefixes (e.g. MI-File [3]). In fact, the inverted index contains as
many posting lists as the number N of permutants (i.e. the length of the full
permutation) and so, for a fixed permutation prefix length λ, the higher N ,
the shorter the posting lists, and hence the smaller the fraction of the database
accessed to answer a query.

The rest of the paper is structured as follows. Section 2 reviews and general-
izes the concept of permutation-based representation of metric objects. Permu-
tations built using distances to pivot-pairs are introduced in Sect. 3. Section 4
reports the experimental evaluation, and Sect. 5 draws the conclusions.
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2 Permutation-Based Representation(s) of a Metric
Object

Chavez et al. [9,10] and Amato et al. [4] originally defined the permutation-
based representation of a metric object by ordering the identifiers of a fixed set
of pivots according to their distances to the object to be represented, that is

Definition 1 (Permutation of a metric object given a set of pivots). The
permutation-based representation Πo (briefly permutation) of an object o ∈ D
with respect to the pivot set {p1, . . . , pn} ⊂ D is the sequence Πo = [π1, . . . , πn]
that lists the pivot identifiers {1, . . . , n} (called permutants) in an order such
that ∀ i ∈ {1, . . . , n − 1}

d(o, pπi
) < d(o, pπi+1) or

[
d(o, pπi

) = d(o, pπi+1)
] ∧ [πi < πi+1] . (1)

This representation is also referred to as the full-length permutation to distin-
guish it from the permutation prefix adopted in several PBI methods [3,13,19].
In facts, based on the intuition that the most relevant information in the per-
mutation is present in its very first elements, i.e. the identifiers of the closest
pivots to an object, several researchers proposed to represent the data by using
a fixed-length prefix of the permutation, i.e. Πo,λ = [π1, . . . , πλ] with λ < n. The
use of permutation prefixes may be dictated by either the employed data struc-
ture (e.g. prefix tree), efficiency issues (more compact data encoding and better
performance when using inverted files) or even by effectiveness reasons (in some
cases the use of prefixes gives better results than full-length permutations [2,3]).

Alternative permutation-based representations have been defined in liter-
ature, but only for specific metric spaces. For example, the Deep Permuta-
tions [1,5] were defined by reordering the dimensions of a vector according to the
corresponding element values. This approach can only be used in vector spaces
and has so far only been tested on Convolutional Neural Network features. The
SPLX-Perms [21] use the n-Simplex projection [12] followed by a random rota-
tion to transform a metric object into a Euclidean vector and then computes the
permutation by reordering the components of the vector as done in the Deep
Permutations. This method can be used on the large class of spaces meeting the
n-point property [12] but it is not applicable on general metric spaces.

We now observe that all these approaches belong to the same family of trans-
formations, as explained hereafter, and thus the traditional definition of permu-
tation associated to a metric object (Def. 1) could be generalized to be more
inclusive. In this context, the first trivial but useful observation to make is that
any sorting function defined on a finite-dimensional Coordinate space implicitly
produce a permutation representation of the data. Suppose σ : RN → R

N is a
function that sorts the coordinate elements of a N -dimensional real vector with
respect to a predefined criterion (e.g. ascending order). For any v ∈ R

N , the
sort function σ is described by the permutation Πσ

v of the indices {1, . . . , N}
that specifies the arrangement of the elements of v into v′ = σ(v). Specifically,
if v = [v1, . . . , vN ] and σ(v) = [vi1 , . . . , viN ] then Πσ

v = [i1, . . . , iN ]. In other
words, the j-th element of the permutation Πσ

v is the index i ∈ {1, . . . N} such
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that the i-th element of v is equal to the j-th element of σ(v). For example, if
v = [8, 10, 6] and σ(v) = [6, 8, 10] then Πσ

v = [3, 1, 2]. However, this characteri-
zation is not well defined if the vector v contains duplicate values, therefore we
give the following definition.

Definition 2 (Permutation of a vector induced by a sort function σ).
A permutation representation of a vector v = [v1, . . . , vN ] ∈ R

N associated to a
given sort function σ : RN → R

N is the permutation Πσ
v = [π1, . . . , πN ] of the

index identifiers {1, . . . , N} such that for any j = 1, . . . , N the element πj is the
smallest index for which vπj

equals the j-th element of σ(v).

The Deep Permutations can be formalized by using the above definition, but
this of course cannot be used to describe the SPLX-perms or the traditional
permutations. However, these approaches share a common idea, that is using the
distance to a set of pivots to first transform the metric object into a Cartesian
coordinate space and then obtaining the permutation by applying a sort function.
Therefore, for any function f : (D, d) → R

N and a given sort function we may
define a permutation representation of a metric objects as follows:

Definition 3 (Permutation of a metric object induced by a space trans-
formation f and a sort function σ). Let f : (D, d) → R

N a space transforma-
tion, and σ : RN → R

N a function that sorts the components of a N -dimensional
vector according to some predefined criteria. We define the permutation repre-
sentation of a object o ∈ D induced by the functions f and σ as the permutation
Πσ,f

o = [π1, . . . , πN ] that lists the index identifiers {1, . . . , N} in an order such
that for any j = 1, . . . , N the permutant πj is the smallest index for which the
πj-th element of the vector f(o) is equals to the j-th element of σ(f(o)).

For the sake of simplicity, in the following we assume that the sort function
σ is the sorting of the elements in ascending order and we omit the depen-
dency of this function in the definition of the permutation. Please note that the
effect of using a different sorting function in most cases could be reproduced by
changing the function f . For example, for a given f and object o the permuta-
tion obtained by sorting f(o) in descending order is equal to the permutation
obtained by applying the function −f to the object o and then sorting the ele-
ments in ascending order. Therefore, we use the following characterization:

Definition 4 (Permutation of a metric object induced by a space trans-
formation f). The permutation representation of a object o ∈ (D, d) with
respect to the transformation f : (D, d) → R

N is the sequence Πf
o = [π1, . . . , πN ]

that lists the permutants {1, . . . , N} in an order such that ∀ i ∈ {1, . . . , N − 1},
f(o)πi

< f(o)πi+1 or
[
f(o)πi

= f(o)πi+1

] ∧ [πi < πi+1] (2)

where f(o)j indicates the j-th value of the vector f(o).

Note that, according to this definition, the traditional permutation is induced
by the transformation f(o) = [d(o, p1), . . . , d(o, pN )], where {p1, . . . , pN} is a
fixed set of pivots. The Deep Permutation is induced by the identity function.
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Fig. 1. Planar Projection of two pivots p1, p2 and a data point o.

The SPLX-Perm, instead, is induced by the composition of the n-Simplex pro-
jection and a random rotation. Moreover, this generalization suggests that new
permutation representations of generic metric objects can be defined but assum-
ing that we use a transformation f : (D, d) → R

N that relies only on distance
computations and metric postulates to transform the objects. The function f in
some cases can also be generated using machine learning techniques, as in [8].
Nevertheless, for particular metric spaces, e.g. vector spaces, other operations
or properties of the space can be employed when defining the transformation
f . However, not all the transformations may produce permutations which are
suitable for metric search, as we would like that similar objects are projected
into similar permutations. An in-depth theoretical and experimental study on
the properties that the function f should have to produce “good” permutations
for approximate metric search is beyond the scope of this paper and we reserve
it for future work. Here, as proof of concepts, we define a novel permutation-
based representation that uses a transformation f that relies not only on the
distance of the objects to a fixed set of pivots but also exploits information on
the distances between pivot pairs.

3 Pivot Pairs Permutations

Thanks to the triangle inequality, we know that any three points of a metric
space can be isometrically embedded in a two dimensional Euclidean space.
Specifically, let p1, p2 ∈ D two pivots and o ∈ D an arbitrarily metric object.
Without loss of generality, we could consider an isometric embedding that maps
the points p1, p2, o to the vectors vp1 , vp2 , vo ∈ (R2, �2), such that (i) vp1 and vp2

lies in the X-axis; (ii) vo is above the X-axis and its coordinate are given by the
intersection of the ball centered on p1 with radius d(p1, o) and the ball centered
on p2 with radius d(p2, o). Figure 1 depicts this situation in a 2D coordinate space
where the two pivots are projected in the X-axis symmetrically with respect to
the origin and a single data object o is mapped to the point vo = (xo, yo), where

xo =
d(o, p1)2 − d(o, p2)2

2 · d(p1, p2)
, yo =

√

d(o, p1)2 −
(

xo +
d(p1, p2)

2

)2

(3)
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Note that the only information used in the projection is the distances of the
object o to the two pivots and the inter-pivot distance. Moreover, all the three
distances between the points are preserved, i.e. �2(vp1 ,vp2) = d(p1, p2), and
�2(vpi

,vo) = d(pi, o) for i = 1, 2. This projection, called planar projection [11],
could be repeated for all the data points o ∈ D while fixing the two pivots p1, p2.
So we have a projection φp1,p2 : (D, d) → (R2, �2) that preserves the distances
of data objects to the two pivots. Therefore, since the distance to the pivots is
preserved for each data point, it can be easily proved that all the objects in the
hyperplane separating the two pivots in the original space are projected in the
hyperplane Hvp1 ,vp2

= {v ∈ R
2 | �2(v,vp1) = �2(v,vp2)} separating the pivots

in the 2D projection.
The Euclidean norm of a projected object (ρo = ‖vo‖) could be interpreted

as the distance of the point o to a synthetic pivot that is equidistant to the two
original pivots, i.e. a sort of midpoint which may not exist in the original metric
space. Its calculation is immediate if we already know d(p1, p2), d(o, p1), and
d(o, p2) as it is equals to

ρo =
√

(xo)2 + (yo)2 =
1
2

√
2 d(o, p1)2 + 2 d(o, p2)2 − d(p1, p2)2 (4)

We can repeat this procedure for several pairs of pivots to characterize a metric
object based on the distribution of its distance from the synthetic midpoints
between the original pivots. Formally, given a set {p1, . . . , pn} ⊂ D of n pivots,
we select m <

(
n
2

)
pivot pairs that we enumerate using an index i, so that

(pi1 , pi2) indicates the i-th pivot pair. For each object o ∈ D and for each selected
pair of pivots (pi1 , pi2) we use Eq. 4 to compute the norm ρ

(i)
o of the projected

point φi(o) = (x(i)
o , y

(i)
o ). Then we generate a permutation Πf ′

o of length m

by reordering the components of f ′(o) =
(
ρ
(1)
o , . . . , ρ

(m)
o

)
. Moreover, since we

can interpreted the values ρi as the distance to some synthetic pivots, we may
combine these information with the distances to the actual pivots by computing
the permutations induced by the function

f ′′ : o ∈ D →
(
d(o, p1), . . . , d(o, pn), ρ(1)o , . . . , ρ(m)

o

)
∈ R

n+m (5)

In the following we refer to the permutations Πf ′
o and Πf ′′

o as Pairs Permutation
(P-Perms), and Pivot-Pairs Permutation (PP-Perms), respectively.

4 Experiments

In this section, we compare the performance of P-Perms, PP-Perms, and the
traditional permutations (Perms) for approximate k-nearest neighbors (k-NN)
search. The experiments were conducted both on real-word and publicly avail-
able datasets (CoPhIR and ANN-SIFT) and on synthetic datasets, which are
described below. In the following, we first introduce the measures used for the
evaluation and then we present the experimental results.
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Evaluation Protocol. For each dataset we build a ground-truth for the exact k-
NN search related to 1, 000 randomly-selected queries. The ground-truths were
used to evaluate the quality of the approximate results obtained either by per-
forming a k-NN search in the permutation space or by using the actual distance
to re-rank a candidate result set of size k′ ≥ k that was selected using a k′-NN
search in the permutation space. Please note that the latter is a filter-and-refine
approach, which requires to store the original dataset and access to it at query
time to refine the permutation-based candidate results. In the experiments we
used k = 10. For the filter-and-refine approach we used k′ = 100. The quality of
the approximate results was evaluated using the recall@k, defined as |R ∩ RA|/k,
where R is the result set of the exact k-NN search in the original metric space
and RA is the approximate result set.

As done by many PBI approaches [3,13,19], we index and search the data
using fixed-length permutation prefixes instead of the full-length permutations.
The permutation prefixes were compared using the Spearman’s rho with location
parameter (Sρ,λ), defined as in [1, Sect. 3.5]), where the location parameter is the
length λ of the permutation prefixes. If N is the length of the full permutations
(i.e. we have N different permutants that may appear in a permutation prefix)
and we index the permutation prefixes using inverted files [3], we have that

– the inverted index is composed of N posting lists (one for each permutant).
– each object is stored in exactly λ posting lists (corresponding to the permu-

tants appearing in its permutation prefix). Thus, the i-th posting list contains
ti entries related only to the data objects whose permutations prefixes contain
the permutant i.

– each entry of the i-th posting list is of the form (IDo, poso(i)), where IDo is
the identifier of a data object, poso(i) is the position of the permutant i in
the permutation prefix associated to the object o.

– at query time, we access only to the λ posting lists corresponding to the per-
mutants in the query permutation prefix. For each object o in those selected
posting lists, we use the stored poso(i) to compute the Sρ,λ distance to the
query permutation prefix.

In this setting, the size in bits of the inverted index is a function of the number
of permutants N , the prefix length λ, and the number of data objects |X|:

Size(Inverted Index) = N 
log2 N�
︸ ︷︷ ︸

posting list identifiers

+λ |X| (
log2 |X|� + 
log2 λ�)
︸ ︷︷ ︸

posting list entries

(6)

The cost at query time includes 1) the cost of transforming the query into
the permutation representation; 2) the search cost; 3) the cost of re-ranking the
candidate set using the actual distance (only for the filter-and-refine approach).

The cost for computing the permutations (Table 1) varies with the employed
permutation-based representation and the specific metric of the space. For a
given set of n pivots the traditional permutation has N = n permutants and
requires the calculation of n object-pivot distances. For the same set of pivots
and for m selected pivot pairs the P-Perms and the PP-Perms have N = m
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Table 1. Distance computations needed for generating various permutation-based rep-
resentations given the same set of n pivots. m is the number of pairs used in the Pairs
and Pivot-Pair Permutations. N is the number of permutants.

Approach N Number of distance calculations

Computed for each object/query Computed once at indexing time

Perms n n actual distances

P-Perms m n actual distances + m 2D Euclidean distances min(m, n(n − 1)/2) actual distances

PP-Perms n+m

and N = n + m permutants, respectively, and require n object-pivot distance
calculation plus m 2D Euclidean distances to calculate the ρo (Eq. 4), which in
most cases is a negligible cost with respect to object-pivot distance calculations.
The P-Perms and the PP-Perms also require min(m,n(n − 1)/2) pivot-pivot
distances, that can be computed and stored once at indexing time and then
reused for calculating all the objects/query permutations. The search cost (SC),
calculated as the number of bits accessed per query, is given by

SC =

(
N∑

i=1

δiti

)

C(pEntry) (7)

where ti is the number of objects stored in the i-th posting list, δi is the fraction
of samples in the database having the permutant i in their permutation prefixes
(i.e. δi = ti/|X|), and C(pEntry) = 
log2 |X|� + 
log2 λ� is the size in bits of a
single entry of a posting list. In facts, given a query q, we access the i-th posting
list only if the index i is in the permutation prefix associated to the query,
which is true with probability δi as query and database objects share the same
distribution. Therefore, the number of elements accessed per query is

∑N
i=1 δiti

since the i-th posting list contains ti entries, and we access it with δi probability.
Note that for a fixed N , the larger the prefix λ, the greater ti, thus the higher
the search cost. Moreover, for the filter-and-refine approach, the bytes accessed
per query are those needed to select the k′ candidate results (given by Eq. 7)
plus those needed to re-rank the candidate results using the actual distance, i.e.
k′ ∗ C(Obj), where C(Obj) is the size in bits of one original data object.

4.1 Experiments on Synthetic Data

The first question that may arise when considering the P-Perms representation
as an alternative to the traditional permutation (Perms) is whether using the dis-
tances to the synthetic midpoint pivots instead of the actual pivots still helps in
distinguishing similar data points from dissimilar ones in an approximate search
scenario. Moreover, since the P-Perms and the PP-Perms allows producing per-
mutations that are longer than the number of the employed pivots, it would
be also interesting to analyze the performance of these permutations when the
number m of pairs is increased while fixing the number n of pivots (i.e. fixing the
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number of actual distance computation needed to generate the permutations).
To this scope, we performed experiments on two representative typologies of
synthetic data, clustered and not clustered Euclidean vectors, because it was
already proved in the literature [3] that the traditional permutations have dif-
ferent behaviors on these data when varying the number n of pivots and the
prefix length λ. Specifically, we considered two datasets, each containing 100K
vectors in a 30-dimensional Euclidean space. The first dataset, named Gaussian
Euclid30, contains vectors whose coordinates are generated using a Gaussian
distribution centered in the origin and with a standard deviation σ = 0.1. The
second dataset, named Clustered Euclid30, contains vectors arranged in 20 clus-
ters. The cluster centers were randomly selected in the hypercube [0, 1]30. For
each cluster we generated 5K vectors using a Gaussian distribution with a small
standard deviation (σ = 0.01).

Figures 2a and 2b show, for the two datasets, the recall@10 achieved by the
traditional permutation when varying the number n of pivots and the prefix
length λ. Please note the different behaviors of the permutations on these two
kind of data. On Gaussian Euclid30, the recall increases when increasing both
n and λ, but for a fixed λ the recall is almost unchanged when increasing only
n (Fig. 2a). For the clustered data, instead, the performance of the full-length
permutations (i.e. the cases λ = n) is not improved when increasing the number
of pivots more than n = 500. However, for a fixed n there exists an optimal prefix
length λ < n for which the recall achieves a maximum. Amato el al. [3] noted
that this maximum is systematically achieved around the prefix length λ = n/cl,
where cl is the number of clusters. Note that n/cl represents the average number
of pivots taken from each cluster since we use n random pivots. This suggests
that an object of a cluster is well represented by the pivots that belong to its
same cluster, but when we increase the length of the permutation prefixes we
also include pivots taken from other clusters which seems to introduce noisy
information. In facts, when we fix n the recall begins to decrease sharply for
λ > n/cl (Fig. 2b).

Regarding our initial question, that is, whether P-Perms represent a valid
alternative to classical permutations in distinguishing objects, for a preliminary
analysis we selected a number m of random pivot pairs equal to n, so that the
full permutations have the same length (i.e. N = n = m). For this settings,
we discovered that on Gaussian Euclid30 the P-Perms had similar behaviour
and slightly lower effectiveness than the classical Perms when varying n and λ
(Fig. 2c), thus confirming us that the synthetic pivots computed from the pivot
pairs could be used as alternative pivots for generating permutations. However,
on the clustered data, the P-Perms seems to be completely useless (Fig. 2d)
with the exception of the case λ = n for which the full-length P-Perms slightly
outperforms the traditional full-length Perms (nevertheless both the approaches
achieved very low recall when using their full-length representations). One pos-
sible reason for the low performance of the P-Perms on clustered data is that
we are using as reference objects the synthetic midpoints of just m = n random
pivot pairs out of n(n − 1)/2 possible pairs. In facts, since the data is uniformly
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Fig. 2. Synthetic Datasets: Recall@10 for the traditional permutations (graphs (a) and
(b)) and the P-Perms (graphs (c) and (d)) varying the number of pivots and the prefix
lengths. Graphs (e) and (f) show the recall for increasing prefix lengths as function of
the Search Cost for Perms and PP-Perms. For each method, the points in the graphs cor-
respond to the prefix lengths λ = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500

distributed over the cl clusters, the synthetic midpoint of a pair (pi1 , pi2) is
representative of a cluster C if both pi1 and pi2 belong to the same cluster C,
which happen with probability (n − cl)/cl(n − 1). Conversely, with probability
n(cl − 1)/cl(n − 1) the two pivots belong to different clusters. For example, if
cl = 20 and n = 5K the probability of picking a pair of pivots of different clusters
is about 95%, so when we use only m = n = 5K random pairs we have on average
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4, 750 pairs of pivots form different clusters and just about 12–13 pairs represen-
tative of each cluster. To mitigate this inconvenience we may try to use m  n
or, as proposed in the following, use the PP-Perms representation that employs
both traditional and synthetic pivots. The latter approach guarantees to have a
percentage of pivots that are still representative of the original data distribution
which seems to be fundamental for clustered data. Note that for n pivots and m
pairs the PP-Perms produces permutations of length N = m+n. For some prefix
lengths the effectiveness of the PP-Perms may decrease when considering m  n
as the percentage of synthetic pivots will be a way larger than the percentage
of actual pivots, which may be a issue for clustered data. Anyway the loss in
effectiveness is compensated by the more efficiency at searching time since the
Search Cost (number of bits accessed per query) typically increases proportion-
ally to λ2/N . Therefore, since PP-Perms and Perms have different lengths N , in
the rest of this paper, we report the recall values as function of the Search Cost.

In Figs. 2e and 2f we compared the performance of the traditional Perms
using n = 500 pivots (N = 500), the PP-Perms using n = 500 pivots and
m = 4, 500 pairs (N = 5, 000), the P-Perms using m = 5, 000 pairs selected
from n = 500 pivots (N = 5, 000), and the traditional Perms using n = 5, 000
pivots (N = 5, 000). The latter approach is plotted for reference as it has the
same length of the tested PP-Perms and P-Perms, but note that it requires
5, 000 actual object pivot distance computations, while the other approaches
uses a order of magnitude less object-pivot distances computations. For all the
approaches we plot the recall versus the search cost when increasing the prefix
length λ form 10 to 500. As expected, the P-Perms, which rely only on synthetic
pivots, has poor performance on the clustered data. However, on the clustered
dataset, the PP-Perms approach, which uses both actual and synthetic pivots,
not only outperforms the Perms techniques that use the same set of actual pivots
(n = 500) but also reaches the performance of the traditional permutations built
upon the larger set of pivots (n = 5, 000). Thus we observed a great advantage
in combining synthetic and real pivots to represent clustered data. In facts, the
PP-Perms shows the best trade-off between recall, search cost and the cost for
computing the permutations (i.e. the actual object-pivot distance computations).
On Gaussian data, both the P-Perms and the PP-Perms still outperforms the
traditional permutation built on the same pivot set (we are not interested in
the recalls when the search costs is greater than the sequential scan). Moreover,
for small search cost values, it achieves recalls in line with the more expensive
traditional permutation built upon the larger pivot set. Given these outcomes, in
the following we focus our attention only on the PP-Perms and Perms approaches.

4.2 Experiments on Real-World Data

For the experiments on real-world data we used two sets of 1M objects from the
CoPhIR [7] and ANN-SIFT [16] datasets, for which we used different kinds
of image features compared with distinct metrics. On the CoPhIR data we
used as metric the linear combination of the five distance functions (Manhat-
tan, Euclidean, and other special metrics) for the five MPEG-7 descriptors that
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Fig. 3. Recall@10 as function of the Search Cost (with and without re-rank
based on the actual distance), for increasing permutation prefix lengths. For each
method, the points plotted in the graphs correspond to the prefix lengths λ =
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000

have been extracted from each image. We adopted the weights proposed in [6,
Table 1]. The ANN-SIFT contains SIFT local features (128-dimensional vectors)
compared with the Euclidean distance. Note that the SIFT data contains some
clusters as the distance distribution is a mixture of Gaussians (see [22, Fig. 1]).
On both the datasets, we tested the traditional Perms using n = 1, 000 piv-
ots (N = 1, 000), the PP-Perms using n = 1, 000 pivots and m = 9, 000 pairs
(N = 10, 000), and the traditional Perms using n = 10, 000 pivots (N = 10, 000).
For each approach we varied the prefix length λ from 10 to 1, 000. The results
are depicted in Figs. 3a and 3b for CoPhIR and SIFT data, respectively. For
reference we also reported the cost of the sequential scan for searching the orig-
inal data descriptors using the actual distance. Moreover, we also include the
results when the actual distance is used to refine (re-rank) the candidate results
selected in the permutation space. We observed that on both the datasets the
PP-Perms performs better than the traditional permutation build upon the same
set of pivots. Moreover, for λ > 100 it achieves recall values in line with that
of the more expensive permutation built upon the 10 times larger set of pivots.
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Therefore, the PP-Perms can be profitably used as alternative to the traditional
permutation to generate long permutations while limiting the number of actual
distance computations. For example, to search 1M SIFT data with a query cost
of about 8 MB, the PP-Perms achieves a recall@10 of 0.29 (0.69 when using the
re-ranking) while the Perms that uses the same set of pivots has a recall of 0.24
(0.56 with the re-ranking). On the CoPhIR data the improvement is even more
evident: for a search cost of about 4 MB the PP-Perms reaches a recall of 0.24
(0.61 when using the re-ranking) while the traditional permutations has a recall
of 0.16 (0.47 when using the re-ranking).

5 Conclusions

In this paper, we generalized the definition of permutations associated to metric
objects by introducing the concept of permutations induced by a metric trans-
formation f . As a practical example, we defined permutations induced by a com-
bination of pivots and the tensor product of several planar projections related to
some pivot pairs. In our experiments, this novel representation, called PP-Perms,
achieved the best trade-off between effectiveness (recall) and efficiency (search
cost and data distance computations) with respect to the traditional permuta-
tions. In facts, for the same set of object-pivot distance calculations, PP-Perms
allows producing longer permutations, which can be more efficiently searched
using inverted files. As future work, on one hand, we would like to investigate
theoretical properties that the function f should meet in order to induce effective
permutation-based representations; on the other hand, we would like to exploit
artificial intelligence techniques to automatically learn suitable functions f .
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Abstract. Metric indexes are traditionally used for organizing unstruc-
tured or complex data to speed up similarity queries. The most widely-
used indexes cluster data or divide space using hyper-planes. While
searching, the mutual distances between objects and the metric proper-
ties allow for the pruning of branches with irrelevant data – this is usually
implemented by utilizing selected anchor objects called pivots. Recently,
we have introduced an alternative to this approach called Learned Met-
ric Index. In this method, a series of machine learning models substitute
decisions performed on pivots – the query evaluation is then determined
by the predictions of these models. This technique relies upon a tradi-
tional metric index as a template for its own structure – this dependence
on a pre-existing index and the related overhead is the main drawback
of the approach.

In this paper, we propose a data-driven variant of the Learned Met-
ric Index, which organizes the data using their descriptors directly, thus
eliminating the need for a template. The proposed learned index shows
significant gains in performance over its earlier version, as well as the
established indexing structure M-index.

Keywords: Index structures · Learned index · Unstructured data ·
Content-based search · Metric space · Machine learning

1 Introduction

Searching within collections of unstructured or complex data (such as images,
audio files or protein structures) is a challenging task. Whereas in structured
data-sets, the order of the data objects is determined using a straightforward
key (e.g., their alphabetical order) and the match to a search filter is objectively
given (e.g., retrieve all records where created on ≤ 2010-04-01), in the realm
of unstructured data, such properties do not exist. Since there is no intrinsic
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ordering to the data, there is no single agreed-upon response to a given search
query.

The issue can be addressed using metric spaces, where the pairwise similarity
of objects can be leveraged to organize the data and formulate search queries.
If we can design a suitable distance function that meets certain criteria (such
as symmetry and triangle inequality), any indexing structure or search algo-
rithm designed for generic metric spaces can be applied to our data, and various
pruning rules can be used to reduce the search space.

The search itself is usually performed using various similarity queries, wherein
we specify a query object and choose the properties of the desired result in
relation to this object (e.g., the k closest objects to the query object – kNN
query, or all objects within a certain range from the query object – range query).
Even after applying the metric spaces and similarity searching methods, a major
challenge remains – since these complex data-sets tend to have a very high
number of intrinsic dimensions [5], the distance computations needed for index
construction and query evaluation are computationally expensive.

This problem can be addressed using an alternative approach – finding the
similarity in large groups of data can be reformulated into a pattern searching
task, which can be solved by machine learning. We have previously introduced
such a solution, using supervised machine learning to imitate the structure of
a pre-existing index, resulting in a hierarchy of several learned models that we
call Learned Metric Index (LMI) [2]. While this approach achieves very good
performance in the query evaluation phase by eliminating costly distance com-
putations, its main downside is obvious – to train such an index, we first need
to construct one of the traditional index structures as a template.

In our current work, we have evolved the LMI’s approach beyond the need
for a pre-existing index built using traditional methods. Instead, we can now
construct the LMI from scratch, using nothing but the pattern recognition capa-
bility of the machine learning models to discern the natural distributions of the
data in the metric space.

To the best of our knowledge, this is a completely novel method for tackling
the problem of indexing unstructured data. This paper describes our approach
and implementation in detail and evaluates its performance, comparing it to the
traditional state-of-the-art indexes and our previous implementations of super-
vised learned indexing.

2 Related Work

More and more research work has recently addressed the possibilities of enhanc-
ing or even replacing standard database index models (B+-trees) with machine
learning [8,14,17]. The authors argue that machine learning models can be
trained for the same purpose of answering queries (categorizing a query object to
the most suitable class, which represents a child node) while presenting several
performance benefits.
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For instance, in inverted indexes, a hierarchical machine learning model is
used to reduce index size at the expense of performance [29,34]. In cases involv-
ing multidimensional data, learned indexes attempt to approximate the search
to be reasonably efficient. The density distribution of multidimensional data is
approximated to create a new index structure in [31,33]. Another application of
learned models [24] presents an index named Flood that creates not only a con-
sistently performing index for multidimensional data, but also optimizes both
index and data storage layout. In [18], a learned variation of Bloom filters for
multidimensional data can save a significant portion of space. A wide study [16]
of various algorithms for kNN queries over multidimensional Euclidean spaces
concludes that it is still a research challenge to provide a solution of highly
precise approximate kNN search due to the curse of dimensionality.

We carry on with the proposition of utilizing machine learning to index struc-
tured data and apply it to complex data and metric space model. In this paper
specifically, we follow up on the Learned Metric Index method we introduced
in [2]. Even though we believe that our research is original, the idea of learned
models has been applied before in the domain of similarity searching in metric
data. In [13], ANN-tree was introduced to solve the 1-NN problem for metric
space scenarios. Authors of [22] consequently introduced the FLANN library to
perform the 1-NN search significantly faster than a previous, nearly brute force
implementation.

Recently, a new partitioning procedure focused on nearest neighbor search
performance, called Neural Locality-Sensitive Hashing (Neural LSH) [7], has
been shown to outperform traditional partitioning methods (k-means) consis-
tently. A learned model that approximates bounds on k nearest neighbor dis-
tances and consequently allows precise and memory-efficient computation of
reverse nearest neighbors has been introduced in [4]. The authors conducted
experiments on up to 8-dimensional and low-volume data. Finally, Hünemörder
et al. [11] explored the application of various predictive models to learn an index
for approximate nearest-neighbor queries. Their evaluation on synthetic data as
well as the MNIST data-set further demonstrates the research potential of this
topic.

3 Indexing in Metric Spaces

A metric space M = (D, d) is defined over a universe D of data objects and a dis-
tance function d(·, ·) that satisfies metric postulates. A database X ⊆ D of data
objects forms a collection to be queried by a k-nearest neighbors query (kNN(q)
– k objects closest to the query object q), or the range query (range(q, r) – all
database objects closer to q than the distance r).

To avoid tedious sequential scanning, which is costly on large data-sets or
with an expensive distance function, various indexing structures have been devel-
oped. Firstly, hierarchical structures include variations of the original M-tree [6],
Spatial Approximation Trees [25], or Rank Cover Trees [10]. These structures
divide data objects into groups or clusters, respecting their distribution in space.
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They provide sub-linear search time O(nα), where α ≤ 1 depends on data dis-
tribution. Next, permutations of preselected anchor objects (pivots) and their
prefixes define (Voronoi-like) space cells at bounded costs, so M-index [26] and
PPP-Codes [28] improve search efficiency substantially. Rearrangement of such
cells is applied in [1,21]. Lastly, independent filtering techniques can be applied
to further eliminate accessing excessive amounts of data objects, e.g. Binary
Sketches for Secondary Filtering [19].

The properties of the metric function (namely symmetry and triangle inequal-
ity) are typically indispensable for constructing index structures and for the cor-
rectness of search. Learned indexes do not inherently depend on these properties,
so the query evaluation based on predictions can be advantageous for non-metric
distance functions as well.

4 Learned Metric Index

Learned Metric Index (LMI), as introduced in [2], is a hierarchical tree index
structure of nodes containing machine learning models. These models are trained
to search for (i.e., categorize) query objects, which emulates the behaviour of
traditional index nodes. However, instead of determining the objects’ positions
according to their distances, a query is resolved by applying a series of predic-
tions. This changes the standard paradigm of index building and query evalu-
ation, resulting in very different performance characteristics and outperforming
traditional similarity searching methods in many cases, both in terms of effi-
ciency and effectiveness.

In general, the concept of LMI can be realized in two distinct ways. The first
one involves using a pre-existing index and its data partitioning as labels for
supervised training. In such a case, each data object has a label corresponding
to its position in the original index, i.e., a concatenated list of integer values per
index level. We have examined this variant in [2] and demonstrated that it can
achieve more than competitive performance with state-of-the-art methods.

The other option is to assemble LMI “from scratch” by letting it create its
own meaningful divisions of the data. Such approach exploits the information
embedded in the descriptors of data objects to emulate the similarity function.
This constitutes an unsupervised learning problem, which is the subject of this
paper.

4.1 Training Unsupervised LMI

Training an unsupervised LMI requires: (i) digital fingerprint of objects to train
on, and (ii) the number of clusters each model is expected to create, which defines
the shape of the learned index structure. The training procedure of the whole
LMI then starts with the root model, which is trained on the entirety of the given
data-set, while its descendants are trained on smaller and smaller portions of the
data as we dive deeper into the structure. The training is therefore sequential –
the input of every model depends on the output of its parent.
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Algorithm 1: Unsupervised Learned Metric Index training
Input: a data-set X, max. depth H (tree height),

max. number of children per level A[]
Output: a tree of trained models T [][]
part[1][1] = X;
for lvl ← 1 to H do

for chld ← 1 to A[lvl] do
if part[lvl][chld] = ∅ then

continue
end
M ← new model trained on part[lvl ][chld ] clustering the data into A[lvl]
groups;
if lvl < H then

for obj ∈ part[lvl][chld] do
p = M .predict(obj );
part[lvl+1][p].add(obj );

end

end
T [lvl ][chld ] = M ;

end

end
return T;

Algorithm 1 formally describes the entire training procedure. During the
training, each model is presented with a clustering problem. The objective is to
organize the data into a pre-specified number of groups according to their mutual
similarity obtained from the descriptors. Each training epoch re-organizes the
data to allow mutually similar objects to end up in the same cluster. A single
instance of LMI is then created by connecting the parent models with their
children, resulting in a tree structure.

4.2 Searching in LMI

We define the overall goal of LMI as finding as many of the query’s k nearest
neighbors as possible in the shortest time. The output of every learned model
in the searching (inference) phase is a probability distribution, which can be
viewed as the query’s correspondence to each of the classes (i.e., child nodes). We
expect LMI to be able to assign higher probabilities (and therefore higher search
priorities) to categories where the query object and its nearest neighbors reside.
The priority queue can then be formed in a näıve manner by sorting the child
nodes based on the probabilities assigned by their parent model. This contrasts
with traditional indexing methods, which need to calculate the distances to all
of the child objects to form their priority queues.

The searching process of LMI is shown in Fig. 1. From the LMI’s point of
view, an answer to a query is gradually updated with objects from the visited
leaf nodes. Note that the small sub-sections of the data-set contained within the
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Fig. 1. Example of a few initial steps of searching within a two-level LMI with four
models on Level 1. The search continues until a stop condition is met.

leaf nodes are searched linearly – once a leaf node gets to the top of the priority
queue, all of its objects are evaluated (i.e., added to the answer or discarded
based on their distance) and the leaf node is removed from the queue.

4.3 Machine Learning Models

In the previous sections, we introduced a basic version of unsupervised LMI
wherein we can use the machine learning models to build the index, and then
use the probability outputs of these models to search the resulting structure.

However, in practice, very few unsupervised algorithms can operate proba-
bilistically. To use a non-probabilistic unsupervised algorithm, we need to modify
the approach in one of two ways. The first option is to build the structure using
Algorithm 1, and use distance calculations for searching in the case of distance-
based algorithms. The second option is to substitute the distance function with
a supervised machine learning model. However, this second approach requires
a modification of the building phase described by Algorithm 1, splitting the
training into two steps1.

We selected two basic machine learning algorithms to implement unsuper-
vised LMI – K-Means and Gaussian Mixture Models (GMM).

K-Means is a well-established distance-based algorithm, which requires the
Euclidean space to suitably place cluster centers – so-called centroids – within the
data. The algorithm runs until a local optimum is reached by iteratively recal-
culating the centroids’ position to minimize the sum of squares within clusters.
Logistic Regression was selected as the supervised algorithm for the two-step
version of this process.

Gaussian Mixture Model (GMM) employs a more flexible approach to
data modelling, using soft clustering instead of the hard cluster assignments
1 This training procedure consists of two separate phases: one for clustering the data,

and the second for their categorization. For every level, the data is firstly clustered in
the same way as described above. Subsequently, a supervised categorization machine
learning algorithm is trained on the relevant portion of the data and the clustered
labels.
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Fig. 2. Index architecture: 2 levels and
100 categories per model for the 1-million
data-sets, and reduced to 71 categories for
MoCap, since it is smaller.

Fig. 3. Histogram of object distribu-
tion in the buckets (distance-based K-
Means, Profiset).

made by K-Means. As its name suggests, GMM assumes that each data point
could have been generated by any number of its k Multi-variate Gaussian dis-
tributions (k being the chosen number of clusters) with a given probability.
To evaluate this probability, we must approximate the posterior probability of
an object belonging to a cluster, given the observed data. Bayesian GMM is an
extension of GMM, which estimates the object’s cluster membership by Bayesian
Variational Inference instead of calculating the marginal probabilities.

As a result, we evaluate four separate algorithms in the experimental
phase – distance-based K-Means, K-Means with Logistic Regression, GMM and
Bayesian GMM. The index-building and searching operations were implemented
in Python, and algorithms used to prototype unsupervised LMI came from the
scikit-learn library [30] with the exception of K-means with Logistic regression,
where we employed an efficient GPU implementation of K-means [12].

5 Experiments

We have executed a wide range of experiments with three different multimedia
data-sets: CoPhIR, Profiset and MoCap. CoPhIR [3] is a data collection of 282-
dimensional vectors derived from five visual descriptors of images. Profiset [27]
is a series of 4096-dimensional vectors extracted from Photo-stock images using
a convolutional network. Finally, MoCap is HDM05 data-set [23] that con-
sists of sequences of 3D skeleton poses, which were segmented to extract 4096-
dimensional descriptors using AlexNet [15]. The data-set sizes were fixed at
1-million objects for CoPhIR and Profiset. MoCap contains 354,893 segments.

In contrast with the supervised version of LMI, unsupervised LMI has a
unique architectural flexibility provided by the unsupervised mode of training,
where one can specify the index architecture via the number of clusters per each
model and thus optimize the performance. As a results, we chose to use a single
architectural configuration throughout the experiments, consisting of two levels
with a fixed number of nodes, as detailed in Fig. 2. As opposed to the traditional
indexing structures, such as M-tree or M-index, LMI does not limit leaf node
capacity. However, this fact does not cause the distribution of objects within
buckets to be uncontrollably skewed, as Fig. 3 shows. The vast majority of the
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Table 1. Building costs of various unsupervised setups and baselines. Unsupervised
experiments were executed on a machine with 1 CPU – Intel Xeon E5-2650v2 2.60
GHz. K-Means (LR) utilized GPU - nVidia Tesla T4 16 GB. LMI baseline used Intel
Xeon Gold 6230 2.10 GHz. M-index baseline used Intel Xeon E5-2620 2.00 GHz.

Bayesian GMM K-means K-means Baselines

GMM (LR) (dist.) LMI M-index

Build t. (h) CoPhIR 0.305 0.351 1.926 0.639 2.670 0.330

Profiset 1.419 1.553 9.554 3.698 0.230 0.490

MoCap 0.351 0.467 2.200 0.627 0.390 0.170

Memory (gb) CoPhIR 10.0 13.6 15.6 8.6 150.0 3.4

Profiset 74.4 86.6 75.0 85.0 150.0 20.7

MoCap 55.5 71.0 32.0 49.0 85.0 6.4

bucket occupancies is within the 75–125 interval, guaranteeing similar sequential
search costs in the final part. This property allows us to skip searching of the
leaf nodes in evaluation, and focus on the performance of the internal index
navigation, where the various indexes truly differ.

In each of the experiments, we perform a 30-NN query for 1,000 randomly
chosen query objects. The performance is measured in terms of recall – i.e., how
many of the actual 30 nearest neighbors are returned when visiting a limited
portion of data-set. We set such search limits (stop-conditions) as increasing
thresholds spanning from 0.05% of the indexing structure searched (the lowest
stop-condition) to 75% searched (the highest stop-condition).2 As is the case
with all indexes, we are primarily interested in optimizing the trade-off between
recall and the searching time (i.e., the time needed to evaluate a query).

5.1 Building Costs

To provide a clear comparison of various indexes, we have to consider the costs
of their construction. Table 1 documents the RAM usage and time required to
build each of LMIs and M-index.

The table shows that the construction cost of a given setup is strongly
influenced by the data-set dimensionality, which is consistent with the results
observed in [2]. Specifically, the dimensionality of Profiset and MoCap descrip-
tors is almost 15 times that of the CoPhIR data-set (282 vs 4096 features),
which results in greater memory and building time requirements. The amount
of the data present in the data-set influences the cost as well – in the case of
MoCap, the number of objects the structure has to index is about one-third of
the amount of Profiset, resulting in shorter building times and lower memory
requirements.

2 Full enumeration of stop-conditions used: 0.05%, 0.1%, 0.3%, 0.5%, 1%, 5%, 10%,
20%, 30%, 50% and 75% of the data-set size.
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Table 2. The hyperparameters and their various settings for all four implemented
algorithms. The highlighted values enabled the models to reach the best performance
on majority of the data-sets. For further details, see documentation of scikit-learn [30].

Covariance type Initialization alg. Prior type No. init. Max. iters

GMM full, spher., diag, tied K-Means, rand. – – 1,2,5

Bayesian GMM full, spher., diag, tied K-Means, rand. process, distr. – 1,2

K-Means (LR) – – – 5,10,15,20 5,10,15,20

K-Means (d.) – – – 1,5,10 5,10,25

The results show that the least time-consuming LMI models are GMM and
Bayesian GMM. On the other hand, the most time-consuming model is K-Means
with Logistic regression due to its two-step training design. In this case, the
time expenditure can be attributed mainly to the second (supervised) part of
the training (Logistic regression), which does not have the advantage of the
time-efficient GPU-optimized K-Means implementation. In comparison with the
building costs of the supervised LMI baseline, it appears that the unsupervised
models exhibit lower RAM usage in all cases.

M-index requires the least time and memory out of all the examined indexes.
Its performance in terms of building costs, compared to the LMI models, can
be justified primarily by the fact that M-index is a mature index with many
heuristics developed over the years to improve its baseline performance, which
provides it with a considerable advantage over our newly-developed index.

5.2 Tuning of Learned Models

In all of the machine learning models, we identified several hyperparameters that
influence the quality of the run in a major way – we list them in Table 2.

In Mixture models, i.e., GMM and Bayesian GMM, Covariance type influ-
ences the shape of the covariance matrix, and whether each cluster has its own
covariance matrix, or all components share a common one. The initialization
algorithm represents the pre-training initialization procedure. Bayesian GMM
has one extra hyperparameter, Prior type, which influences the initial setting of
the weight concentration prior. In the case of the K-Means algorithms, we consid-
ered different Numbers of initializations, where we let the algorithm run multiple
times with different initialization seeds to avoid stoppage in local optimum.

We have conducted more than a hundred trials with different combinations
of data-sets and hyperparameter values. The best performing parameter setups
per model were selected for experimental evaluation. We have chosen the best-
performing setups to be the ones that achieve 90% recall for the lowest possible
stop-condition, in the shortest searching time.

5.3 Results

Four unsupervised machine learning algorithms were selected, as described in
Sect. 4.3 to test the capabilities of an unsupervised approach experimentally.
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Fig. 4. Comparison between the recall of unsupervised LMI models, the best supervised
setup from Antol et al. [2] (Sup-LMI), and M-index. The X-axis of the graphs on the
left spans 30% of the total index size.

Two of them (GMM, BayesianGMM ) represent a standard application of LMI
unsupervised training and searching algorithm for data without labels. The third
(K-Means (d.)) is constructed using unsupervised clustering combined with stan-
dard distance-based searching. The final one (K-Means (LR)) involves a training
approach that combines unsupervised clustering and supervised learning using
logistic regression. Figure 4 displays the achieved recall using two measures –
the percentage of the structure searched and the time needed to evaluate one
query. We compare the results of unsupervised LMI with two benchmarks: the
best-performing M-index3 and the supervised LMI4 from our previous work [2].5

3 The configurations of M-index selected as baselines for our three data-sets [2]: M-
index CoPhIR 200, M-index Profiset 2000 and M-index MoCap 2000.

4 Best LMI setups in [2]: Multi-label trained on CoPhIR (M-index 200), Logistic Reg.
trained on Profiset (M-tree 2000) and Neural net. trained on MoCap (M-index 2000).

5 The best performing setup was the one achieving 90% recall in the lowest stop-
condition and in the shortest time.
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Our experiments show that in terms of navigation efficiency (i.e., recall
per number of visited objects – left column), unsupervised indexes fall behind
in the case of CoPhIR, but dominate both baselines in Profiset and MoCap.
We attribute the poor performance seen in CoPhIR to two factors: the length
of descriptors and their origin. CoPhIR’s descriptors are composed of hand-
picked features of the images, such as color histogram, whereas Profiset and
MoCap’s descriptors are extracted from machine learning models. Unsupervised
LMI exhibits a better ability to traverse the indexing structure in case of more
complex descriptors of machine-learning origins. In this type of descriptors, the
average gain in recall over the CoPhIR data-set ranges from 4.5% to 13.5% (given
the 5% stop-condition), depending on the algorithm used.

The performance difference is much more decisive when comparing time effi-
ciency. Both of the baselines fall behind the unsupervised LMI setups signifi-
cantly in all three data-sets (see the right column).6 Specifically, the K-Means
unsupervised methods reach 90% recall faster than M-index by a factor of
approximately 70 (e.g., 0.02 s vs 1.55 s on MoCap) and faster than supervised
LMI by a factor of approximately 8 (e.g., 0.02 s vs 0.123 s on Profiset).

K-Means with Logistic Regression is reaching the highest recall and
the shortest search time. The index is able to find the relevant objects very
quickly, achieving 90% recall in under 20 ms in every data-set. Distance-based
K-Means also exhibits a favourable recall-to-speed trade-off on all of the data-
sets, with performance similar to K-Means trained with the two-step approach.
This setup also outperforms both of the baselines throughout all stop-conditions
on Profiset and MoCap. Mixture models – GMM and BayesianGMM – gen-
erally show worse performance than K-Means-based indexes, and they are only
competitive within the CoPhIR data-set. In most instances, mixture models only
manage to outperform the baselines in the lower stop-conditions (≤5%). How-
ever, they stay close behind in the higher stop-conditions in the case of Profiset
and MoCap (except for BayesianGMM in Profiset).

5.4 Summary

We consider results of our experiments to be very encouraging. In the over-
whelming majority of stop-conditions, both of the K-means-based setups were
able to outperform M-index, as well as the best LMI setups from [2]. While
this is true for both of our performance metrics – recall per number of objects
searched and recall per time – the advantage of our unsupervised setups is much
more prominent when considering the time-based metric.

The performance of distance-based K-Means demonstrates that the concept
of LMI can be extended to work with distances instead of probabilities, with
no degradation in performance. Out of all the indexes, the two-step training
method achieved the most promising searching speeds and the highest recall per
percentage of the structure searched in every stop-condition.

6 For the sake of consistency of the environments across indexes, we used the Python
3.6 implementation of M-index from [2].
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The GMM-based indexes perform better than the baselines on lower stop-
conditions, but the performance gain disappears later in the search. As a result,
these indexes still might be preferred in scenarios where one is limited by the
time or the amount of the structure that can be searched, and tolerates lower
recall, possibly in exchange for more favourable building costs.

6 Conclusion

In this paper, we extend the capabilities of the Learned Metric Index – a novel,
machine-learning-based indexing paradigm introduced in [2]. We present a new
means of LMI construction that builds the index from scratch – no pre-existing
index is needed to guide the building process. Our experiments confirm that
building an unsupervised LMI is a viable approach, and clustering algorithms
within LMI create meaningful divisions of the data. In comparison to the for-
merly introduced supervised LMI, the building costs are significantly lower. By
far the most significant benefit of unsupervised LMI is the overall search per-
formance measured as recall in time – our new approach managed to beat both
benchmarks (M-index and supervised LMI) by at least one order of magnitude
in all cases. If we measured performance as recall per portion of the index struc-
ture visited (navigation), unsupervised LMI was superior to both benchmarks by
approximately 10% in two out of the three tested data-sets. On the third data-
set, the unsupervised methods fell behind when searching a larger portion of the
structures. However, even in these cases, the computation speed of the unsuper-
vised LMI outweighs the navigation deficit and reaches all accuracy thresholds
in shorter time.

The performance of unsupervised LMI shown in our experiments invites for
future research. This work has demonstrated the architecture of unsupervised
LMI in a typical domain where similarity is obtained from vectors. These vectors
are extracted directly from the objects’ raw data, which is an ideal scenario
for standard machine learning models. However, other types of complex data,
e.g., protein structures, use different concepts of similarity – this means that
their processing by LMI may not be so straightforward. In these domains, we
need to employ more specialized machine learning models, such as LSTM [9],
Transformer [32], or Word2vec [20] to produce vector data.

Furthermore, there is room for improvement in decreasing the construction
costs by exploring different libraries and environments for the building of LMI.
We also plan to inspect other machine learning models to improve LMI’s pattern
recognition potential even further. Finally, we plan to explore the topics of index
dynamicity (i.e., the ability to locate objects outside of the indexed data-set),
priority queue optimization, testing the LMI on different data-sets from different
domains, and finding suitable hardware setups for LMI operations.

Overall, we view this work as an additional proof that the adoption of
machine learning techniques in similarity searching is worth deep exploration,
and that the concept of Learned Metric Index can provide significantly better
results when it is built without a pre-existing traditional index as a template.
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Abstract. In this short paper, we outline the idea of applying the concept of a
learned index structure to approximate nearest neighbor query processing. We
discuss different data partitioning approaches and show how the task of identify-
ing the disc pages of potential hits for a given query can be solved by a predictive
machine learning model. In a preliminary experimental case study we evaluate
and discuss the general applicability of different partitioning approaches as well
as of different predictive models.

1 Introduction

Nearest neighbor (NN) search is prevalent in many applications such as image retrieval,
recommender systems, and data mining. In order to process a NN query efficiently
appropriate data structures (usually called index structures) that enable identifying the
result of a query by examining only a sub set of the entire data set are typically used.
Additional speed-up can be gained by approximate nearest neighbor (ANN) search that
trades accuracy for query time which is acceptable in many applications.

In this short paper, we examine the applicability of a new emerging paradigm, so-
called learned index structures (LIS), for ANN query processing. The idea of LIS has
been coined in [1] where the authors show that an index for 1D search keys (e.g. a B+-
tree) is essentially similar to a regression model: the index induces an ordering of the
keys and stores the data objects according to this ordering on disc pages (blocks). The
corresponding learning task is, given the keys (observations) as training data, to train
a predictive model (function) that determines the physical page address for each key.
Processing a query is then simply applying the predictive model to the query key, i.e.,
predicting the addresses of the blocks (pages) on disc where the results of the query are
located. While this approach works pretty well for primary key search, such as exact
match queries and range queries on 1D data, we present one of the first works towards
extending LIS to multi-dimensional spatial queries such as (A)NN queries.

This work aims at exploring the general applicability of LIS for multi-dimensional
indexing with a focus on ANN queries. We discuss the two basic challenges any index
structure has to solve (see also Fig. 1). First, the database needs to be partitioned in order
to store the objects in a clustered way on disc pages. We propose a new partitioning that
adapts to the real data distribution and is based on a specific k-Means clustering here,
c© Springer Nature Switzerland AG 2021
N. Reyes et al. (Eds.): SISAP 2021, LNCS 13058, pp. 95–103, 2021.
https://doi.org/10.1007/978-3-030-89657-7_8
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Fig. 1. A sketch of a spatial LIS: the data (left) is partitioned and these partitions are mapped onto
disc pages. A predictive model (classifier) learns this mapping. Given a query object q, the model
predicts the disc page containing the potential NN of q.

but any other partitioning scheme is possible, e.g. by simply taking the leaf nodes of
any hierarchical index structure. Second, the relationship between observations (values
of the data objects) and their corresponding disc page IDs are learned using a predictive
model. An ANN query can be supported by applying the learned prediction function to
the query object. Since the predictive model may be not 100% accurate, the predicted
disc page may not contain the true nearest neighbor(s) and therefore only result in an
approximation. We will discuss implications, potential extensions, etc. on this aspect
in detail. This way, a LIS could offer a good compromise between existing indexing
paradigms: it could combine

1. a data-centric partitioning which is usually done by hierarchical index structures
such as search trees that typically suffer from higher query costs due to the traversal
of the search tree,

2. a fast prediction of disc page IDs which can be generally achieved by hash functions
that often suffer from data-agnostic partitioning which may lead to a large number
of collisions (disc page overflows) and, as a consequence to higher query times.

The reminder is organized as follows. Section 2 discusses preliminaries and related
work. We sketch an LIS for multi-dimensional ANN query processing in Sect. 3. A
preliminary empirical evaluation is presented in Sects. 4, and 5 offers a summary and a
discussion of directions for future research.

2 Background

2.1 ANN Query Processing: Preliminaries and Related Work

Given a query q, an number k ∈ N and a distance measure dist, a kNN query around q
on a data set D, NNk(q), retrieves the k objects having the smallest distance to q among
all objects in D (ties need to be resolved). Without loss of generality, we set the query
parameter k = 1 and omit it in the following. Sequentially scanning all data objects
to retrieve the NNs involves loading all pages of the entire data file from disk. Since
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this is usually not acceptable performance-wise, many approaches for speeding up NN
search using indexing techniques have been explored in recent years. A further way to
achieve speed-ups is to trade performance for accuracy of the results using approximate
algorithms that may report false hits. These ANN algorithms usually implement one of
the following index paradigms:

Hierarchical indexes are typically based on balanced search trees [2–4] that recur-
sively split the data space by some heuristics until a minimum number of objects remain
in a partition. All nodes of the search tree are usually mapped to pages on disk. Search-
ing theoretically requires O(log f) random page accesses on average for f data pages
but the performance typically degrade with increasing data complexity.

Hashing such as locality sensitive hashing (LSH) and variants [5–8] applies one or
more hash functions to map data objects into buckets (and store these buckets as pages
on disc). If the number of objects in a bucket exceeds the maximum capacity of a page
(e.g. due to an unbalanced partitioning), the objects are stored in any order on so-called
“overflow pages” increasing the number of page accesses necessary to answer a given
query. However, in the best case, query processing requires O(1) page accesses.

Vector quantization and compression techniques (e.g. [9–11]) aim at reducing the
data set size by encoding the data as a compact approximated representation such that
(approximate) similarity among data objects is preserved.

A significant comparison of the different methods under varying realistic condi-
tions is a generally challenging task. Thus, a benchmarking tool for ANN algorithms
have been proposed in [12]. However, we do not aim for benchmarking LIS with other
approaches here but rather explore the general applicability of LIS to ANN queries.

2.2 Learned Index Structures

The term LIS has been introduced by [1] where the authors show how to represent an
index structures as a learning task. This pioneering work proposes a LIS for indexing
1D keys and supporting exact match and range queries. In recent years, the term LIS
has been also used for methods that utilize machine learning techniques to support any
aspect of query processing, e.g. [13] where kNN distance approximations are learned in
order to support reverse NN queries, or [14] where the authors propose a new approach
to generate permutations for permutation based indexing using deep neural networks.
The most similar approach to ours can be found in [15] and [16] where the authors
propose a learned metric index for ANN search. In contrast to our work they learn a
whole tree of prediction models to index a metric space.

2.3 Contributions

LIS may offer the best of two worlds in spatial query processing, i.e., a data-centric,
collision-free partitioning of the database and a search method that returns a result in
constant time w.r.t. page accesses even in the worst-case. In this short paper, we explore
the applicability of LIS to ANN query processing. In particular, we propose a general
schema of a LIS for ANN query processing and implement this schema with existing
techniques, e.g. k-means clustering for data partitioning. We present some first results
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on the performance of various predictive models from machine learning and derive
implications for future work.

3 Towards a Learned Index for ANN Search

The data set D is stored on disk in blocks (pages) of a fixed capacity c. Thus, depending
on c, D is distributed over a set P of p pages on disk. Processing an object o ∈ D in
RAM requires to load the entire page Po ∈ P on which o is stored.

The key to any search index is that the data objects are not randomly distributed
over P . Rather, objects that are similar to each other w.r.t. the distance dist should
be placed on the same page. There are many possible solutions for producing such a
clustered partitioning, e.g. using the buckets of LSH, the leaf nodes of a search tree or
use an unsupervised learning method. Here, we experimented with k-means clustering,
which aims at partitioning the data into k disjoint clusters maximizing the compactness
of these partitions. The idea is, to use k-means in such a way, that the number of points
assigned to each cluster is constrained by a minimum capacity (for efficient storage
usage) cmin and a maximum capacity Cmax in order to map each cluster to one data
page (Cmax usually depends on c from above). Extensions such as Constraint k-means
[17] are able to cope with these issues but are computationally very complex. Instead,
in our study, we propose to just use traditional k-means clustering. The points assigned
to a cluster Ci(1 ≤ i ≤ k) are mapped to page Pi ∈ P .

For query processing, we need to predict the page P ∈ P , the query object q would
have been placed on. This page likely contains the NN of q (depending on the partition-
ing, etc.). This prediction could be done by any machine learning model that can learn
the mapping of an object to the corresponding disk page. Analogously to hashing, such
a predictive model is a function

M : F → P
from the feature space F of the data into the set of data pages that depends on
some model-specific parameters θM . In general, we can learn (train) the correspond-
ing parameters θM from D (and the corresponding partitioning C1, ..., Ck). Given a
query object q ∈ F and a predictive model M trained on D, we can predict the disk
page P = M(q) by applying M on q. The page P can be loaded into main memory and
the NN of q among all objects stored on P can be determined and returned as (approxi-
mate) result. Since our data partitioning does not produce overflow pages, we only need
to access one page, i.e., P = M(q). Thus, the time complexity is guaranteed to be in
O(1) in any cases (we can usually even assume that the model M fits into main mem-
ory). The accuracy of this procedure obviously depends on various aspects such as the
accuracy of the prediction, the data partitioning, etc., some will be examined in Sect. 4.
However, we consider the optimization of such aspects as an open challenge for future
research, e.g. by aggregating more information from the partitions such as centrality
measures, distance bounds, etc.
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Fig. 2. Random 2D projections of sample clustered (left) and non-clustered (right) data.

4 Evaluation

4.1 Set-Up

In order to get a first impression of the proposed LIS for ANN query processing, we
used synthetic data sets generated by the make blobs function from sklearn1. In all
experiments, we generated five different random datasets and report average results.
We conducted two general runs w.r.t. the data distributions: clustered and non-clustered
data. Figure 2 depicts arbitrary 2D projections of two sample data sets from both runs.
We used 20-dimensional synthetic datasets consisting of 5000, 10000, 30000 and 50000
samples. The clustered datasets had 20 clusters with a cluster standart deviation of 0.5
and the non-clustered datasets have only a single Gaussian blob with a standard devia-
tion of 1.0. Additionally, we used a low dimensional embedding of the popular MNIST
data set generated by a fully connected Autoencoder (AE). Since this paper is a prelim-
inary study of the general applicability of LIS to ANN search we did not yet compare
to other ANN methods.

We used two different accuracy scores for evaluation. First, to explore the potential
of the different predictive models to learn the mapping of objects to pages, we employed
a classical train-validation split (called validation accuracy). Second, to measure the
approximation accuracy of the query (called test accuracy), we used a withheld third
sub-set of the data (not used in partitioning or training of the predictive model) as query
objects, compared the results of these queries with the correct NN computed by a brute
force search. The accuracy is determined by the ratio of the amount of zero distance
hits and the amount of query objects. Additionally, we report the mean relative error for
ANN search in our repository2).

For the partitioning step, we used the k-means implementation from sklearn. For
comparison, we used the leaf nodes of a kd-tree (also from sklearn) as an alternative
data partitioning. As predictive models, we used diverse classifiers from sklearn, includ-
ing: Naı̈ve Bayes, Decision Tree and Random Forest, Support Vector Machine (SVM)
with a linear and an rbf kernel, and a simple dense multi-layer perceptron (MLP). For
these preliminary experiments we did not perform hyper-parameter tuning but used
reasonable default parameters. As a “Base Model‘’, we assign each query object to its

1 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make blobs.html.
2 https://github.com/huenemoerder/kmean-lis.git.

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
https://github.com/huenemoerder/kmean-lis.git
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Fig. 3. Test accuracy (left charts) and validation accuracy (right charts) on clustered data sets
(upper charts: k-means partitioning; lower charts: kdtree partitioning).

closest centroid of the corresponding partition (validation accuracy of 1.0 by design).
The ’‘size‘’ of this model grows linearly with the number of partitions, i.e., database
size, and is expected to not fit into the cache (requiring additional page accesses on
application). The AE for the MNIST data set was implemented in pytorch3 with only
one single linear layer that maps the flattened images (784 dimensional array) to a latent
space vector of 32 dimensions (usin Leaky ReLU as activation).

4.2 Results

We analysed the relationship between the test accuracy and the number of samples and
number of partitions, i.e., data pages. In all runs, we kept the capacity of pages fixed but
changed the number of data points n accordingly. Figure 3 displays this relationship on
clustered data sets. In general, we can see that both the test accuracy and the validation
accuracy drops with increasing number of partitions. This is somehow intuitive: with
increasing number of partitions (and data points), the mapping that has to be learned
by the predictive model becomes more and more complex. It is interesting to note that
for most models the validation error (right charts) remains better than the test accuracy
(left charts), i.e. even though, the mapping is learned well, the true NNs for the query
objects are approximated not quite as well. In these cases, the partitioning model seems
to not optimally fit the real data distribution and therefore even with a perfect predictive
model some queries can be placed in an unsuitable data page. This is also reflected in

3 https://pytorch.org/.

https://pytorch.org/
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the fact that the kd-tree partitioning performs even worse in terms of test accuracy, since
the clustered dataset was created in a way that favours k-means. We can also observe
that the Decision Tree classifier shows perfect validation accuracy for the kd-tree parti-
tioning, while showing the worst performance for k-means. This suggests that choosing
a fitting pair of prediction and partitioning algorithm is vital to at least result in a high
validation accuracy. These observations are further confirmed by the non-clustered data
sets (the results can be found in our repository4). Additionally, this is further reflected
in our results on MNIST in Table 1, where the test accuracies for the kdtree paritioning
are significantly worse than the ones for k-means. Generally further experiments and
benchmarking are obviously necessary to obtain more significant results.

Table 1. Results on MNIST data set (kmenas partitioning)

k-means KDTree

Classifier Validation accuracy Test accuracy Validation accuracy Test accuracy

Base Model 1.000 0.8808 0.5407 0.4974

Naı̈ve Bayes 0.9140 0.8479 0.6140 0.5409

Decision Tree 0.8560 0.8121 0.9997 0.6160

Random Forest 0.7315 0.7089 0.4610 0.4066

Linear SVM 0.9973 0.8800 0.9630 0.6165

RBF SVM 0.9845 0.8810 0.8588 0.6388

MLP 0.9455 0.8736 0.8678 0.5994

5 Summary

In this short paper, we applied the idea of LIS to ANN query processing and examined
its general applicability to this problem. We explored a new data partitioning based on
k-means clustering and applied the standard predictive models from machine learning
in a simple set up. The results are generally promising for synthetic (clustered/non-
clustered) and real data such that we think it is worth putting more future focus on
LIS. For example, exploring new ways for data partitioning including a more thorough
evaluation of different existing partitioning schemes could be interesting. Also, under-
standing the relationship between data characteristics, properties of the partitioning,
and the accuracy of different predictive models could be a promising research direction
that may lead to approaches that better integrate partitioning and learning. Additionally,
exploring postprocessing methods to increase accuracy, e.g. use additional information
from training as well as from the partitioning like distance bounds would be helpful.
Last not least, the application of LIS to other types of similarity queries is still an open
research question.

4 https://github.com/huenemoerder/kmean-lis.git.

https://github.com/huenemoerder/kmean-lis.git
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Abstract. Similarity queries play the crucial role in content-based
retrieval. The similarity function itself is regarded as the function of
relevance between a query object and objects from database; the most
similar objects are understood as the most relevant. However, such an
automatic adoption of similarity as relevance leads to limited applicabil-
ity of similarity search in domains like entity discovery, where relevant
objects are not supposed to be similar in the traditional meaning. In this
paper, we propose the meta-model of data-transitive similarity operating
on top of a particular similarity model and a database. This meta-model
enables to treat directly non-similar objects x, y as similar if there exists
a chain of objects x, i1, ..., in, y having the neighboring members similar
enough. Hence, this approach places the similarity in the role of rele-
vance, where objects do not need to be directly similar but still remain
relevant to each other (transitively similar). The data-transitive similar-
ity concept allows to use standard similarity-search methods (queries,
joins, rankings, analytics) in more complex tasks, like the entity discov-
ery, where relevant results are often complementary or orthogonal to the
query, rather than directly similar. Moreover, we show the data-transitive
similarity is inherently self-explainable and non-metric. We discuss the
approach in the domain of open dataset discovery.

1 Introduction

When searching data, we can choose from a multitude of available models and
paradigms. Some models assume exact data structure and semantics, such as the
relational database model (and SQL) or graph database model (RDF+SPARQL,
XML+XQuery). In such models, the relevance of a data entity to a particular
query is binary (relevant/not relevant); specified by a binary predicate. The
precision and recall in retrieval of structured data is always 100% as there is
no uncertainty expected. Also, structured query languages offer high expressive
power that allows the user to specify the relevance of data in many ways.
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On the other side of the data universe, when searching in unstructured or
loosely structured data (like multimedia, text, time series), we do not have
enough a-priori information on how to model the data features for exact search.
In such situation the similarity search models could be used, representing a
universal way of content-based retrieval in unstructured data. Instead of formu-
lating a structured query aiming at binary relevance, in similarity search we use
a ranking of the database objects determined by their similarity score to a query
example (the query-by-example paradigm). Hence, the relevance is relaxed from
binary to multiple-value. When compared to retrieval of structured data, the
similarity search is more like an “emergency solution” for unstructured data.
The expressive power of similarity queries is limited to a ranking induced by
numeric aggregation of differences between the query example and the database
objects; keeping it a black-box search for the user. The low expressive power
of the query-by-example paradigm leads to a paradox – we search for what we
already have. Specifically, we query for as good results as possible, having the
best result already at hand – the query example. Of course, in practical applica-
tions the query-by-example paradigm makes sense, because the query example
itself does not contain the whole information we search for. For instance, search-
ing by the photo of Eiffel tower we not only get another Eiffel tower image,
but also some context (the Wikipedia web page the result image was embedded
in). Nevertheless, the context (external information attached to data) does not
remove the essence of the paradox – based purely on the similarity of results,
the query example itself is always the best result1.

Historically, the low expressive power of similarity search has been accepted
in the major application area – the multimedia retrieval. Here the semantics
to be captured in multimedia objects (the descriptors) is rather vague, general
and bound to human common knowledge. The similarity search is thus a perfect
method for multimedia retrieval as the similarity concept itself is vague and gen-
eral (and so is the human cognition – the inspiration for similarity search). When
combined with descriptor models employing high-level “canonized” semantics,
such as the bag of words using the vocabulary of deep features [11], then even
the cosine similarity can perform well. Unfortunately, the domain experts are
not always so lucky to work with nicely shaped semantic descriptors, while then
the low expressive power of similarity search is fully revealed. A solution to this
could be a proposal of similarity-aware relevance of data objects to an example
object (query) that enables much more complex aggregation than just evaluat-
ing the direct similarity (the “exampleness” of the results). If we find a way of
how to extend the concept of similarity into a relevance, we would be able to
use the existing similarity search methods in more expressive retrieval scenarios.
For example, consider a fashion e-shop where a user searches for a product by
an example image, e.g., shoes. The result could not only consist of similar shoes,
but it could also return related accessories (handbag, belt) sharing some design
features with the shoes [14].

1 Let’s omit another problem; where to acquire such a “holy grail” example in real-
world problems.
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In the following, we continue the discussion in the specific domain of open
datasets discovery. Unlike in multimedia retrieval, where direct audiovisual sim-
ilarity to a query usually leads to good results, in open datasets with sparse
descriptors we often do not find anything directly (non-trivially) similar. Here the
similarity extended towards more general relevance could improve the retrieval
effectiveness in a fundamental way.

1.1 Discovery of Open Datasets by Similarity

The similarity search models can utilize not only content features but also
metadata (if available). The focus on metadata can be efficient and effective
in domains where the content of the objects is too heterogeneous so that it is
hard to extract features for measuring similarity (or relevance). On the other
hand, such objects could be catalogued by a community to enable search of the
objects by metadata.

This is the case of the domain of open datasets search and discovery [12].
There are various datasets published on the internet which are catalogued in open
data catalogs [18]. They are extremely heterogeneous in structure and semantics
so that modeling them by content is nearly impossible (consider tables and
spreadsheets without schema, full-text reports, database dumps, geographical
and map data, logs, etc.). Open data catalogs provide descriptive metadata about
the datasets in a single place where potential consumers can search for datasets.
However, the problem of metadata is that they are often sparse and poor. In the
open data domain, dataset publishers usually limit their descriptive metadata
to briefly describe the core semantics of their datasets (by title, keywords, text
description). No broader context of a dataset including some description of its
relationships to other datasets is specified in the metadata. Using such sparse
metadata for similarity retrieval is therefore limited. We confirmed this in our
previous work [26] where we showed that various similarity methods do not
perform very well when applied to the descriptive metadata of open datasets.

In our experiments, we noticed situations where two datasets are relevant to
each other but none of the similarity models is able to identify this relevance.
Let us demonstrate this on a concrete example of open data published by public
authorities in Czechia. The datasets are catalogued in the National Open Data
Catalog (NODC)2. There are two datasets entitled IDOL Integrated Transport
System Tariff Zones and Traffic intensity on sections of motorways. The sim-
ilarity of both datasets based on their metadata descriptions is low according
to various similarity models presented in [26]. However, when we reviewed the
datasets manually we found out that they are very relevant to each other. The
first one is related to public transport. The second one is related to transport on
motorways. So when users find one of the datasets, they would like to get also
the other dataset as well. What makes them relevant to each other is the back-
ground semantics which is not directly expressed in the descriptive metadata.
Since it is not expressed in the metadata, no similarity model can work with

2 https://data.gov.cz/english/.

https://data.gov.cz/english/
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this. However, there is a third dataset in NODC titled BKOM transport year-
book. The similarity models identify its similarity with the original two datasets
on the base of available metadata. So using the third dataset we could say that
the two original datasets are relevant to each other because they are both similar
to the third one. In other words, they are transitively similar when using other
datasets as a context. What is also interesting in the example is that metadata
about the third dataset express explicitly the concept of transport. So, the third
dataset is not just an intermediary dataset between the two. It explains why they
are relevant, contributing thus to the discussion on explainability of similarity
search.

2 Related Work

Before presenting the meta-model of data-transitive similarity, we discuss several
related points.

2.1 Similarity Modeling

The research in the similarity search area had intensified some three decades
ago by setting the metric space model as the golden standard [25]. The met-
ric distances in place of (dis)similarity functions were introduced purely for
database indexing reasons (i.e., for fast search). Though a good trade-off for
many problems, the metric space model remains quite restrictive for modeling
similarity. The restrictions are even more strict in follow-up models aiming at
improving search efficiency, such as the ptolemaic [15] or supermetric [9] mod-
els. As mentioned in the previous section, this might not be a problem in case
the descriptors are canonized and semantic (such as histograms referring to a
vocabulary of deep features). However, for the lower-semantic cases there were
alternative approaches to indexing similarity proposed in the past 15 years, rang-
ing from dynamic combinations of multiple metrics [5] for multi-modal retrieval
to completely unrestricted, non-metric approaches [23]. The rationale for their
introduction was to increase the expressive power of similarity search (and effec-
tiveness) and still provide an acceptable retrieval efficiency.

2.2 Retrieval Mechanisms

No matter if we choose metric or non-metric similarity, the expressive power of
retrieval is also affected by the retrieval mechanism used. The query-by-example
paradigm constitutes the basic functionality of similarity search in form of kNN
or range queries. The similarity joins enable the use of similarity within the
database JOIN operators [22]. The similarity queries could be also used with
additional post-processing techniques for multi-modal retrieval and analytics,
such as the late fusion [21] and content-based recommender systems [1]. Last but
not least, there appear proposals and frameworks helping with the integration
of similarity search constructs into query languages, such as SimilarQL [24],
or MSQL [19]. The ultimate goal is to establish higher-level declarative query
models for similarity search [3].
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2.3 Dataset Discovery

Finding related datasets, also known as dataset discovery, is one of the important
tasks in data integration [20]. Large companies such as Google have developed
their own dataset search techniques and solutions [4]. New solutions for dataset
search in specific domains started to appear recently. For example, Datamed [8]
is an open source discovery index for finding biomedical datasets. The existing
works emphasize the role of quality metadata for dataset findability while [6]
points out that available metadata does not always describe what is actually in
a dataset and whether a described dataset fits for a given task. Other studies
[12,13,16] confirm that dataset discovery is highly contextual depending on the
current user’s task. The studies show that this contextual dependency must be
reflected by the dataset search engines. This makes the task of dataset discov-
ery harder as it may not be sufficient to search for datasets only by classical
keyword-based search. More sophisticated approaches being able to search for
similar or related datasets could be helpful in these scenarios. As shown by [6,20]
many existing dataset discovery solutions are based on simple keyword search.
Discovery of datasets by similarity is discussed in the recent survey [6]. Several
papers propose dataset retrieval techniques based on metadata similarity. In [2]
a method is described which enables to measure similarity between datasets on
the base of papers citing the datasets and a citation network between datasets.
In [10] four different metadata-based models are evaluated for searching spatially
related datasets, i.e., datasets which are related because of the same or similar
spatial area covered. To the best of our knowledge, none of the approaches does
apply the following technique of data-transitive similarity in dataset discovery.

3 Data-Transitive Similarity

In this section, we introduce the meta-model of data-transitive similarity. The
original inspiration was the omnipresent database operation JOIN, used in many
data management use cases for interconnecting relevant pieces of information.
In relational databases the join operations allow to connect data records by
means of shared attribute(s). In an extensive interpretation, the mechanism in
database joins has roots in an identification of relevant entities by partial matches
(equality predicate) or by partial similarity (inequality predicate). Analogously,
by introducing data-transitive similarity we aim at consecutively joining similar
objects and evaluating the overall relevance as an aggregation over the partial
similarity scores.

The basic assumption of data-transitive similarity is thus a chain of objects
from the database that are similar to each other, but the beginning and end
of the chain could be quite dissimilar (yet relevant). Remember the well-known
example with the human and the horse, illustrating the violation of the triangle
inequality [23]. These two creatures tend to be quite dissimilar, yet they can be
relevant (transitively similar). The relevance here can be ensured by a connecting
object in the middle of the chain – a horseman, or more poetically a centaur,
creature that is half man and half horse. The data-transitive similarity itself,
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however, can be more complex; the connecting agent may not be a single object,
but a whole chain of objects. This chain also serves as an explanation of why
the two objects are relevant and in what context (addressing the explainability
issue).

The connection itself can be formalized as an aggregation of several consecu-
tive ground distances. The Eq. 1 defines general form of data-transitive distance
function d̂, where D is a set of objects (the database in practical applications), d
is a ground distance (the direct similarity), n is the length of the chain. Operator⊙

is an outer aggregation over all permutations of length n over elements of
database D (e.g., min, max, avg). Operator

⊎
is an inner aggregation over the

individual direct distances within a particular chain. Table 1 shows examples of
various inner aggregation functions. They are also the aggregation functions we
worked with in our preliminary experiments. A more complex alternative may
be a combination of several kinds of aggregations or distances.

d̂�,n
� (x,y) =

⊙

(i1,...,in)∈Dn

⊎
(d (x, i1) , d (i1, i2) , . . . , d (in,y)) (1)

Table 1. Examples of inner aggregation
⊎

.

sum(δ0, δ1, . . . , δn) =
∑n

j=0 δj

min(δ0, δ1, . . . , δn) = min {δ0, δ1, . . . , δn}
max(δ0, δ1, . . . , δn) = max {δ0, δ1, . . . , δn}
prod(δ0, δ1, . . . , δn) =

∏n
j=0 δj

iprod(δ0, δ1, . . . , δn) = 1 − ∏n
j=0 (1 − δj)

To summarize, we define the data-transitive similarity d̂ as a meta-model
operating on top of a ground similarity model d and a particular database D.
The computation of a single data-transitive distance involves a series of similarity
queries over the database. The computational complexity of the data-transitive
similarity thus involves not just the complexity of d but also the size of the
database |D|. Depending on the implementation, the worst-case time complexity
O(d̂) can vary from O(d) to O(d)O(|D|n), assuming n as a constant or n � |D|.

From the definitions above it immediately follows that data-transitive dis-
tances are not metric distances – not only due to the possibly non-linear com-
bination of the particular ground distances, but mainly due to the database-
dependent nature of the distance topology (non-uniform distribution of points
in the data universe and its impact on the chain members).

One might say that such advanced relevance constructions should not be
modeled at the level of similarity, as they are part of higher retrieval models closer
to the application level (e.g., a part of content-based recommender system).
However, we want to stress that we intentionally included the data-transitive
similarity into the family of generic pair-wise non-metric similarities. As such, it
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can be plugged into any search engine that supports non-metric similarities. This
would not be possible if designed as a proprietary late-fusion retrieval model.

3.1 Implementation

The fundamental problem we have addressed in the data-transitive similarity
design was determining the number of intermediaries (the chain length n) to form
a transitive similarity. Although our model assumes an arbitrary n, determining
the specific value is not a straightforward problem itself. A significant issue may
be that for some objects, there is no intermediary to form transitive similarity.
In general, the number of intermediaries may not be constant, and for different
objects this value needs to be chosen dynamically.

Thus, for our experiment, we have applied a simplification in this regard and
assume that data-transitive similarity has at most one intermediary (i.e., n = 1).
Therefore, we always have a triplet: a query, an intermediary, and a result. This
decision reduces the number of hyperparameters with respect to longer chains
(e.g., number of intermediaries, different aggregation functions). This approach
also has the advantage of a higher level of explainability. For longer chains of
intermediaries, we need to discuss whether each part of the sequence makes sense
for given transitivity. Whereas in the case of a single intermediary, we can argue
with a reasonable certainty whether the query and result are relevant from the
perspective of the intermediary explanation.

The second problem is the transitivity involving duplicates or near-duplicates
in the chain – intermediaries very d-close to the query or to the result. Such
duplicate intermediaries usually do not add any value. Therefore, small distances
d (the first 5% of distance distribution) are not considered (in fact, all such
distances are set to infinity to become disqualified in d̂).

Third, all ground distances are required to be normalized to 0–1 because
some aggregations (

⊎
= prod,

⊎
= iprod) require a bounded distance. In our

implementation, we do not implement any optimizations, while to compute the
data-transitive similarity we need to iterate over all database objects in the role
of an intermediary. At the moment, optimizations for reduction of the set of
intermediaries are beyond the subject of our research.

3.2 Open Dataset Testbed

For the open dataset testbed presented in Sect. 1.1, we considered title,
description, and keywords metadata. Since the original data provided by the
National Open Data Catalog are in the Czech language, we used the auto-
matic English translation [17], followed by the words lemmatization and filtering
non-meaningful words (we consider only nouns, adjectives, verbs, and adverbs).
In addition, we ignored several experimentally detected stop-words (data, dial,
export, etc.). The metadata descriptors were represented in the bag of words
model (BoW) with tf-idf weights.
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Over these descriptors, the ground cosine distance was computed as
dcos(x,y) = 1− scos(x,y) (where scos is cosine similarity) for all pairs of objects
(all pairs of datasets in our case). Figure 1 shows the distribution of distances
dcos over this testbed. We can see that most of the datasets are not dcos-similar,
and the testbed exhibits high intrinsic dimensionality [7]. This is due to the rela-
tively sparse metadata (average about 20 words). For some datasets, some parts,
such as description or keywords are empty; there is only the title description.

Fig. 1. Distance distribution of dcos and d̂min
max transitive similarity

In our experiment, we took only one intermediary, while d̂min
max (Formula 2)

was chosen as the data-transitive similarity function, since it exhibited the most
robust aggregation in our preliminary experiments. Figure 1 shows how the dis-
tribution of d̂min

max-distances is different when compared to dcos. Smaller distances
(below approx. 0.6) are eliminated due to the removal of near-duplicate dataset
pairs (set to 5% closest datasets), as mentioned in the previous subsection. The
rest of the d̂min

max-distance domain is split into two categories representing rel-
evance (more relevant around 0.7, less relevant around 0.9), with many dcos-
dissimilar datasets moving into the category of more d̂min

max-relevant datasets.

d̂min
max(x,y) = min

∀i∈D
max {d(x, i), d(i,y)} (2)

4 Evaluation

As we have already discussed in [26], the findability evaluation in the open
dataset discovery is complicated from several points of view. The database con-
tains a relatively large number of datasets, but there is no sufficient ground



112 T. Skopal et al.

truth for dataset similarity. To overcome the lack of ground truth, in this paper
we evaluate the concept of relevance which is closer to dataset discovery, rather
than direct context-independent similarity of datasets.

4.1 Methodology

Our evaluation targets the additional value of data-transitive similarity search
over the standard (direct dcos) similarity search. First, the search for similar
datasets using standard dcos-similarity search is performed. Let us represent this
search as a kd NN query, where kd is the number of results. Then, there are kt
results displayed to the user using data-transitive similarity based kt NN query,
while filtering out results of the previous kd NN query. For our experiment, we
assume kd = 100 and kt = 20.

The user (evaluator) is given a list of triplets (query, intermediary, result) and
then evaluates each such triplet as relevant or non-relevant. A triplet is relevant
if the user finds a possible use case for the query dataset and the result dataset
and, at the same time, the intermediary dataset reasonably connects the two
datasets. Let us repeat that the user is only confronted with results that were
not findable by standard (direct) similarity search. A total of 5 users (evaluators)
participated in the evaluation.

During the evaluation, we encountered the problem that some pairs of
datasets are only relevant if we ignore specific fine-grained attributes of the
datasets. The first observed attribute is the information about the publisher,
e.g., contracts of the Ministry of Finance and invoices of the Ministry of Finance.
The second attribute is the time or date of repeatedly published datasets, e.g.,
the list of companies for the year 2020. The third attribute is the localization
specified in the datasets, e.g., hospitals in Prague vs. hospitals in Brno. For the
evaluation, we decided to ignore these attributes as they only contribute to frag-
mentation of the datasets that are otherwise relevant to each other. However,
this problem might disappear if we consider more than just one intermediary in
the data-transitivity model (subject of future evaluations).

As part of the experiment, we evaluated the relevance of the results for a set of
prepared queries. This set was created based on previous experiments presented
in [26]. A total of 64 transitive results were found for 11 different queries.

4.2 Results

During the evaluation, we looked at two main criteria: consistency and effective-
ness. For every triplet, we have computed its score as sum of 0 (non-relevant)
and 1 (relevant) ratings of all evaluators. In our case, the score ranges from 0 (all
evaluators claim the triplet is non-relevant) to 5 (all evaluators claim the triplet
is relevant). Figure 2 (left) shows the number of triplets with particular score,
Fig. 2 (right) shows the number of triplets per data-transitive distance ranges
and distribution of scores inside these ranges.

The consistency is validated based on the evaluators’ agreement on the rel-
evance of the evaluated triplets. Figure 2 (left) shows that in almost 78.13% of
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the cases, majority of evaluators (scores 0–1 and 4–5) agreed on the triplets’
relevances. This observation confirms that the overall evaluation results are not
just random noise.

Effectiveness is measured as the ratio of relevant datasets to all returned
results. This gives us a measure of how much data-transitive similarity can
improve the standard search. At Fig. 2 (left), we see that in 57.81% of the cases,
the triplet was marked as relevant by a majority of evaluators (score 4–5).

Although the overall effectiveness may not seem significant, we must stress
that all the relevant results found were not achievable by the direct similar-
ity search (as already mentioned in Sect. 4.1). For 65.63% of the datasets, dcos
distances to query are maximal. We can also notice in Fig. 2 (right) that the
data-transitive similarity model complies with the general thesis of similarity
search (more distant datasets are less relevant and vice versa).

Fig. 2. The left figure shows the distribution of triplet ratings (how many triplets
were rated by a particular relevancy score). For example, the score = 3 means that 3
evaluators thought the triplet was relevant (they rated it 1) and 2 evaluators thought
the triplet was not relevant (they rated it 0). The right figure shows the distribution
of ratings according to each data-transitive distance interval.

4.3 Qualitative Analysis

In Table 2 we see an example of triplet (Q, I,R) that was evaluated as relevant
in our experiment (small data-transitive distance d̂min

max(Q,R) through I). If we
analyze the distance structure, the query dataset (Q) “Floods in the 19th cen-
tury” does not have the “water” keyword in the metadata. However, thanks to
the intermediary “5-year water” dataset (I), we have both “water” and “flood”
in metadata and so the query dataset is transitively similar to the result dataset
(R) “Water reservoirs”. In the original similarity (the direct ground distance
dcos), the query Q and the result R datasets have maximum distance; they have
nothing in common. In the data-transitive similarity search, however, the dataset
R is within the first 20 results thanks to the connection with I. The relevance
here can be explained by the fact that reservoirs can affect flooding and so the
dataset R might be useful in flood prevention planning.
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Table 2. Example of Query, Intermediary, Result triplet: floods vs water. Title, key-
words and description metadata are provided for each dataset.

Title

Keywords Description

Floods in the 19th century

Q Floods, Environment,
GIS

Flooded areas in a 19th century flood in the Pilsen region

5-year water

I GIS, Floods,
Environment

Flooding areas of n-year water in the Pilsen region

Water reservoirs under the management of the river basin and the forest of
the Czech Republic under the territorial jurisdiction of the river Vltava

R water tanks, water
management

The shp file contains points representing water reservoirs
whose permitted volume of buoyant or accumulated water
exceeds 1 000 000 m3 or to which the Forests of the
Czech Republic, p. The registers are updated
continuously, the dataset only once a year. The current
data can be viewed on the water information portal
VODA – www.voda.gov.cz

The second example (Table 3) shows the imbalance of some descriptions,
where the query dataset “Housing Young 2017” description has 3 paragraphs
of text and the result dataset “BUG3 - Economy and Labour Market” descrip-
tion has only one sentence. Although these datasets share some keywords, the

Table 3. Example of Query, Intermediary, Result triplet: housing vs labour. Title,
keywords and description metadata are provided for each dataset.

Title

Keywords Description

Housing Young 2017

Q sociology, housing
research, housing young,
housing, Brno

The main objective of the Youth Housing survey
conducted in 2017 was to identify and describe the
housing needs of young people living in Brno, as well as
their preferences in this area. . . . 3 paragraphs of text here
. . .

BUG - people and housing

I Brno urban Grid,
housing, people, BUG

Datasets from the Brno Urban Grid - theme people and
housing

BUG - Economy and Labour Market

R BUG, labour market,
economy, Brno Urban
Grid

Datasets from the Brno Urban Grid application - theme
of economy and labour market

3 BUG = Brno Urban Grid.

www.voda.gov.cz
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resulting position in ranking is too far when using the direct distance dcos, so
that the user cannot find the dataset. With the data-transitive similarity using
the intermediary “BUG - people and housing” dataset the problem is mitigated.
In this case, we are able to explain the relevance between the housing of young
people and the state of the labour market.

5 Conclusion and Future Work

We proposed an extended concept of similarity search by introducing the meta-
model of data-transitive similarity operating on top of a particular similarity
model. In the evaluation focused on the open data domain, we have demon-
strated that the user is able to find relevant datasets that were not findable
using standard (direct) similarity search. Moreover, as the data-transitive simi-
larity is a variant of pair-wise non-metric similarity, it can be plugged into any
search engine that supports non-metric similarities. It also confirms the necessity
of non-metric approaches in complex retrieval tasks, such as the entity discovery.

In the future we plan to investigate more general chains of intermediaries,
as well as internal indexing techniques for the data-transitive similarity compu-
tation itself. We also plan to experiment with other domains that require more
complex explainable similarity approaches.
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Abstract. Semi-supervised classification methods are specialized to use
a very limited amount of labelled data for training and ultimately for
assigning labels to the vast majority of unlabelled data. Label propaga-
tion is such a technique that assigns labels to those parts of unlabelled
data that are in some sense close to labelled examples and then uses
these predicted labels in turn to predict labels of more remote data.
Here we propose to not propagate an immediate label decision to neigh-
bors but to propagate the label probability distribution. This way we
keep more information and take into account the remaining uncertainty
of the classifier. We employ a Bayesian schema that is simpler and more
straightforward than existing methods. As a consequence we avoid to
propagate errors by decisions taken too early. A crisp decision can be
derived from the propagated label distributions at will. We implement
and test this strategy with a probabilistic k-nearest neighbor classifier,
proving competitive with several state-of-the-art competitors in quality
and more efficient in terms of computational resources.

Keywords: Semi-supervised classification · k-Nearest neighbor
classification · Transductive learning · Label propagation

1 Introduction

While easily collectable unlabelled data become more abundant, and labelled
data continue to be a scarce resource, semi-supervised learning remains rele-
vant. Semi-supervised learning falls between supervised learning (learning from
labelled data) and unsupervised learning (learning from unlabelled data) [5]. It
is used for improving unsupervised learning by taking advantage of information
traditionally used in supervised learning and for improving the performance of
supervised learning methods by using unlabelled instances.
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In semi-supervised classification we have to distinguish between assigning
labels to unlabelled data during training and the application of the resulting
semi-supervised classifier to new unseen data during testing, where the classi-
fier is built on the complete training data consisting of labelled and unlabelled
instances. The labelling of unlabelled training instances is known as ‘transduc-
tion’ [20,21] or as ‘label propagation’ since it is often done by propagating labels
from the labelled training instances to the unlabelled training instances. After
label propagation, all training data can be used for inducing labels of new unseen
query instances as it is conventionally done in supervised learning. This is there-
fore also known as ‘induction’. Applying a learner for transduction therefore
yields a training set with then all instances labelled that could be used by any
other classifier for induction, i.e., conventional classification [27]. The classi-
fication model used for induction could therefore be different from the semi-
supervised classifier used for transduction, but it could also be the same method
that is used beyond transduction on the training data also for induction on
new, unseen data. Besides describing different phases, tasks, or scenarios in the
context of semi-supervised learning, the exact relationship between ‘transduc-
tion’, ‘induction’, and ‘semi-supervised learning’ remains debatable [4]. In this
paper we evaluate methods in a transductive setting as it is common practice
[8,9,12,23–26].

We argue that it might be important to account for uncertainties during
transduction and to keep information on uncertain decisions possibly also beyond
the transduction phase, if induction is treated separately and the classification
algorithm employed for induction can make use of uncertain label information
or label probability distributions. For a simple illustration, consider the one-
dimensional distribution of classes in one attribute (sepal length) of the well-
known Iris data, plotted in Fig. 1. Some classification model might be based
on the estimated probability density distribution and decide for the maximum
likelihood class at any given point in the data space. Considering the example of
the figure, if we have a sepal length, say, between 5 and 6 cm, we can decide on
a clear decision boundary but a high probability would remain to have chosen
the wrong class. If just the resulting label is propagated and used for ensuing
decisions, these later decisions are necessarily oblivious of a possibly considerable
level of uncertainty that actually affects also these later decisions. To account
for this uncertainty, we suggest that, instead of propagating a label, the label
probability distribution should be propagated and would thus also be available
for later decisions. We could see this as an attempt to keep as much information
as possible as long as potentially useful for the classification of new instances.

This idea has been employed in some specific graph-based methods, as we
will survey below. Here we propose a more general probabilistic, non-parametric
semi-supervised classification schema and demonstrate its benefits by imple-
menting it with a probabilistic k nearest neighbor classifier that is conceptually
simpler and yet compares favorably against state-of-the-art methods for semi-
supervised classification on a large collection of datasets being considerably more
efficient.
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Fig. 1. Some classifier’s model (estimated class-conditional probability density distri-
butions). Deciding at any point according to the maximum class (posterior) probability
and using only that label later renders further propagation or later induction oblivious
of the evidence for other classes. Example data from the Iris dataset.

In the remainder, we give an overview of related work on semi-supervised
classification (Sect. 2), introduce the general concept and a concrete implemen-
tation of our method (Sect. 3), study its performance on a large collection of
datasets and compare against several state-of-the-art methods in terms of effec-
tiveness and efficiency (Sect. 4), and conclude with a short discussion of some
properties of the compared methods (Sect. 5).

2 Related Work

There are many variations of semi-supervised learning such as self-training [16]
and co-training [2]. Transductive learning [20] is a part of the foundation of
semi-supervised learning and relates to an approach that uses both labelled and
unlabelled data as training data, TR = L ∪ U , to predict labels for U . Some
of the most popular methods in this field have been surveyed in books broadly
discussing the area [5,27]. Well known methods such as graph classification [12,
23] and support vector machines have been adapted to the transductive setting
[9], and have been used in combination with Laplacian regularization as for
Gaussian Field Harmonic Function (GFHF) [25,26]. In the following we discuss
some methods that are more closely related to our approach.

The basic idea of GFHF [25,26] is to model a transition probability in the
graph representing the dataset, typically using the RBF kernel. All nodes are
associated with a class label distribution which is updated following the transi-
tion probabilities until convergence. GFHF also was seminal for Laplacian sup-
port vector machines and Laplacian regularized least squares [1]. GFHF propa-
gates the transition probabilities estimated by the RBF kernel on the complete
graph. In each iteration the propagation of transition probabilities is normalized
to maintain a probability interpretation, and the method iterates until conver-
gence.
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Learning with Local and Global Consistency (LGC) [23] is inspired by GFHF
and mainly differs in the propagation process, including a parameter α that
determines how the information from the previous and the current iteration
are weighted. LGC also uses the RBF kernel to generate a weight matrix for
the complete graph and normalizes the weights to maintain label probability
distributions for propagation in each iteration.

Szummer and Jaakola [18] proposed one of the first semi-supervised classifi-
cation algorithms, using Markov random walks from a number of random points
in the dataset, and the RBF kernel (similarly as Zhu et al. [26]) for determining
the edge weights to estimate the class conditional probability. They use kNNs for
finding the local manifold structure. Substantial differences between the method
presented in this paper and Szummer and Jaakola’s is the choice of the kernel
used to define the label distributions, their use of a symmetrized kNN graph,
and their probability estimation procedure. Furthermore their method requires
several additional parameters such as the time parameter t for the number of
steps in the Markov process to govern smoothness and the σ parameter of the
RBF kernel for edge weights, and the number of random starting points.

Liu and Chang [12] introduced the RMGT algorithm, a graph based algo-
rithm that utilizes the combinatorial Laplacian matrix to describe the local man-
ifold structure. They introduce a new underlying graph topology referred to as
the symmetry favored kNN graph, which adds weights to bidirectional edges
in the directed kNN graph. De Sousa and Batista [17] extended this algorithm
further (RMGTHOR) by modifying the regularization framework to use a nor-
malized Laplacian, or a Laplacian with a degree higher than 1, instead of the
combinatorial Laplacian used in the earlier methods.

3 Label Probability Distribution Propagation

3.1 Motivation

In semi-supervised classification, a core assumption is that the labelled subset L
of the training set is much smaller both in relative and absolute terms than the
unlabelled subset U , i.e., |L| � |U |. Therefore a learner should be extra careful
when propagating labels because of the high probability of propagating errors
when decisions are based on insufficient information. With further propagation
of potentially erroneous labels such errors can spread and have a severe impact
on the quality of the transduction.

This is the core motivation for our proposal to not propagate class labels but
instead to propagate the distribution of class labels (or class label probabilities)
from instances in L to instances in U . Such class probabilities can be determined
in principle using any probabilistic classifier.

3.2 General Schema

In Fig. 1 we see three probability density functions for the three classes over the
sepal length attribute in the Iris dataset. We propose to propagate label prob-
ability distributions to unlabelled instances in a semi-supervised manner using
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the (estimated) probability density for each class starting from a straightforward
Bayesian schema:

With the prior class probability Pr(c) for each class c ∈ C and Bayes theorem,
the probability for instance x to belong to a class c can be estimated by:

Pr(c|x) ∝ f̂(x|c) Pr(c)
∑

ci∈C f̂(x|ci) Pr(ci)
(1)

where f̂ is some estimate of the probability density (which could be a direct
probability estimate, if some classifier delivers that).

Such estimated label probability distributions are assigned to all instances
x ∈ U , such that the label yi of instance xi is in fact a label distribution:

yi = (Pr(c1|xi),Pr(c2|xi), · · · ,Pr(cn|xi))
� (2)

Consider an unlabelled instance x in Fig. 1. The probability density for each
class is given by c1, c2, and c3, and the probability for belonging to each class
can then be calculated by Eq. (1). The standard maximum likelihood prediction
would predict class c3 and immediately lose the information that the other two
classes, albeit less likely, still carry a non-negligible probability that could be
helpful to decide close cases downstream, when using x transductively (or even
for induction later on). This is because, after the assignment of a label probability
distribution to instance x, x is moved from the set of unlabelled data U to the
set of labelled data L and is used for the transductive labelling process that
continues until U = ∅ and all training instances are labelled.

3.3 kNN-Label Distribution

To test this concept in semi-supervised classification we employ a probabilistic
kNN classifier to estimate label probability distributions in a non-parametric way
and describe an algorithm to propagate label probability density distributions
using kNN, resulting in an algorithm kNN Label Distribution Propagation (kNN-
LDP). Propagating label probability distributions allows data instances to have
a soft labelling and the transduction to account for this label distribution when
calculating the label probability distributions of unlabelled neighbors.

While we keep all information of the label probability distributions as long as
possible, we can at any point derive a crisp labelling of a query object if needed,
taking the maximum of the assigned class probabilities. Also note that, although
we focus on the transduction here, we could also apply the same algorithm for
induction beyond the training data to predict the class (or the label probability
distribution) for any unseen query object.

In the supervised scenario of using the kNN classifier, the label probability
distribution for some instance x is given by the class-conditional density esti-
mates based on the k nearest neighbors of x taken over the labeled training data
L [7,22]:

f̂(x|cj) =
|{x� ∈ kNN(x) ∩ cj}|

|{x� ∈ L ∩ cj}| · VolkNN(x)
(3)
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(a) An unlabelled instance in the train-
ing set receives a label distribution
from labelled neighbors (note that we
have a tie in the neighborhood and
therefore effectively use k + 1 neigh-
bors).

(b) An unlabelled instance in the train-
ing set receives the label distributions
from neighbors, including examples la-
beled by label distribution propagation
(no tie here).

Fig. 2. kNN label distribution propagation, using k = 3, without and with partially
labelled examples.

where | · | denotes the cardinality of a set and VolkNN(x) denotes the volume
needed to cover k nearest neighbors of x, centered at x. The shape of this volume
will depend on the employed distance function. Note, however, that the volume
cancels nicely out when putting this into Eq. (1).

In the semi-supervised scenario tackled here, an instance among the nearest
neighbors might not have a crisp label but a label probability distribution itself,
or no label for instances ∈ U . For getting a well-defined probability distribution
we can treat the “unknown” case as a special class. Accounting for partial labels
in Eq. 3 thus yields

f̂(x|cj) =

∑
x�∈kNN(x) Pr(cj |x�)

∑
x�∈L Pr(cj |x�) · VolkNN(x)

(4)

Using this in Eq. (1), the probability for each class c in the label distribution,
depending on the label probability distributions of the k nearest neighbors, is
therefore given by

Pr(c|x) =

∑
x�∈kNN(x) Pr(c|x�)

| kNN(x)| (5)

We illustrate the method in Fig. 2. The example x1 ∈ U receives label infor-
mation from its k nearest neighbors. One of the nearest neighbors, x2 ∈ U , is
unlabelled. As a result, x1 would now carry partial label information which we
can interpret as a label probability distribution (Fig. 2(a)). Next, example x2 is
processed and receives label information from its neighbors, including x1, thus
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not just counting labels of classes but considering the label probability distribu-
tion over the k nearest neighbors (Fig. 2(b)).

3.4 Abstention in Case of Insufficient Information

We have to account for a potential complication in this process of assigning
label probability distributions. There might be insufficient information to assign
some label probability distribution to some given unlabelled instance. This is
a complication that is not unlikely in the semi-supervised scenario, where we
assume much less labeled than unlabeled training data.

If we encounter such an instance that cannot get assigned any class proba-
bilities, we assign a special label signaling the fact that the label distribution is
unknown, thus employing the concept of abstaining classifiers [15], although we
do not propose here to optimize the classifier w.r.t. abstention.

3.5 Propagation Algorithm

To use as much information as possible for the label assignment in just two passes
over the data we start with the instances where most information is available,
that is where the sum of the class probabilities over the neighbors (except for the
class “unknown”) is maximal, and continue to process instances with decreasing
order w.r.t. this available information (which might change over time). This
requires checking all neighborhoods in advance. For the sake of efficiency, the
forward and reverse k nearest neighbors should be indexed in this first pass.

The information that can be used for label distribution assignments can be
captured in weights:

w(x) =
∑

c∈C\{“unknown”}
Pr(c|x) (6)

These weights w are used to keep the instances sorted in decreasing order w.r.t.
the available information in some priority queue. This way, as much information
as possible is used in one sweep over the data, updating the label probability dis-
tributions and the weights of the reverse k nearest neighbors (RkNN) of updated
instances (i.e., those that are affected by an update of the current instance).
This might make instances climb up in the priority queue if their weight changed
because their neighbors got label distribution information assigned. In the exam-
ple of Fig. 2, this would be the case for x2 ∈ RkNN(x1): after having assigned
a label probability distribution to x1, w(x2) will increase. Then we can assign
an estimate of the label distribution for each instance, as defined in Eqs. (2)
and (5). Note that the definitions of probability distributions include the class
“unknown”, such that probabilities sum up to one. A sketch of the procedure is
provided in Algorithm 1.
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Algorithm 1. kNN-LDP
1: for all x ∈ U do
2: index forward and reverse k nearest neighbors ( kNN,RkNN)
3: x.w ← ∑

c∈C\{unknown} Pr(c|x) {Eq. (6)}
4: end for
5: PQU ← priority-queue(U) {decreasing order w.r.t. x.w}
6: while PQU .size > 0 do
7: x ← PQU .getMax()
8: if x.w > 0 then
9: x.y ← (Pr(c|x))c∈C {Eqs. (2) and (5)}

10: for all p ∈ RkNN(x) do
11: p.w ← ∑

c∈C\{unknown} Pr(c|p) {Eq. (6)}
12: PQU .update(p)
13: end for
14: L ← L ∪ {x}
15: else
16: x.y ← unknown
17: for all p ∈ PQU do
18: p.y ← unknown
19: L ← L ∪ {p}
20: end for
21: PQU ← ∅
22: end if
23: end while

3.6 Advantages and Disadvantages of kNN-LDP

The label distribution propagation algorithm proposed here also has an underly-
ing graph interpretation when implemented with a k nearest neighbor classifier.
It has some advantages over other graph-based methods. The asymptotic run-
time of the kNN-based label distribution propagation algorithm is identical to
that of finding the kNN, i.e., the operation of identifying the nearest neighbors
is the computational bottleneck as in many applications and could naturally
benefit from employing efficient neighborhood search methods [10,11]. Yet, due
to the heuristic order of processing instances, our method, as opposed to many
competitors, does not require any iterations.

The runtime for graph-based algorithms depends on the topology of the graph
but is typically higher than the runtime of kNN-LDP which only makes neigh-
borhood queries for the unlabelled data. A mutual-kNN graph requires the com-
putation of the nearest neighbors of all labelled and unlabelled instances which
takes O(n2) for a dataset of size n. If Ozaki’s graph connection method [13] is
used, computing the complete similarity graph takes O(n2), which cannot be
improved. Finding the minimum spanning tree (or rather maximum spanning
tree, as it is based on similarities, not distances) takes O((V + E) log V ), where
V is the number of vertices, and E is the number of edges in the graph. For the
complete graph this takes n + n(n−1)

2 log n(n−1)
2 using Prim’s algorithm.
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Table 1. Competitors and their implementations

Method Impl. Name Impl. Source

GFHF [26] Label Propagation Scikit-Learn [14]

LGC [23] Label Spreading

LapRLS [1] LapRls https://github.com/HugoooPerrin/semi-supervised-learning

LapSVM [1] LapSvm

RMGT [12] RMGT de Sousa & Batista [17]

RMGTHOR [17] RMGTHOR

This paper kNN LDP https://github.com/Goettcke/kNN LDP

Although the kNN Label Distribution Propagation is different from the most
common graph-based algorithms it also comes with some of the same disadvan-
tages. When constructing an adjacency matrix in nearest-neighbor graph-based
semi-supervised learning algorithms, the number of components plays an essen-
tial role in the success of the label propagation. A similar problem is present
in kNN-LDP, if an unlabelled instance cannot be reached by the propagation
through neighborhoods, i.e., if an unlabelled instance resides in a graph com-
ponent without any labelled instances. This problem tends to occur more with
a smaller ratio of L

U and a smaller value of k, and tends to affect the label
propagation late in the process.

There are different strategies to tackle this problem. One could be to increase
k until at least one neighbor carries label information. However, sparse graphs
are observed empirically to perform better than dense or complete graphs [28],
as they have a higher sensitivity to detecting the local manifold which the data
points lie on. Another solution, as seen in related work, is to assign the majority
class if no other information is available.

The solution we have chosen for kNN-LDP is to make the classifier abstaining
from making a decision where it does not have the information and giving it the
class label “unknown”. It should be noted that this is a clear disadvantage in
the comparison, as such a label will always count as an error. We will see in the
evaluation that trading these errors in the evaluation metric for not propagating
potential errors to further decisions seems to pay off.

4 Experimental Evaluation

4.1 Competitors

As competitors we selected the more closely related methods GFHF [26], LGC
[23], RMGT [12], and the more recent RMGTHOR [17] method. The Lapla-
cian regression method, Laplacian Regularized Least Squares (LapRLS) and
Laplacian Support Vector Machines (LapSVM) [1] were also evaluated. We used
publicly available implementations, an overview is provided in Table 1.

https://github.com/HugoooPerrin/semi-supervised-learning
https://github.com/Goettcke/kNN_LDP
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Table 2. Datasets used for comparative evaluation.

Dataset Classes Attributes Instances Dataset Classes Attributes Instances

australian 2 14 690 page-blocks 5 10 5472

banana 2 2 5300 phoneme 2 5 5404

breast 2 30 569 segment 7 19 2310

bupa 2 6 345 spambase 2 57 4597

cleveland 5 13 297 spectfheart 2 44 267

contraceptive 3 9 1473 tae 3 5 151

dermatology 6 34 358 vowel 11 13 990

glass 6 9 214 wine 3 13 178

hayes roth 3 4 160 wine-red 6 11 1599

heart 2 13 270 wine-white 7 11 4898

iris 3 4 150 wisconsin 2 9 683

led7digit 10 7 500 COIL 2 50 1500

mammo. mass 2 5 830 digit-1 2 50 1500

monk-2 2 6 432 G-241C 2 50 1500

movement libras 15 90 360 G-241N 2 50 1500

new thyroid 3 5 215 USPS 2 50 1500

4.2 Parameters

In the experiments all distances are Euclidean. LapSVM and LapRLS were tested
in two settings, using the Linear kernel and the RBF kernel. GFHF and LGC
use the RBF kernel. For LGC we used α = 0.2 as it is the default value in the
Scikit-Learn implementation. RMGT uses combinatorial Laplacian regulariza-
tion. RMGTHOR uses the normalized Laplacian. Both methods use local linear
embedding for building the weight matrices. RMGTHOR uses a Laplacian degree
of 1. For all algorithms based on k nearest neighbors we invariably set k = 10,
following findings that some small value is typically a good choice for the local
density estimation and for determining the local manifold [28].

For the methods taking an RBF kernel, σM ∈ {0.1, 0.5, 1} was tested. For the
parameters γL and γM for LapSVM and LapRLS a grid search was performed
for all combinations of the values γL ∈ {0.1, 0.5, 1} and γM ∈ {0.1, 0.5, 1}, that
is using the same range as the original publication [1]. The grid search tries all
combinations of the parameters in the parameter sets, and for each dataset the
best result achieved is extracted and used for comparison.

Parameter optimization is necessary for these methods to avoid poor per-
formance. It should be noted, though, that selecting the best results for these
methods gives them an advantage in the comparison.

4.3 Datasets

We have evaluated our method and state-of-the-art competitors on the 5 datasets
commonly used in semi-supervised classification benchmarks [3] as well as on 27
datasets used by Triguero et al. [19]. The datasets have been selected such that
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Fig. 3. Critical difference plots showing the relation between the tested algorithms
transductive performance on different proportions of available label information.

all algorithms compared to in this study could be applied without adjustments.
An overview on the datasets is provided in Table 2.

4.4 Evaluation Setup

Each dataset has been split into labelled training data and unlabelled train-
ing data, in three different split proportions (labelled, unlabelled): [0.05, 0.95],
[0.1, 0.9], and [0.2, 0.8]. In each setting, we average the test results over 64 ran-
dom samples. We measure accuracy on crisp decisions derived from the label
probability distributions post hoc in case of kNN-LDP, and the built-in predict
functions for other methods. We count as error when kNN-LDP is abstaining
from classifying an instance.
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Fig. 4. Runtime in seconds scaling with dataset size.

4.5 Results

For assessing the performance of the different methods, we show “critical dif-
ference plots” following the methodology described by Demšar [6] for assessing
the statistical significance in the ranking of the compared methods in terms of
accuracy in Fig. 3. These plots visualize the mean rank over all datasets and
the critical difference given the number of datasets and algorithms used in the
statistic. If the mean rank for a method is connected to the mean rank of another
method by a horizontal bar, the two methods are within the critical difference
and their performance is not significantly different.

kNN-LDP often achieves the highest accuracy score and is significantly better
than several competitors, and not different from the other methods with statis-
tical significance. The advantage of kNN-LDP tends to be more prominent with
a smaller proportion of label information. It performs best for the smallest frac-
tion of labelled data, which is the most important scenario for semi-supervised
learning. In all scenarios, kNN-LDP forms a top group together with RMGT and
RMGTHOR where the differences are not statistically significant. We will see
next, however, that kNN-LDP is much more efficient than all the other meth-
ods, in particular kNN-LDP beats RMGT and RMGTHOR by a large margin
in terms of scalability.

4.6 Scalability

For testing the scalability of the algorithms we generated 2-dimensional datasets
with two-class problems using the Scikit-Learn make classification function,
increasing the dataset size. The classification problems all have uniform class
distributions, and the algorithms were given 10% labelled training data. The
test hardware used consists of an AMD EPYC 7501 32-Core Processor, and 256
GB available memory. All algorithms were run with default parameters in these
tests. We depict the results of the scalability experiment in Fig. 4.

The rapid increase in runtime for LapRLS, LapSVM, RMGT, and
RMGTHOR and their also rapidly increasing demands on system memory pre-
vented tests on larger dataset sizes. However, the disadvantage of these methods
in terms of runtime and scalability behavior is already quite clear at this point
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(note the logarithmic scale of the runtime axis). GFHF and LGC remain more
competitive to our method, although they are considerably slower. Given the log-
arithmic scale, the scalability performance of kNN-LDP is clearly superior even
if we would disregard its advantage in absolute runtime accounting for possible
implementation advantages [11].

5 Conclusion

We studied an elegant non-parametric method with a clear interpretation in
terms of density estimation and Bayesian reasoning here that performs as good
as or better than state-of-the-art methods on a large collection of datasets even
though it was put on a disadvantage compared to other methods in two aspects:

First, it is a fundamental requirement in graph-based algorithms that each
instance (i.e., a vertex in some kNN graph) must belong to a component in
which at least one other vertex is labelled. While other methods use undirected,
symmetrized, or even complete graphs to adhere to this assumption, in the case
of kNN-LDP the assumption is more likely to be violated because the kNN graph
is inherently directed. As a consequence each unlabelled vertex should not only
be in a component with at least one other labelled vertex but also be directly
connected to it. While other methods use various heuristics to solve cases where
this assumption is violated and can be sometimes correct with that, we simply
abstain from a decision which as such will always count as an error. However, this
abstention fits and contributes to the fundamental motivation and strategy of our
method: to avoid the propagation of errors, which will be of utmost importance
in the induction on test or new data.

Second, we performed grid search optimization of several parameters for the
competing Laplacian methods and the methods using an RBF kernel. Without
such parameter tuning, these methods would not be able to achieve reasonable
performance. No such parameter optimization was done for the k-value used
in the kNN-LDP method, and the other methods using nearest neighbor infor-
mation, where some small value is typically a good choice for the local density
estimation and for determining the local manifold [28].

In terms of efficiency and scalability, our method is clearly outperforming the
competitors.
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Abstract. Similarity search in high-dimensional spaces is an important
primitive operation in many diverse application domains. Locality Sensi-
tive Hashing (LSH) is a popular technique for solving the Approximate
Nearest Neighbor (ANN) problem in high-dimensional spaces. Along
with creating fair machine learning models, there is also a need for
creating data structures that target different types of fairness. In this
paper, we propose a fair variant of the ANN problem that targets Equal
opportunity in group fairness in the ANN domain. We formally intro-
duce the notion of fair ANN for Equal opportunity in group fairness.
Additionally, we present an efficient disk-based index structure for find-
ing Fair approximate nearest neighbors using Locality Sensitive Hashing
(FairLSH ). Moreover, we present an advanced version of FairLSH that
uses cost models to further balance the trade-off between I/O cost and
processing time. Finally, we experimentally show that FairLSH returns
fair results with a very low I/O cost and processing time when compared
with the state-of-the-art LSH techniques.

Keywords: Approximate nearest neighbor search · Similarity search ·
Locality sensitive hashing · Fairness · Equal opportunity

1 Introduction

In recent years, many real-world applications use machine learning algorithms
for their decision making systems (e.g. job interviews, credit card offers, etc.).
Often, these algorithms make discriminative and biased decisions towards spe-
cific individuals or group of individuals. There have been several works [7,14,18]
that have studied different types of fairness and biases in these decision making
systems. Moreover, even if algorithms may not be biased, they could amplify
the latent bias that exists in the data. As a result, researchers have proposed
new methods to deal with the algorithmic and data biases in classification [1],
clustering [4,19], optimization [6], risk management [9], resource allocation [10],
and many other domains.

Bias in the data used for training machine learning algorithms is a major
challenge in developing fair algorithms. Here, in a rather different problem, we
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are interested in handling the bias imposed by the data structures used by such
algorithms. In particular, data structures, regardless of how the data is handled
and how it is collected, involve bias in the way they respond to searches.

In general, fairness can be divided into two categories: 1) individual fair-
ness and 2) group fairness. The goal of individual fairness is to treat similar
individuals similarly and the goal of group fairness is to treat similar groups of
individuals similarly. Both categories can be further divided into sub-categories
[22]. One such sub-category of group fairness is Equal Opportunity, which states
that if individuals in multiple groups of people qualify for an outcome, those
groups of people should receive the outcome at equal rates [22].

Finding nearest neighbors of a given query is an important problem in many
domains. For high-dimensional datasets, the traditional index structures suffer
from the well-known problem of Curse of Dimensionality [8]. It is shown that
even linear searches are faster than using these traditional index structures for
high-dimensional datasets [5]. A solution to this problem is to search for approx-
imate nearest neighbors instead of exact neighbors that results in much better
running times. Locality Sensitive Hashing (LSH) [12] is a popular technique for
solving the Approximate Nearest Neighbor (ANN) problem in high-dimensional
spaces that takes a sub-linear time (with respect to the dataset size) to find the
approximate nearest neighbors of a given query. LSH maps points in the high-
dimensional space to a lower-dimensional space by using random projections.
The intuition behind LSH is that close points in the high-dimensional space
will map to the same hash buckets in the lower-dimensional space with a high
probability and vice-versa.

1.1 Motivation

An important benefit of LSH is that it provides theoretical guarantees on the
accuracy of the results. Moreover, LSH is a data-independent method (i.e. the
index structure is not affected by data properties such as data distribution).
Therefore, when the distribution of data changes, data-dependent methods (such
as deep hashing approaches) need to re-generate the indexes. Additionally, LSH
is known for its ease of disk-based implementations, making it very scalable as
the dataset size grows [20]. Often, in various applications, there is a need to run
approximate nearest neighbor searches in order to find fair neighbors of a given
query. In these applications, there is a growing need to remove discrimination
and bias towards specific individuals or a group of individuals. Here, the goal of
fairness is to remove arbitrariness of the search strategy and base it upon pre-
defined conditions such that neighbors of a given query that belong to different
groups would have the same probability of being chosen in the final results.

There is no existing work that studies the equal opportunity of group fairness
in the domain of ANN search. Existing state-of-the-art LSH approaches lead to
wasted I/O while tackling the equal opportunity notion in group fairness (because
they are not designed to efficiently search for fair nearest neighbors). Therefore,
in this paper, our goal is to design a fair, yet efficient, disk-based LSH index
structure, called FairLSH, that can reduce the I/O costs and processing times
for finding the fair nearest neighbors.
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1.2 Contributions

In this paper, we propose an efficient, disk-based index structure for finding Fair
approximate nearest neighbors using Locality Sensitive Hashing, called FairLSH.
The following are the primary contributions of this paper:

– We formally introduce the notion of fair approximate near neighbors for equal
opportunity in group fairness.

– We present a tree-based and disk-based index structure, called FairLSH-
Basic, that reduces disk I/O costs and processing times for finding fair approx-
imate nearest neighbors.

– We further improve the efficiency by proposing a cost model-based variant of
our index structure, called FairLSH-Advanced, that uses a user-input thresh-
old to tune the trade-off between I/O costs and processing times, and hence
further improve performance.

– Lastly, we experimentally evaluate the both variants of FairLSH on several
datasets for different fairness scenarios and show that FairLSH outperforms
the state-of-the-art techniques in terms of performance efficiency.

To the best of our knowledge, we are the first work that tackles the group fairness
notion of equal opportunity in the ANN domain.

2 Related Work

2.1 LSH and Its Variants

Locality Sensitive Hashing (LSH) is one the most popular techniques for solving
the Approximate Nearest Neighbor (ANN) problem in high-dimensional spaces
[17]. LSH was first proposed in [12] for the Hamming distance and was later
extended for the Euclidean distance in [8]. Then, the concepts of Collision Count-
ing and Virtual Rehashing were introduced in [11] that solved the two main
drawbacks of E2LSH [8], which were large index sizes and a large search radius.
The idea of using query-aware hash functions where the indexes are created such
that the query is an anchor of a bucket was proposed in QALSH [15] to solve the
issue when close points to the query were mapped to different buckets. More-
over, QALSH uses B+-trees as its index structure for efficient lookups and range
queries on the hash functions.

I-LSH [20] was recently proposed to improve the I/O cost of QALSH by
incrementally increasing the search radius in the projected space instead of using
exponential radius increases. However, as shown in [16], I-LSH achieves this I/O
cost optimization at the expense of a costly processing time spent on finding
closest points in the projected space. Recently, PM-LSH [26] was proposed to
utilize a confidence interval value and estimate the Euclidean distance with the
goal of reducing the overall query processing time. Moreover, a method, called
R2LSH [21], was proposed that uses two-dimensional projected spaces (instead
of one-dimensional spaces) to improve the I/O cost of the query processing.
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2.2 Fairness in ANN Search

Definitions of fairness are commonly categorized as 1) group fairness, in which
the aim is to treat different groups equally, and 2) individual fairness, in which
the purpose is to treat individual people of the same profile similarly [22]. So
far, only two works have studied the idea of fairness in the ANN domain.

[13] proposes to remove the bias from exact neighborhood and approximate
neighborhood (E2LSH) searches by using sampling techniques with the goal of
providing individual fairness. Additionally, another work [3] has been proposed
that considers equal opportunity in individual fairness in the sense that all points
near a query should have the same probability to be returned. In [3], authors
first use uniform sampling techniques and then build a data structure for fair
similarity search under inner product. Very recently, a joint work [2] containing
[13] and [3] has been proposed that connects ideas from both works (i.e. equal
opportunity and independent range sampling). Our proposed work is different
from the prior works [2,3,13] in two main aspects: 1) Unlike these prior works
that focus on individual fairness, our work focuses on equal opportunity in group
fairness, and 2) these prior works are designed specifically for the original LSH
design (E2LSH). Particularly, their proposed data structures are applicable only
for LSH designs that use the multiple hash functions in multiple hash tables
(Compound Hash Keys). State-of-the-art LSH designs, such as [11,15,20], use
advanced techniques such as Collision Counting that makes having multiple
hash tables unnecessary (thus saving on space and time). Our proposed work is
designed specifically for these state-of-the-art LSH designs.

3 Background and Key Concepts

In this section, we describe the key concepts behind LSH. Given a dataset D
with n points in a d-dimensional Euclidean space Rd and a query point q in the
same space, the goal of c-ANN search (for an approximation ratio c > 1) is to
return points o ∈ D such that ‖o−q‖ ≤ c×‖o∗ −q‖, where o∗ is the true nearest
neighbor of q in D and ‖‖ is the Euclidean distance between two points. Similarly,
c-k-ANN search aims at returning top-k points such that ‖oi − q‖ ≤ c×‖o∗

i − q‖
where 1 ≤ i ≤ k.

Definition 1 (LSH Family). A hash function family H is called (r, c, p1, p2)-
sensitive if it satisfies the following conditions for any two points x and y in a
d-dimensional dataset D ⊂ Rd:

– if ‖x − y‖ ≤ R, then Pr[h(x) = h(y)] ≥ p1, and
– if ‖x − y‖ > cR, then Pr[h(x) = h(y)] ≤ p2

Here, p1 and p2 are probabilities, R is the distance between two points (commonly
referred to as the radius), and c is an approximation ratio. LSH requires c > 1
and p1 > p2. The conditions show that the probability of mapping two points to
a same hash value decreases as their distance increases.
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Definition 2 (Collision Counting). In [11], it is theoretically shown that only
those points that collide (are mapped to the same bucket) with the query in at
least l projections (out of m) are chosen as candidates. Here, l is the collision
count threshold and calculated as l = �α × m�, where α is the collision threshold
percentage calculated using α = zp1+p2

1+z and m is the total number of projections

calculated as m = � ln( 1
δ )

2(p1−p2)2
(1 + z)2�. Here, z =

√
ln( 2

β )/ ln(1δ ), where β is
the allowed false positive percentage (i.e. the allowed number of points whose
distance with a query point is greater than cR). [11] sets β = 100

n , where n is the
cardinality of the dataset.

Definition 3 (Virtual Rehashing). [11] starts query processing with a very
small radius, and then, exponentially increases the radius in the following
sequence: R = 1, c, c2, c3, ..., where c is an approximation ratio. If at level-R,
enough candidates are not found, the radius is increased until found.

4 Problem Specification

Definition 4 (Fair ANN). The definition of Fair ANN in this paper is focused
on the equal opportunity problem in group fairness in the ANN domain. Given
a dataset D with n points in a d-dimensional Euclidean space Rd, a query point
q, and two groups of points in D labeled oA and oB, the goal of Fair ANN
is to find top-	k/2
 points oA ∈ D and top-	k/2
 points oB ∈ D, such that
‖oA

i − q‖ ≤ c × ‖oA,∗
i − q‖ and ‖oB

i − q‖ ≤ c × ‖oB,∗
i − q‖, where 1 ≤ i ≤ 	k/2
,

and oA,∗
i and oB,∗

i are the true nearest neighbors of q in D from each group.

In this paper, our goal is to return Fair ANN for a given query q while reducing
the overall I/O costs and processing times while maintaining the accuracy of
the result. Note that, in this work, we only focus on two distinct groups in the
dataset. We leave the problem of Fair ANN for multiple groups as future work.
In Sect. 5, we present the design of our index structure, FairLSH.

5 FairLSH

In this section, we first describe the naive approaches for solving the Fair ANN
problem using the existing LSH methods. We then present the design of our
proposed index structure, FairLSH, which consists of two variants: FairLSH-
Basic and FairLSH-Advanced. Given a query point, our goal is to efficiently
return top-	k/2
 NN from each of the two groups of points in the dataset.

5.1 Naive Approaches

In Sect. 3, we explained how LSH families are used to map high-dimensional
points into a lower-dimensional space while preserving locality. In order to
retrieve fair results, we make the following changes to existing LSH methods:
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Fig. 1. (a) QALSH leaf nodes (top) compared to (b) FairLSH leaf nodes (bottom)

Naive Strategy 1: A naive strategy to find top-	k/2
 nearest points from each
group is to simply divide the dataset into two separate datasets (based on their
labels), and run LSH individually on the two separate datasets. The drawbacks
of this strategy are: 1) it is not space efficient since two sets of indexes need to
be maintained, and 2) redundant processing needs to be performed on the two
sets of indexes which results in an increase in the overall query processing time.

Naive Strategy 2: All LSH-based methods have several stopping conditions
that make the search algorithm stop once enough points are found. In the sec-
ond naive strategy, we change these stopping conditions to continue the search
algorithm until enough points are found from each group of points.
For example, Fig. 1(a) shows the leaf nodes of a B+-tree from QALSH [15]. In
this example, the query is point ID 2 which is located in Node 1, white points
are from group A, and red points are from group B. Assuming that k = 8, then
our goal is to find four nearest points from each of the groups A and B.

In this example, the original QALSH method will start reading Node 1 and
fetching the first four points and it will continue reading Node 2. After that,
since the stopping conditions are met, the algorithm will stop. However, we only
find two nearest points (5 and 6) and the results are not fair. Naive strategy 2
changes stopping conditions such that the algorithm continues reading Node 3
and Node 4 as well. By doing this, the algorithm finds enough points from each
group and if more than enough points are found, they can be pruned at another
step using Euclidean distance calculations.

The main drawback of this naive strategy (as it can also be seen in the
given example) is that extra and unnecessary nodes are read which results in an
increase in the I/O cost. As a result, we present two variants of a novel index
structure in the next section that use threaded B+-trees and cost models to
optimize the I/O cost and processing time.

5.2 Design of FairLSH-Basic

The main intuition behind FairLSH-Basic is that when enough nearest neighbors
of a group are found, we should avoid reading the points of that group from the
disk. Hence, our goal is to skip those points that will lead to unnecessary I/O in
order to improve processing time.

Skipping the points in the current LSH index structures has several challenges
that include: 1) Since hashed points are ordered without considering their groups,
when reading a “page-size” of data from the disk, we might get points from
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Algorithm 1: Query phase of FairLSH-Basic and FairLSH-Advanced
Input: D is the dataset; q is the query point; L is the label of dataset points; I

is m index structures created in indexing phase; k is the number of
nearest neighbors to find; l is the collision threshold, a is the random
vector generated in the indexing phase.

Output: �k/2� nearest points to q in D from each label
Variable: cc is the collision count of points; C is the candidates list; R is the

number of nodes to read
1 h(q) := a.q;
2 Find query leaf node in m index structures;
3 Let R = 1;
4 while TRUE do
5 for i = 1 to m do
6 Read R nodes around the query node;
7 if �k/2� label A nearest neighbors are found then
8 Set next round nodes to only label B nodes;

9 else
10 Set next round nodes to adjacent nodes;

11 foreach point o in leaf node do
12 cc[o] := cc[o] + 1 if cc[o] ≥ l then
13 Add o to C;

14 if (|{o|o ∈ C ∧ L[o] = 1 ∧ ‖o − q‖ ≤ c × R}| ≥ �k/2�) and
(|{o|o ∈ C ∧ L[o] = 2 ∧ ‖o − q‖ ≤ c × R}| ≥ �k/2�) then

15 break;

16 R := R × c;

17 return {o|o ∈ C ∧ L[o] = 1 ∧ ‖o − q‖ ≤ c × R} and
{o|o ∈ C ∧ L[o] = 2 ∧ ‖o − q‖ ≤ c × R}

different groups (e.g. node 2 of Fig. 1(a)), and 2) The current index structures
only have pointers to the sibling nodes and there is no possibility to avoid certain
nodes of hash functions (that contain unnecessary data) in the index structure.

FairLSH-Basic uses a group-aware strategy when creating the leaf nodes
to only allow points belonging to the same group to be added to a single leaf
node and to create a new leaf node when a new point belongs to a different
group. Furthermore, FairLSH-Basic uses threaded B+-tree structures that allow
arbitrary pointers between different nodes of the tree. In the current version of
FairLSH-Basic, these arbitrary pointers are created between leaf nodes belonging
to group B and the idea of using smart pointers where the algorithm can detect
which nodes require pointers between them is left for future work.

In the query phase of FairLSH-Basic, the goal is to find 	k/2
 nearest points
from each group to a given query point. Similar to other tree-based LSH methods,
the leaf nodes are searched in an exponential search radius manner (starting
from the query node) and the collision counting process (explained in Sect. 3) is
carried away. However, when enough nearest neighbors are found from a group
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Fig. 2. Breakdown of node containing (a) sparse and (b) dense groups

and we only need to get nearest neighbors from the other group, FairLSH uses
its arbitrary pointers to skip unnecessary nodes instead of doing a range query
(line 8 of Algorithm 1).

An example of how the search process of FairLSH-Basic works is shown
in Fig. 1 (b). In this example, the query resides in Node 1, white points are
from group A, and red points are from group B. With an assumption of k =
8, our goal is to find four nearest neighbors from each group. FairLSH-Basic
starts by reading Node 1 and fetching the first four points, and now, we have
enough neighbors from group one (assuming that the query is also a point from
group one). After that, FairLSH-Basic reads Node 2 and fetches two points from
group two. From this moment, since we only need to read group two points, the
algorithm jumps to Node 6 and reads the remaining points from that node. This
way, FairLSH-Basic has saved the I/O cost of reading three unnecessary nodes
(3, 4, and 5). Note that the indexing phase prevents points from multiple groups
to be in the same node (e.g. points 17, 18, 19, and 20 in one node); therefore,
FairLSH-Basic can always skip unnecessary nodes.

It is worth mentioning that Fig. 1 is only showcasing one projection as a
simple example; in the real scenario, we have several hash projections with more
complex distributions. In Sect. 6, we show that FairLSH-Basic performs much
better than state-of-the-art techniques.

5.3 Drawbacks of FairLSH-Basic

The main benefit of FairLSH-Basic is that it is effective in reducing disk I/O
costs when points from different groups are not sparsely distributed in the nodes.
Although the indexes are created offline, FairLSH-Basic has a processing over-
head in the query phase which is related to the extra pointers between the nodes
(compared to only performing a range query search). However, this processing
overhead is negligible compared to the savings in disk I/O cost, especially when
we have a dense distribution of group points. In this scenario, as shown in Fig. 2
(a), FairLSH-Basic breaks down the nodes containing a mixed group of points
(i.e. points from group A and group B) and eliminates the need to read unnec-
essary points from the indexes.

On the other hand, the processing overhead of FairLSH-Basic increases when
points from different groups are sparsely distributed in the nodes. Figure 2(b)
shows an example of this scenario. In this scenario, FairLSH-Basic breaks down
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the nodes which results in multiple nodes containing only one point. As a result,
the indexes will contain more pointers and more “book-keeping” is required
during the query processing phase. We also observed that in reality, both of the
mentioned scenarios (i.e. sparse and dense distribution) happen in the indexes.
In other words, different hash functions in the same index structure can have
nodes containing a sparse distribution of group points, and also nodes containing
a dense distribution of group points.

5.4 Design of FairLSH-Advanced

To remedy the drawbacks of FairLSH-Basic, we present a cost-based strategy,
FairLSH-Advanced, that can smartly detect if breaking down a node is going to
positively or negatively affect the overall performance.

There are three costs associated with reading a node into the main memory:
1) Cs: cost of disk seeks, 2) Ch: cost of reading the header (i.e. pointers), and 3)
Cp: cost of reading the payload (i.e. points). Cs is defined as IOcalls × seekspeed,
where seekspeed is the time it takes to perform a disk seek and can be obtained
from disk manufacturer or by benchmarking the disk. Ch is defined as nodecount×
nodeheadersize × IOspeed, where nodecount is the number of nodes we are going
to read, nodeheadersize is the header size of each node, and IOspeed is the time it
takes to read data from the disk and can be obtained from disk manufacturer.
Finally, Cp is defined as pointscount × IOspeed, where pointscount is the number
of points that we want to read from the disk.

Given a node in the indexing phase, the goal of FairLSH-Advanced is to
decide whether breaking down a node is going to be beneficial or not. Therefore,
we introduce a cost to represent each scenario (i.e. CBefore and CAfter for the
cost before and after breaking down the node respectively) and the difference of
these two costs can be used to make the decision. Thus, we have:

CBefore = Cs,B + Ch,B + Cp,B (1)

CAfter = Cs,A + Ch,A + Cp,A (2)

Note that Cs,B , Ch,B , and Cp,B are the cost of disk seeks, cost of reading the
header, and cost of reading the payload respectively before we break down a
node, and Cs,A, Ch,A, and Cp,A are the costs after we break down a node.

As an example, we consider the nodes in Fig. 2 and assume that seekspeed = 6,
nodeheadersize = 3, and IOspeed = 13. In Fig. 2(a), before breakdown, we have
IOcalls = 1, nodecount = 1, and pointscount = 4. When we break the node down,
we have IOcalls = 4, nodecount = 4, and pointscount = 4. Therefore, we have
CBefore = (1 × 6) + (1 × 3 × 13) + (4 × 13) = 97, CAfter = (4 × 6) + (4 × 3 ×
13) + (4 × 13) = 232, and CAfter − CBefore = 232 − 97 = 135. Similarly, in
Fig. 2(b), we have CBefore = (1 × 6) + (1 × 3 × 13) + (4 × 13) = 97, CAfter =
(2 × 6) + (2 × 3 × 13) + (4 × 13) = 142, and CAfter − CBefore = 142 − 97 = 45.
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{
break down, if CAfter − CBefore ≤ θ

do not break down, if CAfter − CBefore > θ
(3)

FairLSH-Advanced utilizes a user-input parameter, called θ, in the indexing
phase. As shown in Eq. 3, if the CAfter − CBefore of a node is lower than θ,
the node will be broken down and vice versa. Since nodes have different costs,
it is crucial to find a good θ value such that the index will be efficient enough in
the query processing phase. Note that the query processing phase of FairLSH-
Advanced is similar to FairLSH-Basic (Algorithm 1). In Sect. 6, we show how
using the cost-based strategy and the user-input parameter can improve the
performance of FairLSH-Basic.

6 Experimental Evaluation

In this section, we evaluate the effectiveness and fairness of our two proposed
methods, FairLSH-Basic and FairLSH-Advanced. All experiments were run on
a machine with the following specifications: Intel Core i7-6700, 16 GB RAM,
2TB HDD, and Ubuntu 20.04 OS. All codes were written in C++ and compiled
with gcc v9.3.0 with the -O3 optimization flag. Since the code of PM-LSH was
not released when writing this paper, we compare our two strategies with the
following state-of-the-art disk-based alternatives:

– C2LSH: Fair top-k results are found using C2LSH [11].
– QALSH: Fair top-k results are found using QALSH [15].

We modified existing state-of-the-art algorithms (C2LSH and QALSH) to output
fair nearest neighbors by using the naive strategy explained in Sect. 5.1.

6.1 Datasets

We ran our experiments on two real datasets Mnist [23] and Sift [25] where the
group labels are randomly assigned. In addition, in order to cover different sce-
narios that might happen in different applications, we construct seven synthetic
datasets. There are two groups in each dataset and the goal of this paper is
to give both of these groups the same opportunity (i.e. equal opportunity) to
appear in the final results. We randomly assign a binary label (A or B in our
explanation) to each dataset point to represent these groups. Each one of the
groups contain 50% of the dataset. In this work, we experiment with scenarios
where A and B have different distributions. Label A data points are generated
using a Beta distribution with α = 2 and β = 8, and label B data points are
generated using a Beta distribution with α = 8 and β = 2. Table 1 summarizes
the characteristics of our datasets. We choose 100 random points as our queries
and report the average as the final result. Due to space limitations and since we
observed similar results for all synthetic datasets, we only include two synthetic
datasets in this paper.
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Table 1. Characteristics of the
datasets

Name # of Points # of Dim.

Mnist 60, 000 50

Sift 1, 000, 000 128

D1 500, 000 1, 000

D2 1, 000, 000 1, 000
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Fig. 7. Fairness accuracy ratio

6.2 Evaluation Criteria

The performance and fairness of the compared techniques are evaluated using
the following criteria:

– Index IO Size: The amount of total data read from index files.
– Wasted IO Size: The amount of unnecessary data read from index files (e.g.

reading label A points while we have enough label A candidates and should
only look for label B candidates).

– Algorithm Time: The processing time of index files once they are read into
the main memory. The algorithm time consists of operations such as Collision
Counting which are explained in Sect. 3.
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– Query Processing Time: The overall time of finding fair approximate
nearest neighbors. We observed that the wall-clock times were not con-
sistent (i.e. running the same query multiple times on the same indexes
would return drastically different results, mainly because of disk cache and
instruction cache issues). Therefore, following [24], for a Seagate 1TB HDD
with 7200 RPM, we consider a random seek to cost 8.5 ms on average,
and the average time to read data to be 0.156 MB/ms. Thus, we have
QPT = #DiskSeeks × 8.5 + dataRead × 0.156 + AlgT ime + FPRemTime,
where FPRemTime is the cost of reading the candidate data points and
computing their exact Euclidean distance for removing false positives. We do
not report individual FPRemTime results since they are similar for different
methods and negligible (less than one millisecond).

– Accuracy: In order to define an accuracy metric, we consider the Euclidean
distance (between the candidate and query) and fairness. The ground truth of
our problem is the closest points of each label to the given query. For example,
for k = 100, if the dataset is split into 50% label A points and 50% label B
points, the goal is to find the 50 closest label A points and the 50 closest label
B points to the given query. We define our accuracy metric, called FairRatio,
as following:

FairRatio =
1
k

⎛
⎝

� k
2 �∑

i=1

∥∥oA
i − q
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∥∥∥

⎞
⎠ (4)

where oA
i and oB

i are the ith label A and label B points respectively that are
returned by the LSH technique, and oA,∗

i and oB,∗
i are the ith label A and

label B points from the query in the ground truth. FairRatio of 1 means that
the returned results are fair and have the same distance from the query as
the ground truth. The closer this value is to 1, the higher the accuracy.

6.3 Parameter Settings

For the state-of-the-art methods, we used the same parameters suggested in their
papers. For QALSH, FairLSH-Basic, and FairLSH-Advanced (since we use the
same hashing formula as QALSH as explained in Sect. 5), we used w = 2.781,
δ = 0.1, and c = 2. For C2LSH, we used w = 2.184, δ = 0.1, and c = 2.

In this work, we focus on only two data point labels (A and B) in the dataset,
k = 100, and the goal of finding 50 nearest points from label A and 50 nearest
points from label B. We leave experimenting on other parameter settings for
future work. For FairLSH-Advanced, we tried different values of θ and observed
improvements over compared methods for all experimented values. Due to space
limitations, we only show results for θ = 100.

6.4 Discussion of the Results

In this section, we compare the performance, accuracy of FairLSH-Basic and
FairLSH-Advanced against the state-of-the-art methods.
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– Index IO Size: Figure 3 shows the total amount of data read from the index
files. Since C2LSH has more index files compared to other methods, it has a
higher I/O cost. For the real datasets, FairLSH-Basic has a higher amount
of data read because of the sparse distribution of the groups (Sect. 5.3).
FairLSH-Advanced has the lowest amount of index I/O since its index struc-
ture is further optimized to skip reading unnecessary node headers.

– Wasted IO Size: Figure 4 shows the amount of unnecessary data read from
the index files. Wasted I/O happens when, in the query processing phase,
enough nearest neighbors from group A are already found; but the algorithm
keeps reading data related to group A. The wasted I/O size of FairLSH-Basic
and FairLSH-Advanced are several orders of magnitude smaller compared to
C2LSH and QALSH. FairLSH-Advanced has a slightly higher wasted I/O size
than FairLSH-Basic since it is sacrificing wasted I/O over algorithm time.

– Algorithm Time: Figure 5 shows the time needed to find the candidates
(excluding the time taken to read index files). QALSH has the highest algo-
rithm time since it uses non-optimized B+-trees that become significantly
larger as the dataset size grows. It is interesting to note that although
FairLSH-Basic and FairLSH-Advanced use more complex tree structures (due
to more number of pointers), their algorithm time is lower than C2LSH and
QALSH. This is due to avoiding processing of unnecessary nodes which off-
sets the overhead of using additional tree pointers. However, because of the
sparse distribution of the groups (Sect. 5.3) in the real datasets, the overhead
of FairLSH-Basic is higher for real datasets. FairLSH-Advanced has a lower
algorithm time than FairLSH-Basic since it is using cost models to optimize
the index structures and balance the trade-off between wasted I/O cost and
algorithm time.

– Query Processing Time: Figure 6 shows the overall time required to solve a
given k-NN query and retrieve fair neighbors. FairLSH-Advanced is the fastest
method compared to the others since its index structures are optimized to
significantly reduce algorithm time while increasing wasted I/O cost slightly.

– Accuracy: Figure 7 shows the accuracy of all techniques. C2LSH and QALSH
have a similar accuracy for all datasets, and FairLSH-Basic and FairLSH-
Advanced have a slightly lower accuracy (i.e. higher FairRatio). The reason
of this difference is because when FairLSH-Basic and FairLSH-Advanced find
enough nearest neighbors of a group, they stop reading and processing points
belonging to that group. However, C2LSH and QALSH continue this process
and get more neighbors and return the closest k neighbors at the end. We
should mention that a difference of 0.05 in FairRatio is very small compared
to the savings in I/O costs and algorithm time. In addition, we analyzed the
returned results and observed that similar nearest neighbors are returned by
all experimented methods (i.e. 0.1 difference in terms of average precision).

7 Conclusion and Future Work

In this paper, we define the group fairness notion of Equal Opportunity in the
context of Approximate Nearest Neighbor domain. We proposed a novel index
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structure for efficiently finding fair top-k approximate nearest neighbors using
Locality Sensitive Hashing, called FairLSH. Existing LSH-based techniques are
not capable of efficiently finding fair nearest neighbors to a given query. We
proposed two novel strategies, FairLSH-Basic and FairLSH-Advanced, which
uses threaded B+-trees and advanced cost models to optimize the overall query
processing cost. Experimental results show the benefit of our proposed structures
over state-of-the-art techniques. In the future, we plan to introduce a user-defined
parameter to adjust the trade-off between fairness, accuracy, and processing
time. We also plan to provide theoretical guarantees for the results of FairLSH .
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5. Chávez, E., et al.: Searching in metric spaces. CSUR 33(3), 273–321 (2001)
6. Chierichetti, F., et al.: Matroids, matchings, and fairness. In: AISTATS (2019)
7. Chouldechova, A.: Fair prediction with disparate impact: a study of bias in recidi-

vism prediction instruments. Big Data 5(2), 153–163 (2017)
8. Datar, M., et al.: Locality-sensitive hashing scheme based on p-stable distributions.

In: SOCG (2004)
9. Donini, M., et al.: Empirical risk minimization under fairness constraints. In: NIPS

(2018)
10. Elzayn, H., et al.: Fair algorithms for learning in allocation problems. In: FAccT

(2019)
11. Gan, J., et al.: Locality-sensitive hashing scheme based on dynamic collision count-

ing. In: SIGMOD (2012)
12. Gionis, A., et al.: Similarity search in high dimensions via hashing. In: VLDB

(1999)
13. Har-Peled, S., et al.: Near neighbor: who is the fairest of them all? In: NIPS (2019)
14. Hardt, M., et al.: Equality of opportunity in supervised learning. In: NIPS (2016)
15. Huang, Q., et al.: Query-aware locality-sensitive hashing for approximate nearest

neighbor search. VLDB 9(1), 1–12 (2015)
16. Jafari, O., Nagarkar, P.: Experimental analysis of locality sensitive hashing tech-

niques for high-dimensional approximate nearest neighbor searches. In: Qiao, M.,
Vossen, G., Wang, S., Li, L. (eds.) ADC 2021. LNCS, vol. 12610, pp. 62–73.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69377-0 6

17. Jafari, O., et al.: A survey on locality sensitive hashing algorithms and their appli-
cations. arXiv (2021)

18. Kleinberg, J., et al.: Human decisions and machine predictions. QJE 133(1), 237–
293 (2018)

19. Kleindessner, M., et al.: Guarantees for spectral clustering with fairness constraints.
arXiv (2019)

20. Liu, W., et al.: I-LSH: I/O efficient c-approximate nearest neighbor search in high-
dimensional space. In: ICDE (2019)

https://doi.org/10.1007/978-3-030-69377-0_6


Optimizing Fair Approximate Nearest Neighbor Searches 147

21. Lu, K., Kudo, M.: R2LSH: a nearest neighbor search scheme based on two-
dimensional projected spaces. In: ICDE (2020)

22. Mehrabi, N., et al.: A survey on bias and fairness in machine learning. arXiv (2019)
23. MNIST (1998). http://yann.lecun.com/exdb/mnist
24. Seagate ST2000DM001 Manual (2011). https://www.seagate.com/files/staticfiles/

docs/pdf/datasheet/disc/barracuda-ds1737-1-1111us.pdf
25. SIFT (2004). http://corpus-texmex.irisa.fr
26. Zheng, B., et al.: PM-LSH: a fast and accurate LSH framework for high-dimensional

approximate NN search. VLDB 13(5), 643–655 (2020)

http://yann.lecun.com/exdb/mnist
https://www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/barracuda-ds1737-1-1111us.pdf
https://www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/barracuda-ds1737-1-1111us.pdf
http://corpus-texmex.irisa.fr


Fairest Neighbors

Tradeoffs Between Metric Queries
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Abstract. Metric search commonly involves finding objects similar to
a given sample object. We explore a generalization, where the desired
result is a fair tradeoff between multiple query objects. This builds on
previous results on complex queries, such as linear combinations. We
instead use measures of inequality, like ordered weighted averages, and
query existing index structures to find objects that minimize these. We
compare our method empirically to linear scan and a post hoc combina-
tion of individual queries, and demonstrate a considerable speedup.

Keywords: Metric indexing · Multicriteria decisions · Fairness

1 Introduction

From the early days, indexing metric spaces has mainly been in service of
straightforward similarity search: Given some query object q, find other objects
o for which the distance d(q, o) is low—either all points within some search
radius, or a certain number of the nearest neighbors. Alternative forms of search
have been explored, certainly. Of particular interest to us is using multiple query
objects qi, without restricting the indexing methods used. That is, we wish to
take any existing metric index, already constructed, and execute a combination
query on it. Such a query may be specified directly by the user, or it may be
a form of interactive refinement. A user first performs a query using a single
object. Then she indicates which of the returned objects are most relevant (pos-
sibly to varying degrees), and these are then used as a second, combined query.
The result should ideally be a tradeoff between the query objects. In particular,
we wish to ensure that it is a fair tradeoff, borrowing measures of fairness from
the field of multicriteria decision making.

Our Contributions. In this short paper, we introduce the idea of fairest neighbors
(kFN), i.e., items that are close to multiple query objects at once, as measured
by some kind of fairness measure. For example, if we are looking for a centaur,
using a human and a horse, a simple linear combination will not do, as the
best results are then just as likely to be similar to just the human or just the
horse; only a fair combination would give us what we want. We formulate such
queries in the context of the complex queries of [4], but extend the formalism
by applying linear ambit overlap [7] to ordered weighted averages (OWA) and
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weighted OWA, for improved bounds. The resulting queries may be resolved
using existing metric index structures without modification. We perform prelim-
inary experimental feasibility tests, showing that such combined kFN queries
outperform both linear scan and using multiple separate kNN queries.

Related Work. Others have studied metric search with multiple simultaneous
criteria. As discussed by [4], Fagin’s A0 algorithm also resolves complex queries,
but makes additional assumptions about synchronized independent subsystems.
Bustos and Skopal [1] study a superficially similar problem that involves a linear
combination of multiple metrics, while still using a single query object. More
closely related are metric skylines, which are essentially Pareto frontiers in pivot
space [3]. These result sets will be diverse, and will tend to include both fair and
unfair solutions. Our approach moves beyond non-Pareto-dominated solutions
to non-Lorenz-dominated solutions [cf. 6].

2 Complex Queries as Multicriteria Decisions

In 1998, Ciaccia et al. introduced a formalism for dealing with what they called
complex queries in metric indexes—queries involving multiple query objects,
along with some domain-specific query language, specifying which objects are
relevant and which aren’t [4]. Part of their formalism involves mapping distances
to similarity measures, which are then constrained by some query predicate;
however, the core ideas apply equally well to distances directly. A central insight
is that monotone predicates may be used not just to detect whether an object is
relevant, but also whether certain regions might contain relevant objects.

Let x = [d(qi, o)]mi=1 be a vector of distances between query objects qi and
some potentially relevant object o. Relevance is then defined by some predicate
on these distances, P(x). This predicate is monotone if for all x ≤ y we have
that P(y) implies P(x). That is, if we start with the distance vector of a relevant
object, and we reduce one or more of the distances, the resulting vector should
also be judged as relevant. In this case, using lower bounds for the individual
distances is safe (i.e., it will not cause false negatives). So, for example, if we know
that o is in a ball with center c and radius r, we can safely replace [d(qi, o)]i with
[d(qi, c)−r]i and apply P to determine whether or not to examine the ball. Using
this approach, one can find the k best objects by maintaining a steadily shrinking
search radius encompassing the k best candidates found so far, just as one would
for kNN. The idea is illustrated in Fig. 1: The vector x − r of lower bounds
corresponds to the lower left corner of the square enveloping the region in pivot
space (indicated by a ‘+’ in the right-hand subfigure). A monotone query and a
ball region may overlap only if this lower left point is inside the query definition
in this space [cf. 7]. Similarly, we may conclude that the region is entirely inside
the query (and thus return all its objects without further examination) if the
upper right corner (x + r) satisfies the query predicate.
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Fig. 1. A complex query Q with two query objects qi and a ball region R. The right-
hand subfigure shows the query and region in pivot space, where the two axes corre-
spond to distances from the two query objects. The hatched areas could potentially
fall within the ball R, depending on the nature of the metric; what remains outside R
constitutes potential false positives. (Hetland discusses these concepts in depth [7].)

Two of the query types discussed explicitly by Ciaccia et al. are based on
fuzzy logic, and one uses a weighted sum. These permit indicating degrees of
relevance for the various query objects qi, but may have many equally good
solutions, with vastly different properties. What can be done if we wish to enforce
some form of actual tradeoff? Consider a query predicate of the form f(x) ≤ s.
That is, we apply some monotone function f to the vector x of distance d(qi, o)
and are only interested in objects o for which f(x) falls below some search radius
s. Different monotone functions f may yield very different query regions:

min(x1, x2) x1 + x2 x2
1 + x2

2

Minimum (corresponding to maximum, or standard fuzzy disjunction, in the
similarity formalism of Ciaccia et al.) produces results that are close to one or
the other of the two query points, but not both. A sum gives us points that can
lie anywhere between the two (in general within an ellipsoid). A sum of positive
powers, however, produces items that are between the query points—ideally in
the middle (i.e., in their metric midset). This is the kind of query we want.

Using sums of powers to characterize tradeoffs is a common approach in car-
dinal welfarism, and it is one of a broader class of aggregation functions used in
multicriteria decision making [6].1 These are all generally monotonically increas-
ing, with the optimum found for some fair tradeoff between their arguments.
Applied to individual query distances d(qi, o), our measure will of course need

1 Though Ciaccia et al. do not directly address fairness or tradeoffs, their standard and
algebraic fuzzy conjunctions, correspond to the maximin and Nash welfare fairness
measures, respectively, if applied, in isolation, to similarities [4].
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to be minimized, and so must be an unfairness measure, rather than a fairness
measure. In the following, we will focus on ordered weighted average (OWA),
and its generalization, weighted OWA. The OWA of some vector x is based on
a weighting of the elements of x, just like a weighted average, except that the
weights are applied based on the rank of each element xi. Given a weight vector
w ≥ 0, summing to 1, the OWA of x is wx↑, where, x↑ is a sorted version of x.
As discussed in Sect. 3 (in a more general setting), by ensuring that w is also
sorted, we get an unfairness measure. Our overlap check with an r-ball, using
the complex query formalism, becomes:

f(x − r) ≤ s ⇐⇒ wx↑ − r ≤ s . (1)

For some structures, such as VP-trees [9], LC [2] and HC [5], we also need to
determine whether the query is entirely inside a ball region—or, equivalently,
whether it intersects with the complement of the ball. Our lower bound on each
distance between the query and the outside is r − xi, and using monotonicity
again, we get the criterion r−wx↑ < s. If, however, we do not treat the query as
a black-box monotone function, we can, as described in the following section, get
the stronger criterion r−wx↓ < s, where x↓ is x sorted in descending order. The
difference between these two bounds can be arbitrarily large, even for just two
query objects. The complemented ball is also just a particularly simple linear
ambit with negative coefficients [7]; the situation is similar for other such regions.

3 Ordered Weighted Averages and Linear Ambits

It is possible to construct a weighted generalization of OWA, called weighted
OWA (WOWA), where some individuals (i.e., query objects) get preferential
treatment when determining a tradeoff [8]. The following definition is given by
Gonzales and Perny [6].

Definition 1. Let p = [p1, . . . , pm] and w = [w1, . . . , wm] be weighting vectors,
where pi, wi ∈ [0, 1] and

∑m
i=1 pi =

∑m
i=1 wi = 1. The weighted ordered weighted

average (WOWA) of a vector x ∈ R
m with respect to p and w is defined by:

WOWA(x; p,w) =
m∑

i=1

[

ϕ

(
m∑

k=i

pσ(k)

)

− ϕ

(
m∑

k=i+1

pσ(k)

)]

xσ(i) , (2)

where σ is a permutation of x in increasing order and ϕ : [0, 1] → [0, 1] is defined
by linear interpolation between values ϕ(i/m) =

∑i
k=1 wm−k+1 and ϕ(0) = 0.

With decreasing weights, WOWA is a fairness measure. This works well for
similarities, but as discussed, for distances we need need unfairness. One way of
achieving this is to use an increasing weight vector. This makes intuitive sense,
and for similarities s(u, v) = 1−d(u, v), as used by Ciaccia et al. [4], we can show
that the least unfair distance tradeoff is exactly the fairest similarity tradeoff.2

2 Note that, following Ciaccia et al., we assume s(u, v) ∈ [0, 1], which requires a
bounded metric, with d(u, v) ∈ [0, 1].
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Proposition 1. Let p, w and w′ be WOWA weighting vectors, with w′
i =

wm−i+1 for all i ∈ {1, . . . , m}. For any x ∈ [0, 1]m, we have that:

WOWA(x; p,w′) = 1 − WOWA(1 − x; p,w) (3)

Proof. Let ϕw and ϕw′ be the function ϕ, as defined in Definition 1, for w and
w′, respectively. Also, let σ and σ′ be permutations of, respectively, 1 − x and x
in increasing order so that σ′(i) = σ(m − i + 1). We have that:

WOWA(1 − x; p,w) = 1 −
m∑

i=1

[

ϕw

(
m∑

k=i

pσ(k)

)

− ϕw

(
m∑

k=i+1

pσ(k)

)]

xσ(i) (4)

One can easily verify that ϕw′(b)−ϕw′(a) = ϕw(1−a)−ϕw(1−b) for a, b ∈ [0, 1]
and that

∑m
k=i pσ(k) = 1 − ∑i−1

k=1 pσ(k). Thus:

WOWA(1 − x; p,w) = 1 −
m∑

i=1

[

ϕw′

(
i∑

k=1

pσ(k)

)

− ϕw′

(
i−1∑

k=1

pσ(k)

)]

xσ(i) (5)

= 1−
m∑

i=1

[

ϕw′

(
m∑

k=i

pσ′(k)

)

− ϕw′

(
m∑

k=i+1

pσ′(k)

)]

xσ′(i) (6)

= 1 − WOWA(x; p,w′) (7)

Equation 3 can then easily be obtained from (7). �	
For our overlap check, we wish to model a WOWA query as a linear ambit
B[q, s;W] = {o : Wxo ≤ s}, where xo = [d(qi, o)]i, as introduced by Hetland
[7]. While WOWAs are not linear functions, we can emulate a query with m
query objects as a linear ambit with m! facets, one per possible permutation of
x. Normally, the intersection check would require considering each facet in turn,
which would quickly become computationally unfeasible with an increasing m,
and could in theory lead to false positives.3 However, when the weights for the
WOWA representing our unfairness measure are in increasing order (correspond-
ing to a fairness measure on similarities, per Proposition 1), membership and
overlap checks need only consider one of the facets, eliminating both of these
problems.

Proposition 2. Let w and p be weighting vectors, where w1 ≤ w2 ≤ · · · ≤ wm.
Let W be a matrix with m! rows, one for each possible permutation, σ, of an
m-vector. For a permutation σ, the value in column i of the corresponding row
is:

ϕ

⎛

⎝
m∑

k=j

pσ(k)

⎞

⎠ − ϕ

⎛

⎝
m∑

k=j+1

pσ(k)

⎞

⎠ , (8)

where σ(j) = i and ϕ is the function from Definition 1. For x ∈ R
m
≥0 and s ∈ R,

let wσ be the row in W corresponding to σ. If σ puts x in increasing order,
Wx ≤ s iff wσx ≤ s. If σ puts x in decreasing order, Wx > s iff wσx > s.
3 This is discussed by Hetland in Sect. 3.1 [7].
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Proof. For any permutation σ, we can create a new permutation σ′, with σ′(i) =
σ(i + 1), σ′(i + 1) = σ(i) for some i ∈ {1, . . . , m − 1} and σ′(j) = σ(j) for all
j /∈ {i, i + 1}. Since w is in increasing order, we know that the growth of ϕ
is monotonically decreasing over [0, 1]. Combined with the fact that ‖wσ‖1 =
ϕ(1) − ϕ(0) = ‖w‖1 = 1 for all σ, we get that:

⎧
⎪⎨

⎪⎩

wσx ≥ wσ′x if xσ(i) < xσ(i+1)

wσx ≤ wσ′x if xσ(i) > xσ(i+1)

wσx = wσ′x otherwise
(9)

If a permutation σ does not put x in increasing order, there is an i such that
xσ(i) > xσ(i+1). Thus, there is another permutation σ′ with wσ′x ≥ wσx. Conse-
quently, one of the permutations σ that maximizes wσx must put x in increasing
order. Note that by the third case in (9), if there are multiple permutations that
put x in increasing order, the value of wσx is the same for all of them. Similarly,
any σ that puts x in decreasing order minimizes wσx. �	
Using the construct in Proposition 2, we can for a WOWA-based unfairness
measure, defined by weighting vectors w and p, create a linear ambit B[q, s;W].
As long as w is in increasing order, i.e., w = w↑, the membership check of this
ambit, Wx ≤ s, is equivalent to checking that WOWA(x; p,w↑) ≤ s. That is, this
ambit is equivalent to a range query with the WOWA-based unfairness measure.
And when checking whether this query ambit intersects the inverted r-ball round
c, we can in principle perform m! individual checks like r − wσx < s (i.e.,
wσx > r−s), one per row σ.4 Proposition 2 shows us that we need only consider
the single row corresponding to a decreasing x. In other words, the overlap check
is strengthened from s > r − WOWA(x; p,w↑) to s > r − WOWA(x; p,w↓).

4 Experiments

To demonstrate the practical feasibility of the method, even without any fine-
tuning or high-effort optimization, we have tested it empirically on synthetic
and real-world data, using the basic index structure list of clusters (LC), as
described by Chávez and Navarro [2].5 Briefly, the LC partitions the data set
into a sequence of ball regions, each defined by a center, a covering radius, and a
set of member items. A search progresses by detecting overlap with each ball in
turn, potentially scanning its members for relevance. A defining feature of LC is
that the points in later buckets fall entirely outside previous balls, so that if the
query falls entirely inside one of the balls, the search process may be halted.

4 This follows from the linear ambit overlap check described in Theorem 3.1.2 of
Hetland [7], as well as from the monotonicity result of Ciaccia et al. [4], inserting
the lower bound r − x into the ambit membership predicate.

5 The source code and raw experimental results are available as ancillary files for the
preprint of this paper at https://arxiv.org/abs/2108.03621.

https://arxiv.org/abs/2108.03621
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Table 1. Experimental results. For each of the double (two separate) and combined
queries, the speedup (where higher is better) from the number of distance computations
needed for linear scan is listed for each k = 1, . . . , 5.

Double Combined

Data set Dim. Scan 1 2 3 4 5 1 2 3 4 5

Colors 112 225 162 3.29 3.09 2.98 2.91 2.84 5.55 5.22 5.04 4.91 4.80

NASA 20 80 098 1.57 1.46 1.42 1.38 1.36 2.64 2.48 2.39 2.33 2.28

Uniform 4 200 000 2.17 2.14 2.12 2.10 2.09 7.13 6.94 6.82 6.72 6.65

6 200 000 2.16 2.07 2.02 1.99 1.96 5.73 5.47 5.32 5.20 5.10

8 200 000 2.01 1.89 1.82 1.78 1.74 4.20 3.95 3.79 3.68 3.59

10 200 000 1.87 1.73 1.65 1.60 1.56 3.20 2.96 2.82 2.73 2.66

Clustered 4 200 000 2.28 2.25 2.22 2.21 2.19 7.62 7.47 7.37 7.30 7.23

6 200 000 2.39 2.28 2.22 2.17 2.14 6.17 5.91 5.75 5.62 5.53

8 200 000 2.07 1.93 1.87 1.82 1.79 4.41 4.12 3.95 3.84 3.75

10 200 000 1.84 1.72 1.64 1.60 1.57 3.20 2.96 2.83 2.73 2.66

Listeria — 41 118 1.25 1.17 1.16 1.13 1.06 1.28 1.28 1.27 1.27 1.27

More specifically, bucket centers were chosen to maximize distance to previ-
ous centers (heuristic p5 of Chávez and Navarro), with each ball constructed to
contain the 20 closest points to the center, as well as any additional points that
fall within the resulting radius.6 The data sets used were:

– Synthetic: 100 000 uniformly random and clustered vectors from [0, 1]D, for
D = 2, 4, . . . , 10. The clustered vectors were constructed by first generating
1000 cluster centers, uniformly at random, and then generating 100 vectors
per cluster, by adding standard Gaussian noise.

– Real-world: The Colors, NASA and Listeria SISAP data sets.7

Euclidean and Levenshtein distance were used with vectors and strings, respec-
tively. For the real-world data sets, the 101 first objects were taken as queries;
for the synthetic ones, queries were generated in addition. These were used pair-
wise (1 and 2, 2 and 3, etc.) in an OWA query with weights 1 and 3 (like the
Gini coefficient). Fairest neighbor queries (kFN) were run for k = 1, . . . , 5. The
number of distance computations was averaged over the 100 query object pairs.

Table 1 shows the results. As a baseline, the number of distance computations
needed for a linear scan is listed, and the speedup for the combined kFN query
is shown for each k. For comparison, we also performed a double query, where a
separate k was found for each of the two query objects, to ensure that the true

6 These choices were made based on the results of Chávez and Navarro [2], which
indicate that p5 yields the best results overall, and a bucket size of 20 is a good
tradeoff between filtering power and scanning time for a wide range of data sets.

7 Available at https://sisap.org.

https://sisap.org
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kFN would be returned,8 and then two separate kNN queries were performed,
with the fairest neighbors found in their intersection. The combined search used
fewer distance computations than the alternatives for every data set and param-
eter setting. On average, the combined search used about half as many distance
computations as the separate queries, and a quarter of a full linear scan.9

5 Conclusions and Future Work

Ordered weighted averages (OWA) and weighted OWAs (WOWA) may be used
as a query modality with any current metric index, when tradeoffs between
multiple query objects are needed, to find their k fairest neighbors, kFN. They
provide a large degree of customizability, both in terms of their fairness profile
and the relative weights of different query objects, and are easy to implement.
Other monotone (un)fairness measures may also be used, though possibly with
weakened overlap checks in some cases.

Future research might look into adapting index structures, e.g., by adjusting
construction heuristics, to fair neighbor queries, and whether the requirements
for efficiency in practice are different from, say, single-object ball queries. Gen-
eralizations of fairness might also be interesting, where one permits negative
weights for certain objects, which is straightforward for weighted sum, but whose
implementation is less obvious for WOWA. A more straightforward extension of
this work would be to test on other data sets, perhaps with higher (intrinsic)
dimensionality, using more advanced index structures.
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Abstract. Local intrinsic dimensionality (LID) has many important
applications in the field of machine learning (ML) and data mining
(DM). Existing LID models and estimators have mostly been applied
to data points in Euclidean spaces, enabling LID-aware ML/DM algo-
rithms for tabular data. To the best of our knowledge, prior research
works have not considered LID for designing or evaluating graph-based
ML/DM algorithms. In this paper, we discuss potential applications of
LID to graph-structured data considering graph embeddings and graph
distances. Then, we propose NC-LID – a LID-related measure for quanti-
fying the discriminatory power of the shortest-path distance with respect
to natural communities of nodes as their intrinsic neighborhoods. It is
shown how NC-LID can be utilized to design LID-elastic graph embed-
ding algorithms based on random walks by proposing two LID-elastic
variants of Node2Vec. Our experimental evaluation on real-world graphs
demonstrates that NC-LID can point to weak parts of Node2Vec embed-
dings that can be improved by the proposed LID-elastic extensions.

Keywords: Intrinsic dimensionality · Graph embeddings · Graph
distances · Natural communities · LID-elastic Node2Vec

1 Introduction

The intrinsic dimensionality (ID) of a dataset is the minimal number of features
that are needed to form a good lower-dimensional representation of the dataset
without a large information loss. The estimation of ID is highly relevant for
various machine learning and data mining tasks, especially when dealing with
high-dimensional data. Namely, lower-dimensional data representations can be
exploited to train machine learning models in order to improve their generaliz-
ability by alleviating negative effects of high dimensionality. Due to a smaller
number of features, such models are more comprehensible and their training,
tuning and validation is more time efficient.

c© Springer Nature Switzerland AG 2021
N. Reyes et al. (Eds.): SISAP 2021, LNCS 13058, pp. 159–172, 2021.
https://doi.org/10.1007/978-3-030-89657-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89657-7_13&domain=pdf
http://orcid.org/0000-0003-1267-5411
http://orcid.org/0000-0002-9599-4495
http://orcid.org/0000-0003-2225-7803
https://doi.org/10.1007/978-3-030-89657-7_13


160 M. Savić et al.

The notion of the local intrinsic dimensionality (LID) has been developed in
recent years motivated by the fact that the ID may vary across a dataset. The
main idea of LID is to focus the estimation of ID to a data space surrounding a
data point. In a seminal paper, Houle [7] defined the LID considering the distri-
bution of distances to a reference data point. Additionally, Houle showed that
for continuous distance distributions with differentiable cumulative density func-
tions the LID and the indiscriminability of the corresponding distance function
are actually equivalent. Let x be a reference data point and let F denote the
cumulative distribution function of distances to x. It can be said that the under-
lying distance function is discriminative at a given distance r if F (r) has a small
increase for a small increase in r. Thus, the indiscriminability of the distance
function at r w.r.t x, denoted by ID(r), can be quantified as the limit of the
ratio of (a) the proportional rate of increase of F (r), and (b) the proportional
rate of increase in r. Then, the LID of x is given as limr→0 ID(r). For practical
applications, the LID of x can be estimated considering the distances of x to its
k nearest data points [1,2]. Recent research works showed that the LID can be
exploited for density-based clustering [9], outlier detection [9,10], training deep
neural network classifiers on datasets with noisy labels [13], detection of adver-
sarial data points when training deep neural networks [12], subspace clustering
and estimating the local relevance of features [3] and similarity search [4,8].

The applications of machine learning and data mining algorithms designed
for tabular datasets to graphs are enabled by various graph embedding algo-
rithms [5]. Here we consider graph embedding algorithms translating graph nodes
into n-dimensional real-valued vectors with the goal of preserving graph-based
distances in the embedding space. Besides applications in node classification,
node clustering and link prediction tasks, graph embeddings may be also uti-
lized for similarity search applications. Namely, similarity search when performed
directly on large-scale graphs may pose several difficulties due to the small-world
phenomenon [16], i.e. for a given node (similarity search query) the number of
nodes at a given shortest-path distance (potential similarity search hits) grows
at a very fast rate with the shortest path distance.

In this paper we discuss potential applications of LID to graphs (Sect. 2).
To the best of our knowledge, this is the first work considering LID for design-
ing and evaluating ML/DM algorithms operating on graph-structured data. As
the main contributions, we propose a LID-related measure called NC-LID to
quantify the discriminability of the shortest-path distance locally per node with
respect to their natural communities as intrinsic subgraph boundaries (Sect. 3)
and two extensions of the Node2Vec graph embedding algorithm [6] that per-
sonalize and adjust Node2Vec parameters according to NC-LID values (Sect. 4).
In the experimental evaluation presented in Sect. 5, it is demonstrated that NC-
LID can indicate weak parts of Node2Vec embeddings prior to their construction
and that our LID-elastic Node2Vec extensions provide better embeddings w.r.t.
reconstruction errors. In the last section we discuss possible directions for future
research.
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2 LID and Graphs

Existing LID models and corresponding estimators have been designed for tabu-
lar datasets with real-valued features and smooth distance functions. There are
two ways in which they can be applied to graphs: (a) by transforming graphs
into tabular data representations using graph embedding algorithms, and (b) by
using graph-based distances instead of distances of vectors in Euclidean spaces.
To the best of our knowledge, we are not aware of any previous research study
investigating the LID of graph embeddings or applying LID estimators to graph-
based distances.

The first approach enables the LID-based evaluation of graph embeddings
and their analysis in the context of distance-based machine learning and data
mining algorithms. For example, Amsaleg et al. [1] proposed the maximum-
likelihood LID estimator (MLE-LID). By computing MLE-LID for each node
in a graph on embeddings produced by different graph embedding algorithms
we can study which of the embeddings is the most effective for distance-based
machine learning and data mining algorithms (under the assumption that the
embeddings preserve the structure of the graph to a similar extent). Additionally,
obtained MLE-LID values can indicate whether we can benefit from LID-aware
data mining and machine learning algorithms for a concrete embedding.

LID estimates for graph nodes obtained by applying LID estimators on
graph embeddings are relative to the selected graph embedding dimension that
is explicitly required by graph embedding algorithms. Additionally, the useful-
ness of LID estimates depends on the ability of the selected graph embedding
algorithm to preserve the structure of the input graph.

The MLE-LID estimator mentioned above (or any other LID estimator, e.g.
the estimator also proposed by Amsaleg et al. [2] that estimates LID within
tight localities) can be applied “directly” on graphs by taking shortest path
distances instead of distances in Euclidean spaces (in the most general case since
graph embedding algorithms try to preserve shortest path distances in embedded
spaces). However, LID estimates based on shortest path distances will suffer from
negative effects of the small-world property, i.e. for a randomly selected node n
there will be an extremely large fraction of nodes at the same and relatively
small shortest-path distance from n. The hubness property of large-scale real-
world graphs (i.e., the existence of nodes with an extremely high degree that are
called hubs) will also have a big impact on such LID estimates. For example, LID
for hubs will be estimated as 0 by the MLE-LID estimator due to a large number
of nearest neighbors at the shortest-path distance 1. Another problem with this
approach is the shortest-path distance itself. The notion of LID is based on the
assumption that the radius of a ball around a data point can be increased by a
small value that tends to 0. However, the shortest-path distance does not have
an increase that can go to 0 (the minimal increase is 1) in contrast to distances
in Euclidean space.
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3 NC-LID: LID-related Measure for Graph Nodes Based
on Natural Communities

Following the discussion from the previous section, we consider a somewhat
different conceptual approach to designing LID-related measures for nodes in a
graph. The main idea is to substitute a ball around a data point with a subgraph
around a node in order to estimate the discriminatory power of a graph-based
distance of interest. Here we observe the most basic case which is a fixed subgraph
that can be considered as the intrinsic locality of the node.

Let n denote a node in a graph G = (V,E) and let S be a subgraph contain-
ing n. The graph-based distance of interest can be the shortest-path distance,
but also any other node similarity function, including hybrid node similarity
measures for attributed graphs. Assuming that S is a natural (intrinsic) locality
of n, d can be considered as a perfectly discriminative distance measure if it
clearly separates nodes in S from the rest of the nodes in G.

To measure the degree of discriminatory power of d considering S as the
intrinsic locality of n we define a general limiting form of the local intrinsic
discriminability of d as

GB-LID(n) = − ln
( |S|

T (n, S)

)
, (1)

where |S| is the number of nodes in S. T (n, S) is the number of nodes whose
distance from n is smaller than or equal to r, where r is the maximal distance
between n and any node from S:

T (n, S) =
∣∣∣∣
{

y ∈ V : d(n, y) ≤ max
z∈S

d(n, z)
}∣∣∣∣ . (2)

Similarly to standard LID for tabular data, GB-LID assesses the local neigh-
borhood size of n at two ranges: the number of nodes in a neighborhood of
interest (S) and the total number of nodes that are within relevant distances
from n considering distances from n to nodes in S. The more extreme the ratio
between these two, the higher the intrinsic dimensionality (local complexity)
of n. Unlike standard LID, GB-LID depends on the complexity of a fixed sub-
graph around the node rather than some measure reflecting the dynamics of
expanding subgraphs (this will be part of our future work). Compared to other
measures capturing the local complexity of a node (e.g., degree centrality and
clustering coefficient), GB-LID is not restricted to ego-networks of nodes or reg-
ularly expanding subgraphs capturing all nodes within the given distance (e.g.,
LID-based intrinsic degree proposed by von Ritter et al. [15]).

GB-LID is a class of LID-related scores effectively parameterized by 〈Sn, d〉,
where Sn is the subgraph denoting the intrinsic local neighborhood of node n
and d is an underlying distance measure. From GB-LID we derive one concrete
measure called NC-LID (NC is the abbreviation for “Natural Community”). In
NC-LID we fix Sn to the natural (local) community of n determined by the
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fitness-based algorithm for recovering natural communities [11] and d is the
shortest path distance.

A community in a graph is a highly cohesive subgraph. This means that the
number of links within the community (so-called intra-community links) is sig-
nificantly higher than the number of links connecting nodes from the community
to nodes outside the community (so-called inter-community links). The natural
or local community of node n is a community recovered from n. When computing
NC-LID we use the fitness-based algorithm for identifying natural communities
proposed by Lancichinetti et al. [11]. Starting from n, this algorithm recovers
the natural community C of n by maximizing the community fitness function
that is defined as:

fC =
kin(C)

(kin(C) + kout(C))α
, (3)

where kin(C) is the total intra-degree of nodes in C, kout(C) is the total inter-
degree of nodes in C, and α is a real-valued parameter controlling the size of
C (larger α implies smaller C). The intra-degree and inter-degree of a node s
are the number of intra-community and inter-community links incident to s,
respectively. The most natural choice for α is α = 1, which corresponds to the
Raddichi notion of weak communities [14].

NC-LID(n) is equal to 0 if all nodes from the natural community of n are at
shorter shortest-path distances to n than nodes outside its natural community.
Higher values of NC-LID(n) imply that it is harder to distinguish the natural
community of n from the rest of the graph using the shortest-path distance, i.e.
the natural community of n tends to be more “concave” and elongated in depth
with higher NC-LID(n) values. Nodes with such complex natural communities
may also be brokers having large values of node centrality metrics that connect
different parts of the graph by their long-range links (i.e., links whose removal
significantly increase the average shortest path distance).

4 LID-elastic Node2Vec Variants

Having an appropriate LID-based score for graph nodes such as NC-LID, it is
possible to design LID-aware or LID-elastic graph embedding algorithms. In this
work we propose two LID-elastic variants of Node2Vec [6].

Node2Vec is a random-walk based algorithm for generating graph embed-
dings. The main idea of random-walk based graph embedding algorithms is to
sample a certain number of random walks starting from each node in a graph.
Sampled random walks are then treated as ordinary sentences over the alphabet
encompassing node identifiers. This means that the problem of generating graph
embeddings is reduced to the problem of generating text embeddings. Node2Vec
relies on Word2Vec to produce node embedding vectors from random-walk sen-
tences.

Node2Vec employs a second order random walk scheme with two parameters
p and q which guide the walk. Let us assume that a random walk just tran-
sitioned from node t to node v. The parameter p (return parameter) controls
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the probability of intermediately returning back to t. The parameter q (in-out
parameter) controls to what extent random walk resembles BFS or DFS graph
exploration strategies. For q > 1, the random walk is more biased to nodes close
to t (BFS-like graph exploration). If q < 1 then the random walk is more inclined
to visit nodes that are further away from t (DFS-like graph exploration).

Our Node2Vec LID-elastic extensions are based on the premise that high NC-
LID nodes have higher link reconstruction errors than low NC-LID nodes due
to more complex natural communities. More specifically, the quality of graph
embeddings can be assessed by comparing original graphs to graphs recon-
structed from embeddings. Let G denote an arbitrary graph with L links and let
E be an embedding constructed from G using some graph embedding algorithm.
The graph reconstructed from E has the same number of links as G. The links
in the reconstructed graph are formed by joining the L closest node vector pairs
from E. Then, the following metrics quantifying the quality of E according to
the principle that nodes close in G should be also close in E can be computed
for each node n:

1. Link precision P (n) is the number of correctly reconstructed links incident
to n divided by the total number of links incident to n in the reconstructed
graph.

2. Link recall R(n) is the number of correctly reconstructed links incident to n
divided by the total number of links incident to n in the original graph.

3. Link F1 score F1(n) is a metric aggregating P (n) and R(n) into a single score
that is defined as their harmonic mean: F1(n) = 2 ·P (n) ·R(n)/(P (n)+R(n)).

Higher values of P (n), R(n) and F1(n) imply lower link reconstruction errors
for n.

The sampling mechanism of Node2Vec is controlled by 4 parameters: the
number of random walks sampled per node, the length of each random walk,
p and q. The first two parameters are fixed for each node in a graph, while p
and q are fixed for each pair of nodes. Our Node2Vec LID-elastic extensions are
based on Node2Vec parameters personalized for nodes and pairs of nodes that
are adjusted according to their NC-LID values.

The first LID-elastic variant of Node2Vec, denoted by lid-n2v-rw, person-
alizes the number of random walks sampled per node and the length of random
walks according to the following rules:

1. The number of random walks sampled for n is equal to �(1+NC-LID(n)) ·B�,
where B is the base number of random walks (by default B = 10).

2. The length of random walks sampled for n is equal to �W/(1 + NC-LID(n))�
(by default W = 80).

lid-n2v-rw samples a proportionally higher number of random walks for high
NC-LID nodes while keeping the computational budget (the total number of ran-
dom walk steps per node) approximately constant. The main idea is to increase
the frequency of high NC-LID nodes in sampled random walks in order to bet-
ter preserve their close neighborhood in formed embeddings. Additionally, the
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probability of the random walk leaving the natural community of the starting
node is lowered for high NC-LID nodes due to shorter random walks.

The second LID-elastic variant of Node2Vec, denoted by lid-n2v-rwpq,
extends lid-n2v-rw by personalizing p and q parameters controlling biases when
sampling random walks. Let pb and qb denote the base values of p and q (by
default pb = qb = 1). The lid-n2v-rwpq variant incorporates the following
adjustments of p and q for a pair of nodes x and y, where x is the node on which
the random walk currently resides and y is one of its neighbours:

1. If x is in the natural community of y then p(x, y) = pb, otherwise p(x, y) =
pb + NC-LID(y).

2. If y is in the natural community of x then q(x, y) = qb, otherwise q(x, y) =
qb + NC-LID(x)

The first rule controls the probability of returning back from x to y if the random
walk transitioned from y to x in the previous step. By increasing the base p value
if x is not in the natural community of y lid-n2v-rwpq lowers the probability
of making a transition between different natural communities. The increase is
equal to NC-LID(y) which implies that the backtrack step is penalized more if
y has a more complex natural community.

The second rule controls the probability of going to nodes that are more dis-
tant from the previously visited node in the random walk. The base q value is
increased for nodes not belonging to the natural community of x meaning that
again lid-n2v-rwpq penalizes transitioning between different natural commu-
nities. The increase in qb is equal to NC-LID(x) implying that lid-n2v-rwpq
biases the random walk to stay within more complex natural communities.

5 Experiments and Results

Our experimental evaluation of the NC-LID measure and LID-elastic Node2Vec
extensions is performed on datasets (graphs) listed in Table 1. The experimen-
tal corpus encompasses three small social networks (Karate club, Les miserables
and Florentine families), five paper citation networks (CORAML, CORA, CITE-
SEER, PUBMED and DBLP) and two co-purchasing networks of Amazon prod-
ucts (AE photo and AE computers) that are commonly used to evaluate graph
embedding methods. For each graph, Table 1 shows the number of nodes (N),
the number of links (L), the number of connected components (C), the fraction
of nodes in the largest connected component (F ), the average degree (d̄) and
the skewness of the degree distribution (S). It can be observed that the exper-
imental corpus encompasses both small and large sparse graphs (d̄ � N − 1).
All graphs, except CITESEER, are either connected graphs (C = 1) or have a
giant connected component (F > 0.9). The degree distribution of large graphs
has a high positive skewness implying that those graphs contain so-called hubs
(nodes whose degree is significantly higher than the average degree).
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Table 1. Experimental datasets.

Graph N L C F d̄ S

Karate club 34 78 1 1.00 4.59 2.00

Les miserables 77 254 1 1.00 6.60 1.89

Florentine families 15 20 1 1.00 2.67 0.62

CORAML 2995 8158 61 0.94 5.45 12.28

CITESEER 4230 5337 515 0.40 2.52 8.44

AE photo 7650 119081 136 0.98 31.13 10.42

AE computers 13752 245861 314 0.97 35.76 17.34

PUBMED 19717 44324 1 1.00 4.50 5.21

CORA 19793 63421 364 0.95 6.41 7.87

DBLP 17716 52867 589 0.91 5.97 9.43

5.1 Natural Communities and NC-LID

Since natural communities are the base for the NC-LID measure, we first examine
their characteristics. Figure 1 shows the complementary cumulative distribution
(CCD) of the size of natural communities on a log-log plot. The size of a natural
community is the number of nodes it contains. It can be seen that CCDs for
large graphs have very long tails. This implies that a large majority of nodes
have relatively small natural communities (10 or less nodes), but there are also
nodes having exceptionally large natural communities (100 or more nodes). For
example, 76.56% of CORA nodes have natural communities with 4 or less nodes,
while the largest natural community in CORA contains 146 nodes.

The average NC-LID and the maximal NC-LID of nodes in examined graphs
are presented in Fig. 2 sorted from the graph having the most compact natu-
ral communities to the graph with the most complex natural communities on
average. The social network of Florentine families has the lowest average NC-
LID equal to 0.48. This NC-LID level means that approximately 38% of nodes
within the shortest-path radius of the natural community of a randomly selected
node do not belong to its natural community. The largest average NC-LID for
examined graphs is 5.12 (AE computers). This NC-LID value corresponds to
situations in which approximately 0.6% of nodes within the shortest-path radius
of a natural community belong to the natural community. It should be empha-
sized that NC-LID positively correlates with the size of the natural community
(Spearman’s correlations higher than 0.3) for 5 graphs, for 3 graphs negatively
(correlations lower than −0.15), while for 2 graphs (PUBMED and AE Comput-
ers) significant correlations are absent.

5.2 Node2Vec Evaluation

Prior to evaluating LID-elastic Node2Vec modifications, we examine characteris-
tics of Node2Vec embeddings. Graph reconstruction metrics (mean link precision,
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Fig. 1. The complementary cumulative distribution of sizes of natural communities.
The solid line represents the 0.5 probability.

Fig. 2. The average and the maximal NC-LID for graphs from our experimental corpus.

recall and F1 scores, see Sect. 4) were computed for 125 Node2Vec embeddings per
graph in order to find the best embedding in the following parameter space: p and
q were varied to take values in {0.25, 0.5, 1, 2, 4}, and the embedding dimension
in {10, 25, 50, 100, 200}. The number of sampled random walks per node and the
length of random walk was set to their default values (10 and 80, respectively)
as suggested in [6]. The parameters for the best embeddings, selected according
to the average F1 score, are shown in Table 2 (P denotes the mean link precision
and R the mean link recall). It can be seen that for all graphs except CITESEER,
Node2Vec preserves the structure of examined graphs to a fairly good extent (F1

in the range from 0.39 to 0.96).
The basic assumption of LID-elastic Node2Vec modifications is that high

NC-LID nodes have higher graph reconstruction errors compared to low NC-LID
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Table 2. Characteristics of the best Node2Vec embeddings.

Graph Dim. p q P R F1

Karate club 100 0.25 4 0.7814 0.7762 0.7788

Les miserables 100 0.25 4 0.7889 0.8325 0.8101

Florentine families 100 0.25 4 0.9667 0.9611 0.9639

CORAML 25 0.5 0.25 0.6300 0.6682 0.6485

CITESEER 10 0.5 0.25 0.2284 0.2438 0.2359

AE photo 50 0.5 0.5 0.5076 0.4835 0.4953

AE computers 50 4 0.25 0.4856 0.4231 0.4522

PUBMED 50 4 0.25 0.3152 0.5245 0.3937

CORA 25 4 0.25 0.5803 0.5648 0.5724

DBLP 25 0.5 1 0.4431 0.3693 0.4029

nodes when applying the original Node2Vec to generate graph embeddings. To
check this assumption we first examine Spearman’s correlations between NC-
LID of nodes and their F1 scores in the best Node2Vec embeddings described
in Table 2. The obtained results are presented in Fig. 3. It can be seen that for
all graphs except two small graphs (Karate club and Les miserables) there are
notable negative Spearman’s correlations between NC-LID and F1 ranging from
−0.2 to −0.4 (please recall that lower F1 scores imply higher graph reconstruc-
tion errors).

Fig. 3. The Spearman correlation between NC-LID of nodes and their F1 scores in the
best Node2Vec embeddings.

Second, we divide nodes into two groups: H – nodes that have high NC-LID
values higher than the average NC-LID and L – nodes with low NC-LID values
lower than the average NC-LID. Then, we apply the Mann-Whitney U (MWU)
test to those two groups of nodes considering their F1 scores. The MWU test
checks the null hypothesis that scores in one group do not tend to be either
higher or lower than scores in the other group. The results of conducted MWU
tests are summarized in Table 3. The table shows the average F1 score for H and
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L (F1(H) and F1(L), respectively), the value of the MWU test statistic (U), the
p-value of U (p) and values of two probabilities of superiority:

– PS(H) – the probability that the F1 score of a randomly selected node from
H (denoted by h) is strictly higher than the F1 score of a randomly selected
node from L (denoted by l), and

– PS(L) – the probability that the F1 of l is strictly higher than the F1 of h.

We accept the null hypothesis of MWU (no statistically significant differences
between in F1 scores of H and L) if p > 0.01 (column “acc.” in Table 3). It
can be observed that the null hypothesis of MWU is accepted only for the three
smallest graphs from our experimental corpus. For large graphs we have that F1

scores of high NC-LID nodes tend to be significantly lower than F1 scores of low
NC-LID nodes (F1(H) < F1(L) and PS(H) � PS(H)).

Table 3. Comparison of F1 scores of high NC-LID nodes (H) and low NC-LID nodes
(L) using the Mann-Whitney U test.

Graph F1(H) F1(L) U p acc. PS(H) PS(L)

Karate club 0.70 0.71 132 0.44 yes 0.44 0.48

Les miserables 0.76 0.76 734 0.50 yes 0.47 0.47

Florentine families 0.93 0.98 19 0.10 yes 0.07 0.39

CORAML 0.44 0.62 699380 <10−2 no 0.29 0.67

CITESEER 0.10 0.25 1707420 <10−2 no 0.19 0.31

AE photo 0.32 0.43 5239408 <10−2 no 0.36 0.64

AE computers 0.29 0.38 17900546 <10−2 no 0.38 0.61

PUBMED 0.19 0.32 31448278 <10−2 no 0.28 0.59

CORA 0.36 0.54 29695497 <10−2 no 0.28 0.68

DBLP 0.20 0.42 26684749 <10−2 no 0.25 0.57

By taking into account both the observed Spearman’s correlations and the
results of the MWU tests it can be concluded that high NC-LID nodes tend to
have significantly higher graph reconstruction errors than low NC-LID nodes.
This implies that the NC-LID measure is able to point to “weak” parts of
Node2Vec embeddings prior to their constructions. Consequently, Node2Vec
embeddings could be possibly improved by adjusting Node2Vec parameters indi-
vidually per node according to its NC-LID value.

5.3 LID-elastic Node2Vec Evaluation

Embeddings by LID-elastic Node2Vec variants proposed in Sect. 4 are generated
according to the best configurations of original Node2Vec (Table 2). More specif-
ically, for a given graph and embedding dimension we set base p and base q of
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LID-elastic Node2Vec variants to p and q of the best corresponding Node2Vec
embedding. As for Node2Vec embeddings examined in the previous section, the
base number of random walks and the base length of random walks are set to
their default values. The embedding dimension is varied in the same way as for
Node2Vec. Then, we examine lid-n2v-rw and lid-n2v-rwpq embeddings by
computing their average link F1 scores, selecting the best embedding across con-
sidered embedding dimensions, and comparing the best LID-elastic Node2Vec
embedding to the best embedding generated by Node2Vec (n2v). The obtained
results are summarized in Table 4 showing the best F1 score of n2v and the
embedding dimension in which it is achieved and the best F1 scores of LID-
elastic Node2Vec variants and the corresponding embedding dimensions. The
column “Best” indicates the best graph embedding algorithm according to F1

and I is the percentage improvement in F1 of a better LID-elastic Node2Vec
variant over n2v.

Table 4. Comparison of Node2Vec and LID-elastic Node2Vec embeddings.

n2v lid-n2v-rw lid-n2v-rwpq

Graph F1 Dim. F1 Dim. F1 Dim. Best I [%]

Karate club 0.78 100 0.83 50 0.85 100 lid-n2v-rwpq 9.4

Les miserables 0.81 100 0.80 100 0.83 200 lid-n2v-rwpq 2.7

Florentine families 0.96 100 0.96 100 0.96 100 all 0.0

CORAML 0.65 25 0.66 50 0.63 25 lid-n2v-rw 1.3

CITESEER 0.24 10 0.25 10 0.28 10 lid-n2v-rwpq 18.7

AE photo 0.50 50 0.52 50 0.49 50 lid-n2v-rw 4.9

AE computers 0.45 50 0.47 100 0.42 50 lid-n2v-rw 4.7

PUBMED 0.39 50 0.43 50 0.42 50 lid-n2v-rw 9.4

CORA 0.57 25 0.60 50 0.59 50 lid-n2v-rw 3.9

DBLP 0.40 25 0.44 25 0.53 50 lid-n2v-rwpq 31.7

For Florentine families (the smallest graph in our experimental corpus) both
LID-elastic Node2Vec variants achieve the same F1 score as n2v. In all other
cases at least one LID-elastic variant is better than n2v. For 5 graphs (out of
10) both LID-elastic variants have higher F1 scores than n2v. The lid-n2v-rw
variant achieves the highest F1 score for 5 graphs, while lid-n2v-rwpq wins in 4
cases. The largest improvements in F1 are achieved by lid-n2v-rwpq for DBLP
and CITESEER. For those two graphs lid-n2v-rwpq significantly outperforms
n2v: F1 is improved by 31.7% and 18.7%, respectively. Significant improvements
(approximately 5% or higher) are also present for 4 other graphs (Karate club,
AE Photo, AE Computers and PUBMED).
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6 Conclusions and Future Work

In this work we have discussed the notion of local intrinsic dimensionality in the
context of graphs, which is the first step towards LID-aware ML/DL algorithms
for graph-structured data. Since graphs are dimensionless objects, existing LID
models could be applied to graphs by computing LID estimators either on graph
embeddings or on graph-based distances.

Inspired by the fundamental connection between the local intrinsic dimen-
sionality and the discriminability of distance functions in Euclidean spaces, we
have proposed the NC-LID metric quantifying the discriminability of the short-
est path distance considering natural communities of nodes in graphs. Then, we
have suggested two LID-elastic modifications of the Node2Vec graph embedding
algorithm in which Node2Vec parameters are personalized per node and adjusted
according to their NC-LID values. Our experimental evaluation of the proposed
LID-elastic Node2Vec modifications on 10 real-world graphs revealed that they
are able to improve Node2Vec embeddings with respect to graph reconstruction
errors.

The current work could be continued in two directions. One direction is
to investigate possibilities for designing LID-related metrics reflecting the dis-
criminability of graph-based distance functions considering expanding subgraph
localities. In the same way as NC-LID, such metrics could be exploited to per-
sonalize and adjust parameters of graph embedding algorithms. Having in mind
that nodes with complex intrinsic localities may have a significant brokerage
role, it would also be interesting to examine correlations between LID-related
scores and node centrality metrics.

The second research direction is related to natural communities. Namely, we
will investigate alternative random walk strategies for graph embedding algo-
rithms that explicitly take into account the inner structure of natural commu-
nities and characteristics of nodes within them.
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Abstract. The dimension of the space within which the data lives is a
major driver for the performance of many processing operations. How-
ever, global dimensionality cannot be blindly trusted as the data may
lie on structures of lower local dimensionality within the ambient space.
Here, we address the problem of estimating the local dimensionality of
the data space or to provide a consistent proxy for it.

The review of existing local dimensionality estimators shows the var-
ious types of geometric information they are based on. We propose the
exploration of an alternative route using proximity constraints mapped
into the structure of a spanner graph whose properties reflect the local
geometry. We propose to adapt PageRank-like information propagation
algorithms to infer the structural intrinsic dimensionality directly from
the neighborhood structure of data points, taken as vertices. Further,
the presence of the spanner over our dataset enables global operations to
strengthen the coherence of our estimates and support similarity search.

Keywords: Local intrinsic dimension · Kissing number · Geometric
graph spanner

1 Introduction

The dimension of the space containing the data generally refers to the geomet-
ric dimension corresponding to the number of linearly independent vectors the
space can accommodate. Global data dimension is not a proper characteristic of
the data. If the data is uniformly distributed within its ambient space, there is
no structural pattern to exploit to construct index structures. The assumption
is therefore that the global data dimension may simply represent the dimen-
sion of an ambient space within which the data lies over finer structures as a
subspace of lower dimension. It is further assumed that the dimension of this
subspace may vary locally, therefore defining the notion of local dimensionality.
The intrinsic nature of this dimensionality attaches it to the data rather than to
its representation and therefore makes it more of an invariant of that data.
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In this paper we investigate the nature of local dimensionality along with the
proposed models for its estimation (Sect. 2). We then uncover the issues related
to its estimation in a practical setup. In particular, we address the issue of the
stability of the estimate in relation to the various parameters (Sects. 3 and 4).

The main contribution of this paper is to make proposals to break the para-
dox that local dimensionality is a local notion but the statistical nature of its
estimation requires to extend its support beyond mere locality. We present exper-
imental measures that support our proposals.

2 The Fundamental Information Behind Local
Dimensionality

We define the local dimensionality at point x ∈ R
M as being a local indication

of dim(x), the latent dimension at point x of a continuous information density
distribution f immersed into the ambient space R

M (f : RM �→ R+;
∫
R

f = 1).
That is the lowest dimension of the subspace around x within which f could be
embedded with no loss (isometrically).

f is thus a probability density function installed over the ambient space RM

from which we can sample discrete locations (the data). Call X a set of N points
X = {xi}[[N ]] ⊂ R

M that is taken as a sample from the density distribution f . A
metric (e.g. Euclidean distance) is used to define the neighborhood of every xi.
Then, the goal of discrete local dimensionality estimation is to infer the value of
dim(xi) at every xi from the locations of points in the rest of X. In effect, the
function dim(.) can take any positive scalar value (dim(x) ∈ R

+), i.e. “discrete”
refers to the estimation being based on discrete point locations.

2.1 Motivation for an Estimation

Formally, the Nearest Neighbor Indexing (NNI) theorem [21] and subsequent
works state that for a workload of vanishing variance in high dimensions, the
performance of the class of convex indexes will approach that of sequential search
(i.e. O(N)). This is clearly supported in practice when working with data of
dimensions approaching 20.

Underlying the proof of the NNI theorem is the idea that the indexing cov-
ers the dataset X with potentially overlapping convex tiles. As the dimension
increases, the vanishing variance of the distribution (D) of distances makes the
width of the indexing tiles of the same order than the distance to the near-
est neighbor (the best answer to the query). As a result, all tiles need to be
fetched during any search process. In this situation, mostly all N points of X
are explored as candidates for the result of any search.

The property of vanishing variance stating that

∃α ∈ R
+
\{0} s.t. lim

M→∞
Var

(
Dα

M

E[Dα
M ]

)

= 0
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is closely related to the so-called concentration of distances arising due to the
Lipschitz structure of Minkowski distances (summing iid coordinates) and the
Chebyshev inequality [3]. In other words, no convex indexing can provide exclu-
sion, due to the concentration of distances. This makes this result rather univer-
sal in Data Analysis and motivates the quest for discrete local dimensionality
estimation. In essence, by turning the argument upside down, we seek an estimate
that correlates with the factor (called “dimensionality”, dim(x)) that influences
the performance of any data nearest neighborhood indexing (and analysis).

Note further that most of the related literature focuses on estimating the
dimensionality but a proper use of this characterization is yet to be proposed.
This work is a step towards constructing a context where the analysis provides
actionable tools to make effective similarity search in high dimensional spaces.

2.2 Expansion-Based Estimation

The class of expansion-based estimation techniques relies on the fact that the
increase of volume of a M -dimensional hypersphere VM is essentially related to
the increase of its radius r by an exponential relationship.

VM (r) =
2π

M
2

MΓ (M
2 )

rM ⇒ ∂VM

∂r
=

2π
M
2

Γ (M
2 )

rM−1

This is exploited in the definition of the Expansion Dimension (ED) [18] and its
generalization GED [12]. The strategy is to estimate a proxy for the volume of
the hypersphere of radius r centered at xi by counting the number n of data
points in a r-range query from xi. Hence, the dimension is estimated by a log of
the relative increase of this number (from n1 to n2) versus the increase in radius

(from r1 to r2): GED(xi) =
log

n2
n1

log
r2
r1

.

The above assumes (at least locally) a uniform distribution of data around
xi. It is further refined by considering (instead of the volume of the hypersphere)
the cumulative function F (r) of a distance distribution (whose 0 would be at -
every- xi). This allows to model a variable density within the space and to define
the lID [13,14] that matches the GED for a uniform distribution.

2.3 Concentration of Correlates

Another route for exploring the local geometry of the space is to look at angles.
Fixing one direction uk from xi (thru xk say), one can study the distribution
of the angles made between this direction and vectors uj whose extremity xj

other than xi is sampled over a hypersphere centered at xi. Such an estimation
amounts to compute the surface of spherical caps defined by the cones generated
by uk and angle θ ∝ ∠(uk,uj). This distribution of correlates (cos(θ) = 〈uk,uj〉)
is further known to concentrate with increasing dimensionality [5,6,9]:

P(θ) =
Γ (M

2 )
Γ ( 12 )Γ (M−1

2 )
sinM−2(θ) and Var(cos(θ)) =

1
M
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The latter second order information is then used to estimate the local dimen-
sionality by local samples of angles [22].

2.4 Sphere Packing

Another possible approach is to also use the notion of sphere packing [6] but
in relation to the kissing number. Here, the observed estimate is the number of
non-intersecting hyperspheres of diameter r able to be tangent to (to “kiss”)
a hypersphere of radius r centered at xi. This is known as the kissing number
Kiss(M) whose exact values are known only for a select number of dimension
values M ∈ {1, 2, 3, 4, 8, 24}. For other values, upper and lower bounds which
illustrate the dynamic of the kissing number with respect to the dimension have
been proposed [16]:

(1 + O(1))

√
3π

8
log

(
3

2
√

2

)

M
3
2

(
2√
3

)M

≤ Kiss(M) ≤ (1 + O(1))
√

π

8
M

3
2 2

M
2

The regular dependence of these bounds on dimension makes the kissing number
another appropriate entry door to the estimation of the local dimensionality.

It can be noted that this information also relates to the above angle-based
estimation in the sense that the kissing number counts the maximum number
of non-intersecting spherical caps with total angle π

3 (generative angle π
6 ) one

can segment the central hypersphere surface with. It is a particular instance of
so-called “spherical codes” [4,16] with θ = π

3 . Equivalently, the kissing number
counts the number of points a given point can be nearest neighbor of (so-called
reverse nearest neighbor). For example, a point of a 2D plane can only be the
nearest neighbor of Kiss(2)=6 points (arranged as a hexagon).

2.5 Discussion

The above three approaches are different in their computation but rely on essen-
tially the same information.

Expansion-based estimations explicitly use the shape of the density distribu-
tion along the distance axis. That is, from the central point xi where the local
dimensionality is to be estimated the hyperspherical shell of radius r around
that point is integrated into the point of coordinate r on the distance axis. It
is the growth rate of this value that is explicitly modeled by GED and lID. In
the discrete version [1,2], the lID is a measure of the density of data within a
thick spherical shell (from the 1-NN to the k-NN of xi). The transition from the
continuous model to the discrete estimation still imposes an assumption of local
uniformity in the distribution of the k nearest neighbors.

The estimation of the ABID [22] is based on estimating the concentration of
the cosine similarities between points on a hypersphere centered at xi. Using fixed
length vectors, the cosine similarities are known to correlate with squared dis-
tances (e.g. this is the basis for the MIPS problem [10]) [4]: 〈uk,uj〉 ∝ d(xk, xj)2

In practice, the k nearest neighbors from xi are used so that the ABID is also a
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reflection of the density of data within a thick spherical shell (from the 1-NN to
the k-NN of xi). The advantage of this estimation is that angles involve triplets
of points and create a combinatoric volume of estimates, thus reducing the span
of the neighborhood (value of k) required in practice to obtain a robust estimate.

Finally, using the kissing number to estimate the local dimensionality imposes
complementary constraints: at fixed radius r from xi (first constraint) the kissing
number counts how many points can be organized so as to be at least r-distant
from each other (second constraint). The first constraint may similarly be relaxed
by exploring values of r along the distance axis. The second constraint may be
imposed by selecting neighbors dispersed around xi. This is handled via the
generation of spanner graphs such as the reverse neighbor graph, the half-space
proximal graph (HSP) [7] or the Yao and θ-graphs [20]. In earlier works [8,15],
we explored the correlation between indicators of some of these graphs with local
dimensionality to partition the dataset in view of improving its indexability.

3 Information Propagation on Neighbor Graphs

In their original presentations, the above measures essentially treat all points
xi individually and sequentially. They then operate some statistical analysis
(e.g. mean or variance) on the distribution of the local dimensionality values
throughout the dataset.

Considering the points independently creates the tension between the desire
to compute a robust estimation over a large number of neighbors (large k in k-
NN) and the intrinsic wish to stay local (small ε in ε-NN). The kissing number
instructs us that for dimensions as limited as 20 the coverage of the hypersphere
requires O(104) neighbors already, which is beyond the density of any classical
dataset1. One can therefore question the validity of the empirical estimates made
using k = O(102) neighbors. This is partly discussed in [22], for example.

In addition, the local dimensionality may vary from a point to another in
X. Hence, computing global a posteriori statistics may not be so relevant for all
datasets (e.g. a Saturn-shaped dataset). This can be related to the Yule-Simpson
effect [11], which induces potentially contradictory interpretations, depending of
the scale at which the data is studied2.

In turn, a true local dimensionality estimate would enable operations like
dimensionality-based clustering, and define indexability [15].

Here, we make steps in the direction pointed by the above remarks: using the
global structural information provided by the full dataset X for estimating the
local dimensionality at every xi ∈ X. We relax the implicit above assumption of
a constant local dimensionality by assuming that the local dimensionality bears

1 We argue that estimating the O(M) linearly independent vectors reflecting the geo-
metric dimension (e.g. using rank-based methods such as local PCA) would not be
reliable in that case due to quasi-orthogonality [17] and the issue of local neighbor-
hood selection.

2 This further relates the question of discrete local dimension estimation to local scale
estimation, an important topic, addressed in [2], left for further investigation.



178 S. Marchand-Maillet et al.

some smoothness of the form: d(xi, xj) < r ⇒ |dim(xi)−dim(xj)| < α for small
values of r and α.

3.1 Structural Regression

Following the above discussion we propose to enforce that the dimensionality at
xi is the weighted average of the dimensionality of its neighbors xj :

dim(xi) =
1
Zi

∑

xj∈N (xi)

wij dim(xj) (1)

for some neighborhood N (xi) and some influence weighting wij with proper
normalization Zi =

∑
j wij (note that xi ∈ N (xi) and wii = 0). This smoothness

condition alone makes the dimensionality estimates prone to translation, as the
above stays valid if dim′(xi) = dim(xi) + K with any constant K. Hence, we
apply this strategy starting from an estimate ε of the dimensionality (e.g. lID or
ABID).

Given ε = [εi]T as estimate for local dimensionality d = [di]T, we resolve the
classical regression:

d∗ = min
d∈RN

L(d, ε) where L(d, ε) =
1
2
‖d − ε‖22 +

λ

2
(di −

∑

xj∈N (xi)

dj)2

with λ > 0 controlling the smoothness when maintaining the volume
∑

i di

constant. The above is a classical convex minimization solved iteratively using:

d
(t+1)
i ← d

(t)
i − η

⎡

⎣(d(t)i − εi) + λ(d(t)i −
∑

xj∈N (xi)

wijd
(t)
j )

⎤

⎦ (2)

for learning rate 0 < η < 1. It is easy to see that this guarantees Var[d∗] ≤ Var[ε].

3.2 Experiments

We wish to validate empirically our analysis on the regularity of local dimen-
sionality estimates. We use the lID [13] and its MLE estimate [2], and the HSP
degree [15] over uniform datasets of known dimensionality to calibrate our study.

We generate datasets of various dimensionalities (M ∈ {3, 6, 10, 15, 20,
30, 50}) and various densities (N ∈ {10000, 20000, 30000, 40000, 50000, 100000,
150000}) to study the influence of dimension with respect to data density.

The datasets are composed of N samples of a distribution (Uniform or Gaus-
sian) restricted to a M -dimensional hypersphere of radius 1. Spherical datasets
are chosen to eliminate “corner” effects.

Figure 1(top) shows the estimates provided by the HSP built over an hyper-
sphere filled with uniform (left) and Gaussian (right) sampling, using its degree
as a function of the data density and for the dimensionalities listed above. One
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Fig. 1. Variation of dimensionality estimates versus parameters (N or kmax) for [left:
spherical data] [right: gaussian data] [up: HSP degree] [down: lID with N = 50′000]

clearly sees that although only correlated with the true dimensionality, the esti-
mates stabilize with an increase of the density but that the variance augments
with density.

Turning to the lID MLE estimate, we use the same datasets with fixing a high
density with N = 50′000 and varying the size of the neighborhood over which
the estimate is computed: kmax ∈ {1000, 3000, 5000, 10000}. Clearly, the esti-
mates get corrupted using a too large kmax. Further, as dimensionality increases
this phenomenon is more drastic (the variance here is too large to be properly
displayed).

The above clearly illustrates the contradiction in extending the support of
estimation of a local estimator. It shows that even though the estimates may
be considered as overall reliable (e.g. when averaged), the sensitivity to their
parameters and location of estimation is so that they cannot be blindly applied
without some knowledge of an appropriate scale and the presence of a reasonable
local data density.

The main issue lies in the variance of these estimates, as we seek a factor that
correlates with what could be referred to as local dimensionality. We therefore
look at the behavior of these measures over datasets of varying dimensionality to
demonstrate the capability of our smoothing (Eq. 1) to reduce the variance of the
estimates.We generate a datasetwith 3 non-overlapping spherical uniform clusters
containing 20’000, 15’000 and 15’000 points respectively and of dimensionality 20,
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10 and 5 respectively. We initially estimate the degree of the HSP and smooth it
using our iterative convolution (Eq. 2) where we fix λ = 5 and η = 0.1 everywhere.

Fig. 2. Estimates before and after iterative convolution. The initial values are [left:
HSP degree], [right: lID using k=1000]. Both diffusions happen over the HSP (Color
figure online)

The result is reported in Fig. 2(left). We first clearly see that the estimate is
correct with respect to our calibration in Fig. 1. The three clusters are clearly
identified. However, the estimate vary significantly within clusters. As result of
the regression, dimension estimates are corrected (from blue to red dots) and
the variance diminish appropriately. Here, inspired by the gravitational physical
model, we use wij = 1

d2(xi,xj)
as influence weight.

We use the same dataset to perform an estimate with the lID (fixing
kmax = 1000) (Fig. 2(right)). The regression clearly alleviates the problem of
high variance in the estimates. However, due to the initial distribution, the esti-
mates remain rather spread, indicating a need for exploring stronger constraints
in the regression or using a stronger value for λ.

Table 1 gives the variation of mean and standard deviation (between brack-
ets) of the estimates in both cases and per cluster. Note that the result of the
convolution is not the mere mean and variance of the original, showing that the
weighting structure does play a role.

4 Structural Intrinsic Dimensionality

We push the idea of information propagation over a neighborhood structure a
step further. The geometry described in Sect. 2.4 suggests that dimensionality
may be captured by the connectivity structure of the neighborhood graph itself.

We already demonstrated that the degree of the HSP whose construction
relates to the kissing number correlates with dimensionality. It is known (notably
from the development of the PageRank algorithm) that information propagation
over directed graphs can provide essential information about the underlying con-
nectivity structure. We therefore hypothesize that the local dimensionality may
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Table 1. Mean and standard deviations for HSP degree and lID before and after
iterative convolution (λ = 5 and η = 0.1)

Cluster 1 Cluster 2 Cluster 3

HSP initial 28.02 (10.97) 13.89 (3.37) 7.54 (1.26)

HSP smoothed 26.08 (6.71) 15.29 (2.06) 8.71 (0.64)

lID initial 22.70 (6.51) 10.95 (2.83) 5.23 (1.06)

lID smoothed 22.74 (3.65) 10.93 (1.95) 5.21 (0.83)

be inferred via information diffusion, provided the graph encodes this informa-
tion.

Given a directed graph G = (X,E) with edge set E defined from geometric
constraints, i.e. (xi, xj) ∈ E iff xj ∈ N (xi), we define information propagation
of value d(x) as the convergence of the (directed) iterative process:

d
(t+1)
i ←

∑

xj s.t. xi∈N (xj)

wjid
(t)
j (3)

Classically, the diffusion is done so as to preserve the value
∑

i d(xi) constant.
The directed setup thus imposes

∑
j wij = 1 ∀i ∈ [[N ]], making matrix

W = [wij ]ij∈[[N ]] a row-stochastic matrix (wij = 0 if (xi, xj) ∈ E). It is known
that under proper conditions, this process converges to the principal eigenvector
(with eigenvalue 1) of W , the weighted adjacency matrix of G. In PageRank-like
diffusion algorithms, edge weights wij are tuned so as to distribute the value at
node xi to forward neighbors xj based on the degree (e.g. wij = 1

deg+(xi)
).

Adapting to our geometrical context we read deg+(xi) =
∑

xj∈N (xi)
1. That

is, every outgoing edge from xi counts 1, so that wij = 1∑
xk∈N(xi)

1 . We transform

this to influence by inserting an inverse dependence φ(.) to distance as edge
weight, while preserving the row-stochasticity constraint:

wij =
φ(d(xi, xj))∑

xk∈N (xi)
φ(d(xi, xk))

where, for example φ(x) =
1
x

(4)

Using an inverse dependence as base edge weight (Eq. 4) therefore induces a
softmax-like filter on edges, thus favoring the shortest edge emanating from
every xi. Combining this with our diffusion strategy (Eq. 3), every vertex xi

receives mostly influence from the other vertices xj of which it is the closest
neighbor. This corresponds exactly to the definition of the kissing number at
xi. We therefore expect diffusion over such graph structures to exhibit an infor-
mation that correlates with local dimensionality and that we can refer to as
structural intrinsic dimensionality.

The relationship with eigencentrality in graphs is also clear as it corresponds
to the case where φ(x) = 1. This nicely connects with and continues our earlier
proposals [8,15], where we proposed graph centrality measures as indicators that
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correlate with local dimensionality. In this context, the degree of the HSP is seen
as its degree centrality indicator, itself an approximation of the eigencentrality.

4.1 Experiments

We now propose results for our structural intrinsic dimensionality estimation
using again the cluster dataset presented above. Our initial experiment confirms
that a careful design of the edge weighting scheme is important. We found that
using φ(x) = 1√

x
in Eq. 4 produces interesting results. As before, we smoothed

these results via iterative convolution. The results are presented in Fig. 3.

Cluster 1 Cluster 2 Cluster 3

Initial 3.14 (3.60) 1.61 (1.48) 0.86 (0.58)
Smoothed 3.44 (1.54) 1.40 (0.75) 0.65 (0.32)

Fig. 3. Dimensionality indicator from information propagation over the HSP (φ(x) =
1√
x
). Estimates before and after iterative convolution

Of course, the value of the estimate does not match the dimensionality as
understood as space dimension. However, information propagation does pro-
duce a proper indicator of this dimensionality. More investigation is required
to understand the most favorable structure of underlying spanner (HSP, k-NN,
reverse-k-NN, ...) to use for propagation and the best weighting scheme. It can
even be envisaged to join both, starting from the complete graph and decimating
it with respect to the defined edge weight (i.e. removing edges with negligible
transfer in order to reduce the computational cost).

Finally, it seems natural to target the integration of the iterative convolu-
tion process (Eq. 2) with the propagation (Eq. 3). We therefore believe that this
graph-based strategy for the estimation of the structural intrinsic dimensionality
opens many interesting questions.
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5 Conclusion

Local dimensionality is a major driver for the performance of data process-
ing techniques. Its effects are deeply rooted into statistics, as demonstrated by
the concentration of distances that is one aspect of the curse of dimensionality.
Obtaining indicators for local dimensionality in the discrete space is therefore
of interest and most existing local dimensionality indicators are based on the
estimation of the variation of local density.

Here, we consider any indicator that show a monotonic relationship with
local dimensionality. We propose to exploit the definition of the kissing number
to obtain such an indicator. Using a graph structure over the dataset, we show
that information propagation can not only help strengthening classical indicators
but also being used as an estimator itself. This work therefore gives a formal
grounding for our earlier proposals [8,15].

The results open the question of the underlying graph structure that would
be best suited for such an exploration. We suggest that this question is equivalent
to defining a proper edge weight, capturing the geometry of the dataset in the
graph structure. As this weighting naturally makes use of the underlying metric,
this clearly relates to the construction of appropriate geometric t-spanners that
will be one direction we wish to explore. One can note that graph-based com-
putations also provide a computational solution to the problem of combining
local and global structures. Computation can further be distributed using the
tight equivalence between information propagation algorithms and random walk
processes.

Finally, determining local dimensionality does not directly provide a solution
to counter its adverse effects. We have proposed to use it to partition the dataset
based on its indexability [15]. Following that route, we believe that the graphs
arising from the estimation of the structural intrinsic dimensionality will be
useful for constructing efficient indexing strategies in the line of recent graph-
based indexing techniques using navigable structures [19].

Another option for using local dimensionality estimates in an operational
setting may be their use to drive local embedding for adapting the indexing
locally into a lower dimensional context.
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VOPSGLOBAL: RTI-2018-098309-B-C32 and Xunta de Galicia/FEDER-UE GRC:
ED431C 2017/58.

References

1. Amsaleg, L., et al.: Extreme-value-theoretic estimation of local intrinsic dimen-
sionality. Data Min. Knowl. Disc. 32(6), 1768–1805 (2018)

2. Amsaleg, L., Chelly, O., Houle, M.E., Kawarabayashi, K., Radovanović, M., Treer-
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Abstract. The local intrinsic dimensionality (LID) model assesses the
complexity of data within the vicinity of a query point, through the
growth rate of the probability measure within an expanding neighbor-
hood. In this paper, we show how LID is asymptotically related to the
entropy of the lower tail of the distribution of distances from the query.
We establish tight relationships for cumulative Shannon entropy, entropy
power, and their generalized Tsallis entropy variants, all with the poten-
tial for serving as the basis for new estimators of LID, or as substitutes for
LID-based characterization and feature representations in classification
and other learning contexts.

1 Introduction

Assessing the complexity of high dimensional data is a fundamental task that
underpins many activities in machine learning and data mining. One well-known
measure of data complexity is the intrinsic dimensionality, a unitless quantity
that can be interpreted as the minimum number of latent variables needed to
describe the data.

The many extant formulations of intrinsic dimensionality can be divided into
two broad groups, global and local. Global intrinsic dimensionality, which takes
contributions from the full dataset to measure its complexity as a whole, has been
more widely investigated. By contrast, local variants of intrinsic dimensionality
assess the complexity of the data in the vicinity of a designated query location,
most notably in terms of the growth rate in the probability measure captured
by an expanding neighborhood. Local variants can therefore associate different
intrinsic dimensional values to different locations in the data domain.

Our focus in this paper is on the local intrinsic dimension (LID) as formulated
in [22,23], and in particular, establishing how it relates to entropy, perhaps the
most fundamental and widely-used model of data complexity. In its essence,
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entropy can be regarded as a measure of the uncertainty of a distribution. Our
study of entropy considers the distribution of distances to a query location,
where the distances are induced by a global data distribution. In particular,
we consider the entropy of the lower tail of the neighbor distance distribution
(the tail entropy), and consider its asymptotic tendency as the neighborhood
radius approaches zero.

Our analysis of the relationship between the tail entropy and local intrin-
sic dimensionality has further implications due to an established relationship
between the latter and the statistical theory of extreme values (EVT) [2]. For
any distribution of distances satisfying appropriate smoothness assumptions in
the lower tail, as the neighborhood radius approaches zero, the tail distribution
takes the form of a power law. Asymptotically, power law distributions can be
said to arise naturally in the lower tail, with the exponent of the power law
corresponding to the LID value.

We formulate asymptotic results that relate local intrinsic dimensionality
with multiple variants of tail entropy. In particular, we relate LID to:

– The cumulative tail entropy. Cumulative entropy [17,35] is an
information-theoretic measure popular in reliability theory, where it is used to
model uncertainty over time intervals. It corresponds to the expected value of
the mean inactivity time. Compared to ordinary Shannon differential entropy,
cumulative entropy has certain attractive properties, such as non-negativity
and ease of estimation.

– The tail entropy power. The entropy power is the exponential of the
entropy, and is also known as perplexity in the natural language processing
community. It corresponds to the volume of the smallest set that contains
most of the probability measure [16], and can be interpreted as a measure of
statistical dispersion [33]. It is also related to Fisher information via Stam’s
inequality [46].

– Generalized tail entropies (tail cumulative q-entropy and tail q-entropy
power). Generalized Tsallis entropies [8,47] are a family of entropies charac-
terized via an exponent parameter q applied to the probabilities, in which
the traditional (Shannon) entropy variants are obtained as the special case
q → 1. The use of such a parameter can often facilitate more accurate fitting
of data characteristics and robustness to outliers.

We believe our theoretical results are interesting in their own right, as they
capture fundamental properties of local neighborhood geometry, and since they
hold asymptotically for essentially all smooth data distributions. The relation-
ships between LID and tail entropy formulations also have two interesting poten-
tial applications:

– Estimation: Our theory allows the development of new estimators for
the LID of a query point, by applying existing estimators for cumulative
entropy [17] and cumulative q-entropy [8] to samples of a sufficiently-small
neighborhood of the query.
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– Feature representation: LID estimates can be used as features or as char-
acterizations within machine learning models, such as for the detection of
adversarial examples [36] or overfitting during learning [37]. However, small
errors in the estimation of LID can have a disproportionally large impact on
learning models. In contrast, the tail entropy power has long been known
to possess attractive properties for linear discrete systems [43], and thus has
potential as a more robust substitute for LID when used as a feature in logistic
regression models.

In summary, our key contributions are the development of new theory that
asymptotically relates tail entropy and LID, with potential applications of this
theory for estimation and feature representation. To the best of our knowledge,
this is the first work relating intrinsic dimensionality and the asymptotic behav-
ior of entropy within neighborhoods of a data domain.

2 Related Work

Our work relates to intrinsic dimensionality and its estimation, as well as tail
entropy and its varieties such as generalized tail entropy and cumulative tail
entropy. We briefly review these in turn.

Intrinsic dimensionality can be assessed either globally (for all data points) or
locally (with respect to a chosen query point). Surveys of the field provide more
detail [9,11,48]. In the global case, considerable work has focused on topological
models, with accompanying estimation methods [7,38,41]. Examples here include
PCA and its variants [29], graph based methods [15] and fractal models [9,20].
Other techniques such as IDEA [44,45] and DANCo [13] estimate the dimension
based on concentration of norms and angles, or 2-nearest neighbors [18].

For local intrinsic dimensionality, a popular estimator is the maximum likeli-
hood estimator, studied in the Euclidean setting by Levina and Bickel [34] and
later formulated under the more general assumptions of EVT by Amsaleg et
al. [2,23], who showed it to be equivalent to the classic Hill estimator [21]. Other
local estimators include expected simplex skewness [28], the tight locality esti-
mator [3], the MiND framework [44] and the manifold adaptive dimension [19].

Local intrinsic dimensionality has been used in a range of applications. These
include modeling deformation in complex materials [49], dimension reduction via
local PCA [30], similarity search [26], clustering [10], outlier detection [27], statis-
tical manifold learning [12], adversarial example detection [36], and adversarial
nearest neighbor characterization [1,4], and deep learning understanding [5,37].
In deep learning, it has been shown that adversarial examples are associated
with high LID estimates, a characteristic that can be leveraged to build accu-
rate adversarial example detectors [36]. It has also been found that the LID
of deep representations [5] or input data [42] is an indicator of the generaliza-
tion performance of deep neural networks (DNNs). A manifold ‘dimensionality
expansion’ phenomenon has been observed when DNNs overfit to noisy class
labels [37].
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Cumulative entropy was formulated in [17] and is a variant of cumulative
residual entropy [35]. Outside of reliability theory analysis, it has been used in
such data mining tasks as dependency analysis [39] and subspace cluster analysis
[6], where it has proved effective due to the existence of good estimators. Such
investigation has been at a global level (over the entire data domain), rather
than at the local level as in our study. Generalized variants based on Tsallis q-
statistics have been developed for both entropy [47] and cumulative entropy [8].

The concept of tail entropy has been used in financial applications for assess-
ing the expected shortfall [40] in the upper tail using quantization. This is dif-
ferent from our context, where we analyze lower tails and develop exact results
for an asymptotic regime.

3 Local Intrinsic Dimensionality

In this section, we summarize the LID model using the formulation of [23].
LID can be regarded as a continuous extension of the expansion dimension

due to Karger and Ruhl [25,32]. Like earlier expansion-based models of intrinsic
dimension, it draws its motivation from the relationship between volume and
radius in an expanding ball, where (as originally stated in [22]) the volume
of the ball is taken to be the probability measure associated with the region it
encloses. The probability as a function of radius—denoted by F (r)—has the form
of a univariate cumulative distribution function (CDF). The model formulation
(as stated in [23]) generalizes this notion to real-valued functions F for which
F (0) = 0, under appropriate assumptions of smoothness.

Definition 1 ([23]). Let F be a real-valued function that is non-zero over some
open interval containing r ∈ R, r �= 0. The intrinsic dimensionality of F at r is
defined as follows whenever the limit exists:

IntrDimF (r) � lim
ε→0

ln (F ((1+ε)r)/F (r))
ln(1+ε)

.

When F satisfies certain smoothness conditions in the vicinity of r, its intrin-
sic dimensionality has a convenient known form:

Theorem 1 ([23]). Let F be a real-valued function that is non-zero over some
open interval containing r ∈ R, r �= 0. If F is continuously differentiable at r,
then

IDF (r) � r · F ′(r)
F (r)

= IntrDimF (r).

Let x be a location of interest within a data domain S for which the distance
measure d has been defined. To any generated sample y ∈ D we can associate the
distance r = d(x,y); in this way, the global distribution that produces samples
y can be said to induce a local distance distribution with CDF F with respect to
x. In characterizing the local intrinsic dimensionality in the vicinity of location
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x, we are interested in the limit of IDF (r) as the distance r tends to 0, which
we denote by

ID∗
F � lim

r→0
IDF (r).

Henceforth, when we refer to the local intrinsic dimensionality (LID) of a func-
tion F , or of a point x whose induced distance distribution has F as its CDF,
we will take ‘LID’ to mean the quantity ID∗

F . In general, ID∗
F is not necessarily

an integer. In practice, estimation of the LID at x would give an indication of
the dimension of the submanifold containing x that best fits the distribution.

The function IDF can be seen to fully characterize its associated function F .
This result is analogous to a foundational result from the statistical theory of
extreme values (EVT), in that it corresponds under an inversion transformation
to the Karamata representation theorem [31] for the upper tails of regularly
varying functions. For more information on EVT and how the LID model relates
to it, we refer the reader to [14,23,24].

Theorem 2 (LID Representation Theorem [23]). Let F : R → R be a
real-valued function, and assume that ID∗

F exists. Let x and w be values for
which x/w and F (x)/F (w) are both positive. If F is non-zero and continuously
differentiable everywhere in the interval [min{x,w},max{x,w}], then

F (x)
F (w)

=
( x

w

)ID∗
F · GF (x,w), where GF (x,w) � exp

(∫ w

x

ID∗
F − IDF (t)

t
dt

)
,

whenever the integral exists.

In [23], conditions on x and w are provided for which the factor GF (x,w)
can be seen to tend to 1 as x,w → 0. The convergence characteristics of F to
its asymptotic form are expressed by the factor GF (x,w), which is related to
the slowly-varying component of functions as studied in EVT [14]. As we will
shown in the next section, we make use of the LID Representation Theorem in
our analysis of the limits of tail entropy variants under a form of normalization.

4 Tail Entropy and LID

In this section, we will establish relationships between local intrinsic dimen-
sionality and several forms of entropy conditioned on the lower tails of smooth
functions on domains bounded from below at zero. The results presented in this
section all hold asymptotically, as the tail boundary tends toward zero, when
normalized with respect to the length of the tail.

4.1 Definitions of Tail Entropy Variants

We begin with formal definitions of the tail entropies considered in this paper.
In each case, we assume that we are given a non-negative real-valued function
F whose restriction to [0, w] satisfies the following smooth growth properties:
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– F (0) = 0, and F (t) > 0 for t ∈ (0, w];
– F is strictly monotonically increasing;
– F is continuously differentiable.

The function φ(t) � F (t)/F (w) thus satisfies the conditions of a cumulative
distribution function over t ∈ [0, w] (recall that F (t|t ≤ w) = F (t)/F (w) over t ∈
[0, w]), with the derivative φ′(t) = F ′(t)/F (w) as its corresponding probability
density function.

The following tail entropy formulations apply to any function F satisfying
the conditions stated above. In their definitions, the only difference between the
tail variants and the original versions is that the distribution is conditioned to
the lower tail [0, w]. Consequently, in the tail variants, integration is performed
over the lower tail and not the entire distributional range [0,+∞).

Definition 2 (Tail Entropy). The entropy of F conditioned on [0, w] is

H(F,w) � −
∫ w

0

F ′(t)
F (w)

ln
F ′(t)
F (w)

dt .

The cumulative entropy is a variant of entropy proposed in [17,35] due to
its attractive theoretical properties. Tail conditioning on the cumulative entropy
has the same general form as that of the tail entropy.

Definition 3 (Cumulative Tail Entropy). The cumulative entropy of F con-
ditioned on [0, w] is

cH(F,w) � −
∫ w

0

F (t)
F (w)

ln
F (t)
F (w)

dt .

There are several standard definitions of entropy power in the research lit-
erature. For our purposes, we adopt the simplest—the exponential of Shannon
entropy—for our definition conditioned to the tail.

Definition 4 (Tail Entropy Power). The entropy power of F conditioned on
[0, w] is defined to be

HP(F,w) � exp (H(F,w)).

In the introduction, we briefly mentioned some motivation for the entropy
power HP(F,w). We can add to this as follows:

– It can be interpreted as a diversity. Observe that when F is a (univariate)
uniform distance distribution ranging over the interval [0, w], we have ID∗

F = 1
and HP(F,w) = w. In other words, the entropy power is equal to the ‘effective
diversity’ of the distribution (the number of neighbor distance possibilities).

– Given two different queries, each with its own neighborhood, one query with
tail entropy power equal to 2 and the other with tail entropy power equal to
4, we can say that the distance distribution of the second query is twice as
diverse as that of the first query.
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For each of the tail entropy variants introduced above, we also propose anal-
ogous variants based on the q-entropy formulation due to Tallis [47]. In general,
q-entropy formulations can be shown to be identical to their Shannon entropy
analogues in the limit as q tends to 1.

Table 1. Asymptotic relationships between normalized tail entropy variants and local
intrinsic dimensionality.

Entropy variant Normalized tail entropy Limit as w → 0+

Cumulative entropy ncH(F,w) � 1
w

cH(F,w)
ID∗

F
(ID∗

F
+1)2

Cumulative q-Entropy ncHq(F,w) � 1
w

cHq(F,w)
ID∗

F
(ID∗

F
+1)(q ID∗

F
+1)

Entropy power nHP(F,w) � 1
w

HP(F,w) 1
ID∗

F
exp

(
1 − 1

ID∗
F

)

q-Entropy power nHPq(F,w) � 1
w

HPq(F,w)
(

(ID∗
F )q

q ID∗
F

−q+1

) 1
1−q

Definition 5 (Tail q-Entropy). For any q > 0 (q �= 1), the q-entropy of F
conditioned on [0, w] is defined to be

Hq(F,w) � 1
q − 1

(
1 −

∫ w

0

(
F ′(t)
F (w)

)q

dt

)
=

1
q − 1

∫ w

0

F ′(t)
F (w)

−
(

F ′(t)
F (w)

)q

dt .

Definition 6 (Cumulative Tail q-Entropy). For any q > 0 (q �= 1), the
cumulative q-entropy of F conditioned on [0, w] is defined to be

cHq(F,w) � 1
q − 1

∫ w

0

F (t)
F (w)

−
(

F (t)
F (w)

)q

dt .

We define the tail q-entropy power using the q-exponential function from
Tsallis statistics [47], expq(x) � [1+(1− q)x]

1
1−q . Note that L’Hôpital’s rule can

be used to show that expq(x) → ex as q → 1.

Definition 7 (Tail q-Entropy Power). For any q > 0 (q �= 1), the q-entropy
power of F conditioned on [0, w] is defined to be

HPq(F,w) � [1 + (1 − q)Hq(F,w)]
1

1−q .

For the cumulative tail entropy and tail entropy power variants, we will also
consider a normalization given by the ratio of the entropy with w, the length
of the tail. In the remainder of this section, we will show that as w tends to
zero, the limits of these normalized entropies can be expressed in terms of the
local intrinsic dimensionality of F . The notation for these normalized entropy
variants, and our theorems for their limits in terms of LID, are summarized in
Table 1.
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4.2 Technical Preliminaries

Before presenting the main theoretical results of the paper, we begin with two
technical lemmas. The first lemma concerns a slight generalization of the cumu-
lative entropy formulation, that allows it to greatly facilitate the proofs for two
tail entropy variants, the cumulative entropy and the entropy power.

Lemma 1. Let F : R≥0 → R
≥0 be a function such that F (0) = 0, and assume

that ID∗
F exists and is positive. For some value of r > 0, let us further assume

that within the interval [0, r), F is continuously differentiable and strictly mono-
tonically increasing, and ψ is positive. Then for any constant u < ID∗

F ,

lim
w→0+

wu−1

∫ w

0

ψ(w)F (t)
tuF (w)

ln
ψ(w)F (t)
tuF (w)

dt

= lim
w→0+

ψ(w)
ID∗

F +1 − u

[
ln

ψ(w)
wu

− ID∗
F −u

ID∗
F +1 − u

]

whenever the right-hand limit exists or diverges to +∞ or −∞.

Proof: Since the limit ID∗
F = limv→0+ IDF (v) is assumed to exist, we have that

for any real value ε > 0 satisfying ε < min{r, ID∗
F −u}, there must exist a value

0 < δ < ε such that v < δ implies that | IDF (v) − ID∗
F | < ε. Therefore, when

0 < t ≤ w < δ,

|ln GF (t, w)| =
∣∣∣∣
∫ w

t

ID∗
F − IDF (v)

v
dv

∣∣∣∣ < ε ·
∣∣∣∣
∫ w

t

1
v

dv

∣∣∣∣ = ε · ln
w

t
.

Exponentiating, we obtain the bounds
(w

t

)−ε

< GF (t, w) <
(w

t

)ε

. (1)

For any real x > 0, we define xlnx(x) � x ln x. Applying Theorem 2 to F (t), and
making use of the upper bound on GF , the integral becomes
∫ w

0

xlnx
(

ψ(w)F (t)
tuF (w)

)
dt (2)

=
∫ w

0

xlnx

(
ψ(w)
tu

(
t

w

)ID∗
F

GF (t, w)

)
dt <

∫ w

0

xlnx

(
ψ(w)
tu

(
t

w

)ID∗
F(w

t

)ε
)

dt

<

∫ w

0

xlnx

(
ψ(w)
tu

(
t

w

)ID∗
F −ε

)
dt <

ψ(w)
wm+u

∫ w

0

tm ·
[
m ln t + ln

ψ(w)
wm+u

]
dt,

where m � ID∗
F −u − ε > 0.
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Noting that m > 0 implies that limt→0 tm ln t = 0, integration of Eq. 2 by
parts yields an expression that depends on F only through its LID value.

wu−1

∫ w

0

xlnx
(

ψ(w)F (t)
tuF (w)

)
dt

<
mwu−1ψ(w)

wm+u

[
tm+1

m + 1
ln t

∣∣∣∣
w

0

−
∫ w

0

tm+1

m + 1
· 1

t
dt

]

+
wu−1ψ(w)

wm+u
ln

ψ(w)
wm+u

· wm+1

m + 1

<
mψ(w)
wm+1

[
wm+1

m + 1
ln w − wm+1

(m + 1)2

]
+

ψ(w)
m + 1

ln
ψ(w)
wm+u

<
ψ(w)
m + 1

[
m ln w − m

m + 1
+ ln

ψ(w)
wm+u

]
<

ψ(w)
m + 1

[
ln

ψ(w)
wu

− m

m + 1

]

=
ψ(w)

ID∗
F +1 − u − ε

[
ln

ψ(w)
wu

− ID∗
F −u − ε

ID∗
F +1 − u − ε

]
.

Similar arguments using the lower bound from Eq. 1 leads us to

wu−1

∫ w

0

xlnx
(

ψ(w)F (t)
tuF (w)

)
dt >

ψ(w)
ID∗

F +1 − u + ε

[
ln

ψ(w)
wu

− ID∗
F −u + ε

ID∗
F +1 − u + ε

]
.

Since ε can be chosen arbitrarily close to 0, and since 0 < w < ε by construc-
tion, taking the limit as w → 0+ yields

lim
w→0+

wu−1

∫ w

0

xlnx
(
ψ(w)F (t)
tuF (w)

)
dt = lim

w→0+

ψ(w)
ID∗

F +1 − u

[
ln

ψ(w)
wu

− ID∗
F −u

ID∗
F +1 − u

]

whenever the right-hand limit exists, or diverges to +∞ or −∞. �

The second technical lemma follows as a corollary of Lemma 1, since it uses
much of the same proof strategy, albeit more simply and directly. Analogous
with Lemma 1, it concerns a slight generalization of the cumulative q-entropy
formulation that facilitates the proof of the results for the q-entropy and q-
entropy power variants.

Corollary 1. Let F : R
≥0 → R

≥0 be a function such that F (0) = 0, and
assume that ID∗

F exists and is positive. For some value of r > 0, let us further
assume that within the interval [0, r), F is continuously differentiable and strictly
monotonically increasing, and ψ is positive. Then for any constants u < ID∗

F and
z > 0,

lim
w→0+

wzu−1

∫ w

0

(
ψ(w)F (t)
tuF (w)

)z

dt =
limw→0+ ψz(w)
z ID∗

F −zu + 1

whenever the right-hand limit exists, or diverges to +∞ or −∞.
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Proof: Following the same proof strategy of Lemma 1 that led to Eq. 2, we
arrive at the following upper bound on the integral:

∫ w

0

(
ψ(w)F (t)
tuF (w)

)z

dt <
ψz(w)

wz(m+u)

∫ w

0

tzm dt =
ψz(w)

(zm + 1)wzu−1
,

where m = ID∗
F −u − ε as before.

Continuing according to the proof strategy of Lemma 1, we use the lower
bound from Eq. 1, let ε vanish, and then apply the limit w → 0+ with a factor
of wzu−1. This brings us to

lim
w→0+

wzu−1

∫ w

0

(
ψ(w)F (t)
tuF (w)

)z

dt

= lim
w→0+

wzu−1 ψz(w)
(z ID∗

F −zu + 1)wzu−1
=

limw→0+ ψz(w)
z ID∗

F −zu + 1
,

as required. �

4.3 Cumulative Tail Entropy and LID

Using the technical lemmas established in Sect. 4.2, we present the main results
for the cumulative tail entropy variants. The first result shows that as the
tail length w tends to zero, the normalized cumulative entropy ncH(F,w) �
1
w cH(F,w) tends to a value entirely determined by the local intrinsic dimension-
ality associated with F .

Theorem 3. Let F : R≥0 → R
≥0 be a function such that F (0) = 0, and assume

that ID∗
F exists and is positive. For some value of r > 0, let us further assume

that within the interval [0, r), F is continuously differentiable and strictly mono-
tonically increasing. We have

lim
w→0+

ncH(F,w) = lim
w→0+

− 1
w

∫ w

0

F (t)
F (w)

ln
F (t)
F (w)

dt =
ID∗

F

(ID∗
F +1)2

.

Proof: Follows directly from Lemma 1, for the choices u = 0 and ψ(w) = 1. �

The second result uses Corollary 1 to show that as the tail length w tends to
zero, the normalized cumulative q-entropy ncHq(F,w) � 1

w cHq(F,w) tends to a
value determined by q together with the local intrinsic dimensionality associated
with F .

Theorem 4. Let F : R≥0 → R
≥0 be a function such that F (0) = 0, and assume

that ID∗
F exists and is positive. For some value of r > 0, let us further assume

that within the interval [0, r), F is continuously differentiable and strictly mono-
tonically increasing. Then for q > 0 with q �= 1,

lim
w→0+

ncHq(F,w)

= lim
w→0+

1
w(q − 1)

∫ w

0

F (t)
F (w)

−
(

F (t)
F (w)

)q

dt =
ID∗

F

(ID∗
F +1)(q ID∗

F +1)
.
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Proof: Separating the integral and applying Corollary 1 twice,

lim
w→0+

1
w(q − 1)

∫ w

0

F (t)
F (w)

−
(

F (t)
F (w)

)q

dt

=
1

q − 1

(
1

ID∗
F +1

− 1
q ID∗

F +1

)
=

ID∗
F

(ID∗
F +1)(q ID∗

F +1)

follows for the choices u = 0, ψ(w) = 1, and (respectively) z = 1 and z = q. �

Observe that as q tends to 1, the cumulative q-entropy variant ncHq(F,w)
does tend to the cumulative entropy ncH(F,w), as one would expect.

4.4 Tail Entropy Power and LID

We find that we encounter convergence issues when attempting to use the machin-
ery of Lemma 1 to formulate a relationship between LID and either the tail
entropy H(F,w) or the normalized tail entropy nH(F,w), the limits diverging as
the tail size tends to zero.

Instead, we show that the entropy power, when normalized, does have a limit
expressed as a function of the LID of F .

Theorem 5. Let F : R≥0 → R
≥0 be a function such that F (0) = 0, and assume

that ID∗
F exists and is greater than 1. For some value of r > 0, let us further

assume that within the interval [0, r), F is continuously differentiable and strictly
monotonically increasing. Then

lim
w→0+

nHP(F,w)

= lim
w→0+

1
w

exp
(

−
∫ w

0

F ′(t)
F (w)

ln
F ′(t)
F (w)

dt
)

=
1

ID∗
F

exp
(

1 − 1
ID∗

F

)
.

Proof: Due to space limitations, the details are omitted in this version. The
proof is analogous to that of Theorem 3, and makes use of Theorem 1 and
Lemma 1 with the choices u = 1 and ψ(w) = ID∗

F . The choice of u is valid for
Lemma 1 since by assumption ID∗

F > 1 = u. �

For the case of the normalized tail q-entropy power nHPq(F,w), we have the
following result.

Theorem 6. Let F : R≥0 → R
≥0 be a function such that F (0) = 0, and assume

that ID∗
F exists and is greater than 1. For some value of r > 0, let us further

assume that within the interval [0, r), F is continuously differentiable and strictly
monotonically increasing. Then for q > 0 (q �= 1),

lim
w→0+

nHPq(F,w)

= lim
w→0+

1
w

expq

(
1

q − 1

[
1 −

∫ w

0

(
F ′(t)
F (w)

)q

dt

])
=

[
(ID∗

F )q

q ID∗
F −q + 1

] 1
1−q

.
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Proof: Due to space limitations, the details are omitted in this version. The
proof is analogous to that of Theorem 4, and makes use of Theorem 1 and
Corollary 1 with the choices u = 1, ψ(w) = ID∗

F , and z = q. The choice of u is
valid for Corollary 1 since by assumption ID∗

F > 1 = u. �

5 Conclusion

In this preliminary theoretical investigation, we have established an asymptotic
relationship between tail entropy variants and the emerging theory of local intrin-
sic dimensionality. Our results provide new insights into the complexity of data
within local neighborhoods, and how they may be assessed. These fundamental
discoveries also open the door to cross-fertilization between intrinsic dimension-
ality research and entropy research, particularly as regards the potential for
the use of robust estimators of tail entropy as substitutes for LID in learning
contexts. Our results could also allow for applications and characterizations for
DNNs based on LID to be extended to the field of information theory.

As future work, we plan to follow with in-depth experimental studies on
the performance characteristics of cumulative entropy and entropy power as
estimators or substitutes of LID for deep learning and data mining applications.
We also plan to investigate the generalization and learning behaviors of DNNs
based on both LID and tail entropy.
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Abstract. Much attention has been given in the research literature
to the study of distance-preserving random projections of discrete data
sets, the limitations of which are established by the classical Johnson-
Lindenstrauss existence lemma. In this theoretical paper, we analyze the
effect of random projection on a natural measure of the local intrinsic
dimensionality (LID) of smooth distance distributions in the Euclidean
setting. The main contribution of the paper consists of upper and lower
bounds on the LID in the vicinity of a reference point after random pro-
jection. The bounds depend only on the LID in the original data domain
and the target dimension of the projection; as the difference between the
target and intrinsic dimensionalities grows, these bounds converge to the
LID of the original domain. The paper concludes with a brief discussion
of the implications for applications in databases, machine learning and
data mining.

1 Introduction

In an attempt to alleviate the effects of high dimensionality, and thereby improve
the discriminability of data, simpler representations of the data are often sought
by means of a number of supervised or unsupervised learning techniques. One
of the earliest and most well-established simplification strategies is dimensional
reduction, which seeks a projection to a lower-dimensional subspace that mini-
mizes the distortion of the data. Dimensional reduction has applications through-
out machine learning and data mining: these include feature extraction, such as
in PCA and its variants [6,39]; multidimensional scaling [38,41]; manifold learn-
ing [38,40,42]; and regression-based similarity learning [43].

Among the various approaches to dimensional reduction, much attention has
been given to the study of projections that approximately preserve all pairwise
distances within discrete point sets. The limitations of such projections have been
established by the classical Johnson-Lindenstrauss (JL) existence lemma [30],
which can be stated as follows: given some distortion threshold 0 < ε < 1, a set
of n points in R

m, and a target dimension t > (8 ln n)/ε2, there exists a linear
projection f : Rm → R

t such that

(1 − ε) · ‖u − v‖2 ≤ ‖f(u) − f(v)‖2 ≤ (1 + ε) · ‖u − v‖2
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for all pairs of points u and v in the set. This bound on the target dimension has
been shown to be asymptotically worst-case optimal for linear projection [33].

Subsequent research has focused on the determination of data transforms that
satisfy the JL bounds. Early approaches (such as in [11,16,29]) were based on
projection to spherically random subspaces; however, the associated transform
matrices were dense and expensive to compute. Achlioptas [1] showed that the
entries of a projection matrix could be randomly selected from among {−1, 0, 1}
so as to satisfy the bounds with high probability (after the introduction of a
scaling factor). More recent work has been devoted to improving the speed and
sparsity of JL transforms [2,10,31]. Variants of the JL lemma have also been
applied to subspace- and manifold-structured continuous point sets [4,5].

In general, dimensional reduction requires that an appropriate dimension
for the reduced space (or approximating manifold) must be either supplied or
learned, ideally so as to minimize the error or loss of information incurred. The
dimension of the surface that best approximates the data can be regarded as an
indication of the intrinsic dimensionality (ID) of the data set, or of the minimum
number of latent variables needed to represent the data. ID thus serves as an
important natural measure of the complexity of data.

Over the past decades, many characterizations of the ID of sets have been
proposed: classical measures (primarily of theoretical interest), including the
Hausdorff dimension, Minkowski-Bouligand or ‘box counting’ dimension, and
packing dimension (for a general reference, see [14,36]); the correlation dimen-
sion [18]; ‘fractal’ measures of the space-filling capacity or self-similarity of the
data [7,15,19]; topological estimation of the basis dimension of the tangent space
of a data manifold from local samples [6,39]. Projection-based learning methods
such as PCA can produce as a byproduct an estimate of ID.

The aforementioned ID measures can be described as ‘global’, in that they
consider the dimensionality of the set in its entirety. However, when the data set
resides on a collection of manifolds, or is distributed according to a mixture of
underlying models, global measures may not be indicative of the intrinsic dimen-
sionality in all regions of the set. In order to assess the intrinsic dimensionality in
the vicinity of a specified reference point, ‘local’ ID measures have been proposed
that are defined solely in terms of the distances to a set of near neighbors of the
reference point. Expansion models, in particular, assess ID in terms of the rate
at which the number of encountered objects grows as the considered range of dis-
tances expands from the reference location. Such models include the expansion
dimension (ED) [32], the generalized expansion dimension (GED) [23], Levina
and Bickel’s estimator [34], the minimum neighbor distance (MiND) [39], and
the local intrinsic dimenension (LID) [3,20]. The correlation dimension can also
be regarded as an expansion model, albeit one that takes into account the growth
rates from all points [22,37]. Local expansion models of ID have also been used
in the analysis of a projection-based heuristic for outlier detection [12], and of
the complexity of search queries in indexing [8,24–27,32].

In this paper, we will be concerned with the LID model of intrinsic dimen-
sionality, which can be regarded as an extension of the (generalized) expansion
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Fig. 1. Random projection of the distribution associated with the smooth random
distance variable L, defined as the Euclidean distance from reference point Q to a
sample point X drawn from some domain in R

m. The projection induces a new random
distance variable L⊥, defined as the distance from Q to the projection of X in a
randomly-oriented t-dimensional subspace.

dimension to the statistical setting of smooth distributions over the non-negative
reals [3,20–22]. Instead of regarding intrinsic dimensionality as a characteristic
of a collection of data points (as evidenced by their distances from a supplied
reference location), the LID is a direct characterization of the complexity of the
underlying distribution itself. With this latter perspective, an original data set
drawn from a metric space defines a sample of distances from this underlying
distribution, from which one can seek the intrinsic dimensionality of the distri-
bution of distances to some fixed reference location. Note that the model does
not require that the sample data be constrained to lie on a manifold.

The LID formulation can be shown to be equivalent to a formulation of the
indiscriminability of the underlying smooth distance distribution as evidenced
by its cumulative distribution function F . The indiscriminability is modeled as
a function IDF (r) of the distance r ∈ [0,∞), which tends to the local intrinsic
dimension value ID∗

F � limr→0+ IDF (r) as the radius r vanishes. ID∗
F has been

shown to be equivalent to the notion of the ‘degree’ or ‘index’ in the statistical
theory of extreme values (EVT); indeed, the EVT index has been interpreted
as a form of dimension within statistical contexts [9]. Practical methods that
have been developed within EVT for the estimation of the index, including the
well-known Hill estimator and its variants obtained through maximum likelihood
estimation [3,28,34], can all be applied to LID (for a survey, see [17]).

In this theoretical paper, we will be concerned with the effect on LID when the
distance distribution is subjected to a random projection (as illustrated in Fig. 1).
As the main contribution of our paper, we prove that under reasonable assump-
tions, for the LID formulation for Euclidean distance distributions derived from
a reference location within a global data distribution, a randomly-oriented linear
projection produces a distance distribution (relative to the projective subspace)
whose LID value at the reference location, ID∗

F⊥ , satisfies

t · ID∗
F

t + ID∗
F

≤ ID∗
F⊥ ≤ ID∗

F .
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The result indicates that LID is stable under random projection whenever the
projection dimension t significantly exceeds ID∗

F , and that stability is lost as t
approaches ID∗

F .
Whereas the JL lemma determines a lower limit above which a projection

can always be found so as to (approximately) preserve all pairwise distances,
our result considers the effect of projection on the distribution of distances from
an individual reference location. Bounds on the ID after projection are also
known for the Hausdorff dimension: here, Mattila [35] proved that for almost
all projections of an analytic set E from R

m to the set E⊥ in R
t, the Hausdorff

dimension HD(E⊥) of the projection equals min{HD(E), t}. However, the Haus-
dorff dimension is a global measure of ID defined on analytic sets—it does not
give any insight into the problem considered in this paper: the effect of projec-
tion on the local ID of distance distributions, and the discriminability of distance
measures.

The remainder of the paper is organized as follows. In the next section, we
give an overview of LID and its properties. In Sect. 3, we give a proof of our main
result. For the initial part, we borrow the projection framework and Chernoff
bound employed by [11] in their proof of the JL lemma. In Sect. 4, we conclude
with a discussion of the implications of the LID projection bounds.

2 Local Intrinsic Dimensionality

In this section, we present an overview of the measure of local ID for distance
distributions as formulated in [21].

2.1 Intrinsic Dimensionality and Indiscriminability

The LID model as first proposed in [20] takes a distributional view of data—
instead of inferring dimensional characteristics from a sample of points, dimen-
sionality is modeled in terms of a distribution of non-negative scalar values, as
one would expect to see from the distances calculated from a reference location
to points generated according to some hidden process.

As a motivating example from m-dimensional Euclidean space, consider the
situation which the volumes V1 and V2 are known for two balls of differing radii
r1 and r2, respectively, centered at a common reference point. The dimension m
can be deduced from the ratios of the volumes and the distances to the reference
point, as follows:

V2

V1
=

(
r2
r1

)m

=⇒ m =
ln(V2/V1)
ln(r2/r1)

.

For finite data sets, GED formulations are obtained by estimating the volume of
balls by the numbers of points they enclose [23]. In contrast, for continuous real-
valued random distance variables, the notion of volume is naturally analogous
to that of probability measure. ID can then be modeled as a function of distance
X = r, by letting the radii of the two balls be r1 = r and r2 = (1 + ε)r, and
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letting ε → 0. The following definition generalizes this notion even further, to
any real-valued function (not necessarily a cumulative distribution function) that
non-zero in the vicinity of r �= 0.

Definition 1. Let F be a real-valued function that is non-zero over some open
interval containing r ∈ R, r �= 0. The intrinsic dimensionality of F at r is defined
as

IntrDimF (r) � lim
ε→0

ln (F ((1 + ε)r)/F (r))
ln(1 + ε)

,

whenever the limit exists.

The intrinsic dimensionality of the cumulative distribution function F of a
distance distribution has also been shown in [20,21] to be equivalent to a measure
of its indiscriminability. The discriminability of a random distance variable X is
assessed in terms of the relative rate at which probability measure increases as
the distance increases.

Definition 2. Let F be a real-valued function that is non-zero over some open
interval containing r ∈ R, r �= 0. The indiscriminability of F at r is defined as

InDiscrF (r) � lim
ε→0

F ((1 + ε)r) − F (r)
ε · F (r)

,

whenever the limit exists.

The following fundamental theorem adapted from [21] shows that for distance
distributions with continuously differentiable cumulative distribution functions,
the notions of indiscriminability and intrinsic dimensionality are in fact one
and the same. The proof follows by applying l’Hôpital’s rule to the limits in
Definitions 1 and 2.

Theorem 1 ([21]). Let F be a real-valued function that is non-zero over some
open interval containing r ∈ R, r �= 0. If F is continuously differentiable at r,
then

IDF (r) � r · F ′(r)
F (r)

= IntrDimF (r) = InDiscrF (r).

When considering the local intrinsic dimensionality of a distance distribution,
the question arises as to how the choice of r should be made. Asymptotically, as
the number of data samples rise, for any fixed positive integer k the k-nearest
neighbor radius can be seen to tend to zero. For this reason, we are especially
interested in the case where r → 0. Accordingly, we define the local intrinsic
dimensionality (LID) to be the limit of the indiscriminability as r → 0, whenever
the limit exists:

ID∗
F � lim

r→0+
IDF (r) .
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2.2 Two Properties of Local ID

We now state (without proof) two technical results from [20] needed for the
proof of the main theorem of this paper.

In the context of distance distributions with smooth cumulative distribu-
tion functions, the indiscriminability of a cumulative distribution function after
transformation can be decomposed into two factors: the indiscriminability of the
cumulative distribution function before transformation, and the indiscriminabil-
ity of the transform itself.

Theorem 2 ([20]). Let g be a real-valued function that is non-zero and contin-
uously differentiable over some open interval containing r ∈ R, except perhaps
at r itself. Let f be a real-valued function that is non-zero and continuously dif-
ferentiable over some open interval containing g(r) ∈ R, except perhaps at g(r)
itself. Then

IDf◦g(r) = IDg(r) · IDf (g(r))

whenever IDg(r) and IDf (g(r)) are defined. If r = f(r) = g(r) = 0, then

ID∗
f◦g = ID∗

f · ID∗
g

whenever ID∗
f and ID∗

g are defined.

The second technical result needed establishes upper and lower bounds on
the expansion of probability measure over a fixed range of distances, in terms of
upper and lower bounds on LID values over the range.

Theorem 3 ([20]). Let F be a real-valued function that is non-zero and con-
tinuously differentiable over some open interval containing [a, b] ⊂ R, where
0 < a ≤ b. Let IDF (a, b) and IDF (a, b) be the supremum and infimum of IDF (r)
taken over the range r ∈ [a, b]. Then

(
b

a

)IDF (a,b)

≤ F (b)
F (a)

≤
(

b

a

)IDF (a,b)

.

3 Intrinsic Dimensionality After Projection

In this section, as the main contribution of this paper, we examine the effect of
random projection on the distribution of distances to a reference point induced
by a data distribution in Euclidean space. In particular, we prove the following
upper and lower bounds on the LID of the reference point after projection of the
data distribution to a t-dimensional subspace (which we will refer to as ID∗

F⊥),
in terms of both t and the original LID value (which we will refer to as ID∗

F ).

Theorem 4. Let L be a random variable representing the Euclidean distance
from some fixed reference point Q to a randomly-generated point X ∈ R

m. Also,
let L⊥ be the random variable representing the Euclidean distance between the
images of these points under a uniform random projection ψ : Rm → R

t to an
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arbitrarily-oriented subspace of target dimension t < m. Let F and F⊥ be the
respective cumulative distribution functions of L and L⊥. If there exists some
ε > 0 such that both F and F⊥ are continuously differentiable over the interval
(0, ε), and if the limits ID∗

F and ID∗
F⊥ both exist, then

t · ID∗
F

t + ID∗
F

≤ ID∗
F⊥ ≤ ID∗

F .

It should be emphasized that the theorem is a statement concerning the
distribution of L⊥, and not the random projection of a particular fixed data set.
The random variable L⊥ follows the distribution of distances to Q obtained when
generating a data point, and then subjecting the point to a random projection
before measuring its distance to Q (see Fig. 1). We do not reason in terms of
collections of data samples, but rather on the effect of projection on the distance
to Q of a single data sample.

3.1 Random Projection

For the initial part of our proof, we borrow the projection framework and Cher-
noff error bound formula employed by Dasgupta and Gupta [11] in their proof of
the Johnson-Lindenstrauss Theorem (an excellent treatment of which can also
be found in [13]). However, instead of using their framework to analyze the prob-
ability of obtaining a low-distortion embedding of a fixed data set, we will use
it to bound the growth rates within neighborhoods of the reference point before
and after projection.

Without loss of generality, we may assume that our reference point Q coin-
cides with the origin of our original Euclidean space R

m. Under this assumption,
all the distances of interest coincide with the length of randomly-generated vec-
tors from either the original data distribution, or the data distribution obtained
after random projection.

The proof framework of [11] considers the effect of random projection on
the length of a fixed vector, by first considering the effect on the associated
normalized (unit length) vector. The authors note that the distribution of lengths
of projection of this fixed unit vector onto a randomly-selected space is the same
as the distribution of the lengths of the projection of a randomly-selected unit
vector onto a fixed space (see Fig. 2). Within this setting, the expected length of
projection of a random m-dimensional unit vector to a t-dimensional subspace,
as well as Chernoff-style bounds on the probability of the length varying from
this expected length, are established by the following two lemmas.

Lemma 1 ([11]). Let Y = (Y1, . . . , Ym) be a vector selected uniformly at ran-
dom from the unit sphere in R

m. Let Y⊥ ∈ R
t be the projection of Y onto any t

of its coordinates, where 0 < t < m. Then

E[‖Y⊥‖2] =
t

m
.
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Fig. 2. The distribution of lengths of projection of a fixed unit vector onto a randomly-
selected space containing the origin (as shown on the left) is the same as the distribution
of the lengths of the projection of a randomly-selected unit vector onto a fixed space
(as shown on the right).

Proof: Since the Yi are identically distributed, we may without loss of generality
assume that the projection spans the first t coordinates of Rm. Thus,

E[‖Y⊥‖2] = E

[
t∑

i=1

Y 2
i

]
=

t∑
i=1

E[Y 2
i ] = t · E[Y 2

j ]

for any choice of j ∈ {1, . . . , m}. Since Y is a unit vector, we also have

1 = E[‖Y ‖2] = E

[
m∑

i=1

Y 2
i

]
= m · E[Y 2

j ] .

Combining these two expressions, the result follows. 
�
Lemma 2 ([11]). Let Y = (Y1, . . . , Ym) be a vector selected uniformly at ran-
dom from the unit sphere in R

m. Let Y⊥ ∈ R
t be the projection of Y onto any t

of its coordinates, where 0 < t < m. If β < 1, then

Pr
[
‖Y⊥‖2 ≤ β

t

m

]
≤ β

t
2

(
1 +

t(1 − β)
m − t

)m−t
2

,

and if β > 1, then

Pr
[
‖Y⊥‖2 ≥ β

t

m

]
≤ β

t
2

(
1 +

t(1 − β)
m − t

)m−t
2

.

For details of this latter proof, we refer the reader to [11]. Here, we note
only that the proof of the Chernoff-style bound of Lemma 2 relies heavily on the
expected squared vector length stated in Lemma 1.

3.2 Proof of Theorem 4

Although the proof of our main result makes use of Lemma 2 from [11], the proof
strategy thereafter is quite different, and considerably more complex. Whereas
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their proof of the Johnson-Lindenstrauss lemma made direct use of the Chernoff-
style bound of Lemma 2, our result instead uses Theorem 3 to establish a
Chernoff-style bound in terms of the local IDs of the cumulative distribution
functions associated with L and L⊥. It then relies on a careful choice of the
parameter β so as to guide the convergence of a double-limit process towards
the desired bounds relating ID∗

F⊥ to ID∗
F .

For any vector X, let Y = X/‖X‖ be the unit vector obtained by the nor-
malization of X, and let Y⊥ and X⊥ be the projections of X and Y under ψ.

To prove the lower bound, we first consider the cumulative probability of the
squared distance distribution after projection by ψ. Since ψ is not known a priori,
for any squared distance threshold r > 0, this probability can be expressed as

F⊥(
√

r⊥) = Pr[L2
⊥ ≤ r⊥] = Pr[‖X⊥‖2 ≤ r⊥] = Pr

[
‖Y⊥‖2 ≤ r⊥

‖X‖2
]

.

For any choice of 0 < β < 1, this probability can be bounded by

Pr[L2
⊥ ≤ r⊥] = Pr

[
‖Y⊥‖2 ≤ r⊥

‖X‖2
∧

‖Y⊥‖2 ≥ β
t

m

]

+ Pr
[
‖Y⊥‖2 ≤ r⊥

‖X‖2
∧

‖Y⊥‖2 < β
t

m

]

≤ Pr
[
β

t

m
≤ r⊥

‖X‖2
]

+ Pr
[
‖Y⊥‖2 ≤ β

t

m

]

≤ Pr
[
L2 ≤ m

βt
r⊥

]
+ Pr

[
‖Y⊥‖2 ≤ β

t

m

]

≤ Pr
[
L2 ≤ 1

β
r

]
+ Pr

[
‖Y⊥‖2 ≤ β

t

m

]
,

where r⊥ = t
mr, the expected squared length of the projection under ψ of a

vector of squared length r.
Recall that the length of a fixed unit vector after uniform random projection

to a t-dimensional space follows the same distribution as the length of a uniform
random unit vector after a fixed projection to R

t. Lemma 2 can therefore be
applied to yield

Pr[L2
⊥ ≤ r⊥] ≤ Pr

[
L2 ≤ 1

β
r

]
+ β

t
2

(
1 +

t(1 − β)
m − t

)m−t
2

≤ Pr[L2 ≤ r/β] + β
t
2

(
e

(1−β)t
m−t

)m−t
2

≤ Pr[L2 ≤ r/β] + β
t
2 e

t
2 (1−β) ≤ Pr[L2 ≤ r/β] + β

t
2 e

t
2 , (1)

since 0 < β < 1.
Since F and F⊥ are assumed to be continuously differentiable over the range

of distances (0, ε), the cumulative distribution functions of L2 and L2
⊥ must also

be continuously differentiable over (0, ε2). Let ID� and ID�⊥ denote the LID
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values of the cumulative distribution functions of L2 and L2
⊥, respectively. We

can therefore apply Theorem 3 to obtain

Pr[L2 ≤ r/β] ≤ Pr[L2 ≤ δ] ·
(

1
β

· r

δ

)ID�δ

, and

Pr[L2
⊥ ≤ r⊥] ≥ Pr[L2

⊥ ≤ δ⊥] ·
(

r⊥
δ⊥

)ID�δ⊥
,

where ID�δ denotes the infimum ID�(0, δ) of ID� over the range [0, δ], and
where ID�δ⊥ denotes the supremum ID�⊥(0, δ⊥) of ID�⊥ over the range [0, δ⊥].
Here, we assume that the variables have been chosen such δ⊥ = t

mδ, and fur-
thermore that r/β, r⊥, δ and δ⊥ are all strictly less than ε2 (this latter condition
will be enforced later, as more constraints on these variables are introduced).

Since by construction r⊥
δ⊥

= r
δ , substituting the above inequalities into

Inequality 1 yields

Pr[L2
⊥ ≤ δ⊥] ·

(r

δ

)ID�δ⊥ ≤ Pr[L2 ≤ δ] ·
(

1
β

· r

δ

)ID�δ

+ β
t
2 e

t
2 . (2)

Consider now a new interpolation parameter c, whose role will be explained
below. In terms of r, δ, and c, we fix the parameter β as follows:

β =
(r

δ

)c

.

Note that under these conditions, for any 0 < c < 1 and δ > 0, choosing r such
that 0 < r < δ ensures that 0 < β < 1.

Substitution into Inequality 2 gives

Pr[L2
⊥ ≤ δ⊥] ·

(r

δ

)ID�δ⊥ ≤ Pr[L2 ≤ δ] ·
(r

δ

)(1−c)·ID�δ

+ e
t
2 ·

(r

δ

) ct
2

.

Next, we balance the contributions of the terms on the right-hand side of the
inequality, by choosing c such that (1 − c) · ID�δ = ct/2. This produces

Pr[L2
⊥ ≤ δ⊥] ·

(r

δ

)ID�δ⊥ ≤
(
Pr[L2 ≤ δ] + e

t
2

)
·
(r

δ

) ID�δ·(t/2)
ID�δ+t/2

. (3)

Note that from Theorem 1, the existence of the limits ID∗
F and ID∗

F⊥ implies
that F (

√
δ) = Pr[L ≤ √

δ] > 0 and F⊥(
√

δ⊥) = Pr[L⊥ ≤ √
δ⊥] > 0 whenever δ

and δ⊥ are chosen to be sufficiently small. Taking the logarithms of both sides
of Inequality 3, and dividing by ln(r/δ), leads us to the following:

ID�δ⊥ ≥ ID�δ · (t/2)
ID�δ + t/2

− ln(Pr[L2 ≤ δ] + e
t
2 )

ln(δ/r)
+

lnPr[L2
⊥ ≤ δ⊥]

ln(δ/r)
.

Fixing δ and δ⊥, and letting r → 0, the inequality has the limit

ID�δ⊥ ≥ ID�δ · (t/2)
ID�δ + t/2

.
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Next, letting δ → 0, we observe that δ⊥ → 0, ID�δ → ID�∗ and ID�δ⊥ →
ID�∗

⊥, and thus

ID�∗
⊥ ≥ ID�∗ · (t/2)

ID�∗ + t/2
. (4)

Up until now we have assumed that the quantities r/β, r⊥, δ and δ⊥ were
all within the interval (0, ε2). Here, as r → 0 and δ → 0, it can be verified that
the aforementioned quantities all tend to 0 as well, and that this assumption is
therefore eventually justified.

Finally, we transform the bound of Inequality 4 for the ID of the squared
distance distributions (before and after projection) to one involving the original
distributions. It follows from Theorem 2 that IDF = 2·ID� and IDF⊥ = 2·ID�⊥,
from which we see that the lower bound

ID∗
F⊥ ≥ ID∗

F ·t
ID∗

F +t

holds as required.
We now turn our attention to the proof of the upper bound ID∗

F⊥ ≤ ID∗
F .

The proof is similar to (but much simpler than) that of the lower bound. Since
‖X‖2 ≥ ‖X⊥‖2, for any r > 0,

Pr[L2 ≤ r] = Pr[‖X‖2 ≤ r] ≤ Pr[‖X⊥‖2 ≤ r] = Pr[L2
⊥ ≤ r] .

Applying Theorem 3, and choosing δ⊥ = δ > r, we obtain

Pr[L2 ≤ δ] ·
(r

δ

)ID�δ ≤ Pr[L2
⊥ ≤ δ] ·

(r

δ

)ID�δ⊥
,

Taking the logarithms of both sides, and dividing by ln(r/δ), leads us to:

ID�δ ≥ ID�δ⊥ +
lnPr[L2 ≤ δ]

ln(δ/r)
− lnPr[L2

⊥ ≤ δ⊥]
ln(δ/r)

.

Fixing δ and δ⊥, and letting r → 0, the inequality has the limit ID�δ⊥ ≤ ID�δ.
Next, letting δ → 0, we observe that δ⊥ → 0, ID�δ → ID�∗ and ID�δ⊥ →
ID�∗

⊥, and thus ID�∗
⊥ ≤ ID�∗, which in turn implies that ID∗

F⊥ ≤ ID∗
F as

required.

4 Conclusion

Theorem 4 has important implications for the theory and practice of databases,
machine learning, data mining, and other areas in which similarity information
plays a role. Under a reasonable assumption of the continuity of the local data
distribution, random projection in Euclidean vector spaces cannot be relied upon
to significantly improve the discriminability of a distance measure as the number



212 M. E. Houle and K. Kawarabayashi

of data samples tends to infinity, nor can it be counted upon to greatly alleviate
the asymptotic effects of the curse of dimensionality.

To see this, let us assume that we have a reference point Q within the domain
of a global data distribution, whose distance distribution has a local intrinsic
dimensionality of ID∗

F . For a random projection to a subspace of dimension
t � ID∗

F , the bounds of Theorem 4 become almost tight, showing that the local
ID of the distribution is essentially unchanged after projection. As increasingly
larger data samples are drawn from the distribution, the k-nearest neighbor
distance rk tends to 0, and thus the discriminability of the distance measure
at rk tends to ID∗

F . Thus, under this scenario, as the data set size scales, the
discriminability of the distance measure over fixed-cardinality neighborhoods is
less and less affected by random projection.

On the other hand, when the projection dimension t is of the same order as
ID∗

F (or of lower order), Theorem 4 implies that the local ID of the projected
distribution is no smaller than t, and no greater than ID∗

F . However, the informa-
tion loss associated with projection to dimensionalities below that of the intrinsic
dimension would make any improvements in discriminability a moot point, as
the distance distribution would no longer be well-preserved in the vicinity of Q.

These implications together are of particular importance when randomly
projecting data drawn from a mixture of distributions, where the local intrinsic
dimensionality can vary greatly from location to location. Theorem 4 indicates
that the target dimension for projection should be chosen to be substantially
larger than the LID estimate at locations of particular interest or importance.
Using existing estimators of LID [3,17], appropriate target dimensions for dimen-
sional reduction can be determined locally, without the need to construct an
explicit embedding of the data, or an explicit representation of the projective
subspace.

These conclusions should not be taken to mean that random projection is
never capable of reducing the number of latent variables of a user-supplied data
set, or improving the discriminability of distances within the set. Theorem 4
addresses only the asymptotic effect of random projection on the LID of contin-
uous Euclidean distance distributions, as the number of data instance rises. In
applications where the number of data instances can scale into the billions or
more, it is possible that these asymptotic effects could become more and more
evident. However, any attempt to empirically verify the predictions of Theorem 4
would face significant obstacles, due to the limits in precision and stability exhib-
ited by all existing estimators of ID (not just LID) [3,17], and due to the difficulty
in determining an appropriate locality size—if too large, locality is violated; if
too small, there are too few samples for the estimators to converge. For this
reason, the development of more effective ID estimation methods for small local
data samples is an important topic for future research.
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Abstract. Spherical k-means is a widely used clustering algorithm for
sparse and high-dimensional data such as document vectors. While sev-
eral improvements and accelerations have been introduced for the orig-
inal k-means algorithm, not all easily translate to the spherical vari-
ant: Many acceleration techniques, such as the algorithms of Elkan and
Hamerly, rely on the triangle inequality of Euclidean distances. However,
spherical k-means uses cosine similarities instead of distances for compu-
tational efficiency. In this paper, we incorporate the Elkan and Hamerly
accelerations to the spherical k-means algorithm working directly with
the cosines instead of Euclidean distances to obtain a substantial speedup
and evaluate these spherical accelerations on real data.

1 Introduction

Clustering textual data is an important task in data science with applications
in areas like information retrieval, topic modeling, and knowledge organization.
Spherical k-means [8] is a widely used adaptation of the k-means clustering algo-
rithm to high-dimensional sparse data, such as document vectors where cosine
similarity is a popular choice. While it is generally used for clustering documents,
it has also been applied to medical images [2,20], multivariate species occurrence
data [14], and plant leaf images [1]. Because of its importance, several improve-
ments and extensions have been suggested. Many optimizations improve the ini-
tialization of k-means cluster centers, such as k-means++ [3] and k-means|| [5,6],
some of which have also been adapted to spherical k-means [11,19,22].

A key area of optimizations is focussed on the iterative optimization phase
of k-means. The standard algorithm computes the distance of every point to
every cluster in each iteration. Many of these computations are not necessary if
cluster centers have not moved much, and hence a lot of research has been on
how to avoid computing distances. The central work in this domain is the algo-
rithm of Elkan [10], which is the base for many other variants such as Hamerly’s
algorithm [12], but also recently the Exponion algorithm [21], the Shallot algo-
rithm [7], and the variants of Yu et al. [26], all of which rely on the Euclidean
triangle inequality to avoid distance computations.
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This paper studies how to adapt such acceleration techniques to spherical k-
means, thus providing a more efficient approach for clustering text documents.

2 Foundations

Cosine similarity (which we will simply denote using sim in the following) is
commonly defined as the cosine of the angle θ between two vectors x and y:

sim(x,y) := simcosine(x,y) :=
〈x,y〉

‖x‖2 · ‖y‖2
=

∑
i xiyi

√∑
i x

2
i · √∑

i y
2
i

= cos θ

In the following, we will only consider vectors normalized to unit length, i.e., with
Euclidean norm ‖x‖2 = 1. It is trivial to see that on such vectors, the cosine simi-
larity is simply the dot product. Consider the Euclidean distance of two normalized
vectors x and y, and expand using the binomial equations, we obtain:

dEuclidean(x,y) :=
√∑

i
(xi − yi)2 =

√∑

i
(x2

i + y2
i − 2xiyi) (1)

=
√

‖x‖2 + ‖y‖2 − 2〈x,y〉 =
√

2 − 2 · sim(x,y) (2)

where the last step relies on the vectors being normalized. Hence we have an
extremely close relationship between cosine similarity and squared Euclidean
distance on normalized vectors: sim(x,y) = 1 − 1

2d2Euclidean(x,y).
k-means minimizes the squared Euclidean distances of points to their cluster

centers and hence can be used to maximize cosine similarities. Because the total
variance of a data set is constant, by minimizing the within-cluster squared
deviations, k-means also maximizes the between-cluster squared deviations. By
adapting this to cosine, we obtain clusters where objects in the same cluster
have to be more similar, while objects in different clusters are less similar.

Dhillon and Modha [8] popularized this idea as “spherical k-means” for clus-
tering text documents and exploited exactly the above relationship between the
squared Euclidean distance and cosine similarity. Only a tiny modification of
the standard k-means algorithm is necessary to obtain the desired results: the
arithmetic mean of a cluster usually does not have unit Euclidean length. Hence,
after recomputing the cluster mean, we normalize it accordingly. This constrains
the clustering to split the data at great circles (i.e., hyperplanes through the
origin), rather than arbitrary Voronoi cells as with regular k-means.

On text data, computing the cosine similarity is more efficient than computing
Euclidean distance because of sparsity: rather than storing the vectors as a long
array of values, most of which are zeros, only the non-zero values can be encoded
as pairs (i, v) of an index i and a value v, and stored and kept in sorted order.
The dot product of two such vectors can then be efficiently computed by a merge
operation, where only those indexes i need to be considered that are contained in
both vectors, because in 〈x,y〉=

∑
i xiyi only those terms matter where both xi

and yi are not zero. A merge is most efficient if both vectors are sparse, but even
the dot product of a sparse and a dense vector is often much faster than that of
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two dense vectors. While we can also compute Euclidean distance this way (using
Eq. (1)), this computation is prone to the numerical problem called “catastrophic
cancellation” for small distances that can be problematic in clustering (see, e.g.,
[16,24]). Hence, working with cosines directly is preferable.

Instead of recomputing the distances to all cluster centers, the idea of algo-
rithms such as Elkan’s is to keep an upper bound on the distance to the nearest
cluster, and one or more lower bounds on the distances to the other centers. Let
dn be the distance to the nearest center, dn≤u an upper bound, ds the distance
to the second nearest, and l≤ds a lower bound. If we have u ≤ l, then the near-
est cluster must still be the same since dn ≤u ≤ l ≤ ds. Updating the distance
bounds uses the triangle inequality: if the nearest center μn has moved to μ′

n,
then d(x, μ′

n) ≤ d(x, μn) + d(μn, μ′
n); and we hence can obtain an upper bound

u by adding every movement of a cluster center to the previous distance. Lower
bounds are obtained similarly: starting with the initial distance as the lower
bound, we subtract the distance the other center has moved to obtain a prov-
able new lower bound. While Elkan stored a lower bound for each cluster (which
needs O(N ·k) memory), Hamerly [12] reduced the memory usage by using just
one lower bound to the second nearest cluster, updated by the largest distance
moved. Additional pruning rules involve the pairwise distances of centers [10],
annuli around centers [21], and the relative movement of centers [26].

In the following, we describe how such accelerations can be applied to spher-
ical k-means, i.e., for cosine similarity and high-dimensional data.

3 Pruning with Cosine Similarity

Many acceleration techniques rely on the triangle inequality of the (non-squared)
Euclidean distance. Hence, we can adapt these methods by computing Euclidean
distances from our cosine similarities using dEuclidean(x,y)=

√
2 − 2 · sim(x,y),

but we wanted to avoid this because of (i) the square root takes 10–50 CPU
cycles (depending on the exact CPU, precision, and input value) and (ii) the risk
of numerical instability because of catastrophic cancellation. Hence we develop
techniques that directly use similarities instead of distances, yet allow a similar
pruning to these (very successful) acceleration techniques of regular k-means.

The arc length (i.e., the angle θ itself, rather than the cosine of the angle)
satisfies the triangle inequality and hence we could use

sim(x,y) ≥ cos(arccos(sim(x, z)) + arccos(sim(z,y))) , (3)

but unfortunately the trigonometric functions in here are even more expensive
(60–100 CPU cycles each). Schubert [23] recently proposed reformulations avoid-
ing the expensive trigonometric functions (but still using the square root):

sim(x,y) ≥ sim(x, z) · sim(z,y) −
√

(1−sim(x, z)2) · (1−sim(z,y)2) (4)

sim(x,y) ≤ sim(x, z) · sim(z,y) +
√

(1−sim(x, z)2) · (1−sim(z,y)2) (5)

In this paper, we explain how to integrate these triangle inequalities into spher-
ical k-means, and discuss an easily overlooked pitfall therein.
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4 Upper and Lower Bounds

In the following, we orient ourselves on the very concise presentation and nota-
tion of Hamerly [12] as well as Newling and Fleuret [21], except that we swap
the names of u and l, because switching from distance to similarity requires us
to swap the roles of upper and lower bounds. We will assume that all points are
normalized to unit length, and hence sim(x,y) = 〈x,y〉 = xT·y.

The algorithms we discuss will employ upper and lower bounds for the simi-
larities of each sample x(i) to the cluster centers c(j). l(i) is a lower bound for
the similarity to the current cluster a(i), u(i, j) are upper bounds on the simi-
larity of each point to each cluster center, respectively u(i) is an upper bound
on the similarity to all other cluster centers (u(i, j) and u(i) are used in different
variants, not at the same time). These bounds are maintained to satisfy:

l(i) ≤ 〈x(i), c(a(i))〉 u(i, j) ≥ 〈x(i), c(j)〉 u(i) ≥ max
j �=a(i)

〈x(i), c(j)〉

The central idea of all the discussed variants is that if we have l(i)≥u(i, j), then
〈x(i), c(a(i))〉≥l(i)≥u(i, j)≥〈x(i), c(j)〉 implies that the current cluster assign-
ment of object x(i) is optimal, and we do not need to recompute the similarities.

The bounds l(i) and u(i, j), can be maintained using above triangle inequality
if we know how much the cluster centers c(j) moved from their previous loca-
tion c′(j). Let p(j) := 〈c(j), c′(j)〉 denote this similarity. Based on the triangle
inequalities Eqs. (4) and (5), we obtain the following bound update equations:

l(i) ← l(i) · p(a(i)) −
√

(1 − l(i)2) · (1 − p(a(i))2) (6)

u(i, j) ← u(i, j) · p(j) +
√

(1 − u(i, j)2) · (1 − p(j)2) (7)

5 Accelerated Spherical k-Means

The algorithms discussed here all follow the outline of the standard k-means algo-
rithm of alternating optimization. During initialization, all data samples x(i) are
normalized to have length ‖x(i)‖ = 1. In the first step, all objects are reassigned
to the nearest cluster, in the second step, the cluster center is optimized. How-
ever, we switch the notation from distance to similarity. Let the variable a(i)
denote the current cluster assignment of sample x(i), and denote the current
cluster centers using c(j), the two steps can be written as:

a(i) ← arg maxj〈x(i), c(j)〉 i ∈ 1..N

c(j) ←
∑

i|a(i)= j x(i)
∥
∥∑

i|a(i)= j x(i)
∥
∥ j ∈ 1..k

When computing a(i) we maximize the cosine similarity instead of the squared
Euclidean distance in regular k-means. For c(j), note that the denominator is
different here, as we want to have ‖c(j)‖ = 1 for all j. We hence do not need to
compute the arithmetic mean, but we can scale the sum directly to length 1.
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There are several optimizations we can do for the baseline algorithm that
make a difference: (i) By normalizing the vectors, we do not have to take the
vector lengths of x(i) into account when updating c(j), and by also normalizing
the c(j) we can use the dot product when computing a(i). (ii) Both the dot
product as well as the sum operation when computing c(j) can be optimized for
sparse data. (iii) Instead of recomputing c(j) each time, it is better to store the
sums before normalization and update them when a cluster assignment changes.

5.1 Spherical Simplified Elkan’s Algorithm

As the name suggests, this algorithm is a simplified version of Elkan’s approach,
introduced by Newling and Fleuret [21]. As it uses a subset of the pruning rules,
we introduce it before Elkan’s full algorithm. Both are presented directly in the
adaptation for spherical k-means.

Simplified Elkan uses the test u(i, j)≤ l(i) to skip computing the sim-
ilarity between x(i) and c(j) when it is not necessary. If this test fails,
l(i)←〈x(i), c(a(i))〉 is updated first (as the current assignment is clearly the best
guess), and only if the condition still is violated, u(i, j)←〈x(i), c(j)〉 is computed
next, and the point is reassigned if necessary (updating l(i) and a(i) then).

5.2 Spherical Elkan’s Algorithm

Elkan’s algorithm [10] uses additional tests based on the pairwise distance of cen-
ters, respectively pairwise cluster similarities here. The idea is that cluster centers
are supposedly well separated, whereas points are close to their nearest cluster,
and we can use half the distance between two centers as a threshold. We sim-
plify the computation of half of the angle per cos(12 arccos(x))=

√
(x+1)/2. Let

cc(i, j) :=
√

(〈c(i), c(j)〉+1)/2 be this lower bound (cc for center-center bounds,
as in [21]). Let s(i) := maxj �=i cc(i, j) denote the maximum such bound for each i.

Suppose that cc(a(i), j) ≤ l(i) and l(i) ≥ 0, then 〈c(i), c(j)〉 ≤ 2l(i)2 − 1. We
can then use Eq. (5) to bound the distance to another cluster c(j) 	= c(a(i)) per

〈x(i), c(j)〉 ≤ 〈x(i), c(a(i))〉 · 〈c(a(i)), c(j)〉
+

√
(1−〈x(i), c(a(i))〉2) · (1−〈c(a(i)), c(j)〉2)

≤ l(i)(2l(i)2 − 1) +
√

(1−l(i)2) · (1−(2l(i)2 − 1)2)

= 2l(i)3 − l(i) +
√

(1−l(i)2) · 4l(i)2(1−l(i)2)

= 2l(i)3 − l(i) + 2l(i)(1−l(i)2) = l(i) ,

and hence do not have to consider other cluster centers c(j) if cc(a(i), j) ≤ l(i).
Because s(i) is the maximum of these values, we can skip iterating over the
means if s(i) ≤ l(i) altogether. While these additional tests are fairly cheap to
compute, they were found to not always be effective by Newling and Fleuret [21]
(who, hence, suggested the simplified variant discussed in the previous section).

For spherical k-means clustering, these bounds may not be very effective
because of the high dimensionality. Using these bounds adds k·(k−1)/2 = O(k2)
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similarity computations to each iteration. Furthermore, the necessary compu-
tations can become more expensive because the centers are best stored using
dense vectors because (i) we aggregate many vectors into each center, and only
attributes zero in all of the assigned vectors will be zero in the resulting center,
i.e., the sparsity decreases often to the point where a dense representation is
more compact, and (ii) the efficient sparse data structures we use for the x(i)
are not well suited for adding and removing attributes. We could aggregate into
a dense vector and convert it to a sparse representation when normalizing the
center, but the resulting vectors will still often be too dense to be efficient.

5.3 Spherical Hamerly’s Algorithm

Where Elkan’s algorithm used one upper bound for each cluster, Hamerly [12]
only uses a single bound for all clusters. This does not only saves memory (for
large k, memory consumption of Elkan’s algorithm can be an issue) but updating
the N ·k bounds each iteration even if the clusters change only very little takes a
considerable amount of time. Hamerly’s idea is to make a worst-case assumption,
where we use the distance to the second nearest center as the initial bound, and
update it based on the largest cluster movement (of all clusters, except the one
currently assigned to). Because of this, the bound will become loose much faster,
and hence we need to recompute more often (and then we need to recompute
the distances to all clusters). Because of this, it is hard to predict which algo-
rithm works better, we are trading reduced memory and fewer bound updates
against additional distance computations. Nevertheless, many later works have
confirmed that it is often favorable to only keep one bound.

At first, adapting Hamerly to cosine similarity appears to be straightforward.
To obtain the lowest upper bound per object u(i)≤ minj �=a(i) u(i, j), we would
compute the smallest similarity of a cluster center to its previous location (as well
as the second smallest, in case the point is currently assigned to that center),
then use Eq. (7) with p′(i) := minj �=i p(j) (which is either the smallest or the
second smallest p(j)). Most of the time this is fine, but there is a subtly hidden
catch here because of the underlying non-monotone trigonometric functions.

Recall the update equation (7), rewritten to u(i) instead of u(i, j) already:

u(i) ← u(i) · p(j) +
√

(1 − u(i)2) · (1 − p(j)2)

This equation is not necessarily minimized by the smallest p(j), because of the
square root term. For large u(i) (e.g., 1), the result will be determined by the
first term, and a smaller p(j) is what is needed. But for small u(i) (e.g., 0), the
second term becomes influential, and a larger p(j) causes a smaller bound. This
is because we are working with the cosines cos θ, not the angles θ themselves.
Unfortunately, this depends on the previous value of u(i), and we probably
cannot use just one p(j) for all points.

One option would be to use both the minimum p′(i) := minj �=i p(j) and the
maximum p′′(i) := maxj �=i p(j) to update the bound with:

(7) ≤ u(i) · p′′(a(i)) +
√

(1 − u(i)2) · (1 − p′(a(i))2) . (8)
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Because p′′(j) → 1 as the algorithm converges, we may omit this term entirely:

(8) ≤ u(i) +
√

(1 − u(i)2) · (1 − p′(a(i))2) (9)

This has almost identical pruning power once p′′(j) becomes large enough in
later iterations. As we can precompute (1− p′(j)) for all j, this is quite efficient.
We cannot rule out that a tighter and computationally efficient bound exists.

If the condition l(i)≥u(i) is violated, first l(i) is made tight again, and if
it still is violated, all remaining similarities are computed to update u(i), or to
potentially obtain a new cluster assignment (updating a(i), l(i), and u(i)).

5.4 Spherical Simplified Hamerly’s Algorithm

Hamerly’s algorithm contains a bounds test similar to Elkan’s algorithm,
but using only the distance of each center to its nearest neighbor cen-
ter instead of keeping all pairwise center distances, i.e., only the threshold
s(i) := maxj �=i cc(i, j) to prune objects with l(i)≥s(a(i)). We also consider a
“simplified” variant of Hamerly’s algorithm in our experiments with this bound
check removed for the same reasons as discussed with Elkan’s algorithm.

5.5 Further k-Means Variants

An obvious candidate to extend this work is Yin-Yang k-means [9], which groups
the cluster centers and uses one bound for each group. This is a compromise
between Elkan’s and Hamerly’s approaches, encompassing both as extreme cases
(k groups respectively one group). The results of this paper will trivially transfer
to this method. The Annulus algorithm [13] additionally uses the distance from
the origin for pruning. As all our data is normalized to unit length, this approach
clearly will not help for spherical k-means. The Exponion [21] and Shallot [7]
algorithms transfer this idea to using pairwise distances of cluster centers, where
our considerations may be applicable again.

5.6 Spherical k-means++

We experiment with the canonical adaptation of k-means++, using the analogy
with squared Euclidean distance. The first sample is chosen uniformly at random,
the remaining instances are sampled proportional to 1 − maxc〈x(i), c〉 which is
proportional to the squared Euclidean distance used by k-means++. This can
be done in O(nk) by caching the previous maximum, and the scalar product
is efficient for two sparse vectors. Endo and Miyamoto [11] prove theoretical
guarantees for a slight modification of spherical k-means using the dissimilarity
of α − 〈x,y〉 with α ≥ 3

2 to make it metric, and hence sample proportionally to
1 − maxc〈x(i), c〉. Pratap et al. [22] use the same trick to apply the AFK-MC2

algorithm [4] to spherical k-means-clustering.



224 E. Schubert et al.

Table 1. Data sets used in the experiments.

Data set Rows Columns Non-zero

DBLP Author-Conference 1842986 5236 0.056%

DBLP Conference-Author 5236 1842986 0.056%

DBLP Author-Venue 2722762 7192 0.099%

Simpsons Wiki 10126 12941 0.463%

20 Newsgroups 11314 101631 0.096%

Reuters RCV-1 804414 47236 0.160%

6 Experiments

We implemented our algorithms in the Java framework ELKI [25], which already
contained a large collection of k-means variants. By keeping the implementation
differences to a minimum, we try to make the benchmark experiments more
reliable (c.f., [15]), but the caveats of Java just-in-time compilation remain.

As our method is designed for sparse and high-dimensional data sets, we
focus on textual and graph data as input. Table 1 summarizes the data sets used
in the experiments. From the Digital Bibliography & Library Project (DBLP,
[18]) we extracted graphs that connect authors and conferences. As this includes
many authors with just a single paper, the data set is very sparse. We can
either use the authors as samples and the conferences as columns or transposed.
But because we use TF-IDF weighting afterward the semantics will be different.
Spherical k-means clustering has been used successfully for community detection
on such data sets (although we have to choose the number of communities as
a parameter). If we also include journals, the data set becomes both larger and
denser. A second data set was obtained from the Simpsons Fandom Wiki,1 from
which we extracted the text of around 10000 articles. The text was tokenized
and lemmatized, stop words were removed as well as infrequent tokens (reducing
the dimensionality from 42124 to 12941, and increasing the density of non-zero
values from 0.153% to 0.463%). This data set is more typical of a smaller domain-
specific text corpus. The 20 Newsgroups data set is a classic, popularized by
the textbook of Tom Mitchell. We use a version available via scikit-learn, with
headers, footers, and quotes removed and vectorized using the default settings
(i.e., TF-IDF weighting). This is much more sparse than the Simpsons wiki
because of the poor input data quality (including Base64-encoded attachments).
After removing stop words and rare words as above, the density would have been
0.317%, but we opted for the default scikit-learn version instead. Reuters RCV-
1 [17] is another classic text categorization benchmark, with a density between
the Simpsons and the 20news data.

We first discuss the algorithms on a single data set, with a single random
seed, averaged over 10 re-runs, to observe some characteristic behavior. The
reason that we do not average over different random initializations is that we

1 https://simpsons.fandom.com/wiki/Simpsons Wiki.

https://simpsons.fandom.com/wiki/Simpsons_Wiki
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(a) Similarity computations per iteration. (b) Number of similarity computations.

(c) Run time per iteration. (d) Cumulative run time.

Fig. 1. Distance computations and resulting run time for one initialization.

want to observe individual iterations of the algorithms, which depend on the
initialization. Figure 1 shows the results on the DBLP author-conference data
set with a large k = 100. Considering only similarity computations (Fig. 1a and
1b), both Elkan and Simplified Elkan shine (as expected) and use the fewest
computations as they have the tightest bounds. There is next to no difference
among the two concerning the number of computations, but considering the run
time (Fig. 1c and 1d) the simplified variant is much worse. Perhaps unexpectedly,
this can be explained by the high k. The additional pruning rule of the full
algorithm allows skipping the loop over all clusters k, which would otherwise
each have to be checked against their bounds. The behavior of the Hamerly
variants is much more chaotic because it only depends on the cluster center that
changed most. Because of this, Hamerly computes many more similarities than
Elkan until the last few iterations. Nevertheless, its total run time is initially
similar to that of Simplified Elkan, and after around 30 iterations its run time
per iteration (c.f., Fig. 1c) becomes even lower than the full Elkan algorithm’s.
These savings arise once clusters do not change much anymore because only
2 bounds need to be updated instead of k+1 bounds per iteration. For k = 10
(not shown in the figures), both Hamerly variants outperform Elkan, while for
k = 1000 even Simplified Elkan clearly outperforms both Hamerly variants. Note
that we used random sampling as initialization. If we had known the optimal
initial cluster centers, all methods would have converged instantly.

Next, we compare the quality and run time of the initialization methods.
Table 2 shows the difference in the sum of variances, averaged over 10 random
seeds, compared to the uniform random initialization. It shows that the quality
difference of the converged solutions between all initialization methods is small
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Table 2. Relative change in the objective function compared to the random initializa-
tion (lower is better).

Data set Initialization k = 2 k = 10 k = 20 k = 50 k = 100 k = 200

Simpsons Wiki Uniform 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

k-means++ α = 1 −0.27% −0.16% −0.24% −0.07% −0.18% −0.07%

k-means++ α = 1.5 −0.16% −0.13% −0.17% −0.01% −0.18% −0.09%

AFK-MC2 α = 1 −0.44% 0.12% −0.15% −0.15% −0.24% −0.08%

AFK-MC2 α = 1.5 −0.31% 0.21% 0.09% 0.09% −0.05% −0.02%

DBLP Author-Conf. Uniform 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

k-means++ α = 1 −0.11% 0.12% −0.07% 0.27% 0.14% −1.67%

k-means++ α = 1.5 −0.03% 0.11% 0.33% 0.68% 0.53% −0.74%

AFK-MC2 α = 1 −0.01% −0.06% −0.87% −0.47% −0.48% −1.03%

AFK-MC2 α = 1.5 −0.03% 0.34% −0.32% 0.09% −0.56% −1.10%

DBLP Author-Venue Uniform 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

k-means++ α = 1 −0.13% 0.09% −0.12% 0.13% −0.74% −1.70%

k-means++ α = 1.5 −0.01% 0.18% 0.00% 0.23% 0.39% −0.17%

AFK-MC2 α = 1 −0.17% 0.10% −0.05% 0.47% −0.20% −0.68%

AFK-MC2 α = 1.5 −0.19% −0.33% −0.68% −0.04% −0.50% −1.41%

DBLP Conf.-Author Uniform 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

k-means++ α = 1 0.01% 0.04% 0.05% −0.02% −0.13% −0.09%

k-means++ α = 1.5 0.00% 0.11% 0.08% −0.15% −0.18% −0.13%

AFK-MC2 α = 1 0.04% 0.00% 0.05% −0.10% −0.19% −0.02%

AFK-MC2 α = 1.5 0.04% 0.00% 0.06% −0.12% −0.15% −0.06%

20 Newsgroups Uniform 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

k-means++ α = 1 0.38% 0.52% 0.78% 1.83% 4.09% 7.34%

k-means++ α = 1.5 0.72% 0.93% 0.89% 2.39% 4.65% 7.87%

AFK-MC2 α = 1 0.24% 0.31% 0.31% 0.41% 0.11% 0.23%

AFK-MC2 α = 1.5 0.37% 0.17% 0.26% 0.30% 0.08% 0.23%

RCV-1 Uniform 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

k-means++ α = 1 0.13% −0.11% 0.08% −0.25% −0.17% 0.06%

k-means++ α = 1.5 −0.03% 0.21% 0.53% 0.44% 0.04% 0.16%

AFK-MC2 α = 1 −0.24% −0.01% −0.03% 0.39% 0.05% 0.24%

AFK-MC2 α = 1.5 0.13% 0.07% −0.03% 0.22% −0.09% 0.15%

except for the 20-news data set where k-means++ performs up to 8% worse.
Supposedly, because this data set contains anomalies. AFK-MC2 [4] with α = 1
finds the best initialization most of the time. While k-means++ with α = 1.5
does not quite reach same the quality, it performs generally better than uniform
random. With α = 1.5, both initialization methods are worse and more often
than not are below the quality of the random uniform initialization. The run
time behavior is similar on all data sets. The uniform initialization is nearly
instantaneous, while the kmeans++ and AFK-MC2 initialization generally stay
below the time needed for one iteration. They only have a small impact on the
overall run time. Usually, α = 1 seems to work better than α = 1.5, where the
first is the standard cosine similarity, while the latter was used in the proofs to
obtain a metric.



Accelerating Spherical k-Means 227

Table 3. Run times of all k-means variants in milliseconds.

Data set Algorithm k = 2 k = 10 k = 20 k = 50 k = 100 k = 200

Simpsons Wiki Standard 166 457 845 1,646 3,015 10,047

Elkan 161 352 532 1,198 2,657 8,247

Simp.Elkan 145 312 436 800 1,230 3,100

Hamerly 171 434 732 1,860 3,976 14,386

Simp.Hamerly 166 421 657 1,450 2,471 9,858

DBLP Author-Conf. Standard 32,228 29,865 24,687 42,229 50,851 80,553

Elkan 5,675 9,650 12,366 39,652 54,901 82,732

Simp.Elkan 5,732 10,841 15,514 44,991 66,731 105,905

Hamerly 4,220 7,072 9,834 19,988 30,846 55,687

Simp.Hamerly 4,285 7,002 9,810 19,690 31,589 55,250

DBLP Author-Venue Standard 33,359 46,328 50,596 70,772 80,218 199,230

Elkan 5,730 14,593 22,733 59,725 84,011 165,756

Simp.Elkan 5,986 16,822 27,200 68,577 103,678 209,835

Hamerly 4,321 11,410 18,056 33,881 51,242 125,066

Simp.Hamerly 4,188 11,096 17,799 33,017 52,593 123,931

DBLP Conf.-Author Standard 1,149 6,017 9,672 20,908 33,973 61,680

Elkan 943 5,549 11,907 41,078 108,028 32,103

Simp.Elkan 894 4,018 6,184 10,998 16,435 29,093

Hamerly 944 6,840 14,760 50,282 125,513 347,668

Simp.Hamerly 944 5,347 9,158 20,115 32,640 55,421

20 Newsgroups Standard 101 234 1,223 6,755 16,394 38,131

Elkan 118 269 498 6,683 19,917 83,407

Simp.Elkan 118 251 342 1,876 3,915 7,891

Hamerly 111 272 536 9,542 28,005 109,204

Simp.Hamerly 121 266 443 5,298 12,653 29,915

RCV-1 Standard 24,569 153,170 224,939 917,894 2,669,733 6,064,203

Elkan 7,639 38,199 47,963 115,275 260,924 547,110

Simp.Elkan 8,825 41,162 50,161 123,428 263,728 474,800

Hamerly 5,424 49,041 80,793 325,433 1,132,352 3,181,667

Simp.Hamerly 5,498 47,977 81,593 320,677 1,144,947 3,266,234

At last, we discuss the achieved improvements in run time for the acceler-
ated spherical k-means algorithms. As with the other experiments, each one was
repeated 10 times with various random seeds. Table 3 shows that for most data
sets the simplified Elkan algorithm is the fastest, but there are several interest-
ing observations to be made. On the Author-Conference data set, which has the
most rows of all data sets but also the lowest number of columns, the normal
Elkan and both Hamerly variants are faster. Interestingly, this changes when we
increase the number of columns in relation to the number of rows by transpos-
ing the data (before applying TF-IDF), shown in Fig. 2. Here, the normal Elkan
and Hamerly variants increase drastically in their run time when k increases.
This effect originates in the increasing cost of calculating the distances between
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(a) Run time of the different algorithms
on Authors-Conf. (higher N , lower d).

(b) Run time of the different algorithms
on Conf.-Authors (lower N , higher d).

Fig. 2. Run times of the different algorithms on the DBLP author-conference data set,
and its transpose, with very different characteristics.

cluster centers for the additional pruning step. By transposing the data (to clus-
ter conferences, not authors), we increased the dimensionality by 350×, while at
the same time reducing the number of instances by the same factor. Comput-
ing the pairwise cluster distances now became a substantial effort. This shows
that there is no “one size fits all”, but the best k-means variant needs to be
chosen depending on data characteristics such as dimensionality and the num-
ber of instances. While Simplified Hamerly is among the best methods in both
situations, it barely outperforms the standard algorithm on the latter data set.
Supposedly because of the very high dimensionality, its pruning power is rather
limited. While the spherical Hamerly and Elkan implementations can be faster
than the standard spherical k-means algorithms, this depends on the data, and
with an unfavorable data set they can be much worse. The simplified version of
spherical Hamerly seems to be a reasonable default choice, but for small k, it
may often be outperformed by the Elkan variants. On the well-known RCV-1
data set, speedups of over 10× are achievable for k≥100. It may be a bit dis-
appointing that there is no “winner” solution, but data sets simply may have
very different characteristics. Possibly some simple heuristics can be identified to
automatically choose an appropriate alternative based on empirical thresholds
(which need to be determined for a particular implementation and hence are
outside the scope of a scientific paper) on the data dimensionality and data set
size. In many cases, the limiting factor may be the memory usage and band-
width for the Elkan variants. Consider the DBLP authors-conference data set
with k = 100, the bounds used by Elkan with double precision require 2 GB
of RAM for the bounds alone, and have to be read and written each iteration.
The Hamerly variants only add an overhead of 44 MB. The Yin-Yang variant
which we did not yet implement allows choosing the number of bounds to use,
and hence make better use of the available RAM.
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7 Conclusions

In this article, we use the triangle inequality for cosine similarity of Schubert [23],
to accelerate spherical k-means clustering by avoiding unnecessary similarity
computations. We were able to adapt the well-known algorithms of Elkan and
Hamerly (along with some simplified variants) to work with similarities rather
than distances throughout the algorithm. This is desirable because the similari-
ties are more efficient to compute, and the trigonometric bounds are tighter than
the Euclidean bounds [23] (with the first corresponding to the arc length, the
latter to the chord length). Both require the computation of a square root and
hence require similar effort.

We integrated the new triangle inequality into Elkan’s and Hamerly’s algo-
rithm as two prominent and popular choices, but acknowledge there exist further
improved algorithms such as the Yin-Yang, Exponion, and Shallot algorithms
that deserve attention in future work. The purpose of this paper is to demon-
strate that we can perform pruning directly on the cosine similarities now and
that it can speed up the algorithm run times considerably (we observed speedups
of over 10× for the well-known RCV-1 data set).

For further speedups, the new technique can also be combined with improved
initialization methods from literature. There exists a synergy between some initial-
ization methods that we are not yet exploiting in our implementation, where, e.g.,
the k-means++ initialization can pre-initialize the bounds used here, and will then
allow pruning computations already in the first iteration of the main algorithm.

We hope that this article spurs new research on further accelerating spherical
k-means clustering using the triangle inequality, similar to Euclidean k-means.

Acknowledgments. A simpler approach of adapting Hamerly’s and Elkan’s algo-
rithms for spherical k-means clustering still using Euclidean distances and not the
cosine triangle inequalities was explored by our student, Alexander Voß, in his bache-
lor thesis.
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Abstract. Many approaches in the field of machine learning and data
analysis rely on the assumption that the observed data lies on lower-
dimensional manifolds. This assumption has been verified empirically for
many real data sets. To make use of this manifold assumption one gener-
ally requires the manifold to be locally sampled to a certain density such
that features of the manifold can be observed. However, for increasing
intrinsic dimensionality of a data set the required data density introduces
the need for very large data sets, resulting in one of the many faces of the
curse of dimensionality. To combat the increased requirement for local
data density we propose a framework to generate virtual data points
faithful to an approximate embedding function underlying the manifold
observable in the data.

1 Introduction

It is generally assumed that data is not entirely random but rather obeys some
internal laws that can be considered a generative mechanism. Whenever each
sample is a numerical vector, one key observation is almost self-evident: Correlat-
ing dimensions hint at possible causalities and are thereby useful for understand-
ing the underlying generative mechanism. In the most basic approach, one can
apply principal component analysis to find the strongest correlations through-
out the entire dataset and use, e.g., the five largest components as a simplifying
model. Semantically this corresponds to a generative mechanism that takes a
five-dimensional vector and embeds it alongside the principal components in
whatever many features are observed. Therein already lie the limitations of this
idea: We can only represent linear embedding functions in this way.

Considering the case of a sine wave on a plot in two dimensions, the observed
data is using only one parameter. It would hence be reasonable to use a model
that only uses a single parameter as well. As a simple relaxation, we can assume
the data to lie on any manifold. This generalizes the concept of our generative
mechanism to any locally linear function. However, this introduces a novel prob-
lem: If we wish to use the methods developed for linear functions on locally
linear functions, we introduce an error that grows with the observed locality. In
practice, that means if we analyze the manifold surrounding a single point, we
can not take as many of the surrounding points as possible but must restrict our-
selves to all points within some maximum radius. In the field of intrinsic dimen-
sionality (ID) estimation that focuses on estimating the number of parameters
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of one such embedding function, it is therefore common to use the k-nearest-
neighbors for estimating the ID [1,2,5,12,17]. Yet, ID estimators require a suf-
ficient amount of points in a neighborhood to be stable, which contradicts the
requirement to observe as small a neighborhood as possible. Ideally, we would
like to use infinitesimal small neighborhoods containing infinitely many neigh-
bors as in this case ID estimation can be investigated purely analytically [9–11].
Yet, as this is practically impossible, ID estimation is inherently approximate.

In this paper, we introduce a novel framework to generate additional data
points from the existing ones that are meant to lie on, or very close to, the man-
ifold of the generating mechanism. We intend to increase the local point density
on the manifold, thus decreasing the radius required for stable ID estimation.
Further applications, for example in machine learning, which could benefit from
additional training data faithful to the generative mechanism, are outside the
focus of this paper, yet certainly of interest for further research.

The remainder of this paper is structured as follows: Sect. 2 surveys related
work and the ID estimation approaches used in this paper. The novel supersam-
pling framework with its underlying theory is described in Sect. 3. The impact
of the supersampling on ID estimators under varying parameterization is high-
lighted in Sect. 4. The closing Sect. 5 gives an overview of the current state of
the method and provides an outlook on future work.

2 Related Work

In the past, the concept of intrinsic dimensionality has been analyzed within two
major categories. In the first category lie the geometrically motivated ID estima-
tors like the PCA estimator, its local variant the lPCA estimator, the FCI estima-
tor [6], or the recent ABID estimator [17], which uses the pairwise angles of neigh-
bor points. These estimators use measures like the local covariance of (normalized)
points to estimate the spectrum of the neighborhoods, from which they deduce an
estimate of the ID that mostly ignores weaker components as observational noise.
The second category of analytically motivated ID estimators contains, e.g., the Hill
estimator [8], the Generalized Expansion Dimension estimator [12], or more recent
variants like the ALID [5] and TLE estimator [2]. These are based on the idea that
if the data lies uniformly in the parameter space, i.e. the preimage of the data under
the embedding function, then distances in the data should increase exponentially
in the ID at any point on the manifold. These estimators can be considered the
discrete continuation of analytical approaches like the Hausdorff dimension. How-
ever, they are vulnerable to varying sampling densities. As this work focuses on
the improvement of estimates by supersampling the data and not on the compar-
ative performance between estimators, we will use only a selection of estimators
as prototypes for their categories. The supersampling framework itself rests some-
where between these two categories: It is generally motivated geometrically but the
supersampled data can be understood as uncertainty added to the data set whose
influence decreases over distance. The framework can thus introduce information
orthogonal to the ID estimation approaches and potentially enrich estimators from
both categories.
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The concept of enriching data sets by introducing new points is by itself
not a new idea. Domain-specific supersampling techniques are very common for
example in image-based machine learning, where images are created by adding
noise, scratches, color or brightness shifts, flipping or rotating the image, and
many more. The first few can be thought of as adding noise to (some of) the
features while the latter correspond to geometric operations like rotation or
translation. These operations, although possibly faithful to the manifold of the
generative mechanism (e.g., amount of noise in the imaging hardware), are not
necessarily faithful to the manifold presented in the analyzed data set.

There are, however, approaches that in a very general manner attempt to
mimic the data with additional points. One of these is the highly-cited SMOTE
approach introduced by Chawla et al. [4] which introduces new points by adding
a series of linear interpolations of points in the feature space. On locally non-
convex manifolds this approach creates points that do not lie on the manifold.
For machine learning tasks, this deviation is likely tolerable as, e.g., barely over-
lapping classes are still separated. In terms of ID estimation, however, even small
systematic deviations from the manifold can introduce new orthogonal compo-
nents resulting in overestimation. Later variants of the SMOTE approach have
tried to work around this issue but focus on the machine learning objective of
not mixing classes.

The objectives of supersampling (or oversampling in the words of SMOTE)
for machine learning and ID estimation are quite similar yet inherently differ-
ent. For machine learning, a more redundant sampling of the manifold is useful
for parameter optimization yet possibly diminishes the model robustness com-
pared to data scattered around the manifold. In ID estimation, we need an exact
representation of the manifold without additional orthogonal components. One
can therefore consider the constraint set of supersampling for ID estimation as
stronger than that for machine learning. Solutions for ID estimation are appli-
cable for machine learning but not vice versa.

The framework by Bellinger et al. [3] is similar to the framework introduced
here, as it also attempts to take additional samples from the manifold itself.
They, however, base their method on manifold learning approaches, which to give
decent results, already require quite dense data on the manifold and additionally
a parameterization of the intrinsic dimensionality. Starting with a method that
requires ID estimates to improve ID estimates is a circular argument that makes
the framework of Bellinger et al. inapplicable for ID estimation. This problem
also affects manifold-based variants of SMOTE, e.g., the one by Wang et al. [18]
which involves locally linear embeddings.

At last, multiple techniques in computer graphics have been studied to
improve, e.g., the resolution of point cloud scans of objects. These approaches,
however, mostly focus on improving 2D surfaces in 3D space and do not gen-
eralize to arbitrary dimensions of both parameter and feature space, partly as
information like surface normals used in these methods do not generalize either.
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3 Manifold Faithful Supersampling

As mentioned in Sect. 2, the framework for supersampling introduced in this
paper is based on geometric observations and aims to create samples from
the manifold that is created by the generative mechanism via an embedding
function from some parameter space. It hence shares the manifold assumption
implied by many downstream applications like autoencoders and ID estimators
like ABID [17] or ALID [5]. Whilst Chawla et al. [4] and Bellinger et al. [3]
named their methods over-sampling, it will here be called supersampling in line
with the computer graphics semantics: We increase the amount of data to reduce
undesired artifacts and improve the “bigger picture” of the original data set.

The remainder of this section will consist of the geometric observations under-
lying the framework, an explanation of the generation pipeline, followed by dif-
ferent options for the modules that make up the pipeline.

3.1 Approaching the Embedding Function

We assume that the data lies on some manifold. To be more precise, we assume
that our data X obeys some locally linear1 embedding function E such that for
every x ∈ X we have some preimage x̃ such that E(x̃) = x. Yet data is often
noisy, which is why this will likely not hold for all x ∈ X, and for the rest, we
probably only have E(x̃) ≈ x. While we can tolerate that the embedding function
is only approximate, we will have to accept that we can not know which x ∈ X
are noise points and are unrelated to the embedding function. It is, therefore,
reasonable to assume that this assumption holds for all x, as we cannot correct
it for the other points either way, except for pre-filtering X with some outlier
detection method. In the remainder of this paper, the tilde over a data point
or data set will represent the preimage as per the assumed embedding function.
We denote the ground truth ID as δ and the observed feature dimension as d.

Assuming E : Rδ → R
d to be locally linear, for sufficiently small ε we obtain

Cov[E(Bε(x̃))] ≈ ε2

δ + 2
∇E(x̃)∇E(x̃)T (1)

where Cov[E(Bε(x̃))] ∈ R
d×d is the covariance matrix of all points from an

ε-ball around x̃ embedded with the embedding function E, ∇E(x̃) ∈ R
d×δ is

the Jacobian of E evaluated at x̃. This formula can be easily derived from the
propagation of uncertainty [16] taking the Jacobian as the linear approximation
of E. The covariance matrix of the δ-ball with radius ε can therein be substituted
by ε2

δ+2 as it is a diagonal matrix with ε2

δ+2 on the diagonal [14].
Naturally, we do not have such a high sampling density on real data sets that

we can consider arbitrarily small neighborhoods. For larger neighborhoods, the

1 The aspect of local linearity is disputable, as it does not allow for singularities and is
weak on functions with high curvature. However, the typically low sampling density
of real data sets makes geometric methods ineffective on non-locally-linear functions.
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manifold curvature and sampling density of the data set can affect the covari-
ance matrix and act on its eigenvalues. When projecting points onto one of the
components, strong curvature contracts the neighborhoods, reducing the scale
along this component. Dependent on the curvature, the effect is independent for
each component giving the simpler approximation

Cov[Nk(x)] ≈ ∇E(x̃)C(x̃)∇E(x̃)T (2)

where Cov[Nk(x)] is the covariance matrix of the k-nearest-neighbors of x in X,
and C(x̃) is a diagonal matrix with scaling factors for each component gradient.
As we do not know the curvature, we can not give an estimate for C. Solving for
∇E(x̃) is, therefore, futile, as it is underdetermined from this approximation.
Yet, the rough approximation of aspects of E via covariance matrices gives a
glimpse at the manifold structure underlying the data set. In the remainder, we
will omit C

1
2 in benefit of readability whenever using ∇E as they are inseparable

when analyzing how the embedding function acts on points in the neighborhood.
To stretch data according to some covariance matrix Σ, it is well known

that the lower diagonal matrix L of the Cholesky decomposition (LLT =Σ) can
be used. Starting with a set of points xi sampled from N (0, 1) we can, hence,
obtain points x′

i = Lxi which are distributed according to N (0, Σ). That is,
we can use the Cholesky decomposition to mimic the local linear approximation
of the embedding function ∇E. Using that approximation of ∇E we can then
compute locally linear embeddings of arbitrary distributions in parameter space.

To compute the covariance matrices of the k-nearest-neighbors Nk(x) of some
point x, we use the biased formula 1

kNT N where N∈Rk×d contains the k-nearest-
neighbors subtracted by x as row vectors. This virtually puts x in the center
of the distribution and is less susceptible to introducing additional orthogonal
components due to manifold curvature. Using the query point x as the center
of the distribution is common practice in ID estimation [2,5,17]. In addition,
we add a small constant to the diagonal of all covariance matrices whenever
computing any Cholesky or eigendecomposition to avoid numerical errors.

3.2 Supersampling Pipeline

As explained in the previous section, we can use the covariance matrices of
neighborhoods to describe local linear approximations of the embedding func-
tion. From these local approximations, we can then sample some points that are
already close to or even on the manifold. However, contrary to Chawla et al. [4]
and Bellinger et al. [3] we will afterward modify each of the samples to better
constrain them to the manifold. If we were to use the generated points without
further processing, they would frequently lie outside the manifold whenever it
has non-zero curvature, or when our observations are noisy. This can be seen
in Fig. 1 as the surface of the corrected supersampling is much smoother than
the raw supersampling with less spread orthogonal to the swiss roll. To move
the supersampled points onto the manifold, we use weighted means of candidate
points that are more aligned with the covariances of the nearby original data
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Fig. 1. Supersampling a swiss roll with normal noise in feature space (σ = 0.15) and
added uniform noise points. The left image shows the original data, the middle image is
supersampled 50× using covariances and the right is the supersampled data “corrected”
onto the manifold. All plots are colored by ABID estimates with 10 neighbors for the
original data and 500 for the others.

points. For ID estimation we then chose the k-nearest-neighbors from the super-
sampled points rather than the original data set. The k used for the ID estimates
can then be larger by a factor up to the number of samples per original point
without increasing the neighborhood radius. We, hence, start with some data
set X, supersample it by a factor of ext to Xext, move the supersamples onto
the manifold obtaining Xcorr and then compute ID estimates for each x ∈ X
using the (ext · k)-nn of x in Xcorr.

3.3 Supersampling Modules

The approach in this general form allows for many variants of each step. We can,
for example, generate initial samples from a multivariate normal distribution
around the original samples using the locally estimated covariance matrix. The
resulting points would certainly lie close to, or on, the local linear approximation
of the manifold. To structure this section, we will first describe the proposed
generation modules, followed by the correction modules.

Sample Generation: The generated samples can have two kinds of “closeness”
to the manifold: Either close to the original points in feature space, or close in
the hypothesized parameter space.

The first type of generation rules generates samples close to the original
points in feature space. Samples can be drawn from normal distributions or d-
balls around our original points. For the radius of the d-ball or the standard
deviation of the normal distribution, we can, e.g., use distances to the k-th near-
est neighbor. These approaches, however, generally introduce additional orthog-
onal components as they do not obey the shape of the manifold and in initial
experiments performed quite poorly. We, therefore, did not further analyze these
generation rules.

The second type of generation rules mimics the local linear approximation
of the manifold, thereby generating points close in the hypothesized parameter
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space rather than feature space. The first rule of this type that we propose
uses the covariance-based multivariate normal distribution. Points generated by
this rule can be expected to closely follow the local linear approximation of
the manifold, yet have an increasing density towards the original points. The
resulting set of samples, hence, is all but uniformly distributed in parameter
space and can thereby potentially encumber expansion rate-based ID estimators.

To compensate for the non-uniform density of multivariate normal distribu-
tions, we propose another rule which is based on the Cholesky decomposition of
the covariance matrix (L with LLT =Σ). The Cholesky decomposition is easy to
compute and gives a linear map that maps a unit d-ball with a Mahalanobis dis-
tance of ≤1 with respect to Σ. Using this map, we can then transform uniform
samples from a unit d-ball into samples within one standard deviation according
to Σ. Assuming the Cholesky decomposition to be a linear approximation of
the embedding function, this produces points uniformly at random in parameter
space whenever δ ≈ d. Yet ID estimation is generally performed on data sets
where the ID is much lower than the number of features (δ � d), where the
points would again be very concentrated around the original points.

The problem therein is simple: To generate points at the exact expansion
rate of the parameter space, one needs to know the dimension of the parameter
space. We can, in general, not know the true ID, yet an initial estimate could be
close enough for generated data to be approximately uniform in parameter space.
But we cannot simply scale the lengths of samples uniformly from the unit d-
ball by exponentiating with d/δ as the lengths are not equally distributed along
the δ � d components of ∇E. To scale along the components of ∇E accord-
ing to their lengths, we can use the eigenvalues of the Cholesky decomposition.
However, we can also skip the Cholesky decomposition and use the eigende-
composition of the covariance matrix (V ΛV T =Σ), where V Λ

1
2 is assumed to be

approximately ∇E (extended to d×d with zeros). If Eq. (2) holds, V Λ
1
2 and ∇E

must be approximately equal up to rotations and reflections, as they decompose
the positive semi-definite Σ in the same fashion. These two matrices, therefore,
act equally on any radially symmetric distribution like the uniformly sampled
d-ball considered here. In doing so, the neighborhood radius-, sampling density-
and curvature-based scaling factors from Eq. (2) as well as the component gra-
dient norms are included in the eigenvalues. Starting with samples uniform at
random in a d-ball, we can multiply them with Λ

1
2 and project them onto the

sphere. The resulting angular distribution is then compliant to that of a multi-
variate normal distribution using Λ

1
2 as the covariance matrix. By scaling each

of these points with rδ′
, where r is uniform at random from 0 to 1 and δ′ is the

initial ID estimate we obtain a distribution that is compliant to the expansion
of a δ′-ball. Finally multiplying with Λ

1
2 V T (or L, though we already have the

Eigen- but not the Cholesky decomposition) embeds the points according to ∇E.
Scaling with Λ

1
2 before normalization does not eliminate d − δ′ components nor

give equal weight to the remaining components, thereby not creating a uniform
distribution in δ′ components.However, it is less reliant on knowing the exact δ and
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works for fractal δ′ and is hence preferable in this early stage. The resulting samples
are approximately uniformly distributed in parameter space whenever δ ≈ δ′.

As the regions in which samples are generated are overlapping, it is not
obvious whether the increased effort from multivariate normal distributions to
Eigendecomposition-based samples yields a clear improvement of sampling den-
sity in parameter space. Besides that, not all ID estimators are inherently sen-
sitive to misleading expansion rates. In contrast, the more we enforce a proper
uniform δ-ball sampling in parameter space, the more we increase the average
distance from our original points. Improving on the sampling density might thus
even result in more points that are further away from the manifold. We, there-
fore, propose all three generation rules (covariance, Cholesky, δ-ball) and provide
a comparison in the evaluation section.

Due to the overlapping sampling regions, using an ID estimate for the sample
generation is not the same circular argument mentioned in Sect. 2. Even if our ID
estimate is quite different from the true ID, the generated data will still be more
or less dense around the original points. When using (ext · k)-nearest neighbors
for estimation, the average expansion rate will remain similar to that of the
original data. We neither drop nor induce additional orthogonal components,
which a badly parameterized manifold learning might do. The ID estimates used
for sample generation, therefore, have much less influence on the manifold shape
and the final ID estimates than in the approach of Bellinger et al. [3].
Sample Correction: Once we have created some samples for each of our orig-
inal points, we could immediately compute ID estimates. However, as displayed
in Fig. 1, the samples might be too noisy to describe the manifold. Aside from the
linear approximation diverging too strongly from the manifold in areas of high
curvature, the covariance matrices in areas of high curvature contain non-zero
orthogonal components to the manifold. Thereby, the approximation of ∇E via
the covariance matrix adds additional noise. Original points that are not exactly
on the manifold but have additional noise in the observed feature space intro-
duce additional errors in our approximation. It is, therefore, safe to assume, that
on curved manifolds, or in the presence of high dimensional observational noise,
supersamples frequently lie outside the manifold. To constrain the generated
samples back onto the manifold, we propose the following general approach: For
each supersample p ∈ Xext we search for its k-nn x1, . . . , xk ∈ X in the original
data. We then generate candidates ci and weights wi dependent on xi and p for
each 1 ≤ i ≤ k and use the weighted mean over the ci as a corrected supersam-
ple. By combining possible realizations of the maps x, p �→ c, and x, p �→ w, we
obtain a set of correction rules. As candidate maps, we propose:

C1 : x, p �→ Σx(p − x) ‖p−x‖
‖Σx(p−x)‖ + x

C2 : x, p �→ Lx(p − x) ‖p−x‖
‖Lx(p−x)‖ + x

where Σx is the covariance matrix for x and Lx is its Cholesky decomposition.
The purpose of these maps is to rotate p around x towards a direction at which
the probability density of the estimated multivariate normal is higher. Each can-
didate is hence a more likely observation at a fixed distance for the k-nn. The
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map C1 multiplies each point with the covariance matrix, which equates to scal-
ing the points along the principal components with a factor of the variance in
these directions. Components orthogonal to the manifold should have a compa-
rably very small variance, which nearly eliminates all components weaker than
those tangential to the manifold.

The second candidate map C2 gives a similar result. The Mahalanobis dis-
tance, which gives the distance in units of “standard deviations in that direc-
tion”, of the candidates prior to rescaling can be written as

√
(Lx(p − x))T Σ−1

x (Lx(p − x)) =
√

(p − x)T LT
x (ΣT

x )−1Lx(p − x)

=
√

(p − x)T LT
x (LT

x Lx)−1Lx(p − x)

=
√

(p − x)T (p − x) = ‖p − x‖.

This candidate map, therefore, maps the Euclidean unit sphere onto the Maha-
lanobis unit sphere, effectively equalizing the influence of different components
for p to their relative strengths in Σx.

Where using the Cholesky decomposition neutralizes components orthogonal
to the manifold approximated by Σx, the covariance matrix actively reinforces
the components tangential to the manifold. Both maps move samples onto the
manifold. C1 increases the density along the larger components of Σx, whereas
C2 leaves the density about equal at the cost of being less strict.

For the weights, we propose an inverse distance weighted (IDW) scheme:

W1 : x, p �→ ‖p − x‖−1

W2 : x, p �→
√

(p − x)T Σ−1
x (p − x)

−1

W3 : x, p �→
√

(x − p)T Σ−1
p (x − p)

−1

Using IDW means enforces the corrected supersample set to be interpolating for
the original data set, that is, if we sampled all possible points, the sample would
pass through all of our original points. This property is necessary to use the
original points as centers for ID estimation as otherwise, they could be outside
of the manifold spun by the supersampling. In our experiments, we observed that
W2 and W3 gave largely similar results, as the samples were already close to the
manifold resulting in locally similar covariance matrices. With W1 the original
points have a very strong pull on the samples, occasionally introducing dents in
the manifold when the original data is noisy. With W2 and W3, the corrected
points give a smooth manifold approximation that is robust against noise on the
original data set. If the covariance matrices have a high variance among the xi

and p, W3 moves the samples into a slightly more compact shape than W2 as
single outlying xi have less impact on the correction. These effects are displayed
in Fig. 2. However, it vanishes for increasing neighborhood sizes.

In addition to using IDW means, we used powers of the weights to simulate
the increase of the Mahalanobis sphere (points with equal Mahalanobis distance)
surface area. The exponents, as with the δ-balls described for sample generation,
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Fig. 2. Corrected supersampling of the dark original points for different weighting
rules. From left to right are the weighting rules W1, W2, and W3. The top row is
without powers and the bottom row with a constant power of 2.

should ideally be equal to the ID δ. Figure 2 displays the impact of both the dif-
ferent weighting rules and powers. With powered weights, each original point
has a much stronger pull on the nearby samples, reducing the tendency to inter-
polate larger trends. The estimate quality seemed to rather decrease in initial
experiments with powered weights even with ground truth ID values, which is
why we did not further pursue this.

4 Evaluation

In the experiments, we applied the supersampling framework to the Hill estima-
tor [8] and the ABID estimator [17] as prototypes for expansion- and geometry-
based estimators.2 We chose these two estimators specifically because they can be
evaluated very quickly even on very large neighborhoods. This is very important,
as upscaling the data set size by a factor of, e.g., 200 also increases the neighbor-
hoods used for ID estimation by up to the same scale. If we consider 20 neighbors
for ID estimation and supersampling covariances, the closest 4000 points in the
supersampling should describe the same geometry as the initial 20 neighbors.
Estimators with super-linear complexity in the size of the neighborhood like the
ALID [5] or TLE estimators [2] are slower when using supersampling.

As initial ID estimates, we used the ABID estimator [17] as it is geometrically
motivated like the MESS framework and should give a close enough ID estimate
even for smaller neighborhoods on which the Hill estimator can give too large
estimates especially for outlying points [1,5,13,17]. The number of neighbors to
compute the covariance matrices of the original points is called k1, the number of
neighbors for the covariances of samples as well as the correction rules is called
k2 and the number of samples to use for ID estimation of the original points
is called k3. The number of samples generated per original point is ext. Unless
otherwise stated we used k2 := k1 and k3 := k1 · ext.

We made experiments on multiple synthetic data sets like the m1 through m13
sets introduced by Rozza et al. [15] in part using generators by Hein et al. [7],
which have been used repeatedly to evaluate ID estimate quality and the toy
examples from evaluations on the ABID estimator [17]. In addition to that, we
2 A demo implementation of the MESS framework with these estimators is available

at https://github.com/eth42/mess-demo.

https://github.com/eth42/mess-demo
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Fig. 3. Supersamples around one of 1000 random MNIST images with k1 = 20. The
original image is displayed on the left. The top two rows are raw covariance-based
supersamples with their nearest neighbor in the original data set. The bottom two
rows are the corrected (C1 + W3) supersamples with their nearest neighbor in the
original data set. Values were cropped to [0, 1] for rendering.

experimented on a few real data sets like point clouds from 3D scans or MNIST
which consists of 28×28 grayscale images which we interpret as 784-dimensional
vectors. In our experiments, we could observe qualitative improvement due to
the proposed correction. On MNIST, the corrected samples are less distorted
than the raw samples as can be seen in Fig. 3. The corrected samples tend to
be “between” the original image and their nearest neighbor in the original set.
Their shape is similar to the original images yet they are not mere linear inter-
polations which suggests that they lie on the manifold. Qualitative observations
about the correction step like those in Fig. 1 and Fig. 3 were made throughout
all humanly visualizable data sets. The visualizing approach for quality com-
parison entails a subjective component, which is arguably undesired. Yet, only
arguing ID estimate quality in terms of histograms and summary statistics can
be misleading. Figure 4 displays ID estimates without and with supersampling
on the m11 data set. The median of the ABID estimates moves away from the
ground truth (δ = 2) while the interquartile range barely changes, which would
hint at a lower estimate quality. The 3D plots however show that the ABID
estimates are better fitted to the geometry with less local variance. The better
summary statistics without supersampling hide the fact that these estimates are
less helpful in understanding the data set. The Hill estimates are also improved
by using supersampling.

As for the generation variants (covariance, Cholesky, Eigendecomposition),
we could observe that on the 1000 point subset of MNIST only the samples
generated by the covariance-based approach were sufficiently far away from their
original samples to be interesting for small k1. The Cholesky decomposition-
based approach generates samples very close to the original points as expected
for δ � 784 (δ of MNIST is suspected to be below 30 [1,2,5,17]). As for the
Eigendecomposition-based approach, either the initial ID estimate (≈4 as per
ABID) was below δ or the distance bound of one standard deviation is too low.
Both would lead to an increased supersampling density close to the original
points. Using varying initial ID estimates and radius scales, more interesting
supersamples can be created for, e.g., an ID of 4 with 5σ radius, or an ID of
12 with 3σ. “Good” radii appear to be both dependent on k1 and the initial
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Fig. 4. 3D plots of the m11 data set colored by ABID estimates without (left) and with
(right) supersampling and ID histograms without (orange) and with (blue) supersam-
pling. The solid lines are at the median and the dashed lines at the first and third
quartile. Parameters for these plots are k1 = k2 = 50, k3 = 5000, ext = 100 with
covariance generation and C2 + W3 correction. (Color figure online)

Fig. 5. The plots on the left show the impact of varying k1 for ext = 75 on ABID
(blue) and Hill (green) estimates on the m4 data set (d = 8, δ = 4). The histograms
on the right display the raw estimates (blue) and those obtained with MESS (green)
and SMOTE (pink), respectively for the parameters with the lowest local ID standard
deviation: k1 = 40 for Hill and k1 = 20 for ABID. (Color figure online)

ID estimates, which makes a good choice difficult. The covariance-based sample
generation, therefore, appears to be the overall most promising approach and
has been used in all following experiments.

The correction schemes, consisting of a correction and a weighting rule, give
different qualitative results for different estimators. For the ABID estimator,
we observed, that the covariance-based correction C1 can be too aggressive in
constraining points onto a sort of “mean surface”, whereby the original points
in noisy or strongly curved data sets tend to lie outside the supersampled
set. In these cases, the estimates become too low, since the ABID estimator
gives lower estimates to points on the margin of manifolds. Using the Cholesky
decomposition-based correction C2 does not introduce this effect as strongly.
For the Hill estimator, the correction rules C1 and C2 both give comparable
results, since the estimator solely analyzes the expansion rate which is unaf-
fected by points lying on the surface of a manifold. As for weighting rules, the
Mahalanobis-based rules W2 and W3 appear to give the best results whenever the
original data set has a high enough sampling density to obtain a good enough
approximation of the local gradient via the covariance matrix. The euclidean
W1 rule, which depends less on the original data sampling density, mostly gives
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similar results whilst generally being slightly inferior. On extremely sparse data
sets like the m10c data set (10000 points from a 24-dimensional hypercube in
25 dimensions), none of the approaches gave near-ground-truth results, which,
however, is also not achieved without supersampling. For general purposes, the
overall best results were achieved using a combination of C2 and W3 with either
estimator. The following paragraphs only consider this combination.

The ext factor does not appear to have much of an impact on Hill and ABID
estimates for ext ≥ 25. Larger ext values of course yield better results at the
cost of additional computation time, as k3 should be increased with ext. This
observation, however, does not readily generalize to other estimators. For the
ALID estimator, the choice of ext can have a larger impact even for ext > 100,
which largely increases computational cost, as ALID has a computational cost
quadratic to the neighborhood size. Yet, the median ALID estimate still appears
to converge for larger ext values. For varying k1 we observed good estimate qual-
ity close to or even below δ2 for k1. In these small neighborhoods ID estimators
tend to have difficulties getting good estimates [2,5,17]. Yet, as smaller neighbor-
hoods give a better approximation of the local manifold structure, lowering the
number of neighbors on which we can perform ID estimation, is very interesting.
In most experiments, the estimate quality for increasing k1 at first improves and
afterward deteriorates. ABID estimates for too low a k1 tend to be too low. This
can be explained by the neighborhoods being too small to encompass neighbors
along each of the orthogonal components of the manifold. For larger k1 the ABID
estimates can decrease as the original points tend to lie “on the surface” of the
generated manifold in at least one dimension as weaker features of the man-
ifold structure are suppressed. This is even observable without any candidate
correction, albeit at much larger k1 values. While that is not necessarily a prob-
lem for other applications like classification, it largely affects geometry-based
ID estimation. They can also steadily increase as the entire curved manifold
might geometrically appear up to full dimensional. The Hill estimator appears
to give ever-growing median ID estimates for increased k1 values approaching the
ground truth ID with a growing upper tail. For very large k1, the Hill estimator
can overestimate the ground truth ID with MESS. The lower end of the Hill
estimates, however, appears not to exceed the ground truth ID. The on-average
growth of the estimates can likely be attributed to fluctuations in the sampling
density. The Hill estimate distributions, hence, are highly skewed and require a
visual interpretation. By additionally considering the mean standard deviation
of ID estimates of the neighbors divided by the ID estimate of the central point,
we can examine the local smoothness of ID estimates. In our experiments, the
k1 with the smallest mean ID deviation indicated the best ID estimates for both
ABID and Hill estimators, except for m10c, where the estimates did not reach
24. The median Hill estimate of about 20 with MESS was at least closer than the
median of about 17 without MESS. Figure 5 showcases the impact of k1 choices
and also gives a qualitative comparison to supersampling with SMOTE.

In summary, ext values of 100 or above are beneficial for ID estimation,
although smaller values can suffice for ABID or Hill estimates, and the choice
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of k1 largely depends on the data set, where there might be a “sweet spot”
that is large enough to encompass the full complexity of the manifold whilst
not exceeding local structures. Finding that “sweet spot” can be achieved by
analyzing the local deviation of estimates.

5 Conclusions

In this paper, we introduced a supersampling technique motivated by the geo-
metric form of the embedding function defining the generative mechanism of
observed manifolds. It contrasts preceding methods like those similar to SMOTE
by Chawla et al. [4] by using the manifold structure. Yet, it also opposes the
method by Bellinger et al. [3] as it does not require an explicit model of the
manifold but uses covariances to mimic the Jacobian of the embedding function.
Additional modular correction rules allow compensating for high dimensional
noise on the data. In our experiments, we have shown that the novel approach is
capable of generating samples that mimic the manifold structure so that it can
even improve ID estimates if sufficiently many supersamples are drawn. From
that, we conclude, that the MESS framework can sample data from the manifold
populated by the given data. It allows to analyze data sets on smaller scales that
satisfy the locality assumption of ID estimators. The improved ID estimates in
return support the claim, that the manifold has been properly supersampled, for
other applications, like classification. Additionally, a scan of different k1 values
can help to find reasonable neighborhood sizes using the mean ID deviation. The
major drawback of this technique is the increased time and space requirements
due to the increase in the data set and neighborhood sizes. We did not per-
form experiments in that regard, but we expect the MESS framework to benefit
other machine learning tasks, such as classification, which would be a nearby
application beyond ID estimation.
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Abstract. It is well known that recall rather than precision is the per-
formance measure to optimize in imbalanced classification problems, yet
most existing methods that adjust for class imbalance do not particu-
larly address the optimization of recall. Here we propose an elegant and
straightforward variation of the k-nearest neighbor classifier to balance
imbalanced classification problems internally in a probabilistic interpre-
tation and show how this relates to the optimization of the recall. We
evaluate this novel method against popular k-nearest neighbor-based
class imbalance handling algorithms and compare them to general over-
sampling and undersampling techniques. We demonstrate that the per-
formance of the proposed method is on par with SMOTE yet our method
is much simpler and outperforms several competitors over a large selec-
tion of real-world and synthetic datasets and parameter choices while
having the same complexity as the regular k-nearest neighbor classifier.

Keywords: Class imbalance · Bayesian learning · k-Nearest neighbor
classification

1 Introduction

In classification problems, skewed class distributions often result in poor accu-
racy when predicting instances of the minority classes. The problem is common
and found in substantially different areas such as fraud detection, propaganda
detection, and medical diagnosis. The typical class imbalance problem is often
presented as a dichotomous classification problem, where it is crucial that the
minority class is predicted correctly. A common example would be data about
a rare disease, where the available training data contains many instances with-
out the disease, and only few with the disease. The majority class dominates the
training and potentially also the evaluation, if done naively. The imbalance ratio,
IR, captures the severity of a problem by the ratio of the size of the (largest)
majority class (cmaj ) over the size of the (smallest) minority class (cmin):

IR =
|cmaj |
|cmin | (1)
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Of course, the problem can vary in complexity by having multiple minority
classes with different degrees of importance for each of the minority classes. The
problem also becomes more difficult when the imbalance ratio (IR) is increased.
In the literature, a value of IR > 3.5 is seen as signalling a high degree of
imbalance in a dataset [26].

Besides the absolute value of IR, we can also distinguish absolute imbalance
and relative imbalance. Absolute imbalance describes the case where there is a
small absolute amount of minority instances. For example, if there are 5 instances
in the minority class and 95 in the majority class, we get an IR of 19. Relative
imbalance simply means that the IR is large, e.g., if there are 5000 instances in
the minority class and 95000 in the majority. This would also result in an IR
of 19. However, a re-sampling strategy should most likely be different for these
two cases. Absolute and relative imbalance has been discussed in more detail by
Bellinger et al. [3].

When studying the performance of algorithms on imbalanced classification
problems, it is a fallacy to just report the accuracy, error rate, precision, or f1
measure. The ROC curve, although inherently accounting for imbalance, comes
with its own problems as well [8,13].

The precision measure reports, for one class against all other classes, the
number of true positives (TP) divided by the false positives (FP) plus the true
positives, i.e., TP

FP+TP . In class imbalanced problems, precision is not a viable
measure since the majority classes will have relatively few false positives no
matter how many of the minority points they predict as majority points. Exam-
ples for the minority classes on the other hand are rarely mistaken for majority
points. The true positives will thus typically be divided by almost the same num-
ber, because there are no or few false positives, which leads to a high precision.
The harmonic mean between precision and recall (f1) is also reported in some
studies [10], but since precision is not a meaningful measure in class imbalanced
problems its presence in the f1 measure only hides the algorithms’ performance
in terms of recall.

Some argue [2,16] that accuracy and error rate are strongly biased to favor
the majority class. The problem with accuracy and error rate is obvious when
the class imbalances are extreme. If in a binary classification problem 99.9%
belongs to the minority class, and only 0.01% belongs to the minority, then if we
completely fail to predict the minority class the classifier still has an accuracy
of 99.9%. Thus the G-mean score is a popular measure [4,16,18], that is the
geometric mean over recall: (

∏n
i=1 ri)

1
n = n

√
r1 · r2 · . . . · rn, where ri is the recall

for class ci.
This results in a quality measure that heavily penalizes a low recall for any

of the classes, reflecting the algorithm’s inability to hypothesize that point x
belongs to the minority class. Failing completely on one class results in a zero
value for the overall G-mean score. We therefore argue for the sensibility in
reporting the macro-averaged recall in addition to the G-mean score. For further
discussion on performance assessment of imbalanced classification problems see
the work by Japkowicz [16].
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Considering the appropriateness of recall when working with imbalanced clas-
sification problems, in this paper we introduce a variant of the k-nearest neighbor
classifier that balances the prior class probabilities. We show how this effectively
resembles using a local recall as a classification rule, while the standard k-nearest
neighbor classifier effectively uses the local precision as a decision criterion.

The remainder of the paper is organized as follows. In Sect. 2, we discuss
related work. In Sect. 3 we introduce our method and discuss some properties.
In Sect. 4 we perform an experimental evaluation of our method against state-
of-the-art competitors. In Sect. 5 we summarize and give perspectives for future
work.

2 Related Work

There exist many approaches to handling imbalanced classification problems.
The approaches can be divided into three main categories, namely external,
internal, and cost-sensitive approaches.

2.1 External Approaches

External approaches alter the dataset a classifier is trained on. The alterations
are typically different re-sampling techniques such as majority undersampling,
minority oversampling, or a combination of both. In oversampling, the minority
class domain is extended by adding real points or synthetic points to the existing
training data. The simplest such approaches are Random Undersampling (RUS)
[15,25] which randomly removes points from the majority class until a uniform
class distribution is reached. A similar oversampling method exists, namely ran-
dom oversampling (ROS) [15], which picks random real points from the minority
classes and oversamples these until a uniform class distribution is reached.

SMOTE [6] is likely the most popular oversampling technique. It adds addi-
tional data points to the dataset by inserting new synthetic samples within the
convex hull of the minority class. The synthetic sample is positioned on the
straight line between two minority points, i.e., a + (b − a) · α, where a is the
feature vector of the point under consideration, b is a feature vector of a random
instance of the nearest neighbors and α ∈ [0, 1] is a random value determining
where on the line the point should be positioned. The algorithm iterates through
all data points of the minority class and oversamples each point by finding the
k nearest neighbors and picking n randomly, where n is the oversample rate.
A data point is inserted at a random point on each line between these n sets
of two. Chawla and Nitesh demonstrated that SMOTE improved performance
over random oversampling and that SMOTE results in reduced decision tree
sizes, when used in combination with C4.5 [24]. A plethora of slightly modified
SMOTE variations have been developed since the original. Noteworthy mentions
are Borderline SMOTE [12] and ADASYN [14].
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2.2 Internal Approaches and Modifications of the kNN Classifier

Internal approaches modify an existing classifier to account for the class imbal-
ance. Over the past two decades, several attempts have been proposed to modify
specifically the kNN classifier to account for an imbalanced class distribution.
Song et al. [27] introduced IkNN, where they employ information about the
distance from a query point to its nearest neighbors to determine the most
informative nearest neighbors. Kriminger et al. [17] created a class imbalance
handling kNN variation which also works on imbalanced data streams. Liu and
Chawla [20] introduce a class confidence weighted kNN rule by employing Gaus-
sian mixture models, and Bayesian networks to estimate class weights.

Dubey and Pudi [10] claim to improve performance over these previous inter-
nal modifications. They modify the existing kNN algorithm to be sensitive to
class imbalance by observing the class distributions within the kNN hyperballs
of a subset of the neighbors’ neighbors. This information is used to determine if
the query point is a local minority given this new sense of locality and its new
prior probability distribution.

2.3 Cost-Sensitive Learning and k-Nearest Neighbors

A way of making an arbitrary classifier sensitive to the class imbalance problem
without modifying the dataset as done in the external approaches, is by employ-
ing cost-sensitive learning. In cost-sensitive learning each possible prediction is
associated with some misclassification cost. The goal is then to minimize the total
misclassification cost over the test dataset. Elkan [11] generalized cost-sensitive
learning to the goal of minimizing the conditional risk as:

R(x, ci) =
∑

j

Pr(cj |x)C(i, j) (2)

where x is an example, ci and cj class labels, and the C(i, j) entry in the cost
matrix is the cost of predicting class cj when the true class is ci. Picking the
prediction that minimizes the conditional risk leads to decisions that are not
necessarily the most probable outcome. Improving the sensitivity towards the
minority class in cost sensitive learning can be achieved by increasing the cost
of misclassifying minority instances. Domingos [9] proposed a method which can
make any classifier cost sensitive, by employing ensemble learning. Qin et al. [23]
and Zhang [28] proposed a cost-sensitive kNN classifier based directly on Elkan’s
formulation of conditional risk. The schema for their Direct-CS-kNN classifier is
given by

L(x, ci) =
∑

cj∈C

Pr(cj |x)C(i, j) (3)

The conditional risk is described as a loss function L(x, ci), describing the loss
of predicting class ci, given query point x:

h(x) = arg min
ci∈C

L(x, ci) (4)
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If we alter Eq. 3 to sum over the probabilities that it is not class cj multiplied
by a cost of predicting class cj instead of predicting class ci, the weights can
become more understandable and we obtain some nice properties with respect
to the minimization:

h(x) = arg min
ci∈C

∑

cj∈C

1 − Pr(cj |x)
∑

c∈C 1 − Pr(cc|x)
· C(i, j) (5)

The modification ensures several nice properties such as, if the cost matrix is
equal to the identity matrix C = I, then we get the conventional majority vote
kNN decision rule. If we use a diagonal matrix D with positive weights greater
than or equal to 1, then if we pick wi = 1

D(i,i) we obtain the basic weighted kNN
decision rule.

2.4 Summary

In summary, although various methods exist to adjust classifiers in general or the
kNN classifier in particular to imbalanced classification problems, none of these
methods tackles the particular problem of considering the recall as an important
objective of imbalanced classification. In the following, we introduce an elegant
and straightforward way to do so.

3 Class-Balanced k-Nearest Neighbors Classification

The kNN classifier is an instance-based learning method that classifies an
instance x from the input space by applying a decision rule to the set of k-nearest
neighbors of x in the training data space. The decision rule is conventionally the
majority vote, but could also be a weighted majority vote to handle a difference
in the importance of attributes or to give higher weight to closer neighbors. As
we have seen above, weights can also be associated with different class labels as
an approach to handle the class imbalance problem [10].

3.1 Basic Weighted kNN

The most intuitive approach to handling the class imbalance problem is perhaps
to add importance to instances belonging to the minority classes. This can be
done with a modification of the decision rule by multiplying the observed number
of minority instances with a positive weight greater than 1, or the majority
instances with a weight between 0 and 1, or a combination of both. To ensure
the relative importance of each class is uniform despite accounting for different
proportions of the dataset, the weight could be defined as:

wi =
|{x|x ∈ cmaj }|
|{x|x ∈ ci}| (6)

where cmaj is the majority class. This weighting scheme was generally proposed
by Japkowicz [15].
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3.2 Balancing a Probabilistic k-Nearest Neighbor Classifier

Choosing the class of the majority among the k nearest neighbors is from the
point of view of probabilistic learning equivalent to choosing the maximum a
posteriori (MAP) hypothesis when estimating the class probabilities for the dif-
ferent classes ci ∈ C, given the query instance:

hMAP(x) = arg max
ci∈C

Pr(ci|x) (7)

where we can find Pr(ci|x) by Bayes’ rule as:

Pr(ci|x) =
Pr(x|ci) · Pr(ci)∑m

j=1 Pr(x|cj) · Pr(cj)
(8)

From this it is obvious that the prior class probabilities have some influence
on the decision rule, and the core idea for our method is to not estimate these
prior probabilities from the training sample but to define them as required by
fairness. Intuitively, balancing an imbalanced classification problem means in
this perspective to require uniform prior class probabilities, i.e., the decision of
the classifier (Eq. 7) for m classes should use

Pr(ci|x) =
Pr(x|ci) · 1

m∑m
j=1 Pr(x|cj) · 1

m

(9)

in order to treat all classes fair in a balanced way.
Interestingly, this addresses, locally, the need for optimizing the recall instead

of the precision, as the decision rule turns out to be choosing the class that is
captured to the largest proportion among the k nearest neighbors:

Theorem 1. Given some query object x in a classification problem with a set C
of m classes, let ki be the number of instances among the k nearest neighbors of
x that belong to class ci, let ni be the number of instances that belong to class ci
overall (i.e., ni = |ci|). For the k nearest neighbor classifier, adjusting the prior
class probabilities such that all classes are equally likely, i.e., ∀i Pr(ci) = 1

m , is

equivalent to choosing arg maxci∈C

(
ki

ni

)
, which is the local recall for x.

Proof. The proxy for the probability Pr(x|ci) is the density estimation given by
the k nearest neighbors, conditional on class ci, that we can describe as

Pr(x|ci) ∝ ki
niV (x)

(10)

where V (x) is the volume, centered at x, required to capture k nearest neighbors
of x. We can therefore rewrite Eq. 8 as follows:

Pr(ci|x) ∝
ki

niV (x) · Pr(ci)
∑m

j=1
kj

njV (x) · Pr(cj)
(11)
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Choosing equal prior class probabilities results in:

Pr(ci|x) ∝
ki

niV (x) · 1
m

∑m
j=1

kj

njV (x) · 1
m

(12)

which simplifies to

Pr(ci|x) ∝
ki

ni
∑m

j=1
kj

nj

(13)

where the denominator is obviously identical for all classes. We therefore have

arg max
ci∈C

Pr(ci|x) = arg max
ci∈C

(
ki
ni

)

(14)

��
The novel decision rule described in Eq. 9 has therefore a straightforward

practical interpretation and is easy to compute. The decision rule determines
how large a fraction of the points with a specific class label in the domain is
present in a given neighborhood query. Effectively, this decision rule adds a
variable, local neighborhood-dependent class weight.

3.3 On the Difference Between Weighted kNN and Adjustment of
Prior Class Probabilities

In the following we show that the same effect of modifying the prior probabilities
in the probabilistic interpretation cannot, in general, be achieved by using any
weight in the basic weighted kNN approach discussed in Sect. 3.1.

Theorem 2. A probabilistic kNN classifier with uniform prior probabilities is
not equivalent to a class-based weighted kNN classifier.

Proof. A weighted version of the probabilistic interpretation of kNN, taking
Eq. 11 as a starting point, can be formulated as:

wi · Pr(ci|x) = wi ·
ki

ni
· Pr(ci)

∑m
j=1

kj

nj
Pr(cj)

(15)

However, unless the prior probabilities are equal for all classes, there is no pos-
sible choice of wi that also balances all Pr(cj) in the denominator. ��

Intuitively, our proposed method is effectively employing locally adaptive
weights, which is not possible to model with a weight- or cost-based approach.

In a polytomous and heavily imbalanced classification problem where the
largest majority class contains 1000 points, one of two minority classes, say c2,
contains 10 points, and the other minority class contains 50 points, a query with
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Table 1. Dataset information for the real datasets. Abbreviations: dimensionality
(Dim.), imbalance ratio (IR), number of classes (CL) and number of points (n)

2 minority points will be weighted differently dependent on which of the classes
are present in the query:

Pr(c2|x1) =
2
10

2
10 + 1

1000 + 0
50

= 0.995, Pr(c2|x2) =
2
10

2
10 + 0

1000 + 1
50

= 0.909

This exemplifies how the weight for some class is dependent on the neighborhood
of the query point.

4 Experimental Evaluation

4.1 Datasets

The datasets have been picked from the Keel dataset repository [1], and the
USPS dataset is from Chapelle & Schölkopf [5]. The datasets were picked from
these repositories, based on their imbalance ratio (IR) which is larger than 2. All
datasets have numerical attributes. An overview on the used datasets is given in
Table 1.

4.2 Compared Methods

We compare our method “k-Nearest Neighbors with Balanced Prior Prob-
abilities” (kNN-BPP) against representatives for the different categories of
approaches, as discussed in Sect. 2. An overview is given in Table 2. As com-
petitors, we include the conventional kNN classifier as well as more complex
kNN-based algorithms that have been designed with the class imbalance prob-
lem in mind. The algorithms are also evaluated against the most common re-
sampling strategies with a regular kNN-classifier. As can be seen in Table 2,
several of the algorithm implementations are currently not publicly available.
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Table 2. Compared methods

Method Short name Impl. Source

k-Nearest Neighbors classifier [7] kNN Scikit-Learn [22]

Random undersampling [15,25] RUS Imblearn [19]

Synthetic Minority Oversampling Technique [6] SMOTE Imblearn [19]

Class Based Weighted k-Nearest Neighbor over
Imbalance Dataset [10]

CW-kNN

https://github.com/Goettcke/kNN BPP

Direct Cost Sensitive kNN Classifier [23,28] Direct-CS-kNN

k-Nearest Neighbors with Balanced Prior
Probabilities

kNN-BPP

The original authors were contacted but did not provide the implementations.
All implemented algorithms will be made available with this paper. The algo-
rithms were written following the requirements for Scikit-Learn implementations
and written in Python.

4.3 Parameter Selection

We evaluate the methods using stratified 10-fold cross-validation. The k-value
in these experiments varied for each dataset between 3 and 35.

For the Direct-CS-kNN classifier, a cost-matrix has to be defined. Since no
method to generate such a cost matrix was proposed in the original papers we
use the following cost-matrix: We construct an asymmetrical matrix that ensures
the cost of predicting class cj instead of ci is proportional to the imbalance ratio
between these two classes C(i, j) = |ci|

|cj | . Notice that, if class ci is larger than cj
then the weight is greater than 1 which can be interpreted as it being costly to
make this mistake. However, if ci is a minority class, then C(i, j) ∈ [0, 1]. This
can be interpreted as a discount to making this type of mistake.

For SMOTE the number of nearest neighbors to include in the oversampling
set was set to 6 as per the default in the Imblearn package. For random under-
sampling (RUS) and SMOTE, re-sampling was done to achieve uniform class
distributions.

4.4 Evaluation Measures

We evaluate the methods in terms of recall, taking the geometric mean over the
classes (G-mean) and the macro average. We also tested precision, where all the
methods show only minor differences, thus these results are not included.

4.5 Results

Ranking Distribution over Datasets and Parameter Values. As a first
overview we compare the methods performance as the average ranking for each
choice of k over all datasets. The rankings over all tested values of k are shown in

https://github.com/Goettcke/kNN_BPP
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Fig. 1. Performance for k ∈ [3, 35] in terms of the mean rank over all datasets

Fig. 1. Notice that a lower rank indicates better performance. The plots show how
the evaluated algorithms seem to form 3 groups. The first group with the highest
rank is the unmodified kNN algorithm. The second group contains the modified
kNN algorithms from [10] and [28] as well as random undersampling [15]. In
the third and best performing group we have SMOTE [6] and the proposed
kNN-BPP method.

Analysis of Statistical Performance Differences. We performed a statisti-
cal analysis of the ranking differences for k = 10, 20, 30. The results are shown in
critical difference plots in Fig. 2. The plots show the average ranking of methods
over all datasets together with a bar connecting methods that are not performing
differently with statistical significance. We see our method on top or, in one case,
second to SMOTE, although their performance is only different with statistical
significance from some other methods in most cases. The classic, unchanged kNN
classifier is typically worst, and several of the improved versions are not better
with statistical significance. kNN-BPP is significantly better than the unchanged
kNN classifier in all tests and better than RUS and CW-kNN in several, also in
cases where SMOTE is not significantly better. In summary, the critical differ-
ence (CD) plots indicate that kNN-BPP performs as well or slightly better than
a non-trivial oversampling technique, but without adding runtime to the original
k-nearest neighbor classifier.

Distribution of Raw Performance. To complement the picture, we also
show the distribution of performance in terms of raw recall (G-mean and macro
average) values over the datasets for k = 10, 20, 30 in Fig. 3 (here higher values
are better). We see that the distributions overlap strongly, but we can identify
a tendency of SMOTE and our method to perform better than others.
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Fig. 2. Statistical assessment of performance differences: critical difference plots

Fig. 3. Distribution of recall (G-mean, macro average) over the datasets
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Fig. 4. Critical difference plots showing the significant disadvantage of SMOTE on
multimodal minority class datasets in terms of G-mean and macro averaged recall

In the box plots over macro-averaged recall in Fig. 3, we observe that the
result distribution of kNN, CW-kNN and kNN-BPP are the most stable when
changing k, but the median performance of kNN-BPP is also overall the highest
and on par with SMOTE. In the box plots showing the result distributions over
the datasets in terms of G-mean score in Fig. 3(e), we observe that kNN-BPP is
the only internal modification of kNN that consistently has a first quartile above
0. Conventional kNN is the most stable algorithm but the worst performer in
terms of the distribution over G-mean score. We also observe that SMOTE and
kNN-BPP are the best performers and almost as stable as kNN.

Disadvantage of Oversampling. Although our method is on par with the
more complex oversampling method SMOTE, oversampling also has clear dis-
advantages. Firstly, adding synthetic points to the minority class increases the
number of points in the dataset, which obviously increases the runtime. Secondly,
they assume that the minority class follows some compact distribution. In the
case of SMOTE it depends on the k value chosen, a larger k makes the assumed
distribution approach a Gaussian distribution. To illustrate this problem we
generated one hundred simple binary classification problems consisting of a mul-
timodal minority class and a unimodal majority class. Both classes only span
2-dimensions and both the majority class mode and the minority class modes
follow Gaussian distributions in both dimensions. The minority class modes are
positioned on opposite sides of the majority class mode.

On these datasets we study the performance differences of regular kNN,
SMOTE, and kNN-BPP. The problem for SMOTE is that it inserts harmful
SMOTE instances between the two modes [4] since the convex hull defined by
the minority class covers a large area of the majority class space.

In Fig. 4 we see the statistical evaluation of the performance differences of
oversampling in combination with majority voting kNN, compared to our method
kNN-BPP, and the regular kNN classifier as a baseline. In all tests, k was set
equal to 10, and 10-fold stratified cross-validation was used. For the re-sampling
strategies the default parameters were used which ensures a uniform class distri-
bution. In this simple test, kNN-BPP is significantly better than SMOTE. The
reason behind the clear win is that the number of instances in the two modes
is approximately the same, which means that oversampling within one mode by
inserting a point on the vector between two of the minority points is approxi-
mately as likely as inserting a harmful SMOTE instance between the two modes.
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This is of course dependent on which points are picked at random so if SMOTE
is extremely lucky it can perform better than kNN-BPP. However repeating this
experiment a hundred times shows that this is typically not the case, hence the
significant difference.

5 Conclusion

In this paper we addressed the importance of considering the recall when tackling
imbalanced classification problems. We developed an elegant and straightforward
kNN classifier, kNN-BPP, that balances prior class probabilities and thus treats
imbalanced classes in a fair manner. The proposed kNN-BPP algorithm shows
performance on par with a popular oversampler applied to the datasets in com-
bination with the conventional kNN-algorithm for all measured k-values, while
having the same computational complexity as regular kNN. The algorithm’s dif-
ference from a weighted kNN-algorithm has been shown. kNN-BPP’s advantage
over other recent internal modifications of kNN over a wide set of k-values has
been established.

For future work it could be interesting to investigate this idea for other classi-
fiers that are amenable to a Bayesian probabilistic interpretation, and to perform
case studies in application scenarios requiring special attention to fairness and
bias [21].
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Abstract. Contemporary challenges for efficient similarity search
include complex similarity functions, the curse of dimensionality, and
large sizes of descriptive features of data objects. This article reports our
experience with a database of protein chains which form (almost) metric
space and demonstrate the following extreme properties. Evaluation of
the pairwise similarity of protein chains can take even tens of minutes,
and has a variance of six orders of magnitude. The minimisation of a
number of similarity comparisons is thus crucial, so we propose a generic
three stage search engine to solve it. We improve the median searching
time 73 times in comparison with the search engine currently employed
for the protein database in practice.

Keywords: Similarity search in metric space · Efficiency · Distance
distribution · Dimensionality curse · Extreme distance function

1 Introduction

The similarity search is quite well developed for traditional domains like texts,
images, videos, and many of their sub-domains like photos of human faces and
irises. Contemporary challenges can be seen in complex and quickly developing
data domains studied within interdisciplinary research. This article describes our
experience with the similarity search in protein chains. However, apart of the
similarity (distance) function which is domain specific, we approach the problem
in a generic way, as a similarity search with difficult distance distribution and
expensive distance computation.

We address the search in the worldwide Protein Data Bank (PDB, [4]), specif-
ically in its European version (PDBe) [2] which contains about 500,000 protein
chains, and tens of thousands are added every year. The protein chain is a long
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Fig. 1. 3D shape of a protein (PDB ID: 1L2Y) with a single chain. The green ribbon
built upon the CA atoms presents a simplification of a complex shape of the protein
chain. (Balls = atoms, sticks between them = bonds) (Color figure online).

sequence of amino acids connected with chemical bonds, entangled into a com-
plex 3D shape (see Fig. 1 with an example). The 3D shape of a protein chain is
sufficiently described by coordinates of carbon atoms of the chain backbone – the
alpha carbons (CA). Consequently, the similarity of two protein chains can be
assessed by finding matching pairs of CA atoms, aligning them in 3D Euclidean
space in the best possible way, and computing their distances.

Searching for protein chains with similar 3D structure is of utmost impor-
tance, since similar proteins are likely to have a similar biological function. The
current similarity search [18] employed at the PDBe database [2] is slow as it
does not use any index. Instead, it scans the whole dataset, and the distance
computation is skipped just if the sizes of compared chains are as different as
they prevent the chains from being similar.

An efficient protein chains search is very challenging for several reasons:

– sizes of descriptors of protein chains vary by two orders of magnitude,
– computation times of chains similarity vary by six orders of magnitude,
– the distribution of protein chains distances is extremely skewed, making the

similarity search difficult,

These features make an efficient generic similarity search even impossible for
some query objects.

This article presents the novel search engine that runs a three-step gradual
search and is available at https://similar-pdb.cerit-sc.cz. While all search tech-
niques have been published in the past, we elaborate on their novel combination
within a search engine to maximize user contentment. We define and justify our
design choices to maximize the search speed and achieve top search quality.

The article is organised as follows. The similarity of protein chains and chal-
lenges of the search are described in Sect. 2. Section 3 describes our approach to
build the search engine that maximises the user satisfaction, Sect. 4 summarizes
our experiments and Sect. 5 provides conclusions of the article.

2 Similarity of Protein Chains

To formalise a pairwise similarity of protein chains, we use the metric space
(D, d) defined by the data domain D and the distance function d : D×D �→ R+.

https://similar-pdb.cerit-sc.cz
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Fig. 2. Sizes of protein chains – all 0.5 million chains are sorted according to their size,
and x-axis depicts their order

The interpretation is that the bigger the distance, the less similar chains, and
distances meet the properties of non-negativity, symmetry, identity, and triangle
inequality [21]. This article describes the search for the most similar protein
chains to an arbitrary given q ∈ D in the dataset X ⊂ D which consists of
495,085 protein chains from the PDBe database [2]. A snapshot was taken in
September 2020.

2.1 Properties of Descriptors

The pairwise similarity of complex objects, e.g., multimedia, is not usually evalu-
ated directly using the raw data. Instead, the characteristic features (descriptors)
are extracted to describe objects from a specific perspective. Most of the contem-
porary descriptors have a fixed size which brings advantages for their processing.
Especially, distances of descriptors are evaluated in almost the same time.

Descriptors which are sufficiently rich to express the 3D shape of protein
chains tend to be of size that follows the size of chains. Big variance of descriptors
sizes causes extreme differences in distance computation times [8]. Figure 2a
depicts the number of CA atoms in all 495,085 chains o ∈ X after dropping
extremely small chains, i.e., with less than 10 CA atoms. This is a common
practice as such chains are biologically irrelevant. The median protein chain size
is 207 CA atoms, but 0.97 % of chains are bigger than 1,000 CA atoms, and
0.03 % of them are bigger than 4,000 CA atoms. Figure 2b depicts the size of
protein chains on SSD, which is varying from 4 kB to 248 kB with a median
16 kB. The total size of the dataset is 8.2 GB. The variance of protein chain size
has important consequences for assessing their similarity, as we discuss in the
following section.

2.2 Similarity Score

There is no general agreement on a universal measure of the protein chain sim-
ilarity [8,19,20]. We follow the method [10] implemented in the current search
service of PDBe, which is based on the Qscore:
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Qscore(o1, o2) =
N2

align

(1 + (RMSD/R0)2) · N1 · N2
(1)

where N1, N2 are numbers of CA atoms in chains o1, o2, R0 is an empirical
constant (3 Å = 3× 10−10 m), and Nalign is the size of subset of CA atoms from
both chains which are aligned on each other (by shifting and rotating in 3D
space) to minimize their root mean square distance (RMSD), which is defined:

RMSD =

√
√
√
√

Nalign∑

i=1

δi/Nalign

where δi is the actual distance (in 3D Euclidean space) between corresponding
CA atoms.

The alignment and RMSD computation is fairly easy [9] – the difficult part
is the choice of CA subsets to minimize Eq. 1. Systematic search of all possible
subsets is practically impossible due to its O(2N ) complexity, therefore heuristics
must be use. We use the heuristic of [11] as the current PDBe search. Review of
protein alignment algorithms in [8] concludes that virtually all modern methods
follow the pattern of minimizing some metric (the score) over all possible subsets
of residues (i.e. 1:1 with CA), hence they have to overcome the same complexity
problem, and they are comparable in speed.

2.3 Transformation of Qscores to Distances

The range of the Qscore is [0, 1], so we can easily transform it to the distance:

d(o1, o2) = 1 − Qscore(o1, o2) (2)

This function is not a metric distance function due to the imperfection of the
heuristic that estimates the Qscore. We examined 250 million pairs d(o1, o2),
d(o2, o1) to reveal that they are equal just in 86,8 % of cases. Differences
d(o1, o2) − d(o2, o1) are rather small: 96.3 % of pairs differ by at most 0.01,
and 99.7 % differ up to 0.05. These differences cause violations of the triangle
inequality rule, and thus the similarity search based on the filtering by triangle
inequalities introduces false negatives errors. While these imperfections could be
almost fixed by a double distance computation: dm = min (d(o1, o2), d(o2, o1)) ,
it does not pay off due to the complexity of distance evaluations.

Small violations of metric postulates motivate us to use techniques based on
pivot permutations since they are robust enough to deal small violations of met-
ric postulates. Pivot permutation based techniques use just the order of several
closest reference chains (pivots) to each chain to approximate its position in a
space [1,6,16]. Usage of this type of techniques has an important connotation
with the Qscore-to-distance transformation given by Eq. 2. Many transforma-
tions of a score to distance exist, and they usually swap the order:

(Qscore(o1, o2) < Qscore(o2, o1)) =⇒ (d(o1, o2) > d(o2, o1)) (3)
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Fig. 3. Distance density

Fig. 4. Histogram of sampled distances with the logarithmic scale of y-axis

Different score-to-distance transformations just change the distribution of dis-
tances – see e.g. the convex transforms of distances [5,7,17]. Ordering of the
closest pivots to an arbitrary given chain o ∈ D is, however, the same for all
score-to-distance transformations that meet Eq. 3. It is thus meaningless to elab-
orate on a more sophisticated Qscore-to-distance transformation, if we always
use the pivot-permutation-based techniques to search the protein chains.

Beside the solutions described in this article, we also tried the filtering based
on triangle inequalities. It is ineffective due to the dimensionality curse described
in the following section. We also tried to apply convex transforms to the distance
function given by Eq. 2. We observed a small ratio of triangle violations which,
however, leads to an inadequate false reject rate despite a slow searching.

2.4 Curse of Dimensionality

The efficiency of the similarity search in complex data suffers from the “curse
of dimensionality”: The volume of the searched space quickly increases with
increasing distances of nearest neighbours to query chain q. The efficiency of the
similarity search thus decreases. Besides, the efficient pruning of the searched
dataset is getting harder with decreasing variance of distances d(q, o), o ∈ X.
Figure 3 illustrates the density of the distance function defined by Eq. 2 – the
curve is made of a sample of million distances d(o1, o2), o1, o2 ∈ X. The distri-
bution of distances is as skewed, as 98.86 % of distances are bigger than 0.8, and
89.8 % of them are bigger than 0.9. The variance of distances is just 0.002. The
k-nearest neighbours (kNN) queries searching for k objects o ∈ X with minimum
distances d(q, o) thus cannot be evaluated efficiently in practice for query chains
q ∈ D that have kth nearest neighbour in a large distance.
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Fig. 5. The extreme times of distance computations

The protein chain descriptors are, however, actual 3D models of protein
chains, and the distance function directly expresses their best alignment. The
distance of chains thus well corresponds to the perceived similarity of protein
chains – which often is not a case of contemporary metric space similarity models
with descriptors from neural networks. The searching radius 0.5 thus figures an
acceptable limitation for practitioners searching protein chains, since more dis-
tant chains are always too dissimilar. We thus focus on the searching for chains
o ∈ X that are within distance d(q, o) ≤ 0.5, and we consider at most k = 30
of them. Similarity queries in this article are meant mainly as the 30NN query
limited by range 0.5. In the web application, we allow redefining the k value
arbitrarily, but the maximum searching radius is 0.7 to basically limit the query
execution times.

Figure 4 illustrates the distribution of the distances with the logarithmic scale
of the y-axis. This plot depicts the same curve as Fig. 3, but bins of the width
0.01 are used to create the histogram of distances for which the range of the
y-axis can be meaningfully depicted. The figure reveals that there are protein
chains within small distances, and thus the similarity search with a limited range,
e.g., 0.5, can be meaningful. This is experimentally confirmed in Sect. 4.

2.5 Distance Function Complexity

We evaluate the distance of protein chains by a heuristic [11] that estimates the
Qscore. Its evaluation is more efficient than the precise Qscore evaluation, but
still, it has a complexity O(N1 · N2) where N1, N2 are the chain sizes. There-
fore the distance computation time may explode if two extremely big protein
chains are compared – see Fig. 2a with the protein chain sizes. Figure 5 illustrates
the extreme times of distance computations. These data are gathered from our
online running search engine which temporarily stores all distances evaluated in
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more than 30 ms, and persistently stores those evaluated in more than a second.
Figure 5 depicts the stored distance computations that relate to 460 different
query chains – please notice that the vast majority of query executions do not
store any distance computation. Axis x and y depicts the times in minutes per
one distance computation and the number of observed distances, respectively.
The first column visualising the distances evaluated below a minute should have
a height of around half a million samples1, and approximately 98 % of these dis-
tance evaluations take less than 30 ms. We observed 5,600 distance computations
that take more than a second and less than a minute. The biggest problem is
the extreme tail of around 0.1 % of distance computations which take minutes
or even tens of minutes, each. Until now, we observed 10 distance computations
which took more than 42 min, each.

We tried to skip all these extreme distance evaluations, but this results in an
inability to find even very similar protein chains to some of the biggest query
chains. We decided not to employ such skipping since the newly identified protein
chains in the PDBe database are rather bigger ones, so the quality of the search
engine could be perceived as decreasing in the future. We also observed a moder-
ate Pearson correlation +0.46 between the distance computation times and the
returned distances, which could be a motivation to skip long-lasting distances.
Nevertheless, this correlation seems insufficient and influenced by an inability to
effectively sample the extreme values: for instance, 6 out of 10 observed distance
evaluations that take more than 42 min are returning distances smaller than
0.21. These are thus distances between very similar protein chains – see Fig. 4.

The best way to search the protein chains that we found is to minimize the
number of the Qscore evaluations and to cache expensive distance computations.

3 Gradual Similarity Search

We provide users with three gradual query answers of increasing quality to max-
imise the search engine usefulness. We denote these three consecutive parts of
the query execution as phases, and each of them returns a query answer.

– The first phase is always finished in a few seconds since it evaluates just 61
distances d(q, p) of q to pivots. It is usually evaluated below 0.5 s.

– The second phase uses just 489 distances d(q, p) to pivots, including those 61
from the first phase. It takes usually less than 4 s including the first phase.

– The third phase requires a variable number of distance computations with
the median value 702, including those 489 from previous phases. The whole
search usually takes less than 8 s, but with an extreme and necessary tail.

The results of the first and second phases thus add a negligible overhead to the
third phase, since the IDs of chains likely to be similar to q figure more or less
the intermediate result of the query execution.
1 This is an estimation made as an extrapolation from other query executions. Our

search engine evaluates approximately 1,000 distances per average query. The vast
majority of distances is not stored, so we do not know the precise number of distances
evaluated in less than a second.
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3.1 Data Preprocessing and Sketches

The whole search engine is based on 512 pivots p ∈ D that approximate the
position of each protein chain in a space. We select the pivots uniformly randomly
with respect to the number of CA atoms in protein chains. Specifically, we sort
the chains o ∈ X according to the number of CA atoms, split this list into 512
parts of the same size, and randomly pick one protein chain from each part as a
pivot. All distances d(o, p), o ∈ X between chains o and pivots p are precomputed
and stored in the DB during the data preprocessing.

Fig. 6. The generalised hyperplane partitioning to define bits of sketches of chains

We also create and store the sketches of protein chains. Sketch sk(o), o ∈ X
of protein chain o is a bit-string in the Hamming space ({0, 1}λ, h), and the
Hamming distance of sketches approximates the distance of protein chains. We
use the sketching technique denoted here as GHP 50, which is defined in [12].
The GHP 50 uses a single instance of the generalised hyperplane partitioning [21]
to define each bit of all sketches sk(o), o ∈ X: a given bit of sketches sk(o), o ∈
X expresses which of the two pivots is closer to o, so λ hyperplanes define
sketches sk(o), o ∈ X of length λ bits – see schema in Fig. 6. Pivot pairs are
selected by a heuristic from a set of pivots to define approximately balanced
and low-correlated bits of sketches sk(o), o ∈ X, i.e., each bit of sketches splits
dataset X approximately into halves, and bits of sketches sk(o), o ∈ X have
pairwise Pearson correlations as close to 0 as possible [12].

We use two types of sketches for each protein chain o ∈ X. The small sketches
have length 320 bits, and they are defined using just 61 pivots out of those 512
preselected. We offered 64 pivots to the heuristic to define the hyperplanes, and
it did not use 3 of them. The probable cause is a vast majority of distances 1
between these 3 pivots and protein chains from the dataset X which prevent
all hyperplanes defined by these pivots from defining the balanced bits. The
64 pivots that we offered were selected again uniformly randomly according to
the size from 512 preselected pivots. In practice, sketches maximizes the memory
usefulness iff λ is a multiple of 64, since we use java class BitSet to store sketches
as an array of longs. For the first search phase, sketches of 320 bits created from
64 pivots provide a suitable trade-off between the time needed to create sketches,
and their quality.
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Table 1. The mapping of distances that we use for sketches of length 1,024 bits and
π = 0.75 (the majority of lines is omitted)

Ham. dist. b orig. dist. t Ham. dist. b orig. dist. t Ham. dist. b orig. dist. t

0 - 144 0 211 0.03 238 0.1

145 0.0003 . . . . . . . . . . . .

146 0.0006 222 0.04 270 0.2

147 0.001 223 0.05 . . . . . .

. . . . . . . . . . . . 290 0.3

149 0.002 227 0.06 . . . . . .

. . . . . . . . . . . . 307 0.4

172 0.01 231 0.07 . . . . . .

. . . . . . . . . . . . 340 0.5

199 0.02 236 0.08 . . . . . .

. . . . . . 237 0.09 562 - 1024 1

We also use the large sketches of o ∈ X that have length 1,024 bits and are
defined by 489 out of 512 preselected pivots. Similarly, we offered all 512 pivots
to the heuristic to define large sketches, and it used just some of them. Our
database thus contains the following metadata for each chain o ∈ X: (1) 512
chain-to-pivots distances, (2) small sketch of o, and (3) large sketch of o.

3.2 First Phase of the Query Execution

Following sections describe the query execution, so we consider an arbitrary
given query chain q ∈ D. The first phase of the search evaluates just 61 distances
d(q, p) to create the small sketch of q, and executes the kNN query on the small
sketches. We use just a sequential evaluation of all 495,085 Hamming distances
h(sk(q), sk(o)), o ∈ X; such evaluation takes about 0.15 s (per query), so the exe-
cution time of the first phase is practically given by the evaluation of 61 distances
d(q, p) to create small sketch sk(q). Since none of these pivots is extremely big,
the first phase is evaluated in up to a few seconds for an arbitrary q ∈ D.

The first phase answer consists of IDs of k chains o ∈ X with the small-
est Hamming distances h(sk(q), sk(o)). These IDs are immediately shown in
the GUI, and we start the parallel and asynchronous evaluation of k distances
d(q, o) = 1 − Qscore(q, o), as well as the second phase of the search. When
Qscore(q, o) is evaluated, the alignment of the protein chains q and o is displayed
since the Qscore computation involves the best alignment of protein chains in
3D Euclidean space. Asynchronous evaluation allows to provide some results
quickly, and we stop remaining evaluations when the results of the second phase
are delivered. The results are sorted dynamically according to the distances
d(q, o). If the distance is bigger than the specified radius of the query, the ID of
chain o is hidden from the results.
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3.3 Second Phase of the Query Execution

The second phase of the query execution is similar to the first one, but it uses
large sketches sk(o), o ∈ X. Specifically, 489 distances d(q, p) between q and
pivots p are evaluated to create a large sketch of q, and all 495,085 Hamming
distances h(sk(q), sk(o)), o ∈ X are evaluated to return the result of the second
phase. We, however, utilise also the minimum required Qscore to define the
searching radius in the Hamming space of large sketches, and we evaluate the
kNN queries with the limited searching radius in the Hamming space. We use
the probabilistic model from the article [13] that approximates the mapping of
distances t = d(q, o) to the Hamming distances b = h(sk(q), sk(o)) of sketches
created by the GHP 50 sketching technique, such that:

P (d(q, o) ≥ t | h(sk(q), sk(o)) = b) ≈ π (4)

where π is the probability empirically set to 0.75 [13]. Intuitively, having the
Hamming distance of sketches, the mapping estimates the minimum probable
distance of the protein chains. Table 1 gives examples of the mapping that is
used in our web application. While the mapping of distances is used just to set
a disposable Hamming radius to search the large sketches in the second phase,
it plays a crucial role in the third phase.

3.4 Third Phase of the Query Execution

We use a high-quality pivot permutation based index called the PPP-codes [16]
and the secondary filtering by large sketches [13] in the third phase.

The PPP-codes index [15,16] uses 4 independent Voronoi partitionings [21]
of the metric space (D, d). Each Voronoi partitioning uses 128 pivots that are
disjunctive subsets of all 512 preselected pivots. Each protein chain is indexed
using all these partitionings in the main memory. Given a query chain q, the
chains CandSet(q) that are likely to be similar to q are determined (the candidate
set) by a selective combination of individual Voronoi partitionings [16]. The
candidate set size is given as a parameter in advance.

Usage of PPP-codes clarifies the number of 512 pivots that we use. Each
Voronoi partitioning uses 512/4 = 128 pivots to approximate position of each
chain, and we need to have a few distances between 128 pivots and each protein
chain smaller than 1. We found 512 pivots as the optimum number, since 768
and 124 pivots provide practically the same results as presented with 512 pivots.

Particular position of the query chain q significantly infers the performance
of similarity indexes. A fixed candidate set size used for all query chains q ∈ D
does not take into account different density of chains o ∈ X around given q ∈ D,
and thus decreases the quality, or unnecessarily increases the number of distance
computation in case of many query chains [13]. The secondary filtering of the
CandSet(q) by sketches can effectively reduce the CandSet(q) dynamically, using
the current searching radius given either by the query assignment or by the
distance to the kth nearest neighbour, found so far.
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We evaluate the third phase of the query execution as follows. When the
second phase of the query execution is finished, we evaluate all the remaining
distances of q to 512 pivots p, and search for the candidate set CandSet(q)
of size 5,000 (≈1% of the dataset) by the PPP-codes. When a protein chain
o ∈ X is confirmed to be in the CandSet(q), we evaluate the Hamming distance
h(sk(q), sk(o)) of large sketches. This Hamming distance is used together with
the mapping illustrated by Table 1 to estimate the minimum probable distance
of protein chains. If this estimated distance is bigger than the current searching
radius, o is discarded. Otherwise, we evaluate the distance d(q, o), and we grad-
ually build the answer of the third phase. Building the answer is finished when
the whole CandSet(q), i.e. 5,000 chains, is processed.

The need to minimise the number of distance computations also clarifies the
need to limit the searching radius from the beginning, i.e., to evaluate kNN
+ range queries instead of kNN queries. If a kNN query is evaluated, the sec-
ondary filtering is not utilised until k distances are evaluated to fill the query
answer. Then the searching radius decreases gradually, usually from a high value.
Immediate range limitation thus enables an effective secondary filtering from
the beginning of the query execution which effectively decreases the number of
distance computations. Similarly, the k value improves the effectiveness of the
secondary filtering since if the query answer is full, the searching radius is given
by the distance to the kNN instead of the original query range, so the secondary
filtering power increases dynamically.

Table 1 illustrates an extreme power of the secondary filtering with the
GHP 50 sketches. The implicit searching radius in our application is 0.5, which
is a very small distance considering the distance density depicted in Fig. 3. Dis-
tance 0.5 is mapped to the Hamming distance 340, i.e., if sketches sk(q), sk(o)
of length 1024 bits differs in at least 340 bits, we skip the evaluation of distance
d(q, o). Lemma 1 and Theorem 2 in article [12] defines the mean and the vari-
ance of the Hamming distances on GHP 50 sketches: the mean is λ/2, i.e. 512,
and the variance decreases towards λ/4, i.e. 256, with the decreasing pairwise
bit correlations – and they are minimised by the GHP 50 sketching technique.
Therefore, the Hamming distance of large sketches sk(q) and sk(o) as small
as 340 is very improbable, and the secondary filtering usually discards a vast
majority of the CandSet(q) identified by the PPP-codes.

4 Experiments

Since we focus on kNN queries with limited radius 0.5, we report the number of
nearest neighbours within this radius. We use 1,000 query chains in our exper-
iments, that are selected in the same way as pivots, i.e., uniformly randomly
with respect to the protein chain size. None of the query chains is used also
as a pivot. Figure 7 illustrates the number of nearest neighbours in the ground
truth (i.e., the precise answer) for all 218 query chains q that have less than 30
nearest neighbours within distance 0.5. All other 782 query chains have at least
30 nearest neighbours within the distance 0.5, and we use 30 closest of them
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Fig. 7. Number of nearest neighbours within distance 0.5 to each query chain q. 218
out of 1,000 tested q do not have 30 nearest neighbours up to distance 0.5.

as their ground truth. The searching quality is described by the accuracy, i.e.,
the ratio of nearest neighbours from the ground-truth that is found. Figure 7
clarifies that the similarity queries with the search radius 0.5 should provide
non-empty answers for around 98 % of query chains despite an extreme distance
density illustrated by Fig. 3. We point out that an empty answer provides useful
information due to a strong relation of the distance function to the protein chain
structures, as discussed in Sect. 2.4.

Box-plots in Fig. 8a depict the searching accuracy over particular query
chains. The first and second phases search with a median accuracy 0.467 and
0.667, respectively. Both have a huge variance – the differences between the first
and the third quartiles are 0.44 and 0.43, respectively. The third phase evaluates
700 out of 1,000 queries precisely, so it has the median accuracy 1. The average
accuracy is 0.937 due to the worst query chains – averages are depicted by the
dashed line for each box-plot in Fig. 8.

We evaluate 30NN queries with the radius 0.5 also by the existing PDBe
search engine, but we use the setting which guarantees to find all nearest neigh-
bour up to distance 0.3. This setting provides much faster search than the precise
one, and it is still of a slightly better accuracy than our inherently approximate
search with the radius 0.5 (see Fig. 8a). The speed comparisons of the search
engines with these settings are thus quite fair.

Figure 8b relates to the third phase of the query execution which uses the
PPP-codes to select 5,000 candidate chains CandSet(q), and filters [13] them
with the large sketches. Figure 8b illustrates that just 190 out of 5,000 candidate
chains remain per median q after this filtering. The first and third quartiles are
87 and 465, respectively, the minimum number of remained chains is 2 and the
maximum is 4,688. These numbers thus correspond to the only distance d(q, o)
evaluations conducted apart from 512 query-to-pivots distance evaluations to
return the query answers with median accuracy 1 and average accuracy 0.937.
Please see that this highest number of distance computations, 4,688, clarifies our
choice of the candidate set size, i.e., 5,000 selected by the PPP-codes – we have
observed query chains that utilises the vast majority of such candidate set.
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Fig. 8. Searching accuracy and number of distance computations after the secondary
filtering with large sketches in the 3rd phase

Fig. 9. Query execution times in seconds

Figure 9 depicts the searching times in seconds2. Box-plots again describe
the distribution of values over particular query chains q. The scale of the times
is multiplied by 10 for each box-plot, and there are a few outliers that do not
fit the scale and are described above each box-plot. All 3 phases provide their
answers within 5 s for almost 70 % of query chains (see the third box-plot), but
there is an extreme tail clearly explained by the previous analysis. 1 % of the
slowest query executions (i.e., 10 queries) requires more than 49 s, each. The
median searching time of all 3 phases is 2.5 s. The fourth box-plot depicts the
searching times of the current PDBe search engine. The median is 183 s, i.e., 73
times slower.

2 No caching is used here except a re-using the distances evaluated in the previous
phases of the same query execution.
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The suitability of our approach is confirmed by an ability of the first and
second phases to deliver results of a lower accuracy but much faster. The most
difficult query chain out of 1,000 examined is evaluated with the following accu-
racy and times:

1st phase 1st and 2nd phase All 3 phases PDBe engine

Accuracy 0.46 0.66 0.93 1

Time 4 s 13 min 1:40 h 3:59 h

5 Conclusions

We described our experience with the similarity search in extreme metric space
which strongly suffers from the variance of objects size and the similarity function
complexity. The times needed to evaluate the pairwise protein chain similarity
vary by 6 orders of magnitude from 1 ms to more than 43 min. The number of
similarity comparisons thus must be minimised. Providing users with interme-
diate query results of increasing quality effectively mitigates user inconvenience,
and we evaluate queries in 3 consecutive phases. Each phase introduces the min-
imum overhead to the following phases, and the first query results are always
delivered in a couple of seconds. Since the similarity query execution in 495,085
protein chains evaluates just hundreds of distance computations for a majority
of query chains, we achieve median searching time 2.5 s which is 73 times faster
than the result of the engine employed in the “Protein Data Bank in Europe”.
As the future work, we would like to develop a distributed search engine for
real-life usage [3,14].
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Abstract. Nowadays, recommendation systems are becoming ubiqui-
tous, especially in the entertainment industry, such as movie streaming
services. In More-Like-This recommendation approach, movies are sug-
gested based on attributes of a currently inspected movie. However, it
is not obvious which features are the best predictors for similarity, as
perceived by users. To address this problem, we developed and evalu-
ated a recommendation system consisting of nine features and a vari-
ety of their representations. We crowdsourced relevance judgments for
more than 5 thousand movie recommendations to evaluate the configura-
tions of several dozen of movie features. From five embedding techniques
for textual attributes, we selected Universal Sentence Encoder model as
the best representation method for producing recommendations. Evalu-
ation of movie features relevance showed that summary and categories
extracted from Wikipedia led to the highest similarity on user percep-
tions in comparison to other analyzed features. We applied the feature
weighting methods, commonly used in classification tasks, to determine
optimal weights for a given feature set. Our results showed that we can
reduce features to only genres, summary, plot, categories, and release
year without losing the quality of recommendations.

Keywords: Recommender system · Content-based filtering · Feature
selection · Feature weighting

1 Introduction

Selecting interesting movies in TV streaming services can be time-consuming
for users due to the increasing amount of available content. Therefore, recom-
mender systems are utilized broadly to assist users in handling information over-
load by suggesting new similar content. Conventional recommendation methods
are classified into Collaborative Filtering (CF), Content-Based Filtering (CBF),
and Hybrid systems, combining both methods. Recommending in CF is based on
the similarity between users’ preferences. In CBF, the retrieval process is driven
by the characteristics of the products, providing items similar to items that the
c© Springer Nature Switzerland AG 2021
N. Reyes et al. (Eds.): SISAP 2021, LNCS 13058, pp. 280–294, 2021.
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user selects or liked in the past. In this paper, we focused on the so-called More-
Like-This (MLT) version of CBF recommenders that suggests more content sim-
ilar to particular items and does not consider user profile. A prerequisite for CBF
is the availability of information about relevant content attributes of the items.
Attributes in the movie domain mostly comprise of structured information, e.g.,
genres, release year, and unstructured information, such as plot. The relevance of
each feature is not obvious in the context of the recommendation system. Typi-
cally, the features are chosen based on their relative usefulness at hand [5,17], not
using some external heuristic, e.g. optimization techniques [19]. In a long run, using
wrong features can lead to inaccurate recommendations and unnecessary engineer-
ing costs, like acquiring a source of data for a feature that does not pay off.

In this paper, we asked: (1) Which feature representation is most effective? (2)
Which single feature provides the best recommendations? (3) Do we need all fea-
tures to get good recommendations? (4) How to combine them to provide the most
relevant recommendations? To answer those questions, we crowdsourced a large
volume of recommendation relevance judgments. We released part of the collected
dataset to the public as a benchmark for evaluation in the movie recommendation
domain. For textual features, we compared the quality of recommendations from
various novel embedding methods and found the most promising representations.
Then, for all the features, we applied well-known feature selection algorithms to
find which ones are relevant and which can be omitted without losing recommen-
dation performance. We conclude with a summary of our findings.

2 Related Works

There is a substantial body of work on feature selection algorithms for machine
learning and statistics (see [26] for a survey). However, for most algorithms, it
is unclear how to extend them to the case of a recommendation system. For
instance, filter methods use similarity measures such as Spearman Correlation,
to score features based on their information content concerning the prediction
task. Yet, filter methods cannot be naturally extended to recommender systems,
in which the prediction target varies because it depends both on the input item
(selected movie in our case) and on the item under consideration (recommended
movie). Ronen et al. [22] addressed this limitation by scoring not single items
but the similarity between pairs of items.

The more frequent approach for feature selection in recommender systems
is to use domain knowledge and non-systematic trial-and-error method that, as
some authors like Colucci et al. [6] admit, is a näıve eyeball technique. Another
approach is to run online evaluation, where users are asked to assess recommen-
dations from multiple recommenders but are not told where each recommenda-
tion comes from [6,13]. While online evaluation can provide the most credible
results by simulating real conditions and getting real user’s decisions, it does
not scale well for several dozen of possible recommender versions to evaluate. To
address these limitations, recommenders are evaluated in offline setup against
previously collected relevance judgments.



282 M. Gawinecki et al.

There is a number of public datasets with movie ratings, like Netflix [1] or
MovieLens [10]. However, those datasets describe whether a movie is a good
recommendation for a user rather than for a selected movie. One could argue
that two movies are similar, if they were liked by same users. However, users
tend to like a variety of films, e.g., both comedies and thrillers, and that does
not automatically make them similar. To address this lack, authors of [6,13]
collected two datasets1 from online evaluation of multiple MLT recommenders.
There is a risk that subsequent recommender systems generate recommendations
that are not present in the dataset. The authors address this problem by ignoring
movie pairs without relevance judgments when measuring performance. Research
in information retrieval has shown that such an approach may lead to unfair
performance results: it may happen that top search results should be treated
as relevant but are considered as non-relevant if they were left unjudged, as
reported by Webber et al. in [28]. However, it is impractical to obtain relevance
judgments for all items. Tonon et al. [27] handle this problem by introducing
iterative pooling : for each new retrieval system missing relevance judgments are
obtained and added to the existing dataset.

In the context of movie recommenders, there has been little research on
which features are best at predicting, and the results are often contradictory.
For instance, in offline evaluation Soares et al. [24] found that director fea-
ture alone can provide better recommendations than other features like actors
and genres, while the order starting from the most important (title, genre, cast,
screenwriter, director, and plot) is suggested by Colucci et al. in [6]. There have
been significantly more systematic research on which feature representation pro-
vides best recommendations, especially on representing textual content such as a
movie/book plot. LSI and LDA were evaluated in [2], LSI and Random Indexing
in [16], TF/IDF, Word2Vec, GloVe and Doc2Vec in [25], Word2Vec alone in [18]
and Doc2Vec in [23]. Their results show that the quality of recommendations
depends not only on the topic model used but also on the type and size of data
used for training the embedding model.

3 Recommender System Used in Experiments

To perform experiments, we developed a prototypical recommendation system
built using the dataset that we collected. Further details are described in this
section.

3.1 Recommending Approach

The system used in our experiments was designed to show five unordered recom-
mendations next to a selected movie on a user’s TV screen. Each movie is rep-
resented as a set of encoded features. The system calculates similarity between
vectors for each feature separately, using suitable distance metrics, and takes

1 http://moviesim.org/.

http://moviesim.org/
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a weighted sum of them. Weights enable us to control how much each feature
contributes to the final output distance.

3.2 Movies Dataset

For experiments, we built the Movies Dataset of over 20K movies that were used
as the input for the recommender. The movies came from intersecting internal
Samsung dataset2 and Wikipedia dump3. We also added additional movie ratings
from MovieTweetings4 [8]. For each title we extracted the following attributes:
release year, genre, language, screenwriter, director, summary (merged Wikipedia
introduction page and distributor description), plot (Wikipedia “Plot” section),
category (from Wikipedia categories, e.g., “1990s black comedy films” or “Films
about psychopaths”), and popularity (ratings from IMDb and metacritic.com).
Three attributes in the dataset had incomplete values: language (1.5%), director
(34.0%), and popularity (70.0%). One entry of Movies Dataset is included as
an example in our public repository5.

3.3 Features Representations

For each movie attribute in the Movies Dataset, we developed the following
features representations and distance metrics:

– Release year. The intuition is that when a user is looking for an old movie,
we should recommend him/her a similarly old movie. However, when a user
is looking for an old movie, it doesn’t matter if it is from the 1930s or 1950s,
but when looking for more contemporary movies, the subjective difference
between the 2000s and 2020 movies may seem to be much bigger. To express
this intuition, we represent it in a logarithmic form and use the Euclidean
distance metric.

– Language. The expectation is that when a user is looking for a movie orig-
inally spoken in French, they might be interested in other French movies
as well. Since a movie can have more than one language assigned, we used
Jaccard distance to measure language overlap between two movies.

– Genre. For genres, we proposed two representations: a simple sparse label
vector with a Jaccard distance metric and Word2Vec embeddings [11], trained
over genres co-occurring in our dataset. The latter can capture the perceived
similarity between genres, e.g., thriller can be considered to be more similar
to action than to cartoon. We applied cosine distance between embedding
vectors of movie genres, and we took a mean vector over embeddings for
movies with multiple genres.

2 Accessed on May 25, 2020.
3 https://dumps.wikimedia.org, accessed on August 25, 2020.
4 https://github.com/sidooms/MovieTweetings, accessed on August 27, 2020.
5 https://github.com/la-samsung-poland/more-like-this-dataset/blob/main/

sample movie.json.

https://dumps.wikimedia.org
https://github.com/sidooms/MovieTweetings
https://github.com/la-samsung-poland/more-like-this-dataset/blob/main/sample_movie.json
https://github.com/la-samsung-poland/more-like-this-dataset/blob/main/sample_movie.json
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– Category. We extracted about 60K Wikipedia categories. To express simi-
larity between categories we embedded them using Word2Vec with negative
sampling [11]. The network used for machine learning was fed with movie
titles as target words and corresponding categories as context words. We
used the cosine metric to calculate the distance between vectors.

– Director and screenwriter. We suspected that directors and screenwrit-
ers often produce movies of a similar style and topic. To express similarity
between movies we applied sparse vectors with the Jaccard distance.

– Popularity. A user may search for a blockbuster, a movie that is both highly
rated and popular, or a niche movie, appreciated by critics but not so popular.
To support such use cases, we constructed a vector of popularity indices and
averaged ratings among users and critics, where distance is measured with
the cosine metric.

– Summary and plot. For these textual features we experimented with a
number of topic modelling approaches: Doc2Vec [11], LDA [3], LSI with TF-
IDF [7], USE [4]. USE is a transformer-based model pre-trained on a variety of
NLP tasks with large multi-domain datasets. We did not fine-tune the model
on our dataset. Doc2Vec, LSI, LDA models were trained on the collected plot
and summary.

4 Evaluation and Feature Selection Methods

To find meaningful answers to questions posed in this paper we ran experiments
with the tools and methods described below.

4.1 Comparing Recommenders Performance

We carried out an offline evaluation, where recommendations for a given input
movie are compared against ground truth ratings (relevance judgments). For
input movies, we have manually selected 153 movies from Movies Dataset
(described in Sect. 3.2). We strove to achieve high diversity in content – from
Marvel blockbusters through computer animations, European and Asian art-
house cinema to silent movies. Diversification of evaluation set allows to measure
how recommender system performs for different inputs but also describes par-
tially general diversity of recommender. List of all the movies from Evaluation
Dataset is available publicly6

For each of the selected input movies, a recommender produced five recom-
mendations. Input movies, together with their recommendations, were sent to
annotation for collecting ratings. Given the relevance judgments, we were able
to calculate metrics to assess and compare recommenders with various configu-
rations of features and features weights.

The order of recommendations in our system was irrelevant because they were
displayed in unordered series of tiles. Therefore, using any rank-based metric
6 https://github.com/la-samsung-poland/more-like-this-dataset/blob/main/

evaluation set.tsv.

https://github.com/la-samsung-poland/more-like-this-dataset/blob/main/evaluation_set.tsv
https://github.com/la-samsung-poland/more-like-this-dataset/blob/main/evaluation_set.tsv
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was pointless. Thus, we decided to measure the performance of the system using
Precision@5 defined as:

Precision@5 =
#true positives

#true positives + #false positives
(1)

Because of the limited annotation budget and lack of agreement between anno-
tators in some cases, we were not able to collect ratings for all possible pairs.
Only explicitly labeled examples were considered during calculations. Hence, the
denominator can sometimes be lower than 5. However, comparing systems using
just this metric could lead to incorrect conclusions due to differences in the
number of rated pairs. For this reason, we introduced another metric, coverage:

Coverage =
#(rated pairs ∩ generated pairs)

#generated pairs
(2)

For instance, coverage of 0.3 means that we know whether recommendation is
good or bad for only 30% of recommendations returned by the recommender. It
would assure us that the two systems were evaluated using a sufficient number
of test examples. Low coverage might lead to erroneous interpretation of results.
Features relevances can be inferred from comparing recommender systems with
different sets of features and features weights.

4.2 Collecting Relevance Judgments

Evaluating recommender performance requires a binary label that denotes
whether a recommendation is good or bad for the selected movie.

To collect relevance judgments, for each movie pair generated by the recom-
mender, we submitted a rating task to the crowdsourcing system. To simulate
real recommendation context, we started each task with the short introduc-
tion: “Imagine you have been searching for a movie with Smart TV and the
TV has recommended you another one in the ‘More-Like-This’ section. Would
you be interested in watching the recommended movie, given the movie you were
searching for?”. For both selected and recommended movies, we showed only the
information that would be present in the recommendation application: movie
title, release year, summary, and poster.

We asked users to rate recommendations using 5-point scale of answers: defi-
nitely interested, rather interested, rather uninterested, definitely uninterested or
don’t know. 3-point scale, applied in similar studies [6,13], may result in losing
some information due to a rounding error [12,20] and thus leave some less known
movie pairs unrated.

Given the fixed budget, annotating all possible movie pairs upfront is imprac-
tical. To control the cost we employed iterative pooling [27]. Each time a new
version of a recommender system was tested, we submitted recommendations,
generated and not rated yet, to the crowdsourcing system. We also limited the
number of annotators per movie pair to two. Those two users had to agree about
the rating: whether they rated it positively or negatively. Answers rather inter-
ested and definitely interested were considered a positive rating, while rather
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uninterested and definitely uninterested were considered a negative one. Only in
case of disagreement, the movie pair was submitted for the third annotation to
decide. If that did not help, i.e., when an annotator answered with don’t know,
the movie pair was not included in the relevance judgments. This strategy offered
us a good trade-off between annotation cost and confidence in ratings.

4.3 Selecting Optimal Weights

To assess the relevance of features and to tune the recommender, we proposed
three methods for determining an optimal set of features’ weights. Since the
order of recommendations is irrelevant, we can describe searching for nearest
neighbors as a binary classification problem where the objective is to classify
a pair of movies as good or bad recommendations. We experimentally showed
that coefficients obtained by feature selection and classification algorithms can
be used as weights in CBF. Input to algorithms were movie pairs represented by
vectors of normalized distances between consecutive features of both movies.

Since there is no universal feature weighting method that works for all fea-
tures configurations, we tried three different methods:

– Coefficients of a linear classifier such as Support Vector Machine (SVM) with
linear kernel, perceptron, or logistic regression. In [15] similar procedure was
developed for a classification task. This set of models works analogously to the
presented recommender system. A linear combination of features is calculated.
In the classification case, the calculated sum is compared against a fixed
threshold to determine an output label. In our system, a linear combination
is interpreted as a distance between movies in a pair, and only five movies
closest to the input are selected. We used SVM as a representative of linear
classifiers based on results from our initial experiments.

– ReliefF [21], a filter method for feature selection and feature weighting [29].
– Mean Decrease Impurity (MDI) [14] of variables in a random forest classifier.

4.4 Finding the Best Set of Features

Our goal was to find a subset of features that are most relevant in predicting the
target variable, i.e., whether a recommendation is good or bad. Evaluating rec-
ommendations for all possible feature subsets (2N ) is intractable. To address the
problem, we used Recursive Feature Elimination (RFE) with SVM, originally
proposed by [9] for feature selection in classifiers. RFE is a greedy algorithm
that helps find a subset of a given size by recursively removing the least impor-
tant features (i.e., the least informative during SVM classification). To find an
optimal size of a subset, we combined RFE with 10-fold cross-validation. Since
we optimized our recommender towards high precision rather than high recall,
we used precision as a scoring function. For the same reason, we penalized the
SVM training cost function for returning bad recommendations (false positives
errors) more (4 times) than for missing good ones (false negative errors). Once
we found an optimal features subset, we trained SVM over it and treated its
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coefficients as optimal weights for our recommender. Finally, we validated those
weights with a recommender against relevance judgments.

5 Experimental Results

As a result of crowdsourcing, we collected 15334 annotations from 33 annotators
for 6901 movie pairs. Out of those we got 5500 rated movie pairs (for the remain-
ing ones users could not agree about the rating). The split between good and
bad recommendations is 2988/2512 (54%/46%). We published 30% of collected
ratings as MoreLikeThis dataset7.

5.1 How to Represent Features Effectively?

We reviewed the set of representation methods for the following features: genre,
plot, and summary. We asked how the chosen representation affects recommen-
dation performance, as different techniques have their own characteristics. In the
first experiment, we evaluated how those selected features work together with
other features (features collectively). The results of experiments are depicted in
Table 1.

For plot and summary we tested the following document representation mod-
els: Doc2Vec [11], LDA [3], LSI with TF-IDF [7], and USE [4]. We collected rat-
ings for output recommendations achieving coverage of about 0.6 for each model,
which was acceptable for comparison of precision. The results showed that USE
and Doc2Vec models provide higher precision (0.62 and 0.60 respectively).

In the second part of the experiment we analysed only textual features –
plot and summary – evaluating representations in isolation as the single-feature
recommender. We narrowed methods in this analysis to two the most promising
semantic models – USE and Doc2Vec. Sufficient coverage was obtained only for
analysis of summary feature (0.64 for Doc2Vec and 0.72 for USE). For remaining
configurations (plot, and summary+plot), the gap in coverage between the two
represenations was too be big to make any conclusions about them. Still, higher
precision for USE in case of summary demonstrates that it outperforms Doc2Vec
even though USE was trained on external data and was not even fine-tuned to
our Movies Dataset.

All of the above confirms that transformer-based models pre-trained on large
datasets are more powerful and generalizable.

Precision for Word2Vec embedding method applied to genre data was rela-
tively lower than sparse vector (Table 1). Using not only exact genre matches,
but also similar ones, probably increased the number of false positives.

Overall, our experiments showed that representation strategies can play a
crucial role in the final recommendations.

7 https://github.com/la-samsung-poland/more-like-this-dataset.

https://github.com/la-samsung-poland/more-like-this-dataset
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Table 1. Performance of recommenders with various representations for a selected
feature: (1) features collectively, (2) features in isolation. Weights were split evenly
across features. In the first step, for uninvestigated features we used encoding methods
depicted in 3.3, specifically USE representation for plot and summary, and Word2Vec
representation for genre.

Feature(s) Method Precision Coverage

Features collectively

Summary

+Plot

Doc2Vec 0.78 0.60

USE 0.81 0.62

LDA 0.80 0.57

LSI 0.79 0.56

Genres Simple
Vector

0.86 0.62

Word2Vec 0.81 0.62

Features in isolation

Summary Doc2Vec 0.45 0.64

USE 0.86 0.72

Plot Doc2Vec 0.52 0.19

USE 0.71 0.71

Summary

+Plot

Doc2Vec 0.56 0.24

USE 0.90 0.61

5.2 Which Features Are Relevant?

In the next experiments, we used only selected representations and distance met-
rics: the logarithm version of release year with the Euclidean distance, averaged
Word2Vec vector with the cosine distance for genre, a vector of metrics with the
Euclidean distance for popularity, USE model for textual features plot and sum-
mary, and sparse vectors with the Jaccard distance for director, screenwriter,
and language features.

The main goal of this section is to gain an initial insight into the relevance of
particular features. We ranked those features from the most relevant using the
weight optimization procedure described in Sect. 4.3. Results are summed up in
Fig. 1.

All three algorithms are almost consistent – summary, category, plot, and genre
were important according to all of them. Two of these features, summary and cat-
egory, contain a wide range of information, e.g., brief storyline, cast, awards, or
influence of the film on popular culture. We suspected them to be correlated with
each other and with remaining features. Then, we looked for an optimal subset of
features analyzing whether they are redundant (described in Sect. 5.4).

We evaluated recommender with three different sets of weights obtained by
SVM, ReliefF and MDI, and one set of equal weights. Results are available in
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Fig. 1. Normalized (sum up to 1) weights for each feature obtained by SVM, ReliefF,
and MDI.

Table 2. Coverage for each recommender was above 0.60 which allowed us to
make further conclusions.

Precisions of recommenders with weights optimized by all methods are sim-
ilar to each other and exceptionally higher than in the equal-weights scenario.
That confirms the effectiveness of SVM, ReliefF, and MDI as weights selection
algorithms.

Table 2. Evaluation of the recommender with weight obtained by SVM, ReliefF and
MDI compared with setting all weights to the same value.

Precision Coverage

SVM 0.92 0.65

ReliefF 0.91 0.63

MDI 0.90 0.66

Equal weights 0.81 0.62

Some features turned out to be more informative, i.e., they are better at
discriminating good recommendations from bad ones. However, we do not know
which provide better recommendations.
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5.3 Which Single Feature Provides Best Recommendations?

To answer this question, we evaluated six recommender systems, each consisting
of a single movie feature. We intentionally did not evaluate recommendations
created by language, popularity and release year features. By common sense,
we assumed that these features might be useful but cannot create standalone
systems. Performance of single-feature recommenders is shown in Table 3.

Table 3. Precision and coverage for single-feature recommenders.

Precision Coverage

Plot 0.72 0.70

Genre 0.77 0.39

Category 0.87 0.53

Summary 0.87 0.72

Director 0.64 0.37

Screenwriter 0.65 0.35

The results confirmed our findings from Sect. 5.2: category and summary are
great standalone features while plot and genre give slightly worse but still decent
performance.

5.4 Do We Need All Features to Get Good Recommendations?

We used RFE with cross-validation (Sect. 4.4) to find the smallest subset of fea-
tures. The results are shown in Fig. 2. It can be observed that RFE classification
precision for five and nine features is almost the same (0.828 and 0.820 respec-
tively). It demonstrates that we can remove four features and still get the best
recommendations for a given setup. The best subset contains the following fea-
tures (together with their optimal weights): genre (0.37), plot (0.20), summary
(0.20), categories (0.20), and release year (0.03). The validation of this configu-
ration with a recommender got 0.93 precision for 0.55 coverage. The validation
of configuration with all features got the precision of 0.92 as well with coverage
of 0.65.

If we compare the recommendation performance of this combination with the
performance of single features (see Sect. 5.3), we can see that no feature alone
can achieve such a high precision. The best single features, summary or category,
have precision of 0.87. The results also indicate that it pays off to engineering
features with more complex representations (summary, plot, and categories).

The remaining features: director, languages, popularity and screenwriter were
found redundant.
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Fig. 2. The results for RFE with SVM and 10-fold cross-validation over relevance
judgments.

5.5 Are Relevance Judgments Credible?

We asked whether collected relevance judgments were credible and consistent.
We pushed random movie pairs and regular recommendations to the same

group of annotators. The distributions of ratings for both recommendation types
are presented in Fig. 3. It showed that random recommendations were mostly
rated as bad ones, whereas regular recommendations as good ones. That is in
line with our intuition and demonstrates that our annotators provide credible
ratings. That gives us trust in the results of the experiments.

Fig. 3. Distribution of user ratings for regular and random recommendations in the
first round of ratings collection.

Additionally, we checked whether users rated the same movie pair consis-
tently and found that 70% of movie pairs had a complete agreement, i.e., all
annotators agreed that a recommendation is good or bad. Remaining movie
pairs had 2

3 agreement. This demonstrates that ratings were relatively consis-
tent across users.
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6 Conclusions

In this paper, we asked what features of a movie make it a good recommendation
for another movie.

We researched methods for feature representation. We found that various
representation algorithms applied to the same movie attribute may result in
different recommendation performance. For instance, changing movie summary
or plot representations from Doc2Vec or LSI into Universal Sentence Encoder
can increase recommendation precision significantly.

We also studied which single feature is most informative and can provide
the best recommendations. We found that users rate recommendations gener-
ated solely from a movie summary or category higher than when using other
features. We also found that combining these features with others improves rec-
ommendations quality, but not significantly. This suggests there is potential for
single-feature recommenders if the feature is represented properly.

We also looked for the smallest set of features with high recommendation
performance. We found that using only five features (genres, plot, summary,
categories, and release year) we can provide as good recommendations as using
all nine proposed features. Surprisingly, other features such as movie director,
screenwriter, or language, often mentioned in the literature [6,13], were found
redundant. Removing those features can shorten recommender response time,
save storage space, and cut costs of acquiring data for those features.

Machine learning has a long-standing list of methods for feature ranking,
weighting, and selection. We have shown that by representing a recommenda-
tion task as a classification problem, we can apply those methods for content-
based recommenders. We also collected and released a large dataset of movie-
recommendation ratings. We hope the dataset will encourage and enable future
research in this domain.
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Abstract. Polygons appear as constructors in many applications and
deciding if two polygons match under similarity transformations and
noise is a fundamental problem. Solutions in the literature consider only
matching pairs of polygons, implying a sequential comparison when we
have a collection. In this paper, we present the first algorithm allowing
indexed retrieval of polygons under similarities. We reduce the problem
to searching points in the plane, exact searching in the absence of noise,
and approximate searching for similar noisy polygons. The above gives
a O(n + log(m)) time algorithm to find the matching polygons under
noise and O(1) time for exact similar polygons. We tested our heuristic
for indexed polygons in an extensive collection of convex, star-shaped,
simple, and self-intersecting polygons. For small amounts of noise, we
achieve perfect recall for all polygons. For large amounts of noise, the
lowest recall is for convex polygons, while attaining the highest recall is
for general (self-intersecting) polygons. The above is not a significant lim-
itation. To recover convex polygons efficiently before indexing, we define
a random permutation of the vertices, converting all input polygons to a
general polygon and achieving the same successful recovery rates, which
is a perfect recall for high noise levels.

Keywords: Polygon matching · Shape matching · Shape indexing

1 Introduction

Shapes appear in many applications fields like computer-aided design, computer-
aided manufacturing, computer vision [18], medical imaging [12] and even archae-
ology [16]. Shape analysis deals with the concept of matching shapes. The defi-
nition of matching changes with the application field. It ranges from congruence
transformations, where the shapes could be rotated, translated, or reflected with-
out being scaled, to similarity transformations, which includes scaling to the
previous set of transformations, affine transformations, projective transforma-
tions, to Riemannian isometries (for curved surfaces), and conformal mappings,
or more general transformations. Matching could also include partial matching,
where only a portion of the shape has a match. As a rule of thumb, the more
general the transformation, it is more difficult to find a fast algorithm to find
the best match. For an arbitrary transformation, the problem is NP-complete.
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We fix our attention on the fundamental problem of complete polygon match-
ing, as opposed to partial matching. The problem of partial matching, or dealing
with insertions and deletions, can be handled by fragmenting the polygons being
compared. Moreover, we are especially interested in the indexed version of the
problem instead of just comparing two polygons for matching.

1.1 The Problem: Indexed Polygon Matching

We define the problem of indexed matching. A collection of polygons is prepro-
cessed and stored, and a query is presented to the system. The outcome will be
all the matching shapes in the collection.

We shall identify points (x, y) in the plane with corresponding complex
numbers z = x + y

√−1. A polygon in the plane will be an ordered set
of points, or complex numbers, where the order specifies consecutive vertices.
Self-intersection are allowed since the order is arbitrary. Therefore, the cyclic
shifts (z2, z3, . . . , zn, z1), (z3, z4, . . . , z1, z2), . . . , (zn, z1, . . . , zn−2, zn−1) and the
reversed labeling (zn, zn−1, . . . , z2, z1) determine different labels for the same
polygon (z1, z2, . . . , zn−1, zn). But a general permutation p : {1, 2, . . . , n} →
{1, 2, . . . , n} could determine a different polygon (zp(1), . . . , zp(n)) because the
consecutive vertices vary and therefore the edges are different.

An affine transformation f : R2 → R
2 can be (uniquely) written in terms of

sums and products of complex numbers as

f(z) = αz + βz̄ + γ,

where α, β, γ ∈ C and |α|2 − |β|2 = det f �= 0. Here z̄ stands for the complex
conjugated of z. When β = 0 the affine transformation is a similarity transfor-
mation.

Given polygons Z = (z1, z2, . . . , zn) ∈ C
n and W = (w1, w2, . . . , wn) ∈ C

n,
our problem consists of determining if there exists an affine transformation f
such that Z = f(W ). Since affine transformations have three complex param-
eters, finding two corresponding triples of consecutive points in both polygons
is enough. A näıve procedure will be to fix a triplet in Z and try all the cyclic
shifts in W to find the correspondence, which takes O(n) operations for one
triplet. Since there are O(n) consecutive triplets, the entire process takes O(n2)
operations.

Now assume we have a given collection of polygons Z1, Z2, . . . , Zm and a
query polygon W , and we want to know which of the Z� are images of W under
a similarity. Using a sequential approach and the näıve procedure above, the
solution can be found in O(mn2) operations. In general, without an index, the
complexity will depend linearly on the number of polygons in the collection, mul-
tiplied by the complexity of an individual match. We will show how to improve
this complexity using the defined invariants and a two-dimensional index for
querying.
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1.2 Summary of Results

For polygons Z ∈ C
n, we construct complex scalar functions ϕj : Cn → C, j =

1, . . . , �(n − 1)/2� with the following properties

1. ϕn
j (Z) = ϕn

j (f(Z)) with f : Cn → C
n an arbitrary similarity function, includ-

ing mirroring and cyclic shifts.
2. ϕj is analytic, that is for ΔZ = (Δz1, . . . ,Δzn), an unknown bounded additive

noise, we have |ϕj(Z)n − ϕj(Z + Δ(Z))n| ≤ r.
3. If Z,W ∈ C

n and Z and W are not similar, then ϕj(Z) �= ϕj(W ) almost
surely.

4. For a collection of polygons Z1, . . . , Zm and a query polygon W , we show how
to use the previous properties to preprocess Z1, . . . , Zm to quickly find all Zi

such that Zi = f(W ). This is done by using a two-dimensional spatial index
to store ϕj(Z1)n, . . . , ϕj(Zm)n at preprocessing time, and finding the nearest
neighbor of ϕj(W )n, as NN(ϕj(W )n at query time.

5. The above procedure has high recall only for general, auto-intersecting poly-
gons when the amount of noise Δ is above a certain threshold. We show that
if we permute the polygons Zi before indexing, using an arbitrary but fixed
permutation Π, we can obtain the same high recall results even for convex
polygons, which had the lowest recall rates without permutations.

This paper is an experimental report of a previous theoretical paper [7]. We
reproduce here the mains results to make this contribution self-contained. The
experimental parts, not reported before, corresponds to numerals 4 and 5 above.
In particular, using the nearest neighbor search, or k-nearest neighbor search
when we expect multiple matches for the query polygon is new. In the previous
paper, we derived precise bounds, also discussed for a complete presentation,
where there was the need for a precise maximum radius. This radius depends
on the polygon as well as the amount of noise. Each polygon has associated
a maximum allowed noise, posing difficulties for indexing, as convex polygons
are more sensitive to noise. We show experimentally in this paper that we can
achieve maximum tolerated noise for most polygons by randomly permuting the
polygon vertex with a fixed permutation.

1.3 Related Work

Before matching polygons in a natural scene, it is necessary to detect them. In
general, reconstructing an arbitrary polygon from partial readings is NP-hard
[5]; although some instances can be solvable in practice, such as detecting reg-
ular polygons [4,13]. However, shapes and contours can be obtained from other
sources, and sometimes the problem consists in measuring if a set of points can
be put in correspondence with a nominal polygon; this has applications in man-
ufacturing inspection and city planning [10]. Two arbitrary simple polygons can
be compared using several notions of distance [2], being the more general the
Fréchet distance as described in [6], which can be computed in polynomial time.
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Fig. 1. Application of the invariant ϕj to similar polygons gives the same complex
number. For similar polygons plus noise, it gives complex numbers that are close under
euclidean distance. For not similar polygons it gives different complex numbers.

Some heuristics have been defined for other simpler realizations of the distance
between polygons. One approach is to consider the polygon as a (circular) string
with either the edges [17] or the vertices as symbols [11]; this allows efficient
comparison of a shape against a nominal polygon allowing insertions and dele-
tions of vertices. Another efficient metric is discussed in [1]. In [15] are discussed
algorithms for the specific case of polygon matching upon congruency, including
the case of partial matches. A more comprehensive discussion of the problem of
shape matching and several efficient approaches are discussed in the survey [18].

To the best of our knowledge, there is no prior attempt to solve the indexed
polygon matching discussed in this paper. The metrics mentioned above are
designed to compare pairs of polygons and do not contemplate the problem of
indexed matching. Moreover, any function ϕj holds more information than a
metric because ϕj endows the space of polygons with a two-dimensional coor-
dinate system (complex numbers are two-dimensional). In contrast, a metric
can only be considered a one-dimensional coordinate because each polygon is
associated with a real number, which is the distance to a fixed polygon.
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2 Invariants

2.1 Similarity Invariants for Polygons

In what follows, we shall fix an integer n ≥ 3.

Definition 1. For any integer j = 1, . . . , �(n − 1)/2� we consider the function
ϕj : Cn → C ∪ {∞} given by

ϕj(z1, . . . , zn) =
∑n

k=1 λjkzk∑n
k=1 λ−jkzk

,

where λ = e2π
√−1/n is a nth root of unit.

Proposition 1. ϕj is invariant under the action of orientation-preserving sim-
ilarity transformations on polygons with n vertices; that is, if α, γ ∈ C with
α �= 0, then

ϕj(αz1 + γ, αz2 + γ, . . . , αzn + γ) = ϕj(z1, z2, . . . , zn).

Proof.

ϕj(αz1 + γ, αz2 + γ, . . . , αzn + γ) =
∑n

k=1 λjk(αzk + γ)
∑n

k=1 λ−jk(αzk + γ)
=

α
∑n

k=1 λjkzk + γ
∑n

k=1 λjk

α
∑n

k=1 λ−jkzk + γ
∑n

k=1 λ−jk
=

α
∑n

k=1 λjkzk + γ
∑n−1

k=0 λjk

α
∑n

k=1 λ−jkzk + γ
∑n−1

k=0 λ−jk

α
∑n

k=1 λjkzk + γ(λjn − 1)/(λj − 1)
α

∑n
k=1 λ−jkzk + γ(λ−jn − 1)/(λ−j − 1)

=

α
∑n

k=1 λjkzk

α
∑n

k=1 λ−jkzk
=

∑n
k=1 λjkzk∑n

k=1 λ−jkzk
= ϕj(z1, z2, . . . , zn).

Remarks

Remark 1. The numerator and denominator involved in the definition of ϕj are
the coefficients appearing when Z = (z1, . . . , zn) is expressed in certain basis of
C

n, namely the basis of star-shaped polygons

Ek = ((λk)1, (λk)2, . . . , (λk)n−1, (λk)n), k = 1, 2, . . . , n

([8], [14, proof of Proposition 3]). More precisely, if Z =
∑n

k=1 xkEk, then

ϕ1 =
xn−1

x1
, ϕ2 =

xn−2

x2
, . . . , ϕ(n−1)/2 =

x(n+1)/2

x(n−1)/2
if n is odd,
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and

ϕ1 =
xn−1

x1
, ϕ2 =

xn−2

x2
, . . . , ϕ(n−2)/2 =

x(n+2)/2

x(n−2)/2
if n is even.

All the quotients xi/xj satisfy Proposition 1, but only those of the form xn−j/xj

satisfy a more general theorem involving affine transformations as described in
[7].

Remark 2. For Z = (z1, . . . , zn) ∈ C
n the precise form of the coefficients of the

linear combination Z =
∑n

k=1 xkEk is

xk =
1
n

n∑

l=1

λ−klzl

They are precisely the Fourier descriptors or coefficients of the discrete Fourier
transform of Z. This is very handy in our experimental construction.

Remark 3. The function ϕj is well-defined except on

Nj =

{

(z1, . . . , zn) ∈ C
n :

n∑

k=1

λjkzk = 0 =
n∑

k=1

λ−jkzk

}

.

Nj is a (n − 2)-dimensional complex linear subspace with measure zero in C
n.

According to Remark 1, Nj is spanned by {Ek}k �=j,n−j .

Remark 4. The level sets ϕ−1
j (c) = {(z1, . . . , zn) ∈ C

n : ϕj(z1, . . . , zn) = c}
are (n − 1)-dimensional complex submanifolds with measure zero in C

n because
every point in C ∪ {∞} is a regular value of ϕj , for any j. This follows from

a straightforward calculation which shows that
∂ϕj

∂zk
= 0 implies ϕj = λ2jk. In

this sense, the probability that two randomly chosen polygons Z and W satisfy
ϕj(Z) = ϕj(W ) is equal to zero.

2.2 Cyclic Shifts and Reversed Labeling

Proposition 2. The behavior of ϕj under cyclic shift and reversed labeling is
given by the formulas

ϕj(z2, z3, . . . , zn, z1) = λ−2jϕj(z1, z2, . . . , zn),

ϕj(zn, zn−1, . . . , z2, z1) =
λ2j

ϕj(z1, z2, . . . , zn)
,

for all j = 1, . . . , �(n − 1)/2�. Hence, if Z and W are relabeling of the same
polygon, we have by raising to the nth power the equalities

ϕj(Z)n = ϕj(W )n if the labels have the same orientation, and
ϕj(Z)n = ϕj(W )−n if the labels have the opposite orientation.

(1)
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Proof.

ϕj(z2, z3, . . . , zn, z1) =
∑n

k=1 λjkzk+1∑n
k=1 λ−jkzk+1

=

λ−j
∑n

k=1 λj(k+1)zk+1

λj
∑n

k=1 λ−j(k+1)zk+1
= λ−2jϕj(z1, z2, . . . , zn),

where subscript n + 1 should be taken as 1. Likewise

ϕj(zn, zn−1, . . . , z2, z1) =
∑n

k=1 λjkzn+1−k∑n
k=1 λ−jkzn+1−k

=

λj(n+1)
∑n

k=1 λ−j(n+1−k)zn+1−k

λ−j(n+1)
∑n

k=1 λj(n+1−k)zn+1−k
=

λ2j

ϕj(z1, z2, . . . , zn)
.

2.3 An Index for Matching Polygons

Exact Matching of Similar Polygons. Assume that a collection of different
polygons Z1, Z2, . . . , Zm of n edges is given. By a preprocessing step we compute
pairs (
, ϕj(Z�)n). Assume that a query polygon W is given and that the objec-
tive is to find all the polygons in the collection such that W = f(Z�) for some
unknown similarity transformation f . This corresponds to all the polygons such
that ϕj(Z�)n = ϕj(W )n or ϕj(Z�)n = ϕj(W )−n (Propositions 1 and 2). Since
the probability of collision is zero (Remark 4), all the R polygons mapped to
ϕj(Z�)n or ϕj(Z�)−n should be similar to the query polygon, and can be found
in O(n + R) operations, where R is the number of polygons mapped to ϕj(Z�)n

or ϕj(Z�)−n. Notice that the bound in the running time is time independent of
m, the size of the collection.

Matching Similar Polygons Under Noisy Conditions. A slightly more
general setup is when there is an unknown noise function at the matching. The
image of the query polygon is a similarity transformation f plus noise, namely
W = (f(z1+Δz1), f(z2+Δz2), . . . , f(zn +Δzn)). In this case, instead of retriev-
ing just the polygons mapped to ϕj(W )n as above, we retrieve all the polygons
within a certain Euclidean distance of the image of the query. That is, if r is the
tolerance, then we inspect all the polygons such that |ϕj(W )n − ϕj(Z�)n|2 ≤ r.

Proposition 3 below gives a precise bound for the tolerated noise.

Proposition 3. Let Z = (z1, . . . , zn) ∈ C
n \ {0} be a polygon. Consider an

integer j ∈ Z \ n
2Z such that

∑n
l=1 λ−jlzl �= 0. Let ρ be a positive real number

such that nρ < μ := |∑n
l=1 λ−jlzl|. Then for any ΔZ = (Δz1, . . . ,Δzn) with

|Δzk| < ρ, k = 1, . . . , n, we have

|ϕj(z1, . . . , zn) − ϕj(z1 + Δz1, . . . , zn + Δzn)| ≤ 2nρ
∑n

l=1 |zl|
μ(μ − nρ)

.
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Proof.

ϕj(z1, . . . , zn) − ϕj(z1 + Δz1, . . . , zn + Δzn)

=
∑n

l=1 λjlzl∑n
l=1 λ−jlzl

−
∑n

k=1 λjk(zk + Δzk)
∑n

k=1 λ−jk(zk + Δzk)

=
∑n

l=1 λjlzl∑n
l=1 λ−jlzl

−
∑n

k=1 λjkzk +
∑n

k=1 λjkΔzk∑n
k=1 λ−jkzk +

∑n
k=1 λ−jkΔzk

=
∑n

l=1 λjlzl

∑n
k=1 λ−jkΔzk − ∑n

l=1 λ−jlzl

∑n
k=1 λjkΔzk∑n

l=1 λ−jlzl (
∑n

k=1 λ−jkzk +
∑n

k=1 λ−jkΔzk)

=

∑n
k,l=1(λ

j(l−k) − λj(k−l))zlΔzk
∑n

l=1 λ−jlzl (
∑n

k=1 λ−jkzk +
∑n

k=1 λ−jkΔzk)

=
2i

∑n
k,l=1 sin

(
2πj(l−k)

n

)
zlΔzk

∑n
l=1 λ−jlzl (

∑n
k=1 λ−jkzk +

∑n
k=1 λ−jkΔzk)

.

(2)

Hence
|ϕj(z1, . . . , zn) − ϕj(z1 + Δz1, . . . , zn + Δzn)|

≤ 2
∑n

k,l=1 |zl| |Δzk|
|∑n

l=1 λ−jlzl| (|
∑n

k=1 λ−jkzk| − ∑n
k=1 |Δzk|)

<
2nρ

∑n
l=1 |zl|

|∑n
l=1 λ−jlzl|

(∣
∣
∑n

l=1 λ−jlzl

∣
∣ − nρ

) .

(3)

Notice that bounds for the noise depend on the frequency response of the
polygon. That is, we cannot input a given tolerance and obtain a proper searching
radius. The maximum noise allowed is intrinsic to the polygon.

3 Experiments in Polygon Matching with Noise

This section shows the results obtained when we test the algorithm using an
extensive set of polygons of four classes. Figure 2 shows some sample polygons
of the four classes we considered, respectively convex, star-shaped, Jordan, and
general polygons. We have found that the more complex polygons (e.g., general
polygons) are more easily distinguished. We discuss it below.

For evaluating our identification method, we generated a large set of polygons
in each of the four considered classes, each class with 100,000 polygons. The
polygons were generated with integer coordinates in a grid of size 1024 × 768
using the software kindly provided by Martin Held, according to the heuristics
described in [3].
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For each polygon Z� in the collection we computed and stored all ξ� =
ϕj(Z�)n, j = 1, . . . , �(n − 1)/2�, and indexed them using a 2d-tree. Each poly-
gon was mapped to �(n − 1)/2� points in the complex plane. After the mapping,
our polygon collection is transformed to a point collection; each point in the
collection corresponds to a polygon. The 2d-tree is used as an inverted index to
back-link the points to the original polygons.

Fig. 2. Example polygons. Convex, star shaped, simple (Jordan) and general (with
self-intersections).

For querying we took 1,000 polygons in each collection and randomly per-
turbed each vertex with ±r pixels in the x and y coordinates, with 1 ≤ r ≤ 25.
The resulting polygons were mapped using the same �(n − 1)/2� functions. We
searched for the nearest neighbor of each one of the resulting points in the corre-
sponding collection. Figure 3 show the recall as a function of the noise (measured
in pixels) for various setups. We first notice that using a single, fixed invariant
produces a low recall. Remember that the noise bounds depend on the polygon’s
response to a frequency. Taking all the invariants ϕj for indexing and requir-
ing any one of them to match the nearest neighbor of the query gives excellent
results. Remember, by Remark 4, that false positive matches are improbable,
although due to noise, false positives are possible. For the plot, we considered
the �(n − 1)/2� candidates, one for each invariant, and checked if this list con-
tains the matching polygon.
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Fig. 3. Searching for noisy polygons. A graph is displayed for each class of polygons.
The first class was a set of convex polygons, the second was of star shaped polygons, the
third was of simple or Jordan polygons and the fourth class was of polygons without
restrictions. The plots show the recall considering one of the ϕj (NN with 1Pj), all of
them (NN with all Pj) and any of them (contains NN) respectively. Each point in the
plot is the average of 1,000 queries. As the shape is more complex, the identification is
easier.

The lowest recall we obtained was for convex polygons, which is consistent
with the theoretical results because they have the lowest frequency responses.
On the other hand, general polygons have a higher recall because there will be
at least one high-frequency response. As per the cyclic shifts, recall Proposition
2, there was no difference in recall when the query was cyclically shifted. We
experimented with polygons having between 16 and 32 sides. We saw no signif-
icant difference in the plots and only reported the results for 32 sided polygons.
The total searching time is negligible, a few milliseconds in a laptop.

3.1 Fixing Recall for Convex Polygons

Observing the disparate results in recall for convex and general polygons and
knowing the relationship of the performance and the frequency response of the
polygons, we transformed the polygons before storing them. Let Π a random
permutation, fixed beforehand. We applied Π to each one of the polygons before
computing invariants ϕj , ZΠ = (Π(z1),Π(z2), . . . , Π(zn)). At query time, we
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applied the same permutation to the query. With this change, all the indexed
polygons responded equally, obtaining the same recall as generalized polygons.

4 Final Remarks

Polygon matching under similarities is a fundamental problem at the core of
many applications. In [9] they define the problem of finding the attitude of
a spaceship, that is, finding which star appears in the objective of a camera.
Stars are codified as polygons, using as vertices the surrounding stars. More
precisely, for each star, the k-nearest stars define a polygon, with the center the
target star. The algorithm in [9] is akin to brute-force. They compute thousands
of perturbations of each polygon to boost the recall, and the corresponding
invariants ϕj defined in [7] are stored with rounded decimals. The query polygon
is searched for by exact matching. Hence if it coincides with one of the stored
perturbations, a match is reported. The above procedure is wasteful; for each
star, there will be a blob of points associated.

Using the heuristics defined herein, we report better recall rates than [9]
by using the (k)nearest neighbors instead of exact searching and the random
permutation before indexing. We store only one complex number, instead of a
blob of points, for each star. The above allows to dramatically reduce space usage
for a star index for spatial navigation.

We plan to use polygon indexing as a building block for robust point set
retrieval under similarities, with applications to image and multimedia retrieval,
computer vision, and robotics.

Acknowledgments. We want to thank David Mount for carefully reading an early
version of this manuscript and providing precious suggestions. We are grateful to Tomas
Auer and Martin Held [3] who maintain a repository for polygon generation. We used
their software to generate polygons of various types for our experiments.
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Abstract. We study the similarity of adverse effects of COVID-19 vac-
cines across different states in the United States. We use data of 300,000
COVID-19 vaccine adverse event reports obtained from the Vaccine
Adverse Event Reporting System (VAERS). We extract latent topics
from the reported adverse events using a topic modeling approach based
on Latent Dirichlet allocation (LDA). This approach allows us to repre-
sent each U.S. state as a low-dimensional distribution over topics. Using
Moran’s index of spatial autocorrelation we show that some of the top-
ics of adverse events exhibit significant spatial autocorrelation, indicat-
ing that there exist spatial clusters of nearby states that exhibit similar
adverse events. Using Anselin’s local indicator of spatial association we
discover and report these clusters. Our results show that adverse events of
COVID-19 vaccines vary across states which justifies further research to
understand the underlying causality to better understand adverse effects
and to reduce vaccine hesitancy.

Keywords: Spatial clustering · COVID-19 · Vaccines · Adverse
events · Similarity search · Pharmacovigilance · Health geography

1 Introduction

By June 12th, 2021, more than 2.3 billion doses of various brands of COVID-19 vac-
cines had been administered world-wide with more than 300 million doses admin-
istered in the United States [10]. The U.S. Centers for Disease Control and Preven-
tion (CDC) has stated that all U.S. authorized vaccines are safe and efficient [6].
While generally safe, the COVID-19 vaccines have adverse effects, including com-
mon side effects such as injection site pain and fever, but also including rare adverse
effects that can be more severe. In the United States alone, by June 1st, 2021, a
total of 297,410 of adverse events have been reported, collected, and made publicly
available by the CDC and the U.S. Food and Drug Administration in a database
called the Vaccine Adverse Event Reporting System (VAERS) [14]. As cases of
severe symptoms gain public visibility in the news [28], these seemingly contradict-
ing facts of general safety and possibly severe side-effects are a source of confusion
leading to vaccine hesitancy among the population [31].
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(a) California (b) Florida

Fig. 1. COVID-19 adverse effect clouds per region.

Towards a better understanding of COVID-19 vaccine adverse events we pro-
pose a similarity measure to quantify the similarity of sets of adverse events. To
illustrate the challenge tackled in this work, Fig. 1 shows word clouds of adverse
effects for California (Fig. 1a) and for Florida (Fig. 1b). These word clouds show
the font size of the most frequent adverse effects proportional to their relative
frequency observed in that state. We observe that common side effects such
as headache, pyrexia (fever), and chills appear with similar relative frequency in
both states and we also observe that some adverse effects appear more frequently
in one region than another. For example, it pyrexia and dizziess are more fre-
quently observed in Florida. Our goal is to measure the (dis-)similarity of the
adverse effects observed in different regions. This similarity allows to understand
how reported adverse events vary over space, over time, across different vaccine
brands, and across different populations. We use our proposed similarity measure
to study if we can observe statistically significant clusters of regions exhibiting
similar adverse effects using VAERS data for the United States. While our work
does not answer the question whether vaccines are safe, we hope that public
health researchers and health officials may find our similarity measure useful to
better understand adverse events, their variations over space, and the underlying
causal factors.

Summarizing our approach, we use a bag-of-words model to describe a set of
adverse events, such as reported in a spatial region. We leverage Latent Dirichlet
Allocation (LDA) to extract latent topics of adverse effects for each region. LDA
has been successfully used to extract domains and research topics from scientific
research papers [17] and news topics (such as “Sports”, “Politics”, “Entertain-
ment”) from news articles [29]. To extract latent topics of adverse events, we
treat the adverse events reported in a spatial region as documents and indi-
vidual adverse effects as words. We qualitatively evaluate the modeled topics
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and show that they are able to represent, for example, adverse events related
to “pyrexia/fever” and adverse effects related to “vertigo/dizziness”. Then, we
describe states of the U.S. by their adverse event topic distribution to evalu-
ate whether topics of vaccine adverse effects vary across the United States. We
quantitatively evaluate if this variation exhibits any significant spatial autocor-
relation, that is, if spatially close states exhibit similar topics of adverse events.

For this purpose, we first survey existing work in Sect. 2 and formally define
an adverse event database in Sect. 3. Our approach to extract latent topics of
adverse events using topic modeling is described in Sect. 4. Using these topics as
a low-dimensional embedding of adverse events in a spatial region, our approach
to quantify spatial autocorrelation and to find spatial clusters of states that
exhibit significantly similar (or dissimilar) topics of adverse effects is described
in Sect. 5. We explore the global and local spatial autocorrelation of COVID-19
vaccine adverse events in Sect. 7 to discover significant spatial autocorrelation,
showing that some topics of adverse events indeed vary in different parts of the
United States. Finally, we conclude in Sect. 8 and identify future directions.

2 Related Work

Adverse Effects of Vaccines. Vaccines are, without any doubt, a paramount
weapon to fight deadly diseases evident by the fact that “In 1900, for every 1,000
babies born in the United States, 100 would die before their first birthday, often
due to infectious diseases” [34]. Furthermore, vaccines not only protect those
receiving the vaccines but also vulnerable groups around them, such as new born
babies, who may not be able to receive a vaccine [12]. Yet, there are adverse
effects [14] including the 300,000 adverse events reported for the COVID-19
vaccines by June 1st, 2021. Understanding and mitigating these adverse events
will not only improve the well-being of those receiving the vaccines, but will
also decrease fear of vaccines that leads to high vaccine hesitancy as observed
during the COVID-19 pandemic [11]. To the best of our knowledge, this is the
first study investigating the similarity of adverse effects of COVID-19 vaccines to
understand their spatial autocorrelation. We hope that our proposed techniques
will find adaption by epidemiologists to improve our understanding of the ecology
of past, present, and future infectious diseases.

Topic Modeling of Adverse Events. Topic modeling is an unsupervised
learning technique to discover underlying themes of a collection of documents.
Latent Dirichlet Allocation (LDA) is one of the more common topic modeling
techniques in the literature [4]. In the context of pharmacovigilance, LDA has
been used to find potentially unsafe dietary supplements [35], but without the
consideration of the spatial distribution of latent topics among adverse effects.
In our prior work in [2] we performed a spatio-temporal study on the adverse
events of blood thinning drugs and their spatial auto-correlation. This study
mainly limited by data availability, having adverse events reported by country
only. For this reason, our prior study in [2] used European countries, but most
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countries had to be removed due to having too few reported adverse events.
The wide availability of VAERS COVID-19 vaccine data at United States state
level enables us to directly explore the latent adverse event features for spatial
auto-correlation.

Pharmacovigilance. The field of pharmacovigilance aims at understanding
the occurrence of adverse effects of drugs [18,21]. Existing work has shown that
adverse effects of a single drug or multiple combination of drugs may vary over
space and time due to racial and ethnic disparities [3,25,27], environment [20,
26], and drug quality [7]. Specifically for vaccines, there is evidence that stress
may have an amplifying effect on immune response and adverse events [16].
However, such aspects of understanding the interactions between drugs and other
external factors are out of scope of this work. In this work, we investigate the
effect of location on adverse effects of the COVID-19 vaccines. While location
may be a proxy of other factors (such as stress), this work does not provide or
imply any causality between location and adverse events. Yet, we hope that an
understanding of the spatial distribution and autocorrleation of adverse events
may help experts discover such causalities.

3 Problem Definition

This section formally defines adverse events, adverse effects, and the problem
of spatio-temporal clustering of adverse events. First, we provide a definition of
adverse effects and events.

Definition 1 (Adverse Effect). An Adverse Effect is a textual representation
of an undesirable experiences associated with the use of a medical product. We
let A = {A1, ..., AN} denote the set of all adverse events and N denotes the
number of all (possible) adverse effects.

Data such as collected in the VAERS database is a collection of records each
associated with a set of adverse effects, a specific pharmaceutical drug, a location,
and time. We call such as record an Adverse Event (AE), formally defined as
follows:

Definition 2 (Vaccine Adverse Event Database). Let A denote a set of
adverse effects, let S denote a set of spatial regions, and let D denote a set of
vaccine brands. An Adverse Event Report Database DB is a collection of adverse
event reports (s,A, d), where s ∈ S is a spatial region, A ⊆ A is a set of adverse
effects, and d ∈ D is the brand for which the adverse effects are reported. We let
M := |DB| denote the number of adverse event reports in DB

We note that a single adverse event may report multiple adverse effects. As
an example, Table 1 shows exemplary adverse events from the VAERS database.
The first line in Table 1 implies that “Dizziness”, “Injection site pruritus”, “Injec-
tion site rash”, and “Somnolence” are adverse effects reported in Maryland Mod-
erna vaccine.
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Table 1. Sample records of Adverse Event Report Database. Each line is an adverse
event.

Adverse
event ID

Drug Location Set of adverse effects

1139067 Moderna MD Dizziness, Injection site pruritus, Injection
site rash, Somnolence

1004857 Moderna PA Nausea, Palpitations, Presyncope, Pyrexia,
Tremor

1115746 Moderna NY Chills, Headache, Nausea, Pain, Pain in
extremity

1148711 Moderna CA Axillary pain, Fatigue, Headache, Nausea,
Pain in extremity

1240185 Pfizer IN Fatigue, Headache, Pain, Pyrexia

1120846 Pfizer UT Nausea, Pain in extremity, Sleep disorder,
Tinnitus, Vertigo

1104541 Pfizer GA Injection site reaction, Rash pruritic

1138693 Pfizer WI Eye pruritus, Lip swelling, Nasal pruritus,
Swelling face, Urticaria

1200860 Janssen TX Headache

1114482 Janssen MI Chills, Hyperhidrosis, Pyrexia

1244933 Janssen IL Heart rate, Heart rate increased, Pain, Poor
quality sleep, Pyrexia

1202067 Janssen RI Chills, Injection site erythema, Menstruation
irregular, Pyrexia

Our goal is to find clusters of locations that exhibit similar adverse events.
Towards this goal, we group adverse events by region.

Definition 3 (Spatial Adverse Events). Let DB be an adverse event report
database and let s′ ∈ S be a spatial region. We define

DBs′ := {(s,A, d) ∈ DB|s = s′}

as the set of all adverse events reported in regions′.

In the next section, we describe how we obtain latent topics of adverse events
to represent each region as a low dimensional topic distribution.

4 Latent Adverse Event Topic Modeling

This section presents our Latent Dirichlet Allocation (LDA) based approach to
extract latent topics from adverse events. All our code to access the data and
to run the topic modeling can be found at https://github.com/ahmedaskar64/
Spatio-Temporal-AEs-Similarity/tree/main.

https://github.com/ahmedaskar64/Spatio-Temporal-AEs-Similarity/tree/main
https://github.com/ahmedaskar64/Spatio-Temporal-AEs-Similarity/tree/main
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Fig. 2. LDA Topic Modeling of Adverse Events. For each adverse event a topic distri-
bution θ is estimated and for each topic i, an adverse effect distribution ϕi is estimated.
Given a topic Z generated from θ, observable adverse effects (AEs) are generated from
ϕZ .

A challenge of mining adverse events is the potentially large number of differ-
ent adverse effects. The FAERS Adverse Event Databases use MedDRA codes [5]
and terminology to standardize adverse effects such as using “pyrexia” instead
of “heightened temperature” of “fever”. Yet, the number of possible adverse
effects is too large and the resulting feature space of using bag-of-words seman-
tics to represent adverse effects is too high dimensional. To address this issue,
we acknowledge that adverse effects are symptoms of unknown (latent) under-
lying causes. While one way of identifying causes is involving a medical expert,
we propose a data-driven approach to identify underlying topics among adverse
events using topic modeling that we interpret as causes. For that, we employ
Latent Dirichlet Allocation (LDA) [4] – a generative probabilistic model which
assumes that each adverse event is a mixture of underlying (latent) topics, and
each topic has a (latent) distribution of more and less likely adverse effects.

A graphical representation of our LDA model using plate notation is shown
in Fig. 2. A vector α of length K is used to parameterize the a priori distribution
of topics. The parameter K corresponds to the number of latent topics used to
model adverse events. When an adverse event is created, we assume that its
topics are chosen following a Dirichlet distribution having parameter α which
we use to obtain a topic distribution θ for each of our M = adverse events. Thus,
the large plate in Fig. 2 corresponds to a set of M adverse events, each having a
topic distribution θ drawn randomly (and Dirichlet distributed) from α.

For each topic, the prior parameter β is used to generate the distribution of
adverse effects within a topic. Thus, we assume that a topic generates adverse
effects following a Dirichlet distribution having a vector β of length |A| as param-
eter, where A is the set of observed adverse effects (c.f. Definition 1). For each
of our K topics, a resulting vector ϕi, 1 ≤ i ≤ K stores the adverse effect distri-
bution of topic K.

To generate the adverse effects of an adverse event, a topic is chosen ran-
domly from the topic distribution θ and, given this topic, a number of Ni adverse
effects are generated randomly from the adverse effect distribution ϕ – where Ni

is assumed to be independent from the chosen topic and uniformly distributed.
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In Fig. 2, the node AE denotes the (observable) set of all N =
∑

i Ni adverse
effects, and Z is a function that maps each word to the topic that generated
it. The reason for choosing a Dirichlet distribution rather than a more straight-
forward uniform or multinomial distribution for the topic and word priors is
inspired by research showing that the distribution of words in text can be better
approximated using a Dirichlet distribution [23].

To infer the topics of our adverse event database DB, we employ a generative
process. Given the observed adverse effects, LDA optimizes the latent variables
to maximize the likelihood of matching the observed adverse events and cor-
responding adverse effects. This generative process works as follows. Adverse
events are represented as random mixtures over latent topics, where each topic
is characterized by a distribution over all N adverse effects. LDA assumes the
following generative process for database DB consisting of M adverse events,
each having a number of Ni adverse effects.

– For each adverse event choose a topic distribution θm ∼ Dir(α), 1 ≤ m ≤ M ,
where Dir(α) is a Dirichlet distribution with prior α. In our experiments, we
initially assume each topic to have uniform prior probabilities, having αi = αj

for 1 ≤ i, j ≤ K. This apriori distribution is adapted using Bayesian inference
[4] to maximize the likelihood of generating the observed keywords.

– For each topic, choose an adverse effect distribution ϕi ∼ Dir(β), where
1 ≤ i ≤ K. For our experiments, we assume each adverse effect to have the
same prior probability N−1.

– For each adverse effect ae in adverse event j:
1. Choose a topic z ∼ Multinomial(θj) from the topic distribution of j, and
2. Choose a word w ∼ Multinomial(ϕz) from the adverse effect ϕz of topic

z.
Here, Multinomial(x) corresponds to a multinomial distribution drawing
from a stochastic vector x.

To describe each adverse event in a latent topic space, we use the adverse event
specific topic distributions θm which describe each adverse event m as a set of K
latent features corresponding to the weight of the respective latent topic. While
this topic modeling does not provide us with any semantic of the underlying
topics, we know that adverse events having similar latent features also exhibit
similar adverse effects. Based on the similarity of latent topics we propose a hier-
archical agglomerative clustering approach to find regions that exhibit similar
adverse events in Sect. 5 and test these clusters for spatial autocorrelation using
Moran’s I in Sect. 7.

5 Spatial Clustering of Vaccine Adverse Event Topics

The latent topic modeling of Sect. 4 provides us with a topic distribution θi for
each adverse event report d ∈ DB. To describe the topic distribution of a region,
we use the average topic distribution of all adverse events reported in the region.
To measure similarity between the topics of adverse events of two regions, we use
Euclidean distance between these resulting average topic distributions. Formally,
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Definition 4 (Region-Wise Adverse Event Distance). Let DB be an
adverse event database, let DBs1 ,DBs2 ⊆ DB, let K be a positive integer and let
θ(ae) denote the latent topic distribution of an adverse event ae ∈ DB using the
LDA model described in Sect. 4, then:

dist(DBs1 ,DBs2) :=

∥
∥
∥
∥
∥

∑
DBs1

θ(ae)

|DBs1 |
−

∑
DBs2

θ(ae)

|DBs2 |

∥
∥
∥
∥
∥
2

,

where ‖.‖2 denotes the Euclidean norm.

To find clusters among regions having similar topics of adverse events we
leverage the distance function of Definition 4 and employ a hierarchical agglom-
erative clustering approach [8]. The advantage of such an approach is that we
neither have to guess the number of clusters as often needed for partitioning
clustering approaches [22] nor have to define a density threshold as required by
density-based clustering algorithms [13,32]. To merge clusters, we employ com-
plete linkage, which defines the distance between two clusters of regions as the
maximum pair-wise distance of regions among the clusters.

Figure 3 shows the pair-wise distance (see Definition 3) for each pair of
states for the 49 states of the United States excluding Alaska, Puerto Rico,
and Hawaii using K = 10 adverse event topics. In Fig. 3 darker colors cor-
respond to a higher pair-wise similarity. We observe a large group of mutu-
ally similar states having smaller nested clusters of similar states thus explain-
ing our choice for hierarchical clustering. We also observe that is not triv-
ial to delineate clusters due to noise, which explains our choice of com-
plete link clustering to maximize delineation and avoid having clusters “grow
together”. A high resolution version of Fig. 3 can be found on our project website
https://github.com/ahmedaskar64/Spatio-Temporal-AEs-Similarity/tree/main.

6 Spatial Autocorrelation

Given the latent topics of vaccine adverse events as described in Sect. 4 and the
clustering approach of Sect. 5, we next investigate if the observed adverse event
topics exhibit significant spatial autocorrelation. In other words, can we reject
the null hypothesis that topics are independent of location by observing that
spatially close regions exhibit similar topics?

For this purpose, we retain all clusters (of all sizes) corresponding to all nodes
in the dendrogram excluding clusters of size one and excluding the root of the
dendrogram that contains all regions. Given any such cluster of regions that
exhibit similar topics of adverse events, we employ Moran’s I measure of spatial
autocorrelation [24]. Moran’s I statistic tests if a variable measured on spatial
regions exhibits a significant spatial autocorrelation, either positive (clustered) or
negative (dispersed). To measure the spatial autocorrelation of clusters obtained
as described in Sect. 5, we use one-hot encoding (or dummy-coding) to encode
each individual cluster membership into a binary variable. Thus, for a cluster C,

https://github.com/ahmedaskar64/Spatio-Temporal-AEs-Similarity/tree/main
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Fig. 3. Pair-wise similarity matrix of latent topics of COVID-19 vaccine adverse events
of counties in the United States.

the cluster membership variable of a region r is set to 1 if r ∈ C and 0 otherwise.
Moran’s I requires an adjacency metric on regions to assess the similarity between
polygonal regions. For this purpose, we employ the Queen Contiguity model [15],
that is, two regions are considered adjacent if they share boundary. We directly
report Moran’s I test statistic whose range is in [−1,−1], ranging from strongly
dispersed (close to −1) to strongly clustered (close to 1). We also report the
p-value of the null-hypothesis that the regions are distributed randomly without
any spatial pattern by transforming Moran’s I values to z-values and employing a
two-tailed z-test [9]. The resulting p-values indicate whether a cluster of regions
having similar topics of adverse events are significantly spatially clustered or
dispersed. We used the geopandas library for handling spatial attributes and
Pysal library for Moran’s I test of spatial autocorrelation [19,30].
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Table 2. Top-10 most probably adverse effects per topics across all regions and all
COVID-19 vaccine brands.

Topic (Probabilities in %) Adverse effects

1 (4.5)“headache”, (3.6)“pyrexia”, (3.6)“fatigue”, (3.3)“pain”, (3.1)“chills”, (3.0)“nausea”,

(2.3)“pain-in-extremity”, (1.7)“dizziness”, (1.7)“injection-site-erythema”, (1.7)“arthralgia”

2 (4.1)“headache”, (2.8)“dizziness”, (2.6)“pyrexia”, (2.6)“pain-in-extremity”, (2.5)“fatigue”,

(2.5)“chills”, (2.4)“nausea”, (2.4)“pain”, (2.1)“injection-site-pain”, (1.6)“dyspnoea”

3 (6.9)“headache”, (4.1)“pyrexia”, (3.8)“fatigue”, (3.7)“chills”, (3.0)“pain”, (2.9)“dizziness”,

(2.8)“nausea”, (1.9)“pain-in-extremity”, (1.8)“injection-site-erythema”,

(1.8)“injection-site-pain”

4 (8.7)“chills”, (8.3)“pyrexia”, (7.2)“headache”, (7.2)“pain”, (6.4)“fatigue”, (3.9)“nausea”,

(3.2)“pain-in-extremity”, (2.6)“injection-site-pain”, (2.2)“myalgia”, (2.1)“dizziness”

5 (4.5)“pyrexia”, (4.1)“headache”, (4.0)“chills”, (3.4)“pain”, (3.1)“fatigue”, (2.5)“nausea”,

(2.5)“dizziness”, (2.1)“injection-site-pain”, (2.1)“arthralgia”, (2.1)“pain-in-extremity”

6 (3.8)“dizziness”, (3.3)“headache”, (2.4)“chills”, (2.3)“nausea”, (2.2)“fatigue”, (2.2)“pain”,

(2.1)“pain-in-extremity”, (1.5)“dyspnoea”, (1.5)“injection-site-erythema”, (1.5)“pyrexia”

7 (6.5)“headache”, (5.5)“pyrexia”, (5.1)“chills”, (4.8)“pain”, (4.7)“fatigue”, (3.2)“nausea”,

(2.6)“injection-site-pain”, (2.4)“dizziness”, (2.0)“injection-site-erythema”,

(1.7)“pain-in-extremity”

8 (5.7)“headache”, (4.4)“fatigue”, (4.0)“chills”, (3.8)“pain”, (3.2)“pyrexia”,

(3.0)“pain-in-extremity”, (2.7)“nausea”, (2.1)“injection-site-pain”,

(1.8)“injection-site-erythema”, (1.8)“dizziness”

9 (4.0)“headache”, (3.9)“fatigue”, (3.6)“pain”, (3.2)“chills”, (2.9)“nausea”, (2.8)“pyrexia”,

(2.5)“dizziness”, (1.9)“pain-in-extremity”, (1.9)“injection-site-pain”, (1.6)“pruritus”

10 (3.8)“pyrexia”, (3.3)“fatigue”, (2.9)“headache”, (2.8)“pain”, (2.6)“chills”, (2.4)“dizziness”,

(2.1)“nausea”, (1.9)“pruritus”, (1.9)“rash”, (1.9)“injection-site-erythema”

7 Experimental Evaluation

For our experimental evaluation we collected data from the VAERS database
as described in Sect. 1 grouped by U.S. states and grouped by the three
brands of vaccines authorized by 06/14/2021: Janssen, Moderna, and Pfizer.
The experiments are conducted on a PC with Intel(R) Xeon(R) CPU E3-
1240 v6 @3.70 GHz and 32 GB RAM. Windows 10 Enterprise 64-bit is the
operating system, and all the algorithms are implemented by Python 3.7. All
code, including code to obtain data from the VAERS API, is available at:s
https://github.com/ahmedaskar64/Spatio-Temporal-AEs-Similarity/tree/main.

7.1 Qualitative Analysis of Topics

For K = 10 latent topics of COVID-19 adverse events Table 2 shows the ϕi

vectors of our LDA model which correspond to the adverse effect distribu-
tion of the i’th topic. For each topic in Table 2 we show the Top-10 high-
est probability adverse effects. First, we observe that the resulting ten top-
ics are hard to discriminate, as they all contain common adverse effects such
as “headache”, “pyrexia” (fever). Yet, we do observe different distributions of
these adverse effects. We observe that Topic #4 has high probabilities for com-
mon symptoms and consequently low probabilities for rare symptoms. Topic
#6 seems to corresponds to light symptoms with a low probability of fever,
but higher probability of “dizziness”. However, we note that our team does not

https://github.com/ahmedaskar64/Spatio-Temporal-AEs-Similarity/tree/main
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Table 3. Moran’s I measure of global spatial autocorrelation for each of the K = 10
topics of COVID-19 adverse events.

Pattern p-value Moran’s index z-score Topic ID

Clustered 0.0006 0.2756 3.4512 1

Random 0.6214 −0.0635 −0.4938 2

Clustered 0.0966 0.1216 1.6616 3

Random 0.6643 −0.0464 −0.4340 4

Random 0.2054 0.0920 1.2662 5

Random 0.6867 0.0109 0.4033 6

Dispersed 0.0754 −0.1785 −1.7782 7

Clustered 0.0071 0.2149 2.6938 8

Random 0.1988 0.0875 1.2850 9

Clustered 0.0002 0.3163 3.7895 10

include a medical expert, thus we refrain from a deeper analysis of these topics
and conclude that our LDA approach has been able to find topics that dif-
fer in distribution of adverse effects. We note that due to truncation to only
showing the Top-10 most probable adverse effects, we do not show uncommon
and rare adverse effects which may define a topic (thus having most of it’s
probability mass focused within this single topic). The interested reader may
find the full list of adverse effect per topic probabilities on our project web-
site (https://github.com/ahmedaskar64/Spatio-Temporal-AEs-Similarity/tree/
main), also including the per-topic adverse effect distributions for K = 3 and
K = 20 topics.

7.2 Spatial Anaylsis of COVID-19 Adverse Event Topics

Table 3 shows the degree of spatial autocorrelation of each of the K = 10 topics
of adverse events. For this purpose, we associated each U.S. state i with it’s
corresponding ϕik probability of topic k ∈ {1, ..., 10}. With each states having
it’s corresponding probability for topic k, we use Moran’s I measure of spatial
autocorrelation [24]. Moran’s I is a test statistic to test the hypothesis that a spa-
tial phenomenon appears uniformly at random without any spatial pattern. We
observe in Table 3 that out of the ten topics, six topics show no spatial autocorre-
lation (unable to reject the null hypothesis of a random pattern), one topic shows
negative spatial autocorrelation (implying a significant dispersed pattern), and
three topics exhibit a positive spatial autocorrelation (spatially clustered pat-
terns). First, we note testing ten hypothesis, and at the high p-value of 0.0754
we’d expect one such pattern by chance under the null hypothesis. Accounting
for the multiple hypothesis testing problem [33] (for example, using Bonferroni
correction [36]), the dispersed pattern of Topic #7 is no significant. However,
for the clustered patterns of Topics #1 and #8, and #10 we observe highly sig-
nificant p-value of 0.0006, 0.0071, and 0.0002, respectively, showing that these

https://github.com/ahmedaskar64/Spatio-Temporal-AEs-Similarity/tree/main
https://github.com/ahmedaskar64/Spatio-Temporal-AEs-Similarity/tree/main


318 A. Askar and A. Züfle

Fig. 4. Local Indicator of Spatial Autocorrelation (LISA). Light red areas correspond
to high-high clusters. Light blue areas are low-low clusters. Dark red and dark blue
areas corresponds to high-low and low-high outliers. (Color figure online)

three topics of COVID-19 adverse events do exhibit significant spatial autocor-
relation. This results shows that some latent topics among the adverse effects of
the COVID-19 vaccines indeed depend on location. For a deeper study, we show
the Local Indicator of Spatial Autocorrelation (LISA [1]) in Fig. 4, showing the
spatial location of clusters of regions that exhibit high (or low) probabilities of
the corresponding topic. Using LISA, a cluster is defined as a region having a
high (low) value that is surrounded by regions that also have high (low) val-
ues. Interestingly, we observe that different parts of the United States exhibit
high (low) values in these three significant latent topics. We also observe high-
low (low-high) outliers, i.e., regions having high (low) topic probabilities that
are surrounded by regions having low (high) topic probabilities. These signifi-
cant clusters that adverse effects indeed vary locally. The underlying causality
warrants further study to understand why certain regions of the United States
exhibit different topics of adverse events.

8 Conclusions

In this work, we tackled the problem of measuring (dis-)similarity between
adverse events of COVID-19 vaccines observed in different regions. Our mea-
sure leverages a topic modeling approach using LDA to map each adverse event
from a (textual) set of adverse effects to a latent topic distribution. Using a
database of 300,000 adverse event reports of COVID-19 vaccines in the United
States, investigate the underlying topics exhibit any spatial autocorrelation to
understand if different places exhibit different adverse events. Our results show
that some of the latent topics of COVID-19 adverse events show significant pos-
itive spatial autocorrelation. Our local analysis of spatial autocorrelation show
that certain topics of adverse events have increased (or decreased) likelihood in
different parts of the United States.

We hope that teams of medical experts may find this result to investigate
the underlying causality. Reasons could be due to vaccine quality issues, storage
and cooling issues, or simply due to different brands of vaccines. Our own future
work will include looking at the correlation between adverse event topics and
different vaccine brands to understand topics and possibly the clusters that we
have observed. We will also look into temporal changes of topics to gain an
understanding how adverse events may change over time and due to climate.
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Finally, we note that all of our implementations, experiments, and results
are available at our project website: https://github.com/ahmedaskar64/Spatio-
Temporal-AEs-Similarity/tree/main, where we also include additional experi-
ments which we could not fit into this paper.
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17. Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proc. Natl. Acad. Sci.
101(suppl 1), 5228–5235 (2004)

18. Jeetu, G., Anusha, G.: Pharmacovigilance: a worldwide master key for drug safety
monitoring. J. Young Pharmacists 2(3), 315–320 (2010)

19. Jordahl, K.: Geopandas: python tools for geographic data (2014). https://github.
com/geopandas/geopandas

20. Kang, J.H., Kim, C.W., Lee, S.Y.: Nurse-perceived patient adverse events and
nursing practice environment. J. Prev. Med. Public Health 47(5), 273 (2014)

21. Leyens, L., Reumann, M., Malats, N., Brand, A.: Use of big data for drug develop-
ment and for public and personal health and care. Genet. Epidemiol. 41(1), 51–60
(2017)

22. Likas, A., Vlassis, N., Verbeek, J.J.: The global k-means clustering algorithm.
Pattern Recogn. 36(2), 451–461 (2003)

23. Madsen, R.E., Kauchak, D., Elkan, C.: Modeling word burstiness using the dirichlet
distribution. In: Proceedings of the 22nd international Conference on Machine
Learning, pp. 545–552 (2005)

24. Moran, P.A.: Notes on continuous stochastic phenomena. Biometrika 37(1/2), 17–
23 (1950)

25. Okoroh, J.S., Uribe, E.F., Weingart, S.: Racial and ethnic disparities in patient
safety. J. Patient Saf. 13(3), 153–161 (2017)
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Abstract. Finding the graphs that are most similar to a query graph in
a large database is a common task with various applications. A widely-
used similarity measure is the graph edit distance, which provides an
intuitive notion of similarity and naturally supports graphs with ver-
tex and edge attributes. Since its computation is NP-hard, techniques
for accelerating similarity search have been studied extensively. How-
ever, index-based approaches for this are almost exclusively designed for
graphs with categorical vertex and edge labels and uniform edit costs.
We propose a filter-verification framework for similarity search, which
supports non-uniform edit costs for graphs with arbitrary attributes. We
employ an expensive lower bound obtained by solving an optimal assign-
ment problem. This filter distance satisfies the triangle inequality, mak-
ing it suitable for acceleration by metric indexing. In subsequent stages,
assignment-based upper bounds are used to avoid further exact distance
computations. Our extensive experimental evaluation shows that a sig-
nificant runtime advantage over both a linear scan and state-of-the-art
methods is achieved.

Keywords: Graphs · Similarity search · Graph edit distance

1 Introduction

Graph-structured data is ubiquitous in many areas such as chemo- and bioinfor-
matics or computer vision. A common task is to search a database containing a
large number of graphs for those that are most similar to a given query graph. Such
queries are submitted directly by the user or occur as subproblems in downstream
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machine learning algorithms. A widely accepted concept of graph similarity is the
graph edit distance, which is the minimum cost for transforming one graph into the
other by a sequence of edit operations. A strength of this measure is that it can ele-
gantly be applied to graphs with vertex and edge attributes by defining the costs
of edit operations adequately. For example, to compare protein graphs where ver-
tices are annotated by the amino acid sequence of the secondary structure elements
they represent, the Levenshtein distance was used [20].

However, the vast majority of efficient methods for similarity search in graph
databases are limited to the special case where graphs have categorical labels and
the costs of edit operations are uniform (either zero or one) [10,13,16,25,26,28–
31]. A fairly recent development in this domain are neural graph embeddings,
e.g. [19], which do not return exact similarity search results. For the pairwise
computation of the graph edit distance, several exact approaches [10,15] and
heuristics such as bipartite graph matching based on optimal vertex assign-
ments [20] have been proposed, many of which support the graph edit distance
in its full generality [15,20]. Several of these yield lower and upper bounds on the
graph edit distance as a byproduct, which have just recently been compared sys-
tematically [4]. However, these lower bounds for the general graph edit distance
are not yet widely used for similarity search in graph databases. For the methods
based on optimal vertex assignments, it has only recently been shown how to
derive a distance termed Branch that is guaranteed to be a lower bound and
proven to satisfy the triangle inequality [2]. Branch has been shown to provide
an excellent trade-off between tightness and running time [4].

We propose a filter-verification framework for similarity search, which sup-
ports the general graph edit distance with arbitrary metric edit costs and is hence
suitable for graphs with any attributes comparable with a distance measure. We
employ Branch as an initial filter accelerated by metric indexing. In the next
stages, we derive upper bounds from the optimal assignment and improve them
via local search to reduce the candidate set further, before performing veri-
fication by exact computation of the graph edit distance. We experimentally
evaluate our approach on graphs with attributes and categorical labels showing
the effectivity of the filter pipeline. The results show that our approach allows
scalable similarity search in attributed graphs with non-uniform edit costs. For
the special case of uniform edit costs, where competing methods are available,
our approach is shown to outperform the state of the art.

2 Related Work

We discuss approaches for similarity search regarding the graph edit distance
and methods for its pairwise exact or approximate computation.

2.1 Similarity Search in Graph Databases

Methods for similarity search in graph databases can be divided into two cate-
gories, depending on whether they compare overlapping or non-overlapping sub-
structures. The methods k-AT [25], CStar [28], Segos [26] and GSim [30] belong
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to the first category. These techniques are inspired by the q-grams used in the
computation of the string edit distance. Either q-grams based on trees [25,26,28]
or paths [30] are used. The methods Pars [29], MLIndex [16], and Inves [13]
partition the graphs into non-overlapping substructures. They essentially obtain
lower bounds based on the observation, that if x non-overlapping substructures
of a database graph are not contained in the query graph, the graph edit dis-
tance is at least x. Pars uses a dynamic partitioning approach to achieve this,
while MLIndex uses a multi-layered index to manage multiple partitions for
each graph. Inves is a method used to verify whether the graph edit distance
of two graphs is below a specified threshold by first trying to generate enough
mismatching non-overlapping substructures. Mixed [31] combines the idea of q-
grams and graph partitioning. These methods only allow uniform edit costs and
are therefore not suitable for graphs with continuous attributes.

The concept of a median graph of a set of graphs regarding the graph edit
distance has been studied extensively, see [3] and references therein. An appli-
cation of median graphs is their use as routing objects in hierarchical index
structures [3,23]. However, we are not aware of any concrete realization using
this concept in a setting comparable to ours.

2.2 Pairwise Computation of the Graph Edit Distance

For computing the exact graph edit distance, both general-purpose algo-
rithms [15] as well as approaches tailored to the verification step in graph
databases have been proposed [9], which are usually based on depth- or breadth-
first search [9,12], or integer linear programming [15]. As the exact computa-
tion of the graph edit distance is not feasible for larger graphs, many heuristics
have been proposed, e.g., [2,4,11,14,18,20]. The properties of the dissimilarities
obtained from these are in general not well investigated. For heuristics based on
optimal vertex assignment [20], which are widely used in practice [24], a variant
called Branch was recently studied thoroughly [2]. Branch is a lower bound
on the graph edit distance, a pseudo-metric on graphs and supports arbitrary
cost models (c.f., Sect. 4.1).

3 Preliminaries

We introduce the required basic concepts of graph theory and discuss database
search with a focus on the metric space.

3.1 Graph Theory

A graph G = (V,E, μ, ν) consists of a set of vertices V (G), a set of edges
E(G) ⊆ V (G) × V (G) between vertices of G, a labeling function for the ver-
tices μ : V (G) → L, and a labeling function for the edges ν : E(G) → L. We
discuss only undirected graphs and denote an edge between u and v by uv. The
set of neighbors of a vertex v ∈ V (G) is denoted by N(v) = {u | uv ∈ E(G)}.
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Table 1. Notation for edit costs.

cv(u, v) Cost of substituting vertex u with vertex v (adjusting the label/attributes)

cv(u, ε) Cost of deleting the isolated vertex u

cv(ε, v) Cost of inserting the isolated vertex v

ce(uv, wx) Cost of substituting edge uv with edge wx (adjusting the label/attributes)

ce(uv, ε) Cost of deleting the edge uv

ce(ε, wx) Cost of inserting the edge wx

The set L can be categorical labels or arbitrary attributes including real-valued
vectors and complex objects such as strings.

A measure commonly used to describe the dissimilarity of two graphs is the
graph edit distance, which is the minimum cost for transforming one graph into
the other using edit operations. An edit operation can be deleting or inserting
an isolated vertex or an edge or relabeling any of the two. An edit path from
graph G1 to G2 is a sequence of edit operations (e1, e2, . . . ) that transforms G1

into G2.

Definition 1 (Graph Edit Distance [20]). Let c be an edit cost function
assigning non-negative costs to edit operations. The graph edit distance between
two graphs G1 and G2 is defined as

dged(G1, G2) = min
{ ∑k

i=1 c(ei) | (e1, . . . , ek) ∈ Υ (G1, G2)
}
,

where Υ (G1, G2) is the set of all possible edit paths from G1 to G2.

The costs of the different edit operations can be chosen as required for the
specific use case, see Table 1 for our notation. If the edit costs are symmetric, non-
negative, and strictly positive for each non-identical edit operation, the graph
edit distance is a metric on graphs, treating graph isomorphism as identity [3].
Note that this holds even if the edit costs do not satisfy the triangle inequality
(and hence are no metric), because the graph edit distance uses the edit path
with minimal cost. In this work, we nonetheless assume that the edit costs respect
the triangle inequality, i.e., we assume that the following inequalities hold1:

cv(u,w) ≤ cv(u, v) + cv(v, w) ∀(u, v, w) ∈ V3 (1)

cv(u, v) ≤ cv(u, ε) + cv(ε, v) ∀(u, v) ∈ V2 (2)

ce(uv, yz) ≤ ce(uv,wx) + ce(wx, yz) ∀(uv,wx, yz) ∈ E3 (3)

ce(uv,wx) ≤ ce(uv, ε) + ce(ε, wx) ∀(uv,wx) ∈ E2 (4)

Equations (1), (3), and (4) can be enforced via pre-processing without chang-
ing the graph edit distance and can hence be assumed to hold w.l.o.g. [5].
1 For simplicity of notation, we have defined the costs on the vertices and edges instead

of their labels. Hence, the sets V and E are all possible vertices and edges, respec-
tively.
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E.g., if we have c(u, v)>c(u,w)+c(w, v), we can simply substitute c(u, v) with
c(u,w)+c(w, v), because a minimum cost edit path cannot contain c(u, v). The
only remaining constraint, Equation (2), is met (to the best of our knowledge)
in all applications where the graph edit distance is used to address real-world
problems [24]. Computing the graph edit distance is NP-hard [29], rendering
exact computation possible for small graphs only. There are several heuristics,
many of which are based on solving an assignment problem.

Definition 2 (Assignment Problem). Let A and B be two sets with |A| =
|B| = n and c : A × B → R a cost function. An assignment between A and B is
a bijection f : A → B. The cost of an assignment f is c(f) =

∑
a∈A c(a, f(a)).

The assignment problem is to find an assignment with minimum cost.

For an assignment instance (A,B, c), we denote the cost of an optimal assignment
by dcoa(A,B). The assignment problem can be solved in cubic running time using
a suitable implementation of the Hungarian method [8].

3.2 Searching in Databases

Databases provide means to store data to be able to retrieve, insert or change it
efficiently. In the context of data analysis, retrieval (search) is usually the crucial
operation on databases, because it will be performed much more often than
updates. We focus on two important types of similarity queries when searching
a database DB, the first of which is the range query for a radius r:

Definition 3 (Range Query). A range query range(q, r), with query object
q and range r, returns all objects in the database with a distance to the query
object not exceeding the range, i.e., range(q, r) = {o ∈ DB | d(o, q) ≤ r}.
The second type of query considered here is the k-nearest neighbor query.

Definition 4 (k-Nearest Neighbor Query). A k-nearest neighbor query
(kNN query) NN(q, k) with query object q and parameter k returns the smallest
set NN(q, k) ⊆ DB, so that |NN(q, k)| ≥ k and

∀o ∈ NN(q, k),∀o′ ∈ DB \ NN(q, k) : d(o, q) < d(o′, q).

In conjunction with range queries, it is preferable to return all the objects with
a distance (including the query object, if part of the database), that does not
exceed the distance to the kth neighbor, which may be more than k objects when
tied. That yields an equivalency of the results of kNN queries and range queries,
i.e., we have range(q, r)=NN(q, |range(q, r)|) and NN(q, k)=range(q, rk), where
rk is the maximum distance in NN(q, k). Provided that the distance used is a
metric, both types of queries can be accelerated using metric indices. In our work,
we use the vantage point tree (vp-tree) [27] as a classical method and the more
recent cover tree [1], because they are available in the ELKI framework [21],
but others could also be used. While the vp-tree is a height balanced binary
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Result

Upper Bounds VerificationLower Bound with Index

BranchConst

Branch BLPF2-V

BSS GED
BranchRUBBranchUBRange Query

Fig. 1. Overview of the filter pipeline. For general metric edit costs the blue modules
are used; yellow modules are more efficient for uniform (edge) edit costs.

tree dividing the data into near and far halves of the dataset based on the
median distance from the vantage point, the cover tree controls the expansion
rate by reducing the maximum radius in each level of the tree, branching out if
necessary into multiple branches. In both trees, queries are performed top-down
by traversing all paths that cannot be dismissed using the routing objects and
employing the triangle inequality.

4 Efficient Filtering for the General Graph Edit Distance

We propose a filter pipeline for range queries regarding the graph edit distance
following a common paradigm for expensive distances, see e.g. [28]. Here, lower
bounds allow to filter out graphs that do not satisfy the query predicate. For
the remaining candidates, upper bounds are evaluated to add them immediately
to the result set without exact distance computation. Finally, in the verification
step, the exact distance is computed for the remaining candidates only. Our
approach starts with the optimal assignment based lower bound Branch accel-
erated by metric indexing. From the same optimal assignment, an upper bound is
derived (BranchUB) and subsequently refined by local search (BranchRUB)
before the remaining candidates are verified. The pipeline is illustrated in Fig. 1,
the individual steps are described in the following.

4.1 Index-Accelerated Lower Bound Filtering

Several lower bounds on the graph edit distance have been proposed or can be
derived from known heuristics, see [4]. One of the most effective lower bounds with
an excellent trade-off between tightness and runtime is referred to as Branch.

Definition 5 (Branch Distance). For two graphs G1 and G2 the branch dis-
tance is defined as dbranch(G1, G2) = dcoa(V (G1)∪ε1, V (G2)∪ε2), where εi denotes
a multiset of ε elements, so that |V (Gi)∪εi| = |V (G1)∪V (G2)| for i ∈ {1, 2}, and

c(u, v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if u = v = ε

cv(u, v) + de(u, v) if u 	= ε and v 	= ε

cv(ε, v) + 1/2 · ∑
n∈N(v) ce(ε, vn) if u = ε and v 	= ε

cv(u, ε) + 1/2 · ∑
n∈N(u) ce(un, ε) if u 	= ε and v = ε

,

with de(u, v) = dc
′

oa(N(u) ∪ εu, N(v) ∪ εv), where c′(w, x) = 1/2 · ce(uw, vx).
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Remark 1. Note that, by using a customized version of the Hungarian algorithm,
Branch can also be implemented in a slightly more efficient way, where only
one dummy vertex ε is added to the vertex sets V (G1) and V (G2) (see [7] for
details). In this paper, we use the classical implementation employed in [2,20],
which corresponds to the characterization provided in Definition 5.

Branch has its origin in one of the most successful heuristics for the graph
edit distance proposed by Riesen and Bunke [20]. However, in contrast to the
original approach, it is guaranteed to underestimate the graph edit distance
by dividing all edge costs by two to avoid that the cost of a single edge edit
operation is counted twice, once for each endpoint [2]. Since an instance of the
assignment problem on the vertices of the two graphs has to be solved, and for
each vertex pair an assignment on their edges, Branch can be computed in
O(n2Δ3 + n3) time for graphs with n vertices and maximum degree Δ. In the
case of uniform edge edit costs, de can be computed by multiset intersection of
edge labels and the running time reduces to O(n3). This special case is referred
to as BranchConst [2]. It has been shown that, if the edit costs are metric,
the branch distance is a pseudo-metric on graphs [2]. This allows to acceler-
ate computing the candidate set w. r. t. this lower bound by employing metric
indexing.

4.2 Upper Bound Filtering and Verification

From the solution of the assignment problem of Branch, an upper bound can
be obtained by deriving the corresponding edit path [20], denoted BranchUB
here. By definition of the graph edit distance, the cost of every edit path is an
upper bound of the graph edit distance. Following [28], we refine the assignment
by local search to gain a tighter upper bound. Starting with the assignment
obtained for the lower bound, the mapping of two vertex pairs is iteratively
swapped, and kept whenever it induces a cheaper edit path, until there is no
improvement. We refer to the refined upper bound obtained from the Branch
assignment as BranchRUB.

Eventually, the graphs that were neither filtered out by the lower bound
nor approved by the upper bounds are verified by exact graph edit distance
computation. We use BSS GED [10] for datasets with discrete labels and uniform
costs and BLPF2-V otherwise. The latter is based on the integer programming
formulation F2 of [15] with the additional constraint that the objective function
does not exceed the threshold to allow for early termination.

4.3 Nearest-Neighbor Queries

For kNN queries it is not possible to separate the different steps of the filter
pipeline as clearly as shown in Fig. 1. We realize kNN queries using the optimal
multi-step k-nearest neighbor search algorithm [22]. The database graphs are
scanned in ascending order according the lower bound Branch regarding the
query graph. For each graph, the exact graph edit distance is computed and the k



330 F. Bause et al.

Table 2. Datasets and their statistics [17]. Some datasets contain graphs with labeled
or attributed vertices and edges, as can be seen in the last two columns.

Name |Graphs| avg |Vertices| avg |Edges| Labels (V/E) Attributes (V/E)

Cuneiform 267 21.27 44.80 +/+ +/+

Fingerprint 2800 5.42 4.42 −/− +/+

Letter-high 2250 4.67 4.50 −/− +/−
Letter-low 2250 4.68 3.13 −/− +/−
MUTAG 188 17.93 19.79 +/+ −/−
PTC FM 349 14.11 14.48 +/+ −/−
QM9 129433 18.03 18.63 −/− +/+

graphs with the smallest exact graph edit distance are maintained. Once we have
found at least k objects with an exact distance smaller than the lower bound of all
remaining objects, the search can be terminated. This is optimal in the sense that
none of the exact distance computations could have been avoided [22]. Accessing
the graphs ordered regarding the Branch lower bound can be achieved näıvely
by sorting all graphs, or by using suitable metric index structures.

5 Experimental Evaluation

In this section, we experimentally address the following research questions:

Q1 What speed-up in range queries can be achieved when using metric indices
compared to a linear scan of the database?

Q2 How effective are the individual lower and upper bounds in our pipeline?
Q3 Can the proposed filter pipeline compete with state-of-the-art methods for

uniform edit costs?
Q4 What speed-up in kNN queries can be achieved when using metric indices?
Q5 Does the proposed filter pipeline scale to a very large dataset?

5.1 Setup

As metric index we chose the vp-tree as a classical method and the cover tree as
a state-of-the-art approach. For both we used the implementation provided by
ELKI [21] with a sample size of 5 for the vp-tree and an expansion rate of 1.2
for the cover tree.

For a comparison in databases containing graphs with categorical labels, we
used MLIndex [16] and GSim [30], since the former is considered state-of-the-art,
while the latter provided much better results in our experiments. For MLIndex
the number of partitions was set to threshold+1 and in GSim all provided filters
were used. We used the implementations provided by the authors. In addition, we
used CStar [28], which follows a filter-verification approach related to ours. For
verification we used BSS GED [10] and BLPF2-V [15] with the Gurobi solver.

We conducted experiments on a wide range of real-world datasets with dif-
ferent characteristics, see Table 2. The costs of inserting, deleting or relabeling
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Fig. 2. Runtime comparison for filtering 100 range queries using Branch with thresh-
olds 1 to 5 and preprocessing time for constructing the index.

a vertex or edge with a categorical label were set to 1, which is equivalent to
the fixed setting in MLIndex, GSim, and CStar. For continuous attributes, the
Euclidean distance was used to define the relabeling cost. For simplicity, we
did not use domain-specific distances. Continuous attributes were normalized
to the range [0, 1] (separately for each dimension), to make distances roughly
comparable between different datasets.

5.2 Results

We report on our findings regarding the above research questions.

Q1: Speed-up of range queries through metric indices. We first investigate how
much of a speed-up can be achieved by using an index structure when filtering
candidates for a range query by a lower bound. We randomly sampled 100 graphs
from the dataset to be queries and then performed lower bound filtering without
an index, using the cover tree, and the vp-tree.

Figure 2 shows the time needed for filtering 100 range queries (each with
thresholds 1 to 5) and additionally the preprocessing time for index construc-
tion. The runtime does not depend on the given threshold for a linear scan, but
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Fig. 3. Average number of initial candidates (dashed) and hits identified in the different
stages of the filter pipeline for each threshold.

increases for the metric indices with the threshold, in particular for the Let-
ter -datasets. It can be seen that, while on most datasets both index methods
provide the same runtime benefit for filtering, the cover tree is much faster in
preprocessing than the vp-tree. The runtime advantage on the Letter -datasets
is quite small for larger thresholds. The runtime of the index structures directly
corresponds to the number of Branch distance computations. Compared to the
cover tree, the vp-tree requires many more distance computations in the prepro-
cessing due to the chosen sample size. In general, the runtime corresponds to
the number of candidates, which we investigate in the following.

Q2: Filter pipeline. In this experiment we investigate how the candidate and
result set are updated during filtering. Figure 3 shows the average number of
candidates for Branch and the number of results after each step for 100 range
queries. When comparing the size of the candidate sets with the results of the
previous experiment, it can be seen, that the runtime for filtering highly depends
on the number of candidates. For some datasets almost all candidates remaining
after the upper bound filtering are not results. This indicates that improvement is
possible with tighter lower bounds. In general, BranchRUB manages to report
almost all results, except in dataset MUTAG.

Q3: Comparison with state-of-the-art methods. Many methods for similarity
search in graph databases limited to uniform edit costs have been proposed. We
compare to MLIndex [16], CStar [28] and GSim [30]. We used BSS GED [10]
for a fast verification in our filter pipeline, as well as in CStar. The implementa-
tions of MLIndex and GSim contain their own verification algorithm. Figure 4
shows the runtime for preprocessing and filtering as well as the total query time
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Fig. 4. Runtime for answering 100 range queries and average number of candidates
remaining after applying all filters for thresholds 1 to 5. Our approaches are shown
with dashed lines and are marked bold in the legend. For MLIndex no verification time
is given, since it did not finish within the time limit of 2 days.

including filtering and verification for 100 range queries. The average number of
candidates remaining after application of all filters in the different methods is
also shown. Only these need to be verified by exact graph edit distance compu-
tation. For Branch only one line is shown, since linear scan, vp-tree and the
cover tree variant apply the same filters and generate the same candidates.

MLIndex produces the largest candidate set, and did not finish the verifi-
cation process in the time limit. It can be seen that, while GSim is quite fast
in preprocessing and filtering, the verification step takes a long time. This is
due to a combination of a slower verification algorithm and a higher number of
candidates that have to be verified. The results indicate that, even when using
BSS GED for verification, the approach would not be competitive with the cover
tree due to the high number of candidates. CStar needs much more time for filter-
ing and cannot filter out as many candidates leading also to a higher verification
time. Interestingly, the time for verification does not increase proportionally to
the number of candidates, which might indicate, that the verification algorithm
needs more time to verify certain difficult graphs.

Q4: Speed-up of kNN queries through metric indices. We investigate how much
of a speed-up can be achieved by using an index structure compared to not
using one, when answering kNN queries using the optimal multi-step k-nearest
neighbor search, cf. Sect. 4.3. We randomly sampled 20 graphs from the dataset
to be queries and then used the cover tree as well as the vp-tree as the underlying
metric index to compare them. Figure 5 shows the time needed for answering 20
kNN queries, each with k ∈ {1, . . . , 5} (excluding preprocessing). Since in the
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Fig. 5. Runtime comparison for answering 20 kNN queries using Branch and k ∈
{1, . . . , 5}.

Fig. 6. Runtime comparison for preprocessing and filtering 100 range queries in the
dataset QM9 using Branch and thresholds 1 to 5.

optimal multi-step k-nearest neighbor search, the candidates have to be verified
during search, before further candidates are explored, the runtime also includes
the time needed for verification. It can be seen that, again both index structures
provide the same runtime benefit. Taking into account the preprocessing time
however, the cover tree has a clear advantage over the vp-tree.

Q5: Similarity search in a large dataset. We investigate the scalability of our
approach on the dataset QM9 with 129 433 graphs with attributed vertices and
edges. The results shown in Fig. 6 confirm the high preprocessing time of the
vp-tree compared to the cover tree. Both index methods achieve a significant
advantage over a linear scan in filtering by reducing the running time by several
orders of magnitude depending on the selectivity of the query.
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6 Conclusions

We have shown that the recently studied lower and upper bounds on the graph
edit distance can be employed to realize scalable graph similarity search in a
filter-verification framework accelerated by metric indexing. Our approach sup-
ports attributed graphs without restrictions of edit costs. For the extensively
studied special case of graphs with discrete labels and uniform edit costs, our
approach was shown experimentally to outperform the state-of-the-art methods.

There are several directions of future work to improve the filter-verification
pipeline further. Our tightest upper bound was obtained via local search using
a straightforward approach. More sophisticated techniques have been proposed
recently [6] and can be incorporated to reduce verification. For the verification
step, tailored methods that benefit from the already obtained assignment or the
upper and lower bound can be developed. A well-known phenomenon of metric
trees is that their effectivity decreases with increasing intrinsic dimensionality
of the data/distance. Therefore, a suitable lower bound should not only be effi-
ciently computed and tight, but ideally also have a low intrinsic dimensional-
ity. Studying this property for the available lower bounds remains future work.
Finally, recent advances in median graph computation [3] suggest to compute
routing objects instead of using database graphs. An experimental comparison
to such orthogonal approaches remains future work.
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Abstract. The inference of minimum spanning arborescences within
a set of objects is a general problem which translates into numerous
application-specific unsupervised learning tasks. We introduce a unified
and generic structure called edit arborescence that relies on edit paths
between data in a collection, as well as the Minimum Edit Arbores-
cence Problem, which asks for an edit arborescence that minimizes
the sum of costs of its inner edit paths. Through the use of suitable cost
functions, this generic framework allows to model a variety of problems.
In particular, we show that by introducing encoding size preserving edit
costs, it can be used as an efficient method for compressing collections
of labeled graphs. Experiments on various graph datasets, with compar-
isons to standard compression tools, show the potential of our method.

Keywords: Edit arborescence · Edit distance · Lossless compression

1 Introduction

The discovery of some underlying structure within a collection of data is the main
goal of unsupervised learning. Among the different kinds of graph structures
available for structure inference, arborescences play an essential role, because
they contain the minimal number of edges required to connect all the entries
of the collection and induce a meaningful hierarchy within the data. For these
reasons, arborescences are widely used in structure inference, in numerous fields
ranging from bioinformatics [12] to computational linguistics [19]. For construct-
ing arborescences, distances have to be computed for data objects within the
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collection. While the computation of distances is trivial for many kinds of simple
data (e. g., vectors in Euclidean space), it is often challenging for more complex
kinds of data such as strings, trees, or graphs. For such data, edit distances —
measuring the distance between two objects o1 and o2 as the cost of modifications
needed to transform o1 into o2 — provide meaningful measures.

In this work, we propose a unified and generic framework for minimum
arborescence computation on collections of structured data for which an edit
distance is available. We introduce the concept of edit arborescence which gener-
alizes the concept of edit path (a sequence of edit operations, or modifications),
and we formalize the Minimum Edit Arborescence Problem (MEA). By
using appropriate edit cost functions over the edit operations, as well as dif-
ferent sets of allowed edit operations, this generic framework allows to tackle
a variety of specific problems, such as event detection in time series [16], mor-
phological forests inference over a language vocabulary [18], or structured data
compression [10].

As a proof of concept, we focus on the latter application, and address the
problem of compressing a collection of labeled graphs. To the best of our knowl-
edge, this problem has not been addressed in the literature. In graph stores,
each graph is encoded individually using space-efficient representations based on
different, mainly lossless compression schemes [3,4,8], but without taking into
account the other graphs in the store. This is also the case for lossy graph com-
pression schemes [22]. All of these compression schemes are beyond the main
focus of this paper, and we refer the reader to the above references.

Contrary to these schemes, our compression method relies heavily on
reference-based compression underpinned by an arborescence connecting the
graphs of the collection. Intuitively, each graph is represented by an edit path
between its parent graph and itself. Each graph can thus be reconstructed recur-
sively up to the root element of the arborescence, which we define as the empty
graph. Similar ideas have been proposed for compressing web graphs seen as a
temporal graphs with edge insertions and deletions [1], or collections of bitvectors
using the Hamming distance [9], recently applied to graph annotations (colors)
[2]. While these approaches can be considered as early examples of using MEA
in compression, our formulation is more general.

We first formalize the concepts of edit distances and arborescences in Sect. 2.
In Sect. 3, we introduce edit arborescences and define MEA. Section 4 deals specif-
ically with graph data and the graph edit distance, and formalizes the Minimum
Graph Edit Arborescence Problem (MGEA). Section 5 provides detailed
explanations on how to make use of the MGEA to address the compression of
a set of labeled graphs. In Sect. 6, we report the results of the experimental
evaluation. Finally, Sect. 7 concludes the paper and points out to future work.

2 Preliminaries

We consider data (sequence, tree, graph) defined by a combinatorial structure
and labels attached to the elements of this structure. Labels may be of any type.
Unlabeled and unstructured data are special cases.
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Edit Distance. Given a space Ω of all data of a fixed type, an edit path is a
sequence of elementary modifications (or edit operations) transforming an object
of Ω into another one. Typical edit operations are the deletion and the insertion
of an element of the structure, and the substitution of an attribute attached to an
element. Given a cost function c ≥ 0 defined on edit operations, the edit distance
dc : Ω × Ω → R≥0 measures the minimal total cost required to transform x ∈ Ω
into y ∈ Ω, up to an equivalence relation: dc(x, y) := minP∈P(x,y) c(P ), with
c(P ) :=

∑
o∈P c(o) the cost of an edit path P , and P(x, y) the set of all edit

paths transforming x into an element of [y] := {z ∈ Ω | y ∼ z}, the equivalence
class of y for an equivalence relation ∼ on Ω. Equality is the equivalence relation
usually considered for strings or sequences (Hamming, Levenshtein or discrete
time warping distances). Isomorphism is used for trees and graphs.

The set Ω equipped with an edit distance dc defines an edit space (Ω, dc).
We assume that dc is metric or pseudometric (if ∼ is not equality). The set Ω
contains a null (or empty) element denoted by 0Ω ∈ Ω. Any other element of
(Ω, dc) can be constructed by insertion operations only from 0Ω .

Arborescences. A directed graph (digraph) is a pair G := (V,E), where V :=
{v0, .., vn} is a set of nodes and E ⊆ V × V is a set of directed edges. Within
such a graph, a spanning arborescence is a rooted, oriented, spanning tree, i. e.,
a set of edges that induces exactly one directed path from a root node r ∈ V
to each other node in V \ {r}. By assuming w. l. o. g. that the root element is
v0 and reminding that all other nodes in an arborescence have a unique parent
node, an arborescence can be represented by a sequence of node indices A such
that, for all i ∈ [1, n], A[i] denotes the index of the unique parent node of node
vi. The set of edges of A is denoted by EA.

3 The Minimum Edit Arborescence Problem

In this section, we introduce and describe the generic Minimum Edit Arbores-
cence Problem (MEA), a versatile problem. An instance of MEA is a finite
dataset X living in an edit space (Ω, dc). MEA asks for a minimum-cost edit
arborescence rooted at the null element.

Given a set X := {x0, x1, ..., xn} ⊂ Ω such that x0 := 0Ω , we define an edit
arborescence as a pair (A, Ψ), where A is a sequence of n indices that defines an
arborescence rooted at the index 0, such that for all i ∈ [1, n], A[i] is the parent-
index of i. Ψ := (P1, ..., Pn) is a sequence of edit paths, such that Pi ∈ P(xA[i], xi)
holds for all i ∈ [1, n], i. e., Pi is an edit path between xi and its parent in A.
A(X) is the set of all edit arborescences on X.

Definition 1 (MEA). Given a finite set X ⊂ Ω and an edit cost function c, the
Minimum Edit Arborescence Problem (MEA) asks for an edit arborescence
(A�, Ψ∗) on X ∪ {0Ω}, which is rooted at the null element 0Ω ∈ Ω and has a
minimum cost c(Ψ�) among all (A, Ψ) ∈ A(X), with c(Ψ) :=

∑
P∈Ψ c(P ).
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By definition, it holds that c(Ψ�) = min(A,Ψ)∈Ac(X)

∑
Pi∈Ψ dc(xA[i], xi), where

Ac(X) is the set of edit arborescences in (Ω, dc), i. e., edit arborescences with
edit paths restricted to minimal-cost edit paths w. r. t. c. This generic definition
can translate into various optimization problems, with different characteristics
in terms of complexity and/or approximability, depending on the edit space.

Exact Solver. Whenever exact edit distances and corresponding edit paths can
be computed, the following procedure produces an optimal solution for MEA:

1. Construct the complete directed weighted graph on the set X∪{0Ω}, denoted
by K(X, dc) := (V K, EK, w), with node set V K := X ∪{0Ω} and edge weights
w(u, v) := dc(u, v) for all (u, v) ∈ EK. Note that any edge entering the root
can be removed.

2. Solve the Minimum Spanning Arborescence Problem (MSA) on
K(X, dc) with 0Ω as root node.

For a connected weighted directed graph G and a root node r in G, the Minimum
Spanning Arborescence Problem (MSA) asks for a spanning arborescence
A� on G, which is rooted in r and has minimum weight w(A�), where w(A) :=∑

(u,v)∈A w(u, v) [13]. MSA can be solved in polynomial time, e. g., in O(|V G|2)
time with Tarjan’s implementation [23] of Edmonds’ algorithm [13]. Hence, the
main difficulty of the problem consists in computing the edge weights in K, i. e.,
the edit distances between elements of X.

Lemma 1. As long as the edit space (Ω, dc) allows for a polynomial time com-
putation of minimum-cost edit paths, the corresponding version of MEA belongs
to the complexity class P.

Proof. By assumption, dc is computed in polynomial time by some algorithm
ALG-DIST that is called O(n2) times with complexity OALG-DIST in order to gener-
ate the complete graph K(X, dc). So, MEA can be solved in O(n2OALG-DIST +
(n + 1)2) time complexity by using Tarjan’s implementation of Edmond’s
algorithm. 	


A Heuristic for Non-polynomial Cases. We adapt the algorithm described
above to cases where the edit distance is not solvable in polynomial time. The
method is based on approximations or heuristics to estimate the edit distance,
and allows the user to choose the desired balance between computation time
and accuracy. Also, the algorithm takes advantage of prior knowledge over the
data (such as relevant candidate couples of elements) which is often available
in practical cases. Given a set X ⊂ Ω, Algorithm 1 computes a low-cost edit
arborescence (A, Ψ) ∈ A(X) based on approximations or heuristics to estimate
the edit distance. It starts by constructing a size-reduced auxiliary digraph K
(lines 1 to 3) that connects 0Ω to each element xi ∈ X, and each xi to k ≤ |X|−1
randomly selected elements of X \ {xi}. If some promising edges are known a
priori (e. g., if X has an implicit internal structure), they are added to K. Then,
Algorithm 1 computes optimal or low-cost edit paths whose costs provide weights
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Algorithm 1. A generic heuristic for MEA.
Require: A finite set X of elements from an edit space (Ω, d) with origin 0Ω , a

parameter k ∈ [0, |X − 1|], two edit distance heuristics ALG-1 and ALG-2.
Ensure: A low-cost edit arborescence (A, Ψ) for the MEA problem.
1: Set x0 := 0Ω and initialize auxiliary graph K(X ∪x0, E

K, w) with EK := {x0}×X.
2: for x ∈ X do Sample k children X̃ ∈ (

X\{x}
k

)
and set EK := EK ∪ ({x} × X̃).

3: if prior information available then Add promising edges to EK.

4: for (xi, xj) ∈ EK do
5: if i = 0 then Analytically compute the edit path Pij .
6: else if identifiers available then Compute edit path Pij induced by identifiers.
7: else Call ALG-1 to compute low-cost edit path Pij .

8: Set w(xi, xj) := c(Pij).

9: Run Edmonds’ algorithm on K to obtain A.
10: if tightening then for i ∈ [1, n] do Call ALG-2 to compute tighter edit path PA[i]i.
11: for i ∈ [1, n] do Set Ψ [i] := PA[i]i.

12: return (A, Ψ)

for the edges of K (lines 4 to 8). For 0Ω ’ out-edges, optimal edit paths can be
computed analytically (insertions only). If identifying attributes are available for
all elements of X (e. g., unique node labels if X is a set of graphs), it is sometimes
possible to compute optimal edit paths from these identifiers. Otherwise, low-cost
edit paths are computed by calling a polynomial edit distance heuristic ALG-1.
Once all edge weights for K have been computed, an optimal arborescence A
on K is constructed by Edmonds’ algorithm (line 9). Optionally, a tighter edit
distance heuristic ALG-2 can be called to shorten the paths in A before returning
the edit arborescence (line 10). The more precise, and thus potentially more
costly heuristic ALG-2 is called only n times.

4 Minimum Graph Edit Arborescence Problem

In the remainder of the paper, we will focus on the specific case of MEA where
the space Ω is a space of labeled graphs.

Graphs. We assume that graphs are finite, simple, undirected, and labeled. How-
ever, all presented techniques can be straightforwardly adapted to directed or
unlabeled graphs. A labeled graph G is a four-tuple G := (V G, EG, �G

V , �G
E), where

V G and EG are sets of nodes and edges, while �G
V : V G → ΣV and �G

E : EG → ΣE

are labeling functions that annotate nodes and edges with labels from alphabets
ΣV and ΣE , respectively. G(ΣV , ΣE), or G for short, denotes the set of all graphs
for fixed alphabets ΣV and ΣE . 0G denotes the empty graph (the null element
of G). Two graphs G,H ∈ G are isomorphic, denoted by G � H, if and only if
there is a bijection between V G and V H that preserves both edges and labels.

Edit Operations and Edit Paths. We consider the following elementary edit
operations, where ε is a dummy node and ε� is a dummy label:
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– Node deletion (nd): (v, ε�), with v ∈ V G isolated.
– Edge deletion (ed): (e, ε�), with e ∈ EG.
– Node relabeling (nr): (v, �) ∈ V G × (ΣV \ {�G

V (v)}).
– Edge relabeling (er): (e, �) ∈ EG × (ΣE \ {�G

E(e)}).
– Node insertion (ni): (ε, �), with � ∈ ΣV .
– Edge insertion (ei): (e, �) ∈ (

(
V G

2

) \ EG) × ΣE .

For each edit path P composed of such operations, there are many equivalent
edit paths with a same edit cost, obtained just by reordering the operations in
P . In particular, as the deletion of a node assumes that its incident edges have
been previously deleted, these operations can be replaced by node-edge deletions
(ned): delete all the edges incident to a node and then delete this node. So we
can distinguish two different types of edge deletions: implied edge deletion (i-ed),
i. e., an edge deletion in a node-edge deletion, and non-implied edge deletion (ni-
ed), i. e., an edge deletion between two nodes that are not deleted by P . The
cost of an edit path P can thus be rewritten as c(P ) =

∑
t∈T

∑
o∈P t ct(o),

where P t is the (possibly empty) set of all edit operations of type t ∈ T , with
T := {ni-ed, i-ed,nd,nr, er,ni, ei}, and ct is an edit cost function for type t.

Remark 1. Any concatenation σni-ed(P ni-ed) 
 σi-ed(P i-ed) 
 . . . 
 σei(P ei) of edit
operations, with σt a permutation on P t, defines an edit path equivalent to P .

Remark 2. c(P ) =
∑

t∈T ct|P t| if ct is a constant for each type of operation t.

Node Maps and Induced Edit Paths. A node map (or error-correcting
bipartite matching) between a graph G and a graph H is a relation π ∈
(V G ∪ {ε}) × (V H ∪ {ε}) such that the following two conditions hold:

– For each node u ∈ V G, there is exactly one node v ∈ V H ∪ {ε} such that
(u, v) ∈ π. We denote this node v by π(u).

– For each node v ∈ V H , there is exactly one node u ∈ V G ∪ {ε} such that
(u, v) ∈ π. We denote this node u by π−1(v).

Let Π(V G, V H) be the set of all node maps. Each node map π ∈ Π(G,H) can
be transformed into an edit path, denoted by P [π] (induced edit path), such that,
for each (u, v) ∈ π, there is a corresponding edit operation (u, �): u is deleted if
v = ε, it is relabeled if (u, v) ∈ V G × V H and �G

V (u) = �H
V (v), or a new node is

inserted if u = ε. Operations on edges are induced by the operations on nodes,
i. e., from the pairs ((u, π(u)), (v, π(v)) with u, v ∈ V G ∪{ε}. For details, we refer
to [6]. What is important here is that any type of edit operation is taken into
account by a node map. In particular, implied and non-implied edge deletions
can be distinguished with a specific cost for each type.

Graph Edit Distance. The cost of an optimal edit path from a graph G to a
graph H ′ � H defines the graph edit distance (GED) from G to H (dc with graph
isomorphism as equivalence relation): GED(G,H) := minP∈P(G,H) c(P ). GED is
hard to compute and approximate, even when restricting to simple special cases
[5,24]. However, many heuristics are able to reach tight upper and/or lower
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Fig. 1. (a) Paths in a non-reconstructible edit arborescence. (b) Composition of node
maps used to construct reconstructible edit arborescences.

bounds. They are based on a reformulation of GED as an Error-Correcting
Graph Matching Problem: GED(G,H) = minπ∈Π(V G,V H) c(P [π]), which
is equivalent to the above definition under mild assumptions on the edit cost
function c. We refer to [6,20] for an overview.

Problem Formulation and Hardness. We can now define MGEA:

Definition 2 (MGEA). The Minimum Graph Edit Arborescence Prob-
lem (MGEA) is a MEA problem with Ω :=G,X := {G1, ..., Gn} and dc := GED.

As the problem of computing GED is NP-hard, Lemma 1 does not apply here.

Theorem 1. MGEA is NP-hard.

The proof is omitted here due to space constraints, we refer the reader to [15]
for a detailed proof, based on a reduction from the Hamiltonian cycle problem.

5 Arborescence-Based Compression

In this section, we show how to leverage MGEA for compressing a set of
labeled graphs. For this, we introduce reconstructible and non-reconstructible
edit arborescences, formulate the Arborescence-Based Compression Prob-
lem (ABC ), and present an encoding for induced edit paths.

Reconstructible Edit Arborescence. When dc := GED, since the definition
of GED is based on graph isomorphism, applying an induced edit path P [πG,H ]
to a graph G yields a graph H ′ � H. When using such edit paths within an
edit arborescence (A, Ψ) ∈ A(X), with X ⊂ G a set of graphs, the configuration
described in Fig. 1(a) occurs. Namely, the edit paths in Ψ may be disjoint due
to the isomorphism relation between the source graphs Gi and target graphs
G′

i. Thus, the arborescence does not allow the reconstruction of any graph that
is not directly connected to the root element. In this sense, only specific edit
arborescences allow to reconstruct all graphs in X up to isomorphism.

Definition 3 (Reconstructability). An edit arborescence (A, Ψ) ∈ A(X) is
reconstructible if and only if each graph Gi ∈ X can be constructed up to iso-
morphism by applying the sequence of edit paths P := (Ps1 , Ps2 , . . . , Pi) to the
empty graph 0G, where (0G, Gs1 , Gs2 , . . . , Gi) is the path from 0G to Gi in A.
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By composition of node maps (Fig. 1(b)), it is easy to show the following property
(proof omitted due to space constraints).

Lemma 2. For any edit arborescence (A, Ψ) on a set of graphs X, there is a
reconstructible edit arborescence (A, Ψ ′) on a set X ′, such that X ′ is isomorphic
to X and it holds that c(Ψ ′) = c(Ψ).

By Definition 3, the set of graphs X can be reconstructed up to graph isomor-
phism based on the encoding of a reconstructible edit arborescence.

Problem Formulation. For compressing a finite set of graphs X ⊂ G, we are
interested in finding a reconstructible edit arborescence (A, Ψ) ∈ A(X) with a
small encoding size |C(A, Ψ)|, where C(·) denotes the encoding (a binary string) for
the code C. Ideally we would like to minimize this size over A(X) and all possible
codes. To encode an edit arborescence, we encode both of its elements, i. e., the
arborescence A defined as a sequence of indices, and the sequence Ψ of edit paths
induced by the node maps. In order to derive a useful expression for the code length
function |C(·)|, the edit path encodings are concatenated. Thus, the encoding size
to optimize is given by |C(A, Ψ)| = |C(MA)| + |C(A)| + ∑

P∈Ψ |C(P )|, where MA
is the overhead for decoding the different parts of C(A, Ψ). In order to optimize
this size , we must define an encoding size preserving cost function which forces
the encoding sizes of edit paths to coincide with their edit cost.

Definition 4 (Encoding Size Preservation). Let C be a code for edit paths.
An edit cost function c is encoding size preserving w. r. t. code C if and only if
there is a constant γ such that |C(P )| = c(P ) + γ holds for any edit path P .
Put differently, an encoding size preserving cost function assigns to each edit
operation the space required in memory to encode the operations with code C.

Assuming that a code C and an encoding size preserving cost function c w. r. t. C
exist, the encoding size for any edit arborescence (A, Ψ) ∈ A(X) can be rewritten
as |C(A, Ψ)| = |C(MA)| + |C(A)| + c(Ψ) + γ|X|. Since the encoding size for A
depends only on the number of nodes, the problem of minimizing |C(A, Ψ)|
amounts to minimizing c(Ψ). Consequently, finding a compact encoding of a set
of graphs X reduces to a MGEA problem as introduced in Sect. 4.

Definition 5 (ABC ). Let X := {G1, . . . , Gn} ⊂ G be a finite set of graphs, C
be a code for edit paths, and c be an encoding size preserving edit cost function
for C. Then, the Arborescence-Based Compression Problem (ABC) asks
for a minimum weight reconstructible edit arborescence (A, Ψ ′) on some set of
graphs X ′ := {G′

1, . . . , G
′
n} such that, for all i ∈ [1, n], G′

i � Gi.

We stress that, thanks to the use of encoding size preserving edit costs, the value
that is optimized by ABC corresponds to the length of the code C(A, Ψ ′) up to a
constant. In other words, solving ABC produces the most compact arborescence-
based representation of X. Given the simple correspondence between recon-
structible edit arborescences and their non-reconstructible counterparts, ABC
reduces to MGEA by restricting to encoding size preserving edit costs. Since
MGEA is NP-hard (Theorem 1), we propose to heuristically compute a low-
cost edit arborescence as detailed below.
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Algorithm 2. ABC encoding of graph collections.
Require: A set of graphs X, a code C, and an edit cost function c.
Ensure: Encoding C(A, Ψ ′) of a reconstructible edit arborescence (A, Ψ ′) on X.
1: Compute (A, Ψ) with Algorithm 1.
2: Initialize list L := [(0G, πid)], where πid is the identity.
3: Initialize encoding C(A, Ψ ′) := C(MA)C(EA).
4: while L �= ∅ do
5: Pop an element (Gi, πGi,G′

i
) from L.

6: for all children Gj of Gi in A do
7: Get π ∈ Π(Gi, Gj) with P [π] = Ψ [j] and initialize node ID v′ := 1.
8: Initialize π′ ∈ Π(G′

i, G
′
j) as node map of insertions and deletions only.

9: for all v ∈ V Gi if π(v) �= ε then Set π′(πGi,G′
i
(v)) := v′ and increment v′.

10: Concatenate C(P [π′]) to C(A, Ψ ′).
11: if Gj is no leaf in A then Append (Gj , π

′ ◦ πGi,G′
i
◦ π−1) to L.

12: return C(A′, Ψ ′)

Heuristic Solver for ABC. Algorithm 2 sketches our strategy to tackle the
ABC problem. Given a set X of graphs, it first uses Algorithm 1, which out-
puts a non-reconstructible edit arborescence (A, Ψ) on X. After initializing the
code, it starts encoding a reconstructible edit arborescence by going through the
arborescence in BFS order (line 4). For each new node Gj with parent node Gi,
a node map π′ from G′

i � Gi to G′
j � Gj is reconstructed (lines 7 to 9), and the

code of its induced edit path is added to the code of the arborescence (line 10).
If Gj is not a leaf, the node map representing the isomorphism between Gj and
G′

j is computed for later use (line 11).

Remark 3 (Star Ratio) In the worst case, we obtain a star S ∈ A(X), which
connects the empty graph 0G to all the graphs in X. This yields the upper
bound |C(A, Ψ)| ≤ |C(S)| on the encoding size of the obtained arborescence.
Since encoding a graph from the empty graph by insertion operations only is
similar to encoding the graph itself, the encoding size for the star is close to the
encoding size for X, for a similar encoding strategy. Consequently, the star ratio
|C(A)|/|C(S)| provides a good indicator for the compression quality.

Remark 4 The encoded structure is designed to allow a straightforward decom-
pression of any graph Gi, which, starting from the empty graph, simply consists
in consecutively applying the edit paths along the path from the root to Gi in A.

A Code for Induced Edit Paths. We show that there is a code C for edit paths
and an edit cost function c such that c is encoding size preserving w. r. t. C. Using
the notations introduced in Sect. 4, we encode an edit path as the concatenated
string C(P [π]) := C(MP )C(P ni-ed)C(P nd)C(P nr)C(P er)C(P ni)C(P ei), where
MP denotes the overhead for decoding each string C(P t). Note that the set
P i-ed is not encoded, since implied edge deletions can be implicitly repre-
sented by node deletions. Similarly, we encode a set of edit operations P t as
C(P t) := C(ot

1)C(ot
2) · · · C(ot

|P t|), with ot
i ∈ P t. Any edit operation o := (a, �) is
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encoded as C(o) := C(a)C(�), with C(a) := ∅ if a = ε, and C(�) := ∅ if � = ε�.
That is, the dummy elements ε and ε� in deletion operations and node insertions
are not encoded. Ultimately, the encoding size for P [π] hence depends on how
the nodes, edges, and their labels are encoded in the codes of the edit operations.

We consider fixed-length codes for nodes, edges, and their labels (other codes
will be studied in future works). For a set X ∈ G, nodes are encoded as integers
on βV bits, edges are encoded as a pairs of integers on 2βV bits, and node or
edge labels are encoded on, respectively, βΣV

and βΣE
bits. Dictionaries can

be used for the labels and encoded in the overhead MA or known a priori. In
order to decode each set of edit operation P t, MP must contain their sizes
|P t|. They are encoded on βP bits for each edit path. We obtain |C(P [π])| =
βP +

∑
t∈T ct|P t|, where cnr := βV + β�V , cnd := βV , cni := βΣV

, cer := cei :=
2βV + βΣE

, ced-ni := 2βV , and ced-i := 0. With these constant costs, the pair
(C, c) defined above is encoding size preserving (Remark 2 and Definition 4)
with constant βP for any node map π, i. e., |C(P [π])| = c(P [π]) + βP . Therefore,
the encoding size for a spanning edit arborescence (A, Ψ) ∈ A(X) reduces to
|C(A, Ψ)| = |C(MA)| + |C(A)| + c(Ψ) + βP |X|, which implies that minimizing
|C(·)| is an ABC problem.

6 Experiments

We performed an empirical evaluation of our compression method in the context
of data archiving. Since no dedicated algorithms for compressing graph collections
exist in this context, we compared it to the generic tar.bz compression, sufficient
to highlight the potential of our method. Other generic compression tools such as
zip or tar.gz yielded worse compression ratios than tar.bz in initial tests.

Datasets. We used eight different datasets (Table 1). The datasets aids and
muta from the IAM Graph Database Repository [21], and acycl, pah, and
mao from GREYC’s Chemistry Dataset1 contain graphs modeling chemical
compounds. We also tested on time-evolving minimum spanning trees (MSTs)
induced by the pairwise correlations of a large-scale U. S. stocks time series
dataset.2 Such MSTs are widely used for detecting critical market events such as
financial crises [11,17]. We constructed three versions of the MSTs with the code
in [17]: stocks-f (edge labels are floating-point stocks correlations), stocks-i
(the correlations are rounded to integers), and stocks-n (no edge label). For all
datasets, graphs were initially stored in GXL format.3

Parameters and Implementation. We tested two versions of our ABC
method (Algorithm 2) — with and without additional tar.bz compression of
the obtained codes. For both versions, the out-degree k of all nodes in K was
varied across {0.1 · |X|, 0.2 · |X|, . . . , 1.0 · |X|}, and we did 5 repetitions for each
value. For the experiments reported in Table 2, we performed 10 repetitions for
1 https://brunl01.users.greyc.fr/CHEMISTRY/index.html.
2 https://www.kaggle.com/borismarjanovic/price-volume-data-for-all-us-stocks-etfs.
3 https://userpages.uni-koblenz.de/∼ist/GXL/index.php.

https://brunl01.users.greyc.fr/CHEMISTRY/index.html
https://www.kaggle.com/borismarjanovic/price-volume-data-for-all-us-stocks-etfs
https://userpages.uni-koblenz.de/~ist/GXL/index.php
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Table 1. Number of graphs |X|, maximum and average number of nodes |V |, as well
as node and edge label alphabet sizes |ΣV | and |ΣE | for all datasets.

Dataset |X| max |V | avg |V | |ΣV | |ΣE | Dataset |X| max |V | avg |V | |ΣV | |ΣE |
acycl 183 11 8.15 3 1 mao 68 27 18.38 3 4

muta 4337 417 30.32 14 3 stocks-n 1600 213 212.99 213 0

aids 1500 95 15.72 ∞ 3 stocks-i 1600 213 212.99 213 100

pah 94 28 20.7 1 1 stocks-f 1600 213 212.99 213 ∞

Fig. 2. Mean compression ratios w. r. t. out-degree k for tar.bz and ABC w/ or w/o
tar.bz. For stocks, the values for k = 0 in the plots correspond to the setting where
the auxiliary graph K only contains temporal edges.

each dataset. For stocks, we also added all temporal edges to K and always used
the node maps induced by the stock identities across time (cf. lines 3 and 6 in
Algorithm 1). On the other datasets, the node maps were computed and refined
using the GED heuristics ALG-1 := BRANCH-UNIFORM [25] and ALG-2 := IPFP
[6]. All algorithms were implemented in C++ using the GEDlibrary GEDLIB
[7] and the MSA library MSArbor [14].4 Tar.bz compressions were performed at
the default compression level (9, i.e. the highest compression). Tests were run on
a Linux system with an Intel Haswell CPU (24 cores, 2.4 GHz each) and 19 GB
of main memory.

Compression Ratio. Figure 2 shows that, for all datasets except pah, ABC
with tar.bz significantly outperformed tar.bz compression alone and led to
smaller compression ratios than ABC w/o tar.bz for all datasets except acycl.

4 https://github.com/lucasgneccoh/gedlib.

https://github.com/lucasgneccoh/gedlib
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Table 2. Mean compression and decompression times (in sec.), and standard deviations,
of ABC with tar.bz for k = 0.4 · |X|, as well as mean depths, star ratios, numbers of
leafs |L| and inner nodes |I| of the computed arborescences.

Dataset |L| |I| Avg. depth Star ratio Compression Decompression

acycl 65 118 19.5 0.37 8 ± 0.6 0.3 ± 0.02

muta 1751 2586 95.4 0.47 16052 ± 2385.0 14.6 ± 1.34

aids 641 859 46 0.63 673 ± 59.0 5.5 ± 0.31

pah 35 59 13.8 0.38 16 ± 1.3 0.3 ± 0.04

mao 23 45 13.3 0.17 13 ± 1.6 0.2 ± 0.02

stocks-n 133 1467 75.9 0.51 1662 ± 31.9 15.0 ± 0.61

stocks-i 153 1446 441.5 0.71 2095 ± 46.8 18.7 ± 0.37

stocks-f 148 1452 426.3 0.71 2166 ± 28.5 18.9 ± 0.43

Using out-degrees k > 0.4 · |X| only marginally improved compression. For
stocks, using only temporal edges (k = 0) led to very good results. Moreover,
stocks-n can be more compressed with ABC than the other stocks datasets,
as cheaper edit paths can be computed for graphs with unlabeled edges.

Arborescence Structure, Star Ratio, and Runtime. Columns 2 to 4 of
Table 2 provide statistics regarding the arborescences computed with k = 0.4·|X|.
They seem to have a good balance between depth and width ( number of leaves vs.
number of internal nodes). The star ratios (column 5) indicate how much space
is gained by using ABC w. r. t. encoding each graph separately with the same
underlying encoding scheme (a star ratio of 1 means no compression). Columns
6 to 9 summarize the ABC compression and decompression times. The most
important observation is that, although ABC is much slower than tar.bz, the
runtimes are still acceptable in application scenarios where a data holder wants
to offer compressed graph datasets for download (compressing the largest dataset
muta took about four to five hours). Indeed, unlike compression, decompression
is fast even on the largest datasets (a couple of seconds). Runtime variations
w. r. t. k are detailed in Fig. 3 for four datasets. As expected, the time required
for computing the arborescences increases linearly with k, and the runtime of
the refinement phase is independent of k. As the refinement algorithm IPFP is
randomized, the runtimes of the refinement phase have a higher variability than
the runtimes of the arborescence phase.
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Fig. 3. Means and standard deviations of runtimes (in sec.) for ABC with tar.bz and
its subroutines, and tar.bz alone. ABC -total includes the final tar.bz step.

7 Conclusions

In this paper, we have proposed the concept of an edit arborescence and have
introduced the Minimum Edit Arborescence Problem (MEA). MEA yields
a generic framework for inferring hierarchies in finite sets of complex data objects
such as graphs or strings, which can be compared via edit distances. We have
shown how to leverage MEA for the lossless compression of collections of labeled
graphs — a task, for which no dedicated algorithms are available to date. Exper-
iments on eight datasets show that our approach ABC clearly outperforms stan-
dard compression tools in terms of compression ratio and that it achieves rea-
sonable compression and decompression times. More precisely, the experiments
showed that (1) on seven out of eight datasets, our ABC method clearly outper-
formed tar.bz compression in terms of compression ratio; (2) compressing with
ABC is computationally expensive but still reasonable in settings where the
compression is carried out by an institutional data holder; (3) decompression is
much faster and only takes a couple of seconds even for the largest test datasets.
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Abstract. An evergrowing amount of readily available data and the
increasing rate at which it can be acquired leads to fast developments in
many fields of intelligent information processing. Often the underlying
data is complex, making it difficult to represent it by vectorial data
structures. This is where graphs offer a versatile alternative for formal
representations. Actually, quite an amount of graph-based methods for
pattern recognition and related fields have been proposed. A considerable
part of these methods rely on graph matching. In our recent work we
propose a novel encoding of specific graph matching information. The
idea of this encoding is to formalize the stable cores of specific classes
by means of graphs (called matching-graphs). In the present paper we
propose to use these matching-graphs to create a vectorial representation
of a given graph. The basic idea is to produce hundreds of matching-
graphs first, and then represent each graph g as a binary vector that
shows the occurrence of each matching-graph in g. In an experimental
evaluation on three data sets we show that this graph embedding is
able to improve the classification accuracy of two reference systems with
statistical significance.

Keywords: Graph matching · Matching-graphs · Graph edit distance

1 Introduction and Related Work

Pattern recognition is a major field of research which aims at solving various
problems like the recognition of facial expressions [1], the temporal sorting of
images [2], or enhancing weakly lighted images [3], to name just a few exam-
ples. The field of pattern recognition can be divided in two main approaches.
Statistical approaches, which rely on feature vectors for data representation and
structural approaches, which use strings, trees, or graphs for the same task. Since
graphs are able to encode more information than merely an ordered list of num-
bers, they offer a compelling alternative to vectorial approaches. Hence, they
are widely used and adopted in various pattern recognition tasks that range
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from predicting the demand of medical services [4], over skeleton based action
recognition [5], to the automatic recognition of handwriting [6]. The main draw-
back of graphs is, however, the computational complexity of basic operations,
which in turn makes graph based algorithms often slower than their statistical
counterparts.

A large amount of graph based methods for pattern recognition have been
proposed from which many rely on graph matching [7]. Graph matching is typi-
cally used for quantifying graph proximity. Graph edit distance [8,9], introduced
about 40 years ago, is recognized as one of the most flexible graph distance
models available. In contrast with many other distance measures (e.g. graph
kernels [10] or graph neural networks [11]), graph edit distance generally offers
more information than merely a dissimilarity score, viz. the information which
subparts of the underlying graphs actually match with each other (known as edit
path).

In a recent paper [12], the authors of the present paper propose to explicitly
exploit the matching information of graph edit distance. This is done by encoding
the matching information derived from graph edit distance into a data structure,
called matching-graph. The main contribution of the present paper is to propose
and research another employment of these matching-graphs. In particular, we use
these matching-graphs to embed graphs into a vector space by means of subgraph
isomorphism. That is, each graph g is represented by a vector of length of the
number of matching-graphs available, where each entry in the vector equals 1 if
the matching-graph occurs in g and 0 otherwise.

The proposed process of creating vector space embedded representations
based on found substructures is similar in spirit to approaches like frequent
substructure based approaches [14], subgraph matching kernels [15] or graphlet
approaches [16]. The common idea is to first generate a set of subgraphs and
treat them as features. In [14] a graph g is represented by a vector that counts
the number of times a certain subgraph occurs in g. The subgraphs that are
used for embedding are derived via FSG algorithm [14]. Related to this in [15] a
Subgraph Matching Kernel (SMKernel) is proposed. This kernel is derived from
the common subgraph isomorphism kernel and counts the number of matchings
between subgraphs of fixed sizes in two graphs. Another related approach uses
graphlets for embedding [16]. Graphlets are small induced subgraphs of fixed size
that contain a given set of nodes including all edges.

The major principle of our approach is similar to that of [14–16]. However,
the main difference of the above mentioned approaches to our proposal lies in the
creation of the subgraphs. We employ graph edit distance to create matching-
graphs as basic substructures. These matching-graphs offer a natural way of
defining significant and large sets of subgraphs that can be readily used for
embedding.

The remainder of this paper is organized as follows. Section 2 makes the
paper self-contained by providing basic definitions and terms used throughout
this paper. Next, in Sect. 3 the general procedure for creating a matching-graph
is explained together with a detailed description of the vector space embedding
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for graphs. Eventually, in Sect. 4, we empirically confirm that our approach is
able to improve the classification accuracy of two reference systems. Finally, in
Sect. 5, we conclude the paper and discuss some ideas for future work.

2 Graphs and Graph Edit Distance – Basic Definitions

2.1 Graph and Subgraph

Let LV and LE be finite or infinite label sets for nodes and edges, respectively.
A graph g is a four-tuple g = (V,E, μ, ν), where

– V is the finite set of nodes,
– E ⊆ V × V is the set of edges,
– μ : V → LV is the node labeling function, and
– ν : E → LE is the edge labeling function.

A part of a graph, called a subgraph, is defined as follows. Let g1 =
(V1, E1, μ1, ν1) and g2 = (V2, E2, μ2, ν2) be graphs. Graph g1 is a subgraph of
g2, denoted by g1 ⊆ g2, if

– V1 ⊆ V2,
– E1 ⊆ E2,
– μ1(u) = μ2(u) for all u ∈ V1, and
– ν1(e) = ν2(e) for all e ∈ E1.

Obviously, a subgraph g1 is obtained from a graph g2 by removing some
nodes and their incident edges, as well as possibly some additional edges from
g2.

Two graphs g1 and g2 are considered isomorphic if there is a matching part for
each node and edge of g1 in g2 (and vice versa). In this regard it is also required
that the labels on the nodes and edges exactly correspond (if applicable).

In close relation to graph isomorphism is subgraph isomorphism. Intuitively
speaking a subgraph isomorphism states whether a graph is contained in another
graph. More formally a graph g1 is subgraph isomorphic to a graph g2 if there
exists a subgraph g ⊆ g2 that is isomorphic to g1. The concept of subgraph
isomorphism is one of the building blocks used in our embedding framework (see
Sect. 3).

2.2 Graph Matching

When graphs are used to formally represent objects or patterns, a measure of
distance or similarity is usually required. Over the years several dissimilarity
measures for graphs have been proposed. Some of the most prominent ones
would be graph kernels [10], spectral methods [17], or graph neural networks [18].

A kernel is a function that implicitly maps data to a feature space, by rep-
resenting it in the form of pairwise comparisons [19]. Intuitively, graph kernels
measure the similarity between pairs of graphs and thus provide an embedding
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in a – typically unknown – feature space. Graphs can also be represented in the
form of their laplacian matrix. The eigenvalues and eigenvectors of these matri-
ces are known to contain information about the branching and clustering of the
nodes and can be used for the definition of various similarity measures [17].
Another emerging graph matching method makes use of deep neural networks.
Some approaches use neural networks to map the graphs into an Euclidean
space [11], while other approaches directly take pairs of graphs as input and
output a similarity score [18].

A further prominent graph matching method, which is actually employed in
the present paper, is graph edit distance [8,9]. One of the main advantages of
graph edit distance is its high degree of flexibility, which makes it applicable to
virtually any kind of graphs.

Given two graphs g1 and g2, the general idea of graph edit distance is to
transform g1 into g2 using some edit operations. A standard set of edit operations
is given by insertions, deletions, and substitutions of both nodes and edges.
Sometimes, in other applications additional operations like merging and splitting
are used. We denote the substitution of two nodes u ∈ V1 and v ∈ V2 by (u → v),
the deletion of node u ∈ V1 by (u → ε), and the insertion of node v ∈ V2 by
(ε → v), where ε refers to the empty node. For edge edit operations we use a
similar notation.

A set {e1, . . . , et} of t edit operations ei that transform a source graph g1

completely into a target graph g2 is called an edit path λ(g1, g2) between g1

and g2. Let Υ (g1, g2) denote the set of all edit paths transforming g1 into g2

while c denotes the cost function measuring the strength c(ei) of edit operation
ei. The graph edit distance between g1 = (V1, E1, μ1, ν1) and g2 = (V2, E2, μ2, ν2)
can now be defined as follows.

dλmin(g1, g2) = min
λ∈Υ (g1,g2)

∑

ei∈λ

c(ei) , (1)

Optimal algorithms for computing the edit distance are computationally
demanding, as they rely on combinatorial search procedures. In order to coun-
teract this problem we use the often used approximation algorithm BP [20]. The
approximated graph edit distance between g1 and g2 computed by algorithm BP
is termed dBP(g1, g2) from now on.

3 Graph Embedding by Means of Matching-Graphs

The general idea of the proposed approach is to embed a given graph into a
vector space by means of matching-graphs. These matching-graphs are built
by extracting information on the matching of pairs of graphs and by formal-
izing and encoding this information in a data structure. Matching-graphs can
be interpreted as denoised core structures of their respective class. The idea of
matching-graphs emerged in [12] where this data structure is employed for the
first time for improving the overall quality of graph edit distance. In the next
subsection we first formalize the graph embedding, and in Subsection 3.2 we
then describe in detail the creation of the matching-graphs.
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3.1 Graph Embedding Using Matching-Graphs

Let g be an arbitrary graph stemming from a given set of graphs. Using a set
M = {m1, . . . , mN} of matching-graphs, we embed g as follows

ϕ(g) = (sub(m1, g), . . . , sub(mN , g)),

where

sub(mi, g) =

{
1 if mi ⊆ g

0 else

That is, for our embedding we employ subgraph isomorphism that provides
us with a binary similarity measure which is 1 or 0 for subgraph-isomorphic
and non-subgraph-isomorphic graphs, respectively. There are various algorithms
available that can be applied to the subgraph isomorphism problem. Namely
various tree search based algorithms [21,22], as well as decision tree based tech-
niques [23]. In the present paper we employ the VF2 algorithm which makes use
of efficient heuristics to speed up the search [22].

Obviously, our graph embedding produces binary vectors with a dimension
that is equal to the number of matching-graphs actually available. This specific
graph embedding is similar in spirit to the frequent substructure approaches [14],
the subgraph matching kernel [15], or graphlet kernel [16] reviewed in the intro-
duction of the present paper. However, the special aspect and novelty of our
approach is the employment of matching-graphs for embedding.

3.2 Creating Matching-Graphs

In order to produce the N matching-graphs for embedding, we pursue the fol-
lowing procedure. We consider a pair of graphs gi, gj for which the graph edit
distance is computed. Resulting from this a (suboptimal) edit path λ(gi, gj)
can be obtained. For each edit path λ(gi, gj), two matching-graphs mgi×gj

and
mgj×gi

are now built (one for the source graph gi and one for the target graph
gj). These matching-graphs contain all nodes of gi and gj that are substituted
according to edit path λ(gi, gj). All nodes that are deleted in gi or inserted in
gj are not considered in either of the two matching-graphs.

We observe isolated nodes in some experiments. Graph edit distance can
handle isolated nodes. However we still decide to remove isolated nodes from
our matching-graphs because we aim at building as small as possible cores of
the graphs that are actually connected. Note that we also remove incident edges
of nodes that are not included in the resulting matching-graphs.

An edge u1, u2 ∈ Ei that connects two substituted nodes u1 → v1 and
u2 → v2, is added to the matching-graph mgi×gj

, if, and only if, there is an edge
(v1, v2) ∈ Ej available.

Using the described procedure for creating a matching-graph out of two input
graphs, we now employ a simplified version of an iterative algorithm [13] that
builds a set of matching-graphs. The algorithm takes as input k sets of graphs
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Gω1 , . . . , Gωk
with graphs from k different classes ω1, . . . , ωk as well as the num-

ber of matching-graphs kept from one iteration to another (see Algorithm 1).

Algorithm 1: Algorithm for iterative matching-graph creation.
input : sets of graphs from k different classes G = {Gω1 , . . . , Gωk

}, the maximum number
n of matching-graphs to keep in each iteration

output: sets of matching-graphs for each of the k different classes M = {Mω1 , . . . , Mωk
}

1 Initialize M as the empty set: M = {}
2 foreach set of graphs G ∈ G do
3 Initialize M as the empty set: M = {}
4 foreach pair of graphs gi, gj ∈ G × G with j > i do
5 M = M ∪ {mgj×gi

, mgi×gj
}

6 end
7 do
8 M ′ = a subset of n random elements of M

9 foreach pair of graphs mi, mj ∈ M ′ × M ′ with j > i do
10 M = M ∪ {mmj×mi

, mmi×mj
}

11 end

12 while M has changed in the last iteration
13 M = M ∪ M

14 end

The algorithm iterates over all k sets (classes) of graphs from G (main loop of
Algorithm 1 from line 2 to line 14). For each set of graphs G and for all possible
pairs of graphs gi, gj stemming from the current set G, the initial set of matching-
graphs M is produced first (line 3 to 6). Eventually, we aim at iteratively building
matching-graphs out of pairs of existing matching-graphs. The motivation for
this procedure is to further reduce the size of the matching-graphs and to find
small core-structures that are often available in the corresponding graphs. Due
to computational limitations, we have to randomly select a subset of size n from
the current matching-graphs in M (line 8)1. Based on this selection, the next
generation of matching-graphs is built. This process is continued until no more
changes occur in set M . Finally, set M – actually used for graph embedding
– is compiled as the union of all matching-graphs individually produced for all
available classes.

The dimension of the created vectors directly depends on the number of
matching-graphs. Hence, our method might result in feature vectors that are
initially very large. In order to reduce potential redundancies and select informa-
tive matching-graphs, we apply a recursive feature elimination based on feature
weights of random forests on our graph embeddings [24].

1 Qualitative results of our research show, that the finally created matching-graphs
do not differ substantially regardless the initial random set of graphs. Hence, the
process of creating matching-graphs is not executed in multiple iterations.
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4 Experimental Evaluation

4.1 Experimental Setup

From an experimental point of view we aim at answering the following question.
Can the created feature vectors (based on our novel matching-graphs) be used
to improve the classification accuracy of existing procedures where the graph
matching distances are directly used as a basis for classification? In order to
answer this question, we compare our embedding with two reference systems in
a classification experiment.

The first reference system is a k-nearest-neighbor classifier (k-NN) that
directly operates on dBP (denoted as k-NN(dBP)). The second reference system
is a Support Vector Machine (denoted as SVM(−dBP)) that exclusively operates
on a similarity kernel κ(gi, gj) = −dBP(gi, gj) [25]. For classifying the embedded
graphs, we also employ an SVM that operates on the embedding vectors (using
standard kernel functions for feature vectors). We denote our novel approach as
SVMvec.

We chose the above mentioned classifiers as a baseline, because our goal is to
leverage the power of graph edit distance to build a novel graph representation.
That is, we decide to compare our novel method with these classifiers that are
often used in conjunction with graph edit distance.

The proposed approach is evaluated on three different data sets represent-
ing molecules. The first two sets stem from the IAM graph repositoy [26]2

(AIDS and Mutagenicity) and the third originates from the National Cancer
Institute [27]3(NCI1).

Each data set consists of two classes. The AIDS data set consists of two classes
that represent molecules with activity against HIV or not. Mutagenicity consists
of molecules with or without the mutagen property, whereas the NCI1 data set
consists of chemical compounds that contain activity against non-small cell lung
cancer or not. For all data sets the nodes contain a discrete label (symbol of the
atom) whereas the edges have no labels.

For the experimental evaluation each data set is split in to three predefined
random disjoint sets for training, validation, and testing. Details about the size
of the individual splits can be found in Table 1.

4.2 Validation of Metaparameters

For the BP algorithm that approximates the graph edit distance the following
parameters are commonly optimized. The costs for node and edge deletions,
as well as a weighting parameter α ∈ [0, 1] that is used to trade-off the relative
importance of node and edge costs. However, for the sake of simplicity we employ
unit cost of 1.0 for both deletions and insertions of both nodes and edges and
optimize the weighting parameter α only.

2 www.iam.unibe.ch/fki/databases/iam-graph-database.
3 https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets.

www.iam.unibe.ch/fki/databases/iam-graph-database
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
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Table 1. We show the total number of graphs for each data set as well as the corre-
sponding number of graphs in the training, validation, and test sets.

Data set Total Training Validation Test

AIDS 2,000 250 250 1,500
Mutagenicity 4,337 1,500 500 2,337
NCI1 4,110 2,465 822 823

For the creation of the matching-graphs – actually also dependant on graph
edit distance – the same cost parameters are employed. For the iterative
matching-graph creation process (Algorithm 1) we set the number of matching-
graphs considered for the next iteration to n = 200 for all data sets. The stop
criterion of the iterative process checks whether or not the last iteration resulted
in a change of the underlying set M . Hence, the final number of matching-graphs
to be employed for graph embedding is self-controlled by the algorithm.

As discussed in Sect. 3.1 the dimension of the created vectors initially refers
to the number of matching-graphs. As our method might generate thousands
of matching-graphs, the dimension of the resulting vectors can be very large.
Hence, we apply the feature selection process as discussed in Sect. 3.2.

In Fig. 1 we can see the cross validation accuracy as a function of the number
of features after each step of the recursive feature elimination process. It is clearly
visible that if the dimension of the vectors becomes too small, the validation
accuracy drops by a large margin. However, before this significant drop the
accuracy remains relatively stable. In Table 2 we compare the number of selected
features and the total amount of available features for all data sets. On AIDS
and Mutagenicity about 4% of the originally available features are selected, while
on NC1 about 13% of the features are finally used.

Table 2. The amount of features created for each data set and the final amount used
after feature selection.

AIDS Mutagenicity NCI1

Total features 4,955 86,752 4,544
Selected features 199 4,139 618

For the optimization of the SVM that operates on our embedded graphs
we evaluate three different standard kernels for feature vectors, viz. the Radial
Basis Function (RBF), Linear kernel, and a Sigmoid kernel [28]. For all functions
we optimize parameter C, which is the trade off between margin maximization
and error minimization. In case of RBF and Sigmoid kernel also parameter γ
is optimized (all optimizations are conducted by means of an exhaustive grid
search).
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(a) AIDS (b) Mutagenicity

(c) NCI1

Fig. 1. Cross validation accuracy as a function of the number of features during the
recursive feature elimination process. The global optimum is indicated with a small
circle.

4.3 Test Results and Discussion

In Table 3 we show the classification accuracies of both reference systems, viz. k-
NN(dBP) and SVM(−dBP), as well as the results of our novel approach SVMvec

on all data sets.
We observe that our approach achieves better classification results compared

to both baseline classifiers on all data sets. On the Mutagenicity data set our
approach outperforms both reference systems with statistical significance. On
AIDS and NCI1 we achieve a statistically significant improvement compared with
the first and second reference system, respectively. The statistical significance is
based on a Z-test using a significance level of α = 0.05.

A more detailed analysis of the validation and test results on the Mutagenic-
ity data set brings to light the following interesting result (see Table 4). While
for both reference systems the validation and test accuracies are more or less
stable, we observe a massive overfitting of our novel approach. That is, the clas-
sification accuracy drops from 88.2% on the validation set to 76.3% on the test
set. Note that this effect is visible on this specific data set only and needs further
investigations in future work.
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Table 3. Classification accuracies of two reference systems (a k-NN classifier that oper-
ates on the original edit distances (k-NN(dBP)) and an SVM that uses the same edit
distances as kernel values (SVM(−dBP))) and our proposed system (an SVM using the
embedded graphs (SVMvec)). Symbol ◦/◦ indicates a statistically significant improve-
ment over the first and second system, respectively. We are using a Z-test at significance
level α = 0.05.

Reference Systems Ours
Data Set k-NN(dBP) SVM(−dBP) SVMvec

AIDS 98.6 99.4 99.6 ◦/-
Mutagenicity 72.4 69.1 76.3 ◦/◦
NCI1 74.4 68.6 76.7 -/◦

Table 4. The difference of validation and test accuracies using the different classifiers
on the Mutagenicity data set. The effect of overfitting of our novel system is clearly
observable.

Reference Systems Ours
k-NN(dBP) SVM(−dBP) SVMvec

Data Set va te va te va te

Mutagenicity 74.8 72.4 69.8 69.1 88.2 76.3

5 Conclusions and Future Work

In the present paper we propose to use matching-graphs – small, pre-computed
core structures extracted from a training set – to build vector representations
of graphs. The matching-graphs are based on the edit path between pairs of
graphs. In particular, the resulting matching-graphs contain only nodes that are
actually substituted via graph edit distance. First, we build a relatively large set
of N small matching-graphs by means of an iterative procedure. Eventually, we
embed our graphs in an N -dimensional vector space such that the i-th dimension
corresponds to the i-th matching-graph. More formally, each entry of the result-
ing vector represents whether or not the corresponding matching-graph occurs
as a subgraph in the graph to be embedded. Finally, we reduce the dimension
of the created vectors by means of a standard feature selection. Hence we follow
the paradigm of overproducing and selecting features.

By means of an experimental evaluation on three graph data sets, we empiri-
cally confirm that our novel approach is able to statistically significantly improve
the classification accuracy when compared to classifiers that directly operate on
the graphs.

For future work we see several rewarding paths to be pursued. First, we aim
at evaluating the procedure on additional data sets and in this regard apply it
also on data sets with continuous labels. Furthermore it could be interesting to
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employ the vectorized representation in conjunction with other classifiers and
compare our approach with other subgraph or graphlet based kernels.
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Abstract. The unordered tree edit distance is a natural metric to com-
pute distances between trees without intrinsic child order, such as repre-
sentations of chemical molecules. While the unordered tree edit distance
is MAX SNP-hard in principle, it is feasible for small cases, e.g. via an A*
algorithm. Unfortunately, current heuristics for the A* algorithm assume
unit costs for deletions, insertions, and replacements, which limits our
ability to inject domain knowledge. In this paper, we present three novel
heuristics for the A* algorithm that work with custom cost functions.
In experiments on two chemical data sets, we show that custom costs
make the A* computation faster and improve the error of a 5-nearest
neighbor regressor, predicting chemical properties. We also show that,
on these data, polynomial edit distances can achieve similar results as
the unordered tree edit distance.

Keywords: Unordered tree edit distance · A* algorithm · Tree edit
distance · Chemistry

1 Introduction

Tree structures occur whenever data follows a hierarchy or a branching pat-
tern, like in chemical molecules [6,10], in RNA secondary structures [11], or in
computer programs [9]. To perform similarity search on such data, we require
a measure of distance over trees. A popular choice is the tree edit distance,
which is defined as the cost of the cheapest sequence of deletions, insertions,
and relabelings that transforms one tree to another [3,14,16]. Unfortunately,
the edit distance becomes MAX SNP-hard for unordered trees, like tree repre-
sentations of chemical molecules [15]. Still, for smaller trees, we can compute
the unordered tree edit distance (UTED) exactly using strategies like A* algo-
rithms [7,13]. Roughly speaking, an A* algorithm starts with an empty edit
sequence and then successively extends the edit distance such that a heuristic
lower bound for the cost of the edit sequence remains as low as possible. The
tighter our lower bound h, the more we can prune the search and the faster
the A* algorithm becomes. Horesh et al. have proposed a heuristic based on the
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histogram of node degrees [7] and Yoshino et al. have improved upon this heuris-
tic by also considering label histograms and by re-using intermediate values via
dynamic programming [13]. However, both approaches assume unit costs, i.e.
that deletions, insertions, and relabelings all have a cost of 1, irrespective of the
content that gets deleted, inserted, or relabeled. This is unfortunate because, in
many domains, we have prior knowledge that suggests different costs or we may
wish to learn costs from data [9]. Accordingly, most tree edit distance algorithms
are general enough to support custom deletion, insertion, and replacement costs,
as long as they conform to metric constraints [3,14,16].

In this paper, we develop three novel heuristics for the A* algorithm which all
support custom costs. The three heuristics have linear, quadratic, and cubic com-
plexity, respectively, where the slower heuristics provide tighter lower bounds.
Based on these novel heuristics, we investigate three research questions:

RQ1: Which of the three heuristics is the fastest? And how do they compare
against the state-of-the-art by Yoshino et al. [13]?

RQ2: Do custom edit costs actually contribute to similarity search?
RQ3: How does UTED compare to polynomial edit distances in similarity

search?

We investigate these research questions on two example data sets of chem-
ical molecules, both represented as unordered trees. To answer RQ2 and RQ3,
we consider a regression task where we try to predict the chemical properties
of a molecule (boiling point and stability, respectively) via a nearest-neighbor
regression. We begin our paper with more background and related work before
we describe our proposed A* algorithm, present our experiments, and conclude.

2 Background and Related Work

Let Σ be an arbitrary set which we call alphabet. Then, we define a tree over Σ as
an expression of the form x̂ = x(ŷ1, . . . , ŷK), where x ∈ Σ and where ŷ1, . . . , ŷK
is a list of trees over Σ, which we call the children of x̂. If K = 0, we call x() a
leaf. We denote the set of all trees over Σ as T (Σ).

In this paper, we are concerned with similarity search on trees. In the liter-
ature, there are three general strategies to compute similarities on trees. First,
we can construct a feature mapping φ : T (Σ) → R

n, which maps an input tree
to a feature vector, and then compute a (dis-)similarity between features, e.g.
via d(x̂, ŷ) = ‖φ(x̂) − φ(ŷ)‖. For example, we can represent trees by pq-grams
[2], by counts of typical tree patterns [5], or by training a neural network [6,8].
The second strategy are tree kernels k, i.e. functions that directly compute inner
products k(x̂, ŷ) = φ(x̂)T · φ(ŷ) without the need to explicitly compute φ [1,5].

In this paper, we focus on a third option, namely tree edit distances [3]. Let
Σ be an alphabet with − /∈ Σ. Roughly speaking, a tree edit distance d(x̂, ŷ)
between two trees x̂ and ŷ from T (Σ) is the cost of the cheapest sequence
of deletions, insertions, and relabelings of nodes in x̂ such that we obtain ŷ
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Fig. 1. An illustration of mappings according to the unordered tree edit distance [15]
(top), the constrained unordered tree edit distance [14] (center), and the ordered tree
edit distance [16] (bottom) between the same two trees. The distances assume unit
costs. Numbers in superscript show the depth first order.

[3,14,16]. More precisely, let x1, . . . , xm be the nodes of x̂1 and y1, . . . , yn be
the nodes of ŷ in depth-first-search order. Then, we define a mapping between
x̂ and ŷ as a set of tuples M ⊂ {0, 1, . . . ,m} × {0, 1, . . . , n} such that each
i ∈ {1, . . . , m} occurs exactly once on the left and each j ∈ {1, . . . , n} occurs
exactly once on the right. Figure 1 illustrates three example mappings between
the trees a(b(c, d), e) (left) and a(e, d, c) (right), namely M1, M2, and M3 (center
left). Each mapping M can be translated into a sequence of edits by deleting all
nodes xi where (i, 0) ∈ M , by replacing nodes xi with yj where (i, j) ∈ M and
xi �= yj , and by inserting all nodes yj where (0, j) ∈ M . We denote the set of
all mappings between x̂ and ŷ as M(x̂, ŷ). Next, we define a cost function as a
metric c : (Σ ∪ {−}) × (Σ ∪ {−}) → R, and we define the cost of a mapping
M as c(M) =

∑
(i,j)∈M c(xi, yj) where x0 = y0 = −. A typical cost function is

c1(x, y) = 1 if x �= y and c1(x, y) = 0 if x = y, which we call unit costs. Finally,
we define the tree edit distance dc : T (Σ)×T (Σ) → R according to cost function
c as the minimum dc(x̂, ŷ) = minM∈M(x̂,ŷ) c(M).

We obtain different edit distances depending on the additional restrictions we
apply on the set of mappings M(x̂, ŷ). The unordered tree edit distance (UTED)
requires that mappings respect the ancestral ordering, i.e. if (i, j) ∈ M , then
descendants of i can only be mapped to descendants of j [3]. A cheapest example
mapping according to unit costs is M1 (Fig. 1, top). The constrained unordered
tree edit distance (CUTED) [14] additionally requires that a deletion/insertion
of a node implies either deleting/inserting all of its siblings or all of its children
but one. This forbids M1 and M3, where b is deleted but both its sibling and
more than one child are maintained. M2 is a cheapest mapping according to
CUTED with unit costs. The ordered tree edit distance (TED) [16] requires that
the ancestral ordering and the depth-first ordering is maintained. Accordingly,
neither M1 nor M2 are permitted because they swap the order of c and d. M3is a
cheapest mapping according to TED with unit costs. Note that UTED is MAX-
SNP hard. However, CUTED and TED are both polynomial [14,16] via dynamic
programming and we consider them as baselines in our experiments.

1 Note that we use ‘node’ and ‘label’ interchangeably in this paper. To disambiguate
between two nodes with the same label, we use the index.
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3 Method

In this section, we explain our proposed A* algorithm for the unordered tree
edit distance (UTED). We begin with the general scheme, which we adapt from
Yoshino et al. [13], and then introduce three heuristics to plug into the A*
algorithm.

Algorithm 1. The A* algorithm to compute the unordered tree edit distance
dUTED
c (x̂, ŷ) between two trees x̂ and ŷ, depending on a cost function c and a

heuristic h.
.

1: function astar uted(trees x̂ and ŷ, cost function c, heuristic h)
2: Initialize a priority queue Q with the partial mapping M = {(1, 1)}
3: and value c(x1, y1) + h({2, . . . ,m}, {2, . . . , n}).
4: while Q is not empty do
5: Poll partial mapping M with lowest value f from Q.
6: i ← min{1, . . . ,m + 1} \ IM .
7: if i = m + 1 then
8: return c(M ∪ {(0, j)|1 ≤ j ≤ n, j /∈ JM}).
9: end if

10: Retrieve (k, l) ∈ M with largest k such that xk is ancestor of xi and l > 0.
11: hp ← h

({1, . . . ,m} \ (Xk ∪ IM ), {1, . . . ,m} \ (Yl ∪ JM )
)
.

12: M0 ← M ∪ {(i, 0)}
13: h0 ← h

(Xk \ IM0 ,Yl \ JM0

)
+ hp.

14: for j ∈ Yl \ JM do
15: Let y′

0, . . . , y
′
t be the path from yl to yj in ŷ with y′

0 = yl and y′
t = yj .

16: Mj ← M ∪ {(i, j), (0, y′
1), . . . , (0, y

′
t−1)}.

17: hj ← h
(Xi \ IMj ,Yj \ JMj

)
+ h

(Xk \ (Xi ∪ IMj ),Yl \ (Yj ∪ JMj )
)

+ hp.
18: end for
19: Put Mj with value c(Mj) + hj onto Q for all j ∈ {0} ∪ (Yl \ JM ).
20: end while
21: end function

A* Algorithm: We first introduce a few auxiliary concepts that we require for
the A* algorithm. First, let M be some subset of {0, . . . , m} × {0, . . . , n}. Then,
we denote with IM the set {i > 0|∃j : (i, j) ∈ M} and with JM the set {j >
0|∃i : (i, j) ∈ M}, i.e. the set of left-hand-side and right-hand-side indices of M .
Next, let x̂ and ŷ be trees with nodes x1, . . . , xm and y1, . . . , yn, respectively.
Then, we define Xi and Yj as the index sets of all descendants of xi and yj ,
respectively. Finally, let c be a cost function. Then, we define a heuristic as a
function h : P({1, . . . , m})×P({1, . . . , n}) → R, such that for any I ⊆ {1, . . . , m}
and J ⊆ {1, . . . , n} it holds

h(I, J) ≤ min
M∈MUTED(x̂,ŷ)

∑

(i,j)∈M :i∈I,j∈J

c(xi, yj). (1)
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Algorithm 1 shows the pseudocode for the A* algorithm. We initialize a par-
tial mapping M = {(1, 1)} which maps the root of x̂ to the root of ŷ. If this is
undesired, all input trees can be augmented with a placeholder root node. Next,
we initialize a priority queue Q with M and its lower bound. Now, we enter the
main loop. In each step, we consider the current partial mapping M with the
lowest lower bound f (line 5). If IM already covers all nodes in x̂, we complete
M by inserting all remaining nodes of ŷ and return the cost of the resulting map-
ping (lines 7–9)2. Otherwise, we extend M by mapping the smallest non-mapped
index i either to zero (lines 12–13), or to j for some available node yj from ŷ
(lines 14–18). In the latter case, we need to maintain the ancestral ordering of
the tree ŷ. Accordingly, we first retrieve the lowest ancestor xk of xi such that
(k, l) ∈ M with l > 0 and only permit i to be mapped to descendants Yl. Note
that a (k, l) ∈ M with l > 0 must exist because we initialized M with {(1, 1)}.
Further, if we map i to a non-direct descendant of yl, we make sure to insert all
nodes on the ancestral path y′

0, . . . , y
′
t, first. We generate lower bounds hj for all

extensions Mj and put them back onto the priority queue (line 19).
Note that the space complexity of this algorithm can be polynomially limited

by representing the partial mappings in a tree structure. However, the worst-
case time complexity remains exponential because the algorithm may need to
explore combinatorially many possible mappings. Generally, though, the tighter
the lower bound provided by h, the fewer partial mappings need to be explored
before we find a complete mapping. To further cut down the time complexity,
we tabulate the lower bounds hp for the ancestor mappings (k, l) (line 11), as
recommended by Yoshino et al. [13].

Heuristics: The final ingredient we need is the actual heuristic h. We define
three heuristics in increasing relaxation and decreasing time complexity. First,
h3(I, J) = minM⊆M(I,J)

∑
(i,j)∈M c(xi, yj), where M(I, J) denotes the set of

all mappings between I and J , irrespective of ancestral ordering. Accord-
ingly, Inequality 1 is trivially fulfilled because any mapping that respects ances-
tral ordering is also in M(I, J). Importantly, this relaxation can be solved in
O((m + n)3) via the Hungarian algorithm [4]. While polynomial, this appears
rather expensive for a heuristic. Therefore, we also consider further relaxations.
Without loss of generality, let |I| ≥ |J |, otherwise exchange the roles of x̂, ŷ, I
and J . Then, we define

h2(I, J) = min
I′⊆I:|I′|=|I|−|J|

( ∑

i∈I′
c(xi,−)

)
+

( ∑

i∈I\I′
min
j∈J

c(xi, yj)
)
. (2)

Note that this is a lower bound for h3(I, J) because we expand the class of
permitted mappings M to one-to-many mappings, which is a proper superset of
M(I, J). Further, h2 can be solved in O(m · n) because we can evaluate ci :=
minj∈J c(xi, xj) for all i in |I| · |J | steps and we can solve the outer minimization
by finding the |I| − |J | smallest terms according to c(xi,−) − ci and using those
2 Strictly speaking, this is only valid if the lower bound f is exact for insertions. This

is the case for all heuristics considered in this paper.
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as I ′, which is possible in O(|I|). In case even O(m ·n) is too expensive, we relax
further to h1(I, J) = minI′⊆I:|I′|=|I|−|J|

∑
i∈I′ c(xi,−). This is obviously a lower

bound for h2 and can be solved in O(max{m,n}).

4 Experiments

We evaluate our three research questions on two data sets from Chemistry,
namely the Alkanes data set of 150 alkane molecules by Micheli et al. [6] and
the hundred smallest molecules from the ZINC molecule data set of Kusner et
al. [8]. In the former case, the molecules are directly represented as trees (with
8.87 nodes on average) with hydrogen counts as node labels. In the latter case,
we use the syntax tree of the molecule’s SMILES representation (with 13.82
nodes on average) [12], where nodes are labeled with syntactic blocks. Note that
this is a lossy representation because we cut aromatic rings to obtain trees.

Regarding RQ1, we compute all pairwise UTED values using the three heuris-
tics h1, h2, and h3, both with unit costs and with custom costs. As custom cost
function c, we use the difference in hydrogen count between two carbon atoms
for the alkanes data set. For the ZINC data set, we use the difference in electron
count. For further reference, we also compare to the heuristic of Yoshino et al.
[13] for unit costs. We execute all computations in Python on a consumer desk-
top PC with Intel core i9-10900 CPU and 32 GB RAM, and measure time using
Python’s time function. All experimental code is available at https://gitlab.
com/bpaassen/uted.

Table 1. The average runtime in milliseconds (top) and the number of partial mappings
searched (bottom) per distance computation for each heuristic.

Data set Unit Custom

h1 h2 h3 hyoshino h1 h2 h3

Runtime Alkanes 8.70 12.15 10.72 9.52 7.34 8.21 9.92

ZINC 549.38 277.15 192.97 266.66 130.62 75.53 68.12

Search size Alkanes 376 348 260 279 318 302 246

ZINC 24586 9164 4158 6781 6643 2655 1379

Table 1 shows the average runtime in milliseconds (top) for each heuristic
on both data sets. On alkanes, h1 is fastest and on ZINC, h3 is fastest. All
heuristics get faster for custom costs. Surprisingly, hyoshino is not the fastest for
unit costs, even though it is optimized for this setting. This may just be due to
an unfavourable constant factor, though: hyoshino is successful in reducing the
size of the search space almost to the same level as h3 (see Table 1, bottom).
Further, Fig. 2 displays a linear regression for the runtime versus tree size in a
log-log plot, indicating that hyoshino and h3 have the lowest slopes/best scaling
behavior for large trees.

https://gitlab.com/bpaassen/uted
https://gitlab.com/bpaassen/uted
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Fig. 2. A log-log regression of the runtime needed for computing UTED for all four
heuristics (indicated by color) on the alkanes data (left) and the ZINC data (right).
Shading indicates region between 25th and 75th percentile of the runtimes for hyoshino

(orange, solid), and h3 with custom costs (purple, crosshatch), respectively. (Color
figure online)

Table 2. Average RMSE (± std.) of a 5-NN regressor across 15 cross validation folds
for UTED, CUTED, and TED with unit and custom costs.

Data set Unit Custom

UTED CUTED TED UTED CUTED TED

Alkanes 0.27± 0.24 0.27± 0.24 0.27± 0.24 0.25± 0.24 0.25± 0.24 0.25± 0.24

ZINC 1.33± 0.85 1.31± 0.86 1.36± 0.84 1.24± 0.87 1.26± 0.87 1.29± 0.86

Regarding RQ2 and RQ3, we perform a 5-nearest neighbor regression3 to
predict the boiling point of alkanes and the chemical stability measure of [8] for
ZINC molecules, respectively. Table 2 shows the prediction error for both data
sets in 15-fold cross validation. For reference, we do not only evaluate UTED
with unit and custom costs, but also CUTED and TED. We observe that all
methods perform better with custom costs compared to unit costs. For alkanes,
there is no measurable difference between UTED, CUTED, and TED. For ZINC,
TED performs worst, CUTED performs better than UTED for unit costs, and
UTED performs better than CUTED for custom costs.

5 Conclusion

We proposed three novel heuristics to compute the unordered tree edit distance
via an A* algorithm. In contrast to prior work, our heuristics can accommodate
custom costs, not only unit costs. Our three heuristics provide different trade-
offs of time complexity (linear, quadratic, cubic) versus how much they prune
the A* search.

3 We also tested lower K, which achieved worse results for all methods.



An A*-algorithm for the Unordered Tree Edit Distance with Custom Costs 371

In our experiments on two chemical experiments, we observed that this trade-
off works in favor of the linear heuristic for small trees but that the cubic heuristic
takes over for larger trees. Interestingly, the cubic heuristic compared favorably
even to the current state-of-the-art heuristic. When applying custom costs, all
our heuristics became faster thanks to the disambiguation provided by the cus-
tom cost function.

Regarding similarity search, we investigated the performance of a 5-nearest
neighbor regressor, predicting chemical properties. We observed that custom
costs lowered the regression error. However, we also saw that a similar perfor-
mance can be achieved with a polynomial, restricted edit distance. Future work
might investigate further tree data set to check whether these results generalize
beyond chemistry.
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Abstract. With the growth of structured graph data, the analysis of
networks is an important topic. Community mining is one of the main
analytical tasks of network analysis. Communities are dense clusters of
nodes, possibly containing additional information about a network. In
this paper, we present a community-detection approach, called FIMSIM,
which is based on principles of frequent item-set mining and similarity
search. The frequent item-set mining is used to extract cores of the com-
munities, and a proposed similarity function is applied to discover suit-
able surroundings of the cores. The proposed approach outperforms the
state-of-the-art DB-Link Clustering algorithm while enabling the easier
selection of parameters. In addition, possible modifications are proposed
to control the resulting communities better.

Keywords: Community mining · Frequent item-set mining ·
Similarity search · Network analysis

1 Introduction

In recent years, the type of data has dramatically changed. The data is becoming
more and more context-dependent, and, therefore, it is necessary to analyze it
with respect to the context of a target application. An example of this kind
of data is structured network data, such as internet pages, social interactions,
protein-to-protein interactions, and many others. With the growing amount of
structured network data, there is also a rising need to analyze it efficiently. One
of the most important tasks in network data analysis is discovering communities,
also referred to as the community-mining or community-detection task.

Community mining is a process of uncovering hidden relationships among
the elements of network data. These relations lead to the creation of commu-
nity structures that represent densely packed clusters of network elements. The
discovery of such communities can help better understand graph dynamics and
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an organizational network structure and can be used as an improvement of rec-
ommendation systems, police investigation, business reorganization, and many
others.

To discover communities in network-based data, we consider a general data
representation in the form of a graph consisting of nodes that are interconnected
by edges. We further consider only undirected and unweighted graphs without
self-loops over the nodes. The nodes are not required to contain any additional
information, nor any additional network knowledge is taken into account for the
purpose of community mining. It is also worth noting that the analyzed graph
has to be sparse so that meaningful communities can be discovered. If the graph
starts to be too much dense, most of the nodes are becoming the candidates of
the community, which can easily degrade to the pathological case when all the
nodes belong to one community.

A community itself is generally understood as a group of nodes that are more
interconnected between themselves in comparison with external nodes [7,8,15].
However, there is no generally accepted definition of a community. For exam-
ple, Radicchi et al. proposes two categories of definitions: strong communities
and weak communities [15]. The strong communities consist of nodes with a
majority of their respective neighbours as a part of the community, while the
weak ones simplify the condition that a total number of connections (edges)
between the community members must be higher than the number of edges
connecting community members with the others. Newman et al. consider the
community as some sort of hierarchy that can be gradually built from smaller
communities, and a given level of hierarchy with a suitable community granular-
ity can be selected [11]. This can be achieved by hierarchical clustering, where
strongly connected nodes are gradually grouped together to form a community,
and a dendrogram of such groupings then reflects the hierarchical representa-
tion. Nevertheless, the lack of a formal definition and the universality of abstract
definition often leads to the approaches that strictly prefer disjoint partitioning
of the graph instead of overlapping. To solve this issue, we consider the following
main assumptions:

– Communities are clusters of highly interconnected nodes;
– Communities have some level of hierarchical structure;
– Nodes can belong to multiple communities.

In this paper, we propose to combine the principles of frequent item-set min-
ing and similarity searching for the two-step discovery of overlapping commu-
nities. The proposed method offers a new perspective on solving the community
detection problem as well as outperforms a traditional method for the discovery
of overlapping communities.

2 Related Work

Community mining is an NP-complete problem due to the combinatorial nature
of graph subsets [16]. In this paper, we focus primarily on three main approaches
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for the discovery of overlapping communities: clique percolation, local expansion
and link clustering.

2.1 Clique Percolation

Clique percolation methods are based on discovering small clique-like structures
that are then based on their overlap merged together. For the purpose of better
clique searching, k-cliques are used. These are completely connected subgraphs
consisting of k nodes. Unlike maximal clique searching, k-clique searching for one
fixed k is a polynomial problem. After the discovery of a set of all k-cliques, their
overlap is checked. If two k-cliques share k–1 nodes, they are merged together
as a new community. If two communities share a contained k-clique, they are
connected together into one bigger community until no such merging is possible.

This approach was first proposed by Palla et al. [13] and led to the develop-
ment of CFinder [1]. Kumpula et al. then improved the clique percolation method
by defining sequential order for edges added into a graph to detect k-cliques [9].

The problem of the clique percolation approach is in its chaining of cliques.
There exist a possibility that nodes of resulting communities can have a high
distance (number of hops) between themselves.

2.2 Local Expansion

This approach uses randomly picked nodes as seeds for the community and
greedily expand the community to maximise a fitness function that evaluates
the quality of a resulting community.

An example of such an approach is LFM [10].

f(c) =
kc

in

(kc
in + kc

out)α
(1)

The algorithm picks a random node as a seed and expands it to maximize func-
tion in Eq. 1 where kc

in/outc is external/internal degree of community c and α is
resolution parameter controlling the size of the community. After the maximisa-
tion is finished, LFM picks a new random node from unassigned nodes as a seed
for the next community.

The random seed selection leads to situations where the overlapping commu-
nity is not detected because its nodes are already assigned to different commu-
nities. This approach also does not restrict the diameter of communities, which
mean that nodes inside communities may be distanced.

2.3 Link Clustering

Another approach to community mining is to detect overlapping communities by
clustering links. The idea is, that node can belong to multiple communities, but
the link between nodes defines the relationship between these two objects [3].
By grouping similar edges into clusters, respective nodes can be assigned into
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communities defined by these clustered edges. There exist several link clustering
methods such as OCMiner [5] and DB Link Clustering [18].

The latter mentioned uses six steps to identify communities:

1. An index of the edges is generated from the graph.
2. An incidence matrix between edges and nodes is created from the adjacency

matrix.
3. A similarity matrix between each pair of edges is computed. Modified Jaccard

coefficient is used as a distance function.
4. For each yet unassigned edge in the graph, if this edge is a core edge, a new

cluster is created, and neighbouring edges connected to the core edges are
assigned to this cluster. Edge is core edge if the cardinality of the set of
similar edges in the neighbourhood of studied edge is higher than core size
parameter.

5. Unassigned edges that are not part of the core are checked, whether they can
be assigned to some existing cluster of edges to get final link partitioning.

6. Final link partitioning is transformed into the node communities by collecting
incident nodes.

From the selected approaches, the link clustering results in community struc-
tures that are the most coherent. The diameter is controlled by the usage of core
links that need to be adjacent to each other and, as such, does not tend to
grow too much. Because of this, the link clustering approach leads to the most
structurally cohesive community structure.

3 Community Mining Process

We propose a two-step approach to discover cohesive communities within a rea-
sonably sparse graph. First, we detect possible community candidates, so-called
cores, which are densely interconnected sets of nodes. To find such cores, we
take inspiration in the problem of frequent item-set mining, for which many
different algorithms can be used. Second, we possibly enrich each discovered
candidate community with its surrounding – a set of nodes that do not need to
be mutually interconnected but are densely connected to the core. To find such
surroundings, we define a core-to-surrounding distance function and search for
suitable surrounding candidates by evaluating range queries, for which many dif-
ferent similarity-search algorithms exist. The enriched communities are finally
refined to retain only communities with reasonable size and inter-community
overlaps.

3.1 Preliminaries

We consider structured network data as a graph G consisting of a pair of sets
(V,E), where V is a set of nodes and E is a set of undirected and unweighted
edges. We define a community as a structure consisting of two types of nodes:
core and surrounding nodes.
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The core is a group of heavily interconnected nodes of sufficient size. The
ideal core of the community is a fully connected subgraph, otherwise known
as clique. Such core ensures that in the resulting community, the diameter is
maximally three hops: one from a starting node to core, one across the core,
and the last one from the core to an end node. Although the clique is ideal
core, this requirement is too strict; thus, the selection of the right relaxation can
dramatically improve the detection of communities over the whole graph.

Although cores of the communities are cohesive groups, the extension of such
structure can result in better grouping. This can be caused by imperfections in
the process of capturing relations between network nodes. As an example, two
members of the community do not use the same communication platform as with
the rest of the community. This is the reason why each core is extended by its
surrounding. The surrounding is defined as a set of nodes that have “sufficient”
interconnection into the core of the community but do not meet the criteria to
become a core.

3.2 FIMSIM: Community Mining Algorithm

For the purpose of processing, a graph is assumed in the form of a list of neigh-
bours. The first step is the detection of cores. To detect the suitable core of the
community, we use the task of mining frequent item sets, which was originally
introduced by Agrawal et al. [2]. This task is often referred to as a market basket
analysis and served as a way to detect items commonly bought together. The
frequent item-set mining searches a database containing sets of unique items for
subsets. Any subset occurring in the database more frequently than minimal
threshold θ is returned as a frequent set.

In the list of neighbours representation, each node can be viewed as a market
basket and a set of neighbours as the bought items. We further extend the list of
neighbours of a node by adding the node itself. Frequent sets FS obtained from
this extended representation are a superset of the cliques and densely connected
clusters provided with reasonable parameters. By selecting the parameter θ, we
will obtain all the cliques of size θ and higher.

To prove this assumption, let C be set of nodes of the clique of size k and FC

set of nodes from graph, such as each set of neighbours of selected node ∀fC ∈ FC

contains all nodes of clique C ⊆ fC . Then every node of clique C contributes to
a frequency of C by one, and thus frequency must be at least |C| = k. If k ≥ θ,
the clique will be part of frequent sets FS. There is one specific pathological case
(as illustrated in Fig. 1), where a set of nodes is referenced by third party nodes
frequently enough to appear as heavily connected. This case is finally eliminated
in the refinement step.

After frequent sets are obtained, it is necessary to eliminate undesirable ones.
Sets are filtered based on two parameters; their common occurrence must be
higher than their size to eliminate part of cores referenced from third party
nodes, and their size must be at least θ. This second condition removes small
cores that are often the result of the bottom-up approach of frequent item-set
mining.
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Fig. 1. Pathological case resulting in frequent sets {a, b, c} and {d, e, f} without an
existing connection between nodes.

After obtaining the cores of the communities, a similarity range query is
applied with the core as a query. For each node, there is then sequentially mea-
sured similarity to each core, and if the node is sufficiently similar, the node is
marked with the respective core. There is a possibility to replace the range query
with a K-NN query, which will allow better control over the resulting size of the
community. The similarity is measured against the set of nodes of the core for
each node in the neighbourhood of the core.

There is a number of standard distance functions for sets like the Jaccard
coefficient that can be found in [17]. However, for comparison of node’s neighbour
list A with core B, we need a distance function that would result in zero in these
two special cases:

1. A ⊆ B – All neighbours of the node A are members of core B;
2. B ⊆ A – Neighbour list of node A contains whole core B.

For this purpose, we propose to use the following distance function:

1 − max

( |A ∩ B|
|A| ,

|A ∩ B|
|B|

)
. (2)

One parameter of the range query is distance radius r. The radius has a major
impact on the density of the resulting communities. When distance is smaller,
more edges are connected to the core of the communities. Standard measures
often prefer this density, so values between 0 and 0.2 are preferred.

As a result of the range query, all nodes are marked with respective cores. By
aggregating them into groups, raw communities are obtained. It is possible that
the result contains duplicates and products of the pathological cases of a core.
These can be eliminated by checking if the core is part of the community. Nodes
from the pathological case have very low to zero common neighbours present in
the core set and thus are not selected into the community by range query. After
filtration, duplicates are removed.

After obtaining the communities, the results can be used as the new cores
and search of the surrounding can be started again. This leads to communities
with a potentially bigger distance between nodes and thus it is necessary that
such approach is used only for suitable use cases. The pseudocode of the whole
algorithm is depicted in Fig. 2.
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Fig. 2. Pseudocode of the proposed FIMSIM algorithm for discovering communities.

4 Experiments

In the experimental part, we compared the proposed approach with the DB-Link
Clustering. Both of these approaches share similar parameter space and results
in similar graph structures, as can be seen in Fig. 3.

The prototype implementation of FIMSIM is developed with the analyti-
cal framework ADAMiSS [14], and for evaluation of similarity, MESSIF frame-
work [4] is used. The former framework allows for a potential optimization based
on the density of the analyzed graph.

4.1 Dataset

To evaluate whether this approach is eligible for community mining, we created
a collaboration network from a pseudonymised dataset consisting of logged inter-
actions of users with documents on a shared drive provided by Konica Minolta.
Typically each document is created, modified and read by various users; thus,
the dataset captures active collaboration of users on the document’s content and
passive interactions of users who only accessed the document.

The input data are in form of tuples: date user id, action type, document id,
document type. The action type consisted of six categories: Download, Previewed,
Edit, Uploaded, Created and Item Shared.

We created the user-user interaction network from this data, where two users
are connected when they cooperated on the creation process of at least one
document. Thus if there is an access log with action type Created, Uploaded or
Edit for both users with same document id. The resulting network consists of
128 users with an average degree of 8.531.
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Fig. 3. Example of discovered communities: FIMSIM (Left) and DB-Link Cluster-
ing (Right). The example contains two biggest communities obtained from the best
runs of both the algorithms. In particular, DB-Link Clustering uses θ = 6 and r = 0.4,
while FIMSIM uses θ = 12 and r = 0.1.

This data represents a collaboration of workers in the organisation and, as
such, can be analysed by managers. The discovered communities may function
as decision support for managers to create and validate the matrix structure of
the organisation.

4.2 Evaluation Criteria

The traditional way of evaluating the quality of graph partitioning is by modu-
larity [12].

Q =
1

2 · |E|
∑
c∈C

∑
i,j∈V

δciδcj

(
Ai,j − kikj

2 · |E|
)

(3)

Modularity measures the number of edges that connects nodes in the same
partitioning reduced by the expected amount of edges in a randomly wired net-
work. This metric is primarily used for the evaluation of exclusive partitioning
and thus penalizes overlapping communities.
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Because of limitations of the modularity, an extension proposed by Chen et
al. was used [6].

Q =
1

2 · |E|
∑
c∈C

∑
i,j∈V

αciαcj

(
Ai,j − kikj

2 · |E|
)

, (4)

αci =
kci∑

c2∈C kc2i
(5)

In this version of modularity, the Kronecker delta is replaced with a coefficient
of how many communities the node is involved in. This allows for a decrease in
the importance of the node involved in multiple communities and thus is not that
penalising for higher density on the overlap. Even though this approach tries to
solve the problem of overlaps, it still evaluates non-overlapping communities as
having much higher quality than overlapping ones.

4.3 Evaluation

Although algorithms share parameter space, parameters do not match one to
one. Because of that, it is important to watch best-achieved results over the
whole searched space. The experiment showed that FIMSIM outperforms the
quality of found communities in both metrics. The result of the comparison can
be seen in Figs. 4 and 5.

Fig. 4. Quality comparison
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Fig. 5. Time comparison

The experiment also showed that our approach can be better used without
knowledge of the correct parameters than DB Link clustering. Because of the
nature of frequent item-set mining, when the size of the core is too huge, the
algorithm stops almost immediately. Because of that, it can be beneficial to start
from higher numbers and lower the core size parameter until a suitable amount
of cores is found.

The disadvantage of our approach is that once the core size parameter is too
small, the discovery of cores is computationally challenging. Our experiments
showed that higher quality of communities is achieved at the higher value of the
core size parameter.

5 Conclusion

In this paper, we proposed a different approach to community mining based on a
combination of frequent item-set mining and similarity searching. The proposed
method uses a two-step process of finding core community candidates and assign-
ing surroundings to them. We proposed a distance function for the selection of
suitable surroundings based on two extreme cases.

In cooperation with Konica Minolta, a collaboration network was created
as a representation of real-world data, and a new approach was tested. With
the usage of modularity and overlapping modularity, we showed that the pro-
posed approach achieves higher-quality results than the state-of-the-art DB-Link
Clustering approach that discovers a similar type of communities.

In several steps, we discussed the possibility of modifying the approach to
achieve better flexibility in terms of the size of the community as well as the
quality of the surrounding of the cores. We also discussed an iterative approach,
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where after obtaining communities, these are taken as the new cores and with
the new range, surrounding for them can be chosen.

Due to the modular nature of the approach, there is a possibility to further
improve the proposed approach in terms of optimizing the selection of appropri-
ate frequent item-set algorithms, as well as employing some sort of indexing for
assignment of the surroundings to the cores.
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Abstract. Electronic Health Records (EHRs), Big Data, Knowledge
Graphs (KGs) and machine learning can potentially be a great step
towards the technological shift from the one-size-fit-all medicine, where
treatments are based on an equal protocol for all the patients, to the pre-
cision medicine, which takes count of all their individual information:
lifestyle, preferences, health history, genomics, and so on. However, the
lack of data which characterizes low-resource languages is a huge limita-
tion for the application of the above-mentioned technologies. In this work,
we will try to fill this gap by means of transformer language models and
few-shot approaches and we will apply similarity-based deep learning tech-
niques on the constructed KG for downstream applications. The proposed
architecture is general and thus applicable to any low-resource language.

Keywords: Knowledge Graphs · Electronic Health Records ·
Transformer language models

1 Introduction

The Big Data paradigm has become a reality thanks to the availability of an ever-
growing quantity of data and the synergetic progress in computing infrastruc-
tures and data analysis techniques [6]. To the current state, Big Data solutions
are already in use to support us in our daily life for safety [26], entertainment
[25] and healthcare [3] inter alia.

In the healthcare industry, the recent progress made in Electronic Health
Records (EHRs) has enabled the collection of huge quantities of data related to
the medical histories of patients (e.g. laboratory measurements, radiology imag-
ing, clinical notes). Being closer to the actual practice of medicine as compared
with the idealized information presented in textbooks and journals, EHRs pro-
vide the possibility to (1) identify possible causal relations between healthcare
entities (e.g. symptoms, diseases, measurements) which are not even written in
books [30] and (2) suggest personalized treatments.

The heterogeneous information of EHRs can be organized in graph data
structures, a.k.a. Knowledge Graphs (KGs), which capture the relationships
between different entities by linking them through edges. Once the KG is con-
structed, not only can data be easily and interactively visualized and explored
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Fig. 1. Overview of the planned methodology.

by analysts and physicians, but they can also be analyzed with machine and
deep learning techniques to solve complex tasks, such as providing personalized
therapies. For example, KGs have been effectively used for the prediction of
adverse drug reactions in patients [46] and for drug repurposing for the treat-
ment of COVID-19 [40] especially thanks to embedding methods which allow to
represent the KG entities in an Euclidean space and thus to exploit distance and
similarity-based metrics to analyze relations between nodes.

In this work, we will try to pave the way towards the application of healthcare
KGs in low-resource languages, where all the advances detailed above—in EHRs,
KGs and analytics techniques—cannot be fully exploited due to the lack of data.
Specifically, the overall project contributions are summarized as follows:

1. Pre-training of a transformer language model [4,8,29] based on Italian
biomedical corpora

2. Definition of few-shot learning approaches to use the pre-trained model to
recognize entities and relations from clinical notes

3. Entity linking to external knowledge bases with similarity-based approaches
4. Smart navigation and analysis of the constructed KG with deep learning

similarity-based techniques.

2 Planned Methodology

Figure 1 shows an outline of the planned methodology, which will be detailed in
the remainder of this section.

2.1 Language Model: Pre-training and Fine-Tuning

The automatic understanding and processing of clinical notes is a challenging
task due to several peculiarities, i.e. negations, synonyms, alternate spelling of
entities, non-standard abbreviations, polysemous words [7,43]. Thanks to their
effectiveness in leveraging both words and their contexts, transformer language
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Fig. 2. Example of PETER application.

models (e.g. BERT [8], GPT-3 [4], T5 [29]) have proven to be a valuable solution
for this challenge. They are first pre-trained on huge quantities of unlabeled text
data and then fine-tuned with labeled data to solve downstream tasks (e.g. sen-
tence classification, part-of-speech labeling). Inspired by recent works in biomed-
ical language understanding which have shown that performance of downstream
tasks can be strongly improved by pre-training on biomedical text data (e.g.
papers, clinical notes) [2,20,22], we will pre-train an Italian biomedical language
model and fine-tune it to build our KG by detecting entities (Named Entity
Recognition, a.k.a. NER [14]) and extracting unknown relational facts (Relation
Extraction [28,35,44,45]) from clinical notes.

The lack of annotated data characterizing low-resource languages imposes
the use of few-shot learning approaches [12,19,27,33,36,42]. Pattern-Exploiting
Training (PET) [32] has been proved to be an effective technique to fine-tune
language models for few-shot classification tasks. Hence, we developed PETER
(Pattern-Exploiting Training for Named Entity Recognition), a slight adapta-
tion which allows to use PET for NER and we intuitively describe it in Fig. 2.
Given a sequence of tokens x (i.e. a sentence) a “pattern” is applied to each token
to generate input examples containing a mask token which will be replaced by
the model with the appropriate label (which indicates if the token is at the
beginning, inside or outside of an entity mention). In this way, the language
model leverages the knowledge it has acquired during the pre-training phase to
solve the downstream task, hence requiring few samples to obtain satisfactory
performance.

2.2 Entity Linking

The knowledge retrieved from EHRs will be extended with external knowl-
edge bases containing additional useful information. For example, WikiData [37]
allows to link diseases with their corresponding International Classification of
Diseases (ICD) code and to enrich nodes with suggested drugs, therapies, health
specialty, and so on. The Entity Linking task consists in annotating mentions
with their corresponding identifier in an external knowledge base. It involves
candidate-entity generation and ranking [1], i.e. retrieving all the possible entities
which may be linked to an entity mention and returning the most likely one. Cur-
rent literature shows the effectiveness of semantic similarity-based approaches
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which use neural networks and word embeddings [11,18] to capture the seman-
tic correspondence between entity mentions and external entities. To this end,
we plan to use word embeddings obtained with the pre-trained language model
to compute the distance between the entities recognized in clinical notes and
WikiData concepts, and thus link the most appropriate one.

2.3 Knowledge Graph Analysis

Despite the construction of the KG being an important step in our project, its
smart navigation and analysis is essential to effectively use it as a supportive
tool in the actual practice of medicine. To this end, we will leverage similarity
measures which take count of not only the informative content of nodes (i.e. node
properties) but also the topological graph structure (e.g. path length and depth).
More specifically, we will leverage knowledge representation learning techniques,
which aim to learn low-dimensional embedding of nodes and relations.

Embeddings have to guarantee the possibility to define scoring functions
[10], which are used to measure the plausibility of facts, i.e. (head, relation, tail)
triples. As an example, a scoring function f can be exploited to return the
probability that a patient suffers from a disease given all its attributes (e.g. age,
sex, lifestyle) and laboratory exams →e.g. f(Alice, hasDisease,Diabetes) = 0.6.

We plan to employ similarity-based functions, which use semantic matching
to calculate the semantic similarity between entities [39,41,47]. To this end,
neural networks have been proven to effectively encode the semantic matching
principle by feeding entities or relations or both into deep networks to compute a
similarity score [17]. In particular, Graph Convolutional Neural networks (GCNs)
have been proven to be effective in leveraging the attributes associated with
nodes [15]. Node structures, attributes and relation types can be integrated in
weighted GCN models [34], which treat multi-relational KGs as multiple single-
relational graphs and learn weights when combining GCN embeddings for each
subgraph and node. The output of the l-th layer for the node vi can be thus
computed as:

hl+1
i = σ

( ∑
j∈Ni

αl
tg(hl

i, h
l
j)

)
, (1)

where: hl
i and hl

j are the input vectors for nodes vi and vj , respectively, and vj is
a node in the neighborhood Ni of vi; αt is a learnable parameter specifying the
strength of the relation type t between two adjacent nodes; σ is an activation
function; g incorporates neighboring information with a coefficient matrix.

3 Early Results

Our research activities have so far been focused on the first steps of our research
plan, i.e. data collection, pre-training and the definition of few-shot learning
techniques. In particular, the hospital Azienda Ospedaliera Universitaria (AOU)
Federico II has provided a database with information about hospitalizations in
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Fig. 3. PETER comparison with the state-of-the-art in terms of F1 scores.

their cardiological departments. With reference to the pre-training phase, all
the clinical notes included in the above-mentioned database (646, 774 sentences)
have been collected and integrated with information collected from the forum
Medicitalia1 (14, 484, 684 sentences) and DBpedia [21] (7, 129 sentences).

Furthermore, a team of 8 biomedical engineers has labeled a subset of the
clinical notes to allow the fine-tuning of NER models. More in detail, the dataset
contains 6186 disease and 4918 symptom mentions annotated.

Finally, we compared PETER with state-of-the-art few-shot NER techniques
[5,13,16,23,24,31] on three datasets: BC5CDR [38], NCBI-disease [9], and the
Italian NER dataset described above. Results in Fig. 3 show that PETER obtains
higher results w.r.t. the other techniques in terms of F1 scores (y-axis) in several
few-shot contexts (x-axis). While models fine-tuned on BC5CDR and NCBI-
Disease are initialized with BioBERT [20], i.e. a biomedical transformer, the
Italian model has been initialized with GilBERTo2, which is trained on general
text corpora. The resulting poor performance shows the crucial importance of
the pre-training step we are currently working on.

4 Conclusion and Future Work

In this paper, we have described the planned research methodology for the con-
struction and analysis of an Italian KG in healthcare. We have so far (1) col-
lected the required data to train the language model and (2) defined the few-shot
approach to be used. In future work, we will link medical entities to external
knowledge bases and analyze the developed KG with similarity-based techniques
which take count of both the topological graph structure and the information
content of nodes.

1 https://www.medicitalia.it/.
2 https://github.com/idb-ita/GilBERTo.

https://www.medicitalia.it/
https://github.com/idb-ita/GilBERTo
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18. Karadeniz, I., Özgür, A.: Linking entities through an ontology using word embed-
dings and syntactic re-ranking. BMC Bioinform. 20, 1–12 (2019)

19. Kim, S., Toutanova, K., Yu, H.: Multilingual named entity recognition using par-
allel data and metadata from Wikipedia. In: ACL (2012)

20. Lee, J., et al.: BioBERT: a pre-trained biomedical language representation model
for biomedical text mining. Bioinformatics 36, 1234–1240 (2020)

21. Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted
from Wikipedia. Semant. Web 6, 167–195 (2015)

http://arxiv.org/abs/1704.06360
http://arxiv.org/abs/1704.06360


Towards an Italian Healthcare Knowledge Graph 393

22. Lewis, P., Ott, M., Du, J., Stoyanov, V.: Pretrained language models for biomedi-
cal and clinical tasks: understanding and extending the state-of-the-art. In: CLIN-
ICALNLP (2020)

23. Liang, C., et al.: BOND: BERT-assisted open-domain named entity recognition
with distant supervision. In: Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (2020)

24. Lin, B.Y., et al.: TriggerNER: learning with entity triggers as explanations for
named entity recognition. In: ACL (2020)

25. Lippell, H.: Big data in the media and entertainment sectors. In: New Horizons for
a Data-Driven Economy (2016)

26. Mannering, F., Bhat, C., Shankar, V., Abdel-Aty, M.: Big data, traditional data
and the tradeoffs between prediction and causality in highway-safety analysis. Anal.
Methods Accid. Res. 25, 100113 (2020)

27. Mintz, M.D., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation
extraction without labeled data. In: ACL/IJCNLP (2009)

28. Nguyen, T., Grishman, R.: Relation extraction: perspective from convolutional
neural networks. In: VS@HLT-NAACL (2015)

29. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text
transformer. ArXiv abs/1910.10683 (2020)

30. Rotmensch, M., Halpern, Y., Tlimat, A., Horng, S., Sontag, D.: Learning a health
knowledge graph from electronic medical records. Sci. Rep. 7, 1–11 (2017)

31. Safranchik, E., Luo, S., Bach, S.H.: Weakly supervised sequence tagging from noisy
rules. In: AAAI (2020)

32. Schick, T., Schütze, H.: Exploiting cloze-questions for few-shot text classification
and natural language inference. In: EACL (2021)

33. Schmidhuber, J.: On learning how to learn learning strategies (1994)
34. Shang, C., Tang, Y., Huang, J., Bi, J., He, X., Zhou, B.: End-to-end structure-

aware convolutional networks for knowledge base completion (2018)
35. Shen, Y., Huang, X.: Attention-based convolutional neural network for semantic

relation extraction. In: COLING (2016)
36. Thrun, S., Pratt, L.Y.: Learning to learn (1998)
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Abstract. Entity Resolution (ER) aims to detect in a dirty dataset the
records that refer to the same real-world entity, playing a fundamental
role in data cleaning and integration tasks. Often, a data scientist is only
interested in a portion of the dataset (e.g., data exploration); this inter-
est can be expressed through a query. The traditional batch approach is
far from optimal, since it requires to perform ER on the whole dataset
before executing a query on its cleaned version, performing a huge num-
ber of useless comparisons. This causes a waste of time, resources and
money. Proposed solutions to this problem follow a query-driven app-
roach (perform ER only on the useful data) or a progressive one (the
entities in the result are emitted as soon as they are solved), but these
two aspects have never been reconciled. This paper introduces BrewER

framework, which allows to execute clean queries on dirty datasets in a
query-driven and progressive way, thanks to a preliminary filtering and
an iteratively managed sorted list that defines emission priority. Early
results obtained by first BrewER prototype on real-world datasets from
different domains confirm the benefits of this combined solution, paving
the way for a new and more comprehensive approach to ER.

Keywords: Entity resolution · Data integration · Data cleaning

1 Introduction

Entity Resolution (ER) is a fundamental task for data integration [11], aiming
to detect in a dirty dataset the records (duplicates [10]) that represent the same
real-word object (entity). The duplicates are detected by applying a matching
function (e.g., a trained binary classifier) to each possible pair of records (or to
the pairs formed by records appearing in the same block, if a blocking function
[12] is applied), in order to determine if they refer or not to the same entity (in
the first case, they are referred to as matches).

Once a cluster of matches is found, its records are merged to create a sin-
gle consistent record representing the entity (data fusion [7]), removing dataset
redundancy. The matches often present missing, wrong or conflicting values;
data fusion is performed through the application of a resolution function, which
determines the value to be assigned to each attribute of the entity according to
the aggregation function (e.g., maximum/minimum value, majority voting, etc.)
defined for it by the data scientist.
c© Springer Nature Switzerland AG 2021
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In concrete situations (e.g., data exploration), a data scientist is often only
interested in a specific portion of the dataset; this interest can be expressed through
a query. Since performing a query on the dirty dataset may lead to an inconsistent
result, it is necessary to perform ER on the dataset; then, the query can be executed
on the obtained cleaned version. As shown in Fig. 1a, all the entities appearing in
the result are returned to the data scientist at the end of this pipeline.

When computational resources are limited and/or time is a critical compo-
nent, this approach (called batch) is far from optimal, wasting time, resources
and money (e.g., in the case for pay-as-you-go contracts, widely used by cloud
providers) to perform comparisons which are guaranteed to be useless. These
comparisons are required to generate entities with no chance of appearing in the
result (e.g., the query in Fig. 2 returns only Canon cameras, so each comparison
performed to retrieve an entity whose brand is Nikon is useless and should be
avoided) and cause performance degradation, as the data scientist can only run
the query after all comparisons have been performed.

In order to overcome the described problems, an innovative approach
(Fig. 1b) must be able to perform clean queries on dirty datasets and it is
required to be both query-driven (i.e., to perform ER only on the portion of
data effectively useful to answer the query, according to the WHERE clauses of the
query itself) and progressive (i.e., to emit the entities appearing in the result
as soon as they are solved, following the ordering expressed by the ORDER BY
clause). This is exactly the aim of BrewER.

Fig. 1. The traditional batch pipeline and the one proposed by BrewER.

2 Related Work

Solutions in literature [4–6] propose a Query-Driven Approach (QDA) to ER,
executing clean queries on dirty datasets performing comparisons only on the
portion of data relevant for the executed query; however, the adopted techniques
are not suitable for supporting the progressive emission of the results (e.g., the
ORDER BY clause is not managed). On the other hand, even progressive solutions
have been presented [13,15,16], but neither of them considers the possibility
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of an integration with QDA principles, which is far from trivial. A draft of
combined approach based on a graph structure has been presented in [14], but
it is limited to approximate solutions for a keyword-search scenario. Therefore,
BrewER approach represents a novelty in literature.

3 BrewER: A Progressive Query-Driven ER Framework

BrewER framework for ER reconciles the described approaches, executing clean
queries on dirty datasets in a query-driven and progressive way.

The implementation of the query-driven approach consists of a preliminary
filtering of the blocks, which aims to keep only the blocks that could generate an
entity appearing in the result. BrewER approach to the eventual blocking function
adopted by the user is agnostic; if no blocking is performed, the whole dataset
can be interpreted as a single block. Furthermore, blocks are transitively closed.
If the WHERE clauses of the query are in OR (at the moment, only conjunctive
and disjunctive queries are supported), it is checked that at least one record in
the block satisfies at least one of the defined clauses; on the other hand, if the
clauses are in AND, it is verified that all the clauses, each considered by itself,
are satisfied by at least one record in the block. The records which satisfy at
least one of the clauses are called seed records. The aggregation function for
each attribute is defined by the user; MIN, MAX, AVG, VOTE (majority voting) and
RANDOM are supported, with SUM to be implemented. In case of numeric attributes,
the described filtering is not applied using functions that can generate new values
(i.e., AVG and SUM).

The progressive emission is obtained through an iteratively managed sorted
list (Fig. 2) called Ordering List (OL). The records appearing in the blocks that
pass the filtering are marked as unsolved (ER not yet performed) and inserted
in OL, each one with a list containing the identifiers of its neighbours (i.e., the
records in the same block). At the beginning of each iteration, the elements in
OL are sorted according to the ordering mode and the attribute, called Ordering
Key (OK), expressed by the ORDER BY clause of the query. Then, the first ele-
ment (i.e., the one with the highest emission priority) is checked. If it is marked
as unsolved (2.1a), it is compared with its neighbours (even for the matching
function BrewER adopts an agnostic approach); once identified the cluster of
matches, all the matching elements are removed from OL, while a single element
representing the cluster (with the aggregated OK value), marked as solved, is
inserted (2.1b). If it is marked as solved (2.2a), the resolution function is applied
on the represented cluster: if the obtained entity satisfies the query, it is emit-
ted; otherwise, it is discarded. Comparisons involve seed neighbours first: if a
non-seed does not match any seed, it can be discarded. Iterations can run until
OK is empty or can be stopped after the emission of k entities (TOP(K) queries).

Optimizations. In case of discordant ordering (MIN/DESC or MAX/ASC), it is
possible to optimize the described algorithm by inserting in OL only the seed
records, while the non-seed records in their blocks only appear in their lists of
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neighbours (fewer comparisons). This is possible because if a matching non-seed
neighbour (whose OK value is not therefore sorted in OL) alters the OK value for
the first element, the generated solved record priority is updated by changing
its position when sorting OL at the beginning of the next iteration (delayed
emission), guaranteeing the correctness of the ordering (while in MAX/DESC or
MIN/ASC cases this variant could alter the correct emission ordering).

Fig. 2. BrewER in action.

4 Evaluation

The evaluation of BrewER, whose implementation is realized in Python, is per-
formed on real-world datasets from different domains (Table 1) with known
ground truth: SIGMOD20 [2,8] (camera specifications from e-commerce websites,
pre-processed using a variant of the algorithm described in [17]), SIGMOD21 [3]
(USB stick specifications from e-commerce websites) and its superset (both pro-
vided by Altosight [1]), Funding [9] (organizations presenting financing requests).
All strings are put in lowercase and OK values cast to float, filtering out the
records whose OK is null, since they do not alter the emission ordering.

Plots in Figs. 3 and 4 show the early results, in terms of progressive query
recall (number of emitted entities/size of the result set) after x performed com-
parisons (ground truth as matching function), obtained computing mean values
on batches of 20 queries (both for conjunctive and disjunctive case), selected as
the ones emitting most entities out of wider batches of at least 50 queries. Val-
ues for the considered attributes are randomly selected from lists containing the
most common ones. Figure 3 clearly shows the progressive nature of BrewER and
highlights its potential in anticipating emissions, considering as batch baseline
an adapted version of QDA [5]. When progressiveness is lower because of delayed
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emissions (discordant case), optimized algorithm generates a further significant
reduction of the comparisons (Fig. 4; analogous plots for disjunctive case).

Table 1. Characteristics of the selected datasets.

Name Records Duplicates Entities (Mean size) Attributes Ordering key

SIGMOD20 [8,17] 13.58k 12.01k 3.06k (4.439) 5 Megapixels

SIGMOD21 1.12k 1.08k 190 (5.879) 5 Price

Altosight 12.47k 12.44k 453 (27.534) 5 Price

Funding [9] 17.46k 16.70k 3.11k (5.609) 18 Amount

(a) SIGMOD20
Brand AND Model
Brand OR Brand

(b) SIGMOD21
Brand AND Size
Brand OR Brand

(c) Altosight
Brand AND Size
Brand OR Brand

(d) Funding
Source AND Legal Name

Source OR Source

Fig. 3. Progressive query recall in MAX/DESC and MIN/ASC cases (no blocking).

(a) SIGMOD20
Brand AND Model

(b) SIGMOD21
Brand AND Size

(c) Altosight
Brand AND Size

(d) Funding
Source AND Legal Name

Fig. 4. Progressive query recall in MAX/ASC and MIN/DESC cases (no blocking).

5 Conclusions and Next Steps

Early results confirm the benefits of the approach adopted by BrewER, in terms
both of reduction of performed comparisons and of progressive emission of the
results, paving the way for new and more comprehensive solutions to ER tasks.

BrewER has a lot of room for improvement (the implementation itself needs to
be optimized, even considering the migration to a faster language), with signifi-
cant scenarios to be deepened and integrated in the framework; as for discordant
case and non-seed record comparisons, it is fundamental to find out and avoid all
situations causing useless comparisons. Benefits have to be evaluated in case of
blocking: the actual agnostic approach is considered as a strength, since it allows
to combine BrewER with the most innovative solutions in this field (the same hap-
pens for matching functions), but even the possibility of including blocking itself
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in the progressive pipeline has to be investigated. Cases to be studied are that of
TOP(K) queries (supposed to take full advantage from this approach) and that of
temporal series, while missing value imputation, together with the possibility of
keeping track of executed queries, can turn BrewER into a powerful data prepa-
ration tool, leading to a progressive cleaning of the dataset. Furthermore, since
ER can be seen as a case of binary classification, BrewER impact is not strictly
bound to this field, and it is important to study how to extend the presented
techniques to other classification tasks.

BrewER is going to be presented and further explored in a dedicated research
paper, containing the formalized algorithm and new experiments covering some
of these cases; the code will be made available at the time of its publication.
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Abstract. Today, there are many publicly available data sources, such
as online museum catalogues, Wikipedia, and social media, in the cul-
tural heritage domain. Yet, the data is heterogeneous and complex
(diverse, multi-modal, sparse, and noisy). In particular, availability of
social media (such as Twitter messages) is both a boon and a curse in
this domain: social media messages can potentially provide information
not available otherwise, yet such messages are short, noisy, and are domi-
nated by grammatical and linguistic errors. The key claim of this research
is that the availability of publicly available information related to the cul-
tural heritage domain can be improved with tools capable of signaling
to the various classes of users (such as the public, local governments,
researchers) the entities that make up the domain and the relationships
existing among them. To achieve this goal, I focus on developing novel
algorithms, techniques, and tools for leveraging multi-modal, sparse, and
noisy data available from multiple public sources to integrate and enrich
useful information available to the public in the cultural heritage domain.
In particular, research aims to develop novel models that take advantage
of multi-modal features extracted by deep neural models to improve the
performance for various underlying tasks.

Keywords: Multi-modal · Information extraction · Information
integration and latent information discovery · Entity recognition ·
Neural-networks · Attention models · Cultural heritage domain

1 Introduction

Today, there are many publicly available data sources, such as online museum
catalogues(e.g. [17]), Wikipedia (e.g. [18]), and social media (e.g. [19]), in the
cultural heritage domain. The key premise of the research is that the availability
of publicly available information related to the cultural heritage domain can be
significantly improved with tools capable of signaling to the various classes of
users (such as the public, local governments, researchers) the entities that make
up the domain and the relationships existing among them. Yet, realizing this
idea is non-trivial due to the complexity (multi-modality, sparsity, and noise) of
the data available in this domain (Fig. 1).

Results presented in this paper were obtained using the Chameleon testbed.
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N. Reyes et al. (Eds.): SISAP 2021, LNCS 13058, pp. 402–408, 2021.
https://doi.org/10.1007/978-3-030-89657-7_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89657-7_31&domain=pdf
https://doi.org/10.1007/978-3-030-89657-7_31


Latent Information in the Cultural Heritage Domain 403

Fig. 1. A simplified ER-diagram outlining some of the data sources and their contri-
butions to the information available in the cultural heritage domain – here any edge
marked as “LTNT” represent a latent relationship that needs to be extracted

Problem Statement. Given the above context, in this thesis, I focus on devel-
oping novel algorithms, techniques, and tools for leveraging multi-modal, sparse,
and noisy data available from multiple public sources to integrate and enrich use-
ful information available to the public in the cultural heritage domain.

2 Methodology

Figure 1 includes an ER-diagram outlining some of the data sources and their
contributions to the information available in the cultural heritage domain. For
example, one can observe that a number of entities (such as artwork, artist,
exhibition, artistic movement) are available from various sources. Some of the
relationships among this entities can be explicit in these sources (such as an art-
work is being associated to an artist or an artist being included in an exhibition),
while some other relationships, such as an artist being influenced by an artistic
movement or an artist being interested on a particular subject may be latent – in
Fig. 1, such latent relationships are highlighted with edges marked as “LTNT”
and they represent areas of interest for this research.

2.1 Social Media to Our Help (?)

Availability of social media (such as Twitter messages) is both a boon and a
curse in this domain:

– How can social media help in this domain?: Social media messages can poten-
tially provide information not available otherwise: many museums or collec-
tions post regular Twitter messages about artists, artworks, or exhibitions; in
addition, there may be online communities that discuss a particular artistic
movement. These messages may not only provide data points that are not
available otherwise, but can also help contextualize available data or help
discover latent relationships among entities in the domain of interest.
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Fig. 2. Sample Twitter messages and associated entity types

– Why is leveraging social media in this domain challenging?: Yet, despite the
opportunities they provide, leveraging social media data in this context is not
trivial: Twitter messages are short, noisy, and are largely dominated by text
full of grammatical and linguistic errors. Moreover, many messages in this
domain are automatically generated through APIs and their structures are
not linguistically based. Being extremely short, they often lack context to help
interpret their content. In fact, our experience with Mechanical Turk [20], has
shown that even manually labeling portions of the messages for a supervised
methodology is difficult due to the underlying ambiguities.

2.2 A Multi-modal Approach

It is important to note that social media, in this context, is often multi-modal
in that many messages in this domain are accompanied by visuals – our experi-
ence has shown that roughly 30% of the messages have one or more associated
images. Recently, joint learning from sources with different underlying modali-
ties has become an emerging research interest and, with the rise of deep learning
techniques, such approaches have found increasing use in diverse domains, such
image understanding/annotation [16,21], and natural language processing [5].

While in theory, these visuals can also help provide context necessary to
better interpret these social media messages for effective information extraction
and integration, in practice, these visuals can be very diverse (such as the visual
representation of the artwork, picture of an artist, a snapshot of the exhibit
venue, or an announcement flyer) and they themselves lack descriptive labels.
Consequently, leveraging such visual data to implement a multi-modal approach
is not possible with existing techniques. We next illustrate this with a specific
learning task: entity and entity type recognition.

2.3 A Specific Task: Entity and Entity Type Recognition

Consider the task of recognizing where entities of various types, such as artists
(A), artworks (W), movements (M), or venues (V), occur in a given Twitter as
visualized in Fig. 2. As the examples in this figure illustrate, this is a highly diffi-
cult task, primarily because, the tweets are short, many times poorly organized,
and they lack context to help identify that entities they may contain.
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Fig. 3. Three different models

The closest literature to this task is on the named entity recognition (NER)
problem, where one aims to discover entities, such as persons, locations, that
are referred to by their names in a given text document corpus [9–11]. Existing
approaches to this problem are often studied in four major groups: 1) rule-based
approaches rely on hand-crafted rules [12]; unsupervised learning approaches
[22] attempt to solve the problem without the help of hand-labeled training
examples; 3) feature-based supervised learning techniques rely on with careful
feature engineering; and 4) more recent deep-learning based approaches aim to
automatically discover latent representations needed for the classification and/or
detection task from the raw input [1,2,5,6,15]. This latter approach can benefit
from non-linear transformations and eliminate (or reduce) the efforts needed for
designing hand crafted features for this task. However, existing deep-learning
based approaches require significant amount of contextual information to help
interpret the text and perform poorly when provided out-of-context and short
Twitter messages as input data. Therefore, I am developing novel, multi-modal
approach to addressing this extremely difficult task.

Data Set. Using the Twitter API, we are building a Cultural Heritage dataset
collecting related tweets with their associated images. The entities in the text
messages are manually labeled by Mechanical Turkers, using the BIO tagging
scheme [7]1 Latent embeddings for the textual part of the messages are obtained
using BERT [1] a model Trained on a large corpus of unlabelled text including
the entire Wikipedia and Book Corpus. Bert generates context related embed-
ding at sub-word level. Latent embeddings for the images associated the to mes-
sages, on the other hand, are obtained from VGG16 [3] a convolutional model
trained using ImageNet 15 million labeled images in 22,000 categories.

1 We will make this data set publicly available to the research community.
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Table 1. F1 score (75% training, 15% validation, and 10% testing); each model has
been trained for 600 epochs with a batch size of 32 and AdamW optimizer [8] –
here “ideal features” corresponds to a scenario where text messages are paired with
synthetically-constructed ideal visual features to assess the maximum possible improve-
ments we can expect from FAM

F1 Score, 1000 samples

Entity Text only Text+images Ideal fts

A 0,597 0,458 0,598

M 0,734 0,449 0,792

V 0,667 0,071 0,714

W 0,612 0,255 0,619

F1 Score, 1500 samples

Entity Text only Text+images Ideal fts

A 0,678 0,545 0,728

M 0,827 0,675 0,895

V 0,538 0,456 0,690

W 0,621 0,449 0,708

Novel Multi-modal Attention Mechanisms. As we mentioned above, a
particular challenge in addressing the entity and entity type recognition challenge
is the lack of context when interpreting the messages. I argue that multi-modal
attention, if used effectively, can help alleviate this problem. Attention as a
mechanism by which a network can capture the interaction among elements of a
given data object (or across multiple data objects) to discover features weights
and use this weighting to help improve the network performance [2,13,14]. Since
our goal is to leverage visual information to help us provide context to recognize
entities in short text messages, we are especially interested in cross-attention
mechanisms, such as [21]. Figure 3 depicts, the possible models: Model (A) uses
only the text messages and applies a linear layer after the Bert model in order
to classify the tokens in the available classes. Model (B) uses text messages and
images embeddings – Bert embeddings and visual features are combined in the
attention module and the result goes through a linear model for classification.
The attention applied in this case is similar to that the one present in [2].

I am, however, proposing a novel cross-attention mechanism, depicted as
Model (C): in this model textual and visual embeddings are passed to a novel
factorizing attention module (FAM) module for a multi-classification setting,
inspired by factorization machines [4] – FAM accounts for the second order
interactions within and across textual and visual features while analyzing the
combined sparse feature space for feature weights that will inform the search
for entities in short text. As shown in Fig. 1, FAM has the potential to provide
significant improvements in F1 scores for all entity types when provided idealized
features. While the results are less accurate when provided real images, the
difference quickly improves as the number of samples increases from 1000 to
1500, which indicates that with a reasonable training corpus, the provided FAM
will surpass the text-only accuracies.

3 Conclusions and Future Work

Here, I provided an overview of my PhD work on improving information availabil-
ity in the cultural heritage domain. My research is focusing on novel algorithms
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and techniques these can include novel multi-modal, cross-attention mechanism
but also instance and n-shot learning, for leveraging multi-modal, sparse, and
noisy data available from multiple public sources to improve information quality.
Future work will include building a sufficiently large corpus to train and evaluate
algorithms and tackle latent information extraction tasks outlined in Fig. 1.
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