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Abstract. Graph Neural Networks (GNNs) field has a dramatically development
nowadays due to the strong representation ability for data in non-Euclidean space,
such as graphs. However, with the larger graph datasets and the trend of more
complex algorithms, the stability problem appears during model training. For
example, GraphSAINT algorithm will not converge in training with a probabil-
ity range from 0.1 to 0.4. In order to solve this problem, this paper proposes an
improved GraphSAINT method. Firstly, a proper graph normalization strategy is
introduced into the model as a neural network layer. Secondly, the structure of the
model is modified based on the normalization strategy to normalize the original
input data and the input data of the middle layer. Thirdly, the training process
and the inference process of the model are adjusted to fit this normalization strat-
egy. The improved GraphSAINT method successfully eliminates the instability
and improves the robustness during training. Besides, it accelerates the training
procedure convergence of the GraphSAINT algorithm and reduces the training
time by about a quarter. Furthermore, it also achieves an improvement in the pre-
diction accuracy. The effectiveness of the improved method is verified by using
the citation dataset of Open Graph Benchmark (OGB).

Keywords: Graph Neural Networks (GNNs) · Graph normalization · Training
stability · Link prediction

1 Introduction

The Graph Neural Networks (GNNs), which was firstly proposed in 2009 [1], has been
developed rapidly in recent years due to the powerful processing ability for data in non-
Euclidean space, for example the graph data [2–6]. Nowadays, GNNs are widely used in
many areas such as social networks [7, 8], drug discovery [9] and recommendation [10,
11]. Asmentioned in [12], there have beenmainly four GNNs categories so far including
Recurrent Graph Neural Networks (RecGNNs) [13, 14], Convolutional Graph Neural
Networks (ConvGNNs) [15–23], Graph Autoencoders (GAEs) [24–27] and Spatial-
temporal Graph Neural Networks (STGNNs) [28–30]. Among them, ConvGNNs realize
the generalization of the convolution from grid data to graph data, whose typical model
is Graph Convolution Network (GCN) [31, 32].

In order to improve the generalization performance of GCN for new nodes, theGraph
SAmpling based INductive learningmeThod (GraphSAINT) algorithm [33] is proposed.
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GraphSAINT can realize the effective training of the deepGCNs by using a special mini-
batch construction way. This algorithm obtains a set of subgraphs by sampling the orig-
inal training graph and then builds a GCN based on the subgraphs. Therefore, the graph
sampling strategy is the main contribution of GraphSAINT. Besides, this strategy also
alleviates the problemof the neighbor explosion, so that the number of neighboring nodes
no longer increases exponentially with the number of layers in GraphSAINT. Moreover,
compared with GraphSAGE [34], GraphSAINT also enhances the processing capabil-
ity for large graphs by applying the subgraph sampling method. Therefore, although
GraphSAINT uses the same inductive framework as GraphSAGE, GraphSAINT and
GraphSAGE are different on sampling method: GraphSAINT samples multiple sub-
graphs from original dataset to construct minibatch for training; while GraphSAGE
adopts the neighbor-node sampling method to generate the node embeddings.

Although GraphSAINT solves the problem of neighbor explosion and has the
stronger generalization ability than GCN, the use of the graph sampling strategymakes it
difficult training the network. In general, nodes which have the higher influence on each
other should be selected to form a subgraph with the higher probability. This ensures
that the nodes can support each other within the subgraph. However, such sampling
strategy leads to different node sampling probabilities and introduces bias in the mini-
batch estimator. In [33], the normalization techniques are developed to deal with this
issue so that the feature learning will not give priority to the more frequently sampled
nodes. As a result, GraphSAINT effectively solves the problems of instability and non-
convergence faced in the training process, and obtains a good performance improvement
on the classification task.

However, experiments show that the stability problemofGraphSAINT in the training
process appears when GraphSAINT is applied to solve the link prediction task [35–
38] in different application areas [39–43] on the citation dataset of the standard Open
Graph Benchmark (OGB) [44]. Link prediction is widely used in many aeras such
as recommendation system [45–47], biological networks [48] and knowledge graph
completion [49]. Different with node classification, the main task of link prediction is to
judge whether two nodes in a network are likely to have a link. This stability problem in
the training process means that the normalization techniques in [33] are insufficient to
improve the training quality for the link prediction task. Thus, it is difficult to avoid falling
into non-convergence during training, which appears that the value of the training loss
suddenly rises and remains forever unchanged. This is a problem that has a big impact
on the GNN model development.

From the analysis of the CNN training method, we had some new discovery in train-
ing stability. Stochastic gradient descent and its variants such as momentum [50] and
Adagrad [51] have been widely used to train the neural networks. The training process is
complicated. Besides, as the network gets deeper, small changes to the network param-
eters will amplify [52]. In the process of constantly adapting to the new distribution, the
distributions of layers’ inputs present a problem called covariate shift [53–58], which
is harmful for the neural network convergence. Ioffe and Szegedy proposed the Batch
normalization (BN) mechanism to reduce the internal covariate shift and accelerate the
convergence of the deep neural nets [52]. This mechanism makes use of the mean and
variance to normalize the data values over each mini-batch, which allows us to set a



84 Y. Wang and Q. Hao

higher learning rate and drop the Dropout [59]. However, this effective BN mechanism
has not been widely used in GNNs due to the fewer network layers [12]. Nowadays,
as the graphs become larger and the tasks become more complex, the GNN models
are more complicated and the difficulty of training the GNN models is also increasing
rapidly, which leads to the stability problem during training. Thus, the application of the
BN mechanism is of great significance to the robustness of training on large graphs.

Therefore, in order to solve the stability problem in the training process of the link
prediction task, we propose an improved GraphSAINT method by adjusting the BN
strategy to the special training and inference process of GraphSAINT based on the OGB
in this paper. By applying the normalization strategy during training, we achieve the
elimination of the instability during training successfully. Moreover, we also realize a
reduction in the training time and gain an increase in accuracy under the premise of
maintaining the original link prediction accuracy. The effectiveness of our method is
validated by the citation dataset of the OGB.

Inspired by [60], the paper is organized as follows: Firstly, Sect. 2 is the related
work about the GraphSAINT, especially its sampling strategy and the typical batch
normalization techniques; Next, Sect. 3 describes our improved GraphSAINT and the
training method; Then, Sect. 4 shows the comparative experiment results based on the
citation dataset; At last, conclusions are given in Sect. 5.

2 Related Work

2.1 The Sampling Strategy of GraphSAINT

GCN achieves one-hop neighbors’ information aggregation by using the adjacent matrix
[31, 32]. However, because of the using of the adjacent matrix, when a new node is added
into the graph, we must adapt the adjacent matrix and re-train the GCN model based on
the new adjacent matrix of the adapted graph data to obtain all node’s new embeddings.
Therefore, as mentioned in Sect. 1, GCN causes a lack of generalization performance for
unseen nodes. Besides, it has a high time cost. To overcome this shortcoming, Graph-
SAGE is proposed [34]. In this method, the neighbors of the target node are sampled
and a new aggregation function is learned to aggregate neighbor nodes and generate
the embedding vector of a target node, which avoids applying the adjacent matrix and
reduces training costs by sampling the nodes of each layer of GNN.

Furthermore, compared with GraphSAGE, GraphSAINT makes it possible to solve
the learning tasks on the large graphs by designing a sampler called SAMPLE to obtain
subgraphs [33]. Besides, this subgraph samplingmethod can also improve the generaliza-
tion performance likeGraphSAGE.With the help of the sampling strategy, GraphSAINT
can deal with the Neighbor Explosion problem better.

In order to preserve the connectivity features of the graph, bias in the mini-batch
estimation will almost inevitably introduced by the sampler. Therefore, in [33], the self-
designed normalization techniques are introduced to eliminate deviations. The key step
is to estimate the sampling probability of each node, edge, and subgraph.

The sampling probability distribution P(u) of the node u is

P(u) ∝
∥
∥
∥Ã:,u

∥
∥
∥

2
(1)
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where A is the adjacency matrix and Ã is the normalized one, that is Ã = D−1A, D is
the diagonal degree matrix.

The sampling probability distribution P(l)
u,v of the edge (u, v) in the lth GCN layer is

P(l)
u,v ∝ 1

deg(u)
+ 1

deg(v)
(2)

The sampling probability distribution Pu,v of the subgraph is

Pu,v ∝ Bu,v + Bv,u (3)

where Bu,v can be interpreted as the probability of a random walk to start at u and end
at v in L hops, Bv,u can be interpreted as the probability of a random walk to start at
v and end at u in L hops, B = ÃL, L means L layers which can be represented as a
single layer with edge weights. Thus, the sampling probabilities of each node, edge, and
subgraph are all well-estimated. Then, the subgraphs obtained by sampling will be used
for GraphSAINT training.

2.2 The Typical Normalization Technique

The normalization techniques are proposed to eliminate the Internal Covariate Shift,
which is caused by the change in the distributions of internal nodes of a deep network
in the process of training, and offer the faster training [53, 58].

The typical normalization technique for mini-batch presented in [52] basically fol-
lows the mathematical statistics: Firstly, the mini-batch mean is calculated based on the
values of each data point over a mini-batch; Next, the mini-batch variance is calculated
based on the mini-batch mean; Then, each data point over a mini-batch can be normal-
ized by subtracting the mini-batch mean and then dividing by the mini-batch variance;
Finally, the scale and shift parameters are introduced and learned for each data point
over a mini-batch.

3 Methodology

As mentioned in Sect. 1, the original normalization techniques of GraphSAINT, which
are effective for the node classification task, are insufficient to improve the training qual-
ity for the link prediction task. Therefore, an improved GraphSAINT training algorithm
is proposed.

Since the sampled subgraphs in GraphSAINT are based on the connectivity rules of
the nodes, it can get the edge sampling probability with the smallest variance. In contrast,
for node selection, it uses the Random node sampler. Therefore, the node feature data
of each sampled subgraph do not obey the standard normal distribution. Assume the
graph dataset to be processed is a whole graph ζ = (V , ξ) with N nodes v ∈ V , edges
(

vi, vj
) ∈ ξ . For the node vi in a sampled subgraph ζs of ζ according to SAMPLE, its

feature hi,s has d elements. In order to normalize the distributions of the inputs to reduce
the internal covariate shift, the input node feature vector can be normalized by

ĥi,s = hi,s − μs
√

σ 2
s
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μs = 1

d

d
∑

i=1

hi,sσ
2
s = 1

d

d
∑

i=1

(

hi,s − μs
)2 (4)

where μs and σ 2
s are the mean and the variance for the node vi in the node feature

dimension and are computed over the training data set.
Therefore, by means of the node-wise normalization technology in each subgraph,

each node feature vector is normalized by making its mean zero and variance 1. Besides,
based on the typical normalization principle, the training time can also be effectively
shortened by applying the node-wise normalization technology in each subgraph.

The whole training process of the improved GraphSAINT is illustrated in Algorithm
1. Before the training starts, we perform a pre-processing on ζ to convert the directed
graph to the undirected graph and obtain the sampled subgraph ζs with the given SAM-
PLE [33]. Then an iterative training process is conducted via SGD to update model
weights. Each iteration uses an independently subgraph ζs. Next, the original GCN is
modified through applying the normalization technology on the output of the convolu-
tional layer, which is also the original input of the RELU layer. Finally, the modified
GCN on ζs is built to generate embeddings and the loss can then be calculated according
to Mean Reciprocal Rank (MRR). In MRR, the score of the first matched result is 1, the
score of the second matched result is 1/2, and the score of the nth matched result is 1/n.
If there is no matching sentence, the score is 0. The final score is the sum of all scores.

As mentioned in Sect. 2.1, GraphSAINT uses the subgraphs obtained by the sub-
graph sampling method for training, while it uses the whole graph data to calculate
the output result during inference. Therefore, the normalization operation can be added
independently during inference.
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4 Experiments

In this section, in order to verify the effectiveness of the improved GraphSAINT algo-
rithm, we choose the Link prediction task based on the citation dataset of OGB (ogbl-
citation). The ogbl-citation dataset is a directed graph and can be viewed as a ‘subgraph’
of the citation network called MAG [61]. In this dataset, each node represents a paper,
whose title and abstract are encoded into a 128-dimensional word2vec features, and each
directed edge indicates the citation relationship between two papers.

The link prediction task means that we need to predict missing citations based on
the exiting citations on the graph. Two of each source paper’s references are randomly
dropped and the model is required to achieve the ranking of the missing two references
in front of other 1000 references that are also randomly sampled from all the papers and
not referenced by the source papers. According to this, MRR is chosen as the evaluation
metric [44]. Besides, we use the two dropped edges of all source papers respectively for
validation and testing. Naturally, the training set contains the rest of the edges.

Table 1. Results for GraphSAINT on citation dataset.

GraphSAINT (Citation) MRR

Training Validation Test

Traditional (official) 0.8626 ± 0.0046 0.7933 ± 0.0046 0.7943 ± 0.0043

Traditional Convergence 0.8690 0.8031 0.8048

Non-convergence 0.0010 0.0010 0.0010

Improved 0.9001 ± 0.0014 0.8335 ± 0.0020 0.8344 ± 0.0023

The official results of the traditional GraphSAINT on the citation dataset are given
in Table 1: the MRR value of the training set is 0.8626 ± 0.0046, the MRR value of the
validation set is 0.7933 ± 0.0046 and the MRR value of the test set is 0.7943 ± 0.0043.
However, in the training of our recurrence experiment of the traditional GraphSAINT,
we found that GraphSAINT algorithm will not converge in training with a probability
range from 0.1 to 0.4. For a RUN where loss converges as shown in Fig. 1(a), the MRR
results are consistent with the official results as shown in Table 1, i.e., the training result
can reach about 0.8690, the validation result can reach about 0.8031 and the test result
can also reach about 0.8048. But for a RUN where loss does not converge, the MRR
results are also shown in Table 1 and the loss curve trained under different epochs is
basically as shown in Fig. 1(b).

As shown in Fig. 1, we can see that one RUN contains 200 epochs. Besides, in
Fig. 1(b), after the 78th epoch, the loss is suddenly and sharply increased to 34.5388 and
remains unchanged. Therefore, some measures need to be taken to solve the problem of
non-convergence in the training process.
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After applying the improved GraphSAINT, our loss curve during training is shown
by the solid line in Fig. 2. We can see that the solid loss curve is convergent. Besides,
compared with the dotted line in Fig. 2, which is the loss curve during training of the
traditional GraphSAINT as shown in Fig. 1(a), the improved GraphSAINT has a more
stable convergence during training and a faster convergence rate. Moreover, all the three
MRR values have an improvement as shown in Table 1: the training results can reach
0.9001 ± 0.0014, the validation results can reach 0.8335 ± 0.0020 and the test results
can also reach 0.8344 ± 0.0023. Thus, the effectiveness of our improved GraphSAINT
is verified.
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Fig. 1. The loss curve during training of the traditional GraphSAINT (a) with convergence (b)
without convergence
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Fig. 2. The loss curve during training of the improved GraphSAINT (the solid line) and the
traditional GraphSAINT with convergence in Fig. 1(a) (the dotted line).

5 Conclusions

The stability problem during training of graph neural network is crucial. In this paper,
we focus on this stability problem and propose an improved GraphSAINT by applying
the normalization strategy. The proposed method not only improves the robustness of
the training process of the GraphSAINT, but also accelerates the convergence of the
model. In the future, more attention will be paid to the distributed training methods for
large graph datasets.
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