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1 Introduction

We consider maintenance policies for non-repairable components. We consider
a component as a part of a system that is subject to maintenance interventions
and for which no further subdivisions are made into sub-components that are
individually subject to any maintenance interventions. The condition of a non-
repairable component cannot be partially improved by carrying out a repair;
maintenance of a non-repairable component is therefore always a replacement. In
most cases, such a replacement will result in a component that is as-good-as-new.
Only if a heterogeneous set of spare components is considered, the quality of a new
components differs per replacement.

A component can be replaced either after its failure or before its failure. In
the first case we talk about corrective, reactive, or failure-based maintenance; the
second case is referred to as preventive maintenance. It is generally preferred to
perform maintenance interventions preventively, for instance because failure of a
component can result in damage to other components, and because it can lead to
unplanned downtime. However, performing preventive maintenance too often is also
undesirable and costly. Therefore, a balance has to be found between the preventive
maintenance frequency and the risk of failures.

A maintenance policy describes when to carry out preventive maintenance. A dis-
tinction can be made between time-based maintenance policies and condition-based
maintenance (CBM) policies. The former is based on the time that a component is
in service, the latter allows for maintenance activities that are performed based on
degradation information.
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Time-based maintenance is easy to implement as only the time that a component
is in service has to be recorded. However, substantial remaining useful life is
wasted if the machine is still in reasonable condition when preventive maintenance
is performed, and a breakdown might occur if it happens to deteriorate faster
than expected. Condition-based maintenance, on the other hand, generally results
in more effectively scheduled preventive maintenance, and, in the ideal case,
preventive maintenance that is performed just before failure. However, applying
condition-based maintenance is only possible if there are conditions that are
related to the moment of failure, and if it is technically possible to monitor these
conditions. Furthermore, condition-based maintenance should only be applied if
its benefits outweigh the efforts and costs required to apply it. These requisites
include condition monitoring equipment and software to store, analyze, and initiate
maintenance actions.

2 Time-Based Maintenance

Traditionally, two time-based preventive maintenance policies can be distinguished,
viz. age-based maintenance and block-based maintenance (Barlow and Proschan,
1965; Gertsbakh, 2000). Under the age-based maintenance policy, corrective main-
tenance is performed when the component fails, and preventive maintenance is
performed when the age of the component reaches T , whichever occurs first (see
Fig. 1). The maintenance age T is the decision variable of this policy. Under the
block-based maintenance policy (sometimes also called periodic maintenance),
preventive maintenance is performed at fixed times kT , k = 1, 2, . . .. Corrective
maintenance is performed when the component fails, but this does not affect the
preventive maintenance schedule (see Fig. 2). The maintenance interval T is the
decision variable of this policy. The disadvantage of block-based maintenance is that
preventive maintenance is sometimes performed shortly after a failure. The main
advantages, on the other hand, are the easier planning as it is known in advance when
preventive maintenance will be performed, and the clustered maintenance actions if
the same block-based policy is used for multiple components.

We let F denote the (cumulative) distribution function of the time until failure of
the component. We will consider time-based maintenance from a cost perspective.
The cost of performing a preventive maintenance action is denoted by cpm, the cost
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Fig. 1 Scheme of the age-based maintenance policy
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Fig. 2 Scheme of the block-based maintenance policy

of a corrective maintenance action by ccm. The cost of preventive maintenance is
assumed to be lower than the cost of corrective maintenance, i.e., cpm < ccm,
implying that preventive maintenance can be beneficial when scheduled effectively.
In the basic models both preventive and corrective maintenance actions are assumed
to require a negligible amount of time and to make the component as-good-as-new.
The cost of performing corrective maintenance is often normalized to 1, so that only
one cost parameter c for the relative cost of performing preventive maintenance is
required.

2.1 Age-Based Maintenance

The (long-run) cost rate (i.e., the long-run mean cost per unit of time) of the age-
based maintenance policy depends on the maintenance age T and is denoted by
ηage(T ). Because both types of maintenance make the component as-good-as-
new, standard renewal theory can be used to evaluate this cost rate. By referring
to the time between consecutive maintenance actions as a cycle, the cost rate can be
written as

ηage(T ) = Mean cost per cycle

Mean cycle length

= ccmF(T ) + cpm(1 − F(T ))
∫ T

0 (1 − F(x)) dx
.

Studies that consider the age-based maintenance policy typically assume that the
lifetime distribution is known with certainty. De Jonge et al. (2015) acknowledge
that this is often not realistic, and they consider the optimal age-based maintenance
policy under uncertainty in the lifetime distribution. They assume a certain paramet-
ric lifetime distribution and include uncertainty in its parameters.

In general, they represent the vector of parameters of the lifetime distribution
by s and denote the joint density function that models the uncertainty in s by g(s),
which is defined on R

n. Instead of the cost rate we can now talk about the expected
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cost rate ηE
age(T ) as a function of the maintenance age T :

ηE
age(T ) =

∫

s∈Rn

g(s)
ccmF(T ; s) + cpm(1 − F(T ; s))

∫ T

0 (1 − F(x; s)) dx
ds1 · · · dsn.

The preventive maintenance age T E
opt that minimizes this expected cost rate is

considered as the optimal maintenance age.
De Jonge et al. (2015) start to consider a uniform lifetime distribution with

uncertainty in its right end point; this uncertainty is modeled by a second uniform
distribution. Although the uniform distribution is not the most realistic lifetime
distribution, this setting has the advantage that it can be analyzed algebraically.

The authors continue to consider a Weibull lifetime distribution, which is the
most commonly used distribution to model lifetimes. The Weibull distribution
has a shape parameter k and a scale parameter λ. Because the failure mode of a
component often provides an accurate estimation for the shape parameter k, there is
in practice generally most uncertainty in the scale parameter λ. The authors model
the uncertainty in λ by using a uniform distribution on the interval [1 − α, 1 + α].
The value of α ∈ [0, 1] can be interpreted as a measure for the level of uncertainty
in λ. This setting needs to be analyzed numerically.

Figure 3 shows the optimal maintenance age as a function of the level of
uncertainty α in the scale parameter λ of a Weibull lifetime distribution with
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Fig. 3 Optimal preventive maintenance age under uncertainty in the scale parameter λ of aWeibull
lifetime distribution with shape parameter k = 5, corrective maintenance cost ccm = 1, and for
various preventive maintenance costs cpm
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k = 5. It turns out that the optimal maintenance age first decreases in the
level of uncertainty. If the level of uncertainty exceeds a certain threshold the
optimal maintenance age starts to increase. The initial decrease is expected; more
uncertainty in the lifetime distribution results in earlier preventive maintenance.
However, if the uncertainty increases further, it becomes too expensive to prevent
very early failures. Longer lifetimes also become more likely when the uncertainty
increases; this results in an increasing maintenance age.

A similar pattern is observed when a uniform lifetime distribution with uncer-
tainty in its right end point is considered. This parameter basically also is the scale
parameter of this distribution. We also expect a similar pattern when uncertainty
in the scale parameter of other parametric lifetime distributions is considered,
and when the uncertainty in the scale parameter itself is modeled by a different
distribution. We would also like to mention that parametric bootstrapping has also
been used to obtain the probability distribution of an estimator for the optimal
maintenance age (Tokumoto et al., 2014).

In the setting above a static decision is considered that is not updated when
more information becomes available. However, the distribution that models the
uncertainty can be updated when more data becomes available. When a failure
occurs an event duration is obtained, whereas a preventive maintenance action
results in censored durations. Both types of durations can be used to update the
uncertainty in a Bayesian manner.

Event durations are more informative than censored durations, and long censored
durations are more informative than short censored durations. In other words, the
choice of a maintenance age influences the information that becomes available. This
is acknowledged by De Jonge et al. (2015); they suggest to postpone preventive
maintenance actions at the start of the lifespan of a component. This will result in
an increase in costs during the first phase of the lifespan of the components, but
it also results in reduced uncertainty and thereby in more effectively scheduled
maintenance actions during the remainder of the lifespan. The aim is to find a
balance so that the total costs during the entire lifespan is minimized. In the
literature, this tradeoff is also referred to as the exploration–exploitation dilemma.

Because (De Jonge et al., 2015) are the first to recognize that the choice of
the maintenance policy influences the information that becomes available, they
have considered a simple setting with only two component types, viz., weak and
strong components. Both component types have a Weibull lifetime distribution
with a common value of the shape parameter k; the values of the respective scale
parameters λ are different. The knowledge is modeled by the estimated probability
that the component is strong, and a threshold policy is used that postpones preventive
maintenance as long as this probability exceeds a certain threshold, i.e., as long
as it is not sufficiently sure that the component is weak. This threshold policy is
compared to a policy that minimizes the expected cost rate based on the current
knowledge as described above. It turns out that the threshold policy can offer
substantial cost reductions as opposed to the policy that minimizes the expected
cost rate.
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The previous analysis is based on a Weibull lifetime distribution with uncertainty
only in its scale parameter. Although most uncertainty is often in the scale
parameter, there also exist situations in which uncertainty in the shape parameter
is expected. This can be the case if the failure mode of equipment is not known, or
if there are multiple competing failure modes. This may lead to interesting results
because a shape parameter k < 1 corresponds to a decreasing failure rate, implying
that preventive maintenance is never beneficial. The optimal policy in settings where
it is not known whether there is an increasing or a decreasing failure rate is of
interest.

Another avenue for future research is to assume that the parametric distribu-
tion itself is not known, i.e., to assume model uncertainty instead of parameter
uncertainty. A difficulty of such settings is that a selection of candidates for the
true parametric distribution has to be made, and that prior probabilities need to be
specified. Moreover, other optimality criteria instead of the expected cost rate could
be considered. Minimization of the expected cost rate leads to the best decisions on
average, but these decisions may be unacceptable for certain values of the unknown
parameters.

2.2 Block-Based Maintenance

For the block-based maintenance policy the renewal points are the times at which
preventive maintenance is performed. Renewal cycles thus always have length T ,
and the preventive maintenance cost is incurred once per cycle (at the end of each
cycle). We let m(t) denote the expected number of failures during a period with
length t that starts with a component that is as-good-as-new, and during which no
preventive maintenance is performed. The cost rate ηblock(T ) of the block-based
maintenance policy as a function of the preventive maintenance interval T equals

ηblock(T ) = cpm + ccmm(T )

T
. (1)

The main difficulty in evaluating ηblock(T ) is that it requires the evaluation of the
mean number of failures m(T ) during a time period with length T . The function
m(t) is called a renewal function and can be calculated as

m(t) =
∞∑

n=1

Fn(t),

in which Fn represents the nth convolution of the lifetime distribution function
F . The first convolution F1 equals the distribution function F itself; the other
convolutions can be determined recursively:
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Fn(t) =
∫ t

0
f (x)Fn−1(t − x)dx, n = 2, 3, . . .

In practice, m(t) is often approximated numerically by using the first few convolu-
tions. This generally results in good approximations because the number of failures
to expect in between consecutive preventive maintenance actions is typically low.

Studies that consider a block-based maintenance policy generally assume that
machines or components are either used continuously, or that the deterioration does
not depend on the actual usage. In practice, however, this is often not realistic.
De Jonge and Jakobsons (2018) consider the block-based maintenance policy for
a component that is not used continuously and for which the actual usage is
random. Furthermore, the component is assumed to only deteriorate when it is
active. Although the future usage is stochastic, it is assumed that all maintenance
actions have to be scheduled in advance, and therefore a block-based maintenance
policy is considered.

The authors model the random component usage by a Markov switching. The
component is alternately active and idle, and the lengths of these periods are
modeled by exponential durations. Active periods are exponentially distributed
with rate parameter α1, whereas idle periods are exponentially distributed with rate
parameter α0. It follows that active periods have mean length 1/α1 and that idle
periods have mean length 1/α0, from which it follows that the usage rate ρ of the
component is given by

ρ =
1
α1

1
α1

+ 1
α0

= α0

α0 + α1
.

As mentioned before, the main difficulty in evaluating the cost rate (1) of the
block-based maintenance policy is the evaluation of the renewal function m(t).
In the current setting with random component usage there is not even a closed-
form expression for the distribution function F of the time until failure. There are,
however, two limiting cases that can be analyzed using the renewal function of the
lifetime distribution. We will denote this renewal function bymW(t). If, for instance,
the component has a Weibull lifetime distribution, then mW is the renewal function
of the Weibull distribution.

The two limiting cases are those with a very high and with a very low switching
frequency. If the switching frequency is very high, the usage in between two preven-
tive maintenance actions is very stable. Approximately, the component will be active
during time period ρT in between two consecutive preventive maintenance actions,
and failures can only occur during this time period. Thus, the expected number of
failures during the maintenance interval can be approximated by mW(ρT ), and the
cost rate (1) by

ηfreq(T ) = cpm + ccmm(T )

T
≈ cpm + ccmmW(ρT )

T
.
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In the other limiting case the switching frequency is very low. This implies that, in
between two consecutive preventive maintenance actions, it is very likely that the
component is either entirely active, or entirely idle. The corresponding probabilities
are ρ and 1 − ρ, respectively, with ρ equal to the usage rate (2). Failures can only
occur if the component is active, implying that the expected failure cost during a
maintenance interval is ccmρmW(T ). In this case the cost rate can be approximated
by

ηrare(T ) = cpm + ccmm(T )

T
≈ cpm + ccmρmW(T )

T
.

Because the usage is quite stable for high switching frequencies, this limiting case
results in a relatively long preventive maintenance interval. In order to avoid failures
during long active periods, a much more conservative preventive maintenance
interval is optimal for low switching frequencies. De Jonge and Jakobsons (2018)
analyze the general case of the problem by formulating it as a set of integral
equations. They show that the optimal maintenance interval and the corresponding
cost rate for more moderate switching frequencies are in between the two bounds
obtained from the two limiting cases. Furthermore, they also show that, for moderate
switching frequencies, it is important to choose the maintenance interval based on
the actual usage pattern, instead of only based on the usage rate of the component.

Future research in this area could consider active and idle periods that are not
exponentially distributed. In such a setting one has to keep track of the time that
the component is already active or idle, which complicates the analysis. Instead
of analyzing this setting algebraically, it would also be possible to use simula-
tions. Another possibility for future developments could be to consider multiple
component speeds, instead of only on and off. This means that more sophisticated
stochastic models are needed to model the random usage of the component. Random
component usage can also be relevant in settings with condition-based maintenance.
In such settings there is often a planning time between initiating and performing
preventive maintenance. A component that is not used continuously during the
planning time is expected to result in a higher optimal deterioration level at which
preventive maintenance is scheduled. Finally, in the above, it is assumed that the
component usage is dictated externally. However, if there is some flexibility in
the usage, the performance of the system would benefit from the possibility to
simultaneously optimize maintenance and usage decisions.

3 Condition-Based Maintenance

Because of the increasing possibilities to monitor, store, and analyze condi-
tion information of equipment, condition-based maintenance (CBM) policies are
gaining popularity. A prerequisite for analyzing and optimizing condition-based
maintenance policies is the modeling of deterioration processes of components.
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Distinctions between deterioration processes can be made based on the state space
(either discrete or continuous), and on the time scale (also either discrete or
continuous).

Another important distinction that can be made is that between continuous
condition monitoring and condition monitoring based on inspections. The first
case is applicable if a sensor is used for condition monitoring; in this case we
continuously know what the actual deterioration level of the component is. When
inspections are needed to obtain condition information, we do not only need to
determine when to carry out maintenance, but we also need to determine an
inspection schedule or policy.

Inspection schedules are either periodic or aperiodic. The advantage of periodic
inspections is that the entire inspection schedule is fully specified by a single
decision variable, namely the time between consecutive inspections. This eases
both the optimization and the implementation in a practical industrial context.
However, when acceptable in practice, aperiodic inspections are often preferred
because failure becomes more likely as the deterioration level increases. A final note
is that an entire aperiodic inspection schedule can be fixed in advance, but that the
next inspection can also be scheduled dynamically based on the currently observed
deterioration level.

3.1 Delay-Time Model

The most simple deterioration model is the so-called delay-time model. It is a
continuous-time model that adds a “deteriorated” state in between the operating
state and the failed state. Thus, the model has three states. It is called the delay-time
model because a delayed failure occurs after reaching the deteriorated state. When
considering the delay-time model, probability distributions have to be specified for
the time until reaching the deteriorated state, and for the time in between reaching
the deteriorated state and failure. Most studies that adopt the delay-time model
assume that an inspection is required to observe the deteriorated state and that
failures are self-announcing. Analysis is easiest if the exponential distribution is
used to model the time until reaching the deteriorated state. In that case, if immediate
preventive maintenance is carried out when an inspection reveals the deteriorated
state, all inspections are renewal points.

Although the delay-time model is proposed by Christer (1976) in 1976, there
are new developments in delay-time modeling to date. For instance, (Van Oosterom
et al., 2014) consider a periodic inspection schedule, but they relax the common
assumption that preventive maintenance should be carried out immediately when
an inspection reveals the deteriorated state. Instead, they allow the maintenance
action to be delayed. The advantage is twofold. First, the utilization of the useful
life of the component is improved, and second, the maintenance cost is reduced as
a result of a longer time window to prepare maintenance resources. Wang et al.
(2017) allow for a delayed first inspection, and a periodic inspection schedule
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thereafter. Furthermore, they initially schedule a replacement at a certain age. If an
inspection reveals the deteriorated state and the time until the age-based replacement
is less than a certain threshold level, then the preventive replacement action will be
delayed. Otherwise, the component will be replaced immediately.

3.2 Gamma Deterioration Process with Continuous
Monitoring

A commonly used continuous-time continuous-state stochastic deterioration process
is the stationary gamma process. The gamma process was introduced in the area
of reliability by Abdel-Hameed (1975). It has the property that the deterioration
increments, within any time interval of any length, are gamma distributed with
identical scale parameter.

The density function f of the gamma distribution with shape parameter α > 0
and scale parameter β > 0 equals

fα,β(x) = 1

Γ (α)βα
xα−1e− x

β , x > 0,

in which Γ (α) = ∫ ∞
0 zα−1e−z dz denotes the gamma function. The stationary

gamma process has a shape function at with shape parameter a > 0 and a scale
parameter b > 0. It is a continuous-time process {X(t) : t ≥ 0} with the following
properties:

1. X(0) = 0 with probability 1.
2. X(τ) − X(t) ∼ fa(τ−t),b for τ > t ≥ 0.
3. X(t) has independent increments.
4. X(t) is a jump process with infinitely many jumps in any time interval.

The process is stationary because the increments X(τ)−X(t) depend only on τ − t

for all τ and t . The expectation and the variance of the process X(t) are given by

E(X(t)) = abt and Var(X(t)) = ab2t,

respectively. Thus, the variance of the deterioration process, relative to its mean, is
small if a is large and b is small, and is large if a is small and b is large. We will use
the standard deviation σ = √

a · b as a measure for the amount of volatility in the
stationary gamma deterioration process. Figure 4 shows sample paths of stationary
gamma processes with σ = 0.05, σ = 0.5, and σ = 5.

De Jonge et al. (2017) consider a single maintainable component that is
monitored continuously and for which the deterioration is modeled by a stationary
gamma process. Failure occurs when the amount of deterioration exceeds a given
level L. After such a failure an immediate corrective maintenance action will
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Fig. 4 Sample paths of
stationary gamma processes
for various standard
deviations σ
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be carried out. Furthermore, as long as the component is functioning, preventive
maintenance can be carried out. The costs of preventive and corrective maintenance
are again denoted by cpm and ccm, respectively. Both types of maintenance are
assumed to require a negligible amount of time and to make the component as-
good-as-new, i.e., they will bring the deterioration level back to 0.

The aim of the study is to compare the performance of condition-based mainte-
nance to the performance of time-based maintenance. The condition-based mainte-
nance policy is prescribed by a single deterioration threshold level M . Preventive
maintenance is performed when the deterioration level exceeds this level M . This
commonly used policy is called the control-limit policy. The threshold M should
not be chosen too close to the failure level L because the deterioration process is
a jump process. In other words, when M is close to L and when the deterioration
level exceeds M , it may also immediately jump over L, resulting in failure. The
time-based maintenance policy that is considered is the age-based maintenance
policy. Thus, preventive maintenance is carried out if a certain maintenance age
T is reached, see also Sect. 2.1.

Figure 5 shows the cost rate of the condition-based maintenance (CBM) policy as
a function of the preventive maintenance thresholdM , and the cost of the time-based
maintenance (TBM) policy as a function of the maintenance age T . The gamma
process is specified by a = 5 and b = 0.22 (this results in a mean time to failure
of 1), the failure threshold equals L = 1, and the cost parameters are cpm = 0.2
and ccm = 1. Simulation has been used to make the figure. It turns out that the cost
rate under the optimal CBM policy is substantially lower than the cost rate under
the optimal TBM policy. In other words, the availability of condition information
results in substantial cost savings. It can also be observed that the optimal preventive
maintenance threshold M is much smaller than the failure threshold L = 1. As
explained before, this is caused by the fact that the deterioration process is a jump
process.
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Fig. 5 The cost rate under
the CBM policy (as a function
of the M) and under the TBM
policy (as a function of T )
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Fig. 6 The cost rate under
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Figure 6 shows the effect of the level of volatility σ of the gamma deterioration
process on the cost rates of the optimal policies. For very low levels of volatility
there is almost no randomness in the moment of failure, and both CBM and TBM
are very effective, i.e., both are able to carry out preventive maintenance just before
failure. For very high levels of volatility, on the other hand, failure is almost always
caused by a sudden very large deterioration increment. Both the CBM and the
TBM policy cannot prevent this from happening. Note that, in this case, the lifetime
distribution is close to an exponential distribution, and that the optimal age-based
maintenance policy is to never carry out preventive maintenance (because of the
constant failure rate). The benefit of CBM compared to TBM is largest for moderate
levels of volatility.
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Fig. 7 The cost rate under
the optimal CBM and the
optimal TBM policy for a
varying preventive
maintenance cost cpm
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Figure 7 shows the effect of the preventive maintenance cost cpm on the cost
rates of the optimal policies. For extremely small preventive maintenance costs, both
policies will use a very high maintenance frequency (at very low cost), and almost
no failures will happen. This results in a very low cost rate for both policies. For
extremely high preventive maintenance costs, carrying out preventive maintenance
is not beneficial anymore, and the cost rates of both policies are very high. Again,
the cost saving of CBM as opposed to TBM is largest for moderate preventive
maintenance costs.

De Jonge et al. (2017) continue to consider the effect of various practical factors
that influence the benefit of condition-based maintenance compared to time-based
maintenance. The factors that they consider are a required planning time that is
needed to carry out preventive maintenance, noise in the observed deterioration
information, and uncertainty in the deterioration level at which failure occurs.

In practice there is often a planning time needed between initiating and per-
forming maintenance. Here we assume that a fixed planning time s is required
for carrying out preventive maintenance. Furthermore, if failure occurs during
the planning time we assume that corrective maintenance will be carried out
immediately and that only the high corrective maintenance cost is incurred. The
preventive maintenance cost of the maintenance action that was already planned
does not need to be paid anymore. We note that a planning time does not influence
the time-based maintenance policy. However, for the condition-based maintenance
policy, the decision is no longer to determine the deterioration level at which
preventive maintenance should be carried out, but it is now the deterioration level
at which preventive maintenance should be planned. During the planning time
the condition information cannot be used anymore, and, as a consequence, the
performance of the condition-based maintenance policy decreases. Figure 8 shows
the cost rates of both policies as a function of the planning time s. When the planning



374 B. de Jonge

Fig. 8 The cost rate under
the optimal CBM and the
optimal TBM policy for a
varying planning time s
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Fig. 9 The cost rate under
the optimal CBM and the
optimal TBM policy for a
varying level of noise σp in
the condition monitoring
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time equals the optimal maintenance age of the time-based maintenance policy, all
benefits of condition-based maintenance have vanished.

Another factor that is likely to exist in practice is imperfect condition information
due to noise. The difference between the actual deterioration level and the observed
deterioration level has been modeled by a Brownian motion, multiplied by a
parameter σp. The value of σp can be interpreted as a measure for the amount
of noise. Because the time-based maintenance policy does not use any condition
information, noise does not influence the performance of this policy. Condition-
based maintenance, on the other, is negatively influenced by imperfect condition
monitoring because the obtained information has a lower value. Figure 9 shows the
optimal cost rates of both policies as a function of the amount of uncertainty σp.
We observe that small amounts of noise only have a minor influence. However, if
the amount of noise is substantial, it can even be the case the obtained condition
information should not be used at all anymore.
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Fig. 10 The cost rate under
the optimal CBM and the
optimal TBM policy for a
varying level of uncertainty
σf in the deterioration failure
level
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Studies on condition-based maintenance typically assume that failure occurs
when a certain fixed level of deterioration is exceeded. In practice, however, there
are also many situations where this assumption is not realistic. The randomness in
the failure deterioration level has been modeled by a normal distribution with mean
1. The standard deviation σf of this normal distribution can be seen as a measure for
the amount of uncertainty in the failure level. In contrast to the imperfect condition
information does the random failure level also affect the time-based maintenance
policy. Randomness in the failure level leads to a higher variance in the time until
failure, which has a negative impact on the performance of time-based maintenance.
The condition-based maintenance policy also suffers from an uncertain failure level
as it lowers the value of the condition information. Figure 10 shows that the effect
on condition-based maintenance is larger than on time-based maintenance, implying
that the benefit of condition-based maintenance is reduced if there is uncertainty in
the failure level.

When deciding to switch from time-based maintenance to condition-based
maintenance it is important to assess whether the benefits outweigh the additional
costs for monitoring equipment and for collecting, storing, and analyzing condition
data. It is important that both the volatility of the deterioration process and the
cost of preventive maintenance compared to that of corrective maintenance are
not extremely low or extremely high. Furthermore, it is important to realize that
a required planning time, imperfect condition monitoring, and an uncertain failure
level negatively impact the cost saving of condition-based maintenance as opposed
to time-based maintenance.
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3.3 Gamma Deterioration Process with Periodic Inspections

In this section we reconsider the setting of Park (1988), in which a periodic
inspection policy is considered for a component that deteriorates according to a
stationary increasing continuous-time continuous-state deterioration process. The
stationary gamma process is an example of such a process. If an inspection reveals
a deterioration level that exceeds a certain threshold level, an immediate preventive
maintenance action is carried out. Failure is assumed to occur if a certain fixed
failure threshold L is exceeded. Failures are assumed to be self-announcing and
are followed by an immediate corrective maintenance action. Furthermore, the
inspection schedule is reset after a failure. Both types of maintenance are assumed
to make the component as-good-as-new, and to require a negligible amount of
time. The cost of preventive maintenance is denoted by cpm, the cost of corrective
maintenance by ccm, and the cost of an inspection by ci. We make the reasonable
assumptions that ci < cpm < ccm and that ci + cpm < ccm.

The maintenance policy in the above setting is described by two decision
variables, the time between two consecutive inspections, denoted by T , and
the preventive maintenance deterioration threshold, denoted by M . Initially, we
consider the time between inspections as fixed in our analysis, and, for ease of
notation, we scale time such that the time between two consecutive inspections is 1.
In other words, the ith inspection is performed at time i. Later on, the time between
inspections can be varied to investigate how this influences the optimal cost rate,
and to search for the optimal inspection interval.

Given the fixed inspection interval 1, the aim is to obtain an expression for the
cost rate η(M) as a function of the preventive maintenance threshold M . Because
the component is as-good-as-new after each maintenance action, standard renewal
theory can be applied. We call the time between two consecutive maintenance
actions a cycle, and we calculate the cost rate η(M) as the mean cost per cycle,
denoted by C(M), divided by the mean cycle length, denoted by D(M). That is,

η(M) = C(M)

D(M)
.

We will continue to derive expressions for C(M) and D(M), both as a function of
the preventive maintenance threshold M , which can be evaluated numerically.

We will denote the deterioration process by X(t) with X(0) = 0. We let Gt(x)

denote the distribution function of the deterioration level at time t , i.e., Gt(x) equals
the probability that the deterioration level has not exceeded x at time t :

Gt(x) = P(X(t) < x).

We have that G0(x) = 1 for all x ≥ 0, and Gt(0) = 0 for all t > 0. The derivative
of Gt(x) with respect to x is the density function of the deterioration level at time t

and will be denoted by gt (x):
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gt (x) = d

dx
Gt(x).

We use the following expression for the mean cost per cycle C(M):

C(M) = cpm +
∞∑

i=1

i · ci · P (PM at inspection i)

+
∞∑

i=1

((i − 1)ci + ccm − cpm) · P (Failure between inspections i − 1 and i) .

Thus, we first incur the preventive maintenance cost cpm and subtract it if a cycle
ends with failure. The mean cost per cycle can be written as

C(M) = cpm +
∞∑

i=1

i · ci · P (X(i − 1) ≤ M and M < X(i) ≤ L)

+
∞∑

i=1

((i − 1)ci + ccm − cpm) · P (X(i − 1) ≤ M and X(i) > L) .

Because the deterioration level at time 0 is degenerate (X(0) = 0) we take the
first term out of the two summations. Furthermore, by letting ΔXi = X(i) −
X(i − 1) denote the additional amount of deterioration between inspection i − 1
and inspection i, it follows that C(M) can be written as

C(M)

= cpm + ci · P (M < X(1) ≤ L) + (ccm − cpm) · P (X(1) > L)

+
∞∑

i=2

i · ci · P (X(i − 1) ≤ M and M < X(i − 1) + ΔXi ≤ L)

+
∞∑

i=2

((i − 1)ci + ccm − cpm) · P (X(i − 1) ≤ M and X(i − 1) + ΔXi > L)

= cpm + ci · P (M < X(1) ≤ L) + (ccm − cpm) · P (X(1) > L)

+
∞∑

i=2

i · ci · P (X(i − 1) ≤ M and M − X(i − 1) < ΔXi ≤ L − X(i − 1))

+
∞∑

i=2

((i − 1)ci + ccm − cpm) · P (X(i − 1) ≤ M and ΔXi > L − X(i − 1)) .

Because the deterioration level X(i−1) at time i−1 is independent of the additional
amount of deterioration ΔXi between time i −1 and time i, and because the density
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function of ΔXi equals g1, we have that C(M) can be written as

C(M) = cpm + ci · P (M < X(1) ≤ L) + (ccm − cpm) · P (X(1) > L)

+
∞∑

i=2

i · ci ·
∫ M

0
gi−1(x)

∫ L−x

M−x

g1(y) dy dx

+
∞∑

i=2

((i − 1)ci + ccm − cpm) ·
∫ M

0
gi−1(x)

∫ ∞

L−x

g1(y) dy dx

= cpm + ci(G1(L) − G1(M)) + (ccm − cpm)(1 − G1(L))

+
∞∑

i=2

i · ci ·
∫ M

0
gi−1(x)(G1(L − x) − G1(M − x)) dx

+
∞∑

i=2

((i − 1)ci + ccm − cpm) ·
∫ M

0
gi−1(x)(1 − G1(L − x)) dx.

By rearranging the two sums and combining terms with the variable i in one
summation and without it in another summation we obtain

C(M) = cpm + ci(G1(L) − G1(M)) + (ccm − cpm)(1 − G1(L))

+
∞∑

i=2

i · ci

∫ M

0
gi−1(x)(1 − G1(M − x)) dx

+
∞∑

i=2

(ccm − cpm − ci) ·
∫ M

0
gi−1(x)(1 − G1(L − x)) dx

= cpm + ci(G1(L) − G1(M)) + (ccm − cpm)(1 − G1(L))

+ci

∞∑

i=2

i

∫ M

0
gi−1(x) dx − ci

∞∑

i=2

i

∫ M

0
gi−1(x)G1(M − x) dx

+(ccm − cpm − ci)
∞∑

i=2

∫ M

0
gi−1(x) dx

−(ccm − cpm − ci)
∞∑

i=2

∫ M

0
gi−1(x)G1(L − x) dx.

By realizing that
∫ M

0 gi−1(x)G1(M − x) dx equals the probability that the
deterioration level at time i − 1 is below M , and that it is still below M one time
period later, we have that
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∫ M

0
gi−1(x)G1(M − x) dx =

∫ M

0
gi(x) dx = Gi(M),

which allows us to write C(M) as

C(M) = cpm + ci(G1(L) − G1(M)) + (ccm − cpm)(1 − G1(L))

+ci

∞∑

i=2

iGi−1(M) − ci

∞∑

i=2

iGi(M)

+(ccm − cpm − ci)
∞∑

i=2

Gi−1(M) − (ccm − cpm − ci)

×
∫ M

0

∞∑

i=2

gi−1(x)G1(L − x) dx

= cpm + ci(G1(L) − G1(M)) + (ccm − cpm)(1 − G1(L))

+ciG1(M) + ci

∞∑

i=1

Gi(M)

+(ccm − cpm − ci)
∞∑

i=1

Gi(M) − (ccm − cpm − ci)

×
∫ M

0

∞∑

i=1

gi(x)G1(L − x) dx.

For ease of notation we let the function H(x) be defined as

H(x) =
∞∑

i=1

Gi(x),

and the function h(x) as the derivative of H(x), i.e.,

h(x) = d

dx
H(x) =

∞∑

i=1

gi(x).

We then have that C(M) can be expressed as

C(M) = cpm + ci(G1(L) − G1(M)) + (ccm − cpm)(1 − G1(L))

+ciG1(M) + ciH(M)

+(ccm − cpm − ci)H(M) − (ccm − cpm − ci)
∫ M

0
h(x)G1(L − x) dx,
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which can be rewritten to our following final expression for the mean cost per cycle
C(M):

C(M) = ccm + (ccm − cpm)H(M) − (ccm − cpm − ci)(G1(L)

+
∫ M

0
h(x)G1(L − x) dx).

We will now continue with the mean cycle length D(M), which can be expressed as

D(M) =
∞∑

i=1

i · P (PM at inspection i)

+
∞∑

i=0

E (Time until failure between inspections i and i + 1) .

Similar to the determination of C(M), we can show that

∞∑

i=1

i · P (PM at inspection i)

= G1(L) − G1(M) +
∞∑

i=2

i ·
∫ M

0
gi−1(x)(G1(L − x) − G1(M − x)) dx

= G1(L) − G1(M) +
∞∑

i=1

(i + 1)
∫ M

0
gi(x)(G1(L − x) − G1(M − x)) dx. (2)

We let Fx(t) and fx(t) respectively denote the distribution and density function of
the time t at which deterioration level x is reached. We have

Fx(t) = P(X(t) ≥ x) = 1 − P(X(t) ≤ x) = 1 − Gt(x).

We can now write

∞∑

i=0

E (Time until failure between inspections i and i + 1)

=
∫ 1

0
tfL(t) dt +

∞∑

i=1

∫ M

0

∫ 1

0
(i + t)gi(x)fL−x(t) dt dx

= FL(1) −
∫ 1

0
FL(t) dt +

∞∑

i=1

∫ M

0

∫ 1

0
igi(x)fL−x(t) dt dx
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+
∞∑

i=1

∫ M

0

∫ 1

0
tgi(x)fL−x(t) dt dx

=
∫ 1

0
Gt(L) dt − G1(L) +

∞∑

i=1

∫ M

0
igi(x)FL−x(1) dx

+
∫ M

0

∫ 1

0
th(x)fL−x(t) dt dx

=
∫ 1

0
Gt(L) dt − G1(L) +

∞∑

i=1

i

∫ M

0
gi(x)(1 − G1(L − x)) dx

+
∫ M

0
h(x)

(∫ 1

0
Gt(L − x) dt − G1(L − x)

)

dx. (3)

By combining (2) and (3) it can be shown that the mean cycle length D(M) equals

D(M) =
∫ 1

0
Gt(L) dt +

∫ M

0
h(x)

∫ 1

0
Gt(L − x) dt dx.

The cost rate η(M) as a function of the preventive maintenance threshold is thus
equal to

η(M) = C(M)

D(M)

= ccm + (ccm − cpm)H(M) − (ccm − cpm − ci)(G1(L) + ∫ M

0 h(x)G1(L − x) dx)
∫ 1
0 Gt(L) dt + ∫ M

0 h(x)
∫ 1
0 Gt(L − x) dt dx

.

(4)

We will now consider the specific stationary gamma deterioration process with
parameter values a = 2.5 and b = 0.5. Furthermore, we assume a breakdown
deterioration level L = 4, a corrective maintenance cost ccm = 10, a preventive
maintenance cost cpm = 1, and an inspection cost ci = 0.1. Note that the inspection
interval is still fixed at 1. Figure 11 shows the cost rate η(M) as function of
the preventive maintenance threshold M . It turns out to be optimal to carry out
preventive maintenance if an inspection reveals a deterioration level of at least
Mopt = 1.52. The corresponding cost rate equals η(Mopt) = 0.81.

In the case of a stationary gamma deterioration process, (4) basically provides us
with a formula η(M,L, a, b, ccm, cpm, ci) for the cost rate, in which L, a, b, ccm,
cpm, and ci are model parameters. For a stationary gamma deterioration process
with parameters a and b, the deterioration increment during a time period of length
T is gamma distributed with parameters aT and b. Therefore, for an inspection
interval with an arbitrary length T , the cost rate η̄ can easily be expressed in terms
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Fig. 11 The cost rate η(M)

as a function of the preventive
maintenance threshold M
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T
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Figure 12 shows the cost rate η(M, T ) for various inspection intervals T , again as a
function of the preventive maintenance threshold M . Based on this figure it can be
concluded that the optimal inspection interval should be somewhere between 0.4 and
1. If we optimize η(M, T ) numerically over both M and T , we find that the optimal
inspection interval equals Topt = 0.68, and that preventive maintenance should be
carried out if an inspection reveals a deterioration level of at least Mopt = 1.85.
Thus, by allowing an inspection interval with length different from 1, it is optimal
to inspect the component more frequently, and, as a consequence, the preventive
maintenance threshold will increase. The corresponding optimal cost rate decreases
to η̄(Topt,Mopt) = 0.78.
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3.4 Discretizing Continuous-Time Continuous-State
Deterioration Processes

The drawback of modeling deterioration by a continuous-time continuous-state
stochastic process is its complicated analytical tractability. The maintenance policies
that we have considered in Sect. 3.2 are for instance difficult to evaluate numerically.
The main reason for this is the overshoot behavior of the gamma process that is
caused by the fact that it makes jumps. The analysis in Sect. 3.2 is therefore based
on simulation.

An alternative method that can be used to analyze maintenance policies for
a component that deteriorates according to a continuous-time continuous-state
process is by discretizing this process. De Jonge (2019) presents an approach for
discretizing stationary non-decreasing continuous-time continuous-state deteriora-
tion processes into discrete-time Markov chains with stationary increments. The
first step of this approach is to discretize the continuous time into discrete time
steps with a certain length Δt . Furthermore, the deterioration levels between 0 and
the failure level L are subdivided into m deterioration intervals xk , k = 1, . . . , m.
These intervals correspond to states 1, . . ., m in the Markov chain. All deterioration
levels above L are combined into the failed state m + 1. The transition probabilities
of the Markov chain are calculated based on the assumption that the deterioration
level is uniformly distributed on a certain interval xk when it is within this interval
at an arbitrary moment in time.

As an example, if we consider a stationary gamma deterioration process with
parameters a = 2 and b = 0.2, a failure threshold level L = 1, a number of
deterioration states before failure of m = 4, and time steps with length Δt = 0.1,
we obtain the following transition probability matrix for the discrete-time Markov
chain:

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0.861847 0.120864 0.013780 0.002713 0.000795
0.000000 0.861847 0.120864 0.013780 0.003509
0.000000 0.000000 0.861847 0.120864 0.017288
0.000000 0.000000 0.000000 0.861847 0.138153
0.000000 0.000000 0.000000 0.000000 1.000000

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

De Jonge (2019) also points out how the initial maintenance policy considered
in Sect. 3.2 can be evaluated based on the discretized deterioration process and
on matrix algebra. Because failed components will remain failed as long as no
maintenance is carried out, the Markov chain with transition probability matrix P is
an absorbing Markov chain with state m + 1 the absorbing state. The matrix P can
be written as

P =
(

Q r
0 1

)

,
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in which Q is an m × m matrix. The probability of going from a deterioration state
i ≤ m to a deterioration state j ≤ m in exactly k time steps is equal to entry (i, j)

of the matrix Qk . The fundamental matrix R is given by

R =
∞∑

k=0

Qk = (Im − Q)−1,

in which entry (i, j) equals the expected number of time periods that the process is
in state j before it is being absorbed, given that it started in state i. After carrying out
maintenance the component is as-good-as-new and the expected time until failure
equals

∑
j R1j .

We let M ∈ {1, . . . , m} denote the preventive maintenance threshold, and η(M)

the corresponding cost rate. Standard renewal theory can again be used to calculate
this cost rate. We let C(M) denote the mean cost per maintenance action and D(M)

the mean time until maintenance. Thus,

η(M) = C(M)

D(M)
.

Because the deterioration process is non-decreasing, we have that R1j , j < M ,
is also the expected number of time periods that the deterioration level is j before
reaching a deterioration level of at least M , i.e., before maintenance is carried out.
This results in the following expression for the mean time until maintenance:

D(M) =
∑

j<M

R1j .

Furthermore, because the probability of failure is Pj,m+1 if the deterioration
level is j , it follows that the probability that a cycle ends with failure equals∑

j<M R1jPj,m+1, implying that the mean cost per maintenance action equals

C(M) = cpm + (ccm − cpm)
∑

j<M

R1jPj,m+1.

Based on the above we now have the following expression for cost rate:

η(M) = C(M)

D(M)
= cpm + (ccm − cpm)

∑
j<M R1jPj,m+1

∑
j<M R1j

.

By choosing a sufficiently high number of deterioration states m in the discretiza-
tion, this formula provides us with a smooth graph of the cost rate as a function of
the preventive maintenance threshold M . Figure 13 shows this cost rate for the case
that we have considered in Sect. 3.2, i.e., a stationary gamma deterioration process
with parameters a = 5 and b = 0.22, a failure threshold L = 1, and cost parameters
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Fig. 13 The cost rate η(M)

as a function of the preventive
maintenance threshold M
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cpm = 0.2 and ccm = 1. Furthermore, m = 100 deterioration states before failure
have been considered. We observe that this graph is virtually identical to the graph
of CBM in Fig. 5. The main advantage of this approach is that we avoid the long
calculation times that are required for simulation.

3.5 Aperiodic Inspections

Modeling deterioration by a discrete-time Markov chain is also useful when aiming
to determine optimal policies by using the framework of Markov decision processes.
This methodology is for instance applicable for determining maintenance policies
with aperiodic inspections. We again consider a single component that deteriorates
according to a discrete-time Markov chain with transition probability matrix P .
There are m deterioration states before failure and a state m + 1 that represents
failure. Failures are assumed to be self-announcing; all other deterioration states
can only be observed by an inspection. Inspections can be performed at the start of
each time period, the cost of an inspection is denoted by ci, and an inspection is
assumed to take a negligible amount of time. Furthermore, also at the start of each
time period, preventive maintenance can be performed. This can done immediately
after an inspection, based on the observed deterioration level, or without performing
an inspection first. When failure occurs, corrective maintenance should be carried
out immediately. Both preventive and corrective maintenance are assumed to take a
negligible amount of time and to bring the component back to the as-good-as-new
state. The costs of a preventive and of a corrective maintenance action are denoted
by cpm and ccm, respectively. This setting is also considered by Maillart (2006), in
particular for a small number of deterioration states.
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The optimal inspection and maintenance decisions can be determined by formu-
lating the above as a Markov decision process. Because the exact deterioration state
of the components is uncertain as long as no inspection or maintenance is carried
out, and because this uncertainty cannot be ignored, it is appropriate to formulate
the problem as a partially observable Markov decision process (Monahan, 1982). A
partially observable Markov decision process is a generalization of the standard
Markov decision process, and can be formulated as a Markov decision process
with an enlarged state space, namely the space of probability distributions over the
underlying states. The states of a partially observable Markov decision process are
typically called either knowledge states or belief states.

In the setting that we consider it is convenient to denote the knowledge states
by, for instance, θi,j , in which i denotes the last observed deterioration level, and
j denotes the number of time periods ago that this deterioration level has been
observed, i = 1, . . . , m, j = 0, 1, . . . Thus, θi,0 denotes the knowledge state if it
is known with certainty that the current deterioration level is i. For j > 0 the actual
deterioration level is uncertain, and in general, the probability of a sudden failure
increases both in i and in j . The exact probabilities can be calculated based on
the transition probability matrix P of the Markov chain. Another remark is that the
number of knowledge state is infinite. However, we can fairly choose a sufficiently
large N for which we can be reasonably sure that, under the optimal policy, the
time between two consecutive actions (either inspection or maintenance) will never
exceed N periods. This results in a finite number of states θi,j , i = 1, . . . , m,
j = 0, 1, . . . , N .

In any state the optimal action will always be either to do nothing, to carry
out an inspection, or to perform preventive maintenance. Corrective maintenance is
performed immediately when failure occurs and is therefore not really considered as
an action. In other words, if failure occurs, we incur cost ccm and we immediately
move to state θ1,0. If we are in state θ1,0 the component is as-good-as-new with
certainty, the optimal action will thus be to do nothing. For states θi,0, i = 2, . . . , m,
the deterioration level is also known with certainty, implying that the optimal action
will be either to do nothing or to carry out preventive maintenance. In all other
states, any of the three actions can be chosen. Based on this reasoning, the value
iteration algorithm (Puterman, 1994) can be applied, and the optimal inspection and
maintenance policy can be determined.

We will continue to consider an example. We consider a component that
deteriorates according to a stationary gamma deterioration process with parameters
a = 0.5 and b = 0.25, and with failure deterioration level L = 1. We will discretize
this gamma process by using the approach in Sect. 3.4, and we will use m = 50
deterioration states before the failed state, and time steps with length Δt = 0.1. The
cost of corrective maintenance is ccm = 5, that of preventive maintenance cpm = 1,
and that of an inspection ci = 0.1.

Figure 14 shows the optimal inspection and maintenance policy. The horizontal
axis shows the last revealed deterioration state (for the discrete-state deterioration
process), and the vertical axis the number of periods between observing this state
and the next preventive maintenance action or inspection. If an inspection reveals a
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Fig. 14 Optimal action and delay time as a function of the currently revealed deterioration level

deterioration state of at most 20, we observe that a new inspection will be scheduled.
The time until this next inspection is decreasing in the observed deterioration state,
resulting in a dynamic aperiodic maintenance policy. If a deterioration state of at
least 21 is revealed by an inspection, preventive maintenance will be carried out,
either immediately or after a certain number of time periods. For deterioration states
21–34 an immediate failure is not that likely, but scheduling another inspection is
not cost effective. In these cases, a delayed preventive maintenance action will be
scheduled, with a delay time that is decreasing in the observed deterioration state.
For an observed deterioration state of at least 35, the risk of a failure is deemed too
high, and an immediate preventive maintenance action will be carried out.

4 Concluding Remarks

We have considered maintenance policies for non-repairable components, i.e.,
maintenance interventions can be seen as a replacement of the component. We
started to consider two time-based maintenance policies, viz., age-based mainte-
nance and block-based maintenance. For the age-based maintenance policy we
have considered the effect of uncertainty in the scale parameter of the lifetime
distribution on the optimal preventive maintenance age. This setting could be
extended to uncertainty in other parameters of the lifetime distribution as well, or
uncertainty in the parametric distribution itself (model uncertainty). For the block-
based maintenance policy we have mainly focused on the optimal maintenance
interval under random usage of the component. Suitable extensions of this setting
would be to consider multiple component speeds, instead of only on and off,
and some flexibility in the usage of the component. Furthermore, the effect of
uncertainty in the lifetime distribution is also of interest in settings with block-based
maintenance.
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We continued to consider condition-based maintenance polices. First, we men-
tioned some recent developments in delay-time modeling. After that, we have
adopted a continuously monitored stationary gamma deterioration process and we
have considered the performance of condition-based maintenance as opposed to
time-based maintenance. This analysis was based on simulation and studied the
effect of the volatility of the deterioration process and of the relative cost of
preventive maintenance. Furthermore, the presence of a planning time, of noise in
the obtained deterioration information, and of uncertainty in the lifetime distribution
have been considered. After this, we have considered a stationary gamma deterio-
ration process combined with periodic inspections. We have obtained mathematical
expressions to simultaneously optimize the inspection interval and the preventive
maintenance deterioration threshold. Finally, we have provided an approach that
can be used to discretize continuous-time continuous-state deterioration processes.
We have first used the obtained Markov chain to reconsider the condition-based
maintenance policy for a continuously monitored stationary gamma process. This
analysis is based on matrix algebra. Thereafter, we have pointed out how theMarkov
chain and the concept of Markov decision processes can be used to determine
optimal aperiodic inspection and maintenance policies.

The models with condition-based maintenance could be extended by considering
various types of uncertainty. The parameters of the gamma deterioration process,
or even the functional form of the deterioration process could be unknown.
Furthermore, the degree of imprecision of the deterioration increments could be
uncertain, or the distribution of a random failure level could be unknown. As a final
suggestion, random usage of a component or production decisions could also be
considered in settings with condition-based maintenance.
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