
Information Encryption and Decryption
Analysis, Vulnerabilities and Reliability

Implementing the RSA Algorithm
in Python

Roćıo Rodriguez G.(B) , Gerardo Castang M. , and Carlos A. Vanegas

Universidad Distrital Francisco José de Caldas, Facultad Tecnológica,
Bogotá, Colombia

{rrodriguezg,gacastangm,cavanegas}@udistrital.edu.co

Abstract. The processing and transmission of information has
increased its effectiveness in recent decades. From mathematical mod-
els the security and integrity of the data are guaranteed. In spite of that,
interceptions in the signal, attacks and information theft can happen in
the transmission process. This paper presents a RSA algorithm analysis,
using 4, 8 and 10 bits prime numbers with short messages. The encryp-
tion and decryption process implemented in python allowed the compu-
tational resources use. Processing time and data security are evaluated
with a typical computational infrastructure required for its operation;
in order to identify vulner-abilities and their reliability level when ideal
conditions are available to perform a cryptanalysis.

Keywords: Encryption · Decryption · Security · Cryptography ·
RSA · Cryptanalysis

1 Introduction

Information theory is based on mathematical and probabilistic concepts that
allow to create a communications system. This theory aims to achieve efficient
and reliable communication in the transmission of information. To be able to
achieve the adequate communication. It is necessary to take into account the
variables that influence the process of transmission and communication of infor-
mation from the source to the destination through the communication medium
where the channel is generally affected by noise. In 1928 Hartley formulated
the first mathematical laws that regulate a communication system. These ideas
were considered by Shannon allowing to develop the fundamental principles of
the theory.

The physical model exposed by Shannon is shown in Fig. 1. It indicates how
the communication can be expressed in a process of information transfer. In
which a transmitter, issues a codified signal (message) that travels along a chan-
nel, the signal transits through the channel able or not able to be affected by
c© Springer Nature Switzerland AG 2021
H. Florez and M. F. Pollo-Cattaneo (Eds.): ICAI 2021, CCIS 1455, pp. 391–404, 2021.
https://doi.org/10.1007/978-3-030-89654-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89654-6_28&domain=pdf
http://orcid.org/0000-0002-2956-9650
http://orcid.org/0000-0001-9788-5121
http://orcid.org/0000-0002-8173-8167
https://doi.org/10.1007/978-3-030-89654-6_28

392 R. Rodriguez G. et al.

noise, it finally arrives to the receiver who codifies the signal, for Shannon the
quantity of contained data in a message is tantamount to a math data well
defined and measurable, this quantity refers to the possibility that the message
within a set will be received and not to the quantity of sent data articles [1].

Fig. 1. Transmission and communication process of information.

The codification message (text, image, voice) makes reference to its transfor-
mation in symbols. This subsequently changes to electrical signals that provide
security to the information that travels from a place to another as we can see at
Fig. 1. In this case, the noise represents the effect of an attacker when intercept-
ing and possibly decodifying the coded message (intruder).

The development of secure applications in mobile environments, or limited
computational requirements, makes it necessary to create information security
solutions in this area, especially for the processing and transmission of short
messages.

Generally, the RSA algorithm is used for lengths of keys in high bits. The
factoring of prime numbers is a complex process and requires a lot of computa-
tional time, this is the principal strength of the algorithm providing security to
the information.

Since the RSA works efficiently for this length of keys in high bits, we intend
to validate the security of the algorithm, with short key lengths. Once the inves-
tigation concluded if needed improvements will be made to the algorithm. All
of this to provide protection and security of the information that is transmitted
and that can be intercepted by an attacker.

2 Network Security Aspects

The topic of network security and the problems associated with it can be divided
in four big interrelated areas. These areas are: confidentiality, authentication,
non-repudiation and message integrity check [2].

Confidentiality consists in exchanging, delivering, sending and sharing the
information, with the corresponding or appropriate user.

Information Encryption and Decryption Analysis 393

Authentication consists in validating, identifying or authenticating the user
with whom you interact before starting the transfer or exchange process of the
information.

Non-repudiation handles the verification and validation of the established
terms among the users, to perform a process or a transaction.

Message integrity check validates that the received message is the same as
the one that was sent, and that the sent message was not altered, replaced or
modified by an intruder.

In each one of the TCP/IP model layers the concept of the information
security and integrity, can be involved on each layer [3]. These qualities can be
implemented logically and physically. Logically through the models and algo-
rithms and physically, through hardware devices that perform processes such as
calculations and validations, with the purpose of maintaining the information
security and integrity qualities in the network.

The cryptography allows to implement math processes with a certain level
of complexity to the information prior to be transmitted, processed or stored.
The cryptographic algorithms and methods play a very significant role in the
communication systems [4].

Encrypted messages that have been transmitted or stored can be intersected,
copied and stolen with the aim of decrypt encrypted messages, it is called crypt-
analysis.

The group of methods, algorithms and procedures that perform the cryptog-
raphy and cryptanalysis processes is known as cryptology. Cryptology is one of
the most important branches in security systems of communications networks.
It allows to identify flaws in the used methods, algorithms and procedures for
the information protection, storing and transmission [5].

Encryption and Decryption Processes of a Message: Cryptography is
based on two fundamental processes known as encryption (E) and decryption
(D). These are mathematical functions that are involved through the parameter
(K), which corresponds to the set of keys used to the implementation of the
procedure. The arguments of the functions are the message or plain text (P),
and the cipher text (C).

The methods of encryption and decryption of a message can be expressed gen-
erally, through the following expressions:

C = EK [P] (1)

P = DK [C] (2)

Replacing the value of the parameter C, of the expression (1) in (2), we get:

P = DK {EK [P]} (3)

Because the functions of encryption and decryption have an inverse relation, we
get:

P = 1 · P = P (4)

394 R. Rodriguez G. et al.

This allows to obtain the original message or plain text.

Kerckhoff’s Principle: One of the rules of the cryptanalysis is that the encryp-
tion and decryption methods are known, this means that the cryptanalyst knows
its functioning [6]. The cryptanalyst job is to find the parameter (K) to decrypt
the message. The user job is to generate or change the keys continuously each
time that the information encryption process is performed. The Kerckhoff‘’s
principle is set out as follows: all algorithms must be public just keys should be
secret.

3 The Cryptology

The cryptology has as the main objective to encrypt the information, with pur-
pose of protecting it. For that end, it employs algorithms that tend to use one
or more keys, in such a way the communication between sender and receiver is
made with security and privacy.

Cryptography is located at the cryptology branch along with cryptanaly-
sis [7]. Cryptanalysis is the study of everything involved with deciphering data
technics. Some of the features of cryptanalysis applied to a cryptographic system
are:

– To ensure its robustness and resistance.
– To discover weaknesses to avoid possible attacks.
– To strength it in order to increase its security.

The cryptographic methods used by the cryptosystems to perform the
encryption are classified in asymmetric and symmetric. The classifications are
described in Table 1 [8].

Table 1. Symmetric vs asymmetric cryptosystems.

Public key Private key

key management It is only necessary to memorize

the sender’s private key and the

receiver’s public key

you have to memorize a high keys

number

length and key space key is in the order of thousands of

bits

the order key is of hundreds of

bits

key’s life key duration is usually long the key duration is short, it

usually ends when the session is

over.

Authentication By having a public and a private

key, the sender and the mes-sage

can be authenticated

It is possible authenticate the

message only

Speed cipher Speed encryption is slow Speed encryption is high

Use They are used for key exchanges

and digital signatures

They are algorithms used for

encryption

Information Encryption and Decryption Analysis 395

4 Cryptosystem Analysis RSA

Rivest, Shamir and Adleman developed an asymmetric cryptosystem [9][10],
from the product of two prime numbers (p and q) previously selected. These
numbers multiplied allow to get an n number.

n = p · q (5)

Using the Euler function(ϕ) the size of the integers multiplicative group is
generated.

ϕ (n) = (p − 1) (q − 1) (6)

Subsequently it is proceeded to calculate two parameters. One is used as
public key(e) and the other as private (d). They are used for encryption and
decryption respectively [11]. To make this calculation, one of the parameters is
chosen and the other one is calculated.

e · d = 1 + k · ϕ (n) (7)

For an integer k is relevant that k is less than ϕ(n) and coprime. The following
equation must be verified:

e · d = 1 (modϕ (n)) (8)

Therefore

d = e − 1 (modϕ (n)) (9)

e = d − 1 (modϕ (n)) (10)

From this algorithm the public key is obtained:

Kpb = (e, n) (11)

From this algorithm the private key is obtained:

Kpr = (d, n) (12)

The resulting key is obtained from the two components:

< Kpb,Kpr > (13)

The RSA algorithm works with the premise of calculating n by multiplying
p and q. It is difficult to factorize the product since it prevents to obtain the
private key Kpr from public key Kpb.

The Python code of the implemented RSA algorithm is described as follows:

396 R. Rodriguez G. et al.

Begin

import time

import random

def getD(e, z):

for x in range(1, z):

if (e * x) % z == 1:

return x

def values E(a):

list_obj = []

for x in range(2, a):

if mcd(a, x) == 1 and encrypt_function (x,z) !=

None:

list_obj.append(x)

for x in list_obj:

if x == encrypt_function (x,z):

list_obj.remove(x)

return list_obj

def mcd(a, b):

while b != 0:

c = a % b

a = b

b = c

return a

def encrypt_function (e, z):

return e%z

def encrypt_block(x):

encryption = encrypt_function (x**e, n)

return encryption

def decrypt_block(encryption):

decrypted_message =encrypt_function (encryption **d, n)

return decrypted_message

def encrypt_message(message):

return ’’.join([chr(encrypt_block(ord(x))) for x in

list(message)])

def decrypt_message(message):

return ’’.join([chr(decrypt_block(ord(x))) for x in

list(message)])

p=int(input(’Enter prime number P: ’))

q=int(input(’Enter prime number Q: ’))

print("\nSelected prime numbers: p=" + str(p) + ", q=" +

str(q) + "\n")

n=p*q

print("Value of (n = p * q) = " + str(n) + "\n")

z=(p-1)*(q-1)

print("Euler ’s function [Z(n)]: " + str(z) + "\n")

print("Possible values for number ’e ’:\n")

print(str(valuesE(z)) + "\n")

e = random.choice(valuesE(z))

print ("Random selected value:",e)

d=getD(e,z)

Information Encryption and Decryption Analysis 397

print("\nPublic key e,n (e=" + str(e) + ", n=" + str(n)

+ ").")

print("Private key d,n (d=" + str(d) + ", n=" + str(n)

+ ").")

message = input("Plain text message: ")

begin=time.time()

encryption = encrypt_message (message)

print("\nEncrypt message: " + encryption + "\n")

decrypted = decrypt_message (encryption)

print("Decrypt message: " + decrypted + "\n")

final=time.time()

print("Processing time in seconds:",round(final - begin ,

10))

end

4.1 RSA Algorithm Source Code’s Analysis

At first, the random and time libraries are imported. Time is a Python library
that provides a set of functions to work with dates and/or time, and Random
contains different functions related with random values.

Subsequently, the following functions are implemented:

– getD(e,z): This function receives two parameters (e, z). A for cycle is exe-
cuted from an x value equals 1 to the z parameter value. The if structure
verifies if the e ∗ x modulus (%) product of z is equal to 1. If the condition is
met, the x value is re-turned.

– valuesE(a): This function receives a parameter (a). First, an empty list
(list obj) is declared. The for cycle iterates from x equal two, to a value.
The if structure verifies that the mcd(a, x) function is equal to 1 and the
encrypt function(x, z) function is different to empty. If the condition is met,
it is added to the list (list obj) the value of the x variable. Furthermore, in a
second for cycle, the function iterates from one of x’s values equal to 0 to the
quantity of the list (list obj) elements. With the if structure it is verified that
the value of the x variable is equal to the value that the encrypt function(x,
z) function returns. If the condition is met, the x variable value is deleted
from list obj. Finally, the list (list obj) elements are sent back.

– mcd(a,b): The function receives two parameters (a, b). The While cycle
iterates while the value b variable is different from zero, the modulus of a
and b are assigned to a variable called c, the b value is assigned to the a
variable and the c value to the b variable. When the cycle is done, the value
of a variable is returned.

– encrypt function(e, z): The function receives two parameters (e, z). It
returns the modulus result among the e, z variables.

– encrypt block(x): This function receives one parameter (x), the encryption
variable is assigned the value that returns the encrypt function(x**e, n) func-
tion. This function returns the value of the encryption variable.

398 R. Rodriguez G. et al.

– decrypt block(encryption): This function receives one parameter (encryp-
tion), the decrypted message variable is assigned the value that returns the
en-crypt function(encryption**d, n) function. This function returns the value
of the decrypted message variable.

– encrypt message(message): The function receives one parameter (mes-
sage). The encrypt block() function returns the ascii value from x variable
that belongs to the list (list obj). The function receives one parameter when
performing the loop.

– decrypt message(message): The function receives one parameter (mes-
sage). The decrypt block() function returns the ascii value from x variable
that belongs to the list (list obj). The function receives one parameter when
performing the loop.

In addition, the program carries out the process to obtain the input and
output values of the information. First, the p and q variables are declared, and
a prime number is assigned to them. The prime number is captured from the
keyboard with the input() function and is converted to an integer with the int
function, in order to be printed with print() function. Then, a variable called n
is declared, and the product of p ∗ q is assigned to it, that also is printed. The z
variable is declared as well, and the product of (p − 1) ∗ (q − 1) is assigned to it
and it is printed.

Eventually, an obtained random value with the random library’s choice
method is assigned and printed to a variable called e. Such value is returned
by the valuesE(z) function.

Subsequently, a value returned by the getD(e, z) function is assigned to a
variable called d, and the variable e value is printed as public key and the variable
d value as private key. In a variable called message, the text to be encrypted is
saved, and the initial processing time (time.time()) is assigned to a variable called
begin. Other variables are also declared: encrypted, to this variable is assigned
the value that returns the encrypt message(message) function. The decrypted
variable is assigned the value that returns the decrypt message (message). These
variables are also printed.

The final processing time is assigned to a variable called final, and the result
of the final-begin subtraction operation is printed. The roud() method is used to
show the result with ten decimals maximum.

The algorithm execution can be seen in Fig. 2.

Information Encryption and Decryption Analysis 399

Fig. 2. Transmission and communication process of information.

In order to perform tests on the implemented algorithm we used: Intel (R)
Core (TM) i5-10210U Processor CPU @ 1.60 GHz 2.11 GHz, 8.00 GB RAM and
Windows 10 × 64 b Operating System.

4.2 Length of Encrypted Message Test

A series of tests carried out with values for p and q, using prime numbers of
4, 8 and 10 bits. Using short message lengths (Typically 2 KB). This allowed
establishing the values for e and the processing time shown on Table 2.

Table 2. Values and data of tests results on the RSA algorithm

Number of bits
to generate the
prime numbers

Values for P Values for Q Values of E Processing time
(In seconds)

4 11 13 23 0.003

8 191 227 42529 20.467

10 937 1019 952787 1697.762

The tests results allowed establish the following analysis:

– To the extent that small keys in number of bits are used, the processing time
is very small.

400 R. Rodriguez G. et al.

– To go from four to eight bits, the time spent in processing is multiplied by
an approximated factor of 1000.

– To go from eight to ten bits, the time spent in processing is multiplied by an
approximated factor of 10.

– To the extent that increases the number of bits used to generate the prime
numbers p and q, the processing time to code the message increases expo-
nentially and presents a relation by ten times as shown above.

– We attempted to perform tests using prime numbers of 12 bits, where the e
generation was about 3 h and 30 min and the message could not be encrypted
because a memory overflow was presented.

4.3 Cryptanalysis Test

This section proposes to carry out the cryptanalysis to validate the ability to
decrypt the information, in order to find the user’s private key with an ideal
environment for the attacker [13]. That is, knowing part of the transmitted
message, the length in bits of the prime numbers used to encrypt and decrypting
the message and the user’s public key [14,15].

A decryption algorithm developed by the authors was designed. First
described with a natural language and then implemented with python’s program-
ming language [16]. In purpose to verify the processing time and the reliability
of the decrypted in-formation.

The aim goes to validate the strength of the encryption algorithm imple-
mented and the speed or time required to decrypt an encrypted message, using
typical computational capabilities of a user.

We performed a test with the same available hardware infrastructure, taking
into account the following ideal conditions for the attacker:

– Intercepts and knows the encrypted message.
– Knows part of the original message.
– Knows the bit number of P and Q.
– Knows the public key of the sender (e, n).
– Lacks to determinate the private key (d, n) for deciphering the message.

The following is the algorithm in natural language proposed to obtain the
private key and decipher the message by an attacker.

1. Knows the public key (e, n).
2. Knows the number of bits to generate the prime numbers.
3. Generates the set of primes for that given number of bits.
4. Performs operations in order to find both prime numbers that multiplied give

the value of n, to get p and q values subsequently.
5. Finds (p − 1) and (q − 1) and multiply them to get the Euler function (called

Z)
6. Deduces a d number, that is within range from 1 to z, when the remainder

of the operation is equal to 1, d will be the result.

Information Encryption and Decryption Analysis 401

7. With the d number generates the private key (d, n), thus proceeds to decipher
the message.

The previously algorithm was implemented in python:

Begin

import time

encrypted_message="#"

bit=4

public_key =[23 ,143]

z=0

d=0

def decrypt_message(encrypted_message):

return ’’.join([chr(decrypt_block(ord(x))) for x in

list(encrypted_message)])

def encrypt_function (e, n):

return e%n

def decrypt_block(x):

decrypted_message = encrypt_function (x**d,

public_key [1])

return decrypted_message

def prime(i):

x=2

flag=0

while (x<i):

if (i%x==0):

flag=1

return flag

else:

x=x+1

return flag

nro_primes =[]

for i in range (2,15,1):

if(prime(i)==0):

nro_primes.append(i)

for j in range(len(nro_primoes)):

for y in range(len(nro_primes)):

values=nro_primes[j]* nro_primes[y]

if(values== public_key [1]):

z=(nro_primes[j]-1) *(nro_primes[y]-1)

print ("z",z)

for account in range(z):

value_d =(account*public_key [0])%z

if(value_d ==1):

d=account

print ("private key:",d)

begin=time.time()

decrypted = decrypt_message(encrypted_message)

print ("The original message is:",decrypted)

final=time.time()

402 R. Rodriguez G. et al.

print("processing time in seconds:",round(final - begin ,

10))

end

With the implementation of cryptanalysis, the values for p, q, e and the time
of processing were established as shown on Table 3.

The tests results allowed to establish the following analysis:

– For 4 bits the decryption time is: 0.0019946098 milliseconds. To generate the
e parameter, the time processing was less than a millisecond.

– For 8 bits the decryption time is: 6.6627941132 s. To generate the e parameter,
the approximate time processing was 0.4679889679 millisecond.

– For 10 bits the decryption time is greater than 11 min. To generate the e
parameter the approximate time processing was 173.8833482265 min.

– For 12 bits with values of P = 2059, Q = 4067, E = 8366779 spent about 3 h
to get the possible values of e.

– To go from 4 to 8 bits the time spent in processing is multiplied by an approx-
imated factor of 1000.

– To go from 8 to 10 bits the time spent in processing is multiplied by an
approximated factor of 100.

– To go from 10 to 12 bits the estimated time for processing is multiplied by
an approximated factor of 10.

Table 3. Values and data of tests results on the RSA algorithm

No of bits to

generate the

prime numbers

Values for P Values for Q Values of E Time to

generate E

Processing time (in

seconds) to decipher

the message

4 11 13 17 millisecond 0.0019946098

8 191 227 47737 millisecond 6.6627941132

10 937 1019 205157 10min 689.0595903397

5 Conclusions

When the number of bits used to generate the primes p and q increases, the time
processing to decipher the message gets exponentially higher whit a deduced
relation of the ten times factor.

When working with larger key sizes, the processing time increases causing
the computational requirements to be stronger.

For internal messaging applications with functional levels of security the RSA
algorithm for low-bit lengths is useful.

After reviewing the specialized literature, we can conclude that one way
to improve the security of the RSA algorithm against possible cyberattacks is

Information Encryption and Decryption Analysis 403

obtaining a suitable bit length for the encryption and decryption keys. Unfortu-
nately, there are not procedures that can accurately determine the length of the
keys.

When the attacker has the perfect conditions to perform the cryptanalysis,
there is a greater risk in the interception of the transmitted information. This
is due to a short-er processing time to discover the message, according to the
computational capabilities used by the attacker.

6 Future Work

We propose to modify the operations performed in the RSA algorithm to use
it with short key lengths that can be mathematically proven by including more
elements that increase the security level.

We propose to experiment with key lengths for public and private keys with
twelve, fourteen, sixteen, twenty and thirty-two bits. To validate the security and
strength of the encryption and decryption process information. The challenge is
to use any hardware available for the majority of the community, without the
processing time being quite high and expensive, slowing down the processing of
the keys.

One challenge is to increase the security levels in the message processing
when the bit sizes of the primes p and q are small to generate the public and
private keys.

References

1. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379–423 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

2. Redes de Computadoras, Andrew S. Tanenbaum; cuarta edición, editorial: Pearson-
Prentice Hall

3. Mateti, P.: Chapter 1 Security Issues in the TCP/IP Suite (2007). https://doi.org/
10.1142/9789812770103 0001

4. Satish, G., Raghavendran, dr. Ch., Varma, dr.: Secret key cryptographic algorithm.
Researchgate.net (2012). https://www.researchgate.net/publication/266389826
secret key cryptographic algorithm

5. Awad Al-Hazaimeh, O.: A new approach for complex encrypting and decrypting
data. Int. J. Comput. Networks Commun. 5(2), 95–103 (2013)

6. Petitcolas, F.: Kerckhoffs Principle (2011). https://doi.org/10.1007/978-1-4419-
5906-5

7. Shamir, A., Rivest, R.L., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems Mag. Commun. ACM 21, 120–126 (1978). https://
doi.org/10.1145/359340.359342

8. Gabriel, E.M.: Clúster de alto rendimiento en un cloud: ejemplo de aplica-ción
en criptoanálisis de funciones hash. Universidad de Almeŕıa, p. 60 (2011). http://
repositorio.ual.es/bitstream/handle/10835/1202/PFC.pdf?sequence=1

9. Asjad, S.: The RSA Algorithm. Researchgate.net, pp. 5–15 (2019). https://www.
researchgate.net/publication/338623532 The RSA Algorithm

https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1142/9789812770103_0001
https://doi.org/10.1142/9789812770103_0001
https://www.researchgate.net/publication/266389826_secret_key_cryptographic_algorithm
https://www.researchgate.net/publication/266389826_secret_key_cryptographic_algorithm
https://doi.org/10.1007/978-1-4419-5906-5
https://doi.org/10.1007/978-1-4419-5906-5
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
http://repositorio.ual.es/bitstream/handle/10835/1202/PFC.pdf?sequence=1
http://repositorio.ual.es/bitstream/handle/10835/1202/PFC.pdf?sequence=1
https://www.researchgate.net/publication/338623532_The_RSA_Algorithm
https://www.researchgate.net/publication/338623532_The_RSA_Algorithm

404 R. Rodriguez G. et al.

10. Fonseca-Herrera, O.A., Rojas, A.E., Florez, H.: A model of an information secu-
rity management system based on NTC-ISO/IEC 27001 standard. IAENG Int. J.
Comput. Sci. 48(2) (2021)

11. Goldreich, O.: Modern Cryptography, Probabilistic Proofs and Pseudorandomness
(Second Edition - author’s copy), pp. 1–2. Springer (2000). http://www.wisdom.
weizmann.ac.il/∼oded/PDF/mcppp-v2.pdf

12. Castro Lechtaler, A., Cipriano, M., Garćıa, E., Liporace, J., Maiorano, A., Mal-
vacio, E. and Tapia, N.: Estudio de técnicas de criptoanálisis.XXI Workshop de
Investigadores en Ciencias de la Computación.Sedici.unlp.edu.ar (2021). http://
sedici.unlp.edu.ar/handle/10915/77269

13. Al-hazaimeh, O.: A new approach for complex encrypting and decrypting data.
Int. J. Comput. Networks Commun. 5, 95–103 (2013). https://doi.org/10.5121/
ijcnc.2013.5208

14. Tiwari, G., Nandi, D., Mishra, M.: Cryptography and cryptanalysis: a review. Int.
J. Eng. Res. Technol. 2, 1898–1902 (2013)

15. Bokhari, M., Alam, S., Masoodi, F.: Cryptanalysis tools and techniques (2014)
16. Rodŕıguez, G.R., Vanegas, C., Castang, G.: Python a su alcance. EditorialUD,

2020. Páginas, pp. 100–120 (2020). ISBN 978-958-787-181-4

http://www.wisdom.weizmann.ac.il/~oded/PDF/mcppp-v2.pdf
http://www.wisdom.weizmann.ac.il/~oded/PDF/mcppp-v2.pdf
http://sedici.unlp.edu.ar/handle/10915/77269
http://sedici.unlp.edu.ar/handle/10915/77269
https://doi.org/10.5121/ijcnc.2013.5208
https://doi.org/10.5121/ijcnc.2013.5208

	Information Encryption and Decryption Analysis, Vulnerabilities and Reliability Implementing the RSA Algorithm in Python
	1 Introduction
	2 Network Security Aspects
	3 The Cryptology
	4 Cryptosystem Analysis RSA
	4.1 RSA Algorithm Source Code's Analysis
	4.2 Length of Encrypted Message Test
	4.3 Cryptanalysis Test

	5 Conclusions
	6 Future Work
	References

