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Abstract. The human gastrointestinal tract is colonized by millions of
microorganisms that make up the so-called gut microbiota, with a vital
role in the well-being, health maintenance as well as the appearance of
several diseases in the human host. A data mining analysis approach
was applied on a set of gut microbiota data from healthy individuals.
We used two machine learning methods to identify biomedically relevant
relationships between demographic and biomedical variables of the sub-
jects and patterns of abundance of bacteria. The study was carried out
focusing on the two most abundant human gut microbiota groups, Bac-
teroidetes and Firmicutes. Both subsets of bacterial abundances together
with the metadata variables were subjected to an exploratory analy-
sis, using self-organizing maps that integrate multivariate information
through different component planes. Finally, to evaluate the relevance of
the variables on the biological diversity of the microbial communities, an
ensemble-based method such as random forest was used. Results showed
that age and body mass index were among the most important features
at explaining bacteria diversity. Interestingly, several bacteria species
known to be associated to diet and obesity were identified as relevant
features as well. In the topological analysis of self-organizing maps, we
identified certain groups of nodes with similarities in subject metadata
and gut bacteria. We conclude that our results represent a preliminary
approach that could be considered, in future studies, as a potential com-
plement in health reports so as to help health professionals personalize
patient treatment or support decision making.
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1 Introduction

Data science comprises different scientific fields of knowledge to target the anal-
ysis of complex and massive data. In particular, the increased interest on the
application of machine learning algorithms to extract hidden associations or
patterns in electronic health records, processing of medical images, prediction
of a health situation or classification of patients has demonstrated the need for
machine learning tools for reliable decision-making in healthcare and handling of
biological data. The human gastrointestinal tract harbors millions of microorgan-
isms which includes bacteria, archaea, fungi and viruses, interacting in symbiotic
relationships between the host and each microbial community. This is known as
the gut microbiota, while the collective genome of all symbiotic and pathogenic
microorgnisms represents the gut microbiome. The establishment of a large part
of the component communities that will remain in the adult life occurs at birth
and during the first years of life [1,2] and its composition is shaped not only by
the host genetics but also by environmental factors, nutritional status, age and
lifestyle. Importantly, the gut microbiome plays an essential role in a number of
health-beneficial functions (digestion, synthesis of essential vitamins and amino
acids, absorption of calcium, magnesium and iron, fermentation of indigestible
components, protection against pathogens, etc.) [3].

The rates of growth and survival of its component populations may fluctuate
in response to temporary stressors, such as changes in diet or the consumption of
antibiotics [4]. This potential for dynamic restructuring involves two important
characteristics of the gut microbiome: plasticity and resilience [5,6]. Ongoing
research in human and animal models highlights the importance of a healthy
gut microbiome since persistent disbalances in composition and stability, known
as dysbiosis, are associated to the onset and progression of chronic diseases
that include obesity, irritable bowel syndrome, diabetes, cancer, and neurological
diseases such as Parkinson’s, among others [7].

The generation of biological knowledge from the large flow of data generated
by new technologies in biomedical sciences has accelerated their transformation
into data-centered fields. Thus, the study of the human gut microbiome repre-
sents a major challenge since it requires an interdisciplinary work between com-
puter science and medicine. The interaction between these two fields will help
obtain knowledge about gut bacteria interactions in human health and disease.

In the present work, we analyzed microbiome abundance data and the asso-
ciated metadata using a machine learning approach: we used the visualization
capabilities offered by self-organizing maps to identify patterns of multivariate
data stored in multiple layers and additionally, we applied random forest to
model the prediction of microbial diversity. For each analysis, we focused on
the abundance levels of two major groups of the human gut bacteria, such as
Bacteroidetes and Firmicutes.
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2 Methods

2.1 Dataset

Microarray profiling data of human gut microbiota and anonymized metadata
were obtained from the Dryad Digital Repository, as described by [8]. Briefly, the
data matrix contained 1172 intestinal samples of western adults. In each sample,
bacterial abundances were quantified using the HITChip phylogenetic microar-
ray. This technology allows the assessment of relative abundances of gut bacteria
through signal intensities of the targeted 16S rRNA gene, frequently used for
the identification of poorly described or non cultured bacteria. Data contained
hybridization signals for 130 genus-like phylogenetic groups. Subject metadata
included age, sex, nationality, probe-level Shannon diversity, BMI group and
subjectID. Geographical origin of the study subjects were: Central Europe (Bel-
gium, Denmark, Germany, the Netherlands), Eastern Europe (Poland), Scan-
dinavia (Finland, Norway, Sweden), Southern Europe (France, Italy, Serbia,
Spain), United Kingdom/Ireland (UK, Ireland) and the United States (US). We
used VIM and tidyverse R packages [9,10] to check for the presence of missing
values (NAs). Records containing NAs were carefully removed without causing
bias in the dataset. During the cleaning process, the category ‘Eastern Europe’
was turned out since it was represented by only one complete case. The final
dataset to be used was represented by 1056 complete patient records containing
130 bacterial abundance data and subject metadata.

2.2 Self-organizing Maps (SOMs)

Self-organizing maps (also known as Kohonen maps) represent an optimal option
to organize multidimensional data in a two-dimensional space by using a neural
network. SOM uses the vector space as a model to represent data in a two-
dimensional lattice: each value through N samples could be referred to as a data
point in an N-dimensional space. Thousands of data points would therefore form
data clouds in space, with a intrinsic topology due to geometric relationships.
From this it follows that the greater the similarity in the data value level, the
closer is the geometric space they occupy. To visualize the trained SOM, we used
heatmaps for each variable to plot the degree of connectivity between adjacent
output neurons through the use of a color intensity panel. In the case of multi-
variate datasets, the visualization of different heatmaps allows an overall analysis
of the relations between the variables since maps are linked to each other by posi-
tion: in each map, a node in a given location corresponds to the same unit in
another map. The SOM map can be implemented in different topologies. Data
were divided into two subsets by major groups of gut bacteria (Bacteroidetes
and Firmicutes). We used a regular hexagonal 2D grid consisting of 750 neu-
rons, in 30× 25 grids. Data was logarithmically-scaled before training. We used
the kohonen R package, which provides a standardized framework for SOMs.
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2.3 Random Forest

Random forest (RF) is an ensemble learning method that can solve regression
and classification problems. The algorithm uses a random subset of the training
samples for each tree and a random subset of predictors in each step during the
training process. These two sources of randomization make the algorithm robust
to correlated predictors and more reliable at obtaining average outputs into a
model. Data were divided into two subsets by major groups of gut bacteria (Bac-
teroidetes and Firmicutes). Bacterial abundance data and metadata were used
as RF regressors to generate a diversity prediction model, which was performed
using the RF regression algorithm provided by the R interface for h2o [11]. We
used 10-fold cross validation for training the regression models and their perfor-
mance were evaluated using Mean Absolute Error (MAE) as the error metric.
After parameter tuning (mainly focused on the number of trees) through cross
validation, the best RF regression model was selected.

3 Results

3.1 Characteristics of the Study Population

The degree of obesity is a relevant aspect in gut microbiome studies in terms of
its influence on the microbiota composition [12,13]. This parameter, that can be
obtained through the body mass index (BMI), indicates the nutritional status
of an individual. Descriptive analysis of the study population showed that lean
individuals were homogeneously distributed in all age groups, while overweight,
obese and severe obese categories were more abundant in 45–60 year-old individ-
uals. A large proportion of the underweight population was represented between
20–30 years old (Fig. 1).

The distribution of the different BMI categories in each geographic region
showed that lean individuals represented approximately half of the proportions
for all locations. For Scandinavia, Southern Europe, UK/Ireland (UKIE) and the
US, the following proportion was represented by overweight subjects. In contrast,
in Central Europe, the second proportion after lean individuals was represented
by obese individuals. Morbid obese subjects were present only in Central Europe
(Fig. 2).

3.2 SOM Analysis

Each component plane or map in a SOM represents one type of data: a two-
dimensional lattice for each metadata variable (BMI, nationality, age, sex and
diversity) as well as for each bacteria (whose relative abundance is represented
in expression levels of the 16S rRNA gene). Since each map preserves shape and
density, exploration of the geometric relationships between nodes allows a direct
identification of similarities and differences between the layers.
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Fig. 1. Distribution of the BMI categories across age intervals in the study population.
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Fig. 2. Proportion of each BMI category of the study subjects across different geo-
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Bacteroidetes. After running the SOM algorithm using the Bacteroidetes sub-
set, the different regions in each map indicated that the age distributed into two
well-defined subregions of nodes for younger ages (around 20 years old), quite
separated from a small group of nodes representing older individuals (older than
65 years old). Nodes representing 40–50 year old subjects were scattered through-
out the map (Fig. 3A). Men and women were clearly distributed in two large,
separated areas in the map (Fig. 3B). Scandinavian individuals mapped in a few
groups of isolated nodes while Central European subjects were homogeneously
distributed. Interestingly, the map identified an isolated group of nodes corre-
sponding to individuals from the United States (Fig. 3C). Additionally, under-
weight and lean subjects mapped in two wide groups, while severe and morbid
obese individuals mapped mainly in a small and defined group of nodes (Fig. 3E).
The distribution of microbial diversity showed that two small and defined groups
of nodes mapped low diversity values while higher values distributed into larger
and clearly defined subsets of nodes across the map (Fig. 3D).

After SOM training, the abundance levels of each bacteria species of the
Bacteroidetes phylum was also represented in a map. In the present dataset,
several members belonging to this phylum were identified but no overlay between
any bacterial map was observed (data not shown). However, since many members
of the Bacteroidetes community have a relevant role in the host health, we chose
to analyze two prominent bacteria whose relative abundances are known to be
influenced by the host lifestyle and diet: a high fat and protein intake is associated
with elevated microbial presence of Bacteroides species, while a high fiber intake
is associated with high microbial levels of Prevotella species [14,15]. It appears
that the abundances of these two Bacteroidetes members showed no overlay
between any host metadata map because there are no coincidences in location
(Fig. 3F and G).

The superimposition of the multiple maps described above allows to obtain
some clear aspects of the data from the perspective of the Bacteroidetes subset:

– Low diversity values overlaps with a lower BMI (lean subjects) corresponding
to young men from Central Europe and Scandinavia (indicated by a red circle
in Fig. 3A–E).

– Interestingly, another subset of low diversity values overlaps with high BMI
values (that is, severe to morbid obese) corresponding to middle-aged female
individuals from Central Europe (indicated by a black circle in Fig. 3A–E).

– The small proportion of young subjects is equally represented in both men
and women, while older individuals correspond exclusively to men.

– There are no women older than 65 years.
– US nationality corresponds to lean women in the range of medium values of

microbial diversity.

Firmicutes. When subject metadata was trained using the Firmicutes subset,
the different layers showed a more disperse variable distribution in the maps:
middle-age individuals were homogeneously represented throughout the lattice
while younger (around 20 years old) and older ages (older than 65 years) mapped
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Fig. 3. SOM results for metadata variables associated with Bacteroidetes. The color
index of each map is established based on the values for each variable. A) Age, scale
adjusted for a range from 18 to 77 years old, blue = younger, red = older adults. B) Sex,
blue = male, red = female. C) Nationality, color gradient beginning at Central Europe
(level 0, color blue), Scandinavia (level 1, light blue), Southern Europe (level 2, green),
UK/Ireland (level 3, orange) and the US (level 4, red). D) Diversity, scale adjusted
for a range of 4.7 to 6.3 diversity index values beginning at blue (lowest diversity) to
red (highest diversity). E) BMI, color gradient beginning at underweight (color blue),
lean (light blue), overweight (green), obese (yellow), severe obese (orange) and morbid
obese (red). In F) P. ruminicola and G) B. vulgatus the color gradient represents the
level of abundance, blue = low, red = high. (Color figure online)

in small, discrete groups of nodes (Fig. 4A). Men and women were not as clearly
separated in their node distribution as in the Bacteroidetes subset (Fig. 4B).
Regarding nationality, a node pattern similar to Bacteroidetes was observed
(Fig. 4C). High microbial diversity values predominated throughout the map
while only three nodes mapped for low diversity values (Fig. 4D). Additionally,
lean and underweight subjects predominated in most of the nodes and only a
very small group of nodes grouped the highest BMI values, corresponding to the
severe obese category (Fig. 4E).

The phylum Firmicutes is made up of around 250 different genera of bacteria,
such as Lactobacillus, Bacillus, Clostridium, Enterococcus, and Ruminicoccus,
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Fig. 4. SOM results for metadata variables associated with Firmicutes. The color
index of each map is established based on the values for each variable. A) Age, scale
adjusted for a range from 18 to 77 years old, blue = younger, red = older adults. B) Sex,
blue = male, red = female. C) Nationality, color gradient beginning at Central Europe
(level 0, color blue), Scandinavia (level 1, light blue), Southern Europe (level 2, green),
UK/Ireland (level 3, orange) and the US (level 4, red). D) Diversity, scale adjusted
for a range of 4.7 to 6.3 diversity index values beginning at blue (lowest diversity) to
red (highest diversity). E) BMI, color gradient beginning at underweight (color blue),
lean (light blue), overweight (green), obese (yellow), severe obese (orange) and morbid
obese (red). In F) P. micros and G) L. gasseri the color gradient represents the level
of abundance, blue = low, red = high. (Color figure online)

among other important members. In the present dataset, 74 members belonging
to this phylym were identified and consequently, each generated a heatmap after
SOM training (data not shown). However, superimposing multiple maps revealed
that only one node corresponding to overweight individuals slightly coincided
with higher values of abundance of a single species, Peptostreptococcus micros
(indicated by an arrow in Fig. 4F). This represents an interesting result since
several other members of Firmicutes have previously been associated to obesity
[16,17]. Additionally, an overlay between high microbial diversity and higher
values of abundance for Lactobacillus gasseri was observed (indicated by an
arrow in Fig. 4G).
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The map overlay between diversity and BMI categories allowed to observe
that:

– Severe to morbid obese individuals were middle-age women from Central
Europe (indicated by a red circle in Fig. 4A, B, C and E).

– Many of the maximum diversity values superimpose with the lowest BMI
categories (indicated by a black circle in Fig. 4D and E).

3.3 Random Forest

Diversity is an important variable in microbiome research because it describes
the richness (the number of classes) and distribution of the component microor-
ganisms among classes. Understanding diversity in the intestinal microbial com-
munity also allows us to understand the impact of factors on bacteria distri-
bution, such as the use of antibiotics, type of diet, degree of obesity, medical
interventions and environmental factors, among others (reviewed in [18]). We
developed a RF regression model of microbiome diversity. A very useful visual
way to interpret RF results of the prediction model is through a ranking list of
feature importance, which refers to the relative influence of each feature on the
target variable. It considers whether a variable was selected to split and how
much the squared error (over all trees) improved as a result.

Bacteroidetes. We observed that the age of the individuals was the most impor-
tant factor in the regression model to predict the diversity of the gut microbiota.
Regarding the bacterial abundances, it was observed that two species had the
greatest relative importance in the identification of diversity: Prevotella rumini-
cola and Bacteroides ovatus. On the other hand, of the remaining metadata
variables, the BMI of individuals had a remarkable position in the ranking of
importance, followed by the geographic location. Gender was not important in
the prediction of diversity. While the list of importance for each variable is infor-
mative, a better interpretation is obtained after scaling between 0 and 1 in a
descending order of importance (Fig. 5A).

Firmicutes. When data was RF-trained considering this subset, the first three
positions of the list were occupied by the BMI of the individuals, followed by
Nationality and Age. Regarding the abundances of the 74 types of bacteria, it was
observed that two members had the greatest relative importance in predicting
diversity: Lachnobacillus bovis and Granulicatella (Fig. 5B).
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Fig. 5. Scale of the relative importance of the first ten variables on the diversity of
Bacteroidetes (A) and Firmicutes (B) after implementing random forest.

4 Discussion

We sought to characterize the relations between subject metadata and specific
bacterial members of the gut microbiome in a thousand western adults through
the use of two machine learning methods that provide robust analytical visual-
izations, such as self-organizing maps and random forest. Bacteria of the human
intestinal microbiome are taxonomically classified into six large groups or phyla,
which in turn are subclassified into classes, orders, families, genera and species.
The present work addressed the analysis on two of the most abundant phyla,
Bacteroidetes and Firmicutes, which represent 90% of the gut microbiota [19].

The configuration of the SOM outcome maintains the topological structure
of the input multidimensional data, in which similar values are mapped in the
same or near node in a two dimensional map. Such topological preservation is
of particular significance in the exploratory phase of omics data mining since
there is generally no a priori knowledge of data structure. We presented the
visualization of different superimposed heatmaps that allowed the exploration of
relationships between input variables. This way of presenting SOM outcomes is
similar to previous studies [20].

Our results showed that only one species of Firmicutes, Peptostreptococcus
micros, was slightly associated to nodes that grouped overweight individuals,
mostly middle-aged women. Notably, several previous studies have shown that
Peptostreptococcus micros (later classified as Parvimonas micra) is one of var-
ious colorectal cancer (CRC) microbial markers [13,21]. This bacteria has also
been reported to have a pathogenic role in periodontal diseases [22]. Consid-
ering the behavior of the oral microbiome during periodontal infection and its
influence in health complications, such as diabetes, cardiovascular disease, and
obesity [23], the significance of the results obtained here provides a basis for
future studies on the possible role of gut bacteria as biological markers of a
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developing overweight condition. Among bacteria with known beneficial roles,
we observed that high abundance of Lactobacillus gasseri was related to nodes
that grouped high diversity values. This result supports the previously reported
role of Lactobacillus gasseri in the management of obesity and probiotic prop-
erties [24,25]. The topological structures of the metadata variables were slightly
different depending whether Bacteroidetes or Firmicutes subsets were used for
SOM training. For both age and sex, mapping distribution of the study subjects
was more effective using the Bacteroidetes data. In the case of the different BMI
categories, subject distribution was more effective using Firmicutes data.

Although the SOM results presented here allowed us to gain insight into
the different regions of matching information underlying host metadata and the
relative abundance of bacteria, we consider that a deeper approach of the use of
SOM is needed, in terms of parameter configuration, such as size, dimensionality,
shape, learning rate, among others. Considering that the relationships between
gut microbiome and host BMI are dynamic and complex, self-organizing maps
provide an excellent tool of visualization and dimensionality reduction that could
serve as a complementary tool in a biomedical report.

Analysis of the microbiome diversity in the human body is essential to
understand the structure, biology and ecology of its component communities.
This analysis represents a critical first step in microbiome studies. When super-
vised learning through a regression random forest algorithm was used to deter-
mine which variables were important in the prediction of microbial diversity,
we observed that both age and BMI category of the individuals appeared as
the most relevant in the regression models generated for Bacteroidetes and Fir-
micutes subsets. The contribution of these physiological factors in shaping the
gut microbiome has been reported previously: with age, the beneficial func-
tions provided by a healthy gut microbiome begin to decrease in association to
an increasing frequency of inflammatory processes and disease, especially in the
elderly. Regarding the influence of BMI, various studies that compare the intesti-
nal microbiota between obese and lean individuals indicate that the variation in
the degree of diversity is associated with body weight (obese individuals present
a low diversity, which means a higher BMI) [26–29].

Random forest regression also indicated that two Bacteroidetes species were
the most relevant on diversity: Prevotella ruminicola is involved in the response
of individuals to dietary supplements [30] and Bacteroides ovatus is a dominant
species in the human intestine, previously identified as a next generation probi-
otic due to its preventive effects on intestinal inflammation (reviewed in [31]).
On the other hand, two members of the Firmicutes group were identified as
important at predicting diversity in this subset: Lachnobacillus bovis and Gran-
ulicatella whose relative abundances are reported to be influenced by the type
of diet and the use of antibiotics in obese individuals [32,33]. Hence, some of
the results obtained in both RF regression models are consistent with published
microbiome research, indicating the robustness of the RF regression algorithm.
A further analysis is needed that involves a complete parameter tuning so as to
characterize the most accurate RF setting for a microbiome project.
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In the last decade, the impulse provided by innovative developments in tech-
nology and the generation of large volumes of microbiome data has caused an
increase in the use of machine learning methods in this field, such as microbial
ecology, identification of certain bacteria to cancer and forensics, among oth-
ers [34–36]. We consider that our study represents the start of a contribution
to the vast field of microbiome research, although we need further refinements
of the methodology used in order to validate the obtained models and improve
performances.

The accumulating research of the gut microbiome and its influence on health
and disease has accelerated the need for integration of multidisciplinary fields
in its analysis. In general, health professionals (medical doctors, nurses, bio-
chemists) are not prepared to work in all the steps along the data analysis
process (cleaning, filtering, choice of algorithms, interpretation, etc.). Therefore,
data science and machine learning can contribute to the translation of innovative
results into valuable knowledge that provide decision support in microbiome-
based precision medicine.

5 Conclusions

We used two robust computer science-based methods, such as self-organizing
maps and random forest, to study the relationships between gut microbiome data
and host information. Our results represent a preliminary approach that could
be considered, in future studies, as a potential complement in health reports
so as to help health professionals to individualize patient treatment or support
decision making. Additionally, this work contributes to the increasingly growing
area of gut microbiome interactions on human health and disease. However,
further studies using other machine learning algorithms to validate the results
obtained here are required.
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