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Part I
New Developments on Building

MCDM/A Models



Multicriteria Decision Methods for RRM
Models

Eduarda Asfora Frej and Adiel Teixeira de Almeida

1 Introduction

Complex decision-making situations involving several conflicting objectives are
always present in practical real-life situations related to a very wide range of
subjects, including RRM. Multiple criteria decision-making/aiding (MCDM/A) is a
useful approach for tackling these problems. Nevertheless, building decision models
for dealing with such situations while taking into account the complex variables
involved is definitely not an easy job. Moreover, choosing a structured method
for aiding such processes is also a challenging task. When characteristics of the
available methodologies are known, however, it becomes easier to choose the most
suitable approach for dealing with each specific situation.

In this context, this chapter presents an overview of various approaches for
dealing with multiple criteria decision-making. In Sect. 2, a general view of issues
involved in MCDM/A modeling is given. Then, Section 3 introduces and discusses
a broad range of various MCDM/A methods, each of which takes a different
perspective and has its own specific characteristics and peculiarities.

This section is divided into three main topics: first, additive aggregation methods
within the scope of Multi-Attribute Utility/Value Theory (MAVT/MAUT) are
presented. These deal with situations in which DMs have a compensatory rationality
and are willing to perform trade-off analyses; secondly, outranking methods – i.e.,
methods that handle situations in which a non-compensatory rationality is more
suitable for representing DMs’ aspirations – are presented; and the third subsection
gives an overview of other MCDM based on mathematical programming. Finally, in
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Sect. 4, new approaches and challenges for dealing with MCDM/A are presented.
These address concepts related to decision-making for which there is only partial
information and new trends for decision-making under uncertainty.

2 MCDM/A Models

Multiple criteria decision-making/aiding (MCDM/A) research addresses situations
for modeling and solving decision problems in which multiple criteria (attributes)
are involved (Roy 1996; Polmerol and Barba-Romero 2000; Belton and Stewart
2002; Figueira et al. 2005). With roots in Operational Research (OR), MCDM/A
embraces different kinds of support within decision situations: decision-making
(MCDM), decision aiding, or decision analysis (MCDA) (De Almeida et al. 2015).
Several MCDM/A methods for modeling a DM’s preferences have been developed.
These methods generally seek to analyze the context in which the DM is involved
and therefore evaluate promising decision alternatives by considering the conflicting
objectives involved (Roy 1996; Belton and Stewart 2002). The construction of
rational and efficient mathematical models for structuring such decision situations
helps a DM to have a better understanding of the problem as a whole, and therefore
of the various complex factors involved (Vincke 1992).

MCDM/A differs from classical OR methods mainly due to there being a DM
who has preferences and aspirations with respect to the problematic situation.
DMs’ preference structure may be modeled in different ways in accordance with
the method chosen for doing so. Some methods are based on rigorous axioms for
characterizing an individual’s behavior (Keeney and Raiffa 1976; Roy 1996; Belton
and Stewart 2002; Figueira et al. 2005). Also, when preferences are imprecise,
problem situations can be handled by fuzzy MCDM (Pedrycz et al. 2011).

There are different ways for classifying multicriteria methods. De Almeida et al.
(2015) divide them according to the rationality that a DM uses to evaluate different
criteria. This rationality may be compensatory or non-compensatory. DMs who
have a compensatory rationality are willing to let a lower performance in some
criterion be compensated for by a higher performance in another criterion, i.e.,
he/she performs tradeoffs among different criteria. In such models, criteria weights
act as scaling constants, since an additive aggregation is performed (Keeney and
Raiffa 1976; Belton and Stewart 2002). On the other hand, DMs whose rationality
is non-compensatory do not allow this compensation between criteria, and therefore
weights are related only to the relative importance of the criteria (Roy 1996; Vincke
1992). This classification based on rationality is important for choosing how DM’s
preference modeling will be performed, since there are methods that should be
applied that are appropriate for a given type of rationality.

Another way into which MCDM/A methods are classified (Roy 1996; Vincke
1992; Belton and Stewart 2002; Pardalos et al., 2013) considers three kinds of
methods: interactive methods, which are based on mathematical programming;
outranking methods and unique criterion of synthesis methods, which usually
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aggregate criteria additively. Additive aggregation models are used when a com-
pensatory rationality is applied. The two best-known and widely used axiomatically
founded theories that underpin this approach are: MAUT – Multi-Attribute Utility
Theory, for probabilistic situations and MAVT – Multi-Attribute Value Theory,
when consequences are considered to be deterministic (Keeney and Raiffa 1976;
Belton and Stewart 2002).

Examples of MCDM methods based on additive aggregation include MACBETH
(Measuring Attractiveness by a Categorical Based Evaluation Technique), UTA (in
French, UTilités Additives, rendered in English as Additive Utilities) methods, and
SMARTS (Simple Multi-Attribute Rating Technique with Swing). As to dealing
with non-compensatory rationality situations, however, outranking methods such as
ELECTRE (Elimination and Choice Reflecting Reality, in translation from French)
and PROMETHEE (Preference Ranking Organization Methods for Enrichment
Evaluations) are more suitable. These approaches work based on an outranking
preference relation between alternatives, in such a way that incomparability may
arise.

Interactive methods are suitable for both continuous and discrete decision
variables. Multi-objective linear programming (MOLP) approaches (Karasakal and
Köksalan 2009; Allmendinger et al. 2017) are widely used. In interactive methods,
DMs can revise their preferences during the process, since, in these methods,
preference information steps are followed by computational steps throughout many
interactions. Multi-Objective Combinatorial Optimization (MOCO) methods can
also be applied when integer variables are involved in the model (Ehrgott and
Gandibleux 2002).

Other possible ways to deal with MCDM/A problems are to use Decision Rules
(Figueira et al. 2005) or a partial information approach (Weber 1987). Decision
Rules are applied with the assumption that the individual gives preferences in the
form of decision examples, and therefore simple rules that justify this decision are
looked for. Partial information approaches are suitable when a DM does not have
a well-defined preference structure and therefore a recommendation is built based
on the incomplete preferential information provided. This approach is discussed in
more detail in Sect. 4.

As can be seen from the above, a wide range of methodologies is available
for aiding multicriteria decision situations. It is emphasized, however, that there
is neither a best nor a worst method, but rather that there are methods that are more
suitable than others for specific situations. In the following sections, these MCDM/A
approaches are presented and discussed.

3 Multicriteria Decision Methods

In this section, several MCDM/A methods are described. This is done in order to
give a brief overview of tools for aiding DMs in practical decision problems. First
of all, additive aggregation methods – for both deterministic and probabilistic situ-
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ations – are presented. These deal with compensatory rationality. Then, outranking
methods for dealing with non-compensatory situations are described. Finally, an
overview of some other approaches is also presented.

3.1 Additive Aggregation Methods for Deterministic Situations

Multi-attribute value theory (MAVT) embraces situations of deterministic conse-
quences which characterize the decision alternatives in situations with multiple
objectives (Belton and Stewart 2002). Also, a compensatory rationality is assumed
from the DM, i.e., the assumption is made that he/she is willing to perform tradeoffs
among criteria. In these models, alternatives are scored based on an additive
aggregation function as shown in Eq. (1):

v (ai) =
n∑

j=1

kj vj
(
xij
)

(1)

In Eq. (1), v(ai) is the global value assigned to alternative ai, which is calculated
as a weighted sum of the scaling constants of the criteria kj and the intracriteria value
function vj(xij), which represents the evaluation of consequence xij (performance of
alternative ai in criterion j). Criteria scaling constants have to be normalized in order
to sum to 1 – see Eq. (2)

n∑

j=1

kj = 1 (2)

In order to apply the additive model in Eq. (1), an important condition has to be
verified: preferential independence between criteria (De Almeida et al. 2015), i.e.,
the direction of preference in a certain criterion should not change if the values of
consequences in other criteria are modified. This means that preferences regarding
the criteria of the problem do not depend on the consequences of other criteria.

Another important issue related to applying additive models concerns the mean-
ing of criteria scaling constants kj. This is to do not only with the level of importance
of the criteria, but a scaling issue is also involved. This means that the range of
consequences has to be considered in order to evaluate these values, since they
act as substitution rates in additive models (Keeney and Raiffa 1976). This is why
the determination of weights in additive models is not an easy task, and why there
are specified procedures for doing so, which take account of a DM’s preferences.
The best-known procedures for eliciting criteria scaling constants are the tradeoff
procedure (Keeney and Raiffa 1976) and the swing procedure (Von Winterfeldt and
Edwards 1986), although there are some others (Weber and Borcherding 1993).

The traditional tradeoff procedure is structured based on a sequence of questions
with regard to comparing consequences, in which the DM has to consider tradeoffs
between different criteria. Based on these tradeoffs established by the DM, indiffer-
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ence relations between consequences are obtained, so that equations involving the
scaling constants of the criteria can be built. With n − 1 (number of criteria – 1)
equations obtained from tradeoff questions, and including also Eq. (2), it is possible
to solve an equation system and therefore to find the values of criteria weights.
Then, additive aggregation is performed based on Eq. (1) and alternatives are ranked
according to their global value. This procedure has a strong axiomatic foundation
based on MAVT concepts; nevertheless, it is criticized due to DMs needing to make
a high amount of cognitive effort during the elicitation process in order to obtain
indifference relations. This leads to a rate of inconsistencies of around 67% when
MAUT is applied, according to behavioral studies (Weber and Borcherding 1993).
The tradeoff elicitation procedure is used by the Flexible and Interactive Tradeoff
method (FITradeoff) (De Almeida et al. 2016), but using only partial information
about DM’s preferences, and in such a way that the cognitive effort that the DM
needs to make is much reduced. More details about partial information methods are
given and further discussed in Sect. 4.

The swing weights procedure is also based on a sequence of questions to the
DM, who first has to rank criteria based on the following reasoning: “imagine a
hypothetical alternative with all criteria in the worst outcome, and it can be improved
by turning the performance of one unique criterion into the best possible value;
which criterion would you choose?” The criterion selected will be the one with
the highest scaling constant value. Then, the same question is asked again, and so
the DM chooses the criterion with the second-highest scaling constant value, and
so on. Then, the DM considers the first criterion has a score of 100, and scores
for the subsequent criteria are established based on a comparative analysis. Finally,
these scores are normalized in order to find the values of the scaling constants.
This procedure is used in SMARTS (Simple Multi-Attribute Rating Technique
with Swing) method (Edwards and Barron 1994). The SMARTER (Simple Multi-
Attribute Rating Technique Exploiting Ranks) method (Edwards and Barron 1994)
also incorporates the swing weights approach but uses only its first part (ranking
criteria weights), and then surrogate weights are calculated. The SMARTER method
is another example of a method that works based only on partial information
from DMs. Even though the swing procedure is considered easier to implement
when compared to the tradeoff procedure, there is nevertheless a 50% rate of
inconsistencies rate associated with this procedure (Weber and Borcherding 1993).

There are other MCDM/A methods that use additive aggregation models.
The AHP (Analytic Hierarchy Process) method considers preferential information
obtained from pairwise comparison between alternatives in each criterion, and
the criteria of the problem are considered by following a hierarchical structure
(Saaty 1980). The MACBETH (Measuring Attractiveness by a Categorical Based
Evaluation Technique) method evaluated DM’s preferences in accordance with the
difference in attractiveness between alternatives. A qualitative scale is used for this,
but it is then converted into a quantitative one that is based on linear programming
models (Bana e Costa and Vansnick 1994). Finally, the Additive Veto Model
approach considers limits for consequences under which they become unacceptable,
and therefore some alternatives may be vetoed according to this rule (de Almeida
2013).
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Additive aggregation models for MCDM/A are also applied when consequences
are determined based on a probabilistic scenario, i.e., the probabilities of different
states of nature occurring are considered. These cases are dealt with based on
concepts of multi-attribute utility theory (MAUT), which is detailed in the following
section.

3.2 Additive Aggregation Methods for Probabilistic Situations

This topic also leads to discussion of multicriteria additive models, but for proba-
bilistic situations. First, a brief overview of Expected Utility Theory and its axioms
is given. Then, Multi-Attribute Utility Theory is presented.

3.2.1 Expected Utility Theory

Expected Utility (EU) theory (von Neumann and Morgenstern 1944) is widely
applied in order to aid decision-making situations under uncertainty. This approach
is considered as a normative rational model for decision-making (Keeney and Raiffa
1976). The Expected Utility Theory model is characterized by:

– E: a set of n possible states of nature, which are exhaustive and mutually
excluding events. E = (E1, E2, . . . , En).

– p: Subjective probability distribution p = (p1, p2, . . . , pn), in which pi is the
probability of the occurrence of the state of nature Ei.

– X: consequences vector X = (x1, x2, . . . , xn), in which xi is the consequence
related to the state of nature Ei.

– u: utility function, which represents a measure of benefit of a certain consequence
for the DM.

Given these elements, the expected utility of a prospect X is calculated as follows
Eq. (3):

EU(X) =
n∑

i=1

piu (xi) (3)

Therefore, Expected Utility Theory model incorporates not only preference
modeling translated from utility functions, but there is also a probabilistic modeling
task, which may require another actor to be involved in the decision process: an
expert with knowledge about the probabilistic behavior of the state of nature, in
order to determine the subjective probabilities.

Expected Utility Theory has a strong axiomatic structure, which contains the
following axioms (Savage 1954):
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A1: Preferences between alternatives are weakly ordered, i.e., they are complete and
transitive.

A2: Preferences satisfy the independence condition, which means that choices
between two prospects should not be affected by the consequence values
corresponding to states for which both prospects have the same value. This leads
to a natural definition of conditional preferences: if X is preferred to Y given an
event E, then X is preferred to Y for a not-E event.

A3: Preferences among consequences are state independent, which means that
conditional preferences between constant prospects (i.e., prospects that have the
same consequence for all states) do not depend on the conditioning event.

A4: Events can be ordered by probability, in the following manner: let x1 and x2 be
two consequences such that x1 is preferred to x2, if the prospect that leads to x1
with probability p

′
, and x2 with probability 1 − p

′
is preferred to the prospect

that leads to x1 with probability p′′ and x2 with probability 1 − p′′, then p
′

> p′′.

The utility function u(x) is defined in such a way that u(x0) = 0 and u(x∗ ) = 1,
in which x0 is the least desired outcome and x∗ is the most desired outcome, and a
wide set of procedures is available for eliciting preferences in order to obtain u(xi)
(Raiffa 1968; Keeney and Raiffa 1976; Berger 1985). Most of them use the idea of
a certain equivalent of lotteries, which is the indifference point between a lottery
and a certain value, according to the DM’s preferences. For instance, let us assess
the utility function for money considering the range from $0 to $100. From the
definition of the utility function, that u(0) = 0 and u(100) = 1. Now, intermediate
points have to be found in order to obtain a good estimate of the form of u(x). If the
DM states, for instance, that he/she is indifferent between a lottery in which he/she
may gain $0 with 0.5 probability or $100 with 0.5 probability and winning a certain
value of $45 for sure, then it can be inferred that, for this DM, u(45) = 0.5. By
obtaining more indifference points like this, an estimate of the DM’s utility function
can be made. More detailed procedures can be found in Keeney and Raiffa (1976).

3.2.2 Multi-Attribute Utility Theory

The fundamental insight for Multi-Attribute Utility Theory (MAUT) was presented
by Howard Raiffa in 1968, with the idea of extending concepts of Utility Theory and
keeping its axiomatic structure for the multi-attribute case, i.e., when two or more
criteria are involved in the decision problem. Similar to what happens in MAVT,
criteria are also aggregated in MAUT, based on an additive function; but the main
difference is that this is now done by considering probabilistic scenarios.

To apply MAUT, it is necessary to obtain a multi-attribute utility function. For
instance, for a case of two attributes, x and z, consequences are evaluated based
on the multi-attribute value function u(x, z). This is a function of the marginal
utility functions of the attributes; u(x, z) = f [u(x), u(z)]. The elicitation of the multi-
attribute utility functions depends, therefore, on the values of the marginal utility
functions of each attribute being known.
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Keeney and Raiffa (1976) also present procedures for eliciting the multi-
attribute utility (MAU) function. Usually the MAU function is the additive
form u(x, z) = kxu(x) + kz u(z), in which kx and kz are the scaling constants of the
attributes x and z, normalized as in Eq. (2). This model can be generalized for cases
with c criteria. Therefore, analogously to the preferential independence condition
in MAVT – the necessary condition for using the additive model, in MAUT there
are also two key independence conditions to be satisfied so as to make it possible
to apply the additive model: additive independence and utility independence (for
details, see Keeney and Raiffa 1976). If both the mutual independence condition
and the additive independence condition between attributes are satisfied according
to the DM’s preferences, then the additive model can be applied. If these conditions
do not hold, then other types of MAU function can be applied.

Given the analytical form of the MAU function, then it is necessary to define the
scaling constants of the attributes. As to the additive model, scaling constants for
a two-attribute problem are given by kx = u(x∗ , z0) and kz = u(x0, z∗) (Keeney and
Raiffa 1976). Thus, in order to obtain the value of kx, the probability p which makes
(x∗ , z0) the certain equivalent of the lottery [(x∗ , z∗), p; (x0, z0), 1 – p] must be found.
The value of kz can be obtained analogously.

3.3 Outranking Methods

Outranking methods are suitable for dealing with situations in which the DM
has a non-compensatory rationality. These methods are based on an outranking
preference relation. An alternative a is said to outrank another alternative b
(aSb) if a is considered to be at least as good as b. These outranking relations
allow incomparability between alternatives to arise (Roy 1996). Therefore, partial
preorders of alternatives may be obtained when applying these methods, while
in MAUT/MAVT methods a complete preorder is built. Another important issue
that differs outranking methods from additive models in MAUT/MAVT is that, in
outranking methods, criteria weights are considered based strictly on their level of
importance compared to other criteria, without considering ranges of consequences
or scaling factors.

Pairwise comparisons between all alternatives of the MCDM problem are
performed in outranking methods. These methods work based on two main steps
(Roy 1996; Vincke 1992): first, outranking relations are built considering these
pairwise comparisons between alternatives; then, these outranking relations are
explored in order to compute a recommendation for the DM, according to some
algorithm (specified depending on the method applied).

There are two main families of outranking methods: ELECTRE (Elimination Et
Choix Traduisant la Réalité) methods (Roy 1996; Vincke 1992) and PROMETHEE
(Preference Ranking Organization Method for Enrichment Evaluation) methods
(Brans and Vincke 1985; Vincke 1992). These are described in detail in the
following subsections.
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3.3.1 ELECTRE Methods

The family of ELECTRE methods embraces six different approaches, which differ
one from another according to the decision problematic – choice, ranking, sorting, or
portfolio (Roy 1996) – and to the type of criteria – true criteria (without thresholds)
or pseudocriteria (with concordance/discordance thresholds):

• ELECTRE I: considers true criteria, and is suitable for the choice problematic;
• ELECTRE IS: considers pseudocriteria, and is suitable for the choice problem-

atic;
• ELECTRE II: considers true criteria, and is suitable for the ranking problematic;
• ELECTRE III: considers pseudocriteria and is suitable for the ranking problem-

atic;
• ELECTRE IV: considers pseudocriteria and is suitable for the ranking problem-

atic;
• ELECTRE TRI: considers pseudocriteria and is suitable for the sorting problem-

atic.

In order to illustrate how these methods work, let us consider the ELECTRE
I method, which is suitable for the choice problematic with true criteria. Other
ELECTRE methods differ from ELECTRE I in the construction phase of the
outranking relation and differ even more in the exploitation phase, since the kind
of recommendation is different.

The ELECTRE I method constructs outranking relations based on concordance
and discordance notions. The concept of concordance is related to the fact that there
is a meaningful subset of criteria that indicates the favorability for an outranking
relation between two alternatives. The discordance concept is related to a notion of
veto of this concordance. To evaluate the possibility of there being an outranking
relation, it is necessary to define both the concordance and the discordance indexes.
The concordance index between two alternatives a and b, C(a, b), is calculated as
follows:

C (a, b) =
∑

j :gj (a)≥gj (b)

wj (4)

In Eq. (4), wj indicates the weight of criterion j, and the sum of these weights
is equal to 1. The performance of alternative a in criterion j is denoted here by
gj(a), and gj(b) indicates the performance of alternative b in criterion j. Therefore,
the concordance index of an outranking relation between a and b is given by the
sum of the weights of the criteria for which the performance of a is greater than
the performance of b. To calculate the discordance index, different authors propose
different ways to do so (Roy 1996; Vincke 1992; Belton and Stewart 2002). Equation
5 presents a possible formulation for calculating the discordance index between two
alternatives a and b, D(a, b):
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D (a, b) = max

(
gj (b) − gj (a)

max
(
gj (c) − gj (d)

)
)
,∀j such that gj (b) > (a); ∀j, c, d

(5)

In order to define the outranking relations, two thresholds are defined: the
concordance threshold c

′
and the discordance threshold d

′
. These thresholds should

be defined by the DM. An outranking relation between a and b is defined as follows:

aSb if and only if

{
C (a, b) ≥ c’

D (a, b) ≤ d’ (6)

This condition is tested for all pairs of alternatives of the decision problem. Two
alternatives may be considered indifferent if the situation aSb and bSa happens.
After these outranking relations are defined, it is time to perform the second step
of the method, namely, to exploit these outranking relations in order to build a
recommendation. This is done in ELECTRE I by searching for the kernel of the
problem. Alternatives belong to the kernel if they are not outranked by any other
alternative from the kernel. It may happen that the kernel is formed by more than
one alternative; in this case, the recommendation for the DM is two (or more)
incomparable alternatives that can be solutions for the MCDM choice problem.

Further details about the ELECTRE family of methods can be found in Roy
(1996), Vincke (1992), Belton and Stewart (2002), and Figueira et al. (2005).

3.3.2 PROMETHEE Methods

The family of PROMETHEE (Preference Ranking Organization Method for Enrich-
ment Evaluation) methods work based on a valued outranking relation (Brans and
Vincke 1985; Vincke 1992), unlike the ELECTRE methods. Outranking relations
are obtained based on the so-called outranking degrees between two alternatives,
which are calculated as follows:

π (a, b) =
n∑

j=1

wjFj (a, b) (7)

In Eq. (7), wj indicates the weight of criterion j, and Fj(a, b) is the difference
function whose value depends on the difference gj(a) − gj(b). There are six different
forms for Fj(a, b). In its most basic form, a no thresholds definition is necessary, and
Fj(a, b) is equal to 1 if gj(a) > gj(b), and 0 otherwise. Thus, the outranking degree is
given by the sum of weights for criteria in which a is better than b. Other ways for
obtaining Fj(a, b) depend on how the DM defines the preference and indifference
thresholds (Brans and Vincke 1985).



Multicriteria Decision Methods for RRM Models 13

After calculating the outranking degrees, positive and negative flows for each
alternative (φ+e φ−) are calculated for each alternative a. The positive flow of an
alternative a indicates a measure of the advantage of a with respect to the other
alternatives, while the negative outflow indicates a measure of the disadvantage of a
compared to the other alternatives. The positive flow of an alternative a is calculated
as shown in Eq. (8), and the negative flow is calculated as shown in Eq. (9).

φ+(a) =
∑

b∈A
π (a, b) (8)

φ−(a) =
∑

b∈A
π (b, a) (9)

The PROMETHEE I method uses these two flows to define outranking relations
between all pairs of alternatives. It may happen that two alternatives are indifferent
or even incomparable to each other, which leads to a partial preorder as a result of
this method.

The PROMETHEE II method, on the other hand, works based on a net flow
measure, which is also calculated for each alternative a, according to Eq. (10).

φ(a) = φ+(a) − φ−(a) (10)

This net flow leads to a score for each alternative, which enables one to build a com-
plete preorder of the alternatives. There is no incomparability in the PROMETHEE
II method.

There are other methods within the PROMETHEE family. PROMETHEE III and
IV are suitable for stochastic situations, while the PROMETHEE V method has been
developed for dealing with the portfolio problematic. Finally, the PROMETHEE VI
method can be used when criteria weights are given from DMs in the form of ranges
instead of exact values.

3.4 Other MCDM/A Methods

Besides the approaches presented in previous subsections, there are still other
methods for aiding multicriteria decision situations, which can be applied in diverse
contexts.

When DMs’ preferences are imprecise, the concepts of fuzzy sets are suitable
for application (Pedrycz et al. 2011). The fuzzy approach is not an MCDM method
itself, but it is a tool for dealing with imprecise preferences that can be jointly
applied with any method (Belton and Stewart 2002).

Disaggregation methods belong to another approach within MCDM, which
is based on holistic judgments for evaluating alternatives (Pardalos et al. 2013;
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Jacquet-Lagréze and Siskos 1982). A similar approach is used by Slowinski et al.
(2012) in their preference learning approach.

Mathematical programming tools are also widely used for aiding multicriteria
situations. Although nonlinear programming techniques are also applied, the use of
linear programming is quite common, within the Multi-objective Linear Optimiza-
tion (MOLP) approach (Korhonen 2009; Korhonen 2005; Korhonen and Wallenius
2010; Steuer 1986; Ehrgott 2006; Miettinen 1999; Coello et al. 2007). MOLP
methods can be classified according to the way in which preferences are given by
DM (a posteriori, a priori, or based on an interactive procedure).

Finally, another approach for tackling problems that have multiple objectives is
to use Multi-objective Evolutionary Algorithms (MOEAs), such as: Multi-Objective
Generic Algorithm – MOGA (Fonseca and Fleming 1993), Nondominated Sorting
Genetic Algorithm – NSGA (Srinivas and Deb 1994), Strength Pareto Evolutionary
Algorithm – SPEA (Zitzler and Thiele 1999), and NSGA II (Deb et al. 2002).

4 Challenges and Future Developments in MCDM/A for
RRM

This section presents new approaches for dealing with decision-making situations,
which have been put forward in response to the drawbacks of some classical
decision methods that have been described earlier in this chapter. First, possibilities
for dealing with incomplete preference information from the DM are discussed.
Then, with regard to RRM stochastic situations, two models are presented: Rank-
Dependent Utility (RDU) and Prospect Theory (PT).

4.1 Partial Information Methods in MCDM/A

In deterministic additive aggregation models within the scope of Multi-attribute
Value Theory (MAVT), alternatives are scored straightforwardly with a value being
given by Eq. 1. The global value of an alternative is given by a weighted sum of
criteria scaling constants kj and the respective value functions of each criterion.
However, there is a great challenge related to this model, namely how to define
criteria scaling constants, since these parameters do not represent only a degree of
importance, but there is also a scaling factor involved.

Traditional approaches for eliciting criteria scaling constants such as the tradeoff
and the swing weights procedures require DMs to provide information that they find
demands a high cognitive effort to produce, such as indifference points between
consequences, as previously explained in Sect. 3.1. DMs may not be able to provide
the detailed information required, in a consistent way (Belton and Stewart 2002).
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Fig. 1 Framework for classifying partial information methods (Adapted from De Almeida et al.
2016)

These issues may discourage people from engaging on such processes, which are
tedious and time-consuming (Salo and Hämäläinen 1992).

In this context, a new trend has emerged in multicriteria decision-making: meth-
ods that consider only partial/incomplete information about the DMs’ preferences.
These approaches aim to facilitate the decision process, by making it easier for DMs
to provide the information required. The main goal is to reduce the gap between
methodological tools for decision-making and decision situations in practice, by
having a process that DMs find cognitively easier to engage on.

Several methods have been developed within this line. De Almeida et al.
(2016) present a framework for classifying such methods, based on the following
characteristics: preference statements; forms of partial information, and synthesis
step. Figure 1 illustrates this framework.

The first box in Fig. 1 deals with how DMs provide preference statements
during the elicitation process. First, the analysis examines whether or not there is
a structured elicitation process for eliciting preferences. An MCDM method can be
considered to have a structured elicitation process if the way in which preferences
are gathered from DMs follows a structured elicitation procedure, such as swing
weights procedure or tradeoff procedure. It is simpler to apply the swing weights
procedure, and that is why several partial information methods use this procedure
to structure elicitation (e.g., Edwards and Barron 1994; Malakooti 2000; Salo and
Hämäläinen 2001; Mustajóki et al. 2005). The strongest limitation of this procedure
is that it is suitable only for linear intracriteria value functions, and, in practice,
preferences can vary in a nonlinear way with the performance of the criteria – this is
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what Edwards and Barron (1994) call modeling error. The tradeoff procedure, on the
other hand, is suitable also for nonlinear cases and has a strong axiomatic structure;
however, it is more difficult for DMs because performing tradeoffs among criteria
is definitely not an easy task. But the FITradeoff method presented by De Almeida
et al. (2016) keeps the whole axiomatic structure of the traditional tradeoff, but
with easier questions for the DMs, requiring only partial information, and is given
in the form of preference relations between consequences, instead of indifference
relations. Finally, there are also methods that do not explicitly assume that there is a
formal elicitation procedure for gathering preferences, which are classified as having
a non-structured elicitation process (see Kirkwood and Sarin 1985; Park et al. 1997;
Dias and Clímaco 2000; Mármol et al. 2002; Punkka and Salo 2013; Mateos et al.
2014).

Still in the first box of Fig. 1, partial information can be classified as inter-
active or not interactive. In interactive processes, the elicitation is conducted
interactively with DMs, and as he/she provides preference statements, partial
results are computed. In interactive processes, people learn more about their own
preferences during the elicitation. Examples of partial information approaches that
are conducted based on interactive processes can be found in Salo and Hämäläinen
(1992, 1995); Park and Kim (1997); Malakooti (2000); Dias and Clímaco (2000);
Salo and Punkka (2005); De Almeida et al. (2016). On the other hand, methods
in which the information of the DM is given all at once, i.e., when there is not an
interactive process, can be found in Kirkwood and Sarin 1985; Park et al. 1997; Ahn
et al. (2000); Mustajóki et al. (2005); Punkka and Salo (2013); and Danielson et al.
(2014).

The last classification in the first box of Fig. 1 is that of determining whether or
not the process is flexible. A method can be considered flexible when a wide set of
possibilities is given to the DMs during the process. Visualization of partial results
and different possibilities of providing information and graphical tools are examples
of flexibility features that may characterize a flexible process. In general, methods
operated by decision support systems are more likely to have flexibility features
that DMs find useful. Examples of flexible methods can be found in Park and Kim
(1997); Malakooti (2000); Dias and Clímaco (2000); Salo and Hämäläinen (2001);
Sarabando and Dias (2010); Punkka and Salo (2013); Montiel and Bickel (2014),
and De Almeida et al. (2016). Processes which do not have such flexibility features
are considered to be fixed processes, in which the DM has a unique sequence of steps
to follow in order to obtain a recommendation (e.g., Kirkwood and Sarin 1985; Salo
and Hämäläinen 1992; Edwards and Barron 1994; Kim and Ahn 1999; Ahn et al.
2000; Mármol et al. 2002; Mustajóki et al. 2005; Jiménez et al. 2013; Mateos et al.
2014).

The second box of Fig. 1 concerns the form of partial information given by DMs,
which may be: a ranking of criteria scaling constants; the boundaries of criteria
scaling constants; holistic judgments, or even arbitrary linear inequalities involving
criteria scaling constants and intracriteria value functions. Most partial information
methods use more than a unique type of partial information from DMs. For instance,
Malakooti (2000), Ahn and Park (2008), and Montiel and Bickel (2014) consider
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these four types of information in their approaches. Several methods work with
rankings, boundaries, and arbitrary linear inequalities, without considering holistic
judgments (e.g., Athanassopoulos and Podinovski 1997; Park and Kim 1997; Park
et al. 1997; Kim and Han 2000; Dias and Clímaco 2000; Park 2004; Punkka and
Salo 2013). Some other methods work based on rankings and boundaries only,
without using either holistic judgments or arbitrary inequalities for intracriteria
value functions (Salo and Punkka 2005; Danielson et al. 2014; de Almeida et al.
2016). Finally, there are also approaches that set out to ask the DM for the least
possible information, and the only information provided concerns the ranking of
criteria scaling constants (Stillwell et al. 1981; Kirkwood and Sarin 1985; Edwards
and Barron 1994; Danielson and Ekenberg 2017).

Based on the partial information provided in the previous step, a recommendation
must now be built for the DM. Therefore, a synthesis step to somehow compile
all information obtained is conducted. This step may be performed in different
ways, such as calculating surrogate weights, using decision rules to directly provide
a recommendation, computing linear programming (LP) models, or even running
simulations and/or sensitivity analysis. All these approaches can also be conjointly
applied. Methods using surrogate weights can be found in Stillwell et al. (1981);
Edwards and Barron (1994); Kim and Ahn (1999); Sarabando and Dias (2010);
Danielson et al. (2014); and Danielson and Ekenberg (2017). Decision rules
approaches are adopted by Park and Kim (1997); Park et al. (1997); Salo and
Hämäläinen (2001); Salo and Punkka (2005); and Sarabando and Dias (2010).
Simulation and sensitivity analysis are found in the studies by Salo and Hämäläinen
(1992, 2001); and Montiel and Bickel (2014). However, the step approach to
synthesis that is most applied is linear programming, since partial information
is generally given in the form of linear inequalities (Kirkwood and Sarin 1985;
Salo and Hämäläinen 1992, 1995; Park and Kim 1997; Malakooti 2000; Dias and
Clímaco 2000; Salo and Punkka 2005; Ahn and Park 2008; Punkka and Salo 2013;
De Almeida et al. 2016; Frej et al. 2019).

All these approaches mentioned above have been developed with the aim of
addressing the challenge of how to make the decision-making process an easier
task for DMs. Reducing cognitive effort and time spent on decision processes is
necessary for real world cases, since DMs do not have much time and are not willing
to engage on such cognitively demanding processes. Therefore, partial information
approaches are intended to narrow greatly this huge gap between methodologically
complex MCDM/A models developed in theory and real situations in practice.

4.2 Decision Under Uncertainty: Rank-Dependent Utility
and Prospect Theory

Regarding decision situations under uncertainty, the assumption that a rational
human being should behave according to the Expected Utility Axioms presented
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in Sect. 3.2.1 was adopted for many years; however, various behavioral studies
show that people often violate these axioms when expressing their preferences in
decision-making situations. Therefore, when, in the 1970s, violation of these axioms
became a frequent finding of research and behavioral studies within this field, new
theories started to be developed in order to relax these axioms and reflect DMs’
preference structure in a more realistic way.

One of the strongest objections against the expected utility model emerged from
a study by Allais (Allais 1953), who pointed to the following paradox. Let us assume
three states of nature (E1, E2, E3), whose probabilities are, approximately, p1= 0.89
(very likely), p2= 0.1 (rather unlikely), and p3= 0.01 (very unlikely), respectively.
Now, a person has to choose between two possible prospects, X or Y; prospect X
leads to a gain of 1 million dollars for sure, no matter which state happens, and
prospect Y leads to a gain of 1 million dollars if E1 happens, 5 million dollars if E2
happens and no gain if E3 happens. These prospects are represented in Table 1.

Experimental studies show that most individuals prefer X over Y. The logic
behind this pattern is clear: most people prefer to win $1 million for sure rather
than accepting a very low probability (1%) of winning nothing and a 10% chance of
winning $5 million. Now, let us assume the consequence value for E1 changes from
$1 M to $0 M, which leads to two new prospects, X′ and Y′, as shown in Table 2.

Experimental studies show that most individuals now prefer Y′ over X′. The
logic behind this pattern is also intuitive: since it is very likely that the person will
not win anything ($0 M with probability 89%), it is better for the person to risk
winning $5 M with 10% probability (Y′) rather than $1 M with 11% probability
(X′).

This preference pattern (X P Y and Y′ P X′) is followed by many rational people;
however, Expected Utility Theory is not able to rationalize this preference pattern,
because it leads to a violation to the independence axiom (A2). In this case, X and
Y have the same consequence value for E1 ($1 M). Therefore, for any common
value of consequence in E1, prospect X should still be preferred to prospect Y. This
is not what happens in this case; when state E1 leads to a common consequence
of $0 M, the preference changes (Y′ becomes preferred to X′). In this situation, it
was possible to observe the “common consequence effect”, which happens when
preference direction is reversed due to a change in the common consequence value.

The so-called Allais Paradox has strongly motivated the development of new
approaches that relax the axioms of Expected Utility Theory, such as Rank-

Table 1 Prospects X and Y E1 (p1= 0.89) E2 (p2= 0.1) E3 (p3= 0.01)

X $1 M $1 M $1 M
Y $1 M $5 M $0 M

Table 2 Prospects X′ and Y′
E1 (p1= 0.89) E2 (p2= 0.1) E3 (p3= 0.01)

X′ $0 M $1 M $1 M
Y′ $0 M $5 M $0 M
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Dependent Utility (RDU) and Prospect Theory (PT), which are described in detail
in the sub-sections that follow below.

4.2.1 Rank-Dependent Utility (RDU)

The Rank-Dependent Utility is an extension of the Expected Utility model that has
emerged as a widely studied alternative given the Allais paradox and other findings
regarding the violation of axioms of EU theory.

RDU was mainly motivated by two key observations considering the violation
of the independence axiom (Edwards et al. 2007). First, it was observed that the
independence axiom may be violated when comparing two prospects in which the
risk involved is radically changed when the value of the common consequence
changes. The Allais paradox, for instance, illustrates a case in which $1 M is
replaced by $0 M in state E1; therefore, a safe alternative (winning $1 M for sure)
is replaced by a risky alternative (89% chance of winning $0), and that is why there
is a change in preferences. It would be easier to satisfy the independence condition
if it was applied only to prospects with similar risk profiles. The second observation
is that DMs perception of risk comes from their beliefs, which are represented by
probabilities in the expected utility model. However, the independence axiom allows
the expected utility to vary with probabilities only in a linear way; therefore, this
axiom could be relaxed in such a way that the DM’s evaluation of a prospect could
be nonlinear with probabilities, and, analogously, nonlinear with the payoffs as well.

In RDU model, the utility of a prospect X is given by Eq. (11):

RDU(X) =
n∑

i=1

πiu (xi) (11)

The coefficients π i are called decision weights. These values are non-negative
and sum 1, exactly in the same way as subjective probabilities in the expected
utility model. The main difference between the EU and RDU models is that
decision weights are not necessarily subjective probabilities, and the decision weight
associated with some state is not necessarily the same for all prospects. The decision
weight π i associated with state Ei when prospect X is evaluated depends on how
state Ei is ranked relative to other states in terms of payoffs, according to the DM’s
beliefs.

In the most general version of RDU, a probability-weighted function w(p) is
considered. This is a monotonically increasing function which satisfies the following
conditions: w(0) = 0 and w(1) = 1. For a prospect X, the payoffs corresponding to
each state should be ordered in a descending way, such that x1 ≥ x2 ≥ . . . ≥ xn,
and p1, p2, . . . pn are the respective probabilities. Thus, the decision weights in the
expression of RDU are given by Eq. (12):
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Fig. 2 Prospect X

πi =
{
w (p1) , if i = 1
w (p1 + · · · + pi) − w (p1 + · · · + pi−1) , if i > 1

(12)

From the expression above, it can be said that π1 + . . . + π i = w(p1 + . . . + pi),
i.e., the cumulative decision weight associated with the i best payoffs is equal to the
cumulative probability transformed by the probability-weighted function of those
states. If the probability weight function is linear, then the RDU model is reduced
to the expected utility model with π i = pi. Nevertheless, if w(p) is nonlinear, then
the DM’s behavior under risk situations is either optimistic or pessimistic. If w(p)
is a convex function, then the DM’s behavior under risk is pessimistic, so much so
that better payoffs are underestimated, i.e., their decision weights are greater than
the probabilities of the respective states. On the other hand, a concave w(p) function
characterizes an optimistic DM, who overvalues better payoffs and underestimates
worse payoffs.

In order to illustrate the ideas described above, let us consider a prospect X
illustrated below in Fig. 2 (Wakker 2010). X presents the same probability (25%)
for all possible payoffs: x1 = 80; x2 = 60; x3 = 40; x4 = 20. These payoffs can be
considered to be in monetary values, and thus represent someone’s monetary gain.

The first step now is to rank these payoffs in a descending order of preference.
Since we are considering these values as monetary amounts, then these conse-
quences are ranked as follows:

x1 > x2 > x3 > x4

Based on this ranking, decision weights π i are now calculated as follows:

π1 = w (p1) = w
(
1
/
4

)
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Fig. 3 Pessimistic DM (convex function). (Adapted from Wakker 2010)
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Now, let us consider two different profiles for characterizing DMs. The first
profile is characterized by a person who is pessimistic, and has a convex probability
weighting function w(p) = p2, illustrated by Fig. 3. The second profile is character-
ized by a person who is optimistic person, and has a concave probability weighting
function w(p) = √

p, illustrated by Fig. 4.
Based on the graphics shown above, it can be seen that, for the pessimistic profile,

the decision weights of better payoffs are underestimated, and the decision weights
of worse payoffs are overestimated. For instance, the decision weight for payoff
x1 = 80 is much lower than the decision weight for x4 = 20. For the optimistic
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Fig. 4 Optimistic DM (concave function). (Adapted from Wakker 2010)

profile, the opposite situation happens: it can be seen that the decision weight for
x1 = 80 is much higher than the decision weight for x4 = 20.

Now, let us go back to the situation of the Allais paradox – the main motivation
for the development of RDU. A pessimistic DM (with a convex function w(p))
would overestimate the weight of state E3 when comparing X and Y, since it leads
to a payoff of $0 M with 1% probability; on the other hand, the weighting effect
would be much less expressive when comparing X′ and Y′, since the probability of
winning $0 M is much higher.

The key assumption that distinguishes the RDU model from the expected utility
model is that the independence axiom is replaced with a weaker version of this
condition: the co-monotonic independence axiom. Two prospects X and Y are
considered co-monotonic if their states are ordered in the same way, such that the
same state leads to the best payoff in both prospects, the same state leads to the
second-best payoff in both prospects, and so on. The co-monotonic independence
axiom states that when two co-monotonic prospects have the same consequence
for a given state, it does not matter which value of consequence this has, because
pairs of co-monotonic actions have the same risk profile, so changing the values of
equal payoffs cannot change the risk profile of an action without changing the risk
profile for the other action in a similar way. The situation of the Allais paradox,
therefore, does not violate the co-monotonic independence axiom, because pairs of
actions are not co-monotonic: in X, we have the following preference order for states
E1 = E2 = E3, and in Y the order is E2 > E1 > E3.

The idea of using a nonlinear function for weighting probabilities was explored in
depth in behavioral studies, and many studies have worked on the idea of estimating



Multicriteria Decision Methods for RRM Models 23

Fig. 5 Common finding for
probability weighting
function shape

the weighting probability function in an empirical way. A common finding is that
most individuals behave according to an inverted S-curve, i.e., the function is
concave for very low values of cumulative probabilities and convex for medium-
high values of cumulative probabilities. Figure 5 shows this pattern. This pattern
indicates that most DMs are risk prone for large gains with very low probabilities.

The approach for RDU described above is the most general form of explaining
individuals’ behavior that cannot be explained by Expected Utility Theory. Within
this line of research, advanced studies began to emerge and new theories were
developed in order to refine this model to make it even more compatible with human
behavior, such as Prospect Theory (PT), which is described in the next sub-section.

4.2.2 Prospect Theory

In their work, Kahneman and Tversky (1979) describe behavioral experiments
that show several decision-making situations in which most people systematically
violate the axioms of Expected Utility Theory. They also mention the Allais
Paradox as the main motivation for the development of Prospect Theory (PT) and
identify and describe the following effects and situations that happen when rational
individuals make decisions:

• Certainty effect: people tend to give more importance to consequences that are
certain, rather than to merely probable consequences. The situation set out in
the Allais Paradox (see the introduction to 4.2 above) is a clear example of the
certainty effect: when choosing between X and Y, most people prefer X ($1 M
for sure) over Y (risk to gain $5 M with 10% probability), even although Y has a
higher expected monetary value than X.

• Reflection effect: Reflecting values of consequences around 0 reverts the pref-
erence order, i.e., the order of preference for negative payoffs (losses) is the
opposite of the order of preference for positive payoffs (gains). For instance,
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Kahneman and Tversky (1979) show the results of an experiment in which
between prospects X = (4000, 0.8; 0, 0.2) and Y = (3000, 1), most people prefer
Y over X; and between prospects X′ = (−4000, 0.8; 0, 0.2) and Y′ = (−3000,
1), most people prefer X′ over Y′. The authors also mention that, according to
this preference pattern, most people are risk averse when dealing with gains, and
risk prone when dealing with losses.

• Isolation effect: In order to simplify decision-making situations, people usually
isolate components that alternatives have in common, and focus on what
differentiates them. This may lead to inconsistences of preferences in choice
problems. For instance, let us consider the following situations 1 and 2 (Figs.
6 and 7) (Kahneman and Tversky 1979).

In both situations above, the circles represent probability nodes, while the squares
represent choice nodes. Behavioral experiments show that, in situation 1, most
people prefer Y over X, and in situation 2, most people prefer X′ over Y′. However,
what happens is that X = X′ and Y=Y′, because X leads to a payoff of $4000 with
probability 0.8x0.25 = 0.2, similar to X′; and Y leads to a payoff of $3000 with
probability 0.25x1 = 0.25, similar to Y′. This preference reversal happens because
of the way in which the situations are represented: in situation 1, people isolate the
initial part of the lottery, which may lead to a gain of nothing with 0.75 probability or

Fig. 6 Situation 1

Fig. 7 Situation 2
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making a choice with 0.25 probability. This behavioral pattern of preference reversal
that occurs due to the dependence between events is particularly important because
it shows a violation of one of the basic assumptions of Expected Utility Theory: the
one that says that choices between prospects depend only on the probabilities of the
final states.

Prospect Theory was developed as an extension of the RDU model in order
to try to better represent these preference patterns. Prospect Theory brings a new
component that is not present in RDU model: dependence on a reference point,
i.e., it allows there to be different probability weighting functions for gains and for
losses. As previously shown with the reflection effect, most people have risk averse
behavior for gains and risk prone behavior for losses, which justifies the use of two
different probability weighting functions.

The value of zero (no gain, no losses) is considered here as the reference point.
Positive values are therefore considered as gains, and negative values are considered
losses. Two probability weighting functions are defined: w+(p) for gains, and w−(p)
for losses. The values of consequences (x1, x2, . . . , xn) should be ranked relatively
to the reference point (0), which is called complete signal ranking:

x1 ≥ · · · ≥ xk ≥ 0 ≥ xk+1 · · · ≥ xn (13)

The values of consequences greater than the reference point are considered gains,
while the values of consequences lower than the reference point are considered
losses. Similarly to the rank-dependent utility model, the value of a prospect X is
given by:

PT (X) =
n∑

i=1

πiu (xi ) (14)

The Prospect Theory model differs from the RDU model in the way in which
the decision weights π i are obtained. Decision weights for gains are calculated
based on w+(p), while decision weights for losses are calculated based on w−(p), as
follows:

• Gains (i ≤ k) : π i = w+(p1 + . . . + pi) − w+(p1 + . . . + pi − 1.)
• Losses (i ≥ k) : π i = w−(pi + . . . + pn) − w−(pi + 1 + . . . + pn)

Therefore, Prospect Theory model can accommodate decision situations in which
gains and losses are involved, throughout two weighting probability functions
(w+(p) and w−(p)), while in the RDU model a single probability weighting function
is considered, without difference for gains and losses. When the decision situation
involves only gains (without consequences that lead to losses), however, Prospect
Theory and Rank-Dependent Utility both lead to the same evaluation for prospects,
and this is the reason why the PT model is considered a relative generalization of
the RDU model.
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Comparing Cardinal and Ordinal
Ranking in MCDM Methods

Mats Danielson and Love Ekenberg

1 Introduction

One of the problems with the additive model, and other MCDA models, is that
numerically precise information is seldom available, and most decision-makers
experience difficulties entering realistic information when analysing decision prob-
lems. For instance, Barron and Barrett (1996a) argue that the elicitation of exact
weights demands an exactness which does not exist. There are other problems, such
as that ratio weight procedures are difficult to accurately employ due to response
errors (Jia et al. 1998).

The utilization of ordinal or imprecise importance information to determine
criteria weights is a way of handling this problem, and some authors have
suggested surrogate weights, as representative numbers are assumed to represent
the most likely interpretation of the preferences expressed by a decision-maker
or a group of decision-makers. One such type is derived from ordinal importance
information (Barron and Barrett 1996a, b; Katsikopoulos and Fasolo 2006), where
decision-makers supply ordinal information on importance and the information
is subsequently converted into surrogate weights corresponding to the extracted
ordinal information. Often used methods are rank sum weights (RS), rank reciprocal
weights (RR) (Stillwell et al. 1981) and centroid weights (ROC) (Barron 1992).
For instance, Barron and Barrett (1996a) introduced a process utilizing systematic
simulations to validate the selection of criteria weights when generating surrogate
weights as well as true reference weights. The authors also investigated how well
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Fig. 1 The decision tool DecideIT

the result of using surrogate numbers matches the result of using the true numbers.
This is heavily dependent on the distribution used to generate the weight vectors,
however.

We earlier investigated various aspects of ordinal and cardinal weights in a couple
of articles and compared state-of-the-art weight methods, both ordinal (ranking
only) (Danielson and Ekenberg 2014; Danielson et al. 2014) and cardinal (with
the possibilities to express strength) (Danielson and Ekenberg 2014, 2016a, b),
in order to devise methods requiring as little cognitive load as possible. We also
used these together with ranked values (utilities) and suggested a multi-stakeholder
decision method that has been applied in, for example, the method of Chap. 3.
This method fulfils several desired robustness properties and is comparatively stable
under reasonable assumptions. Figure 1 shows the general multi-criteria multi-
stakeholder tool DecideIT, combined with the CAR method from Danielson and
Ekenberg (2016c) The values (utilities) of each alternative under each criterion
is assessed by experts in the respective fields. Each stakeholder group will then
order the criteria in terms of importance using cardinal ranking possibilities. The
final evaluation then sees a combination of the stakeholders’ assessments, either
directly or via a set of stakeholder weights for the purpose of sensitivity analyses.
The underlying method in all stages is the CAR method. An observation has been
the inability of the stakeholder groups to express cardinality (similar to white cards

http://doi.org/10.1007/978-3-030-89647-8_3
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in the Simos method), which spurred the investigation into even simpler means of
expressing importance for stakeholders.

In this article, we take steps towards decreasing the cognitive load even further
while still maintaining decision power and measure the effects of decreasing the load
in different ways. Not least in multi-stakeholder decision situations, where different
groups express different assessments (rank criteria and/or alternatives) differently,
there is a need to express these assessments with simple yet powerful expressions.
In that sense, this is a follow-up study to Danielson and Ekenberg (2016c) and other
results.

2 Surrogate Weight Methods

The crucial issue in all these methods is how to assign surrogate weights while
losing as little information as possible. Providing ordinal rankings of criteria
seems to avoid some of the difficulties associated with the elicitation of exact
numbers. It places fewer demands on decision-makers and is thus, in a sense, effort-
saving. Furthermore, there are techniques for handling ordinal rankings with various
degrees of success. A limitation of this is naturally that decision-makers usually
have more knowledge of the decision situation than a pure criteria ordering, often in
the sense that they have an idea regarding strengths within the importance relation
information. In such cases, the surrogate weights may be an unnecessarily weak
representation. Thus, we also investigate whether the methods can be extended to
accommodate information regarding relational strengths while still preserving the
property of being less demanding and hence more practically useful than other types
of methods.

One well-known class of method is the SMART family. These were quite early
suggested as methods for weight assessment from criteria rankings. The basic idea is
quite simple. The criteria are ranked and then 10 points are assigned to the weight of
the least important criterion (wN). Then, the remaining weights (wN-1 through w1)
are given points according to the decision-maker’s preferences. The overall value
E(aj) of alternative aj is then a weighted average of the values vij associated with aj

(Eq. 1):

E
(
aj
) =

∑N
i=1 wivij∑N
i=1 wi

(1)

The most utilized processes for converting ordinal input to cardinal use auto-
mated procedures and yield exact numeric weights. For instance, Edwards and
Barron (1994) proposed the SMARTER method for eliciting ordinal information
on importance before converting it to numbers, thus relaxing information input
demands on the decision-maker. An initial analysis is carried out where the weights
are ordered, such as w1 > w2 > ... > wN , and subsequently transformed to numerical



32 M. Danielson and L. Ekenberg

weights using ROC weights. SMARTER then continues in the same manner as the
ordinary SMART method.

Probably the most well-known ratio scoring method is the analytic hierarchy
process (AHP), where a set of alternatives is evaluated under a criteria tree
by pairwise comparisons. The process requires the same pairwise comparisons
regardless of scale type. For each criterion, the decision-maker should first find the
ordering of the alternatives from the best to the worst. Next, he or she should find the
strength of the ordering by considering pairwise ratios (pairwise relations) between
the alternatives using the integers 1, 3, 5, 7 and 9 to express their relative strengths,
indicating that one alternative is equally good to another (strength = 1) or three,
five, seven or nine times as good. It is also allowed to use the even integers, 2, 4, 6
and 8, as intermediate values, but using only odd integers is more common.

There are, however, some severe shortcomings of these methods, and we have
in a series of articles suggested a set of alternatives. A promising candidate is the
cardinal ranking (CAR) method: we have shown that it is more robust and efficient
than the ones from the SMART family, AHP and many others (Danielson and
Ekenberg 2014).

2.1 Strength of Weights

In order to make an ordinal ranking of N criteria into a stronger ranking, we add
information about how much more or less important the criteria are compared
to each other. Following Danielson and Ekenberg (2016c), we use the following
notation for the strength of the rankings between criteria, and a suggestion for an
intuitive verbal interpretation of these1:

>0 Equally important
>1 Slightly more important
>2 More important (clearly more important)
>3 Much more important

While being more cognitively demanding than ordinal weights, these are still less
demanding than, for example, AHP weight ratios or point scores. In an analogous
manner, as for ordinal rankings, decision-makers’ statements can be converted into
weights.

1 Of course, this is not intended to be totally normative. Any interpretation is possible and can be
formally handled in the same way.
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2.2 Preference Strength Methods

Analogous to the ordinal weight functions above, counterparts using the concept of
preference strength can be derived straightforwardly.

1. Assign an ordinal number to each importance scale position, starting with the
most important position as number 1.

2. Let the total number of importance scale positions be Q. Each criterion i has
the position p(i) ∈ {1, . . . ,Q} on this importance scale, such that for every two
adjacent criteria ci and ci + 1, whenever ci>si ci+1, si = | p(i + 1) – p(i) |. The
position p(i) then denotes the importance as stated by the decision-maker. Thus,
Q is equal to �si + 1, where i = 1, . . . ,N − 1 for N criteria.

The cardinal counterparts to the ordinal ranking methods above can then be found
by using the results from Danielson and Ekenberg (2016b), where the ordinal SR
weights are given by Eq. 2:

wSR
i =

1
/
i

+ N+1−i
N

∑N
j=1 w

SR
j

(2)

and using steps 1–3 above, the corresponding preference strength SR weights (CSR,
Eq. 3) are obtained as

wCSR
i =

1
/
p(i)

+ Q+1−p(i)
Q

∑N
j=1

(
1
/
p(j)

+ Q+1−p(j)
Q

) (3)

Using the idea of importance steps, ordinal weight methods are easily generalized
to their respective counterparts. In the same manner, values (or utilities) can
be assessed either ordinally (ranking only) or cardinally (additionally expressing
strength).

In Danielson and Ekenberg (2016c), we combined cardinal weights with cardinal
values in the CAR method and assessed the method by both simulations and a
large number of real-life decision cases. The CAR method was found to outperform
SMART and AHP in terms of performance and ease of use (cognitive load), but
some users still wanted a method with even less cognitive load, so we tried to satisfy
this while still preserving reasonable requirements of correctness.

The CAR method follows the three-step procedure presented below. Firstly, the
values of the alternatives under each criterion are elicited in a way similar to the
weights described above:

1A. For each criterion in turn, rank the alternatives from the worst to the best
outcome.
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1B. Enter the strength of the ordering. The strength indicates how strong the
separation is between two ordered alternatives. Similar to weights, the strength
is expressed in the notation with ‘>i’ symbols.

Secondly, the weights are elicited with a swing-like procedure in accordance with
the discussion above.

2A. For each criterion in turn, rank the importance of the criteria from the least to
the most important.

2B. Enter the strength of the ordering. The strength indicates how strong the
separation is between two ordered criteria. The strength is expressed in the
notation with ‘>i’ symbols.

Thirdly, the usual weighted overall value is calculated by multiplying the centroid
of the weight simplex with the centroid of the alternative value simplex.

The same description can be used to introduce the three candidate methods,
called C+O, O+C, and O+O depending on whether a cardinal or ordinal procedure
is used for the representation of weights and values respectively. In the original CAR
method, all the steps 1A, 1B, 2A, 2B and 3 were performed in that order. The steps
in the three candidate methods that we suggest are performed as follows: In O+C,
step 1B is omitted, resulting in the sequence 1A, 2A, 2B and 3 in order. In C+O,
step 2B is omitted instead, resulting in the sequence 1A, 1B, 2A and 3 in order.
Finally, in O+O, both steps 1B and 2B are omitted, resulting in the sequence 1A,
2A and 3 in order.

We will compare these CAR derivatives in the next section in search of a method
with less cognitive load but still performing better than SMART and AHP. This
is, to our knowledge, the first time ordinal and cardinal ranking methods (and
combinations thereof) have been compared systematically in this way.

3 Assessment of Models for Weights

We will utilize similar techniques to those in the simulation studies described above
to determine the adequacy of the methods suggested above. The assumption is that
all elicitation is made relative to a weight distribution held by the decision-maker.
The basic idea is that decision-makers’ mindset should be reflected by the random
generator for generating test vectors, but all such machinery is then dependent on
the underlying distribution of the random generator, which must be considered.

In the area of MCDM, a decision-maker can generally express preferences based
on scoring points, as in point allocation (PA) or direct rating (DR) methods. In PA,
the decision-maker is given a point sum (e.g. 100) to distribute among the criteria.
In PA, this normalization implies N–1 degrees of freedom (DoF) for N criteria.
DR puts no such limit on the number of points to be allocated and the decision-
maker allocates as many points as desired to each criterion. Thereafter, the points
are normalized, implying N degrees of freedom for N criteria.
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In the simulations below, it is important to realize which background model we
are using. When following an N–1 DoF model, a vector is generated in which
the components total 100%. This simulation is based on a homogenous N-variate
Dirichlet distribution generator. On the other hand, following an N DoF model, a
vector is generated without an initial joint restriction, only keeping components
within [0%, 100%], yielding a process with N degrees of freedom. Subsequently,
they are normalized so that their sum is 100%.

We will call the N–1 DoF model type of generator an N–1 generator and the
N DoF model type an N generator. Depending on the simulation model used
(and, consequently, the background assumption of how decision-makers assess
weights), the results become different. In reality, we cannot know whether a specific
decision-maker (or even decision-makers in general) adhere more to N–1 or N
DoF representations of their knowledge. Both as individuals and as a group, they
might use either or be anywhere in between. A reasonably robust MCDM method
must therefore perform well at both endpoints of the representation spectrum and
anything in between. Thus, the evaluation of MCDM methods in this paper will
use a combination of both types of generator to find the most efficient and robust
method.

3.1 Comparing Six MCDA Methods

We will compare the three methods, SMART, AHP and CAR, which were compared
in Danielson and Ekenberg (2016c), together with three new candidate methods
(O+C, C+O, and O+O)—i.e. the scaled-down versions of CAR, as described
above—to look for methods that are cognitively less demanding while still yielding
powerful results. Remember that the CAR method consists of cardinally ranking
weights and cardinally ranking values.2 The three candidate methods are com-
posed as follows: O+C and O+O use ordinal SR weights while C+O and CAR
use cardinal CSR weights. Furthermore, CAR and O+C use cardinally ranked
values while C+O and O+O use a pure ordinal ranking of the values (such as
v12 > v14 > v11 > . . . ).

3.2 Measurements

The simulations were carried out with a varying number of criteria and alternatives.
There were four criteria numbers N = {3, 6, 9, 12} and four alternatives numbers
M = {3, 6, 9, 12} in the simulation study, creating a total of 16 simulation scenarios.

2 In the terminology of this paper, this could have been called C + C, but we retain the name by
which it is more widely known.
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Table 1 The winner
frequency for the methods
using an N-1 generator

N-1 DoF SMART AHP CAR O+C C+O O+O

3 | 3 87.9 85.2 92.4 88.5 85.6 82.7
3 | 12 71.1 82.7 85.7 77.9 74.9 70.6
6 | 6 81.2 80.2 88.2 82.5 75.9 73.3
6 | 12 73.8 81.3 85.2 78.6 73.7 70.2
9 | 9 78.4 80.9 84.7 81.0 73.3 71.4
12 | 3 86.0 77.0 88.8 88.1 82.0 81.5
12 | 12 77.3 81.5 81.9 80.1 71.8 71.0

In this and the following tables, the leftmost column contains
the notation N | M, denoting a decision situation having N
criteria and M alternatives

Each scenario was run ten times, each time with 10,000 trials, a total of 1,600,000
decision situations thus being generated. An N-variate joint Dirichlet distribution
was employed to generate the random weight vectors for the N–1 DoF simulations
as well as a standard normalized random weight generator (see Danielson and
Ekenberg 2016c for details). Unscaled value vectors were generated uniformly since
no significant differences were observed with other value distributions. The value
vectors were then used for multiplying with the obtained weights in order to form
weighted values to be compared.

The results of the simulations are shown in Table 1, which shows a subset of the
results with a selection of pairs (N,M). The measure of success is the hit ratio—
i.e. the number of times the highest evaluated alternative using a particular method
coincides with the true highest alternative. The table thus shows the hit frequency
for the three MCDA methods SMART,3 AHP4 and CAR, together with the three
candidates.

It is clear from Table 1 that among the established methods, CAR outperforms
the other methods. While CAR averages 87%, the other two well-known methods
perform at around 80–81%. For example, in Table 1, CAR displays better overall
ranking compared to the other methods. We know from Danielson and Ekenberg
(2016c) that the other two well-known methods fare about equally, SMART being
somewhat stronger when fewer alternatives are involved and AHP being somewhat
stronger when more alternatives are involved. This is not surprising, since a very
large amount of information is requested for AHP’s pairwise comparisons when the
number of criteria and alternatives increases. The gap up to CAR for both of the
other methods is substantial considering the relatively high hit rate level that the
methods operate at. In Table 1, using an N–1 generator, this can be seen where the
candidate methods fare both better and worse than the established ones.

3 SMART is represented by the improved SMARTER version by Edwards and Barron (1994).
4 AHP weights were derived by forming quotients wi/wj and rounding to the nearest odd integer.
Also allowing even integers in between yielded no significantly better results.
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Table 2 The winner
frequency for the methods
using an N generator

N DoF SMART AHP CAR O+C C+O O+O

3 | 3 87.6 82.7 91.4 88.3 83.0 80.9
3 | 12 73.2 82.3 85.8 80.9 74.3 72.0
6 | 6 81.6 79.0 87.8 84.6 75.5 73.8
6 | 12 75.2 80.7 85.9 81.2 73.7 71.4
9 | 9 79.4 79.4 85.5 82.1 73.7 72.3
12 | 3 85.3 75.6 89.7 88.6 82.2 81.6
12 | 12 77.9 80.4 83.4 81.0 72.4 71.6

Table 3 The winner
frequency for the methods
using a combined generator

Combined SMART AHP CAR O+C C+O O+O

3 | 3 87.8 84.0 91.9 88.4 84.3 81.8
3 | 12 72.2 82.5 85.8 79.4 74.6 71.3
6 | 6 81.4 79.6 88.0 83.6 75.7 73.6
6 | 12 74.5 81.0 85.6 79.9 73.7 70.8
9 | 9 78.9 80.2 85.1 81.6 73.5 71.9
12 | 3 85.7 76.3 89.3 88.4 82.1 81.6
12 | 12 77.6 81.0 82.7 80.6 72.1 71.3

Table 4 Mean overall
measurements

Total SMART AHP CAR O+C C+O O+O

Mean 79.7 80.6 86.9 83.1 76.6 74.6
Rank 4 3 1 2 5 6

The frequencies change somewhat in Table 2 since we employ a model with N
degrees of freedom instead. Still, methods with some cardinality perform better than
the pure ordinal one.

In Table 3, the N and N–1 DoF models are combined with an equal emphasis
on both. The established methods yield results as expected. An interesting pattern
emerges between the candidate methods. The method O+C that kept cardinality in
the values perform rather well, while C+O and O+O, that only used ordinal values,
perform worse than SMART and AHP regardless of using cardinal weights or not.

Table 4 shows the average of the respective columns of Table 3.
It is important that an MCDM method not only has good precision: it also needs

to be robust in the sense that it performs well regardless of whether the decision-
maker uses a cognitive model where the representation has N or N–1 DoF, or any
combination thereof. Table 5 shows the spread in results between the N and N–1
DoF simulations, while Table 6 shows the standard deviation of these differences.
These tables show that all methods are reasonably robust, the mixed cardinal/ordinal
ones being a little bit less so.

We consider precision and robustness to be of equal importance to a good
method. The final score for the MCDM methods—both the established ones and the
candidates—are therefore computed as Final score = Mean result – Spread, thus
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Table 5 Spread over
different DoF

Spread SMART AHP CAR O+C C+O O+O

3 | 3 0.3 2.5 1.0 0.2 2.6 1.8
3 | 12 2.1 0.4 0.1 3.0 0.6 1.4
6 | 6 0.4 1.2 0.4 2.1 0.4 0.5
6 | 12 1.4 0.6 0.7 2.6 0.0 1.2
9 | 9 1.0 1.5 0.8 1.1 0.4 0.9
12 | 3 0.7 1.4 0.9 0.5 0.2 0.1
12 | 12 0.6 1.1 1.5 0.9 0.6 0.6

Table 6 Standard deviation
of spread

Spread SMART AHP CAR O+C C+O O+O

St. Dev. 0.6 0.7 0.4 1.1 0.9 0.6
Rank 3 4 1 6 5 2

Table 7 Final scores Final scores SMART AHP CAR O+C C+O O+O

Total 79.1 80.0 86.4 82.0 75.7 74.0
Rank 4 3 1 2 5 6

taking both precision and robustness into account.5 Table 7 shows the final scores
of the comparisons.

Since the CAR method performed the best in both precision and robustness,
it heads the final score table, as expected. The interesting observations are made
among the other candidates. One of the candidates, O + C, performs better than all
other methods except CAR. It puts a considerably less demanding cognitive load
on the decision-maker by requiring only cardinality in the values, not preference
weights, making it a very attractive alternative even to the original (fully cardinal)
CAR. Its efficiency is due to the performance of the ordinal SR weights (Eq. 3)
originally developed in Danielson and Ekenberg (2014).

4 Concluding Remarks

Elicitation methods available today in MCDM are often too cognitively demanding
for normal real-life decision-makers and there is a clear need for weighting methods
that do not require formal decision analysis knowledge. We have investigated several
methods, including state-of-the-art approaches for asserting surrogate weights with
the possibility of supplying information regarding preference strength and of
assigning values to consequences by ranking them. It is known from Danielson and
Ekenberg (2014) that the CAR method outperforms both SMART and AHP, but
all these are still considered to be difficult for some decision-makers. In the search

5 The final score is, of course, not a percentage in the sense of Table 4, but rather a score of
suitability taking both performance and robustness into account.
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for a method with even less cognitive demand than CAR, three candidates were
put forward. One stood the test, performing better than the benchmark methods
SMART and AHP. This new method is similar to CAR in assessing values, but uses
only ordinal ranking of the preference weights. The choice between cardinal and
ordinal ranking in the weights has an impact on efficiency, but much less than the
values. The focus on cardinally ranking weights is misplaced: it should be on values
instead. This, of course, has implications for other cardinal ranking methods, such
as Macbeth.

The candidate method that kept cardinality in the values performed well, while
those that only used ordinal values performed worse than SMART and AHP
regardless of using cardinal weights or not. This can intuitively be explained by the
much greater freedom present in assigning values compared to weights, the latter
being restricted by the normalization constraint and required to fall on a hyperplane
with a dimension one less than the number of criteria. However, intuition alone is
not a good guide to designing MCDA methods, which is why we undertook the
work presented in this paper. In summary, keeping cardinal ranking in the values is
a very important property of an MCDM method since using only ordinal ranking
in the values instead yields methods inferior even to SMART and AHP. The choice
between cardinal and ordinal ranking in the weights has an impact on efficiency and
robustness, but much less than the values.
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Evaluating Multi-criteria Decisions
Under Conditions of Strong Uncertainty

Mats Danielson, Love Ekenberg, and Aron Larsson

1 Introduction

A variety of approaches have been suggested over the years for the evalua-
tion of decision problems. An important category is multi-attribute utility the-
ory (MAUT), where there are several extensively used implementations such as
SMART, EXPERT CHOICE and CAR, and various varieties thereof (Danielson
and Ekenberg 2016a, 2016b). In general, albeit far from always, these assume that
the decision-maker can provide numerically precise decision information; in many
cases, this is considered to be unrealistic in real-life decision-making, and is the
reason that different interval approaches have been suggested to extend the various
decision models for both multi-criteria and risk-based decision-making, such as
the PRIME tool, handling multiple criteria while supporting interval-valued ratio
estimates for value differences. Another approach is the preference programming
method, which is an interval extension of the classical analytical hierarchy process
(AHP) method (Salo and Hämäläinen, 2001) and is related to the RICH method.
There are also other approaches, such as ARIADNE (Sage and White, 1984). There
is a further multitude of fuzzy measurement variants of MAUT techniques. A main
issue with the above approaches is that they provide very little assistance when the
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results overlap, as is usually the case in real-life decision problems. This issue will
be addressed in the paper.

In the research community, there have been many suggestions as to how to handle
the very strong requirements for decision-makers to provide precise information.
Some main categories of approaches to remedy the precision problem are based
on capacities, sets of probability measures, upper and lower probabilities, interval
probabilities (and sometimes utilities), evidence and possibility theories, as well
as fuzzy measures (see, for example, Dubois, 2010; Rohmer and Baudrit, 2010;
Shapiro and Koissi, 2015; Dutta, 2018). The latter category seems to be used
only to a limited extent in real-life decision analyses since it usually requires a
significant mathematical background on the part of the decision-maker. Another
reason is that the computational complexity can be problematic if the fuzzy
aggregation mechanisms are not significantly simplified. This is further discussed
in, for example, Danielson (2004) and Danielson and Ekenberg (2007).

In this article, we therefore suggest a method and software for integrated multi-
attribute evaluation under risk, subject to incomplete or imperfect information.
The software originates from our earlier work on evaluating decision situations
using imprecise utilities, probabilities and weights, as well as qualitative esti-
mates between these components derived from convex sets of weight, utility and
probability measures. To avoid some aggregation problems when handling set
membership functions and similar, we introduce higher-order distributions for better
discrimination between the possible outcomes. For the decision structure, we use
the common tree formalism but refrain from using precise numbers. To alleviate
the problem of overlapping results, we suggest a new evaluation method based on
a resulting belief mass over the output intervals, but without trying to introduce
further complicating aspects into the decision situation.

In the next section, we briefly describe how risk and multi-criteria trees can be
co-modelled trees in an integrated framework. Thereafter, we provide the conceptual
model for our method and explain both the input data format and the evaluations,
and how it relates to the modelling of beliefs. We finish with a real-life example.

2 Probabilistic Approaches

Probabilistic decision situations are often represented by a decision tree such as in
Fig. 1.

Such a tree consists of a root node, also called a decision node, and a set
of probability nodes, representing uncertainty and consequence nodes for the
final outcomes. In general, the probability nodes are assigned unique probability
distributions representing the uncertainties in the decision situation. When an
alternative Ai is chosen, there is a probability pij that an event will occur that leads
either to a subsequent event or a consequence. The consequences are assigned values
vijk. The maximization of the expected value is often used as an evaluation rule. The
expected value of alternative Ai in Fig. 1 is:
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Fig. 1 A partial tree representation of the events for one alternative (Alt.1) in a decision under
risk. [The three red dots are binary events]

E (Ai) =
2∑

j=1

pij

2∑

k=1

pijkvijk.

This is straightforwardly generalized to decision trees of arbitrary depth.

3 Multi-criteria Decision Trees

Multi-criteria decisions in the MAUT category are characterized by there being
several criteria, often on different levels in a hierarchy, as in Fig. 2, where the
alternatives are valued and the decision-maker assigns values to the alternatives
relative to a value scale.

Normalized weights are assigned to each sub-branch in the tree and the alterna-
tives are valued under the respective sub-criteria. A maximization of the weighted
value is often used for the evaluations. In Fig. 2, the value of alternative Ai under
criterion jk is vijk, while the weight of criterion jk is wjk. Thereafter, the total value
of alternative Ai can be calculated using

E (Ai) =
2∑

j=1

wj

2∑

k=1

wjkvijk.

The alternative with the maximum expected value is then the preferred choice.
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Fig. 2 A multi-criteria decision tree

4 Probabilistic Multi-criteria Hierarchies

Combining these formalisms is straightforward by calculating the value of the
alternatives as expected values derived from decision trees—i.e. the valuation of the
consequences can be included in the overall multi-criteria tree evaluation. Figure 3
demonstrates how this is done, where the alternatives’ values under the weight w11

are derived from the entire underlying probabilistic decision tree.
The expected value of the tree is then calculated by

E (Ai) =
2∑

j=1

(
wj ·

2∑

k=1

(
wjk ·

2∑

m=1

(
pim ·

2∑

n=1

pimnvimn

)))

or, more generally, by

E (Ai) =
ni0∑

i1=1

wii1

ni1∑

i2=1

wii1i2 · · ·
nim−2∑

im−1=1

pii1i2 . . .im−2im−1

nim−1∑

im=1

pii1i2 . . .im−2im−1imvii1i2 . . .im−2im−1im,

where p denotes a probability, w denotes a weight and v denotes a value.
We will formalize this in the next sections and explain how imprecision can be

modelled in a combined structure.
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Fig. 3 Combined multi-criteria and probabilistic representations

5 Strong Uncertainty

In the type of multi-criteria decision problems we consider, we hold that strong
uncertainty exists if the decision is also made under risk, with uncertain conse-
quences for at least one criterion, in combination with imprecise or incomplete
information with respect to probabilities, weights and consequences or alternative
values. Decision evaluation under strong uncertainty and computational means for
evaluating these models should both be capable of embracing the uncertainty in the
evaluation rules and methods and provide evaluation results reflecting the effects of
uncertainty for the subsequent discrimination between alternatives.

We will call our representation of a combined decision problem a multi-frame.
Such a frame collects all information necessary for the model in one structure. One
part of this is the concept of a graph.

Definition A graph is a structure 〈V,E〉 where V is a set of nodes and E is a set of
node pairs. A tree is a connected graph without cycles. A rooted tree is a tree with
a dedicated node as a root. The root is at level 0. The adjacent nodes, except for the
nodes at level i-1, to a node at level i is at level i + 1. A node at level i is a leaf if it
has no adjacent nodes at level i + 1. A node at level i + 1 that is adjacent to a node
at level i is a child of the latter. A (sub-)tree is symmetrical if all nodes at level i
have the same number of adjacent nodes at level i + 1. The depth of the tree is max
(n | there exists a node at level n).
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Definition A criteria-consequence tree T = 〈C∪A∪N∪{r},E〉 is a tree where

r is the root,
A is the set of nodes at level 1,
C is the set of leaves, and.
N is the set of intermediary nodes in the tree except those in A.

In a multi-frame, represented as a multi-tree, user statements can either be
range constraints or comparative statements (see below); they are translated into
inequalities and collected together in a value constraint set. For probability and
weight statements, the same is done into a node constraint set. We denote the values
of the consequences ci and cj by vi and vj respectively. Value statements are relations
between value variables, and they are translated into systems of inequalities in a
value constraint set. Probability statements are in the same manner collected in a
node constraint set. A constraint set is said to be consistent if it can be assigned
at least one real number to each variable so that all inequalities are simultaneously
satisfied. Consequently, we get potential sets of functions with an infinite number of
instantiations.

Definition Given a criteria-consequence tree T, let N be a constraint set in the
variables {n . . . i . . . j . . . }. Substitute the intermediary node labels x . . . i . . . j . . . with
n . . . i . . . j . . . . N is a node constraint set for T if, for all sets {n . . . i1, . . . ,n . . . im} of
all sub-nodes of nodes n . . . i that are not leaves, the statements n . . . ij ∈ [0,1] and∑

j n . . . ij = 1, j∈[1, . . . ,m] are in N.
A probability node constraint set relative to a criteria-consequence tree then

characterizes a set of discrete probability distributions. Weight and value constraint
sets are analogously defined. Weight and probability node constraint sets also
contain the usual normalization constraints (

∑
j xij = 1) requiring the probabilities

and weights to total one.

Definition A multi-frame is a structure 〈T,N〉, where T is a criteria-consequence
tree and N is a set of all constraint sets relative to T.

The probability, value and weight constraint sets thus consist of linear inequali-
ties. A minimal requirement is that it is consistent—i.e. there must exist some vector
of variable assignments that simultaneously satisfies each inequality in the system.

Definition Given a consistent constraint set X in the variables {xi}, Xmax(xi) = def
sup(a � {xi > a} ∪ X is consistent. Similarly, Xmin(xi) = def inf(a � {xi < a} ∪ X is
consistent. Furthermore, given a function f, Xargmax(f(x)) is a solution vector that
is a solution to Xmax(f(x)), and Xargmin(f(x)) is a solution vector that is a solution
to Xmin(f(x)).

The set of orthogonal projections of the solution set is the orthogonal hull,
consisting of all consistent variable assignments for each variable in a constraint
set.

Definition Given a consistent constraint set X in {xi}i∈[1, . . . n], the set of pairs
〈 Xmin(xi), Xmax(xi)〉 is the orthogonal hull of the set.
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The orthogonal hull is the upper and lower probabilities (weights, values) if
X consists of probabilities (weights, values). The hull intervals are calculated by
first finding a consistent point. Thereafter, the minimum and maximum of each
variable are found by solving linear programming problems. Because of convexity,
the intervals between the extremal points are feasible—i.e. the entire orthogonal hull
has been determined.

6 Beliefs in Intervals

We will now extend the representation to obtain a more granulated representation of
a decision problem. Often when we specify an interval, we probably do not believe
in all values in the intervals equally: we may, for example, believe less in the values
closer to the borders of the intervals. Additional values are nevertheless added to
cover everything that we perceive as possible in uncertain situations. These additions
give rise to belief distributions indicating the different strengths with which we
believe in the different values. Distributions over classes of weight, probability
and value measures have been developed into various models, such as second-order
probability theory.

In the extended model, we introduce a focal point to each of the intervals
used as parameters for belief distributions for probabilities, values and criteria
weights. We can then operate on these distributions using additive and multiplicative
combination rules for random variables. The detailed theory of belief distributions
in this sense is described in Ekenberg and Thorbiörnson (2001), Danielson et al.
(2007, 2014) and Sundgren et al. (2009).

To make the method more concrete, we introduce the unit cube as all tuples
(x1, . . . , xn) in [0,1]n. A second-order distribution over a unit cube B is a positive
distribution F defined on B such that

∫

B

F(x) dV B(x) = 1,

where VB is the n-dimensional Lebesgue measure on B.
We will use second-order joint probability distributions as measures of beliefs.

Different distributions are utilized for weights, probabilities and values because of
the normalization constraints for probabilities and weights. Natural candidates are
then the Dirichlet distribution for weights and probabilities and two- or three-point
distributions for values. In brief, the Dirichlet distribution is a parameterized family
of continuous multivariate probability distributions. It has a probability density
function given by a function of those parameters, such that α1,...,αk > 0 depends
on a beta function and the product of the parameters xi.

More precisely, the probability density function of the Dirichlet distribution is
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fdir (p, α) =
�
(∑k

i=1αi

)

∏k
i=1 � (αi)

p1
αi−1p2

α2−1 . . . pk
αk−1

on a set {p = (p1, . . . pk) | p1, . . . ,pk ≥ 0, �pi = 1} where (α1, . . . , αk) is a parameter
vector in which each αi > 0 and �(αi) is the Gamma function.1

The Dirichlet distribution is a multivariate generalization of the beta distribution
and the marginal distributions of Dirichlet are thus beta distributions. The beta
distribution is a family of continuous probability distributions defined on [0, 1] and
parameterized by two parameters, α and β, defining the shape of the distribution.

If the distribution is uniform, the resulting marginal distribution (over an
orthogonal axis) is a polynomial of degree n − 2, where n is the dimension of a
cube B. Let all αi = 1, then the Dirichlet distribution is uniform with the marginal
distribution2

f (xi) =
∫

B−
i

dV B−
i
(x) = (n − 1) (1 − xi)

n−2

However, we need a bounded Dirichlet distribution operating on a user-specified
[ai, bi] range instead of the general interval [0,1]. Bounded beta distributions are
then derived—the so-called four-parameter beta distributions, also defined only on
the user-specified range. We then define a probability or weight belief distribution as
a three-point bounded Dirichlet distribution f3(ai, ci, bi) where ci is the most likely
probability or weight and ai and bi are the boundaries of the belief with ai < ci < bi

(Kotz and van Dorp, 2004).
For values, the generalization to a trapezoid from a triangle is analogous. We

will utilize either a two-point distribution (uniform, trapezoidal) or a three-point
distribution (triangular). When there is large uncertainty regarding the underlying
belief distribution in values and we have no reason to make any more specific
assumptions, a two-point distribution modelling upper and lower bounds (the
uniform or trapezoid distributions) is preferred. On the other hand, when the modal
outcome can be estimated, the beliefs are more congenially represented by three-
point distributions. Because triangular distributions are less centre-weighted than
other three-point distributions, the risk of underestimation is less, which is why
there are no particular reasons to use any other distribution for real-life decision
purposes.

1 The details of this are provided in any standard textbook in Bayesian statistics, such as Kendall
and Stuart (1969).
2 For a more elaborated treatment of these properties and the suitability for representing second-
order properties, see, for example, Ekenberg and Thorbiörnson (2001) and Ekenberg et al. (2005).
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7 Evaluation Steps

We will use a generalization of the ordinary expected value for the evaluation—i.e.
the resulting distribution over the generalized expected utility is

E (Ai) =
ni0∑

i1=1

wii1

ni1∑

i2=1

wii1i2 · · ·
nim−2∑

im−1=1

pii1 i2 . . .im−2 im−1

nim−1∑

im=1

pii1i2 . . .im−2im−1imvii1i2 . . .im−2im−1im1,

given the distributions over random variables p and v. There are only two operations
of relevance here, multiplication and addition.

Let G be a distribution over the two cubes A and B. Assume that G has a positive
support on the feasible distributions at level i in a general decision tree, as well as
on the feasible probability distributions of the children of a node xij and assume
that f (x) and g(y) are the marginal distributions of G(z) on A and B, respectively.
Then the cumulative multiplied distribution of the two belief distributions is H (z) =∫∫

�x

f (x)g(y)dxdy = ∫ 1
0

∫ z/x

0 f (x)g(y)dxdy = ∫ 1
z
f (x)G (z/x) dxwhere G is a

primitive function to g, �z = {(x,y) | x·y ≤ z}, and 0 ≤ z ≤ 1.
Let h(z) be the corresponding density function. Then

h (z) = d

dz

∫ 1

z

f (x)G (z/x) dx =
∫ 1

z

f
f (x)g (z/x)

x
dx.

The addition of the products is the standard convolution of two densities
restricted to the cubes. The distribution h on a sum z = x + y associated with the
belief distributions f (x) and g(y) is therefore given by

h (z) = d

dz

∫ z

0
f (x)g (z − x) dx.

Then we can obtain the combined distribution over the generalized expected
utility.

As in most of risk and decision theory, we assume that a large number of events
will occur and a large number of decisions will be made. In business administration,
this is called the principle of going concern. In such an operating environment, the
expected value becomes a reasonable decision rule and, at the same time, the belief
distributions over the expected values tend to normal distributions or similar. But the
resulting distributions will be normal only when the original distributions are sym-
metrical, which of course is not usually the case for beta and triangular distributions.
The result then will instead be skew-normal. Thus, we use a truncated skew-normal
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distribution, generalizing the normal distribution by allowing for non-zero skewness
and truncated tails. We can then conveniently represent truncated (skew-)normal
distributions as probability distributions of (skew-)normally distributed random
variables that are bounded. Assume that a distribution X has a normal distribution
within the interval (a, b). Then X, a < X < b, has a truncated normal distribution and
its probability density function is given by a four-parameter expression that tends to
normality as the intervals are widened (see, for instance, Loeve, 1977).

8 Real-Life Decision Example

In the following, we will illustrate the approach with an example derived from a real-
life decision problem. The example is modelled and evaluated using the DecideIT3

tool version 3.0, which, among other features, implements the above approach to
handling strong uncertainty. Consider a pulp mill company that wishes to evaluate
whether to rebuild or possibly exchange its recovery boiler.4 The decision problem
is viewed as two sequential decisions. The first decision is to what extent the boiler
will be enhanced, and three different alternatives are considered: (1) do nothing; (2)
rebuild boiler in order to secure deliveries; and (3) replace existing recovery boiler.

The second decision concerns what to do with the power turbine exploiting the
pressure from the boiler in order to produce electricity (since a new boiler can allow
for more powerful turbines). Furthermore, the existing turbine would need to be
revised within one year were it not replaced. For this sub-decision, four alternatives
were evaluated: (1) revise and use the existing turbine; (2) replace with a smaller
70 kg/s turbine; (3) replace with a bigger 80 kg/s turbine; and (4) replace with a
100 kg/s turbine (which is only feasible with a new boiler).

The alternatives are evaluated based on the following set of criteria:

Cr. 1. Discounted cash flow with weight variable w1. Assessed on a monetary scale.
Cr. 2. Initial cash drain with weight variable w2. Assessed on a value scale [−10, 0].
Cr. 3. Internal environment with weight variable w3. Assessed using comparisons.
Cr. 4. External environment with weight variable w4. Assessed using comparisons.
Cr. 5. Delivery dependability with weight variable w5. Assessed using comparisons.
Cr. 6. Room for a production increase with weight variable w6. Assessed on a value

scale [0, 10].

3 DecideIT is supplied by www.preference.nu
4 The boiler is the part of a pulp mill where chemicals left from the cooking of wood are recovered
and reformed. This generates heat, which is used both in the process and to produce electricity.

http://www.preference.nu
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Fig. 4 The criteria tree in DecideIT

The criteria weights were provided as comparisons:

w1 − w2 = 0
w2 − w5 > 0
w5 − w6 = 0
w6 − w4 > 0
w4 − w5 = 0

This constraint set essentially says that Cr. 1 and Cr. 2 are most and equally
important, followed by Cr. 5 and Cr. 6, which are of equal importance and, in turn,
more important than Cr. 3 and Cr. 4, also being of equal importance. The resulting
orthogonal weight hull for each criterion is shown within brackets in Fig. 4. Cr. 1 is
connected to a decision tree shown in Fig. 5 according to the approach in Larsson et
al. (2005).

Cr. 1 was assessed through discounted cash flow analysis (EBITA), using a risk-
free discount rate with a ten-year time frame, providing a net present value for each
consequence node C1 to C17 in Fig. 5, where interval values for each consequence
within brackets are shown in kSEK. The cash flows were based upon unit margins of
paper production and power production, together with annual estimated production.
Since the estimates were uncertain, interval statements were used. This way of
modelling risk in discounted cash flow analysis can be labelled risk-adjusted net
present value since the risk is modelled by means of probabilities for different
consequences, each associated with a net present value, as opposed to incorporating
risk in the discount rate (see Aven, 2011).

For the first boiler alternative, keeping the boiler, there was an initial sub-decision
regarding a choice between a new 70 kg/s turbine, a new 80 kg/s turbine, or keeping
the existing turbine but with more frequent revisions. The chance nodes in the
tree reflect whether or not the old turbine will break down during its final year
of operation. The probability of the existing turbine breaking down while awaiting
a new turbine was assessed to lie within the interval [2%, 10%]. For the second
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Fig. 5 Decision tree for the discounted cash flow criterion

alternative, the action of rebuilding the boiler can either be done to secure the
deliveries only or to additionally enable increased power production by utilizing
a more powerful turbine.

For the third alternative, acquiring a new recovery boiler together with a new
100 kg/s turbine, the existing turbine needed to be in use for two years instead of
only one year due to increased planning and installation time. This resulted in the
breakdown probability of the old turbine being estimated to be higher compared
to the other two boiler alternatives, at [10%, 20%], which is the probability for
consequence C16 in Fig. 5. The discounted cash flow analysis strongly supports the
alternative of enabling increased power production if rebuilding the boiler (Table 1).



Evaluating Multi-criteria Decisions Under Conditions of Strong Uncertainty 53

Table 1 Alternative values or rankings per criterion. Interval values within brackets

A1: Do nothing A2: Rebuild boiler A3: New boiler

Discounted cash flowa [6.28×106, 6.41×106] [6.25×106, 6.36×106] [6.48×106, 6.60×106]
Initial cash drain 0 [−6, −5] −10
Internal environment A1 > A2 and A1 > A3

External environment A3 > A2 and A2 > A1

Deliveries A3 > A2 and A2 > A1

Production increase 0 [5, 7] 10
aExpected value interval

Fig. 6 Main decision
evaluation result

For the above multi-criteria decision problem modelled in DecideIT, a main
decision evaluation window is shown in Fig. 6, consisting of bar charts of stacked
centroid part-worth values for the criteria for each alternative. The part-worth value
ϕil for alternative Ai under criterion l is simply given by ϕil = cwl·cvil, where
cwl and cvil are the centroid weights for criterion l and the centroid alternative
value for alternative Ai under criterion l. The height of each bar is then the sum
ϕi1 + ϕi2 + . . . + ϕin, where n is the number of direct sub-criteria.

In addition, the results of an embedded a priori sensitivity analysis are presented
in the main evaluation window in a table of pairwise comparisons between all three
alternatives, done according to the approach above, enabling investigation of the
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belief support for the given ranking of Alt. 3 being the most preferred alternative,
followed by Alt. 1. In this way, the evaluation windows provide an informative
decision evaluation in the presence of strong uncertainty. The main outcome is
the resulting belief distribution of the combined input belief distributions over the
expression E(Alt. 3) – E(Alt. 1) and the support where this expression is positive is
89%. It would thus be unreasonable to select Alt. 3 over Alt. 1.

9 Concluding Remarks

In classic decision theory, a decision-maker is expected to assign precise numerical
values to the different decision components such as weights, probabilities and
values. However, in real-life problems, this requirement is too strong in many
situations and some kind of representation and evaluation mechanism is important.
Many candidates have been suggested, such as sets of probability measures, upper
and lower probabilities, as well as interval weights, probabilities and utilities
enabling a more realistic representation of the input sentences. In these contexts,
higher-order analyses can add information, enabling further discrimination between
alternatives. Decision trees can still be utilized to represent the decision structure,
where the various estimates can be done by intervals and qualitative assessments.
However, much is accomplished by enhancing this with an evaluation method
based on a belief mass interpretation of the various data. We have discussed
here how multi-criteria and probabilistic trees can be viewed in an integrated
framework and the effects of employing second-order information in decision trees.
We have also demonstrated an implementation of the theory on a real-life decision
problem and how the multiplicative and additive effects strongly influence the
resulting distribution over the expected values. The result is a method that can offer
considerably more discriminative power when selecting alternative options.
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A Framework for Building Multicriteria
Decision Models with Regard
to Reliability, Risk, and Maintenance

Adiel Teixeira de Almeida and Lucia Reis Peixoto Roselli

1 Introduction

Many multicriteria decision-making/aiding (MCDM/A) problems are to be found in
organizations. The solutions found for these problems can produce different impacts
on the organization’s strategies.

Therefore, in order to support DM’s evaluation of MCDM/A problems,
MCDM/A building models were developed with a view to their being guides
that offers solutions.

The main focus of this chapter is to present and discuss some issues that are
raised by using MCDM/A building models, including some that deal with some
problems in the RRM (risk, reliability, and maintenance) context.

2 Building Multicriteria Decision Models

An MCDM/A building model offers a formal and simplified representation of an
MCDM/A problem. It consists of structured steps to represent the problem in line
with the DM’s preferences during the decision-making process. According to Box
and Draper (1987) all models are wrong since they are simplifications of the “real
world”, but some models are useful as they make it possible to describe, study, and
analyze problem situations. The key is to evaluate how wrong a model can be, i.e.,
to identify the point after which it is no longer useful.
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One of the first MCDM/A building models was developed by Simon in 1960.
This model proposed three steps to solve problems. The first one was the intelligence
step, which is related to identifying future conflict situations in an organization. The
second was the design step, which was about constructing the model by formalizing
important aspects presented in the problem. Finally, the last step was the choice step,
which sought to indicate the solution to the problem.

Moreover, two further steps can be integrated into this model, namely the review
step, which is used to review the definitions made in the previous step and the
implementation of the solution step (Polmerol and Barba-Romero 2000).

Currently, there are many MCDM/A building models in the literature, such as
Roy (1996), Polmerol and Barba-Romero (2000), Belton and Stewart (2002), and
de Almeida et al. (2015).

In Belton and Stewart (2002) the building model developed had five steps. The
first was about identifying the problem, which is equivalent to the intelligence step in
the Simon model. The second and third steps dealt with structuring the problem and
constructing the decision model; these steps are equivalent to the design step in the
Simon model. The fourth and five steps made a recommendation and implemented
it.

In de Almeida et al. (2015), their decision model had twelve steps, which are
aggregated into three major phases. The initial phase is the preliminary phase,
during which problems are structured. The next phase is preference modeling, which
is about choosing an adequate MCDM/A method that will be used to solve the
problem. Lastly, the finalization phase is used for review and to implement the
solution.

Based on these models, it can be seen that they present structured steps to
formally represent the problem based on a DM’s preferences expressed during the
process. According to Guitouni and Martel (1998), no building model will ever be
perfected to characterize all decision-making problems. Thus, for each problem a
decision model should be constructed to consider the DM’s preferences.

It is while the model is being built that the MCDM/A method that would be the
most appropriate for solving the MCDM/A problem is indicated. Therefore, these
methods deal with real problems, which formalize the problem by following some
well-structured steps with a view to producing a solution that can be applied to solve
this problem.

In this context, according to Keisler and Noonan (2012), problems are present
in the “real world” and are transferred to the “model world”. In the “model world”,
these problems are structured, processed, and the solution found. Then, this solution
is returned to the “real world” to be implemented.

Moreover, the models constructed are particular for each specific MCDM/A
problem. In other words, for each preference expressed by the DM in the steps, the
model is shaped for the specific problem. As illustrated in Fig. 1, at the beginning
of the process, there are many possible models, but during the steps for selecting
a model, assumptions are made, sets of approaches are selected and simplifications
are introduced, resulting in some models being eliminated.
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Phase 1 Phase 2 Phase 3 Phase 4

Fig. 1 Selecting the model in a funnel of the building process. (Adapted from de Almeida et al.
2015)

To conclude this topic, to support the building model process, problem structur-
ing methods (PSM) can be used (Rosenhead and Mingers 2004; Eden 1988; Eden
and Ackermann 2004; Ackermann and Eden 2001; Franco et al. 2004). According
to Eden (1988) problem structuring seeks to build a formal representation for
the problem, and this includes identifying objective and subjective factors of the
decision-making process.

Among PSM methods, the value focus thinking (VFT) approach (Keeney 1992)
aims to investigate the DM’s values in order to guide the decision process. In this
approach, DMs need to address two issues, namely, deciding what he/she wants
for the decision situation, i.e., what his/her objectives for the problem are, and
evaluating how he/she will achieve these objectives, which are represented by the
alternatives that may be the solutions for the problem.

Thus, based on the answer to these two questions, this approach presents
a structured way of thinking about the decision-making process and the DM’s
subjective judgments.
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3 A Framework for Building Multicriteria Models in RRM

In this section, the building model presented in de Almeida et al. (2015) is discussed
in order to highlight important concepts of the MCDM/A approach and is improved
on by including steps presented in RRM decision situations. This model has four
phases, namely:

• Phase 1 – Preliminary phase
• Phase 2 – Probabilistic Modeling phase
• Phase 3 – Preference Modeling and choice of MCDM/A method phase
• Phase 4 – Finalization phase

The first phase, called the preliminary phase, integrates four steps of this building
model, and seeks to define the problem situation. Thus, the steps which comprise
this phase are characterized to present the basic elements of an MCDM/A problem,
such as: problem objectives, attributes associated with each objective, and the
alternatives.

The second phase, called probabilistic modeling, consists of three steps that are
used to define important elements present in probabilistic problems. This phase was
included in this adapted building model, based on that of de Almeida et al. (2015),
in order to provide a structured process to evaluate the RRM problem.

The third phase also has three steps. This phase is responsible for modeling the
DM’s preferences with regard to the elements presented in the previous steps and
is an important phase in the decision model. At the end of this phase, the building
model has been defined, as illustrated in Fig. 1. Moreover, it is at the end of this
phase that model indicates the appropriate MCDM/A method that should be applied
to find the solution to the problem.

The fourth phase, called the finalization phase, has four steps and is responsible
for presenting a recommendation for the MCDM/A problem. In this phase, the
MCDM/A method will identify to produce a recommendation for the problem.
Thus, this recommendation will be tested, reviewed, and implemented for the
problem situation. The framework for the model set out in this chapter and based on
de Almeida et al. (2015) is illustrated in Fig. 2.

Compared to Simon’s model, this model does not have the intelligence phase but
its steps are broadly equivalent to the phases of Simon’s model as follows: steps 1
to 10 to the design phase, 11 to the choice phase, while 12 and 13 are equivalent to
the review step that was added to Simon’s model, and, similarly, 14 is equivalent to
the implementation step that was added to Simon’s model.

However, note that a review step is not performed only in steps 12 and 13. It
is present in the whole model, as a procedure that prompts successive refinements
(Ackoff and Sasinieni 1968). These refinements permit returning to previous steps
to review the preferences expressed and definitions made. Moreover, because it is
possible to make refinements, some steps can be evaluated in a simplified way, and
then later reviewed after more information becomes available from the successive
steps. These refinements are identified by the dashed arrows between each of the
steps.



A Framework for Building Multicriteria Decision Models with Regard. . . 61

Step 8
Preference 
modeling 

Step 11
Evaluate
alternatives 

Step 9
Conducting an
Intra-Criteria 
evaluation

Step 10
Conducting an
Inter-Criteria 
evaluation

Step 12
Conduct a 
sensitivity 
analysis

Step 13
Draw up 
recommen-
dations

Step 14
Implement 
the solu-
tion 

Preference Modeling and choice of MCDM/A method

Finalization

Step 1
Identify 
DM and 
other ac-
tors 

Step 2
Identify 
objectives

Step 3
Define 
family of 
criteria

Step 4
Establish 
alterna-
tives

Preliminary phase – Structuring the Problem

Step 5
Define 
state of na-
ture (q)

Step 6
Establish a 
priori prob-
ability p (q)

Step 7
Establish 
consequence 
function 

Probabilistic Modeling phase

Fig. 2 Framework for building an MCDM/A model. (Adapted from de Almeida et al. 2015)
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3.1 Step 1 – Identify DM and Other Actors in the
Decision-Making Process

In MCDM/A problems, the main figure is the decision maker (DM). The DM is the
person who is responsible for the decision. The whole building model is based on
the preferences that the DM expresses for the problem situation.

Decision problems may involve only one DM, when this is an individual
decision, or more than one DM, when a group decision needs to be taken. The
focus of this model is on individual decision, but for group decision adaptations to
the model can be made.

In addition to the DM, other actors may be present in the decision scenario.
Therefore, it is important to identify these actors and their role in the decision-
making process. The other actors are: the analyst, the client, one or more experts,
and the stakeholders.

The analyst has knowledge about the MCDM/A approach; his/her role is to
provide methodological support to the DM throughout the decision-making process.
The analyst must interact with the DM during all the steps that are followed to find
the adequate MCDM/A method, based on the DM’s preferences.

The client can be considered a close advisor to the DM, who may deputize
temporarily for the DM when the DM is absent. The client does not express his/her
preferences, but only communicates the DM’s preferences to the analyst.

The expert has factual information about the behavior of some variables which
are not under the control of the DM. He/she should not declare his/her preferences,
but only give factual information to help the DM acquire a fuller understanding of
the problem scenario.

Stakeholders represent a group of people who may be affected by the decision;
they do not participate in the decision-making process but can influence DM’s
preferences by reinforcing the importance of certain themes to them.

3.2 Step 2 – Identify Objectives

In MCDM/A problems, multiple objectives are present and the DM wishes to meet
the whole set of objectives. Thus, the second step in the framework is to identify the
objectives of the problem.

During this step, the DM must identify which objectives are the bases of interest
for his decision. The reason why the problem must be solved is so that these
objectives can be met. Based on these objectives, the DM will express his/her
preferences.

Since the identification of objectives impacts all the future steps, this step can be
considered the most important in the framework. If the definition of the objectives
is incomplete or vague, potential problems will arise in future stages of the model.
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Fundamental Objectives 

Fig. 3 Hierarchical structure of objectives. (Adapted from Keeney 1992)

The value focus thinking (VFT) approach, developed by Keeney (1992), can
be used to support this step because it presents several relevant comments for the
process of correct assessment of objectives.

According to the VFT, the process of finding the right objectives is not an easy
task and some gimmicks can be used to assist this process such as using wish lists.
This theory also classifies objectives into two categories: fundamental objectives
and means objectives. Fundamental objectives are those that underlie the problem:
being able to identify and achieve them, representing the reason for solving the
problem. Means objectives are those that lead to fundamental objectives.

Besides the conceptual separation of such objectives, their hierarchical structure
can be developed which facilitates understanding their relationship to each other,
as illustrated in Fig. 3. Therefore, defining the set of objectives is a relevant step
which is important as it provides a complete understanding of the problem situation.
This usefully supports the subsequent steps, namely identifying the criteria and the
alternatives.

3.3 Step 3 – Define Family of Criteria

For each objective identified, some criteria must be established to represent it. A
criterion can be considered as a function that measures the level of achievement that
some alternative obtains in the objective. According to Keeney (1992), criteria are
characterized by the degree to which their related objective is successfully met.

Attributes are characterized as the lowest level to which a fundamental objective
can be broken down and seek to measure the performance level of a given objective
for a given situation (Keeney 1992).

At this stage of the model, criteria should be established in a non-redundant,
exhaustive, and coherent form for all objectives (Roy 1996). Also, criteria must
have three properties: they must be measurable, operational, and understandable.
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Their meaning is understood to be as follows: measurable means that criteria have
to represent the objectives in detail; operational means that criteria should provide
a common basis for value judgment; and as to understandable, it is assumed that
criteria cannot be ambiguous when evaluating the alternatives (Keeney 1992).

As for identifying objectives, if criteria are in disagreement with these properties
and definitions, future problems will arise in the subsequent steps of the model,
which may lead to the use of an inconsistent MCDM/A method, and consequently,
an unrepresentative solution may be indicated.

In addition, according to Keeney (1992), three types of attributes can be
observed: natural attributes, constructed attributes, and proxy attributes. This classi-
fication depends on the values that will be presented within each criterion.

Natural attributes have the same interpretation for all DMs and they are clearly
defined independently of the decision context. Examples include: price, distance,
and duration. Constructed attributes are used when it is not possible to use natural
ones. However, they are only suitable for the context of a specific decision. An
example is when a subjective assessment needs to be used and a scale can be
constructed to represent the alternative assessments in the criterion. Finally, proxy
attributes are used in the latter case as an indirect measurement associated with the
objective.

Moreover, the criteria can be deterministic or probabilistic. In problems in which
information about consequences is known to be certain, i.e., the evaluation of each
alternative in the specific criterion is represented by a constant level of performance;
this criterion can be characterized as a deterministic criterion.

On the other hand, in a problem where information about consequences is
probabilistic, the evaluation for each alternative in a specific criterion is based on
information that might use a probability density function (PDF). For these problems,
the probabilistic modeling phase has to be considered.

RRM decision problems require a probabilistic modeling phase, although in
some cases, simplifications can be made in order to represent probabilistic conse-
quences as deterministic indices, which in general can be some statistic of the PDF
(e.g., means, percentiles, etc.).

3.4 Step 4 –Establish Alternatives

To establish problem alternatives, the first evaluation that must be made is about
identifying the characteristics of the alternatives that will be used in the problem. To
identify these characteristics, three questions need to be answered:

• Is the set of alternatives discrete or continuous?
• Are the alternatives stable or can they change throughout the process (Vincke

1992)?
• Can the problem be solved by choosing one alternative as a solution, and

excluding the rest of them or by combining alternatives?
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After defining these characteristics, the problematic adopted in the problem has
to be defined. This concerns how the DM intends to evaluate the set of alternatives.
Some types of problematic are:

• Choice Problematic: this is used when the DM desires to reduce the initial set of
alternatives to a smaller subset.

• Ranking problematic: this is used when the DM desires to rank the alternatives
from best to worst.

• Sorting Problematic: this is used when DM desires to classify alternatives into
previously defined categories.

• Description Problematic: this is used when DM desires to describe alternatives.
• Portfolio Problematic: this problematic finds a combination of a subset of

alternatives that maximizes the objectives and is limited by constraints.

Finally, alternatives for the problem can be generated, alternatives already
presented in the environment can be used or new alternatives can be created. The
VFT methodology emphasizes that the DM must create alternatives, and not only
accept those that already exist and that are available to him/her when the problem
occurs.

For each criterion an alternative is given an outcome (or consequence), which
will be evaluated in the MCDM/A approach. The consequences can be deterministic
or probabilistic. Deterministic consequences are those for which an exact value
can be defined as the evaluation of the alternative in the criterion. Probabilistic
consequences are used when problems are in an uncertain scenario. In this case,
the evaluation of an alternative in a specific criterion is based on a probability
distribution which represents this criterion.

Therefore, when this step is concluded a consequence matrix can be obtained.
The consequence matrix for decision problem presents the evaluation of each
alternative in each criterion.

3.5 Step 5 – Define State of Nature

This step will deal with problems in which some variables (state of nature) are not
under the control of the DM, and thus cause random changes in the consequences
matrix. The State of Nature is a typical ingredient in the traditional Decision Theory
approach (Raiffa 1968; Berger 1985; Edwards et al. 2007; Goodwin and Wright
2004).

In these cases, the presence of the experts is very important since they give factual
information about such variables to the DM. For example, in problems where the
failure mode has to be evaluated, an expert’s knowledge about the situation can
be useful to support the DM in obtaining the evaluation of each alternative in the
specific criterion.

Some precautionary measures should be taken in this step. For example, for
the state of nature, the analyst has to consider a probabilistic modeling of such
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information. Also, experts have to supply only factual information about these
variables, since it is inappropriate to include preference information from experts
in the decision model.

3.6 Step 6 – Establish a Priori Probability

For these problems, a priori information about the state of nature (θ) is characterized
as an important element which should be defined in order to construct the model.
This quantification can be provided by using probability distributions of θ, π(θ),
called a priori probability distributions (Berger 1985).

Therefore, as stated in the previous phase, an expert’s knowledge about the
problem scenario can be used to quantify the a priori probability distribution π(θ).
Some procedures to develop the elicitation of expert’s prior knowledge are set out
in the literature.

Keeney and von Winterfeldt (1991) proposed the following steps to elicit a priori
probabilities:

• Identify and select the problem
• Identify and select experts
• Discuss and refine the problem
• Train experts to provide the elicitation, evaluating the reason to perform the

elicitation
• Conduct the elicitation process
• Analyze the results
• Solve disagreements
• Document the results

One of the elicitation procedures is the equiprobable intervals method (Raiffa
1968). This method is based on developing equal intervals of probability based on
estimating the most likely value of the state of nature (θ) given some probabilities.
This method follows some steps:

• Define the range of the minimum and the maximum values of the state of nature
based on the value of an event that is unlikely to occur, with a probability of
0.001, and an event that is likely to occur, with a probability of 0.999.

• Development of equal intervals of probability in order to define other values of
state of nature, the third value defined is the intermediate value with a probability
of 0.5.

• Repeat the step again dividing the intervals into equal parts and estimating values
of the state of nature. This will give the values of state of nature, a probability of
0.25 and 0.75.

• After some points have been defined, a consistency test should be performed with
the expert to confirm if the values estimated are consistent.
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• Finally, having defined the points, a statistical analysis can be performed in order
to discover the probability distribution which best fits the points.

Therefore, these problems can be presented in a risk scenario. In these cases, it
is appropriate to conduct the probabilistic modeling phase in order to formalize the
problem and to support the DM’s understanding of the problem. If no probabilities
are obtained, then an uncertain scenario is considered.

In general, for problems presented in a risk scenario, Bayesian Decision Theory
(Berger 1985) is used to support the decision process. On the other hand, for
problems in an uncertain scenario, it is recommended such procedures as MaxMin
or MinMax be used (Raiffa 1968; Berger 1985).

3.7 Step 7 – Establish Consequence Function

As is well known, the expected utility function [Eθ u(a)] of an alternative a is given
by Eq. 1 as follows:

E(a) =
∫

π (θ) u (θ, a) dθ (1)

where:

u(θ ,a) is the utility of alternative a when the state of nature is θ.

Then, one can obtain the utility u(a) using the a priori probability π(θ).
The utility u(θ ,a) is obtained by Eq. 2

u (θ, a) =
∫

P (x|θ, a) u(x)dx (2)

where:

P(x|θ ,a) is the consequence function.
u(x) is the utility function of x which is obtained by preference modeling as dealt

with in steps 8, 9, and 10.

The focus of this step is the consequence function, which associates the
consequence to the state of nature and the chosen alternative. It is the probability
P(x|θ ,a) of obtaining x given θ and the alternative a (Berger 1985).

In general, P(x|θ ,a) is obtained based on statistical data analysis or assumptions
with regard to its behavior, as illustrated in de Almeida and Souza (2001), in a
problem of service supply selection for maintenance, in which the consequence
is the time to repair and θ is μ, the parameter of f(x) which is assumed to be an
exponential probability function. This is the probabilistic model, which is the usual
case in RRM.
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3.8 Step 8 – Preference Modeling

Preference modeling is the first step for the third phase of the decision model.
This phase presents higher interaction between the analyst and the DM, where the
flexibility presented in the model allows not only reviews of the previous steps, but
these three steps to be integrated.

This phase plays an important role in building the model, and has to be developed
with care, because at the end of it the MCDM/A method is defined that will be used
to solve the problem. Modeling preferences with the DM is one of the main steps
within the decision-making process.

Based on this step the DM’s preference structure will be characterized. A
preference relationship system or preference structure is represented by a collection
of preference relations applied to the set of alternatives, which is constructed based
on exhaustive and not exclusive comparisons.

Thus, some of the main preference structures of a DM are: Structure (P, I);
Structure (P, Q, I); Structure (P, Q, I, R). Thus, based on these structures, the
preference relations are:

• Indifference (I): for DM there are clear reasons for declaring equivalence between
two alternatives.

• Strict Preference (P): for DM there are clear reasons to justify that one alternative
is preferable to another.

• Weak preference (Q): for DM there is no clear reason for declaring either
indifference or strict preference. Therefore, the DM’s preference lays between
P and I relations.

• Incomparability (R): for DM there are no reasons to justify any of the other
three relationships. Incomparability is useful when DM is unable or unwilling
to establish comparisons between two alternatives.

Thus, in this step, it is necessary to evaluate which Preference Structure best
represents the DM’s preferences for the problem. For example, Structure (P,
I) should be used when the DM can define relations for each comparison of
consequences. Thus, for this structure, the property of Ordenability, which is related
to the possibility of providing comparisons for each pair, is the first that will be
tested. Therefore, based on the agreement of this property, the transitivity property
should be tested, where if x, y, and z are consequences and x P y and y P z,
consequently x P z.

On the other hand, the structure (P, I, Q, R) allows DM to have doubts about
the comparisons between the alternatives, and therefore the DM may remain
undecided between two relations, such as Q, or may not be willing to express his/her
preferences over some pair, such as R.

Moreover, in this step, one more important consideration that must be taken
into account concerns the rationality considered by the DM in the problem, which
can be: compensatory or non-compensatory. The terms compensatory and non-
compensatory are associated with studies by Fishburn (1976).
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Set of Compensatory methods 
(unique criterion of synthesis 
method: e.g. MAVT, MAUT)

Non-compensatoryCompensatory

Set of Non-compensatory methods 
(outranking methods, lexicograph-
ic, decision rules)

Evaluation of DM basic preferences for problem conse-
quences 

Which type of 
rationality is the 
most adequate 

to the DM? 

Set of methods

Fig. 4 Evaluation of compensatory and non-compensatory rationality. (Adapted from de Almeida
et al. 2015)

Compensatory rationality exists when a worse performance of an alternative in
the criterion i can be compensated by a higher performance of the same alternative
in the criterion j. For this rationality, the trade-offs between the consequences are
performed.

Non-compensatory rationality is the opposite of the previous one, when com-
pensations between performances are not relevant for the DM. In this case, the
difference in performance between two consequences is not relevant for the DM.
The information that is relevant to him/her is which alternative wins over the
criterion, even if the difference between them is very small.

Depending on the structure defined and the rationality that the DM presents, at
the end of this step, a set of coherent MCDM/A methods is pre-selected, according
to Fig. 4.

Figure 4 presents a flowchart to illustrate this step. From this figure, it can be
seen that the estimation about compensatory or non-compensatory rationality is very
important since this is used to define what family of MCDM/A methods is indicated
and therefore will be pre-selected.
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According to de Almeida et al. (2015), MCDM/A methods are characterized as
a methodological formulation or a theory, which has an axiomatic structure. These
methods are generic and can be applied in different problem situations in order to
help find a solution.

Regarding compensatory rationality, a unique criterion of synthesis method
(Roy 1996) is recommended to be applied, where the most usual is the additive
aggregation based on the MAVT (Multi-Attribute Value Theory) or MAUT (Multi-
Attribute Utility Theory) (Keeney and Raiffa 1976). The additive aggregation
combined the criteria and generates a global value for each alternative. For non-
compensatory rationality, it is recommended that outranking methods be used (Roy
1996). These methods make pairwise comparisons between the alternatives, as
commented in the first chapter of this book.

However, the careful definition of the rationality, based on the DM’s preferences
for the problem situation, is not even considered. In inappropriate cases, a familiar
MCDM/A model is selected for use before all the DM’s preferences have been
evaluated, i.e., at the beginning of the building model.

According to Wallenius (1975), in general, DMs do not feel comfortable about
using decision models which they consider are difficult. In the same context,
Bouyssou et al. (2006) commented that heuristics can be suggested to facilitate
solving the problem. Therefore, in these cases, the analyst should be alert and ensure
that the method used to characterize the DM’s preferences was appropriate, and
therefore presents a recommendation which bring benefits to the decision situation.

3.9 Step 9 – Conducting an Intra-Criterion Evaluation

Intra-criterion evaluation is the evaluation of each alternative in each criterion,
assigning a marginal utility function. Within the intra-criterion evaluation, an
important concept is the scale and the scale transformation. For utility function
an interval scale is considered, in which the utility zero is assigned to the worst
consequence.

Sometimes the marginal utility function may be constructed over a consequence
expressed as a verbal scale. A widely used quantitative verbal scale is the Likert
scale (1932).

Depending on the pre-selected family of MCDM/A methods, the form of
evaluating the intra-criterion will be developed in different ways.

As to compensatory rationality, where the methods of unique criterion of synthe-
sis are adequate, the evaluation of each alternative in each criterion is represented by
a value function for deterministic consequences or a utility function for probabilistic
consequences. The value or utility functions can be linear or non-linear.

To construct the value function, few procedures are presented in Belton and
Stewart (2002), it being simpler to model the problem in this case. On the other
hand, in order to elicit the utility functions, the DMs behavior regarding risk has
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to be investigated. When the DM is considered risk averse or risk prone, the utility
function is non-linear. For the DM who is neutral to risk, the utility function is linear.

Regarding non-compensatory rationality, where it is appropriate to use out-
ranking methods, this step is conducted in another way. If the preferences for
consequences which were expressed for each criterion are ordered, there is no
need to conduct further evaluation in this step, but, the threshold estimation is
characterized as being part of the intra-criteria evaluation. On the other hand, when
probabilities are assigned to consequences, then a utility function might be applied,
incorporating the DM’s attitude to risk. This would make necessary an integration
between marginal utility function with outranking methods, as already done (de
Almeida, 2005; de Almeida, 2007; Brito et al., 2010).

3.10 Step 10 – Conducting an Inter-Criteria Evaluation

The last step of this phase is the inter-criteria evaluation. Inter-criterion information
allows the quantitative criteria to be combined in an aggregation process. This step
involves elicitation procedures to obtain the criteria weights (de Almeida et al. 2015)

Different mechanisms of aggregations are presented in the literature; the mecha-
nism selected depends on the MCDM/A method that will be used.

As to methods of unique criterion of synthesis, scale constants (kj) are used to
aggregate the criteria. Scale constants do not represent how important the criteria
are to DMs and cannot be directly determined. They represent the ratio between
criteria, considering the set of consequences present in each one of them. The main
differences between the MCDM/A methods presented in this classification are in
the elicitation procedure applied to obtain the scale constants.

An example of an elicitation procedure, for deterministic consequences, is the
tradeoff procedure (Keeney and Raiffa 1976), which presents a robust axiomatic
structure which seeks indifference points to formulate (n-1) equalities, where n is the
number of criteria in the problems. These equalities are used to find the exact values
of scaling constants. The FITradeoff method (de Almeida et al., 2016) uses the same
robust axiomatic structure with some advantages, needing only partial information
from the DM, as mentioned in the first chapter of this book.

For probabilistic consequences, MAUT (Multi-Attribute Utility Theory) or
prospect theory could be applied, as explained in the first chapter of this book.

As for outranking methods, the weights are defined directly by the DM. They
represent the level of importance that each criterion in the problem has for the DM.
The weights are normalized so that they sum to one.

At the end of this step, the decision model has been built and an appropriate
MCDM/A method is indicated to solve the problem. In other words, the end of this
step represents the end of the funnel, illustrated in Fig. 1. The next phase deals with
applying the method procedure, testing the robustness of the solution, reviewing the
decision-making process and implementing the recommendation.
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3.11 Step 11 – Evaluate Alternatives to Find a Solution

This step is the first step of the finalization phase. In it, the algorithm of the
MCDM/A method selected is processed and presents the solution to the problem.
The MCDM/A method selected is not personalized for the problem, since it is
generic and can be applied to many different situations.

On the other hand, the decision model built, which is implemented in order to
indicate the adequate MCDM/A method, is personalized for each problem, and
constructed based on the DM’s preferences which were expressed in the previous
step.

3.12 Step 12 – Conduct a Sensitivity Analysis

Sensitivity analysis is a relevant step which aims to test the robustness of the
decision model. Thus, after the sensitivity analysis, the recommendation found in
the last step will be confirmed or reevaluations will be indicated for the building
model.

The sensitivity analysis is characterized as being used to change problem inputs
in order to analyze how these changes impact the recommendation made for solving
the problem. In other words, this step verifies if the recommendation found in step
11 is sensitive to variations in the data of the problem, such as the consequence
matrix and the criteria weights.

Sensitivity analysis can be conducted in two ways: individually, by changing
one parameter at a time, and simultaneously by changing several parameters of the
decision model.

With regard to the former, changes to the values of the scale constants (or
weights) or of some consequences can be made. An example of variation can be
generated by applying a percentage change of 10% to the nominal value, thereby
generating values that are higher or lower than the original ones.

In MCDM/A problems, the values of consequences can be generated by consid-
ering some approximations since it is quite difficult to have access to all the data
accurately. Therefore, it should be interesting to modify the values of consequences
in order to test the robustness of the model since this model presents approximations.
Many modifications can be performed to test the robustness of the building model.

For a complete evaluation, several changes must be done simultaneously. The
Monte Carlo simulation is an approach used for simultaneous sensitivity analysis.
In this approach, a random variation of data is applied to test the decision model.
Thus, the solution found to each problem created is compared to the initial
recommendation found in step eleven.

To test the robustness of the model, the frequency of changes in the initial
recommendation is calculated after conducting a large number of simulations.
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Moreover, to complement this analysis, statistical hypothesis tests can be applied
in order to evaluate the significance of these changes (Daher and de Almeida 2012).

Therefore, this step is important because based on its results, it is confirmed if
the model built can be used formally to represent the MCDM/A problem and to find
the representative solution for it, or if the model has to be reevaluated, and thus to
return to some previous step in order to review the preferences expressed. It is worth
mentioning that the approximations provided in some steps of the decision model
can be reevaluated based on the impact that they can cause for the recommendation
found. This places the responsibility on the DM for determining whether to keep
these approximations or to revise them in earlier steps of the model.

3.13 Step 13 – Draw Up Recommendation

In this step the recommendation found in step 11 and tested in step 12 is presented
to the DM, especially with regard to it degree of accuracy investigated in the last
step. If the recommendation is favorable for the DM, the implementation of this
recommendation can be made, i.e., the solution can be applied in the real problem
situation.

If the recommendation and its analysis of robustness are not favorable for the
DM, the decision model must be reviewed in order to identify steps where the DM’s
preferences were not coherent or have changed during the process, and to identify
steps where approximations made have impacted the recommendation found. As
already stated, there is no right model being possible to DM review the previous
assumptions made.

3.14 Step 14 – Implement the Solution

Finally, after the solution is found and accepted by the DM, it must be implemented.
Brunsson (2007) presented important matters related to the implementation process,
and emphasized that the implementation step depends on the decision situation and
the decision model built.

As a result of the magnitude of the decision problem, the implementation process
can be a complex process, and take more time to do than does the process for
building the decision model. In this case, changes can occur in the problem scenario
thereby modifying consequences and producing new solutions for the problems. In
this case, should be interesting for DM to review the decision model build in order
to update the problem elements and preferences expressed.
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4 Conclusions

This chapter presents a framework for building decision models in the RRM context.
This framework presented well-structured steps to support the DM in the evaluation
of MCDM/A problems.

The framework developed was adapted from de Almeida et al. (2015) and
had three phases. The preliminary phase aims to present important elements
of the problem. The preference modeling phase deals with modeling the DM’s
preferences regarding the elements defined, and the finalization phase is when the
recommendation found for the problem is identified and tested.

In this framework, an additional phase was included in order to improve the
earlier framework. This new phase was the probabilistic modeling phase which
has important features to support the DM when he/she is dealing with probabilistic
problems.

Therefore, the framework developed in this chapter can be used to formal-
ize MCDM/A problems in order to present the adequate recommendation. It is
important to highlight that building models are always wrong since they are a
simplification of problem reality, but some of them are necessary to represent the
problem elements and support the DM to solve them following a rational process
(Box and Draper 1987).
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A Participatory MCDA Approach
to Energy Transition Policy Formation

Mats Danielson, Love Ekenberg, Nadejda Komendantova,
Ahmed Al-Salaymeh, and Leena Marashdeh

1 Energy Transition

Projections show that energy demand in Jordan will increase during the next
decades, largely due to population growth, migration dynamics in the region, an
increase in the quality of life, and the increasing electricity needs for the desalination
of water and cooling of buildings due to climate change, both requiring large
amounts of energy. For example, energy demand forecasts for Jordan show an
annual increase of 5% of Jordan’s primary energy demand and 6% of Jordan’s
electricity demand annually by the year 2020 (Komendantova et al. 2017). Due
to the lack of energy resources, the question of how to cover energy demand is
a constant challenge in Jordan. The country is heavily dependent on imports of
energy, largely from fossil fuels. It therefore also suffers from fluctuation in energy
prices, which increases the Jordanian national debt and affects its national economy.
According to the Ministry of Energy and Mineral Resources (MEMR), Jordan
imports over 95% of its energy needs. This situation will become even more acute
if the annual primary energy demand growth of 7% is considered.
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One of the crucial developments in the Jordanian energy sector in 2017 was the
completion of the Aqaba terminal. The goal of this project was to secure the supply
of crude oil and oil products to Jordan. The terminal has storage capacities for crude
oil, oil products and liquefied petroleum gas. The Logistic Company for Jordan’s
Oil Facilities was established in the year 2016 as the operator and manager of this
project. The costs of crude oil and oil products imports reached JOD 1333 million
in 2016. In general, the year 2016 witnessed a decrease of around 21% in the
consumption of oil products due to a decrease in the demand for oil products used
in electricity generation and large imported quantities of natural gas. The oil shale
sector also experienced significant development in that year. Jordanian decision-
makers consider this energy source to be strategically important, considering the
fact that Jordan has the fourth largest oil shale reserve in the world, exceeding
70 billion tons. In 2017, the Jordanian government signed several memoranda of
understanding and gave concessions for local and international companies to invest
in the area of oil shale, including in-situ retorting and direct burning to generate
electricity. In 2017, the natural gas sector also experienced some development. The
National Petroleum Company signed a production-sharing agreement with the IPG
Company to develop the Risha field. Two liquefied natural gas (LNG) agreements
were also signed between NEPCO and Shell International Company to expand
the use of natural gas in power plants and industries. In 2017, the green corridor
project saw ongoing grid expansion and reinforcement plans; this will continue, as
NEPCO’s plan is that it will contribute to the upgrading of the national grid capacity
to assimilate 1200 MW of renewable energy projects in the southern area of Jordan.
It is expected that the project will be completed by the end of 2018.

The deployment of new technologies, along with higher use of existing technolo-
gies, which are needed to cover energy demand and to diversify energy supply, will
lead to an energy transition in Jordan and a transformation of the Jordanian energy
system. Energy transition in Jordan will be and already is a complex process, which
has political, social, economic and technical dimensions. Therefore, a holistic,
inclusive and comprehensive governance approach to energy transition is essential.
The process of substituting one energy source with another, and one technology with
another, can result in significant socio-technical changes which might lead to many
frictions and conflicts. This process will lead not only to technological change but
also to a socio-technological transition process, which will be combined with shifts
in generation and distribution technologies, business models, governance structures,
consumption patterns, values and worldviews. For a sustainable implementation of
this process, new forms of governance are needed.

Various incentives paved the way for technology transfer in the MENA region.
However, they failed due to a variety of factors, amongst them social and public
acceptance (Komendantova et al. 2017). Other reasons included the governance of
this transition, which was based on a top-down framework of national renewable
energy master plans elaborated by the MENA governments. The realization of
these plans was far behind the settled targets, mainly because energy transition
roadmaps underestimated the intricacy of managing transformative change towards
sustainable energy systems (Brand 2015). There are several examples and good
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practices from Europe, such as the Energiewende (energy transition) in Germany or
energy transition through climate and energy models in Austria. However, plans for
energy transition in the MENA region should consider completely different energy
market structures, stakeholder networks and societal aspirations towards energy,
climate and environmental policies in the region (FES 2015). Therefore, careful
consideration of stakeholders’ views, concerns and conflicting priorities is required
when considering a sustainable energy transition and transformation of the energy
system, as well as for compromise-oriented energy governance solutions.

The transformation of energy systems often faces risks and boundaries regarding
the implementation of climate change mitigation policies, which are connected
with decision-making processes (Patt 2015). These boundaries include not only
technological and economic factors, but also human factors, including conflicting
views of the risks and benefits of different technologies, as well as social and public
acceptance, and willingness to use technology and to pay for it (Komendantova
et al. 2018). Today, public interest in energy infrastructure is different from what
it was half a century ago when the existing infrastructure was built. The existing
energy infrastructure was perceived as a driver for socio-economic development.
Nowadays, people want to participate in the decision-making process on technolo-
gies that affect their communities. Participation in decision-making processes is
often perceived as a democratic principle of the inclusiveness of people (Beierle and
Cayford 2002). The lack of opportunity to exercise this right leads to protests, delays
in the implementation of projects, and even the cancellation of projects because of
public protests or actions of stakeholders who were not included in the decision-
making process (Kunreuther et al. 1994).

International legislation also lays down the right to participate. The Aarhus
Convention requires the involvement of stakeholders in decision-making processes
on infrastructure projects and the provision of clear and transparent information
about how to get involved. However, often there are limits to participation; the fact
that energy transition is a topic heavily dominated by technological and economic
content hinders effective public participation (Devine-Wright 2012). Different
views on participatory governance exist. Some argue that complex decision-making
processes on critical infrastructures, such as energy, should be left in the hands of
experts and scientists. Public participation is reserved as a method for evaluating this
decision-making process and its outcomes (Rowe and Frewer 2000). Others argue
that participation is very beneficial because it brings additional knowledge of stake-
holders at the national level (Hänlein 2015), such as the knowledge of local areas,
which might be limited (Jasanoff 1998. There is also evidence that integrating the
views of all stakeholders—and not only those of specialized experts—can enhance
the legitimacy of decision-making processes and build trust (Renn 2008). Evidence
from energy generation and transmission projects in Europe shows that decision-
making processes along the so-called ‘decide-announce-defend’ (DAD) model,
where the decision is taken by the national government, aided by experts and then
implemented through a top-down approach, is no longer feasible (Wolsink 2000;
Komendantova and Battaglini 2016). The DAD model often leads to conflicting
opinions, as well as protests which delay implementation and may even lead to
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the cancellation of projects (Wolfsink 2012). Discussions on the framework of the
so-called NIMBY (not-in-my-backyard) concept often end up simply identifying
factors of acceptance, which is a more passive attitude towards a top-down decision-
making process where a person cannot change anything. Nowadays, many scientists
argue that NIMBY is a misleading concept to understand local objections and
concerns. One flaw of the concept is that it does not involve local knowledge to
improve the results of decision-making processes (Batel and Devine-Wright 2015).
There is also the need to understand how engagement and participation can go
beyond a discussion of a project’s details and shape a discussion about centralized
and decentralized energy transition, as this is a complex topic where human factors
play a significant role. Understanding is needed about how participatory governance
works in different countries and how centralization or decentralization of decision-
making shapes the process of stakeholders’ involvement in the discussion of energy
transition issues (Komendantova et al. 2015).

Even though a significant part of existing literature on participatory governance
research is focused on Europe, there is also evidence of the advantages of a
participatory approach for other countries. For instance, Xavier et al. (2017)
studied the implications of human factors for the transformation of the energy
sector in South Africa. Having analysed several infrastructure projects, the authors
express the need to incorporate public participation within the project cycle and to
institutionalize it as a part of the whole decision-making process. They also find
that existing conflicts in stakeholders’ views and opinions can be mitigated through
engagement and different methods of multi-criteria discussion.

Yazdanpanah et al. (2015) looked at human factors of energy transition in Iran
that influence the willingness to use renewable energy sources. Applying the theory
of planned behaviour, the authors identify the main factors as moral norms, attitudes
and perceived behavioural control, which is also connected with the possibility to
influence decision-making processes.

Thus, it is necessary to develop compromise solutions to mitigate the risk
that differences in views about electricity generation technologies needed for
energy transition will turn into conflicting opinions. These human factors include
perceptions of different risks connected with technological deployment, and views
about the benefits and impacts generated by different technologies. To accomplish
this, we have developed a multi-stakeholder multi-criteria approach to assess the
relevance of Jordan’s electricity generation technologies against a set of criteria
under uncertainty which we will present in the following. The next section describes
the criteria used and the stakeholder groups. Section 3 describes the stakeholder
workshop set-up and the resulting criteria rankings, as well as some methodological
considerations. Section 4 demonstrates the decision methodology and Sect. 5
provides the results from the different workshops. Finally, Sect. 6 concludes the
chapter.
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2 Criteria and Stakeholders

Each Jordanian technology which is considered in the national energy planning was
evaluated against a set of criteria. Altogether, there were eleven criteria, including
20 indicators, nine of which were quantitative and eleven qualitative. Data for
quantitative indicators were collected from national and international statistical
databases, reports and projects. Data for qualitative indicators were collected from
surveys of stakeholders in Jordan.

The criteria were divided into two sets:

• Contribution to national energy policy targets, such as to secure reliable and
affordable power supply. This included such criteria as decreasing dependence
on foreign resources, climate change mitigation, domestic industry development,
technology and knowledge transfer, as well as affordable electricity system costs.

• Sensitivity to local conditions and impacts on local communities. This
included aspects of land and water resources, on-site job creation, air pollution
and health, hazardous waste and safety issues.

The project team selected eleven out of initially 32 relevant criteria. These were
then discussed during the stakeholder workshops to see whether the stakeholders
agreed with the criteria definitions, whether the criteria were relevant for the case
countries and whether stakeholders would recommend any further criteria. The
stakeholders’ reactions confirmed the robustness of the selected criteria and their
definitions, which were also communicated to stakeholders during the workshops.

• Use of domestic energy sources. The dependence on foreign energy imports can
be decreased by tapping into domestic resources that are either available today or
could be exploited in the mid to long term. Two indicators are relevant here: a) the
current domestic potential of each technology’s energy carrier to decrease energy
import dependence; and b) the future domestic potential of each technology’s
energy carrier to decrease energy import dependence by 2040/50.

• Global warming potential. The technology should contribute to the mitigation
of climate change. This criterion is based on the indicator total lifecycle GHG
emissions (CO2-eq) per generated kWh.

• Domestic value chain. The technology should have a high potential to use com-
ponents and services provided by domestic industries throughout the entire value
chain. This criterion is based on the indicator existing potential for the integration
of domestic industries to manufacture a significant share of components and
provide essential services during the manufacturing, construction and installation
(MCI) and operation and maintenance (OM) phases of the technology.

• Technology and knowledge transfer. Based on existing policies, the technology
should have a high potential to benefit from technology and knowledge transfer
to stimulate future domestic value added in electricity generation. This criterion
is based on the indicators a) effectiveness of educational policies to foster skill
development and R&D; and b) effectiveness of industrial policies to enhance
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industry linkages between domestic and foreign firms geared towards horizontal
technology transfer.

• Electricity system cost. The electricity system cost of the technology should be
as low as possible so as not to constitute a burden for Jordan’s overall budget.
This criterion is based on the indicators a) electricity-generation cost measured
as levelized cost of electricity (LCOE) in AC/MWh; and b) estimated additional
integration cost at increasing penetration levels based on uncertainty/variability
and distance/location.

• On-site job creation. The technology should have a high potential to create direct
on-site jobs over the entire lifetime of the power plant. This criterion is based on
the indicators a) MCI: the average amount of labour in FTE person-years per
MW; and b) OM: the average amount of labour in FTE permanent jobs per MW.

• Pressure on local land resources. The technology should cause minimal addi-
tional pressure on valuable land resources regarding the amount and value of
required land to avoid the deprivation of any locally relevant livelihood resources.
This criterion is based on the indicators a) land requirement: the area of land
directly required by the technology at the site of its deployment in ha/MW; and
b) land value: the importance of the land surrounding typical project sites for
providing livelihood resources and services to adjacent communities.

• Pressure on local water security. The technology’s water consumption should be
appropriate to the local water risk context and cause minimal pressure on local
water security. This criterion is based on the indicators a) average operational
water consumption of each technology measured in l/MWh; and b) average water
risk at typical project sites of each technology based on the Water Risk Index
(https://www.wri.org/).

• Occurrence and manageability of non-emission hazardous waste. The disposal
of non-emission hazardous waste produced during the operation of the tech-
nology and the risk stemming from national waste management capabilities
should be low to minimize adverse consequences on human health and the
environment. This criterion is based on the indicators a) disposal of non-emission
hazardous waste; and b) potential national capabilities to manage the disposal of
the respective types of non-emission hazardous waste.

• Local air pollution and health. The amount of air pollutants (NOx, SO2 and PM)
emitted by the technology should be low to minimize pressure on local air quality
and health risks for people in adjacent communities. This criterion is based on the
indicators a) air pollutants (SO2, NOx, and PM2.5) emitted by O&M activities of
power plants in kt/MWh; and b) premature deaths by PM2.5/MWh of electricity
produced.

• Safety. Severe accidents from the construction, operation and maintenance of
electricity-generating technologies, as well as during the transport and storage of
resources and equipment, should be minimized to reduce accidents resulting in
fatalities within and outside power plants. This criterion is based on the indicators
a) historical immediate fatalities from severe accidents during transport and
storage of resources and equipment, and operation and maintenance activities
of power plants, per unit of electricity (MWh) produced (hereafter referred

https://www.wri.org/
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to as ‘normalized fatalities’); and b) potential of regulatory and operational
emergency preparedness, and response capabilities of the private and public
sector to mitigate and manage the risk of catastrophic accidents with maximum
and severe consequences during the construction and operation phase of each
technology (hereafter referred to as ‘normalized fatalities’).

Six groups of different stakeholders were involved in the MENA-SELECT
workshops. These groups represent the most relevant stakeholders for energy policy
in Jordan, which are: policymakers, finance and industry, academia, young leaders,
national and local NGOs, as well as civil society and local communities. These
groups include the following stakeholders who participated in different events of
stakeholders’ dialogue organized in the framework of the MENA-SELECT project,
such as workshops and surveys.

2.1 Policymakers

This group represents decision-makers in the Jordanian government and rep-
resentatives of relevant organizations, who are responsible for developing and
implementing energy policy in Jordan. The participants were from the Ministry of
Energy and Mineral Resources, the Ministry of Water and Irrigation, the Amman
Chamber of Industry, the Ministry of Public Works, the National Electric Power
Company and the Jordan Press Foundation/Business section.

• The Ministry of Energy and Mineral Resources (MEMR) is the overarching
legislative authority on energy-related issues in Jordan and, as such, lays down
the goals and political framework conditions for the development of the energy
market.

• The Ministry of Water and Irrigation (MWI) is responsible for the implemen-
tation of the Energy Efficiency and Renewable Energy Policy for the Jordanian
water sector by rehabilitating different systems, installing new systems, and
renewable energy projects that include different programmes such as solar
energy systems for administrative buildings in the water sector, the utilization
of hydropower potential to power the water sector, the utilization of biofuel
potential in wastewater facilities, and large-scale renewable energy-based power
generation for the water sector on available lands (MWI 2015).

• The National Electric Power Company (NEPCO) is responsible for the
construction, planning, development, operation, maintenance and management
of the control systems, the electric transmission and interconnection networks,
as well as for management of the processes of purchasing, transmitting, control
and selling the electric power in Jordan and to neighbouring countries. It also
conducts the planning studies in this regard. The company provides services,
consultancy and studies related to electric power to various parties inside and
outside Jordan.
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• The Amman Chamber of Industry (ACI) is a non-profit organization which
represents the industrial sector in Jordan. The ACI forms and develops a
framework to crystallize the industrial point of view of its members in relation
to economic issues in general and industrial issues in particular. To this effect,
the chamber cooperates with the ministries and relevant government economic
planning, especially with regard to industry, in coordination with the Jordan
Chamber of Industry. Within the framework of ACI’s strategy and plans, it aims
to promote the use of renewable energy and reduce energy costs for the factories.

• The Ministry of Public Works and Housing (MPWH) aims to provide new
government buildings that are environmentally friendly and energy-saving.

• The Jordan Press Foundation is the owner of the Al-Rai newspaper and is a
shareholding company responsible for media coverage.

2.2 Finance and Industry

The participants of this group represented energy and environment companies,
engineering companies, banks and factories, represented by the following compa-
nies: GREENVIRO for renewable energy, control and communication, Al-Masar
Engineering Company, Control and Communications Company (CCC), Arab Bank,
Greenplans Environmental Consultations, Petra Elevators Company and Qatrana
Cement Company.

• The banks in Jordan are involved in energy projects through signed agreements
with the Jordan Renewable Energy and Energy Efficiency Fund (JREEEF) to
finance renewable energy projects.

• Jordan’s industrial sector is composed mainly of the mining and quarrying and
manufacturing subsectors. Large-scale industries operate primarily in the field of
phosphate and potash mining, the industrial production of cement, fertilizers and
refined petroleum. The industrial sector’s energy consumption represented about
16% of the total energy consumed in Jordan in 2016 (MEMR 2016).

• Al-Masar Engineering is a company specializing in the design and implemen-
tation of solar energy systems to generate electricity, store system electricity in
batteries or connect them to the network. Al-Masar Engineering is one of the first
companies to use energy-saving heating pumps to heat water for home use.

• GREENVIRO is a Jordan-based company that was established in 2013. The
company offers customized energy consumption consultations, energy-saving
system designs, energy-saving products, and the design and installation of solar
energy systems.

• The Control and Communications Company (CCC) was established in 1990.
It provides markets with industrial control systems, file tracking, access control,
time attendance, fire alarms and other systems that could be used in the field of
renewable energy systems.
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• Greenplans Environmental Consultations Ltd. Co. is an engineering consult-
ing firm specializing in environmental engineering and consulting services that
cover the areas of water, environment, waste and energy (renewable energies and
energy efficiency) related to engineering and environmental projects, industries,
facilities and development zones.

• Petra Elevators is a company that provides and designs an innovative range of
elevators, lifts and other technical devices for smooth riding comfort, preciseness
and reliable speed control.

• The Qatrana Cement Company was established in 2007 with a total investment
of 500 million US dollars. The Qatrana cement plant is located 80 km south of
Amman. A 30-megawatt power plant, which runs on coal, will be constructed to
supply energy to the Al Manaseer cement factory in Qatraneh. It is planned that
the project will be operational by 2025.

2.3 Academia

This group represents researchers and academics in the field of energy. The
participants were faculty members and researchers from the University of Jordan,
the King Abdullah II Design and Development Bureau (KADDB), Al-Zaytoona
University, the Applied Science University, and the German Jordanian University.
For example, the KADDB is an independent government entity within the Jordanian
Armed Forces (JAF) aiming at becoming a global defence and security research and
development hub in the region. The Bureau’s scope of work includes defence design
and development, testing and evaluation, technology incubation in the Kingdom and
defence technology training.

• The University of Jordan is a public university located in Amman. It is Jordan’s
largest and leading institution of higher education.

• The Al-Zaytoona University is a private university and includes six faculties,
encompassing 19 undergraduate specializations and one graduate programme.

• The Applied Science University is a private university located in Amman,
Jordan. It was established in 1991 as the largest private university in Jordan in
terms of campus area and the number of student enrolments.

• The German Jordanian University is a public university in Madaba, Jordan. It
offers more than 20 programmes to about 5000 students, primarily from Jordan.
The university was modelled on the German applied science model, characterized
by a focus on putting knowledge into practice and promoting knowledge transfer.
It aims to play a significant role in promoting links between Jordan and Europe,
particularly Germany. By taking advantage of the best educational practices in
both Jordan and Germany, the university has positioned itself as a leader in its
field.
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2.4 Young Leaders

This group represents the graduate students in the field of energy, as well as young
employees at energy and engineering companies such as Green Essence, KEPCO
KPS IPP3 power plant and GREENVIRO.

• Green Essence specializes in renewable energy systems and is an authorized
dealer for Suntech, the global leading PV panel manufacturer ranked as the
largest manufacturer in the world. It can be compared to the leading German
inverter manufacturers, such as SMA.

• KEPCO KPS IPP3 power plant is located on a greenfield site at Al Manakher,
30 km from the Jordanian capital Amman. It is the world’s biggest tri-fuel power
plant with an installed capacity of 573 MW. The plant is designed to use natural
gas and heavy fuel oil (HFO) as its main fuels and light fuel oil (LFO) as the
backup fuel.

2.5 Civil Society and NGOs

This group of stakeholders represents national non-governmental organizations in
the field of energy, environment and engineering. The participants were from the
Centre for Energy Services, the Renewable Energy Establishments Society, the
Jordan Engineers Association (JEA), the Jordan Environment Society (JES), the
Jordan Energy Chapter and the Sanibel Society for the Environment.

• The Centre for Energy Services is an integrated centre for energy, renewable
energy and energy efficiency. It provides a range of training and advisory services
through a qualified team to build capacity in this sector.

• The Jordan Engineers Association is a trade union of engineers in Jordan, and
it is the largest trade union in the country.

• The Jordan Environment Society was established in 1988 as a non-profit non-
governmental organization. It is the largest NGO in Jordan in its field. The
objectives of the JES include, but are not limited to, protecting the environment
and its basic elements such as water, air, soil and wildlife.

• The Jordan Energy Chapter is partnered with the American Energy Engineers
Association, which is a non-profit professional society with over 18,000 members
in more than 100 countries. Its mission is “to promote the scientific and
educational interests of those engaged in the energy industry and to foster action
for sustainable development”.

• The Sanibel Society for the Environment is a non-profit organization concerned
with environmental protection.
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2.6 Local Communities

This group represents the local community from different cities in North and South
Jordan. The participants were employees from the Ministry of Municipal Affairs in
Alsalt city, Madaba city and Zarqa city, and interested citizens from Amman and
Madaba.

The large-scale power-generating projects such as the Hussein Thermal Power
Station and the first nuclear power plant are under development and construction in
Zarqa city. The cities of Amman, Alsalt and Madaba host a number of small- and
large-scale renewable energy projects.

The following workshops with different groups of stakeholders took place:

• Civil society and NGOs, 7 November 2016.
• Finance and investment, 9 November 2016.
• Academia, 10 November 2016.
• Future decision-makers, 12 November 2016.
• Local communities, 13 November 2016.
• Political decision-makers, 15 November 2016.
• Final workshop with mixed groups of stakeholders, 28 February 2017.

The following organizations participated in the workshops:

• Academia: Al Balqa Applied University, Mutah University, University of Jordan,
Applied Science University, German Jordanian University, American University.

• Local communities: Greater Amman Municipality, Salt community, Ministry of
Municipal Affairs, Municipality of Al Zarqa, Municipality of Madaba.

• Civil society and NGOs: Energy Services Centre, Renewable Energy Estab-
lishments Society, Jordan Engineer Association, Jordan Environment Society,
EDAMA, Sanibel Society for Environment, Jordan Press Foundation.

• Private sector: Arab bank, GREENVIRO for renewable energy, Control
and Communication Company, Al-Masar Engineering Company, Greenplans,
Qatrana Cement, NEPCO.

• Government: Ministry of Public Works, Ministry of Water and Irrigation,
Ministry of Municipal Affairs, Amman Chamber of Industry, Ministry of Energy
and Mineral Resources, Parliament.

3 Criteria Ranking

One of the problems with most models for criteria ranking is that numerically
precise information is seldom available, and most decision-makers experience
difficulties entering realistic information when they analyse the challenges of
decision-making. Several attempts have been made to resolve this issue. Methods
allowing for less demanding ways of ordering the criteria, such as ordinal rankings
or interval approaches for determining criteria weights and values of alternatives,
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have been suggested, but the evaluation of these models is sometimes quite
complicated and difficult for decision-makers to accept.

The problem is eliciting stakeholder information. Different elicitation formalisms
have been proposed by which a decision-maker can express preferences. Such
formalisms are sometimes based on scoring points, as in point allocation (PA) or
direct rating (DR) methods. See chapter “Comparing Cardinal and Ordinal Ranking
in MCDM Methods” for a general discussion of such methods. Simos proposed
a simple procedure using a set of cards, trying to indirectly determine numerical
values for criteria weights (Simos 1990a, b). The Simos method is, however, a
bit different from the methods discussed above. It is a relatively simple method
to express criteria hierarchies easily while introducing some cardinality if needed. It
has been widely applied and has been well-received by real decision-makers. When
this method is used, a group of decision-makers is provided with a set of coloured
cards with the criteria written on them. They are also given a set of blank cards.
Then they are asked to rank the coloured cards from the least important to the most
important, where criteria of equal importance are grouped together. Furthermore,
the decision-makers are asked to place the blank cards between the coloured cards
to express preference strengths. Then the surrogate numbers can be computed. A
constant value difference, u, between two consecutive cards is assumed here. A
blank card between two consecutive coloured cards signifies a difference of 2 × u,
two white cards represent a difference of 3 × u, etc.

However, one problem with the Simos method is that it is not robust when
the preferences are changed (Scharlig 1996) and it has some other contra-intuitive
features, such as that it only picks one of the weight vectors satisfying the model,
while there can, of course, be an infinite number of them. Furthermore, because the
weights are determined differently depending on the number of cards in the subsets
of equally ranked cards, the differences between the weights also change in an
uncontrolled way when the cards are reordered. This is why Figueira and Roy (2002)
suggested a revised version, where there is a more robust proportionality when
these blank cards are used. This is accomplished by asking the decision-makers
to state how many times more important the most important criterion or criteria
group is compared to the least important. This addition seemingly solves some
problems but introduces the complication that the decision-maker has to reliably
and correctly estimate a proportional factor, z, between the largest and the smallest
criteria weights.

We therefore used a variant of the Simos method for elicitation purposes and
kept the card ranking part while changing the evaluation significantly compared to
the Simos method and its revisions. At that point, the participants already knew
the criteria well from the previous sections of the workshops. The key challenge
in our workshops was to elicit a collective ranking. Most methods for ranking and
weighting deal with individuals; we had to do it as a group effort. This was the
main reason to opt for card-ranking through a silent negotiation, not the calculation
behind it.

Each criterion was written on a coloured card and arranged horizontally on a
table. Each of the participants then successively ranked the cards from the least

http://doi.org/10.1007/978-3-030-89647-8_2
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Table 1 Card semantics Equal level of cards Equally important

No blank card Slightly more important
One blank card More important (clearly more important)
Two blank cards Much more important
Three blank cards Very much more important

important to the most important by moving the cards to a vertical arrangement,
where the highest-ranked criterion was put on top and so forth. If two criteria were
considered to be of equal importance, they were put on the same level. This process
went on for four rounds, where the number of moves for each round was 8, 5, 3
and 2. Furthermore, the first and third rounds were concluded by an open discussion
before the following round. The ranking procedure lasted 120 min or until a final
ranking was achieved that the participants found acceptable.

It is true that the decreasing number of moves can be disputed and is a weak
point of the method since it induces/forces the participants to act strategically in
relation to the information gained during the process. When this method is used,
therefore, potential conflicts must come into the open and be dealt with. In some
cases, by working with a set of final rankings in the evaluations, it shows whether
the differences are of importance or not. After the first ordinal ranking was finalized,
the participants were asked to introduce preference strengths in the ranking by
introducing the blank cards during three additional rounds (with three, two and one
move). The number of white cards (i.e. the strength of the rankings between criteria)
was also interpreted verbally (Table 1).

The final rankings of the six workshops were handed to the representatives of
each stakeholder group during the final workshop after 2 months, where the exercise
was also repeated with this group. They could there present each ranking and its
rationale to the other participants during an introductory presentation round.

3.1 Ranking of Different Criteria

The ranking of different criteria during the six workshops with homogeneous
groups of stakeholders showed that electricity system costs are perceived as an
important criterion by all groups of stakeholders. Safety and global warming
potential are also perceived as important criteria. Safety has the highest importance
for decision-makers and is also important for local communities, future decision-
makers, and finance and investment. Global warming potential is important for
local communities and for finance and investment. Global warming potential was
a contested criterion, being perceived as the least important by academia. At the
same time, domestic value chain integration was perceived as the least important
criterion by almost all stakeholder groups, excluding academia and decision-makers.
Non-emission hazardous waste was the least important criteria for civil society,
academia, future decision-makers and current decision-makers. Pressure on local
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Table 2 Ranking of criteria by different stakeholder groups

Stakeholders

Use of 
domestic 
energy sources

Global 
warming 
potential

Domestic 
value chain 
integration

Technology 
and 
knowledge 
transfer

Electricity 
system costs 

Young leaders Moderate-
low 
importance

Moderate-
low 
importance

Least 
importance

Moderate 
importance

High 
importance

National NGOs Moderate-
low 
importance

Moderate-
low 
importance

Least 
importance

Moderate-
low 
importance

High 
importance

Local communities Least 
importance

High 
importance

Least 
importance

Least 
importance

High 
importance

Academia Moderate 
importance

Least 
importance

Moderate-
low 
importance

Moderate 
importance

High 
importance

Finance/Industry Least 
importance

High 
importance

Least 
importance

Least 
importance

High 
importance

Policy-makers Moderate 
importance

Least 
importance

Moderate-
low 
importance

Least 
importance

Moderate 
importance

Compromise Moderate-
low 
importance

Least 
importance

Least 
importance

Moderate-
high 
importance

Moderate-
high 
importance

On-site job
creation

Pressure on
land resources

Pressure on
local water
security

Non-emission
hazardous
waste

Local air 
pollution and
health

Safety

Moderate
importance

Least
importance

Moderate
importance

Least
importance

Moderate-
low 
importance

High 
importance

Moderate-
low 
importance

Least
importance

Moderate-
low 
importance

Least
importance

Least
importance

Moderate-
low 
importance

Least
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land resources was ranked as the least important criterion for academia, and pressure
on local water resources was ranked as the least important criterion for decision-
makers. Table 2 shows different criteria and their importance for the six stakeholder
groups.
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• The ranking of the criteria by civil society and NGOs showed that the electricity
system cost is by far the most important criterion and weighs more than one
third in the decision-making process, the ten remaining criteria together making
less than 70%. During the round of open discussion after the ranking exercise,
the following arguments were discussed and the following criteria were debated
as the most important: electricity system costs, socio-economic impacts and
safety. Safety was discussed in light of further efforts needed to develop safety
regulations for existing and emerging technologies. The question was also how
to include safety regulations in the national legislative framework.

• For finance and investment stakeholders, the main focus of discussion was on
the safety of electricity generation. Safety seems to be one of the most important
criteria; however, the implementation of safety measures will invariably lead to
higher energy costs. A further concern of participants was that safety-monitoring
authorities in Jordan lack the power to reinforce safety regulations. The respon-
sibility level of stakeholders should be increased in order to guarantee the
safety of power plant operations. Participants believed that technologies such as
nuclear power technologies will be transferred from more experienced countries;
therefore the know-how and guarantees for safety will be also transferred.

• During the open discussion among academia, a serious debate took place
between participants who thought that electricity system cost was the most
important criterion and participants who had a common understanding that safety
is the most important criterion. In their opinion, safety and security were vital.

• Among future decision-makers, electricity system costs were considered the
most important criterion, especially in conditions of limited budget and budget
deficit in Jordan. However, there was no consensus on this criterion among
participants. Other participants strongly objected that values are more important
than costs. Safety and transfer of knowledge were considered crucial for the
implementation of safety regulations. The risk of climate change impacts was
also closely connected with safety issues.

• Representatives of local communities intensively debated what is more impor-
tant, safety or impacts on human health and on locally available resources
such as water and land. Also, electricity costs play a significant role for local
communities. There was no common opinion on these criteria among different
communities, and the participants did not come to a compromise solution on
which criterion was the most important.

• The discussion after ranking among decision-makers was short: participants
agreed on the ranking and on the importance of the safety criterion. The aspect of
safety was picked up again during the ranking of the procedural criteria, where it
was agreed that safety should remain a top priority.
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3.2 Procedural and Output Justice

• Representatives of civil society and NGOs argued that every infrastructure
project should be combined with the implementation of participation procedures,
namely in the framework of environmental impact assessment. These procedures
should guarantee that the local community benefits from the project. Further
sensibilization of the population is needed to guarantee sufficient levels of
awareness and knowledge about the project and about possibilities to participate.
Two factors were intensively debated: access to information, and whether or not
it could be considered as participation, and compensation, namely who should be
responsible, how it should be organized and who should be compensated.

• The main focus of discussion among finance and investment was about the
access to information and meaningful participation. While some participants
argued that access to information should be a prerequisite for meaningful partici-
pation, others argued that participation produces access to information. However,
a consensus was reached that benefit sharing should come after the access to
information and meaningful participation, and that compensation should be the
least important criterion. This was mainly because of the participants’ perception
that compensation is only due after a disaster has occurred.

• Academia intensively debated whether or not providing information is part of
stakeholders’ involvement and inhabitants’ engagement. It was agreed that con-
ditions for engagement should be provided during all phases of decision-making
processes rather than compensating for adverse impacts of a non-inclusive and
non-transparent decision-making process.

• Some participants among future decision-makers argued that participation
in decision-making processes should be prioritized. Participants initially had
different ideas on what access to information meant. It was argued that access
to information reduces fear and enables participation; therefore, access to
information should be the most important criterion. It was agreed that access
to the information criterion should precede the participation criterion in the
decision-making process. Furthermore, it was decided that benefits should be
ranked third, especially if the technology creates benefits for the entire society,
the state and the nationwide economy.

• The aspects of involvement and participation were intensively discussed by
local communities. It was agreed that community involvement in decision-
making processes is the most important criterion, and should go much beyond
simply informing or providing information, though the availability of clear and
transparent information is a necessary requirement. It was also agreed that
compensation is the last criterion and that projects should generally be deployed
to leave communities as better places afterwards rather than simply compensating
them for impacts from the projects.

• Decision-makers agreed that awareness-raising measures are a first step. There-
fore, clear and transparent information should be available to stakeholders and
inhabitants to guarantee public and social support for infrastructure deployment.
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4 Decision Evaluation

A common approach to solve decision problems with multiple criteria is to specify
a set of criteria that represent the relevant aspects of a problem and then define
a weight function over the criteria set. Value functions are then defined for the
alternatives to each attribute. It is common here to use a weight function over
the attribute set using fixed numbers on a normalized scale. The criteria weights
thus describe each criterion’s significance in the specific decision context. Value
functions of the alternatives are defined in a similar way. Thereafter, the overall
score of each alternative is calculated by aggregating the various components.

We have followed this general approach in the evaluation process. The per-
formance of the different electricity generation technologies was estimated from
a larger expert survey. Together with the surrogate weights, the experts therefore
provided the decision base for the multi-criteria analysis. Using a weighted aggre-
gation principle, we combined the multiple criteria and stakeholder preferences
with the valuation of the different technology options under the criteria surrogate
weights. The results of the process were (i) a detailed analysis of each technology’s
performance compared with the other technologies and (ii) a sensitivity analysis to
test the robustness of the result. The resulting multi-criteria decision trees look like
Fig. 1.

During the process, we considered the entire range of values as the alternatives
presented across all criteria, as well as how plausible it was that an alternative
outranked the remaining ones, thus providing a robustness measure. Because of
the complexity of these calculations, we used the state-of-the-art MCDA software
DecideIT for the analysis, which allows for imprecision of the kinds that exist in
this analysis (see, for example, Danielson and Ekenberg 2007).

4.1 Encoding of Criteria Weights

One of the central issues in such situations is how to assign weights while avoiding
too much information loss and preserving correctness in the weight assessments.
Using criteria ordinal rankings usually avoids some of the elicitation difficulties
that appear when limited to precise numbers only. Techniques for ordinal rankings
are, however, quite different regarding their accuracy, and decision-makers usually
also have usable knowledge of decision situations expressed in criteria orderings
(see, for example, Danielson and Ekenberg 2016a, b; Danielson et al. 2014),
information that should also be used. The so-called surrogate weights based only
on ordering may thus be too weak a representation. In the analyses, we have
therefore included information regarding relational strengths. The analytical part
of the project evaluation consists of translating the rankings to surrogate weights,
evaluating them by applying the cardinal ranking (CAR) method, and then using
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Fig. 1 A multi-criteria tree for the final workshop evaluation
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these values in the DecideIT software which is designed to solve this type of
problem under uncertainty. Information loss is thereby limited.

The criteria weight generation is further described in chapter “Comparing
Cardinal and Ordinal Ranking in MCDM Methods”, but the general idea is the
following:

• Assign an ordinal number to each importance scale position, starting with the
most important position as number 1.

• Let the total number of importance scale positions be Q. Each criterion i has
the position p(i) ∈ {1, . . . ,Q} on this importance scale, such that for every two
adjacent criteria ci and ci + 1, whenever ci>si ci+1, si = | p(i + 1) – p(i) |. The
position p(i) then denotes the importance as stated by the decision-maker. Thus,
Q is equal to �si + 1, where i = 1, . . . ,N − 1 for N criteria.

In chapter “Comparing Cardinal and Ordinal Ranking in MCDM Methods”, we
argue that the best method for cardinal ranking with properties similar to Simos
cards is to use what is called CSR weights, expressed as:

wCSR
i =

1
/
p(i)

+ Q+1−p(i)
Q

∑N
j=1

(
1
/
p(j)

+ Q+1−p(j)
Q

) (1)

which were consequently employed in this study. Based on the weightings of each
stakeholder group, expressed as CSR weights, and observations made during the
workshops, the analysis of potential conflict lines and commonalities between the
different stakeholder preferences was facilitated through negotiation.

4.2 Aggregating the Components

One of the problems with most models for criteria ranking is that numerically
precise information is seldom available. We have solved this in part by introducing
surrogate weights as described above. This is only a part of the solution, however,
since the elicitation can still be uncertain and the surrogate weights might not be a
fully adequate representation of the preferences involved, which is, of course, a risk
with all kinds of aggregation. To allow for analysis of how robust the problem is to
changes in the input data, we also introduced intervals around the surrogate weights
and around the values of the technology options. Thus, in this elicitation problem,
the possibly incomplete information is handled by allowing the use of intervals,
where ranges of possible values are represented by intervals in combination with
pure orderings without the use of surrogate weights at all if the latter turn out to be
inadequate.

There are thus several approaches to elicitation in MCDM problems, and one
way of partitioning the methods into categories is in terms of how they handle

http://doi.org/10.1007/978-3-030-89647-8_2
http://doi.org/10.1007/978-3-030-89647-8_2
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imprecision in weights and values, such as fixed numbers, comparative statements,
representing orderings or intervals.

Computationally, methods using fixed numbers are very easy to solve, while
systems of relational or interval constraints normally require more elaborate opti-
mization techniques. On the other hand, if the model only accepts fixed numbers,
we impose constraints that might severely affect the decision quality. If we allow
for imprecision in terms of intervals and relations, we usually get a more realistic
representation of the problem. These can be represented by interval statements, for
instance, such as wi ∈ [yi – ai, yi + bi], where 0 < ai ≤ 1 and 0 < bi, ≤ 1, or
comparative statements, such as wi ≥ wj. Systems of such equations can be solved,
and aggregations of decision components in these formats can be optimized, by
using the methods from Danielson and Ekenberg (1998, 2007). The disadvantage
here is that many decision-makers perceive these methods as difficult to understand
and accept because of complex computations and loss of user transparency.1

The decision information can be considered as constraints in the multi-
dimensional solution space formed by all decision variables, which are collected
as linear constraints to the solution sets of the spaces spanned by the weight and
value variables, respectively. To further aid in the modelling of the problem, the
orthogonal hull concept is introduced, indicating which parts of the statements are
consistent with the information given so far. This then becomes the projection of the
constrained spaces onto each variable axis, and can thus be seen as the meaningful
interval boundaries for the decision situation. The same type of input is used for
the components involved—i.e. alternative values v and weights wj, although the
normalization constraints � wj = 1 must not be violated in the weight case.

All input into the model was subject to consistency checks performed by the
DecideIT tool. The calculations are based on the weighted sum of the alternative
values under the criteria and sub-criteria aggregated for the entire decision problem.
For instance, in a three-level tree such as the current one, this becomes

V (As) =
∑

wi

∑
wij

∑
wijkvijk (As) ,

where vijk(As) is the value of alternative As under sub-criteria ijk. Given this, we
then calculate the strength of alternatives as a mean for further discriminating the
alternatives. The strength simply denotes the difference in weighted value—i.e. the
expression V(Ai) – V(Aj) for the difference between alternatives Ai and Aj. In this
way, we can readily calculate the maximum and minimum difference between the
alternatives.

An important feature of this process is the sensitivity analysis. This analysis
attempts to highlight what information is the most critical for the obtained results
and must therefore be subject to careful additional consideration. It also highlights
which of the assessments are too imprecise to be of any assistance in the discrim-

1 This should be kept in mind here, as always when working with aggregation methods of whatever
kind, and this should affect how the elicitation mechanisms and software tools are used.
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Fig. 2 Alternative comparison between total expected values of alternatives utility PV and CSP
respectively

ination of alternatives and thus should be made more accurate, thereby triggering
and facilitating iteration in the process. The embedded sensitivity analysis, called
the concept of contraction, is performed by reducing the widths of the intervals
(contraction) for the values and weights in the analysis model of the decision
problem. The concept’s idea is to shrink the orthogonal hull while studying the
stability of the maximum strength at different contraction levels. The level of
contraction is indicated as a percentage so that, for a 100% level of contraction,
all orthogonal hull intervals have been reduced to their respective focal points. The
contraction can be seen as cutting the hull from the extreme points (having lower
reliability or a lower degree of belief towards the focal point), increasing the lowest
permitted degree of belief. When dealing with interval statements only this is quite
simple; it is more complicated when comparative constraints are involved.

Thus, the programme calculates the result of assigning all possible values, given
the estimated interval and relations. We can then see all the possible weighted values
given the background information. Figure 2 shows how two of the strategies, utility
PV and CSP, relate to each other given the information provided during the final
workshop.

Another good tool for studying how sensitive the result is for error estimates is
to use sensitivity analyses. These are used to investigate how stable the choice of
a strategy is when the input data change. Here we primarily investigate the limits
within which the probabilities and values must stay for the decision not to change.
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Fig. 3 A tornado diagram showing how much changes to the criterion ‘current domestic potential
of the energy carrier’ affects the respective alternatives

This is done by letting the input values vary between possible and realistic values
and investigating how these fluctuations affect the outcome. Thus, the values are
systematically varied up and down. See Fig. 3.

5 Trade-Offs Between Technologies

Analyses and the application of DecideIT software allowed identifying what the
preferences of stakeholders in terms of criteria mean for the most preferable tech-
nology. In the figures, all of the pairwise comparisons are shown simultaneously. A
red square means that the difference between the alternatives is not significant when
contracting the information bases, while a yellow or green square indicates that the
difference is either significant or highly significant. Furthermore, the figures show
how large an impact the respective criteria have on the values of the alternatives. For
instance, in Fig. 4, the criterion electricity costs has a significant impact on most of
the alternative technologies, while the criterion pressure on local resources has a
lower impact.

The results for the civil society and NGOs group show that alternative 1
(utility-scale photovoltaic) is the preferred alternative, meaning that solar radiation
converted into electricity by the photovoltaic effect is the most favourable tech-
nology, slightly better than coal and nuclear, followed by gas, large-scale hydro,
oil shale, concentrated solar power (CSP, which concentrates solar radiation onto a
receiver and then converts it into thermal energy), onshore wind and oil. There is
strong confidence that oil is considered much worse than most of the technologies
and that coal, nuclear and gas are considered better than onshore wind, CSP, oil
shale and large-scale hydro. A significant role in these results is played by electricity
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Fig. 4 Preferences of civil society and NGOs stakeholder group

systems costs criterion, which was considered one of the most important criteria and
pushed coal, gas, nuclear and PV to the top of the ranking. See Fig. 4.

Utility PV was considered the most favourable technology by the finance and
investment stakeholder group. Utility PV was slightly better than nuclear and large-
scale hydro, followed by onshore wind, CSP, gas, coal, oil shale and oil. There
is strong confidence that oil is worse than all technologies except oil shale and
that utility PV, nuclear and large-scale hydro are better than all other technologies.
Global warming potential is improving the positions of most of the technologies
except coal, oil and gas. Electricity systems costs are pushing up coal, nuclear, gas
and large-scale hydro. See Fig. 5.

For academia, the utility PV was definitely considered the most favourable
technology, followed by nuclear, oil shale, coal, gas, CSP, onshore wind, large-scale
hydro and oil. There is strong confidence that oil is worse than all technologies
except large-scale hydro, onshore wind and CSP. Utility PV was considered a much
better technology than all technologies except oil shale. Nuclear is much better than
onshore wind, large-scale hydro and oil. Local air pollution plays a role in these
results and pulls back coal. Electricity systems costs are pushing up nuclear, coal
and gas. On-site job creation is considered important for oil shale. At the same time,
pressure on water resources pulls this technology down. See Fig. 6.
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Fig. 5 Preferences of finance and investment stakeholder group

The results in the group of future decision-makers show that utility PV is
considered the most favourable technology, slightly better than coal and nuclear,
followed by gas, large-scale hydro, CSP, onshore wind, oil shale and oil. There is
strong confidence that oil is worse than almost all technologies except oil shale, and
that utility PV, coal and nuclear are better than all other technologies. Safety is an
important criterion for stakeholders in this group. Also, electricity systems costs are
pushing up nuclear, coal and gas, as well as PV. See Fig. 7.

In the group of local community representatives, utility PV is considered the
most favourable technology, slightly better than coal and gas, followed by nuclear,
onshore wind, large-scale hydro, CSP, oil, and oil shale. There is a strong confidence
that oil shale is worse than all technologies and that utility PV and coal are better
than onshore wind, large-scale hydro, CSP, oil, and oil shale. The safety criterion
plays a significant role in all technologies and is pulling down oil and oil shale.
Electricity systems costs are pushing up nuclear, coal and gas. Pressure on local
water resources is reducing the positions of oil shale and nuclear. The availability of
domestic resources is reducing the position of large-scale hydro. See Fig. 8.
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Fig. 6 Preferences of the academia stakeholder group

Utility PV is considered as the most favourable technology by decision-makers,
followed by oil shale, nuclear, coal, gas, large-scale hydro, onshore wind, CSP and
oil. See Fig. 9.

There is strong confidence that oil is worse than most of the technologies, except
CSP, onshore wind and large-scale hydro, and that utility PV is better than gas, large-
scale hydro, onshore wind, CSP and oil. Electricity systems costs are considered
an important criterion which pushes up nuclear, gas and coal. Local air pollution
reduces the positions of gas, and the availability of domestic resources criterion
reduces the position of large-scale hydro. Pressure on water resources is reducing
the positions of oil shale and nuclear.

During the first round of the final workshop, to which representatives from
different stakeholder groups were invited, utility PV was considered the most
favourable option, followed by nuclear, gas and coal, as well as CSP, large-scale
hydro, onshore wind, oil shale and oil. There is strong confidence that oil is worse
than utility PV, nuclear, gas and coal, and that nuclear is better than CSP, large-scale
hydro, onshore wind, oil shale and oil. Electricity systems costs play an important
role and are pushing up nuclear, coal and gas. Local air pollution reduces the
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Fig. 7 Preferences of young leaders/future decision-makers

position of coal. On-site job creation is important for oil shale. Pressure on water
resources reduces the positions of oil shale and nuclear. See Fig. 10.

The final ranking during this workshop showed that utility PV is definitely
the most preferable option, followed by CSP, nuclear, oil shale, onshore wind,
large-scale hydro, gas, oil and coal. There is strong evidence that coal is the least
preferable option except for oil, that utility PV is better than all other options, and
that CSP, nuclear and oil shale are better than oil and coal. Local air pollution plays
an important role for all technologies and is pushing down coal. On-site job creation
is important for oil shale. Pressure on water resources is reducing the positions of oil
shale and nuclear. Electricity systems costs are less important than in the previous
round but still play a role, together with local air pollution, on-site job creation and
pressure on water resources. See Fig. 11.

Global warming potential was another criterion with high polarization of opin-
ions, local community representatives ranking the criterion high, and academia and
policymakers ranking it low. Pressure on local water security and non-emission
hazardous waste were two criteria which received a low ranking but where the
positions of stakeholders were homogeneous. National NGOs and academia ranked
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Fig. 8 Preferences of the local community stakeholder group

technology and knowledge transfer and on-site job creation significantly higher than
local community and policymakers. The use of domestic energy sources was also a
criterion with high polarization of opinions: it was ranked high by decision-makers,
national NGOs and academia, and received a low ranking from finance and industry,
and from local communities.

6 Conclusions

We have used a new multi-stakeholder multi-criteria approach to assess the rele-
vance of Jordan’s electricity generation technologies against a set of criteria under
uncertainty, reflecting environmental, social and economic components of sustain-
able development. The performance of different electricity generation technologies
was estimated based on a large expert survey. Together with the surrogate weights,
they provided the decision base for the multi-criteria analysis. The multiple criteria
and stakeholder preferences were combined with the valuation of the different
technology options under the criteria surrogate weights. The results of the evalua-
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Fig. 9 Preferences of the political decision-makers stakeholder group

tions are: (i) a detailed analysis of the performance of each technology compared
with the other technologies; and (ii) a sensitivity analysis to test the robustness
of the result. The overall results show that currently the discourse in Jordanian
society is dominated by economic rationality, such as electricity costs, supported by
concerns about safety during operation and maintenance of electricity generation
power plants. The results also show a strong desire of all stakeholder groups
to have an opportunity for engagement in decision-making processes on energy
transition, rather than purely compensating local communities for the installation
of electricity generation and transmission technologies. The discourse about energy
transition in Jordan is strongly dominated by energy security concerns. In almost all
group rankings, the safety of energy generation and the affordability of electricity
prices were ranked as top priorities. The criteria, which are relevant for the social
and environmental impacts of technologies, were moved by participants from the
middle or the bottom of the ranking. It seems that concerns about climate change
mitigation do not belong to the dominant discourse, as the criterion on climate
change mitigation was frequently ranked at the bottom of the list. One stakeholder
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Fig. 10 Results of the first round of the final workshop

group, the local communities, ranked global warming potential at the top of the
ranking, probably because people on the ground are feeling the direct impacts
of climate change. However, while evaluating renewable energy technologies, the
most frequent positive characteristic was ‘clean’ and ‘with little impact on the
environment’. It seems that there is a certain level of awareness about environmental
protection issues; however, the level of awareness about climate change risks and the
need for climate change mitigation is lower.

Comparison of visions of the environmental, social and economic future of
Jordan showed that the young people have the most optimistic approach. For
instance, they did not identify any negative tendencies. Among economic factors,
the positive expectations connected with investment in new technologies and
reduction of dependency on energy imports were mentioned most frequently. The
positive expectations about social development are connected with the creation of
employment opportunities and the generation of further knowledge. In general, there
was a perception that the environmental future of Jordan is positive. Among negative
tendencies, the possible increase in electricity costs was named most frequently.
In the social area, this is the destruction of traditional values and of traditional
family structure. In environmental areas, the most frequent concerns were about
water scarcity.
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Fig. 11 Results of the second (last) round of the final workshop

Discussing procedural and output justice, the majority of stakeholders had
the opinion that compensation for the deployment of infrastructure was the least
favourable criterion and that further efforts are necessary to facilitate the engage-
ment of stakeholders and laypeople in decision-making processes on energy
transition. Providing possibilities for participation in decision-making processes
was considered the most important criterion among the four criteria of procedural
and output justice.

Solar, nuclear and oil are the three energy generation technologies most discussed
in the Jordanian media. However, attitudes to these technologies are quite different.
Solar is perceived mostly positively, with PV being a top priority technology. At
the same time, CSP does not enjoy the same high level of support as PV. Nuclear
was often considered as the second or third most favourable technology. However,
opinions here are strongly polarized and several stakeholders are strongly opposed
to nuclear. Even though oil is discussed frequently in media, it is considered the
least favourable technology by all stakeholder groups. Shale oil is considered much
more positively, mainly due to the Jordanian resources, aspirations for technology
transfer and impulses for socio-economic development which are connected with
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the deployment of this technology. The strong recommendation from stakeholders
during almost all workshops was to add oil shale technology as one of the
most discussed in Jordan. In some stakeholder groups, such as academia or local
communities, there was also a recommendation to add waste to energy technology,
with major arguments focusing on its positive features such as the possibilities of
reducing the costs of waste disposal, clean technology and the potential to create
green jobs.

Overall, solar radiation converted into electricity by the photovoltaic effect
(utility PV) remains the most favourable technology. It was ranked as the top priority
in the frames of all stakeholder groups; furthermore, during the final ranking with
the mixed group of stakeholders, utility PV was ranked at the top of the list. During
the individual ranking, stakeholders ranked PV as the most favourable technology.
Other solar technology, such as CSP, is ranked significantly lower. The main reason
is the high investment costs of this technology.
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A Proposition of a Multidimensional
HAZOP Analysis (MHAZOP) to Support
a Decision-Making Process

Thalles V. Garcez and Marcelo Hazin Alencar

1 Introduction

Over the centuries, the idea of risk control has been discussed by different thinkers
of different historical Ages, and has, for example, been associated with divine
control, or even with random occurrences (Bernstein 1998). This understanding has
evolved over the centuries to the present day. Today, according to Aven (2018), the
term risk is regarded as a fundamental issue in the search for viable decisions when
discussing solutions to real-world problems such as those related to technology,
health, safety, or climate change. de Almeida et al. (2016a) point out that in the
last decades there has been an increase in the number of scientific research studies
developed in different contexts regarding risk management. This transformation
is due to many factors such as contractual requirements, norms and regulations,
competition between organizations, and society having access to information. As
a consequence, the development of models applied to risk management has taken
place with a view to providing more robust results for those involved in the
process. This arises from identifying, eliminating, or mitigating the risk of a single
undesirable event or a set of such events. These transformations seek to incorporate a
broader and different view as to the use of techniques, while always aiming to detect
potential risks in order to reduce or eliminate accidents, occupational diseases, and
impacts on the environment, and thereby seeks to improve the quality of life of
people at work and in society.

According to Dunjó et al. (2010), the techniques used for Process Hazard
Analysis (PHA) are conducted so as to identify hazards in new or existing processes.
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PHAs are designed not only to ensure safe projects and system operations, but
also to complement risk assessments and to make safety devices fit for purpose.
Therefore, this type of analysis can be considered as the basis for the safety of
processes and for risk management programs. Among techniques of PHA analysis,
the HAZOP (Hazard and Operability) study stands out worldwide. Its aim is to
study the hazards associated with operating and maintenance problems, while taking
the opinions of experts and deviations arising from project conditions into account
(Baybutt 2015a, 2015b; de Almeida et al. 2015). Basically, HAZOP identifies how a
process can deviate from the specifications of a project. This is identified by means
of structured and sequential procedures, which include combining predetermined
keywords and parameters that describe the processes, activities, or operations that a
system or set of equipment performs. Moreover, HAZOP seeks to identify the ways
in which these potential hazards are controlled or how any consequences arising
from hazards are mitigated.

Although HAZOP is an efficient approach to hazard assessment, it has some
limitations, such as: it is a qualitative approach, and thus does not provide a
quantitative analysis of the results; it is a heuristic approach in which the focus
is mainly on the brainstorming developed by the team responsible for the study, and
therefore, there is no-one who has a primary role in the decision-making process,
i.e., no one person is designated as the decision-maker (DM); when deviations are
generated, the inductive/deductive starting point is counter-intuitive, and thus does
not consider, for example, compound deviations (Baybutt 2015b; Guo and Kang
2015).

Given the “limitations” of the classic HAZOP approach, a structured framework,
called Multicriteria HAZOP (MHAZOP), is proposed in order to contribute to
the risk management process. It takes hazard scenarios, multiple consequence
dimensions, and the DM’s preferences into account.

One of the main results of HAZOP analysis is that it identifies many hazards.
Therefore, given the limited resources available, it becomes a major challenge for
managers to take action to address all risks (Othman et al. 2016). Furthermore, the
DM’s preferences will be incorporated into the MHAZOP decision model in order
to support the choice of the alternative, and by doing so, the multiple criteria will
be analyzed simultaneously (de Almeida et al. 2015). Therefore, MHAZOP will
establish a ranking of potential hazards, thus enabling response actions related to the
risk management process to be implemented in a structured way so as to eliminate
or mitigate existing risks.

2 HAZOP Study

HAZOP is a structured and systematic analysis of a planned or existing product,
process, procedure, or system, the main objective of which is to identify risks
to people, equipment, the environment, and/or organizational objectives. It is a
qualitative technique that is based on the use of guide-words, and is carried out by
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a multidisciplinary team that should always seek to provide a solution for dealing
with risk (IEC 31010 2009).

HAZOP can be divided into four main stages (IEC 61882 2001): definition,
preparation, examination, and documentation. Its development is carried out by
using questions based on using guide-words in the project/process being analyzed.
These guide-words drive the study group’s reasoning in order to identify the main
deviations from the intent of the project/process. Risk events are assumed to be
caused by deviations from the design or operational failures. This search process
should prompt group ideas and discussions so as to maximize the chances of a more
thorough analysis of the system. Subsequently, the causes and the consequences of
these possible undesirable events are identified, and, finally, mitigating actions are
suggested that aim to eliminate or minimize risk.

To facilitate the HAZOP process, the system under analysis is divided into nodes,
which may have different “sizes” depending on the complexity of the system and
the severity of the hazards identified. Therefore, it is emphasized that this selection
of the size of the nodes is a subjective decision which depends on the objectives that
the DM has to reach, i.e., what applying HAZOP is expected to achieve.

The final results of HAZOP analysis identify a large number of hazards,
so they need to be prioritized. According to Othman et al. (2016), in practice
this prioritization is based on DMs’ experience of making evaluations based on
their deductive judgment, which often only takes into account aspects related to
safety and costs. For this problem, Othman et al. (2016) presented a structured
methodology to incorporate prioritizing hazards into HAZOP analysis using an
analytic hierarchy process (AHP), called HAZOP-AHP. Besides prioritizing the
hazards identified from the HAZOP assessment, they also provide a means for the
assessors to quantitatively analyze the hazards with the appropriate countermeasures
to be taken.

Ramzan et al. (2009) present a systematic procedure based on an Extended
HAZOP methodology and the MCDA PROMETHEE technique for the case study
of a distillation column. The decision analysis included generating alternatives for
safe design; analysis of alternatives based on the extended HAZOP methodology to
identify hazards and generate alternatives; and, the economic module for estimating
both fixed and operating cost and calculating extended costs (risk cost).

Unlike previous HAZOP proposals, MHAZOP analyzes the concept of risk
from the point of view of Decision Theory, in which the multidimensionality of
the consequences is dealt with. This considers the possible damage in multiple
dimensions and incorporates the DM’s preference structure, thus enabling the DM,
based on his/her perceptions and behavior, to obtain differentiated information so
that risks in productive systems can be better managed.

Lastly, the existence of means of detecting and dealing with prioritized deviations
must be analyzed and so too must means of preventive and mitigating safeguards be
investigated in order to make recommendations and suggest improvement actions
for each deviation. Finally, a person responsible for correcting the process is
appointed and the effectiveness of the implementation is monitored.
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3 MCDM Approach

Multicriteria Decision Making (MCDM) is a set of methods and techniques
developed to support organizations and individuals to solve decision problems.
MCDM considers the DM’s preference structure and involves value judgment. The
DM’s preferences will be incorporated into the decision model in order to support
choosing the alternative, and while doing so, multiple criteria will be analyzed
simultaneously (de Almeida et al. 2015).

According to Munda (2008), from the operational point of view, the greatest
strength of multicriteria decision-making methods is their ability to analyze issues
that are characterized as conflicting, from different points of view, thereby allowing
the evaluation of the problem to be analyzed in an integrated way.

One important aspect of the problem that MDCM considers is the DM’s ratio-
nality. This can be compensatory or non-compensatory. Compensatory rationality
allows the overall performance of an alternative to be obtained by trading off values.
Single-criterion MCDM methods reflect compensatory rationality.

Multi-Attribute Utility Theory (MAUT) incorporates the issue of tackling prob-
lems which have multiple objectives (Keeney and Raiffa 1976), by aggregating
utility functions, and does so by considering the DM’s preference structure. The
multi-attribute utility function is estimated in accordance with the domain of
consequences, for which a structured protocol is used that is based on an axiomatic
structure.

According to Keeney and Raiffa (1976), the evaluation process of a multi-
attribute utility function has five steps: introduction of the terminology and idea,
identification of the relevant hypotheses of independence, evaluation of the condi-
tional utility function, evaluation of the scale constants, and the consistency check.

Choosing the MAUT method is justified because it has a well-structured protocol,
which is supported by a very solid and consistent axiomatic structure for decisions
which involve several criteria. In addition, according to Brito and de Almeida
(2009), it is in the probabilistic modeling stage that the uncertainties are inserted
within the axiomatic structure, which allows a more consistent approach to be taken
with regard to applying MAUT in multicriteria decision problems under situations
of uncertainty. This step of probabilistic modeling complements the modeling of the
DM’s preference structure.

In addition, MAUT takes the DM’s behavior in relation to risk into account.
Thus, the DM may be prone to risk or risk neutral for a given situation in each of
the dimensions of consequence analyzed (Keeney and Raiffa 1976).

4 Multidimensional HAZOP Analysis

Multicriteria decision-making approaches can be incorporated into the risk man-
agement process in order to provide a more structured decision-making process in
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the context under analysis. Different multicriteria methods have been applied in
recent years, thus providing a multidimensional analysis of risk. In this section,
a multicriteria decision model called Multidimensional HAZOP Analysis (MHA-
ZOP) is proposed. This model integrates Multi-Attribute Utility Theory (MAUT)
with HAZOP. The model is used to conduct a multidimensional analysis of risks,
based on the steps set out in the framework which is shown in Fig. 1. The framework
was constructed by combining the steps of the classic HAZOP (Macdonald 2004)
with the approach of the multidimensional risk analysis, thereby seeking a vision of
systemic risk management.

4.1 Identifying the Decision Maker (DM)

During the first step of the framework, who the DM will be is defined. The DM plays
the central role in the decision process. He/she has the authority to take the decision
and is accountable for it and therefore his/her preference structure is adopted.
Therefore, it is important to emphasize that the DM’s preferences should reflect
the organization’s interests and objectives, and also those of the senior managers
who will be held responsible for any and all consequences of this decision.

The DM may be influenced by other actors, such as analysts, clients, experts, and
stakeholders. The analyst gives methodological support to the DM by structuring
and building the decision model. Stakeholders try to influence the DM’s behavior
so as to obtain a satisfactory result for themselves or those whom they represent. In
general, these stakeholders are affected by the DM’s decisions. Experts are actors
who have specialized knowledge of some part of the system, who provide realistic
information that is incorporated into the decision model. According to de Almeida
et al. (2015), experts may be relevant for decision problems in the context of Risk,
Reliability, and Maintenance (RRM), since this requires many probabilistic issues
to be modeled, which experts have experience of.

What should also be emphasized is that in several situations it will be necessary
to include the preferences of several DMs, i.e., there will be a need for more than one
DM. In other words, a group decision will be made (Kilgour et al. 2010). However,
this framework places the emphasis on decision problems for which there is only
one DM.

As the proposed model seeks to be a tool that aids the management of risks,
the DM chosen can be appointed from among managers who have key functions
within the company. Among such functions are those that serve risk management
by supplying the main information that is used to help a DM carry out his/her
functions. These managers may well include the maintenance manager, the manager
responsible for health and safety at work and in the environment, or the operations
and production manager.
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Fig. 1 Multidimensional HAZOP framework
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4.2 Definition HAZOP Phase: Define the Scope, Objectives
and Select Multidisciplinary Team

The first step of HAZOP is the definition stage. This sets the scope of the main
objectives previously defined by the DM and the multidisciplinary team. During this
stage, a qualitative analysis of the multidimensional risks involved in the processes
of a given company is conducted with a view to proposing measures that prevent
and/or mitigate risks. According to Baybutt (2015a), drawing up a statement of the
purpose, scope, and objectives of these measures is essential to ensure that HAZOP
studies are focused and complete.

Why a HAZOP study is conducted? Generally, this is for a combination of
reasons which include meeting the regulatory requirements; the requirements of the
industry in general and of the company in particular; and to reduce legal liabilities,
as part of a post-incident investigation; the insurance company’s requirements, etc.
HAZOP also helps to guarantee that the result is consistent with what the study set
out to do.

The scope of HAZOP defines what should be included in the study, as well
as what should not be included. Items that can be considered include: boundaries
(limits) of the process; equipment, procedures, control systems, etc.; support
systems; modes of operation (states of the process during its life cycle such as
startup, normal operation, and shutdown); external events (natural events such as
lightning strikes, events induced by humans, cascade events and failures in utilities
and support systems, etc.) (Baybutt 2015a).

The objectives define what is to be considered, specifically, the types of hazards
and consequences. In some situations, there may be objectives which overlap in the
definition of their scope for different views of practitioners.

Hence, identifying the purpose, scope, and objectives is an important step
of the decision process because these have an impact on all the steps in this
process. Furthermore, they may influence even the process of establishing the set
of alternatives. The approaches of Problem Structuring Methods (PSM) are very
useful for conducting this step (Keeney 1992; Rosenhead and Mingers 2001).

HAZOP is a technique performed by teamwork, in which it is preferable
for people to have different functions and multidisciplinary knowledge, such as
managers and operators of production, maintenance, design, procurement, software,
etc. Therefore, having multidisciplinary teamwork allows the maximum use of the
experiences and different competences of those belonging to the group and thus for
them to achieve an understanding of the problems of different areas and interfaces
of the system under analysis.
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4.3 HAZOP Preparation Phase: Plan, Estimate Time
Required, Arrange the Schedule, and Collect Data

The HAZOP preparation phase includes activities such as establishing how to plan
the study to be conducted, collecting data, choosing the method of registration,
estimating the time required to undertake the study, and defining the schedule of
activities to be carried out. It is worth pointing out that data collection can be
supported by other surveys of risk analysis in ventures similar to the one analyzed,
of technical norms and of regulations on the subject.

4.4 Define Limits of the Study in the
System/Equipment/Process

This stage defines what systems/equipment and production processes will enter the
HAZOP study. In order to do this, the level of analysis, which will establish the
depth of the analysis in the system (system, subsystems, components, processes,
etc.) should be defined as should the criteria which will be used to select the
systems/processes, i.e., the priority systems/processes. This should be conducted
in accordance with the set of objectives that the DM has defined, which may
involve objectives related to the impact on safety, environment, operation, cost,
etc. Therefore, since multiple objectives will be considered, MCDM models are
appropriate for tackling this decision problem (de Almeida et al. 2015).

After setting priorities, these systems/processes should be identified and
described, and their limits should be defined. This step is essential to avoid
redundant analysis of the same system/process in different stages of the HAZOP
study, or even to avoid creating gaps in HAZOP because evaluating some part of
the system/process was overlooked.

4.5 Selecting Nodes (i1, i2, . . . , in) and Identifying
the Parameters of the Process (j1, j2, . . . , jm)

To start the HAZOP study, the lines (nodes or circuits) (i1, i2, . . . , in) in the
flowchart of the process under analysis should be defined. Each node corresponds
to a subsystem/piece of equipment in which the activities and tasks developed in
that area will be detailed. This procedure can avoid excluding a risk that should be
analyzed.

The parameters of the process (j1, j2, . . . , jm) refer to the process variables that
are being evaluated, which will then be evaluated in relation to the intention of the
original design conditions, for example, temperature, pressure, flow, density, etc.
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Table 1 Examples of basic
guide-words

Guide-word Meaning

No or none Negation, absence
More Quantitative increase
Less Quantitative decrease
Also Qualitative modification/addition
Part of Qualitative modification/subtraction
Reverse Opposite direction
Other than Complete substitution

4.6 Identifying Alternatives (Deviations)

4.6.1 Combining the Guidewords (g1, g2, . . . , gp) and Parameters j →
Deviations: d(i, j, g)

Basically, the HAZOP analysis investigates how an i node of a plant, sector, or
piece of equipment can deviate d from the intention of the design. For this purpose,
guide-words g (Table 1) are used to evaluate the project variables j. Therefore,
HAZOP thoroughly investigates each succeeding step of a process in order to
discover all possible deviations from normal operating conditions, thus serving as
a reminder that operability is as important as identifying hazards. Subsequently,
HAZOP investigates the causes and consequences of this deviation from design,
and offers suggestions so that such deviations do not occur.

The guide-words are compared with the parameters of the process (temperature,
pressure, level, etc.), thereby generating the possible problems to be studied, as
shown in Table 2.

4.6.2 Identify New Critical Combinations of Guide-Words
and Parameters: d(i, j × j, g × g)

One of the criticisms of traditional HAZOP is that it does not consider the
possible occurrence of compound deviations. Therefore, this stage of the
proposed model seeks to identify these possible compound deviations that
can produce critical combinations for the system under analysis. In other
words, in addition to the simple combination of the guide-words and the
process parameters for node (i, j, g) in order to determine each deviation
d(i, j × j, g × g), it is interesting to evaluate the combination of the occurrence
(g1, g2, g3 . . . , g1 × g2, g1 × g3, . . . , g2 × g3, . . . , g1 × g2 × g3, . . . ) with multiple
parameters of the process (j1, j2, j3, . . . , j1 × j2, j1 × j3, . . . , j2 × j3, . . . , j1 × j2 ×
j3, . . . ), as exemplified in Table 3.

This combination is justified because of some systems in which the occurrence
of a simple deviation d(i, j, g) may not have serious consequences, and therefore
they may be minimized in the risk management process. This occurs mainly in
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Table 2 Deviation formed
by combining parameters and
a guide-word

Parameter (variables) Guide-word Deviations

Flow No or none No flow
Less Less flow

More More flow
Reverse Reverse flow
Also Contamination

Pressure Less Low pressure

More High pressure
Temperature Less Low temperature

More High temperature
Level Less Low level

More High level
Viscosity Less Low viscosity

More High viscosity
Reaction No or none No reaction

Less Incomplete reaction
More Uncontrolled reaction
Reverse Reverse reaction
Also Secondary reaction

situations in which deviations can generate possible hidden failures, or are of little
consequence, but the occurrence of multiple failures has failures with catastrophic
consequences. For example, the deviation “No flow d(G1 × P1)” may not be
critical for a given process, i.e., it may not generate great consequences, should the
deviation happen. However, the occurrence of the deviation formed by “No flow &
High Temperature d(G1 × P1; G3 × P2)” can generate catastrophic consequences.
Therefore, it is essential to evaluate the multiple combinations of the guide-words
and multiple parameters of the process.

4.7 Identify Hazard Scenarios (θ1, θ2, . . . , θq)

The identification of the hazard scenarios is related to states of nature (θ ), defined in
Decision Theory. The state of nature corresponds to one of the basic ingredients of
Decision Theory and it consists of factors in the system that are not under the DM’s
control and may change randomly, thus influencing the outcomes of the decision
process (Raiffa 1968; Berger 1985; Edwards et al. 2007; de Almeida et al. 2015).

This step consists of defining all possible hazard scenarios Θ = {θ1, . . . , θq}
resulting from operational failures defined previously by the deviations
d(i, j × j, g × g). The resulting hazard scenarios do not define the mode of failure
or accidental causes, but the phenomena or accidents associated with the deviation,
which are influenced by the failure mode and factors adjacent to the occurrence
of the deviation, such as, for example, there being immediate ignition or delated
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ignition, whether or not there is confined space, half-life of toxicity of a certain
product, etc. In addition to these hazard scenarios, one should consider the normal
operating scenario θN , in which all operations are perfectly normal, and no type of
hazard occurs. Thus, in this case, it is considered that no hazard scenarios occur.

There are several techniques that can help this step, such as Preliminary Risk
Analysis (PRA), Failure Modes and Effects Analysis (FMEA), and Event Tree
Analysis (ETA).

FMEA is a bottom-up approach that is used to analyze all potential failure modes
of a system component and is widely used in industry as a means of identifying,
ranking, and mitigating the failure modes of components (Whiteley et al. 2016; Du
et al. 2016; Akbarzade Khorshidi et al. 2016; Selim et al. 2016). The criticality
determined by FMEA is traditionally established by calculating the risk priority
number (RPN) that is obtained by the product of its severity, occurrence, and
detectability (Lolli et al. 2015; Zhou and Thai 2016).

Ruijters and Stoelinga (2015) point out that HAZOP and FMEA are similar tools
in the sense that they both list the possible causes of a failure. The major difference
between these tools is that FMEA considers failure modes of the components of a
system, whereas HAZOP considers abnormalities of a process.

Event Tree Analysis represents systems by means of diagrams where these
systems include the combination of equipment and actions required to obtain data
for the purpose of the study. Event trees are constructed horizontally, beginning
with an initial event that describes a scenario or situation where the system is
required. Heravi and Charkhakan (2015) emphasize that ETA is a technique that
is commonly applied to identify the consequences that may arise when these
potentially dangerous initial events occur, and thereby provides a way to describe a
sequence of probabilistic events along with their probabilities and impacts.

4.8 Conduct an Exposure Analysis of Objects Due
to the Hazard Scenario θ Occurring in the Deviations
d(i, j × j, g × g)

In this step the objects that are exposed to the impacts due to the occurrence
of a certain hazard scenario θ will be analyzed. For each combination of hazard
scenario θ and deviation d(i, j × j, g × g), mathematical models and numerical
applications should be applied in the various surrounding characteristics of the
objects exposed to the source of the hazard. Therefore, it is desired, by using a
quantitative approach, to estimate the possible impacts on the various dimensions
of consequences such as losses to structures and properties, the environment,
and the health and safety of people, for which there may be, depending on the
mathematical complexity, probabilistic modeling that incorporates the dynamic
view of the system, or a simplistic approach that incorporates the deterministic view
of modeling consequences.
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The modeling of the exposure analysis will estimate the hazard zone, which
can be determined by the area or diameter or distance from the source of the
hazard (Garcez and de Almeida 2014a, b). In the context of natural gas pipelines,
for example, a hazard zone is a region in which the physical effects of a hazard
exceed critical thresholds, thus inducing negative impacts on people, property, and
the environment (Dziubiński et al. 2006; Brito and de Almeida 2009; Brito et al.
2010). Jo and Ahn (2002) use the thermal radiation intensity of 15kW/m2 as the
critical threshold.

4.9 DM’s Preference Structure

According to Cox LA (2012), the application of utility functions rather than simple
risk formulae – consisting of terms such as exposure, probability, and consequence –
allows a DM’s risk attitudes to be taken into account, thereby improving the
effectiveness of the decision-making process at reducing risks. Cox Jr (2009)
discusses many issues related to the decision process in the risk context, including
the limitations of risk assessment using risk matrices and a normative decision
framework.

An important issue to be evaluated when modeling the DM’s preferences is
the assessment of rationality regarding compensation among criteria. Firstly, it
is necessary to evaluate with the DM her/his basic preference properties and
preference system. Secondly, the type of rationality that is the most adequate to
the DM is established, i.e., a compensatory or a non-compensatory approach. This
answer guides the choice of the MCDM/A method (de Almeida et al. 2015).

For each objective previously established by the DM, a criterion or attribute has
to be proposed. In the RRM context, the criteria will represent different dimensions
of consequences (c1, c2, . . . , cr) in the assessment risk model. To Roy (1996), the
criteria cannot have redundancy; they must be exhaustive, since all objectives have
to be present and represented by the criteria; and they have to be consistent, in
the sense that the DM’s preferences over the criteria have to be coherent with the
global evaluation of consequences. A structured view for building criteria is shown
by Keeney (1992).

After identifying the consequence dimensions (c1, c2, . . . , cr),the pay-offs of
multidimensional consequences

(
pc1, pc2 , . . . , pcr

)
should be determined, estimat-

ing the possible dimensions impacts, resulting from hazard scenarios (θ ) and the
occurrence of deviations d(i, j × j, g × g), in a hazard zone already estimated
previously.

According to Brito and de Almeida (2009), the traditional representation of
risk with probabilities or product of probabilities by consequence values does not
reflect the aversion of people in relation to harmful events with low probability and
great catastrophic consequences. This requires an approach that considers the DM’s
preferences. Thus, utility functions can be used on the consequences to incorporate
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the DM’s preference to the risk of losses due to accidents (Garcez and de Almeida
2014a).

Therefore, the DM’s utility functions need to be elicited. This step consists
of eliciting the utility function related to the utility of different performance of
outcomes in the criterion (c1, c2, . . . , cr). Keeney and Raiffa (1976) described a
five-step multi-attribute utility elicitation procedure: Introduction to terminologies
and ideas; Identification of independence assumptions; Evaluation of the conditional
utility functions; Evaluation of scale constants; and Verification of the consistency
and reiteration. This procedure identifies the DM’s behavior regarding risk, which
may be classified into: neutral, averse, or prone to risk. For a neutral risk behavior,
the u(cr) is a linear function, and the others are non-linear functions. In the
elicitation procedure, a utility function is obtained on a scale of 0 to 1. It should
be observed that the utility function is given in an interval scale (de Almeida et al.
2015).

The elicitation of the utility function occurs over a closed range of consequences,
where the maximum value is limited to a null consequence (i.e., there is no impact)
and the minimum value is the greatest of the estimated consequences for each
d(i, j × j, g × g). It is worth mentioning that although discrete and enumerable
values (number of victims, for example) can be considered, the consequence sets
can be considered continuous for the purposes of estimating the utility function.

Another step of the elicitation procedure of the multi-attribute utility function
is that of verifying the independence and additive independence between the
attributes, i.e., to verify if there is preferential independence between the sets of
consequences in the dimensions analyzed (c1, c2, . . . , cr). Given that the DM’s
additive independence is verified, the additive utility function can be described by:

U (c1, . . . , cr ) = kc1U (c1) + · · · + kcrU (cr) (1)

where U(c1) . . .U(cr) are the one-dimensional utilities for the different risk dimen-
sions, and the constants kc1 . . . kcr are constants of scales estimated by elicitation
processes based on comparing lotteries of payoffs, and

∑r
1 kci = 1, as described by

Keeney and Raiffa (1976).
Regarding the compensatory approach, the meaning of the “weights”, normally

called scale constants kc, does not involve only the importance of the criteria. Their
elicitation is related to the scales of the value function in each criterion (Vincke
1992; Belton and Stewart 2002). For probabilistic consequences, using MAUT, there
are very well-structured elicitation procedures for obtaining the scale constants used
to aggregate the utility functions of the criteria (Keeney and Raiffa 1976).

There are many elicitation procedures in the literature for eliciting scale constants
(Weber and Borcherding 1993). Among these are the tradeoff and the swing
procedures (Keeney and Raiffa 1976; Edwards and Barron 1994). There is also a
flexible elicitation procedure for additive model scale constants (FITradeoff) that
is proposed by de Almeida et al. (2016b), who use partial information to perform
dominance tests based on a linear programming problem.
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4.10 Identify Control Measures

This step of the model seeks to identify control measures that can be implemented to
eliminate/mitigate existing risks. These measures may be associated, for example,
to the safety engineering of the project, management control processes, provision
of warning labels or maintenance activities to prevent failures occurring, as well
as skills-giving/training actions. Examples are shutdown systems, relief/exhaust
systems, fire protection systems, smoke detectors, and evacuation procedures.

4.11 Estimate the Consequences of Probability Functions
P(pC| θ , d(i, j × j, g × g))

The criterion or attribute may be considered in two ways, regarding its variability
and uncertainty: it may be deterministic or probabilistic. A deterministic criterion is
assumed to have a constant level of performance or fixed outcome. A probabilistic
criterion has a consequence x, which is a random variable and is specified in terms
of its probability density function (pdf): f (x). If a criterion is a random variable,
with a not relevant variability it may be assumed to be deterministic. In this case, it
is assumed that the standard deviation is so small, that the mean of the variable may
represent the consequence x (de Almeida et al. 2015).

Regarding uncertainty, a DM may regard a criterion or an attribute as being
ambiguous in the representation of its value function and therefore fuzzy numbers
(Pedrycz et al. 2010) could be used to represent them. In this case, a fuzzy approach
may be considered for the decision model, which may influence the choice of the
MCDM/A method.

Several uncertainties are present in the modeling of the consequence function.
Such uncertainties are desirable because it becomes unlikely that all the multidimen-
sional consequences that can occur due to a deviation d occurring can be defined in a
deterministic way. Therefore, in this step what is desired is to estimate a probability
distribution on the possible values of the payoffs P(pC| θ , d(i, j × j, g × g)), given
that a hazard scenario and the deviation may have occurred.

4.12 Estimate the Probabilities of Hazard Scenarios πd(θ )

In this step, an estimate is made of the probabilities πd(i, j × j, g × g)(θ1, . . . , q) of
the hazard scenarios θ stipulated in the previous step and associated with each
deviation d(i, j × j, g × g). Risk analysis allows the failures in the system to be
anticipated, thereby helping to identify potential causes and possible consequences.
Such anticipation can be achieved by analyzing accidents that have previously
occurred in facilities, both in the company’s own facilities and in similar companies;
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records in the specialized literature or held in international databases; laboratory
tests; and physical/chemical resistance tests, for the purposes of simulation. This
type of analysis allows a statistical (frequentist) evaluation of the causes and local
conditions that favor the occurrence of deviations.

Another alternative for obtaining these probabilities is by taking advantage of an
expert’s a priori knowledge. The analyst can apply an elicitation procedure to obtain
the π (θ ). This procedure is usually applied to an expert on the behavior of θ (de
Almeida et al. 2015). Due to the problem of archives generally containing limited
or incomplete data, these two ways for estimating probabilities can be combined in
an attempt to take advantages of each vision, to do which complementary forms, the
frequentist approach (historical), and the Bayesian approach are used.

4.13 Calculate the Loss Function −u[P(p(c)| θ , d())]

According to Decision analysis, risk is considered to be the expected value of the
loss, defined as:

L (θ, d) = −u [P (p (c1, . . . , cr ) |θ, d (i, j × j, g × g))] (2)

Know, as:

u (P (p (c1, . . . , cr ) |θ, d (i, j × j, g × g))) = Ep [p (c1, . . . , cr )]

=
∫

p∈P
P (p (c1, . . . , cr ) |θ, d (i, j × j, g × g)) u (p (c1, . . . , cr )) dp (c1, . . . , cr ) ,

(3)

then,

L (θ, d (i, j × j, g × g)) = −u (P (p (c1, . . . , cr ) |θ, d (i, j × j, g × g)))

= −
∫

p∈P
P (p (c1, . . . , cr ) |θ, d (i, j × j, g × g)) u (p (c1, . . . , cr )) dp (c1, . . . , cr )

(4)

4.14 Estimate Risk rd(i, j × j, g × g)

In this step, an estimate is made of the risks associated with a given deviation
d(i, j × j, g × g) evaluated in the study. Calculating the risk is based on the
expected value of the loss. Therefore, the losses associated with each hazard
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scenario θ and deviations d(i, j × j, g × g) are added, in the different dimensions
of the consequences tackled (c1, c2, . . . , cr), multiplied by the probabilities of the
hazard scenarios πd(i, j × j, g × g)(θ1, . . . , q). The loss associated with a θN scenario of
normality is also added to the risk calculation:

rd(i,j×j,g×g) = Eθ [L (θ, d (i, j × j, g × g))]

=
(
∑

θ

∑

c

π (θ) L (θ, d (i, j × j, g × g))

)
+ π (θN) (−1) (5)

Considering that the risk values of each dimension correspond to the negative of
the utility of the distribution of consequences, and since utilities are on a scale of 0
to 1, and losses on a scale of −1 to 0, then the risks will be on a scale from −1 to 0.
Thus, the closer the risk value is to −1, the safer is the deviation d(i, j × j, g × g),
and consequently the closer to the value 0, the greater the risk of the deviation.

4.15 Rank the Risk from All Alternatives rd

Having computed the risk values for each deviation d(i, j × j, g × g), the alternatives
analyzed can be placed in decreasing order, thus forming a ranking of decreasing
risks (where the most critical risk is the one placed first in the ranking and the risk
placed last in the ranking is the least critical one of those considered in the study). A
differential of this approach when compared to other traditional approaches used
for risk management is that a more structured analysis is used which, besides
aggregating the multiple criteria, takes into account the DM’s preferences in relation
to the risk. Thus, a more robust result is obtained than, for example, would be the
case by using the RPN (Risk Priority Number) in FMEA (Failure Mode and Effect
Analysis) or even subjective nominal scales. These are sometimes inserted into the
HAZOP worksheet to assess the level of occurrence and impact consequences of
the deviations under analysis. The ranking obtained by using the multidimensional
analysis proposed in this section can help DMs to allocate resources, since these
are usually limited and scarce. Therefore, it would be better to allocate resources so
as to prioritize deviations d(i, j × j, g × g), by adopting preventive and mitigating
measures, when managing maintenance risks.

4.16 Conduct a Detailed Analysis of the Hierarchy of Risk
and Sensitivity Analysis

Sensitivity analysis is a tool of the utmost importance for evaluating uncertainties
when conducting probabilistic risk analysis. A more detailed analysis of the final
hierarchy obtained from the model proposed in this section can be seen after
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conducting an overall sensitivity analysis of the results. This level of detail of
the study with respect to the risk hierarchy arises from the robustness analysis of
the process, based on varying the parameters of the model and on the input data.
According to de Almeida et al. (2015), this analysis can indicate whether the aspects
of the study model and input data are considered robust or sensitive in order to verify
if any steps should be reevaluated due to some hypotheses or input data. Moreover,
in the case of the ordering problem, what is evaluated is whether some alternative(s)
of the ranking established have undergone a variation in its/their position in the
ranking. If this is observed, an analysis can be made of the frequency at which this
occurs, in which alternatives this is observed, besides the relevance of the change(s)
in positions. According to Medeiros et al. (2015, 2016, 2017), sensitivity analysis
provides the DM with a more assertive recommendation based on the analysis of the
variations that were observed throughout the simulation, and also with information
about uncertainties of different groups of parameters of the model.

4.17 Implement Risk Management Actions

Finally, after the DM has received the recommendation and accepted the proposed
solution, then, a start can be made on implementing it. This may be either:
simple and immediate or complex and time consuming. Implementation of the
risk management actions may be as complex as conducting the process that led
to decision-making and may take much more time to accomplish than the decision
process itself.

The effectiveness of the risk elimination/mitigation actions should be re-assessed
by recalculating the risk values. Before doing so, there is a need for a period of time
deemed necessary to elapse only after which the return on implementing the risk
management the actions can be judged satisfactory. From that point on, the values
associated with the risks analyzed should be recalculated. If the value associated
with a given risk is reduced, it is understood that the actions implemented were
effective. Otherwise, other alternatives for action to combat risk must be sought in
order to obtain a lower risk value than the existing one, based on the calculations of
the model.

4.18 Reporting and Monitoring HAZOP Phase: Record,
Sign-Off Records, Produce Report, Monitor and Review
Risk and Review Documentation

After the conclusion of the last step, if no return to revise previous steps is necessary,
then, finalization is tackled in this step by analyzing the final results and producing
the report for the DM, with the final recommendations.
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A good report indicates to the DM the extent to which the solution can be trusted.
The DM should be advised on the nature of the models. The DM should understand
that there is no right model and the usefulness of the model is the main issue to be
evaluated (de Almeida et al. 2015).

5 Final Remarks

The use of multicriteria modeling to quantitatively assess the consequences of the
undesired events considered in a given multidimensional risk analysis is proposed
in this paper with a view to guaranteeing an improvement in the process by
generating results that can assure managers prioritize actions adopted to preventing
and mitigating the risks. Therefore, what is sought is to support managerial actions
in the context of uncertainty by using MAUT as a decision support method which
is implemented in a way that is associated with HAZOP as shown in the proposed
model. Incorporating the DM’s preferences is highlighted as a differential of this
approach. This is done in order to incorporate subjective aspects based on the DM’s
perceptions and behavior in the modeling.
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1 Introduction

As concern about how to manage risks has grown, so too has the use of structured
procedures to identify, eliminate, or mitigate risks in situations of uncertainty. This
is because pressure from society and market competition has made operations
under risk even more difficult, and therefore, more studies have been published in
areas such as impacts on the environment, finance, occupational health, accidents
caused by Nature, terrorism, supply chains, medicine, and industrial production (de
Almeida et al. 2015).

Besides, the concepts underpinning what risk is have been frequently debated
over the years, a common notion is based on means of probabilities and expected
values (Aven and Renn 2009). Generally, risk is regarded to arise when an event
of a forecast value is subject to a probability behavior in which the consequence is
uncertain (Kaplan and Garrick 1981; Aven 2011; Goerlandt and Kujala 2014).

The intention of estimating risk is to establish at what point it becomes
unacceptably high so that mitigation actions can be designed and implemented
in order to inhibit the severity of future impacts. From this perspective, to draw
up mitigating actions requires proposing, evaluating, and selecting measures to
alleviate risks (Meyer et al. 2009).

In some systems, the impacts on the population, the environment, and organiza-
tions are extremely negative and take years to be re-established. The challenge is
thus to gauge the capacity that the system has to recover from the losses, i.e., its
resilience to the risk.
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For the context of losses, the impacts caused by an accidental scenario occurring
adversely affect different perspectives (dimensions), thus causing the performance
of an organization’s objectives to vary (de Almeida et al. 2017). Therefore, the
literature also contains studies on how best to evaluate multidimensional risk and
some of these will be discussed in this chapter, taking into account the context of
transporting natural gas along pipelines.

2 Evaluating Multidimensional Risk

Multicriteria approaches play an important role for risk management since the
concepts associated with the methods are able to deal with the uncertainties as
well as to understand the conflicts between the objectives (Medeiros et al. 2017).
Therefore, there is a need to consider whether more than one objective should be
included in the approach taken to a risk management problem.

De Almeida et al. (2015) list some of the loss dimensions considered for the
context of risks:

• Human losses: this involves damage to life, to people physically affected, caused
by an accidental scenario. An estimate can be made of the likely number of
fatalities or of injuries to people in a given accidental scenario.

• Environmental losses: this consider the impacts on the natural environment and
biodiversity of the areas affected.

• Financial loss: this is associated with losses in revenues, and other financial losses
such as reimbursing customers for services not provided, damages to property,
fines, and indemnities.

• Operational losses: this refers to damage to facilities, everyday materials,
consumables, and everything related to the production system studied.

Establishing tradeoffs between conflicting objectives is complex for decision-
making. For example, how can different preferences of different decision-makers
for bearing losses be reconciled when such losses include the impact on financial
objectives, the impact on human lives or on the environment. MCDM/A methods
include some which offer an appropriate procedure that makes tradeoffs possible
(Keeney and Raiffa 1976).

The studies developed by Brito and de Almeida (2009) and Alencar and de
Almeida (2010) prove that it is possible to estimate risks using multiple dimensions
by adopting a well-structured approach to decision-making. The authors incorporate
the subjective judgments of the DM into the model and do not only address data.

For this situation, it should be noted that taking note of the consequence with
respect to data and information of the system (facts) makes the concept of risks
based on evidence and facts, important for specialists. This knowledge, according
to Aven (2016b) must be free of non-epistemic values in the first instance. However,
the DM must nevertheless make value judgments at a later stage of implementing in
the model. In the second stage, the DM needs to look beyond the facts, and include



Multidimensional Risk Evaluation in Natural Gas Pipelines: Contributions. . . 135

value-based considerations from other sources of information. Thus, an activity is
considered safe when judgments based on facts and on values are obtained. In the
light of practice, de Almeida et al. (2015) present the steps to run a multicriteria
model for application to a context where there is risk and for analyzing the nuances
involved in decision-making under uncertainty.

Additionally, de Almeida et al. (2017) explain that the consensus of running
an industrial activity is directly dependent on society’s approval since society is
subject to possible consequences of that activity. Thus, the risk management process
should not be conducted in isolation, but rather should take into account the varying
different judgments of different DMs. By combining these judgments, strategies
can be formulated and selected that estimate the consequences at the start of the
evaluation process and set priorities on how resources should be allocated with a
view to avoiding or mitigating adverse impacts that may arise in accidental scenarios
(WMO 2006; Aye et al. 2016).

Aggregating judgments may imply different points of view that will conflict
with each other. A multidimensional approach has been considered an efficient
approach to aggregating points of views for decision purposes (Medeiros et al.
2016). Therefore, modeling risks requires the different contexts of a problem to be
assessed, i.e., to take into account that a problem must consider different dimensions
such as the human, social, financial, and technical ones (Garcez and De Almeida
2014). Some studies have endeavored to use multidimensional perspectives (Brito
and de Almeida 2009; Brito et al. 2010; Alencar and de Almeida 2010; Lins and de
Almeida 2012; Garcez and de Almeida 2014) so as to estimate risk instead of using
just a single dimension.

The importance of having a multiple vision of objectives is aligned with real
world risk issues, since objectives set for daily practices never lead to isolated
conclusions. On this, Shields et al. (2015) argue that at some stage of assessing risk,
the isolated analysis of different criteria always leads to the same decision. Thus, a
multicriteria approach incorporates multidimensionality to represent that there are
several objectives in a decision-making process.

3 The Importance of Sensitivity Analysis (SA) for Evaluating
Risk

One of the problems commonly found in the context of risk assessment concerns
how to obtain the data for analysis, or even that data are lacking. This is because
information about risk is not very easy to get or, most of the time, has not been
considered worth recording. For example, repeated incidents in daily operations
may be an input to more realistic models but may not be computed in daily
processes. Medeiros et al. (2017) corroborate this view and therefore recommend
that risk should be evaluated in more holistic contexts, which relate risks to more
systematic perspectives. In short, the evaluation should contain more than simply
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specifying what operational contexts are, but rather should indicate how other
aspects of the system are related to the operational level. This means, first, to find
processes or organizations that affect the conditions of risk and then to explore the
interactions between them. To illustrate this, Daher et al. (2015) point out that in
order to establish strategies that reduce risk it is important to gather information
about imminent threats, the vulnerability of critical assets, and the likelihood of
risks and consequences.

In a decision-making context, sensitivity analysis (SA) is used to focus on
the importance of evaluating the uncertainties of a parameter (or a set of such
parameters) that affect the result of a numerical model (Saltelli et al. 2008; Pianosi
and Wagener 2015). This analysis plays a significant role in understanding how
the final recommendation to the DM is impacted by such variations (Alzbutas
et al. 2014; Medeiros et al. 2016). Generally, SA can be classified by varying
the parameters: locally, where a chosen parameter is varied; or in a global way,
observing how the varying several sources of uncertainties modifies the results
(Markert et al. 2014; Silva Monte et al. 2015; Borgonovo et al. 2016, 2018b;
Borgonovo 2017).

One of the widely used methods for SA is the Monte Carlo Simulation (MCS),
in which a parameter is assumed to follow a probability distribution (Shields et al.
2015) to generate several replications of a numerical model. The model is calculated
by varying a specific input from the initial input case to the shifting input case
studied (Plischke et al. 2013; Borgonovo et al. 2016). Then, at each replication (in a
one-at-a-time method), a sample of the parameter is simulated, in some cases using
some replication strategies (Pasman and Rogers 2012) and thus initial data to run
the model are obtained.

In the context of risks, some studies have shown why it is important to explore
the sensitivity stage of risk assessment models (Saha et al. 2016; Yeo et al. 2016;
Yu et al. 2018). Such an analysis helps managerial staff understand the impacts of
different scenarios at the operational status level. Therefore, the information given
by SA increases awareness about dominant influences on risk. In other words, this
shows how managers could better control each of the variables in order to reduce
risk (Ahmadi et al. 2015).

For the MCDM/A context, SA raises a concern about the final recommendation
to the DM. In this view, it is important to understand how varying the parameters
of the problem, and the DM’s preferences expressed by the parameters of the
MCDM/A model, directly affect the decision. Some studies in the literature develop
SA by applying methodologies such as Monte Carlo Simulation (Gómez-Delgado
and Tarantola 2006; Medeiros et al. 2016, 2017; Yu et al. 2018).

When DMs are confident that the risk assessment model produces consistent
results, they can set and monitor strategies on a sounder basis and plan actions that
focus more accurately on tackling negative impacts that may arise from accidental
scenarios. As noted by Medeiros et al. (2017), planning these actions includes
optimizing the allocation of resources such as money, time, personnel, technology,
and safety equipment. In general, resource allocation is of great relevance for the
processes of assessing, monitoring, and controlling risk (Daher et al., 2015).
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Before the results from risk models are applied to guide a real world policy-
making, an effective sensitivity analysis should be developed so that the assessment
is designed to cover all possible scenarios regarding the management of risk
(Borgonovo et al. 2016). As an example, Marangoni et al. (2017) introduce a study
that seeks a fuller understanding of future scenarios that may arise because of
climate change due to CO2 emissions. They regard doing so as key to designing
hedging strategies when policies are being drawn up. They model uncertainty with
respect to several CO2 emission scenarios so as to assess future emissions from
energy combustion. Thereby, the study reveals key factors for such changes which
were identified because of interaction across parameters, which is a determinant to
develop adequate policies.

For comparison, interactions between parameters are also observed by López-
Benito and Bolado-Lavín (2017) in their study of a natural gas pipeline. A
combination of different parameters is checked in order to identify the most
relevant input that affects drops in pressure and temperature when natural gas is
transported. It turns out that dependence among parameters arises in two situations:
when physical conditions are impossible operationally, and when some parameters
indicate the technological and economic infeasibility of a proposed action.

On a conceptual discussion, Goerlandt et al. (2017) emphasize the importance of
delineating the scope of methodological approaches in SA and pay great attention
to the analysis of validity and validation of quantitative risk in the literature.
Limitations in this area are explicit and there is a scarcity of studies that cover the
need to conduct studies on refining risk measures. Borgonovo (2017) states that
numerical models that deal with uncertainty in parameters should be tested so as to
reflect combined implications. Some reasons to justify the need to use SA in risk
analysis models are given below:

(a) Variation in assumptions and input quantities. Risk managers denote assump-
tions due to cautionary thinking, i.e., sometimes estimates are made that
are higher than the right estimate. In practice, this point indicates that the
parameters of the models are changed frequently (Aven 2016a).

(b) Probabilistic behavior. The natural uncertainties of some parameters may affect
the results of the analysis, thus stressing the need to delineate the observation
of probabilistic risk in greater detail (Borgonovo 2017).

(c) Risk evidence reasoning. Depending on the type of concept used to assess risk,
different types of presumption evidence emerge to characterize it. On the one
hand, parameters may be observable, based on objective facts (Medeiros et al.
2017). On the other hand, the idea of risk is understood as a way to formalize
judgments, being not observable or based on subjective viewpoints, that is, a
subjectivity view of probability (Aven 2011; Goerlandt et al. 2017; Medeiros et
al. 2017).

Zio (2018) emphasizes the importance of SA in risk assessment given that
a variety of combinatorial sets of events, scenarios, and conditions needs to be
observed because some lead to critical and unsafe conditions.
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3.1 Sensitivity Analysis and Evaluating Multidimensional Risk

In the context of multidimensional risks, Medeiros et al. (2017) investigate the
sensitivity of the parameters of the risk assessment model for natural gas pipelines,
based on MAUT (Multi-attribute Utility Theory). Medeiros et al. (2016) developed
an SA study that supported assessing multidimensional risk in the context of
transporting hydrogen transport as proposed by Alencar and de Almeida (2010). In
these studies, the authors discuss how the parameters of the model alter the results
of ranking the risk zones of the pipeline. An MCS structured process (Fig. 1) is
conducted in order to obtain several results from the multicriteria model applied so
that further analysis about the parameters can be made.

Initially, the DM conducts an in-depth analysis of the initial ordering of the
risks of the sections, r0. According to Medeiros et al. (2017), this analysis aims to
associate the DM’s thinking with regard to possible changes in the risk assessment
variables. The intention is to analyze the quality of information from the original
ranking on how to prioritize the sections in terms of improvements, maintenance,
inspections, and other benefits. Thus, to better guide this stage some questions can
be raised, such as:

Fig. 1 Framework of the MCS for sensitivity analysis. (Adapted from Medeiros et al. 2017)
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Fig. 2 Sensitivity analysis for the environmental consequence function

– If the percentage probability of a given scenario occurring is increased, will the
recommendations on how best to prioritize sections remain the same?

– If the number of people injured were larger, what changes in the ordering could
occur?

– What is the confidence level of a recommendation?

This step is investigative and may depend on operational technical factors, as
it is subject to observing the characteristics of the section in the pipeline. The
DM will evaluate to what extent the parameters of the risk assessment model lie
in the uncertainty domain. Therefore, the intention is to define all the parameters
that will affect the consequence function. As an example, Fig. 2 depicts how the
environmental consequence function is obtained by examining the influence of the
two types of parameters: the constant parameters, which are those that present
determined values; and the uncertain parameters, those that change over time, which
also are the input for the SA.

Then, MCS must be parametrized by setting the parameters that will vary in the
simulation process over a given probability. Medeiros et al. (2017) follow a sequence
of steps that guide the MCS:

Step 1: Calculate the risk, based on the original values of the parameters. Set the
original ranking, r0.

Step 2: Specify the parameters (or a group of them – patterns), the ranges, and the
probability density function (PDF) for each parameter.

As to the parameters of the risk assessment model, it is known that N is the
number of sections of the pipeline, and S is the number of accident scenarios of
the model. Let X be the input vector such that X = [Xi, Xi + 1 . . .XN] represents all
the characteristics of each area ai of the pipeline, and let Y be the input vector that
defines the characteristics of the scenario such that Yjm = [Ym, Ym + 1 . . . YM], i being
the index corresponding to each section, m the scenario, and j the failure module
(rupture or hole). For each of the parameters, a PDF, fx(x) and fy(y), is assigned in
order to simulate the vector of random numbers.
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Fig. 3 Patterns simulated. (Adapted from Medeiros et al. 2017)

As the distribution of each parameter is unknown, the triangular and uniform
distributions are used in order to generate the data. Fishman (2013) considers that
these distributions as efficient for the context of generating data.

SA can be used differently depending on the approach used. When a significant
amount of data needs to be dealt with, identifying patterns, correlations, and outliers
plays an important role in the analysis (Medeiros et al. 2016). Thus, uncertainty
inherent in the problem analyzed is assessed thoroughly.

From a different perspective, Medeiros et al. (2017) structured a simulation
process in view of different patterns of variation, which consisted of generating
comparisons between the variation of groups of some specific parameters of the
model and their original values.

These patterns are defined based on similar characteristics so as to find the set
of sensitive parameters and understand their behavior, as shown in Fig. 3. For each
pattern, random numbers are generated regarding the PDF assigned.

Step 3: Set the number of replications (R). This should be as large as necessary to
achieve the expected change.

Step 4: Obtain the sample for the random variable X and/or with respect
to its marginal PDF function. For each replication denote these samples
as [Xi, Xi + 1 . . .XN]r and [Ym, Ym + 1 . . . YM]r, which r is the index of the
replication.

Based on the distribution that the DM has chosen, the random number generator
creates the vector X and Y at each replication. For uniform distribution to be
generated, two parameters are required (a, b), which represent the maximum
and minimum values at which a parameter varies. In the case of the triangular
distribution, the DM estimates the values of three parameters, namely two extremes
and the most probable value, the latter being the original value of the study. For both
uniform and triangular distribution, the interpretation of the parameters takes into
account the inherent uncertainty, i.e., the minimum and maximum values that the
parameter can reach.

Step 5: Calculate the risk associated with each section. Obtain the ranking of the
sections in relation to the total risk of replication r.

Step 6: Determine the Kendall τ correlation coefficient for each r.
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The correlation measure, τ, is used to indicate the robustness of the original
ranking, represented by r0, relative to the simulated one, rr, in order to give the
DM the best recommendation. In each replication, a comparison is made between
the natural ranking (ascending) and the ranking generated in the replication for the
n individuals. If the ranking does not change, the natural order is preserved, then
the individual is valued with +1, otherwise, −1. The value of τ is the ratio of the
sum of all current and maximum possible total individuals – for further details see
Siegal (1956). Then, by comparing the various values of τ obtained and the level of
significance inherent in the data generated, inferences are made about the robustness
of the risk assessment model.

Medeiros et al. (2017) indicate that the dispersion of τ can be analyzed by its
median, maximum, and minimum values, mode and standard deviation calculated
from the replications. In addition, the coefficient value can infer the traceability of
the variations of the simulated parameters at different values of significance. Thus,
by reversing the process, information can be generated about the accuracy of the
simulated vector of the parameters.

As for this latter approach of τ, the coefficient calculated is used to verify the
null hypothesis (H0) that there is no correlation between the original and simulated
rankings. If H0 is rejected, then the disorder is caused by a range of variation
that causes the original ranking to be similar. Subsequently, the significance test is
validated by the value of z and its critical value. Thus, the analysis indicates the level
of confidence of the results determined from each replication, thereby generating
more information for the DM.

3.2 Visualization of Risk for Sensitivity Analysis

In view of the variety of information presented to obtain an ordering recommenda-
tion, the DM needs to analyze different levels of uncertainty of the parameters, and
how the variation in such parameters modifies the results significantly. To be more
specific, MCS covers an amount of data regarding the simulation of inputs and the
outputs of the model.

Payne (1976) points out that increasing the amount of information indicates the
variability of responses and decreases the quality of choices as well as making
the DM feels more confident. Medeiros et al. (2016) note that information must
be summarized so that irrelevant or redundant information is not generated which
would confuse the DM and affect the final decision. Therefore, a risk system that
involves a great deal of information should ensure the rapid and clear perception of
risk in a way that supports mitigating losses, as illustrated in Fig. 3 which shows that
using parameters to perceive risks adds to understanding outputs from the model.

In addition to the amount of information, the underlying complexity of some
operations leads to the need to deal with risk information as efficiently as possible.
To illustrate this, Mittal et al. (2017) enhance the understanding of risk involved in
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Fig. 4 Risk visualization process for a hydrogen pipeline (Adapted from Medeiros et al. 2016)

an oil and gas operation by using graphs, reports, and 3D visuals of smoke, fire, and
explosions.

De Almeida et al. (2015) mention that being able to visualize risk provides
support to process information in the stages of risk management that deal with
matters such as identifying, analyzing, assessing, communicating, and reducing
risks.

Based on the framework addressed by Eppler and Aeschimann (2009), Medeiros
et al. (2016) assess risks in the context of hydrogen pipelines to exemplify how risk
visualization is best used. The scope of the framework seeks to show why, what, for
whom, when, and how risk-related information needs to be displayed – see Fig. 4.

For the sensitivity analysis presented, some visual approaches can be taken that
use a back-to-front approach to highlight the risk associated with the uncertainties.
In other words, the output is produced graphically in such a way that a detailed
analysis of the ranking of sections should be prioritized.

Medeiros et al. (2016) depict risk information using a variety of visual elements
as a means to create knowledge of risk. That is, the information on the quantitative
output generated is displayed in charts and tables as a means to synthetize the
simulation of the parameter, thereby framing the sensitivity of the ranking. The
following items prompt discussion of such approaches:
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• The dispersion of the correlated index τ adds information about the values of the
variations and patterns obtained in the Monte Carlo simulation.

Data concentrated greater than 0 shows a positive correlation with the original
ranking in Fig. 5a, despite there being notable negative values in many of the
total number of simulations. Figure 5c and d consolidates the aspects of a broad
dispersion for different ranges of variation. Thus, the perspective given by both
charts is complementary. While the first makes a wild extension of the values
simulated, the second sets out a summarized view of the dispersion given by
different variations of range in the scatter plot. Medeiros et al. (2017) take the
same approach of making pattern-structuring variation instead of ranges. In both
applications, the DM is prompted to think about how uncertainties in the parameters
(or a group of them) produce the original ranking, which Borgonovo et al. (2018a)
regard as a relevant distinction between decision and value sensitivity;

• Sections that are not prioritized in the original ranking but eventually because
of the uncertainty behavior come to change its position are also crucial to DM
perception. Such observation is taken to evaluate each individual section making
a comparison to its original ranking and the percentage change over others
positioning ranking.

The information of each individual section variation is displayed in Fig. 6a. For
example, section a4 is initially ranked in the first position. Additionally, its variation
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Fig. 6 Variation of sections and positions. (Adapted from Medeiros et al. 2016, 2017)

regarding other positions is not quite sufficiently preferable. In contrast, section a5,
shown in Fig. 6b, varies in the second position 31% of the time in the range of 5%.
A similar evaluation of Fig. 6c is possible. The DM verifies the behavior of a given
section ranked in a position, represented by the light gray bar, and its variation along
the positions shown in the darker gray bars. A broader perspective is given in Fig.
6d, in which the variation of each section is depicted throughout the ranking. The
results refer to those simulated data that showed a correlation with the confidence
level.

Combined analysis can also be performed as means of comparing the percentage
change and position variation over a variety of intervals of uncertainties – see
Medeiros et al. (2016) and Walls et al. (2016) for further details.

Based on the analysis of the studies discussed in this chapter, it is observed
that they provide additional information to a decision-making process and thereby
contribute to managing risk in gas pipeline systems better. Additionally, the DM can
judge the alternatives considered in the decision problem more clearly and this leads
to better decision-making.
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Multidimensional Decision-Making
Process for Managing Flood Risks
in Postmodern Cities: Challenges, Trends,
and Sharing Insights to Construct
Models That Deal with Climate Changes

Lucas Borges Leal da Silva, Marcelo Hazin Alencar,
and Adiel Teixeira de Almeida

1 Introduction: Characterizing Flooding in the Urban
Context

Modern societies undergo dynamic interactions between people, Nature, and its
resources. Although these interactions are essential for promoting social and
economic development, strategic policies that seek to improve the quality of life
in urban areas can cause an imbalance between these actors and can have serious
adverse impacts on everyday life.

In fact, nowadays, public administrations face new challenges in order to adapt
human life to alarming trends (and also to their consequences) such as: climate
changes (IPCC 2018), an increase in the extent and frequency of natural hazards
(Neumayer et al. 2014), threats to the supply of food and water (Gharehgozli et al.
2017; Srinivasan et al. 2012), inadequate distribution of energy (Richard and Eugene
2014), and migratory crises (Trost et al. 2018).

As to the occurrence of extreme events in urban areas, Mitchell (1993) pointed
out more than 25 years ago how important it is to improve response techniques to
natural disasters that had been occurring with ever-greater frequency. In particular,
he highlights flooding events since they occur in many different regions all over
the world. Therefore, decision-makers (DMs) seek to improve how the risks from
floods are managed, while recognizing that this activity involves different factors.
However, just how complex can it be to model this decision problem?
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1.1 Justifying Flood Risk Management (FRM) Practices
and Research

The effects of climate change on cities have had implications for urban governments.
Over many years, their planning for local development has included the need to draw
up, implement, and amend procedures for managing risk that effectively addresses
dangers posed by imminent climate change. Recent studies alert to the need to
develop tools that assess the vulnerability of urban spaces and that classify risks
in order to combat extreme events, floods being the most recurrent of these (CRED-
UNISDR 2015).

Bearing these matters in mind, urban floods cannot be managed individually so
responses to the impact of potential flooding are complex since they are interlinked
with political, socio-economic and environmental issues. Thus, to understand
some features of urban flood management, an integrated methodology should be
developed (and constantly improved) in which spatial-temporal relations are not
only defined but it is also made clear that these should be regularly monitored and
re-examined.

This should provide clarity regarding the concepts of vulnerability and resilience,
the main point being to incorporate in risk modeling the way the interactions among
differing spatial scales occur (Lei et al. 2014). Some insights and methods from the
literature may well provide the basis for drawing up an integrated methodology
in order to improve routine decision-making processes in the context of public
administration.

Therefore, this chapter discusses what cities worldwide can do to respond to
climate change and therefore seeks to reframe their role. Naturally, this highlights
the vulnerability of a city’s critical infrastructure and the need for strategic planning.
This shows that public managers now face a decision problem with multiple
objectives that may conflict with each other. As to mitigating the impact of
floods, what technical-scientific institutions need to do is to search for innovative
solutions that minimize these impacts. This involves examining social, economic,
and environmental questions.

Therefore, it is necessary to understand how the growth in urbanization has
reconfigured postmodern societies and has thus added to the complexity of flood
management.

1.2 Urbanization Processes: A New Challenge for Postmodern
Societies

That urban areas have expanded so much is an unavoidable phenomenon that has
arisen as a result of major changes in economic activity, and therefore in what
have become complex inter-relationships between the industrial, commercial, and
service sectors, and between these sectors and the markets they serve. They have
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had to adapt their activities to the new demands from the market and society. This
includes that they must bear in mind that urbanization to a large extent is about
seeing to it that the spatial layout is dynamic (Chen and Frauenfeld 2016). This
need for dynamism has led the world’s most powerful cities to enhance their critical
infrastructures, their emergency plans, their support services, and their strategic
planning. These are being designed and, when necessary, adapted to reduce the
impact of major flooding and this is making these cities safer.

However, it is worth endeavoring to understand how the postmodern configura-
tion of societies contributes to increasing the vulnerability in urban areas to natural
disasters such as floods and landslides. In this context, Da Silva et al. (2018) pointed
out that society’s dependence on exploiting natural resources has led to this having a
huge adverse impact on the environment and has thus contributed to causing climate
change.

Moreover, the United Nations reports that nearly 80% of the world population
of 11 billion people will live in urban conurbations by 2050 (UN 2019). This puts
a spotlight on hazardous events that may occur due to the inter-play relationship
between urbanization, climate change, and natural catastrophes.

Hodgkins et al. (2019) analyzed historical trends in the annual peak flows in
the United States by basin type, namely those that have been minimally altered,
those that are regulated, and those that have been urbanized. For urbanized basins,
their statistical analysis concluded that the magnitude of this trend was significantly
correlated with the extent to which the basin had been urbanized. They claimed
that their analysis showed that increases in the volume and frequency of flooding
undoubtedly reveal the adverse influence of humans.

Saadi et al. (2018) analyzed trends in demand for urban land and the implication
that this leads to greater flooding, for which they used a Land-Use Model System.
The results from this were based on three urban expansion scenarios for 2030:
business-as-usual; limited expansion; and extreme expansion. They established
three classes of city, according to their degree of urban density. Their results revealed
increases in flood damage in a range at least from 15% to 30% (business-as-usual
scenario). Furthermore, the Land-Use Model System showed that the more that
land-use had expanded, the higher the levels of flooding that had occurred (see
Fig. 1).

Since floods are closely related to urbanization, Bae and Chang (2019) demon-
strated the historical influence of land use so as to show that factors regarding
damage from floods have changed over time. They reinforced that assertion by
concluding that population density was the common factor that best explained
flood damage in different degrees with respect to the advance in urbanization, no
matter how rapidly this occurred. Therefore, they suggested the need for different
flood management strategies, as urbanization increases, in order to minimize flood
damage.

As a result of the increases in urbanization, it is even more commonplace for
public managers to have to engage on complex decision-making, including on
assessing what the potential damage from flooding might be. Thus, they seek to
structure decision-making processes jointly and collaboratively within their city
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Fig. 1 Predicted increase in flood damage due to future urbanization for the horizon 2030
compared to the baseline situation. (Adapted from Saadi et al. 2018)

government in order to implement efficient actions that seek to mitigate floods and
to have controls that seek to predict and minimize flooding.

When this is done, then all concerns about floods that are likely to be raised
are considered by managers during decision-making processes. Thus, all public
managers have to plan, finance, implement, and engage on actions that meet the
needs of urban spaces and to manage these activities efficiently. This results in
improving the overall quality of life of urban dwellers, especially in the context
of natural hazards.

However, there are multiple impacts that floods can cause that need to be
addressed during this process, which requires social, human, economic, institu-
tional, and environmental questions to be integrated (Gigović et al. 2017; Meyer et
al. 2009a; Ashley et al. 2005). That is why some researchers, on seeking approaches
that guide DMs’ decision-making, have applied multicriteria methods to model
decision problems from a multidimensional point of view.

This chapter gives an overview of multicriteria modeling and shares some
insights into how best to manage flood risks in urban areas that take multiple (and
possibly conflicting) objectives into account. Moreover, such modeling seeks to
contribute toward aiding public policy to prioritize preventive actions to combat
potential disasters. It does so by prioritizing risks, selecting projects for portfolios
and suggesting how to improve communications to and between citizens at risk from
flooding.
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From this perspective the chapter focuses on a multidimensional approach to
assessing risks from flooding in order to aid decision modeling in the urban
context. All sections summarize the potential benefits of these modeling proposals
for managing, controlling, and mitigating the consequences of flooding and for
taking emergency actions to combat flooding. Furthermore, multicriteria studies are
presented and insights for modeling are shared and briefly discussed throughout
the chapter. In the next section, this chapter will focus on clarifying how climate
changes led to extreme events that impact our lives in urban communities.

2 Impact of Flooding on Everyday Life and Climate Change
Effects: A Starting Point for Constructing Decision
Problems

The issue of climate change has gained international projection recently with regard
to forecasting the climate based on either changes in the frequency of short-term
extreme weather events or in their intensity. Thus, hot flashes, heavy rainfall, floods,
droughts, and other natural disasters have been of great interest to researchers
because of their huge impact, not only on the environment, but also on people.
Disasters result in high monetary costs and, often, in the loss of human lives.

A special report from the Intergovernmental Panel on Climate Change (Hoegh-
Guldberg et al. 2018) reinforces this concern due to climate change intensifying
the behavior of natural disasters. According to IPCC, global warming of nearly
0.5% which was caused by human activity was detected by analyzing trends in the
intensity and frequency of some climate and weather extremes over time spans.

Instead of keeping to the previous goal of a maximum average rise in the global
temperature of 2 ◦C by 2100 (IPCC 2012), the new report proposed limiting the
increase in global warming to 1.5 ◦C. This new goal implies 420 million fewer
people being frequently exposed to extreme heatwaves, and about 65 million fewer
people being exposed to exceptional heatwaves, assuming constant vulnerability.

In this context, public managers find it helpful to incorporate climate variables
into flood management decision problems, so that their contribution to the analysis
of risks from floods includes measurements that suggest alternatives in order to
anticipate problems and impacts that may arise in cities in the future.

In fact, an integrated policy between public and private technical-scientific
institutions considering climate change effects is essential in order to foster
innovative solutions. This policy should include (in the agenda for cities) important
topics such as land use, consumerism, urban violence, etc. Most ordinary people
and most organizations consider that environmental problems should be addressed
and reiterate the priority of linking the three spheres of sustainability: human
development, economic growth, and conservation of the environment (Ramaswami
et al. 2016) in order to prevent and/or mitigate the regularly occurring impacts of
flooding.
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The impact of global change and the consequent changes in climate on water,
food, forests, lakes, and other features of the environment have been intensively
discussed in the literature (Şen 2018). Therefore, risk management encompasses
procedures for drawing up both quantitative and/or qualitative estimates in order
that results include not only the probability of occurrence of dangerous events but
also their consequences.

With particular regard to the public administration context, Lööf and Nabavi
(2013) comment that it is the responsibility of governments to establish, implement,
and manage measures that can mitigate the direct and indirect risks of climate
change, thereby making the urban environment more resilient and less vulnerable.
These concepts are closely related to the relationship between the high adaptability
of cities and governments being able to draw on valuable decision-making expertise
(Hoegh-Guldberg et al. 2018).

However, before listing the most common decision problems which DMs face in
this area, we must understand not only how the interaction between climate change
and the occurrence of floods impacts and changes the urban dynamics but also the
interaction between people in cities. Fig. 2 shows a summary of the principal aspects
of the diverse forms of harm that potentially can be caused by flooding.

First of all, adverse impacts on humans have been widely studied over the years.
For example, Jonkman et al. (2009) focused their efforts on using preliminary data
to analyze where fatalities increase. They also produced a qualitative description of
the majority of victims of the catastrophic flooding caused by Hurricane Katrina in
2005 in New Orleans (U.S.A.): nearly 60% of fatalities were over 65 years old. The
authors compare this event with historical flood events and affirm that there is an
empirical relationship between mortality and the characteristics of such floods and
that the evidence shows that the overall mortality rate for cities that have suffered
such events is around 1%.

Moreover, Alderman, Turner, and Tong (2012) pointed out that the relationship
between flood events and human health is deeper than people usually think. They
conducted a systematic literature review and noted assessed recent epidemiological
evidence on the impacts of floods on human health. They found there was an
increased risk of outbreaks of diseases such as leptospirosis, hepatitis E, gastroin-
testinal illnesses, and, particularly, in areas where hygiene is poor and people live
in makeshift homes. Moreover, they also list other health problems that stem from
floods such as epidemics/pandemics, post-traumatic (mental and physical) illnesses,
and the fact that floods have a negative impact on the preservation of culture and on
interpersonal relationships.

On the other hand, Priori, Alencar, and De Almeida et al. (2017) analyzed how
climate changes and intense floods may undermine the major critical infrastructure
of urban centers, such as the energy supply, logistics, transportation, communica-
tions, drainage, etc. They focused on an adaptation system using Value-Focused
Thinking (VFT), a method for structuring problems.

Moreover, financial systems and the general economy of societies, whether
global or local, can be severely affected by extreme events (Surminski and Eldridge
2017; McGrath et al. 2019; Neumayer et al. 2014; Heo and Heo 2019). Therefore,
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Fig. 2 Scheme of potential forms of damage in urban areas caused by floods that result from
climate change

a great deal of research and discussion can be found in the literature that measures
economic and financial damage to public and private assets, the impact of this on
the provision of public services (education, security, emergency defense, and civil
agency, health), and future impacts of extreme events on local trade and employment
as a whole.

The keywords shown in Fig. 2 exemplify a variety of potential forms of
flood damage in urban area due to climate change. Therefore, tools need to be
developed that aid assessing and, subsequently, categorizing and assessing levels
of vulnerability and risk due to climate change. These can then be used to adapt all
societies to change.
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In this context, a multicriteria approach can aid the decision process. It is
essential that the scientific foundations that underpin periodic actions are very robust
and up-to-date. This applies not only to addressing the speed and extent of climate
change, but also to assessing its impacts and risks and the actions needed to mitigate
these. In this context, it is important to point out that the behavior of precipitation is
neither standardized nor can it be controlled by human action.

3 MCDA/M Approach to FRM in Urban Areas

The results of this analysis for decision-making are used in Flood Risk Management
while the literature shows that there are different approaches to helping public and
private entities estimate risks in a reasonable way.

Cost-benefit analysis is a traditional economic technique that holistically assesses
whether the expected benefits from implementing a risk-reducing action outweigh
its costs. It is the most common approach to FRM. However, Samuels and Gouldby
(2009) criticize in their report the quantification in monetary terms and aggregation
into a single value, as this makes it impossible to associate factors of different
natures that are also affected by risk. Elements of Decision Theory are also used for
risk assessment (Cuellar and McKinney 2017), as are the methodologies of hydro-
meteorological analysis which aim at continuous improvement (Patra et al. 2016).

However, the policies used to mitigate floods often take multiple strategic
objectives into account that frequently conflict with each other and seek to integrate
especially the social, economic, and environmental dimensions. This is why some
researchers, when seeking approaches to support DMs’ decision-making, have
applied multicriteria methods.

Multicriteria methodology has been used in several risk management contexts,
especially for Natural Hazards. A systematic review of the literature by de Almeida
et al. (2017) identified research trends in dealing with multidimensional models,
which take a DM’s preference structures into account.

3.1 Multicriteria Aid for Risk Decision Problems: A Brief
Description of the State-of-Art

Due to the exposure and vulnerability of urban spaces in contemporary society
and the imperfect condition of the critical infrastructure of most cities, flooding
affects the environment adversely and has the potential to cause heavy economic and
social losses, including the possibility of multiple deaths (Yamashita et al. 2015).
Therefore, choosing a multicriteria method is often appropriate in order to deal with
such particularities.
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Since the decision-making process is a key success factor of any organization,
MCDM/A may be used. It is an approach based on a DM’s preference structure
and involves value judgments of multiple objectives which often conflict with each
other, yet need to be dealt with simultaneously.

Despite the diversity of current methods, three basic characteristics identify a
multicriteria problem: a discrete set of alternatives with at least two criteria and
there being a DM (De Almeida et al. 2015).

From this point of view, decision-making processes accept the subjectivity that
is involved by establishing preference relations between all sets of alternatives.

Several papers led to great advances in modeling problems with multicriteria
aggregation methods, as these models were shown to be applicable to situations that
reflected real life more and more. For instance, Koksalan, Wallenius, and Zionts
(2011) and Miles Jr. (2007) analyzed the evolution, history, and perspectives of these
methods.

It is worth noting that there are several studies in the literature to manage risks
from natural hazards and these include a range of methodologies for constructing
how best to make assessments. Some applications which focused on risks in the
environment are also found (Brito et al. 2010; Alencar and De Almeida 2010; Meyer
et al. 2009b; Cuellar and McKinney 2017).

This chapter, however, seeks to focus on the multidimensional approach as a
risk management tool. This allows different situations to be combined in the same
assessment, which consider – partially or wholly – their relative importance and
mode. This approach is therefore recommended for flood risk analysis and will be
explained in detail below.

To do so, risk management, risk assessment, and risk analysis take into account
issues such as mathematical procedures, computational tools, and a variety of
approaches and decision support models (De Almeida et al. 2015) in which the
context of decision-making can be related to:

Quantitative risk analysis for prioritizing/classifying vulnerable areas: here, the
main objective is to define what locations managers have to consider in order to
minimize the impacts of flooding (Fadlalla et al. 2015; Xiao et al. 2018; Gigović
et al. 2017); Allocating resources for strategic actions to prevent flood damages
and also with regard to the limitations of human, financial and technical resources
(Karamouz et al. 2018); and Strategic planning of urban policies to mitigate flooding
in critical infrastructures due to climate changes (Huong and Pathirana 2013; Priori
et al. 2017).

With this in mind, several studies in the literature seek to improve quantitative
and qualitative risk estimation procedures that characterize the hydrological behav-
ior of an extreme event.
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3.2 The Role of Uncertainty in Evaluating Flood Risks

These advances in modeling enabled researchers to become involved in different
areas of knowledge such as water resources (Godskesen et al. 2017), research and
development (R&D) projects (Karasakal and Aker 2017), the electricity sector (Cuc-
chiella et al. 2017), construction (Miniotaite 2017), the financial sector (Ferreira et
al. 2018), risk management (Medeiros et al. 2017), and the development of new
methods (De Almeida et al. 2016).

Especially in risk management problems, de Brito and Evers (2015) noted that
the greatest interest is in applying MCDM/A applications to flood risk management.
Their study is a systematic review of more than a thousand papers that apply
MCDM/A to flood-related problems, in order to provide an overall picture of what
has motivated researchers from 37 different countries over the past two decades.

Future changes in the climate worldwide are widely discussed in the literature
and Di Baldassarre et al. (2016) state such changes are another source of uncertainty.
Furthermore, they pointed out that it can be a challenge to calibrate flood risk models
because sometimes DMs do not have all rainfall data or have lost data so these
circumstances are an additional source of uncertainty.

In the context of MCDA/M, Keeney and Raiffa (1976) studied the mathematical
association between uncertainty and utility by using a consistent formulation of the
parameters needed to model the problem. Characteristics concerning multidimen-
sional methods for assessing uncertainty are set out in Sect. 5.

Given that this is a particular decision problem to do with managing flood risks,
Sects. 4 and 5 will briefly present some approaches developed by the authors, as a
result of applying multicriteria models in real practice.

4 A Multimethodology Framework for Multicriteria
Assessment of Flood Risk

Da Silva et al. (2018) developed a multimethodology framework to support
decision-making to understand the risks from floods and to integrate the dimensions
of risk, but also, whenever a DM faces uncertainty, so as to use this data to prioritize
and also manage strategic portfolios of projects to face this problem.

The framework proposed by the authors is based on a multidimensional evalua-
tion for risk categorization, which has already been developed, to implement actions
to avoid risk. This way, when this risk can be mitigated, the framework then leads to
a way to a multicriteria model that will be used to manage projects that combat risk.
These actions are held in a portfolio and include strategic alternatives that perform
effectively in order to minimize the impacts of flooding.

The framework presented in Fig. 3 is divided into 5 steps, and for each one of
them this approach defines a list of activities as well as clarifies the roles of decision-
making actors. This aims to maximize the benefits of this approach.
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Fig. 3 Framework proposal conducts the multidimensional flood risk analysis. (Adapted from Da
Silva et al. 2018)

The initial step, Risk Identification, comprises a stage of understanding the
problem. Here, DM is supported by analysts to characterize flooding problem,
collecting important parameters which will be used as input for the risk modeling
(given its inherent probabilistic character). This stage models the problem using the
data collected and it quantifies the flood risk in the area of study by considering the
relation among natural, social, and economic aspects of floods.

Thus, in the next step, Modelling for assessment and risk analysis and Classifica-
tion, a MCDA/M model is used to analyze and determine this measure of risk, using
methods that are suitable to the problem of prioritizing risk in an urban area. There
are several procedures that have been presented in the literature to support DMs
when they are constructing a model, such as the de Almeida et al. (2015) suggestion
that divides the procedure into 3 phases – in successive refinements:
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1. A preliminary phase, in which the actors must characterize the problem by
explicating the DMs, the objectives, the criteria used to model these objectives,
the space of consequences and the problematic, for example;

2. The modeling of preferences phase is developed by modeling DMs’ preferences
and then choosing a suitable MCDM/A method; and

3. The finalization phase, regarding the evaluation of alternatives and recommenda-
tion to DM, and finally the decision implementation.

It is worth to know that the authors put a spotlight on building MCDM/A models
to represent real problems, once models can be regarded as a creative process, for
which DMs need to have an intellectual and cultural background that enables them
to be aware of and understand the complexity of this task.

By interacting with all actors of this process, DMs increase their perceptions
about objectives, criteria, space of actions. This greatly enriches the model and
therefore enhances the evaluation and implementation of the decision.

In the context of MCDM/A methods (De Almeida et al. 2015), categorizing risk
based on the disaster management cycle allows DMs to respond to risk in three ways
in step 3, the Response to Risk:

• Accept: to implement an action, it would take an excessive amount of time to
prepare a strategy to manage risk or it requires high-costs to deal with it, so it is
better to accept the risk.

• Transfer the risk to a third party or parties that can manage the outcome. Broadly
speaking, outsource or share risk with them.

• Eliminate/mitigate the risk: action is taken to reduce the causes of threats
wherever possible.

Therefore, if the assessed risk can be minimized/mitigated, then potential flood
control alternatives can be established, while taking the critical infrastructures
that are affected by it into account. Step 4, Portfolio Analysis, is used to prompt
discussion among public administration, companies, scientific communities, and
citizens to help DMs to generate a portfolio that will be analyzed at a later stage.

As to the Portfolio Analysis step, first of all, the DM, assisted by the analyst,
compiles a set of projects or programs and other activities that they consider
will support effective management of the decision-making problem. The portfolio
problem consists of choosing, within a set of actions, a subset that best meets
an organization’s objectives and does not exceed its constraints. This results in
prioritizing projects and then implementing them.

Next, based on the results from the risk analysis of the delimited area, a portfolio
should be constructed. This involves selecting from the projects already identified
those that maximize satisfaction in the following dimensions: the social (such as
determining the level of risk to which the population is potentially exposed), the
economic (reducing losses), and Nature (preserving the environment).

However, it is known that these objectives often conflict with each other, which
prompts the need to apply multicriteria decision support methods to this problem.
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In addition, the benefits derived from all actors interacting with each other are
similar to the first MCDM/A model (step 2), which contributes to better results.

Finally, Step 5, Control and Risk Monitoring, is the last step of the framework
and it implement a monitoring plan to control risk parameters in the area of study.
It comprises the record of the risks to be addressed, as well as the real performance
of the actions selected and developed to mitigate floods. Thus, this step fosters
continuous improvement and is used (Da Silva et al. 2018):

• to design and execute projects;
• to assess the risk and its implications;
• to understand the problem and to model the DM’s preferences more coherently;
• to learn of opportunities and to exploit these in order to benefit affected

populations.

It is worth to know that this is a learning process that can be implemented
periodically in order to assess flood risk in urban areas. Thereafter, DMs assisted
by other actors of decision-making process update the framework and generate
knowledge for improving new input data. Thus, the framework proposed by the
authors seeks to analyze carefully the risk behavior through the implementation of
strategic actions, according to the simplifications, specifications, and constraints of
the model.

5 Multicriteria Model for Prioritizing Flood Risks Using
Decision Theory and MultiAttribute Utility Theory

In flood control and management in urban areas, Van Wesenbeeck et al. (2016)
point out that flood risk adaptation planning is a global response to climate change.
Therefore, engineering responses to higher levels of unwanted events require a
heavy investment of financial, human, and material resources to try to ensure that
cities become more resilient and less vulnerable to such disasters.

The methodology is based on how decision models are constructed, according
to the classical approach of operational research (Da Silva et al. 2019). Thus, the
proposed model will construct the problem in stages and will be associated with
a georeferencing platform (GIS) in order to integrate current risk management
practices in large urban centers with innovative ideas that are often suggested by
multidimensional risk analysis.

The activities related to each phase are described below. It is important to
consider that the methodology will be improved, revised, and expanded during the
lifecycle of a project, the need for which will be verified during the research.
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• Phase 1: Preliminary

The preliminary phase of the model seeks to identify and list the efforts of the
actors involved in the process in order to conceive the multidimensional problem in
a clear and grounded way, in which:

• The DM understands the main objectives of applying the model, represents the
preferences of the professionals involved in flood mitigation, establishes criteria,
alternatives – defined by zones or areas – among other data.

• Analysts, along with potential facilitators, contribute factual information about
the problem so that they all understand the multidimensional environment and the
methodology involved in the process, with a view to determining the likelihood
and veracity of recommendations made by the model.

• Preferences will be integrated with data from management and mitigation pro-
cesses already practiced in public administrations (such as hydrological modeling
for flood forecasting, as well as having access to georeferencing platforms to
characterize the study areas).

• Phase 2: Natural Disaster Characterization

Karamouz, Nazif, and Falahi (2013) state that hydrological variables and events
are generally investigated by analyzing their observation records. However, many
characteristics of these processes seem to vary in a way that cannot be determin-
istically analyzed, and for which hydrological modeling currently seeks to cover
scenarios of hazard occurrence, both in the intensity and duration of flooding.

Regarding the hazardous environment, this phase seeks to:

• estimate the likelihood of hazard scenarios occurring, as this particularity has a
direct impact on the step that calculates the associated risk;

• identify factors not controlled by the DM, i.e., those relevant parameters that
behave like the State of Nature.

This will be of the utmost importance in order for the mathematical model
of performance aggregation to approximate reality and for the later phase to be
completed.

Keeney and Raiffa (1976) establish a set of procedures to determine utility
functions such that they represent the DM´s behavior besides risk, and these explain
his/her value judgments (or preferences) about each dimension analyzed here.

Since flooding is caused by expected or unexpected precipitation, the intensity
of which the city’s critical infrastructure is unable to bear, it is assumed that the
decision problem needs to incorporate rainfall behavior in order to undertake further
analysis of possible scenarios arising from natural disasters.

In this context, it is important to point out that the behavior of precipitation can
be neither standardized nor controlled by human action and should therefore be
considered as a factor that the DM cannot control regarding the scenarios arising
from floods.

Thus, there are underlying probabilistic mechanisms and the best one can do
is to characterize them properly so that rational inferences can be made. Several
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Fig. 4 Modeling scenarios on considering that the depth of flood waters is a state of nature

Table 1 Scenarios description for obtaining a priori probabilities on considering that the depth of
flood waters is a state of nature

Scenario Description A priori probability 
θi

θ1(h1 mm) Prevention and monitoring stage. πθ1= Π < h2
θ2(h2 mm) Warning stage. πθ2= h2 < Π < h3
θ3(h3 mm) Crisis stage. πθ3 = h3 < Π < h4
θ4(h4 mm) Stage of public calamity. πθ4= Π > h4

hydrological parameters can be set in order to construct a scenario of a probabilistic
nature due to objective data having been collected; therefore, each relevant scenario
should be modeled as a state of nature in the decision problem. The most significant
hydrological parameter is the depth of flood waters. This might be the key factor for
defining four baseline scenarios in this model (see proposal in Fig. 4 and Table 1)
according to a proper probability density function that represents flood frequency in
the case study.

The DM establishes the parameters of division between categories of rainfall
intensity, depending on the local characteristics of the behavior of rainfall and its
particularities.

Assuming that all scenarios for the state of nature occur in a random and inde-
pendent way, the calculation of a consequence function as a PDF adds uncertainty
to the modeling. Thus, the probabilities of the consequences are such that:



164 L. B. L. da Silva et al.

Pdim

(
x| θj , ai

) = fdim
(
x| θj , ai

)
, (1)

where Pdim(x| θ j, ai) means the probability of occurrence in dimension dim whose
alternative ai happens for scenario θ j.

As a consequence of Equation 1, the expected loss can be calculated by
combining the probability of the consequences and the utility function (Equation 2).
Here the loss is of the alternative ai whose scenario θ j has happened is analyzed for
each dimension individually. Furthermore, Berger (1985) argues that if losses are
related to risks, they must be considered as the negative of the utility function, thus
justifying the negative sign of Equation (2).

Lθj (ai) = −
∫

x

P
(
x| θj , ai

)
u(x)dx, (2)

Equation (3) estimates the unidimensional risk. It is calculated by summing all
the expected losses values related to possible scenarios, as shown in Equation (3).

rdim (ai) =
∑

θ

π
(
θj , ai

)
Lθj (ai) (3)

• Phase 3: Multidimensional Risk Determination

The mathematical formulation of the risk will then be constructed according to
the chosen (or filtered) model. It should be applied to each dimension assessed in
the evaluation context, as the main contribution of this phase is to obtain expected
values of the occurrence of unwanted events, by aggregating dimensions and hazard
scenarios Berger (1985). In addition, this formulation seeks to understand while
using existing practices which parameters or indices are analyzed in order to
prioritize one risk over another.

Keeney and Raiffa (1976) pointed out that the ratios between the attributes of
the problem must be calculated in order to aggregate the required information into
a unified result. Questions about the DM’s preferences regarding lotteries with
hypothetical performances are put, and a set of equations is obtained to calculate
the scale constants Kdim.

Thus, the overall risk of an alternative aj is given by aggregating unidimensional
risks using the respective scale constants.

The global risk represents, therefore, the expected values of occurrence of the
unwanted events, and adds dimensions and the danger scenarios, as mentioned by
Berger (1985).

As a result, the model gives the DM a risk ranking based on Utility Theory, for
the most critical areas by assigning priorities to risks.

Alencar and de Almeida (2010) presented another type of result analysis that can
be conducted in this step. It is based on the interval scale of the utility functions
compared with increments (ratios) of risk regarding alternatives of lesser priority in



Multidimensional Decision-Making Process for Managing Flood Risks. . . 165

the ranking. Equation (4) shows how this parameter is calculated.

ratio
(
aj
)
βi

=
rglobal

(
aj
)
βi

− rglobal
(
aj
)
βi+1

rglobal
(
aj
)
βi+1 − rglobal

(
aj
)
βi+2

(4)

where rglobal(aj)βi means the risk from the alternative aj whose position is β i. So,
the increment is calculated using the relative difference between overall risks, the
positions of which are adjacent.

• Phase 4: Multidimensional Risk Mapping

Again with the help of the GIS (georeferencing) platform, the decision support
system which is used as a tool to apply this methodology will use the results
obtained from the previous step, thereby allowing a graphical visualization of the
study area, with the respective alternatives evaluated (in this case, geographical
areas) with their respective risk assessments (either by rating or ranking, depending
on the issues that will be defined throughout the project).

This graphical visualization allows constant interaction between the outcomes to
promote a learning process, the benefits of which will extend throughout the local
flood management and mitigation process, as well as to create the opportunity for
public managers to redefine their policy priorities. This visualization also prompts
projects that benefit the most urgent demands to be prioritized efficiently.

After prior prioritizing flood risks, a monitoring plan can be drawn up to design,
plan, and execute important actions (projects) that will help the DM to control
impacts and to avoid the damages that may otherwise arise. This stage involves
the joint participation of many specialists, researchers, and managers, and they can
understand how important and necessary it is to have structural and non-structural
measures to combat flooding.

6 Open Issues & Insights for Multicriteria Models in FRM
context

In order to apply multidimensional models based on Sects. 4 and 5, when structuring
of any kind of problem in the context of flood risk management, insights can help
to achieve the goals of applying multicriteria methodologies.

It should be noted that flexibility is powerful when analyzing a model for flood
mitigation and control, since it can be used in any city in the world that faces a
similar flood problem.

Many factors – such as unplanned urbanization, irregular occupation of river-
banks, cutting down the riparian forest, etc. – contribute to inflicting harm on the
financial, environmental, and social dimensions.

Therefore, we must detect not only the social impacts related to these factors –
such as mortality, disease, epidemics, and pandemics – but also economic ones –
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damage to property and the infrastructure and the need for emergency plans, for
example. In practice, this chapter puts a spotlight on policies for flood management
that often take into account multiple strategic objectives.

As a possible source of insights into how best to build MCDA/M models, we
cite a survey of relevant attributes shown in Fig. 2 to evaluate possible hierarchical
relationships between them in order to structure the decision problem criteria. For
this case, although the assumption of hierarchical attributes may better represent
the problem for DMs, some studies point to the need to establish an adequate
elicitation of the parameters that represent the weights of each attribute, since bias
in the process has frequently been observed (Pöyhönen et al. 2001; Pöyhönen and
Hämäläinen 1998).

As a tool for applying the modeling proposals, as seen in the previous section, a
decision support system (DSS) is a powerful tool in which procedures sequenced by
the model are instrumented to perform the entire decision process, from receiving
and storing data, processing them and manipulating them (Pressman 2010).

We must point out that the system developed for this study considers the user’s
cognitive style i.e., the way in which he/she observes and analyzes the data. To this
end, the DSS was conceived to meet several functional aspects, as commented on
by (Pressman 2010).

This is why an important trend in developing Decision Support Systems for the
flood risk environment is the insertion of GIS tools as illustrated in Fig. 5.

Early studies by Mennecke (1997) show the GIS platform integrated with other
technologies and they asserted that this integration was as an essential tool for
reducing or eliminating bias, for instance. Some benefits of this powerful tool are
highlighted by Mennecke and West Jr. (2001) include: increases our knowledge
about the resources available in a given area; it increases our knowledge about the
resources available in a given area; it facilitates formulating and evaluating different
alternative strategies, by answering what if questions about policies, and the analysis
and distribution of resources; it reduces the time taken to prepare reports, graphs and
maps, which improves the effectiveness of the geographic information used in policy
analysis and when evaluating planning options; it improves future planning research
by making the data already available existing guidelines and establish guidelines for
collection, storage and processing of the new data to be captured; it improves order
response time information that is generated by managers and planners for making
the information more affordable; it produces new information due to its ability to
manipulate data previously available, thanks to the data manipulation capability via
computer; it facilitates model development dynamics to support planning; and it
allows more appropriate use of the human resources available for collecting and
analyzing data – it has already been seen that the costs of these resources are high –
by eliminating redundancies and data overlaps and efforts.

Finally, some researchers have devoted themselves to incorporating prospective
theory into modeling a DM’s preferences (in terms of utility) (Farrow and Scott
2013). Thus, Liu, Fan, and Zhang (2014) focus on emergency response to a disaster,
considering DMs’ psychological behavior such as reference dependence, aversion
to loss, and judgmental distortion to calculate values of potential response results
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Fig. 5 Example illustration to incorporate GIS-based DSS tools into flood risk problems

concerning each criterion. They proposed a cumulative prospect theory (CPT)
to solve risk decision-making problems in emergency response. An insight for
multicriteria modeling can be obtained by analyzing the feasibility and validity of
the method.

On the other hand, all methodologies and trends pointed out here may help
the calculation of flood risk as a catastrophic event, since it seeks to analyze the
multiple dimensions involved in the process. Therefore, the use of the risk ranking
support model makes it simpler to search for a better compromise solution given the
multidimensional nature of a natural disaster.

In addition, this approach can help to prioritize mitigation actions effectively, as
it considers the relationship between forms of flood impact, not just a hydrological
analysis to measure natural impacts (a practice usually adopted in urban adminis-
trations) and considering different types of problem, usually faced by managers in
everyday life.
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Multicriteria Decision Model to Support
Maintenance Planning in Sewage Systems

Alexandre Ramalho Alberti and Cristiano Alexandre Virgínio Cavalcante

1 Introduction

Protection systems, such as automotive airbags, military defence systems, isolation
valves, and defibrillators, remain inactive during normal operating periods of the
main production system, and their operation is required only during the occur-
rence of specific demands, typically emergency events. In protection systems, the
transition from the operational condition to the failure state is not immediately
verified, as there is no interruption of the main production process, which results
in hidden failures that can only be identified through inspections or during demand
events, when the system is required to work and does not fulfil its function.
Unmet demands can have very negative effects, which justifies the concern with
appropriate maintenance planning for such systems (Vaurio 1999; Jia and Christer
2002; Cavalcante et al. 2011).

Availability is a key indicator to evaluate the performance of a protection system,
as it indicates how much the system is able to contain demand events. To guarantee
a satisfactory level of availability, inspection policies have been proposed as good
alternatives (Jia and Christer 2002). Inspections have the sole objective of obtaining
information about the state of the system without affecting its condition, but in
different situations, inspections can result in obtaining incorrect information or even
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interfering negatively with the system condition. The intensity with which errors
occur depends on the quality of the resources involved in the execution of the
maintenance policy (Alberti et al. 2018). These aspects of inspection quality have
been observed and incorporated into mathematical models presented in previous
works.

Berrade et al. (2012, 2015) observe that in certain situations, there may be errors
in the identification of the failed state of protection systems: false positives can lead
to an early renewal of the system, while the occurrence of false negatives increases
system vulnerability, increasing the likelihood of occurrence of unmet demands. The
authors consider a hybrid inspection and preventive replacement policy, which can
compensate the negative impacts of imperfect inspections on system availability.

Alberti et al. (2018), in a study of isolation valves used in water distribution
networks, verify that the system’s deterioration and failure process can be repre-
sented by a two-stage failure model, where a defective state (where the system is
operational but exhibits deviations from its normal operating conditions) can be
identified before a failure occurs. In this context, the authors verified that errors
regarding the identification of the failure state are negligible, but there may be errors
in the identification of the defective state (both false positives and false negatives). In
an application of the model, the authors show that, even with significant probabilities
of errors in the identification of the defective state, it is worth implementing
a maintenance policy that determines the renewal of the system based on the
identification of defects or failures, and not only based on the identification of
failures.

Alberti et al. (2018) also consider that an inspection can lead to defect induction
in the protection system. In an application they verified that, even if the probability
of defect induction is low, the impact on system performance is quite significant,
which may lead to the recommendation of an inspection-free simple age-based
replacement policy. Scarf and Cavalcante (2012) present a model for critical systems
(which have pronounced failures) that also considers this possibility, while presents
a model that considers the possibility of failure induction.

Another important factor that has been studied is the variation in the quality of
component replacement, which may be related to variation in the manufacturing
quality or even the reuse of a component through its recycling and/or variation in
the installation service quality. Scarf et al. (2009) model this aspect considering that
the component used in the replacement comes from a heterogeneous population
composed of weak items, with low reliability and susceptible to early failures,
and strong items that present late failures, so that the probability distribution of
the time until the defect arrival can be estimated as a mixture of the characteristic
distributions of these subpopulations, considering their proportions. Berrade et al.
(2012, 2015) and Alberti et al. (2018) share the same notion in models applied to
protection systems.

Mathematical models are developed from certain simplifying assumptions and
are not able to consider all aspects of reality, but they can be very useful tools to
obtain guidelines for decision-making in maintenance.
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This chapter presents a mathematical model for a hybrid inspection and pre-
ventive maintenance policy applied to a protection system whose process of
deterioration and failure can be modelled considering the delay-time concept
(Christer 1999). The model has similarity to the model presented in recent work
of both consider the possibility of errors in the identification of defective and failed
states, but different assumptions are considered in their development. The model
presented here was developed in an innovative way, so it would be possible to more
accurately calculate the cost rate and the rate of unmet demands resulting from the
adoption of a maintenance policy. Its development was motivated by a case study
on shut-off valves used in sewage collection systems.

A multicriteria model based on the multi-attribute value theory (MAVT) (Keeney
and Raiffa 1976) is presented, considering two criteria: the expected cost rate and
the rate of unmet demands (which can be considered as a risk measure). Depending
on the scenario, the losses in non-financial dimensions (human, environmental, etc.)
are proportional to the rates of unmet demands, and the multicriteria model allows
the appropriate treatment of the characteristic multidimensionality of the problem
in certain situations. The model can be used for the definition of a maintenance
policy and even for the evaluation of investment scenarios in improving the quality
of maintenance, as demonstrated in the presented application.

The remainder of this chapter is organized as follows: the next section briefly
presents the context of a case study that motivated the development of this work. In
Sect. 4, the mathematical model for the maintenance policy for a protection system
considering the possibility of errors in inspections is developed, and in Sect. 5, a
framework for the construction of the multicriteria model and obtaining results is
presented. In Sect. 6, a numerical application is presented using simulated data, and
finally, in the last section, conclusions are presented.

2 Motivation

The development of the model presented in this chapter was motivated by a case
study on shut-off valves used in sewage collection and transportation systems. It is
worth mentioning that although the model has been motivated by a specific context,
it can be applied in other contexts, as long as the model is consistent with the
observed conditions.

Urban sewage networks are essential public infrastructures whose performance
has an impact on community health, pollution control and economic and environ-
mental sustainability of cities, so it is important to establish proper maintenance and
rehabilitation plans for these systems (Baah et al. 2015; Diogo et al. 2018).

Sewage collection and transport networks are usually formed by branched, buried
and open channel (i.e. under atmospheric pressure) pipes with gravity flow, which
transport the sewage from the collection points to the treatment plants. The design
of the system shall ensure the slope necessary for the flow of the sewage to occur by
gravity and with the speed necessary to keep the sewers clean and transport materials
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with the wastewater. When it is not possible to maintain the necessary slope (e.g. due
to geographical limitations), lift stations (or pumping stations) can be used to pump
the fluid to higher altitudes and to enable new gravity routes (Grigg 2012). Other
models of sewage collection systems are possible, for example, with networks that
operate under pressure, but these systems are not of interest for this work.

Shut-off valves are used to interrupt the flow of sewage, a procedure necessary for
the maintenance of system components such as pipes in general, as well as pumps
and other types of valves used in lift stations (Humes and Stolberg 2006). Because of
their operational characteristics, shut-off valves can be characterized as protection
systems, and the demands are situations that require the interruption of the flow in a
specific area.

While in water distribution networks, which operate under pressure, the failure of
isolation valves can be verified without errors through downstream pressure gauges
(Alberti et al. 2018), in the context of sewage collection networks that operate
in open channel conditions, the failure of shut-off valves may not be identified
during an inspection when there is greater dependence on the inspector’s perception.
Moreover, as is common in mechanical equipment (Alberti et al. 2018), prior to
failure, shut-off valves have an apparent defective state, which may be characterized
with greater difficulty in their actuation or small leakage, and the defect is also
subject to misclassification errors.

The occurrence of unmet demands in this context can have quite negative effects
from an economic and environmental point of view. The maintenance of equipment
in a lift station is an example of a demand event: when one or more pumps of a lifting
station fail, the non-operation of the shut-off valve makes it impossible to stop the
arrival of sewage in the station well, which hinders the execution of the maintenance
plan and may lead to the well overflowing in the case of long delays. Well overflow
can have negative environmental impacts, with the risk of contamination of sources
of drinking water and inconvenience caused to nearby communities, in addition to
the financial impact to the company. Figure 1 gives a good idea about how these
consequences can happen. Thus, a multicriteria approach can be very useful for the
evaluation of maintenance policies for shut-off valves.

3 Notation

The notation presented below is used throughout this chapter.

• Decision Variables:

M – maximum number of inspections until the preventive replacement.
T – time interval between two consecutive inspections.

• Notation for the development of the maintenance policy’s mathematical model:

X time until defect arrival – non-negative random variable.
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Fig. 1 Graphical representation of the consequences of failure in a shut-off valve from a sewage
collection networks
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H – sojourn time in the defective state (delay-time) – non-negative random
variable.

Z – time between the occurrences of two consecutive demands – non-negative
random variable.

fx, Fx, Rx – for X, functions of the probability density, cumulative probability
distribution and reliability, respectively.

fh, Fh, Rh – for H, functions of the probability density, cumulative probability
distribution and reliability, respectively.

fz, Fz, Rz – for Z, functions of the probability density, cumulative probability
distribution and reliability, respectively.

μ – rate of demands.
p – proportion of weak items in the component population.
w – probability of false positives during inspection.
q1 – probability of false negatives during inspection for defective state.
q2 – probability of false negatives during inspection for failed state.
cv – cost of an inspection.
cp, cd, cf – replacement costs when the component is good, defective and failed,

respectively.
CUD – cost of an unmet demand.
tv – time required to perform an inspection.
tp, td, tf – time for performing the replacement when the component is good,

defective and failed, respectively.
tud – time to normalize the system when an unmet demand occurs.
EC, EL – expected cost and expected length of a renewal cycle, respectively.
ρ – probability of a renewal cycle ending in an unmet demand.
C∞ – expected cost per unit of time in the long run.
λ – rate of unmet demands.

• Notation for multicriteria model development:

A – alternative/solution – in this context, a maintenance policy, which is defined
by the combination of decision variables T and M.

Aj – performance of alternative A for criterion j.
V – multi-attribute value.
Vj – unidimensional value for criterion j.
kj – scale constant for criterion j.
nc – number of criteria.
c, r – indexes for the cost (cost rate) and risk (rate of unmet demands) criteria,

respectively.
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4 The Proposed Mathematical Model

To support the evaluation of maintenance policies in contexts such as the one
presented in this study, a delay-time model was developed for a protection system
subject to demands that occur according to a homogenous Poisson process.

We consider a single component protection system composed of a component
and a socket, which together provide an operational function (Ascher and Feingold
1984). The component deteriorates over time, and the operational status of the
system depends on its state: if the component is in a good or defective state, the
system is operational, and if the component fails, the system is unable to fulfil its
function. With the component replacement, the system as a whole is renewed.

A hybrid inspection and preventive replacement policy (MT policy) is proposed,
similar to the one proposed by Vaurio (1999), which guides the performance of
M inspections with a time interval T between the beginning of two consecutive
inspections. When an inspection indicates that the component is defective or failed,
it is replaced with a new unit, and after the M-th inspection, the component is
replaced regardless of its state. It is a flexible policy format, and special cases are
the pure inspection policy (M = ∞) and the simple age-based replacement policy
(M = 1).

It is also considered that the inspection is subject to errors in the identification of
the component condition (false positives and false negatives). Because there is no
difference regarding the action recommended in cases of defect or failure indication,
only one type of false positive is considered: the component is in good state, but the
inspection indicates the opposite, which leads to its early replacement. Regarding
false negatives, two situations can be verified: the component is in the defective
state and the inspection indicates that it is good (false negative type 1), or the
component is in the failed state and the inspection indicates that it is still good (false
negative type 2). The probabilities of false negatives type 1 and type 2 are expected
to be different because the abnormal conditions of the system tend to become more
evident when it is failed.

The relationships between the possible component states, the possible results of
the inspection and their probabilities are presented in Table 1.

4.1 Model Assumptions

For the construction of the model the following assumptions are considered:

Table 1 Consequence matrix
for the decision problem

Component’s state
Good Defective Failed

Inspection outcome Negative 1 – w q1 q2

Positive w 1 – q1 1 – q2
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1. The maintenance policy is rescheduled at the beginning of each renewal cycle.
2. A component’s replacement is performed when an inspection indicates a

defective or failed state, when an unmet demand occurs, or at the M-th
inspection, whichever occurs first.

3. At (M.T), an inspection is also carried out to check the component’s state and
the information is recorded.

4. The distributions Fx, Fh and Fz are known and statistically independent.
5. At an inspection performed when the component is in good state, there is a

probability w of a false positive occurring.
6. At an inspection performed when the component is in the defective state, there

is a probability q1 of a false negative occurring.
7. At an inspection performed when the component is in the failed state, there is a

probability q2 of a false negative occurring.
8. The time and cost of maintenance actions are constant and known.
9. The time spent on maintenance actions is not configured as downtime for the

protection system. Here, it is considered that during the maintenance actions,
there is an interruption in the process of arrival of demands or that demands are
met through alternative solutions.

10. Demands occur according to a homogeneous Poisson process with a known
rate. Hence, fz is an exponential distribution with a characteristic parameter μ.

11. The time required to perform an inspection tv is much smaller than T (tv < <
T).

The assumption 9 is particularly true for examples where, for the maintenance of
the protection system, it is necessary to stop the operation of the main system, as is
the case for shut-off valves: to maintain the valve, it is necessary to interrupt the flow
through it, which means an interruption of the process of the arrival of demands.
Emergency brakes are another example where this condition applies. Moreover, this
assumption is a good approximation when tp, td, tf , tud < < T.

The mathematical models for protection systems presented in the literature are
based on a characterization of the system’s renewal cycle according to the decision
variables of the maintenance policy, with a penalty for the resulting downtime
(Vaurio 1999; Cavalcante et al. 2011; Berrade et al. 2012, 2015; Alberti et al.
2018). In contrast to these models, the model presented in this chapter considers
the replacement of the component in the case of unmet demands, which is a more
realistic scenario. Once assumptions 9 and 10 were considered, it was possible to
develop an analytical model considering this change.

4.2 Model Development

The model was developed from the enumeration of all possible renewal cycle
scenarios that may occur under the presented conditions (represented graphically
in Fig. 2). Figure 2 depicts an exhaustive and mutually exclusive set of scenarios
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Fig. 2 Graphical representation of all the possible renewal cycle scenarios ◦ defect arrival, •
failure, — demand arrival process

such that the sum of the probabilities of occurrence of these scenarios must be
equal to 1 regardless of the values of the decision variables. For each scenario, we
present the calculation of the probability of its occurrence (Pscenario) and, from this
result, the expressions to calculate the expected values for a renewal cycle of the
following measures are derived: the cost (ECscenario) and length of the renewal cycle
(ELscenario). After the scenarios are detailed, the expressions are grouped to model
the performance of the maintenance policy as a function of the decision variables M
and T.

4.2.1 Mathematical Development of the Scenarios

Scenario 1 (M > 1) – the component is replaced after a false positive at the n-th
inspection (n < M):

P1 (T , n) = (1 − w)n−1.w.Rx(n.T ) (1)
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EC1 (T ,M) =
M−1∑

n=1

[(
n.cv + cp

)
.P1 (T , n)

]
(2)

EL1 (T ,M) =
M−1∑

n=1

[(
n.T + tp

)
.P1 (T , n)

]
(3)

Scenario 2 (M > 1) – the defect arrives at the i-th interval between inspections
and is identified at the n-th inspection, before the failure (i ≤ n < M):

P2 (T , n) =
n∑

i=1

[
(1 − w)i−1.q1

n−i . (1 − q1) .

∫ i.T

(i−1).T
fx(x).Rh (n.T − x) dx

]

(4)

EC2 (T ,M) =
M−1∑

n=1

[(n.cv + cd) .P2 (T , n)] (5)

EL2 (T ,M) =
M−1∑

n=1

[(n.T + td ) .P2 (T , n)] (6)

Scenario 3 (M > 2) – the defect arrives at the j-th interval between inspections,
the failure occurs at the i-th interval and is identified at the n-th inspection, before
the occurrence of a demand (j < i ≤ n < M):

P3 (T , n) =
n∑

i=2

i−1∑
j=1

[
(1 − w)j−1.q1

i−j .q2
n−i . (1 − q2) .∫ j.T

(j−1).T fx(x).
∫ i.T−x

(i−1).T−x
fh(h).Rz (n.T − x − h) dhdx

]
(7)

EC3 (T ,M) =
M−1∑

n=2

[(
n.cv + cf

)
.P3 (T , n)

]
(8)

EL3 (T ,M) =
M−1∑

n=2

[(
n.T + tf

)
.P3 (T , n)

]
(9)

Scenario 4 (M > 1) – the defect arrives at the j-th interval between inspections, the
failure occurs at the i-th interval and the replacement occurs at the M-th inspection,
before the occurrence of a demand (j < i ≤ M):
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P4 (T ,M) =
M∑
i=2

i−1∑
j=1

[
(1 − w)j−1.q1

i−j .q2
M−i .∫ j.T

(j−1).T fx(x).
∫ i.T−x

(i−1).T−x
fh(h).Rz (M.T − x − h) dhdx

]
(10)

EC4 (T ,M) = (M.cv + cf
)
.P4 (T ,M) (11)

EL4 (T ,M) = (M.T + tf
)
.P4 (T ,M) (12)

Scenario 5 (M > 1) – the defect arrives at the i-th interval between inspections,
the failure occurs before the subsequent inspection and is identified at the n-th
inspection, before the occurrence of a demand (i ≤ n < M):

P5 (T , n) =
n∑

i=1

[
(1 − w)i−1.q2

n−i . (1 − q2) .∫ i.T

(i−1).T fx(x).
∫ i.T−x

0 fh(h).Rz (n.T − x − h) dhdx

]
(13)

EC5 (T ,M) =
M−1∑

n=1

[(
n.cv + cf

)
.P5 (T , n)

]
(14)

EL5 (T ,M) =
M−1∑

n=1

[(
n.T + tf

)
.P5 (T , n)

]
(15)

Scenario 6 (any M) – the defect arrives at the n-th interval between inspections,
the failure occurs before the subsequent inspection, and the replacement occurs at
the M-th inspection, before the occurrence of a demand (n ≤ M):

P6 (T ,M) =
M∑

n=1

[
(1 − w)n−1.q2

M−n.∫ n.T

(n−1).T fx(x).
∫ n.T−x

0 fh(h).Rz (M.T − x − h) dhdx

]

(16)

EC6 (T ,M) = (M.cv + cf
)
.P6 (T ,M) (17)

EL6 (T ,M) = (M.T + tf
)
.P6 (T ,M) (18)

Scenario 7 (M > 2) – the defect arrives at the j-th interval between inspections,
the failure occurs at the i-th interval and is not detected before a demand that occurs
at the n-th interval (j < i < n ≤ M):
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P7 (T , n) =
n−1∑
i=2

i−1∑
j=1

[
(1 − w)j−1.q1

i−j .q2
n−i .∫ j.T

(j−1).T fx(x).
∫ i.T−x

(i−1).T−x
fh(h).

∫ n.T−(x+h)

(n−1).T−(x+h)
fz(z)dzdhdx

]

(19)

EC7 (T ,M) =
M∑

n=3

{[
(n − 1) .cv + cf + CUD

]
.P7 (T , n)

}
(20)

EL7j in (T , j, i, n) = (1 − w)j−1.q1
i−j .q2

n−i .

.
∫ j.T

(j−1).T fx(x).
∫ i.T−x

(i−1).T−x
fh(h).

∫ n.T−(x+h)

(n−1).T−(x+h)
fz(z).

(
x+h+z+tf +tUD

)
dzdhdx

(21)

EL7 (T ,M) =
M∑

n=3

n−1∑

i=2

i−1∑

j=1

EL7j in (T , j, i, n) (22)

Scenario 8 (M > 1) – the defect arrives at the i-th interval between inspections,
the failure occurs at the n-th interval and a demand occurs before the subsequent
inspection (i < n ≤ M):

P8 (T , n) =
n−1∑

i=1

[
(1 − w)i−1.q1

n−i .∫ i.T

(i−1).T fx(x).
∫ n.T−x

(n−1).T−x
fh(h).Fz (n.T − x − h) dhdx

]

(23)

EC8 (T ,M) =
M∑

n=2

{[
(n − 1) .cv + cf + CUD

]
.P8 (T , n)

}
(24)

EL8in (T , i, n) = (1 − w)i−1.q1
n−i .∫ i.T

(i−1).T fx(x).
∫ n.T−x

(n−1).T−x
fh(h).

∫ n.T−(x+h)

0 fz(z).
(
x +h+ z+ tf + tUD

)
dzdhdx

(25)

EL8 (T ,M) =
M∑

n=2

n−1∑

i=1

EL8in (T , i, n) (26)

Scenario 9 (M > 1) – the defect arrives at the i-th interval between inspections,
the failure occurs before the subsequent inspection and is not identified before a
demand that occurs at the n-th interval (i < n ≤ M):



Multicriteria Decision Model to Support Maintenance Planning in Sewage Systems 187

P9 (T , n) =
n−1∑

i=1

[
(1 − w)i−1.q2

n−i .∫ i.T

(i−1).T fx(x).
∫ i.T−x

0 fh(h).
∫ n.T−(x+h)

(n−1).T−(x+h)
fz(z)dzdhdx

]

(27)

EC9 (T ,M) =
M∑

n=2

{[
(n − 1) .cv + cf + CUD

]
.P9 (T , n)

}
(28)

EL9 in (T , i, n) = (1 − w)i−1.q2
n−i .∫ i.T

(i−1).T fx(x).
∫ i.T−x

0 fh(h).
∫ n.T−(x+h)

(n−1).T−(x+h)
fz(z).

(
x +h+ z+ tf + tUD

)
dzdhdx

(29)

EL9 (T ,M) =
M∑

n=2

n−1∑

i=1

EL9 in (T , i, n) (30)

Scenario 10 (any M) – the defect arrives at the n-th interval between inspections,
the failure and later a demand occur before the subsequent inspection (n ≤ M):

P10 (T , n) = (1 − w)n−1.∫ n.T

(n−1).T fx(x).
∫ n.T−x

0 fh(h).Fz (n.T − x − h) dhdx
(31)

EC10 (T ,M) =
M∑

n=1

{[
(n − 1) .cv + cf + CUD

]
.P10 (T , n)

}
(32)

EL10n (T , n) = (1 − w)n−1.∫ n.T

(n−1).T fx(x).
∫ n.T−x

0 fh(h).
∫ n.T−(x+h)

0 fz(z).
(
x + h + z + tf + tUD

)
dzdhdx

(33)

EL10 (T ,M) =
M∑

n=1

EL10n (T , n) (34)

Scenario 11 (any M) – preventive replacement at M.T, with the system in good
state:

P11 (T ,M) = (1 − w)M−1.Rx(M.T ) (35)

EC11 (T ,M) = (M.cv + cp
)
.P11 (T ,M) (36)



188 A. R. Alberti and C. A. V. Cavalcante

EL11 (T ,M) = (M.T + tp
)
.P11 (T ,M) (37)

Scenario 12 (any M) – preventive replacement at M.T, with the system in
defective state:

P12 (T ,M) =
M∑

n=1

[
(1 − w)n−1.q1

M−n.∫ n.T

(n−1).T fx(x).Rh (M.T − x) dx

]
(38)

EC12 (T ,M) = (M.cv + cd) .P12 (T ,M) (39)

EL12 (T ,M) = (M.T + td ) .P12 (T ,M) (40)

4.2.2 Joining the Scenarios

The expected value of a measure of interest EQ for a renewal cycle is equal to the
sum of the contributions of each scenario, therefore:

• If M = 1:

EQ(T ,M) =
∑

j∈{6,10,11,12}
EQj (T ,M) (41)

• If M = 2:

EQ(T ,M) =
∑

j∈{1,2,4,5,6,8,9,10,11,12}
EQj (T ,M) (42)

• If M ≥ 3:

EQ(T ,M) =
12∑

j=1

EQj (T ,M) (43)

The measure EQ can be the cost (EC) or the length of the renewal cycle (EL).

4.2.3 Calculating the Cost Rate (Cost Criterion)

According to the reward renewal theorem (Tijms 1994), the expected cost per unit
of time in the long run can be calculated according to eq. (44):

C∞ (T ,M) = EC (T ,M)

EL (T ,M)
(44)
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4.2.4 Calculating the Rate of Unmet Demands (Risk Criterion)

The probability that a renewal cycle ends in an unmet demand can be calculated
as the sum of the probabilities of occurrence of the scenarios that end in this way,
therefore:

• If M = 1:

ρ (T ,M) =
M∑

n=1

P10 (T , n) (45)

• If M = 2:

ρ (T ,M) =
M∑

n=2

P8 (T , n) +
M∑

n=2

P9 (T , n) +
M∑

n=1

P10 (T , n) (46)

• If M ≥ 3:

ρ (T ,M) =
M∑

n=3

P7 (T , n) +
M∑

n=2

P8 (T , n) +
M∑

n=2

P9 (T , n) +
M∑

n=1

P10 (T , n)

(47)

As the renewal cycles are statistically independent of each other, then, in
agreement with the observations of Scarf et al. (2009), it is possible to state that the
time intervals between unmet demands are approximately exponentially distributed
with the rate λ calculated according to eq. (48).

λ (T ,M) = ρ (T ,M)

EL (T ,M)
(48)

Once estimated the expected losses for a situation of unmet demand, the rate λ

(T, M) can be used to calculate the expected rate of loss for non-financial dimensions
(human, environmental, etc.). The rate λ (T, M) can then be understood as a measure
of risk (Aven 2012).

5 The Multicriteria Model

In several contexts, maintenance planning addresses several objectives, which
characterize it as a multicriteria decision problem (Jiang and Ji 2002). For example,
the objectives of maintenance policies for shut-off valves are to minimize the
expected cost rate in the long run and to minimize the impacts resulting from
unmet demands. These two objectives characterize well problems involving the
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maintenance of protection systems. Multicriteria models then present an important
contribution to decision-making in these cases (De Almeida et al. 2015b).

In this work, the multi-attribute value theory (MAVT) is considered for the
construction of the multicriteria model. MAVT is a method of aggregation with a
single synthesis criterion, based on compensatory logic, and suitable for situations
where there is complete knowledge about the state of the nature of the problem,
so that the consequences of possible decision alternatives are deterministic (Keeney
and Raiffa 1976). Although these conditions are difficult to verify in maintenance
planning problems, due to the difficulty of accurately estimating the parameters
needed for mathematical model applications, this method can provide important
insights into the process and has been used in other studies, as verified by De
Almeida et al. (2015b).

For the construction of the multicriteria model, it is important to follow a
structured protocol to provide a good understanding of the faced problem, as well
as to elicit and evaluate the relations of preference of the decision maker (DM). A
framework for the construction of the multicriteria model for decision support in the
context addressed is presented in Fig. 3.

The first steps of the framework aim to provide a good understanding of the
problem, with a characterization of the DM and the system under study, and the
identification of possible maintenance strategies. Next, the DM should assess the
risk dimensions associated with the problem, which should be considered in the
multicriteria model construction.

The mathematical modelling of the maintenance policies, in turn, allows the
calculation of the performance of the alternatives in the considered attributes,
and for the effective use of the developed models it is essential to analyse the
input parameters, particularly the parameters for which the model presents greater
sensitivity. In the absence of objective historical data or to complement them,
elicitation procedures can be used to estimate, from the experts’ knowledge, the
input parameters for the mathematical models (Berger 1985).

The evaluation of the alternatives of action is done by assessing their conse-
quences (Keeney and Raiffa 1976); thus, the next step is the delimitation of the space
of consequences (CS) to be considered for eliciting the preferences of the DM. The
procedure was elaborated so that the resulting CS represents a space of alternatives
that are limited to non-dominated alternatives and that respect the thresholds of
acceptable risk. In this way, the analysis is restricted only to the alternatives that in
fact interest the DM, and the model shows greater sensitivity, being able to better
differentiate between the best and worst alternatives.

With the problem duly contextualized and the initial conditions for the analysis
established, the modelling of the preferences of the DM using MAVT can be started.
This stage consists of eliciting the multi-attribute value function, which will be used
to evaluate the performance of maintenance policies.

From Keeney and Raiffa (1976) and De Almeida et al. (2015a), it is concluded
that the process of eliciting the multi-attribute value function can be divided
into five main steps: introduction of ideas and terminology; elicitation of one-
dimensional value functions (intracriterion evaluation); verification of the relations
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Fig. 3 Framework for the construction of the multicriteria model using MAVT. CS Consequences
Space

of mutual preferential independence; elicitation of the multi-attribute value function
(intercriteria evaluation); and finally, tests for consistency checking.

The multi-attribute value function associates a real number with each point
in the CS and can be obtained from the combination of one-dimensional value
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functions, which evaluate the consequences by considering only one criterion at
a time (Keeney and Raiffa 1976). One-dimensional value functions result in a scale
transformation (usually on a scale of 0 to 1) and indicate the value gains (or losses)
that can be obtained with an improvement (or worsening) in the performance of
the criterion according to the initial reference point. Linear functions indicate that
marginal gains are constant and are widely used in practical applications, where
they are often good approximations (De Almeida et al. 2015a). Belton and Stewart
(2002) present methods for eliciting one-dimensional value functions.

The intercriteria evaluation, in turn, can begin with the verification of the
condition of mutual preferential independence between the criteria. The mutual
preference independence between two criteria Y and Z occurs if and only if the
conditional preference in the space of Y (intracriterion evaluation) does not depend
on the level of performance in criterion Z, and vice versa. Once this condition is
verified, the multi-attribute value function can be expressed in the additive form,
according to eq. (49) (De Almeida et al. 2015a).

V (A) =
nc∑

j=1

kj .Vj

(
Aj

)
(49)

where:

nc∑

j=1

kj = 1

The scale constants (kj) can be calculated from trade-offs between the criteria.
This procedure is presented in detail by Keeney and Raiffa (1976).

The maintenance policy that maximizes the multi-attribute value presents the
best compromise relationship between the considered criteria. A sensitivity analysis
is then required to assess the impact of possible inconsistencies in the process of
elicitation of the DM’s preferences in order to evaluate whether the recommendation
obtained is robust to possible disturbances or whether extra verifications are
required to ensure greater reliability of the results (De Almeida et al. 2015a). Once
the necessary checks and a critical analysis of the results have been made, the
recommendation for the DM is drawn up.

6 Numerical Application

For the numerical application, the context of shut-off valves used in a lifting station
of a sewage collection and transportation system was considered. The maintenance
of such a system not only has financial but also environmental impacts, so a
multicriteria approach can better address the multidimensionality of the problem
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of maintenance policies evaluation. The criteria of cost (C∞ (T, M)) and risk (λ (T,
M)) were considered in the analysis.

Simulated data were used to illustrate the use of the model and to obtain some
results for discussion.

6.1 Specifying the Model Input Parameters

For the definition of the parameters, realistic values were considered for the specific
example of a shut-off valve operated by a Brazilian sanitation company.

As is common in mechanical equipment, the system’s deterioration and failure
process can be modelled considering the delay-time concept; that is, before a failure
occurs, the system presents a defective state that can be identified (Christer 1999).
In an investigation of the factors that affect the performance of the system, it was
verified that the variation in the quality of the maintenance service or in the quality
of the material used could lead to early failures. A simplification of the presented
model is that the protection system is a non-repairable and single-component
system, so to model this aspect of maintenance quality, it is considered that
the components used in the replacements come from a heterogeneous population
composed of weak items and strong items.

Weibull distributions (with a shape parameter β and scale parameter η) were
used to characterize the probability distributions of X for weak items (β1 = 1.5,
η1 = 1 years) and strong items (β2 = 2.5, η2 = 4 years) and the probability
distribution of H (β3 = 1, η3 = 0.25 years). The resulting probability distribution
of X can then be calculated as a mixture of the distributions of the weak items and
the strong items, as indicated in eq. (50) (Scarf et al. 2009). The mixing parameter
was estimated as p = 0.10.

fx(x) = p.fx1(x) + (1 − p) .fx2(x) (50)

Regarding the inspection quality parameters, a low probability of false positives
during the inspection was verified, whereas the probabilities of the two types of
false negatives were more significant, with the probability of false negative type 1
being greater compared to the probability of false negative type 2. The following
values were estimated for the inspection quality parameters: w = 0.05, q1 = 0.30
and q2 = 0.10.

The costs were established taking the cost of preventive replacement of a
component when it is in good state as reference, so that cp = 1 un. (the quantity
is not specified in monetary units). The inequality ratios cf > cd > cp and tf > td > tp
are appropriate because it is reasonable to consider that the cost and time for system
recovery tend to be larger the worse their condition is.

It is worth noting that in the case of protection systems, the higher penalty
is associated with an unmet demand (UD) event and not necessarily with the
replacement of a failed component because in this case, there is no interruption
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Table 2 Specifying the
model input parameters

Costs Times Demands

cv = 0.04 un. tv = 0 (negligible) μ = 2 demands / year
cp = 1 un. tp = 3 h CUD = 30 um
cd = 1.5 un. td = 6 h tud = 72 h
cf = 3 un. tf = 12 h

of the main production process due to the occurrence of such failure. The values of
the other parameters are shown in Table 2.

Finally, due to limitations in the availability of resources, the following con-
straints are added to the problem: T ≥ 1 month, M.T ≥ 6 months, i.e. the time
interval between two inspections cannot be less than one month, and the scheduled
preventive replacements can only occur with at least 6 months of component
operation. Acceptable risk thresholds are not considered, so that the space of
alternatives to be analysed covers the whole set of non-dominated policies.

6.2 Results

The results obtained are presented in three stages: first, an analysis of the impact
of the different aspects of maintenance quality on the recommendation and per-
formance of the optimal maintenance policy is made, considering the two criteria
separately. Then, a multicriteria additive aggregation model, based on MAVT, is
applied considering different combinations of scale constants, in order to verify how
the maintenance policy recommendation varies. Finally, certain investment scenar-
ios to improve the maintenance quality are evaluated considering a multicriteria
perspective.

6.2.1 Assessing the Criteria Separately

To minimize the cost rate, it is necessary to find a balance between the cost of
preventive maintenance actions and the cost due to failures and unmet demands. On
the other hand, the minimization of the rate of unmet demands depends basically on
the constraints of the problem because the more frequent the maintenance actions
are carried out, the lower the rate tends to be.

For the case considered (base case), the policy that minimizes the cost criterion
is T = 0.163 year and M = 17, which results in C∞ = 1.243 un./year and
λ = 8206.10−3 UD/year. On the other hand, the policy that minimizes the risk
criterion is T = 0.083 year (minimum T) and M = 6 (minimum M given minimum
T), which results in C∞ = 2.852 un./year and λ = 1080.10–3 UD/year. From these
results, it is possible to delimit the CS regarding the non-dominated policies.

In Table 3, the results of an analysis of the model’s sensitivity to the variation
in the maintenance quality parameters are presented. These results aim to evaluate
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Table 3 Optimum
maintenance policies (for the
criteria cost and risk) for
different values of the
maintenance quality
parameters

Quality parameters Minimizing cost
Case p w q1 q2 M T C∞* λ

1 0.1 0.05 0.3 0.1 17 0.163 1.243 8.206
2 0.1 0.05 0.3 0 16 0.173 1.201 7.521
3 0.1 0.05 0 0.1 16 0.183 1.116 6.42
4 0.1 0 0.3 0.1 23 0.123 1.086 6.068
5 0 0.05 0.3 0.1 10 0.213 1.071 6.153
6 0.1 0.05 0.3 0.2 18 0.153 1.288 8.841
7 0.1 0.05 0.4 0.1 18 0.153 1.29 8.599
8 0.1 0.1 0.3 0.1 13 0.203 1.38 10
9 0.2 0.05 0.3 0.1 22 0.143 1.396 9.333
10 0.1 0 1 0.1 17 0.113 1.503 13
11 0.1 0 0 0 22 0.143 0.949 4.082
12 0 0 0 0 17 0.163 0.866 3.577

Quality parameters Minimizing risk
Case p w q1 q2 M T C∞ λ*

1 0.1 0.05 0.3 0.1 6 0.083 2.852 1.08
2 0.1 0.05 0.3 0 6 0.083 2.847 0.913
3 0.1 0.05 0 0.1 6 0.083 2.835 0.645
4 0.1 0 0.3 0.1 6 0.083 2.588 1.1
5 0 0.05 0.3 0.1 6 0.083 2.757 0.142
6 0.1 0.05 0.3 0.2 6 0.083 2.857 1.28
7 0.1 0.05 0.4 0.1 6 0.083 2.859 1.27
8 0.1 0.1 0.3 0.1 6 0.083 3.146 1.07
9 0.2 0.05 0.3 0.1 6 0.083 2.948 2.04
10 0.1 0 1 0.1 6 0.083 2.661 2.935
11 0.1 0 0 0 6 0.083 2.568 0.544
12 0 0 0 0 6 0.083 2.491 0.081

T in years, C∞ in un./year and λ in 10−3 UD/year
∗An approximate optimization algorithm was used to find
approximately optimal maintenance policies, and because of
this the last digit of the values indicated for T is 3 in all case
considered

the impact of these parameters on the definition and performance of the optimal
maintenance policies, defined based on each criterion separately. The base case is
highlighted in row 1 of the table, and the quality parameters are then varied from
there.

It is observed that the optimal maintenance policy varies depending on the case
when considering the cost criterion, whereas when considering the risk criterion,
the recommendation remains the same: to carry out the maintenance actions as
frequently as possible, with the maintenance quality having an impact on policy
performance.

When only the cost criterion is considered, certain tendencies are observed: the
greater the probabilities of false negative type 1 (q1 – see cases 1, 2 and 6) and
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false negative type 2 (q2 – see cases 1, 3 and 7), more frequent inspections (T
minor) and preventive replacements (M.T minor) should be in order to increase
the probability of detection of a defect or failure before the occurrence of an unmet
demand and compensate for possible negative effects on system availability. On the
other hand, the greater the probability of false positives (w – see cases 1, 4 and 8),
the less frequent the inspections (T major) should be to reduce the probability of
an early replacement; however, less frequent inspections increase the vulnerability
of the system, an effect that is compensated by the reduction in the time interval
between scheduled preventive replacements (M.T minor). Finally, with respect to
the mixing parameter, it is observed that the greater the proportion of weak items
(p – see cases 1, 5 and 9), the more frequent the inspections (T minor) should be to
increase the probability of detection of weak items before the occurrence of a failure
or an unmet demand. Interestingly, for higher p values, preventive replacement
was recommended later (greater M.T) because the increased inspection frequency
compensated for the negative effects of imperfect inspection on system availability.

Case 10 simulates a situation where the maintenance policy does not guide the
preventive replacement in the case of defect identification. Because the defective
state must be ignored in this situation, it was considered q1 = 1 (as if the defect
was not seen), and with respect to w, it was assumed that the probability of a
false positive that indicated that the system had failed is zero. The cost resulting
from the optimal configuration of this policy was 20% greater than that obtained
for the optimal policy for the base case, which indicates that it was advantageous
to adopt a policy that also indicated preventive replacement in case of a defect,
even considering the possibility false positives (see cases 1, 4, 8 and 10). The same
conclusion was obtained when considering the risk criterion.

When considering only the risk criterion, the following trends were observed: the
higher the probability of a false positive (w), the lower the optimal risk obtained as a
consequence of the increase of the early replacements. On the other hand, the greater
the probability of false negatives type 1 and type 2 (q1 and q2), and the greater the
proportion of weak items in the population of components (p), the greater the risk
obtained. The greater impact was due to variations in the value of p.

Cases 11 and 12 show the mistakes that could be made when such aspects of
imperfect maintenance were observed in practice but ignored in the mathematical
modelling of maintenance policy. Interestingly, the optimal policies indicated for
case 12 were the same as those obtained for the base case, but this result should not
be expected. However, by ignoring the effect of imperfect maintenance, cost and
risk assessments could be quite misleading, with negative impacts on maintenance
decision-making.

The divergences between the optimal maintenance policies obtained for each
criterion confirmed the need for a multicriteria model for a better evaluation of
maintenance policies.
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6.2.2 Using a Multicriteria Model to Define the Maintenance Policy

A multicriteria model based on MAVT was used to define the maintenance policy
that presents the best compromise relationship between the criteria cost and risk for
different scenarios. Simulated data were used to evaluate how the recommendations
vary according to different preference structures.

To initiate the elicitation of the DM’s preferences, it was necessary to delimit
the CS referring to the set of alternatives that would be analysed in the decision
problem. As indicated earlier, the alternatives that actually matter have the following
properties: they are non-dominated and met the limits of acceptable performance in
all dimensions of analysis. In the present application, the set of alternatives analysed
is continuous, so the problem of maximizing the multi-attribute value took the form
of a classical optimization problem.

As there were no acceptable risk constraints, the CS considered in this application
refers to the set of non-dominated alternatives and was delimited from the optimiza-
tion of each criterion separately: let (C∞*, λ0) be the performance of the policy
that minimizes the cost (policy 1) and (C∞0, λ*) the performance of the policy that
minimizes the risk (policy 2), then any alternative with performance (C∞x, λx) such
that C∞x ≥ C∞* (because no viable alternative had a cost lower than C∞*) and
λx > λ0 is dominated by policy 1, so the latter does not matter to the DM. The
same logic could be applied considering the risk criterion as a reference; then, it
was concluded that the CS for the cost and risk criteria could be represented by the
intervals [C∞*, C∞0] and [λ*, λ0].

Linear value functions were considered for the intracriterion evaluations, taking
the scale [0,1] as a reference. A linear value function indicates that the marginal
gain related to the considered criterion is constant. The CS limits (presented in the
previous subsection) and the one-dimensional value functions considered are shown
in Table 4.

For the multi-attribute value function, it was considered that there is preferential
independence between the criteria, so that this function could be represented in the
additive form, according to eq. (51). Because the cost and risk are functions of the
maintenance policy decision variables (T and M), the representation presented in
eq. (52) is also adequate:

V (C∞ (T ,M) , λ (T ,M)) = kc.Vc (C∞ (T ,M)) + kr .Vr (λ (T ,M)) (51)

Table 4 CS limits and one-dimensional value functions for the multicriteria model

Criterion Lower Upper Value functions

Cost (C∞(T,M)) 1.243 2.852 Vc(C∞(T,M)) = 1.773 – (0.622).C∞(T,M)
Risk (λ(T,M)) (1.080)0.10−3 (8.206)0.10−3 Vr(λ(T,M)) = 1.152 – (140.331).λ(T,M)

C∞ in un. /year and λ in UD/year
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Table 5 Results of multicriteria evaluation

Case kc kr M T V*(T,M) C∞(T,M) λ(T,M)

1 0.1 0.9 8 0.083 0.902 2.39 1.295
2 0.2 0.8 16 0.083 0.857 1.734 1.813
3 0.3 0.7 20 0.083 0.840 1.619 1.999
4 0.4 0.6 24 0.083 0.831 1.552 2.174
5 0.5 0.5 28 0.083 0.828 1.512 2.341
6 0.6 0.4 33 0.083 0.829 1.484 2.535
7 0.7 0.3 30 0.093 0.842 1.405 3.163
8 0.8 0.2 23 0.113 0.872 1.319 4.306
9 0.9 0.1 20 0.133 0.921 1.267 5.754

T in years, C∞ in un./year and λ in 10−3 UD/year
∗An approximate maximization algorithm was used to determine the maintenance policies with a
maximum value, and because of this the last digit of the indicated values for T is 3 in all cases
considered

V (T ,M) = kc.Vc (T ,M) + kr .Vr (T ,M) (52)

The scale constants kc and kr are calculated from trade-offs between the criteria
and indicate how much the loss of performance in one criterion can be compensated
for by the improvement in another criterion. Different combinations of the scale
constants kc and kr were considered to observe how the obtained recommendations
vary. The results are shown in Table 5.

In Table 5, it is observed that in all cases, the recommended value of T
was significantly lower compared to the policy that minimizes the cost criterion
(see Table 3): even in the case where kc = 0.9, the value of T recommended
was approximately 20% lower, whereas for kr ≥ 0.4, the lowest possible value
(T = 0.083 year) was recommended. These results demonstrated the strong impact
of considering the risk criterion in the decision, which tends to result in the
recommendation of significantly more conservative policies. This phenomenon
could also be observed in the reduction in the value of M indicated when increasing
kr in cases 1 to 6: such variation in this decision variable occurred as a consequence
of the restriction applied to T.

The results presented in Table 5 demonstrate the importance of implementing a
structured protocol to elicit the DM’s preferences because the policy that presented
the best compromise relationship between the criteria could vary significantly
depending on the combination of the scale constants (compare cases 1 and 9, for
example).

Once the DM’s preferences were mapped, the scale constants were calculated,
and an initial compromise solution was obtained, it is important to analyse the
sensitivity of the model to verify the robustness of the recommended solution in
the face of possible inconsistencies that may occur in the elicitation process. One
possibility for this analysis is to vary the scale constants and evaluate how the results
respond to such a disturbance. In the example, it is observed that for kr between 0.5
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and 0.8 (cases 2 to 5), the recommended maintenance policies differ little, with
small variations in the value of M, which indicates that in this range of values of the
scale constants, the effectiveness of the recommended solution was little affected by
inconsistencies that result in small differences in their actual values.

6.2.3 Evaluating the Investment in Higher Quality Maintenance

The maintenance quality could be improved in different ways: by training mainte-
nance teams, by adopting more effective technologies, among other examples, and
improvement of the maintenance quality usually requires financial investment. A
multicriteria model could also be used to evaluate possible investment scenarios in
maintenance quality, indicating which strategy was most appropriate according to
the DM’s preferences. In this application, a model based on MAVT was used.

For the construction of the multicriteria model, it was initially necessary to list
the possible investment scenarios, indicating the improvement in the maintenance
quality parameters and the associated cost increase. One way to accomplish the
latter is to consider that such an investment entails increasing the cost associated
with the maintenance actions, for example: an improvement in the inspection quality
parameters (reduction in w, q1, q2) could be achieved with an investment that
resulted in an increase in unit cost of an inspections (cv).

Once the possible investment scenarios had been identified, it is necessary to
delimit the CS associated with each of them, according to the procedure presented
previously. If, for a certain scenario, the CS referring to the non-dominated
alternatives did not comply with the limits of acceptable risk, this scenario should
not be considered. The CS to be considered for the general analysis should then be
defined in a way that includes the CSs related to the scenarios addressed.

The investment scenarios considered for this application are presented in Table 6.
The original scenario, which is maintained when no investment is made, is
highlighted in the first line, and the other scenarios were related to investments in the
inspection quality (scenario 2), replacement quality (scenario 3) or both (scenario
4).

For each scenario, the cost and risk criteria were optimized separately, as
presented in Table 7, where the values considered to delimit the CS for the general
analysis are highlighted.

It is observed that for the cost criterion, only the scenario of investment in
the inspection quality (scenario 2) was more advantageous compared to the initial

Table 6 Investment
scenarios. Costs in un

Scenario p w q1 q2 cv cp cd cf

1 (base) 0.1 0.05 0.3 0.1 0.04 1 1.5 3
2 0.1 0.01 0.1 0 0.08 1 1.5 3
3 0.03 0.05 0.3 0.1 0.04 1.2 1.8 3.6
4 0.03 0.01 0.1 0 0.08 1.2 1.8 3.6



200 A. R. Alberti and C. A. V. Cavalcante

Table 7 Optimum cost and risk for each investment scenario

Scenario M T C∞*(T,M) λ(T,M) M T C∞(T,M) λ*(T,M)

1 (base) 17 0.163 1.243 8.206 6 0.083 2.852 1.08
2 13 0.203 1.238 7.428 6 0.083 3.102 0.655
3 13 0.193 1.268 7.610 6 0.083 3.244 0.423
4 11 0.233 1.26 7.300 6 0.083 3.461 0.262

T in years, C∞ in un./year and λ in 10−3 UD/year
∗An approximate optimization algorithm was used to determine approximately optimal mainte-
nance policies, and because of this the last digit of the values indicated for T is 3 in all cases
considered

Table 8 CS limits and one-dimensional value functions for the multicriteria model

Criterion Lower Upper Value functions

Cost (C∞(T,M)) 1.238 3.461 Vc(C∞(T,M)) = 1.557 – (0.450).C∞(T,M)
Risk (λ(T,M)) (0.262)0.10−3 (8.206)0.10−3 Vr(λ(T,M)) = 1.033 – (125.878).λ(T,M)

C∞ in un./year and λ in UD/year

Table 9 Results of the multicriteria evaluation of investment scenarios

Case kc kr Best invest. Scenario M T V(T,M) C∞(T,M) λ(T,M)

1 0.2 0.8 4 16 0.083 0.893 2.03 0.621
2 0.5 0.5 4 19 0.103 0.847 1.611 1.368
3 0.8 0.2 4 15 0.153 0.887 1.344 3.249

T in years, C∞ in un./year and λ in 10−3 UD/year
∗An approximate maximization algorithm was used to determine the maintenance policies with a
maximum value, and because of this approach the last digit of the indicated values for T is 3 in all
cases considered

scenario, but with a small difference. For the risk criterion, as expected, the higher
the effect of the investment, the better the result. No dominance relationships were
observed between the scenarios, so it is appropriate to consider all of them in the
multicriteria evaluation.

Linear value functions were considered for the intracriterion evaluations, taking
the scale [0,1] as a reference. The CS limits and the one-dimensional value functions
considered are presented in Table 8.

For the multi-attribute value function, it was considered that there exists prefer-
ential independence between the criteria, so that this function could be represented
in the additive form. Different combinations of the scale constants kc and kr,
representing different preference structures, were considered to evaluate how the
obtained recommendation varies. The results are shown in Table 9.

In all cases listed in Table 9, the investment scenario 4 obtains the best
compromise relationship between the criteria, which again demonstrates the impact
that the consideration of the risk criterion has on the recommendations. Although
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in all cases there is agreement on the recommendation of the investment to improve
the inspection and replacement quality, the recommended maintenance policies are
significantly different, which demonstrates the importance of the execution of a
structured protocol for elicitation of the DM’s preferences in order to avoid wrong
decisions.

7 Conclusion

This chapter presents some contributions to the process of evaluating maintenance
policies for protection systems, which were motivated by a case study concerning a
real system.

First, a mathematical model is proposed for a hybrid inspection and preventive
replacement policy applied to a protection system, which considers the possibility
of errors in the identification of the state of the system during an inspection (false
positives and false negatives). The mathematical model is innovative and developed
based on the delay-time concept but with a different approach than that used in
previous studies presented in the literature, which allows us to more accurately
estimate the cost and risk of unmet demands as a function of the decision variables
of the maintenance policy.

In many contexts, including the context that motivated the development of
this work, maintenance planning addresses multiple and sometimes conflicting
objectives; thus, a multicriteria approach based on MAVT is proposed to more
appropriately treat the multidimensionality inherent to the problem.

With the numerical application, it was possible to observe the suitability and
importance of the proposed approach to the presented problem. From a broad
analysis of the results obtained with the application of the model, the DM can obtain
certain answers to important questions that arise during the decision process, for
example: is it worth recommending preventive replacement when the inspection
indicates a defective state? What are the effects of the different aspects of main-
tenance quality on the indication of the optimal maintenance policy for different
criteria? Is it worth investing in higher quality maintenance? If so, how should this
investment be performed? When obtaining answers to questions such as this, the
DM has important information that can result in better decisions.

Finally, the results demonstrate the importance of executing a structured protocol
for the construction of the multicriteria model because the recommendations
obtained can vary significantly depending on the structure of the preferences of the
DM.
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A Multicriteria Model to Determine
Maintenance Policy for a Protection
System Subject to Imperfect Maintenance

Alexandre Ramalho Alberti and Cristiano Alexandre Virgínio Cavalcante

1 Introduction

Protection systems usually remain inactive during normal operating periods of the
main production system, and are required to function when facing specific demands,
such as emergency events. Consequently, such systems have hidden failures that
can only be detected through inspections or at a demand event. Alarms, isolation
valves, fire protection systems and emergency brakes are examples of such systems
(Vaurio 1999; Jia and Christer 2002; Cavalcante et al. 2011). It is generally observed
that the occurrence of unmet demands due to an unavailable protection system
can have very negative effects that potentially cross multiple dimensions (financial,
human, environmental, etc.), which justifies the concern on appropriate maintenance
planning for this type of system.

Usually, the maintenance planning process can be divided into three main steps,
which in brief consist of obtaining answers to the following questions. (1) Which
maintenance actions are appropriate for the system under study? (2) How often
should these actions be carried out? (3) What resources should be used? These ques-
tions are usually answered in this order and hierarchically (De Almeida et al. 2015a).
However, the impact of the quality of resources involved in the performance of the
maintenance policy is sometimes overlooked in this process (Alberti et al. 2018).
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To incorporate this element into the maintenance decision-making process,
some studies have presented mathematical models that allow one to consider
certain aspects of maintenance quality. For example, Scarf et al. (2009) model the
component replacement quality by considering that it comes from a heterogeneous
population composed of weak items, which have low reliability and are susceptible
to early failures, and strong items. The source of this heterogeneity may be the
variation in the quality of the components’ manufacturing or recycling, variations
in the quality of the installation service, or both. Berrade et al. (2012, 2015) and
Alberti et al. (2018) share the same notion for the models applied to protection
systems. To model the inspection quality, some studies consider the possibility of
misclassification in the identification of the state of a component (false positives
and false negatives). Okumura et al. (1996), Berrade et al. (2012, 2015) and
Alberti et al. (2018) consider that the inspections present a constant probability of
misclassification. Conversely, Driessen et al. (2017) consider that this probability
can be variable. Other studies consider the possibility that inspections themselves
may induce defects (Scarf and Cavalcante 2012; Alberti et al. 2018) or failures
(Flage 2014) in the system. Mathematical models seek to represent the reality in
an approximate way and are not able to involve all its aspects, but they can be very
useful tools to guide the maintenance decision-making process.

In this chapter, we present a mathematical model for a maintenance policy
applied to a protection system that incorporates an important aspect of inspection
quality: the probability of defect induction. The delay-time concept (Christer 1999)
is used to model the deterioration and failure process of a single component
protection system. It is an innovative model that allows to more accurately estimate
the cost resulting from the adoption of a maintenance policy, as well as the rate of
occurrence of unmet demands, which can be understood as a risk measure.

We verified that the model is very sensitive to the probability of defect induction
at an inspection. A small variation in this parameter can result in substantial
variations in the performance of the maintenance policy, as well as in the recom-
mendation of the best policy to be adopted. In addition, its estimation is a difficult
process and involves a certain degree of uncertainty. Therefore, in order to ensure
the appropriate treatment of the problem under these conditions, this parameter is
modelled through a probability distribution.

A multicriteria model for evaluating maintenance policies is then presented. It
considers two criteria: the expected cost rate (cost) and the rate of unmet demands
(risk) that result from the adoption of a maintenance policy in the long run. Depend-
ing on the scenario, the losses in non-financial dimensions (human, environmental,
etc.) are proportional to the rate of unmet demands. Thus, the multicriteria model
allows for an appropriate treatment of the multidimensionality characteristic of
the problem. Multi-attribute utility theory (MAUT) was considered for the model
development since it is suitable for scenarios where there is uncertainty about the
state of nature, and the parameters of the problem can be described by probability
distributions (Keeney and Raiffa 1976), as is the case of the presented problem.
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This chapter is organized as follows. The next section briefly presents the
problem statement, and the following section presents the notations used throughout
this text. In Sect. 4, the mathematical model for the maintenance policy applied to a
protection system is developed taking into consideration the previously mentioned
aspect of inspection quality, and in Sect. 5, a framework for the construction of
the multi-criteria model and obtaining results is presented. In Sect. 6, a numerical
application is presented using simulated data, and finally, in the last section, some
conclusions are pointed out.

2 Problem Statement

The level of availability of a protection system indicates how well it is able to meet
demand events. In this sense, in order to ensure a satisfactory level of availability
for protection systems, several papers propose the adoption of periodic inspection
policies (Jia and Christer 2002).

Inspections have the objective of obtaining information about the system’s state
without affecting its condition. However, as indicated previously, an inspection
can induce defects in the system, thereby negatively affecting its reliability.
Therefore, some questions arise: What is the impact of the inspection quality on
the maintenance policy’s performance? How can inspection quality influence the
definition of the most appropriate policy? Finally, how can we properly approach
the multidimensionality of the problem in some application contexts? This chapter
addresses these questions.

Regarding equipment maintenance, a set of maintenance procedures does not
necessarily guarantee any improvement in performance. Oftentimes, contrary to
expectations, it may even have a negative impact that can reduce a system
initial performance or increase the chances of failure. In this sense, it is of vital
importance to observe the main aspects that can result in maintenance work causing
performance degradation. With respect to inspections in particular, examples have
been presented in the literature demonstrating how inspecting equipment can cause
damages to the system (Scarf and Cavalcante 2012; Flage 2014; Alberti et al. 2018).
Alberti et al. (2018) point out that this situation is not always easy to observe, and
even if the probability of defect induction is low, it can have a significant impact
on the system performance. This demonstrates the importance of the methods for
investigating trends that affect system performance, such as snapshot modelling
(Christer and Whitelaw 1983) and the use of models that consider this aspect of
maintenance quality.

3 Notation

The notation presented is used throughout this chapter.
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• Decision Variables:

M – maximum number of inspections until the preventive replacement.
T – time interval between two consecutive inspections.

• Notation for the development of the maintenance policy’s mathematical model:

X – time until defect arrival – non-negative random variable.
H – sojourn time in the defective state (delay-time) – non-negative random

variable.
Z – time between the occurrences of two consecutive demands – non-negative

random variable.
fx, Fx, Rx – for X, functions of the probability density, cumulative probability

distribution and reliability, respectively.
fh, Fh, Rh – for H, functions of the probability density, cumulative probability

distribution and reliability, respectively.
fz, Fz, Rz – for Z, functions of the probability density, cumulative probability

distribution and reliability, respectively.
μ – rate of demands.
p – probability of defect induction at the inspection.
fp – probability density function of the distribution of p.
cv – cost of an inspection.
cp, cd, cf – replacement costs when the component is good, defective and failed,

respectively.
CUD – cost of an unmet demand.
tv – time required to perform an inspection.
tp, td, tf – time for performing the replacement when the component is good,

defective and failed, respectively.
tud – time to normalize the system when an unmet demand occurs.
EC, EL – expected cost and expected length of a renewal cycle, respectively.
ρ – probability of a renewal cycle ending in an unmet demand.
C∞ – expected cost per unit of time in the long run.
λ – rate of unmet demands.

• Notation for multicriteria model development:

A – alternative/solution – in this context, a maintenance policy is defined by the
combination of decision variables T and M.

Aj – performance of alternative A for criterion j.
U, EU – respectively, multi-attribute utility and expected multi-attribute utility.
Uj, EUj – respectively, one-dimensional utility for criterion j and expected one-

dimensional utility for criterion j.
kj – scale constant for criterion j.
c, r – indexes for the cost (cost rate) and risk (rate of unmet demands) criteria,

respectively.
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4 The Proposed Mathematical Model

To support the process of evaluating maintenance policies in contexts such as the
one presented, a delay-time model was developed for a protection system subject to
the demands that occur according to an homogenous Poisson process.

A single component protection system is considered, which is composed of a
component and a socket that together play an operational function (Ascher and
Feingold 1984). The component deteriorates over time, and the operating status of
the system depends on its state. If the component is in a good or defective state, the
system is operational, and if the component is failed, the system is unable to fulfil its
function. With the replacement of the component, the system as a whole is renewed.

A mixed inspection and preventive replacement policy (MT policy) is proposed,
similar to the one proposed by Vaurio (1999), which guides the performance of
M inspections with a time interval T between the beginning of two consecutive
inspections. When an inspection indicates that the component is defective or failed,
it is recommended to replace it with a new unit, and at the M-th inspection the
component is replaced regardless of its state. It is a flexible policy format, and its
special cases are the pure inspection policy (policy PI, M = ∞) (inspections will
occur until a defect or failure occurs or a demand identifies a failure without prior
planning to replace the component) and the policy of pure preventive replacement or
age-based replacement (policy ABR, M = 1) (at the first inspection, the component
is replaced regardless of its state).

Finally, to model the quality of the inspection, it is considered that there is the
probability of defect induction when performing an inspection when the component
is in a good state.

4.1 Model Assumptions

The following assumptions are considered for model development:

1. The component replacement is performed when an inspection indicates a defec-
tive or failed state, when an unmet demand occurs, or at the M-th inspection,
whichever occurs first.

2. At the end of the renewal cycle, an inspection is also carried out to check the
component’s state and record the information.

3. The distributions Fx, Fh and Fz are known and statistically independent.
4. At an inspection performed when the component is good, there is a probability p

of inducing the defective state.
5. There are no misclassification errors regarding the identification of the compo-

nent’s state.
6. The time and costs of maintenance actions are constant and known.
7. The time spent on maintenance actions is not configured as downtime for the

protection system. Here, it is considered that during the maintenance actions,
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there is an interruption in the process of demands’ arrival, or that demands are
met through alternative solutions.

8. Demands occur according to a homogeneous Poisson process with a known rate.
Hence, fz is an exponential distribution with the characteristic parameter μ.

9. tv < < T.

A discussion on assumptions is required. Assumption 7 is particularly true for
examples where, in order to maintain the protection system, it is necessary to
interrupt the main production system operation, as it is the case of emergency brakes
and isolation valves (Alberti et al. 2018). Moreover, this is a good approximation
when tp, td, tf and tcud < < T.

The mathematical models for the protection systems previously presented in the
literature are based on the characterization of the system’s expected renewal cycle
according to the decision variables of the maintenance policy, and a penalty for
the downtime incurred with a cost rate proportional to the rate of demands and the
cost of an unmet demand (Vaurio 1999; Cavalcante et al. 2011; Berrade et al. 2012,
2015; Alberti et al. 2018). Different from these models, the model presented in this
chapter assumes that the component is replaced in the case of unmet demand, which
is a more realistic scenario and allows for estimating the rate of unmet demands with
greater accuracy. This assumption can be incorporated into an analytical model once
the assumptions 7 and 8 are considered.

4.2 Model Development

The model was developed from the enumeration of all possible renewal cycle
scenarios that may occur under the presented conditions (represented graphically in
Fig. 1). It is an exhaustive and mutually exclusive set of scenarios such that the sum
of the probabilities of occurrence of these scenarios must be equal to 1 regardless of
the decision variables’ values.

For each scenario, we present the calculation of its probability of occurrence
(Pscenario) and, from this, the expressions to calculate the expected values for a
renewal cycle of the following measures: cost (ECscenario) and length of the renewal
cycle (ELscenario). After the scenarios are detailed, the expressions are grouped in
order to model the performance of the maintenance policy as a function of the
decision variables.

4.2.1 Mathematical Development of the Scenarios

Scenario 1 – the defect arrives naturally at the i-th interval between inspections and
is identified at the subsequent inspection:
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Fig. 1 Graphical representation of the possible scenarios of renewal cycles. ◦ defect arrival, •
failure, and — demand arrival process

P1 (T , i) = (1 − p)i−1.

∫ i.T

(i−1).T
fx(x).Rh (i.T − x) dx (1)

EC1 (T ,M) =
M∑

i=1

[(i.cv + cd) .P1 (T , i)] (2)

EL1 (T ,M) =
M∑

i=1

[(i.T + td ) .P1 (T , i)] (3)

Scenario 2 – the defect is induced at the i-th inspection and is identified at the
subsequent inspection:

P2 (T , i) = (1 − p)i−1.p.Rx(i.T ).Rh(T ) (4)

EC2 (T ,M) =
M−1∑

i=1

[((i + 1) .cv + cd) .P2 (T , i)] (5)

EL2 (T ,M) =
M−1∑

i=1

[((i + 1) .T + td ) .P2 (T , i)] (6)
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Scenario 3 – the defect arrives naturally at the i-th interval between inspections.
The failure occurs and is identified at the subsequent inspection before the occur-
rence of a demand:

P3 (T , i) = (1 − p)i−1.∫ i.T

(i−1)T fx(x).
∫ i.T−x

0 fh(h).Rz [i.T − (x + h)] dhdx
(7)

EC3 (T ,M) =
M∑

i=1

[(
i.cv + cf

)
.P3 (T , i)

]
(8)

EL3 (T ,M) =
M∑

i=1

[(
i.T + tf

)
.P3 (T , i)

]
(9)

Scenario 4 – the defect arrives naturally at the i-th interval between inspections.
The failure occurs and is identified at the occurrence of a demand:

P4 (T , i) = (1 − p)i−1.∫ i.T

(i−1)T fx(x).
∫ i.T−x

0 fh(h).Fz [i.T − (x + h)] dhdx
(10)

EC4 (T ,M) =
M∑

i=1

[(
i.cv + cf + CUD

)
.P4 (T , i)

]
(11)

EL4 (T ,M) = (M.T + tf
)
.P4 (T ,M) (12)

Scenario 5 – the defect is induced at the i-th inspection. The failure occurs and is
identified at the subsequent inspection before a demand occurs:

P5 (T , i) = (1 − p)i−1.p.Rx(i.T ).

∫ T

0
fh(h).Rz (T − h) dh (13)

EC5 (T ,M) =
M−1∑

i=1

[(
(i + 1) .cv + cf

)
.P5 (T , i)

]
(14)

EL5 (T ,M) =
M−1∑

i=1

[(
(i + 1) .T + tf

)
.P5 (T , i)

]
(15)

Scenario 6 – the defect is induced at the i-th inspection. The failure occurs and is
identified at the occurrence of a demand:
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P6 (T , i) = (1 − p)i−1.p.Rx(i.T ).

∫ T

0
fh(h).Fz (T − h) dh (16)

EC6 (T ,M) =
M−1∑

i=1

[(
(i + 1) .cv + cf + CUD

)
.P6 (T , i)

]
(17)

EL6 (T ,M) =
M−1∑

i=1

[
(1 − p)i−1.p.Rx(i.T ).∫ T

0 fh(h).
∫ T−h

0 fz(z).
(
i.T + h + z + tf + tud

)
dzdh

]

(18)

Scenario 7 – the component is preventively replaced at M.T:

P7 (T ,M) = (1 − p)M−1.Rx(M.T ) (19)

EC7 (T ,M) = (cp + M.cv
)
.P7 (T ,M) (20)

EL7 (T ,M) = (M.T + tp
)
.P7 (T ,M) (21)

4.2.2 Joining the Scenarios

The expected value of a measure of interest EQ for a renewal cycle is equal to the
sum of the contributions of each scenario:

• If M = 1:

EQ(T ,M) = EQ1 (T ,M) + EQ3 (T ,M) + EQ4 (T ,M) + EQ7 (T ,M)

(22)

• If M > 1:

EQ(T ,M) =
7∑

j=1

EQj (T ,M) (23)

The EQ measure can be the cost (EC) or the length of the renewal cycle (EL).

4.2.3 Calculating the Cost Rate (Cost Criterion)

According to the reward renewal theorem (Tijms 1994), the expected cost per unit
of time in the long run can be calculated according to Eq. (24).
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C∞ (T ,M) = EC (T ,M)

EL (T ,M)
(24)

4.2.4 Calculating the Rate of Unmet Demands (Risk Criterion)

The probability that a renewal cycle ends in an unmet demand can be calculated as
the sum of the probabilities of occurrence of the scenarios that end in this way:

• If M = 1:

ρ (T ,M) =
M∑

i=1

P4 (T , i) (25)

• If M > 1:

ρ (T ,M) =
M∑

i=1

P4 (T , i) +
M−1∑

i=1

P6 (T , i) (26)

As the renewal cycles are statistically independent of each other, then, in
agreement with the observations of Scarf et al. (2009), it is possible to state that the
time intervals between unmet demands are approximately exponentially distributed
with the rate λ calculated according to Eq. (27):

λ (T ,M) = ρ (T ,M)

EL (T ,M)
(27)

In some contexts, the occurrence of an unmet demand may incur risks to the
health of workers and the environment. For example, the occurrence of a demand
not met by an emergency brake of handling devices for suspended cargo may lead
to human losses. In another example, the occurrence of a demand not met by a
containment system for chemical leaks can lead to serious environmental losses.
Once the expected losses for an unmet demand are estimated, the rate λ(T,M) can
be used to calculate the expected losses per unit of time in the long run for non-
financial dimensions. The rate λ(T,M) can be understood as a measure of risk (Aven
2012).

5 The Multicriteria Model

Multicriteria models present a major contribution to decision-making in cases
involving multiple, sometimes conflicting, objectives that cannot be transformed
into a single evaluation metric. This situation is often verified in the context of
service production systems, and in contexts where the operation of the system
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involves risks to human life and the environment (De Almeida et al. 2015b; Brito
and De Almeida 2009).

In the previous section, a mathematical model is presented for a maintenance
policy applied to a protection system subject to defect induction in inspections. It is
expected that the higher the cost of an unmet demand (CUD), the more conservative
the optimal maintenance policy defined based on the cost criterion (C∞(T,M)), thus
reducing the risk of unmet demands (λ(T,M)). However, the CUD value may not
be well representative of the consequences of unmet demand events, which may
have impacts in multiple dimensions. In this case, a multicriteria model can help to
evaluate the compromise relationships between different criteria considered in the
analysis.

For the development of the multicriteria model, it is necessary to comply with
the protocol for elicitation and evaluation of the decision maker’s preferences
(DM’s preferences) regarding the problem under analysis. In this work, the multi-
attribute utility theory (MAUT) is considered for the model development. MAUT
has wide applicability in maintenance problems, especially when the DM presents
compensatory rationality between the criteria. MAUT presents an appropriate
axiomatic structure to deal with uncertain situations, such as those treated in this
work (De Almeida et al. 2015a).

A framework for constructing the multicriteria model for decision support in
the evaluation of maintenance policies for protection systems subject to imperfect
inspection is presented in Fig. 2.

The first step of the framework is the characterization of the DM (or group of
DMs) and the other actors in the decision-making process. In the industrial context,
the DM may be a maintenance manager, a production manager or even a unit leader.
The DM exerts influence over risk management since its preference relationships are
considered for the construction of the multicriteria model (Brito and De Almeida
2009). Professionals in specific areas, such as environmental management and
occupational safety, can act as specialists that provide important information and
assist in the decision-making process.

The second step is an assessment of the operational and failure aspects of the
protection system. A complete description of the system under study, including the
details of its context of use, the situations that characterize a demand, and its process
of deterioration and failure, is an important input for the process of defining the
maintenance strategies and alternative strategies for risk management. The third
step consists of the definition of the alternatives to maintenance, which will be
evaluated by the multicriteria model. In this problem, a continuous set of alternatives
is considered, since the alternatives are any policy obtained from the combination
of M and T.

Next, the DM should assess the risk dimensions associated with the problem,
which should be considered in the multicriteria model. One way to obtain the
appropriate criteria for a problem involving multiple objectives is to elaborate a
hierarchy of objectives (Keeney and Raiffa 1976). Using this method, the hierarchy
shown in Fig. 2 was obtained. Here, the rate of unmet demands is considered
directly, but this measure can be used to calculate the expected loss rates in
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Fig. 2 Framework for the construction of the multicriteria model using MAUT. (Note: ALARP
(as low as reasonably possible) is a concept that refers to the acceptable risk range for a given
dimension of analysis (De Almeida et al. 2015a))

non-financial dimensions (human, environmental, etc.), which can be treated as
criteria for decision. In this case, an analysis of the hazard scenarios associated
with demand events is required. Different from cost, which is also affected by
the frequency of maintenance actions, loss rates in these dimensions are generally
directly proportional to the rate of unmet demands. In this sense, it is observed
that while the losses related to the rate of unmet demands are minimized by an
intense maintenance action (a large frequency of inspections, which corresponds
to short intervals of T), the cost has (as a minimization strategy) less intense
actions, less frequent inspections, and longer T intervals. It should be noted that
conducting inspections that frequently make the main system unavailable would
result in prohibitive operating costs.



A Multicriteria Model to Determine Maintenance Policy for a Protection. . . 215

Fig. 3 Hierarchy of objectives of the problem

In the presented model, one of the considered assumptions is that during
maintenance actions, the process of the arrival of demands is interrupted or attended
by alternative solutions. In some scenarios, this disruption may be the result of
the partial or total unavailability of the main productive system (Alberti et al.
2018). In this case, the level of unavailability of the main productive system can be
incorporated into the problem as a constraint or as an additional criterion (Fig. 3).

To effectively use the mathematical model of the maintenance policy, it is
important to analyse the input parameters, especially the parameters for which the
model has the highest sensitivity. In the absence of objective historical data or
to complement them, elicitation procedures can be used to estimate the a priori
probability distributions of uncertain parameters based on the experts’ knowledge
(Berger 1985).

The next stage consists of the delimitation of the consequence space (CS) to be
considered for the evaluation of the DM’s preference relations since the evaluation
of the alternative actions is performed by evaluating its consequences (Keeney
and Raiffa 1976). It is desired that the analysed space of alternatives presents the
following characteristics: the alternatives are not statistically dominated and respect
the thresholds of acceptable risk. In this way, the analysis is restricted only to
the alternatives that interest the DM. If these characteristics cannot be achieved,
it is necessary to reassess the conditions of the problem, such as the operational
constraints, the system’s design, etc.

Once the problem has been contextualized and the initial conditions of analysis
have been established, the CS is considered to model the DM’s preferences using
MAUT. This stage consists of eliciting the multi-attribute utility function, which
will be used to evaluate the performance of maintenance policies.

To elicit the multi-attribute utility function, five main steps are recommended
(Keeney and Raiffa 1976): the introduction of ideas and terminology, the ver-
ification of relevant preferential independence relationships, the elicitation of
one-dimensional utility functions (intracriterion evaluation), the elicitation of scale
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constants for the composition of the multi-attribute utility function (intercriteria
evaluation), and finally, the consistency tests.

The multi-attribute utility function aggregates the utility functions obtained
for each criterion individually. For the elicitation of the one-dimensional utility
functions, the consequence space obtained in the previous step is observed. Then,
for each dimension of analysis, a utility equal to 1 (maximum) is assigned to
the most desired end of the CS, and a utility equal to 0 (minimum) to the
opposite end. In addition to converting to a normalized reference scale, the utility
function allows for a suitable treatment of the uncertainty conditions of the problem
through the mathematical modelling of the DM’s risk behaviour (prone, neutral or
averse) (Keeney and Raiffa 1976). Keeney and Raiffa (1976) present a structured
procedure for the elicitation of one-dimensional utility functions, which consists of
the verification of some intermediate utility points, and later an adjustment using a
function obtained from such points.

The intercriteria evaluation, in turn, can be performed by verifying the conditions
of preferential independence and trade-offs between criteria. Once the DM’s
preference relations have shown utility independence and additive independence
between the criteria, the multi-attribute utility function can be expressed in the
additive form according to Eq. (28) (Keeney and Raiffa 1976).

U(A) =
n∑

j=1

kj .Uj

(
Aj

)
(28)

Where

n∑

j=1

kj = 1.

The maintenance policy that maximizes the multi-attribute utility presents the
best compromise relationship among the considered criteria. When a continuous
set of alternatives is considered, it becomes a classical optimization problem. A
sensitivity analysis is needed to assess the impact that possible inconsistencies in
the elicitation process may have on the recommended solution. If the model is
sensitive to perturbations in the input parameters, extra verifications may be required
to guarantee greater reliability of the results (De Almeida et al. 2015a). From then
on, through a critical analysis of the results, the recommendation can be elaborated
for the DM.

6 Numerical Application

For the considered application, the protection system acts as a safety system and
prevents the occurrence of accidental scenarios in emergencies (demands). The
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maintenance of this system has an impact not only financially but also on other
dimensions. Therefore, a multicriteria approach is required to give the best treatment
to the multidimensionality inherent to the problem of the maintenance policy’s
definition. The cost (C∞(T,M)) and risk (λ(T,M)) criteria are considered in the
analysis.

The numerical application is presented to illustrate the model usage and obtain
some results for discussion. Simulated data were used for this analysis.

6.1 Specifying the Model Input Parameters

System deterioration and failure can be modelled considering the delay-time
concept. That is, before a failure occurs, the system presents a defective state that
can be identified in an inspection (Christer 1999). In an investigation of the factors
that impact the system’s performance, it was verified that there is the possibility of
defect induction in an inspection, but the probability that this happens is uncertain.
For the parameters’ definition, the study of maintenance policies for isolation valves
in a water distribution system was taken as a realistic scenario. For this particular
system, some approximations were made.

Weibull distributions (with shape parameter β and scale parameter η) were used
to characterize the distributions of X (β1 = 2.1, η1 = 4 years) and H (β2 = 1.5,
η2 = 0.3 year). The possibility of defect induction in the case of system activation
for meeting a demand is part of its operational characteristics. It has an effect on the
distribution of X, which tends to be more dispersed, and consequently results in a
reduced shape parameter. Defect induction in the inspections can be considered as
an external factor, and the impact on the system’s performance is higher or lower
according to the frequency of inspection actions.

The probability of defect induction in an inspection (p) is an uncertain parameter,
but it is estimated that it should have some value between 0.03 and 0.07. A triangular
distribution is considered to model the probability distribution of the possible values
that this parameter can assume. This distribution is usually used when the true
distribution of a given parameter is not known, and it yields good results (Fishman
1995). In this case, the analyst only needs to estimate the extreme values and the
most likely value of the parameter to establish the distribution. For this application,
it is estimated that the most likely value of p is 0.05.

The costs were established by taking the costs of a component’s preventive
replacement when it is in good state, which means that cp = 1 un. (the amount
is not specified in monetary units but may be converted by the combination of the
amount incurred in performing a preventive replacement). The inequality relations
cf > cd > cp and tf > td > tp are appropriate, since it is valid to consider that the cost
and time for the system recovering tend to be larger the worse their condition. It is
worth noting that in the case of protection systems, the higher penalty is associated
with an unmet demand (UD) event and not necessarily the substitution of a failed
component, since in this case there is no interruption of a main production process
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Table 1 Specifying the
model input parameters

Costs Times Demands

cv = 0.04 un. tv = 0 (negligible) μ = 3 demands/year
cp = 1 un. tp = 3 h CUD = 25 un.
cd = 1.2 un. td = 6 h tud = 72 h
cf = 2 un. tf = 12 h

due to the occurrence of the failure. The values of the other parameters are shown
in Table 1.

Due to limitations in the availability of resources, the following constraints are
added to the problem: T ≥ 1 month and M.T ≥ 6 months, i.e. intervals between
inspections cannot be less than 1 month and scheduled preventive replacements can
only occur after at least 6 months of component operation.

6.2 Results and Discussion

The results’ analysis is presented in five steps. First, an analysis of the model’s
sensitivity to variations of p is made in order to verify if there is a need to develop
a multicriteria model that incorporates this aspect of uncertainty. Then, a procedure
for delimiting the CS for the analysis is presented. The third and fourth parts are
dedicated to the evaluation of the intracriterion and intercriteria preferences. Finally,
the sensitivity analysis of the multicriteria model is presented.

6.2.1 Analysis of the Model Sensitivity to Variations in P

The first step of the analysis consists of an evaluation of the sensitivity of the
mathematical model presented in Sect. 4 to variations in p (uncertain parameter).
This analysis allows us to verify if, with the variation in the value of p, there
are significant variations in the recommendation of the maintenance policy when
considering a certain criterion. The analysis also allows us to verify if there is any
conflict in the recommendation when different criteria are considered. Depending
on the obtained results, it may not be necessary to develop the framework presented
in Fig. 2 for the construction of the multicriteria model.

In Table 2, the maintenance policies (M and T) that optimize the cost and risk
criteria separately are presented for different values of p.

As seen in Table 2, for the analysed case, the optimal policies are always the
special cases: policy ABR or policy PI. For the cost criterion, it can be observed
that, within the range of possible values of p, the recommendation can vary from
one case to another, which demonstrates the impact that a sensitive increase in this
parameter may have on the performance of an inspection policy in regard to this
criterion. However, for the risk criterion, it is not observed, and an ABR policy
with a minimum T is indicated in all cases. Because this attribute presents a lower
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Table 2 Analysis of the model sensitivity with respect to p. T in years, C∞(T,M) in un./years and
λ(T,M) in 10−2 UD/year

Minimizing C∞ p M T C∞* λ Minimizing λ M T C∞ λ*

0.03 ∞ 0.105 0.957 0.795 1 0.5 2.086 0.221
0.04 ∞ 0.106 1.125 1 1 0.5 2.086 0.221
0.05 ∞ 0.107 1.296 1.3 1 0.5 2.086 0.221
0.06 1 1.048 1.394 1.6 1 0.5 2.086 0.221
0.07 1 1.048 1.394 1.6 1 0.5 2.086 0.221

Fig. 4 Optimum values of C∞(T,M) and λ(T,M) as a function of M and p: p = 0.03 (), p = 0.04
(—), p = 0.05 (_ . _), p = 0.06 (_ _) and p = 0.07 (_ .. _). The dotted horizontal line ( . . . ) is a
baseline referring to the optimal ABR policy performance, which is not influenced by the quality
of the inspection

value when practising frequent replacements, it eliminates from the scope of actions
the inspection that provides an increase in the rate of unmet demands due to defect
induction that can happen regardless of the intensity with which this occurs. It is also
observed that even in cases where a policy of the same format is recommended to
optimize both criteria, there is no agreement with the value of T, which demonstrates
the need for a multicriteria approach.

In addition to Table 2, two graphs are presented in Fig. 4 in which it is possible
to observe the impact of the variation in p on the performance of the maintenance
policies that consider inspections. In the graphs of Fig. 4, the optimal values of
C∞(T,M) and λ(T,M) are presented for different fixed values of M and p.

It is observed that for the cost criterion (Fig. 4a), the optimal value of M is
strongly influenced by the variation in the inspection quality, and for the policies
with M > 1, a variation of 0.01 in the value of p has a significant impact on the
performance of the maintenance policy. For the risk criterion (Fig. 4b), the ABR
policy presents the best performance regardless of the value of p, and for policies
with M > 1, the change in the value of p has an impact given that the optimum value
of λ(T,M) changes according to the variation in p.

In this preliminary analysis, conflicts between the criteria are observed, which
makes it necessary to take a multicriteria approach that is capable of incorporating
uncertainty about the state of nature in the process of maintenance policy evaluations
for the protection system under study.
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Fig. 5 Graphs of C∞(T,M) and λ(T,M) as a function of T for different values of M and p: M = 1
and any p (), M = ∞ and p = 0.03 (—), and M = ∞ and p = 0.07 (_ . _)

6.2.2 Delimitation of the CS to Be Analysed

To optimize the cost criterion, it is necessary to find a balance between the costs of
preventive maintenance actions and the costs due to failures and unmet demands.
Regarding the risk of unmet demands, this tends to be lower when the frequency
of maintenance actions is greater, and so the optimization of this criterion basically
depends on the constraints of the problem. These trends can be observed in the
graphs shown in Fig. 5.

As seen in Fig. 5, the values of C∞(T,M) and λ(T,M) tend to increase together,
except for a range relative to small values of T where the Pareto frontier is
delimited, that is, the set of non-dominated solutions. The delimitation of the
consequence space considering only the non-dominated solutions can help to avoid
inconsistencies in the process of eliciting DM’s preference relations.

For the delimitation of the CS for non-dominated solutions, the following
procedure is proposed. First, each criterion is optimized separately by considering
the scenario with the lowest possible value of p (best scenario) and then the scenario
with the highest value (worst scenario). Then, the optimal policies obtained in the
previous step for the best scenario are applied to the worst case scenario. The
opposite is not necessary since the obtained results are expected to be within the
range of values that are obtained. Finally, the smaller and larger values of C∞(T,M)
and λ(T,M) obtained in the previous steps are taken as the limits of the CS. Solutions
that present values outside this range (for any value of p) are dominated solutions,
and so they do not need to be considered in the decision process.

The results that were obtained for the present application are presented in Table 3.
For a scenario with p = 0.03, policies 1 and 2 delimit the Pareto frontier since

any alternative with performance outside this limit can be considered a dominated
alternative. Assuming that a policy W has higher cost than that resulting from policy
2, and considering that it carries a risk greater than or equal to that resulting from
policy 2, then it can be considered that policy W is dominated by policy 2. The
same logic can be applied to policy 1. Likewise, policies 3 and 4 delimit the Pareto
frontier for a scenario with p = 0.07.
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Table 3 Summary of the procedure for CS delimitation

Description p M T C∞ λ

Policy 1 (minimizes C∞(T,M) for p = 0.03) 0.03 ∞ 0.105 0.957 0.795
Policy 2 (minimizes λ(T,M) for p = 0.03) 0.03 1 0.500 2.086 0.221
Policy 3 (minimizes C∞(T,M) for p = 0.07) 0.07 ∞ 1.048 1.394 1.600
Policy 4 (minimizes λ(T,M) for p = 0.07) 0.07 1 0.500 2.086 0.221
Policy 1 0.07 ∞ 0.105 1.643 1.700
Policy 2 0.07 1 0.500 2.086 0.221
CS delimitation: Criterion C∞ λ

Min 0.957 0.221
Max 2.086 1.700

T in years, C∞(T,M) in un./year and λ(T,M) in 10−2 UD/year

Considering a scenario with uncertain p that ranges from 0.03 to 0.07, we have
that policies 1 and 2 present the best values for each criteria separately for the best
scenario (p = 0.03). When applying these policies in the worst scenario (p = 0.07),
one may or may not have a performance range that fits within the range delimited
by policies 3 and 4 in this scenario. In this second case, it is important to consider
this extension of the CS range to incorporate the possibility of the best scenario for
each criterion, which is its individual optimization with p = 0.03. On the other hand,
when applying policies 3 and 4 for the best scenario, the results will necessarily fall
within the range of the values delimited according to the presented procedure.

For this application, acceptable risk limits were not considered, and so it is not
necessary to adjust the obtained CS for the next steps of the analysis.

6.2.3 Intracriterion Evaluation

Three different hypothetical utility functions are considered for each criterion by
modelling three different behaviours that the DM may have in relation to their
risk behaviour: neutrality, aversion or propensity. Note that this concept of risk is
different from the risk criterion that is related to the rate of unmet demands. Here,
risk refers to the DM’s behaviour with regard to the uncertainty inherent in the
problem.

The functions considered for the analysis are presented in Table 4, and the graphs
of the utility according to the level of performance of each criterion are presented in
Fig. 6.

The utility functions presented represent a pronounced behaviour of risk aversion
or propensity (with the exception of the linear function), as can be observed in Fig.
6. This marked behaviour was considered for illustration purposes.

Before proceeding to the intercriteria evaluation, it is interesting to evaluate
which maintenance policies maximize the expected utility for each criterion sep-
arately. The calculation of the expected utility can be performed according to
Eq. (29).
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Table 4 Investment scenarios. Costs in un

Cost criterion (C∞(T,M)) Risk criterion (λ(T,M))

DM risk neutral:
Uc(C∞) = − (0.866). C∞ + 1.848

DM risk neutral:
Ur(λ) = − (6.946).10. λ + 1.154

DM risk averse:
Uc(C∞) = 1 − (7.590).10−4. exp [(3.444).
C∞]

DM risk averse:
Ur(λ) = 1 − (1.171).10−2. exp [(2.677).102.
λ]

DM risk prone:
Uc(C∞) = (5.062).10. exp [1 − (4.101). C∞]

DM risk prone:
Ur(λ) = (2.094). exp [−(3.340).102. λ]

Fig. 6 Graphical representation of the utility functions for C∞(T,M) and λ(T,M) for different
behaviours with regard to the risk: neutrality (), aversion (—) and propensity (_. _)

EUj(A) =
∫ pmax

pmin

Uj

[
Aj(p)

]
.fp(p)dp (29)

For the present application, maintenance policies that maximize the expected
utility for the cost and risk criteria, respectively, are as follows: M = ∞ and
T = 0.105 year (PI policy), and M = 1 and T = 0.5 year (ABR policy). This second
result is expected, considering the results obtained in the first stage of the analysis.
The policies that are indicated were the same regardless of the behaviour assumed by
the DM with regards to the risk, but it is a particularity observed in this application,
not an expected result. The observed conflict indicates the need for a multicriteria
approach to evaluate the compromise relationship between the two criteria.

6.2.4 Intercriteria Evaluation

For the intercriteria evaluation, different combinations of the utility functions
presented in the previous subsection are considered in order to observe how
the recommendation of the maintenance policy varies. For this evaluation, it is
considered that the conditions of utility independence and additive independence are
verified. Furthermore, kc = kr = 0.5 is adopted, which in practice means that the DM
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Table 5 Results of the multicriteria evaluation. T in years

DM behaviour with regard to the criteria
Policy that maximizes the expected
multi-attribute utility

Case Cost (C∞) Risk (λ) M T EU M T EU

1 Neutral Neutral 1 0.68 0.593 ∞ 0.083 0.609
2 Averse Averse 1 0.76 0.887 ∞ 0.083 0.896
3 Prone Prone 1 0.50 0.505 ∞ 0.083 0.19
4 Averse Prone 1 0.58 0.622 ∞ 0.083 0.521
5 Prone Averse 1 0.74 0.509 ∞ 0.083 0.563

is indifferent between two hypothetical alternatives with the performance defined
by the combination of the extreme CS points, namely, [C∞* = 0.957 un./year;
λ = (1.700)0.10–2 UD/year] and [C∞ = 2.086 un./year; λ* = (2.210)0.10–
3 UD/year]. Thus, the multi-attribute utility of a maintenance policy A with a
probability of defect induction p is calculated according to Eq. (30), and the
expected utility, considering the probability distribution of p is calculated according
to Eq. (31).

U (A, p) = (0.5).Uc (Ac, p) + (0.5).Ur (Ar, p) (30)

EU(A) =
∫ pmax

pmin

U (A, p) .fp(p)dp (31)

The obtained results are presented in Table 5. For comparison purposes, the
policies PI and ABR are presented with the maximum expected utility, and the
policy to be recommended is highlighted in bold. In the evaluated cases, no
mixed policy (M finite and greater than 1) had an expected utility higher than the
recommended policy indicated in Table 5.

In the case of the policy PI, in all cases, the lowest possible value of T (equal
to the restriction) was recommended. This is due to the consideration of the risk
criterion in the analysis, which results in the indication of more conservative
policies. The same is not true for the ABR policy (which is unaffected by the quality
of the inspection), where the recommended value of T varies according to the case
and is generally less conservative than the policy that maximizes the expected utility
of the risk. It is observed that, depending on the case, the recommendation varies
between one policy format and another.

Some results are different from what is expected a priori. In the case of a risk-
averse DM, it is expected that a policy ABR, which has a certain performance that is
not variable according to the value of p, is preferable. Meanwhile, it is expected that
for the risk-prone DM, a policy whose performance is influenced by the value of p
is preferable since it has the potential to have good cost results. What is observed in
Table 5, however, is just the opposite.
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Table 6 Sensitivity analysis for the case of a risk neutral DM

case kc kr M T EU M T EU

1 0.5 0.5 1 0.68 0.593 ∞ 0.083 0.609
2 0.6 0.4 1 0.74 0.561 ∞ 0.083 0.62
3 0.4 0.6 1 0.62 0.641 ∞ 0.083 0.599
4 0.45 0.55 1 0.65 0.615 ∞ 0.083 0.604
5 0.475 0.525 1 0.66 0.603 ∞ 0.083 0.607

This result is due to the mathematical properties of the one-dimensional utility
functions that are considered, which represent the accentuated behaviour of risk
aversion and propensity. The utility functions for risk aversion have a sharper utility
reduction rate close to the upper end of the CS. Meanwhile, the utility functions for
risk propensity show a marked reduction rate along the lower end of the CS, which
results in significantly lower utility for the larger range of the CS. As a result, the
expected maximum utilities in the cases presented in lines 3, 4 and 5 are significantly
lower than that obtained in the case of line 2.

In addition to this, it is observed that the rate of unmet demands (risk criterion)
presents a significant rate of increase with the increase of T (growth more accentu-
ated than to cost), especially for the case of the policy PI. This has resulted in the
recommendation of policy ABR for cases where the DM is risk prone with respect
to this criterion (lines 3 and 4).

The results obtained in this stage indicate that a priori expectations are not
always confirmed through the mathematical modelling of the DM’s preference
structure, which demonstrates the need to comply with a structured protocol for
the construction of the multicriteria model.

6.2.5 Sensitivity Analysis

The case presented in line 1 of Table 5 is considered for a sensitivity analysis. The
sensitivity analysis that is presented consists of checking the maintenance policies
that are recommended when variations in the scale constants are considered in
the multicriteria model. The obtained results are presented in Table 6. Again, the
results for the policies PI and ABR are presented, and the recommended policy is
highlighted in bold.

As shown in Table 6, for the case of an increase in the value of kc (and
consequently a reduction of kr), the recommendation of policy PI with the minimum
T remains stable (lines 1 and 2). For the case of an increase in the value of kr,
there is a change in the recommendation of the maintenance policy, which indicates
policy ABR with T varying according to the case (lines 1 and 3 to 5). In the
case presented in line 5, the difference between the expected maximum utilities
obtained for the PI and ABR policies is small, indicating that this is a transition
region, which is more sensitive to inconsistencies in the DM’s preferences elicitation
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process. It can be said that, for this range of scale constants, the DM is practically
indifferent between the two maintenance policies, PI and ABR. It is observed that, in
practice, the operationalization of these policies demand quite different resources.
One is inspection intensive and it impacts the frequent actions of maintainers for
state identification. The other requires state-independent component replacement
schedules, resulting in heavier investments in assets with less need for staff.

Consistency tests can be performed to more precisely identify for which ranges of
values that the scale constants tend to. If kc tends to have a value equal to or greater
than 0.5, the obtained recommendation is consistent, and otherwise new validations
may be necessary in order to give greater security to the results.

In a practical application, the next step is the preparation of the maintenance
policy recommendation so that the DM can decide about its implementation.

7 Conclusions

This chapter presents some contributions to the process of evaluating maintenance
policies for protection systems. First, a model is proposed for a mixed inspection and
preventive replacement policy, which considers an important aspect of inspection
quality: the probability of defect induction. This is an innovative model that allows
us to more accurately estimate the cost and risk of unmet demands resulting from the
adoption of a maintenance policy. Given the generic format of the considered policy,
with the presented model, it is possible to evaluate the performance of the classic
maintenance policies: the pure inspection policy and the age-based replacement
policy.

Considering that cost measures are not always representative of the consequences
associated with the adoption of a maintenance policy for a protection system, a
multicriteria approach based on MAUT is proposed, which allows the handling of
the multidimensionality of the problem and the uncertainty conditions in a more
appropriate way.

Through the numerical application that is presented, it is possible to observe the
adequacy and importance of the proposed approach to the presented problem. The
results demonstrate the importance of properly executing a structured protocol for
the construction of the multicriteria model since the recommendation of a mainte-
nance policy can vary significantly depending on the DM’s preference structure, and
the expected a priori results may not be confirmed by the mathematical model.
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Multi-criteria Decision Model to Support
the Maintenance Policy for Circuit
Breakers in an Electrical Substation
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Marcelo Hazin Alencar, Adiel Teixeira deAlmeida, Ana Paula Cabral Seixas
Costa, Heldemarcio Leite Ferreira, and Rodrigo José Pires Ferreira

1 Introduction

Maintenance decisions regarding protection systems must ensure that the protective
devices are reliable and that they can securely operate at the performance level
required to exercise their protective function. The equipment responsible for
protection systems in substations and power lines requires special attention from
the maintenance management to ensure the stability and security of the substation
and network equipment components.

Allan (1988) highlights two main functions of the protection system in a power
system: to isolate a fault that occurs in the system so that it does not propagate
and to protect critical system components. In this way, the readiness of protection
systems is critical for the safe operation of power systems and depends on the correct
planning of the maintenance of the circuit breakers that comprise the protection
system.
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Meeuwsen and Kling (1997) state that electrical utilities have shown a growing
interest in management and maintenance practices, including actions directed at
circuit breakers and protection systems. These authors list reasons for this growing
interest, such as the increasing number of pieces of equipment and the increasing
age of the equipment, together with the increased need for the maintenance of older
equipment.

Mijailovic (2003) states that many electrical utilities plan preventive maintenance
activities based on their own experience or on the recommendations of manufac-
turers, which are general and may not cover the specifics and peculiarities of a
particular power utility.

Another factor that should be considered when planning maintenance activities is
that circuit breakers operate within tolerance limits; for example, when a disturbance
is detected on a network, the circuit breaker should be triggered to protect the
equipment that is the most expensive and critical to the system function (Vilaithong
et al. 2007).

Hussain et al. (2015) note that most failures in circuit breakers and high-
voltage transformers are of mechanical origin. Mechanical malfunctions caused by
mechanical wear can be detected through scheduled maintenance.

Meeuwsen and Kling (1997) argue that reducing the maintenance frequency in
protection systems can reduce costs in the short term, but it can have an adverse
effect on system security in the long term.

Meeuwsen et al. (1996) emphasize that determining the positive or negative
influence on the frequency of performing preventive maintenance on circuit breakers
and protection systems is a difficult task, and by performing preventive maintenance,
the probability of a circuit breaker operation failure can be reduced if the preventive
maintenance frequency is well programmed.

Maintenance managers in substations must consider cost reductions while
simultaneously providing the desired level of customer service. Hence, the managers
must establish periodic maintenance schedules for circuit breakers to reduce system
failures and mitigate the associated risks.

Circuit breakers are essential to power supply systems as part of their protection
systems. They are subject to hidden failures and must be operational when needed
because when they are not operational, they do not fulfill their protective function;
thus, their failure could trigger other system failures with serious consequences
associated with power supply interruption.

This work proposes a model that evaluates the frequency of predictive and
preventive maintenance in protection systems, specifically that of substation circuit
breakers, to minimize the maintenance costs and the risk of the circuit breaker being
in demand but not operational. This problem is important considering the possible
effects associated with circuit breaker failure. The choice of variables determines
the schedule of verification inspections (failure-finding inspections), in addition to
the renovation actions (replacement). Thus, a multi-criteria decision support model
is proposed to support the manager in maintenance planning, which is composed
of inspection times and protection system renewals. The model is tested in a power
utility substation in Brazil.
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This chapter is organized as follows. After the introduction, Sect. 2 presents
an important example of a strategic problem in the context of power supply
process, and then Sect. 3 presents a background of work related to circuit breaker
maintenance and multi-criteria decisions. Section 4 describes a framework for
building the multi-criteria model. In Sect. 5, we propose a multi-criteria model.
In Sect. 5, a case study implementation of the model is described, along with a
discussion of the results, and in Sect. 6, we present some conclusions.

2 A Strategical Problem in Supply Electricity Using
Additive-Veto Model

Companies that produce and supply electricity follow the requirements of agencies
and regulators regarding the acquisition and maintenance of equipment to ensure
a quality standard of the service offered. However, when failures and interruptions
are observed in the provision of services, they are easily detected by customers,
since services are generally produced and delivered to customers at the same instant
of time, being directly affected by failures and/or interruptions. In this context, de
Lima et al. (2016) propose a multi-criteria model based on the additive-veto model
to prioritize locations where voltage regulators will be installed in an electricity
distribution network of 15 kV. The proposed model considers technical, regulatory,
economic, and social aspects related to consequence assessment of the installation
of this equipment and operational performance, considering the decision-maker’s
preferences for the allocation of this equipment in these available locations to
supply as many consumer units as possible. The proposed model contributes
to the context under study since the distribution network sizing is the central
aspect that signals the potential difficulties in maintaining the quality of service
offered to consumers. Maintaining quality is directly associated with investments,
restricted by the availability of resources provided by the organization. Investment
planning suffers interference from multiple objectives that are aligned with the
company’s strategic issues. Thus, different geographic regions are analyzed by
criteria, representing the objectives of the organization. De Lima et al. (2016) define
as criteria sector regulation, size of the affected consumer unit, company image,
and revenues. The application of the proposed model supports decisions related to
the strategic and financial planning in the electric sector to prioritize the areas that
most need voltage regulators, to prevent interruptions and minimize losses in the
power supply process. The multi-criteria modeling application seeks to prioritize
localities to receive regulators, ensuring the aggregation of consequences and the
treatment of uncertainties. These procedures aim to evaluate the set of alternatives
contemplating aspects inherent to the real world. Seven criteria are defined based
on two voltage measurement indicators in the power supply process. Two criteria
are defined based on regulatory aspects; one criterion is based on requirements for
company image; two criteria consider the number of low voltage consumer units in a
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given region to identify potential operational problems. The last two criteria relate to
the business vision of the organization. The territorial area considered in the study
is subdivided into 8 regions, containing 12 power feeders. Alternative evaluation
regarding the location of voltage regulators depends on the value function for
each criterion. The consequences in this modeling are presented deterministically.
The additive-veto model represents the performance compensation of alternatives
against the set of criteria. This model is used due to the need to consider alternative
veto in potential compensation situations of poor performance in one criterion,
for excellent performance in another criterion. The decision-maker may not be
willing to choose a location where performance in a given criterion is below a
certain level. Additionally, the article presents a decision support system (DSS)
that incorporates the concepts of the proposed model, facilitating the graphical
information visualization and, consequently, a better understanding and interaction
of the decision-maker. Elicitation of the veto threshold for each criterion and the
elicitation of scale constants are resources available on DSS, being essential steps of
the proposed multi-criteria decision model. The comparison of the ordering obtained
with the additive-veto model and the additive model without veto is verified in the
article, and the results obtained differ between the models used. The robustness
of the results obtained is also verified concerning the data inputs and parameters
adopted in the decision model. Finally, the application of the additive-veto model
for the allocation of voltage regulators contributes to the decision support process
based not only on financial aspects but also on strategic issues, essential points for
profit generation, and the provision of quality services on electric sector.

3 Related Works on Circuit Breaker Maintenance

To propose a suitable maintenance policy for a circuit breaker, it is interesting
to understand the many existing maintenance policies in the literature focused in
circuit breakers. Thus, papers related to maintenance decisions in circuit breakers
are presented, and they address the decision problem and methods used for decision
support. The brief descriptions provided aim to show the diversity of the different
models and to provide insights into the main aspects relevant to the process
of developing maintenance policies. Thus, the different works presented are not
exhaustive.

Jian and Tianyuan (2015) propose an optimal time maintenance schedule for
circuit breakers via an algorithm using least squares support vector machines (LS-
SVM), aiming to increase the reliability of the substation and reduce maintenance
costs. This algorithm is used in a power supply company, and an optimal result is
presented that helps make decisions about performing different types of long-term
maintenance. The algorithm can be used under conditions of different failures and
maintenance management structures.

Mingliang et al. (2015) present a method based on empirical mode decomposi-
tion (EMD) entropy to extract parameter characteristic of the vibration signal of HV
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(high voltage) of circuit breakers. The authors argue that the proposed method is
convenient and can be applied directly to diagnose a fault.

Boudreau and Poirier (2014) present a methodology for analyzing the end-of-life
of electric power equipment, investigating the effect of equipment aging. Parametric
and nonparametric statistical methods are used to provide a risk assessment based on
the average residual life, reliability, and life expectancy of components as a function
of the time since installation or manufacture. This methodology was applied to an
oil circuit breaker.

Lopez-Roldan et al. (2014) [10] describe methods for monitoring and diagnosing
the performance of circuit breakers based on the nonintrusive evaluation of key
parameters, such as operating hours, restrike features, reignition, and detection, to
support maintenance planning.

Javadi (2010) proposed a combination of bus sectionalizing and an LC resonant
circuit as a solution to limit the fault current level of power grid substations. An
application of this method in the Iranian power system network was presented. Case
studies performed at some substations showed that the method can be successfully
used to reduce the current defect from 28 to 18%, and an economic study showed
that the method could be used at high-voltage substations containing more than 12
breakers.

Mijailovic (2003) employs a probabilistic method for calculating the operational
cost during a planning period for the evaluation of substation components avail-
ability in connection with planned maintenance activities. The proposed method
analyzes fault repair costs, maintenance costs, and the availability of substation
components. The application of the method was demonstrated on a circuit breaker.

Meeuwsen and Kling (1997) demonstrate that the effects of preventive main-
tenance on circuit breakers and protection systems in substations can reflect the
reliability of the electricity supply. The optimal frequency of preventive mainte-
nance is evaluated according to the topology of the substation.

Based on these descriptions, it can be verified that the development of meth-
ods for decision-making regarding circuit breaker maintenance can greatly affect
electrical systems, making this development highly interesting for research and
applications. With the increasing demand for energy and more efficient systems,
precise decision-making in the maintenance of these systems is increasingly
essential. The model that we propose in this chapter is different from that in previous
studies in the following perspectives:

• This model describes the decision problem in determining the frequency of
verification inspection and renewal actions for the circuit breaker.

• It establishes the consequences of actions, evaluating their risk and costs.
• It proposes a multi-criteria model for the decision-making process, considering

the preference of the decision-maker about the risk and cost criteria and
describing the veto for alternatives.

Thus, a multi-criteria model to support maintenance planning, which considers
not only different aspects involved in the problem but also the decision-maker’s
preferences, appears useful for the manager to determine an appropriate planning
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strategy that incorporates the characteristics of the circuit breaker and the substation
and that reflects the priority actions, contextual issues, and preferences.

4 Multi-Criteria Decision and Additive-Veto Model

Maintenance decisions involving the provision of services such as power supply
invite us to consider and balance multiple criteria. These criteria are essential
because of the important effects described both quantitatively, for example, cost,
reliability, and operating availability, and qualitatively, such as affected consumers,
social aspects, and safety perception. Therefore, there are many alternatives for
performing maintenance actions, considering some of these essential aspects.
Occasionally, many stakeholders are involved in the decision-making process, for
example, system managers, customers, and government regulatory agencies. These
elements complicate the decisions regarding maintenance in electrical systems.

Vincke (1992) states that for complex decisions, modeling and structuring of the
problem using a multi-criteria method is suitable to identify and evaluate criteria
and alternatives consistent with the decision.

Multi-criteria decision-making (MCDM) has gained notoriety, as evidenced by
the number of applications and papers in the literature (Wallenius et al. 2008;
Zavadskas et al. 2014; Kadziński et al. 2016; Cavalcante and Lopes 2014). The
MCDM methods are intended to support the decision-maker (DM) for different
types of problems, such as selecting the best alternative from a set of alternatives,
defining a ranking of alternatives, or sorting a set of alternatives into pre-defined
classes. In all of these problems, the decision-maker plays an essential role, and
preferences are considered in the model.

The increasing number of MCDM applications for different issues in the context
of maintenance decisions highlights the contribution level that these methods
provide to support maintenance managers. One of their advantages is related to
the aggregation of complex information and the ability to address aspects that are
often in conflict with the decisions regarding maintenance actions (de Almeida et
al. 2015a, b; Alencar and Almeida 2015).

For some decisions, the DM would not accept an alternative that pays off a
criterion whose performance is below a certain level. To represent this situation, the
veto function is evaluated to avoid the selection of this alternative or to correct the
final order of the alternative. The veto concept has been introduced in compensatory
methods such as additive models (De Almeida 2013).

The concept of veto over MCDM problems is found in some outranking methods,
which are not compensatory methods, such as the family of ELECTRE methods
(Roy 1996).

De Almeida (2013) proposed an additive-veto model considering veto alterna-
tives for the ranking problematic in which the overall value for an alternative is
given by Eq. (1):
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v(a) = r(a)
∑n

i=1
kivi(a) (1)

where

zi =

⎧
⎪⎨

⎪⎩

0.if.vi(a) ≤ li

1.if.vi(a) ≥ ui
vi (a)−li
ui−li

.if.li < vi(a) < ui

⎫
⎪⎬

⎪⎭
(2)

For the veto function zi, which is defined for each criterion i, li is the lower
threshold and ui is the upper threshold for the performances on criterion i. For
a criterion to be maximized, the lower limit penalizes the overall value of a
given alternative if the performance of that alternative is under li. The upper limit
establishes that alternatives with performance bigger than ui are save from the veto
mechanism. Finally, alternatives with performances inside the range [li, ui], in some
way, are affected by the veto mechanism that penalize the overall value of those
alternatives.

The weighed veto function ri(a) for each criterion is given by Eq. (3):

ri(a) = zi(a)ki (3)

Naturally the veto functions for all criteria is obtained by the sum of ri(a) for
all i.

where zi(a) is given by Eq. (2) and vi(a) is the value of the performance of
alternative (a) in criterion i, ki is the scale constant for criteria i, and n is the number
of criteria. In this way, the final expression for v(a) is given by Eq. (4):

v(a) = r(a)
∑n

i=1
kivi(a) (4)

5 Multi-criteria Model Proposed for Maintenance Planning
for Circuit Breakers in an Electrical Substation

The construction of decision support models for maintenance management con-
sidering the characteristics of the analyzed system is essential because the model
reflects the system. In the case of circuit breakers, once they operate only under
demand of protection, failures are hidden and can be dangerous for the substations,
since they may result in serious consequences, beyond those related with costs.
Therefore, multidimensional perspectives are recommended.

We are interested in determining the maintenance frequency of circuit breakers
and measuring the consequences of these maintenance actions as a function of the
cost and associated risk. Note that the criteria of cost and risk are in conflict, i.e., no
alternative exists that simultaneously results in minimum cost and minimum risk.
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Therefore, a multi-criteria model is proposed to analyze the maintenance decision
problem in circuit breakers, searching for a more balanced decision and considering
the DM preference. Note that the DM preference based on cost and risk criteria may
differ depending on the substation being analyzed. For example, for a substation at a
port, airport, or industrial complex, the risk criterion may have a greater importance
than that for a substation serving residential customers. Thus, no single general
solution exists for all substations.

5.1 Risk Criterion

For this criterion, the risk is defined as the probability of the circuit breaker that is in
demand but unavailable due to a hidden failure that prevents its protective function
for various equipment in the substation and transmission lines against damage.

The unavailability of the system protection with hidden failures can be measured
using the concept of mean fractional dead time (MFDT), which measures the
proportion of time during which protection systems are not available, as discussed
in the literature (Rausand and Vatn 1998; Aven 1986).

The MFDT concept can be used for circuit breakers, whereby the unavailability
of the circuit breaker is influenced by the frequency at which maintenance is
performed.

For the specific policy, the maintenance actions are of two kinds: predictive and
preventive maintenance. The frequency of inspections (T) is defined in order to
reduce the risk of the hidden failures of a circuit break, in addition to the renewal
action (preventive maintenance) of the system after N inspection, at time (NT).

According to the literature (Vaurio 1997; Ahmadi et al. 2012; Ahmadi and Kumar
2011; Ahmadi et al. 2010), it is possible to describe a function that represents the
MFDT relative to the variables T (verification/inspection frequency) and N (cycles
until renewal), as described by Eq. (5).

MFDT (T ,N) = 1

T

∫ NT

(N−1)T
1 − exp

[(
(N − 1) T

α

)β

−
(
(N − 1) T + t

α

)β
]
dt

(5)

To describe the risk criterion, λ is the rate at which the circuit breaker is triggered
over time, and it is assumed that the demand by the system is independent of the
occurrence of failure. Thus, it is possible to describe the risk criterion using Eq. (6).

R (T ,N) = λMFDT (T ,N) (6)

The rate λ can be obtained from circuit breaker counters implemented to provide
this information. Combining the values for T and N, the value of the criterion risk
can be determined.
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However, as the risk function is only a product of MFDT(T, N) by a constant λ,
we will consider the risk as corresponding of MFDT(T, N).

5.2 Cost Criterion

Cost is a criterion most commonly used in the definition of frequency of mainte-
nance actions (De Almeida et al. 2015a, b). Maintenance managers are interested
in understanding how maintenance actions affect costs, including the costs of
preventing failure and repairing the failures that occur.

A suitable maintenance policy is critical for protection systems. The goal of these
devices is to protect the system in abnormal situations that threaten the integrity
of the system or mitigate serious consequences of the principal system. Thus, the
preparedness of protection systems is crucial. For circuit breakers, when a protection
demand from the main system is not met because of a previous failure of the
protection system, the repercussion in terms of cost is tremendous and may be
subject to penalties from regulatory agencies.

Previous studies (Ahmadi et al. 2012; Ahmadi and Kumar 2011) were used to
construct this criterion. To model the cost criterion, it is necessary to make some
assumptions related to the circuit breaker, as follows:

1. Failures are hidden and are detected by a verification inspection, or in cases in
which a demand occurs (interrupted when protection is required, it is already
in the failed state). A failure of the protection system may reflect more severe
damage to equipment in the substation and transmission line.

2. The inspection and repair actions prevent the system to operate because the
power system (substation) must be shut down and de-energized for maintenance.

3. Failures are detected by a verification inspection.
4. The circuit breaker is functional after an inspection or repair.

Our goal is to determine the optimal (T) interval between verification inspections
in circuit breakers and the number of inspections until the replacement (N). This
means that at NT, an overall action for the circuit breaker is planned.

The verification (inspections) that have an interval T include tests on contact
resistance, insulation resistance, and dielectric strength of the insulating oil and
rigorous visual inspection.

The renewal actions that occur after N cycles of verification inspections include
cleanup actions, gasket replacement, anti-rust treatment of the tank, replacement
of conduit box gaskets, and painting. Following these actions, final testing (of
the contact resistance, insulation resistance, and dielectric strength of insulating
oil) is performed. Then, the system is normalized, and operation is re-established
by starting a new cycle. The age of the system can be described by the renewal
frequency and the interval between these renewals is described by TN = TN.

The costs of maintenance actions considered to model the cost criteria are as
follows:
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cr Cost of repairing a possible failure found in the verification inspection of the
circuit breaker.

ci Cost of the verification inspection at the circuit breaker, including the testing
costs of contact resistance, insulation resistance, and dielectric strength of the
insulating oil.

cre Cost of the renewal action on the circuit breaker, including costs related to dis-
assembly, verification, contact replacement and adjustment, gasket replacement,
oil draining, and oil reconditioning.

ctp Cost associated with not operating the power substation during the time of
inspection and repair when the substation is turned off and de-energized. These
costs are managed by a contract between the utility company and the customers,
reflecting the downtime cost.

ca Cost associated with undesirable consequences of the circuit breaker failure, such
as the cost of the devices affected by the failure in the protection system or
the occurrence of multiple failures, causing difficulty in restoring the substation
functionality.

To determine the function that describes the cost, the time to perform the
verification inspection ti and the time to perform the repair of failures tr must be
considered.

When the circuit breaker is minimally repaired following the verification inspec-
tion and repair, it returns to a functional state, although it is not as good as new.
It is also assumed that the occurrence of faults in the breaker follows a non-
homogeneous Poisson process. Thus, the conditional probability of failure during
the Nth inspection cycle is given by FN(t), which describes the probability that
a circuit breaker tested at T1 can survive until T2 after inspection. FN(t) can be
described using Eq. (7):

FN(t) = 1 − exp

[(
(N − 1) T

α

)β

−
(
(N − 1) T + t

α

)β
]

(7)

where β and α are the parameter of shape and scale, respectively, and t is the time
until the Nth inspection cycle. Given the assumed, the cost can be described using
Eq. (8), which represents the cost criterion.

C (T ,N) = ci
T

+ cr
∑T

N=1FN(T )

NT
+ ctpti

T
+ ciptr

∑T
N=1FN(T )

NT

+ caλT
∑T

N=1MFDT(T ,N)

NT
+ cre

NT

(8)

Equation 8 can be used to determine the cost related with the decision variables
T and N.
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5.2.1 Veto Definition and Additive Aggregation

We are interested in defining the veto and additive aggregation functions, which
require defining the upper and lower limits of the veto function for each criterion.
The decision variables of the problem are T and N. Here, we consider these vectors
(T, N) as alternative action, where (T) indicates the interval between verification
inspections and (N) indicates the number of cycles. For interval T, it is possible to
consider any unity of time, i.e., hours, days, months, or years, and for the number of
cycles N, the alternatives are integers.

For each combination of T and N, the results can be obtained for the cost criterion
using Eq. (8), and for the risk criterion using Eq. (6), thus we can determine the
space of consequence.

After determining the space of consequence, the value function that represents
the DM preference for each criterion can be found.

The veto is the minimum acceptable performance value for the DM to consider
the alternatives of T and N for each criterion, C(T,N) and R(T,N). The DM can
accept alternatives with a performance above this threshold according to the additive
model. For example, the DM can set a veto value for the risk criterion that only
considers alternatives resulting in a risk value below the acceptable risk limit.

After defining the parameters of the veto function and the constant scales, the
ranking function can be established using Eq. (1).

5.2.2 Decision-Making Process Using the Proposed Model

The decision-making process for the maintenance model for circuit breakers
formulated in this study is illustrated in Fig. 1, including the main steps of the
proposed approach. Step 1 requires specifying the maintenance decision problem in
the circuit breakers; specifying the characteristics of the circuit breaker; establishing
the DM for the analysis; understanding the failure mechanism of the circuit breaker,
the fault data, their interaction, and the effect of the failure on the power system;
and studying the maintenance policies adopted by the company analyzed.

Step 2 – Establish the criteria and space of consequence. Using the data,
the model can calculate the criteria, first determining alternative times between
inspections T and the number of cycles N. In accordance with the energy supplier
priorities, convenient alternatives for maintenance planning can be considered, using
Eq. (8) to calculate the cost and Eq. (6) to calculate the risk. Then, the space of
consequences can be established.

Step 3 – Model the DM preference by establishing a preference function to
transform the cost and risk measures into a preference measure. After establishing
the preference function, it is possible to determine the scales constant, and then the
veto function can be established defining the thresholds of veto l and u for each
criterion.
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Fig. 1 Decision-making process

In the fourth step, using the results obtained in the previous steps, the best
inspection policy can be found in accordance with the DM preference using Eq.
1. If the DM is satisfied with the recommendation, then the process ends; otherwise,
it is necessary to review the elements in steps 3 and 4.



Multi-criteria Decision Model to Support the Maintenance Policy for Circuit. . . 239

6 Case Study Implementation and Discussion of the Results

The situation structured mimics a real company that serves 200 cities in Brazil
and more than three million customers. It operates in the generation, transmission,
cogeneration, trade, and distribution of energy. The maintenance management of
this company is responsible for maintaining 140 substations. To implement the
proposed model, a circuit breaker in a pilot substation was studied. This substation
is responsible for an industrial complex and is considered critical by the company
to serve industrial customers; therefore, this substation focuses on maintenance
planning.

A 230 kV oil circuit breaker was analyzed using parameters that support the
minimum symmetric and asymmetric short circuit faults related to the nominal
short-circuit current of 40 kA and a peak value of the rated circuit that can withstand
a current of 104 kA (with an asymmetry factor of 2.6). The DM of this process is
responsible for managing the maintenance of the pilot substation studied.

The procedures for the planned maintenance of substations in the studied
company are classified into two possible types, each with specific characteristics
related to the actions performed:

• Planned maintenance type I – maintenance that results in operational downtime
but does not require disassembly of all or part of the equipment or facility;
defined for fixed periods T.

• Planned maintenance type II – produces operational unavailability, with full or
partial disassembly of the equipment or installation; defined for fixed periods NT.

When analyzing the circuit breaker based on the company data, the most common
causes of circuit breaker failures were related to wear due to the age of the contacts,
including the “deregulation” of mechanical poles and the decreased insulation
resistance. This finding agrees with other studies related to circuit breakers, such
as those by Hussain et al. (2015) and Boudreau and Poirier (2014).

Thus, knowledge of the causes and effects of failures is important. The circuit
breaker monitoring parameters used by the studied company are as follows:

• Contact wear. The circuit breaker manufacturer provides a maintenance curve
relating the number of closing/opening operations (“close-to-open”) to the levels
of current disruptions. The function of this curve is to analyze the wear of the
circuit breaker contacts.

• Total number of operations. Incremental counters for closing/opening operations
(“close-to-open”) are used to send this information to the system historic data.

• Mechanical operating time. The mechanical circuit breaker operation time can
be obtained using an oscillograph. Deviations in this value can indicate problems
in the operating mechanism.

• Electrical operating time. Similar to the mechanical operation time, this time
measures the interval between the trip command or closing command and the
normalization of the circuit breaker current measurements. An increasing trend
of this parameter over time may indicate a failure of the contacts.
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Table 1 Parameters

Parameters Value

cici cost of verification inspection at the circuit breaker 3 m u
crcr cost to repair a possible failure found in the verification inspection 10 m u
crecre cost of renewal action on the circuit breaker 120 m u
ctpctp cost associated with no power supply 5 m u (loss of profit)/day
caca cost associated with undesirable consequences 3000 m u
tititime to perform the verification inspection 7.2 h (type A)
trtrtime to perform the repair when a failure is found 12 h (type B)
Shape parameter 2.4
Scale parameter (hours) 7200
λ rate at which the demand occurs in the circuit breaker per unit time 8 (1/year)

• Time to inactivity. By monitoring the activity of the number of operations, the
number of days that the circuit breaker has not tripped can be calculated.

By analyzing these parameters and the procedures adopted by the company
studied, the maintenance practices that were used can be understood and data can
be obtained in order to be possible to implement the proposed model.

6.1 Establish the Criteria and the Space of Consequences

To establish the space of consequence, the time and costs involved were collected
and are shown in Table 1. The costs and time were rescaled to maintain the
confidentiality of the company where the data were obtained, and these values are
measured in a (defined) monetary units (m.u.) and days, respectively.

The alternatives are the time values ranging from 1 month to 2 years, in multiples
of 30 days. That is, the number of alternatives for T ranges from T [30, 60, 90, ...
720] and for the number of cycles for the overall, N, ranges from 1 to 50, TN = 7300,
that corresponds to 20 years, the maximum. In this way, we didn’t consider the value
of N, where the product TN is bigger than 7300. As examples of alternatives, let’s
say alternative A1 corresponding to T = 30 and N = 1 (T = 30, N = 1), alternative
A2 to T = 30 and N = 2 (T = 30, N = 2), and so on until alternative that corresponds
to T = 720 and N = 10. There are 1200 alternatives and 2 criteria.

After determining the space of consequence, each alternative and its conse-
quences can be evaluated for each criterion.
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6.2 Modeling Preference

Once the matrix of consequence is established, a study of the value functions for
each criterion must be performed, considering the full range of alternatives. For
this study, we considered a linear value function, i.e., for a criterion that must be
minimized, a smaller value of the alternative in this criterion indicates a greater
preference for this alternative.

Thus, it is necessary to perform a scale transformation and to determine the value
function for each criterion. The criterion cost per time determines the extremes, i.e.,
the alternative of lower cost C(T∗ , N∗ ) and the alternative of higher cost C(T0, N0).
These alternatives, in terms of preference scale, are given values of 1 (low cost) and
0 (high cost), respectively. Hence, C(T∗ , N∗ ) is the most highly preferred alternative,
and C(T0, N0) is the least preferred alternative. All other alternatives should receive
intermediate values according to the function that presents the cost values. Equation
9 describes the value function for the cost.

vCi (Ti, Ni) = C
(
T 0, N0

)− Ci (Ti, Ni)

C
(
T 0, N0

)− C (T ∗, N∗)
(9)

The risk criterion also determines the extremes, i.e., the alternative of lower risk
R(T∗ , N∗ ) and that of the highest risk R(T0, N0). The lower risk value function is
equal to 1, and the greater risk value function is equal to 0. Equation 10 describes
the value function for the risk.

vRi (Ti, Ni) = R
(
T 0, N0

)− Ri (Ti, Ni)

R
(
T 0, N0

)− R (T ∗, N∗)
(10)

Thus, the DM must realize the importance of the criterion, not only of the
criterion itself but also the changes in the criteria of the alternatives under evaluation.

The additive value function is determined in the aggregate by adding the cost and
risk value function. This function calculates the value for each criterion, and then,
the resulting values of the cost and risk value function are added, thus determining
the scale constant of each criterion according to their relative importance.

The additive value function should fulfill the requirement of independence,
meaning that a trade-off relationship between the two criteria cannot depend on any
other criteria, i.e., the ratio between cost and risk cannot depend on other criteria,
which is the case for the decision problem under analysis.

A scale constant will establish the DM’s preference according to the criteria,
where k1 is the scale constant for risk and k2 is the scale constant for the cost. By
definition,

∑n
I=1ki(v) = 1. Because there are two criteria, only one scale constant

needs to be defined because the other is 1 − k.
The upper veto threshold (u) is the minimum performance value of the risk and

cost acceptable to the DM for any alternative of T and N. If there is an alternative to
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Table 2 Input parameters Parameters Risk Cost

k 0.8 0.20
l 0.07 0.5
u 0.000001 0.15
k 0.8 0.20

Table 3 Rankings of alternatives

Alternative TN (months) v(a) Rank Risk Cost

(T = 90, N = 13) 39 0.96972 1 0.00108 0.156
(T = 60, N = 27) 54 0.96957 2 0.00119 0.1528
(T = 60, N = 26) 52 0.96952 3 0.00113 0.1555
(T = 60, N = 25) 50 0.96879 4 0.00107 0.1583
(T = 120, N = 9) 36 0.96852 5 0.00124 0.1526
(T = 60, N = 24) 48 0.96804 6 0.001 0.1615
(T = 90, N = 12) 36 0.96691 7 0.00096 0.1642
(T = 60, N = 23) 46 0.96661 8 0.00094 0.1649
(T = 60, N = 22) 44 0.96516 9 0.00089 0.1687
(T = 90, N = 14) 42 0.96445 10 0.00121 0.149

this performance (or above), the DM is willing to accept it. The DM is asked what
values of risk and cost are acceptable to consider the decision alternatives.

The lower veto threshold (l) is the maximum value for the criteria of cost and
risk that the DM is certain to reject, independent of their performance on other
criteria. The DM is asked which risk value with an inferior performance he/she will
reject, independent of their cost performance. When the cost value is above this
limit, he/she rejects the alternative.

After obtaining the answers to the questions from the DM of the studied pilot
substation, the scale constants (kR and kC), upper veto threshold (u), and lower veto
threshold (l) for each criterion were determined, as shown in Table 2.

Having defined the upper and lower limits for each criterion, the veto function
can be established, as described in Eq. (2).

6.3 Construction of the Recommendation

After establishing the value function, the scale constant, and the veto, the alterna-
tives can be ranked and the order of the alternatives can be defined using Eq. (1).
Table 3 shows the first ten rankings of alternatives.

As a result, alternative (T = 90, N = 13) has the highest ranking, indicating that
verification inspections of type I should be performed every 90 days, and after every
13 inspection cycles, maintenance type II should be performed. Implementing this
policy results in an expected cost of 0.156 with a risk of 0.00108.
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Observe that despite the value of the scale constant to risk (kR) is 0.8, the
alternative (T = 60, N = 22) with the best performance in the risk criterion was
positioned in the ninth position. This may be explained by the fact that the increment
of improvement on this criterion, resulting from an increasing in the frequency of
inspection, is not sufficient to compensate the cost necessary to implement this
alternative.

It is worth mentioning that the model provides some very different options
of maintenance policies. Notice that related with maintenance type I, there are
alternatives in which this kind of maintenance happens more often, for example,
for the case where the overall happens with 36 months, i.e. (T = 120, N = 9) and
(T = 90, N = 12), the last policy means that inspection is much more frequent; it
happens every 90 days. On the other hand, in the former policy (T = 120, N = 9), it
only happens every 120 days.

Another important aspect is the fact that when the interval of the overall is too
long, for example, every 54 months (T = 60, N = 27), notice that maintenance
type I has to be intensified (every 60 days), in order to be possible to postpone the
maintenance type II, without incurring in great increasing in risk.

The next step is to check whether the DM is satisfied with the recommendation
of the resulting policy.

6.4 Verification

The verification step by the DM is important because the DM’s commitment to
implementing the steps recommended by a model depends on how this model can
represent the reality of the DM for the problem addressed. If the model does not
properly represent the DM preference, then steps 3 and 4 are reviewed.

To perform this verification, variations in the preference parameters and the
vetoes previously elicited as well as variations in the performance are presented to
the DM. As an example of this process, the original scale constants were changed;
in this way, we observe the results for kC = 0.8 and kR = 0.2. Table 4 shows the
effect of this variation.

By varying the scale constant k, it can be seen how the DM preference is related
to determining the best alternative for the model. When the scale constant for the
cost increases, the best alternative has a higher risk and a smaller maintenance cost.

It is possible to observe that when the cost is prioritized by the decision-maker, in
general it results in a postponement of the maintenance type II. It is also important
to observe that the maintenance strategy with smallest cost is in the position number
10. This gives to us a good idea how important it is to consider the multiple criteria
perspectives. Like in the first analyses presented in Table 3, the trade-off between
the performance of the two criteria involved in the problem that each alternative is
capable to provide is more important than its isolated performance in each criterion.
This becomes even more evident when the veto function corrects some possible
imbalance between the performances of the two criteria.
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Table 4 Effect of this variation

Alternative TN (months) v(a) Rank Risk Cost

(T = 120, N = 21) 84 0.97235 1 0.00436 0.0985
(T = 120, N = 20) 80 0.97224 2 0.00406 0.1000
(T = 120, N = 19) 76 0.9722 3 0.00456 0.1017
(T = 120, N = 18) 72 0.97211 4 0.00377 0.1038
(T = 150, N = 15) 75 0.97199 5 0.00412 0.0974
(T = 150, N = 14) 70 0.97196 6 0.00349 0.0999
(T = 90, N = 17) 51 0.97178 7 0.00321 0.1334
(T = 150, N = 13) 65 0.97175 8 0.00369 0.1030
(T = 120, N = 22) 88 0.97167 9 0.00467 0.0972
(T = 150, N = 16) 80 0.97158 10 0.00501 0.0954

Notice that for the second analysis, the best alternative is (T = 120, N = 21);
this alternative doesn’t appear as a good option for the decision-maker in the first
analysis. The same occurs when considering the best alternative for the first analysis
(T = 90, N = 13); notice that it is not presented as a good option in the second
analysis.

7 Conclusion

Implementing an effective maintenance policy for the circuit breakers of a substation
is a concern for all power utilities to ensure the efficient operation and to reduce
the damage of the substation when a failure occurs. Due to the various factors
affecting this decision, it is not easy for the DM to select maintenance actions on
circuit breakers. This chapter presents a model of multi-criteria decision-making to
determine the maintenance of circuit breakers, considering the criteria of cost and
risk. Using a multi-criteria model with a veto, the preference of the DM can be
represented, and the order of maintenance actions can be corrected, by penalties
defined by the veto function, integrated with the value function.

The decision-making process using the proposed model and the steps for its
implementation are presented. The resulting recommendation of the model allows
the DM to set up the maintenance plan for the circuit breakers, not only the
frequency of the (T) verification/inspections, as well as the number of cycles (N)
until the renewal.

The most important aspect is that the model provides a set of the best alternatives
that are aligned with the preference of the decision-maker. It could be observed
that the overall values of these alternatives are very close, indicating that any one
alternative from this set represents a good alternative. This gives an important
flexibility for the decision-maker that can choose the alternative that best fits in any
pre-existing package plan, taking advantage for resources that are already planned
to be used with that periodicity.
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A Bayesian Model for Monitoring and
Generating Alarms for Deteriorating
Systems Working Under Varying
Operating Conditions

Ramin Moghaddass, Zachary Bohl, Raul Billini, and Shihab Asfour

1 Introduction

Mechanical systems often operate under various levels of stress, load, and envi-
ronmental factors during their lifetimes, which can significantly influence the
rate of damage and failure for their components over time. For example, wind
turbines are exposed to variable loading conditions that may be extracted from their
supervisory control and data acquisition (SCADA) systems (Vera-Tudela and Khn,
2017). Depending on the conditions, load, and stress levels the turbines operate
in, their age and degradation pattern may vary. The control of wind turbines,
which is a complex and interdisciplinary subject, is highly dependent on the wind
turbine operational regions (Novaes Menezes et al., 2018). Thus, it is critical to
monitor the history of operating conditions for mechanical systems, such as wind
turbines, for better real-time diagnostics and prognostics, particularly for better
remaining useful life (RUL) estimation. From small equipment to large machinery,
accurate modeling and detection of damage levels and forecasting of breakdown
time can result in significant cost savings, better maintenance scheduling, and
more uninterrupted service periods. Cumulative fatigue models have been widely
used for both degradation diagnosis and prognosis of mechanical components and
systems working under varying operating conditions. Although many cumulative
damage models have been developed in the literature, none of them enjoys universal
acceptance, and the applicability of each model varies from case to case. Each
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damage model can only account for a few phenomenological factors, such as load
dependence, multiple damage stages, nonlinear damage evolution, load sequence,
interaction effects, overload effects, or small amplitude cycles below the fatigue
limit. It is widely known that none of the existing damage models can encompass
all of these factors (Fatemi and Yang, 1998). Considering all the limitations, more
efforts in the study of cumulative fatigue damage are needed in order to provide
design engineers and maintenance decision makers with a general and reliable
fatigue damage analysis and life prediction model (Fatemi and Yang, 1998).

Some of the most commonly used models for cumulative damage modeling are
the Palmgren–Miner’s rule and its extensions. Miner’s rule is the epitome of the
linear damage accumulation approach and receives extensive usage in engineering
due to its simplicity (Zuo et al., 2015). This model is very simple and highly
interpretable due to its physics-based nature. In this method, increments of damage,
expressed as fractions of a lifetime at particular stress levels, are linearly added
together to express the total damage and the overall lifetime (Christensen, 2008).
Based on this rule, at a constant stress level, if a component is cyclically loaded
for a known number of cycles, each cycle becomes a small piece of the total life
of the component (Stillinger et al., 2012). Based on the Palmgren–Miner’s rule, the
overall damage C can be calculated in terms of the number of cycles applied at a
given stress range l (denoted by nl) divided by the corresponding number of cycles
to failure at the same stress level l (denoted by Nl), as

n1/N1 + n2/N2 + · · · + nL/NL = C,

where L is the number of stress levels. Based on this model, the failure occurs
when the summation of the damage increment at the intervening stress ranges
reaches a pre-defined threshold (Blason et al., 2016). Experience has shown that
many components exposed to varying loads fail in a manner that is consistent with
the Palmgren–Miner’s rule (Stephens et al., 2000). The model predictions based on
this framework coincide well with engineering hypotheses and experimental results,
even though further verification and validation are required (Sun et al., 2014). In
spite of the fact that Miner’s rule is suggested many decades ago, it is still regarded
by many scientists and physicists as a suitable model to quantify cumulative fatigue
damage (Suhir et al., 2017). Although many linear and nonlinear damage models
have been developed over the years for many applications, the Palmgren linear
damage rule is frequently used because of its simplicity and the experimental fact
that other complex damage theories do not always hold (Stillinger et al., 2012).

Despite its popularity, Miner’s rule has some important limitations that made
its original version and some of its extensions difficult to use and hard to justify
in practice. First, the original Miner’s rule model and many of its extensions, such
as the nonlinear cumulative damage rule, the damage curve approach (DCA), and
approaches based on crack growth, are deterministic in nature. Thus, they lack the
probabilistic nature that is required for the proper analysis of many fatigue failures
(ReliaSoft, 2007). Also, given the deterministic approach of Miner’s rule, it does
not account for the statistical dispersion of cumulative damage (Sun et al., 2014).
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The second limitation of Miner’s rule is that it considers a fixed deterministic failure
threshold for all systems/components of the same type; however, many experimental
results show that for different components, the individual failure thresholds are
different and usually vary between 0.5 and 2.5 (Sun, 1994). Another limitation is
that almost all work in this domain has assumed that the model parameters (such
as the life expectancy at each stress level and failure thresholds) are fully known,
and no details are available on how these parameters should be estimated/updated
from historical data (with possible missing points). Many extensions of Miner’s rule
are reported in the literature to address some of the above limitations. For example,
the work of Zuo et al. (2015) accounts for low-to-high load sequence and high-to-
low load sequence, and in Suhir et al. (2017), the classic Palmgren–Miner’s rule is
extended for the case of random loading. Sun (1994) developed a revised Miner’s
rule that eliminates the drawback in the original model by distinguishing between a
component population and an individual in that population and taking into account
the fact that the damage accumulation prior to failure for different individuals
in a population is not a constant but a random variable following a probability
distribution. In Paolino and Cavatorta (2014), a stochastic version of Miner’s rule
was implemented to include random stress thresholds, but no investigation was
carried out on the stochastic behavior of the remaining useful life estimation or
other prognosis purposes. In spite of its major shortcomings, Miner’s rule is still
commonly used for damage modeling and accumulation (Fatemi and Yang, 1998;
Liang and Chen, 2016). In fact, it is by far the most well-known and used damage
summation law (Ciavarella et al., 2017).

In addition to changes in the structure of the basic Miner’s rule to address its
limitations, relatively few articles have used it for purposes other than damage
modeling and tracking, such as remaining useful life estimation and prognosis. For
example, in Gu et al. (2007), Miner’s rule was used to predict the life consumed and
remaining life for electronics under vibration loading. Also, in Gu et al. (2009), a
health monitoring and prognostics methodology based on the deterministic Miner’s
rule approach was discussed for assessing the reliability of a group of electronic
components mounted on a printed circuit board by using strain gauges and an
accelerometer to monitor the life-cycle vibration loads. It is clear that the remaining
life estimation using the basic Miner’s rule cannot accommodate for uncertainty
and gives only a point estimate for the prediction. Thus, RUL estimation needs to
be studied using stochastic frameworks for damage modeling. One potential use of
estimated RUL is in decision making with respect to maintenance. For example, for
systems such as wind turbines with relatively long service lives (20–40 years), a
large number of wind turbines may reach the end of their service lives at the same
point in time (Ortegon et al., 2013). Thus, it is important for system operators to
decide when to initiate and prepare maintenance setup activities before the actual
failure occurs.

The chapter is mainly motivated by the need to develop reliability-based
mathematical models that can efficiently generate real-time actionable insights and
decision-making intelligence for systems working under dynamic operating and
environmental conditions, which cover the vast majority of condition-monitored
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systems, particularly in the wind and power industries. In this chapter, we propose a
new stochastic version of the Miner’s rule using a hierarchical Bayesian framework
that more realistically accounts for uncertainty and nonlinearity of damage. We
also provide an efficient approach for parameter estimation, remaining useful life
prediction, and a warning generation policy that determines the optimal time to issue
a warning/alarm. The results of the warning generation policy can be transformed
into an alarm system that gives audible, visual, or other forms of signals to indicate
a potential need or hazardous condition (Deb and Claudio, 2015). With the proposed
Bayesian hierarchical modeling approach, the parameter and hyperparameters have
a reasonable role in the framework to control the complexity of the model in an
interpretable manner.

Our main contributions in this chapter are summarized below. Unlike the deter-
ministic Miner’s rule, our model is stochastic and accommodates for the uncertainty
in both model parameters and model structure. The model does not assume that
model parameters are known a priori and instead trains the model’s parameters
with past data. The framework contains a full reliability pipeline, including model
formulation, parameter estimation, diagnosis and prognosis, and decision making.
Note that with the proposed flexible formulation, the classic Miner’s rule and some
of its basic extensions can be considered as special cases of our model. Another
new aspect of our model is that it can incorporate all covariates and stress factors in
the model and also can determine their importance in terms of affecting the damage
process.

Our work is different from the recently published work of Liu et al. (2017),
which employed hierarchical Bayesian structure only for fatigue curves estimation,
and the work of Suhir et al. (2017), which extended the deterministic Palmgren–
Miner’s rule to accommodate random loading, for the following three reasons:
(i) Our model has a hierarchical Bayesian structure that simultaneously imposes
uncertainty on the number of cycles to failure at each stress and system damage
level and at the failure threshold; (ii) our model considers a full reliability pipeline,
including degradation modeling, parameter estimation with data, damage tracking,
remaining useful life prediction, and decision making for generating alarms; and (iii)
our model is covariate-based, that is, the effect of internal and external covariates
can be taken into account in the damage modeling. In addition, the proposed model
allows for both structural priors and noninformative priors and clearly defines the
role of the model’s hyperparameters in the control of model complexity and model
interpretation. Also, we do not claim that our model works on all application areas
since the effectiveness of any damage model highly depends on the application and
the characteristics of the degradation process.

The remainder of the chapter is organized as follows. Section 2 presents the
developed framework and the interpretation of parameters and hyperparameters.
In Sect. 3, a model training framework is developed. Section 4 discusses how to
predict remaining useful life and the uncertainty associated with it. A dynamic
policy is introduced in Sect. 5 that can use the results of our model to determine
(in real time) the optimal time to issue a warning to the operator based on the
estimated damage level of the deteriorating system. Finally, in Sects. 6 and 7,
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we demonstrate the application and correctness of our model with comprehensive
numerical experiments using simulation-based and real data.

2 The Model

We list below the main notation used throughout the chapter below:

(i): The index for the ith system (or the ith life trajectory sample)
T (i): The actual age (failure point) of the ith system in the training data
L: The number of distinct load/stress levels the system operates over its life cycle
P : The number of covariates or attributes
x(i) = [x(i)

1 , . . . , x
(i)
P ]: The covariate vector for the ith system

o
(i)
t : The binary operating status of the ith system at time t (1 means failure)

Nl : The expected life of the system (number of cycles) if operated at the load level l
n
(i)
l,t : The total number of cycles up to time t that system i spent on the load level l

α
(i)
l : The overall cycle ratio for the ith system at the lth stress level

c
(i)
t : The damage index of the ith system at time t

W : The damage capacity of the system

Without loss of generality, we use the term damage, fatigue, degradation, and
deterioration interchangeably.

2.1 A Deterministic Linear Damage Framework

Cumulative damage models have been widely used for various types of mechanical
components to estimate the actual damage and the number of cycles that the
system will last over time. The linear cumulative damage rule was first proposed
by Palmgren (1924) for predicting ball bearing life. Then, it was independently
adopted by Miner (1945) as a tool to calculate fatigue of aircraft components. The
main assumption of this model is that mechanical components operate under L

different finite stress levels {1, . . . , L} with stress factor {S1, . . . , SL}. By definition,
the larger the stress level, the shorter the expected lifetime for the component under
study. In most original articles on Miner’s rule, a simple idea was introduced: If
a component is cyclically loaded at the stress level l, then it would cause fatigue
failure in Nl cycles. Thus, each cycle would exhaust one unit in Nl of the life of the
component. Under the assumption that the sum of individual damages equals C, the
following equation represents the original Miner’s rule:

n1/N1 + n2/N2 + · · · + nL/NL = C, (1)

where nl is the number of cycles at the lth stress level (nl is the number of cycles
accumulated at stress level Sl), Nl is the number of cycles to failure at the lth
stress level, nl/Nl is the damage ratio at the lth stress level, and C is the overall
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damage index. This model is fully deterministic and does not include a component
to account for random variation either in model parameters or in its structure. For
this reason, Miner’s rule is usually defined in terms of a critical value for C, which is
experimentally found to be between 0.7 and 2.2 (Akbarzadeh and Khonsari, 2016).
Note that the damage fraction C at any stress level is linearly proportional to the
ratio of the number of cycles of operation (nl) to the total number of cycles that
would produce failure at that stress level l (Nl). This model simply states that if
a part is cyclically loaded at a constant stress level for a given number of cycles,
then each cycle becomes a small part of the total fatigue life (Stillinger et al., 2011).
Many experiments reported in the literature verified that components exposed to
varying loads fail in a manner that is consistent with the Palmgren–Miner algorithm.
Despite its success, this model has some shortcomings as discussed before. Some of
these shortcomings are addressed in a structured manner in this chapter. Our main
focus is to relax its deterministic structure and make it more useful for generating
diagnostics, prognostics, and decision-making insights.

2.2 A Stochastic Damage Model with a Bayesian Hierarchical
Structure

The proposed model has a hierarchical structure that allows it to account for
uncertainty and other important features associated with the degradation. First, the
damage control index in our model can change based on the observable covariate
vector, which includes factors that may change the stochastic behavior of the
damage over time. Examples of covariates are location, environmental factors (e.g.,
temperature and humidity), or any other fixed or time-dependent variables. For
simplicity, we only include fixed covariates in this work; however, results can be
easily extended to include time-dependent covariates. If time-dependent covariates
were to be included in the model, then x(i) would be replaced by x(i)

t in Eq. (2)
(this is beyond the scope of this chapter). Based on our model, the damage control
index at time t for system i, which is the sum of individual damages at each stress
level up to time t , can be computed as

c
(i)
t =

(
n
(i)
1,t

N1
+ n

(i)
2,t

N2
+ . . . + n

(i)
L,t

NL

)
exp(βx(i)), (2)

where β = [β1,··· , βp] is the regression coefficient vector associated with P

covariates, x(i) = [x(i)
1 , . . . , x

(i)
P ] is the covariate vector for the ith system,

N1, N2, . . . , NL are the age of the system at each stress level if the system is
operated only at that stress level, and n

(i)
l,t is the total number of cycles up to time t

that system i spent on load level l. Based on this formulation, the damage monitoring
system only needs to track the number of cycles spent at each load level {1, . . . , L}
over time and the values of the covariates. The system is assumed to fail if its control
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index exceeds the threshold γ (i) as

System Failure Rule : If
{
c
(i)
t > γ (i)

}
→
{
o
(i)
t = 1 & T (i) = t

}
. (3)

Based on the above equation, the effective age of the system (T (i)) is t , and the
health/operating status at time t is failure (i.e., o(i)t = 1). Unlike many traditional
damage models, the failure threshold γ (i) is not fixed and may vary for different
systems of the same type. Also, due to the stochastic nature of N1, . . . , NL, the
damage index is also stochastic. By defining structural priors, we accommodate
uncertainty and stochastic modeling into our framework as described in the next
subsection.

The Full Bayesian Hierarchical Model for Damage Progression
The model described in the previous subsection was the basic model that does
not define the relationship between model variables and does not account for the
accommodation of uncertainty. The hierarchical form described here will explain
the structure of the model and will assist in the interpretation of model parameters.
All parameters and hyperparameters in our model have a meaning and can be
interpreted, thus our model is not a black-box model. The model is designed so that
important parameters, which are often assumed to be known in the literature, can be
trained/estimated by past data. This is a benefit over models that simply assume that
many of the model parameters are known a priori and do not change with time. The
variables and their stochastic characteristics considered in this chapter are explained
below:

I. System Damage Index (W ): This parameter reflects the maximum bearable
damage in the system, which is sometimes referred to as a critical damage.
This parameter is often assumed to be proportional to the stress level and life
expectancy at each stress level. For a fixed stress level, the larger the value of
W , the larger the overall life and the life expectancy at each stress level. It is
assumed in this chapter that parameter W is not known a priori and should be
estimated with data. We let W follow a Gaussian prior as

W ∼ N(0, σw), (4)

where σw is a hyperparameter that controls the level of information available
for W . In the presence of more specific knowledge on the distribution of
W , one may use a predefined prior distribution. For an informative prior, a
normal distribution with mean zero and a large variance can be used. Various
noninformative prior distributions for σw can be used as well, including inverse-
gamma and distributions that depend on the data-level variance. In this chapter,
we treat σw as a hyperparameter and tune it with cross validation. In our
numerical experiments, we let σw = 105 to have a super-weak prior, since
we assume that no information is available on the range of W . We should point
out that any informative prior for W should be selected very carefully given
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the fact that W is a positive variable. Our super-weak prior essentially had no
computational effect on this variable and did not lead to the negative domain
for this variable. If some information is available with regard to W , the users of
our model should employ a more appropriate prior to state the knowledge about
this parameter and its positive domain. We should point out that parameter W
is fixed for each system and does not change throughout the life of the system.

II. Stress Level Life Expectancy (Nl): This parameter is defined for all stress levels
(l ∈ {1, . . . , L}) and reflects the life expectancy of the system at the lth stress
level (number of cycles to failure at the lth stress). In the conventional Miner’s
rule model, the critical damage is the same across all the stress levels and is
represented by a one-parameter equation W = NlSl . In this chapter, we allow
for some level of uncertainty in this relationship at each stress level as

Nl ∼ N

(
W

Sl
, σN

)
, l ∈ {1, . . . , L}, (5)

where σN controls the uncertainty in the deterministic relation between W , Nl ,
and Sl and the deviation from a linear model. Note that the larger the value of
σN , the greater the deviation from the zero-noise linear relationship between
W,Nl, and Sl .It is important to remind that the value of the mean is assumed to
be much larger than the standard deviation and thus, we expect not to observe
any negative values for Nl . We should point out that we can easily replace
W
Sl

in the mean of Eq. (5) by other extensions of the Palmgren–Miner’s rule,
such as the two-parameter Basquin relation given in (Basquin, 1910) (that is
Nl = W

S
α1
l

) and the three-parameter formula given in (Liu et al., 2017) (that

is Nl = W
(Sl−α2)

α1 ), where α1 and α2 are new parameters. In this chapter, it is
assumed that there is no prior information for σN , and we let the model decide
whether an estimate best fits the data. The nonnegative parameter σN follows
the noninformative prior as log(σN) ∼ U(−a, a), where the hyperparameter
a is set to 100 in this chapter to impose a very weak prior. Note that we
also tried the noninformative inverse-gamma(ε, ε) for p(σ 2

N) in our numerical
experiments, and the results were very similar. It should be pointed out that
since W is fixed and Sls are monotonically increasing, then we expect the mean
in Eq. (5) to be non-increasing over l. Also, since we expect σn to be much
lower than the mean, then the non-increasing trend of Nl should hold true.
During the estimation phase, we will define an additional step to make sure
the non-increasing trend of Nl holds true.

III. Regression Coefficients (β = [β1, . . . βP ]): This vector determines the impor-
tance of covariates {1,..,P } in the model; the larger the βp, the more important
covariate p becomes. In order to have a sparse model with less variables but
that imposes regularization at the same time, these variables are centered at
zero with covariance σβ , which is a hyperparameter that is set to 0.01 in this
chapter. Thus, we have
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βp ∼ N(0, σβ), p ∈ {1, . . . , P }. (6)

In other words, we regularize parameter βp by imposing the Gaussian prior
(which can be interpreted as a L2 regularization term) on regression coeffi-
cients, where σβ is a strictly positive scalar. By imposing Eq. (6), we expect
to remove unrelated covariates from the damage process. Note that as σβ

decreases, more coefficients are set to zero (i.e., more covariates are removed),
and more shrinkage is employed among the remaining covariates.

IV. Failure Threshold (γ (i)): This parameter shows the failure threshold for the ith
system and follows a normal distribution centered at γ0 as

γ (i) ∼ N(γ0, σγ ). (7)

We have assumed throughout the chapter that γ0 and σγ are known hyperpa-
rameters defined by the users. Here, hyperparameter σγ controls the uncertainty
of the failure threshold, which is not considered in many models (e.g., Miner’s
rule-based model) in the literature where failure threshold was assumed to be
fixed over time (that is where σγ = 0). The larger the σγ , the less centered are
the thresholds for different systems. We can also define a noninformative prior,
such as inverse-gamma for σγ and let the model fit its best value with data.
With such a definition, we do not simply expect all systems to fail at the same
threshold values. Thus, the model accounts for uncertainty and the stochastic
nature of uncertainty. For better numerical stability, we let γ0 = 1 throughout
the chapter so that the failure thresholds center around 1.

V. System’s Overall Health/Operating Status (o(i)t ): This is a binary variable
indicating whether or not the system is operating. Based on the failure definition
in Eq. (3), we can write the relationship between o

(i)
t and c

(i)
t as follows:

p
(
o
(i)
t |c(i)t , γ (i)

)
=
{

1, if c(i)t ≥ γ (i)

0, otherwise
. (8)

For numerical stability and better interpretability of the hierarchical model, we
impose the following two constraints in our numerical experiments:

(i) 0.7 ≤ γ (i) ≤ 2.2 for the ith system, and
(ii) N1 ≥ N2 ≥ . . . ≥ NL ≥ 0, that is, the age of the system at each stress level

should be greater than higher stress levels.

With the above constraints, we can make sure that (i) the failure threshold values
are within the ranges already reported in the literature and (ii) the higher the stress
level, the lower is the life expectancy. We should point out that depending on the
application, we may need to adjust the range of γ (i), especially due to the effect
of covariates (i.e., exp(βx(i))). The hierarchical model can now be explained in a
generating form as follows:

A. Generative Structure of the Damage Model: After the overall damage index W is
generated from Eq. (4) and the variance σN is generated from its uninformative prior,
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they together generate N1, · · · , NL (see Eq. (5)). Then, the regression coefficients
β1, . . . , βP are generated from the Gaussian distribution, which is centered at zero
(see Eq. (6)).

B. Generative Structure of the Individual Damage Progression: Over time, the
number of cycles spent at each stress level is recorded. Any time t , the operation
data collected as n(i)

1,t , . . . , n
(i)
L,t with known covariate vector x(i) are used to generate

the damage control index c
(i)
t . Then the failure threshold γ (i) is generated from

N(γ0, σγ ). If c
(i)
t > γ (i), then the system fails, otherwise it continues operating

until the next cycle.
According to this model, the structure of the hierarchical model contains four

levels of variables that are related to (i) degradation factors, which include variables
W , σN , N1, . . . , NL and hyperparameters {a, σw}; (ii) the failure threshold, which
includes variable γ (i), and hyperparameters {γ0, σγ }; (iii) the control index, which

includes damage index c
(i)
t , variables β, and hyperparameter σβ ; and (iv) the

health/operating status, which includes the observable variable o
(i)
t . The set of

unknown parameters in the model (denoted by θ) is

θ =
{
W,σN,N1, . . . , NL, β1, . . . , βP , γ

(1), . . . , γ (m)

}
,

and the set of model’s hyperparameters (denoted by ϑ) is ϑ = {σW , a, γ0, σγ , σβ}.
The graphical model illustrated in Fig. 1 represents the dependencies and causal
relationships among model parameters. Although it is assumed that the model
hyperparameters are tuned in with cross-validation and/or prior knowledge, one may

Fig. 1 Directed acyclic graph for the hierarchical damage model. Circles indicate stochastic
nodes, rectangles indicate observable factors, and the rhombus indicates the dynamic damage
index. The hyperparameters are denoted by {a, σw, γ0, σγ , σβ }. The box on the right side of the
plot represents the covariate vector and collected operating data for system i over time
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use other informative or noninformative priors for them and let the hierarchical
model find their best values. Also, we point out that the users of the model
may choose their preferred distributions for the informative priors used for model
parameters. We will show in the remainder of this chapter how to train this model
using past data and then how to employ the trained model for real-time diagnosis
and prognosis.

3 Model Training with Data

In this section, it will be shown how to use historical data to estimate the parameters
of the proposed model, which are θ = {W,σN,N1, . . . , NL, β1, . . . , βP , γ

(1), . . . ,

γ (m)}, assuming that the set of hyperparameters that control model complexity,
denoted by ϑ = {σW , a, γ0, σγ , σβ} is known. Suppose that historical data for M

independent life trajectories/systems with failure time T (1), . . . , T (M) are available.
Thus, the historical data, denoted by D = [X,O,T ], include a set of known
covariates, X = [x(i)], failure status O = [o(i)t ], and T = [T (i)], where
i ∈ {1, . . . ,M} and t ∈ {1, . . . , T (i)}. It is important to note that although
estimating the M-vector thresholds γ when we already know the failure times is
not useful, they need to be estimated since other unknown parameters depend on
them. Also, determining the best values for hyperparameters γ0 and σγ strongly
depends on the threshold vector γ . Assuming that hyperparameters are known, the
full posterior based on the hierarchical model, which is proportional to the product
of the likelihood and priors’ probability, can be written as follows:

p(W, σN,N1, . . . , NL, γ
(1), . . . , γ (M), β1, . . . , βp|D,ϑ) ∝ (9)

p(D|θ,ϑ) ×
M∏

m=1

p(γ (m)|γ0, σγ ) ×
P∏

p=1

p(βp|σβ)

×
L∏

l=1

p(Nl |W,σN) × p(W |σw) × p(σN |a).

We should point out that since the damage index only changes at discrete time
points and other variables are not time dependent, the posterior was written based
on discrete time points. The first term is the likelihood probability that includes the
probability of survival up to time T (i)−1 and failure at time T (i) for i ∈ {1, . . . ,M},
which can be written as follows:

p(D|θ ,ϑ) =
M∏

m=1

T (m)∏

t=1

p(o
(m)
t |N1, . . . NL,β, γ (m), x(m)) (10)

=
{∏

i

T (i)−1∏

t=1

p(c
(i)
t < γ (i))

}
×
{∏

i

p(c
(i)

T (i) ≥ γ (i))

}
.
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Theoretically, one may employ Eq. (9) to find the maximum-a-posteriori (MAP)
estimation in order to obtain point estimates of the model parameters. The posterior
distribution given in Eq. (9) does not have a closed-form and optimizing it analyti-
cally (i.e., by taking a gradient over each unknown parameter and setting it equal to
zero to solve it for each parameter) is not a feasible option given the possibility
of having a large number of parameters. Below we provide a Markov chain
Monte Carlo (MCMC) framework taking advantage of the hierarchical structure
of the model for model training. This method will use the hierarchical structure
to recursively estimate model parameters while accounting for uncertainty in the
estimation.

3.1 A Metropolis-Within-Gibbs (MWG) Approach for
Parameter Estimation

We use Markov chain Monte Carlo (MCMC) to approximate the elements of θ

recursively, specifically through the random walk Metropolis–Hastings algorithm.
The algorithm employs a Gaussian proposal distribution J (x, x′), which proposes
a new parameter set x′ given the current parameter set x. It should be noted that
given a node’s parents in the directed acyclic graph, that node is conditionally
independent of its grandparents and any other ancestors. Thus, we can generate
simple forms for the conditionals that drive the MCMC sampler much faster and
more efficiently. Each iteration of MCMC cycles over a subset of components of the
parameter vector θ , keeping everything else fixed. The main steps of the algorithm
are summarized in Algorithm 1 (Appendix). For large-scale applications, blocked
sampling approaches may be necessary. We use 〈k〉 to refer to the estimates at the
kth iteration of the MCMC algorithm. After running the MCMC algorithm, we
can compute a Bayesian point estimate using the mean or mode of the posterior
distribution. To better account for uncertainty, we can either use Bayesian interval
estimates for parameters or calculate the posterior predictive distribution for any
parameter/measure of interest.

3.2 Important Remarks for Parameter Estimation

Interval-Censored Failure Data In some deteriorating systems under inspection
with hidden/silent failures, one of the key practical challenges for reliability analysis
is the uncertainty about the actual time of failure. The inspection data in such cases
are known to be interval-censored, that is, the time of failure is within a range
between the two last inspection points T (i) − Δ and T (i). Interval failure data
will then have effects on the likelihood function given in Eq. (10). In order to be
able to use our model in the presence of interval-censored data, we can rewrite the
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likelihood function as follows:

p(D|θ ,ϑ) =
⎧
⎨

⎩

M∏

i=1

T (i)−Δ∏

t=1

p(c
(i)
t < γ (i))

⎫
⎬

⎭ (11)

×
⎧
⎨

⎩

M∏

i=1

T (i)∑

t=T (i)−Δ+1

t−1∏

t1=T (i)−Δ+1

p(c
(i)
t1

< γ (i))

T (i)∏

t2=t

p(c
(i)
t2

≥ γ (i))

⎫
⎬

⎭ .

The above likelihood function is computationally much more difficult to evaluate
compared to Eq. (10) due to integrals. Approximation techniques may be necessary
to efficiently evaluate Eq. (10).

Long Life Cycle andMissing Points Many deteriorating systems have a very long
lifetime, and monitoring them at every cycle (for degradation monitoring) is totally
unnecessary. For example, wind turbine gearboxes can age for many years, and as a
result, inspections often occur every few months or whenever needed. Also, due to
problems such as sensor errors the data collected are occasionally lost resulting in
missing values. The model presented in this work is less volatile to missing points
due to the fact that the required part of the missing data can be recovered by cycle
ratios assuming that the load spectrum during the missing interval can be achieved.
In other words, one may use the last observed (or the history of) cycle ratios to
figure out what stress levels the system has been operating at up to the missing point
and then use these cycle ratios to estimate the number of cycles spent at each stress
level during a missing interval. This is also an important computational benefit for
systems with long cycle times and/or missing points. For example, let us assume that
the operating data from time t to time t + Δ are missing. One can use the updated
cycle ratio as

α
(i)
l,t = n

(i)
l,t

∑
l′

n
(i)

l′,t
, l ∈ {1, . . . , L}, i ∈ {1, . . . ,M}, t ∈ {1, . . . , T (i)},

to estimate the number of cycles spent at each stress level during the time interval
[t, t + Δ]. Using the history of cycle ratios to find the number of cycles spent at
each stress level during an interval is also a reasonable solution for cases in which
only a fraction of cycles at each loading value is known as a percentage rather than
the actual cycle numbers. For example, if we have 10 years of data for a system
with repeating load spectrums, one can use the cycle ratios of the last few years
to estimate the number of cycles spent at each stress level for the first few years.
In that sense, we do not necessarily have to know all the details about the working
conditions from the beginning of the lifetime. Our numerical experiments using real
wind turbine data verified that cycle ratios change significantly in the first stages of
a turbine’s lifetime. As a turbine ages, the cycle ratios remain almost constant and
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reach the steady state. Thus, it is reasonable to assume that past cycle ratios are good
representatives of future operating conditions for a system.

4 Remaining Useful Life Prediction

Remaining useful life (RUL), also known as residual life (RL), is one of the
most important measures used in online health monitoring of systems with gradual
degradation. RUL of systems that operate under varying operating conditions can
be better predicted if future operating conditions of the system are known. While
this may be available for some systems, it is often not the case for systems under
varying and rapidly changing operating conditions. We provide estimates for the
RUL distribution under three different reasonable assumptions for future operating
conditions based on the cycle ratio. We do not recommend using our model when
none of the below cases is valid/verified for the system. We denote α̂

(i)
l,t as the

projected cycle ratio for future cycles and denote variable r
(i)
t as the RUL of the

system (computed) at time t , given that the system is still operating at time t . The
following three cases are derived based on how much information is available on
α̂
(i)
l,t .

Case I The future operating conditions are known (or approximately known) by
cycle ratios. That is, α̂(i)

l,t is known for l ∈ {1, . . . , L}.
Case II The future operating conditions are not known but the system is assumed

to follow the same cycle ratios as the ones up to time t . That is, the system is
going to spend 100α

(i)
l,t % under operating condition l. Thus, α̂(i)

l,t = α
(i)
l,t . Also,

depending on the application, one may use the cycle ratio based on the last e

(defined by users) cycles as the projection for future cycles α̂
(i)
l,t = n

(i)
l,t −n

(i)
l,t−e∑

l′
n
(i)

l′,t−n
(i)

l′,t−e

.

This case is only valid when cycle ratios are almost constant.
Case III The future operating conditions are not known, but the loading cycles are

assumed to be distributed in a uniform fashion during the future life cycles. Thus,
we have α̂

(i)
l,t = 1

L
.

For all of the above cases, given the relationship between c
(i)
t and γ (i), we have

r
(i)
t : inf

{
K; c(i)t + K · exp(βx(i))

(
L∑

l=1

α̂
(i)
l,t

Nl

)
= γ (i)

}
⇒ r

(i)
t = γ (i) − c

(i)
t

exp(βx(i))
L∑

l=1

α̂
(i)
l,t

Nl

.

Since γ (i) is not known a priori for a new system i, we can re-write the formula for
r
(i)
t in a stochastic form as
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p
(
r
(i)
t = K

)
=

p

(
γ (i) = c

(i)
t + K · exp(βx(i))

(
L∑

l=1

α̂
(i)
l,t

Nl

)
|γ0, a

)

p
(
c
(i)
t < γ (i)

) (12)

=
N

(
c
(i)
t + K · exp(βx(i))

(
L∑

l=1

α̂
(i)
l,t

Nl

)
; γ0, a

)

1 − F
(
c
(i)
t ; γ0, a

) , K > 0,

where F(c
(i)
t ; γ0, a) is the cumulative distribution function of the normal dis-

tribution with mean γ0 and standard deviation a. Note that we can either use
the point estimate of the parameters β and N from the posterior distribution to
evaluate Eq. (12), or use the posterior predictive distribution of r(i)t from the MCMC
samples for β and N . Equation (12) is a dynamic formula that gives the portability
distribution of the RUL based on an estimate for the future cycle ratios. Many
conventional models ignore such a consideration when predicting the remaining
life. Now that the distribution of the remaining life is given, one can use it to study
its stochastic behavior, such as its average, variance, and confidence interval. This
formulation gives decision makers much more than a point estimate of the RUL as
provided by deterministic Miner’s rule models. Note that the RUL using our model
is dynamic and changes over time, depending on the condition in which the system
was operating over time. Therefore, the estimation is from the family of condition-
based measures. We should point out that our model cannot directly handle a more
complex case in which the projected future operating conditions are stochastic (such
as in Liao and Tian (2013)). This can be done by imposing a probability distribution
for the projected operating conditions represented by α̂

(i)
l,t and incorporating it into

Eq. (12).

5 A Dynamic Policy for Real-Time Alarm Generation

The ultimate value of statistical techniques for hazard monitoring and reliability
analysis lies in their power for generating actionable insights that can help with
maintenance decision making. Conventional maintenance decision-making models
often optimize the time to terminate the operation to do maintenance (repair or
replacement). Our model has a different focus, as it aims at generating real-time
alarms/warnings to operators and decision makers who determine when to start
preparing for expensive and time-consuming maintenance activities ahead of failure.
This type of alarm is very common for critical and expensive mechanical systems,
such as wind turbines. Our model also contributes to remote real-time monitoring
and early fault warning strategies, from which a predictive maintenance service
can be performed; thus, reliability of the units can be increased (Zhang et al.,
2017). By triggering warnings using knowledge of the degradation state, decision
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makers may be able to issue better-timed maintenance decisions. For instance, our
discussion with field experts and collaborators confirmed that wind turbine operators
and decision makers would like to know approximately 30 days in advance when
a turbine is going to have major failures. This 30-day notice will help them better
prepare and plan for costly replacements, major repairs, and lengthy maintenance
setups or parts ordering.

We define “warning generation” as a dynamic decision process that depends
on the damage level of the system over time. Let us define d as the ideal time
between the warning point and the failure point that is determined by decision
makers. In other words, the warning generation system is considered efficient or
perfect if it generates warnings when the actual time to failure (also called remaining
useful life—RUL) is very close to d time units or cycles. To define the quality of
the decision-making framework, we define a cost/risk function gd(ξ), ξ ≥ 0, to
represent the cost of a warning at ξ units before the actual failure time, given d as
the ideal value. It is clear that gd(d) = 0, and there is a positive cost for warnings
that are early or late (i.e., gd(ξ) > 0, for ξ ≥ 0, ξ �= d), where ξ < d means late
warning and ξ > d means early warning. The two extreme cases are (i) to generate
a warning only at the failure with cost gd(0), that is, when the warning time equals
the failure time, and (ii) to generate a warning at time zero with average cost of
gd(E(T )), where E(T ) is the mean time to failure. Our model is general in the
sense that any mathematical form of cost function g can be considered depending
on the application (e.g., hinge, quadratic, logistic, and exponential). The objective is
to define a dynamic decision rule for the warning generation process that minimizes
the expected total cost or total risk. It should be pointed out that depending on the
application, decision makers may choose to have another form of objective function,
such as average cost per unit of operation. The structure of the proposed policy is
illustrated below.

Let us assume that at time t , we decide to generate a warning after a cycles. If the
failure occurs at time t +a+d, then the policy is a perfect policy with cost 0. Given
that the warning is generated at time t + a, three possible scenarios can occur with
different cost forms: (i) Failure occurs between now (time t) and time t + a, that
is, the remaining life is within a cycles; (ii) failure occurs between time t + a and
time t + a + d, that is, the remaining life is within [a, a + d] cycles; and (iii) failure
occurs after time t + a + d, that is, the remaining life is greater than a + d cycles.
Thus, the expected total cost for system i calculated at time t based on warning time
t + a, denoted by J

(i)
t (a), can be computed as follows:

J
(i)
t (a) =

∫ a

0
p
(
r
(i)
t = k

)
gd(d)dk +

∫ a+d

a

p
(
r
(i)
t = k

)
gd(a + d − k)dk

(13)

+
∫ ∞

a+d

p
(
r
(i)
t = k

)
gd(k − a − d)dk.
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Now the optimal warning time that is determined at time t (denoted by R
(i)
t ) can be

found by the following formula:

R
(i)
t = t + arg min

a
J
(i)
t (a).

Assuming that the decision on whether to issue a warning is made every Δ cycles,
we can define a dynamic decision policy as follows:

Decision Policy at time t :
{

Issue a Warning Immediately, if 0 ≤ R
(i)
t < Δ

Wait Until the Next Decision Epoch, if R
(i)
t ≥ Δ

.

(14)
The corresponding problem is a 1-d optimization problem with one unknown (a)
and can be solved with any single-variable optimization technique.

5.1 Special Case—Linear Cost Function and Its Optimal
Structure

As mentioned before, any form of cost function g can be used in Eq. (13). Below, we
discuss a special and reasonable form of cost function g and discuss the closed-form
structure of the optimal policy. A very simple and typical form of function gd(ξ) is
called the pinball loss or newsvendor cost (see for instance Rudin and Vahn, 2013),
in which the cost of warning changes linearly with the number of late or early cycles
as follows:

gd(ξ) =
⎧
⎨

⎩

c1(d − ξ), if ξ < d

0, if ξ = d

c2(ξ − d), if ξ > d

, (15)

where c1 is the unit cost of a late warning and c2 is the unit cost of an early warning.
We derive four useful remarks with regard to the optimal structure of the warning
generation policy for this cost function below.

Remark 1 The optimal policy depends only on the ratios of c2
c1

and c1
c2

and not their
individual numerical values.

Remark 2 If c2 � c1, then the optimal policy is to do nothing, that is, to issue the
alarm at the failure point.

Remark 3 If c1 � c2, then the optimal policy is to issue the alarm immediately (at
time zero).
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Remark 4 The optimal warning time is 0, ∞, or the solution of the following
equation:

p
(
r
(i)
t ≤ a + d

)
(c1 + c2) − c1p

(
r
(i)
t ≤ a

)
− c2 = 0.

Proofs of Remarks 1–4 The cost function in Eq. (13) can be simplified as

J
(i)
t (a) =

∫ a

0
p
(
r
(i)
t = k

)
c1d dk (16)

+
∫ a+d

a

p
(
r
(i)
t = k

)
c1(d − k + a)dk

+
∫ ∞

a+d

p
(
r
(i)
t = k

)
c2(k − a − d)dk

= c1(a + d) p
(
r
(i)
t ≤ a + d

)
− c1a p

(
r
(i)
t ≤ a

)

− c2(a + d)
(

1 − p
(
r
(i)
t ≤ a + d

))

−
∫ a+d

a

c1p
(
r
(i)
t = k

)
kdk +

∫ ∞

a+d

c2p
(
r
(i)
t = k

)
kdk,

which gives

dJ (i)
t (a)

da
= p

(
r
(i)
t ≤ a + d

)
(c1 + c2) − c1p

(
r
(i)
t ≤ a

)
− c2. (17)

It is clear from the optimization point of view that

arg min
a

J
(i)
t (a) = arg min

a

J
(i)
t (a)

c1
= arg min

a

J
(i)
t (a)

c2
,

which proves Remark 1. Now, if c2 � c1, then the first derivative given in Eq. (17) is
always negative and thus arg min

a
J
(i)
t (a) = ∞, which proves Remark 2. If c1 � c2,

then the first derivative in Eq. (17) is always positive and thus arg min
a

J
(i)
t (a) = 0,

which proves Remark 3. Now, given that a = 0, a = ∞, and the solutions of
dJ (i)

t (a)

da = 0 are critical points of functions J (i)
t (a), we have the proof for Remark 4.
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6 Numerical Experiments

To demonstrate the correctness of our model, its application in real-time damage
monitoring, and its advantage over conventional models with regard to RUL
estimation, several simulation-based numerical experiments were carried out in this
section. We also used a real case to demonstrate the application of our model for
the condition monitoring of wind turbines, which typically operate under varying
operating conditions over their life cycles.

6.1 Simulation Experiments

We will show first that for the data generated from our model, the true data-
generating parameters θ can be recovered from the developed parameter estimation
framework. We then show the effectiveness of the model in terms of predicting RUL
and generating alarms. A fully stochastic framework was designed to simulate data
for our numerical experiments. A system with five stress levels (L = 5) and four
covariates (P = 4) are considered. Multiple trajectories of run-to-failure samples
are generated for a single-unit degrading system according to the stochastic structure
given in Fig. 1. For each sample, we recorded the time spent at each stress level
up to the failure time, that is [n(i)

l,t ], for i ∈ {1, . . . , N}, l ∈ {1, . . . , L}, and t ∈
{1, . . . , T (i)}. The hyperparameters are set throughout this section as given below:

ϑ =
{
σW = 100, 000, a = 10, γ0 = 1, σγ = 0.1, σβ = 0.05

}
.

Other model parameters are generated according to the model’s hierarchy in Fig. 1.
The values of other model parameters that are randomly generated based on the
hierarchical model are given below:

θ =
{
W = 3, 921, σN = 4, N1:5 = [259.3, 189.3, 160.2, 1284, 103.8],

β1:4 = [−0.01,−0.07,−0.07, 0.077]
}
.

Note that we ran all the numerical experiments with a few other sets of model
hyperparameters and parameters, and the results were very similar. Figure 2 shows
the relationship between the failure threshold and the true life/age of the simulated
samples. As expected, samples with higher thresholds have higher lifetimes. This
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Fig. 2 Failure thresholds (γ (i)) versus sample lifetimes T (i) for 1000 simulated samples
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Fig. 3 MCMC iterations and changes in model posterior (left) and model estimation error for
N1, . . . , N5 (middle) and W (right)

relationship is not deterministic and is not entirely linear, as the age of the samples
depends on the operating conditions and their covariates. Also, it can be seen that (as
expected) the failure thresholds vary mainly between 0.8 and 1.2 and are centered
around 1.

Parameter Estimation
To evaluate the efficiency of the parameter estimation procedure, we first simulated
trajectories of run-to-failure data and then used our parameter estimation method to
recover the true values of model parameters θ . For M = 200 samples, we showed
in Fig. 3, the improvement in the posterior distribution (the left plot) and root mean
squared errors of estimated parameters N1, . . . , N5 and W over 100,000 iterations
of MCMC (the right plots). It can be seen that the MCMC associated with model
training converges relatively fast and has a reasonable mixing (the left plot). Also,
the error of parameter estimation tends to zero as the number of MCMC iterations
increases (the right two plots). We observed the same behavior for other parameters.

We then removed the first 5000 iterations (as burn-in samples) of MCMC
sampling and kept only 95,000 samples to estimate the posterior estimates. Figure 4
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Fig. 4 Samples from the posterior of N1, . . . , NL (left), and their histograms (right). The first
5000 samples were discarded as burn-in time. The solid red lines are true values

shows samples from the posterior of variables N1, . . . , NL from 95,000 iterations of
MCMC sampling. From this figure, we observe reasonable mixing and convergence.
These figures show that the posterior samples were almost concentrated around the
true values, and the posterior mean of each variable was generally close to its true
value. To evaluate the effect of the number of samples (M) on the estimation results
and to empirically assess the convergence rate for the underlying true values, we
considered five cases for M , where M denotes the number of simulated samples
(M ∈ {25, 50, 100, 200, 400}). We show the results here only for N1, . . . , N5,
σN , and β1, . . . , β4, but the results were similar for other parameters. The true
values of the parameters, as well as the means and the standard deviations (SD)
of the estimated values from the conducted experiments, are presented in Table 1.
Results shown in this table verify thatin almost all cases, estimates are very close
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Table 1 Parameter estimation—summary of results for M ∈ [25, 50, 100, 200, 400]
Parameter N1 N2 N3 N4 N5 W σN β1 β2 β3 β4

TRUE 259.3 189.3 160.2 128.0 103.8 3921.6 4 −0.010 −0.069 −0.007 0.070

Mean M=25 255.6 184.1 161.8 122.4 99.1 3853.0 8.26 −0.008 −0.057 0.000 0.067

M=50 257.1 182.4 161.1 122.3 100.4 3858.8 5.7 −0.003 −0.056 0.002 0.069

M=100 257.2 183.7 161.5 123.4 100.3 3865.8 5.35 −0.002 −0.058 −0.001 0.071

M=200 257.2 184.6 160.3 124.1 101.5 3870.6 4.84 −0.005 −0.064 −0.001 0.071

M=400 257.8 186.2 159.7 126.2 102.7 3888.0 4.69 −0.008 −0.057 −0.043 0.077

SD M=25 12.7 9.0 7.8 5.5 4.1 196.7 8.55 0.031 0.031 0.031 0.030

M=50 9.6 6.5 5.8 4.4 3.6 135.2 5.33 0.028 0.028 0.029 0.028

M=100 9.2 6.4 5.7 4.2 3.3 139.8 5.19 0.028 0.028 0.028 0.028

M=200 8.6 6.2 5.2 4.0 3.2 133.0 4.24 0.027 0.028 0.027 0.027

M=400 8.6 6.0 4.9 3.9 3.0 111.0 4.14 0.024 0.025 0.025 0.024

to true values, particularly when the number of samples increases. It is clear that
for parameter β3 the estimation does not converge to the true values, which implies
that more data are needed. Also, results verify that the standard error of estimation
tends to zero as M increases. We can summarize that the parameter estimation
method was computationally tractable and very effective in estimating unknown
model parameters, particularly when we have more data.

Real-Time Remaining Useful Life Estimation
Here, we evaluate the power of the model to predict the conditional residual life, that
is, the expected average number of cycles over which the system will continue to
function computed at a certain time point, given the available information up to that
time point. We first show how RUL is estimated for two random samples: one with
a relatively long lifetime and one with a relatively short lifetime. In Figs. 5 and 6,
the true RUL, the mean RUL estimated from our model, and the 95% prediction
intervals are shown for the two selected samples. These values are calculated at 99
discrete points equivalent to 1%–99% of the lifetime of each sample. For instance,
the first point on each line is calculated when the age of the system was at 1%
of its total age. We have also shown the probability distribution of the remaining
life at three points of 1%, 50%, and 99% of the lifetime for better visualization of
the RUL prediction. It can be seen that the RUL estimates are mostly within the
confidence intervals and are closer to true values as the system ages. Also, results
show that as the system ages, the percentile (prediction) interval for the remaining
life becomes a bit narrower, that is, the prediction uncertainty decreases. The plotted
RUL distribution at three points of 1%, 50%, and 99% of the lifetime gives a better
picture of life expectancy in the future based on the most updated set of operating
signals. It can be seen that the distribution of remaining useful life centers more
closely around true values (lower variance) as the system ages. In both Figs. 5
and 6, the RUL is calculated with the assumption that future operating conditions are
unknown; thus, current cycle ratios are utilized to project future operating conditions
(Case II in Sect. 4).
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sample; it can be seen that the mean RUL underestimates the actual RUL when the age of the
system is relatively long, but the prediction interval covers true values reasonably well

We applied our model to 1000 samples and predicted RUL at certain proportions
of each sample’s life (1%–99%) using the mean of the predicted distribution (RUL).
We calculated the relative error (%) and absolute error of RUL estimation as shown
in Fig. 7. The plus signs in the middle are the mean of the errors over 1000
samples. Also, we plotted by circles the mean of the RUL estimation error under
the assumption that the exact operating condition of future cycles is known. As
shown in this figure, the data in the first few cycles could not accurately predict the
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remaining life. Results show that the estimation error decreases when the estimates
are made closer to the end of the lifetime (that is mainly because more data are used
for prediction). Although the estimates based on the true operating conditions are
more accurate at the beginning of the lifetimes, they get closer to the case where
the operating conditions are not known as the system ages, particularly due to the
fact that the operating conditions become more stable. In practice, this phenomenon
highly depends on the system, its operating conditions, and its variation over the
system’s life cycle.

Alarm/Warning Generation Policy
To show empirically the benefit of the developed cost-effective dynamic warning
generation policy described in Sect. 5, we compared it with three other types of
policies, namely a control limit policy and the two extreme cases of do-nothing
and issue warning at the beginning of lifetimes (Too Early Warning policy). In the
control-limit policy, the warning is generated when the damage index exceeds a
predefined and optimized threshold. We applied each policy on 1000 simulated
samples and reported the average cost for five different cases of c2/c1 (fixed
c1 = 10) and five different values of d (total of 25 combinations). Results shown
in Fig. 8 verify that (i) the proposed policy performs as well as or better than other
policies and (ii) as the cost of late warning increases, the proposed policy tends
to recommend earlier replacement times and gets closer to the Too Early Warning
policy. When the cost of late warning is zero, then our model and the control limit
policy both act the same as the Do Nothing Policy. Among all policies, do nothing is
the worst, especially when the cost of late warnings is high. Since the type of policy
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Fig. 8 Results for the developed cost policy and comparison with similar models for various
combinations of d and c2/c1

developed in this chapter is naturally different from typical maintenance policies,
there is no more apparent policy to compare it against.

6.2 A Case Study for the Condition Monitoring of Wind
Turbines

Condition monitoring and fault diagnosis of wind turbines have received a high
priority over the past years due to the continuous growth of wind energy generating
sources and increasing demand for more careful planning and control of operation
and maintenance costs (Herp et al., 2016). The wind power industry all over
the globe is constantly seeking more cost-effective operations and maintenance
(O&M) actions. As a result, various strategies have been proposed for wind turbines
(Byon, 2013). Bearing failures are among the most costly types of failure for
wind turbines, which can cause unplanned shutdowns, early bearing replacement,
reduced availability, and increased cost of energy. A major part of the high price
of clean energy produced by wind turbines is the result of the required preventive
maintenance and costly breakdowns that result from unexpected gearbox failures.
Wind turbines are usually equipped with supervisory control and data acquisition
(SCADA) sensors that record various measurements of the dynamic environment
every few minutes. Since SCADA measurements provide ample and cheap indirect
information about the state of health of the turbine, leveraging these measurements
for health monitoring is valuable and has gained more attention over the last decade
(Long et al., 2011). Here, we show how wind turbine SCADA data can be used
to monitor the degradation status of a wind turbine gearbox and predict its RUL.
Through our collaboration with a large utility company in the USA, we have had
access to SCADA data for a group of wind turbines operating at five different wind
farm locations. It should be noted that due to the confidentiality of the data provided
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to us, we normalized the raw data and removed all cost and location information as
well as detailed failure data from the chapter.

SCADA Data Available for the Study
Partial SCADA data for 15 turbines’ life trajectories for a period of 2 years collected
every 10 min were available for our research project. Each collection instance for
each turbine included the date and time of collection, approximate location of the
wind farm, average wind speed, pitch angles, average blade rotor revolutions per
minute (rpm), and active power generated in kilowatts over the 10-min interval.
Also, environmental features, such as temperature and humidity, could be extracted
based on the locations of the turbines (not used in the chapter). Because missing
values were rare and were largely resulting from lapses in turbine operation for
maintenance or inspection, they were removed from the dataset. First, the total
cycles until major gearbox failure (T (i)) were calculated for each of the 15 available
wind turbines by summing the average RPM in each collection instance before the
turbine failed multiplied by 10 min. Throughout this work, one operation cycle is
considered one revolution of a turbine’s blade, and the cycle ratio is calculated by
dividing the number of cycles in each stress bin (will be defined later) by the total
number of cycles. It is assumed that the initial degradation level is minimal, but one
can utilize any available information for the initial degradation using our model.
We used location (with 5 possible outcomes) as the only covariate in our analysis.
We conducted a 5-fold cross-validation for parameter estimation and performance
evaluation. We randomly divided our dataset into five folds of equal size (3 turbines
per fold). We trained the model with 4 folds (12 turbines) and used the last fold (3
turbines) for testing. This process was repeated 5 times so that all folds were used
for testing. All results in the remainder of this chapter are based on the testing set.

Stress Levels and Data Preparation
Due to the stochastic nature of wind, a wind turbine gearbox experiences a wide
loading variation during its life, which results in premature failure of various
forms (Long et al., 2011). Similar to the work of McVittie and Errichello (1990),
cyclic loading conditions caused by wind speed variation and torque are considered
for defining stress levels. Various cycle counting methods (such as Rainflow and
Racetrack methods) can be used to convert complicated load spectrum into a
simplified histogram (McVittie and Errichello, 1990). In this chapter, the loads are
simply grouped into 10 levels, and the individual loads are assumed to be the same
values as the average of the maximum and minimum load for that group. The torque
was calculated for each collection instance of each turbine using the formula below:

P(kW) = T (Nm) × w(rpm)

60 × 1000/2π
→ T (Nm) = P(kw) × 30,000

π × w(rpm)
,

where P represents the power generated, T represents the torque, and w represents
the rotational speed. Ten levels of torque bins were defined with upper and lower
limits as percentages of the maximum torque observed among the turbines. The
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Fig. 9 Stress levels (left), expected normalized estimated lifetime at each stress level (middle
plot), and the variation of operating conditions among 15 turbines (right). Note that although peak
loads operate for a short period of time, they contribute the most damage to the system, that is, the
life of the system at higher stress levels is lower than at lower stress levels

final stress intensities S1, . . . , S10 are shown in Fig. 9(left plot). The upper and lower
limits for each bin were designed to capture the varying operating conditions of the
turbine, with smaller bins around the stress levels containing the bulk of operation
cycles. Each collection instance (cycle) for each turbine was then categorized into
one of the ten defined stress levels. For each turbine and each time point, the
cumulative number of operation cycles at each stress level (n(i)

l,t ) was calculated
by summing the RPM in each stress category and multiplying by 10 min. Finally,
the percentage of operation cycles until failure at each stress level (α(i)

l,t ) for each
turbine was calculated. We then employed the MCMC algorithm developed earlier
for parameter estimation. In Fig. 9(middle plot), the estimated values of N1, .., N10
are shown based on the mean of the MCMC samples. For confidentiality of the data,
we multiplied all N1, .., N10 by a constant, so the numbers presented in this section
do not reflect the real failure times. The relationship between the cycle ratio and the
stress level for 15 turbines is shown in the right plot in Fig. 9. It can be seen that the
turbines operate in some stress levels more than others.

6.3 Degradation Monitoring Using the Proposed Model

Here, we show the use of our model to monitor the degradation of the turbines
over their life cycles. We first calculated the damage index c

(.)
t for each turbine

given the estimated parameters and then grouped based on the five locations. The
damage index was calculated at 101 different time points representing 0%–100% of
the actual lifetime. It can be seen from Fig. 10 that the damage index monotonically
increases as the turbine ages, and the system fails when this index gets close to 1
(which is assumed to be the mean of the damage thresholds). Also, it can be seen that
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Fig. 11 RUL estimation and its prediction interval for 15 turbines

turbines at the same location behave similarly to each other, implying the usefulness
of the location as a covariate in the model.

6.4 Remaining Useful Life Prediction

As discussed before, one of the main applications of our proposed framework is in
RUL prediction. In Fig. 11, we plotted the actual cycles to failure (solid line), the
estimated remaining life based on the mean (dotted line), and the 95% confidence
intervals (dashed lines) for the 15 available turbines at 100 different time instances
equivalent to 1%–100% of each turbine’s true total age. It can be observed that the
estimates are not good in the first half of the lifetime; however, they become closer
to the true values as the system ages. We believe this is mainly due to the fact that we
used the past cycle ratios as the estimate to project future cycle ratios. This type of
estimation is more efficient when the system has already operated for a considerable
amount of time so that cycle ratios are more stable and close to the steady state. To
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Fig. 12 RUL mean estimation error for 15 turbines vs. % of lifetime considering two cases for
future operating conditions

better observe the effect of knowing future operating conditions and also the error of
estimation as the system ages, we calculated the mean relative estimation error (%)
and the mean absolute error for 15 turbines based on the two first scenarios described
in Sect. 4: (i) The future operating conditions are known a priori and (ii) the future
operating conditions are not known and are estimated from past history. It can be
seen from Fig. 12 that the estimation error for RUL decreases as the system ages,
and the estimates based on known future operating conditions are better, particularly
during the first half of the life of the turbines. Since the projection of future operating
conditions and true operating conditions approach each other as the system ages, the
estimation errors based on these two cases become very close to each other.

6.5 The Warning/Alarm Generation Process

One of the main applications of our framework is to generate warnings based on an
ideal lead time d. We conducted various experiments based on five different values
for d and five different values for c1

c2
. For each experiment, we applied the proposed

warning generating policy to generate the optimal warning time. We then calculated
the mean of the number of early and late cycles for the turbines with early warning
and late warning separately as shown in Fig. 13. Each plot in Fig. 13 has two lines,
one for early and one for late warnings. It is clear that the closer each point is to
zero, the better is the recommended alarm time. It can be seen from this figure that
as the cost of late warning with respect to early warning ( c1

c2
) increases, the proposed

policy tends to suggest earlier warning time to avoid late warnings. Thus, when c1
c2

is large, the mean cycles for cases with late warning tend to zero (because a late
warning is more expensive) and increase for cases with early warning. Similar to
section “Alarm/Warning Generation Policy”, we compared our policy with other
similar policies. It is also clear that the model cannot always recommend the best
alarm time; thus, we have early or late warnings. Results also show that when the
ideal warning time with respect to the time to failure (denoted by d) is larger, the
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Fig. 13 The mean (for 15 turbines) of the early and late warnings versus c1
c2

for 5 cases of d. Note
that each point shows the mean absolute value of the late or early warning cycles

magnitude of early and late cycles is smaller with respect to d. This means that the
results are better if we have more time to generate the alarm (i.e., when d is large).
Compared to the control limit policy and the two extreme cases of do nothing and
warning immediately, results also verify that the proposed policy can provide better
costs compared to similar policies and provide reasonable warning times as well.
However, results are not reported here due to the similarity to Fig. 8.

7 Conclusion and Future Work

This chapter presents a new stochastic model for degradation modeling of mechan-
ical systems operating under varying conditions, which is applicable to many types
of systems, such as wind turbines. The model is based on the well-known and
well-established Miner’s rule approach; however, it exhibits much more complex
behaviors and is able to accommodate uncertainty and parameter estimation rea-
sonably well. A hierarchical Bayesian framework is first proposed to model the
degradation process over time based on the number of cycles spent at each operating
cycle. Then a parameter estimation model that can use historical data to train the
structure of the model is developed. Finally, a cost-effective optimization-based
warning generation policy is proposed to determine the optimal time to issue a
warning given an ideal number of cycles to failure. From an implementation point
of view, the framework is easy to apply and can incorporate prior knowledge on
the damage process potentially through subjective priors in the hierarchical model.
The stochastic nature of the model and the proposed alarm generation policy can
extend the application of the widely used Miner’s rule in real-time decision making
under uncertainty. Future work will consist of considering the effects of loading
history and loading sequence, time dependent covariates, and stochastic operation
conditions.
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Appendix: Algorithm 1

Algorithm 1: Steps for parameter estimation using MCMC
Step 0 Set k = 0 and generate randomly an initial state for model parameters as

θ 〈0〉 =
{
W 〈0〉, σ 〈0〉

N ,N
〈0〉
1 , . . . , N

〈0〉
L , β

〈0〉
1 , . . . , β

〈0〉
P , γ (1)〈0〉

, . . . , γ (m)〈0〉}
,

with a positive posterior probability value as in Eq. (9). Repeat the following steps until
stationary distribution and the desired number of samples are reached considering optional
burn-in and/or thinning.
Step 1 Sample θ∗ (for each parameter) from the symmetric Gaussian proposal distribution
as θ∗ = N(θ 〈k〉, δ), where δ shows the standard deviation of the random walk.
Step 2 Calculate the acceptance probability as

α = min

(
1,

p(θ∗|D,ϑ)

p(θ 〈k〉|D,ϑ)

)
. (18)

Step 3 Draw a random number u from Unif(0, 1). If u ≤ α, accept the proposal state {θ∗}
and set θ 〈k+1〉 = θ∗, else set θ 〈k+1〉 = θ 〈k〉. Set k : k + 1.
It should be noted that during our implementation phase, we use a component-wise sampling
approach where parameters are sampled sequentially based on their conditional distribution,
that is, the posterior probability in Eq. (18) will be replaced by the corresponding conditional
distribution as shown below:

– For W , we have

p(W |D,ϑ) ∝
L∏

l=1

p (Nl |W,σN) × p(W |σw).

– For σ 〈k+1〉
N , we have

p(σN |D,ϑ) ∝
L∏

l=1

p

(
Nl |W

Sl
, σN

)
× p(σN |a).

– For Nl (l ∈ {1, . . . , L}), we have

p(Nl |D,ϑ) ∝ p

(
Nl |W

Sl
, σN

)
×

M∏

m=1

T (m)∏

t=1

p
(
o
(m)
t |N1, . . . NL,β, γ (m), x(m)

)
.

Although it may be very unlikely to observe non-decreasing trend in Nls due to the
increasing trend of Sl and relatively smart standard deviation σN compared to W

Sl
, to fully

control this decreasing trend, we reject all the samples that violate this requirement during
the MCMC process.

– For γ (m), where m ∈ 1, . . . ,M , we have

p(γ (m)|D,ϑ) ∝ p(γ (m)|γ0, σγ ) ×
T (m)∏

t=1

p(o
(m)
t |N1, . . . NL,β, γ (m), x(m)) , and

– For βp , where p ∈ {1, . . . , P }, we have

p(βp|D,ϑ) ∝ p(βp|σβ ) ×
M∏

m=1

T (m)∏

t=1

p(o
(m)
t |N1, . . . NL,β, γ (m), x(m)).
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S SSP
R MSP
CF , CL Costs of mission failure and system loss, respectively
c(u) Penalty cost function for uncompleted part of the mission u
Cp Expected penalty
P(t,i,λ) Probability of occurrence of i shocks in [0, t) given the shock rate is λ

q(i) Probability that the system survives the i-th shock
δ Cumulated lifetime deceleration/acceleration factor (for internal failures)
Ω Probability of the first shock survival
ω Shock survival sensitivity factor

1 Introduction

Mission success probability (MSP), i.e., the probability of successfully completing
a specific mission with or without a deadline (Rausand and Høyland 2003; Levitin
et al. 2016a), is an important reliability characteristic for many engineering systems
that perform specific tasks. However, at many instances primary mission goals can
be sacrificed if continuation of the mission is associated with high risks. This often
happens when survival of a system, due to safety- or cost-related reasons, may
have a higher priority than accomplishing the defined mission (e.g., for aircrafts,
submarines, or complex costly technological processes). In these cases, a system can
implement a mission abort policy to improve its survivability and thus to decrease
the risk of casualties and/or of substantial economic losses.

Mission abort policy can be an effective tool for enhancing system survival
probability (SSP) of many real-world systems when a failure of a system during
a mission results in a substantial economic loss. For instance, for aircrafts and
spaceships, a failure can lead to a damage or loss of these objects, while in the case
of complex technological or production processes, a failure can lead to substantial
monetary losses. Then, as a preventive action, a rescue or recovery procedure can
be initiated to enhance SSP and therefore, to decrease losses.

For making a mission abort decision, usually some degradation parameter should
be observed that characterizes the current state of a system. For instance, this
parameter can be the number of external impacts that decrease resilience ability
of a system. Then upon reaching a certain predetermined value, a mission should
be aborted and a safe rescue or recovery procedure should be initiated (Bell and
Bearden 2014). A real-world example of the described scenario is an aircraft that can
be required to abort the mission after certain number of external impacts associated
with, for example, a malicious activity or nature conditions (e.g., lightning inducing
electrical peaks in the electrical circuits). These impacts can cause deterioration
of critical systems that make the risk associated with the mission completion
unacceptable.

Reliability analysis of systems with mission abort policies is a rather new and
practically important topic addressed only in a couple of papers so far. In the
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pioneering paper by Myers (2009), the author considered standby systems with an
abort policy and a rescue procedure to be initiated upon the failure of a fixed number
of components. The method was developed only for homogeneous hot standby
systems with components having identical exponential time-to-failure distributions.
In (Levitin et al. 2018a), the model was extended to heterogeneous systems and
adaptive abort policy. In (Levitin et al. 2018b) the optimal mission abort policy
is combined with the optimal loading of the system components. However, these
papers do not take into consideration the influence of a stochastic environment
on operational characteristics of systems and the corresponding abort policy.
Neglecting the effect of a random environment and considering only static models
can lead to serious discrepancies in assessing reliability and safety characteristics of
various engineering systems.

As traditional reliability models are not applicable for addressing effects of
mission aborts in evaluating and optimizing system reliability, we had to develop
a new approach for modeling and evaluating the MSP and SSP of systems operating
in a random environment and subject to mission aborts. In (Levitin and Finkelstein
2018a, c; Levitin et al. 2018c), we used external shock processes for modeling
an impact of a random environment, which is an approach widely adopted in the
literature.

There is an extensive literature on shocks modeling in reliability and risk analysis
(see, e.g., the monographs (Nakagawa 2007; Finkelstein 2008; Finkelstein and Cha
2013) mostly devoted to shocks modeling). Traditionally, one distinguishes between
two major types of shock models: cumulative shock models, when systems fail due
to some cumulative effect and extreme shock models when systems can fail with
certain probabilities upon any shock (see Klefsjo 1981; Mallor and Omey 2001;
Gut and Husler 2005; Cha and Finkelstein 2011). The approach in (Levitin and
Finkelstein 2018a, c; Levitin et al. 2018c) is based on the generalized extreme shock
model (Cha and Finkelstein 2011; Cha and Mi 2007), in which the probability of a
failure upon a shock increases with each experienced shock.

To the best of our knowledge, there are only a few papers in the literature that
consider the number of shocks experienced by a system as a decision parameter for
some optimization problems (see, e.g., (Finkelstein and Gertsbakh 2015)). In this
chapter, we present the probabilistic models suggested in (Levitin and Finkelstein
2018a; Levitin and Finkelstein 2018c; Levitin et al. 2018c) that take into account
deterioration in reliability characteristics with experienced shocks for systems with
a possibility of a mission abort. We consider a policy when a mission is aborted, and
the rescue procedure is activated immediately after the m-th shock.

Systems implementing the mission abort policy can be considered as the special
cases of the phased-mission systems when a primary task and the rescue procedures
correspond to different phases. The existence and duration of the rescue phase is
not predetermined when a mission begins. Moreover, unlike traditional models,
where the probability that all phases are performed without failures is considered
as the single success criterion, in systems with the rescue option, the success
probabilities for each phase are considered separately as they constitute different,
though interdependent, metrics, namely, MSP and SSP (Fig. 1). A number of recent
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Fig. 1 Two success metrics for system with rescue option

publications are devoted to analysis of phased-mission systems (see, e.g., (Ma and
Trivedi 1999; Levitin et al. 2013; Peng et al. 2014; Wang et al. 2015, 2017; Lu
et al. 2015)). In these papers, the phases have the fixed durations, whereas in the
case of a mission abort, the duration of phases depends on random factors. Note
that the phased-mission systems with variable duration of phases have been studied
in (Levitin et al. 2016b). However, all referenced papers did consider neither abort
policies and MSP–SSP tradeoff nor the influence of random shocks.

Section 2 of this chapter describes the considered settings and gives general
formulation of the mission abort policy optimization problems. Section 3 presents a
derivation of the basic system success metrics (MSP and SSP) and considers tradeoff
between them. It also presents examples of the optimal mission abort policies.
Section 4 derives the expected penalty associated with uncompleted mission and
gives illustrative examples of abort policies minimizing the expected total losses,
associated with the uncompleted mission and the system loss. Section 5 considers
more flexible mission abort policy in which the mission time is divided into several
intervals, and a specific number of allowed shocks is determined for each interval.
The advantage of such multi-interval abort policy compared to the single-interval
policy is demonstrated. Section 6 discusses directions of further research.

2 Problem Formulation

Let a system perform a mission task that requires continuous operation during the
fixed time τ . Let the system random lifetime in a static, deterministic environment
(to be called baseline) be described by the cdf F(t). In addition, a system can be
exposed to random shocks that decrease its lifetime. Assume that shocks during the
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mission time occur in accordance with the homogeneous Poisson process (HPP)
{NM(t), t ≥ 0}, with rate λM , where NM(t) is the number of shocks in [0, t) and
T1 < T2 < . . . are the arrival times of shocks. The results obtained in this chapter
can be generalized to the case of the non-homogeneous Poisson process of shocks;
however, for illustration and practical applications, the assumption of HPP is more
relevant. In the model to be described, each shock can result in a failure of a
system with probability that increases with the number of experienced shocks (and
is survived with the complementary probability), which is an assumption that is
often met in practice for degrading systems.

As it was stated in the “Introduction” section, at some instances, survival of
a system, due to safety- or cost-related reasons, may have a higher priority than
accomplishing the defined mission, as it is obviously the case for safety critical
technological processes, some experiments, aircrafts, manned space missions, and
submarines. In these cases, a mission abort policy can be implemented to improve
SSP. Thus, when the successful mission completion becomes unlikely, it should be
aborted, and a rescue procedure should be implemented. We assume that shocks
are observable and, therefore, aborting a mission upon experiencing m shocks can
increase the SSP. Moreover, the value of m should be obtained in an optimal way.

It is also reasonable from the practical point of view to consider a case when the
environment for the rescue procedure differs from that for the mission. Thus, let the
rate of the HPP during rescue, λR, differ from that for the mission, λM , i.e., λR �= λM

(see example of changing environment in Sect. 4).
It is natural to assume that the duration of the rescue procedure is a function of the

occurrence time of the m-th shock, i.e., ϕ = ϕ(tm), where tm is the realization of the
random Tm, m = 1, 2, . . . , (see Sect. 4 for the example of this function). The larger
m in our model corresponds to the larger level of deterioration of a system and,
therefore, to the larger risks of failure. When tm increases, the remaining mission
time decreases. Thus, it may become unreasonable to start the rescue procedure if
the mission is close to termination and the system has good chances to complete it.
Therefore, we assume that the system continues executing the mission if tm ≥ ξ ,
where ξ is a time after which the mission should never be aborted, which, along
with m, can be considered as a decision variable that can be chosen to achieve a
proper balance between the MSP and the SSP.

Let L denote a lifetime of a system for the described scenario. A mission succeeds
if the system does not fail in [0, τ ) and less than m shocks occur in [0, ξ ) (no mission
abort). In accordance with this description, the MSP can be defined as

R (τ, ξ,m) = Pr (L ≥ τ, Tm ≥ ξ) . (1)

The system survives if it completes either the mission or the rescue procedure.
The rescue procedure is activated only if tm < ξ . To complete the rescue procedure
activated at a random time Tm, the system lifetime must be not less than Tm + ϕ(Tm).
Thus, the SSP is

S (τ, ξ,m) = R (τ, ξ,m) + Pr (L ≥ Tm + ϕ (Tm) , Tm < ξ) , (2)
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where the second term corresponds to the probability that the rescue procedure saves
the system.

When ξ is fixed and the decision parameter m is increasing, Tm is increasing in
the sense of the usual stochastic order (Finkelstein 2008; Shaked and Shantikumar
2007) and, therefore, the MSP R(τ ,ξ ,m) is increasing (because of the decrease of
the abort probability), whereas the SSP S(τ ,ξ ,m) is decreasing. Specifically, when
m = 0 (T0 = 0), the system does not perform the mission task and only executes
the rescue procedure, which results in R(τ ,ξ ,0) = 0 and S(τ ,ξ ,0) = Pr(L ≥ ϕ(0)).
On the other hand, for m = ∞, the system never performs the rescue proce-
dure and survives only if the mission is successfully completed, which gives
R(τ , ξ , ∞) = S(τ , ξ , ∞) = Pr (L ≥ τ ).

When m is fixed and the decision parameter ξ is increasing, the time when the
mission abort is allowed increases, which results in the smaller MSP and the larger
SSP. For ξ = 0, the mission abort is totally prohibited and R(τ ,ξ ,m) = S(τ ,ξ ,m).

In practice, it is desirable to achieve a balance (tradeoff) between R(τ ,ξ ,m) and
S(τ ,ξ ,m). For example, the problem of obtaining the optimal m and ξ that achieve
the maximum MSP subject to providing a desired level of the SSP S* can be solved,
i.e.

maxR (τ, ξ,m) s.t.S (τ, ξ,m) > S ∗. (3)

When the mission failure and the loss of a system are associated with the
corresponding costs CF and CL, the cost minimization problem with respect to the
decision parameters m and ξ can be considered. The probability of the system loss is
1 − S(τ ,ξ ,m). In the case of a system loss (due to its failure during the mission or the
rescue procedure), the mission also fails and the total cost of losses is CF + CL. The
probability that the system survives, but the mission fails, is S(τ ,ξ ,m) − R(τ ,ξ ,m).
In this case, the total cost of losses is CF . Thus, the expected cost of the total losses
that should be minimized is

C (τ, ξ,m) = (1 − S (τ, ξ,m)) (CF + CL) + (S (τ, ξ,m) − R (τ, ξ,m)) CF

= CF (1 − R (τ, ξ,m)) + CL (1 − S (τ, ξ,m)) .

(4)

When a penalty is associated with the amount of the uncompleted work
(uncompleted part of the mission), the expected penalty depends on the time of the
mission abort. If the mission fails or is aborted at time t ≤ Tm, a system completes
the fraction of the mission t/τ and leaves the fraction of the mission u = 1 − t/τ
uncompleted. Taking into account the penalty cost function associated with the
uncompleted part of the mission c(u), one can obtain the expected penalty for any
mission abort policy ξ , m as

CP (τ, ξ,m) =
∫ τ

0
c (1 − t/τ )Θ (t, ξ,m) dt, (5)
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where Θ(t, ξ , m)dt is the probability that the mission is terminated (due to aborting
or a system failure) in [t,t + dt). For instance, for the simplest case of the linear
penalty cost function c(u) = cu, c > 0, 0 ≤ u ≤ 1, we see that c(1 − t/τ ) is linearly
decreasing in t ∈ [0, τ ] from c to 0. In this case, the expected cost of losses that
should be minimized is

minC (τ, ξ,m) = CP (τ, ξ,m) + CL (1 − S (τ, ξ,m)) . (6)

3 Mission Success Probability and System Survival
Probability

Denote by P(t,i,λ) for i = 0,1,2, . . . the probability of occurrence of i shocks
affecting the system in [0, t) given the shock rate is λ. Thus, for the homogeneous
Poisson process

P (t, i, λ) = exp {−λt} (λt)i

i! . (7)

Our approach is based on the generalized extreme shock model (Cha and
Finkelstein 2011) when the probability of a failure upon a shock increases with each
experienced shock. Let the shock survival probability of the system depend on the
number of shocks it has survived in the past, which is a meaningful generalization
of the simplest extreme shock model. Indeed, often the resistance of elements to
shocks decreases with the number of experienced shocks. Thus, if the probability
that the system survives the i-th shock is q(i), then the probability of surviving all n

shocks is
n∏

l=0
q(l), where q(0) ≡ 1 by definition.

The probability that i shocks have occurred in [0,ξ ) and that additional k shocks
have occurred in [ξ ,τ ) during the mission is in accordance with the property of
independent increments for HPP

P (ξ, i, λM) P (τ − ξ, k, λM) . (8)

The probability that less than m shocks have occurred in [0, ξ ) and the system
survives all shocks and “internal failure” during its mission time τ in this case is
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R (τ, ξ,m) = Pr (L > τ, Tm > ξ )

= (1 − F (τ))
m−1∑
i=0

P (ξ, i, λM)
∞∑
k=0

P (τ − ξ, k, λM)
i+k∏
l=0

q(l)

= (1 − F (τ))
m−1∑
i=0

exp {−λMξ} (λMξ)i

i!
∞∑
k=0

exp {−λM (τ − ξ)} (λM(τ−ξ))k

k!
i+k∏
l=0

q(l)

= (1 − F (τ)) exp {−λMτ }
m−1∑
i=0

(λMξ)i

i!
∞∑
k=0

(λM(τ−ξ))k

k!
i+k∏
l=0

q(l).

(9)

The computational aspects of obtaining the infinite sum in (9) are addressed in
(Levitin and Finkelstein 2018a).

In accordance with (2), the system survival probability is the sum of R(τ ,ξ ,m) and
the probability that the rescue procedure was activated and succeeded. The latter was
denoted as Pr(L ≥ Tm + ϕ(Tm), Tm < ξ ). We will now obtain this probability.

If the m-th shock occurs at time t < ξ , the operating system immediately starts
the rescue procedure. The probability that the m-th shock from the HPP with rate
λM occurs in [t, t + dt) is

P (t,m − 1, λM) λMdt = λM exp {−λMt} (λMt)m−1

(m − 1)! dt, (10)

where P(t,m − 1,λM) is the probability that exactly m − 1 shocks have happened
in [0,t) and λMdt is the probability and that the additional shock has happened in

[t, t + dt). The probability that the system has survived the first m shocks is
m∏
l=0

q(l).

The probability that the system survives any number of shocks during the rescue
procedure is

∞∑

k=0

P (ϕ(t), k, λR)

k∏

l=0

q (m + l) . (11)

Besides the differences in external shock rates during the primary mission and
rescue procedure, the system operation conditions (loading) can also be different
for these two phases, causing different “rate of aging.” To account for this effect, we
apply the cumulative exposure model (Nelson 1990; Sedjakin 1966). In accordance
with this model, and given that the cdf of the time to internal failure is F(t),
the probability that the system does not fail because of internal failure until the
termination of the rescue procedure activated at time t is 1 − F(t + δϕ(t)) where δ is
the acceleration/deceleration factor used to reflect the change of the system loading
from the regular mission phase to the rescue one.

Thus, as the rescue procedure is activated if m-th shock happens at any t∈[0,ξ ),
we obtain
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Fig. 2 Locations of the landing fields and emergency landing distances along the UAV route

Pr (L > Tm + ϕ (Tm) , Tm < ξ)

= ∫ ξ

0 (1 − F (t + δϕ(t))) λMP (t,m − 1, λM)
m∏
l=0

q(l)
∞∑
k=0

P (ϕ(t), k, λR)
k∏

l=0
q (l + m) dt

= λM
m

(m−1)!
∫ ξ

0 (1 − F (t + δϕ(t))) exp {−λMt − λRϕ(t)} tm−1
∞∑
k=0

(λRϕ(t))k

k!
m+k∏
l=0

q(l)dt.

(12)

Illustrative Example 1 Consider an unmanned aerial vehicle (UAV) that should
fly from location a to location d performing a surveillance mission (Fig. 2). The
distance between the locations, which should be covered by the UAV to fulfill the
mission, is 1250 km. The UAV speed during the mission is 212.5 km/h. Thus the
mission time is τ = 1250/212.5 = 5.88 h. There are two safe landing fields b and
c that can be used for emergency landing along the route. The locations of these
fields are depicted in Fig. 2. If the flight mission is aborted when the distance
covered from the airport a is x = 212.5·t, the airplane has to cover distances Va = x,
V b =

√
(375 − x)2 + 1252, V c =

√
(875 − x)2 + 502 and Vd = 1250-x to reach

locations a, b, c, and d, respectively. The distance to the closest location for the
emergency landing is min(Va,Vb,Vc,Vd). Figure 3 presents Va, Vb, Vc, Vd, and
min(Va,Vb,Vc,Vd) as functions of the time elapsed from the mission beginning when
the decision about the mission abort is made.

The UAV has its failure rate λ and is exposed to external shocks caused by
lightning and electronic interference. The electronic equipment of the UAV is
protected by the interference filters, which deteriorate with each impact because of
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Fig. 3 Va, Vb, Vc, Vd, and
min(Va,Vb,Vc,Vd) as
functions of the time elapsed
since the mission beginning

voltage surges causing their overheating. If filters reach some level of deterioration,
they cannot protect the UAV equipment, and it does not survive the next shock.
Besides external shocks, the failure of the electronic equipment can be caused
by internal reasons (mainly, by memory overflow). The baseline time to internal
failure abbeys Weibull distribution with cdf F(t) = 1−exp(−(0.01 t)1.1). The
internal failures and external shocks are totally independent. During the surveillance
mission, the UAV should remain on the altitude where the shock rate is λM . To
perform the rescue procedure, the UAV descends to the altitude where the shocks
have lower rate λR and reduces its speed to 160 km/h. Having min(Va,Vb,Vc,Vd) and
the UAV speed, one can obtain the function ϕ(t) = min(Va,Vb,Vc,Vd)/160. Notice
that ϕ(t) can exceed the time needed to complete the mission τ−t. During the flight
with reduced speed, the UAV cumulative time deceleration factor is δ = 0.9.

Assume, following (Cha and Finkelstein 2011), that UAV shock resistance
function takes the form q(0) = 1, q(l) = Ωω(l), l > 0, where ω(l) is a decreasing
function of its argument: ω(0) = 1, ω(l) = ωl − 1, 0 < ω < 1, and Ω is the probability
of survival under the first shock. Thus, the survival probability of the system at each
shock decreases as the number of survived shocks in [0, t) increases. In this case

n∏

l=0

q(l) = �nωn(n−1)/2 (13)
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Fig. 4 R and S as functions
of the decision parameters m
and ξ for Ω = 0.98,
ω = 0.95, λM = 0.7, λR = 0.1

Figure 4 presents the MSP R and SSP S as functions of the decision parameters
m and ξ for Ω = 0.98, ω = 0.95, λM = 0.7, λR = 0.1.

With the increase of m, the influence of parameter ξ on R and S decreases as the
occurrence of m shocks, and, therefore, activation of the rescue procedure becomes
unlikely for any interval [0,ξ ) for ξ < τ . The decrease in ξ has the similar effect
as the increase in m. In both cases, activation of the rescue procedure becomes less
probable, which causes the increase in the MSP and the decrease in SSP.

To solve the optimization problems (3) and (4), one has to determine optimal
value of discrete parameter m and continuous parameter ξ . As the value of m
in practical applications cannot be very large, the optimization algorithm can
enumerate m finding for each m optimal values of ξ by applying any algorithm
for one-dimensional optimization. In this work, we enumerated m up to value of 20
and applied golden section search algorithm (Press et al. 1992) for finding ξ .

Figure 5 presents the optimal m, ξ solutions for the optimization problem (3) and
the corresponding values of R and S as functions of S* for Ω = 0.98, ω = 0.95,
λM = 0.7, and λR = 0.1. The optimal m solutions when aborts are allowed during
the entire mission (ξ = τ ) are given for comparison.

The greater SSP (corresponding to greater S*) can be achieved by increasing the
time interval ξ when the abort is allowed and/or decreasing the number of shocks
m after which the mission should be aborted. As ξ can vary continuously, whereas
m takes only discrete values, small increase of the SSP can be achieved by a small
increase of ξ without changing m. However, when increase of ξ becomes insufficient
for achieving the desired level of the SSP, m decreases, which causes sharp increase
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Fig. 5 Optimal solutions for (3) as functions of S* for Ω = 0.98, ω = 0.95, λM = 0.7, λR = 0.1

of the SSP and decrease of the MSP. To prevent the excessive decrease of the MSP,
ξ should decrease to the lowest level for which inequality S(τ ,ξ ,m) > S* still holds.
Further, small increase of the SSP is achieved by increasing ξ again while keeping
m constant. This explains the monotonic behavior of m and the non-monotonic
behavior of ξ .

For S* < 0.62, the system can provide this SSP level without aborting the mission,
which corresponds to m = ∞ and R = S. When the abort is allowed during the entire
mission, the maximum MSP can be provided only by allowing more shocks before
aborting the mission than it was allowed for the optimal ξ . The combination of the
optimal m and ξ achieves greater MSP subject to providing the desired SSP level
than the optimal m with ξ = τ .

Figure 6 presents optimal solutions for optimization problem (4) as functions of
the system loss cost CL for CF = 1, Ω = 0.98, ω = 0.99, λM = 0.7, and λR = 0.1.
For small values of CL, the SSP is less important than the MSP and the minimal
cost solutions presume no aborts, which results in the maximal possible MSP and
R = S. With the increase in CL, the SSP should increase at the cost of MSP. Like
in the previous example (Fig. 4), the increase of the SSP is achieved by monotonic
decrease of m and increase of ξ when m remains constant with drops of ξ when m
decreases.
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Fig. 6 Optimal solutions of problem (4) as functions of system loss cost CL for CF = 1, Ω = 0.98,
ω = 0.99, λM = 0.7, λR = 0.1

4 Expected Penalty Associated with Uncompleted Mission

To solve the optimization problem (6), one has to obtain the expected penalty
associated with uncompleted mission. In what follows, we consider the events
resulting in a mission failure or abortion and derive the corresponding probabilities:

A mission can fail at time t < ξ due to the internal failure if by the time of the
internal failure not more than m−1 shocks have happened and all of these shocks
have been survived. Thus, the probability that a mission fails in the time interval
[t,t + dt) t < ξ as a result of an internal failure is

Θ1 (t, ξ,m) dt = F ′(t)
m−1∑

i=0

P (t, i, λM)

i∏

l=0

q(l)dt. (14)

A mission can fail at time t < ξ due to the i-th shock if i ≤ m, no internal failures,
and i−1 shocks happen (survived) by this time. Thus, the probability that a mission
fails in the time interval [t,t + dt) t < ξ due to a shock is

Θ2 (t, ξ,m) dt = (1 − F(t)) λM

m−1∑

i=0

P (t, i, λM) (1 − q (i + 1))
i∏

l=0

q(l)dt.

(15)

A mission is aborted at time t < ξ if it does not fail before this time, the m-th
shock happens at this time and all m shocks are survived. Thus, the probability that
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a mission is aborted in the time interval [t,t + dt) t < ξ as a result of the m-th shock
is

Θ3 (t, ξ,m) dt = (1 − F(t)) λMP (t,m − 1, λM)

m∏

l=0

q(l)dt. (16)

A mission can fail at time ξ ≤ t < τ as a result of an internal failure if less than m
shocks happen in [0,ξ ), any number of shocks happen in [ξ ,t), and all these shocks
are survived. Thus, the probability that a mission fails in the time interval [t,t + dt)
t < ξ as a result of an internal failure is

Θ4 (t, ξ,m) dt = F ′(t)
m−1∑

i=0

P (ξ, i, λM)

∞∑

k=0

P (t − ξ, k, λM)

i+k∏

l=0

q(l)dt. (17)

A mission can fail due to a shock at time ξ ≤ t < τ if no internal failures happen
by this time, less than m shocks happen in [0,ξ ), any number of shocks happen in
[ξ ,t), and all shocks that happened before time t are survived. The probability that a
mission fails in the time interval [t,t + dt) ξ ≤ t < τ as a result of a shock is

Θ5 (t, ξ,m) dt = (1 − F(t)) λM

×
m−1∑
i=0

P (ξ, i, λM)
∞∑
k=0

P (t − ξ, k, λM) (1 − q (i + k + 1))
i+k∏
l=0

q(l)dt.
(18)

Using the obtained probabilities and the penalty function c(u), we can now obtain
the expected penalty associated with uncompleted mission as

CP (τ, ξ,m) = ∫ ξ

0 c (1 − t/τ )
(
Θ1 (t, ξ,m) + Θ2

(
t, ξ,m )+Θ3( t, ξ,m

))
dt

+ ∫ τ

ξ
c (1 − t/τ )

(
Θ4 (t, ξ,m) + Θ5

(
t, ξ,m

))
dt.

(19)

Illustrative Example 2 Consider the UAV mission described in Example 1 and
define the penalty function as follows. The surveyed objects are allocated unevenly
along the UAV route. Therefore, the penalty cost function (which is a function of
the fraction of the uncompleted part of a mission) takes the form.

c(x) =
{

1.25x, 0 ≤ x < 0.8
1, x ≥ 0.8

In this case, the penalty, associated with totally unaccomplished work, is
c(1) = 1.

Figure 7 presents the system loss probability 1−S, the expected uncompleted
mission cost penalty CP, and the expected cost of losses C as functions of the
decision parameters m and ξ for CL = 3.5, Ω = 0.95, ω = 0.999, λM = 0.7, and
λR = 0.1.
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Fig. 7 The system loss probability 1-S, expected uncompleted mission penalty CP, and expected
cost of total losses C as functions of the decision parameters m and ξ for CL = 3.5, Ω = 0.95,
ω = 0.99, λM = 0.7, λR = 0.1

Fig. 8 Optimal solutions of problem (6) and problem (4) as functions of CL for CF = 1, Ω = 0.95,
ω = 0.99, λM = 0.7, λR = 0.1

Note that, for m = ∞, no mission abort is allowed. Therefore parameter ξ has
no meaning and does not influence the mission metrics. The best abort decision for
CL = 3.5 is to abort the mission only if the first shock occurs in the first 0.8 h.

Figure 8 presents the optimal m, ξ solutions for the optimization problem (6) and
the corresponding values of C, CP, and S as functions of CL for CF = 1, Ω = 0.95,
ω = 0.99, λM = 0.7, and λR = 0.1. When CL is small, the UAV survivability is not
important and no mission aborts are allowed (m = ∞) to maximize the expected
mission duration.
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When CL increases, the number of allowed survived shocks decreases, whereas
the mission abort remains allowed during the entire mission (ξ = τ = 5.88). Then,
when CL increases above the value of 2.9, the mission should be aborted after
the first shock if it happens in the very beginning of the mission (ξ = 0.24).
With the further increase of CL, the time interval ξ when the abort is allowed
increases, whereas the allowed number of shocks remains m = 1. Eventually, for
CL > 4.9, when the UAV survivability becomes much more important than the
mission completion, the mission should be aborted if any shock happens any time
(m = 1, ξ = τ ).

The solutions of the optimization problem (6) can be compared with solutions of
the optimization problem (4) with CF = 1 also presented in Fig. 8. In problem (4),
the work performed before the mission abort has no value (e.g., when the surveil-
lance information can be transferred to users only upon the mission completion
because of absence of an onboard radio transmitter) and c(0) = 1, c(x) = 0 for x > 0.

It can be seen that when the system loss is not very costly (CL < 3.9), the solutions
of problem (6) provide lower expected uncompleted mission penalty cost than the
corresponding solutions of problem (4). When the cost of the system loss increases,
the solutions of problem (6) provide larger system survivability and larger expected
uncompleted mission penalty cost than the solutions of problem (4). The overall
expected loss C is larger for problem (4), because it does not take into account the
“profit” earned by the system before the mission termination or failure, as it is done
for problem (4).

5 Multiple Threshold Generalization

The approach when the optimal number m is obtained for the entire time period
when a mission can be aborted is rather crude. A more flexible mission abort policy
can be obtained by dividing the mission time in a number of adjacent intervals and
using a rule when a mission is aborted (and a rescue procedure is activated) if the
number of shocks exceeds the predetermined value mh specific for each interval
h. Such policy can be considered as a multivariate generalization of the policy
considered above. As the algorithm for evaluating the MSP and the SSP suggested
in Sect. 3 cannot be used for the case of multiple intervals and shock number
thresholds, we further suggest another algorithm for obtaining these metrics.

Let us divide the total mission time τ into H intervals [ξh−1, ξh) for h = 1, . . . ,H,
where ξ0 = 0 and ξH = τ by definition. If the mh-th shock occurs before time ξh,
the mission is aborted and the rescue procedure is initiated, otherwise the mission
continues. The vectors m = [m1, . . . , mH] and ξ = [ξ1, . . . , ξH] determine the
mission abort policy. Notice that, for any h, obviously, mh−1 ≤ mh, as the shocks
are counted sequentially.

The special case of such abort policy when the mission is aborted if the time
of the m-th shock is less than some ξ < τ , i.e.,Tm < ξ , was considered in Sect. 2.
Formally it means in this case that H = 2, m = [m,∞], with ξ = [ξ ,τ ].
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A mission succeeds if the system does not fail in [0, τ ) and less than mh shocks
occur until time ξh for h = 1, . . . ,H (no mission abort). In accordance with this
description, the MSP can be defined as

R (t, ξ ,m) = Pr
(
L ≥ τ, Tmh

≥ ξh for h = 1, . . . , H
)

(20)

The system survives if it completes either the mission or the rescue procedure.
The rescue procedure is activated in the time interval [ξh−1,ξh) only if Tmh

< ξh
and Tmi

≥ ξmi
for i = 1, . . . , h − 1. To complete the rescue procedure activated

at a random time Tmh
, the system lifetime must be not less than Tmh

+ ϕ
(
Tmh

)
,

where ϕ
(
Tmh

)
is a duration of a rescue procedure activated at Tmh

. As a mission
can be aborted in different time intervals [ξh−1,ξh) and the corresponding events
are mutually exclusive, the system survivability can be defined as

S (t, ξ ,m) = R (τ, ξ,m) +
H∑

h=1
Pr
(
L ≥ Tmh

+ ϕ
(
Tmh

)
,

Tmh
< ξmh

, Tmi
≥ ξmi

for i = 1, . . . , h − 1
)
,

(21)

The probability that i shocks have occurred in [ξh−1,ξh) and that additional k
shocks have occurred in [ξh,ξh + 1) during the mission is in accordance with the
property of independent increments for HPP,

P (ξh − ξh−1, i, λM) P (ξh+1 − ξh, k, λM) . (22)

Let W(h,n) be the joint probability of events that exactly n shocks have occurred
before time ξh, and the number of shocks before time ξ i,i = 1, . . . ,h−1 had never
exceeded mi. W(0,0) = 1, W(0,n) = 0 for n > 0 by definition. For h > 0, W(h,n) can
be obtained as

W (h, n) =
max{n,m1−1}∑

i1=0
P (ξ1, i1, λM)

max{n,m2−1}−i1∑
i2=0

P (ξ2 − ξ1, i2, λM) × . . .

×
max{n,mh−1−1}−h−2∑

k=1
ik

∑
ih−1=0

P (ξh−1 − ξh−2, ih−1, λM) P

(
ξh − ξh−1, n −

h−1∑
k=1

ik, λM

)
.

(23)

The mission success probability is the probability that the system did not fail
during the mission time because of shocks or internal failures and it was not aborted
in any time interval, i.e., for i = 1, . . . , H and the number of shocks before time ξ i

never exceeded mi. Thus

R (τ, ξ ,m) = (1 − F (τ))

mH−1∑

n=0

W (H, n)

n∏

l=0

q(l). (24)
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In what follows, we obtain the probability that the rescue procedure was
activated and succeeded. The probability Zh(t)dt that the mission is aborted in
[t, t + dt) ⊂ [ξh − 1, ξh) equals to the probability that the mh-th shock happens in
[t, t + dt) ⊂ [ξh − 1, ξh) and less than mi shocks have happened in intervals [ξ i−1,
ξ i) for i = 1, . . . ,h−1 and the system survived all mh experienced shocks:

Zh(t)dt = λMQ (mh)

mh−1−1∑

n=0

W (h − 1, n) P (t − ξh−1,mh − n − 1, λM) dt.

(25)

The probability that the system survives all shocks during the rescue procedure
when this procedure was activated at time instance t ∈[ξh−1, ξh) is

∞∑

k=0

P (ϕ(t), k, λR)

k∏

l=0

q (mh + l) . (26)

As the rescue procedure is activated if the mh-th shock happens at any time
t∈[ξh−1, ξh) and the mission abort events in different intervals [ξh−1, ξh) are
mutually exclusive, for the case under consideration, we obtain based on (10) the
probability that the rescue procedure was activated and succeeded as:

H∑
h=1

Pr
(
L > Tmh

+ ϕ
(
Tmh

)
, Tmh

< ξmh
, Tmi

≥ ξmi
for i = 1, . . . , h − 1

)

=
H∑

h=1

∫ ξh
ξh−1

(1 − F (t + δϕ(t))) Zh(t)
∞∑
k=0

P (ϕ(t), k, λR)
k∏

l=0
q (mh + l) dt

(27)

and

S (t, ξ ,m) = R (τ, ξ ,m) +
H∑

h=1

∫ ξh
ξh−1

(1 − F (t + δϕ(t))) Zh(t)

×
∞∑
k=0

P (ϕ(t), k, λR)
k∏

l=0
q (mh + l) dt

= R (τ, ξ ,m) + λM

H∑
h=1

∫ ξh
ξh−1

(1 − F (t + δϕ(t)))

×
mh−1−1∑
n=0

W (h − 1, n) P (t − ξh−1,mh − n − 1, λM)

×
∞∑
k=0

P (ϕ(t), k, λR)
mh+k∏
l=0

q(l)dt,

(28)

where W(0,0) = 1 and W(0,n) = 0 for n > 0 by definition.
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Fig. 9 MSP and SSP as functions of the decision parameters m1 and ξ1 for m2 = 4 and m2 = 10

Illustrative Example 3 Consider the previous example of the UAV mission and
assume that the shock rates are λM = 0.5 and λR = 0.1 and the shock resistance
function parameters are Ω = ω = 0.99.

Figure 9 presents the MSP and SSP for H = 2 mission abort policy (the mission
time is split into two intervals) as functions of the decision parameters m1 and ξ1
for m2 = 4 and m2 = 10. It can be seen that with increase of the first interval ξ1, the
SSP increases whereas the MSP decreases. In the case of m1 = m2 = 4, the MSP
and SSP do not depend on ξ1. Indeed, when the same number of shocks is allowed
in both intervals (i.e., during the entire mission), the duration of each interval does
not matter. With increase of the number of allowed shocks m1, MSP and SSP get
closer because the mission abort becomes unlikely. The difference between MSP
and SSP decreases also with the increase of m2, which also makes the mission abort
in the second interval less probable.

Figure 10 presents the MSP and SSP for H = 2 mission abort policy as functions
of the decision parameters m2 and ξ1 for m1 = 1. It can be seen that the influence
of m2 on R and S increases when ξ1 decreases and the interval in which m2 is used
as mission abort criteria increases.

Table 1 presents the optimal solutions of problem (3) for different S* and number
of decision intervals H. It can be seen that transition from H = 1 to H = 2
considerably improves the solutions, whereas transition from H = 2 to H = 3
improves them slightly. No considerable improvement has been obtained for H > 3.
Notice that for S* = 0.9, the optimal solution for H = 2 limits the number of shocks
in the final mission stage by 9, which gives higher MSP than the optimal abort policy
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Fig. 10 R and S as functions of the decision parameters m2 and ξ1 for m1 = 1

Table 1 Optimal abort policies for different S* and H

S* H m1 m2 m3 ξ1/τ ξ2/τ ξ3/τ S R

0.90 1 4 – – 1 – – 0.9065 0.6115
2 2 9 – 0.14 1 – 0.9000 0.8366
3 2 4 ∞ 0.13 0.33 1 0.9000 0.8384

0.92 1 3 – – 1 – – 0.9216 0.4099
2 1 ∞ – 0.09 1 – 0.9201 0.6909
3 1 1 ∞ 0.0775 0.316 1 0.9200 0.6937

0.95 1 1 – – 1 – – 0.9710 0.0506
2 1 11 – 0.27 1 – 0.9509 0.4141
3 1 2 ∞ 0.24 0.374 1 0.9500 0.4256

m = [m,∞] and ξ = [ξ ,τ ] considered in Example 1, which achieves R = 0.8311 and
S = 0.9004 for m = 3, ξ = 0.33.

The improvement in the MSP due to the increase in the number of decision
intervals can be intuitively illustrated by considering the corresponding changes
when comparing the cases H = 1 and H = 2. For the first scenario, the decision
to abort usually arrives relatively late and the level of degradation is already
substantial. This also means that the mission failures could have occurred before
with significant probabilities. On the other hand, aborting the mission at the earlier
stage in [0,ξ1) results in an earlier detection of the unfortunate realization of the
shock process, which eventually leads to the better value of the MSP, as these
realizations are more likely to result in mission failures afterward. This effect seems
to be maximal when comparing the first (H = 1) and the second (H = 2) scenarios,
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as on the subsequent steps most of unfortunate realizations are already detected and,
therefore, the MSP is not significantly improved.

6 Further Research

Further research on the mission abort policy analysis and optimization can employ
models of dependency between shocks and internal failures. The impact of shocks
on a system time-to-failure (e.g., the direct influence of the shock process on the
system baseline failure rate) can be modeled based on the approach suggested in
(Levitin and Finkelstein 2018b), whereas the impact of the internal system state on
shock consequences can be modeled based on the approach suggested in (Yang et
al. 2017). Scenarios when probabilities of failures under shocks are different during
the mission time and the rescue procedures can be also considered.

More complex abort policies also deserve further investigation. For example, the
mission can be aborted when the number of shocks exceeds the thresholds in several
consecutive time intervals.

The optimal protection problem can be solved when the cost of protection that
improves the system shock resistance is compared with benefits of the increased
MSP and SSP (given the optimal abort policy).

The optimal mission abort policy can be obtained for complex systems in which
the sets of components performing the primary mission and rescue procedure are
different, but overlapping.

Combination of the mission abort policy with optimal mission scheduling or
routing can also constitute a topic for further research.
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Towards Prognostics and Health
Management of Multi-Component
Systems with Stochastic Dependence

Roy Assaf, Phuc Do, and Phil Scarf

1 Introduction

The degradation processes of system components are inevitable and could lead to
faults and failures which jeopardise reliability, and causes unexpected downtime
which results in lower efficiency and high maintenance costs. However, these
degradation processes can be slowed or even in some cases stalled through the act
of maintenance.

In order to conduct maintenance effectively, condition based maintenance (CBM)
(Jardine et al., 2006; Peng et al., 2010) is usually considered. This is a major field
in maintenance which in contrast to older maintenance strategies is proactive in
nature and aims to carry out maintenance interventions only when needed. Another
major field in maintenance is prognostics and health management (PHM), and it is
getting substantial attention from the maintenance community recently, see Wang
et al. (2017); Lei (2016); Kim et al. (2017). It is seen as a key enabler for CBM (Sun
et al., 2012). According to Uckun et al. (2008) it can be described as an emerging
engineering discipline which studies and associates the degradation processes to
system lifecycle management.

PHM allows system health state assessment in real-time, as well as predicting
its future health states. Thus in contrast to CBM, PHM is more concerned with
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the actual health indicator extraction from the acquired signals, and puts a lot
of emphasis on the prognostics step which is essential to performing optimal
maintenance decision making.

PHM comprises three main elements. These are health indicator extraction;
diagnostics and prognostics; and maintenance decision making. However the key
idea of PHM is prognostics, whereby the end of life (EOL) of components is
predicted, and consequently the remaining useful lifetime (RUL) can be evaluated
as follows:

RULk = teol − tk (1)

where RULk represents the remaining useful life at a time tk , and teol denotes the
predicted end of life.

Recently an increasing number of manufacturing requirements is pushing for
more complex systems to meet industrial needs. These systems have more com-
ponents which might bear stochastic dependencies. Therefore maintaining such
systems is becoming more of a challenge. Often however, components in a system
are assumed to be independent, see Bouvard et al. (2011); Nguyen et al. (2014);
Van Noortwijk (2009). But since real world systems are usually complex and include
multiple interacting components, such interactions can potentially affect overall
system availability, and jeopardise the effectiveness of PHM and CBM.

In Frei et al. (2013), the authors express their interest in investigating the claim
that failures in a system are mostly mutually independent. They explain that it
seems more likely that failures are correlated and that failures in some components
might lead to failures in others. Also, recent CBM literature has been showing a
growing interest in multi-component systems and their dependencies (Keizer et al.,
2017). The modelling of stochastic dependence, whereby the health state of some
components can be affected by the health states of other components remains the
least explored (Keizer et al., 2017; Nicolai et al., 2009). This falls more under the
PHM aspect, and literature on the topic is scarce.

In this chapter we present a methodology that leads towards PHM of
multi-component systems. We cover how to extract health indicators from multi-
component systems. And we present a methodology which makes use of these
indicators within a prognostics approach. We show that this methodology effectively
considers stochastic dependence between the different components by more
accurately predicting their teol .

This chapter is organised as follows. In Sect. 2, we cover our methodology
for implementing prognostics for multi-component systems with stochastic depen-
dence. This consists of presenting a degradation model and a methodology for
estimating the model parameters. In Sect. 3, we present an approach for effectively
extracting health indicators from a multi-component gearbox platform. In Sect. 4,
we apply our methodology and predict the teol of the components and discuss our
results. Finally Sect. 5 concludes this chapter.
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2 Prognostics for Multi-Component Systems with Stochastic
Dependence

Similarly to forecasting, whereby past and present available data are analysed in
order to predict future trends; prognostics follows the same process yet instead of
just projecting trends into the future, it is more concerned with predicting the EOL
time at which a specific failure threshold is reached, and consequently extracting
RUL estimation as seen in Eq. (1). This is depicted in Fig. 1, where at time t = k an
attempt to predict the EOL is made. Since EOL is uncertain, it is usually represented
by a probability density function (PDF), and consequently so is the RUL.

RUL estimation relates to a common question in industry, which is how long
can a component operate correctly before reaching a certain failure threshold. Then,
based on the RUL estimation, appropriate actions can be taken. Therefore it is the
remaining time to maintenance from current time. Moreover, when consulting the
literature RUL is usually more addressed than EOL; however, as Eq. (1) suggests,
these terms are strongly related. Furthermore, the lower bound of a confidence
interval of the RUL is usually considered for conservative purpose (Kim et al.,
2017). This is crucial from both a cost-effective and a safety point of view, especially
for critical equipment, such as aircraft engines, inertial navigation platforms used in
aerospace and integral equipment on a production line.

Traditional methods for RUL estimation are heavily dependent on the time-to-
failure data. However, these data are sometimes unavailable, as it is not always
possible to have runs until system failure because of economic and safety issues.
In such cases, data from degradation of components can be used as an alternative

Fig. 1 An illustration of prognostics and PDF of teol
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resource for RUL estimation. Several papers have reviewed and compared the main
probabilistic prognostic methods for RUL estimation, see for example (Si et al.,
2011), and (Le Son et al., 2013).

From the above, we conclude that prognostics is a vital step that helps industries
manage their risks and prevents the occurrence of unforeseen components failures.
And based on these predictions of future fault occurrences, maintenance and
downtime costs can be minimised with CBM.

A holistic view of prognostics shows that it builds upon the following three
aspects:

• State estimation: Based on the collected data, this step is used to give an
estimation of the degradation state of the component.

• State prediction: The task of state prediction is to predict the degradation
tendency according to the information of the historical data.

• EOL and RUL prediction: It serves for determining the time left under the
degradation curve before final failure or before a predetermined failure threshold.

An extensive body of literature exists on prognostics approaches and applica-
tions, and therefore a considerable amount of review papers can be found where
the classification of different prognosis approaches is presented (Jardine et al.,
2006; Peng et al., 2010; Si et al., 2011; Sikorska et al., 2011). Mainly, prognostics
approaches can be categorised into three types: physics based prognosis, data-driven
prognosis, and hybrid prognostics.

The generic degradation model that is presented next can be used for performing
predictions of teol for multi-component systems. The procedure for performing
prognostics is achieved by first doing parameter identification which can be done
using different approaches. We suggest the use of particle filter; this choice will be
motivated later in this work.

Once the model parameters are identified, the model can be easily used to
simulate and predict the health state of a component Xi

tk
at a future time r > k. This

is done until the degradation trajectory hits the failure threshold which indicates teol .
At that point the RUL can easily be extracted, and a maintenance decision can be
taken accordingly.

2.1 Degradation Model

Here we present a degradation model that will enable the modelling of the stochastic
dependence between multiple components (Assaf et al., 2018). This model is later
used jointly with a particle filter for performing prognostics.

Consider a multi-component system with nc number of components. The degra-
dation state of each component i is represented by an accumulation of wear over
time which is assumed to be described by a scalar random variable Xi

t . Component
i fails if its degradation state reaches a threshold value Li . If any of the components
fails we consider the system to have failed, and if a component is not operating
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for whatever reason, no change occurs to its degradation state unless a maintenance
intervention is carried out.

We assume the evolution of the degradation state of component i is represented
by

Xi
t+1 = Xi

t + ΔXi
t (2)

where ΔXi
t represents the degradation increment of component i during one time

step.
The degradation of a component i at time step t may depend on the operating

conditions, the state of component i, and also the state of other components to a
varying degree. Thus we suggest a general stationary model for the increment ΔXi

t :

ΔXi
t = ΔOi

t + ΔXii
t +

∑

j �=i

ΔX
ji
t (3)

where ΔOi
t represents the degradation increment of component i that is caused

by the operating conditions during one time step t . ΔOi
t can be specified as a

deterministic or as a random variable. ΔXii
t represents the degradation increment

which is intrinsic to i at time step t . In other words ΔXii
t depends on the degradation

state of component i at time step t . ΔXii
t can also be specified to be a deterministic

or random variable.
∑

j �=i ΔX
ji
t represents the sum of all degradation increments

which are caused by the stochastic dependence of component i with the other
components of the system. The stochastic dependence between a component i and
another component j may be considered to be a deterministic or random variable.

In this work we will consider a case where ΔXii > 0 and ΔXji > 0, the
components are stochastically dependent, and the increment in the degradation level
of component i may depend not only on the state of component i but also on the
state of the other component.

We will use the following model for the quantification of degradation influence
between multiple components:

ΔX
ji
t = μji × (Xi

t )
σ ji

(4)

where X
ji
t represents the degradation impact of component j on component i at

time t . And where μji and σ ji are non-negative real numbers which are used to
quantify component j ’s influence on component i. According to this model, several
special cases are specified as follows:

• μji = 0: Component j does not have any influence on the degradation behaviour
of component i.

• μji = 0 and μij = 0: Component j and i are independently subject to gradual
degradation.
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• μji > 0 and σ ji = 0: The impact of component j on the degradation of
component i does not depend on the health state of component j .

Although the proposed degradation model can encompass as many components
as we would like, the number of components to be considered when performing
degradation modelling should be kept to the minimum. This is because adding more
components would lead to an increase in model complexity and computation, and
the composition of optimal CBM policies becomes more difficult and computation-
ally complex. This is an already identified issue in multi-component maintenance
literature (Alaswad and Xiang, 2017).

2.2 Parameter Estimation with Particle Filters

After deciding on a degradation model which is capable of modelling the stochastic
dependence between multiple components, we now need an approach to estimate
the parameters of this model.

There exists an extensive body of literature on the topic of parameter identifi-
cation, see for example (An et al., 2015; Gebraeel and Pan, 2008; Lorton et al.,
2013). In practice, if the degradation model is not too complex, we can fit the
model parameters using maximum likelihood estimation (MLE). However, in the
case of multi-component systems this is highly unlikely. Therefore if the model is
too complex, or if we are collecting online observation on the health condition of the
components and want to achieve real-time prognostics, we suggest to use sequential
Monte Carlo methods, specifically the Particle Filter (PF) method which is a very
popular approach for parameter estimation (Doucet and Johansen, 2009).

Particle filter draws upon stochastic filtering, Bayesian statistics, and Monte
Carlo techniques. It is usually also referred to as sequential Monte Carlo; however,
it should be distinguished from sequential Monte Carlo (SMC), since SMC methods
encompass a broader range of algorithms (Doucet and Johansen, 2009), such as the
well-known Gibbs sampling and Metropolis–Hastings algorithms. PF is also called
a Bootstrap filter (Green, 1995); this is the case of the standard PF, see Algorithm 1.

PF allows for an online numerical estimation of the parameter values by means
of a recursive Bayesian inference approach. The posterior distribution of the model
parameters can be then obtained using a number of particles and their corresponding
weights. This method is very flexible and can be used for non-linear models where
the noise is not necessarily Gaussian. Such an approach has been successfully used
in the field of prognostics for model parameter estimation (Jouin et al., 2016). Also,
it is worth noticing that compared to typical works on PF, whereby filtering is mainly
considered, prognostics concerns itself with future time horizons; this means that
this field tries to go beyond the filtering step. In view of this, PF for prognostics
should be used in accordance to the necessity of forecasting the state at future
times, mostly without additional observations, adjusting the weights if necessary.
Moreover, recent reviews about PF for PHM such as Jouin et al. (2016) suggest an
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Algorithm 1: Particle filter algorithm
input : np number of particles
Initialisation
t = 0
for i ← 1 to np do

Sample xi
0 ∼ p(x0)

end
for t ← 1 to tend do

Importance Sampling
for i ← 1 to np do

Sample x̃n
t ∼ p(xt |xi

t−1)

Set x̃i
0:t = (xi

0:t−1, x̃
i
t )

end
for n ← 1 to np do

Evaluate importance weights w̃n
t = p(yt |x̃n

t )

end
Normalise importance weights w̃n

t

Particle Selection
for n ← 1 to np do

Considering w̃n
t , re-sample with replacement np particles

end
end

increasing amount of work on PF in PHM. Therefore this approach is considered as
a state-of-the-art technique in PHM and will be used in this work.

In order to successfully implement prognostics in a multi-component system
context, we need to effectively extract health indicators that reflect the state of the
components. We show how this is done in the next section on data generated from
gearbox accelerated life testing platform.

3 Case Study and Health Indicator Extraction

3.1 Case Study

In an industrial setting, gearboxes are present in virtually any mechanical system,
playing the essential role of torque and speed conversion. We therefore consider
the dataset generated from a gearbox accelerated life test platform from Assaf et al.
(2018), Fig. 2.

To demonstrate the stochastic dependence between components, we will only
consider a two gear system. Gear 1 and gear 2, referred to as C1 and C2, respectively.

The experimental runs of the gearbox were designed for accelerated life testing,
thus achieving failure in a shorter amount of time than it would usually take under
normal operating conditions. These runs are an alternating sequence of two types of
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Fig. 2 Gearbox accelerated life testing platform

cycles: the first cycle is a low speed low load cycle, referred to as LSLL; and the
second type is a high speed high load cycle, referred to as HSHL.

Due to the nature of the HSHL cycle, a high level of noise is present in the
acceleration data. We therefore only use vibration data that are collected in the LSLL
cycles in order to improve the signal to noise ratio. These LSLL cycles last for 3 min.

The dataset used here is obtained from an experimental scenario which consisted
of three runs/tests to failure and was conducted in the following manner: The first
run consisted of a new C1 and a new C2. The gearbox was run alternating between
HSHL and LSLL until high levels of vibration were observed in the gearbox
(meshing frequency magnitude exceeding 1800) at which point the experimental
run was terminated. In run 2, C1 was replaced with a new gear, while C2 remained
unchanged, so the second run consisted of a new C1 and a worn out C2. The gearbox
was ran alternating between the HSHL and LSLL cycles until high vibration was
observed; on this run high system vibration occurred in a shorter amount of time,
and after terminating the run, C2 showed more severe damage on its teeth surface
than that observed after the termination of run 1. In the third run, C1 was replaced
with a new gear, while C2 remained unchanged, so we find ourselves with a similar
condition scenario as in run 2, this time however with a more worn out C2. The
gearbox ran alternating between the HSHL and LSLL cycles until high vibration
was observed. This run lasted an even shorter amount of time than in run 2, and so
the run was terminated earlier than in run 1 and run 2.
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3.2 Health Indicator Extraction for Multi-Component Systems

Health indicator extraction sits at the heart of PHM; it is responsible for refining the
raw condition monitoring data so that diagnostics and prognostics can make efficient
use of it. This aspect of PHM is done in three main phases: data acquisition, pre-
processing, and processing of the data. The following details our methodology for
obtaining component health state data from multi-component systems.

In a multi-component system setting, it is wise to use multiple sensors. The
sensors chosen for this gearbox platform are accelerometers, and their placement
is scattered evenly around the system. This grants different vantage points for
data collection and is done so that the different components of the system can be
easily differentiated, especially when dealing with similar components that can emit
signals around similar frequencies.

Since vibration data has been acquired from this gearbox platform, we would
like to apply some signal pre-processing which aims to eliminate the noise in the
signal and increase the signal-to-noise ratio (SNR). We start by removing outliers
from the vibration data. First a window of data points based on the operating profile
of the system should be specified. Then the median value or geometric mean of
the data and the median absolute deviation (MAD) are computed for that window.
The values that exceed the median plus or minus the MAD value are then filtered
by replacing them with a random variable sampled as X ∼ N (med, mad), thus
preserving as much as possible the true nature of the signal. This is important for
diagnostics and prognostics.

Data detrending and centring should then follow. Scaling should be done if
necessary, depending on the presence of dissimilar sensors or if different data ranges
are used. Filtering the data can follow after this step; this depends on the frequency
band of interest and whether other unnecessary frequencies can be rejected without
loss of information.

Finally the physical meaning of the signal should be obtained, so that an
engineering perspective can be added. This depends on the specifics of the sensors
used. For example if accelerometers are used, this step should be applied and would
result with a signal that has its acceleration denoted in acceleration of gravity (G),
instead of the generic digital signal value.

The final step of health indicator extraction is signal processing which is used
to extract health indicators or fault-related information from machinery (Lei et al.,
2013, 2014). These indicators would help us accurately diagnose and predict the
future states of the system.

A major challenge for modelling existing stochastic dependency in a multi-
component system is the complex nature of the signals acquired. Each signal may
represent a mixture of the signals of all components at once, but to varying degrees.
Therefore, we use time-frequency analysis. This is usually used in blind source
separation (Yilmaz and Rickard, 2004; Abrard et al., 2001), in which mixed signals
are separated without the aid of other information. This is performed by exploiting
the difference in the time-frequency signatures of the sources to be separated. Much
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of the literature in this field focuses on audio applications (Puigt and Deville, 2005)
and machine sound signals (Zhong et al., 2006). Applications of time-frequency
analysis for identifying various sources of vibrations data can be found in Vulli
et al. (2009); Dekys et al. (2017).

Consequently, an STFT can be applied on the cleaned signal and allow for
the analysis to be performed in both time and frequency domains, isolating the
frequency components of interest all while representing the evolution of their energy
through time.

The STFT can be applied over the time-waveform data of a component i in the
following manner:

s
′
i = ST FT {si[n]}(τ, ω) =

+∞∑

n=−∞
h[n − τ ]s[n] exp−jωn (5)

where s
′
represents the short-time Fourier transform of the input signal s(t), and h(t)

the window function. Optimum window length depends on the application. A high
resolution in time and in frequency cannot be accomplished simultaneously. If high
resolution in time domain is needed, the size of the window should be reduced. If
the application demands frequency domain information to be more specific, then the
size of the window should be increased (Kadambe, 1992; Satish, 1998). Therefore,
if we want to resolve the fundamental and harmonics of a signal, a long window
should be used. If it is needed to detect the onset or presence of some events, a short
window should be used. Some examples of window functions are Gaussian and a
Hamming windows (Harris, 1978; Jones and Baraniuk, 1994).

After the STFT is applied on the signal, the frequency root mean square (FRMS)
can be computed over the frequency band of interest. This is done in order to
estimate how the magnitude of the frequency band of interest evolves in time. This
is applied as such:

XFRMS =
√√√√ 1

N

N∑

i=1

s
′2
i (6)

where N is the number of data points, and n is the nth value.
In this way, we can study a time series signal that describes the evolution of the

health condition of the components over time. This makes the prognostics aspect of
PHM easier and more effective.

And so after performing the health indicator extraction step described here, we
acquire the RMS degradation trajectories for C1 and C2. These are presented in
Fig. 3. The RMS values inform us of the vibration energy in the machine that
originates from the gears. Therefore they represent the degradation level of the
components since the higher the vibration energy, the more the gears are degraded
and the more prone the gearbox is to damage. This proness of a gear to damage is
the manifestation in reality of the terms ΔXii

t and ΔXji in the model Eq. (3), the
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Fig. 3 Evolution of degradation of the gears in all three runs, represented by the mesh frequency
magnitude

former because the gear itself is worn, and the latter because the other gear is worn.
Based on these results, we consider a component to be severely worn out or to have
failed once it reaches the threshold vibration magnitude of Li = 0.65 for i = 1, 2.

4 Predicting End of Life of Components

Here we fit the generic multi-component degradation model to the data generated
from the gearbox accelerated life testing platform presented earlier. We refer to gear
1 and 2 as component 1 (C1), and component 2 (C2), respectively.

After performing the health indicator extraction step, we acquire the RMS
degradation trajectories for C1 and C2. These are presented in Fig. 3. The RMS
values inform us of the vibration energy in the machine that originates from the
gears. Therefore they represent the degradation level of the components since the
higher the vibration energy, the more the gears are degraded and the more prone
the gearbox is to damage. This proness of a gear to damage is the manifestation in
reality of the terms ΔXii

t and ΔXji in the model (3), the former because the gear
itself is worn, and the latter because the other gear is worn. Based on the results of
Sect. 3, we consider a component to be severely worn out or to have failed once it
reaches the threshold vibration magnitude of Li = 0.65 for i = 1, 2.
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Due to the physical characteristics of the gears, we know that the degradation
level of components C1 and C2 increases with time, and that this degradation level
cannot decrease without maintenance intervention. Therefore, both components are
considered to have inherent degradation that increases with time. Consequently we
assume that these degradation increments are gamma-distributed:

X ∼ Γ (αi, βi)

The corresponding probability density function (PDF) is

fαi,βi (x) = 1

Γ (αi)
(βi)α

i

xαi−1e−βixI{x≥0}

where Γ (αi) =
+∞∫

0

uαi−1e−udu denotes a complete gamma function; and I{x≥0}

is an indicator function. I{x≥0} = 1 if x ≥ 0, I{x≥0} = 0 and otherwise.
These increments are denoted by ΔX11 and ΔX22 for C1 and C2, respectively.

Thus, ΔX11 ∼ Γ (α1, β1) and ΔX22 ∼ Γ (α2, β2).
Next, we model the degradation interactions between the two components. From

Fig. 3 it appears that the state of C2 affects the rate of degradation of C1. This can
be seen when we observe the time to failure of C1 when coupled with a worn out
C2 in both runs 2 and 3, and that in run 3, where C2 was more worn out, the time
to failure of C1 was shorter than run 2. Thus the degradation rate of C1 appears to
be dependant on the degradation level of C2 and vice versa. This has been further
analysed in Sect. 5.

ΔX21 is used to denote the increment in the degradation level of C1 due to C2,
and ΔX12 the increment in the degradation level of C2 due to C1.

We denote the degradation states for C1 and C2 at time t by X1
t and X2

t ,
respectively. Thus, the evolution of degradation for C1 is described as

ΔX1
t = Γ (α1, β1) + μ21 × (X2

t−1)
σ 21

(7)

and for C2 as

ΔX2
t = Γ (α2, β2) + μ12 × (X1

t−1)
σ 12

(8)

There are four parameters to be estimated for each component from the data;
these sets of parameters are denoted by Θ1 and Θ2. Where Θ1 = (α1, β1, μ1, σ 1)

and Θ2 = (α2, β2, μ2, σ 2). We use a PF to estimate these parameters using np =
1000.

We obtain the mean estimated value of each parameter in Table 1. Note that
since the degradation level is normalised between 0 and 1, the greater the value
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Table 1 Estimated
parameter values

Component αi βi μi σ i

C1 0.0233 0.0425 0.0995 7.6659

C2 0.0125 0.0914 0.0493 9.7375

Table 2 Actual time of end of life, and average predicted time of end of life (̂teol) for components
1 and 2

Actual teol t̂eol with interaction t̂eol no interaction

C1 C2 C1 C2 C1 C2

Run 1 248 227 239 259 301 429

Run 2 133 157 301

Run 3 111 118 301

of the parameter σ i the smaller the impact that is to be considered from the other
component on component i.

To further validate the parameter values of the degradation model considering
the interactions between the 2 components, we compute the R2 values for the fit
of the average estimated degradation trajectory resulting from the PF to the real
degradation trajectories. For component 1 this is R2

1 = 0.792 and for component 2
it is R2

2 = 0.753. If we were to consider a reduced model whereby no stochastic
dependence is considered between the two components and we were left with a
gamma process describing the evolution of the degradation level, the average fit of
such models would result in a R2

1 = 0.671 and R2
2 = 0.575.

Now we use the degradation model with the estimates obtained in Table 1
and generate 1000 simulation using the model in order to predict the degradation
trajectories of the components. In the following figures these are referred to as
“with interaction”. These simulations are also performed using the reduced model,
whereby no stochastic dependence is considered; these are referred to as “no
interaction”. This is done so that we can compare the prognostic performance dif-
ference between the case where we consider degradation dependence in degradation
modelling, and in the case where we do not.

The simulations are performed for C1 in run 1, and for C2 in run 1. Then, since
C2 remains unchanged for run 2, we only simulate the degradation trajectory for C1
in runs 2 and 3, all while considering the state of C2 in those runs.

Table 2 summarises the different teol estimates that are extracted from these
simulations. It is clear that considering degradation dependencies provides an
advantage when attempting to predict the real degradation trajectories of the
components. This is clearly seen when considering the time instance where the
degradation of a component is supposed to reach the failure threshold.

From Table 2 we see that the difference between the actual observed teol and the
average predicted t̂eol for C1 when not considering stochastic dependence shows
a strict growth trend. It starts from 53 in run 1, to 168 in run 2, and then 190 in
run 3. This is because the parameters of the models are estimated in run 1 using
PF. Therefore the reduced model cannot account for the accelerated degradation
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that is due to a new C1 being coupled with a worn out C2. On the other hand this
difference does not show this trend when we consider the stochastic dependence.
The difference is 9 in run 1, then 24 in run 2, and then just 7 in run 3. This clearly
indicates the criticality of modelling stochastic dependencies between components
when attempting to do prognostics.

Finally, a note regarding the prognostics using the generic model provided. These
prediction of life t̂eol are simulated at t = 0 in runs 2 and 3. Therefore, if PF is
used for an online update of the parameters after receiving new observations of
the component health, we assume that the predictions would then be even more
accurate. This would also allow for considering break points in the component’s
health state, in the likes of shocks that might occur due to environmental effects or
sudden excess loading.

5 Conclusion

In this chapter we presented work that leads to PHM of multi-component systems.
We have highlighted the importance of considering the stochastic dependence
between components when performing prognostics for these systems. We started
by presenting an approach for effectively extracting health indicators from multi-
component systems. We then made use of a generic degradation model that is
capable of capturing the stochastic dependence between different components, and
used particle filters to estimate the parameters of this model on data generated using
a gearbox life testing platform. The results confirmed the importance of modelling
the stochastic dependence for achieving accurate predictions of the end of life of
components in multi-component systems.
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Multi-objective Bayesian Optimal Design
for Accelerated Degradation Testing

Xiao-Yang Li

1 Introduction

Products with high reliability are designed and manufactured to operate for a long
lifetime before their failures. Because of the short research-development period,
reliability testing is required to be conducted with rigorous time constraints. Since
there are few or even no failure during tests, traditional reliability testing that can
only record failure data is obviously not suitable for the reliability and lifetime
predictions of such products. An accelerated degradation testing (ADT) utilizes
more severe stress conditions to accelerate the performance degradation of a prod-
uct; and then, the collected degradation data are used to recognize the performance
degradation law and predict reliability and lifetime under normal conditions. Thus,
ADT has drawn much attention and been widely used. Theoretically, the entropy
production in the second law of thermodynamics shows the following: on the one
hand, it seems that irreversible degradation is the basic law of nature and this process
will be promoted by external conditions (McPherson 2010); on the other hand, only
when the behavior of a system has sufficient randomness, the degradation can exist.
From this point of view, ADT can also be regarded as a scientific experimental
method, which aims to recognize a performance degradation law under the influence
of uncertainties by using an experimental way. How to quantify and control the
uncertainties embedded in an ADT to better realize a degradation law is the core
task of an ADT. This chapter will focus on the control of uncertainties.

Generally, there are two different kinds of uncertainties in an ADT, i.e., the inher-
ent uncertainty and the model selection uncertainty (Liu et al. 2017). The inherent
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uncertainties come from the unit-to-unit variation and the errors of measurement
instruments and testing equipment. The model selection uncertainties are due to
the accelerated degradation model assumptions and the testing objective selections.
If these uncertainties can be better controlled, the more precise recognition of
degradation law and the more accurate reliability and lifetime evaluations could
be guaranteed. The mathematical optimization is always used as a design approach
to plan an ADT, in which the balanced plan will be made to decrease the negative
influences of uncertainties and improve the accuracy of evaluations by the optimized
periodic and repetitive measurement arrangement. Unfortunately, to the best of our
knowledge, there are few publications about how to simultaneously control the
inherent uncertainty and the model selection uncertainty.

The classical optimal design for ADT is based on an accelerated degradation
model with specified parameter values in the accelerated degradation testing (ADT),
in which only the inherent uncertainties from the unit-to-unit variation and the errors
of measurement instruments and testing equipment are considered (Ye et al. 2014;
Wang et al. 2016; Tseng et al. 2009; Liao and Tseng 2006; Huang et al. 2016;
Hu et al. 2015). The optimal test plan designed is, then, generally referred to as
the local optimal solution. The uncertainties in specified parameter values cause
the optimal test plan to be suboptimal. Therefore, the Bayesian optimal design
of ADT is developed. Based on available historical data and expert information,
prior distributions can be assigned to account for the model parameter uncertainties
in a Bayesian optimal design; and then, the optimal test plan can be obtained by
averaging over the parameter space and the sample space. Compared to a classical
ADT optimal design, in which the crisp values are taken for the model parameters, a
Bayesian optimal design is a global optimal method. The existing Bayesian optimal
designs of ADT lie on the two aspects: (i) the concerns are mainly on different
expected utility functions (e.g., relative entropy (Hamada et al. 2001), quadratic loss
function (Li et al. 2015; Xu and Tang 2015; Liu and Tang 2010; Peng et al. 2014),
D-optimality (Shi and Meeker 2012; Zhang and Meeker 2006)); (ii) degradation
models are the focuses (e.g., degradation models based on the Wiener process,
gamma process, and inverse Gaussian (IG) process (Wang et al. 2016; Escobar 1995;
Roy and Mukhopadhyay 2015; Meeker and Escobar 1998; Wang and Xu 2010)).

With decades of development, the fruitful achievements on optimal design of
ADT have been made, and there are many optimal design methods to choose.
From the perspective of engineering, different methods, however, bring confusion
to engineers, i.e., which expected utility functions should be chosen? Actually, the
model selection uncertainties appear in this situation. Multi-objective optimization
methodology is utilized to solve this problem by generating a Pareto optimal
frontier of solutions with the consideration of the dominant optimality among
several optimization objectives. But there are few publications focusing on the
multi-objective ADT design. For example, (Marseguerra et al. 2003) proposed a
formulation of two-objective ADT optimal design problem which optimized both
the estimation accuracy of the failure time distribution percentiles and the testing
cost. The uncertainty of model assumption was ignored in (Marseguerra et al. 2003).
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Moreover, even though we use priors to incorporate parameter uncertainties, is that
enough to handle the uncertainty caused by model assumptions?

In order to bridge the existing gap and simultaneously control the inherent
uncertainty and the model selection uncertainty, this chapter proposes a Bayesian
multi-objective design method for ADT in which three objectives are considered
and data envelopment analysis (DEA) is further used to prune the Pareto solutions
so as to find out the plan with the highest relative efficiency. Since the inverse
Gaussian process can well describe the monotonic degradation process and has been
widely used, the proposed methodology in this chapter will be illustrated based on
the inverse Gaussian process. In Sect. 2, the framework of Bayesian optimal design
for ADT based on the IG process is presented. In Sect. 3, multi-objective Bayesian
optimal model for ADT is presented and multi-objective optimal algorithm called
NSGA-II (Wang et al. 2016) is employed to solve the optimal model. And DEA
method is introduced to crop the Pareto solutions solved by NSGA-II in order to
find out the plan with highest relative efficiency. In Sect. 4, a numerical case is
utilized to illustrate the applicability and validity of the proposed method. Finally,
Sect. 5 concludes the chapter.

2 IG Process in an ADT and Bayesian Inference

Assume that the degradation path of a product follows the inverse Gaussian (IG)
process. The product fails when its degradation path Y(t), t ≥ 0 reaches a predefined
threshold level YD and then the associated first-passage time is given by TD.

2.1 The Preliminary of IG Process in an ADT

Y(t) satisfies an IG process, if:

(1) Y(0) = 0 with probability one.
(2) Y(t) has independent increments, i.e., Y(t2) − Y(t1) and Y(t4) − Y(t3) are

independent, for 0 ≤ t1 < t2 ≤ t3 < t4.
(3) Each increment follows an IG distribution, i.e., �Y(t) ∼ IG(μ��(t), λ��2(t)),

where μ > 0, λ > 0, �� = �(t) − �(s), and �(t) is a given monotone increasing
function of time t with �(0) = 0.

And then for any y > 0, the probability density function (PDF) of IG (u, v), u > 0,
v > 0, with mean u and variance u3/v is defined by

fIG (y, u, v) =
√

v

2πy3 · exp

[
−v(y − u)2

2u2y

]
(1)
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According to the above assumptions and settings, the degradation process can
be described by Y(t) ∼ IG(μ �(t), λ�2(t)), where μ�(t), μ3�(t)/λ of Y(t) are the
mean and variance respectively. By substituting u = μ�(t) and v = λ�2(t) into (1),
we can obtain

fIG (y, μ, λ) =
√

λ(� (t))2

2πy3
· exp

[
−λ(� (t))2(y − μ� (t))2

2(μ� (t))2y

]
(2)

The parameter μ, a function of the accelerated stress s, could be appropriately
assumed as the degradation rate of a product and could be written as follows:

μ(s) = exp [a + bϕ(s)] (3)

where a and b are the parameters to be estimated in ADT. For simplification,
the stress level can be standardized using the linear normalization method in this
chapter. Specifically, assume that s0 and sH are the usage stress level and the highest
stress level in the test, respectively. Then, let ϕ(sj) be a standardized function of s as

ϕ(s) = (ξ (sj
)− ξ (s0)

)
/ (ξ (sH ) − ξ (s0)) (4)

where ξ (s) is the known function of s such as ξ (s) = 1/s for temperature stress and
ξ (s) = ln (s) for electric stress (Lim and Yum 2011).

As for the parameter λ, it is just a constant and will not change with the time,
i.e., λ1 = λ2 = . . . = λK for K accelerated stress levels in an ADT. Because of the
independences on the time for μ and λ, the degradation process is a homogeneous
IG process, or called simple IG process. Since there are three different shapes
of performance degradation trend, including linear, convex, and concave, it is
appropriate to assume �(t) = tβ and β > 0 (Zio 2016). Since an IG process
strictly increases with time, the cumulative distribution function (CDF) of TD can
be expressed as

FYD(t) = P (Y (t) > YD)

= �
[√

λ
YD

(
tβ − YD

exp[a+bϕ(s)]

)]
−

exp
(
2λtβ/ exp [a + bϕ(s)]

) · �
[
−
√

λ
YD

(
YD

exp[a+bϕ(s)] + tβ
)] (5)

According to (Deb et al. 2002), Y(t) approximately follows a normal distribution
with mean μ(s)�(t) and variance μ3(s)�(t)/λ as μ(s)�(t) and t are increased.
Therefore, the formula (5) can be approximately rewritten as

FYD(t) = 1 − �

⎡

⎣YD − exp [a + bϕ(s)] tβ√
exp [a + bϕ(s)]3tβ/λ

⎤

⎦ (6)
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Then, the q-quantile lifetime of YD is

tq = �−1

(
exp [a + bϕ(s)]

4λ

(
zq +

√(
zq
)2 + 4YDλ/ exp [2a + 2bϕ(s)]

)2
)

(7)

where zp is the q-quantile of standard normal distribution and �−1() is the inverse
function of �().

Moreover, the parameters in formula (6), a, b, λ, and β, are assumed to be
independent from each other, and they are supposed to consist of a parameter vector
θ = (a, b, λ, β). In engineering application, it is hard to give the crisp values
for θ when we design an ADT and the degradation model (2) is used to describe
the degradation process, because there are some epistemic uncertainties embedded
in these parameters. Naturally, it is appropriate to assume that these parameters
follow some prior distributions; and then, the Bayesian inference could be used to
handle this situation. Generally, the historical information and experts’ knowledge
are available before the implementation of an ADT; hence, they could be used to
determine the prior distributions of θ.

For convenience, these parameters are supposed to be the parameter vector
θ = (a, b, λ, β) of random variables, and the parameters are independent from each
other. Meanwhile, in practice, these parameters follows different distributions when
the degradation increment x follows an IG distribution.

2.2 ADT Settings and Bayesian Inference

Let n test items be put into an ADT. And there are K accelerated stress levels
arranged in the ADT, including s0 < smin ≤ s1 < s2 < . . . < sK ≤ smax ≤ sH, where
smin and smax are the lowest and highest stress levels which will be used in an ADT
respectively.

There are two popular stress loading patterns for an ADT, called constant stress
accelerated degradation testing (CSADT) and step stress accelerated degradation
testing (SSADT). For the former, the test items are divided into K groups and the lth
group is tested under sl. While in the latter SSADT, all test items are tested from the
lowest stress level to the highest stress level step by step, i.e., s1 → s2 → . . . → sK .
In a SSADT, we always set up such an assumption that the residual degradation only
depends on the current stress level and the current accumulated degradation damage
with no memory of how it cumulates, and this assumption will make few differences
of statistical analysis to CSADT and SSADT. Here, we only focus on the SSADT.

Let ml be degradation measurements on sl, l = 1, 2, . . . , K, and the total
measurement times of the whole test is M and M=∑k

l=1 ml.
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We assume that τ is the non-overlapped interval of degradation measurement
during a SSADT and keeps fixed. Then, the test duration tl on sl is tl = τml, and the
total test duration is T0 = τ × M.

If Y(tilj) denotes the measurement result for the jth measurement of the ith item
on the lth stress level at time tilj (i = 1, 2, . . . , n, l = 1,2, . . . ,K, j = 1, 2, . . . , ml), the
degradation increment is xilj = Y(til(j + 1))−Y(tilj) and follows the IG process shown
in Eq. (2). Therefore, the likelihood function can be obtained by

p (x|θ) =
K∏
l=1

n∏
i=1

ml∏
j=1

(
λ
(
(mil(j+1)τ)

β−(milj τ)
β
)2

2πx3
ilj

)1/2

exp

[
−λ

[
xilj−exp[a+bϕ(sl )]

(
(mil(j+1)τ)

β−(milj τ)
β
)]2

2(exp[a+bϕ(sl )])2xilj

] (8)

and the posterior distribution p(θ|x) of θ updated from its prior distribution π (θ) is

p (θ |x ) = p (x|θ) π (θ)∫
�
p (x|θ) π (θ) dθ

(9)

where the denominator
∫
�p(x| θ)π (θ)dθ is defined as the marginal likelihood

function and denoted as p(x) = ∫ �p(x| θ)π (θ)dθ.
According to Eqs. (7) and (9), the Bayesian posterior q-quantile lifetime of YD is

denoted as follows:

t (q, θ|x) = t (q|θ) · p (θ|x)
= �−1

(
exp[a+bϕ(s)]

4λ

(
zp +

√(
zp
)2 + 4YDλ/ exp [a + bϕ(s)]2

)2
)

· p (θ|x)
)

(10)

3 Multi-objective Bayesian Optimal Model for ADT

From Sect. 1, there are two kinds of uncertainties embedded in an ADT which
are the inherent uncertainty and the model selection uncertainty. It is reasonable to
regard that the stochastic IG process can quantify the uncertainties due to the errors
of measurement instruments and testing equipment. When the Bayesian theory
is further utilized, the uncertainties due to the unit-to-unit variation and model
assumptions, e.g., Eqs. (2) and (3), are supposed to be appropriately quantified.
Hence, these uncertainties are well controlled after we make an optimal design based
on these Bayesian IG process (Li et al. 2017).

In addition, there are different expected utility functions (also known as optimal
objectives) (e.g., relative entropy (Hamada et al. 2001), quadratic loss function (Li et
al. 2015; Xu and Tang 2015; Liu and Tang 2010; Peng et al. 2014), D-optimality (Shi
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and Meeker 2012; Zhang and Meeker 2006)), and the different objective means the
different focus. For instance, when the relative entropy is selected as the Bayesian
optimal objective, it depicts the expected information gained during the test (Ye
and Chen 2014; Lindley 1971). While when the quadratic loss (also known as the
posterior variance) is selected, it can depict the accuracy of evaluation. No matter
which objective is selected, the corresponding uncertainty will be caused.

In order to simultaneously control all the aforementioned uncertainties, a
Bayesian multi-objective design method for ADT is proposed in which three
objectives are considered, i.e., maximizing KL divergence, minimizing quadratic
loss function, and minimizing testing cost, so that the objective selection
uncertainties can be considered. By solving the multi-objective Bayesian optimal
model, the Pareto solutions can be obtained. In other words, there are still some
alternative plans, and it still brings the confusion to engineers on how to choose
the right one. Actually, under this circumstance, the Pareto solutions are the
mathematically optimal results with the given model and parameter assumptions.
Although the Bayesian theory is adopted and the relative assumptions could be
loosen, the prior assumptions still existed. Consequently, the data envelopment
analysis (DEA) is further used to prune the Pareto solutions obtained by taking
the consideration of engineering experiences from experts, so that the equilibrium
optimal plan can be achieved.

3.1 Optimal Objectives

The optimal design can be obtained by maximizing the expected utility of an
experiment (Peng et al. 2014), also known as the optimal objective. The utility
function can be expressed as U(d, η, x, θ), where η is a design plan chosen from
the possible plan set D, x is the collected sample data, and a decision rule d from the
decision rule set ° is selected with the given η and observed x. Therefore, for any
design plan η, the expected utility of the best decision can be expressed as

E (η) =
∫

�

max
d∈H

∫

�

U (d, η, x, θ) p (θ |x , η) p (x |η ) dθdx (11)

where p(x|η) is the marginal likelihood function for the given η and p(θ| x, η) is
the posterior distribution of θ under the given η and observed x. The pre-posterior
expected utility E(η) of the best decision rule is used to account for the uncertainty
of the unknown θ in the parameter space � and in the sample space �. Therefore,
the Bayesian best plan η* is the plan which can make E(η) maximize

E
(
η∗) = max

η∈D

∫

�

max
d∈H

∫

�

U (d, η, x, θ) p (θ |x , η) p (x |η ) dθdx (12)
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Table 1 Optimal objectives
in an ADT

Perspectives Measures Manipulations

Information KL Divergence Maximization
Accuracy Quadratic loss Minimization
Economy Cost Minimization

In the case of SSADT, a design plan η is written as η (n, M, s, m), where n is the
number of test items, M denotes the total number of degradation measurements,
s = (s1,s2, . . . sK) is the specified accelerated stress levels, and the number of
degradation measurements on each accelerated stress level is demonstrated by
m = (m1, m2, . . .mK).

The KL divergence and the quadratic loss represent the two different aspects
of the test’s utility; hence, both of them are chosen as the objectives for our
multi-objective problem. In addition, test costs always exert great impact on the
conduction of a test. From the economic point of view, it is supposed that the less
the cost is, the better the test is. We, therefore, take it as the third objective. To sum
up all these three objectives, the associated information is listed in Table 1.

The details of these three objectives are given as follows.

(1) KL Divergence.

In the Bayesian theory, KL divergence is always used as a measure of distance
between a prior distribution and a posterior distribution. From the perspective of
Shannon information, it also represents the information gain provided by a test, also
known as relative entropy and is defined as (Li et al. 2015)

KL(η) =
∫∫

log (p (x |θ, η )) p (x |θ, η ) dθdx −
∫

log (p (x|η)) p (x|η) dx

(13)

where p(x|η) is the marginal likelihood function as mentioned above and the
likelihood function with known parameter vector θ is p(x|θ, η). Furthermore, Eq.
(13) can be written as

KL(η) = ExEθ log [p (x |θ, η )] − Ex log (p (x|η)) (14)

Since θ is the known parameter, it is easy to calculate ExEθ(p(x|θ, η)) using
Monte Carlo simulation. However, because p(x|η) is the marginal likelihood
function, the Markov chain Monte Carlo (MCMC) sampling method is implemented
to solve the problem, for example, using a software like WinBUGS (Liu and Tang
2010). The harmonic mean estimator illustrated by Newton and Raftery (Newton
and Raftery 1994) will be used to estimate p(x), denoted as

p (x|η) ≈
{

1

N

N∑

r=1

[p (x|θ, η)]−1

}−1

(15)



Multi-objective Bayesian Optimal Design for Accelerated Degradation Testing 329

According to the above, the KL divergence also explained as the information gain
from a test should be obtained by maximizing (14) and written as max KL(η).

(2) Quadratic Loss Function.

The typical loss functions could be the quadratic loss, the absolute error loss, the
0–1 loss, and others (Robert 2007), and they all depict the evaluation accuracies of
estimators. Among these choices of loss functions, the quadratic loss is the most
popular one, because of its straightforward computation and relationship to the
classical least square method. It is convex, so the corresponding decision will be
unique.

Based on Eq. (10), the posterior variance of t (q, θ| x, η) is the quadratic loss
of q-quantile lifetime of YD on the usage condition; hence, it depicts the evaluation
accuracy of the q-quantile lifetime. We make expectation for Var(t (q, θ| x, η)) with
respect to θ and x; then, we can get the pre-posterior variance as follows:

Q(η) = ExEθ [V ar (t (q, θ|x))] (16)

Therefore, the optimal plan should be obtained by minimizing (16) or maximiz-
ing −Q(η), written as max − Q(η).

(3) Test Cost.

The ADT cost mainly includes the costs of test items and test operation. The
cost of test items is expressed as the product of the sample unit price of test items
and its quantity, and the operation cost mainly includes the cost of the consumed
test resources, i.e., test labor, power resource, and others. For the sake of simplicity,
the operation cost is captured by the product of operation unit price and total test
duration. Therefore, the total test cost C(η) of plan η is computed by

C (η) = C1n + C2τ

K∑

l=1

ml (17)

where C1 is the unit price of a test item and C2 is the unit price of the operation in
an ADT. The optimal plan should be obtained by minimizing C(η), written as min
C(η).

3.2 Optimal Model

Generally, the decision variables are constrained in advance according to the actual
conditions of an ADT, and the main practical constraints involved in the proposed
model include four parts:
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(1) Sample size n. With the considerations of statistical requirement and engineer-
ing reality, there is a range for n, say nmin ≤ n ≤ nmax (e.g., n ∈ (Ye et al. 2014;
Tseng et al. 2009)).

(2) Total measurements M. With the considerations of statistical requirement and
engineering reality, there is a range for M, say Mmin ≤ M ≤ Mmax.

(3) The number of accelerated stress levels K. Generally, in order to ensure the
accuracy of the extrapolation in the stress dimension, K = 3 ~ 5 is a reasonable
range with the consideration of engineering application (Xiaoyang and Tongmin
2009).

(4) The number of degradation measurements on each accelerated stress level.
During the same test duration, more information will be obtained under the
higher stress levels. Correspondingly, more measurements should be arrange
on the lower stress levels, and we have m1 > m2 > . . . > mK (l = 1,2, . . . ,K)
(Xiaoyang and Tongmin 2009).

Thus, the multi-objective Bayesian optimal model for Bayesian SSADT design
can be expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max KL(η) = ExEθ log (p (x|θ, η)) − Ex log (p(x))

min Q(η) = ExEθ [Var (t (q, θ|x, η))]
min C (η) = C1n + C2τ

K∑
l=1

ml

s.t. nmin ≤ n ≤ nmax

Mmin ≤ M ≤ Mmax

smin < s1 < s2 < · · · < sK ≤ smax

m1 ≥ m2 ≥ · · · ≥ mK > 0.

(18)

The Pareto optimal test plans η∗(n∗ , M∗ , s∗ , m∗ ) can be obtained by solving the
above proposed multi-objective programming.

3.3 Optimization Procedure for Multi-objective Bayesian
Optimal Design of ADT

The proposed Bayesian SSADT multi-objective optimization model in (18) can be
recognized as a typical multi-objective optimization problem consisting of three
objectives aiming at finding the Pareto optimal set of solutions. As NSGA-II
(Ntzoufras 2009) has good global search ability and well-distributed non-dominated
solutions in the Pareto optimal front, we introduce NSGA-II to report a Pareto
optimal set of solutions to the SSADT design problem. Detailed descriptions on
the processes of NSGA-II are summarized as follows. Firstly, fast non-dominated
sorting method is adopted to rank the population fronts and a parameter called
crowding distance is calculated in the same front. Then tournament selection is
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made between two individuals randomly selected from parent population. The
feasible solution with lower front number is selected if the two solutions come from
different fronts. The feasible solution with higher crowding distance is selected if
the two solutions are from the same front. Genetic operators including crossover
and mutation are used to generate a new offspring population. Finally, the parent and
offspring populations are combined together after being ranked by the procedures of
fast non-dominated sorting and crowding distance assignment. The goal of greedy
NSGA-II is to iteratively find a set of solutions ordered by fronts under the concept
of Pareto dominance (see Definition 1). A greedy NSGA-II method is used to find
the Pareto optimal set of solutions to (18).

The general flowchart for solving (18) is shown in Fig. 1.

Definition 1 Deb et al. (2002), Newton and Raftery (1994). Given two solutions η1
and η2, solution η1 dominates solution η2 if the following conditions are satisfied:
(i) solution η1 is not worse than η2 for all objectives; (ii) solution η1 is strictly better
than η2 for at least one objective.

In NSGA-II, the child population Q(g) is first created from the parent population
P(g), and then a combination set R(g) = Q(g)∪P(g) is sorted according to the above
fast non-dominated sorting method and crowding distance.

Now, the remaining of this section will present the specific optimization pro-
cess.

(1) Initialization.

Initially, parameters of NSGA-II including Gmax (the maximum generation
number), nPop (the population number), pc (the crossover proportion), pm (the
mutation proportion), and μ (the mutation probability) are given. Randomly create
a feasible parent population Pg based on the range of the testing design space and
corresponding constraints. And set generation number g = 1. Each chromosome η

∈ Pg is represented by a test plan η = (n, M, s, m).

(2) Fast Non-dominated Sorting.

The current feasible parent population Pg is sorted into different non-dominated
fronts based on fast non-dominated sorting algorithm according to the concept
of Pareto dominance given by Definition 1. The first front denotes a completely
non-dominant set in the current population, and the second front consists of
chromosomes being dominated by these in the first front only and the front goes so
on. Each chromosome in the each front are assigned rank (fitness) values or based
on front in which they belong to. Chromosomes in the first front are given a fitness
value of 1 and chromosomes in the second are assigned fitness value as 2 and so
on. For each feasible chromosome, we compute: domination count η, the number
of feasible chromosomes which dominate the feasible chromosome η, and Hη, a set
of chromosomes that the chromosome η dominates. The fast non-dominated sorting
algorithm can be explained with the pseudocodes in (Deb et al. 2002).

(3) Crowding Distance Assignment.
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Rank the Different solutions according to 

fast non-dominated sorting method and 

crowding distance

Tournament selection is made between two 

individuals randomly selected from parent 

population

Genetic operators including crossover and 

mutation are used to generate a new 

offspring population.

Combine the parent and offspring 

populations together after being ranked by 

the procedures of fast non-dominated 

sorting and crowding distance assignment.
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the optimal plan for 

SSADT

Generation number 

satisfies requirements? 

No

find the Pareto-optimal 

set of solutions to the 

model

End

Start

Yes

Fig. 1 Flowchart of dynamic Bayesian SSADT optimal model

The optimal chromosomes are selected based on the rank and crowding distance.
The crowding distance assignment after the fast non-dominated sort aims to find the
Euclidian distance between each chromosome in a front based on their d objective
functions in the d dimensional hyper space. The chromosomes in the boundary are
always selected as they are assigned infinite distances. In addition, comparing the
crowding distance between two chromosomes in different fronts is meaningless.
The crowding distance assignment algorithm is just as implemented in (Deb et al.
2002).
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(4) Selection Process.

Once the individuals are sorted based on the fast sorting non-domination method,
the selection process is carried out with crowding distance assignment method.
The crowded comparison operator (≺n) is defined to guide the selection process
at the associated procedures of NSGA-II toward a uniformly spread-out Pareto
optimal front. Given that every feasible chromosome η in the population Pg has
two attributes: non-dominated rank (ηrank) and crowding distance (ηdis). The partial
order operator ≺n is defined as η≺n

ι if ηrank < ιrank or (ηrank = ιrank and ηdis <
ιdis). That is, the solution with the lower (better) rank between two solutions with
differing non-domination ranks is preferred. Otherwise, if both solutions belong to
the same front, then the solution located in a lesser crowded region is preferred. The
chromosomes are selected by using a binary tournament selection with crowded
comparison operator.

(5) Greedy Genetic Operators.

Since there are lots of decision variables as well as constraints in the proposed
Bayesian multi-objective ADT design model (18), the NSGA-II are not suitable
anymore. In order to improve the convergence performance of NSGA-II, we imple-
ment the idea of binary tournament selection to design greedy genetic operators
(including crossover and mutation), such that the winner of each tournament (the
one with the best fitness) can be selected with priority in the greedy genetic
operations. The process of binary tournament selection involves running two
“tournaments” (or chromosomes) randomly selected from the current population.
For example, the winner of the population Pg can be obtained by binary tournament
selection BT Select (Pg) given as follows in Pseudo 1.η1.

rank

Crossover Operator Crossover is a genetic operator used to vary the programming
of a chromosome or chromosomes from one generation to the next. With the consid-
eration of the proposed formulation programming and its constraints structure, we
give the following crossover operator in Algorithm 1 embedded with the concept of
greedy choice.
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Mutation Operator Mutation is an important genetic operator used to maintain
the genetic diversity from one generation of a population of chromosomes to
the next. The mutation operator involves a readjustment of the fitness values of
solutions to sustain a steady selective pressure in the population and to prevent the
premature convergence of the population to suboptimal solutions. Here we propose
the following greedy mutation operator as shown in Algorithm 2.

(6) Recombination and Selection.

In order to ensure the elitism of the optimal front population, the offspring
population Qg by the greedy genetic operators is combined with the current
generation population Pg, that is, all the previous and the current best chromosomes
are added in the population. Then the combined population Rg = Pg∪Qg is sorted
based on non-domination given in Definition 1. The new generation is filled by each
front subsequently until the population size exceeds the current population size (see
Fig. 2 as an illustration). If the population exceeds the current population size by
adding all the chromosomes in front Fi, then chromosomes in front Fi are selected
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Fig. 2 Illustration on recombination and selection

based on their crowding distance values in the descending order until the population
size reaches the current population size. And, hence, the process repeats to generate
the subsequent generations. The whole recombination and selection process is just
as summarized in Fig. 2.

3.4 Pruning of Pareto Solution by Data Envelopment Analysis

In the Pareto optimal solutions obtained by the above methodology, there are too
many alternatives for decision-makers to select. Essentially, the Pareto solutions
are the mathematically optimal results with the given assumptions, e.g., Eqs. (2),
(3), and (9). The prior distributions substitute the crispy parameter values, but the
assumptions for prior distributions still existed. In engineering application, experts
and engineers always have lots of experiences and judgments about the actual
conduction of a test, such as how good are the stress levels, measurements, and
so on. These experiences can help with the control of the uncertainties from the
assumptions of prior distributions. Since we can assess the optimal plans in the
Pareto solutions from different aspects and the different plan has its results of KL
divergence, quadratic loss, and cost, it is a typical multiple objective selection opti-
mization (MOSO) problem. Consequently, the data envelopment analysis (DEA) is
further used to prune the Pareto solutions, which is a linear programming-based
technique for measuring and comparing the relative performance of decision-
making units (DWUs) with multiple inputs and outputs.

Assume that a problem involves N DMUs containing A inputs and B outputs for
each one and then the relative efficiency of the wth DMU can be denoted as
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REw =

B∑
j=1

ujywj

A∑
i=1

vjxwi

, w = 1, 2, . . . , N (19)

where xwi and ywj denote the output and input of the wth DMU and uj and vi ≥ ε

are the weights of xwi and ywj with ε as a small positive quantity to guarantee the
non-negativity of the weights.

According to engineering practice, for a SSADT, model include two parts:

(1) The wider the range of accelerated stress levels, the more the sample size
n and the total number of measurements M; then, the more comprehensive
information collected and the higher the prediction precision.

(2) The closer the lowest accelerated stress level to the normal stress level, the less
extrapolation in the stress dimension and the more credible the prediction.

Based on the above analysis, we can further select three variables for DEA model,
and they are n, M, and s1 − s0. And considering the variables KL(η), Q(η), and
C(η), there are six variables in total. In the DEA analysis, all minimization type
variables should be regarded as the inputs, while all maximization type ones should
be regarded as the outputs. Consequently, we say Q(η), C(η), and s1 − s0 consist
of the inputs and n, M, and KL consist of the outputs in our DEA model. Then the
DEA model has A = 3, B = 3, xw1=Q(η), xw2=C(η), xw3=s1−s0, yw1 = n, yw2=M,
yw3=KL(η). A specific weight set for each solution w0 can be found by maximizing
the relative efficiency of the solution with the constraint that the relative efficiency
of other solutions is less than 1, which is given as (20)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

max REw0 =
3∑

j=1
uw0j yw0j

3∑
i=1

vw0i xw0i

, w = 1, 2, . . . , N

s.t.

3∑
j=1

uw0j yw0j

3∑
i=1

vw0i xw0i

≤ 1, w = 1, 2, . . . , N,w �= w0

(20)

The decision variables in model (20) are the weights of the inputs and outputs
vw0(i = 1, 2, 3) and uw0j (j = 1, 2, 3) for the specific solution w0, and the solution
contains a weight set which is the most favorable to w0. In order to simplify the
solution, the above fractional linear programming problem can be equivalently
transformed into a general linear programming problem (as shown in (21)), while
we can obtain the same optimal results
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max REw0 =
3∑

j=1
uw0j yw0j

s.t.
3∑

i=1
vw0ixw0i = 1

3∑
j=1

uw0j yw0j −
3∑

i=1
vw0ixw0i ≤ 0, w = 1, 2, . . . , N,w �= w0

(21)

Finally, decision-makers can take the highest relative efficiency as the final
choice according to the ranking of relative efficiencies in DEA, which is favorable
both to the mathematical and the practical extent.

4 Numerical Case of Multi-objective SSADT Bayesian
Optimal Model

For an electrical connector, it is required to maintain good contact force throughout
its functional lifetime. Contact force is generated by the deflection of the electrical
contacts within the connector, and any plastic (unrecoverable) strain occurred to the
metal contacts will cause the performance degradation of the connector. One of the
typical failure mechanisms due to the plastic strain is the stress relaxation, which is
defined as a time-dependent loss in stress under constant strain.

In this section, we will employ the stress relaxation data of electrical connectors
in reference (Chhikara and Folks 1989) to illustrate the proposed multi-objective
SSADT Bayesian optimal methodology.

In general, an electrical connector is defined as failure when the stress relaxation
is over 30%, i.e., YD = 30. The accelerated degradation data were obtained under
the conditions of s1 = 65 ◦C, s2 = 85 ◦C, and s3 = 100 ◦C, respectively. These
collected ADT data and the corresponding measurement times are shown in Tables
2 and 3.

In keeping with (Ye et al. 2014), the collected stress relaxation data are assumed
to follow the IG process, and the stress function ξ (s) is written as 1/s. Mean and
the variance of the model parameters can be obtained by employing the maximum
likelihood estimation method and square roots of the diagonal of the Fisher matrix,
as reported in Table 4.

Based on the parameter estimations in Table 3, the prior distributions of param-
eters can be determined; then, the uncertainties of model parameters are quantified.
In this section, parameters a and b are assumed to follow normal distributions, and
parameters λ and β follow gamma distributions (Li et al. 2017). The details are
reported in Table 5.
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Table 3 Measurement time under different stress levels

Temperature Performance measurement time

65 ◦C 108 241 534 839 1074 1350 1637 1890 2178 2513 2810
85 ◦C 46 108 212 408 632 764 1011 1333 1517 2586
100 ◦C 46 108 212 344 446 626 729 972 1005 1218

Table 4 Estimated results of
the model parameters

Estimated parameters â b̂ λ̂ β̂

Mean −1.8966 1.7379 0.6337 0.4493
Variance 0.1903 0.1738 0.1968 0.0178

Table 5 Prior distributions of parameters

Parameter a b λ β

Distribution I Normal
(−1.89, 0.19)

Normal (1.74,
0.17)

Gamma (2.04, 0.13) Gamma (11.34, 0.04)

Referring to reference (Yang and Guangbin 2008), we set the normal stress level
s0 with 40 ◦C, and smin and smax are set to 50 ◦C and 100 ◦C, respectively. Without
loss of generality, assume K to be 3. The cost of test (C1, C2) is assumed to be
(2, 0.02) × 102 dollars, and the measurement interval τ is 10 h. Meanwhile, in
order to get the optimal plan, the constraints for the decision variables (i.e., n,
M, s and m) are set as follows: (i) Without loss of generality, nmax is set to be 5;
(ii) the total degradation measurements M directly reflect the actual test duration
and cost constraints for a SSADT. The larger the M is, the longer duration the test
takes, and the more cost the test needs. In practice, limits on both the test duration
and cost are realistically necessary. Therefore, here M is assumed to vary between
100 and 150; (iii) the lowest stress level s1 is assumed to vary between 50 ◦C and
80 ◦C, and the highest stress level s3 is set as 100 ◦C, and then the middle stress
level s2 can be set by using the interval between ξ (sl) and ξ (sl + 1) constant; (iv) as
mentioned in Sect. 3.3, performance degrades slower on the lower stress levels than
that on the higher stress levels. In order to guarantee that there is enough useful
degradation information under all stress levels, more degradation measurements
should be assigned under the lower stress level than those on higher stress levels,
which leads to the constraints of m1−m2 ≥ 10 and m2-m3 ≥ 5.

According to the basic knowledge of Sect. 3 and the degradation data of this
section, we can obtain the following multi-objective SSADT Bayesian optimal
model:
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Fig. 3 Pareto frontier of Bayesian SSADT multi-objective design model

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max KL(η) = ExEθ, log (p (x|θ, η)) − Ex log (p(x))

min Q(η) = ExEθ, [V ar (t (q, θ, |x, η))]
min C (η) = C1n + C2τ

3∑
l=1

ml

s.t. 3 ≤ n ≤ 5, 50 ≤ S1 ≤ 80
3∑

l=1
ml = M, 100 ≤ M ≤ 150

s3 = sH = 100, 1/s2 = 1/2 (1/s1 + 1/s3)

m1 − m2 ≥ 10, m2 − m3 ≥ 5.

(22)

Then, based on Sect. 4, we can obtain the Pareto frontier of multi-objective
Bayesian SSADT design model, as shown in Fig. 3.

The plans on the Pareto frontier are the optimal ones in the mathematical sense.
In other words, they are optimal only when the assumptions in Table 4 are true.
As mentioned above, the model selection uncertainties are then caused. In order to
further reduce and control the negative effect from these uncertainties, the proposed
DEA mentioned in Sect. 3.4 is applied.

By using the proposed DEA method, the relative efficiencies can be calculated
for the plans on the Pareto frontier, as reported in Table 6.
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From Table 6, five test plans (i.e., Plan 4, Plan 5, Plan 14, Plan 15, Plan 18)
with the higher relative efficiencies remain in the pruned solution set for selection
in engineering practice.

5 Conclusions

In this chapter, a Bayesian multi-objective design method for an ADT is proposed
in which three objectives are considered and the data envelopment analysis (DEA)
is further used to crop the Pareto solutions so as to find out the plan with the
highest relative efficiency. By the illustrative case study on the electrical connector’s
SSADT, our conclusions are summarized as follows:

(i) In the proposed Bayesian SSADT multi-objective optimal model, the objectives
of the proposed optimization model consists of maximizing the KL divergence,
minimizing the quadratic loss function of the q-quantile lifetime at usage
condition, and minimizing the test cost. With the practical constraints, the
greedy NSGA-II is applied to get the optimal SSADT plans. By simultaneously
considering these three objectives, the uncertainty due to the objective model
selection could be better controlled.

(ii) After the Pareto optimal solutions are generated, the DEA method is applied
to effectively clear the choice confusion induced by the algorithm of greedy
NSGA-II. Then, the experiences from experts and engineers can be incor-
porated into the optimal decision. Consequently, the uncertainties from the
assumptions of prior distributions can be well controlled by using the expe-
riences and judgments from experts and engineers.

In summary, an ADT can be regarded as a scientific experimental method,
which aims to recognize a performance degradation law under the influence of
uncertainties by using an experimental way. How to control the uncertainties
embedded in an ADT to better realize a degradation law is one of the core tasks
of an ADT. The methodology proposed in this chapter can effectively contribute the
control of the uncertainties in ADT by using the Bayesian theory, multi-objective
optimization, and data envelopment analysis. Although the proposed methodology
is illustrated based on the inverse Gaussian process, the other degradation processes
(e.g., the Wiener process or gamma process) could be also the applications.

Actually, there should be more considerations and constraints in reality, and
only testing cost and some engineering experiences are considered. Different
Bayesian alphabet optimality, the consumed power energy during tests, etc. should
be considered so that the more realistic balanced plan can be optimized. Moreover,
multiple-stress cases are quite common in reality, and the corresponding researches
should be extended from the proposed single stress condition to such general cases.
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Part V
Optimization and Multiobjective Models

for Maintenance Modelling



Maintenance Requirements Analysis
and Whole-Life Costing

Richard Dwight and Peter Gordon

1 Introduction: Fundamental Concepts

We seek to set out some basic ideas to provide the foundation for ongoing research
and application of ideas to the practical problem of determining effective and
efficient maintenance programs as faced by industry and, inferring from these,
whole-life costs. This is achieved through setting out of the activities that are applied
in practice to manage the impact of physical asset deterioration in-service against
the imperative of delivering products or services. Perhaps in contrast with the main
thrust of this publication, the emphasis here is on examining the overall problem
to which optimisation and multi-objective models may be applied. Of particular
interest is the nature of failure causes and resulting relevant data to the decision of
maintenance action selection.

There remains some confusion: particularly in the research-based literature but
also flowing to practice, on the purpose and limitations of maintenance requirements
analysis, MRA. The narrow focus of any such process is here considered to be on
facilitating the design of a ‘preventive maintenance’ or PM program for a physical
asset. (It is acknowledged that such ideas have been somehow massaged into the
area of so-called software maintenance. Such application is not addressed here.)
Another scourge of this relatively unestablished academic discipline of maintenance
management, and indeed asset management, is the imprecise, confused or even
misrepresentation of word, phrase and acronym definitions. Reviews of recent

R. Dwight (�)
School of Mechanical Materials Mechatronic and Biomedical Engineering, University of
Wollongong, Wollongong, NSW, Australia
e-mail: radwight@uow.edu.au

P. Gordon
Sydney, NSW, Australia

© Springer Nature Switzerland AG 2022
A. T. de Almeida et al. (eds.), Multicriteria and Optimization Models for Risk,
Reliability, and Maintenance Decision Analysis, International Series in Operations
Research & Management Science 321, https://doi.org/10.1007/978-3-030-89647-8_16

347

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89647-8_16&domain=pdf
mailto:radwight@uow.edu.au
https://doi.org/10.1007/978-3-030-89647-8_16


348 R. Dwight and P. Gordon

papers confirm complex jumbling of concepts and words. Here we use what we
maintain to be the generally accepted understanding of ‘preventive maintenance’ as
the name of a general type of maintenance policy. The term ‘maintenance policy’
is used here to define a prescribed set of actions to be taken with the aim of
maintaining: retaining a system in or restoring it to the condition required to fulfil
its intended purpose. A PM policy prescribes a set of maintenance actions that have
the intent of ‘preventing’ the in-service failure of an item: component or system.
Failure may be defined as a condition of an item where it cannot perform the
function required of it. Sometimes, and wrongly in our view, PM is differentiated
from predictive, proactive or condition-based maintenance, which we maintain
are overlapping subsets of PM. Further, PM is often contrasted with ‘corrective
maintenance’ which we maintain is not the name of a maintenance policy but rather
a label for one form of maintenance action: one which is triggered by a perception
that an item has ‘failed’, i.e. restoration to an ‘available’ condition of an item after
it has failed.

For complex systems, a significant task is to determine the maintenance policies
to be applied: when components making up the system should be refurbished or
renewed. The task of determining PM policies, the analysis process itself, we
call here ‘maintenance requirements analysis, MRA’. We propose that whole-life
costing is founded on assumptions concerning the maintenance policies, including
PM policies, that will be followed and projections of the effects of these policies on
asset performance and whole of life costs.

There are four circumstances under which maintenance actions are demanded
by a system: i.e. action-determinants. Only some of these are amenable to the
prescription of a PM policy. These are essentially defined by either the scope of
available maintenance actions or the nature of the degradation and failure process
that constrains what might be effective and efficient actions:

1. The requirement for lubrication and servicing activities. These are purely a
function of, and so part of, the design. The satisfactory operation of many
systems is contingent on the regular re-lubrication, servicing and adjustment of
components. Without this attention, elements of the system are liable to faulty
operation and premature failure.

2. The need for refurbishment or replacement following mechanical wearing-out
of an item: so-called wear-out failures. These are failures occurring through
the gradual loss of strength: resistance to applied ‘forces’, associated with the
degradation, wearing or relative displacement between components with time or
usage. Carter (1986) draws attention to the large range of possible mechanisms
leading to mechanical failure and by way of illustration sets out some of them:
erosion, corrosion, fatigue, surface degradation, de-fastening, creep, ageing,
fouling, contamination, leaking and thermal effects. He builds on this further
by drawing attention to the likely occurrence of interaction between any number
of these phenomena resulting in failure. There are similarly wear mechanisms
that can lead to the failure of electronic components. Maricau and Gielen (2013)
describes the following mechanisms for CMOS transistors: hot carrier injection,
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time-dependent dielectric breakdown, bias temperature instability and electro-
migration. Perhaps the point here is that the range of phenomena we are seeking
to model and control, through failure time alone is incredible.

3. The need for refurbishment or replacement following overloading of a com-
ponent: overload failures. These are failures that occur under load conditions
for which the component was not designed. As such differentiating them from
wear-out failures is a matter of definition. They may arise from mal-operation,
foreign object damage, vandalism, extreme environmental loading and secondary
damage from the failure of another component or system. They typically
result from a single load event leading to failure immediately or shortly after
the overload. Generally this is synonymous with ‘random failure’ relative to
the item’s ‘age’. Overloads may alternatively not give rise to an immediate
failure. In such cases, ‘preventive maintenance’ may include activities to identify
unexpected damage before it progresses to failure.

4. The need for refurbishment or replacement arising from induced defects. These
are failures associated with errors during any of the manufacturing and assembly,
installation or maintenance of the item. They include the installation of a
defective or incorrect part, improper installation or repair of a part, omission of
parts on reassembly of a component and failure to remove tools or materials from
the equipment being maintained. These failures typically result from a single
error that increases the susceptibility of the component to failure: reduces its
strength. Subsequent failure is likely to occur early in the life of the item. Failure
later in the item’s life is also possible as observed by Hobbs (2008).

The first of these four action-determinants, lubrication and servicing activities,
seeks to assure that items function as designed and achieve the maximum life
possible given the way the system is used. The requirement for these tasks and
their frequency and timing does need to be identified as part of any process for
establishing the overall maintenance program. It could be that the lubricant is
treated as an item to which maintenance is applied; however, consideration of the
required actions need not be informed by failure analysis even though the lack of
effective actions may be highlighted in an engineering-based analysis of failure
events. Logically, a priori identification of the required actions comes from analysis
and understanding of the design of the components and how the system will be
used. Coincidentally the typically effective actions are of relatively insignificant
cost negating the need for detailed cost analysis.

The remaining three action-determinants are causes of system failure. An
understanding of how they manifest and the effect they have on the system informs
the basic nature of the failure process and its cause. They define whether there
will be indicators or warnings that the failure is imminent and what maintenance
actions are possible. Importantly they prescribe the relevant set of feasible actions
that would control the occurrence of failure arising from such phenomena. Overload
and defect generated failures are better managed in other ways. Recommendations
on defect, or error, management are widely available (e.g. Reason and Hobbs,
2003). The strategies here are more appropriate for addressing induced defects and
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overloads caused by operator error. Other overload failures are better addressed by
system and component design.

2 A General Process

We have previously highlighted (Dwight et al. 2012) that the general nature of
the process of developing a PM program via maintenance requirements analysis
(MRA) generally relies on adaptation of an existing program and should be
multidimensional. The multidimensional nature of the process derives from three
considerations in constructing a program: the state of knowledge of the objectives
of the program; cognisance of the relevant attributes of the available maintenance
system resources; and the information available that would inform any decision
process and any supporting models.

It is held that there are only three possible maintenance policies that may be
selected and applied to an item in response to the inevitability of its deterioration
and failure. These are distinguished, as per the previous discussion of action-
determinants, from actions to address lubrication, overload and defect initiated
failure. These maintenance policies are identified here as condition-based PM,
usage-based PM and failure-based maintenance. This classification system is
founded on the trigger for the refurbishment or replacement action for the item.
Perhaps unnecessarily, these three possible policies are defined here by refurbish-
ment or renewal of an as yet un-failed item being triggered by distinctly different
information: condition-based PM by condition information indicating imminent
failure; usage-based PM by the cumulated load volume indicating imminent failure;
and failure-based maintenance, quite obviously, by the realisation that the item
has failed. Feasible options derive from the possible behaviour of the item itself.
Expediency may mean a fourth trigger, particularly opportunity, may be applied;
however, thoughtful acceptance of any opportunity demands purposeful rejection of
the three preventive maintenance policies.

Various MRA processes have been devised by a range of authors over many
years now (Nowlan and Heap 1978; Kelly 1983, 1989; Gits 1992; MILSTD 2173
1986; Smith 1993; Moubray 1997; NAVAIR 00-25-403 2005; UK Ministry of
Defence Standard JAP(D) 100C-22 2009). All such processes have been termed
RCM processes with the exception of those proposed by Kelly, and by Gits which
is termed maintenance concept design (aside: many authors wrongly suggest that
RCM is a maintenance action when in fact it is simply an analysis process by
which maintenance actions may be selected). While the novelty and efficacy of these
proposed approaches is claimed, it is suggested here that there is a commonality
between them. This gives rise to a general MRA process which may be expressed
as:
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1. System selection and system boundary definition
2. Determination of system functions and manifestations of failure of these func-

tions
3. Identification of the mechanisms by which the functional failures may be caused

by the system: sometimes called the failure modes or ‘root’ causes
4. Description of the effects of the identified failure modes
5. Classification of the consequences of the occurrence of each of the failure modes

into categories that instruct both a method of analysis and action prescription
6. Determination of parameters and their behaviour that provides some capability

to predict the occurrence of failure
7. Selection of a particular maintenance policy and detailing of the associated

actions accounting for both consequences and predictors available for failure
8. Grouping or clustering of actions prescribed for the system as a whole given

analysis of constituent items and iteration in the light of revised action costs
given actions may share resources

9. Implementation and monitoring of resulting actions

3 Practical Application of the General Process

The laborious nature of applying such a process has been highlighted and is
a distinct barrier to logical determination of maintenance programs. Practical
application of this basic logic depends on a clear focus on the objectives of its
application and the current status of information informing it: the situation. The
general steps outlined may usefully be aggregated into broader stages within which
methods, models and approaches can be devised that suit the situation at hand. Such
a set of three fundamental stages is arranged in Fig. 1 and proposed as:

1. System definition: establishing the context for maintenance action selection and
design – involving Steps 1 and 2. This encapsulates what the asset is and what
it’s meant to be doing. Perhaps this uncovers valuable information relevant to the
operation as well as the maintenance of the system.

2. Failure analysis incorporating failure mode definition: identifying possible fail-
ure modes and their effects and categorising them according to consequences –
involving Steps 3–6. This involves determining and characterising how the
system fails, where failure is defined by the functions established at Stage 1.

3. Action determination: selecting effective and efficient task clusters, i.e. devel-
oping the maintenance program – involving Steps 7–9. This is concerned with
identifying the maintenance actions to be applied at failure mode level and then
aggregated to item and system level. It is conducted given knowledge of the
function and modes of failure of the system. The need for complex analysis
will depend on how much is already known about the possible tasks and their
effects. We may have a good understanding about all the possible tasks that
we would want to consider for that sort of asset. These may be a limited set of
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Fig. 1 Basic elements of maintenance requirements analysis highlighting the role of context for
the analysis as determined through ‘Situation Appraisal’

possible tasks. Perhaps only cleaning activities or unit replacement are feasible
options. It may be that there is a considerable range of possible tasks or that
the possibilities are unknown resulting in the need for more complex analysis of
all the failure modes that could possibly occur and reviewing what sort of tasks
might be appropriate to them.

The situation may dictate that not all of the three stages require detailed
consideration. Attention is drawn to the general nature of application of the analysis
which would normally be adaptive. Certainly the ‘situation’ determines what
approach is taken in conducting each of the required stages. Given the adaptive
situations commonly confronted in practice, some prescription of suitable processes
can be made. They are considered as alternatives to the formulaic process initially
set out.

Some alternate approaches have been suggested distinguished by the starting
point for any analysis:

3.1 Investigating an Existing Set of Policies

Although identification of tasks is a latter step in the logical process, there is no
reason why logic cannot be traced backwards through the process to determine
whether the important element of the logic outlined earlier in this section has been
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met. Where an established set of tasks are suspected of being ineffective or of
low efficiency analysis may be focused on those tasks. The relevant objective is to
‘optimise’ the existing set of tasks as opposed to improving the in-service reliability
of the system.

The consistency of the task with the existing knowledge of the failure behaviour
is often lacking. By understanding the reasoning behind the policy, the failure
mechanism that is implied can be established. This provides the focus for consid-
eration of competing preventive maintenance policies or other action. Gains in the
performance of the equipment are incidental when using this approach although still
likely due to the removal of counterproductive tasks. Experience with this approach
indicates that an initial analysis can be completed in a few hours.

3.2 Investigating a Known List of Failure Modes

Where an overall review is required on systems that have a reasonable history of use,
the relevant failure modes experienced may be known or be discoverable. Rather
than attempting to generate: imagine, possible failure modes from first principles,
the effort required is to ensure that the history is known. This is suggested by some
of the published approaches to maintenance requirements analysis (e.g. Moubray
1997) through the engagement of a broad group of system stakeholders.

3.3 Application of a Safety Net

The previous suggested approaches in this section rely to a large extent on
knowledge of events that have already occurred. This could be seen as dangerous
and not taking advantage of the proactive aspects of requirements analysis. To
ensure that particularly unwanted events are covered adequately, be they operational,
safety or environment related, a similar directed search is advocated to that outlined
with the proposal for the acquisition phase where the process needs to commence at
Stage 1.

It is useful to consider techniques such as fault tree analysis to guide the
search for failure modes relevant to the consequences of concern: particular system
behaviour resulting in safety or other outcomes of interest. Many systems have
single critical functions. A reasonable example is a sewage pumping station whose
function could be stated simply as being ‘to prevent overflow of sewage’. This being
the case, a directed search for basic causes of such an event appears logical.
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4 Challenges in Developing a Maintenance Policy: Failure
Analysis

Failure of items is generally associated with uncertainty. The prediction of events
is the central issue in prescribing activities directed at preventing them. A list of
challenges in the application of proposed processes and indeed reliability-based
decision models proposed in the literature includes the following:

1. Available data: system data easily available – availability and reliability; subsys-
tem and component data is more difficult as information is required on what has
been done at that level (functional location) of the system. Reasons for actions
need to be coded to allow basic reliability data to be achieved.

2. Potential volume of data, which is often a preoccupation of industry despite its
disconnection from relevant issues faced in achieving business outcomes.

3. Complex interactions between life cycle decisions; operations and mainte-
nance policies; design, manufacturing, construction, operation and maintenance
actions; and resulting errors.

4. Conflict between managing work through the support systems and achieving
component lives.

5. Changing patterns of use or short-term requirements to operate the system:
short-notice variations in the cost of undertaking maintenance. Also changing
resource capabilities and opportunities to undertake maintenance. Integration of
maintenance actions into asset management as a system.

6. Complex relationships between specific components and specific subsystems and
systems that they are temporarily a part of: component tracking and reliability
data collection resulting for both maintenance management and maintenance
analysis.

7. Dealing with potentially useful sensor technologies and communication sys-
tems providing real-time condition information: false positives; maintenance
programs for these sensors; actions triggered by condition information.

The desire for quantitative decision-making heightens the importance of data
availability and transposes the prediction problem into one of obtaining relevant
data as the basis for prediction. Wishing for the data is perhaps unavoidable but
futile.

Correlating measurable or identifiable condition variables with remaining com-
ponent life is a central concern in practice. Maintenance engineers are generally
satisfied to get condition information that enables them to decide whether a
component should be immediately replaced or whether it will survive beyond the
next convenient replacement time. However with expensive components subject to
slow deterioration, better estimates of remaining life are valuable in planning for
spares availability and the timing of major system shutdowns.
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5 Focus on Failure Analysis

There are two aspects to failure analysis:

1. Understanding the cause of the failure
2. Understanding the consequences of the failure

Consequences are normally self-evident where failures are analysed. They
are normally also multifactorial having safety and environmental, operational,
maintenance, statutory and community dimensions, for example. The cause of
failure however may require careful investigation. For ongoing improvement of
a PM program there is a challenge in recording in sufficient detail the cause of
component and system failures and relating this back to the prospective failure
analysis conducted for the original program.

Poor data records are often called out as an impediment to failure analysis in
practice. Increasingly the literature contains attempts to make use of whatever infor-
mation is around (e.g. Arif-Uz-Zaman et al. 2017). Advances in engineering and
engineering approaches: driven by necessity as system complexity and performance
expectations and imperatives increase, result in fewer events being generated from
which failure data may be recorded, poorly or otherwise. This forces considerations
of precursors of failure and involvement with the degradation process.

The mechanisms for failure may not be amenable to failure data analysis. Given
the determining factors underpinning the selection of a PM policy, failure analysis
is directed at determining how the reliability of an item may change over time, what
drives such a change and how any change may be predicted or detected.

Failure analysis is central to MRA. However PM is not the best way to address
all failure modes. Wear-out failure modes should be the predominant focus of PM
program development.

When performing MRA, failure analysis is prospective. The analysis is to
uncover likely future failure modes. Failure cause for prospective studies can come
from manufacturers, from experience within the industry with similar systems or
from engineering analysis of load and environmental stresses on components.

Understanding the way component reliability changes with age or usage informs
PM selection. It is prime evidence of whether PM is effective and efficient in
addressing that failure mode. Conversely, overstress occurs with the component
otherwise capable of resisting the applied loads, and defective items are unable to
resist normal loads from the outset. Recognition of these fundamentally different
determinants of required actions: PM or otherwise, using failure data is problematic.
Overstress and defect-induced failure may give rise to recognisable failure distribu-
tions. Such distributions do not however provide conclusive evidence. Identification
of the existence of these determinants essentially involves ruling out of wear-out
behaviour. Whether a wear-out mechanism is evident in any failure data analysis
depends on the basis for that data: whether or not the dependent variable is relevant
to the deterioration process.
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The typical representation of failure is set out in Fig. 2 which depicts a load, L(s),
and a strength, S(s), distribution as a function of a stress or other susceptibility to
failure, s, where the strength is defined as the sustainable load. The progression of a
mechanical wearing-out of an item has these distributions increasingly overlapping
as a function of use. Defect-generated failure implies some form of overlapping of
the distributions from the time of initial commissioning of the item. Reliability may
be conceptualised as determined by the relationship:

R(t) =
∫ ∞

0

[
S(s)

(∫ s

0
L(s)ds

)t]
ds (Carter 1986)

where the probability that the strength is greater than a nominated value of strength,
s, is given by the area under the function between that value and infinity. The
probability that the load has a value of s is L(s).ds

Figure 3 sets out a depiction of an overload situation. In that case loads exceeding
the strength are applied from a separate mechanism to the normally applied load.

Significant and ongoing work to describe a reliability function that matches
observed data from such situations ignores the reality that the failure data is
generated from a number of underlying mechanisms and so is not amenable to
modelling with a single distribution. Traditional reliability literature advocates
modelling of early-life failures using a Weibull distribution with a shape parameter
value of less than 1. This models a situation where all items will eventually fail by
the failure mode but the probability of failure reduces the longer the component has
been in use. This suggests a situation where the resistance to failure increases with
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Fig. 3 Load and strength distributions illustrating an overload failure situation. The solid curve
represents a load distribution, L(s), and the dashed curve a strength (resistance to load) curve, S(s)

usage. This is an improbable failure mechanism and is not consistent with an early-
life failure mechanism. It may be a reasonable approximation if competing failure
modes are being modelled and other failure modes dominate after an initial period
of usage.

In practical terms, the different action-determinants are not amenable to the same
treatments. It is questionable whether there is any value in trying to model overload
or defect-related failure. If there is an emerging problem then it will be difficult
to ascertain the proportion of the population affected by the defect that is causing
the failures and in any case the priority is to determine and eliminate the cause of
failure.

6 Views on the State of the Art and New Advances

6.1 Advances in MRA Thinking

It is unclear that any significant advances have been made to the processes first
devised with the advent of complex aircraft. The so-called reliability-centred
maintenance (RCM) approach attributed to Nowlan and Heap (1978) has similar
objectives and has been popularly adopted as a standard approach to maintenance
requirements analysis. A process labelled maintenance concept design by Gits
(1992) approached the problem in arguably similar ways and has been developed
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further by others (particularly Waeyenbergh and Pintelon 2002, 2009). That work
incorporated modelling and optimisation more directly into the process which had
only been implicit previously. There have been many applications of such processes
(e.g. Carretero 2003; Rosqvist et al. 2009). The nature of the process has remained
relatively static.

6.2 A Word on ‘Multi-criteria Decision Analysis’

Perhaps the normal decisions in developing a maintenance policy require consider-
ation of a diverse set of factors, some of which are dynamic. Satisfying the need
to minimise impacts on available resources, operations, safety and environment
traditionally has been converted to an overall cost impact leading to cost rate-based
models. Where outcomes were not amenable to conversion to a cost: perhaps safety
and environmental and longer-term business survival are amongst these, then the
criterion may be to attain a particular reliability. It seems though that these are
inextricably linking and are not independent or even different criteria. A system with
a particular reliability will give rise to events that can be described in terms of their
cost. The availability of multi-criteria techniques does not alter this. Perhaps they
provide a different way of dealing with the range of inputs to decisions as suggested
by, for example, Shyjith et al. (2008) and Emovon et al. (2018). Treatments generally
do not come along with identification of specific criteria or practical examples. The
publish-or-perish imperative is perhaps driving the literature in this area and MRA
commentary in general. Perishing is perhaps an option that should be given more
consideration.

6.3 Has the Time for MRA Passed?

Considering how complex system failure occurs, it is more normal that the
unexpected occurs, driven by unknown system behaviour or unrecognised damage
events.

The ‘predictable’ modes of failure will normally have been designed out or fully
accounted for, of course through MRA analysis. One might expect that there is
limited novelty remaining. Methods for constructing resilient systems may be more
where advances are required. Valiant efforts to inject more sophisticated qualitative
(e.g. Chemweno et al. 2016) as well as quantitative approaches may not be as
purposefully directed to problems experienced in industry as is needed to make real
progress. Such calls are not new. Geraerds (1972) drew attention to this problem.
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6.4 Identification and Characterisation of Feasible Modes
of Failure and Their Behaviour

Further consideration needs to be given to failure analysis particularly given that:

1. Increasing prominence of overload and induced defects negates common relia-
bility models found on the expectation that failures are wear-out in nature.

2. Approaches to characterisation include projections using engineering judgement
and identification of similar situations through statistical analysis.

7 Overall Thoughts

1. The main thrust of publications on MRA has been to provide a basis for the
logical development of preventive maintenance programs for complex systems.
This essentially involves ensuring that proposed actions are applicable to the
failure mode they are designed to address. This does mean understanding how
the reliability of the components is expected to change with usage but does not
require statistical analysis of failure data. As explained in this chapter, it simply
requires an understanding of the failure mechanisms involved.

2. The other focus for analysis is on selecting maintenance actions that optimise
the cost effectiveness of the overall program. While it may seem that there are
numerous options open to the maintenance engineer, in practice the options are
often constrained and the decisions to be made are not difficult and do not require
complex decision modelling.

3. For researchers seeking to add value to the field of maintenance requirements
analysis, the message is to ensure that the methods being investigating are not
more complex than the problems being solved and are grounded in the issues
arising in practice.

References

Arif-Uz-Zaman et al (2017) Extracting failure time data from industrial maintenance records using
text mining. Adv Eng Inform 33(August):388–396

Carretero C (2003) Applying RCM in large scale systems: a case study with railway networks.
Reliab Eng Syst Saf 82:257–273

Carter ADS (1986) Mechanical reliability. Macmillan Education, Basingstoke
Chemweno et al (2016) Development of a novel methodology for root cause analysis and selection

of maintenance strategy for a thermal power plant: a data exploration approach. Eng Fail Anal
66(August):19–34

Dwight R, Gordon P, Scarf PA (2012) Dynamic maintenance requirements analysis in asset
management. In: European safety and reliability conference: advances in safety, reliability and
risk management, ESREL 2011, pp 847–852



360 R. Dwight and P. Gordon

Emovon et al (2018) Hybrid MCDM based methodology for selecting the optimum maintenance
strategy for ship machinery systems. J Intell Manuf 29(3):519–531

Geraerds WMJ (1972) Towards a THEORY OF MAINTENANCE. In: Bureau R (ed) The
organisation of logistic support systems. The English University Press, London, pp 297–329

Gits C (1992) Design of maintenance concepts. Int J Prod Econ:217–226
Hobbs A (2008) An overview of human factors in aviation maintenance: Japan Airlines Boe-

ing 747, 1985, p 3. Australian Transport Safety Bureau Safety Report (AR-2008-055).
https://protect-au.mimecast.com/s/ePFZC91WrrTN4PJ1tol5ZC?domain=atsb.gov.au; https://
www.atsb.gov.au/media/27818/hf_ar-2008-055.pdf

Kelly A (1983) Notes from specialist short course – management of industrial, maintenance
Kelly A (1989) Maintenance procedures and their selection. In: Maintenance and its management,

conference communication. Farnham, Surry, pp 76–83
Maricau E, Gielen G (2013) Analog IC reliability in nanometer CMOS
MIL-STD-2173(AS) (1986) Reliability-centered maintenance requirements for Naval Aircraft,

weapons systems and support equipment
Moubray J (1997) Reliability-centered maintenance, 2nd edn. Industrial Press
NAVAIR 00-25-403 (2005) Guidelines for the naval aviation reliability-centered maintenance

process
Nowlan SF, Heap H (1978) Reliability centred maintenance. National Technical Information

Service, Springfield
Reason J, Hobbs A (2003) Managing maintenance error: a practical guide, Kindle edn. CRC Press
Rosqvist T, Laakso K, Reunanen M (2009) Value-driven maintenance planning for a production

plant. Reliab Eng Syst Saf 94:97–110
Shyjith et al (2008) Multi-criteria decision-making approach to evaluate optimum maintenance

strategy in textile industry. J Qual Maint Eng 14(4):375–386
Smith AM (1993) Reliability-centered maintenance. McGraw-Hill, New York
UK Ministry of Defence Standard JAP(D) 100C-22 (2009) Guide to developing and sustaining pre-

ventive maintenance programmes, August. https://www.gov.uk/government/uploads/system/.../
japd100c-22.pdf

Waeyenbergh G, Pintelon L (2002) A framework for maintenance concept development. Int J Prod
Econ 77:299–313

Waeyenbergh G, Pintelon L (2009) CIBOCOF: a framework for industrial maintenance. Int J Prod
Econ 121:633–640

https://protect-au.mimecast.com/s/ePFZC91WrrTN4PJ1tol5ZC?domain=atsb.gov.au
https://www.atsb.gov.au/media/27818/hf_ar-2008-055.pdf
https://www.gov.uk/government/uploads/system/japd100c-22.pdf


Maintenance Policies for Non-repairable
Components

Bram de Jonge

1 Introduction

We consider maintenance policies for non-repairable components. We consider
a component as a part of a system that is subject to maintenance interventions
and for which no further subdivisions are made into sub-components that are
individually subject to any maintenance interventions. The condition of a non-
repairable component cannot be partially improved by carrying out a repair;
maintenance of a non-repairable component is therefore always a replacement. In
most cases, such a replacement will result in a component that is as-good-as-new.
Only if a heterogeneous set of spare components is considered, the quality of a new
components differs per replacement.

A component can be replaced either after its failure or before its failure. In
the first case we talk about corrective, reactive, or failure-based maintenance; the
second case is referred to as preventive maintenance. It is generally preferred to
perform maintenance interventions preventively, for instance because failure of a
component can result in damage to other components, and because it can lead to
unplanned downtime. However, performing preventive maintenance too often is also
undesirable and costly. Therefore, a balance has to be found between the preventive
maintenance frequency and the risk of failures.

A maintenance policy describes when to carry out preventive maintenance. A dis-
tinction can be made between time-based maintenance policies and condition-based
maintenance (CBM) policies. The former is based on the time that a component is
in service, the latter allows for maintenance activities that are performed based on
degradation information.
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Time-based maintenance is easy to implement as only the time that a component
is in service has to be recorded. However, substantial remaining useful life is
wasted if the machine is still in reasonable condition when preventive maintenance
is performed, and a breakdown might occur if it happens to deteriorate faster
than expected. Condition-based maintenance, on the other hand, generally results
in more effectively scheduled preventive maintenance, and, in the ideal case,
preventive maintenance that is performed just before failure. However, applying
condition-based maintenance is only possible if there are conditions that are
related to the moment of failure, and if it is technically possible to monitor these
conditions. Furthermore, condition-based maintenance should only be applied if
its benefits outweigh the efforts and costs required to apply it. These requisites
include condition monitoring equipment and software to store, analyze, and initiate
maintenance actions.

2 Time-Based Maintenance

Traditionally, two time-based preventive maintenance policies can be distinguished,
viz. age-based maintenance and block-based maintenance (Barlow and Proschan,
1965; Gertsbakh, 2000). Under the age-based maintenance policy, corrective main-
tenance is performed when the component fails, and preventive maintenance is
performed when the age of the component reaches T , whichever occurs first (see
Fig. 1). The maintenance age T is the decision variable of this policy. Under the
block-based maintenance policy (sometimes also called periodic maintenance),
preventive maintenance is performed at fixed times kT , k = 1, 2, . . .. Corrective
maintenance is performed when the component fails, but this does not affect the
preventive maintenance schedule (see Fig. 2). The maintenance interval T is the
decision variable of this policy. The disadvantage of block-based maintenance is that
preventive maintenance is sometimes performed shortly after a failure. The main
advantages, on the other hand, are the easier planning as it is known in advance when
preventive maintenance will be performed, and the clustered maintenance actions if
the same block-based policy is used for multiple components.

We let F denote the (cumulative) distribution function of the time until failure of
the component. We will consider time-based maintenance from a cost perspective.
The cost of performing a preventive maintenance action is denoted by cpm, the cost

PM PM

Failure

PM PM

Failure

PM

TTTT

Fig. 1 Scheme of the age-based maintenance policy
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PM PM

Failure

PM PM

Failure

PM PM

T T T T T

Fig. 2 Scheme of the block-based maintenance policy

of a corrective maintenance action by ccm. The cost of preventive maintenance is
assumed to be lower than the cost of corrective maintenance, i.e., cpm < ccm,
implying that preventive maintenance can be beneficial when scheduled effectively.
In the basic models both preventive and corrective maintenance actions are assumed
to require a negligible amount of time and to make the component as-good-as-new.
The cost of performing corrective maintenance is often normalized to 1, so that only
one cost parameter c for the relative cost of performing preventive maintenance is
required.

2.1 Age-Based Maintenance

The (long-run) cost rate (i.e., the long-run mean cost per unit of time) of the age-
based maintenance policy depends on the maintenance age T and is denoted by
ηage(T ). Because both types of maintenance make the component as-good-as-
new, standard renewal theory can be used to evaluate this cost rate. By referring
to the time between consecutive maintenance actions as a cycle, the cost rate can be
written as

ηage(T ) = Mean cost per cycle

Mean cycle length

= ccmF(T ) + cpm(1 − F(T ))
∫ T

0 (1 − F(x)) dx
.

Studies that consider the age-based maintenance policy typically assume that the
lifetime distribution is known with certainty. De Jonge et al. (2015) acknowledge
that this is often not realistic, and they consider the optimal age-based maintenance
policy under uncertainty in the lifetime distribution. They assume a certain paramet-
ric lifetime distribution and include uncertainty in its parameters.

In general, they represent the vector of parameters of the lifetime distribution
by s and denote the joint density function that models the uncertainty in s by g(s),
which is defined on R

n. Instead of the cost rate we can now talk about the expected
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cost rate ηEage(T ) as a function of the maintenance age T :

ηEage(T ) =
∫

s∈Rn

g(s)
ccmF(T ; s) + cpm(1 − F(T ; s))

∫ T

0 (1 − F(x; s)) dx
ds1 · · · dsn.

The preventive maintenance age T E
opt that minimizes this expected cost rate is

considered as the optimal maintenance age.
De Jonge et al. (2015) start to consider a uniform lifetime distribution with

uncertainty in its right end point; this uncertainty is modeled by a second uniform
distribution. Although the uniform distribution is not the most realistic lifetime
distribution, this setting has the advantage that it can be analyzed algebraically.

The authors continue to consider a Weibull lifetime distribution, which is the
most commonly used distribution to model lifetimes. The Weibull distribution
has a shape parameter k and a scale parameter λ. Because the failure mode of a
component often provides an accurate estimation for the shape parameter k, there is
in practice generally most uncertainty in the scale parameter λ. The authors model
the uncertainty in λ by using a uniform distribution on the interval [1 − α, 1 + α].
The value of α ∈ [0, 1] can be interpreted as a measure for the level of uncertainty
in λ. This setting needs to be analyzed numerically.

Figure 3 shows the optimal maintenance age as a function of the level of
uncertainty α in the scale parameter λ of a Weibull lifetime distribution with
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Fig. 3 Optimal preventive maintenance age under uncertainty in the scale parameter λ of a Weibull
lifetime distribution with shape parameter k = 5, corrective maintenance cost ccm = 1, and for
various preventive maintenance costs cpm
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k = 5. It turns out that the optimal maintenance age first decreases in the
level of uncertainty. If the level of uncertainty exceeds a certain threshold the
optimal maintenance age starts to increase. The initial decrease is expected; more
uncertainty in the lifetime distribution results in earlier preventive maintenance.
However, if the uncertainty increases further, it becomes too expensive to prevent
very early failures. Longer lifetimes also become more likely when the uncertainty
increases; this results in an increasing maintenance age.

A similar pattern is observed when a uniform lifetime distribution with uncer-
tainty in its right end point is considered. This parameter basically also is the scale
parameter of this distribution. We also expect a similar pattern when uncertainty
in the scale parameter of other parametric lifetime distributions is considered,
and when the uncertainty in the scale parameter itself is modeled by a different
distribution. We would also like to mention that parametric bootstrapping has also
been used to obtain the probability distribution of an estimator for the optimal
maintenance age (Tokumoto et al., 2014).

In the setting above a static decision is considered that is not updated when
more information becomes available. However, the distribution that models the
uncertainty can be updated when more data becomes available. When a failure
occurs an event duration is obtained, whereas a preventive maintenance action
results in censored durations. Both types of durations can be used to update the
uncertainty in a Bayesian manner.

Event durations are more informative than censored durations, and long censored
durations are more informative than short censored durations. In other words, the
choice of a maintenance age influences the information that becomes available. This
is acknowledged by De Jonge et al. (2015); they suggest to postpone preventive
maintenance actions at the start of the lifespan of a component. This will result in
an increase in costs during the first phase of the lifespan of the components, but
it also results in reduced uncertainty and thereby in more effectively scheduled
maintenance actions during the remainder of the lifespan. The aim is to find a
balance so that the total costs during the entire lifespan is minimized. In the
literature, this tradeoff is also referred to as the exploration–exploitation dilemma.

Because (De Jonge et al., 2015) are the first to recognize that the choice of
the maintenance policy influences the information that becomes available, they
have considered a simple setting with only two component types, viz., weak and
strong components. Both component types have a Weibull lifetime distribution
with a common value of the shape parameter k; the values of the respective scale
parameters λ are different. The knowledge is modeled by the estimated probability
that the component is strong, and a threshold policy is used that postpones preventive
maintenance as long as this probability exceeds a certain threshold, i.e., as long
as it is not sufficiently sure that the component is weak. This threshold policy is
compared to a policy that minimizes the expected cost rate based on the current
knowledge as described above. It turns out that the threshold policy can offer
substantial cost reductions as opposed to the policy that minimizes the expected
cost rate.
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The previous analysis is based on a Weibull lifetime distribution with uncertainty
only in its scale parameter. Although most uncertainty is often in the scale
parameter, there also exist situations in which uncertainty in the shape parameter
is expected. This can be the case if the failure mode of equipment is not known, or
if there are multiple competing failure modes. This may lead to interesting results
because a shape parameter k < 1 corresponds to a decreasing failure rate, implying
that preventive maintenance is never beneficial. The optimal policy in settings where
it is not known whether there is an increasing or a decreasing failure rate is of
interest.

Another avenue for future research is to assume that the parametric distribu-
tion itself is not known, i.e., to assume model uncertainty instead of parameter
uncertainty. A difficulty of such settings is that a selection of candidates for the
true parametric distribution has to be made, and that prior probabilities need to be
specified. Moreover, other optimality criteria instead of the expected cost rate could
be considered. Minimization of the expected cost rate leads to the best decisions on
average, but these decisions may be unacceptable for certain values of the unknown
parameters.

2.2 Block-Based Maintenance

For the block-based maintenance policy the renewal points are the times at which
preventive maintenance is performed. Renewal cycles thus always have length T ,
and the preventive maintenance cost is incurred once per cycle (at the end of each
cycle). We let m(t) denote the expected number of failures during a period with
length t that starts with a component that is as-good-as-new, and during which no
preventive maintenance is performed. The cost rate ηblock(T ) of the block-based
maintenance policy as a function of the preventive maintenance interval T equals

ηblock(T ) = cpm + ccmm(T )

T
. (1)

The main difficulty in evaluating ηblock(T ) is that it requires the evaluation of the
mean number of failures m(T ) during a time period with length T . The function
m(t) is called a renewal function and can be calculated as

m(t) =
∞∑

n=1

Fn(t),

in which Fn represents the nth convolution of the lifetime distribution function
F . The first convolution F1 equals the distribution function F itself; the other
convolutions can be determined recursively:
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Fn(t) =
∫ t

0
f (x)Fn−1(t − x)dx, n = 2, 3, . . .

In practice, m(t) is often approximated numerically by using the first few convolu-
tions. This generally results in good approximations because the number of failures
to expect in between consecutive preventive maintenance actions is typically low.

Studies that consider a block-based maintenance policy generally assume that
machines or components are either used continuously, or that the deterioration does
not depend on the actual usage. In practice, however, this is often not realistic.
De Jonge and Jakobsons (2018) consider the block-based maintenance policy for
a component that is not used continuously and for which the actual usage is
random. Furthermore, the component is assumed to only deteriorate when it is
active. Although the future usage is stochastic, it is assumed that all maintenance
actions have to be scheduled in advance, and therefore a block-based maintenance
policy is considered.

The authors model the random component usage by a Markov switching. The
component is alternately active and idle, and the lengths of these periods are
modeled by exponential durations. Active periods are exponentially distributed
with rate parameter α1, whereas idle periods are exponentially distributed with rate
parameter α0. It follows that active periods have mean length 1/α1 and that idle
periods have mean length 1/α0, from which it follows that the usage rate ρ of the
component is given by

ρ =
1
α1

1
α1

+ 1
α0

= α0

α0 + α1
.

As mentioned before, the main difficulty in evaluating the cost rate (1) of the
block-based maintenance policy is the evaluation of the renewal function m(t).
In the current setting with random component usage there is not even a closed-
form expression for the distribution function F of the time until failure. There are,
however, two limiting cases that can be analyzed using the renewal function of the
lifetime distribution. We will denote this renewal function by mW(t). If, for instance,
the component has a Weibull lifetime distribution, then mW is the renewal function
of the Weibull distribution.

The two limiting cases are those with a very high and with a very low switching
frequency. If the switching frequency is very high, the usage in between two preven-
tive maintenance actions is very stable. Approximately, the component will be active
during time period ρT in between two consecutive preventive maintenance actions,
and failures can only occur during this time period. Thus, the expected number of
failures during the maintenance interval can be approximated by mW(ρT ), and the
cost rate (1) by

ηfreq(T ) = cpm + ccmm(T )

T
≈ cpm + ccmmW(ρT )

T
.
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In the other limiting case the switching frequency is very low. This implies that, in
between two consecutive preventive maintenance actions, it is very likely that the
component is either entirely active, or entirely idle. The corresponding probabilities
are ρ and 1 − ρ, respectively, with ρ equal to the usage rate (2). Failures can only
occur if the component is active, implying that the expected failure cost during a
maintenance interval is ccmρmW(T ). In this case the cost rate can be approximated
by

ηrare(T ) = cpm + ccmm(T )

T
≈ cpm + ccmρmW(T )

T
.

Because the usage is quite stable for high switching frequencies, this limiting case
results in a relatively long preventive maintenance interval. In order to avoid failures
during long active periods, a much more conservative preventive maintenance
interval is optimal for low switching frequencies. De Jonge and Jakobsons (2018)
analyze the general case of the problem by formulating it as a set of integral
equations. They show that the optimal maintenance interval and the corresponding
cost rate for more moderate switching frequencies are in between the two bounds
obtained from the two limiting cases. Furthermore, they also show that, for moderate
switching frequencies, it is important to choose the maintenance interval based on
the actual usage pattern, instead of only based on the usage rate of the component.

Future research in this area could consider active and idle periods that are not
exponentially distributed. In such a setting one has to keep track of the time that
the component is already active or idle, which complicates the analysis. Instead
of analyzing this setting algebraically, it would also be possible to use simula-
tions. Another possibility for future developments could be to consider multiple
component speeds, instead of only on and off. This means that more sophisticated
stochastic models are needed to model the random usage of the component. Random
component usage can also be relevant in settings with condition-based maintenance.
In such settings there is often a planning time between initiating and performing
preventive maintenance. A component that is not used continuously during the
planning time is expected to result in a higher optimal deterioration level at which
preventive maintenance is scheduled. Finally, in the above, it is assumed that the
component usage is dictated externally. However, if there is some flexibility in
the usage, the performance of the system would benefit from the possibility to
simultaneously optimize maintenance and usage decisions.

3 Condition-Based Maintenance

Because of the increasing possibilities to monitor, store, and analyze condi-
tion information of equipment, condition-based maintenance (CBM) policies are
gaining popularity. A prerequisite for analyzing and optimizing condition-based
maintenance policies is the modeling of deterioration processes of components.
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Distinctions between deterioration processes can be made based on the state space
(either discrete or continuous), and on the time scale (also either discrete or
continuous).

Another important distinction that can be made is that between continuous
condition monitoring and condition monitoring based on inspections. The first
case is applicable if a sensor is used for condition monitoring; in this case we
continuously know what the actual deterioration level of the component is. When
inspections are needed to obtain condition information, we do not only need to
determine when to carry out maintenance, but we also need to determine an
inspection schedule or policy.

Inspection schedules are either periodic or aperiodic. The advantage of periodic
inspections is that the entire inspection schedule is fully specified by a single
decision variable, namely the time between consecutive inspections. This eases
both the optimization and the implementation in a practical industrial context.
However, when acceptable in practice, aperiodic inspections are often preferred
because failure becomes more likely as the deterioration level increases. A final note
is that an entire aperiodic inspection schedule can be fixed in advance, but that the
next inspection can also be scheduled dynamically based on the currently observed
deterioration level.

3.1 Delay-Time Model

The most simple deterioration model is the so-called delay-time model. It is a
continuous-time model that adds a “deteriorated” state in between the operating
state and the failed state. Thus, the model has three states. It is called the delay-time
model because a delayed failure occurs after reaching the deteriorated state. When
considering the delay-time model, probability distributions have to be specified for
the time until reaching the deteriorated state, and for the time in between reaching
the deteriorated state and failure. Most studies that adopt the delay-time model
assume that an inspection is required to observe the deteriorated state and that
failures are self-announcing. Analysis is easiest if the exponential distribution is
used to model the time until reaching the deteriorated state. In that case, if immediate
preventive maintenance is carried out when an inspection reveals the deteriorated
state, all inspections are renewal points.

Although the delay-time model is proposed by Christer (1976) in 1976, there
are new developments in delay-time modeling to date. For instance, (Van Oosterom
et al., 2014) consider a periodic inspection schedule, but they relax the common
assumption that preventive maintenance should be carried out immediately when
an inspection reveals the deteriorated state. Instead, they allow the maintenance
action to be delayed. The advantage is twofold. First, the utilization of the useful
life of the component is improved, and second, the maintenance cost is reduced as
a result of a longer time window to prepare maintenance resources. Wang et al.
(2017) allow for a delayed first inspection, and a periodic inspection schedule
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thereafter. Furthermore, they initially schedule a replacement at a certain age. If an
inspection reveals the deteriorated state and the time until the age-based replacement
is less than a certain threshold level, then the preventive replacement action will be
delayed. Otherwise, the component will be replaced immediately.

3.2 Gamma Deterioration Process with Continuous
Monitoring

A commonly used continuous-time continuous-state stochastic deterioration process
is the stationary gamma process. The gamma process was introduced in the area
of reliability by Abdel-Hameed (1975). It has the property that the deterioration
increments, within any time interval of any length, are gamma distributed with
identical scale parameter.

The density function f of the gamma distribution with shape parameter α > 0
and scale parameter β > 0 equals

fα,β(x) = 1

Γ (α)βα
xα−1e− x

β , x > 0,

in which Γ (α) = ∫∞
0 zα−1e−z dz denotes the gamma function. The stationary

gamma process has a shape function at with shape parameter a > 0 and a scale
parameter b > 0. It is a continuous-time process {X(t) : t ≥ 0} with the following
properties:

1. X(0) = 0 with probability 1.
2. X(τ) − X(t) ∼ fa(τ−t),b for τ > t ≥ 0.
3. X(t) has independent increments.
4. X(t) is a jump process with infinitely many jumps in any time interval.

The process is stationary because the increments X(τ)−X(t) depend only on τ − t

for all τ and t . The expectation and the variance of the process X(t) are given by

E(X(t)) = abt and Var(X(t)) = ab2t,

respectively. Thus, the variance of the deterioration process, relative to its mean, is
small if a is large and b is small, and is large if a is small and b is large. We will use
the standard deviation σ = √

a · b as a measure for the amount of volatility in the
stationary gamma deterioration process. Figure 4 shows sample paths of stationary
gamma processes with σ = 0.05, σ = 0.5, and σ = 5.

De Jonge et al. (2017) consider a single maintainable component that is
monitored continuously and for which the deterioration is modeled by a stationary
gamma process. Failure occurs when the amount of deterioration exceeds a given
level L. After such a failure an immediate corrective maintenance action will
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Fig. 4 Sample paths of
stationary gamma processes
for various standard
deviations σ

0

1

D
et
er
io
ra
ti
on

le
ve
l
X
(t
)

10
Time t

σ = 5

σ = 0.05

σ = 0.5

be carried out. Furthermore, as long as the component is functioning, preventive
maintenance can be carried out. The costs of preventive and corrective maintenance
are again denoted by cpm and ccm, respectively. Both types of maintenance are
assumed to require a negligible amount of time and to make the component as-
good-as-new, i.e., they will bring the deterioration level back to 0.

The aim of the study is to compare the performance of condition-based mainte-
nance to the performance of time-based maintenance. The condition-based mainte-
nance policy is prescribed by a single deterioration threshold level M . Preventive
maintenance is performed when the deterioration level exceeds this level M . This
commonly used policy is called the control-limit policy. The threshold M should
not be chosen too close to the failure level L because the deterioration process is
a jump process. In other words, when M is close to L and when the deterioration
level exceeds M , it may also immediately jump over L, resulting in failure. The
time-based maintenance policy that is considered is the age-based maintenance
policy. Thus, preventive maintenance is carried out if a certain maintenance age
T is reached, see also Sect. 2.1.

Figure 5 shows the cost rate of the condition-based maintenance (CBM) policy as
a function of the preventive maintenance threshold M , and the cost of the time-based
maintenance (TBM) policy as a function of the maintenance age T . The gamma
process is specified by a = 5 and b = 0.22 (this results in a mean time to failure
of 1), the failure threshold equals L = 1, and the cost parameters are cpm = 0.2
and ccm = 1. Simulation has been used to make the figure. It turns out that the cost
rate under the optimal CBM policy is substantially lower than the cost rate under
the optimal TBM policy. In other words, the availability of condition information
results in substantial cost savings. It can also be observed that the optimal preventive
maintenance threshold M is much smaller than the failure threshold L = 1. As
explained before, this is caused by the fact that the deterioration process is a jump
process.
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Fig. 5 The cost rate under
the CBM policy (as a function
of the M) and under the TBM
policy (as a function of T )
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Fig. 6 The cost rate under
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Figure 6 shows the effect of the level of volatility σ of the gamma deterioration
process on the cost rates of the optimal policies. For very low levels of volatility
there is almost no randomness in the moment of failure, and both CBM and TBM
are very effective, i.e., both are able to carry out preventive maintenance just before
failure. For very high levels of volatility, on the other hand, failure is almost always
caused by a sudden very large deterioration increment. Both the CBM and the
TBM policy cannot prevent this from happening. Note that, in this case, the lifetime
distribution is close to an exponential distribution, and that the optimal age-based
maintenance policy is to never carry out preventive maintenance (because of the
constant failure rate). The benefit of CBM compared to TBM is largest for moderate
levels of volatility.
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Fig. 7 The cost rate under
the optimal CBM and the
optimal TBM policy for a
varying preventive
maintenance cost cpm
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Figure 7 shows the effect of the preventive maintenance cost cpm on the cost
rates of the optimal policies. For extremely small preventive maintenance costs, both
policies will use a very high maintenance frequency (at very low cost), and almost
no failures will happen. This results in a very low cost rate for both policies. For
extremely high preventive maintenance costs, carrying out preventive maintenance
is not beneficial anymore, and the cost rates of both policies are very high. Again,
the cost saving of CBM as opposed to TBM is largest for moderate preventive
maintenance costs.

De Jonge et al. (2017) continue to consider the effect of various practical factors
that influence the benefit of condition-based maintenance compared to time-based
maintenance. The factors that they consider are a required planning time that is
needed to carry out preventive maintenance, noise in the observed deterioration
information, and uncertainty in the deterioration level at which failure occurs.

In practice there is often a planning time needed between initiating and per-
forming maintenance. Here we assume that a fixed planning time s is required
for carrying out preventive maintenance. Furthermore, if failure occurs during
the planning time we assume that corrective maintenance will be carried out
immediately and that only the high corrective maintenance cost is incurred. The
preventive maintenance cost of the maintenance action that was already planned
does not need to be paid anymore. We note that a planning time does not influence
the time-based maintenance policy. However, for the condition-based maintenance
policy, the decision is no longer to determine the deterioration level at which
preventive maintenance should be carried out, but it is now the deterioration level
at which preventive maintenance should be planned. During the planning time
the condition information cannot be used anymore, and, as a consequence, the
performance of the condition-based maintenance policy decreases. Figure 8 shows
the cost rates of both policies as a function of the planning time s. When the planning
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Fig. 8 The cost rate under
the optimal CBM and the
optimal TBM policy for a
varying planning time s
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Fig. 9 The cost rate under
the optimal CBM and the
optimal TBM policy for a
varying level of noise σp in
the condition monitoring
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time equals the optimal maintenance age of the time-based maintenance policy, all
benefits of condition-based maintenance have vanished.

Another factor that is likely to exist in practice is imperfect condition information
due to noise. The difference between the actual deterioration level and the observed
deterioration level has been modeled by a Brownian motion, multiplied by a
parameter σp. The value of σp can be interpreted as a measure for the amount
of noise. Because the time-based maintenance policy does not use any condition
information, noise does not influence the performance of this policy. Condition-
based maintenance, on the other, is negatively influenced by imperfect condition
monitoring because the obtained information has a lower value. Figure 9 shows the
optimal cost rates of both policies as a function of the amount of uncertainty σp.
We observe that small amounts of noise only have a minor influence. However, if
the amount of noise is substantial, it can even be the case the obtained condition
information should not be used at all anymore.
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Fig. 10 The cost rate under
the optimal CBM and the
optimal TBM policy for a
varying level of uncertainty
σf in the deterioration failure
level
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Studies on condition-based maintenance typically assume that failure occurs
when a certain fixed level of deterioration is exceeded. In practice, however, there
are also many situations where this assumption is not realistic. The randomness in
the failure deterioration level has been modeled by a normal distribution with mean
1. The standard deviation σf of this normal distribution can be seen as a measure for
the amount of uncertainty in the failure level. In contrast to the imperfect condition
information does the random failure level also affect the time-based maintenance
policy. Randomness in the failure level leads to a higher variance in the time until
failure, which has a negative impact on the performance of time-based maintenance.
The condition-based maintenance policy also suffers from an uncertain failure level
as it lowers the value of the condition information. Figure 10 shows that the effect
on condition-based maintenance is larger than on time-based maintenance, implying
that the benefit of condition-based maintenance is reduced if there is uncertainty in
the failure level.

When deciding to switch from time-based maintenance to condition-based
maintenance it is important to assess whether the benefits outweigh the additional
costs for monitoring equipment and for collecting, storing, and analyzing condition
data. It is important that both the volatility of the deterioration process and the
cost of preventive maintenance compared to that of corrective maintenance are
not extremely low or extremely high. Furthermore, it is important to realize that
a required planning time, imperfect condition monitoring, and an uncertain failure
level negatively impact the cost saving of condition-based maintenance as opposed
to time-based maintenance.
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3.3 Gamma Deterioration Process with Periodic Inspections

In this section we reconsider the setting of Park (1988), in which a periodic
inspection policy is considered for a component that deteriorates according to a
stationary increasing continuous-time continuous-state deterioration process. The
stationary gamma process is an example of such a process. If an inspection reveals
a deterioration level that exceeds a certain threshold level, an immediate preventive
maintenance action is carried out. Failure is assumed to occur if a certain fixed
failure threshold L is exceeded. Failures are assumed to be self-announcing and
are followed by an immediate corrective maintenance action. Furthermore, the
inspection schedule is reset after a failure. Both types of maintenance are assumed
to make the component as-good-as-new, and to require a negligible amount of
time. The cost of preventive maintenance is denoted by cpm, the cost of corrective
maintenance by ccm, and the cost of an inspection by ci. We make the reasonable
assumptions that ci < cpm < ccm and that ci + cpm < ccm.

The maintenance policy in the above setting is described by two decision
variables, the time between two consecutive inspections, denoted by T , and
the preventive maintenance deterioration threshold, denoted by M . Initially, we
consider the time between inspections as fixed in our analysis, and, for ease of
notation, we scale time such that the time between two consecutive inspections is 1.
In other words, the ith inspection is performed at time i. Later on, the time between
inspections can be varied to investigate how this influences the optimal cost rate,
and to search for the optimal inspection interval.

Given the fixed inspection interval 1, the aim is to obtain an expression for the
cost rate η(M) as a function of the preventive maintenance threshold M . Because
the component is as-good-as-new after each maintenance action, standard renewal
theory can be applied. We call the time between two consecutive maintenance
actions a cycle, and we calculate the cost rate η(M) as the mean cost per cycle,
denoted by C(M), divided by the mean cycle length, denoted by D(M). That is,

η(M) = C(M)

D(M)
.

We will continue to derive expressions for C(M) and D(M), both as a function of
the preventive maintenance threshold M , which can be evaluated numerically.

We will denote the deterioration process by X(t) with X(0) = 0. We let Gt(x)

denote the distribution function of the deterioration level at time t , i.e., Gt(x) equals
the probability that the deterioration level has not exceeded x at time t :

Gt(x) = P(X(t) < x).

We have that G0(x) = 1 for all x ≥ 0, and Gt(0) = 0 for all t > 0. The derivative
of Gt(x) with respect to x is the density function of the deterioration level at time t

and will be denoted by gt (x):
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gt (x) = d

dx
Gt(x).

We use the following expression for the mean cost per cycle C(M):

C(M) = cpm +
∞∑

i=1

i · ci · P (PM at inspection i)

+
∞∑

i=1

((i − 1)ci + ccm − cpm) · P (Failure between inspections i − 1 and i) .

Thus, we first incur the preventive maintenance cost cpm and subtract it if a cycle
ends with failure. The mean cost per cycle can be written as

C(M) = cpm +
∞∑

i=1

i · ci · P (X(i − 1) ≤ M and M < X(i) ≤ L)

+
∞∑

i=1

((i − 1)ci + ccm − cpm) · P (X(i − 1) ≤ M and X(i) > L) .

Because the deterioration level at time 0 is degenerate (X(0) = 0) we take the
first term out of the two summations. Furthermore, by letting ΔXi = X(i) −
X(i − 1) denote the additional amount of deterioration between inspection i − 1
and inspection i, it follows that C(M) can be written as

C(M)

= cpm + ci · P (M < X(1) ≤ L) + (ccm − cpm) · P (X(1) > L)

+
∞∑

i=2

i · ci · P (X(i − 1) ≤ M and M < X(i − 1) + ΔXi ≤ L)

+
∞∑

i=2

((i − 1)ci + ccm − cpm) · P (X(i − 1) ≤ M and X(i − 1) + ΔXi > L)

= cpm + ci · P (M < X(1) ≤ L) + (ccm − cpm) · P (X(1) > L)

+
∞∑

i=2

i · ci · P (X(i − 1) ≤ M and M − X(i − 1) < ΔXi ≤ L − X(i − 1))

+
∞∑

i=2

((i − 1)ci + ccm − cpm) · P (X(i − 1) ≤ M and ΔXi > L − X(i − 1)) .

Because the deterioration level X(i−1) at time i−1 is independent of the additional
amount of deterioration ΔXi between time i−1 and time i, and because the density
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function of ΔXi equals g1, we have that C(M) can be written as

C(M) = cpm + ci · P (M < X(1) ≤ L) + (ccm − cpm) · P (X(1) > L)

+
∞∑

i=2

i · ci ·
∫ M

0
gi−1(x)

∫ L−x

M−x

g1(y) dy dx

+
∞∑

i=2

((i − 1)ci + ccm − cpm) ·
∫ M

0
gi−1(x)

∫ ∞

L−x

g1(y) dy dx

= cpm + ci(G1(L) − G1(M)) + (ccm − cpm)(1 − G1(L))

+
∞∑

i=2

i · ci ·
∫ M

0
gi−1(x)(G1(L − x) − G1(M − x)) dx

+
∞∑

i=2

((i − 1)ci + ccm − cpm) ·
∫ M

0
gi−1(x)(1 − G1(L − x)) dx.

By rearranging the two sums and combining terms with the variable i in one
summation and without it in another summation we obtain

C(M) = cpm + ci(G1(L) − G1(M)) + (ccm − cpm)(1 − G1(L))

+
∞∑

i=2

i · ci

∫ M

0
gi−1(x)(1 − G1(M − x)) dx

+
∞∑

i=2

(ccm − cpm − ci) ·
∫ M

0
gi−1(x)(1 − G1(L − x)) dx

= cpm + ci(G1(L) − G1(M)) + (ccm − cpm)(1 − G1(L))

+ci

∞∑

i=2

i

∫ M

0
gi−1(x) dx − ci

∞∑

i=2

i

∫ M

0
gi−1(x)G1(M − x) dx

+(ccm − cpm − ci)
∞∑

i=2

∫ M

0
gi−1(x) dx

−(ccm − cpm − ci)
∞∑

i=2

∫ M

0
gi−1(x)G1(L − x) dx.

By realizing that
∫M

0 gi−1(x)G1(M − x) dx equals the probability that the
deterioration level at time i − 1 is below M , and that it is still below M one time
period later, we have that
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∫ M

0
gi−1(x)G1(M − x) dx =

∫ M

0
gi(x) dx = Gi(M),

which allows us to write C(M) as

C(M) = cpm + ci(G1(L) − G1(M)) + (ccm − cpm)(1 − G1(L))

+ci

∞∑

i=2

iGi−1(M) − ci

∞∑

i=2

iGi(M)

+(ccm − cpm − ci)
∞∑

i=2

Gi−1(M) − (ccm − cpm − ci)

×
∫ M

0

∞∑

i=2

gi−1(x)G1(L − x) dx

= cpm + ci(G1(L) − G1(M)) + (ccm − cpm)(1 − G1(L))

+ciG1(M) + ci

∞∑

i=1

Gi(M)

+(ccm − cpm − ci)
∞∑

i=1

Gi(M) − (ccm − cpm − ci)

×
∫ M

0

∞∑

i=1

gi(x)G1(L − x) dx.

For ease of notation we let the function H(x) be defined as

H(x) =
∞∑

i=1

Gi(x),

and the function h(x) as the derivative of H(x), i.e.,

h(x) = d

dx
H(x) =

∞∑

i=1

gi(x).

We then have that C(M) can be expressed as

C(M) = cpm + ci(G1(L) − G1(M)) + (ccm − cpm)(1 − G1(L))

+ciG1(M) + ciH(M)

+(ccm − cpm − ci)H(M) − (ccm − cpm − ci)
∫ M

0
h(x)G1(L − x) dx,
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which can be rewritten to our following final expression for the mean cost per cycle
C(M):

C(M) = ccm + (ccm − cpm)H(M) − (ccm − cpm − ci)(G1(L)

+
∫ M

0
h(x)G1(L − x) dx).

We will now continue with the mean cycle length D(M), which can be expressed as

D(M) =
∞∑

i=1

i · P (PM at inspection i)

+
∞∑

i=0

E (Time until failure between inspections i and i + 1) .

Similar to the determination of C(M), we can show that

∞∑

i=1

i · P (PM at inspection i)

= G1(L) − G1(M) +
∞∑

i=2

i ·
∫ M

0
gi−1(x)(G1(L − x) − G1(M − x)) dx

= G1(L) − G1(M) +
∞∑

i=1

(i + 1)
∫ M

0
gi(x)(G1(L − x) − G1(M − x)) dx. (2)

We let Fx(t) and fx(t) respectively denote the distribution and density function of
the time t at which deterioration level x is reached. We have

Fx(t) = P(X(t) ≥ x) = 1 − P(X(t) ≤ x) = 1 − Gt(x).

We can now write

∞∑

i=0

E (Time until failure between inspections i and i + 1)

=
∫ 1

0
tfL(t) dt +

∞∑

i=1

∫ M

0

∫ 1

0
(i + t)gi(x)fL−x(t) dt dx

= FL(1) −
∫ 1

0
FL(t) dt +

∞∑

i=1

∫ M

0

∫ 1

0
igi(x)fL−x(t) dt dx
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+
∞∑

i=1

∫ M

0

∫ 1

0
tgi(x)fL−x(t) dt dx

=
∫ 1

0
Gt(L) dt − G1(L) +

∞∑

i=1

∫ M

0
igi(x)FL−x(1) dx

+
∫ M

0

∫ 1

0
th(x)fL−x(t) dt dx

=
∫ 1

0
Gt(L) dt − G1(L) +

∞∑

i=1

i

∫ M

0
gi(x)(1 − G1(L − x)) dx

+
∫ M

0
h(x)

(∫ 1

0
Gt(L − x) dt − G1(L − x)

)
dx. (3)

By combining (2) and (3) it can be shown that the mean cycle length D(M) equals

D(M) =
∫ 1

0
Gt(L) dt +

∫ M

0
h(x)

∫ 1

0
Gt(L − x) dt dx.

The cost rate η(M) as a function of the preventive maintenance threshold is thus
equal to

η(M) = C(M)

D(M)

= ccm + (ccm − cpm)H(M) − (ccm − cpm − ci)(G1(L) + ∫M

0 h(x)G1(L − x) dx)
∫ 1

0 Gt(L) dt + ∫M

0 h(x)
∫ 1

0 Gt(L − x) dt dx
.

(4)

We will now consider the specific stationary gamma deterioration process with
parameter values a = 2.5 and b = 0.5. Furthermore, we assume a breakdown
deterioration level L = 4, a corrective maintenance cost ccm = 10, a preventive
maintenance cost cpm = 1, and an inspection cost ci = 0.1. Note that the inspection
interval is still fixed at 1. Figure 11 shows the cost rate η(M) as function of
the preventive maintenance threshold M . It turns out to be optimal to carry out
preventive maintenance if an inspection reveals a deterioration level of at least
Mopt = 1.52. The corresponding cost rate equals η(Mopt) = 0.81.

In the case of a stationary gamma deterioration process, (4) basically provides us
with a formula η(M,L, a, b, ccm, cpm, ci) for the cost rate, in which L, a, b, ccm,
cpm, and ci are model parameters. For a stationary gamma deterioration process
with parameters a and b, the deterioration increment during a time period of length
T is gamma distributed with parameters aT and b. Therefore, for an inspection
interval with an arbitrary length T , the cost rate η̄ can easily be expressed in terms
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Fig. 11 The cost rate η(M)

as a function of the preventive
maintenance threshold M
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Figure 12 shows the cost rate η(M, T ) for various inspection intervals T , again as a
function of the preventive maintenance threshold M . Based on this figure it can be
concluded that the optimal inspection interval should be somewhere between 0.4 and
1. If we optimize η(M, T ) numerically over both M and T , we find that the optimal
inspection interval equals Topt = 0.68, and that preventive maintenance should be
carried out if an inspection reveals a deterioration level of at least Mopt = 1.85.
Thus, by allowing an inspection interval with length different from 1, it is optimal
to inspect the component more frequently, and, as a consequence, the preventive
maintenance threshold will increase. The corresponding optimal cost rate decreases
to η̄(Topt,Mopt) = 0.78.
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3.4 Discretizing Continuous-Time Continuous-State
Deterioration Processes

The drawback of modeling deterioration by a continuous-time continuous-state
stochastic process is its complicated analytical tractability. The maintenance policies
that we have considered in Sect. 3.2 are for instance difficult to evaluate numerically.
The main reason for this is the overshoot behavior of the gamma process that is
caused by the fact that it makes jumps. The analysis in Sect. 3.2 is therefore based
on simulation.

An alternative method that can be used to analyze maintenance policies for
a component that deteriorates according to a continuous-time continuous-state
process is by discretizing this process. De Jonge (2019) presents an approach for
discretizing stationary non-decreasing continuous-time continuous-state deteriora-
tion processes into discrete-time Markov chains with stationary increments. The
first step of this approach is to discretize the continuous time into discrete time
steps with a certain length Δt . Furthermore, the deterioration levels between 0 and
the failure level L are subdivided into m deterioration intervals xk , k = 1, . . . , m.
These intervals correspond to states 1, . . ., m in the Markov chain. All deterioration
levels above L are combined into the failed state m+ 1. The transition probabilities
of the Markov chain are calculated based on the assumption that the deterioration
level is uniformly distributed on a certain interval xk when it is within this interval
at an arbitrary moment in time.

As an example, if we consider a stationary gamma deterioration process with
parameters a = 2 and b = 0.2, a failure threshold level L = 1, a number of
deterioration states before failure of m = 4, and time steps with length Δt = 0.1,
we obtain the following transition probability matrix for the discrete-time Markov
chain:

P =

⎛

⎜⎜⎜⎜⎜⎝

0.861847 0.120864 0.013780 0.002713 0.000795
0.000000 0.861847 0.120864 0.013780 0.003509
0.000000 0.000000 0.861847 0.120864 0.017288
0.000000 0.000000 0.000000 0.861847 0.138153
0.000000 0.000000 0.000000 0.000000 1.000000

⎞

⎟⎟⎟⎟⎟⎠
.

De Jonge (2019) also points out how the initial maintenance policy considered
in Sect. 3.2 can be evaluated based on the discretized deterioration process and
on matrix algebra. Because failed components will remain failed as long as no
maintenance is carried out, the Markov chain with transition probability matrix P is
an absorbing Markov chain with state m + 1 the absorbing state. The matrix P can
be written as

P =
(
Q r
0 1

)
,
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in which Q is an m × m matrix. The probability of going from a deterioration state
i ≤ m to a deterioration state j ≤ m in exactly k time steps is equal to entry (i, j)

of the matrix Qk . The fundamental matrix R is given by

R =
∞∑

k=0

Qk = (Im − Q)−1,

in which entry (i, j) equals the expected number of time periods that the process is
in state j before it is being absorbed, given that it started in state i. After carrying out
maintenance the component is as-good-as-new and the expected time until failure
equals

∑
j R1j .

We let M ∈ {1, . . . , m} denote the preventive maintenance threshold, and η(M)

the corresponding cost rate. Standard renewal theory can again be used to calculate
this cost rate. We let C(M) denote the mean cost per maintenance action and D(M)

the mean time until maintenance. Thus,

η(M) = C(M)

D(M)
.

Because the deterioration process is non-decreasing, we have that R1j , j < M ,
is also the expected number of time periods that the deterioration level is j before
reaching a deterioration level of at least M , i.e., before maintenance is carried out.
This results in the following expression for the mean time until maintenance:

D(M) =
∑

j<M

R1j .

Furthermore, because the probability of failure is Pj,m+1 if the deterioration
level is j , it follows that the probability that a cycle ends with failure equals∑

j<M R1jPj,m+1, implying that the mean cost per maintenance action equals

C(M) = cpm + (ccm − cpm)
∑

j<M

R1jPj,m+1.

Based on the above we now have the following expression for cost rate:

η(M) = C(M)

D(M)
= cpm + (ccm − cpm)

∑
j<M R1jPj,m+1∑

j<M R1j
.

By choosing a sufficiently high number of deterioration states m in the discretiza-
tion, this formula provides us with a smooth graph of the cost rate as a function of
the preventive maintenance threshold M . Figure 13 shows this cost rate for the case
that we have considered in Sect. 3.2, i.e., a stationary gamma deterioration process
with parameters a = 5 and b = 0.22, a failure threshold L = 1, and cost parameters
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Fig. 13 The cost rate η(M)

as a function of the preventive
maintenance threshold M
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cpm = 0.2 and ccm = 1. Furthermore, m = 100 deterioration states before failure
have been considered. We observe that this graph is virtually identical to the graph
of CBM in Fig. 5. The main advantage of this approach is that we avoid the long
calculation times that are required for simulation.

3.5 Aperiodic Inspections

Modeling deterioration by a discrete-time Markov chain is also useful when aiming
to determine optimal policies by using the framework of Markov decision processes.
This methodology is for instance applicable for determining maintenance policies
with aperiodic inspections. We again consider a single component that deteriorates
according to a discrete-time Markov chain with transition probability matrix P .
There are m deterioration states before failure and a state m + 1 that represents
failure. Failures are assumed to be self-announcing; all other deterioration states
can only be observed by an inspection. Inspections can be performed at the start of
each time period, the cost of an inspection is denoted by ci, and an inspection is
assumed to take a negligible amount of time. Furthermore, also at the start of each
time period, preventive maintenance can be performed. This can done immediately
after an inspection, based on the observed deterioration level, or without performing
an inspection first. When failure occurs, corrective maintenance should be carried
out immediately. Both preventive and corrective maintenance are assumed to take a
negligible amount of time and to bring the component back to the as-good-as-new
state. The costs of a preventive and of a corrective maintenance action are denoted
by cpm and ccm, respectively. This setting is also considered by Maillart (2006), in
particular for a small number of deterioration states.
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The optimal inspection and maintenance decisions can be determined by formu-
lating the above as a Markov decision process. Because the exact deterioration state
of the components is uncertain as long as no inspection or maintenance is carried
out, and because this uncertainty cannot be ignored, it is appropriate to formulate
the problem as a partially observable Markov decision process (Monahan, 1982). A
partially observable Markov decision process is a generalization of the standard
Markov decision process, and can be formulated as a Markov decision process
with an enlarged state space, namely the space of probability distributions over the
underlying states. The states of a partially observable Markov decision process are
typically called either knowledge states or belief states.

In the setting that we consider it is convenient to denote the knowledge states
by, for instance, θi,j , in which i denotes the last observed deterioration level, and
j denotes the number of time periods ago that this deterioration level has been
observed, i = 1, . . . , m, j = 0, 1, . . . Thus, θi,0 denotes the knowledge state if it
is known with certainty that the current deterioration level is i. For j > 0 the actual
deterioration level is uncertain, and in general, the probability of a sudden failure
increases both in i and in j . The exact probabilities can be calculated based on
the transition probability matrix P of the Markov chain. Another remark is that the
number of knowledge state is infinite. However, we can fairly choose a sufficiently
large N for which we can be reasonably sure that, under the optimal policy, the
time between two consecutive actions (either inspection or maintenance) will never
exceed N periods. This results in a finite number of states θi,j , i = 1, . . . , m,
j = 0, 1, . . . , N .

In any state the optimal action will always be either to do nothing, to carry
out an inspection, or to perform preventive maintenance. Corrective maintenance is
performed immediately when failure occurs and is therefore not really considered as
an action. In other words, if failure occurs, we incur cost ccm and we immediately
move to state θ1,0. If we are in state θ1,0 the component is as-good-as-new with
certainty, the optimal action will thus be to do nothing. For states θi,0, i = 2, . . . , m,
the deterioration level is also known with certainty, implying that the optimal action
will be either to do nothing or to carry out preventive maintenance. In all other
states, any of the three actions can be chosen. Based on this reasoning, the value
iteration algorithm (Puterman, 1994) can be applied, and the optimal inspection and
maintenance policy can be determined.

We will continue to consider an example. We consider a component that
deteriorates according to a stationary gamma deterioration process with parameters
a = 0.5 and b = 0.25, and with failure deterioration level L = 1. We will discretize
this gamma process by using the approach in Sect. 3.4, and we will use m = 50
deterioration states before the failed state, and time steps with length Δt = 0.1. The
cost of corrective maintenance is ccm = 5, that of preventive maintenance cpm = 1,
and that of an inspection ci = 0.1.

Figure 14 shows the optimal inspection and maintenance policy. The horizontal
axis shows the last revealed deterioration state (for the discrete-state deterioration
process), and the vertical axis the number of periods between observing this state
and the next preventive maintenance action or inspection. If an inspection reveals a
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Fig. 14 Optimal action and delay time as a function of the currently revealed deterioration level

deterioration state of at most 20, we observe that a new inspection will be scheduled.
The time until this next inspection is decreasing in the observed deterioration state,
resulting in a dynamic aperiodic maintenance policy. If a deterioration state of at
least 21 is revealed by an inspection, preventive maintenance will be carried out,
either immediately or after a certain number of time periods. For deterioration states
21–34 an immediate failure is not that likely, but scheduling another inspection is
not cost effective. In these cases, a delayed preventive maintenance action will be
scheduled, with a delay time that is decreasing in the observed deterioration state.
For an observed deterioration state of at least 35, the risk of a failure is deemed too
high, and an immediate preventive maintenance action will be carried out.

4 Concluding Remarks

We have considered maintenance policies for non-repairable components, i.e.,
maintenance interventions can be seen as a replacement of the component. We
started to consider two time-based maintenance policies, viz., age-based mainte-
nance and block-based maintenance. For the age-based maintenance policy we
have considered the effect of uncertainty in the scale parameter of the lifetime
distribution on the optimal preventive maintenance age. This setting could be
extended to uncertainty in other parameters of the lifetime distribution as well, or
uncertainty in the parametric distribution itself (model uncertainty). For the block-
based maintenance policy we have mainly focused on the optimal maintenance
interval under random usage of the component. Suitable extensions of this setting
would be to consider multiple component speeds, instead of only on and off,
and some flexibility in the usage of the component. Furthermore, the effect of
uncertainty in the lifetime distribution is also of interest in settings with block-based
maintenance.
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We continued to consider condition-based maintenance polices. First, we men-
tioned some recent developments in delay-time modeling. After that, we have
adopted a continuously monitored stationary gamma deterioration process and we
have considered the performance of condition-based maintenance as opposed to
time-based maintenance. This analysis was based on simulation and studied the
effect of the volatility of the deterioration process and of the relative cost of
preventive maintenance. Furthermore, the presence of a planning time, of noise in
the obtained deterioration information, and of uncertainty in the lifetime distribution
have been considered. After this, we have considered a stationary gamma deterio-
ration process combined with periodic inspections. We have obtained mathematical
expressions to simultaneously optimize the inspection interval and the preventive
maintenance deterioration threshold. Finally, we have provided an approach that
can be used to discretize continuous-time continuous-state deterioration processes.
We have first used the obtained Markov chain to reconsider the condition-based
maintenance policy for a continuously monitored stationary gamma process. This
analysis is based on matrix algebra. Thereafter, we have pointed out how the Markov
chain and the concept of Markov decision processes can be used to determine
optimal aperiodic inspection and maintenance policies.

The models with condition-based maintenance could be extended by considering
various types of uncertainty. The parameters of the gamma deterioration process,
or even the functional form of the deterioration process could be unknown.
Furthermore, the degree of imprecision of the deterioration increments could be
uncertain, or the distribution of a random failure level could be unknown. As a final
suggestion, random usage of a component or production decisions could also be
considered in settings with condition-based maintenance.
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Models of Imperfect Repair

Ming Luo, Shaomin Wu, and Phil Scarf

1 Introduction

It is accepted that no technical systems can last forever without any failures. As
such, repair is needed in order to restore a failed item to a working state. For an
asset management firm, it is vital to estimate the number of failures of a typical
technical system and then to estimate the capital expenditure spending on repair
and maintenance. For example, a water company may wish to estimate how many
failures of each asset such as a water pumper or a mixer will have in the next 5 years,
so it can plan their budget accordingly.

To ensure a system to operate and to reduce the probability of failures, three types
of maintenance may be adopted: corrective maintenance, preventive maintenance
and predictive maintenance. Corrective maintenance is a synonym of the term
repair; preventive maintenance is carried out at pre-specified time points in order
to reduce the probability of failure; and predictive maintenance is condition-based
maintenance, with which maintenance is performed once the condition of the
maintained system indicates the need for maintenance.

Once a failure occurs, repair upon the failure may end up with the following five
situations:
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Better-than-perfect repair. In the case that the failed item is replaced with a new
item, which is not identical to the failed one and is more reliable than the failed
one, we say the repair is better than perfect. Due to technological advance, such
a situation may happen when a more advanced item is used to replace the failed
item.

Perfect repair. If the failed item is replaced with a new identical item, we say the
repair is perfect, or a perfect repair. That is, the item used to replace the failed
item has the same reliability as the failed one. In the reliability literature, perfect
repair is also called as good-as-new repair.

Minimal repair. The minimal repair can restore the failed item to the status just as
before it failed. In this case, the effectiveness of the repair is minimal as it simply
brings the item back to an operating status but it does not improve the reliability
of the repaired item. Hence, if the effectiveness of a preventive maintenance
is minimal, then the maintenance is not needed as the purpose of a preventive
maintenance is to improve the reliability of the maintained item.

Worse-than-minimal repair. If a repair unfortunately brings the maintained item to
a worse status than the status just before its failure, then the repair is a worse-
than-minimal repair. Such a repair may largely be caused by unskilled repairmen.

Imperfect repair. If the effectiveness of a repair is between that of the perfect repair
and that of the minimal repair, the repair is said imperfect repair. Imperfect repair
may occur more often than the above four scenarios. This is especially true for
a complex system that is composed of many components. If a component fails
and is then replaced, the reliability of the system is improved. That is, the repair
effectiveness is better than that of the minimal repair. However, since the entire
system is not replaced, the repair effectiveness is worse than the perfect repair.

Modelling the effectiveness of imperfect repair is an essential requirement
in various scenarios, for example, when people plan maintenance strategies, or
estimate the residual lifetime for some important systems, like nuclear power
plants, aeroplanes and trains. Sometimes, these systems seem to be still in normal
working conditions, when they come to the end of their planned life. To extend their
functioning life, one must justify some reliability requirements. One way to do so
is to take into account the effectiveness of repair actions or corrective maintenance.
Repair is carried out after a failure and intends to put the system into a state in which
it can perform its function again. Modelling the effect of these repair actions is of
great practical interest and is the first step in order to be able to assess maintenance
efficiency (Doyen and Gaudoin, 2004).

In the reliability literature, widely used methods of estimating the number of
failures are stochastic processes. There are many models that have been proposed
to model the effectiveness of imperfect repair, for example, the Brown–Proschan
models (Brown and Proschan, 1983), the virtual age models (Kijima, 1989) and
the geometric process models (Yeh, 1988). It is noted that models for preventive
maintenance and corrective maintenance are essentially different in the sense that
preventive maintenance is pre-scheduled and hence the methods to model the
effectiveness of a series of preventive maintenance on a maintained item are



Models of Imperfect Repair 393

deterministic models; corrective maintenance cannot be pre-scheduled and hence
the methods to model the effectiveness of a series of corrective maintenance on a
maintained item are stochastic processes (Doyen and Gaudoin, 2004). Nevertheless,
the ways to depict the effectiveness of a maintenance action, no matter whether
it is preventive or corrective maintenance, are similar. For example, age-reduction
models are used in both preventive maintenance modelling (Wu and Zuo, 2010) and
corrective maintenance modelling (Doyen and Gaudoin, 2004).

In this article, the term item and the term system are exchangeable.
There has been a lot of research on modelling the failure process of a repairable

system, which mainly concentrates on modelling the repair effect of a repairable
system through considering: (1) the working time probability functions after repairs
(for example, the geometric process (Lam, 1988)); (2) the effective age of the
maintained item (for example, the virtual age models (Kijima, 1989)); (3) the failure
intensity of the maintained item (for example, the intensity modification model
(Doyen and Gaudoin, 2004)) and (4) the virtual component methods (for example,
(Wu and Scarf, 2017)). Those models can be categorised as the following.

Basic models. This category includes the renewal process (RP) and the nonhomo-
geneous Poisson process (NHPP). The RP is used in modelling perfect repair
and the NHPP is used in modelling minimal repair. They are the bases of many
further developments. That is, to a certain degree, many failure process models
can be regarded as the extensions of those two models. The extensions of the RP
include: the geometric process introduced by Lam (1988) and its many versions
of extensions (Braun et al., 2005; Wu, 2018; Chan et al., 2006; Bordes and
Mercier, 2013; Wu, 2018). The extensions of the NHPP include, for example,
(Guida and Pulcini, 2009) introduce an intensity function that can depict a failure
process exhibiting the bathtub curve pattern; (Syamsundar and Naikan, 2009;
Guo et al., 2010) introduce segmented failure intensity functions; (Lindqvist
et al., 2003) introduce the time-transformed renewal process (or the trend renewal
process) that have both the ordinary renewal process and the NHPP as special
cases. Lawless and Thiagarajah (1996) introduce a new model that incorporates
both time trends and renewal-type behaviour.

Age reduction models. This class may have an intensity function (precisely, hazard
function) λ0(a1t + a2), where a1, a2 are estimable parameters, respectively.
Examples include the virtual age models (Kijima, 1989; Wu and Scarf, 2015) and
the ARA models (Doyen and Gaudoin, 2004). Work that extends this subclass
also includes the model discussed in Dorado et al. (1997).

Intensity modification models. In this class, its intensity function b1λ0(t)+b2. This
class mainly modifies the intensity function after repair. It includes the arithmetic
reduction of intensity (ARI) models.

Hybrid intensity models. In this class, an intensity function is obtained by com-
bining different intensity functions (Brown and Proschan, 1983) or the same
intensity with different arguments (Zhang and Jardine, 1998; Percy et al., 2010).
There is a widely studied type of models, i.e., the (p, 1 − p) type, is originated
from Brown and Proschan (1983) who assume that at the time of each failure
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a perfect maintenance/repair occurs with probability p and a minimal repair
occurs with probability 1 − p, independently of the previous history of repair
and maintenance. Block et al. (1985) generalise the Brown–Proschan model by
allowing the probability of a perfect repair to depend on the age of the failed item:
assuming that at the time of each failure a perfect maintenance/repair occurs
with probability p(t) and a minimal repair occurs with probability 1 − p(t).
Other extensions of the Brown–Proschan model have been made, see Zhang and
Jardine (1998); Percy et al. (2010) for examples.

Virtual component models. Wu and Scarf (2017) proposed two models to model
the failure process of a repairable series system composed of multiple compo-
nents. Both models assume a real-world system can be analogised to virtual
systems composed of multiple virtual components. Correspondingly, the failure
intensity of each model is a mixture of two different failure intensities, which
does not follow the (p, 1 − p) rule. Wu (2019) proposed another model that
integrates the failure intensity functions based on the exponential smoothing
method, compared the proposed model with nine other models, and found the
proposed model outperforms those existing models on 11 out of 15 real world
datasets.

Other types. There are other types of failure process models that may not be
categorised into the above classes, for example, the superimposed renewal
process (Hoyland and Rausand, 2004), the branching Poisson process (Ascher
and Feingold, 1984), the Markovian models (Bean et al., 2010), etc.

2 Existing Models of Imperfect Repair Models

In this section, we borrow the definitions of the symbols from Wu and Scarf (2017)
(Table 1).

Denote the successive failure times of a repairable system by {Tk}k≥1, from
T0 = 0. Denote the times between failures by {Xk}k≥1 and {Xk = Tk − Tk−1}.

Table 1 Notations

Symbol Description

Tk The time of kth failure of a system.

N(t) The number of failures of the system up to time t .

Xk The time between (k − 1)th and kth failures.

λ(t) The failure intensity function.

λI (t) The initial failure intensity function before the first failure.

F(.) Cumulative Distribution Function of a random variable.

f (.) Probability Distribution Function of a random variable.

ρ The effectiveness of repair on failure intensity of a system in ARI/ARA models.

Sk The effectiveness of the kth repair on failure intensity of a system in GRI/GRA
models.
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Assume a repair task is performed after each failure and the repair times are
negligible. Let N(t) denote the number of failures of the system up to time t . The
failure process of the system can be defined equivalently by the random processes
{Xk}k≥1 or {N(t)}t≥0 and is characterised by the intensity function,

λ(t) = lim
Δt→0

P {N(t + Δt) − N(t) ≥ 1|H (t)}
Δt

, (1)

where P {N(t+Δt)−N(t) ≥ 1|H (t)} is the probability that the system fails within
the interval (t, t + Δt), given the history of failures up to time t , H (t) (Cox and
Lewis, 1966).

Another basic assumption is that the initial intensity, i.e. the failure intensity
before the first failure, is a deterministic and continuous function of time, λI (t), and
the system is wear-out continuously, i.e. the initial intensity is strictly increasing.

2.1 Geometric Process and Its Extensions

This section discusses the geometric process, its limitations, and its extension. We
begin with an important definition on stochastic order.

Assume that X and Y are two random variables. If for every real number r , the
inequality P(X ≥ r) ≥ P(Y ≥ r) holds, then X is stochastically greater than or
equal to Y , or X ≥st Y . Equivalently, Y is stochastically less than or equal to X, or
Y ≤st X (p. 404 in Ross (1996)).

Given a sequence of non-negative random variables {Xk, k = 1, 2, . . . }, if they
are independent and the cdf of Xk is given by F(ak−1t) for k = 1, 2, . . . , where a

is a positive constant, then {Xk, k = 1, 2, · · · } is called a geometric process (GP)
(Lam, 1988).

The above definition is given by Lam (1988), although it is likely that this
definition was around earlier. For example, in Smith and Leadbetter (1963), it reads
“we consider the situation in which failing components are replaced by new ones
with better statistical properties. Specifically, it is assumed that the nth replacement
has a lifetime distribution F(akt)” and also gives the GP-version renewal function.
Nevertheless, most publications typically credit the geometric process to Lam
(1988).

{Xk, k = 1, 2, · · · } in the GP may be stochastically increasing (decreasing) if
a < 1 (a > 1). If a = 1, then {Xk, k = 1, 2, · · · } reduces to a renewal process.
That is, when a �= 1, the GP offers an alternative that can model the effectiveness
of imperfect maintenance.

Some authors either proposed similar definitions to that of the GP (Finkelstein,
1993; Wang and Pham, 1996) or made an attempt to extend the GP (Braun et al.,
2005; Wu and Croome, 2006; Lam, 2007). Those different versions can be unified:
They replace ak−1 with g(k), where g(k) is a function of k and is defined differently
by different authors, as discussed below.
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For a sequence of non-negative random variables {Xk, k = 1, 2, . . . }, different
consideration has been laid on the distribution of Xk , as illustrated in the following
(in chronological order).

(a) Finkelstein (1993) proposes a process, named the general deteriorating renewal
process, in which the distribution of Xk is Fk(t), where Fk+1(t) ≤ Fk(t). A
more specific model is defined such that Fk(t) = F(akt) where 1 = a1 ≤ a2 ≤
a3 ≤ . . . and ak are parameters. In this model, g(k) = ak .

(b) Wang and Pham (1996) defines a quasi-renewal process, which assumes X1 =
W1, X2 = aW2, X3 = a2W3, . . . , and the Wk are independently and identically
distributed and a > 0 is constant. Here, g(k) = a1−k .

(c) Braun et al. (2005) proposes a variant, which assumes that the distribution
of Xk is Fk(t) = F(k−at), or g(k) = k−a . The authors argued that the
expected number of event counts before a given time, or analogously, the Mean
Cumulative Function (MCF) (or, the renewal function), does not exist for the
decreasing GP. As such, they propose the process as a complement.

(d) Wu and Croome (2006) set g(k) = αak−1 + βbk−1, where α, β, a and b are
parameters. Their intention is to extend the GP to model more complicated
failure patterns such as the bathtub shaped failure patterns.

(e) Chan et al. (2006) extends the GP to the threshold GP: A stochastic process
{Zn, n = 1, 2, . . .} is said to be a threshold geometric process (threshold GP), if
there exists real numbers ai > 0, i = 1, 2, . . . , k and integers {1 = M1 < M2 <

. . . < Mk < Mk+1 = ∞} such that for each i = 1, . . . , k, {an−Mi

i Zn,Mi ≤
n < Mi+1} forms a renewal process.

(f) Bordes and Mercier (2013) set g(k) = abk (where a and bk are parameters) and
discuss statistical properties of the process. The purpose of their extension is
to overcome the limitation that the GP only allows for logarithmic or explosive
growth.

(g) Wu and Wang (2017) extend the GP by relaxing the assumption that {Xk, k =
1, 2, . . . } are independent. They introduce a definition in which a sequence of
non-negative random variables {Xk, k = 1, 2, . . . } in which {Xk, k = 1, 2, . . . }
are dependent and the cdf of Xk is given by F(ak−1t) for k = 1, 2, . . . .

(h) Wu (2018) proposes a definition, called doubly geometric process, in which
a sequence of non-negative random variables {Xk, k = 1, 2, . . . } in which
{Xk, k = 1, 2, . . . } are independent and the cdf of Xk is given by F(ak−1xh(k))

for k = 1, 2, . . . , where h(k) is a function of k and the likelihood of the
parameters in h(k) has a known closed form.

2.2 Reduction of Intensity Models

The reduction of intensity models is used when the effect of repair is considered to
reduce the failure intensity. The reduction methods can be categorised into different
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groups such as arithmetic reduction of intensity (ARI) (Doyen and Gaudoin, 2004),
geometric reduction (Doyen et al., 2017), etc.

The basic idea of ARI considers that each repair activity can reduce the failure
intensity of an amount depending on the past of the failure process. In literature, the
ARI models are constructed with two assumptions (Doyen and Gaudoin, 2004):

1. Each maintenance action reduces the failure intensity by sub-tracking an amount
possibly depending on the past of the failure process.

2. After failure, the wear-out speed is the same as before failure.

By considering different effects of the past failure process on current failure
intensity, the ARI models can be classified into ARI∞, ARI1 and ARIm models.
The ARI∞ means the arithmetic reduction of intensity with infinite memory, which
is built with the assumption that repair reduces the failure rate of an amount
proportional to the current failure rate. With consideration of Assumption 1, the
ARI∞ failure intensity is

λ(t) = λI (t) − ρ

Nt−1∑

j=0

(1 − ρ)jλI (TNt−j ). (2)

The ARI1 means the repair activity can only reduce the relative wear since the last
repair. This model is called the arithmetic reduction of intensity with memory one.
With consideration of Assumption 1, the ARI1 failure intensity is

λ(t) = λI (t) − ρλI (TNt ). (3)

The ARIm is called the arithmetic reduction of intensity model with memory m,
it means there are m previous failures involved in the current failure rate. With
consideration of A1, the ARIm failure intensity is

λ(t) = λI (t) − ρ

Min(m−1,Nt−1)∑

j=0

(1 − ρ)jλI (TNt−j ). (4)

In the above models, the intensity is reduced arithmetically, they may not cop
with some scenarios very well such as strong slowdown of the wear. Then, the
geometric reduction of intensity is introduced by Doyen et al. (2017), recently. To
build a geometric reduction of intensity (GRI) model, the subtractions and sums in
ARI can be replaced by divisions and products, respectively. With consideration of
Assumption 1, the GRI∞ failure intensity is

λ(t) = λI (t) −
Nt−1∑

j=1

1 − 1
Sj

∏Nt−1
k−j+1 Sk

λI (Tj ). (5)
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2.3 Reduction of Age Models

This class of models principally consider that repair can restore the system’s age
as repair can reduce the failure intensity of the system at time t equal to the initial
intensity at time At , where At < t . This class of models is also called virtual age
models. In this class, the real age of a system is its functioning time t ; and the virtual
age of a system is defined as a positive function of its real age, possibly depending
on past failures: At = A(t;Nt, T1, . . . , TNt ). The failure intensity is a function of
its virtual age: λt = λ(A). This idea that repair activities can reduce the virtual
age of the system is mainly based on Kijima’s virtual age models (Tanwar et al.,
2014; Kijima, 1989), which are on the basis of Generalised Renewal Process (GRP).
In Kijima’s first model, the nth repair is assumed can remove the wear incurred
only during the time between (n − 1)th and nth repairs, then the virtual age is
An = An−1 + ρXn, where An is the virtual age after the nth repair, Xn is the time
between the nth and the (n − 1)th repairs, and ρ is the effectiveness of repair. In
Kijima’s second model, the nth repair is assumed can reduce all wear accumulated
up to the nth repair, then the virtual age is An = ρ(An−1 +Xn). In Kijima’s models,
when ρ = 0, the repair is perfect, when ρ = 1, the repair is minimal.

According to Doyen and Gaudoin (2004), the reduction of age can also be
arithmetic or geometric. The arithmetic reduction of age (ARA) models can be
classified into, by analogy with the ARI models, arithmetic reduction of age model
with infinite memory (ARA∞), arithmetic reduction of age model with memory one
(ARA1) and arithmetic reduction of age model with memory m (ARAm). The ARA1
model is similar to Kijima’s first model, and the ARA∞ model is similar to Kijima’s
second model.

The ARA∞ model assumes the nth repair can reduce the virtual age of the system
by a proportional amount of its age before the nth repair. Then, the failure intensity
of ARA∞ model is

λ(t) = λI

⎛

⎝t − ρ

Nt−1∑

j=0

(1 − ρ)jTNt−j

⎞

⎠ . (6)

The ARA1 model assumes the nth repair can reduce the virtual age of the system by
a proportional amount of its age between the nth and the (n− 1)th repair. Then, the
failure intensity of ARA1 model is

λ(t) = λI (t − ρTNt ). (7)

The ARAm model assumes the nth repair can reduce the virtual age of the system by
a proportional amount of its age between nth and (n − m) repairs. Then, the failure
intensity of ARAm model is
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λ(t) = λI

⎛

⎝t − ρ

Min(m−1,Nt−1)∑

j=0

(1 − ρ)jTNt−j

⎞

⎠ . (8)

Similar to the relationship between the ARI and GRI models, the ARA models
can also be extended to geometric reduction of age (GRA) models (Doyen et al.,
2017). The GRA∞ failure intensity is Doyen et al. (2017)

λ(t) = λI

⎛

⎝t − Tn−1 +
∑n−1

j=1

[∏j−1
k=1 Sk

]
Xj

∏n−1
j=1 Sj

⎞

⎠ . (9)

After introduced by Doyen and Gaudoin (2004), the ARI and ARA models have
been widely used and provided a good fit for many real maintenance datasets.
Syamsundar and Naikan (2011) combine imperfect repair models and proportional
intensity models to build imperfect repair proportional intensity models to cope with
the field data consisting of times to failure and covariate data.

Nguyen et al. (2015) apply the ARA∞ model on the failure dataset from a fleet
of six load-haul-dump machines in a Swedish mine, as the model can help the
researchers to quantify the effect of repair on each machine and to take into account
the effect of the early missing data. The parameters are estimated through maximum
likelihood method in this research.

Tanwar and Bolia (2015) model the imperfect repair by ARA models with
incorporating the effect of imperfect corrective and preventive maintenance. In this
research, four virtual age processes are introduced to describe the different repair
patterns and restoration degrees for corrective and preventive maintenance. The
parameters are estimated through maximum likelihood estimation.

Dauxois and Maalouf (2018) introduce a new imperfect maintenance model
based on the ARI model. The arithmetic reduction of intensity is assumed on the
interarrival times of failures on a system subject to recurrent failures instead of on
the failure intensity.

The parameters of ARI and ARA models can be estimated through maximum
likelihood estimates (Toledo et al., 2015). Corset et al. (2012) propose a Bayesian
analysis of the ARA models and discuss the choice of prior distributions and the
computation of posterior distributions. In this research, a single reliable repairable
system which only has very few failures is considered. For this system, the quality of
the maximum likelihood estimates is very poor because the number of observations
is not enough. Then, the Bayesian analysis is employed to improve the accuracy of
parameter estimations, as it can add the expert knowledge to operation feedback
data. The expert knowledge on the system aging and repair efficiency can be
reflected by the prior distributions.
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2.4 Virtual Component Models

In the literature, widely used failure process models such as the generalised renewal
process (GRP), geometric process (GP) and non-homogeneous Poisson process
(NHPP) cannot distinguish the effect of repair upon failure of difference compo-
nents in a complex system, as they consider the system as a one-component system
(Wu and Scarf, 2017). To model the failure process of a multi-component system
as a whole when the lifetime distribution of each component is unknown, (Wu and
Scarf, 2017) introduce the concept of a virtual component. The idea of Wu and Scarf
(2017) is: For a series system composed of multiple components, if the system fails,
the failed component is replaced with an identical component and the replacement
time is negligible. Assuming the times to failures of the system are known but upon
each failure, which component causes the system to fail is unknown. With such
data, it is not possible to estimate the failure process model for each individual
component. Wu and Scarf (2017) assumes that the failure process of the real system
is equivalent to that of a virtual system composed of virtual components. Whenever
the real system fails, the virtual system is assumed to fail simultaneously and the
failures are caused by the virtual components in turn. For example, assume a real
series system is composed of three components A, B and C. We assume that the
system is equivalent to a virtual series system composed of virtual components
a, b and c. If we know the times of the first n failures, T1, . . . , T10, say. Then the
failure process of the virtual system is assumed to be caused by virtual components
a, b, c, a, b, c, a, b, c and a, respectively. Based on such assumptions, (Wu and
Scarf, 2017) introduce two models and compares the performance of the models
with several existing models on artistically simulated data. The results show that the
proposed models have smaller AIC (Akaike Information Criterion).

3 Conclusions and Future Development

This paper reviewed some existing methods of modelling imperfect repair. The
Geometric process and its extensions can be adapted to model the effectiveness of
imperfect maintenance in various scenarios, as the g(k) can be defined differently.
However, the complexity of calculation (parameter estimation) should be considered
in practice. The Reduction of Intensity and Reduction of Age models being
constructed in a more intuitional way makes them more handy than the GP, but
the strict assumptions should be minded and the interpretability of them in some
complex scenarios also should be considered. Regarding the Virtual Component
models, they provide a new gateway to model and interpret the reliability of multi-
component systems; they can be developed with considering various interplays
among the components.

There is much work needing further development in the future. The focus may be
on the development of models for systems with different repair modes including: (1)
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develop a method to model the failure process of a given complex system composed
of many repairable components, while the repair effectiveness of each component is
assumed unknown; (2) use modern machine learning techniques to model the failure
process.

References

Ascher H, Feingold H (1984) Repairable systems reliability modeling, inference, misconceptions
and their causes. Marcel-Dekker, New York

Bean MM, O’Reilly NG, Sargison JE (2010) A stochastic fluid flow model of the operation and
maintenance of power generation systems. IEEE Trans Power Syst 25(3):1361–1374

Block HW, Borges WS, Savits TH (1985) Age-dependent minimal repair. J Appl Probab
22(2):370–385

Bordes L, Mercier S (2013) Extended geometric processes: Semiparametric estimation and
application to reliability. J Iran Stat Soc 12(1):1–34

Braun JW, Li W, Zhao YQ (2005) Properties of the geometric and related processes. Nav Res
Logist 52(7):607–616

Brown M, Proschan F (1983) Imperfect repair. J Appl Probab 20(4):851–859
Chan JSK, Yu PLH, Lam Y, Ho APK (2006) Modelling SARS data using threshold geometric

process. Stat Med 25(11):1826–1839
Corset F, Doyen L, Gaudoin O (2012) Bayesian analysis of ARA imperfect repair models.

Commun Stat Theory Methods 41(21):3915–3941
Cox DR, Lewis PAWL (1966) The statistical analysis of series of events. Wiley, London
Dauxois J, Maalouf E (2018) Statistical inference in a model of imperfect maintenance with

arithmetic reduction of intensity. IEEE Trans Reliab 67(3):987–997
Dorado C, Hollander M, Sethuraman J (1997) Nonparametric estimation for a general repair model.

Ann Stat 25(3):1140–1160
Doyen L, Gaudoin O (2004) Classes of imperfect repair models based on reduction of failure

intensity or virtual age. Reliab Eng Syst Saf 84(1):45–56
Doyen L, Gaudoin O, Syamsundar A (2017) On geometric reduction of age or intensity models for

imperfect maintenance. Reliab Eng Syst Saf 168:40–52
Finkelstein MS (1993) A scale model of general repair. Microelectron Reliab 33(1):41–44
Guida M, Pulcini G (2009) Reliability analysis of mechanical systems with bounded and bathtub

shaped intensity function. IEEE Trans Reliab 58(3):432–443
Guo H, Mettas A, Sarakakis G, Niu P (2010) Piecewise NHPP models with maximum likelihood

estimation for repairable systems. In: Reliability and Maintainability Symposium (RAMS),
2010 Proceedings-Annual. IEEE, New York, pp 1–7

Hoyland A, Rausand M (2004) System reliability theory: models, statistical methods, and
applications. Wiley, New York

Kijima M (1989) Some results for repairable systems with general repair. J Appl Probab 26(1):89–
102

Lam Y (1988) Geometric processes and replacement problem. Acta Math. Appl. Sinica 4:366–377
Lam Y (2007) The geometric process and its applications. World Scientific, Singapore
Lawless JF, Thiagarajah K (1996) A point-process model incorporating renewals and time trends,

with application to repairable systems. Technometrics 38(2):131–138
Lindqvist BH, Elvebakk G, Heggland K (2003) The trend-renewal process for statistical analysis

of repairable systems. Technometrics 45(1):31–44
Nguyen T, Dijoux Y, Fouladirad M (2015) On application of an imperfect repair model in

maintenance scheduling. In: Proceedings—annual reliability and maintainability symposium,
vol 2015



402 M. Luo et al.

Percy DF, Kearney JR, Kobbacy KAH (2010) Hybrid intensity models for repairable systems. IMA
J Manag Math 21(4):395–406

Ross SM (1996) Stochastic processes, 2nd edn. Wiley, New York
Smith WL, Leadbetter MR (1963) On the renewal function for the Weibull distribution. Techno-

metrics 5(3):393–396
Syamsundar A, Achutha Naikan VN (2009) Sequential detection of change points for maintained

systems using segmented point process models. Qual Reliab Eng Int 25(6):739–757
Syamsundar A, Naikan VNA (2011) Imperfect repair proportional intensity models for maintained

systems. IEEE Trans Reliab 60(4):782–787
Tanwar M, Bolia N (2015) Maintenance modelling using generalized renewal process for sequen-

tial imperfect corrective and preventive maintenance. Int J Performability Eng 11(5):427–442
Tanwar M, Rai RN, Bolia N (2014) Imperfect repair modeling using kijima type generalized

renewal process. Reliab Eng Syst Saf 124:24–31
Toledo MLGD, Freitas MA, Colosimo EA, Gilardoni GL (2015) ARA and ARI imperfect repair

models: Estimation, goodness-of-fit and reliability prediction. Reliab Eng Syst Saf 140:107–
115

Wang H, Pham H (1996) A quasi renewal process and its applications in imperfect maintenance.
Int J Syst Sci 27(10):1055–1062

Wu S (2018) Doubly geometric processes and applications. J Oper Res Soc 69(1):66–77
Wu S (2019) A failure process model with the exponential smoothing of intensity functions. Eur J

Oper Res 275(2):502–513
Wu S, Clements-Croome D (2006) A novel repair model for imperfect maintenance. IMA J Manag

Math 17(3):235–243
Wu S, Scarf P (2015) Decline and repair, and covariate effects. Eur J Oper Res 244(1):219–226
Wu S, Scarf P (2017) Two new stochastic models of the failure process of a series system. Eur J

Oper Res 257(3):763–772
Wu S, Wang G (2017) The semi-geometric process and some properties. IMA J Manag Math

29(2):229–245
Wu S, Zuo MJ (2010) Linear and nonlinear preventive maintenance models. IEEE Trans Reliab

59(1):242–249
Yeh L (1988) A note on the optimal replacement problem. Adv Appl Probab 20(2):479–482
Zhang F, Jardine AKS (1998) Optimal maintenance models with minimal repair, periodic overhaul

and complete renewal. IIE Trans (Institute of Industrial Engineers) 30(12):1109–1119



Opportunistic Maintenance Policies
for Multi-Components Systems

Phuc Do, Roy Assaf, and Phil Scarf

1 Introduction

In the framework of reliability theory and stochastic modelling, the system to be
maintained is modelled from a functional point of view, that is to say we look
at the way a main function is fulfilled. Then the sub-systems and components
are described in light of this main function, to express how they interact and
can contribute altogether to its achievement. Interactions between components
and subsystems are usually classified into three main types, namely stochastic
dependence, structural dependence and economic dependence (Do Van et al., 2013;
Dekker et al., 1997; Nicolai and Dekker, 2008). Stochastic dependence implies that
the state of a component may affect the lifetime distribution of other components.
Structural dependence refers to systems where it is impossible to maintain a
component without having an impact on others. This is principally the case when a
component is not directly accessible and it is required to disassemble or stop other
ones in order to execute its maintenance action. Economic dependence between
components exists when the cost of joint maintenance of a group of components is
different from the total costs of individual maintenance of these components.

Although the problem of stochastic, economic and structural dependencies have
been widely studied for maintenance issues (Cho and Parlar, 1991; Dekker et al.,
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1997; Ozekici, 1988; Thomas, 1986; Wildeman, 1996), the challenges for modelling
are still very important, because of the diversity of situations that are arising from the
industry. We must actually consider these dependencies either to opportunistically
optimize maintenance intervention of several components or because we must take
into account certain constraints (e.g. in the case of structural dependence). The
dependencies may condition the optimal specific actions for each component and
under which conditions it is advantageous to group or ungroup interventions. Taking
into account dependencies between components in maintenance modelling and
optimization of multi-component systems has recently received a lot of attention
from researchers (Bian and Gebraeel, 2014a; Do Van et al., 2013; Golmakani and
Moakedi, 2012; Iung et al., 2016; Nicolai and Dekker, 2008; Scarf and Deara, 2003).
A review on recent advances on condition-based maintenance for multi-dependent
systems is given in Keizer et al. (2017). Indeed, economic dependence has been
studied and integrated in various multi-component maintenance models (Do Van
et al., 2013; Liu et al., 2013; Nicolai and Dekker, 2008; van der Duyn Schouten
and Vanneste, 1990). Note however that stochastic and structural dependence are
not considered in these works. Failure dependence between components has been
also investigated in inspection (Golmakani and Moakedi, 2012), maintenance and
warranty optimization for two-component systems (Scarf and Deara, 2003; Zhang
et al., 2017). In the latter, both economic and failure interaction are considered in
several block replacement models.

Recently, called condition-based maintenance (CBM), in which the observed
component/system condition is used for the preventive maintenance decision,
has been introduced and has become nowadays efficient models in maintenance
optimization frameworks. It should be noted that in CBM maintenance models,
degradation level and predictive reliability are two main decision indicators for
maintenance decision-making (Castanier et al., 2005; Huynh et al., 2014; Nguyen
et al., 2014; Tian and Liao, 2011). Thus, the knowledge about the degradation
evolution of a component/system is critical for CBM decision-making, especially
in the context of multi-dependent component systems with interactions between
components. In this way, a new type of stochastic dependence, called degradation
interaction, whereby the degradation evolution of a component may depend not
only on its degradation level but also on that of other components, has been
introduced in Bian and Gebraeel (2014,a) for prognostics of system lifetime, and
in Rasmekomen and Parlikad (2016) for CBM maintenance optimization. However,
in Rasmekomen and Parlikad (2016) the work does not consider neither economic
dependence nor intrinsic degradation dependence (whereby degradation evolution
of a component depends on its own degradation level). To face with this issue, a
more “complete CBM model” considering both stochastic dependence (intrinsic and
extrinsic), through a model of degradation interactions, and economic dependence
has been introduced in Phuc et al. (2019). In this work, the degradation level is used
for both individual and opportunistic maintenance decision-making. In that way,
two decision variables (one individual preventive threshold and one opportunistic
preventive threshold) are required for each component. As a consequence the
number of decision variables increases quickly with respect to the number of
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components. From a practical point of view, this may lead to some difficulties in
optimization process, especially when these decision variables cannot be optimally
obtained by an analytical method. To overcome this issue, the predictive reliability-
based opportunistic maintenance models have been introduced in literature (Tian
and Liao, 2011; Huynh et al., 2014; Nguyen et al., 2014, 2015). In these works,
the predicted reliability is used for preventive maintenance decision-making. The
advantages of these maintenance models are that only limited number of decision
variables (mainly 3 decision variables) are needed for whatever the number of
components. The remainder challenges of these maintenance policies are the pre-
diction of the components/system reliability. This may become much more difficult
in presence considering dependencies (stochastic and/or structural dependence)
between components (Keizer et al., 2017; Bian and Gebraeel, 2014a). This is
also an important research issue in different scientific communities such as PHM
(prognostics and health management) society, PHM IEEE or PHM China.

This chapter focuses on both kinds of condition-based maintenance policies
(degradation-based opportunistic maintenance policy and predictive reliability-
based opportunistic maintenance policy) allowing to overcome the mentioned
issues. In that way, we will, on one hand, highlight a modelling framework which
can taking into account different types of dependencies between components. Two
kinds of opportunistic maintenance polices are presented. On the other hand, we will
highlight the uses and the performance of one opportunistic maintenance policy in
the context of multi-dependence between components.

The remainder of this chapter is structured as follows. Section 2 gives the
description of general assumptions, decision indicators (degradation and reliability
metrics), maintenance operations and costs. Different dependencies between com-
ponents are also discussed and formulated. Section 3 focuses on the presentation of
two kinds of opportunistic condition-based maintenance policies. The application
of the degradation-based opportunistic maintenance policy through an example
is described in Sect. 4. Different numerical results and sensitivity analyses are
also studied and discussed. Finally, the last section concludes the chapter with a
discussion of topics for future research.

2 System Modelling and Maintenance Costs Structures

Consider a system consisting of N components in which a preventive or corrective
maintenance action on one or more components needs a shutdown of the entire
system. The system components are all subject to degradation. In that way, the
degradation of component i (with i = 1, . . . , N ) at time t can be summarized by an
observable random scalar variable Xi

t . Component i (i = 1, . . . , N ) is considered
as failed if the component degradation level reaches its failure threshold Li . When a
component is not functioning for whatever reason, its degradation level is assumed
to be unchanged during the stoppage period if no maintenance is performed. The
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degradation evolution and the corresponding state of component i are illustrated in
Fig. 1. T i

f is the random variable of time to failure for component i.
Note that the degradation level has been used as a decision indicator for

condition-based maintenance (CBM) decision-making. Recently, it has been also
used for opportunistic maintenance optimization (Castanier et al., 2005; Phuc et al.,
2019). In this chapter, a degradation-based opportunistic CBM policy is presented
in Sect. 3.

2.1 Reliability Metrics

The reliability Ri(t) of component i at time t is defined as the probability that
component i is in functioning state between times 0 and t :

Ri(t) = P

[
T i
f > t

]
= 1 − P

[
T i
f ≤ t

]
. (1)

For a deteriorating component i (i = 1, . . . , N ), its reliability at time t , Ri(t), can
be defined as probability that the component degradation level at time t (t ≥ 0) is
still lower than its failure threshold Li . In that way, the reliability of component i at
time t can be written as follows:

Ri(t) = P

[
Xi

t < Li
]

= 1 − P

[
Xi

t ≥ Li
]
. (2)
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We assume now that component i is still functioning at time t and that its
degradation level measured at time is t Xi

t = xi
t (xi

t < Li). The conditional
probability that component i can survive until time t +u (u > 0) can be determined
by

Ri(t + u|t) = Ri
(
t + u|Xi

t = xi
t

)
= P

[
Xi

t+u < Li |Xi
t = xi

t < Li
]
. (3)

Ri(t + u|t) is also called the predictive reliability of component i and estimated at
time t . It is shown in the literature that the predictive reliability could be used as
an efficient indicator for maintenance decision-making (Huynh et al., 2014; Nguyen
et al., 2014; Tian and Liao, 2011). Note however that the estimation of the predictive
reliability Ri(t + u|t) may become difficult when the degradation processes of
components are dependent (Bian and Gebraeel, 2014,a).

2.2 Maintenance Actions and Costs

From a practical point of view, to perform a maintenance action, the related
maintenance resources (i.e., maintenance tools, repairmen, spare parts, etc.) need to
be prepared in advance. In this chapter, it is assumed that all necessary maintenance
resources for executing maintenance actions are always available at a planned
inspection time. Maintenance actions (replacements and inspections) can be carried
out only at discrete times. Note that replacements may be corrective (which is on
failure of components/system) or preventive (prior to components/system failure).

A preventive cost is incurred if a preventive replacement is individually carried
out. In a general manner, we denote Ci

p to be the preventive cost of component i.
This can be divided into two parts:

Ci
p = cip + cd · di, (4)

where,

• cd · di represents the downtime cost due to production loss during replacement
which takes di time units.

• cip represents all other costs (spares, labour, set-up).

In the same way, the corrective replacement cost of component i is Ci
c = cic+cd ·di ,

(cic ≥ cip).
It should be note that preventive replacement of a component indicates the

replacement of the component when it is still functioning, and replacement of a
component means the replacement of a component when after it fails.

To measure the degradation level of a surviving component, an inspection action
is performed and each inspection action incurs an inspection cost, denoted cI .
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2.3 Dependence Modeling and Cost Saving

In this section, three kinds of dependencies between a group of components
(stochastic, structural and economic dependence) are modelled and discussed.

Stochastic Dependence
Assume that the degradation processes of different components in the system may
be dependent, i.e., the degradation evolution of a component may depend not only
on its degradation level but also on that of other components. To model this kind of
stochastic dependence, assume that evolution of the degradation level of component
i is denoted by

Xi
t+1 = Xi

t + ΔXi
t , (5)

where ΔXi
t is the increment in the degradation level of component i during one

time unit (from t to t + 1). For two components i and j that are deteriorating in
a dependent manner, we suppose that the increment ΔXi

t can be divided into two
parts: one that arises intrinsically in the component and another that is due to (caused
by) the degradation level of the other component. In that way, a general stationary
model can be derived as follows:

ΔXi
t = ΔXii

t + ΔX
ji
t with i, j = 1, 2 and (i �= j), (6)

where ΔXii
t and ΔX

ji
t are such that:

• ΔXii
t is the increment in the degradation level of component i caused by

itself during one time unit, i.e., ΔXii
t depends only on the degradation level of

component i at time t . Note that ΔXii
t may be specified as deterministic or as a

random variable.
• ΔX

ji
t is the increment in the degradation level of component i induced by

component j during one time unit. ΔX
ji
t indicates the degradation interaction

between the two components j , i and may be also specified as deterministic or
as a random variable.

The reader can refer to Phuc et al. (2019) for a complete description of the
degradation interaction model. A degradation interaction model for two-component
system is presented in Sect. 4.

Structural Dependence
From a practical point of view, in a multi-component system, performing replace-
ment action on a component implies a partial or fully dismantling of other
components. In that way, the total maintenance duration of group of several
components may be reduced when the group components are jointly replaced.

Assume now a group of several components, denoted G = {i, j, ..l}, are replaced
together, and the reduction maintenance duration can be expressed as follows:
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ΔD(G) = bG ·
∑

i∈G
di, (7)

where bG (0 ≤ bG ≤ 1 − max
i∈G di/

∑

i∈G
di) is the duration-saving factor for joint

replacement. The larger are bG, the stronger is the structural dependence between
components of the group. bG = 0 means that all components of the group G are
structurally independent. On the contrary, bG = 1 − max

i∈G di/
∑

i∈G
di means that all

components of the group G are strongly dependent structurally. It should be noted
that the structural dependence has also an important impact on the availability of a
system (Do et al., 2015).

Economic Dependence
As when economic dependence exists between a group of components, the total
maintenance cost can be reduced when the group components are jointly replaced.
The cost reduction replies principally on the sharing of the set-up cost or preparation
cost (Wildeman et al., 1997; Nicolai and Dekker, 2008; Do Van et al., 2013). In that
way, it is assumed that all components of group G are replaced together, and the
maintenance cost reduction of group G can be expressed as follows:

ΔC(G) = aG ·
∑

i∈G
ci−, (8)

where:

• ci− (i ∈ G) could be either cip or cic, i.e. preventive or corrective.

• aG (0 ≤ aG < min
i∈G ci−/

∑

i∈G
ci−) is the cost-saving factor for joint replacement

of group components. As is shown in Wildeman et al. (1997), the cost saving is
typically equal to 5% of the total replacement cost of the components (aG =
0.05). The larger are aG, the stronger is the economic dependence between
components of the group.

It is important to note that, the economic dependence is herein positive (ΔC(G) ≥
0). However, a failure of a component or group components in parallel or complex
structure systems does not necessarily lead to a failure of the system, and so the
economic dependence may be positive or negative, see Nguyen et al. (2014); Vu
et al. (2014).
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Joint Maintenance and Total Cost Saving
From Eqs. (7) and (8), the total cost saving when all components of group G are
jointly replaced can be evaluated as follows:

CS(G) = ΔC(G) + ΔD(G) · cd = aG ·
∑

i∈G
ci− + bG ·

∑

i∈G
di · cd . (9)

Note that aG, bG indicate the economic and structural dependence degree between
components of the group G. When aG = 0 and bG = 0, these components are
economically and structurally independent.

3 Opportunistic Condition-Based Maintenance Policies

In this section, two opportunistic condition-based maintenance policies are pre-
sented. In the first policy, the degradation level is used as a decision indicator for
both individual and opportunistic maintenance decision-making of each component.
In that way, the degradation level of surviving each component needs to be measured
at an inspection. In the second maintenance policy, the maintenance decision
indicator is the predictive reliability which is estimated at each inspection time.

In both maintenance policies, it is assumed that inspection actions are instan-
taneous, perfect, and non-destructive. A failure of a component is also assumed
to be immediately revealed by a self-announcing mechanism, but that the failed
component can be replaced only at the next inspection. The preventive or corrective
maintenance of a component can be an opportunity for maintaining other compo-
nents.

3.1 Degradation-Based Opportunistic Maintenance Policy

At each regular time interval Tk = k·ΔT (k = 1, 2, . . . and ΔT > 0, the degradation
levels of all the surviving components of the system are measured. It important to
note that the inter-inspection interval ΔT is the first decision variable which needs
to be optimized according to an optimization criterion such as cost, reliability, etc.
Based on the current degradation level of component, a decision about whether
or not the component should be replaced at time Tk will be taken. Two kinds of
preventive maintenance rules are herein specified: individual preventive replacement
and opportunistic preventive replacement. If a component fails between (Tk−1, Tk),
then it is replaced at time Tk .

Individual Preventive Replacement

If the degradation level of component i (i = 1, 2, ..., N ) at time Tk , xi
Tk

, is not lower

than a fixed threshold mi
p (xi

Tk
≥ mi

p), component i is immediately replaced. mi
p,



Opportunistic Maintenance Policies for Multi-Components Systems 411

0 20 40 60 80 100 120
0

20

40

60

80

0 20 40 60 80 100 120
0

20

40

60

80

Time

Time

Preventive replacement of component 1

m2o

X2t

X1t m1p

m1o

m2p

L2

L1
Component 1 fails

Opportunistic replacement of component 2

Corrective replacement of component 1

Inspection interval

Fig. 2 Illustration of components’ degradation evolution and the degradation-based opportunistic
maintenance policy

called the individual preventive threshold of component i, is a decision variable to
be optimized.

Opportunistic Replacement

For each component i, an opportunistic threshold, denoted mi
o (0 < mi

o ≤ mi
p),

is introduced. The opportunistic maintenance decision rules are the following. If
one or more other components are preventively or correctively replaced at time
Tk , component i is opportunistly replaced at time Tk if the degradation level of
component i is greater or equal to the opportunistic threshold mi

0, i.e., xi
Tk

≥ mi
0.

Note that mi
o (i = 1, 2) is also a decision variable which must be optimized.

An illustration of the degradation-based opportunistic maintenance policy for
two components i and j (i �= j ) is shown in Fig. 2.

Several variants of the degradation-based opportunistic maintenance policy are
specified as follows:

• When mi
p = mi

o (∀i = 1, 2, . . . , N ), there is no opportunistic replacement, the
policy becomes a classical condition-based maintenance policy (Nguyen et al.,
2014) with discrete inspections.

• When mi
o = m

j
o = 0 (∀i �= j ), all components are jointly replaced together.

It should be note that in this maintenance policy, we need to optimize 2 ∗ N + 1
decision variables. From practical point of view, this may lead to some difficulties
in the optimization process, especially when the optimal values of these decision
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variables cannot be analytically obtained. A numerical example of a two-component
system is illustrated in Sect. 4.

3.2 Predictive Reliability-Based Opportunistic Maintenance
Policy

In the same manner, all the surviving components of the system are inspected at
each regular time interval Tk = k · ΔT (k = 1, 2, . . .) with the inter-inspection
interval ΔT being the first decision variable of the predictive reliability-based
opportunistic maintenance policy. Based on the measured degradation levels, the
predictive reliability of survival components, Ri(Tk+1|Tk), is then estimated using
Eq. (3). The latter is then used for both individual and opportunistic maintenance
decision-making.

Individual Preventive Replacement

If the predictive reliability degradation level of component i (i = 1, 2, .., N ) at
time Tk , Ri(Tk+1|Tk), is lower or equal to a fixed threshold Rp (0 ≤ Rp ≤ 1),
Ri(Tk+1|Tk ≤ Rp, component i is immediately replaced. Rp, called the individual
preventive threshold, is the second decision variable which needs to be optimized.

Opportunistic Replacement

An opportunistic preventive threshold, denoted Ro (0 < Rp ≤ R0), is introduced
for opportunistic maintenance decision-making of all components of the system.
More precisely, if one or several maintenance actions (corrective or preventive
replacement) of one or more other components are performed at time Tk , component
i is opportunistly replaced at time Tk if its prediction reliability is higher than the
preventive threshold Rp but lower or equal to the opportunistic threshold R0, i.e.,
R0 < Ri(Tk+1|Tk) ≤ R0. Note that Ro is the third decision variable which needs be
optimized.

An illustration of the predictive reliability-based opportunistic maintenance
policy for two components i and j (i �= j ) is shown in Fig. 3. At time T1, only
component i is replaced since its predictive reliability of component i is lower
than the individual preventive threshold Rp; however, the preventive reliability of
component j is higher than both individual and opportunistic preventive thresholds.
At time T2, the predictive reliability of component j is lower than the individual
preventive threshold (Rp); it is firstly selected to be preventively replaced. The
predictive reliability of component i is still higher than the individual preventive
threshold but lower than the opportunistic preventive threshold (Ro); component
j is also selected to be opportunistically replaced together with component i. No
maintenance action is carried out at time T3 since the predictive reliability of both
components is higher than Rp.
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Ro

Rp

1

Reliability

TimeT1 T2 T3

Component i Component j

Replacement of component i Replacement of both component i and j

Fig. 3 Illustration of the predictive reliability-based opportunistic maintenance policy

According to the policy, only three decision variables are needed for a multi-
component system. From a practical point of view, this can directly reduce
the complexity of optimization process and makes the maintenance policy more
applicable and efficient with large scale systems.

In the same manner with the degradation-based opportunistic maintenance
policy, several variants of the predictive reliability-based maintenance policy are
specified as follows:

• When Rp = Ro, there is no opportunistic replacement.
• When Ro = 0, replacement of a component leads to the replacement of the other

components, i.e., all components of the system are jointly replaced together.

3.3 Cost Model for Optimization of Maintenance Policies

For each maintenance policy (degradation-based opportunistic policy or predictive
reliability-based opportunistic one), its decision variables need to be optimized
given some suitable criterion. For this purpose, a cost model is herein presented.
In that way, the long-run expected cost per unit of time (or cost-rate) including
replacement and inspection costs is usually used (Van Noortwijk, 2009; Vu et al.,
2015; Castenier et al., 2005a; Phuc et al., 2019).

The cost-rate is generally defined as follows:

C∞ = lim
t→∞

C(t)

t
, (10)

where C(t) is the cumulative total maintenance (replacement and inspection) cost
in period (0 t]. Note that, according to the renewal theory (Ross, 1996), Eq. (10) can
be expressed as
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C∞ = E[C(Tr)]
E[Tr ] , (11)

where E[.] is mathematical expectation and Tr is the length of the first renewal cycle
of the system, i.e. all system components are replaced at time Tr . Without losses of
generality, it is assumed that Tr = ΔT · l (l is a positive integer), and so we get

C(Tr) =
∑l

k=1

(
Ck

ins + Ck
main

)+ Tdown · cd
l · ΔT

,

with:

• Tdown is the total downtime of the system due to the failure of components within
[0, Tr ].

• Ck
ins = v ·cI with v (v = 0, 1, 2) being the number of surviving components that

are inspected at time Tk .
• Ck

main is the total maintenance cost at time Tk . Assume that a group of several
components, denoted Gk , are replaced at time Tk . Ck

main can be evaluated as
follows:

Ck
main =

∑

i∈Gk

Ci− − CS(Gk),

where CS(Gk) is the cost saving when all components of group Gk are replaced
together. CS(Gk) can be obtained by Eq. (8).

It is shown in Grall et al. (2002); Castenier et al. (2005a); Phuc et al. (2019) that a
closed-form expression for the cost-rate in Eq. (11) cannot be obtained. Monte Carlo
simulation can be however used to evaluate the cost-rate with given the decision
variables values. By changing the values of the decision variables and performing
an exhaustive, the minimum cost-rate can then be identified.

4 Numerical Example

Consider a two-component system, a shutdown of a component, namely C1 or C2,
leads to a failure of the system. Let us denote the degradation levels for C1 and
C2 at time t by X1

t and X2
t , respectively. As discussed in Sect. 2.3, the evolution of

degradation for a component i (i = 1, 2) can be described by

Xi
t = Xi

t−1 + ΔXi
t + ΔX

ij
t with j = 1, 2 and j �= i, (12)

where,
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Table 1 Degradation
parameter values of a
two-dependent component
system

Component αi βi μi σ i

C1 0.0233 0.0425 0.0995 7.6659

C2 0.0125 0.0914 0.0493 9.7375

• The intrinsic effect ΔXii
t is random and assumed to follow a Gamma distribution

with shape parameter αi and scale parameter βi (see Appendix A for more
details), i.e., ΔXii

t ∼ Γ (αi, βi).

• The interaction effect, ΔX
ji
t = μj · (Xj

t )
σ j

where μj , σ j are non-negative
real numbers that quantify the impact of component j on the degradation rate
of component i. If μi = μj = 0, two components i and j are stochastically
independent.

The degradation parameter values are reported in Table 1.
About the maintenance costs, when each component is individually replaced,

its replacement cost and maintenance duration are c1
p = c1

c = 500 acu (arbitrary

cost unit), c2
p = c2

c = 600 acu and d1 = d2 = 1 atu (arbitrary time unit). When
both components are replaced together, the total maintenance cost is reduced by 5%
(aG = 0.05) and 50% of the total maintenance duration is saved (bG = 0.5). In
addition, when the system fails, a downtime cost rate cd = 100 for each time unit is
incurred. Each inspection action costs also 10 acu (cI = 10).

To study the performance of the degradation-based opportunistic maintenance
policy and the opportunistic maintenance rules, let us distinguish the general policy,
namely policy P, with its two variant ones:

• Policy P1 (no opportunistic replacement) is obtained by setting mi
p = mi

o (∀i =
1, 2, . . . , N ).

• Policy P2 (both components are always replaced together) is given by setting
mi

o = m
j
o = 0 (∀i �= j ).

4.1 Optimum Maintenance Policy

To evaluate the maintenance cost-rate, a large number of system life cycles
were simulated with above data. To find the optimal decision variables
(ΔT,m1

p,m
1
o,m

2
p,m

2
o), the cost-rate C∞ is evaluated for different values of ΔT

(ΔT > 0), m1
p (0 < m1

p ≤ L1), m1
o (0 < m1

o ≤ m1
p), m2

p (0 < m2
p ≤ L2)

and m2
o (0 < m2

o ≤ m2
p) using Eq. (11). The step size is 0.05 for each preventive

or opportunistic threshold and 5 for the inter-inspection time. With a precision of
0.010 specified for the cost-rate, from 10,000 renewal cycles, the convergence of the
cost-rate is reached. The optimum values of the decision variables are obtained as
the following: ΔT ∗ = 60, m1∗

p = 0.55, m1∗
o = 0.50, m2∗

p = 0.50 and m2∗
o = 0.40

with the minimum cost-rate C∞ = 2.90 acu.
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Table 2 Proportion of maintenance actions

Individual
replacement of C1

Individual replacement of
C2

Joint replacement of C1
and C2

Policy P 0.31 0.38 0.31

Policy P1 0.34 0.53 0.12

Policy P2 0 0 1
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Fig. 4 Cost-rate as a function of inter-inspection interval ΔT

For each optimal maintenance policy (policy P, P1 or P2), the proportion of
maintenance actions at maintenance time, i.e. joint replacement of C1 and C2, and
individual replacement of C1 or C2 is reported in Table 2.

The results show that the proportion of joint replacement in the proposed
opportunistic maintenance policy (policy P) is higher than in the non-opportunistic
policy (policy P1). This is because the opportunistic thresholds tend towards a joint
replacement of C1 and C2. As for Policy P2 the two components are always replaced
together.

Figure 4 shows the relationships between the minimum cost-rate and the inter-
inspection interval ΔT for the general opportunistic policy P and its variants
(policies P1 and P2). Each point corresponds to an optimal policy with a given value
of ΔT . The results show that policy P always provides the lowest cost-rate. We
observe also that when ΔT < ΔT ∗ the maintenance cost increases rapidly and the
difference between the three policies decreases with decreasing ΔT . However, when
ΔT > ΔT ∗, the cost-rate of the non-opportunistic policy (policy P1) increases
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Fig. 5 Cost-rate (a) and excess-cost (b) as a function of aG

rapidly with increasing ΔT , while the cost-rate of policies P and P2 increases slowly
with increasing ΔT . This implies that the opportunistic replacement and the joint
replacement can better compensate for a sub-optimally large ΔT .

4.2 Impact of Economic Dependence on the Cost

We investigate the impact of economic dependence on the opportunistic replacement
maintenance policy in this section. To do this, we consider the sensitivity of the
minimum cost-rate for the general policy (policy P) and its variants (P1 and P2) to
the economic dependence degree aG between the two components of the system.

To assess the performance of these three policies, a relative excess-cost in the
minimum cost-rate of the general opportunistic policy P compared to policy Pi (i =
1, 2), denoted ΔCi , is used. It is defined by

ΔCi = C∞
P i − C∞

P

C∞
P i

· 100%,

where C∞
P , C∞

P i are the minimum cost-rate of policy P and Pi (i = 1, 2),
respectively. Regarding the definition, ΔCi > 0 means that policy P is more
effective than policy Pi and less effective in the opposite case. We vary the
economic dependence degree aG from 0 to 20% while the others parameters remain
unchanged. For each value of aG the minimum cost-rate of each policy is quantified
and the excess-cost is then calculated. The obtained results are shown in Fig. 5.

With respect to the cost-saving factor aG, we see in Fig. 5a that the cost-rate
decreases. This is due to the fact that as aG increases the maintenance costs are
reduced. It is not surprising that the proposed opportunistic policy P always provides
a lowest cost-rate. This is because policies P1 and P2 are two special cases of
policy P.
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Fig. 6 Cost-rate (a) and excess-cost (b) as a function of bG

Figure 5b shows that when aG < 10% the excess-cost related to policy P2
increases with an increasing of aG. This means that the cost-rate of policy P2
decreases more slowly than the cost-rate of policy P as aG increases. However,
when aG > 10%, the cost-rate of policy P2 decreases more rapidly than the cost-
rate of policy P. While the cost-rate of policy P1 decreases more slowly than that
of policy P1 with increasing aG. This is because the two components tend to be
replaced together when the cost-saving factor aG is high.

4.3 Impact of Structural Dependence on the Cost

To study the impact of structural dependence degree on the maintenance cost, let us
consider sensitivity with respect to the duration-saving factor bG. In that way, we
vary bG from 0 to 50%, and keep the others parameters fixed. We determine the
minimum cost-rate of each maintenance policy (policy P, P1 or P2) for each value
of bG; we then evaluate the excess-cost. The results obtained are shown in Fig. 6.

Given the results, we see once again that when bG is increased (or equivalently a
reduction on maintenance duration when two components are replaced together) we
end up with a decreased cost-rate. We notice that the effect of both the opportunistic
policy (P) and non-opportunistic policy (P1) is almost the same, in a similar manner
to that for varying aG. This suggests that for both policies there is a tendency that
two components are jointly replaced.

This is to be expected from the opportunistic policy since this is its purpose.
However, we might have expected the non-opportunistic policy to show less
dependence on aG and bG. This can be explained by the fact that when there is no
opportunistic replacement, the threshold for preventive replacement compensates
(for component C1 in this case). It is lower (than with the opportunistic policy)
so that more often than not, the replacement of components is simultaneous (and
set-up cost is saved). If it were not the case that replacements are done jointly,
then the cost-rate for policy P1 would not depend on aG and bG in the way
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it does. We see this effect as a result of the positive stochastic dependence. If
such a dependence did not exist, then the joint replacement of the components
when one reaches a preventive replacement threshold would be inefficient. So,
when there is no stochastic dependence between components, opportunistic policies
become more adequate as the extent of economic dependence increases. This is well
known and obvious. However, apparently when a positive stochastic dependence
exists, this phenomenon is much less apparent. This is because a non-opportunistic
policy will then compensate for the absence of opportunities for replacement by
lowering the threshold for preventive replacement of the components. The positive
stochastic dependence ensures that replacements are concurrent since components
then tend to cross their replacement thresholds together. That said, the phenomenon
of components deteriorating together will tend be more apparent when the lifetimes
of the components are broadly similar.

4.4 Impacts of Stochastic Dependence on the Cost

To study the impact of stochastic dependence (or state dependence) between
two components on the optimum maintenance policy, it is now assumed that the
degradation process of each component evolves independently. This can be obtained
from the degradation model given by Eq. (12) by setting μi = μj = 0. In this way,
we reduce the degradation model to two independent gamma process for which the
shape and scale parameters can be estimated, using maximum likelihood estimation,
from the data simulated with the degradation parameters’ values shown in Table 1.
The obtained results are reported in Table 3.

The degradation-based opportunistic maintenance policy is then applied. The
optimal decision variables are obtained as the following: ΔT ∗ = 120, m1∗

p = 0.60,

m1∗
o = 0.45, m2∗

p = 0.55 and m2∗
o = 0.40. Note that, when compared with the

results given in Sect. 4.1, these optimal values are significantly different. In addition,
when applying these optimal decision variables for the case considering the stochas-
tic dependence between components, the cost-rate is obtained as C∞ = 3.75 acu.
This result is significantly higher than the one given when the stochastic dependence
is considered in degradation modelling ((3.75−2.90)/2.90)×100 = 29.3% higher).
This result implies that without considering the stochastic dependence between
components can draw in a sub-optimal maintenance policy. Of course, the difference
may depend on the both economic and structural dependence degree between the
components.

Table 3 Estimated values of
degradation parameters
without considering
stochastic dependence

Component αi βi

C1 0.1165 0.0100

C2 0.0919 0.0090
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5 Summary and Conclusions

The present chapter gives some opportunistic condition-based maintenance policies
for multi-dependent component systems. Three kinds of dependencies that may
exist between components are investigated. Stochastic dependence or degradation
interaction implies that the state (degradation ) evolution of a component depends
not only on its current state (degradation level) but also on the state (degradation
level) of other components. Structural dependence means that replacement of a
component leads to a dismantling of other components, and as a consequence,
joint replacement of several components can reduce the maintenance duration.
Positive economic dependence exists when joint maintenance of a group component
is cheaper than performing maintenance on components separately. To select a
component to be replaced, two kinds of opportunistic maintenance policies are
discussed. The main difference between two kinds of maintenance policies is the
decision indicator for maintenance decision-making. In the first type of maintenance
policies, namely degradation-based opportunistic policy, the degradation level of
each component is used for the maintenance decision-making of both individual
and opportunistic preventive maintenance. In that way, the degradation-based
opportunistic maintenance policy derives (2*N + 1) decision variables which are
needed to be optimized regarding to some optimization criterion such as cost,
reliability, etc. From practical point of view, this may lead to some difficulties in the
optimization process, especially when the optimal values of these decision variables
cannot be obtained by an analytical method. For the second type of maintenance
policies, namely predictive reliability-based opportunistic maintenance policy, the
predictive reliability estimated at each inspection time is used for triggering both
individual preventive maintenance and opportunistic preventive maintenance of
a component. Only three decision variables are needed for whatever number of
components. From a practical point of view, this highlights the applicability of the
maintenance policy. Note however that the predictive reliability may be not easy to
obtained especially when the degradation processes of components are dependent.
Some efficient prediction methods/approaches may be needed to deal with this
problem.

The use and the performance of the degradation-based opportunistic maintenance
policy are illustrated through a numerical example of a two-component system
considering all three kinds of dependencies between components. The results
indicate that (i) dependencies between components have an important impact on the
total maintenance cost and should not be ignored; (ii) introducing an opportunistic
threshold for replacement makes the maintenance policy more flexible and less
sensitive to a sub-optimally large inspection interval. Nonetheless, when a positive
stochastic dependence between components exists whereby components tend to
deteriorate together, it is less effective to introduce an opportunistic threshold
for replacement in order to share maintenance cost. This is a result of having
synchronized replacements of components which arise precisely because of degra-
dation dependence. We can therefore claim a general insight that opportunistic



Opportunistic Maintenance Policies for Multi-Components Systems 421

maintenance is less opportune when components tend to deteriorate together. It will
be very challenging to investigate this claim in a more general context.

Appendix A: Gamma Distribution

A random variable X which is gamma-distributed with shape αi and rate βi is
denoted

X ∼ Γ (αi, βi).

The corresponding probability density function (PDF) is

fαi,βi (x) = 1

Γ (αi)
· (βi)α

i · xαi−1 · e−βi ·x · I{x≥0},

where:

• Γ (αi) =
+∞∫

0

uαi−1 · e−udu denotes a complete gamma function;

• I{x≥0} is an indicator function. I{x≥0} = 1 if x ≥ 0, I{x≥0} = 0 and otherwise.
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Symbols and Acronyms

Ak Action taken at the k-th maintenance event performed
ak,ρ Boolean variable equal to 1 if action ρ is taken at the k-th mainte-

nance event and 0 otherwise
CDF Cumulative Distribution Function
Crep(r) Repair cost for a part with r maintenance cycles remaining
Cscrap Cost of scrapping a part
Cfailure Failure penalty
Ck Cost incurred at the k-th maintenance event
dg(t) MNRC of the part on the g-th GT at time t

MNRC Maximum Number of Remaining Cycles
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G Total number of GTs
g GT Index
GT Gas Turbine
MS Maintenance Shutdown
ANN Artificial Neural Network
FO Forced Outage
MRC Most Residual Cycles
Nei Total number of RL episodes
nei Total number of RL initialization episodes
Qπ(Sk, Ak) State–Action pair value following policy π from the MS or the FO

from k-th maintenance on
Qπ(Sk, Ak) State–Action pair value following policy π from the MS or the FO

from k-th maintenance on
R Maximum value of MRNC
r MRNC index
RL Reinforcement Learning
Sk State vector at k-th maintenance event, Sk = [Sk,1, . . . , Sk,R+G+2]
SDP Sequential Decision Problem
H Number of hours of a GT working cycle
T Total number of working hours per GT
T Ordered set including the time instants at which shutdown events

occur
Nρ Neural network estimating Q(S, ρ),∀S
V Total value of the maintenance expenditures
DM Decision Maker
wr(t) Number of parts with MRNC=r available at the warehouse at time t

Fr(τ ) Cumulative Distribution Function of the failure time of a part with r

remaining cycles
λr Failure rate of a part with r remaining cycles
λ Eligibility trace
1FO(t) FO indicator function
1MS(t) MS indicator function
K Index of the last shutdown
δk Index of the GT maintained at the k-th shutdown
α Learning rate of the network
ε Exploration rate of the algorithm
α0 Initial learning rate of the ANN
ε0 Initial exploration rate of the RL algorithm
PFM Part Flow Management
q̂ρ(Sk) Estimation of Qπ(Sk, Ak = ρ) provided by ANN Nρ

μρ Weights of network Nρ

P Number of available actions regarding the part to set on the GT
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1 Introduction

Gas Turbines (GTs) are complex systems composed by several expensive capital
parts (e.g., buckets, nozzles, shrouds, etc.), which are affected by different degrada-
tion processes, such as fracture and fatigue (Yang et al., 2017; Morini et al., 2010;
Boyce and Ritchie, 2001), fouling (Tarabrin et al., 1998; Kurz and Brun, 2012;
Peters and Ritchie, 2000), corrosion (Eliaz et al., 2002; Goward, 1998), oxidation
(Compare et al., 2016). Part degradation can lead the GTs to failure and, thus,
to costly Forced Outages (FOs) for performing corrective maintenance actions, in
which the failed parts are scrapped and replaced by parts of the same type selected
from those available at the warehouse.

Given the criticality of the GT degradation processes, their behaviors have been
characterized through attentive engineering analyses, which have also yielded a set
of rules determining the maintenance policy for each capital part. In particular,
these rules define the interval between scheduled Maintenance Shutdowns (MSs)
and impose that every part be scrapped after a prefixed number of working cycles
of given duration, provided that it is repaired after each cycle. The reliability of the
part decreases at each cycle, but the risk of failure remains acceptable up to the last
cycle.

The repaired parts are put back at the warehouse with a reduced number of
remaining working cycles, for replacing operating parts in future maintenance. The
parts removed from the GTs are replaced by parts taken from the warehouse, either
restored or newly purchased. Obviously, once installed on the GTs, the parts are
no longer available for replacement of parts of GTs undergoing maintenance in the
future (Fig. 1).

The parts repair actions involve both direct workshop costs and indirect costs
related to the increased risk of FOs, with consequent penalties for business
interruption. On the other hand, repairing the parts gives the possibility of re-using
them, with consequent reduction in the number of parts to purchase over the GT
operation time horizon. Yet, part repairs close to the end of the GT operation time
horizon could lead to the warehouse containing parts ready for installation, but
whose value is lost because they cannot be re-used. On the contrary, scrapping parts
even if with some remaining cycles reduces the risk of failure and workshop costs,
but increases the number of purchases of new parts over the GT operation time
horizon.

From the above, it appears that the management of the maintenance (i.e., MSs
and FOs) requires decisions on both the removed part (send it to the workshop
for repair or scrap it?) and the part to be installed on the GT (new part or part
taken from the warehouse?). This leads to the fact that the decisions at every
maintenance influence the decisions at the future ones. Given this, the Part Flow
Management (PFM) can be framed as a Sequential Decision Problem (SDP, Sutton
et al. 1998), wherein a sequence of future maintenance decisions is sought (i.e., the
optimal policy), which requires the smallest expected maintenance costs over the GT
operation time horizon. This requires considering variables such as the remaining
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time up to the end of the plant operation, the availability of spares, the costs related
to the repair actions, etc.

Despite the relevance of PFM for the safe profitability of GT operation, to the
authors’ best knowledge, systemic approaches to address it are still lacking.

Currently, PFM is dealt with experience-based rules, such as the Most Residual
Cycles (MRC): The removed parts are always repaired and the part with the largest
residual life among those available at the warehouse is installed on the GT; a new
part is purchased only when the warehouse is empty. MRC ensures the smallest
failure probability provided that a part from the warehouse is used. Nonetheless,
it has been shown in Compare et al. (2019) that MRC does not necessarily yield
optimal policies on a finite time horizon, in which the parts are assumed to not fail
and, then, the sequence of MSs is a priori known.

In Compare et al. (2019), the authors have formalized the PFM problem as a
SDP and proposed Reinforcement Learning (RL, Sutton et al. 1998; Szepesvári
2010; Kaelbling et al. 1996) for its solution. However, the optimization framework
developed in Compare et al. (2019) does not account for the stochastic processes
of part failures and the associated FOs, which change the pre-scheduled sequence
of MSs and make the optimization problem a time-variant, finite-horizon problem
(Werbos et al., 1990; Grondman et al., 2013; Bhatnagar and Abdulla, 2008).

In this work, we extend the framework in Compare et al. (2019) to find optimal
PFM policies in the stochastic environment of failure processes. This requires
including the real-valued time variable in the state vector: The same warehouse
and GT part composition may lead to completely different optimal actions if they
present themselves at different times, because of the finite-horizon conditions.

On the other hand, encoding a continuous variable in the state space makes the
RL tabular approaches not practicable, as these would require a dense discretization
of the time axis leading to the curse of dimensionality (Powell, 2007). To address
this issue, we resort to action-value approximation through Artificial Neural Net-
works (ANNs, Bishop 2006; Haykin et al. 2009), which have been successfully
applied in various fields (Tesauro, 1992; Crites and Barto, 1996; Mnih et al., 2013;
Silver et al., 2016). The challenge of this approach is that we have to combine
two learning processes: ANN learns how to approximate the action value function
learned by RL through interactions with the simulated environment. To implement
this learning process, we investigate two approaches, whose results are compared
with each other and with those of MRC.

The structure of the chapter is as follows. In Sect. 2, we introduce the mathemat-
ical formulation of the considered SDP. In Sect. 3, details about the RL algorithms
used for optimizing PFM are provided. In Sect. 4, the case study is discussed.
Finally, conclusions are drawn in Sect. 5.
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2 Problem Setting

Consider an Oil and Gas plant with a number G of GTs, which undergo scheduled
maintenance every H units of time. The GTs are operated for T time each.

Every part is assigned a Maximum Number of Remaining Cycles (MNRC),
indicated by r , which ranges between r = 0, in case of parts that must be scrapped
and r = R, for new parts. The MNRC is reduced by one upon the installation of the
part on a GT: If the GT is stopped, the part will no longer be able to re-perform the
entire started cycle.

To formalize the PFM in a stochastic environment, we must consider that the
decisions are taken on both scheduled MSs and upon FOs, which occur at random
time instants. Namely, if any GT experiences a FO at a time τ after its installation,
τ ∈ [0,H ], then it is immediately repaired and all its future MSs are shifted by τ , as
maintenance is always intended to allow the GT working continuously for H hours
(Fig. 1). The failure times of the parts obey the exponential distribution with failure
rate, λr , depending on the MNRC value r ∈ {1, . . . , R}. This entails that the total
number of maintenance events, K , is a random variable as well as the time of the
events. The failure times of the parts obey the exponential distribution with failure
rate, λr , depending on the MNRC value r ∈ {1, . . . , R}. The cumulative distribution
function (CDF) reads

Fr(τ ) = 1 − e−λr τ (1)

Notice that the choice of describing the part failure behavior by the memory-less
exponential distribution with failure rate depending on the MNRC value allows
modeling the part degradation mechanism as a Markov process. The resulting step-
wise, monotonously increasing behavior of the failure rate can be thought of as a
rough approximation of a continuously increasing hazard rate (Zio, 2007).

We assume that the times to perform MSs and FOs, and the times to repair the
parts removed from the GT are negligible. Then, the parts repaired are immediately
available at the next event.

At any shutdown, the Decision Maker (DM) has to take the following deci-
sions:

• If the maintenance event is a MS, decide whether to repair or scrap the part
removed from the maintained GT. Crep(r) is the cost of repairing a part with
r ∈ {1, . . . , R} remaining cycles, whereas Cscrap is the cost of scrapping.

• If the maintenance event is a FO, then the part must be scrapped, and a
penalty Cfailure must be paid, which also encodes the extra-costs related to the
management of an unplanned event.

• To replace the removed part, decide whether to buy a new part or select one from
those available at the warehouse, if any. Cpur is the cost of purchasing a new
part, whereas the cost of selecting a part from the warehouse is zero, as the repair
costs have already been accounted for.
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Fig. 1 GT maintenance sequence shift

To keep track of the shutdown temporal sequence, we introduce the ordered set
T = {θ1, . . . , θK } including the time instants θk ∈ [0, T ] at which shutdown events,
FOs and MSs, occur. K is a random variable indicating the last shutdown within the
operational time horizon T : If there are no failures, then K is the total number of
scheduled MS on all GTs, which depends on T and H .

To simplify the notation, we define two indicator functions:

1FO(t) =
{

1 if a FO occurs at time t

0 otherwise
(2)

1MS(t) =
{

1 if a MS occurs at time t

0 otherwise
(3)

This way, time t ∈ T iff 1MS(t) + 1FO(t) = 1.
We also introduce the non-negative integer variables dg(t) and wr(t) to indicate

the MNRC of the capital part on the g-th GT at time t , g = 1, . . . ,G, and the
number of parts with MNRC equal to r available at the warehouse at time t ,
respectively, t ∈ [0, T ], r ∈ {1, . . . , R}. Notice that dg(t) ∈ {0, . . . , R − 1}, as
the MNRC of a part immediately decreases upon installation. The MNRC of the GT
maintained at the k-th shutdown, i.e., at time t = θk , is traced by δk ∈ {0, . . . , R−1}.

We assume that there are P available alternative actions regarding the part to set
on the GT: The first alternative p = 1 refers to the installation of a specifically
purchased part, whereas the remaining P − 1 alternatives, i.e., p ∈ {2, . . . , P }
refer to the installation of a part currently in the warehouse with MNRC in Pp ⊆
{1, . . . , R}, such that

⋃P
p=2 Pp = {1, . . . , R} and Pi ∩ Pj = ∅, i �= j, i ∈

{2, . . . , P }, j ∈ {2, . . . , P }. This entails 2 ≤ P ≤ R + 1.
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Finally, the Boolean variable ak,ρ ∈ {0, 1} indicates the action ρ ∈ {1, . . . , 2 ·P }
taken at the k-th maintenance event at time t = θk , k ∈ {1, . . . , K}:
• ak,1 = 1 when a new part is purchased and installed and the removed part is

scrapped.
• ak,ρ = 1, ρ ∈ 2, . . . , P , when the part with MNRC= max{r ∈ Pρ : wr(t =

θk) > 0} is taken from the warehouse and installed on the GT, whereas the
removed part is scrapped.

• ak,P+1 = 1 when a new part is purchased and installed, and the removed part is
repaired.

• ak,ρ = 1, ρ ∈ P + 2, . . . , 2 · P , when the part with MNRC= max{r ∈ Pρ−P :
wr(t = θk) > 0} is taken from the warehouse and installed and the removed part
is repaired.

The Boolean variable ak,ρ is such that only one action can be taken at the k-th
shutdown:

P∑

ρ=1

ak,ρ = 1 (4)

The action taken at the shutdown occurring at time t = θk is

Ak =
2·P∑

ρ=1

(ak,ρ · ρ) (5)

Notice that a part with MNRC r ∈ Pρ can be taken from the warehouse only if it
is available at the k-th event, i.e.,

ak,ρ ≤
∑

r∈Pρ

wr(t = θk), ρ ∈ {2, . . . , P } (6)

ak,ρ ≤
∑

r∈Pρ−P

wr(t = θk), ρ ∈ {P + 2, . . . , 2 · P } (7)

Similarly, a part cannot be repaired if the k-th event is a FO or the removed part has
MNRC r = 0, i.e.,

ak,ρ ≤ dg(t = θk) · 1MS(t = θk), ρ ≥ P + 1 (8)

From the above, the cost incurred at the k-th shutdown reads

Ck = (ak,1 + ak,P+1) · Cpur +
P∑

ρ=1

ak,ρ · CScrap
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+
2·P∑

ρ=P+1

ak,ρ · CRep(dg(t = θk)) + Cfailure · 1FO(t = θk) (9)

The objective function, to be maximized, reads

V = −E

[
K∑

k=1

Ck

]
(10)

The value in Eq. (10) is the negative of the expected maintenance expenditures
incurred in the entire GT operation time horizon, because RL is usually framed
as a maximization.

Notice also that in real industrial applications, the failures of the capital parts
mounted on the same GT may be dependent on each other. Nonetheless, here we
track a single capital part, only. The extension to applications in which the flows of
different capital parts are considered as a whole for a global optimization will be the
object of future research work.

3 Algorithm

In this section, we provide some insights about the RL algorithm developed to
address PFM, which requires the definition of the environment state, the actions
available at each state, and the corresponding rewards (Sutton et al., 1998).

The state at the k-th maintenance event, i.e., at time t = θk , is defined by vector
Sk ∈ N

R+G+1 × R, whose j -th element is

Sk,j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

wj(θk) if j ∈ {1, . . . , R}
dj−R(θk) if j ∈ {R + 1, . . . , R + G}
δk if j = R + G + 1

θk if j = R + G + 2

(11)

In words, the first R entries of the state vector define the number of parts available
at the warehouse, with different MNRC values; the next G entries, from R + 1 to
R + G, indicate the MNRC of the parts installed on the GTs at their respective
last MS; the (R + G + 1)-th entry, δk , gives the MNRC of the GT maintained at
time t = θk; the last entry encodes the time of the shutdown for causing out the
maintenance. Notice that:

• The definition of the environment state in Eqs. (11) does not fully satisfy the
Markov property (Sutton et al., 1998), as the state vector does not include the
time up to the next MS for any GT. This time interval determines the probability
of moving from one state to another, as GT parts have higher chances of failing
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when operated for longer time periods. We have experimentally verified that
omitting the information about the remaining time up to the next scheduled event
does not significantly impact on the knowledge about the probabilistic behavior
of the future evolution of the state, whereas it slightly affects the computational
times of the RL.

• Embedding δk in the state definition may seem redundant, as the information on
the RUL of the parts on the GTs is already encoded in d1(t = θk), . . . , dG(t =
θk). However, the occurrence of FOs entails that it is not possible to infer which
GT is maintained at θk , and the decision to repair the removed part strongly
depends on its MNRC (e.g., if the removed part has MNRC= 0 it cannot be
repaired).

In the tabular RL framework, each state–action pair is described by Qπ(Sk, Ak),
which measures the expected return starting from state Sk , taking action Ak and
thereafter following policy π (Sutton et al., 1998; Sutton, 1995):

Qπ(Sk, Ak) = Eπ

[
K∑

k∗=k

(−Ck∗)|Sk∗ , Ak∗

]
(12)

Given the large dimension of the action-state space including one continuous
variable, we resort to action value approximation through ANNs (Bishop, 2006;
Haykin et al., 2009). We estimate the value of Qπ(Sk, Ak) using a different network
for each action, where each network takes as input the state vector (Eq. (11)) and
returns as output the corresponding estimated value.

In detail, there are 2 · P different ANNs, N1, . . . ,N2·P , with network weights
μ1, . . . ,μ2·P , respectively. The output q̂ρ(Sk|μρ) of network Nρ at state Sk is an
estimate of Qπ(Sk, Ak = ρ), ∀ρ ∈ {1, . . . , 2 · P }.

To build the networks with input–output relations in the proper range of values at
the beginning of the RL algorithm, the network weights are initialized by a standard
supervised training over nei runs (referred to as episodes) of the PFM, collected
by using a pure random policy (i.e., actions are uniformly sampled from the set
of applicable actions) and recording states, actions, and maintenance costs, i.e.,∑K

k=1(−Ck). This step has proven effective in speeding up convergence (Riedmiller,
2005).

Then, we rely on a procedure derived from the n−step gradient–semigradient
SARSA algorithm (e.g., van Seijen 2016) to find the best approximation of Qπ(Sk,

Ak).
After the first nei runs, we perform Nei simulations of part flows. At each episode

ei ∈ {1, . . . , Nei}, we select the ε-greedy action Ak and collect all the transitions
Sk, Ak → Sk+1, Ak+1 and corresponding rewards Ck , k ∈ {1, . . . , K − 1}. If Ak =
ρ, the target value for network Nρ at input state Sk is

Yk,Ak
= λK−k · GK + (1 − λ)

K−1∑

k∗=k

[λk∗−k · Gk∗ ] (13)
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where

Gk∗ = q̂ρ(Sk∗+1|μρ) +
k∗∑

i=k

[−Ci], ρ = Ak∗+1 (14)

and

GK =
K∑

i=k

[−Ci] (15)

According to Szepesvári (2010), we have applied a trial-and-error procedure to set
the weighting factor λ ∈ [0, 1] as linearly decreasing in [0, 1], i.e., λ = 1 − ei

Nei

(Hausknecht and Stone, 2016). At the beginning of the optimization, we set λ = 1,
which entails unbiased estimates, as we are using all the collected rewards up to
the end of the episode. This, however, results in a large variance of the estimates,
because the gathered values of Qπ(Sk,Ak) depend on both the stochastic nature of
the failure process and the random actions due to the exploration strategy. On the
contrary, λ = 0 entails that we are bootstrapping, i.e., using only the immediate
reward and the estimate of the action-value function at the next maintenance
event. Bootstrapping results in a smaller variance, due to the randomness in the
immediate state and reward transition (i.e., Sk, Ak → Ck,Sk+1, Ak+1), only, but it is
biased, because it depends on the output values of the networks q̂Ak+1(Sk+1|μAk+1

),
which are only estimates of the true Qπ(Sk+1, Ak+1). However, for values of ei

approaching Nei , the output values provided by the networks are quite accurate,
especially on the most frequently visited states, whereby λ = 0 should increase
stability.

To train the ANNs, we investigate two different strategies:

• “Incremental”: At the end of every RL episode, each input–output value
(Sk, Yk,Ak

) is passed one-at-a-time to network Nρ , ρ = Ak . Then, we perform
a single step of the back-propagation algorithm (Bishop, 2006; Haykin et al.,
2009), which updates the network weights according to

μAk
← μAk

+ α[Yk,Ak
− q̂Ak

(Sk|μAk
)]∇q̂Ak

(Sk|μAk
) (16)

where α > 0 is the learning rate at the ei− th episode. α = α0 · Nα+1
Nα+ei

, according
to Sutton et al. (1998). Thus, we have to set two parameters: α0 and Nα .

• “Sliding window”: We consider a sliding window of length Nwin for each
network, namely W1, . . . ,W2·P . At each episode, the newly collected input–
output values (Sk, Yk,Ak

) are appended to the window corresponding to the
selected action (i.e., in window WAk∗ ); the oldest values are removed so that
the window length is kept constant. Then, at the end of every RL episode, the
network training is performed by providing each neural network Nρ with all the
data belonging to the corresponding window Wρ , under the usual techniques of
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standard supervised learning. We have used the Levenberg–Marquardt algorithm
(Moré, 1978) for weights updating. The “Sliding window” training approach is
derived from the “neural fitted Q-iteration (NFQI)” algorithm (Szepesvári, 2010;
Riedmiller, 2005)), which instead of considering a window of fixed length trains
the networks offline upon the collection of a batch of RL episodes of fixed length.
In principle, NFQI is faster than “Sliding window,” because it requires to perform
fewer training steps. Nonetheless, it suffers from the limitation that it is required
to wait a longer number of episodes to change the values of q̂ρ(Sk|μρ) and,
thus, the policy. Moreover, we have experimentally verified that in our problem
NFQI may lead to catastrophic forgetting (French, 1999): At every training step,
the ANNs may completely forget the information learned on previous training
batches. This is due to the finite-horizon of the task, which entails that changing
the action performed at time θk affects all the actions to be taken thereafter. This
leads to a large variability in the training batch.

The choice of using SARSA(λ) among the alternative RL algorithms (e.g., Q(λ),
Szepesvári 2010) is justified by the fact that being SARSA an on-policy method, it
guarantees a robust convergence when used with function approximation (Sutton,
1995, 2015; Tsitsiklis and Van Roy, 1997).

Notice also that the weighting factor λ is different from the failure rate, λr (i.e.,
with subscript), although we indicate them with the same letter. This is due to the
large use of this letter in the respective fields.

Finally, notice that the decision of choosing an ANN for every action entails that
the ANN updating depends also on the frequency at which the actions are taken.
Alternatively, we can consider a single network for all the actions. In this alternative
setting, the target value of the network remains Yk,Ak

for the action taken, whereas
the target value for the other actions is the last available value of q̂ρ(Sk|μρ). The
structure of this single network must be sensibly larger, with larger computational
times required for updating its weights. This impacts on the RL convergence time,
especially for the “Incremental” learning. This setting will be investigated in future
research.

4 Case Study

4.1 Case Study Description

In this section, we consider a case study derived from an industrial application. The
main characteristics are summarized in Tables 1, 2, and 3.

In the considered Oil and Gas plant there are G = 2 GTs (first column in Table 1),
each one maintained every H = 24,000 h (second column) over a time horizon of
T = 239,500 h (third column). The maximum part MNRC, R, is set to 3 (fifth
column in Table 1). The time of the first scheduled event on GT g = 1 is set
to 0, whereas the first MS on GT g = 2 (if there are no FOs) is scheduled at
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Table 1 General information on the PFM

G H T R First MS on GT 1 First MS on GT 2 P

2 24,000 h 239,500 h 3 0 h 12,000 h 2

Table 2 Maintenance costs (in arbitrary units) and failure rates of the capital parts

CScrap

Crep(r =
1)

Crep(r =
2) Cpur Cf ailure λr=1 λr=2 λr=3

0 50 50 100 500 2.5 · 10−6

h−1
1.25 · 10−6

h−1
4.17 · 10−7

h−1

Table 3 Initial scenario of
the PFM

w1(0) w2(0) w3(0) d1(0) d2(0)

3 1 0 2 0

Table 4 RL and neural
network parameters

Nei nei ε0 Nε α0 Nα Nwin

12,000 2000 0.3 900 0.01 900 1600

time 12,000 h (sixth and seventh columns in Table 1, respectively). The number
of available actions is 2 ·P = 4 (seventh column of Table 1), where P2 = {1, 2, 3}.

The cost values are reported, in arbitrary units, in the first five columns of Table 2,
which also shows the failure rates λr, r = 1, 2, 3. These illustrative values entail a
failure probability in a maintenance cycle H of 0.06, 0.03, and 0.01, respectively.
Notice also that the failures we are referring to do not lead to the complete loss
of the entire GT. Rather, we consider as failure the degradation of the functional
performance to a level which requires the GT control system to command the stop
of the GT for removing the degraded part. The major costs associated with this
event are those related to business interruption and to the loss of the part, which is
scrapped.

Finally, the first three columns of Table 3 report the number of parts with MNRC
equal to 1, 2, and 3 initially available in the warehouse, whereas the MNRC values
of the parts installed on GTs g = 1 and g = 2 are reported in the fourth and fifth
column.

The RL parameters for both training approaches are reported in Table 4. The
exploration parameter ε of the ε-greedy policy is ε = ε0 · Nε+1

Nε+ei
; the learning rate α

is updated according to α = α0 · Nα+1
Nα+ei

.
Notice that with this setting of parameters, the optimal policy is required to

factor in the risk of failure of GT parts, which has low probability and severe
consequences. This is a challenging issue for sample-based algorithms (i.e., Monte
Carlo (MC) simulation in Sutton et al. (1998)): Few examples are available in the
literature of these RL algorithms applied to seek for policies encoding low probable
events and they show that convergence may be slow and with large variance in the
estimations (Frank et al., 2008).

Notice also that the effect of the actions on the failure events is not simple to
learn: While the direct costs of purchase and repair actions are directly linked to
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the performed actions and immediately encoded into the reward, the costs due to
failures of parts are difficult to assign to the actions, as part failure is due not only
to the decision on what part is to be set on the GT, but also on repair decisions on
the previous MSs: These affect the warehouse composition and, thus, the choice of
the parts to set on the GTs at future events.

4.2 Results Discussion

To fairly compare the optimal policies found by RL with that provided by MRC,
they have been MC simulated to estimate the average costs. For the RL policies,
the episode simulation entails large computational burden, as it requires interaction
with the trained networks. Then, the RL policies have been simulated for 20,000
episodes. The MRC policy, instead, has been simulated for 106 episodes, given that
the computational times are negligible.

Tables 5 and 6 summarize the results of these test simulations. Namely, the first
column in Table 5 shows the possible number of FOs occurring over the time
horizon; for every number of FO, the three following columns report the mean
total maintenance expenditures using MRC, RL “Incremental,” and RL “Sliding
window” policies, respectively. Table 6 has the same first column as Table 5,
whereas the last three columns report the average portion of MC episodes with that
number of FOs for MRC, RL “Incremental,” and RL “Sliding window” policies,
respectively. The last rows of Tables 5 and 6 report the average values and the 68%
confidence intervals on the MC estimates, independently on the number of FOs.

From these Tables, we can see that the RL policies outperform MRC with respect
to both the total expenditures and expected number of failures. Yet, the policy
derived from the “Sliding window” training leads to a number of failures smaller
than that of the “Incremental” training (0.614 vs 0.700): Although the policies found
by the two training approaches yield similar average maintenance expenditures,
however they are quite different, as it can be seen also by comparing the costs of the
two policies in case of no FO (first row of Table 5). We can conclude that the policy
provided by RL “Sliding window” entails a probability of having part flows without
failures larger than those of RL “Incremental” and MRC.

Table 7 gives further insights about the main differences between the policies.
We can see that RL “Incremental” is able to find a more profitable part flow policy
in the case of no FOs, because it scraps three parts with MNRC = 1 (second
row, fifth column). Indeed, MRC is not allowed to scrap. The number of purchase
actions is the same for the MRC and RL “Incremental” policies, but that found
by RL “Incremental” performs one repair less, with a total cost smaller of 50 (in
arbitrary units). Notice that scrapping parts with MNRC = 1 also decreases the
risk of FOs because fewer parts with larger failure rate are set on the GTs. This
is the reason why the policy provided by RL “Incremental window” requires to
perform 7 purchase actions, i.e., one more than the other two policies, and scrap 6
parts out of 8 with MNRC= 1. In this way, even if the maintenance expenditure is
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Table 5 Comparison of maintenance expenditures of MRC, RL “Incremental,” and RL “Sliding
window”

Number of FOs MRC RL “Incremental” RL “Sliding window”

0 1150 1100 1150

1 1687 1668 1712

2 2223 2230 2272

3 2761 2781 2824

4 or more 3379 3406 3438

Total Maintenance Costs 1549 1498 ± 3.5 1495 ± 2.8

Table 6 Comparison of the average number of failures of MRC, RL “Incremental,” and RL
“Sliding window”

Number of FOs MRC RL “Incremental” RL “Sliding window”

0 0.47 0.498 0.537

1 0.360 0.342 0.338

2 0.133 0.126 0.103

3 0.031 0.029 0.019

4 or more 0.006 0.005 0.003

Expected Number of FOs 0.743 0.700 0.614

Table 7 Comparison between MRC and RL policies in case of no FO and RL in the
deterministic environment

Number of
Purchasing

Repair of
Parts with
r = 2

Repair of
Parts with
r = 1

Scrap of
Parts with
r > 0

Scrap of
Parts with
r = 0

MRC 6 6 5 0 9

RL “Incremental” 6 6 4 3 7

RL “sliding
window”

7 7 2 5 6

the same as that of the MRC policy, the probability of failure is smaller because at
the MSs events newer parts are set on the GTs with respect to the other two policies.

4.3 Comparison of the Proposed Training Approaches

In this section, we compare the two RL algorithms. To do this, we must bear in
mind that the difference in the two resulting policies does not depend exclusively
on the different training approaches. Rather, the variability in the results is also due
to the aleatory uncertainty in the failure process and the MC error of the sample-
based procedure. In this respect, notice that roughly one half of the simulations
experiences at least one failure, with consequent change in the MSs sequence.
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Fig. 2 q̂ρ(S1), ρ ∈ {1, . . . , 4}. The learning rate parameters are set to α0 = 0.01 and Nα = 900

Moreover, there are several solutions with similar values, which cannot be clearly
distinguished by the action-value approximation framework we are dealing with.

To compare the two training strategies described in Sect. 3, the convergence
paths of the four ANNs under the “Incremental” and “Sliding window” training
approaches are reported in Figs. 2 and 3, respectively.

Both Figures show the values of q̂ρ(S1) ∀ρ ∈ {1, . . . , 4}, where S1 is the state at
the first MS (i.e., with warehouse and GT composition as described in Table 3 and
maintenance performed at time θ1 = 0 on GT g = 1), versus the number of RL
episode ei ∈ {1, . . . , Nei}.

From Fig. 2, it appears that “Incremental” training leads all networks to become
stable approximately at episode 4000: From that episode on, q̂4(S1) > q̂ρ(S1),
ρ ∈ {1, . . . , 3} and action 4 is identified as optimal. Moreover, the value of q̂4(S1)

increases almost monotonically along the simulation, and the value of q̂4(S1) at
episode ei = 12 000, i.e., at the end of the optimization, is 1486, quite close
to the cost value obtained from MC simulations, i.e., 1498 (see Table 5). Notice
also that the values q̂ρ(S1) of the other networks are less accurate, because non-
optimal actions are explored fewer times under the optimal policy, whereby the
corresponding networks are not updated.

From Fig. 3, we can see that the networks trained with the “Sliding window”
approach are much less stable than those derived from “Incremental” training. In
fact, throughout the training path, all q̂ρ(S1) range in [−1900,−1450], with q̂4(S1)

changing its value of about −200 in the last 1000 episodes. Action 3, which here is
considered optimal at the end of the algorithm, lies above the other curves only after
episode 10,000. Moreover, there are a few episodes around ei = 11 500, in which
action 2 has a peak of q̂2(S1) > q̂3(S1). In these episodes, the optimal action would
be 2. As already pointed out, this instability of the network weights is mainly due
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Fig. 3 q̂ρ(S1), ρ ∈ {1, . . . , 4}. The sliding window parameters are set to Nwin = 1600

to the large variability of the episodes and may lead to sub-optimal policies. Notice
also that as λ → 0 (i.e., when ei > 10,000), q̂3(S1) tends to get stable. However,
the other networks fail to stabilize because they have few samples with input value
S1: When ei � 12,000, ε � 2%, thus random exploration actions are taken with
probability 0.2

4 = 0.005. Each network has a sliding window of length Nwin = 1600
and at every RL episode at least 20 actions are taken: Very roughly, at every RL
episode each network Nρ collects on average 20

4 = 5 new samples (Sk, Yk,Ak
) and,

thus, the networks have a memory of about 1600
5 = 320 RL episodes. The first state

is always visited, but the average number of samples state S1 for each non-greedy
action is 320·0.005 = 1.6. If a failure occurs upon the non-greedy action ρ, then the
maintenance expenditures are over-estimated and, correspondingly, their opposite
q̂ρ(S1) underestimates Qπ(S1, ρ), because for input state S1 the training set records
a value Y1,ρ which is smaller than the real one. The same reasoning applies to all
the following states and this increases the instability of the network weights.

To sum up, it may seem that the “Sliding window” approach is worse than
the “Incremental” one. However, both approaches have pros and cons, which are
summarized as follows:

• The “Incremental” training is much more sensitive to the weights initialization
than the “Sliding window” one. We have run several simulations using both
approaches and we have experimentally verified that the “Sliding window”
method always finds a near-optimal solution (i.e., with average maintenance
cost value ranging in [1490, 1510]) independently from the initial weights. For
example, Fig. 3 shows that the network corresponding to the optimal action 3 at
the beginning of RL is not initialized well, as its estimate of the value of the first
state q̂3(S1) is 350 units smaller than the final one. On the other hand, RL with
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“Incremental” training is more prone to converge to a sub-optimal policy if the
network weights are not properly initialized.

• The “Incremental” approach requires a finer tuning of the training parameters.
We have experimentally verified that:

– The “Incremental” approach converges to the optimal solution in the consid-
ered case study for α0 ∈ [0.008, 0.015] and Nα ∈ [500, 2 000]. Larger values
of α0 lead the networks to become unstable, whereas smaller values entail that
the networks learn too slowly, with a strong dependence on the initial weights.

– The “Sliding window” approach converges to a near optimal solution in
the considered case study for Nwin > 1500. The larger Nwin is, the more
stable the network weights are and q̂ρ(S1) ranges in a smaller interval of
values (Fig. 4 shows an example with Nwin = 4000: ∀ρ, q̂ρ(S1) ranges in
[−1650,−1450]; there are no “negative peaks” in which q̂ρ(S1) suddenly
falls and the curves are generally smoother than those in Fig. 3). However,
the computational burden increases with Nwin and the networks do not
become completely stable: In Fig. 4, the optimal action changes at episode
ei � 11 500, i.e., nearly at the end of the simulation; q̂2(S1) decreases of
about −100 in the last 1000 episodes. To sum up, a trade-off analysis between
stability of the network weights and computational effort of the algorithm is
required to select the optimal value of Nwin.

• The “Sliding window” approach is easier and more familiar for the practitioners
of the classic supervised offline training approach.
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Fig. 4 q̂ρ(S1), ρ ∈ {1, . . . , 4}. The sliding window parameters are set to Nwin = 4 000
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5 Conclusions

This work formalizes the GT part flow management in the Oil and Gas industry as
a SDP considering also the stochastic processes of parts failure. RL with function
approximation by ANNs is used as solving technique and two different training
approaches are investigated, i.e., “Incremental” and “Sliding window.” The results
of a case study derived from a real industrial application show that RL with both
approaches find efficient part flow policies, which increase the GTs reliability, as
the expected number of FOs is decreased. The difference between the two training
approaches lies in that the “Incremental” training is more stable but requires a finer
tuning of the parameters and is more sensitive to the initial settings, whereas the
“Sliding window” training is less stable, but converges to a near-optimal solution
independently on the initial settings.
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Joint Planning of Maintenance and Spare
Parts Provision for Industrial Plant

Farhad Zahedi-Hosseini

1 Introduction

In the past few decades, many research papers have been published highlighting
the importance of using maintenance analysis for the management of industrial
plant (Wang 2012a). Specifically, researchers have concentrated on developing and
using analytical models to help reduce equipment downtime and its associated costs
including spare parts inventory. However, generally, these models use assumptions
which are not easily justified in real-life situations. Equally, to relax some assump-
tions, we will make the models less suitable to be implemented in industry. Scarf
(1997) is an “appeal to maintenance modellers to work with maintenance engineers
and managers on real problems” since “too much attention is paid to the invention
of new models, with little thought, it seems, as to their applicability”. Two decades
later, similar observations suggest that still not enough maintenance optimisation
research is conducted which may be applicable in real industrial situations (Alrabghi
et al. 2017).

Simulation is a useful and flexible modelling environment in which to tackle
these important problems (Alrabghi and Tiwari 2015). Our view is that solutions
obtained through simulation will bring models and theory closer to practice, not
least because simulation tools are accessible to practitioners (Zahedi-Hosseini et
al. 2017). Furthermore, since modern manufacturing systems have become more
complex due to dependencies and interactions between system components, the
use of simulation has grown dramatically over the past few decades (Gupta
and Lawsirirat 2006). In maintenance modelling, since many policies are not
analytically tractable, simulation is an appropriate tool which offers solutions over
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analytical approaches (Nicolai and Dekker 2008). Thus, analytical models provide
limited solutions to complex maintenance problems. In this chapter, simulation
is used to jointly optimise preventive maintenance and spare parts provision for
industrial plant under two different industrial configurations. For developing the
simulation models (see, Harrell et al. 2011), a discrete-event simulation language
known as ProModel (ProModel 2016) was used.

In this chapter, two case examples of joint maintenance inventory planning
are discussed in detail. The maintenance and spare parts inventory control for
a single machine is first considered, where demand for spare parts is driven by
plant maintenance requirements. Several inventory policies are used to identify the
most cost-effective replenishment policy. The aim of the second case example is
to develop simulation models to jointly optimise preventive maintenance and spare
parts provisioning for machines working in parallel. The objective is to minimise
the occurrence of downtime in production systems where simultaneous machine
downtime may halt production and consequently have a significant adverse effect
on performance measures. This example highlights contexts for which analytical
models cannot be developed due to the underlying difficulty in mathematical
analysis and intractability. To compare diverse maintenance and inventory policies
for both production configurations, the average cost per unit time, known as cost
rate, under steady-state conditions, is used as the optimality criterion.

2 Industrial Context

For the industrial context, applicable to both case examples, imagine a plant with
one or more failure modes, which have a maintenance policy of repairing failures
as they arise and inspecting the plant critical part every T time units. The aim of the
inspection is to identify and timely remove any defects before they cause downtime.

Clearly, the aim would be to minimise the plant operational downtime by
reducing the effects of failures and inspection stoppages. Therefore, the decision
variable for the maintenance is the optimal inspection interval, T. If a short interval
is used for T, the percentage of time that the plant would potentially be operational
will be reduced since there would be frequent inspection activities. Alternatively, if
a large T is used, then one would not distinguish between this policy and running
the plant under a breakdown maintenance regime.

In addition, the availability of spare parts will clearly affect maintenance costs.
Keeping a large stock of spare parts will have financial implications for the
organisation and the risk of spare parts’ obsolescence. Conversely, keeping a small
stock of parts might increase the risk of stock-outs, resulting in delays and increased
downtime and higher costs for emergency expediting of spare parts.

Although scheduled inspection times are known, the times of demands for spare
parts are unknown. Consequently, when, relative to inspection, and in what quantity
spares should be ordered is the main question posed in this chapter.
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Therefore, to guide the decision-making process for the optimal maintenance
of industrial plant, it would be beneficial to use the simulation tool to determine
the optimal period for T and establish a cost-effective policy for replenishing the
inventory of spare parts.

The main modelling assumptions common in the majority of studies in the
literature include the following: (i) perfect maintenance in maintaining identical and
independent units; (ii) failures of parts are detected immediately; (iii) maintenance
costs are constant, but the cost of preventive maintenance is always lower than
corrective maintenance; (iv) duration of maintenance activities are constant or take
zero time; and finally, maintenance resources are always immediately available
when required. Considering the points listed above highlight the limitations of
studies in the literature.

3 Maintenance Strategies

The primary purpose of maintenance optimisation is “to find an effective imple-
mentation of maintenance policies” (Zhang and Zeng 2017). The optimality criteria
include minimising maintenance costs, reducing machine downtime, or maximising
machine availability, to mention only a few examples. Many review papers in the
literature give detailed description of the three principal strategies of corrective,
preventive, and predictive maintenance (e.g. Van Horenbeek et al. 2013).

Under the corrective maintenance regime, when a component fails, provided
spare parts are available, the failed part is replaced by a new one. If no spare is
immediately available, downtime will normally occur until parts are replenished in
emergency.

Alternatively, systems may be maintained under a preventive inspection mainte-
nance regime where plant is inspected at regular intervals, with a view to identifying
and replacing all defective (faulty) parts before they cause failures (e.g. Wang 2008).
If the inspection interval is too short, then unnecessary inspection stoppages will
add to downtime. Similarly, if the inspection interval is longer than necessary, then
random failure of parts in service is increased, resulting in increased downtime.
There are several factors that impact upon the determination of the optimum
inspection interval: (i) the arrival time of defects; (ii) the rate of arrival; (iii) the
delay-time, the time it takes for defects to cause failures; (iv) the frequency of
inspections; (v) the cost of inspections; and finally (v) the cost of failures. Many
methodologies including the delay-time modelling (DTM) (further described in
the subsection below) have been established to determine the optimum inspection
interval. DTM describes the failure process in industrial plant in two separate stages:
(i) the time it takes, from new or as new, for a defect to arrive, and (ii) the delay-time,
during which the defect fails. Alternatively, the age-based maintenance strategy, first
developed by Barlow and Hunter (1960), may be used. Using this strategy, parts are
replaced when they reach their predefined age. In comparison, under the block-based
policy, all units are replaced at constant periodic intervals regardless of their age or
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condition. Under all strategies, whenever units fail, they are replaced provided spare
parts are available.

Finally, under the predictive maintenance strategy, the system is monitored, and
maintenance is carried out when some signals reach certain limits (e.g. Shafiee et al.
2015). This strategy aims at triggering the preventive maintenance action only when
required (see, e.g. Olde Keizer et al. 2017).

In view of different maintenance strategies, downtime and labour costs need to
be considered. For example, for the industrial context described in this chapter,
bearings used extensively in a production plant can fail unexpectedly and catas-
trophically (Folger et al. 2014) which will need to be repaired or replaced. Clearly,
in this situation, the labour and downtime costs will have a different cost element
under failure and preventive replacements.

3.1 Delay-Time Modelling (DTM)

The model of inspection used in this chapter was first introduced by Christer (1976)
and applied to an industrial maintenance problem by Christer and Waller (1984a).
Since its conception, a few review papers on delay-time modelling and applications
have been published (e.g. Wang 2012a).

Delay-time modelling, which appropriately lends itself to be used in industrial
plant situation, describes the development of defects in two linked stages. The first
stage, as illustrated in Fig. 1, is the time lapse from new, until the arrival of a defect
— the time-to-defect arrival, u. The second stage, the delay-time, h, is the time
during which the defect continuously deteriorates until it causes failure. During
this latter stage, opportunities arise for inspection, identification of defects, and
maintenance intervention before defects cause failures.

Therefore, by definition, the state of the plant is either good or defective before
failure (Wang 2012a). The transition from the good to the defective state, which
may only be observed by inspection, occurs at a random time and failure occurs
some random time later. Baker and Wang (1992) describe the process of estimating
the time-to-defect and delay-time stages, which establish the relationship between
the number of failures and the inspection interval. The delay-time concept captures
the relationship between failures of items in service, the frequency of inspections,
and the identification and replacement of defective parts at inspections, provided
spares are available.

The fundamental difference between DTM and other inspection strategies is that
under the former, only defective items (if any) are replaced at inspection intervals,
rather than block-based replacement, or replacement based purely on the age of the
component part.

There are two distinct types of DTM systems which are used to model different
industrial situations: (i) single-component or component tracking and (ii) multi-
component or complex system. In a single-component system, as shown in Fig. 2,
there will be a single dominant failure mode, and the system may be renewed upon
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Fig. 1 The delay-time concept

Fig. 2 Defect arrivals and failure occurrences in a single-component system under corrective and
preventive maintenance strategies

failure (Wang 2008). For the instance shown in Fig. 2, inspection at the first and
third epochs will identify and remove the defects and the system is thus renewed.
However, before the second and fourth inspection epochs, component failures occur
and the system is renewed again upon replacements. Examples of single-component
systems are reported in Yang et al. (2016) and Baker and Wang (1992), for instance.

In contrast, a complex system is one in which many failure modes could arise,
and the correction of one failure or the replacement of one defect will have nominal
impact upon the overall plant failure characteristics or the steady state of the system.
Figure 3(i) depicts an example of a complex system where six defects (1, 2, etc.)
arrive over time. If regular inspection takes place, for example, at points A, B and C,
then with the assumption of perfect inspection, some defects will be identified and
removed before failures occur, as shown in Fig. 3(ii). Considering Fig. 3(ii) further,
at inspection point A, two defects have already arrived and are currently in their
delay-times. Thus, both defects 1 and 2 will be identified and removed at inspection
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Fig. 3 Defect arrivals and failure occurrences in a complex system of multiple components

point A, either by replacing or repairing before failures occur. Defect 3 arrives in the
middle of the period between scheduled inspections A and B and will be identified
and removed at inspection point B. Before inspection C, one failure occurs as a result
of defect 5. However the inspection at point C identifies and removes both defects 4
and 6 before they cause downtime. Therefore, in this instance, with a suitable length
for the inspection interval, 5 out of 6 defects (83%) will be identified and removed.
The system may thus be renewed at inspection points A, B, and C if the rate of
arrival of defects is constant and the inspections are perfect. Most models in the
literature are delay-time-based models of complex systems, and examples include
Pietruczuk and Werbinska-Wojciechowska (2017); Lu and Wang (2011); Jones et
al. (2010); Akbarov et al. (2008); Christer et al. (1995); and Christer and Waller
(1984a, b).

There are also many delay-time-based case study applications reported in the
literature. Some examples include Zahedi-Hosseini et al. (2018); Emovon et al.
(2016); Liu et al. (2015); Jones et al. (2009, 2010); Akbarov et al. (2008); Arthur
(2005); Pillay et al. (2001a, b); Christer et al. (1995); Baker and Wang (1992);
Christer (1987); and Christer and Waller (1984a).

4 Inventory Control Strategies

There are two distinct approaches for the replenishment and management of spare
parts (Muller 2011). Stock may be reviewed: (i) periodically or (ii) continuously
(see, e.g. Santos and Bispo 2016 and Kennedy et al. 2002). Under the periodic



Joint Planning of Maintenance and Spare Parts Provision for Industrial Plant 449

review policy, parts may be replenished using the (R, S), (R, s, S), and (R, s, Q) policy
(Silver et al. 2016) ~ periodically (R), raising the inventory position to level S, when
the stock level drops below s, and by ordering a fixed quantity Q.

In comparison, under the continuous review policy, every time the stock level
is depleted, the inventory levels are checked. Then, either a sufficient quantity,
up-to-level S, is ordered if the inventory position reaches or drops below s ~ the
(s, S) policy, or a fixed quantity of parts is ordered when the inventory position
reaches or drops below s ~ the (s, Q) policy. When there is a per unit demand, both
the (s, S) and (s, Q) policies give the same result when Q = S − s.

Under all policies, there are three costs which are traded off, namely, ordering,
holding, and shortage costs. The ordering cost is fixed for the unit purchase of spares
under normal circumstances or for ordering spares in emergencies. The holding
cost will fluctuate due to capital and space cost implications. Finally, if there is
insufficient number of spares available at the right time, shortage costs will be
incurred which will add to downtime. The number of parts to keep in the store will
depend on the frequency of component failure and the replenishment lead time.
However, the cost of keeping inventory and the risk of spare part obsolescence
must be considered too. All these costs will be balanced under different policies
to produce an overall optimum cost. In joint optimisation problems, it is important
to select maintenance and inventory policies which are suitable to the industrial
situation.

5 Joint Optimisation for a Single Machine

The industrial context that was described in Sect. 2 is a typical industrial problem
which is reported in the literature including Wang (2012b). To ensure that the
developed simulation models and experiments in this chapter were realistic, 15
companies and 6 academics were surveyed to provide the information required for
the costs and parameter values used in the models.

Therefore, simulation models were developed for jointly optimising the mainte-
nance and inventory control provision for a paper mill where bearings are critical
components, which deteriorate and fail randomly.

We suppose that the paper mill has many (typically over 100) identical bearings,
where simultaneous defects may arise, and bearings fail randomly based on the two-
stage delay-time concept described previously, in Sect. 3.1. The arrival of defects
is exponentially distributed, which is consistent with the delay-time model of a
complex system discussed in Wang (2012b), for example. Based on our survey,
λ = 0.05 per week, and the delay-time has a Weibull distribution with α = 10
and β = 3. When failures occur, provided spare parts are available, bearings are
replaced, which takes 9 h for each replacement. While an individual machine is
down due to bearing failure, the cost rate is £1,000 per hour.
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Bearing condition is continuously monitored but periodically reported by exter-
nal specialists at the beginning of each inspection epoch, by processing of the raw
condition data. This means the inspection process incurs cost but no plant downtime.
Therefore, all bearings are inspected in parallel, and defective bearings are replaced
preventively, which takes 4 h for each bearing. It is logical to assume that during
replacement, downtime defects do not arise or grow, and the bearings do not age or
fail. The system is assumed to be operating under steady-state conditions.

The demand for the critical component is generated through failures of bearings
in service and preventively replacing all defective bearings at scheduled inspections
every T time units. Demand is satisfied from the inventory in the store provided
there are enough spares or by ordering spares in an emergency. Based on the survey,
lead time for ordering spares =3 weeks, and the lead time for ordering shortages in
an emergency =1 day. Orders are placed and received at the beginning of each order
and receipt day, respectively. However, orders arrive prior to reviewing the current
inventory if it coincides with an order placing day. The order cost =£100, and the
cost rate of holding inventory =1% of item cost per week. The purchase cost of
one bearing is =£2,000, and the shipment cost of each bearing in an emergency is
=£1,000.

In this chapter, several periodic review replenishment policies, and their variants,
are compared as explained and discussed in detail in Sect. 4. T (the inspection
interval) = kR (the review priod) is set for k > 0 for policy variants. In all cases,
the simulation models seek values of the decision variables, T and R, that minimise
the long run overall expected cost per unit time. However, other decision variables
depend on the exact inventory policy considered.

Three principal joint policies and one variant in each case were considered,
namely, (R, S, T = R); (R, S, T = 2R); (R, s, S, T = R); (R, s, S, T = 2R);
(R, s, Q, T = R); and (R, s, Q, T = 2R). While the analysis and discussion in this
section is entirely focused on the cases T = kR with k = 1 and 2, other values such
as k = 0.5, 3, and 4 were also investigated. However, for the range of parameter
values in our studies, other values of k were not found to be cost-optimal. For
optimising our system, ProModel’s own optimisation tool, SimRunner (ProModel
2010), was integrated with the simulation models, which ensured that the optimal
cost was achieved by running multiple combinations of certain variables. Although
in practice several decision variables may be used as a focus in an optimisation
study, in our study we have used the minimisation of the overall cost, which is most
common in the optimisation of maintenance inventory problems (Van Horenbeek et
al. 2010).

Table 1 illustrate that among all joint policies considered in this chapter, the
(R, S, T = 2R) policy has the lowest total cost per unit time ~ inspecting the bearings
in the paper mill plant every 10 weeks and ordering spares every 5 weeks. The
results also indicate that the (R, s, S, T = 2R) policy is also cost-minimal with T = 10
and R = 5 since S∗ − s∗ = 1 (S∗ and s∗ are the optimum values of S and s,
respectively).

Among all policies considered and their variants, the second and third lowest
cost rates are also associated with the (R, S, T = 2R) policy, inspecting every 11 and
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9 weeks and ordering every 5.5 and 4.5 weeks, respectively. Considering the two
lowest cost rate policies, the cost-optimal policy performs more frequent inspections
at the cost of keeping more spares, resulting in the reduction of the overall
cost. From the maintenance point of view, there seems to be a balance between
the increased cost of inspections and the decreased cost of failures. Similarly,
from an inventory control view point, the increased cost of keeping inventory is
balanced against the possible reduction of stock-outs and its associated costs. In the
maintenance inventory optimisation problem, less frequent ordering of higher spare
quantities seems to potentially reduce the possibility of stock-outs under some joint
policies.

For this kind of studies, sensitivity analysis is used in several publications in
the literature, which “test the robustness of a suggested model by varying inputs
and investigating if the results are in line with the expected outcome”, Boulet
et al. (2009), for example. Therefore, in our studies, for the cost-optimal policy
(R, S, T = 2R), sensitivity to various parameters such as defect arrival intensity,
machine downtime, inspection frequency, and various costs was investigated. The
effect of the defect arrival intensity on the overall cost rate is as expected since
the cost rates for 0.5λ and 2λ are nearly halved and doubled, respectively. When the
machine downtime cost rate is halved and doubled, the overall cost rate is reduced by
22% and increased by 41% with respect to the baseline, respectively. Furthermore,
the optimal T shows the greatest impact when the inspection becomes infrequent
and the cost is halved. Finally, varying the cost of inspection is as expected since
the optimal T moves in the expected direction and the greatest effect is displayed
when inspection is frequent. The sensitivity analysis suggests that the effect of the
ordering cost, holding spares, or replenishment lead time on the cost rate is minimal.

In summary, in the context of the paper mill plant that was studied in this chapter,
it is cost-optimal to order twice as frequently as to inspect, which increases planned
costs and decreases unplanned costs due to a reduction in bearing failure and hence
downtime.

6 Joint Optimisation for Parallel Machines

As in the previous case study (described in Sect. 5), the industrial context used here
is also a paper mill with many bearings as the critical components in the plant.
However, for this second case, we are considering a parallel production system
comprising two identical paper rolling machines. It is assumed that bearings are
the common inventory in the plant.

In this new system, we assume a complex system delay-time model for each
machine. Defects arise based on a Poisson process, and bearings fail in service based
on the delay-time model (Christer and Waller 1984b). At the beginning of each
inspection epoch, both machines are inspected simultaneously since the monitoring
of raw inspection data is analysed and reported by the external specialists every
T time units. Defects that are identified are preventively replaced, which take
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place consecutively — Machine 1 and then Machine 2. This ensures there is
no simultaneous stoppage of both machines, preventing simultaneous downtime.
Furthermore, if a failure replacement coincides with a scheduled inspection, then
bearing replacement, if required, would not commence until downtime due to failure
replacement is ended. If downtime occurs due to two concurrent failures on both
machines, or a failure on one machine while preventive replacement is taking place
on the other machine, then a simultaneous downtime cost at a rate of £10,000 per
hour is incurred. Figure 4 illustrates a flowchart depicting the process of capturing
and recording simultaneous machine downtime. Preventive replacement of a bearing
does not cause simultaneous downtime since a preventive replacement will be
postponed until a failure replacement is complete. It is this kind of complexity that
simulation modelling can tackle, and mathematical modelling is intractable. Apart
from specific assumptions discussed in this section, all other general assumptions
considered in Sect. 5 would also apply here.

As before, the survey provided the relevant data, which ensured the input data to
the simulation models were based on realistic information. Therefore, the data used
in this model is the same as the data used for the single-machine scenario in Sect. 5.

Since in the first case study, the (R, S) periodic review replenishment policy
proved cost-optimal, the same policy and its variants are used so that a direct
comparison may be made between the two industrial situations discussed in Sects.
5 and 6. Therefore, the joint maintenance inventory (R, S, T = kR) policy was used
for some positive, rational number k. As before, under such a policy, the inventory
position is reviewed every R time unit, and, if required, an order is placed to bring
the stock level up to level S. Two policy variants are considered here when T and
R coincide, with k = 1 and 2, respectively. In both cases, the inspection process
precedes the stock review activity, so that the number of spares used at inspection
are considered before an order is placed, if required. Therefore, specific values
of the three decision variables, R, T, and S, each with two degrees of freedom,
that minimise the long-run total cost per unit time, or cost rate, are sought as the
optimisation criteria.

The results displayed in Table 2 demonstrate that the (R, S, T = 2R) policy
with T = 10, R = 5, and S = 3 produces the lowest cost rate for inspecting,
reviewing, and ordering bearings in the plant. Apart from k=1 and 2, other values
were also investigated but were not cost-effective. The next best four policies are
still the (R, S, T = 2R) policy, inspecting bearings every 11, 9, 12, and 13 weeks,
respectively. The simulation results for this model are consistent with the results
obtained for the single-machine industrial situation discussed in Sect. 5, which
imply that performing multiple stock reviews of critical components in the plant,
between inspections, is cost-effective.

Again, sensitivity analysis of the optimal policy to various parameter variation
was performed. It was found that the cost-optimal policy is most sensitive to
the defect arrival intensity and α, the scale parameter of the Weibull delay-time
distribution. Clearly, the former parameter affects the maintenance costs, and
the latter regulates the failure intensity and the number of defects identified at
inspections. The cost-optimal policy is less sensitive to the parameter values of
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Fig. 4 Flowchart depicting the logic used in capturing and recording simultaneous machine
downtime occurrences

spare unit cost, normal lead time, shortage lead time, and simultaneous machine
downtime cost rate, since the latter two are rare under maintenance inventory joint
optimisation.
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Table 2 Cost rate and
decision variable value for
two policies

(R,S,T = R) (R,S,T = 2R)

T £ cost rate S £ cost rate S

6 1269.58 3 1256.21 2
7 1220.76 3 1206.23 3
8 1192.68 4 1176.37 3
9 1175.31 4 1158.81 3
10 1174.59 4 1149.23 3
11 1176.59 4 1151.84 3
12 1183.63 4 1161.36 3
13 1190.48 4 1164.50 3
14 1203.50 4 1181.91 3

Lowest cost rate for each specific policy.

Policy with lowest cost rate overall

7 Conclusions

Several simulation models were developed for jointly optimising the maintenance
and spare parts inventory for a single-machine scenario compared to a parallel
production facility. In the latter case, it is assumed that simultaneous downtime
of parallel machines incurs significant cost to the organisation. Simulation models
were specifically developed for an industrial situation comprising paper rolling
machines in a paper mill. The aim was to jointly optimise the planned maintenance
inspection interval T, and the review period R, for maintaining a single stock keeping
unit – bearings. SimRunner, ProModel’s optimisation tool, was used to find the
optimal policy in each case. Without a modelling tool, it will be unclear when
inspections should be performed, and when spares should be ordered – and in what
quantity, in a given context.

The results show that under both industrial situations, it is cost-efficient to
place multiple orders between inspection cycles. Among various parameters, the
emergency shipment cost and the defect arrival rate have the least and most impact
on the cost-optimal policies, respectively. The sensitivity analysis shows that results
are broadly in line with expectations, which, in part, validates the output results
from the simulation models.

The joint optimisation work discussed in this chapter may be extended in
several directions. The assumption of “perfect inspection”, which assumes the
identification and removal of all defective components present in the system at the
time of inspection, may be relaxed. However, to model a more realistic industrial
scenario will need access to reliable data to make the experimentation meaningful.
Models are also based on the assumption of immediate replacement of all defective
components, identified through inspection, provided spares are available. In real
industrial situations, the replacement of some or all of the components may
be delayed until the next replacement cycle, which may be more cost-effective,
especially if spare parts are not immediately available. If the item is in a minor
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defective state and the spare part is not available, one can wait and postpone
replacement rather than rushing into an emergency replenishment.

The simulation models in this chapter are developed for specific industrial
situations and production configurations. Unlike analytical models, simulation-
based models require computation time for experimentation, which will inevitably
take some time to produce results. Moreover, discrete-event simulation (by its
nature), together with an optimisation tool, will not necessarily produce an exact
optimum solution because the search space is not continuous.
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Some New Advances in Modeling for
Performance-Based Maintenance
Services

Tongdan Jin, Yisha Xiang, Jin Qin, and Vinod Subramanyam

1 Introduction

Product support and maintenance post the installation are becoming more important
as the global economy continues to shift to a service-oriented business paradigm.
For example, with the expansion of the commercial aviation industry, the main-
tenance, repair, and overhaul (MRO) market that supports it is expected to grow.
Total MRO spending worldwide is expected to rise to $116 billion by 2029, up
from $81.9 billion in 2019 (Wyman 2019). In defense industry, the annual operation
and sustainment cost for US military equipment alone is $63 billion, and the MRO
activities are supported by 678,000 DoD personnel along with hundreds of private
contractors (Smith 2007). According to a study by Accenture (Dennis and Kambil
2003) after-sales services including part supply contribute only 25% of revenues
across all manufacturing companies but are responsible for 40–50% of profit stream.
Many firms have begun to recognize the importance of the after-sales services and
start to offer extend warranty and repair contracts. In particular, some commercial
companies have a heavy reliance on MRO that is treated as a key enabler for their
business success (e.g., Southwest Airlines, JetBlue, Jaguar, Rolls-Royce, and Pratt
& Whitney). This is due to the fact that the availability of their products and services
directly depend on the success of MRO program. When new products are expected
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to be released with higher reliability and longer service time, it is anticipated that
MRO services continue its growth, generate more profits, and become more relevant.
Therefore, rigorous planning models and implementation strategies are increasingly
important as the complexity and integration of new products continue to increase.

Traditional MRO services are performed under the so-called material-based
contracts (MBC). Namely, service providers are paid each time a maintenance task
is accomplished. While some industries are more sensitive to operational costs,
achieving performance outcomes are the top priorities in many other industries.
For example, in capital-intensive industries, such as aerospace and defense sectors,
key performance outcomes including system readiness, equipment reliability, and
mission success rate are of great importance (Nowicki et al. 2008). Though cost
is always important, these customers are relatively less sensitive to the mainte-
nance expense than the system uptime. In these performance-oriented industries,
a new support contracting mechanism, performance-based maintenance (PBM), has
emerged and received much attention in recent years. In the US military, PBM is
also called “performance-based logistics (PBL)” (DoD 2005); and in commercial
airlines, it is referred to as “power by the hour.” One of the earliest PBL programs
dates back to 1998 when Lockheed Martin offered a maintenance solution to the US
DoD for supporting F-117 Nighthawk, which tied its compensation to the fighter’s
performance outcome (Mirzahosseinian and Piplani 2011). During the past decade,
PBL has been popularized in the after-sales market for servicing capital-intensive
goods in both private and public sections, such as Lockheed Martin, Rolls-Royce,
General Electric, and Boeing. A more general concept that encompasses both PBM
and PBL is called performance-based contracting (PBC). It is a product support
strategy used to achieve certain measurable performance goals. The primary means
of accomplishing this are through incentivized, long-term service contracts with
mutually agreed and measurable levels of performance outcomes defined by the
customer and agreed on by contractors. Besides the defense and airline sectors,
applications of PBC have been also reported in healthcare delivery, power industry,
and transportation industry. For instance, PBC is adopted in highway pavement
maintenance and railroad track maintenance (Anastasopoulos et al. 2010; D’Angelo
et al. 2018).

Pertaining to PBM in system support and operation, Jing and Tang (2017)
suggest that expected backorders, average parts availability, and average waiting
time are the preferred key performance measures perceived by the service provider.
Under these criteria, a probabilistic constrained inventory minimization model is
further formulated in a multi-echelon, multi-system spare parts setting. Glas and
Kleemann (2017) analyze 21 business cases and conclude that the success of
PBC relies on clear responsibilities, quantifiable performance indicators, transparent
measurement, cooperative culture, and a precise utilization profile of core assets.
Hur et al. (2018) propose an inventory optimization algorithm to find the spares
requirement of aircraft components during the end-of-life period with aircraft
availability as a performance metric under the PBL contracting. Comprehensive
reviews on this research stream have been made by Selviaridis and Wynstra (2015)
and Glas et al. (2018).
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The primary goal of PBM is to reduce the system’s ownership cost while
ensuring the reliability and availability during its useful lifetime. Therefore, PBM
is a holistic maintenance solution, and differs from the traditional MBC in that the
customer buys the system performance instead of paying the spare parts and repair
labors transacted in a maintenance process. Specifically, the users of the equipment
define the performance goal and sign the maintenance contract with the service
provider who is committed to the attainment of the performance goal. Meanwhile,
the service provider is incentivized to meet or exceed the performance goal in order
to reap a higher service revenue. PBM potentially motivates the service provider
to design reliability into product’s early development and manufacturing stages,
because the efforts will be paid off by reduced maintenance and repair costs in field
use. PBM is a key enabler to the implementation and operation of PBL contract
that gains growing popularity in the US defense sector. Studies show that aircraft
reliability and operational availability have increased by 15–20% in the US military,
showing the effectiveness of PBM programs (Garvey 2005; Kratz 2005).

Despite the success of PBM in defense sector, its theoretical studies and potential
applications in other industries still remain in an early stage. Recently, there is
a growing stream of literature exploring the design and implementation of PBM
program in a broad application scope (Nowicki et al. 2008; Kang and McDonald
2010; Randall et al. 2010; Jin and Wang 2012; Xiang et al. 2017; Qiu et al. 2017).
For instance, Nowicki et al. (2008) define two incentive payment models based
on linear and exponential functions. Kang and McDonald (2010) use design of
experiments to identify critical logistics factors that impact the readiness and life
cycle cost of light armored vehicles. In a recent work by Qiu et al. (2017), their
model considers maintenance error, and the system is replaced upon a hard failure or
preventively replaced if the cumulative soft failure exceeds a predefined threshold.
The objective of their model is to maximize the expected net revenue of the supplier
operating under a PBC.

In general, these studies attempt to address two fundamental questions: (1) what
are the key drivers behind the system reliability and availability under the PBM
contracting? and (2) how do they interact with each other and jointly influence the
decisions made by the customer and the supplier? This chapter reviews the recent
findings and further present two PBM contracting models in terms of maximizing
the service profit and minimizing the life cycle cost, respectively.

The remainder of the chapter is organized as follows. Section 2 presents a four-
step procedure of designing and managing a PBM contract. Section 3 defines five
key performance measures and further explores the interactions between operational
availability and its underlying drivers. In Sect. 4, we investigate a PBM contract
model for maximizing the service profit. Section 5 compares the PBM contracts
when the goal is to maximize the service profit, minimize the cost rate, and
maximize the availability. In Sect. 6, some discussions about the future research
are provided. Section 7 concludes the chapter.
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Abbreviation Comment

AC Alternating current
CBM Condition-based maintenance
CM Corrective maintenance
CPAF Cost plus award fee
CPFF Cost plus fixed fee
CPIF Cost plus incentive fee
CUU Cost per unit usage
DC Direct current
FMECA Failure mode, effects, and criticality analysis
IG Inverse Gaussian
LCC Life cycle cost
LF Logistics footprint
LRT Logistics response time
LRU Line replaceable unit
MBC Material-based contract
MLDT Mean logistics delay time
MR Mission reliability
MRO Maintenance, repair, and overhaul
MTBF Mean time between failures
MTTR Mean time to repair
OA Operational availability
OEM Original equipment manufacturer
PBC Performance-based contract
PBL Performance-based logistics
PBM Performance-based maintenance
PM Preventive maintenance
RFRW Free replacement warranty
TAT Turnaround time
WT Wind turbine

2 Overview of Performance-Based Maintenance

2.1 The Evolution of Maintenance Strategy

Maintenance policy can be classified into three categories depending on whether the
action is triggered by the time/usage, the health condition, or the incentives. Correc-
tive maintenance (CM), also known as “run-to-failure maintenance,” is triggered by
the time as it is executed only if the system fails randomly. Preventive maintenance
(PM) is a schedule-based process that is performed based on a predefined time,
cumulated usage, or degradation level. For instance, block replacement is a type
of PM in which all items are replaced at a predefined time regardless of the actual
age. Condition-based maintenance (CBM) also belongs to the PM category, yet the
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Fig. 1 The evolution of asset management strategy

repair or replacement is triggered by the degradation level or the health condition
which is often derived from in situ sensory data. PBM belongs to incentive-driven,
instead of transaction-based, maintenance strategy. It differs from CM and PM
in that PBM takes a holistic approach to plan the MRO service considering the
interests of multiple stakeholders whereas CM and PM often seek the optimal
replacement decision from a single stakeholder, either the service provider (e.g.,
cost minimization) or the end user (e.g., availability maximization). Therefore,
multi-criteria optimization, e.g., cost minimization and availability maximization
simultaneously, is considered to be viable approach to implementing the PBM
service.

Figure 1 shows how the asset management strategy evolved in the past several
decades, which is driven by continuous reduction of the ownership cost and the
transferring of more responsibilities to the service provider.

Though the goal of different maintenance strategies might be similar, i.e., mini-
mizing the cost rate or ensuring the equipment uptime, CM, PM, and CBM usually
emphasize the technical aspect by focusing on when to execute the inspection,
replacement, or repair action. PBM is designed with business or profitability aspect.
The attention is often paid to implementing an appropriate maintenance and support
logistics to meet the predefined contractual goal. Under the PBM framework, the
service provider can choose a specific replacement policy, such as time-, usage-,
or condition-based criterion, to manage the maintenance contract as long as it is
mutually agreed between the supplier and the customer. Perhaps, the key difference
between PBM and other maintenance policies is that in PBM design for reliability,
replacement time, and spares provisioning can be jointly coordinated across the
product life cycle.
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Table 1 A four-step procedure of PBM implementation

Step Objectives Detailed tasks

1 Identifying
performance
outcomes

System readiness, mission completion, assurance of spare parts
supply

2 Defining
performance
measures

Operational availability, spare parts availability, stocking-out
probability, part failure rate, stock fill rate, expected backorders,
mean time between failures, mean time between replacements,
mean time to repair, cost per unit usage, logistics response time,
logistics footprint

3 Determining
contract goals

Maximize system or parts availability, maximize service profit,
maximize fill rate, minimize backorders, minimize failure rate,
minimize repair waiting time, minimize the life cycle cost,
minimize the maintenance cost rate

4 Choosing incentive
mechanisms

Fixed cost payment, cost plus payment, cost plus incentive fee,
cost sharing or cost reimbursement.

2.2 Implementation of Performance-Based Maintenance

The planning and implementation of a PBM contract can be divided into four steps:
(1) identifying performance outcomes; (2) determining performance measures; (3)
defining performance criteria; and (4) designing incentive payment. The objectives
and tasks of each step are summarized in Table 1. To effectively implement a PBM
program, reliability performance must be appropriately translated into measurable
value so that it can be assessed quantitatively over the contract period. Meanwhile,
performance measures can also be used as service criteria, decision variables, or
constraints to guide the actions of the service supplier.

3 Identifying and Defining Performance Measures

3.1 Five Key Performance Measures

Though various performance measures have been proposed to assess the outcome
of a PBM contract, the following quantitative metrics are commonly adopted:
operational availability, mission reliability, cost per unit usage, logistics response
time, and logistic footprint. Below, these metrics are elaborated in terms of their
interactions.

According to the US DoD (DoD 2005), operational availability (OA) is defined as
“a measure of a degree to which an item is in an operable state and can be committed
at the start of a mission when the mission is called for at a random point in time.”
Let Ao be the steady-state value of OA, it can be estimated as.
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Ao = MTBF

MTBF + MTTR + MLDT
, (1)

where MTBF is the mean time between failures of the system. MTTR is the mean
time to repair, and MLDT is the mean logistics delay time for repair. In particular,
MTTR is the hands-on time (i.e., touch labor) to recover the system given the spare
part is available. MLDT represents the waiting time associated with the arrival of
spare parts, maintenance crew, and necessary tools.

Mission reliability (MR) measures the capability of an item or system to
accomplish the required task for the duration of a specified working condition.
Essentially MR defines the probability of failure-free operation during the time
period to complete the task. Let tm be the time duration of the mission, then.

MR = Pr {T ≥ tm} ≥ γ, (2)

where γ for 0 ≤ γ ≤ 1 represents the desired probability of failure-free operation
during tm. An alternative approach would be to measure the cumulative operating
time of a system prior to its failure or scheduled maintenance. Other metrics such as
failure rate or failure intensity rate can also be used to characterize the system MR.
For instance, assume the item’s lifetime is exponentially distributed with failure
rate λ. Based on Eq. (2), MTBF and λ must meet the following criterion in order to
satisfy the required mission reliability γ . That is

MTBF = 1

λ
≥ − tm

ln γ
,

Similar relation between MTBF and MR can be derived if the lifetime follows
other distributions such as Weibull and log-normal.

Logistics response time (LRT) is the duration of calendar time from when a
failure occurred to the time when it is fixed. Since LRT is highly correlated with
MLDT and MTTR, it can be approximated as follows:

LRT = MLDT + MTTR (3)

For instance, if a failure occurs at 6 am in the morning, and it takes 2 hours for
the staff to report the failure to the service provider, and it takes another 5 hours for
the provider to restore the system. Then LRT = 2 + 5 = 8 hours in the case.

Cost per unit usage (CUU) is defined as the total operation and support cost
of a system divided by the usage factor. Typical usage factors include hours, miles,
rounds, or launches depending on the nature of the system. For instance, the usage of
a rocket is measured by the number of launches while aircraft engine usage is often
measured by flight hours, take-off, and landing frequency. In addition, overhead
costs associated with MRO activities are also part of the operation and support cost.
As such, CUU can be estimated as
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CUU = total operation and support cost

usage factor
(4)

Logistics footprint (LF) quantifies the size of logistics supply chain needed to
sustain the operation of a fleet of systems. Measurable indices include but not limit
to spare parts inventory, personnel, facilities, truck/transport fleet, and number of
sub-contractors. Since LF encompasses a variety of elements, each element should
be characterized, measured, and monitored individually and independently. If the
unit cost of individual elements is available, it is appropriate to envelop the entire
embodiment of logistics support based on the following formula:

LF = c1I + c2P + c3F + c4V + c5S (5)

where c1, c2, c3, c4, and c5 represent the unit cost of spare parts inventory,
maintenance crew, facility, transportation, and contractor supply. Note that, I, P, F,
V, and S represent the size or capacity of spare parts inventory, personnel, facilities,
transportation, and contractor supply, respectively.

3.2 Operational Availability Under Corrective Replacement

OA is treated as the primal performance measure that ultimately governs the other
four performance measures, i.e., MR, LRT, LF, and CUU. Originally from Espiritu
et al. (2012), Fig. 2 depicts the interaction of five performance measures. To meet
the OA target, the service provider may choose to improve MR through reliability
growth and redundancy allocation scheme or compress the LRT by deploying a
responsive logistics network. Higher MR implies a larger MTBF or MTBR, which
leads to a smaller amount of failures. Hence it saves repair cost and spare parts
investment. This ultimately reduces the size of LF such as repair facility and crew
members. On the other hand, to reduce the LRT, the supplier needs to escalate the
safety stock level of the spares inventory, implement expedited transportation mode,
or deploy a larger maintenance crew. These decisions further influence the outcomes
of, or more likely increase, the cost of LF and CUU.

Operational

Availability (OA)

Mission

Reliability (MR)

Logistics Response 

Time (LRT)

Logistics

Footprint (LF)

Cost Per Unit 

Usage (CUU)

Fig. 2 Interactions of the core performance measure in PBM
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It has been shown that OA is primarily governed by six performance drivers,
namely, intrinsic failure rate, system usage, spare parts stock level, maintenance
policy, repair turnaround time, and hands-on replacement time (Jin et al. 2013). For
single-item systems subject to corrective maintenance, a unified availability model
synthesizing six drivers is presented as follows (Jin and Wang 2012):

A (λ, s, ρ, n, tr , ts) = 1

1 + ρλts + ρλtr

(
1 −

s∑
k=0

(nρλtr )
ke−nρλtr

k!
) , (6)

where

λ = failure rate.
ρ = system usage rate, and ρ∈[0, 1].
s = spare parts stocking level.
n = number of operating units in the field or fleet size.
tr = repair turnaround time between the spares inventory and the repair center.
ts = hands-on time of replacing the failed item.

Equation (6) is derived under the assumption that the repair center has ample
capacity which is modeled as M/G/∞ queue. For a system comprised multiple types
of components each having different operational availability, the system availability
is given by

As =
K∏

i=1

Ai (λi, si , ρi, ni, tir , tis) (7)

where K is the number of components or items in a system, and Ai (λi, si, ρi, ni, tir,
tis) is the availability of component i for i = 1, 2, . . . , K.

3.3 Operational Availability Under Age-Based Replacement

In this section, we extend Eq. (6) to age-based PM. Let τ be the predefined
replacement time. An item may survive through τ or fail prior to τ . The former is
callled planned or scheduled replacement and the latter is called failure replacement.
Technically an item survived at τ is still a functioning unit, though its reliability has
deteriorated. In general, less time and effort are required to recondition a degraded
unit than repairing a failed unit. We use tp to denote the turnaround time (TAT) for
reconditioning a deteriorated unit. In other words, TAT stands for the time lapse
from when the item is removed from the system to when it is reconditioned in the
repair center and put back in the inventory. Similarly tr denotes the TAT for repairing
a failed unit, and tr > tp.
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Fig. 3 PBM service with age-based replacement policy

Figure 3 shows an integrated product-service system where the supplier sells
new product as well as offering maintenance services in the after-sales market. It
is assumed that the repair center has ample capacity to carry out reconditioning
and repairing jobs, modeled as Mp/Gp/∞ and Mr/Gr/∞ queues, respectively. Then
the operational availability for a single-item system under age-based PM policy is
obtained as

A =
∫ τ

0 R (t; ρ) dt
∫ τ

0 R (t; ρ) dt + ts +
(
tpR (τ ; ρ) + trF

(
τ ; ρ

))
Pr {O > s}

, (8)

Note that O is the random variable representing the spare parts demand to the
inventory. For detailed derivation of Eq. (8), readers are referred to Jin et al. (2013).
Equation (8) comprehends eight performance drivers, namely, inherent reliability
R(t), usage rate ρ, replacement time τ , spare parts stock level s, fleet size n, hands-on
repair time ts, parts reconditioning turn-around time tp, and parts repair turn-around
time tr. Note that R(t; ρ) is the reliability function considering the usage factor. For
instance, Weibull reliability function considering the usage rate is expressed as.

R (t; ρ) = exp

(
−
(
ρt

η

)β
)
, for t ≥ 0 (9)

where η and β are the scale and shape parameters, respectively. Figure 4 is a four-
layer diagram that decomposes the OA into other performance measures under
various maintenance or replacement policies. An important observation is that OA
involves multi-stakeholders that are manifested by the service provider and the
customer. Therefore, the outcome of OA is jointed determined by the actions of
the service provider and the customer.

Recently, Xiang et al. (2017) derived a system availability model based on CBM
policy; they further propose a performance-based contracting scheme to attain three
objectives: minimizing the cost, maximizing the availability, or maximizing service
profit. The advantage of CBM over age- or time-based PM is that it allows for
accomendating unit-to-unit degradation heterogeneity.
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Fig. 4 The correlations between OA and other performance measures

4 Contracting for Profit Maximization

4.1 System Life Cycle Cost

The life cycle cost (LCC) of capital equipment typically consists of four cost
elements: design and development, manufacturing, operation and support, and
retirement or decommission. Though the actual cost may vary, operation and
support cost usually accounts for 50–70% of the LCC, manufacturing accounts
for 20–30%, design and development is about 10–20%, and decommission is
5% (DoD 2016). A major force driving the transition from MBC to PBM is
to reduce the operation and maintenance cost, hence lowering product life cycle
cost.

Without loss of generality, the cost model below is derived upon single-item
systems, but it can be extended to a multi-item system fleet. Let C(λ, s) denote the
life cycle cost for n single-item systems deployed in a customer site. The following
cost models adopted from Öner et al. (2010) and Jin and Wang (2012) are used to
estimate the fleet life cycle cost. The notation of parameters and variables are listed
in Table 2.

C (λ, s) = D (λ) + nc (λ) + I (λ, s) (10)

where

D (λ) = B1 exp

(
ϕ
λmax − λ

λ − λmin

)
, for λmin < λ ≤ λmax (11)
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Table 2 Notation of the product life cycle model

B1 Baseline system design cost
B2 Baseline system manufacturing cost
B3 Incremental manufacturing cost
T Duration of maintenance service contract period
φ Degree of difficulty of reliability growth in design
ν Degree of difficulty of reliability growth in manufacturing
cr Unit repair cost of field returned item or line replaceable unit
γ Annual interest rate
λmin Minimum achievable failure rate
λmax Maximum acceptable failure rate
C(λ, s) Life cycle cost of a system fleet
D(λ) Design cost of the system
c(λ) Manufacturing cost of a single system or item
I(λ, s) Spare parts inventory cost

c (λ) = B2 + B3

(
1

λν
− 1

λν
max

)
, for λmin < λ ≤ λmax (12)

I (λ, s) = sc (λ) + crnρλ
(1 + γ )T − 1

γ (1 + γ )T
(13)

Here D(λ), c(λ), and I(λ, s) represent the costs associated with design, manufac-
turing, and spare parts inventory during the contractual period, respectively. Note
that λmax represents the largest acceptable failure rate by the customer. Similarly
λmin is the lowest failure rate that could be possibly achievable by the service
provider. In Eq. (11), φ is a positive parameter capturing the difficulty in increasing
the reliability in product design phase, and in Eq. (12), ν is a positive parameter
capturing the difficulty in increasing the reliability in manufacturing phase.

4.2 Incentive Payment Model

Several payment schemes are available to incentivize the service suppler to attain
the contract goal, including cost plus fixed fee (CPFF), cost plus award fee (CPAF),
and cost plus incentive fee (CPIF). In CPFF, the contractor receives a predetermined
fee that was agreed upon at the time of contract formation. Essentially it transfers
a substantial amount of risks to the supplier. However, if product reliability is well
established and the majority of operational uncertainties and failure mechanisms are
known to the supplier, the supplier can charge the customer a reasonable amount of
cost that mitigates any unexpected reliability risks.
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In CPAF, customer pays a fee to its contractor based on the contractor’s work
performance. Sometimes the fee is determined subjectively by an award board
or committee, whereas in others the fee is based upon the observed performance
metrics such as operational availability and mission reliability.

In CPIF, the customer pays a larger amount of fee as incentives to the contractor
who is able to meet or exceed the performance goals that are predefined and
mutually agreed. For a linear CPIF function, it consists of a fixed fee and a
reward fee, and the latter is often proportional to the achieved system performance.
For instance, if the operational availability (A) is designated as the performance
measure, then the linear CPIF function is given as

G(A) =
{
a + b1 (A − Amin) A ≥ Amin

a + b2 (A − Amin) A < Amin
(14)

where Amin is the target or contractual operational availability. Here a is the fixed
payment regardless the performance outcome. Parameters b1 and b2 are the reward
or penalty rate, respectively. A larger b1 (or b2) implies that the supplier receives
more compensation (or penalty) given the same A.

Intuitively, further increasing the system availability becomes more difficult if A
is already high. The following exponential CPIF model proposed by Nowicki et al.
(2008) aims to provide more compensation as A approaches unity. That is

G(A) =
{

exp (c + d1 (A − Amin)) A ≥ Amin

exp (c + d2 (A − Amin)) A < Amin
(15)

Note that c, d1, and d2 are model parameters. Assume the minimum required
availability by the customer is Amin = 0.8. Figure 5 plots the exponential CPIF
payment curve in two cases. In Case 1, c = 7, d1 = 5, and d2 = 2; in Case 2,
c = 7, d1 = 3, and d2 = 1. It shows that the total compensation G(A) increases
exponentially with d1, yet it also decreases exponentially with d2 given the same A.
Compared with the linear CPIF in Eq. (14), the exponential model offers a larger
amount of incentives to the supplier because of the higher reward rate for A ≥ Amin.

4.3 Service Profit Maximization

We first present a PBM contract model by assuming that the supplier or original
equipment manufacturer (OEM) is capable of achieving the operational availability
target. Assume a system consists of K components for i = 1, 2, . . . , K. In addition,
components of the same type may also be repeatedly used in a system with mi

being the number of component i. For instance, a modern wind turbine system is
often configured with three identical blades, and failure of one blade brings the
system to down state. The following profit maximization model originally proposed
by Espiritu et al. (2012) is used for illustration:
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Fig. 5 Cost plus incentive fee with exponential compensation

Model P1:
Max:

P (λ, s; ρ) = G(As (λ, s; ρ)) −
K∑

i=1

(
Di (λi) − B1,i

)− n

K∑

i=1

mi

(
ci (λi) − B2,i

)

−
K∑

i=1

Ii (λi, si; ρ)
(16)

Subject to:

As (λ, s; ρ) =
K∏

i=1

(
Ai

(
λi, si; ρ

)mi ≥ Amin (17)

λmin,i < λi ≤ λmax,i for i = 1, 2, . . . ., K (18)

The objective function (16) is formulated to maximize the expected service
profit for a fleet of n systems during the contractual period. Note that λi and si

are the failure rate and the spare parts stock level for the ith component type.
They are the decision variables. When systems are not fully utilized, the system
usage rate ρ is used in Eqs. (16) and (17). As(λ, s; ρ) and Ai(λi, si; ρ) represent the
system operational availability and the component operational availability of type i,
respectively.
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Model P1 belongs to the mixed integer nonlinear programming problem. This
type of problem is difficult to solve because of the mix of nonlinearity and combina-
torial natures of integer programs. Genetic algorithm combined with heuristic search
(Coit et al. 2004; Marseguerra et al. 2005) has shown to be effective in exploring
the solution space to find the optimal or near optimal solution at a reasonable
computation cost. Next we use a genetic algorithm to search for the optimal values
of λi and si for i = 1,2, . . . , K when Model P1 is applied in wind generation industry.

4.4 Application to Wind Power Industry

A wind turbine (WT) is a complex electro-mechanical system comprising multiple
components (also known as line replicable unit or LRU), including blades, main
shaft/bearing, gearbox, generator, AC/DC converters, and control mechanisms.
High system availability is desirable as wind farmers are able to maximize the
energy yield given the intermittent wind speed. Due to the complexity of wind
turbines, the maintenance and repair services are undertaken by the OEM or
third-party logistics suppliers. A PBM contract is designed with the focus on
three components: blades, main shaft/bearing, and the gearbox, as they dominate
the failures of wind turbines. Reliability and cost related to component design,
manufacturing, spare parts, and repairs are listed in Tables 3. These parameters are
estimated based on the reports in Tavner et al. (2007) and NREL (2012).

The profit maximization for the wind turbine fleet is solved based on Model P1.
Genetic algorithm is used to find the optimal or near optimal values for λi and si, and
the results are summarized in Table 4. Under the linear reward with a = $3 × 107

and b1 = $3 × 108 in Eq. (14), the supplier can reap nearly $25.06 million profit
during 5 years by keeping the system availability at 0.9889. The availability is higher

Table 3 Reliability and cost parameters of wind turbine components

Index i = 1 i = 2 i = 3

Component type Blade Main shaft/bearing Gearbox
mi 3 1 1
λmax (failure/year) 0.2898 0.0312 0.1306
λmin (failure/year) 0.1560 0.0168 0.0703
B1 ($) 3,330,000 675,000 1,936,500
B2 ($) 333,000 67,500 193,650
B3 ($) 20,000 7000 12,000
φ 0.02 0.02 0.02
ν 0.6 0.6 0.6
cr ($/repair) 40,000 50,000 60,000
tr (days) 45 90 120
ts (days) 3 4 6
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than the customer’s requirement Amin = 0.97. This is the result of OEM’s motivation
to maximize the service profit.

Model P1 is also solved under the exponential CPIF payment in Eq. (15). To
make a fair comparison, we set c = 17.217 and d1 = d2 = 8.745 such that the
base and the maximum revenues are the same as the linear CPIF. The results show
that under the exponential CPIF, the profit is reduced to $24.78 million. However,
the system availability still reaches 0.989, slightly higher than the linear model. This
observation shows that the OEM must spend more efforts to gain the same amount of
the profit under the exponential reward function. In other words, exponential CPIF
enables the customer to incentivize the supplier’s performance while reducing the
cost of ownership. The inventory decision in both cases happened to be the same.
In particular, seven spare blades and five spare gearboxes are allocated. Spare parts
for the main shaft/bearing are not needed because of its high reliability with short
repair turnaround time. This result is quite useful. It shows that if reliability and
repair logistics are appropriately coordinated, we are able to achieve high system
availability with zero spares inventory.

5 Contracting Under Condition-Based Maintenance

5.1 Maintenance Optimization Model

In this section, we propose a PBM planning model under imperfect CBM policy.
We assume that system failure can only be detected through inspection. The system
is periodically inspected every δ time interval. Upon inspection, if the cumulative
deterioration level X(t) is between the maintenance threshold ξ and the failure
threshold s, a preventive maintenance action is performed; if X(t) exceeds the
failure threshold s, corrective maintenance is carried out; otherwise, do nothing. The
preventive repair is assumed to be imperfect with the so-called (p, q) rule. Namely,
the system upon PM is restored to an as-good-as-new state with probability p and
remains in the same state just prior to the PM action with probability q = 1 – p. The
times required for performing inspection, PM, and CM actions are random variables.
The expected PBM service profit rate is denoted with π (·), and the reward rate with
g(·). Let A denote the achieved system availability and C(·) denote the expected cost
rate. Originally proposed by Xiang et al. (2017), the optimization model with the
objective of maximizing profit is given by.

Model P2:

max π (δ, ξ) = g (A (δ, ξ)) − C (δ, ξ)

(δ∗, ξ∗) = arg max {π (δ, ξ)}
δ > 0, ξ > 0

(19)
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For comparison purposes, we also propose two benchmark models with the
objectives of minimizing cost and maximizing availability, respectively.

Model P3:

min C (δ, ξ)

(δ∗, ξ∗) = arg min {C (δ, ξ)}
δ > 0, ξ > 0

(20)

Model P4:

max A (δ, ξ)

(δ∗, ξ∗) = arg min {A (δ, ξ)}
δ > 0, ξ > 0

(21)

5.2 System Availability and Cost Rate

Next we present the average availability and the associated costs derived from
the proposed CBM policy. We define the “renewal cycle” as the period of time
between two consecutive perfect maintenance actions (e.g., perfect preventive repair
or corrective repair). A cycle can be the interval between two corrective repairs,
two perfect preventive repairs, or a perfect preventive repair and a corrective repair.
If a preventive repair does not bring the system to an as-good-as-new state, it is
not considered as a renewal point. Downtime may include the time of inspection
and preventive or corrective repair. Table 5 lists the key notation used in the model
development.

According to Xiang et al. (2017), the expected uptime per maintenance cycle can
be estimated as

Table 5 Notation for PBM
contracting with CBM

CCM Cost of corrective maintenance
CPM Cost of preventive maintenance
Cinsp Cost of inspection
μCM Expected corrective maintenance time
μPM Expected preventive maintenance time
μinsp Expected inspection time
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E
(
Tup
) =

∞∑
j=1

jδ × Pr
(
device preventively repaired perfectly at the j th inspection

)

+
∞∑
j=1

jδ × Pr
(
device correctively repaired at the j th inspections

)

(22)

Next we derive the expected downtime. The expected total downtime is as
follows:

E (Tdown) = E (inspection time) + E (preventive repair time)
+ E (corrective repair time)

=
2∑

i=1

∞∑
j=1

Ei,j (Tdown)

(23)

Therefore, we have the expected cost rate as follows:

C =

2∑
i=1

∞∑
j=1

Ei,j (Cost)

E (Tdown) + E
(
Tup
) (24)

Note that the policy that minimizes the cost rate or maximizes the average
availability is also the optimal solution that maximizes the profit rate. Define

A (δ, ξ) = 1 − A (δ, ξ) = E (Tdown) /E
(
Tup
)+ E (Tdown) (25)

Then, maximization of the availability A is equivalent to the minimization of A in
Eq. (25). Let ω be the ratio of A to the cost rate given the same maintenance policy,
defined as

ω = A (δ, ξ) /C (δ, ξ) =
2∑

i=1

∞∑

j=1

Ei,j (Tdown) /

2∑

i=1

∞∑

j=1

Ei,j (Cost) (26)

If CCM / Cnsp = uCM / uinsp and CPM / Cinsp = uPM / uinsp, the ratio is a constant,
which implies that Models P3 and P4 are equivalent and the problem of maximizing
the profit rate has the same optimal solution as that of minimizing the cost rate or
maximizing the average availability. We expect the optimal solutions to be different
when these constant parameters are not linearly related. In the next section, we
provide numerical examples to illustrate the applications of these models.
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5.3 Numerical Experiments

In this section, we investigate how the profit-centric approach affects the optimal
policies. We compare cost rate, availability, and profit rate between the profit-centric
approach and the two benchmarks.

Consider a system that deteriorates over time, and the system state can be
described by a gamma process {X(t), t ≥ 0} with random effect z that controls
heterogeneity across units. Given z, the process {X(t)} has independent increments:
for 0 ≤ t1 < t2, X(t2)-X(t1) is independent of X(t1) and has a gamma distribution
Ga(α(t2-t1), z) with α0 = 0. The conditional density function of X(t2) - X(t1) for
given z is f (x|z), where the gamma density function is given by Lawless and Crowder
(2004)

f (x |z ) = �(α (t2 − t1))
−1z−α(t2−t1)xα(t2−t1)−1e−x/z, for x > 0 (27)

It is mathematically convenient to assume Ga(θ , γ−1) as the distribution of z−1;
hence, the degradation process has a closed form for probability density function
and cumulative distribution function. The marginal density of X(t) is as follows:

f (x) = B(αt, θ)−1 γ θxαt−1

(x + γ )αt+θ
, (28)

where B(αt, θ ) = �(αt)�(θ )/ �(αt + θ ). We note that θX(t)/γαt has an F
distribution. Therefore, the distribution function of the degradation X(t) is

F (x; x0, t) = F2αt,2θ

(
θx

γ αt

)
(29)

Without loss of generality, let γ = θ so that z−1 has a mean 1 and variance θ−1.
Suppose s = 50, x0 = 0, α = 1, and the random effect variable z controls

heterogeneity across units. z−1 has a gamma distribution Ga(5, 1/5). We fix the
inspection time and inspection cost (μinspt = 0.2 and cinspt = 5), and different levels
of PM and CM repair times (cost) are selected for the purpose of sensitivity analysis.
We assume that cPM < cCM and μPM < μCM; otherwise it would not be necessary to
perform preventive maintenance. We assume that the relationship between rewards
and availability is stepwise linear, and the reward function is given by

g(A) =
{

0, if A ≤ 0.3
5 + κ (A-0.3) , otherwise

(30)

If the availability is below 0.3, the reward is zero and the service provider is
penalized for poor performance. Two levels of rewards are considered, κ = 30,
and κ = 50. We are interested in exploring how optimal policies change with
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different κ . Rosenbrock’s method is used to find the optimal inspection intervals
and maintenance threshold (Bazaraa et al. 2006). This method does not employ
line searches but rather takes discrete steps along the search directions. At each
iteration, the new directions established by the Rosenbrock procedure are linearly
independent and orthogonal. Results of the numerical examples are summarized in
Tables 6 and 7. Note that C denotes the cost rate, A denotes the availability, and P
denotes the profit rate.

From Tables 6 and 7, we can see that the profit rates from the profit-centric
approach are better than those from the two benchmark approaches even when κ

is small (κ = 30), which illustrates that simply minimizing cost rates or maximizing
availabilities would not lead to best profit rates. Also note that the improvement in
profit rates are per time unit, and the total gains period would become larger over
time. We also observe that when incentives for better performance outcomes are
low, maintenance policies under cost minimization are close to policies under the
profit-centric approach. As this incentive increases, policies under the availability
maximization approach are closer to the ones under the profit-centric approach.

Both tables also indicate that the performance outcome, i.e., availability, has
a dominant role in determining the profit rate when there is more incentive for
improvement in the average availability. Since cost parameters are in general much
harder to obtain, and the repair times are often more available and accurate, we
can implement the optimal policies from the max availability model and still get
satisfactory profits when the reward is performance-based and the incentive to
improve the performance is high.

Based on the above observations, we can conclude that the traditional cost
minimization approach in MRO services might not lead to optimal profits in many
cases when reward is determined by the performance. Another important finding
is that policies that maximize availability provide reasonably good profits in most
numerical examples examined. If cost parameters are not available, the optimal
policies under the availability maximization can be used as an appropriate substitute
for profit maximization.

6 Future Research Direction

6.1 Maintenance Planning Under a Variable System Fleet

During the new product introduction, the installed base or the fleet size continue to
grow as more systems are shipped and installed at customer sites. Given the same
product reliability, it is anticipated that more failure returns are generated due to
the expanding installed base. To optimize the spare parts stock level, the stream of
the aggregate fleet failures over the maintenance horizon is of our interest. In fact,
there are two stochastic processes involved when one manages the repair and spare
parts supply for a growing installed base. One is the number of installed systems
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by time t, denoted as N(t). The other is the random failures from individual systems
between [0, t]. Given a system installed, the failure behavior can be modeled as a
renewal process. Let S(t) be the aggregate fleet failures between [0, t] and F(t) be
the time to failure distribution of individual systems, then S(t) can be estimated by.

S(t) = H(t) +
N(t)∑

i=1

H (t − Wi) , for t > 0 (31)

where

H(t) = F(t) +
∫ t

0
H (t − x) f (x)dx, (32)

Here H(t) is the number of renewals for the initial system installed at time
zero, and H(t-Wi) represents the renewals for the ith system installed at Wi with
0 < W1 < W2 < . . . < WN(t). It is quite difficult to directly compute S(t) in Eq. (31)
due to the stochastic nature of Wi and N(t). The situation become even worse as
most empirical time to failure distributions do not have a closed form solution of
H(t).

However, the mean and variance of S(t) can be explicitly characterized if the
following conditions regarding the system installation and failure processes are
satisfied. These are

• The size of the installed base during [0, t], denoted as N(t), increases following
the Poisson counting process with installation rate of λ (i.e., systems per unit
time), that is.

Pr {N(t) = n} = (λt)n exp (−λt)

n! , for n = 0, 1, 2, . . . (33)

• In case the time to failure is exponentially distribution with failure rate α, then
the renewal function becomes.

H(t) = αt, for t ≥ 0 (34)

Now a closed form estimate for the mean and the variance of S(t) can be obtained
as follows (Jin and Tian 2012).

E [S(t)] = αt + 1

2
αλt2 (35)
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V ar (S(t)) = αt + 1

2
αλt2 + 1

3
α2λt3 (36)

Notice that E[S(t)] and Var(S(t)) are functions of t in quadratic and cubic formats,
respectively. This clearly indicates that S(t) is a nonstationary process with time-
varying mean and variance. Figure 6 shows that S(t) differs from a stationary failure
steam because the former has a non-constant or time-varying variance.

6.2 Performance-Based Maintenance in Post-Warranty Service

Jointly optimization models of maintenance and warranty repair have been inves-
tigated in literature. Recently, Chien (2019) uses generalized Polya process to
model repairable systems in which the reliability becomes worse with the amount
of cumulative failures. Optimal replacement periods are derived to minimize the
long-run expected cost rate during the warranty period. After the warranty expires,
the service provider can continue to sustain the system reliability by tracking and
monitoring the degradation level. But few warranty policies and post-warranty
maintenance models are developed under the condition-based monitoring frame-
work. Since CBM is able to ensure the just-in-time replacement, under-maintenance
or excessive replacements can be mitigated. From the manufacturer’s perspective,
maintenance expense can be saved; from the customer’s perspective, unexpected
downtime costs are avoided. Therefore, integrating CBM into warranty and post-
warranty maintenance contract is a win-win solution to the manufacturer and the
consumer.

Recently, Shang et al. (2018) adopt inverse Gaussian (IG) process to design
a renewable free replacement warranty (RFRW) policy in which the replacement
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decision depends on the degradation threshold. IG process has been shown an
effective model to characterize the random effects and covariates and is frequently
used to model the monotone degradation process (Ye and Chen 2014; Peng et
al. 2017). Under the IG-based RFRW policy, the replacement is triggered by the
degradation threshold, not the self-announcing failure. Shang et al. (2018) further
show that in the monopoly market, the manufacturer acts as a dual role (i.e., both
leader and monopolist) and determines the optimal warranty period and sale price by
maximizing the profit. In the competitive market, the manufacturer acts as a single
role (i.e., leader) and the IG-based RFRW is used as the only competitive strategy.
As such, the manufacturer needs to determine optimal warranty period and optimal
replacement threshold to maximize the after-sales service profit.

In summary, during the post-warranty period, the customer aims to minimize
the maintenance cost rate by considering a hybrid PM effect: the reduction of
degradation level and the age. Two scenarios need to be considered for computing
the expected cost rate. In the first scenario, the historical degradation level is treated
as a random value that is not observable to the customer. In the second scenario, the
degradation level is observable to the customer, but the value may not be accurate.

7 Conclusions

This study has presented several analytical models for planning performance-
based maintenance services from the system life cycle cost perspective. We begin
with reviewing five performance measures and their interdependency. Operational
availability is treated as the core performance measure as it ultimately influences and
governs other four performance measures. We also present two unified availability
models under corrective maintenance and preventative maintenance, respectively.
Four different optimization models are formulated with the goal of maximizing
service profit or system availability or minimizing the cost rate subject to uncertain
usage and operational conditions. The following managerial insights are derived.
First, if reliability allocation and repair logistics are appropriately coordinated, zero
spare parts inventory is technically achievable and financially attractive. Second,
when cost parameters are not available or uncertain, the optimal policies under
the availability maximization can be used as a good substitute for maximizing
the service profit. In the future, we will generalize the proposed decision models
to incorporate more realistic conditions such as variable installed base, reliability
growth, and extended warranty. In that way, the cost savings the equipment owner
is able to achieve under performance-based contracting can be compared with other
programs in a broader scope.
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Selective Maintenance Optimization
Under Uncertainties

Yu Liu, Tangfan Xiahou, and Tao Jiang

1 Introduction

All the engineered systems are subject to deterioration with the increase of their
usage. In most cases, a failure of engineering systems will incur unexpected
production delay and/or economic loss, and even cause a severe threat to personal
safety. Various maintenance actions have been extensively conducted to recover
degraded systems to better states and prolong the residual lifetime of aging systems
(Wang 2002). In many industrial and military environments, systems, such as
maritime vessels, military aircrafts, and nuclear power plants, are intended to
complete a sequence of missions with a finite break between two adjacent missions.
Due to limited maintenance resources, such as budget, time, manpower, in the break,
it is, however, impossible to perform all the desirable maintenance action during the
break. Alternatively, only a subset of maintenance actions is selected from all the
available maintenance actions to be performed during the break, so as to ensure
the success of the next mission to the maximum extent. The specific maintenance
optimization problem is termed as selective maintenance (Cassady et al. 2001a).

The earliest reported work on selective maintenance can be tracked to Rice et
al. (1998) in which the selective maintenance problem for parallel-series systems
composed of s-independent and identical components with a constant failure rate
was converted into a mathematical programming model. A more general model
for selective maintenance was formulated by Cassady et al. (2001b) in which the
lifetime distribution of each component followed the Weibull distribution, and
one of three maintenance actions, i.e., minimal repair, corrective replacement,
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and preventive replacement, can be selected for each component. Following these
pioneering works, selective maintenance has been intensively explored in the past
two decades from various angles, and these works can be categorized into the four
classes:

1. Imperfect maintenance: Most deteriorating system/components after repairs may
not be “as good as new” or “as bad as old,” but in the condition somewhere
between these two extremes. Many imperfect maintenance models have been
developed to characterize failure pattern of aging systems/components after
repairs (Pham and Wang 1996). Imperfect maintenance was firstly introduced
into selective maintenance by Liu and Huang (2010a), and an exponential
function was put forth to link the age reduction coefficient with the consumed
maintenance cost. A hybrid model was used by Pandey et al. (2013a) to charac-
terize the failure intensity of repaired components from the perspective of both
a hazard adjustment and an age reduction. In the context of multistate systems,
Pandey et al. (2013b) assumed that a multistate component can be recovered
to a better state after an imperfect maintenance. The associated maintenance
cost and time are functions of the two states before and after maintenance. A
comprehensive review on selective maintenance under imperfect maintenance
was given in Pandey et al. (2013c).

2. Miscellaneous system configurations: By taking account of the multistate nature
of engineering systems, Liu and Huang (2010a) and Pandey et al. (2013c) inves-
tigated the selective maintenance problem for multistate systems composed of
binary-state components and multistate components, respectively. The stochastic
dependency among the failures of components were investigated by Maaroufi
et al. (2013) and Dao and Zuo (2016) for binary-state systems and multistate
systems, respectively. The propagated failures with global effect and failure
isolation phenomena was taken into account by Maaroufi et al. (2013) for binary-
state systems. The economic dependence associated with sharing of setting up
and repairing of multiple identical components was considered by Dao et al.
(2014). The selective maintenance for a large-scale k-out-of-n: G system and a
fleet of systems were studied by Diallo et al. (2018) and Schneider and Richard
Cassady (2015)), respectively.

3. Mission profiles: The long-term operation issue for selective maintenance was
studied by Iyoob et al. (2006) with the assumption that a system is to perform
a sequence of equally spaced, identical missions with breaks between missions.
Maillart et al. (2009) explored the selective maintenance for the case of mul-
tiple consecutive missions, and due to limited budget, only a subset of failed
components can be correctively replaced by new ones. With the assumption that
all the failed components can be immediately recovered to functioning state
by minimal repairs, Pandey et al. (2016) determined the optimal number of
breaks for a finite mission planning horizon. As loading condition in a mission
may vary with respect to time, Dao and Zuo (2017) developed a Monte Carlo
simulation method to evaluate the probability of mission success and enumerated
the optimal selective maintenance strategy.
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4. Optimization algorithms: With the increase of the system size, the full enumera-
tion method becomes computationally inefficient to identify the optimal selective
maintenance strategy. Some advanced optimization algorithms, such as genetic
algorithm (GA) (Liu and Huang 2010a), differential evolution algorithm (DEA)
(Pandey et al. 2013b), and ant colony optimization (ACO) (Liu et al. 2018), have
been utilized to resolve the resulting optimization problems.

A review on selective maintenance of multi-component systems can be found in
Cao et al. (2018a). It is noteworthy that many reported works have not sufficiently
taken account of various inevitable uncertainties that may exist in selective main-
tenance optimization. These uncertainties, oftentimes, can produce non-ignorable
impact on maintenance decision-making. This chapter aims at providing a compre-
hensive review of the recent studies on selective maintenance under uncertainties.
Additionally, two selective maintenance models under either stochastic maintenance
durations or imperfect observations are elaborated and exemplified, respectively.

The reminder of this chapter is organized as follows. In Sect. 2, the basic selective
maintenance model and the possible uncertainties in selective maintenance are intro-
duced. In Sect. 3, four existing selective maintenance models under uncertainties
are reviewed, and two new selective maintenance models under uncertainties are
proposed. A brief closure is given in Sect. 4.

2 Basic Selective Maintenance Model and Uncertainties

2.1 Basic Selective Maintenance Model

A system composed of multiple components is intended to complete a sequence
of consecutive missions as shown in Fig. 1. Maintenance activities can only be
executed during the break between two adjacent missions. At the end of the last
mission, some components have failed or degraded. Due to limited maintenance
resources (e.g., budget and break duration), it is unaffordable to repair/replace all the
failed or aging components. A maintenance decision has to be made at the beginning
of the break to determine a subset of components to be repaired, so as to ensure the
success of the next mission.

The assumptions in the basic selective maintenance model are as follows
(Cassady et al. 2001b; Liu and Huang 2010a):

Fig. 1 An illustration of a system executing consecutive missions
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1. A system consists of M repairable and s-independent components connected with
an arbitrary configuration, such as series-parallel, bridge, and network. Both the
system and its components are binary-state, i.e., working perfectly and failed
completely. The system configuration remains unchanged throughout all the
missions.

2. The state of component l at the beginning of the kth (k ∈ {1, 2, . . . , N}) mission
is represented by a binary variable, denoted as Xl, k, and

Xl,k =
{

1 if component l is functioning
0 if component l is failed

.

At the end of the kth mission, the state of component l is denoted by a binary
variable, denoted as Yl, k, and

Yl,k =
{

1 if component l is functioning
0 if component l is failed

.

Because maintenance activities are not allowed to be carried out in the course of a
mission, the relationship Xl, k ≥ Yl, k always holds.

3. Maintenance actions can only be executed during the breaks between two
adjacent missions. A set of optional maintenance actions, including do noth-
ing, minimal repair, corrective/preventive replacement, and imperfect correc-
tive/preventive maintenance, can be selected to be performed on either failed
or functioning components.

4. The durations of the kth mission and the kth break are denoted as Lk and Zk,
respectively. The states and effective ages of all the components at the end of the
kth mission are exactly known.

On the basis of these assumptions, the survival probability of component l at the
end of the (k + 1)th mission is given by:

rl (k + 1) = exp

(
−
∫ Lk+1

0
λl,k+1

(
Ul,k+1 + s

)
ds

)
· Xl,k+1 = Rl

(
Ul,k+1 + Lk+1

)

Rl

(
Ul,k+1

) · Xl,k+1,

(1)

where λl, k + 1(t) is the failure intensity function of component l in the (k + 1) th
mission; Ul, k + 1 is the effective age of component l at the beginning of the (k + 1)
th mission; Rl(t) is the reliability function of component l. Consequently, selective
maintenance can be formulated as an optimization problem as follows:

max
C(k)

R (k + 1)

s.t. C(k) ≤ Ck

Z(k) ≤ Zk

, (2)
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where C(k) = [C1(k), C2(k), . . . , CM(k)] is the vector of all the decision variables;
R(k + 1) is the probability of the entire system successfully completing the (k + 1)th
mission, and it is a function of the survival probabilities of all the components.
C(k) and Z(k) are the total maintenance cost and time of a particular maintenance
strategy for the k th break, respectively. Ck is the limited maintenance budget for the
k th break. A subset of components together with the corresponding maintenance
actions are to be determined by the resulting optimization problem.

2.2 Uncertainties in Selective Maintenance

The basic selective maintenance model in Eq. (2) is the simplest one without taking
account of various uncertainties. The decision-making of the selective maintenance
optimization is affected by a set of factors, such as maintenance efficiency,
maintenance cost, durations of missions and breaks, durations of maintenance
actions, degradation parameters of components, and condition of components at
the end of the last mission. In engineering practices, these factors inevitably
suffer from uncertainties, producing non-ignorable impact on selective maintenance
optimization. Prior to introducing extended selective maintenance models under
uncertainties, we itemize the possible uncertainties in selective maintenance.

1. Uncertainty associated with maintenance efficiency. As maintenance actions
could be imperfect, several imperfect maintenance models, such as the Kijima
types I and II models (Liu and Huang 2010a), and the hybrid model (Pandey et
al. 2013a) have been utilized to characterize the efficiency of maintenance actions
(Pandey et al. 2013c). However, the age reduction coefficient in the Kijima
models and/or the hazard adjustment coefficient in the hybrid model cannot
be precisely evaluated due to the variations of the degree of the expertise of
repairmen. Alternatively, in lieu of a constant value, the age reduction coefficient,
taking any value in the range of [0, 1], is represented by a random variable with a
probability density function (PDF) of fBl,k

(
bl,k
)

in Khatab and Aghezzaf (2016)
and Duan et al. (2018)).

2. Uncertainty associated with maintenance cost. In the basic selective maintenance
model, the constraint pertaining to the total maintenance cost and maintenance
budget are deterministic. However, in real-world applications, the maintenance
cost associated with each maintenance action may be uncertain, and thus, the
total maintenance cost being not greater than the maintenance budget is a
probabilistic constraint. In this regard, the probability of the total maintenance
cost being not greater than Ck must be not less than a pre-specified probability
p0 (Ali et al. 2013).

3. Uncertainty associated with the durations of missions and breaks. The basic
selective maintenance model assumes that the durations of both missions and
breaks are deterministic and known. Such an assumption may not be valid as
predicting the duration of a mission and break is difficult in many real-world
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situations. For example, due to the randomness of weather condition, the arrival
and departure of aircrafts cannot be exactly known in advance. The assumption
of determinacy is released in Khatab et al. (2017a, b), and the durations of both
missions and breaks are treated stochastically. The durations of the kth break
and the (k + 1)th mission are governed by PDFs fZk

(t) (Zk ∈ [zmin
k , zmax

k

]
) and

fLk+1(t) (Lk+1 ∈ [lmin
k+1, l

max
k+1

]
), respectively.

4. Uncertainty associated with the performance capacities and state transition
intensities of components. Due to insufficient data and unpredictable external
working conditions, both the performance capacity and state transition intensities
of components cannot be precisely known. In such a case, these quantities can be
represented by fuzzy numbers rather than crisp values.

5. Uncertainty associated with the duration of each maintenance action. Similar
to the uncertainty associated with maintenance efficiency, the duration of a
maintenance action may also be uncertain due to the variations of the degree of
the expertise of repairmen. Let al denote a maintenance action for component
l and Tl represent the duration of the maintenance action. In this study, the
duration of each maintenance action, i.e., Tl, is a random variable with PDF fTl (t)

(Tl ∈ [tmin
l , tmax

l

]
).

6. Uncertainty associated with observed condition of components. The condition of
components can be indirectly reflected by the observations collected from various
ways, such as vibration analysis and ultrasonic analysis. However, measurement
errors, limited accuracy/precision of sensors or inspection instruments, poor
diagnostic tools or algorithms, and non-rigorous interpretations varying from
person to person are inevitable in engineering practices. Observations associated
with the conditions of components oftentimes contain noise and uncertainty.

3 Selective Maintenance Models Under Uncertainties

In this section, six extended selective maintenance models under uncertainties are
introduced. We will first review Models 1–4 reported in the literature and then
propose two new selective maintenance models, i.e., Models 5 and 6. A brief
summary of the features of the six models is presented in Table 1.

3.1 Model 1: Uncertainty Associated with Maintenance
Efficiency

The uncertainty associated with maintenance efficiency was incorporated into
selective maintenance in Khatab and Aghezzaf (2016) and Duan et al. (2018). If
the Kijima type II model is used to characterize the efficiency of an imperfect
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Table 1 Summary of the features of the six models

Model Uncertainty type Decision variables Optimization objective(s)

1 Maintenance efficiency Maintenance cost to each
component

Probability of a system
successfully completing
the next mission

2 Maintenance cost Maintenance cost to each
component

Total maintenance cost

3 Durations of missions and
breaks

Maintenance cost to each
component

Probability of a system
successfully completing
the next mission

4 Performance and transition
parameters of components

Maintenance cost to each
component

Probability of a system
successfully completing
the next mission

5 Durations of breaks and
maintenance actions

Maintenance cost to each
component and the order
of each selected
maintenance action

Probability of a system
successfully completing
the next mission

6 Imperfect observations Maintenance cost to each
component

Expectation and variance
of the probability of a
system successfully
completing the next
mission

maintenance action, the survival probability of component l at the end of the
(k + 1)th mission is formulated as (Khatab and Aghezzaf 2016; Duan et al. 2018):

rl (k + 1) =
(∫ 1

0 Rl

(
bl,kVl,k + Lk+1

)
fBl,k

(
bl,k
)
dbl,k

∫ 1
0 Rl

(
bl,kVl,k

)
fBl,k

(
bl,k
)
dbl,k

)
· Xl,k+1, (3)

where Vl, k is the effective age of component l at the end of the kth mission. The
associated cost for each imperfect maintenance action has an inverse relation with
the expected value of the age reduction coefficient.

The selective maintenance optimization model aims at minimizing the total
maintenance cost to successfully complete the (k + 1)th mission with respect to
a required reliability level Rk + 1 along with a limited break duration Zk, and it is
given by (Khatab and Aghezzaf 2016; Duan et al. 2018):

min
C(k)

C(k)

s.t. R (k + 1) ≥ Rk+1

Z(k) ≤ Zk

. (4)
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3.2 Model 2: Uncertainty Associated with Maintenance Cost

The uncertainty associated with maintenance cost was incorporated into selective
maintenance in Ali et al. (2013) in which a stochastic programming method was
developed when the maintenance cost of each maintenance action is treated as a
random variable. Suppose that each subsystem can be maintained simultaneously
by the respective maintenance team, in the extended selective maintenance model,
the maximum total maintenance time of all the subsystems must be less than or equal
to the duration of a break. Therefore, the extended selective maintenance model can
be formulated as (Ali et al. 2013):

max
C(k)

R (k + 1)

s.t. Pr {C(k) ≤ Ck} ≥ p0

max {Zi(k)} ≤ Zk

, (5)

where the probability of a system successfully completing the (k + 1)th mission
is the objective to be maximized. The first constraint in Eq. (5) indicates that the
probability of the total maintenance cost C(k) being not less than maintenance
budget Ck must be not less than a pre-specified probability p0. Zi(k) is the total
maintenance time to complete all the selected maintenance action for subsystem i.
Alternatively, the selective maintenance model can be written as (Ali et al. 2013):

min
C(k)

k1E [C(k)] + k2
√
V ar [C(k)]

s.t. R (k + 1) ≥ Rk+1

max {Zi(k)} ≤ Zk

, (6)

where the total maintenance cost is to be minimized and the probability of the
system successfully completing the (k + 1)th mission should reach a required
reliability level Rk + 1. E[·] and Var[·] are the expectation and variance of the total
maintenance cost, respectively. k1 and k2, taking values from [0, 1] and k1 + k2 = 1,
indicate the relative importance between the expectation and variance of the total
maintenance cost.

3.3 Model 3: Uncertainty Associated with the Durations
of Missions and Breaks

The uncertainty associated with the durations of missions and breaks was incorpo-
rated into selective maintenance in Khatab et al. (2017a, b). If the Kijima type II
model is used to characterize the efficiency of an imperfect maintenance action, the
survival probability of component l at the end of the (k + 1)th mission is formulated
as (Khatab et al. 2017a, b):
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rl (k + 1) =
⎛

⎜⎝

∫ lmax
k+1

lmin
k+1

Rl

(
bl,kVl,k + lk+1

)
fLk+1 (lk+1) dlk+1

Rl

(
bl,kVl,k

)

⎞

⎟⎠ · Xl,k+1. (7)

The extended selective maintenance model, aiming at minimizing the total
maintenance cost while satisfying a required reliability level and a probabilistic
constraint of the total maintenance time, is formulated as (Khatab et al. 2017a, b):

min
C(k)

C(k)

s.t. R (k + 1) ≥ Rk+1

Pr {Z(k) ≤ Zk} ≥ τs

, (8)

where τ s can be interpreted as a required service ratio, that is, the probability of
all the scheduled maintenance actions being completed within Zk should be not
less than the ratio. If the duration of each maintenance action is also stochastic
and all the selected maintenance actions are executed sequentially, Z(k) is equal to
the summation of all the selected maintenance actions for a particular maintenance
strategy (Liu et al. 2018; Khatab et al. 2017b).

3.4 Model 4: Uncertainty Associated with Performance
Capacities and State Transition Intensities of Components

The uncertainty associated with performance capacities and state transition inten-
sities of components was incorporated into selective maintenance in Cao et al.
(2018b). In the context of multistate systems, triangular fuzzy numbers have been
used to represent the imprecise performance capacity and state transition intensities
of multistate components (Cao et al. 2018b). By using the fuzzy Markov model
and the reliability evaluation approach proposed by Liu and Huang (2010b), the
fuzzy probability of a system completing the next mission can be assessed. The
corresponding selective maintenance model is formulated as (Cao et al. 2018b):

max
C(k)

Rα (k + 1)

s.t. C(k) ≤ Ck

, (9)

where Rα(k + 1) is the α-cut level set of the probability of a system successfully
completing the (k + 1) th mission, and α ∈ [0, 1]. If α = 1, the optimization
objective in Eq. (9) degenerates to the case of crisp values, whereas α = 0 provides
the maximum possible range of the probability of a system successfully completing
the (k + 1)th mission under fuzzy uncertainty.
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3.5 Model 5: Uncertainty Associated with the Durations
of Breaks and Maintenance Actions

In this subsection, an extended selective maintenance model with considering the
uncertainty associated with the durations of breaks and maintenance actions is
developed.

3.5.1 Stochastic Durations of Maintenance Actions and Breaks

Let al denote a maintenance action for component l and Tl represent the duration
of the maintenance action. In this study, both the duration of each maintenance
action, i.e., Tl, and the duration of the break between the kth and (k + 1)th missions,
i.e., Zk, are random variables. The PDFs of Tl and Zk are denoted by fTl (t) (Tl ∈[
tmin
l , tmax

l

]
) and fZk

(t) (Zk ∈ [zmin
k , zmax

k

]
), respectively.

As both the durations of maintenance actions and breaks are uncertain, the
sequence of selected maintenance actions is crucial to the completion of the next
mission. The purpose of Model 5 is to identify an optimal maintenance sequence and
explore the impact of the maintenance sequence on the success of the next mission.
For simplicity, only replacement for each component is considered herein, and the
replacement cost of component l is denoted as cl. It is no doubt that the proposed
method can be extended to a generalized case in which a variety of maintenance
options are available to each component.

3.5.2 Sequence of Maintenance Actions

In this study, a selective maintenance strategy is a planned maintenance sequence in
a break. To construct a sequence planning for all the maintenance actions, a binary
decision variable, denoted as Hv, l(k), is used to represent the order of a maintenance
action al for component l in the kth break. Thus, one has:

Hv,l(k) =
{

1 if the vth maintenace action is performed on component l

0 otherwise
,

where v ∈ {1, 2, . . . , M} denotes the index of the selected maintenance action al in a
maintenance sequence. It is worth noting that, in a break, at most one maintenance
action can be selected for each component due to the limited maintenance resources,
i.e.,

∑M
v=1Hv,l(k) ≤ 1 for any l ∈ {1, 2, . . . , M}. On the other hand, each selected

maintenance action can only be placed on a particular position of a maintenance
sequence, i.e.,

∑M
l=1Hv,l(k) ≤ 1 for any v ∈ {1, 2, . . . , M}.

As a result, the total maintenance cost C(k) of a particular maintenance sequence
for the kth break is equal to:
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C(k) =
M∑

v=1

M∑

l=1

Hv,l(k) · cl. (10)

3.5.3 The Probability Distribution of the Number of Completed
Maintenance Actions

As all the selected maintenance actions are conducted sequentially, the number of
maintenance actions that can be completed in a break is random inherently. Let T s

v

denote the stochastic duration of the vth (v ∈ {1, 2, . . . , M}) maintenance action in a
particular maintenance sequence, and one has T s

v = ∑M
l=1Hv,l(k) · Tl . The PDF of

T s
v , denoted as gv(t), can be written as:

gv(t) =
M∑

l=1

Hv,l(k) · fTl (t). (11)

The corresponding cumulative duration of completing the first m (m ∈
{1, 2, . . . , M}) maintenance actions in a particular maintenance sequence, denoted
as T c

m, can be formulated as:

T c
m =

m∑

i=1

T s
i =

m∑

v=1

M∑

l=1

Hv,l(k) · Tl. (12)

Given the PDF of T s
v , i.e., gv(t), the cumulative distribution function (CDF) of

T c
m, denoted as FT c

m
(t) (m ∈ {1, 2, . . . , M}), can be derived via a multidimensional

convolution as follows:

FT c
m
(t) =

∫ t

0

[∫ tc
m

0
gm
(
tc
m − tc

m−1

)
. . .

∫ tc
2

0
g2
(
tc
2 − tc

1

)
g1
(
tc
1

)
dtc

1 . . . dt
c
m−1

]
dtc

m.

(13)

Let Nk(t) denote the number of completed maintenance actions at time t in the kth
break. The probability of the first m(m ∈ {1, 2, . . . , M}) maintenance actions being
completed in the kth break, denoted as Pk, m, is given by:

Pk,m = Pr {Nk (Zk) = m} = ∫ zmax
k

zmin
k

Pr {Nk (Zk) = m|Zk = t} fZk
(t)dt

= ∫ zmax
k

zmin
k

(
FT c

m
(t) − FT c

m+1
(t)
)
fZk

(t)dt.
(14)
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3.5.4 The Proposed Selective Maintenance Model

Based on Eq. (14), by taking account of all the possible m maintenance actions,
the probability of the system successfully completing the (k + 1)th mission can be
formulated as:

R (k + 1) =
M∑

m=0
R (k + 1|Nk (Zk) = m) · Pr {Nk (Zk) = m}

=
M∑

m=0
R (k + 1|Nk (Zk) = m) · Pk,m.

(15)

where R(k + 1| Nk(Zk) = m) is the conditional reliability of the system successfully
completing the (k + 1)th mission under the condition that the first m components
in the maintenance sequence can be completely repaired. Given the states of all
the components at the end of the kth mission and the maintenance action for each
component, our specific selection maintenance problem can be formulated as:

max
H(k)

R (k + 1)

s.t. C(k) ≤ Ck∑M
l=1Hv,l(k) ≤ 1∑M
v=1Hv,l(k) ≤ 1

Hv,l(k) = 1 or 0

, (16)

where H(k) = [H1, 1(k), H1, 2(k), . . . , H1, M(k); H2, 1(k), H2, 2(k), . . . , H2, M(k); . . . ;
HM, 1(k), HM, 2(k), . . . , HM, M(k)] is the matrix of all the decision variables. The
first constraint is the budget Ck of the kth break. The basic selective maintenance
model in Eq. (2) only identifies the maintenance actions for all the components.
However, as both the durations of maintenance actions and breaks are uncertain, the
sequence of selected maintenance actions is crucial to the next mission completion.
The proposed selective maintenance model in Eq. (16) not only identifies the
maintenance actions for all the components but also determines the sequence of
selected maintenance actions.

3.5.5 Illustrative Example 1

The illustrative example is a simple four-component system, as shown in Fig. 2.
Suppose that at the end of the last mission, i.e., the kth mission, all the components
are failed. The duration of the (k + 1)th mission is set to be 0.2 months. The
distributions of the failure time of all the components can be characterized by
exponential distribution, and the failure rate of each component during the (k + 1)th
mission is given in Table 2. The maintenance action of each component and
the associated costs and the stochastic durations are tabulated in Table 2. The
stochasticity of the durations of maintenance actions is quantified by gamma
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Fig. 2 A four-component
system

Table 2 Parameters of
components (unit of failure
rate: month−1, unit of cost:
US $1000)

Gamma distribution
ID (l) λl, k + 1(t) al cl Shape Scale

1 1.0 a1 5.0 20 0.2
2 3.0 a2 3.0 10
3 1.0 a3 10.0 30
4 2.0 a4 7.0 25

Table 3 Results of
Strategy 1

ID (m) Hm, l(k) Pk, m R(k + 1| Nk = m)

1 H1, 1(k) 0.0000 0
2 H2, 3(k) 0.2056 0
3 H3, 3(k) 0.4891 0.7518
4 H4, 4(k) 0.3052 0.8633
R(k + 1) – 0.6419 –

Table 4 Results of
Strategy 2

ID (m) Hm, l(k) Pk, m R(k + 1| Nk = m)

1 H1, 4(k) 0.1206 0
2 H2, 3(k) 0.1805 0
3 H3, 2(k) 0.3937 0.5160
4 H4, 1(k) 0.3052 0.8633
R(k + 1) – 0.4666 –

distributions with the shape and scale parameters listed in Table 2. The break
between the kth and the (k + 1)th missions is stochastic and characterized by
a uniform distribution in the range of [10,20] hours. The maintenance budget is
25 × 1000 US dollars.

To demonstrate the impact of the sequence of maintenance actions on the
probability of the system successfully completing the (k + 1)th mission, we
examined the case where all the components are to be replaced sequentially in
the break. Table 3 gives the results for Strategy 1 of [H1, 1(k) = 1, H2, 2(k) = 1,
H3, 3(k) = 1, H4, 4(k) = 1], that is, Components 1, 2, 3, and 4 are replaced in
order. Likewise, the results of Strategy 2, that is, [H1, 4(k) = 1, H1, 3(k) = 1,
H3, 2(k) = 1, H4, 1(k) = 1], are given in Table 4. As observed from Table 4, it is
found that exchanging the order of replacing components can yield a different value
of R(k + 1).

Moreover, we enumerated all the feasible solutions of the maintenance actions
and found that the optimal sequence of the maintenance actions is [H1, 3(k) = 1,
H2, 1(k) = 1, H3, 2(k) = 1, H4, 4(k) = 1], that is, to replace Component 3 first and
then replace Components 1, 2, and 4 in order. With this strategy, the maximum
probability of the system successfully completing the (k + 1)th mission, i.e.,
R(k + 1), is 0.7313.
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Infer the state and effective age of 

each component under imperfect observations

Calculate the state and effective age of 

each component after maintenance

Evaluate the survival probability of 

each component at the end of the next mission

Evaluate the probability of the system 

successfully completing the next mission

Calculate the expectation and variance of the probability of 

the system successfully completing the next mission

Construct the bi-objective optimization model 

and identify all non-dominated solutions

Step 1

Step 2

Step 5

Step 6

Step 4

Step 3

Fig. 3 Flowchart of the proposed robust selective maintenance method

3.6 Model 6: Uncertainty Associated with Imperfect
Observations

As a selective maintenance strategy is determined based on the condition of all the
components, the imperfection of observations can affect the selective maintenance
decision-making. In this subsection, an extended selective maintenance model with
considering the uncertainty associated with imperfect observations is developed.
The proposed robust selective maintenance method contains six steps, as shown
in Fig. 3. In Step 1, the state and effective age of a particular component under
imperfect observations are inferred. The state and effective age of a component after
executing the maintenance are computed in Step 2. After evaluating the survival
probability of a component (Step 3) and the probability of a repaired system
successfully completing the next mission (Step 4), the expectation and variance of
the probability of the system successfully completing the next mission are obtained
in Step 5. As a result, in Step 6, a bi-objective optimization model is formulated
aiming at identifying a robust selective maintenance strategy with a high expectation
and a small uncertainty. The procedures of formulizing the optimization model are
detailed in the ensuing section.
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3.6.1 State and Effective Age Under Imperfect Observations

At the end of the kth mission, the observed state of component l is represented by a
binary variable, denoted as Y o

i,k , and

Y o
l,k =

{
1 if component l is observed in the functioning state
0 if component l is observed in the failure state

.

In this study, the observation matrix of component l is adopted to quantify the
stochastic relation between the observed values and true values of states, and it is
defined as:

Ol =
[

1 − δI
l δI

l

δII
l 1 − δII

l

]
,

where δI
l represents the probability of component l being observed in the failure

state when the component is still functioning and δII
l vice versa.

Based on Eq. (1), the survival probability of component l at the end of the kth
mission can be obtained. The prior state probability of component l at the end of the
kth mission, denoted as Pr{Yl, k}, is derived as:

Pr
{
Yl,k

} =
{

rl(k) Yl,k = 1
1 − rl(k) Yl,k = 0

. (17)

Therefore, by the Bayes rule, the posterior state distribution of component l under
the imperfect observation Y o

l,k can be formulated as:

Pr
{
Yl,k|Y o

l,k

} =
Pr
{
Yl,k, Y

o
l,k

}

Pr
{
Y o
l,k

} =
Pr
{
Y o
l,k|Yl,k

}
Pr
{
Yl,k

}

∑
Yl,k

Pr
{
Y o
l,k|Yl,k

}
Pr
{
Yl,k

} . (18)

where Pr
{
Y o
l,k|Yl,k

}
is the conditional state probability that can be obtained by the

observation matrix.
The true value and observed value of the operating time of component l in the

kth mission are denoted as T w
l,k (T w

l,k ∈ [0, Lk]) and T
w,o
l,k , respectively. The observed

value of the effective age of component l at the end of the kth mission is denoted as
V o
l,k . Based on the observed and true values of the state, the relations between the

observed value V o
l,k and true value Vl, k of the effective age of component l at the

end of kth mission can be categorized into four cases as tabulated in Table 5. The
probabilities of component l being in the four cases can be obtained by Eq. (18).

In Cases 1 and 2 of Table 5, component l remains functioning at the end of the
kth mission; therefore, the true value of the effective age of at the end of the kth
mission is a certain value, i.e., Vl, k = Ul, k + Lk.
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Table 5 Relations between
Vl, k and V o

l,k

Case Y o
l,k T

w,o
l,k V o

l,k Yl, k Vl, k

1 1 Lk Ul, k + Lk 1 Ul, k + Lk

2 0 t
w,o
l,k Ul,k + t

w,o
l,k 1 Ul, k + Lk

3 1 Lk Ul, k + Lk 0 Ul,k + T w
l,k

4 0 t
w,o
l,k Ul,k + t

w,o
l,k 0 fVi,k |V o

i,k

(
vi,k |vo

i,k

)

In Case 3 of Table 5, component l is in the failure state at the end of the kth
mission, whereas the component is observed in the functioning state. In this case,
there is a conflict between the observed state and true state, and the true value of the
effective age Vl, k is the sum of Ul, k and T w

l,k . The (truncated) PDF of T w
l,k can be

derived as:

fT w
l,k
(t) = − 1

1 − rl(k)

1

Rl

(
Ul,k

)
dRl

(
Ul,k + t

)

dt
. (19)

Consequently, the PDF of Vl, k is given by fVl,k
(t) = fT w

l,k

(
t − Ul,k

)
.

In Case 4 of Table 5, component l is in the failure state at the end of the kth
mission, meanwhile the component is observed in the failure state. In this case,

a conditional PDF, denoted by fT w,o
l,k |T w

l,k

(
t
w,o
l,k | tw

l,k

)
, is introduced to quantify the

difference between the observed and true values of the operating time. Specifically,
the truncated normal distribution with mean tw

l,k and variance σ 2
l within the interval

[0, Lk] is used to characterize the stochastic relation between the observed and true
values of the operating time. The variance σ 2

l is used to quantify the uncertainty
of the operating time. Therefore, the conditional PDF of V o

l,k , under the condition

that Vl, k = vl, k, is given by fV o
l,k |,Vl,k

(
vo
l,k|vl,k

)
= fT w,o

l,k |T w
l,k

(
vo
l,k − Ul,k|tw

l,k

)
.

Consequently, the posterior PDF of the effective age, under the condition that
V o
l,k = vo

l,k , can be calculated by using the Bayes formula as follows:

fVl,k |V o
l,k

(
vl,k|vo

l,k

) =
fV o

l,k |Vl,k

(
vo
l,k|vl,k

)
fVl,k

(
vl,k
)

∫
Vl,k

fV o
l,k |Vl,k

(
vo
l,k|vl,k

)
fVl,k

(
vl,k
)
dvl,k

. (20)

3.6.2 State and Effective Age of a Component After Maintenance

The state and effective age of a component at the beginning of the (k + 1)th mission
are only affected by the state and effective age of the component at the end of the k th
mission as well as the maintenance action performed on the component. Therefore,
the state and effective age of component l after the kth break fall into one of the
following two cases.
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Case 1: Yl, k = 1
In this case, if no maintenance cost is apportioned to component l in the kth break,
the effective age of the component at the beginning of the (k + 1)th mission
is then left unchanged and one has Ul, k + 1 = Ul, k + Lk. If component l is
replaced by a new one, then Ul, k + 1 is set to be zero. Moreover, if an imperfect
maintenance is performed on component l, based on the Kijima type II model, one
has Ul, k + 1 = bl, k(Ul, k + Lk).

Case 2: Yl, k = 0
If component l fails before the end of the kth mission and will not be repaired in
the kth break, the component remains in the failure state and the effective age is left
unchanged. Likewise, the effective age is set to be zero with a perfect maintenance.
If the component is imperfectly maintained, based on the Kijima type II model, the
effective age changes to be Ul, k + 1 = bl, kVl, k.

3.6.3 Probability of a System Successfully Completing the Next Mission

Based on Eq. (1), the conditional survival probability of component l at the end of
the (k + 1)th mission, under the condition that Ul, k + 1 = ul, k + 1, is given by:

rl
(
k + 1|Ul,k+1 = ul,k+1

) = Rl

(
ul,k+1 + Lk+1

)
/Rl

(
ul,k+1

) · Xl,k+1. (21)

Consequently, based on the system structure function and the conditional survival
probability of each component, the conditional probability of the entire system
successfully completing the (k + 1)th mission, under the condition that Uk + 1=
uk + 1= {u1, k + 1, u2, k + 1, . . . , uM, k + 1}, denoted as Rs(k + 1|Uk + 1 = uk + 1), can
be evaluated readily. Therefore, the expectation and variance of the probability of
the entire system successfully completing the (k + 1)th mission are, respectively,
formulated as:

ms (k + 1) = E
[
Rs

(
k + 1|Uk+1 = uk+1

)]

= ∫ U1,k+1

∫
U2,k+1

. . .
∫
UM,k+1

Rs

(
k + 1|Uk+1 = uk+1

)
du1,k+1du2,k+1 . . . duM,k+1,

(22)

Ds (k + 1) = E
[
Rs(k + 1|Uk+1 = uk+1)

2
]

− ms(k + 1)2. (23)

3.6.4 Robust Selective Maintenance Model

Based on Eqs. (22) and (23), a robust selective maintenance model, aiming at
maximizing the expectation and minimizing the variance of the probability of a
repairable system successfully completing the (k + 1)th mission, can be formulated
as:
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max
C(k)

[ms (k + 1) , −Ds (k + 1)]

s.t.
∑M

l=1Cl(k) ≤ Ck

Cl(k) = c0
l + cl(k)

cl(k) ≤ c
rp
l l ∈ {1, 2, . . . ,M}

cl(k) ≥ 0 l ∈ {1, 2, . . . ,M}

. (24)

where C(k) = [C1(k), C2(k), . . . , CM(k)] is the vector of all the decision variables;
c

rp
l is the replacement cost of component l; c0

l is the fixed maintenance cost; and
cl(k) is the variable corrective/preventive maintenance cost for component l in the
kth break. The basic selective maintenance model is essentially a single-objective
optimization problem. However, due to the uncertainty associated with imperfect
observations, the probability of a system successfully completing the next mission
becomes uncertain. In this case, a maintenance strategy with maximum expectation
may not be a credible decision if the result contains a huge uncertainty. Therefore,
unlike the aforementioned works that treated the expectation of the probability of a
system successfully completing the next mission as the objective to be maximized,
the new robust selective maintenance model herein is formulated as a bi-objective
optimization problem.

3.6.5 Illustrative Example 2

The four-component system, shown in Fig. 2, is exemplified here to demonstrate
the effectiveness of the proposed robust selective maintenance method. The failure
time of each component complies with the Weibull distribution, and the parameters
of each component, e.g., scale parameter θ l and shape parameter β l of the Weibull
distribution, maintenance costs, the effective age at the beginning of the kth mission,
and the imperfectly observed values of the state and operating time, are tabulated in
Table 6. The observed value of the effective age of each component at the end of the
(k + 1)th mission is also tabulated in Table 6.

Suppose that the durations of the kth and (k + 1)th missions both take value of
Zk = Zk + 1 = 10 days. The observation errors are assumed to be δI

l = δII
l = 0.2 and

σ l = 2 (l ∈ {1, 2, 3, 4}). The enumeration method is used to determine the Pareto
optimal set. Given the maintenance budget Ck = 70 × 1000 US dollars, four non-
dominated solutions can be found in the feasible domain, and the Pareto optimal

Table 6 Parameters of
components (unit of cost: US
$1000, unit of time: day)

ID θ l β l c0
l cmin

l c
rp
l Y o

l,k Ul, k T
w,o
l,k V o

l,k

1 22 2.4 1.8 1.8 35 0 3 6.0 9.0
2 24 2.2 1.8 2.0 38 1 3 10.0 13.0
3 25 1.9 2.2 2.4 44 1 4 10.0 14.0
4 28 1.6 2.0 2.0 42 0 6 7.5 13.5
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Fig. 4 Four non-dominated solutions of the illustrative case

set of all non-dominated solutions is depicted in Fig. 4a. The best-compromised
strategy can be chosen based on the following four alternative criteria:

Criterion 1: The non-dominated solution with the maximum value of ms(k + 1)
Criterion 2: The non-dominated solution with the minimum value of Ds(k + 1) or

σ s(k + 1)
Criterion 3: The non-dominated solution with the maximum value of ms(k + 1)

− σ s(k + 1)
Criterion 4: The non-dominated solution with the maximum value of ms(k + 1)

− 3σ s(k + 1)

σ s(k + 1) is the square root of Ds(k + 1). For each non-dominated solution,
ms(k + 1), Ds(k + 1), the confidence intervals of ms(k + 1) ± σ s(k + 1) and
ms(k + 1) ± 3σ s(k + 1), and the actual total maintenance cost C(k) are listed in
Table 7. Meanwhile, the confidence intervals of each non-dominated solutions are
depicted in Fig. 4b. As a result, the best-compromised strategies under each criterion
(highlighted in Table 7) can be determined. For instance, because the second non-
dominated solution takes the maximum value of ms(k + 1)− 3σ s(k + 1) in Table
7, the best-compromised maintenance costs for Components 1, 2, 3, and 4 under
Criterion 4 are 36.8, 3.8, 23.1, and 4.0 × 1000 US dollars, respectively.

In general, the criterion for choosing the best-compromised strategy is essentially
application-dependent. The best-compromised strategy may vary from case to case.
For concreteness, a power supply system in a public hospital is extremely risk-
averse; therefore, decision-makers intend to select a non-dominated maintenance
strategy under Criterion 3 or 4 to maximize the lower bound of the probability of
the system successfully completing the next mission as an unexpected black out
can incur a huge risk to patients. However, the same power supply system in a
school can be risk-neutral to some extent, and thus decision-makers may choose the
best-compromised solution based on Criterion 1 to achieve a maximum expected
value. It is noteworthy that the best-compromised solutions under Criteria 1 and 2
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Table 7 Four non-dominated solutions (unit of cost: US $1000)

Maintenance costs Criterion
ID C(k) 1 2 3 4 C(k)

1 (36.8, 23.8, 4.6, 4.0) 0.8084 [1.237 × 10−4] [0.7973, 0.8195] [0.7751, 0.8418] 69.2
2 (36.8, 3.8, 23.1, 4.0) 0.8235 1.352 × 10−4 [0.8119, 0.8351] [0.7886, 0.8584] 67.7
3 (36.8, 3.8, 18.5, 8.4) 0.8273 2.329 × 10−4 [0.8121, 0.8426] [0.7815, 0.8731] 67.5
4 (36.8, 0.0, 23.1, 8.4) 0.8291 4.445 × 10−4 [0.8080, 0.8502] [0.7658, 0.8923] 68.3

are exactly equivalent to the optimal solutions by maximizing the expectation only
(single objective) and minimizing the variance only (single objective), respectively.

4 Conclusions and Discussions

In this chapter, we have reviewed four existing selective maintenance models which
take account of several potential uncertainties in selective maintenance. In addition,
two new selective maintenance models under uncertainties were proposed. The first
proposed model, i.e., Model 5, is able to address the uncertainty associated with
the durations of breaks and maintenance actions. The second proposed model, i.e.,
Model 6, can cope with the uncertainty associated with imperfect observations. As
demonstrated in two illustrative examples, the two proposed models can manage
these uncertainties appropriately in decision-making.

It is worth noting that, in selective maintenance optimization, if there is one
(or more than one) type of stochastic uncertainty that can affect the survival
functions of components in the next mission, such as the uncertainties associated
with maintenance efficiency, durations of missions and breaks, failure law, and
observations, the probability of a system successfully completing the next mission
is a random quantity rather than a constant value. Such variation can be quantified
either by mean and variance as Model 6 for simplification or by a full probability
distribution/confidence interval. The expectation of the mission success as used in
most of the existing studies may not be a wise choice for selective maintenance
optimization under uncertainty.
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