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Abstract. Given the spread and pandemic generated by the SARS-
CoV-2 coronavirus and the requirements of the Universidad de Los Andes
in terms of guaranteeing the health and safety of the students consider-
ing possible contagions at the university campus, we propose and design
a mobile application to obtain the best route between two places in the
campus university for a student. The path obtained by our proposal,
reduces the distance traveled by the student as well as a possible conta-
gion of the coronavirus during his journey through the university cam-
pus. In this sense, two types of costs were modeled: one cost represents
the distance cost to travel the campus by a student, and the second
one represents the contagion susceptibility that a student has when he is
passing through the campus. In summary, it was developed and validated
a solution algorithm that minimizes these two types of costs. The results
of our algorithm are compared against a Multi-Objective mathemati-
cal optimization solution and interesting findings were found. Finally, a
mobile application was created and designed in order to obtain optimal
routes to travel between two points in the university campus.

Keywords: SARS-CoV-2 · Pedestrian traffic · Multi-objective
optimization · Heuristic · Mobile application

1 Introduction

The pandemic spread by the SARS-CoV-2 virus, commonly called COVID-19,
led multiple countries worldwide to take and enforce social restrictions in order
to limit the spread of the virus. The most common contingency measures, taken
by several governments, is to limit the movements of its citizens, as well as the
social interactions that occur between them. This measure is known as “social
distancing” and has the purpose of minimizing the exchange of segregations
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between one person to another, which is the main event that causes the expo-
nential growth of the contagion of the coronavirus [7].

However, in many scenarios, there are a large number of people spending daily
hours walking into multiple pedestrian congestions, where the established social
distancing is not accomplished. In 2019, Universidad de Los Andes reported
around 14 thousand undergraduate students, 3.000 master’s students, and about
364 doctoral students. [22] in a campus area that covers around 11.4 ha [21]. In
this sense, this institution has a large volume of pedestrians circulating daily
through the different facilities of the campus (multiple corridors and intercon-
nection building routes). This scenario was the common behavior before the
implementation of virtual classes by the institution due to the pandemic. There-
fore, due to the need to fulfill the social distancing within the campus considering
the possible agglomerations, we propose a mathematical model for minimizing
the person exposure in places with a risk of contagion (places with high traffic of
pedestrians at a specific time). In addition, the mathematical model is proposed
to be accessed through a mobile application with the aim of a pedestrian user
can determine a route to traverse the campus minimizing the risk of contagion
at a specified time.

The remainder of the paper is organized as follows: Sect. 2 presents related
works, and the identification and relevance of the problem to be treated. Section 3
shows the descriptions and justifications of the multi-objective mathematical
optimization model design process developed for the implementation of the
mobile application. Section 4 describes the understanding of the problem mod-
eled in the phases presented in Sect. 3. It also describes the elaboration and
validation of the algorithm solution. Section 5 presents the design and develop-
ment of the mobile application that corresponds to the front-end solution of the
proposal. Section 6 analyzes and discusses the findings obtained by our proposal.

2 Related Work

The same COVID-19 susceptibility probability equation for an individual in
pedestrian congestions was used through these related works. Likewise, these
studies presented simulations to represent the population behavior under differ-
ent types of events in a casual day. In other words, these studies emphasized how
displacement or mobility events are related to the spread of the SARS-CoV-2
virus.

In [6], researchers performed simulations of human mobility models to study
the dynamics of coronavirus infection in order to get a dynamic model of the
virus spread. To capture the nature of the epidemiological dynamics, the study
made use of the SIR (Susceptible, Infected and Recovered) model. Through con-
tagion rates planned in the model, the behavior of different groups populations
was simulated. If a susceptible person and an infected person meet, there is a
probability that the susceptible person will become infected. Time after infec-
tion, the person typically recovers. Therefore, the study introduced a contact
graph constructed from everyday situations such as agglomerations in public
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trans-port, work, home, and others (scenarios in which the SIR model could
be applied and studied). Finally, after executing the simulations of the contact
graph with the epidemiological dynamics previously stated, the study set out
strategies as conclusions, such as the suspension of public transport, total quar-
antine, and others social decisions, in order to prevent and reduce the spread of
the virus.

For instance, one of the researched works created an epidemiological model
based on agents (called PanCitySim) in which the movement of many individuals
were modeled in a city. For this purpose, the model used a graph to represent
the contact of many activities performed by the population in the whole city. In
this sense, the spatio-temporal properties of an epidemic were studied according
to the SIR model in order to represent the impact of human interactions to the
transmission of the virus [5].

Therefore, it was suitable to study human mobility models in cities in order to
understand the spreading behavior of COVID-19. Based on these related works,
in our proposal, a solution could apply to the mobility patterns associated with
pedestrians and their environment within the Universidad de Los Andes, as well
as mathematical models and probabilities associated with the spreading of the
virus.

3 Multi-objective Mathematical Optimization Model

In this research we propose a mathematical model for minimizing the distance
traveled by a student and the risk of contagion when he is walking through
campus. Therefore, the model included a transportation cost matrix represented
as the distances between each point or node that composes the route of the
map to travel. Likewise, it was also established a matrix of interaction costs
that represents the pedestrian traffic through the points or nodes in the map.
In addition, in the model we defined a minimum coverage radius for each node,
which is the maximum distance that must be for each pair of nodes to be a
connection.

In order to define the initial nodes network, the GeoJSON web tool was
used [12], where nodes were placed consecutively on each path of the univer-
sity campus. Once the coordinates of the different nodes have been exported
in a file in JSON format, they were loaded as parameters to the mathematical
model. To understand the mathematical model, sets, variables, and parameters
are presented in Table 1.

Thus, in order to verify the solution of the initial model, the objective func-
tion was defined:

Minimize ∑

iεN

∑

jεN

Xij · (Ctij + Ciij) (3.0.1)

Subject to: ∑

jεN

Xij = 1 ∀i εN |i = S (3.0.2)
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∑

jεN

Xij = 0 ∀i εN |i = S (3.0.3)

∑

iεN

Xij = 1 ∀j εN |i = D (3.0.4)

∑

iεN

Xij = 0 ∀j εN |i = D (3.0.5)

∑

jεN

Xij −
∑

jεN

Xji = 0 ∀i εN |i �= D ∧ i �= S (3.0.6)

Xij · Ctij ≤ RC ∀i, j εN (3.0.7)

Table 1. Sets, parameters and variables of the initial mathematical model

Category Symbol Description

Sets N Number of nodes in the network

Parameters Ciij Interaction cost between node i and node j, which is the
number of people that walk through the link (i,j)

Ctij Transport cost between node i and node j, which is the
euclidean distance between these nodes

S Source node number, in which a student started its walk

D Destination node number, in which a student finished its
walk

RC Node’s Ratio Coverage, which is the maximum distance that
two pairs of nodes must have to exist a connection link
between them

Variables Xij Binary decision variable that shows whether the student
chooses the link between node i and node j as a part of its
path from the source node to the destination node. 0 if
otherwise

The objective function of the mathematical model is subjected to the con-
straints represented in Eq. 3.0.2 to Eq. 3.0.6. In Eq. 3.0.2 it is indicated that
the source node should only have one outflow, that is, the student can only
take one path from its point of origin. Equation 3.0.3 ensures that the student
cannot be returned to its source node. Equation 3.0.4 ensures that the student
reaches its destination node. Equation 3.0.5 establishes that once the student
reaches the destination node, he cannot travel to other paths or nodes. For
intermediate nodes between the source node and the destination node, Eq. 3.0.6
establishes that if a student reaches an intermediate node, they must leave that
node. Finally, to guarantee that the model chose links within the ratio coverage
of each node, Eq. 3.0.7 was proposed.

In terms of the mathematical model implementation, we executed the model
on the Pyomo optimization framework on an Intel R©Core i5-6200U, 2.3 GHz,
7.7 GiB system.
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3.1 Interaction Cost Function

The susceptibility probability of contagion proposed by [6] was used in our pro-
posal, which can be observed in Eq. 3.0.7.

Pn,t = 1 − e−θ·∑mεM qm,t·inm,t·tnm,t (3.1.1)

Where M is the set of people with whom a user was in close contact, with
the following variables and parameters: Pn,t is the Probability of person n to
receive an infectious dose. However, as stated in [8], this probability should not
be understood as “probability of contracting the virus”, since this depends on
the immune system of each person. θ is the Calibration factor for a particular
disease. qnm,t corresponds to the Microbial load between two people, which is
the amount of virus that the person m transmits in time t. inm,t is the Contact
intensity between the person n and m, which corresponds to the distance. Finally,
tnm,t: Time that person n interacts with person m for a time t.

Now, for the simplicity of the proposed model, we assumed that the distance
between each pedestrian and each user corresponds to 1 m and that their inter-
action time was 0.5 s. However, due to the fact that as of the date this project
was developed, no calibration parameters and microbial load of COVID-19 were
known. Thus, parameters estimated by the previously mentioned studies were
used.

First, the value qm,t was assigned as 1 based on estimates made by [6]. Sim-
ilarly, the calibration parameter θ was taken as 1

20 based on studies conducted
by [8] in closed spaces such as aircraft interiors during commercial flights.

We considered that the choice of this calibration value should be made on
the assumption that all routes in the campus are in a closed space (which is
the assumption of a pessimistic scenario). With this decision, it was possible
to establish an equal load of micro-organisms in the environment for all the
connections between nodes, and therefore, this allowed the model to calculate
the best path based on the segregations caused by other students and not on the
dispersion caused by other factors.

3.2 Pedestrian Traffic Simulation on the University Campus

In order to establish parameters related to the interaction cost of the model in a
post COVID-19 scenario, we processed the dataset of the anonymized schedules
of undergraduate students in the first semester of 2019, as well as the semester
current academic schedule. The data was pre-processed and cleaned through the
data analysis software KNIME [17]. Using this tool, the courses list was matched
to the courses registered by the students. The resulting data set had the following
attributes with 65, 536 records: student ID, course ID, department or faculty of
the course, name of the course, current academic cycle of the course, building
where the course was taught, time and minutes when the course started, time
and minutes when the course ended and days on which the course was taught.
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Once the final set of data to be used as parameters in the model was got, we
loaded the students pedestrian traffic data into a non-relational database [10]
using executable scripts [19].

Then, each record of the data set was uploaded as the origin and destination
buildings that each student has in a change of classes in an academic cycle, day
and specific time.

For a student’s first class of the day, we decided in our simulation that a stu-
dent would arrive at the university campus through the transport nodes iden-
tified in Uniandina Mobility Survey (Encuesta de Movilidad Uniandina) [23],
where each means of transport has an associated percentage, which represents
the percentage that uses said means of transport. Then, a random variable was
defined that oscillated within the ranges of percentages and that from the value
that said variable took, it was assigned within the percentage of the closest mean
of transport. Likewise, we defined the nodes in the network equivalent to where
the transportation stops are within the university campus.

For non-consecutive classes belonging to the same day, we decided to define
random nodes where students would spend their free hours. The choice of these
nodes was made arbitrarily.

Once the data had been uploaded to the database, a hierarchical non-
relational database was got based on the academic year, day, and class change
schedule.

To model the route pattern that each student was going to use when moving
around the campus, we decided that for the simulation the students would look
for the shortest way to go from their source building to their destination building.
For this task, we assumed that each student would move through each node using
the Dijkstra Algorithm for minimal cost path (taking the distance between each
pair of nodes as cost) [1].

Consequently, the selection of each path by each student assigned the inter-
action costs of the mathematical model and the solution heuristic. At Table 2
is the terminology used for Algorithm 1, which was used to map the pedestrian
traffic parameters to the interaction cost variable:

Table 2. Related terminology used for the Algorithm 1

Symbol Description Assumptions

N Set of network nodes

E Set of students that displace in a specific
academic cycle, day and schedule

S(i) Student source node i ∀i ε E ∀S(i) ε N

D(i) Student destiny node i ∀i ε E ∀D(i) ε N

Sp(i) Optimal set of links that a student i has to
take to displace from S(i) to D(i)

∀i ε E ∀S(i), D(i) ε N

Dij Optimal links calculated by Dijkstra
Algorithm from node i to node j
displacement

∀i, j ε N
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Algorithm 1: Algorithm for the simulation of pedestrian traffic and inter-

action costs assignment to the network nodes’ links

Cij = 0 ∀i, j ε N ;
Sp(e) = {} ∀eεE;
for e ε E do

Sp(e) = Dijkstra(S(e), D(e));
for i, j ε N do

if i, j ε Sp(e) then
Cij ← Cij + 1;

end

end

end

3.3 Pareto Front Development

Consecutively, we implement a Pareto Front in order to observe the behavior of
the transport cost and the interaction cost functions when they are minimized
and one function has more importance or weight over the other.

Therefore, the Pareto Front was calculated through the method ε -constraint
[2]. For this computation, the previously defined network of nodes was used
and the parameters of the transport function were assigned based on the traffic
loaded in the database.

Finally, we defined a weights vector in which each vector’ element multiply
each function on each iteration, in order to give greater weight to one function
compared to the other. The mathematical expression was defined:

W = [10, 20, . . . , 50]

where for each element of W would represent the upper limit that f2 should
have when wanting to minimize f2 (this is reflected in the additional restriction
described below). Therefore, each element W was iterated to obtain values close
to the limit of f2. It should be noted that the mathematical model of the method
also includes the restrictions initially set in the Sect. 3.

The Pareto Front run was performed on an Intel R©Core i5-6200U, 2.3 GHz,
7.7 GiB.

for each w εW :

f1 =
∑

iεN

∑

jεN

Xij · Cij

f2 =
∑

iεN

∑

jεN

Xij · Cij
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Minimize

f1

Subject to:
f2 ≤ w (3.3.1)

See Eq. 3.0.2–Eq. 3.0.7

4 Heuristic

As this problem can be represented as a minimum cost problem, where for each
link there are two types of cost - transport cost and interaction cost respectively
- we used known heuristic to solve the minimum cost problem by combining in a
same scale the two types of cost for each link. Therefore, the Dijkstra Algorithm
[1] was used as a solution algorithm, where the user, through the front-end of
the project, could choose the criterion to minimize given their preferences and
input parameters.

Regarding the unification of costs, the costs of each link were normalized, and
then multiplied by a weight represented by a scalar between 1 and 0. Finally, the
product of the normalized costs and their scalar was added, resulting in a single
cost matrix. It should be noted that the scalar weight is the representation of
the path criterion selected by the user (i.e. 0 as least importance, 1 as greatest
importance). However, we found that given the modeling of pedestrian traffic
described in the Subsect. 3.2 and the obtained Pareto Front results in different
scenarios, the problem of minimization of the transport cost function and the
interaction cost function only had solutions in the limits of each function, which
is a solution was not found that minimized the two objectives “as equal”, but
two optimal solutions were presented that minimize only one function.

4.1 Bi-Objective Problem Understanding

To understand the reason for the existence of only two optimal solutions for
the minimization problem of f1 and f2 (as conventions, f1 is referred as the
transportation cost function and f2 is referred as the interaction cost func-
tion.), it must be remembered how the distribution of traffic was defined in the
Subsect. 3.2, which was done under the assumption that every student who
moved around the campus would choose the shortest route in the network of
nodes.

Multiple scenarios were obtained where all the costs associated with f2 are
distributed by the links that minimize f1. Therefore, when it is desired to min-
imize only f1, links are obtained when it is desired to maximize f2. Similarly,
when only f2 is minimized, the chosen links have no costs for this function. Those
links, since they are not optimal for f1, maximize the value of said function.

To describe the understanding of the problem in more detail, see the termi-
nology described below:
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Be

D : Set of optimal links selected by Dijkstra’s Algorithm
C1 : Set of optimal links to minimizef1

C2 : Set of links where there are costs associated withf2

Where from the student pedestrian traffic displacement model, the following
sets relationship occurs:

C1 εD

C2 εD

4.2 Single Cost Approach to Solution Heuristic

For the solution heuristic we proceeded to use Dijkstra using as the only cost
the weighting of the normalization of the costs of f1 and f2. For this, the scale
characteristic normalization method was applied as follows:

f
′
1(i, j) =

f1(i, j) − min(f1)
max(f1) − min(f1)

(4.2.1)

f
′
2(i, j) =

f2(i, j) − min(f2)
max(f2) − min(f2)

(4.2.2)

Where f
′
k(i, j) is the normalization of the scaling characteristic of fk in the

link of node i and node j. max(fk) corresponds to the maximum value in the
data set of the function k. For the case of both functions, the maximum value was
the integer 99999, since that was the default value in the cost matrix where there
was no link between a pair of nodes. Finally, max(fk) is the minimum value in
the data set of the function k. For f1 it corresponded to the link between nodes of
shorter length, and for f2 it was the minimum number of students who traveled
on a link given a cycle, day and time.

Finally, the costs of the normalized functions were weighted through the
weights that were later defined from the input parameters entered by the user,
and they were assigned to a new function. Likewise, from the new function, we
defined the heuristic solution that would have as parameters the inputs received
by the front-end of the mobile application:

F (i, j) = w · f
′
1(i, j) + (1 − w) · f

′
2(i, j) (4.2.3)

H(s, d) = Dijkstra(F, s, d) (4.2.4)

Where F is the function that stores the weight of the two initial normalized
functions. w corresponds to the weight that the user implicitly enters as a param-
eter in the front-end to give a weight to each function. Dijkstra is the function
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that returns the optimal links given the unified cost function F , a source node s
and a destination node d given a cycle, day and time. Finally, H is the function
that represents the problem’s heuristic solution. Once the heuristic solution was
modeled, the results of the algorithm were compared with the solutions provided
by the Pareto Front in different scenarios.

4.3 Results Comparisson and Validation with the Pareto Front

For the validation of the results produced by the heuristic developed with the
Pareto Front points, we defined different scenarios to vary the pedestrian traffic
given a cycle, day and time with the same origin and destination node in each
scenario. This was made with the purpose of comparing how is the variation of
the optimal route of two points from the assignment of different costs of f2 (since
the costs of f1, being the length of each link between nodes remained fixed in
the different executions. However, it should be noted that the accumulated cost
of f1 changes from the different routes selected).

The specifications of the different scenarios are observed in Table 3.
For the generation of the Pareto Front, the methods described in Subsect. 3.3

was used.
Regarding the values of w for F , different values were iterated in the domain

of w ([0, ..., 1]) to observe the points got by the heuristic in each iteration.

Table 3. Specifications of the scenarios chosen for the comparison of the solutions
thrown by the solution heuristic and the Pareto Front.

Scenario number Academic cycle Day Schedule Source building Destiny building

1 1 Wednesday 10:50–11:00 Julio Mario Santodomingo Mario Laserna

2 1 Monday 13:30–14:00 Julio Mario Santodomingo Mario Laserna

3 1 Thursday 13:30–14:00 Julio Mario Santodomingo Mario Laserna

It is observed in Fig. 1a that different points were got from the Pareto front,
as well as the heuristic solution from the same source and destiny buildings, but
with different pedestrian traffic and assigned weights for each w εF .

f As main evidence, we observed that since it is a problem with only two
optimal solutions available the Pareto Front, points were generated particularly
at the limits of each function. Likewise, it was obtained that when w �= 0 or
w �= 1 the heuristic yielded the same solution in each iteration. Therefore, the
solutions thrown by the heuristics behave as if they were only minimize f2, this
is due to a single cost function where the costs of f2 associated with the optimal
f1 paths made the heuristic look for paths that were not optimal for f1 in order
to minimize weight associated with f2. For such reason it can be seen that the
algorithm solution does not generate optimal results to minimize f1.

Thus, in the iteration when w = 1-which is when the heuristics were only
considered minimizing f1- a solution was got at one end of the Pareto Front,
where the associated cost of f1 is minimized and the cost associated with f2
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is maximized. However, on iteration when w = 0, which is the case where the
heuristic only minimized f2. We found that although that the solutions obtained
minimize the accumulated cost of f2 with respect to the iteration scenario when
w = 1, These solutions are solutions dominated by the points that make up
the Front, and additionally, it is a non-optimal solution when minimizing f2
compared to the solutions obtained in the iterations when w /∈ {0, 1}

For additional information of the described scenarios, see Fig. 1b, in where
the optimal path selected by the heuristic is shown for the different values iter-
ated by w in its domain. Note the similarity of routes chosen when the heuristic
only minimizes f1 or f2, and as in a different scenario (Scenario 2) increases the
cumulative cost of f1 to minimize the cumulative cost of f2 From the observa-
tions derived from the results, and from the naturalness of the modeled problem
described in Subsect. 3.2, we decided to only expose two possibilities of paths
in the mobile application, where each option corresponds to the minimization of
each function. Therefore, to obtain these results, the domain of w was configured
to only take the values of 1 and 0.5 (which is a decimal that assigns equal weight
to both normalized functions).

(a) Pareto Fronts and Heuristic solutions
for scenarios 1, 2 and 3

(b) Mapped routes

Fig. 1. Scenarios and routes comparisons for different values of w between 0 and 1

4.4 Results Comparisons and Validation Based on the Mathematical
Model

From the configurations established for the solution heuristic in the Subsect. 3.2
- where f1 and f2 were equally normalized and weighted to minimize f2 - The
execution times used by both the mathematical model and the heuristics to
minimize f1 and f2 were compared, as well as the values taken by the functions
in each scenario.

The mathematical model was configured in the optimization framework
Pyomo [4] and the heuristic was written and executed in a script written in
the programming language Python.

The specifications of the chosen and executed scenarios can be observed in
the Table 4.
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Table 4. Scenarios specifications.

Scenario number Academic cycle Day Schedule Source building Destiny building

1 1 Wednesday 10:50–11:00 Julio Mario Santodomingo Mario Laserna

2 1 Thursday 13:50–14:00 Julio Mario Santodomingo Mario Laserna

3 1 Monday 13:50–14:00 Julio Mario Santodomingo Mario Laserna

First, the execution times of each scenario were compared, where it was
observed that the execution times got by the heuristic are approximately 98.45%
less than the times obtained by the mathematical model. The previous result
facilitates the response time of the calculation of an optimal route when the
heuristic is integrated as a service exposed to the mobile application.

Both the heuristic and the mathematical model were executed on an Intel
R©Core i5-6200U, 2.3 GHz, 7.7 GiB. Additionally, in the executions made by
Pyomo the mathematical model was solved using the GLPK solver.

The details of the execution times for each scenario can be observed in the
Table 5. Subsequently, the resulting values of f1 and f2 were compared for each
tool in the minimization of each function of each scenario. As it is observed in
Table 5, the heuristics got relatively lower values for f2 compared to the mathe-
matical model in each case of minimization of f1 (It should be noted that in these
cases the two tools got the same result for f1), while in the cases of minimization
of f2 each tool had the same results for this function.

Table 5. Comparison of the resulting f1, f2 values in the execution of each scenario
with their corresponding execution time.

Scenario

number

Function

to

minimize

Heuŕıstic

value for

f1 (units)

Mathematical

model for f1
(units)

Heuŕıstic

value for f2
(units)

Mathematical

Model value

for f2
(units)

Heuristic

Execution

Time (sec)

Mathematical

model

execution time

(sec)

1 f1 3.08 ·10−3 3.08 ·10−3 495 495 2.761 182.504

f2 6.58 ·10−3 6.99 ·10−3 5 5 2.519 164.167

2 f1 3.08 ·10−3 3.08 ·10−3 540 540 2.522 153.907

f2 6.68 ·10−3 7.48 ·10−3 19 19 2.423 171.088

3 f1 3.08 ·10−3 3.08 ·10−3 682 682 2.544 161.058

f2 6.64 ·10−3 7.11 ·10−3 35 35 2.695 165.645

5 Mobile Application Design

We implemented REST API software architecture style [20] using the web frame-
work Flask [18] written in Python. Likewise, the steps and instructions for the
heuristic solution (see Subsect. 4.2) were developed in the programming lan-
guage Python. The input parameters that the REST API received for the solu-
tion heuristic to calculate the optimal path were: Text string containing the
initials of the building in which the student is located (s). Text string contain-
ing the acronym of the building the student wants to go to (d). Text string that
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shows the academic cycle in which it is desired to calculate pedestrian traffic. By
default, this value corresponds to “1” (cycle). Text string that indicates the par-
ticular day set to calculate pedestrian traffic (day). Text string that indicates
the schedule for changing classes of pedestrian traffic. Note that class change
hours are expressed in the 24-h system (schedule). Integer that shows which
function it is wanted minimize (1) or if it is wanted to minimize the transport
cost function (0), if it is wanted to minimize the interaction cost function (w).
For more details on what these functions represent, see Sect. 3.

It should be noted that these methods are received by the server through a
POST request. To test the connection between the Flask server and the client,
the server was run on a local machine Intel R©Core i5-6200U, 2.3 GHz, 7.7 GiB
machine and perform client API requests through the Postman [9] software.

For the development of the mobile application, we designed so that it could
be executed in the operating system Android 9 [13]. Likewise, through the pro-
gramming language Kotlin [16] and the graphical interfaces for the design of the
UI components provided by the Android Studio development environment, we
implemented the front end logic and graphical components to show the proba-
bility of susceptibility and the accumulated distance when traveling a route.

For the generation of the university campus map, a Google Maps software
development kit was used available for Android [15].

In Fig. 2 it can be observed the graphical interface of the application with
the susceptibility probability and the accumulated distance in the lower bar as
well as the optimal route drawn. It should be noted that the icons and figures
of the application were taken from the webpage Flaticon.com [11].

Regarding the selection of parameters to be sent to the server, a graphical
Android component (AlertDialog) was used to create a form that would allow
the user to select the source building, the destiny building, the opening hours,
change of classes available for that day and the route criteria to be minimized.
In order to get significant records of the students’ trajectory for the generation
of pedestrian traffic, we assumed that the default academic cycle parameter was
1. Likewise, the day was automatically assigned according to the current day
on which the application was used. If the user uses the application on Sunday -
the day on which the university does not hold academic classes - the application
assigns Monday as the default parameter. In the Fig. 3 and Fig. 4 it can be
observed the parameter selection form.

Once the parameters were selected, when pressing the Get Path button of
the form, the application - using the HTTP Android Volley [14] library - send
the request POST to the IP address of the local machine where the server was
deployed.

Once the server response is received, the application updated its interface,
showing in the lower bar the susceptibility probability that the user has when
traveling the route, as well as the accumulated distance that they have to walk.
An example of how the route is drawn in the application can be observed in the
Fig. 2.

In Fig. 5 it is observed the final architecture diagram.
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Fig. 2. Screenshot of
the mobile application.

Fig. 3. Parameter selec-
tion form with the dis-
tance minimization cri-
terion selected.

Fig. 4. Parameter selec-
tion form with the suscep-
tibility minimization cri-
teria selected.

Fig. 5. Diagram of the software architecture built. In the upper right corner of each
activity/device it can be observed the programming language, software or platform
used. In the upper left corner is the step number of the sequence of steps followed
by the process execution. The intermediate texts between the arrows connecting each
activity/device show the communication protocols used.

5.1 Validations

In order to observe the behavior and functionalities of the final product through
its graphical interface, the scenarios presented in the Table 6 were considered to
observe the variation between the probability of susceptibility and the accu-
mulated distance when minimizing each criteria, given the different origin-
destination buildings and pedestrian traffic on a certain day and class change
schedule.
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It should be noted that the scenarios presented took Thursday and “1” as
the default day and academic cycle respectively, since the tests were made on
that specific day of the week.

Table 6. Specifications of the tested scenarios on the mobile application, describing
the obtained values for each criteria based on the selected criteria to minimize

Scenario

number

Schedule Source

building

Destiny

building

Selected

criteria

S. probability

value

(percentage)

A. distance

value

(units)

1 10:50–11:00 Mario

Laserna

Aulas Distance 99% 0.0016

Susceptibility 85% 0.0025

2 13:30–14:00 Mario

Laserna

City U Distance 99% 0.0023

Susceptibility 66% 0.0037

3 10:50–11:00 J. M.

Santodomingo

Mario

Laserna

Distance 100% 0.0031

Susceptibility 99% 0.0068

6 Conclusions

Based on the developed work, a software tool has been built in order to optimize
the most important criteria to be considered by a pedestrian - a Universidad de
Los Andes student- in terms of health effectiveness and safety. Therefore, the
developed mobile application allows a pedestrian - related to Universidad de Los
Andes - to consult in a easy and quickly way a mobile application that solves the
COVID-19 risk contagion problem from a mobility pattern and displacements
perspective.

Likewise, based on the pedestrian traffic simulation and the proposed cost
functions, it has been possible to generate and understand a pedestrian agglom-
erations’ approximation, given a set of student classes that had time attributes.
Moreover, based on the data hierarchy and aggregated pedestrian mobile users
data - given the case the developed mobile application is used by multiple users
- strategies can be established for data analysis from the different hierarchy data
levels (day, academic cycle, etc.). This has been done with the purpose of under-
standing the mobility patterns that university students generate, and therefore,
allows a high-level decision making process that avoids pedestrian agglomera-
tions in a certain period of time.

Additionally, as a future work feature, the validation process must be com-
plemented from the medical domain point of view. In other words, the inclusion
and approval of health entities that comprehend the COVID-19 contagion pro-
cesses could help to calibrate and adjust our work in order to propose a joint
solution validated from the computational and medical point of view.
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