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Abstract. The heart rate variability (HRV) analysis allows the study of
the regulation mechanisms of the cardiovascular system, in both normal
and pathological conditions, and the power spectral density analysis of
the short-term HRV was adopted as a tool for the evaluation of the auto-
nomic function. The Ensemble Empirical Mode Decomposition (EEMD)
is an adaptive method generally used to analyze non-stationary signals
from non-linear systems. In this work, the performance of the EEMD in
the decomposition of the HRV signal in the main spectral components is
studied, in a first instance to a synthesized series to calibrate the method
and achieve confidence and then to a real HRV database. In conclusion,
the results of this work propose the EEMD as useful method for analysis
HRV data. The ability of decomposes the main spectral bands and the
capability to deal with non-linear and non-stationary behaviors makes
the EEMD a powerful method for tracking frequency changes and ampli-
tude modulations in HRV signals generated by autonomic regulation.

Keywords: Heart rate variability · Comparison of methods · EEMD ·
Fourier analysis · Spectrum decomposition

1 Introduction

The HRV analysis allows the study of the regulation mechanisms of the car-
diovascular system, not only under normal conditions, but also when these are
altered to produce pathological conditions, for example high blood pressure,
heart failure and diabetes among others [1,2].

It is feasible to involve the autonomic control mechanisms in cardiac func-
tion, these influence the short-term fluctuations of the time interval between
consecutive heart beats (RR) [3,4]. Indeed, the power spectral density analysis
of the short-term HRV was adopted as a tool for the evaluation of the autonomic
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function [3,4]. Three main spectral components can be highlighted, very low fre-
quency component (VLF), from 0.003 Hz to 0.04 Hz; low frequency component
(LF), from 0.04 Hz to 0.15 Hz; and high frequency component (HF), from 0.15 Hz
to 0.4 Hz [3,5].

Numerous techniques have been applied in the frequency domain, among the
most important measures, some linear models that generate comparable results
can be included. Nonparametric models, such as windowed fast Fourier trans-
form (FFT) and Blackman-Tukey spectral estimation, and parametric models,
such as autoregressive (AR) and moving average autoregressive (ARMA). After
calculating the spectrum with any of the above methods, the energies within
each band can be calculated [1,2].

These linear methods must assume stationary conditions that are difficult
to achieve, even in short-term records under controlled conditions. To correctly
attribute spectral components to specific physiological conditions, the heart rate
modulation mechanisms must not make any changes during the measurement
process [3]. Due to the nature of HRV signals, non-linear techniques appears as
attractive methods for their analysis in order to solve the difficulty of achieving
the conditions of strict stationarity and correctly reflecting the non-linear content
of the data.

The Empirical Mode Decomposition (EMD) is an adaptive method generally
used to analyze non-stationary signals from non-linear systems [6]. The algo-
rithm produces a decomposition of the time series into a finite quantity of oscil-
lating functions and a residue. These zero local mean functions are modulated
amplitude / frequency signals called intrinsic mode functions (IMF).

In the EMD process a problem called mode mixing occurs, oscillations with
very different scales can exist in one mode. To reduce this effect, a new method
called ensemble empirical mode decomposition [7] was proposed. The decompo-
sition is performed from a set of noisy copies of the original signal, obtaining the
final results by averaging whereas the noise converges to zero. These decompo-
sition methods have proven their competence in different applications, for heart
rate variability analysis [8], assessment of cardiovascular autonomic control [9],
automated identification of congestive heart failure[10], classification of ECG
heartbeats [11], early detection of sudden cardiac death [12].

In this work, the performance of the EEMD in the decomposition of the
HRV signal in the main spectral components is studied, in a first instance to a
synthesized series to calibrate the method and achieve confidence and then to
a real HRV database. Looking to generate a stationary behavior for the mea-
surement, we used 5 min short-term recordings of 14 subjects before and during
the application of a pharmacological autonomic blockade in combination with
posture changes during controlled breathing [13]. The energy of the three main
spectral bands acquired by the windowed FFT method and the energy of each
IMF obtained using the EEMD was calculated to obtain their correlation. The
objetive was to validate the correlation between them and verify the effectiveness
of the EEMD method applied to HRV signals.
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2 Materials and Methods

2.1 Simulated Signal

A typical 5-minutes short-term HRV segment with zero mean was produced to
evaluate the performance of the EEMD. As shown in the Fig. 1, the synthe-
sized HRV series s(t) is composed of s1(t),s2(t) and s3(t), three sinusoidal sig-
nals whose oscillation frequency was located in the center of each main spectral
band [3].

The s1 component recreates the HF with an angular frequency ωHF =
2π(0.275)t , s2 represents the LF with an angular frequency ωLF = 2π(0.095)t,
and s3 simulate the VLF with an angular frequency ωV LF = 2π(0.0215)t. The
signal was divided into 3 different segments in order to recreate a non-stationary
environment, amplitude changes of the LF and HF components were made every
100 s. For the sampling frequency a rate of 7 hz was used [14]. The resultant series
s(t) = s1(t) + s2(t) + s3(t) can be described as follows:

s(t) =

⎧
⎪⎨

⎪⎩

30sin(ωV LF ) + 15sin(ωLF ) + 5sin(ωHF ) 0 ≤ t < 100
30sin(ωV LF ) + 20sin(ωLF ) + 2sin(ωHF ) 100 ≤ t < 200
30sin(ωV LF ) + 10sin(ωLF ) + 10sin(ωHF ) 200 ≤ t ≤ 300

(1)

2.2 Dataset

We used recordings from a database developed by Harvard Medical School
(HMS, Children’s Hospital), Massachusetts Institute of Technology (MIT), and
the Favaloro Foundation School of Medicine (FFMS). The HMS-MIT-FFMS
database was designed to perform training and comparison of a variety of
methodologies used to analyze the cardiac function. A total of 82 segments of
5-minute short-term recordings of 14 subjects were used [13].

The signal measurement process begins with each subject in a supine posi-
tion where they perform a breathing protocol, then they move to the standing
position and after 5 min for hemodynamic balance they repeat the breathing
protocol. After that, the subject is then returned to the supine position and
atropine (0.03 mg/kg, n = 7) or propranolol (0.2 mg/kg, n = 7) is administered,
after 10 min, it is performed the breathing protocol with the subject in the supine
position and then standing. Finally, the subject is placed back in the supine posi-
tion to administer the other autonomous blocking agent, and the measurement
process is repeated for the supine and standing positions. The doses chosen
for complete parasympathetic blockade (atropine) and complete P-adrenergic
blockade (propranolol) were based on previous studies [15]. Instances of pure
sympathetic or parasympathetic modulation before and during the application
of a pharmacological autonomic block in combination with posture changes dur-
ing controlled breathing were generated. The RR interval signal were acquired
from an ECG using a peak detection program, where time series of HR smoothed
3 Hz [16].
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Fig. 1. Composition of the synthesized typical HRV 5-min segment. s1(t) represents
the HF, s2(t) the LF and s3(t) the VLF. The resultant segment can be described as:
s(t) = s1(t) + s2(t) + s3(t).

2.3 Resampling

It is necessary to convert the signal with an interpolation step, HRV data has
an uneven sampling nature, whereas most feature extraction methods require
uniform sampling [17]. Among the many resampling methods already defined in
the literature, the Cubic Spline method is possibly the most widely used due
to the minimal interference it has on frequency domain measurements [18]. The
upper frequency of HRV data is 0.5 Hz [3] and a rate of 1 10 Hz is normally
used for interpolation [14]. In this case, we applied the Cubic Spline resampling
method with a sampling rate 7 Hz to HRV data.

2.4 HRV Signal Analysis

As suggested by HRV guidelines [19], standard frequency domain features for
short-term HRV were extracted from 5-minute segments. In addition, an EEMD
was applied in these HRV segments to analyze them based on a non-linear
model [20].



282 J. Zelechower et al.

Frequency Domain Analysis. The standard spectral analysis, in the fre-
quency domain, can distinguish three main spectral components in a spectrum
calculated from short-term HRV signals [5], the developed energy in each of them
can be linked to physiological events [3]. The VLF, from 0.003 Hz to 0.04 Hz,
represents different physiological influences, hormonal activity, chemoreflexes,
thermoregulation and also parasympathetic modulations of heart rate.

The LF, from 0.04 Hz to 0.15 Hz, reflects sympathetic and parasympathetic
modulations of HR. The HF, from 0.15 Hz to 0.4 Hz, can be associated with
vagal modulation by the parasympathetic system. In this study, we calculated
the energy of each main spectral band by using the windowed FFT method [1,2].

Empirical Mode Decomposition. The EMD [6] is an adaptive method gen-
erally used to analyze non-stationary signals from non-linear systems. The algo-
rithm, empirically, produces a decomposition of the time series into a finite
quantity of oscillating functions and a residue.

These functions are modulated amplitude/frequency signals called intrinsic
mode functions (IMF). An IMF is a zero local mean function with an unique
extreme between zero crossings. The EMD decomposes the signal into IMFs by
a sifting process that can be described as follows:

Use a signal x(t), identify the local maximum and minimum and produce the
upper and lower envelops by a cubic spline line. Considering the mean of these
envelops as m1, the first component f1 can be represented as:

f1 = x(t) − m1 (2)

Take f1 as the original signal and replicate the sifting process considering m11

as the mean of its upper and lower envelopes. Then, get f11 as:

f11 = f1 − m11 (3)

Repeat k times the sifting process until f1k becomes itself to an IMF

f1(k−1) − m1k = f1k (4)

Then, obtain the first IMF component from the data:

IMF1 = f1k (5)

The IMF1 must contain the fastest, or the highest frequency, components of the
signal. Once determined, get the residue r1 separating this IMF1 from the rest
of the data

r1 = x(t) − IMF1 (6)

Take the residue r1 as a new signal, repeat the sifting process steps performed
previously and obtain the second IMF component IMF2. This procedure can be
repeated resulting in:

r1 − IMF2 = r2, ..., rn−1 − IMFn = rn (7)
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The stop process criteria are two: when the IMFn or the rn becomes less than
a predetermined value or when the rn becomes a monotonic function. Finally,
the signal x(t) can then be represented as a sum of the IMFs and a residue:

x(t) =
n∑

i=1

IMFi + rn (8)

In the EMD process a problem called mode mixing occurs, oscillations with
very different scales can exist in one mode. To reduce this effect, the new method
EEMD [7] was proposed. The decomposition is performed from a set of noisy
copies of the original signal, obtaining the final results by averaging whereas the
noise converges to zero.

The addition of Gaussian white noise reduces the mixing of modes by pop-
ulating the entire time-frequency space, taking advantage of the behavior of
the EMD’s dyadic filter bank [21] and obtaining more regular modes. There-
fore, EMD mode mixing problem is solved effectively by using EEMD [20]. The
EEMD algorithm can be computed as follows:

1. Add to the original signal x(t), J different series of Gaussian white noise with
a defined standard deviation nj (j = 1, ..., J). Then, return the observations:

xj
(t) = x(t) + nj

(t) (9)

2. Decompose each xj
(t) into IMFs by the EMD process, obtaining a J sets of

IMFs per observation IMF j
i .

3. Compute the ensemble mean of each IMF as the final ith IMF:

IMFi =
1
J

J∑

j=1

IMF j
i (10)

2.5 Software Tools

In this experiment, the Python language was used to developed all the scripts and
they were run in a JupyterLab notebook as integrated development environment.
Pandas 1.0.3, Numpy 1.19.4, Scipy 1.5.4 and emd 0.4.0 packages were used.

3 Results

The EEMD analysis on a synthesized signal as shown in Fig. 3 produces the
decomposition in five IMF, therefore is possible to see that the IMF1 is mainly
composed of the remaining noise used to average the assembly, the IMF2 and
IMF3 are identified as the HF component of the signal, the IMF4 is associated
with the LF component and the IMF5 with the VLF component.

Also, it can be observed that the amplitude modulations carried out in the
LF and VLF components during the simulation are correctly represented by each
corresponding IMF.
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As suggested [7], a noise ratio of 0.2 of the signal standard deviation and a
ensemble number of 100 was used. With this configuration, a set of 5 IMFs of
each HRV segment was obtained both in the simulated case and with the real
signals as shown in Fig. 2 and Fig. 3 respectively.

In the case of real RR signals, as shown in Fig. 3, the EEMD also produces
the decomposition of five IMFs. A total of 410 IMFs from 82 short-term HRV
segment were obtained, the correlation between their energies with the energies
of the main spectral bands was calculated in order to validate their link.

In the Fig. 4 it can be observed a 0.96 correlation between the HF energy
(Ehf) with the energy of the IMF1 (Eimf1), a correlation of 0.98 and 0.97
between the LF energy (Elf) with the energies of IMF2 and IMF3 respectively
(Eimf2, Eimf3) and a correlation of 0.93 and 0.88 between the VLF energy
(Evlf) with the energies of IMF4 and IMF5 (Eimf4, Eimf5). It is also possible
to see that exist a correlation of 0.94 between the energies of IMF2 and IMF3

(Eimf2, Eimf3), and a 0.91 correlation with the energies of IMF4 and IMF5

(Eimf4, Eimf5).

4 Discussion

In this paper, the EEMD is presented as an adaptive method suitable for the
non-linear and non-stationary behavior of HRV signals. This multi-resolution
decomposition technique can evaluate the intrinsic characteristics of signals even
with non-stationary components [14]. In the study of the congestive heart failure
was used to improve the accuracy of an automated identification system [10], and
to produce new features and indices that could serve as a new way of evaluating
[22]. Also has been used to extract the feto-maternal heart rate from the abdom-
inal ECG signal where they obtained a mean accuracy of approximately 95% in
the quantification [23] and to classify ECG heartbeats with a mean accuracy
greater than 95% [11]. The EEMD has been demonstrated that is a very useful
technique for tracking frequency changes and amplitude modulations generated
by autonomic regulation [8].

Autonomic function, through the sympathetic and parasympathetic nervous
systems, controls the functioning of vital organs [24]. The autonomic control
mechanisms are involved in cardiac function influencing short-term fluctuations
of the RR time interval [3,4]. Indeed, the power spectral density analysis of the
short-term HRV was adopted as an evaluator of the autonomic function [3,4]

The EEMD has the issue of decomposing the series analyzed in a set of
IMFs according to the nature of the signal analyzed [25]. In this experiment,
the numbers of the modes obtained by analyzing the synthesized signal do not
coincide with those obtained in the real data set, a problem that requires prior
knowledge of the data to correctly attribute the information to an IMF.

The method has shown that it can decompose HRV signals into four functions
associated with four frequency bands, functions even validated by Hilbert-Huang
transform [26]. It seems that, using the IMFs obtained through the EEMD in real
short-term HRV series, it is possible to reconstruct separately the main spectral
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Fig. 2. Results of EEMD on synthesized typical HRV 5-minutes segment s(t).

bands avoiding their interference and allowing to analyze each one of them in
particular. In the results it can be observed a 0.96 correlation between the IMF1
and the HF band and correlations of 0.98 and 0.97 between the IMF2 and the
IMF3 with the LF band achieving a correct discrimination without using any
type of fixed filtering. If this correlation is sufficient to validate the link between
the IMFs with the autonomic function, it is possible to say that IMFs describe
their temporal activity.

In future works, with the objective to analyze the mode mixing level that
exists in the different IMFs, will be to use a spectral or time-frequency method,
as the Hilbert-Huang transform [6], in order to validate the correspondence of
the IMFs with the main spectral bands. Also, to confirm the correlation between
the IMFs with the autonomic function, we will construct a classification system
where the IMFs will be evaluated as classification features.

One of the most significant limitations is the computational cost attributed
by its iterative nature that slows down the method [27], it can be solved by
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Fig. 3. Results of EEMD on two real HRV segments: (a) Subject in a pure sympathetic
modulation state, (b) another subject in a pure parasympathetic modulation state.
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Fig. 4. Correlation between the energies of the HRV main spectral bands with the
energies of the 5 IMFs obtained with the EEMD.

computing the EEMD in parallel processing threads, making real-time imple-
mentation possible. Another limitation was that we have used only data from 14
subjects, the analysis must be applied to a larger dataset to validate the results.
Finally, we can mention that although the FFT is taken as the goal standard
measurement, it is based on a linear method that requires stationarity for its
correct operation.

4.1 Conclusions

In this work we have presented the EEMD as an algorithm that can solve the
problem of analyzing non-linear and non-stationary signals such as the HRV
series. The method was successfully tested on artificial and real signals. It is
possible to say that the EEMD solves the mode mixing phenomenon by adding
white noise to the original signal, the synthetized signal shows the capability to
decompose the signal into IMFs.

Regarding the performance using the real data set, it can be observed a 0.96
correlation between the IMF1 and the HF band and correlations of 0.98 and
0.97 between the IMF2 and the IMF3 with the LF band, we can achieve a
correct discrimination without using any type of fixed filtering.

In conclusion, the results of this work propose the EEMD as useful method
for analysis HRV data. The ability of decompose the main spectral bands and
the capability to deal with non-linear and non-stationary behaviors makes the
EEMD a powerful method for tracking frequency changes and amplitude mod-
ulations in HRV signals generated by autonomic regulation.
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