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Abstract. Empirical mode decomposition (EMD) is a suitable trans-
formation to analyse non-linear time series. This work presents a empir-
ical study of intrinsic mode functions (IMFs) provided by the empirical
mode decomposition. We simulate several non-gaussian autoregressive
processes to characterize this decomposition. Firstly, we studied the prob-
ability density distribution, Fourier spectra and the cumulative relative
energy to each IMF as part of the study of empirical mode decomposi-
tion. Then, we analyze the capacity of EMD to characterize, both the
autocorrelation dynamics and the marginal distribution of each simu-
lated stochastic process. Results show that EMD seems not to only dis-
criminate autocorrelation but also the marginal distribution of simulated
processes. Results also show that entropy based EMD is a promising esti-
mator as it is capable to distinguish between correlation and probability
distribution. However, the EMD entropy does not reach its maximum
value in stochastic processes with uniform probability distribution.

Keywords: Empirical mode decomposition (EMD) ·
Entropy-complexity informational plane · Intrinsic mode function
(IMF) · Stochastic Processes

1 Introduction

Empirical mode decomposition was introduced for the first time by, Huang and
collaborators in [9]. It is a fully adaptive technique useful to analyze non-linear
and non-stationary time series. The basic idea of EMD method is decompose the
actual time series into a number of intrinsic mode functions (IMFs) as the sum
of these IMFs will recover the original time series. Even this technique has been
have a great impact in analysing time series, it has the drawback to be a totally
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empirical technique and, from our knowledge, it does not have a completely
mathematical formulation that allow us to explore its properties, so their should
be evaluated empirically [16].

Despite of non-gaussian process are ubiquitous within science and technology
in such diverse areas as random number generators [11], modeling irregularly
spaced transaction financial data [5], foreign exchange rate volatility modeling
[8], studying nervous systems mechanism (Spike sorting) [6] among others, the
properties of IMFs generated from them seems to be limited evaluated [16].

For the reasons above, we propose analyse the statistical features of the
IMFs generated from autoregressive process of order 1 endowed with Gaussian,
Exponential or Uniform marginal probability distribution as prototype of non-
gaussian autoregressive processes [21]. We divide our analysis in two parts, in
the first part, we analyse the time-frequency domain computing the probability
distribution, mean, peaks, periods and the Fourier spectrum of each intrinsic
characteristic function of the respective stochastic process and within the second
part we extract energetic and entropy like features of the IMFs, the density
energy of each IMF, the accumulated energy, EMD entropy and the relative
position in the entropy-complexity plane shows the dynamical nature of each
IMF.

The paper reads as follows: Sect. 2 briefly explain the EMD technique and the
autoregressive process generation algorithm, Sect. 3 shows the statistical features
of the IMF from the series explained in the previous section and finally Sect. 4
is devoted to conclusions.

2 Empirical Mode Decomposition Features and
Stochastic Processes

We describe the stochastic processes simulated and the features from the respec-
tive IMF along with the EMD algorithm in order to make the article selfcontained
and accessible for a wider audience.

2.1 Stochastic Processes

We present all the necessary results to simulate the stochastic processes analysed
in the next section, readers are referred to the original paper of each random pro-
cess [3,12] or to [22] for a deeper explanation. There should be better algorithm
implementations, in terms of memory use and algorithmical complexity, however
these algorithms are good enough for clarity and for reproducibility purposes.

A general linear stochastic process is modeled as generated by a linear aggre-
gation of random shocks [2] as the autoregressive model of order p,

zt = φ1zt−1 + φ2zt−2 + .... + φpzt−p + at (1)
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where the current value zt is expressed as a finite, linear aggregate of previous
values of the process {zt−1, zt−2, · · · , zt−p} and a random shock at, distributed
with mean 0 and finite variance σ2.

Three kind of autoregressive process are considered within this paper: Gaus-
sian, Exponential and Uniform. The difference between them is random shock
at form. Within this paper, for sake of simplicity we set the order of the autore-
gressive process p = 1 leading to the first-order autoregressive process AR(1).

In the Gaussian process, Eq. 2 takes the form:

zt = φ1zt−1 + at (2)

where the current value zt is expressed as a finite, linear aggregate of the pre-
vious values of the process zt−1 and an independent and identically distributed
(i.i.d.) random shocks at that has marginal Gaussian distribution with mean 0
and variance σ2. We use the standard R command [15] arima.sim() to simulate
this process.

For the Exponential marginally distributed AR(1) process, we use the
NEARA(1) model [12] what is schematic present in Algorithm 3 and Eq. 2 takes
the form:

zt = at +

{
β.zt−1 w.p α

0 w.p 1 − α
(3)

with

at =

{
et w.p 1−β

1−(1−α)β

(1 − α).β.et w.p αβ
1−(1−α)β

(4)

where w.p. stands by with probability, α > 0 and β > 0 are free correlation
parameters such as ρ = αβ, providing that α and β are not both equal to one,
at has a p Exponential distribution. In Algorithm 3 we sketch the main features
of the simulation. We simulate a time series of length N (line 1) staring with a
realization of a random variable exponentially distributed with λ = 1 (line 2),
we set the desire correlation coefficient, in our simulations (line 3) and compute
α y β accordingly (lines 4 y 5), within the loop (lines 7–14) we resolve Eqs. 3
and 4. In order to generate the random variable at, we generate an exponential
random variable with λ = 1 (line 8) and the selected it according a Binomial
distribution with parameter 1−β

(1−β+α∗β) (lines 10–12). Lines 13 and 14 shows Ec.
3 when finally the stochastic process is fully generated.
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Algorithm 1. Exponential Autoregressive Process generation
1: N ← Set the desired time series spam)
2: x[1] ∼ Exp(λ = 1)
3: ρ ← Set the desired autocorrelation coefficient)
4: α ← 2∗ρ

(1+ρ)

5: β ← 1
(2−α)

6: t ← 2
7: for t := 2 to N do
8:

En ∼ Exp(λ = 1)
9: pr ← 1−β

(1−β+α∗β)
)

10: bn ∼ Bin(n = 1, p = pr)
11: at[bn == 1] ← En[bn == 1] )
12: at[bn == 0] ← En[bn == 0] )
13: bn ∼ Bin(n = 1, p = α)
14: x[t] < −at + bn ∗ beta ∗ x[t − 1]

Algorithm 2. Uniform Autorregresive Process generation
1: N ← Set the desired time series spam)
2: k ← Set k, which determine the desired autocorrelation coefficient)
3: ρ ← 1

k
)

4: x[1] ∼ sample(seq(0,(k-1)/k,1/k) ,1,replace=TRUE)
5: for t := 2 to N do
6:

x[t] < −rho ∗ x[t − 1] + sample(seq(0, (k − 1)/k, 1/k), 1, replace = TRUE)

In the Uniform autoregressive model of order 1 UAR(1) [3], depicted in Algo-
rithm 2. Eq. 2 follows,

zt =
1
k

zt−1 + at (5)

with k ≥ 2. It has been shown in [3] that zt would shield continuous U(0,1)
marginal distribution if the i.i.d. random shocks at is sampled as a 1/k uniform
distribution over the set {0, 1/k, 2/k, . . . , k−1

k }. Algorithm 3 shows the pseu-
docode for the computer implementation of Eq. 5. The desired time spam and
correlation coefficient are sets in line 1 and 2–3, respectively. In line 4 the Eq. 5
is realized for t = 1 and them in the loop for all time spam.

2.2 Empirical Mode Decomposition Features

In 1998, Huat et al. proposed empirical mode decomposition [10]. It is a fully
adaptive technique that can be applied to nonlinear and non-stationary process.
The basic idea of EMD method is decompose the complicated time series x(t)
into a number of IMFs as,

x(t) = ΣM
i=1hi(t) + r(t) (6)
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where M is the cardinality of the IMF set and r(t) is the residual after transfor-
mation.

EMD method through which EMD decomposes the original time series into a
series of IMF components with different timescales is shown in Algorithm 3. Each
IMF must satisfy the following two conditions [7]: (1) the number of extreme
and the number of zero crossings must be equal or differ at most by one (in the
entire signal length); (2) the average value of the two envelope defined by the
local maximum and the minimum must be zero at any moment. Finally, the last
level is the residue of the time series which is related with the trend from time
series.

Algorithm 3. EMD Algorithm
1: D(t) ← x(t)
2: i ← 1
3: while D(t) is not monotonic do
4:

Emax(t) ← interpolation(max{x(t)})
5: Emin(t) ← interpolation(min{x(t)})
6: m(t) ← (Emax(t) + Emin(t)/2
7: D(t) ← x(t) − m(t)
8: if D(t) satisfy the conditions of IMF then
9:

else
–

IMFi(t) ← D(t)
10: r(t) ← x(t) − IMFi(t)
11: x(t) = r(t)
12: i ← i + 1
13: x(t) ← D(t)

2.3 Time-Frequency Related Features

In order to characterize the IMF set for several non-gaussian autoregressive
processes we follow [20] and estimate:

1. Density probability distribution for each IMF using their respective his-
togram, using the Scott’s rule [20].
We use Scott’s rule for determining the bin number because this rule is opti-
mal in the sense that asymptotically minimizes the integrated mean squared
error.

2. The number of peaks of each IMF attended in the lines 4 and 5 inside the
while loop in Algorithm 3 applied to each process studied and which allows
determines the mean period of the function by counting the number of peaks
of the function [23].

3. Mean period in terms of the mean number of samples for each IMF and each
process (Gaussian, Uniform and Exponential).
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4. The effect produced by EMD method for each level of decomposition from
the time series was calculated with the spectrum of frequencies X(Ω) using
the Discrete Fourier Transform defined as

X(Ω) =
∞∑

n=−∞
x[t]e−jΩn (7)

2.4 Energy-Entropy Related Features

In [7] the EMD-entropy and EMD-statistical complexity are proposed as follows,
The total energy of each IMF is proposed as Ei = Σn

t=1[hi(t)]2 where n is the
length of the i − th IMF and hi(t) denotes the value n of the i IMF. Finally, the
total energy of signal is the sum over all total energies Ei, E = Σm

i=1Ei. Hence
the relative energy of each IMF is defined as

pi =
Ei

E
(8)

and following the usual discrete form of Shannon entropy, the EMD-entropy is
defined using pi in Eq. 8 SEMD(l) = −Σl

i=1pi × log(pi) where l should stand
for the order of EMD-entropy. As the reconstruction could be done using the
first l, l < m IMF, and regarding all other IMF rest as the rest in Eq. 6 this
new entropy has this free parameter. This entropy HEMD(l) is an unnormalized
quantity, so to restrict its value to the [0, 1] interval, it is redefined as,

HEMD(l) =
SEMD(l)

log(l)
(9)

as HEMD(l) gets it maximum value when P = (pi, . . . , pl)
= (1/l, . . . , 1/l). Another defined quantity in [13,14] is the statistical complexity,
using the Jensen-Shannon divergence, i.e.

CEMD(l) = QEMD(l)HEMD(l) (10)

where QEMD(l) = Q0 × JSD[P, Pe], Pe is a reference probability distribution
P = (pi, . . . , pl) = (1/l, . . . , 1/l) and Q0 a normalization constant. Both quanti-
ties form the entropy-complexity plane
HEMD(l) × CEMD(l) plane, There is a vast literature regarding this plane
[13,14,17–19]

3 Numerical Results and Discussion

The processes presented in the previous section were simulated, varying their
autocorrelation coefficients value to evaluate their IMFs using the features
described in the previous section as an evaluation methodology [4]. For the Gaus-
sian processes five positively autocorrelated time series were simulated, with the
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corresponding color code rho = ((yellow), 0, (magenta), 0.2, (cyan) 0.4, (red)
0.6, (green) 0.8, (blue) 0.9), all these processes were simulated with normally
distributed shocks at with σ = 1 and μ = 0. The Exponential processes where
simulated with suitable values for α and β (see lines 4 and 5 in Algorithm 3)
such for exponential process are rho = (yellow) 0, (magenta) 0.125, (cyan) 0.25,
(red) 0.5, (green) 0.75) and the autoregressive Uniform process was simulated
for rho = (yellow) 0, (magenta) 0.1, (cyan) 0.2, (red) 0.25, (green) 0.33, (blue)
0.50), plus the uncorrelated data with Uniform marginal distribution. All series
have length N = 1015 points. IEEE 754 double precision floating point numbers
was used for all computations.

Figure 1 shows the probability density function for IMFs 1, 3 and 5 of each
stochastic process. Surprisingly, Uniform distribution, no matter the autocorre-
lation coefficient (see Fig. 1a, 1d and 1g.,) does not lead an equiprobable dis-
tribution of pi (in Eq. 8) since the density probability distribution for the first
IMF is bi-modal. This fact has a profound impact on the entropy estimation
based on EMD and especially in the entropy-complexity plane as it can be seen
later in this Section. Gaussian process behaves as reported previously [7] and
exponential processes seem to be more likely as equiprobable distribution of pi.
By equiprobable distribution we mean that all the IMF has the same probability
distribution

In Tables 1 and 2 show the number of peaks and the mean period respectively
for each simulated stochastic processes. The results show that, for all processes,
the mean period of any IMF component is almost exactly double that of the
previous one. This result is consistent with the result obtained by Wu et al.
(2004) and Flandrin et al. (2003) for Gaussian distributions. Also, the results
indicate that when the autocrrelation increases the mean difference between any
two IMF component increases, no matter the probability distribution. Standard
deviation also increases as the autocorrelation coefficient increase, too. Table 1
shows that for times series where the value of autocorrelation is higher there are
fewer peaks in each IMF component so that, the number of peaks can be related
to how correlated the samples of time series are and no matter about the time
series marginal distribution.

Figure 3 shows Fourier spectra (Eq. 7) from simulated stochastic processes for
IMFs 1, 3 and 6. It can be observed that when the IMF component increases the
content of information from the process is found in low frequency which corre-
sponds with [23]. Furthermore, we can see in IMF 1 component that Exponential
distribution has more frequency content in low frequency than Gaussian distri-
bution and Uniform distribution. It is interesting to note that when the value of
the autocorrelation coefficient increases, the frequency content increases in low
frequency so that the information about autocorrelation from the processes is
mainly in the lower part of the spectra. The study of the stochastic processes
with Gaussian distribution indicates that when the IMF component increases
the spectra is concentrated on low frequency and its amplitude increases as if
the energy decreaces slowly in each IMF component. For a stochastic process
with uniform or exponential distribution, it does not happen.
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(h) Exponential
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Fig. 1. Probability density distribution plots for the relative energy of IMFs 1-
3-6 (Eq. 8) for the simulated stochastic processes. Color codes are for rho =
0, 0.10, 0.2, 0.25, 0.33, 0.5, 0.75 are yellow, magenta, cyan, red, green, blue, respectiv-
elly. (Color figure online)



EMD and AR Processes 119

(a) Uniform AR(1) (b) Exponential AR(1) (c) Gaussian AR(1)

Fig. 2. Cumulative plots for the relative Energy (Eq. 8) for the simulated stochastic
processes. Color codes are for rho = 0, 0.10, 0.2, 0.25, 0.33, 0.5, 0.75 are yellow, magenta,
cyan, red, green, blue, respectivelly. (Color figure online)

Fig. 3. Fourier spectra (Eq. 7) of IMFs 1,3 and 6 for simulated stochastic processes.
A, D, G: Gaussian process. B, E, H: Uniform process. C, F, I: Exponential process.
Color codes are for rho = 0, 0.10, 0.2, 0.25, 0.33, 0.5, 0.75 are yellow, magenta, cyan,
red, green, blue, respectivelly. (Color figure online)
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Table 1. Number of peaks of IMFs 1–6 obtained from the simulated stochastic pro-
cesses of 1015 data points and rho = (0, 0.4, 0.9) for Gaussian and Uniform distribu-
tions, rho = (0,0.1,0.2) for Exponential distribution and the standard deviation.

Gaussian distribution

IMF r = 0 r = 0.4 r = 0.9

1 22559 (90.5) 20897.5 (136.5) 19847.5 (252.5)

2 9126.5 (73.5) 7931 (65) 6542.5 (473.5)

3 3767 (44.5) 3206.5 (52) 2313.5 (152)

4 1569 (30.5) 1323.5 (31) 892 (58)

5 651 (19.5) 550 (14.5) 361 (25)

6 272 (12) 228.5 (12.5) 149 (12)

Uniform distribution

IMF r = 0 r = 0.4 r = 0.9

1 22435 (88) 20965 (115.5) 16831 (127)

2 9075.5 (53.5) 8121 (72) 6492.5 (63)

3 3757.5 (44.5) 3345 (46.5) 2632 (44.5)

4 1562.5 (30.5) 1392 (26.5) 1086.5 (23.5)

5 651 (19.5) 576.5 (18) 448 (20)

6 271 (11) 238.5 (12) 187 (10)

Exponential distribution

IMF r = 0 r = 0.1 r = 0.2

1 22289 (108) 20867.5 (93.5) 17300 (110)

2 8771.5 (88.5) 8135.5 (81) 6561 (94)

3 3606 (45) 3327.5 (50) 2633.5 (50)

4 1500 (31.5) 1377 (22) 1073.5 (25.5)

5 622 (20) 575 (16) 440 (16)

6 259 (11.5) 237 (10) 183 (9)

In Fig. 2, cumulative energy plots are displayed for each of the three sim-
ulated stochastic processes. As EMD allows reconstructing time series up to a
certain m in Eq. 6, this plot is just a summation of the relative energy values. It
is shown that with only the first five IMFs we recover most than 80% of energy
for all simulated processes. It is interesting to note that the Uniform stochas-
tic processes retrieve the information with less IMFs than the other processes
and the process which needs more IMF’s to retrieving the information is the
Gaussian. In turn, as the correlation increases, the number of IMFs necessary to
retrieve the information also increases. This characteristic could be an advantage
of this method since it would allow knowing the size of the entropy by means of
an explicit criterion. In other words, if the researcher were to agree to recover
90% of the time series information, would search for the value of m that makes
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Table 2. Mean periods of IMFs 1–6 obtained from the simulated stochastic processes
of 1015 data points and rho = (0, 0.4, 0.9) for Gaussian and Uniform distributions,
rho = (0, 0.1, 0.2) for Exponential distribution in terms of the number of samples and
the standard deviation.

Gaussian distribution

IMF r = 0 r = 0.4 r = 0.9

1 1.4525 (0.0058) 1.568 (0.0102) 1.651 (0.021)

2 3.5904 (0.0289) 4.1316 (0.0339) 5.0085 (0.3446)

3 8.6987 (0.1026) 10.2192 (0.1655) 14.1639 (0.9013)

4 20.8846 (0.4064) 24.7586 (0.5791) 36.7354 (2.354)

5 50.3349 (1.5092) 59.5782 (1.5695) 90.7701 (6.2761)

6 120.4706 (5.3175) 143..4055 (7.7988) 219.9195 (17.6223)

Uniform distribution

IMF r = 0 r = 0.4 r = 0.9

1 1.4606 (0.0057) 1.5630 (0.0086) 1.9449 (0.0146)

2 3.6106 (0.0213) 4.0350 (0.0357) 5.0471 (0.049)

3 8.7207 (0.1035) 9.7961 (0.1362) 12.4498 (0.2107)

4 20.9715 (0.4103) 23.5402 (0.4467) 30.1592 (0.6552)

5 50.3349 (1.5092) 56.8396 (1.7537) 73.1429 (3.2308)

6 120.9151 (4.8920) 137.3926 (6.8883) 175.2299 (9.3773)

Exponential distribution

IMF r = 0 r = 0.1 r = 0.2

1 1.4701 (0.0071) 1.5703 (0.0070) 1.8941 (0.0120)

2 3.7357 (0.0378) 4.0278 (0.0400) 4.9944 (0.0715)

3 9.0871 (0.1134) 9.8476 (0.1480) 12.4428 (0.2348)

4 21.8453 (0.4593) 23.7967 (0.3799) 30.5245 (0.7255)

5 52.6817 (1.6971) 56.9878 (1.5943) 74.4727 (2.6967)

6 126.5174 (5.6308) 138.2616 (5.7875) 179.0601 (8.8600)

that recovery and then compute Shannon entropy using the pi set. We have
arbitrarily selected the value of m = 5 and we let m = 6 as the residual energy
in the plot.

Figure 4 shows three entropy-complexity planes. It is interesting that the
Exponential processes are located in the right part and below the plane (see
Fig. 3b) instead the uniform processes are located in the middle part of the plane
(entropy = 0.6). This differs significantly from previous results referring to the
same processes but located in the plane using the permutation entropy [22].
On the one hand, using the symbolization of Band and Pompe [1] to calculate
the probabilities, the location of the three processes in the plane is practically
indistinguishable, suggesting that the symbolization proposed by Band and
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Fig. 4. Several EMD Entropy-Complexity planes for the simulated stochastic processes.
Color codes are for Uniform are rho = (0, 0.1, 0.2, 0.25, 0.33, 0.50), for Exponential
process are rho = (0, 0.125, 0.25, 0.5, 0.75) and for Gaussian process are rho = (0, 0.2,
0.4, 0.6, 0.8, 0.9) (Color figure online)

Pompe does not distinguish between probability distributions if not only between
different correlations; on the other hand, in the methodology proposed in [7]
entropy recognizes both characteristics, the marginal distribution of the stochas-
tic process and autocorrelation. On the other hand, regarding the densities shown
in Fig. 3, the order of the distributions is not as expected, one would have
expected the maximum entropy to manifest in uniform stochastic processes,
however, it is shown that these processes have the minimum entropy among the
three analyzed and that the maximum entropy occurs in exponential stochastic
processes.

4 Conclusions

Exploring features for IMF descriptions is an interesting task, useful in order
to characterize actual time series. If a real time series is tough as a realization
of an stochastic process endowed with a correlation structure and a marginal
probability distribution, the IMF features could reveal some features of both.

Regarding the distribution if the energy for each IMF component and each
stochastic process with different distribution is calculated, for a process with
Gaussian distribution the energy loss in each IMF is lower compared with the
previous IMF than the process with uniform or Exponential distribution. Thus,
the EMD method in a Non-Gaussian process produces a large decrease in the
energy when IMF component increment. We also observe Exponential distribu-
tion has more frequency content in low frequency than Gaussian and Uniform
distribution.

According to the correlation value from distribution we observe for high
values of autocorrelation coefficient that the frequency content increases in low
frequency while for low values the frequency content decreases.
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EMD also seems not to only discriminate autocorrelation but also the
marginal distribution of simulated processes, as can be seen in Fig. 4. This would
give it good performance as a classifier shown in [7] and should be explored. How-
ever, this strategy to calculate the probabilities shows a challenge and that is
that the maximum entropy is not found in the scenario of greater uncertainty,
that is, in the uniform distribution, as it can be seen in Fig. 4. This characteristic
must be taken into account if the intention of the investigation is the character-
ization between chaos and noise. In particular, statistical complexity includes a
measure of distance from a reference probability, and this reference is generally
established as the equilibrium probability and this is not the case if we follow
the proposal in [7].

This is a step ahead in using EMD to characterize several stochastic processes
presents in science and technology. Even more research is needed in validating
this approach with several probability distribution and correlation structures we
think the results present in this contribution are general enough to a first glimpse
into the subject.
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