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Do not go gentle into that good night,
Old age should burn and rave at close of day;
Rage, rage against the dying of the light.
Though wise men at their end know dark is right,
Because their words had forked no lightning they
Do not go gentle into that good night.
Dylan Thomas (1914–1953)

At the National Institute for Geriatric Medicine, we have aimed to develop a forum for 
transdisciplinary research with a complex system approach in the field of human aging. During 
the past 10 years, a diverse group of seasoned researchers (public health specialists, geriatri-
cians, biologists, and social scientists) have been interacting with brilliant young biologists 
and data scientists, such as the editors of this book, giving rise to the development of a bur-
geoning research network. This book is an outstanding product of the exchanges and interac-
tion promoted within this network.

The modern approach to human health becomes increasingly complex. Scientific knowl-
edge tends to evolve from a reductionistic approach to a complex system view. The application 
of molecular biology to the answering of epidemiological questions in this context is common-
place today. Molecular epidemiology allows for the understanding of most of the molecular 
consequences and implications of diet, lifestyle, and environmental factors, and how these 
decisions give rise to genetic mutations and how these mutations are distributed among certain 
populations using biomarkers and genetic information. Molecular epidemiology studies also 
provide substantial information about previously identified risk factors and disease mecha-
nisms. Specific applications include the molecular surveillance of risk factors, the measure-
ment of their geographical and temporal distribution, and the characterization of pathogens 
and their evolution, as we see every day today through the COVID-19 pandemic.

While many molecular epidemiological studies still use the conventional disease designa-
tion system, evidence grows about the fact that disease progression represents a heterogeneous 
process that differs from person to person. So, everyone faces eventually a unique disease 
process that is different from that of any other individual (single disease principle) and becomes 
even more distinct as we age. The environmental factors and their influence on the process of 
molecular pathology in everyone contribute significantly to the uniqueness of disease expres-
sion. Knowledge about these factors contributes to the understanding of how is it that the 
economic and social determinants of health get “under the skin” [1]. Beyond that, the single 
disease principle still causes conflicts with the premise that individuals with the same disease 
have similar etiologies and processes.

Studies analyzing the relationship between the environment and the pathological footprint 
of the disease (particularly cancer) have become more common since the last 20 years. 
However, the use of molecular pathology in epidemiology still faces unique challenges includ-
ing the lack of standardized methodologies and guidelines as well as the scarcity of multidis-
ciplinary experts and training programs. This book contributes to face this challenge, providing 
useful, up-to-date information for the research community and for public health and clinical 
practitioners.
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The first chapter relates to the new field of life course epidemiology and its intersection with 
molecular epidemiology and translational science; it reviews the challenge of real-world appli-
cation of this knowledge.

In the second chapter, the thoughtful review of both the nucleic acid-based molecular tools 
(PCR, Karyotyping, and microarray) and the protein-based molecular tools (Immunoassays), 
commonly used in everyday clinical practice, provides the clinician with a useful update about 
this diagnostic tool.

The authors of the third chapter focus on the high throughput genomic tools that have been 
recently incorporated in epidemiological studies for the identification of rare genetic variants, 
genetic and environmental risk factors, and accurate biomarkers for the diagnosis and treat-
ment of several diseases, focusing in the COVID-19 pandemic.

Epigenetic mechanisms are complex biological mechanisms that modulate the cells' inter-
action with the environment. In recent years, the study of the epigenetic process in human 
disorders has grown exponentially, but clinical applications are still an area of opportunity, and 
the fourth chapter focusses in this particular challenge.

Transcriptome-wide association studies (TWAS) integrate genome-wide association stud-
ies (GWAS) and gene expression datasets to identify gene–trait associations. This novel tech-
nique gives us the power to analyze what genes are on or off among specific tissues or samples; 
it is quite powerful and has already several clinical applications, for instance in pharmacology. 
A thoughtful review of the potential revealed by this technique is given in Chap. 5.

Chapter 6 gives the audience a complete overview of the scope of proteomics, since this has 
proven to be highly sensitive and specific in a wide range of samples and several diseases, sug-
gesting their potential for being considered in daily clinical practices. A field of growing rele-
vance and with significant advances is geroscience; the identification of plasma proteins that 
systematically change with age and, independent of chronological age, predict accelerated 
decline of health is an expanding area of research. Circulating proteins are ideal translational 
“omics” since they are final effectors of physiological pathways and because physicians are 
accustomed to use information of plasma proteins as biomarkers for diagnosis, prognosis, and 
tracking the effectiveness of treatments. Recent technological advancements and these charac-
teristics allow the authors to predict that this field will soon contribute to clinical sciences.

Metabolomics employs non-invasive human biological samples such as serum, breath, and 
urine to screen and identify novel biomarkers, together with proteomics contributes to a better 
understanding of underlying pathogenetic processes. Changes in concentrations and fluxes of 
specific groups of metabolites reflect systemic responses to environmental, lifestyle, and thera-
peutic challenges. Thus, the study of metabolites is a powerful tool for the characterization of 
complex disorders and will contribute to the development of the precision medicine concept 
and the demonstration of the unique disease principle, as it is described in Chap. 7.

As the “omics” grow and differentiate, we need new approaches that allow us to encompass 
the integrity of the physiological changes and their phenotypic expression. Physiomics employs 
bioinformatics to construct networks of physiological features that are associated with genes, 
proteins, and their networks, and phenomics is the systematic measurement and analysis of 
qualitative and quantitative traits, including clinical, biochemical, and imaging methodologies, 
for the refinement and characterization of a phenotype. Both are needed in order to constantly 
advance the field in an orderly manner. Digital health, an emerging field of study at the inter-
section of healthcare and digital technologies, is deeply interrelated with phenomics. Chapters 
9 and 10 allow us to understand its processes and potential.

The progressive refinement of imaging technologies, both to look into the cell and into the 
whole body and their digitalization, allows a refinement of their use, together with new AI 
algorithms that allow automation but also for a better understanding of the processes on which 
they are focused. A remarkable example of this potential is the Alzheimer's Disease 
Neuroimaging Initiative (ADNI) [2] that has significantly contributed to the advancement of 
the field. Both tools are discussed in different medical fields and how these have translated into 
clinical applications in Chaps. 8 and 11.
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Complexity in science is hard to approach. Social scientists like Edgar Morin [3] have been 
prescient about this truth and have contributed to lead us to where we are today. But only today 
we begin to have the tools we need to approach this complexity in a purposeful manner, the 
next part of the book encompasses systems biology, bioinformatics, and spatial statistics, 
which are the tools we need to manage and understand the relations among large datasets at 
different levels and their interactions. And finally, the last three chapters deal with a holistic 
approach where human health is integrated from different perspectives, from biomedical to 
environmental and social, in the fields of pharmacogenomics, epidemiology, and population 
health surveillance.

I am certain that this volume will contribute significantly to the much-needed dissemination 
of this novel approach to the research and practice in epidemiology and public health. And this 
knowledge will also allow us to grow wiser and contribute to a better healthspan even knowing 
that at the end “….dark is right.”

Luis Miguel Gutiérrez Robledo
Dirección General, Instituto Nacional de Geriatría 

Ciudad de México, Mexico
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According to several authors, the field of molecular epidemiology is a subdivision of medical 
science and epidemiology that involves potential environmental and genetic risk factors, rec-
ognized at the molecular level, which altogether improve our knowledge about the pathogen-
esis of disease and lead to the design of more efficient therapeutic strategies against them. 
However, with the constant evolution and improvement of novel technologies such as the 
omics sciences, microscopy, and others, it is quite important to update health professionals in 
this field and build a bridge between physicians and researchers to face the upcoming chal-
lenges that represent the pathogenesis of the disease. In this sense, the current book, entitled 
Principles of Genetics and Molecular Epidemiology, urges the need to update all health pro-
fessionals (biomedical, clinical, and social) on the ongoing advances of molecular biology and 
genetics in the field of epidemiology. As seen during the COVID-19 pandemic, the need to 
increase scientific knowledge of health professionals in the field of genetics (genomics, tran-
scriptomics, epigenetics, DNA and RNA research, proteomics, metabolomics, systems biol-
ogy, and others) becomes evident, as well as the way these advances can be applied to the 
different branches in epidemiology, such as epidemiological surveillance, public health, popu-
lations, infectious diseases drug development, vaccines, digital health, and imaging, among 
others. It also urges the need to sustain scientific knowledge over the huge amount of crossed 
or erroneous information generated in the networks or the media without any scientific support 
of the so-called infodemics. Through its 17 chapters, we resume the most outstanding advances 
performed to date on genetics applied in the epidemiological field. For instance, we cover in 
several chapters the state of the art in systems biology, biomedicine, medicine, and epidemiol-
ogy. We recover the most important principles on public health and then we follow by describ-
ing the principles of genomics, transcriptomics, proteomics, metabolomics, and imaging; 
therefore, any health professional interested in applying these technologies on clinics could 
start by reading these chapters. Additionally, it is important to mention that microscopy has 
benefited from advances in molecular biology; thus, we dedicate an entire chapter to the basics 
of microscopy and the enormous potential that such technology has on epidemiology and 
therefore on public health. The book delves into the state-of-the-art of themes such as phenom-
ics and digital health where several advances in public health have become more evident with 
the advances in computation and data science, and where knowledge is being generated day by 
day, and are hot topics on epidemiology. In the final sections of the book, we cover the most 
recent advances in molecular pharmacology, which needs to be considered by epidemiologists 
and public health professionals for the development of drugs against the most important dis-
eases that afflict the population and that depend so much on the characteristics and health 
problems of each population knowledge generated at the epidemiological and clinical level 
and that some times are seen as two separated fields. Finally, we conclude by giving an intro-
duction to the genomic surveillance so important right now not only for the control of the 
SARS-CoV-2 lineages and how they spread around the world but also for the control of other 
infectious diseases such as tuberculosis, HIV, and Ebola; as well as for the surveillance of 
chronic diseases on populations such as diabetes or cancer. We hope that our book will be use-
ful to any health professional (doesn´t matter if they are starting their career or they are 
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advanced in their professional life). This book allows to the understanding of topics that seem 
quite complicated and sophisticated at first glance, making them easily digested, and arouse 
interest to delve and eventually apply them on field. Paraphrasing a giant in the world of 
genomic research, Dr. Eric Lander, we are experiencing a historical revolution in molecular 
biology; therefore, we can simply stay and watch or be part of it.

Mexico City, Mexico� Juan Carlos Gomez-Verjan
Mexico City, Mexico� Nadia Alejandra Rivero-Segura 
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Principles of Modern Epidemiology 
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Carmen García-Peña, Lizeth Avila-Gutierrez, 
Karla Moreno-Tamayo, Eliseo Ramírez-García, 
Sergio Sánchez-García, and Pamela Tella-Vega

�Introduction

In recent decades, increased life expectancy and falling fer-
tility rates have led to a growing world population, which 
creates more complex challenges in the public health area. 
These challenges include global environmental changes, 
profile transformation of the main causes of death, and 
changes in the infectious disease patterns. In this scenario, 
epidemiological research plays a relevant role through the 
increasingly detailed recognition and identification of factors 
at different levels: at the population, individual (lifestyles), 
and genetic level.

Over time, epidemiology has benefited from scientific 
and technological contributions of statistics and informatics, 
as well as from its interrelation with social and political sci-
ences, economics, anthropology, and other sciences in the 
field of communication and education. In the context of new 
challenges faced by decision-makers and thus researchers, 
this should not be seen as an isolated science, despite being 
the basis for the study of population health conditions causes. 

The integration of a holistic approach in this research area is 
necessary to achieve a balance between variables at each of 
the aforementioned levels. It is also necessary to include 
other variables derived from the macro-environment to 
develop conceptual frameworks and analytical studies that 
contribute to the improvement of individual health condi-
tions [1, 2].

In the population perspective, the identification of 
causal factors associated with health conditions through 
epidemiological prediction models is insufficient if the 
aim is to move toward risk prediction at the individual 
level [3]. The incorporation of epidemiological studies 
from a life-course approach can provide a perspective 
where the individual per se, and through data collection of 
variables since birth and throughout his life, allows a bet-
ter understanding of individual trajectories and their health 
outcomes [4].

The addition of genetic data to this area offers an encour-
aging perspective to solve the problem of identifying small 
causal associations at new levels of study. In the era of the 
human genome plan, the last two decades have been decisive 
to incorporate genetic knowledge in epidemiological 
research and in the context of public health. This paves the 
way for its translation toward its different uses and benefits 
in the clinical area [5]. The development and implementation 
of new knowledge from a molecular biology, genetics, and 
bioinformatics perspective, the incorporation of new collec-
tion methods, information storage, and innovations in com-
munication mechanisms will allow the generation of great 
benefits through constant evolution. In this context of 
changes and challenges, both conventional and new, it is evi-
dent that the practice of public health and epidemiology is 
more complex. Therefore, the need to continue providing 
scientific evidence from the approach of different study 
fields to create and implement health care and treatment 
models is fundamental.
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�Life-Course Epidemiology

In the framework of epidemiology, the life course is “the 
study of long-term biological, behavioral, and psychosocial 
processes linking health and disease risk in adults with phys-
ical or social exposures, which occur during pregnancy, 
childhood, adolescence, early adult life or across genera-
tions” [6].

The life-course approach in epidemiological studies has a 
relatively recent life. In the late 1990s, Kuh and Ben-Shlomo 
[7] sought to explain the complex phenomena of the health-
disease development in humans. Consequently, they initiated 
a disciplinary field for epidemiology, inspired by Barker’s 
research [8] on the fetal origins of diseases in adulthood and 
based on Elder’s contributions [9] made from social sci-
ences. So far, this disciplinary field allows documenting the 
diverse and complex relations through which the genotype, 
socioeconomic, demographic, psychosocial, and environ-
mental factors shape the health-disease process of human 
populations over time and by generation [6].

The incorporation of a life perspective in the field of epi-
demiology contributes to etiological research, genetic net-
works, and biological and systemic patterns in the study of 
processes and factors influencing the development of dis-
eases throughout the human life [6]. This comprehensive 
approach helps to identify causal pathways and describes 
how social settings and behavioral effects could promote dis-
ease development [10]. Therefore, there has been a growing 
interest in linking epidemiological studies with a life-course 
approach and genomic studies in areas such as environmen-
tal epigenetics and social genomics [11].

�Principles of Life-Course Research

Different conceptual bases have been proposed on the 
health-disease relationship over time. According to Elder 
et al. [12], the life-course approach supports its application 
in five principles; these have been adapted according to the 
progress and use given to them from the interaction of dif-
ferent disciplines [13].

�Development over Time
It is indisputable that what we call life course implies a 
cumulative process from birth to death, so the only way to 
capture and understand it is by having a long-term vision 
[12]. In classical epidemiological studies, this principle has 
been pivotal and is identified in longitudinal designs; how-
ever, there is a lack of information on contextual changes 
over time. From the point of view in which the life-course 
approach is included, it is known that various environmental 

and individual factors, as well as the context to which people 
are exposed during the prenatal stage and childhood, contrib-
ute to the health conditions of adulthood life; such is the case 
of coronary heart disease, type 2 diabetes, and high blood 
pressure [6, 8].

�Time and Place
Since the actions of individuals are influenced by the histori-
cal context and place, this principle is fundamental in the 
interpretation of results, in which it is important to locate the 
social, political, and economic context of certain historical 
periods belonging to the population groups under study [12]. 
The life trajectories can vary according to the geographic 
space and the period time. These may cause common experi-
ences to all members of a population but in turn can have 
differential effects for certain subgroups of the same.

�Timing
The importance of the timing of an event lies in the different 
ways it can impact individuals [14]. The particular roles and 
behaviors of individuals are related to different biological 
and psychosocial aspects associated with age [15]. In the 
context of epidemiology, the conceptual model of critical or 
sensitive period suggested by Ben-Shlomo et al. [6] is char-
acterized by emphasizing this principle. Under this concep-
tual framework, the time at which an event is observed can 
be decisive for the trajectory development and how it modi-
fies the spheres of an individual’s life.

�Linked Lives
The interdependence of domains and experiences in the life 
of an individual belonging to a family line may have implica-
tions in the life course of other members [12]. Family rela-
tionships related to this principle may even span several 
generations. In this regard, research with a life perspective is 
abundant [16]. Within the framework of epidemiological 
studies, there is a rise of multigenerational studies analyzing 
the transmission of mental health diseases between two or 
more generations. In a comprehensive review on the inter-
generational transmission of mental health, Warner and 
Weissman [17] described these studies collecting informa-
tion from generations of biologically related relatives. 
Among the mechanisms that elucidate these links, the effect 
of the social environment in which a certain generation 
grows up is proposed. In turn, the expression of genes regu-
lating behavioral and endocrine responses may also have an 
impact.

�Free Will or Agency
In the life course of individuals, the decisions and actions 
they take shape their trajectories [12]. Decision-making is 
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not made independently or apart from the events in which 
people are immersed, since it involves the interaction of the 
social categories to which they belong (gender, socioeco-
nomic status, or ethnicity) and the social time in which they 
live. This network of factors facilitates or imposes restric-
tions that people will deal with throughout their lives [12, 
14, 18].

�Challenges for Life-Course Epidemiology

Although the life course requires observing individuals from 
different stages, it has not always been feasible to create 
studies that provide follow-up of the same participants since 
birth. Studies starting in later stages lack the close follow-up 
that could have occurred if they had started earlier. However, 
the implementation of biographical questionnaires to collect 
information on domains of life such as work, family care, 
etc., has been used to rebuild trajectories and analyze them in 
relation to the physical health of older adults, for example 
[19, 20].

Currently, the systematization of large databases and even 
the registration of biological samples of diverse origin favor 
the design of longitudinal studies with a life-course approach. 
However, this involves both economic feasibility and 
technical-methodological difficulties.

The longitudinal information obtained from the life 
course requires proper data handling and processing. 
Statistical analysis is essential, and researchers must be 
trained in up-to-date knowledge, in order to use the most 
appropriate statistical techniques.

�Translational Epidemiology

In recent years, there has been a greater focus on evidence on 
etiology and the mechanisms involved in the history of the 
disease. Their application in the development and improve-
ment of related health outcomes has received less attention. 
The emergence of translational research focused on the 
“bench to bedside” term (about the translation from basic 
research toward clinical applications) needs epidemiology 
and other population sciences to integrate an overview of 
novel scientific discoveries, visualized through the evidence 
of population health [21].

Translational epidemiology is considered a “fundamen-
tal” bidirectional discipline, which encompasses different 
observational, experimental, and theoretical epidemiological 
methods to link clinical and laboratory aspects with popula-
tion research [22]. In order to understand the natural history 
of a disease and identify risks or factors, it is necessary to 

understand the epidemiological principles in clinical and 
public health practice. Therefore, the objective of transla-
tional epidemiology is the effective transfer of new scientific 
discoveries with evidence-based approaches for disease 
treatment, prevention, and control with novel interventions at 
the individual level and in the planning of health programs 
and public policies [21, 22].

The dynamic process of translation focuses on the links 
between epidemiology, fundamental sciences, and involved 
parties (decision-makers) through different themes and pri-
ority areas. According to Windle et al. [23], the main domains 
that contribute to the efficiency of knowledge translation 
include the following:

•	 Adequate inclusion of the research question into the 
appropriate methods.

•	 Efficient communication between researchers and 
decision-makers.

•	 Education through different abilities and skills.
•	 Implementation of interventions and measurements asso-

ciated with research monitoring and evaluation.
•	 Efficient understanding of public health needs.

The Khoury’s proposal [24], in which the translational 
research process consists of four phases, is shown in Fig. 1.1, 
taking the development context of a new vaccine and its 
interconnection with the clinical trial phases as an example 
[25]:

	1.	 P1 “From basic research into clinical application”: In this 
preclinical stage, translation of laboratory results into the 
first testing in humans is performed. Clinical trials are 
small and last only a few months. Phase I and II clinical 
trials.

	2.	 P2 “From clinical trial results into practice and decision-
making”: Larger clinical trials are conducted with hun-
dreds of participants. Duration can be up to 2  years. 
Results obtained in this phase can be used to determine 
the composition, dose, and profile of adverse reactions. 
Phase III clinical trials.

	3.	 P3 “Translation of recommendations into clinical prac-
tice”: This stage can last several years, as clinical trials 
conducted during this stage compare a larger number of 
study groups. It begins after the vaccine is authorized and 
is recommended for its use. Phase IV clinical trials.

	4.	 P4 “Outcomes in the population and analysis at the public 
health level”: This stage includes monitoring the vaccine 
benefits and risks. Components such as costs, quality, 
accessibility, organization, and financing are examined, 
allowing to understand structure, processes, and results 
for their distribution and impact on the population health.

1  Principles of Modern Epidemiology and Public Health
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�Postmodern Epidemiology

Because the evolution of knowledge on epidemiology is a 
constant, the current paradigms on which this discipline is 
ruled will not be definitive. Epidemiology went from a “con-
ventional” to a “modern epidemiology” approach. The first 
paradigm is focused on the prevention of diseases and popu-
lation health needs, while the second focuses on risk factors. 
It is assumed that this transition of approaches had the analy-
sis level from the population to the individual as the main 
change. Hence, this generated a greater interest in risk fac-
tors and individual lifestyles and disinterest in population 
factors as causes of disease, such as social, economic, cul-
tural, historical, and political factors depending on or deter-
mining the social structure of each population [26].

It is possible that the displacement of population aspects 
in modern epidemiology is due in part to the need of seeking 
explanations or “actual” theories about the causes of diseases 
focused on individuals, relying on innovative knowledge 
generated by basic sciences such as biology, genetics, immu-
nology, and pharmacology. It is assumed that the topics or 
findings indicated by these disciplines in different fields of 
research concentrate their applicable results as interventions 
or treatments focused on specific factors or causes. These 
disciplines have a predominantly clinical research trend 
focused on addressing the causes indicated by the basic sci-
ences. Nevertheless, the aspects that are not located at the 
individual level are omitted. Given these perspective changes 
in epidemiology throughout history, it has been suggested 
that the approach of “postmodern epidemiology” should 
contemplate the restoration of a population perspective and 

its reintegration into public health while using recent meth-
odological developments [26, 28].

�Need for a Refocus on Postmodern 
Epidemiology

One of the main goals of numerous scientific investigations 
is to point out the usefulness of their findings, which has led 
to an approach focused on clinical aspects that undermine 
the understanding of population patterns on the occurrence 
of diseases [26]. Such is the case of controlled clinical trials 
aimed to improve the therapeutic stratification of patients. 
They are usually considered the maximum reference for 
research in health sciences, due to their close approach to 
experimental research and thus to what is verifiable or “true.” 
In an overview where there is rigorous control of variables 
and even the suppression of others, it is possible to approach 
“actual” events under a particular research context. This is 
useful when looking for a treatment or intervention to solve 
problems of specific populations or with particular charac-
teristics. However, the study design exhibits great limitations 
by excluding a great variety of conditions; it does not take 
into consideration that each individual is exposed to different 
environmental, sociodemographic, political, and historical 
factors and/or contexts. The study of individual risk factors 
or mostly clinical aspects can lead to decontextualized find-
ings of low usefulness or low applicability in a reality where 
social determinants gain relevance [26].

For these reasons, postmodern epidemiology is intended 
not only to become just a set of generic methods to study the 

Fig. 1.1  Example of the vaccine development process applied to the Translational Research phases. (Adapted from Khoury et al. [24] and Agurs-
Collins et al. [27])
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prevalence or incidence of diseases and their solutions [29] 
but also to include a distinctive theory that allows the under-
standing of the population patterns of diseases in the same 
way [26]. Consequently, epidemiologists must consider the 
nature of causality and work with whatever concept seems 
most useful and not just seek a lifestyle approach to social 
politics, where the main responsible for health is often the 
individual [30].

Recent epidemic chronic diseases – such as diabetes mel-
litus 2 – or infectious diseases – such as COVID-19 – which 
have not been addressed quickly and effectively, are a clear 
example of the great challenge that epidemiology must solve. 
This should be achieved through comprehensive strategies, 
designed according to population characteristics, socioeco-
nomic, human, technological, political, and historical 
resources, to name a few. Therefore, a multidisciplinary 
approach is needed with greater involvement of social sci-
ences and appropriate study designs that fit the public health 
issue to be addressed [26, 31]. In other words, an appropriate 
methodology should be used instead of making the problem 
fit the method [32].

�Analysis Levels to be Considered 
in Postmodern Epidemiology

The causes of disease can be studied at different levels such 
as environmental and socioeconomic factors, lifestyle, expo-
sure to biological or chemical agents, or the genetics of indi-
viduals, just like diseases in a population [33]. Although 
certain specific risk factors seem to act directly at the indi-
vidual level, exposure and susceptibility may be due to a 
wide range of political, economic, and social factors. Hence, 
any analysis of the causes of disease in populations must 
integrate the individual-biological and population analysis 
levels without overlapping one into the other or denying that 
any of them exist [26].

Two main approaches have been identified to address the 
analysis of these different levels: the first “bottom-up” 
focuses on understanding the individual components of a 
process from lower to higher levels of an organization. An 
example of this is the understanding of diseases at a molecu-
lar level and the use of this knowledge in public policies 
(application of screening tests to detect diseases). The main 
difficulty with this approach lies in the challenge of the com-
plexity and dynamism of the origin of diseases since this is 
only at the individual level.

On the other hand, the so-called top-down approach uses 
a structural model of causality, focused on underlying pro-
cesses and structures as generators of event occurrence. This 
approach considers that causality results from internal mech-
anisms of the population under study and not just regular 
associations between independent objects.

As the epidemiology paradigms have evolved, so has its 
way of analyzing information. In postmodern epidemiology, 
the search for relationships between exposures and effects is 
not prioritized, but rather the analysis of systems within 
which mechanisms that contribute to the development of a 
disease in the population can be identified. In order to ana-
lyze the behavior of population diseases, a dynamic system 
has been applied, which considers the interactions between 
individuals. However, this creates the need to seek other 
mathematical or statistical analysis tools [33] with a broader 
view of the disease and its causes located at multiple levels 
referring to the complexity theory. In this sense, the trend is 
toward a contextual or multilevel analysis aimed to study the 
effects observed at an individual level, based on the charac-
teristics of the community or group. The multilevel analysis 
method is considered appropriate for the new approach in 
epidemiology since it allows going beyond the study of indi-
vidual epidemiological factors. This in addition to the need 
to analyze the role of each component involved in a complex 
interaction in the health-disease process, where it is impor-
tant to include the relationship between people and elements 
of their environment. Multilevel analysis models hierarchical 
relationships, reduces biases in hypothesis testing, and pro-
vides practical estimates of the variability and replicability 
of regression coefficients across contexts. In addition, it has 
the potential to emphasize the role of variables from the indi-
vidual to the macro-level on the configuration of health and 
disease in populations. Consequently, this type of analysis 
requires units to be well-identified and structured in hierar-
chies or levels where the lowest unit of analysis is contained 
in the next one, generating a higher level of complexity in the 
data [34].

�Postmodern Epidemiology Perspective

Over the past three decades, advances in the field of informa-
tion technology have provided new opportunities in all areas 
of science, including the healthcare area, and the substantial 
expansion of the access to information. This technological 
advance opened at least three expansion areas for epidemio-
logical analyses: (1) improvement in the speed and reliability 
of statistical analyses; (2) practical feasibility of multivariate 
analysis; and (3) development of all inference methods, 
based on simulation and resampling. It is evident that new 
technologies play a fundamental role in the future develop-
ment of epidemiology and epidemiological research [33].

Given the great technological advances in different areas of 
science, the continuous generation of genetic information and 
the evolution of computational systems allow for greater data 
recording and storage. It is necessary for epidemiology to 
adopt the approach of constantly growing data, both in the 
number of observations and in the number of variables, as well 

1  Principles of Modern Epidemiology and Public Health
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as in its different health-related levels and disciplines. The new 
technologies used, for example, in genome-wide studies or 
those that use imaging techniques applied to population stud-
ies, are setting a trend that could redirect the interests of epide-
miological analysis. This in order to approach data of different 
nature (structured, unstructured, and semi-structured data, to 
name a few), according to the type of format [35, 36].

Electronic data processing, which includes all procedures 
to acquire, archive, retrieve, and transmit data, has developed 
at an exponential rate to date. It has had a high-impact trend 
in epidemiology through the development of data science 
and increasing access to large and heterogeneous health-
related data. However, this large data generation currently 
places them at a level where they have become unmanage-
able with currently available technologies. This has led to the 
creation of the term “big data” to describe data that is large 
and unmanageable [36] with massive amounts of informa-
tion. Big data has become a topic of special interest during 
the last two decades; it offers great potential, the idea being 
that the more data obtained, the greater the understanding of 
healthcare processes. Furthermore, they can provide a wealth 
of information that often remains hidden or unidentified in 
smaller experimental or observational methods. Although 
the big data approach could offer new findings, data creation 
will depend on the different levels at which the events of 
interest are studied, from the basic to the population level. 
Using this type of data analysis can be complementary and 
adapted to the current needs of epidemiology, which faces 
the challenge of the multiple levels through which health-
disease processes occur in populations. The use of big data is 
changing the observational research, as well as public health 
surveillance and population health monitoring through an 
increasingly growing spectrum of applications and new 
methods [28], which are expected to enrich healthcare strate-
gies [36].

�Final Considerations

The integration of new methodological and analytical 
approaches represents a crucial challenge for current epide-
miology applied to public health problems. Scientists, clini-
cians, and decision-makers will have to adapt and incorporate 
these new methods and knowledge based on a transdisci-
plinary vision.

In this context, the acknowledgment of social and global 
changes over time plays an important role in solving popula-
tion health problems. The exponential growth of genomic 
knowledge in different related areas has enabled the inclu-
sion of novel and robust methodologies that are currently 
applied in the study of complex diseases. Clearly, both the 
study main objective and methods have been evolving. This 
trend has allowed the scope and benefits of epidemiology to 

have an increasingly greater impact on the study of popula-
tion health.
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Abbreviations

ALP	 Alkaline phosphatase
BiFC	 Bimolecular fluorescence complementation
BSA	 Bovine serum albumin
BSE	 Bovine spongiform encephalopathy
CEIA	 Capillary electrophoresis immunoassay
CMA	 Chromosomal microarray analysis
aCGH	 Comparative genomic hybridization arrays
cDNA	 Complementary deoxyribonucleic acid
CNV	 Copy number variants
DNA	 Deoxyribonucleic acid
dPCR	 Digital polymerase chain reaction
ELISA	 Enzyme-linked immunosorbent assay
EtBr	 Ethidium bromide
FISH	 Fluorescence in situ hybridization
FRET	 Fluorescence resonance energy transfer
GFP	 Green fluorescent protein
HRP	 Horseradish peroxidase
HGP	 Human Genome Project
HIV	 Human immunodeficiency virus
LIF	 Laser-induced fluorescence
LAMP	 Loop-mediated isothermal amplification
MHC	 Major complex of histocompatibility
MSP	 Methylation-specific PCR

MWB	 Multiplex western blot
NMR	 Nuclear magnetic resonance
PBMC	 Peripheral blood mononuclear cells
PBS	 Phosphate buffer solution
PS	 Phosphatidylserine
pNPP	 P-Nitrophenyl phosphate
PCR	 Polymerase chain reaction
PVDF	 Polyvinylidene difluoride
qPCR	 Quantitative polymerase chain reaction
RFLP	 Restriction fragment length polymorphisms
RT-PCR	 Reverse transcription polymerase chain reaction
RNA	 Ribonucleic acid
SNP	 Single-nucleotide polymorphism
SDS-PAGE	 Sodium dodecyl sulfate polyacrylamide gel 

electrophoresis
CFSE	 Succinimidyl-carboxyfluorescein ester
TUNEL	 TdT dUTP nick-end labeling
UPR	 Unfold protein response
WB	 Western blot

�Introduction

Since the beginning of the century, the advances in laboratory 
technologies have allowed the acquisition of valuable molecu-
lar information regarding human health [1]. In 2003, the 
Human Genome Project (HGP) concluded with the publica-
tion of over 90% of the DNA sequence in the human genome. 
Before the HGP, very few loci were associated with diseases. 
However, the sequencing and annotation of the human genome 
and further analysis in several diseases allowed the establish-
ment of these associations, firstly with diseases following 
Mendelian heritage rules and, more recently, with complex 
diseases which manifest as a result of the combination of sev-
eral factors, including genetics and environmental cues [2].

Nowadays, it is possible to assess a human genome in order 
to find disruptions that could be causative of a particular disease 
[1]. These disruptions range from base pair modifications to 
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chromosomal rearrangements and modifications in gene expres-
sion [2]. Furthermore, besides chronic and congenital diseases, 
infectious diseases, such as those caused by bacteria, viruses, or 
parasites, may be identified rather by changes made in the 
genome or by the detection of the infectious agent’s genome 
itself. For these reasons, in recent years numerous studies have 
been done for the discovery of molecular hallmarks in particular 
diseases for its posterior utilization in clinical contexts.

Molecular tools refer to the whole set of techniques based 
on properties of nucleic acids, such as DNA or RNA, and 
proteins for the identification of the causes of a disease. The 
discovery of molecular hallmarks in a particular disease can 
permit them to be detected in patients and are useful as a 
diagnostic tool [1]. Molecular tools have ameliorated the 
process of disease detection, both by improving efficiency 
and accuracy of diagnoses, and also its speed, which is of 
particular interest when the prognosis of the patient depends 
on the appropriate early diagnosis. Furthermore, molecular 
tools also allow the collection of useful knowledge for drug 
development and prevention of diseases, relevant for many 
of those which have no known cures yet [2].

Although molecular tools have important applications in 
human disease diagnosis, its utilities go further into the reso-

lution of criminal cases and paternity tests, evolution and 
population studies of diverse species, microbes identifica-
tion, and even microbiome studies with the advent of metage-
nomics. In this chapter, we will review several molecular 
techniques used in the clinics, with the description of its pro-
cedure and medical applications. These encompass PCR, 
which is commonly used for pathogen identification and 
deletions or insertions in particular diseases, as well as in 
forensic medicine and paternal genetic testing; karyotyping, 
FISH, and microarrays for the detection of chromosomal 
abnormalities; and finally, immunoassays and proteomics, 
for the evaluation of aberrant gene expression and protein 
isoforms or localization in diseases (Fig. 2.1 summarizes the 
reviewed molecular tools and its applications) [2].

�PCR

The polymerase chain reaction, most commonly known as 
PCR, is a process created in 1983 by Kary Mullis for DNA 
molecule amplification in  vitro [3, 4]. PCR uses polymer-
ases, the enzymes in charge of DNA replication found in all 
living organisms [4]. Polymerases synthesize DNA by add-
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Fig. 2.1  In this chapter we will address the most popular molecular 
tools that are currently used in clinical practice. For instance, nucleic 
acids-based technologies such as PCR, microarrays, karyotyping, and 

FISH; and the protein-based technologies (immunoassays and mass 
spectrometry)
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ing the complementary base pair for each position in a whole 
fragment [3]. To do this, they need a primer, which is a 
sequence complementary to the DNA fragment but shorter 
than it: when the correct base pair is incorporated into the 
growing chain, the 3’-OH molecule exposed in the pentose 
of the primer carries out a nucleophilic attack to the triphos-
phate group in the incoming nucleoside triphosphate, form-
ing the phosphodiester bond [3]. Therefore, when performing 
a PCR, polymerases are required, as well as a pair of prim-
ers, deoxyribonucleotide triphosphates (dNTPs), and other 
substrates, such as buffers and ions, and they are all set in an 
apparatus called thermal cycler, which raises and lowers the 
temperature [5]. Since PCR requires heating, a special ther-
mostable polymerase is needed, which is usually the Taq 
polymerase, the enzyme found in a thermophilic bacteria 
named Thermus aquaticus [5].

The PCR process requires three steps: denaturing, 
annealing, and amplification. During denaturing, the ther-
mal cycler raises the temperature to 93–95 °C, at which the 
hydrogen bonds in the double-stranded DNA are broken, 
resulting in two single-stranded DNA molecules [5]. Next, 
the temperature lowers to ~60 °C, and the primers designed 
to flank the extremes of the DNA region to be amplified bind 
to the single-stranded DNA molecules by base pair comple-
mentarity [5]. Finally, in amplification, the temperature 
again rises to 70–75  °C, and the polymerase incorporates 
the complementary base pair for every position in the inter-
est sequence, now resulting in two double-stranded DNA 
molecules [5]. The process is repeated, resulting in 4 dou-
ble-stranded molecules, 8, 16, and so on, until it is done ~30 
times, which yields billions of copies for the interest 
sequence (~230) [4].

Finally, in the standard PCR procedure known as end-
point PCR, the amplified fragments are observed in an aga-
rose electrophoresis gel, using ethidium bromide (EtBr) for 
DNA staining and ultraviolet light. DNA fragments of known 
length must also be used as markers for the identification of 
the PCR product with the previous knowledge of its molecu-
lar weight. However, there are several PCR variants 
available.

�Types of PCR

�Multiplex PCR
Multiplex PCR is a variant that allows the amplification of 
more than one interest DNA fragment by using more than a 
pair of primers specific for different fragments [6]. It was first 
used in 1988 for the detection of deletion variants in the human 
dystrophin gene, which served as a diagnosis for Duchenne 
muscular dystrophy. Since several primers are used, it is essen-
tial to have extensive knowledge of the sequence in the 
extremes of the fragment that will bind to them to avoid non-

specific amplification [6]. Nowadays, multiplex PCR has sev-
eral applications, including pathogen identification, genetic 
diseases diagnoses, and forensic analyses [6].

�Real-Time PCR
Real-time PCR or quantitative PCR (qPCR) is a modification 
that allows the quantification of initial DNA molecules [7]. 
This type of PCR has the advantage that the agarose gel elec-
trophoresis is not needed; instead, the quantitation of the 
samples is done, while the reaction is happening [7]. qPCR 
is done in a thermal cycler able to detect fluorescent signals, 
and fluorescently labeled probes are included in the reaction 
[7]. For every cycle, the fluorescence signal emitted is 
directly correlated with the amount of DNA [4]. Therefore, 
the more initial concentration of DNA, the faster the fluores-
cence signal will reach a threshold known as CT, allowing 
the identification of the cycle in which this is achieved and 
consequently, the initial DNA volume [4].

�Reverse Transcription PCR
Reverse transcription PCR (RT-PCR) allows the amplifica-
tion of a cDNA molecule originating from an RNA sample. 
The procedure is essentially the same as in a traditional PCR, 
with the modification that RNA fragments must be retro-
transcribed to cDNA.  Usually, the RNA fragments to be 
amplified come from cellular mRNAs; thus, the primers used 
for retrotranscription are commonly oligo(dT) molecules 
that bind to the poly-A tail in the mRNA 3′ end [8]. RT-PCR 
and qPCR can be combined in a methodology known as 
qRT-PCR, which allows the quantification of specific RNA 
molecules [2]. This is particularly useful for the quantifica-
tion of the viral load for several viral infections caused by 
RNA genome viruses [2].

�Digital PCR
Digital PCR (dPCR) is a PCR variant introduced in 1999 
which allows the identification of allelic mutants for a gene 
or specific locus [9]. dPCR relies on the dilution of DNA to 
be amplified in wells on a plate, so that there are very few 
molecules in each well [9]. qPCR is done for every well, and 
the fluorescent probes used are designed to bind to the differ-
ent alleles expected, each with a different color [9]. This 
way, mutant alleles can be identified even in a cell population 
in which the wild-type allele is predominant — a phenome-
non common in certain diseases, such as cancer —thanks to 
the dilution of the initial sample [9]. The analysis of the fluo-
rescent signal will allow the identification of the proportion 
of the mutant allele in the cell population, by adding the pro-
portion of mutant and wild-type alleles in every well [9].

�Lamp
Loop-mediated isothermal amplification or LAMP is a 
methodology alternative to PCR, first described in 2000 
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Table 2.1  Applications of different classes of PCR

Type Application Principle Reference
Classical 
PCR

Forensic 
medicine

Across the genome, there exist several polymorphisms (over 20,000) that correspond to short 
repeated sequences in tandem (STRs). The specific amplification of these sequences and its posterior 
length determination by gel electrophoresis create a “DNA fingerprint” almost unique for every 
person in the world

[4]

RT-PCR or 
qRT-PCR

Pathogen 
detection

Primers are designed for amplification of a pathogen’s mRNA, and through electrophoresis, it is 
possible to determine the presence of the pathogen in the sample. qRT-PCR can also be used to 
determine the load of the pathogen in the sample

[12]

Allele 
specific PCR

Point 
mutations 
detection

When wanting to distinguish between a point mutation and a wild-type allele in a specific position of 
the genome, PCR primers are generated so that this position is the last nucleotide of the primer. Since 
the polymerase needs the 3’-OH, this nucleotide needs to be bound to the fragment to be amplified. If 
the allele is mutated, there would not be amplification, so it is possible to identify point mutations 
possibly responsible for a disease

[2]

Classical 
PCR

ChIP Chromatin immunoprecipitation (ChIP) is a methodology to identify a region of the genome bound to 
a specific protein. To do this, the proteins are crossed-linked to the DNA, and the DNA is cut in small 
fragments. The mixture is divided into two: In one of the mixtures, all the proteins are removed, and 
PCR is performed for the interest region and for a control region where the protein is known not to 
bind to. The other mixture is immunoprecipitated with an antibody specific for the interest protein, 
and only the fragments containing it will be selected. Then, the proteins are removed, and again, PCR 
is performed for the interest region and for the control region. In the first mixture, amplification is 
expected for both the control region and the interest region. However, if the control was appropriately 
selected, in the second mixture there should not be amplification of this region. If the protein is bound 
to the interest region, amplification will be observed. This methodology works for identification of 
DNA-protein interactions specifically identified in certain contexts

[3]

PCR-RFLP SNV 
detection

Restriction fragment length polymorphisms (RFLPs) are length variants of fragments cut by 
restriction enzymes (REs) present in the genomes of different people. Some REs recognize a single 
base pair and cut in it, creating two shorter fragments. If this base pair is mutated, the RE won’t cut it, 
leaving the longer fragment. PCR can be used for amplification of some regions, and the products 
processed by REs and then run in an agarose gel to identify the different lengths of the fragments. In 
this way, it is possible to identify the base pair present in a region of the genome in both alleles 
without sequencing and is a commonly used method for identification of SNPs in mtDNA and in the 
Y chromosome for ancestry studies

[2]

Common 
PCR

Insertion 
and deletion 
detection

Genetic deletions or insertions can be identified without sequencing by PCR. The methodology 
consists in using primers flanking the interest region or gene, amplifying it and identifying longer or 
shorter fragments with a gel electrophoresis. Some diseases, such as cystic fibrosis, are characterized 
by allele insertions or deletions; thus, this methodology may work as a diagnose tool

[13]

Multiplex 
PCR

Deletion 
variants 
detection

As mentioned previously, the dystrophin gene can present deletions in several exons, leading to the 
development of Duchenne’s muscular dystrophy. 98% of these deletions can be identified by 
multiplex PCR, working as a diagnose tool

[13]

Methylation-
specific PCR 
(MSP)

Detection of 
methylated 
regions of 
the genome

PCR can be used to detect methylated regions in the genome by first treating the samples with 
bisulfite, which changes unmethylated cytosine to uracil, and methylated cytosines are left 
unmodified. Then, primers with guanine are designed to pair with methylated DNA, and primers with 
adenine are designed to pair with unmethylated DNA. A quantitative PCR can be done for detection 
of the amount of methylated and unmethylated DNA

[14]

qRT-PCR Gene 
expression 
analysis

A quantitative retrotranscription PCR can be performed to analyze cellular mRNAs with altered 
expression in certain contexts compared to controls. This is particularly interesting in some diseases 
that show aberrant gene expression in specific genes, such as cancer

[7]

[10]. In contrast with PCR, LAMP does not require alter-
nating temperatures; instead, all the procedure is carried 
out at the same temperature, and hence, it does not require 
a thermal cycler [10]. LAMP is performed at ~60 °C, and 
it uses several primers, from two to four pairs for each end 
of the region to be amplified, which highly raises the spec-
ificity and lowers the false-positive discovery [10]. 
Furthermore, LAMP uses a polymerase with strand-dis-
placement activity [10]. The LAMP procedure initiates 
with a primer targeting the middle region of the 3′ end and 
amplifying the whole fragment from that starting point 
[10]. Subsequently, the polymerase begins amplification 

starting on a primer targeting the outermost region of the 
3′ end, and displacing the previously amplified sequence 
[10]. Since the innermost and the outermost regions of 
each end are complementary, the newly synthesized strand 
forms a double stem-loop structure, and this allows new 
primers targeting the middle region of the 3′ end to anneal 
to it and amplify again starting from that point [10]. This 
form of amplification enables multiple copies of an inter-
est fragment to be generated rapidly, as well as with a 
really high specificity [11]. As well as PCR, LAMP can be 
done qualitatively and with reverse transcription, which is 
useful for the detection of viral infections [11] (Table 2.1).

M. I. Coronado-Mares et al.
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�Principles of Karyotyping

The human genome is arranged in 23 pairs of chromosomes, 
22 of them are somatic and 1 of them is the sexual pair [5]. 
The somatic chromosomes are identical between males and 
females and are numbered from 1 to 22, the longest and the 
shortest pairs, respectively [5]. Conversely, the sex chromo-
somes differ between sexes, females possess two X chromo-
somes, and males possess an X chromosome and a Y 
chromosome [5]. The visualization of the arrangement of the 
chromosomes during mitosis is called a karyotype [12]. A 
normal karyotype consists of 46 chromosomes and a pair of 
X chromosomes (46XX) or an X and a Y chromosome 
(46XY) for females and males, respectively [12]. Karyotypes 
enable the identification of several chromosomal abnormali-
ties, such as aneuploidies, and also deletions, insertions, 
duplications, and chromosome rearrangements [2, 15].

Initial karyotyping methodologies, introduced in the 
1970s, were based on DNA staining for the identification of 
abnormalities in the chromosomes [15]. These DNA staining 
methodologies produced light and dark bands patterns in the 
chromosomes [2]. One of the most common techniques was 
the G-banding, in which the chromosomes were treated with 
trypsin and subsequently stained with a chemical dye named 
Giemsa [2]. Darker regions observed with G-banding corre-
spond to condensed chromatin, which has low gene density 
and transcriptional activity. Consequently, G bands have 
lower CG content [2]. The staining can be observed and pho-
tographed under a light microscope, and then the karyotype is 
constructed by arranging the homologous chromosomes [5].

�FISH

Fluorescence in situ hybridization (FISH) is a methodology 
first described in 1969, which is based on the labeling of a 
DNA or RNA probe with a fluorescent dye and its hybridiza-
tion with a sample DNA or RNA [16]. Using a fluorescence 
microscope, the DNA or RNA hybrids can be observed, and 
the identification of the position of the probe in the sample is 
allowed [12]. FISH permitted the location determination of 
several genes by using entire chromosomes as samples dur-
ing the Human Genome Project, and it is still useful for 
organisms whose genome annotation or sequence is not 
available. For the case of humans, FISH is more commonly 
used in clinical contexts [17, 18].

FISH can be used for the detection of chromosomal 
abnormalities, such as deletions, insertions, and rearrange-
ments [18]. Furthermore, in comparison with banding tech-
niques used for karyotyping, FISH has a higher sensitivity 
and may detect abnormalities more easily than these [18]. 
For example, FISH can be used to diagnose acute febrile 

neutrophilic dermatosis, in which the genes BCR and ABL 
are fused by using two different color dyes in the probes for 
each gene (e.g., red and green) [16]. The expected FISH 
results should be two separate spots of each color, but the 
fusion can be detected if there is a yellow signal [16]. 
Additionally, a specific type of FISH named Multiplex FISH 
can be used for the labeling of every human chromosome in 
metaphase [18]. The probes with different colors are designed 
for DNA regions in a single chromosome, and after hybrid-
ization, only one color should be visible for each chromo-
some [18]. Translocation events can be detected if 
chromosomes show color stripes [18].

�Microarray

Microarrays can also be used for the detection of chromo-
somal abnormalities, in a variant known as chromosomal 
microarray analysis (CMA) [19]. CMAs can detect copy 
number variants (CNVs) of interest genes or loci, with a 
much higher resolution than banding methodologies [19]. 
Furthermore, it can use more probes simultaneously than 
FISH [20]. There are two existing classes of microarrays 
useful for chromosomal anomalies detection: comparative 
genomic hybridization arrays (aCGH) and SNP arrays [20]. 
aCGH requires DNA isolation from reference and test sam-
ples, differential labeling, and their hybridization at interest 
regions [21]. This approach is useful for the identification of 
CNVs [21]. If the test sample is labeled in red and the refer-
ence sample in green, yellow arrays should be expected for 
all the interest regions [21]. When the array scanning reveals 
regions with more or less abundance of test DNA (wells in 
red and green, respectively), it is possible to spot copy num-
ber gains or copy number losses [21]. Conversely, SNP 
arrays only use test DNA hybridization, and the array results 
are compared to reference DNA [22]. The probes placed in 
the array are only around 20 base pairs long, enabling the 
characterization of small regions of DNA across the whole 
genome [22].

�Immunoassays

Disease diagnosis is crucial for correct patient treatment. 
The development of proteomic technologies has increased 
the identification of protein biomarkers involved in the 
immunogenicity of diseases in body fluids, such as blood, 
urine, saliva, cerebrospinal fluid, and different tissues (biop-
sies), to predict the course of the disease, information on cel-
lular signaling pathways, monitoring treatment response, 
adverse effects and the identification of new diagnostic, ther-
apeutic methods, and new targets[23].
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Immunoassay methodologies are the most commonly 
used tools in protein research, using the properties of anti-
bodies to bind different protein domains and to mark them. 
ELISA and Western blotting are the oldest methods that 
changed, adapted, and modernized over time, improving 
their sensitivity and leading to the appearance of new meth-
ods and equipment for biomarker investigation and analysis, 
with the goal of studying more analytes in a single sample, in 
a shorter time, and with increased accuracy. The reproduc-
ibility and reliability of the results are also a goal pursued by 
manufacturers [24].

�Enzyme-Linked Immunosorbent Assay (ELISA)

The gold standard of immunoassays, ELISA, is a very sensi-
tive diagnostic method used to detect and quantify a large 
variety of protein biomarkers like antibodies, antigens, pro-
teins, peptides, glycoproteins, and hormones. This technique 
was developed simultaneously in 1971 by Engvall and 
Perlmann and Van Weemen and Schuurs, and nowadays it 
continues to be used as a routine analytic tool. The detection 
of these products is based on the antigen-antibody interac-
tions, and detection is usually done with the help of an 
enzyme and a substrate. An antibody is a type of protein pro-
duced by an individual’s immune system and has a specific 
region that binds to a protein from a foreign source called 
“antigen.” This binding allows identifying a specific disease 
biomarker with small amounts of sample [25, 26]

In the ELISAs methodology, the primary and specific 
antibody only binds to the protein of interest, and the second-
ary detection antibody is a second enzyme-conjugated anti-
body that binds the primary antibody and, through the 
addition of a substrate, generates an observable color that 
indicates the presence of antigen. The most common sub-
strates available for ELISA are horseradish peroxidase 
(HRP), whose substrate is hydrogen peroxide and results in a 
blue color change, and the alkaline phosphatase (ALP) that 
uses P-nitrophenyl-phosphate (pNPP) producing a yellow 
color of nitrophenol after room temperature incubation. The 
new ELISA methodologies have developed fluorogenic, 
quantitative PCR, nonenzymatic and electro-
chemiluminescent reporters for signal generation [24].

Currently, four major types of ELISA have played a 
prominent role in the quantitative and qualitative identifica-
tion of analytes:

�Direct ELISA (Antigen-Coated Plate, Screening 
Antibody)

The simplest type of ELISA, the primary detection antibody, 
binds directly to the protein of interest. This method begins 

with the coating of antigen to the ELISA plates. The first 
binding step involves adding antigen to the plates and incu-
bate overnight at 4 °C; the next step is to wash the plates of 
any potential unbound antibody and block any unbound sites 
on the ELISA plate using agents like BSA, ovalbumin, apro-
tinin, or other animal proteins to prevent the binding of any 
nonspecific antibodies and avoid a false-positive result. After 
adding the buffer, the plate is rewashed to remove any 
unbound antibody and followed by the addition of a sub-
strate/chromophore (AP or HFP), which results in a color 
change by the hydrolysis of phosphate groups from the sub-
strate AP or by the oxidation of substrates HRP. The advan-
tages of direct ELISA include eliminating secondary 
antibody cross-reactivity and quantifying a specific molecule 
with high sensitivity from a wide variety of samples; it is 
faster than indirect ELISA, but the signal is less amplified 
compared to the other types of ELISA, and it has a high cost 
of reaction [27].

�Indirect ELISA (Antigen-Coated Plate; 
Screening Antigen/Antibody)

Indirect ELISA detection is a two-step ELISA which involves 
a primary antibody and a labeled secondary antibody. The 
steps of the indirect ELISA are identical to the direct ELISA, 
except for an additional wash step and the types of antibody 
added after the buffer is removed. It requires two antibodies: 
a primary detection antibody that sticks to the protein of 
interest and a secondary enzyme-linked antibody comple-
mentary to the primary antibody. The primary antibody is 
added first, followed by a washing step, and then the enzyme-
conjugated secondary antibody is added and incubated. After 
this, the steps are a washing step, the addition of substrate, 
and detection of a color change. This method has a higher 
sensitivity when compared to the direct ELISA. It is also less 
expensive and more flexible due to the many possible pri-
mary antibodies that can be used. The only major disadvan-
tage is the risk of cross-reactivity between the secondary 
detection antibodies and the occurrence of nonspecific sig-
nals [28].

�Sandwich ELISA (Antibody-Coated Plate; 
Screening Antigen)

This method appeared to avoid false-positive or false-
negative results. Unlike direct and indirect ELISA, the sand-
wich ELISA begins with a capture antibody coated onto the 
wells of the plate. The term “sandwich” refers to the way the 
antigens are “sandwiched” between two layers (capture and 
detection antibodies). After adding the capture antibody to 
the plates, the plates are then covered and incubated over-
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night at 4 °C. Once the coating step is complete, the plates 
are washed with PBS, then buffered/blocked with BSA, and 
finally, the plate is washed with PBS before the addition of 
the antigen. The plate is rewashed, and the primary detection 
antibody is added, followed by a buffer wash. The secondary 
enzyme-conjugated antibody is added and incubated, and the 
plate is rewashed. Finally, the substrate is added to produce a 
color change.

The sandwich ELISA has the highest sensitivity and spec-
ificity among all the ELISA types. It is suitable for complex 
samples and has more flexibility to quantify antigens between 
the two layers of antibodies. Its major disadvantages are the 
time, the use of expensive “matched pair” (divalent/multiva-
lent antigen), and secondary antibodies [24].

�Competitive ELISA (Screening Antibody)

This method is based on a competitive binding process 
between the original antigen in the sample and the add-in 
antigen;, the more antigen in the sample, the less labeled 
antigen is retained in the well and the weaker the signal. It 
utilizes two specific antibodies, an enzyme-conjugated anti-
body and another antibody present in the test sample (if it is 
positive). Combining the two antibodies into the wells will 
allow for a competition for binding to antigen. The presence 
of a color change means that the test is negative because the 
enzyme-conjugated antibody binds the antigens, rather than 
the antibodies of the test sample. The absence of color 
indicates a positive test and the presence of antibodies in the 
sample. The method has a low specificity and cannot be used 
in dilute samples. However, the benefits are that sample puri-
fication is less needed, it can measure a large range of anti-
gens in a given sample, and it can be used for small antigens 
and has low variability [24].

�New Methods

In order to improve the ELISA method, in terms of using 
smaller quantities of samples, shortening the reaction time, 
avoiding sophisticated reading equipment, and reducing 
costs side, new methods have been developed:

The enzyme-linked immunospot assay (ELISpot assay) is 
widely used to evaluate a cellular immune response against 
viral antigens in allergies, autoimmunity, and vaccine devel-
opment. The method has a relatively wide quantitative range 
and offers unique sensitivity by revealing cytokine secretion 
at the single-cell level. This technique, performed on PVDF 
membranes, has advantages like specificity, sensitivity, and a 
wide range of detection [24, 29].

The conventional single-target assays ELISA-Western 
blot are suitable for biomarker validation but could be expen-

sive, time-consuming, and sample limiting. While most of 
the disease conditions may arise when only one single mol-
ecule is altered, more often it is the consequence of the inter-
action between several molecules within the inflammation 
milieu; therefore, studying the diseases necessitates a com-
prehensive perspective [24].

The most recent is the ELISA platform with ELISA on a 
chip (ELISA-LOC), which allows the use of only 5 μl of 
sample on a miniaturized 96-well plate combined with a 
CCD camera. The system includes three main functional ele-
ments: (1) a reagent loading fluidics module, (2) an assay 
and detection wells plate, and (3) a reagent removal fluidics 
module. The ELISA-LOC system combines several biosens-
ing elements: (1) carbon nanotube (CNT) technology to 
enhance primary antibody immobilization, (2) sensitive ECL 
(electrochemiluminescence) detection, and (3) a charge-
coupled device (CCD) detector for measuring the light signal 
generated by ECL. This method has greater sensitivities than 
the corresponding standard manual plate-based ELISAs, and 
that single samples can be assayed in a minor fraction of the 
time [30].

�Clinical Significance

ELISA testing is an important part of medical care and scien-
tific research. ELISAs can be used in many settings, including 
rapid antibody screening tests for human immunodeficiency 
virus (HIV), detection of other viruses, bacteria, fungi, auto-
immune diseases, cancer biomarkers, food allergens, blood 
typing, the presence of the pregnancy hormone hCG, labora-
tory and clinical research, forensic toxicology, and many 
other diagnostic settings. Some types of ELISAs and their 
uses are included in the Fig. 2.2 [24, 27].

�Western Blot

The immunoblot or Western blot (WB) is one of the analyti-
cal and quantitative techniques mostly used in research labo-
ratories throughout the world for identifying specific proteins 
in many biological samples, liquid or tissue/cellular homog-
enates [24]. The WB technique was invented by Harry 
Towbin and co-workers in 1979. The name “Western blot” 
was given 2 years later by Neal Burnette, inspired in the ear-
lier name of other blotting methods [28].

In this procedure, crude lysates are first separated based 
on their molecular weight by SDS-PAGE, transferred to a 
solid membrane surface (usually nitrocellulose or PVDF) 
and detected with the help of protein-specific antibodies. The 
membrane is probed by a specific primary antibody, it binds 
the specific epitope of the protein, and it is labeled by the 
addition of a secondary antibody recognizing the primary 
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antibody conjugated with a detection reagent (fluorophore, 
enzyme, and radioisotope). The visualization is done colori-
metric, by chemiluminescence, on X-ray film, or directly in 
the membrane with the aid of an imaging system [24, 31].

This technique brings concrete and useful information 
about the amount of protein loaded to independently quan-
tify housekeeping proteins (typically actin, GAPDH, or 
tubulin). If the target protein present in the sample is altered 
qualitatively or quantitatively, the band thickness is changed 
compared to a control being downregulated or overex-
pressed. The WB results can guide us for a comparison of a 

target protein expression important in a medical diagnosis or 
experiment or a genetic investigation in case of partial dele-
tion or duplication in the protein gene [32].

Since WB is a multistep protocol, variations and errors 
can occur that reduce the reliability and reproducibility of 
this technique. Also, obtaining maximal sensitivity for the 
detection of a specific protein remains a fundamental issue, 
leading to advances in antibody specificity, chemilumines-
cent formulations, properties of fluorescent molecules and 
imaging techniques that provide gains in sensitivity, dynamic 
range, and ease of use. Here we discuss different aspects of 
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methods based on the Western blotting technique and its con-
temporary application in epidemiology.

�Multiplex Western Blot (MWB)

In the last few years, it has become a necessity to analyze 
multiple target proteins at the same time, in order to compare 
the expression of proteins involved in a specific pathology. 
The MWB method revolutionized medical diagnosis and 
opened new perspectives in biomedical research. The analy-
sis of several proteins involved in different pathologies 
reduces the cost and time for analysis.

This method was standardized by Anderson and Davison 
to study different muscle proteins involved in muscular dys-
trophies. It allows simultaneous screening of multiple pro-
teins in a biphasic polyacrylamide gel system, which enables 
the corresponding blot to be probed simultaneously with a 
cocktail of monoclonal antibodies. The gel is optimized so 
that large proteins of more than 200 Kd can be analyzed in 
the top part, while smaller proteins under 150 Kd are sepa-
rated in the lower phase. This basic system allowed estab-
lishing a biomarker profile for each patient, providing 
valuable information for diagnosis as well as for phenotype-
genotype correlations [33].

�Capillary Electrophoresis (CE) and Capillary 
Western Blotting (CWB)

This technique was introduced by Nielsen in 1991, with the 
concept of capillary electrophoresis immunoassay (CEIA), 
which uses the capillary electrophoresis (CE) technique to 
visualize the immunocomplex products that form between 
an antigen and its corresponding antibody. In this method, a 
mixture of the antigen and antibody is injected into the end 
of a capillary to quickly separate according to the size of the 
immune complex from the free antigen (or free antibody), 
offering a better resolution. This method decreases the time 
for analysis and requires a smaller volume for samples com-
pared with classical western blotting. Since it is coupling 
with laser-induced fluorescence (LIF), it enables the highly 
sensitive detection of fluorescent molecules in a volume as 
small as nanoliters of the sample, and it can be used to quan-
tify membrane proteins in extracellular vesicles [34].

�Microfluidic Western Blotting

This technology reduces even more the amount of the sample 
required for WB and also the length of the capillaries from 
centimeters to microns using microfluidic channels. He and 
Herr developed this automated immunoblotting method, in 

which proteins are separated by microchip electrophoresis 
and can be captured on membranes. This process reduces the 
separation and reduces time to a few minute glass microflu-
idic chip to in situ immunoblotting, allowing a rapid protein 
separation, directed electrophoretic transfer, and high-
efficiency identification of proteins of interest using 
antibody-functionalized membranes [24]. Since this system 
requires only 0.01–0.5 μg of protein, it has been applied to 
the detection of specific proteins like GAPDH and β-tubulin 
from A431 cell lysates [24, 35].

�Single-Cell Western Blotting

As the most recent proposal technology, single-cell Western 
blotting is a combination of microfluidics and conventional 
Western blotting to achieve protein expression analysis at a 
single-cell resolution. Due to separation by electrophoresis 
before the antibody probing, it overcomes the issue of cross-
reactions. In single-cell Western blotting, a layer of poly-
acrylamide gel is coated on a glass and patterned with 
large-array microwells. Single cells are dropped on the thou-
sands of microwells and lysed in situ, and then proteins are 
separated by gel electrophoresis, immobilized via photoiniti-
ated blotting, and detected by fluorescent labeled antibodies. 
Although this technique represents a new technology for 
single-cell protein expression analysis, it has some limita-
tions, since due to cell loss, thousands of cells are required 
and have limited detection sensitivity because proteins are 
easily lost during processing procedures such as cell lysing, 
protein immobilization, and repeated antibody 
stripping[36].

�Dot Blot

In this method, the samples are applied in small dots directly 
on the membrane and then spotted through circular tem-
plates. After membrane drying, the antibodies are applied. 
The visualization of a target protein is made as in WB, che-
miluminescent, or colorimetric [24]. It is used to test the 
specificity and antibody concentration used for WB or to 
evaluate the presence of a target protein in the sample before 
WB.  This methodology has been used for detecting 
Sarcocystis spp.’s antibodies in cattle [37] and analyzing 
conformational changes in herpes simplex virus entry glyco-
proteins [38].

�Far-Western Blotting

It is used to detect a protein-protein interaction in  vitro. 
Instead of the primary antibody for detecting the protein of 
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interest, this method uses a nanoantibody protein that binds 
to the protein of interest. Far-Western blotting detects pro-
teins on the basis of the presence or the absence of binding 
sites for the protein probe. This method is important in char-
acterization of protein interactions in biological processes 
such as signal transductions, receptor-ligand interactions, or 
screen libraries for interacting proteins [39].

�Clinical Significance

Western blotting is frequently used for the confirmatory 
medical diagnosis of infectious diseases such as Lyme dis-
ease, HIV infection, bovine spongiform encephalopathy 
(BSE), hepatitis C infection, syphilis, inflammatory muscle 
conditions such as myositis, and certain autoimmune disor-
ders (e.g., paraneoplastic disease). For Lyme disease and 
HIV infection, these are the only two microbial diseases for 
which an initial borderline or positive ELISA must be fol-
lowed by a confirmatory Western blot [24, 31].

�Flow Cytometry

Flow cytometry is a multiparametric method which analyzes 
quantitatively characteristics of individual cells within a het-
erogeneous population, such as size and granularity simulta-
neously as the cell flows in suspension. The working principle 
of this tool relies on the information produced on the light 
scattering of the cells, which is derived from dyes or antibod-
ies coupled to fluorochromes targeting molecules located on 
the surface or inside the cells [40], as depicted in Fig. 2.3.

�Clinical Applications

Flow cytometry may be a cell-specific identification and 
quantitative technique with a wide spectrum of applications. 
Particularly, the main clinical applications of this technique 
are the disease diagnosis (HIV-infected patients) and moni-
toring disease progression (cancer, leukemia, and lym-
phoma). As well, flow cytometry is useful analyzing cell 
proliferation, phagocytosis, and apoptosis. In the following 
subsections we dissect the most outstanding examples of the 
flow cytometry clinical applications.

�Phenotypic Characterization of Blood Cells

Immunophenotyping or phenotypic characterization of cells 
consists of both the identification and quantification of a par-
ticular cell group within the mixed population, i.e., blood 
immune cells (T cells, B cells, NK cells, mast cells, baso-

phils, eosinophils, neutrophils, monocytes, among others). 
This characterization is possible due to the expression of sur-
face proteins specific for each cell type that can be detected 
by antibodies [44], for instance, human PBMC. Subsequently, 
PBMC were labeled with the chosen combination of cell sur-
face antibodies as well as anti-CD3, anti-CD4, and anti-
CD14. This cell surface staining section and the labeled cells 
were analyzed by flow cytometry resulting in the separation 
of each of the populations [45–47]. Beside the characteriza-
tion of cell population, the current cytometers can split cell 
populations (cell sorting) for further analyses [48, 49].

�Intracellular Antigen Expression

Transcription factors and other intracellular molecules can 
be stained with fluorochrome-conjugated antibodies after 
fixation and permeabilization of the cells. Flow cytometry, in 
contrast to classical microscopy techniques, can provide 
accurate quantification and high-throughput analysis. 
Expression levels of a protein in >100,000 individual cells 
can be measured and visualized within a few minutes. 
However, this internal staining tends to have higher back-
ground, whereas optimal fixation and permeabilization 
methods vary (such as 0.01% formaldehyde, 1–4% PFA or 
acetone followed by 0.1–1% NP-40 or ice-cold methanol, 
etc.) [50].

�Characterization of Antigen-Specific 
Responses

Antigen-specific responses are measured by antigen cell 
stimulation, and with the following characterization of cel-
lular processes such as proliferation, activation, plasticity, or 
antigen recognition through major histocompatibility com-
plex (MHC) multimers. In vaccination studies, where the 
identification of multiple cytokines and surface marker are 
needed to study in parallel, the most used technique is the 
intracellular cytokine staining or cytokine flow cytometry, 
since this is a combined technique useful for recognizing the 
antigen-specific T-cell stimulation in complex cellular sam-
ples using more than five fluorescent markers [51].

Another method to measure the antigen-specific responses 
is using the labeled MHC multimers. Usually, MHC multim-
ers are in a monomeric conformation (MHC-I or MHC-II); 
these are grouped in multimeric arrangements using a bioti-
nylated fluorescent streptavidin backbone. Then the MHC 
multimers are loaded with the antigen leading to the antigen 
recognition by the T cells, which indicates the amount of 
response to a particular application; this method is com-
monly employed in immunogen studies or in cancer diagno-
sis and prognosis [52].
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�Cell Cycle Analysis

In cell proliferation, cells may be stained with fluorescent dyes 
such as succinimidyl carboxyfluorescein ester (CFSE). This dye 
binds covalently to both intracellular and cell surface proteins 
and is incorporated equally to the next cell generation (daughter 
cells) during cell proliferation, with each division CFSE fluores-
cence decreases twofold leading to identifying up to seven to 
eight cell divisions accurately [53–55]. Another useful marker 

to characterize cell proliferation is the thymidine analogs BrdU 
(5-bromo-21-deoxyuridine) or EdU (ethynyl deoxyuridine), 
which is similar to the 3H thymidine proliferation assay. The 
BrdU is a thymidine analog that is incorporated to the newly 
synthesized DNA and in the subsequent daughter cells; the 
detection is mediated by the anti-BrdU antibody [53, 56]. 
Moreover, the use of BrdU is a compatible method is that can be 
be used simultaneously with other fluorescent markers, and 
also, both propidium halide (PI) and Hoechst 33342 may be 
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Fig. 2.3  Flow cytometry working principle. Visible light scatter is 
measured in two different directions, the forward direction (Forward 
Scatter or FSC) which can indicate the relative size of the cell and at 90° 
(Side Scatter or SSC) which indicates the internal complexity or granu-
larity of the cell [41]. Light scatter is independent of fluorescence. 
Samples are prepared for fluorescence measurement through transfec-
tion and expression of fluorescent proteins (e.g., Green Fluorescent 
Protein, GFP), staining with fluorescent dyes (e.g., Propidium Iodide, 

DNA) or staining with fluorescently conjugated antibodies (e.g., CD3 
FITC) [40]. The first flow cytometer was developed to detect the size of 
the cells; nowadays, these devices are powerful tools capable of detect-
ing up to 14 parameters simultaneously related such as size, shape, 
complexity, and, of course, any component or cellular function that can 
be marked with a fluorochrome [42, 43], giving detailed information of 
cell population in a short period
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used to quantify DNA content in each phase of the cell cycle, 
since the cells that are in S phase are going to be brighter than 
cells in G1 phase, and cells in G2 phase will be just about two-
fold brighter than the cells in G1[57].

�Apoptosis

During the early stage of apoptosis, phosphatidylserine (PS) 
residues that unremarkably exist only within the plasma mem-
brane relocate to the outer surface making such molecules 
available for PS binding proteins such as annexin V [42]. 
Since apoptosis is a cascade of events that occurs at different 
stages, its detection in flow cytometry utilizes multiple targets 
that bring a complete overview of events related to this process 
[57]. For instance, additionally to the annexin V labeling, the 
endonuclease digestion of polymer is identified by TUNEL 
(TdT dUTP nick end labeling) assay; the caspase activation is 
targeted by specific fluorescent-coupled antibodies; mitochon-
drial uncoupling is targeted with dyes that depend on the mito-
chondrial membrane potential (JC-1, Rhodamine 123 or 
Mitotrackers), and chromatin granule condensation within the 
nucleus detected with Hoescht 33,342 [58, 59].

As seen above flow cytometry is a powerful tool that may 
be employed to characterize a wide range of cellular and bio-
chemical processes simultaneously. Hence, in the following 
section we enlist the most outstanding clinical applications 
in which flow cytometry has demonstrated to be a success:

•	 Leukemia and lymphomas diagnosis, since leukocyte sur-
face antigens may be identified in neoplastic cells 
[60–62]

•	 Detection of minimal residual disease (MDR) in leukemia 
via CD13, CD19, and CD34 identification in blood and 
bone marrow [63, 64]

•	 Hematopoietic progenitor cells count in bone marrow 
transplantation by CD34 identification [65]

•	 Histocompatibility cross-matching via IgG measurement 
after incubating donor’s lymphocytes with the recipient’s 
serum [66, 67]

•	 Posttransplantation monitoring via CD3+ T cell counting 
[68]

•	 Immunodeficiencies diagnosis via CD4- and CD8-
positive cells counting within the blood and other liquid 
biopsies [69]

•	 HIV infection diagnosis via CD4-positive lymphocytes 
count performed in blood samples [69, 70]

•	 Detection of fetal red blood cells and maternal F cells 
detection and quantitation the feto-maternal hemorrhage 
[71]

•	 Contaminating leukocytes measurement in blood for 
transfusion [72]

•	 DNA content to detect malignancies [73–76]

•	 Auto−/allo-immune diseases diagnosis via IgG and 
immune serum globulin detection using antiplatelet anti-
bodies and IgG for antineutrophil antibodies [77–79]

As mentioned above, flow cytometry impacts positively 
in daily clinical practice, since this tool is widely used in 
both hematology and immunology; this leads to suggest that 
flow cytometry is a powerful tool for diagnosing, classifying, 
and determining the prognosis of assorted diseases. However, 
to improve the methods and expand the applications of flow 
cytometry, it is vital to strengthen the collaboration between 
physicians and biomedical researchers.

�Proteomics

The proteome refers to the set of proteins present in a cell or 
organism at any given time. The DNA contains the needed 
information for the creation of proteins [80]. However, the 
relationship between the genome and the proteome is com-
plex, since one single gene may encode for more than a sin-
gle protein by means of alternative splicing [80]. Furthermore, 
posttranslational modifications and protein cleavage or mod-
ifications give rise to the origin of several protein isoforms 
for each single gene [80]. One astonishing example is the 
DSCAM1 gene in Drosophila melanogaster (fruit fly), which 
has over 30,000 identified isoforms [12]. The human proto-
cadherins, encoded in the Protocadherin locus, are essential 
in neural development, and its locus is thought to have a 
similar number of isoforms as the DSCAM1 gene [12]. Thus, 
studying the proteome provides additional information that 
otherwise we wouldn’t notice only studying the genome or 
the transcriptome [80].

As a general rule, the genome is the same in every cell of 
an individual [2]. The proteome, however, varies between 
cell types and conditions, allowing the classification of cells 
according to their protein expression patterns and the identi-
fication of changes in certain contexts, such as diseases [2]. 
As mentioned before, the phenotype can be better explained 
by the proteome than by the genome or the transcriptome 
due to differences in expression levels and to protein modifi-
cations [81]. Furthermore, the proteome is more stable and 
more easily assessed than the metabolome [81]. Thus, pro-
teomics studies are a powerful tool preferentially used in 
studying disease, development, aging, among others [81].

�Studying the Proteome

Usually, proteomics studies involve mass spectrometry anal-
ysis, which requires previous protein purification from tissue 
or cell samples [81, 82]. Two-dimensional gel electrophore-
sis, liquid chromatography, and capillary electrophoresis are 
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the most commonly used techniques for this required step 
[81]. Mass spectrometry subjects proteins to a magnetic and 
an electric field and calculates a ratio known as m/z, which 
refers to the mass-charge ratio [83]. Finally, the masses of 
the molecules are plotted as peaks in the mass spectrum. The 
output of the mass spectrometry is queried against protein 
databases for the identification and quantification of each 
specific peptide [83]. Mass spectrometry has the enormous 
advantage that it is also able to detect modifications in the 
proteins because these change the behavior of the molecules 
when exposed to magnetic and electric fields [12].

Protein characterization by mass spectrometry can be 
coupled with protein-protein interactions and protein 
structure analysis [84]. Protein-protein interaction analysis 
reveals proteins that associate with others, and it provides 
information about its functions, since proteins that interact 
usually are implicated in similar or interrelated pathways. In 
accordance to dynamic and context-dependent protein 
expression, protein-protein interactions adjust to environ-
mental conditions [3]. Therefore, understanding interaction 
networks  — the interactome  — in contexts of interest, 
including diseases, offers a higher level of pathway under-
standing and effective therapies discovery [85]. Some of the 
methodologies used for protein-protein interaction assays 
are yeast two-hybrid (Y2H), bimolecular fluorescence com-
plementation (BiFC),, and fluorescence resonance energy 
transfer (FRET) [85].

On the other hand, understanding protein structure pro-
vides valuable information about protein functions [4]. 
Proteins acquire their functionality by folding in three-
dimensional structures, allowing the formation of channels, 
binding sites, active sites, among others [86]. However, most 
peptides are able to fold into millions of different structures, 
and when misfolding occurs, multiple diseases may arise, by, 
for example, the formation of toxic aggregates [86]. Cells 
have a stress response named the unfolded protein response 
(UPR), which prevents the production of misfolded proteins. 
However, this response may be altered in diseases, aging, or 
some viral infections [86]. For this reason, the analysis of 
misfolded proteins in diseases such as Alzheimer’s disease 
has revealed important molecular hallmarks [86]. 
Tridimensional structure identification can be done by X-ray 
diffraction, which is the preferred methodology, combined 
with others such as nuclear magnetic resonance (NMR) 
spectroscopy [84]. For a complete review of proteomic, 
please refer to Chap. 6 in this book.

�Concluding Remarks

Routine clinical molecular tools demand rigorous, simple, 
and most importantly reproducibility procedures that help to 
characterize accurately biomarkers not only for disease diag-

nosis but also monitoring the patient’s response to clinical 
interventions. Such characterization may be efficient and 
performed with the minimal invasion for the patient. 
However, reaching such a level of success will be only pos-
sible if physicians and biomedical researchers collaborate. 
Hence, with this chapter we aim to encourage such collabo-
ration, since here we bring a brief description of both the 
most molecular tools employed in clinical screening and the 
working principle of each one, leading to identify the poten-
tial use of such molecular tools in unexplored medicine 
fields.
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�Introduction

Since the sequencing of the complete human genome was 
possible, biological and medical sciences have used new 
and revolutionary technologies to perform accurate and 
comprehensive analysis about the function of genes, their 
products, and their interactions. High-throughput (HT) 
“-omics” technologies enable to generate large-scale bio-
logical data and are used for different types of analysis 
including genomics (DNA level), transcriptomics (RNA 
level), proteomics (protein level), and other related fields 
such as epigenomics, metagenomics, metabolomics, inter-
actomics, and microbiome.

Genome HT technologies have evolved from low-
throughput Sanger sequencing to complex next-generation 
sequencing (NGS) and are used to sequence multiple DNA 
or RNA molecules in a more cost-effective way [1].

Although sequencing-library methods and chemistries 
vary in each selected platform (such as GS FLX by 454 Life 
Sciences/Roche diagnostics, Genome analyzer, HiSeq, 
MiSeq, NextSeq by Illumina, SOLID by Applied Biosystems, 
Ion Torrent by Life technologies) [2], the basic principle of 
NGS technologies relies on the in vitro amplification of the 
input DNA and in the detection of DNA sequences during 
the synthesis of the complementary DNA strand in a massive 
manner [2]. For library construction, the template DNA is 
fragmented into short and double-stranded molecules that 
will be ligated with synthetic DNA sequences (adapters) in 
both ends. This mixture of adapters and DNA fragments is 
known as library, which is then denatured and immobilized 
on a solid surface (e.g., bead, flow cell). Library fragments 
are in situ amplified (by Bridge PCR, emulsion PCR, or in 

situ polonies) to generate a DNA cluster array [3]. Each clus-
ter consists of thousands of copies of the same DNA frag-
ment. DNA clusters will now be massive parallel sequenced 
by using a DNA polymerase or DNA ligase and following a 
stepwise reaction series of three steps: (1) nucleotide addi-
tion, (2) detection of the incorporated nucleotide on each 
fragment, and (3) washing of the fluorescent labels [2]. The 
incorporation of each new nucleotide is recorded as a fluo-
rescent or chemiluminescent optical signal by a charge-
coupled device (CCD camera). The construction of each 
DNA fragment sequence is performed by using the sequen-
tial images of each nucleotide addition step. Each sequence 
fragment is then assembled into a larger sequence until the 
whole genome or every RNA transcript could be fully 
sequenced [4]. Finally, the generated data is bioinformati-
cally analyzed and interpreted for each scientific interest. 
The general workflow of NGS protocols is schematized in 
Fig. 3.1.

Within the most commonly used NGS technologies are 
the whole-exome sequencing (WES) and the whole-genome 
sequencing (WGS), which provide information on variant 
frequencies in different populations and allow the identifica-
tion of single-nucleotide variants (SNVs) and mutations of 
many genetic disorders [5]; RNA sequencing (RNA-seq), 
which is used to study differentially expressed genes in spe-
cific conditions in order to understand phenotypic variation 
[6]; chromatin immunoprecipitation sequencing (Chip-seq) 
and methylation sequencing (Methyl-seq), which are helpful 
in the identification of epigenetic marks to know how the 
genes are globally regulated [7]; and mass spectrometry 
(MS), which is the key technology used to quantize thou-
sands of proteins and metabolites in a single sample, but it 
also serves to detect interactions between nucleic acids 
(DNA/RNA) and proteins [8]. Table  3.1 shows the basic 
principle of these NGS technologies and the advantages and 
disadvantages of their use in this new era of genomic 
knowledge.

Undoubtedly, clinical epidemiology is a particular area in 
which HT technologies are having such transformative appli-
cations. This science focuses on the understanding of the eti-
ology, distribution, and genetic and nongenetic risk factors 
of infectious and chronic diseases thus helping in the public 
health management [9]. In this sense, epidemiological stud-
ies are incorporating genomic tools on infection control pro-
grams in the detection, treatment efficacy, and recognition of 
infection persistence, the identification of rare SNPs at the 
individual and at the population levels, the estimation of dis-
ease heritability, the study of environmental risk factors, and 
the identification of specific biomarkers for the diagnostics, 
progress, and risk prediction [9–11] (see Table 3.1). In this 
chapter, we will review how new genomic tools are assisting 
scientists and epidemiologists in improving public health 
practices. To this end, we will give specific examples about 
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Fig. 3.1  General workflow of next-generation sequencing protocols. (Created with BioRender)
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Table 3.1  Basic principle of NGS technologies and the advantages and disadvantages of their use in clinical epidemiology

Technology Molecule Test principle Advantages Disadvantages Epidemiological uses
Genomic detection methods
WGS DNA Sequencing of the 

entire genomic material
Identification of novel SNVs or 
SNPs
Recognition of specific 
pathogenic or treatment resistant 
strains
Propagation tracking and 
evolution of outbreaks in real 
time
Identification of novel diagnostic 
test

Requires high 
specialized equipment 
and personnel
High cost
Specific bioinformatic 
analysis

Identification of SNPs 
associated with alcoholic 
disease [12]
Identification of novel 
mutations associated with 
antibiotic resistance of H. 
pylori [13]
Identification of metastasis-
specific signatures of genes in 
colorectal cancer [14]

WES DNA Using of probes to 
enrich only specific 
genomic regions, 
usually exons

Increases the sequencing 
deepness and coverage of 
specific genomic
Analysis of only coding regions 
allows the correlation of SNPs 
with gene function.
Increases the number of 
sequenced samples
Easier analysis due to less 
sequencing data

Loss of information 
about noncoding 
regions
Does not allow the 
identification of novel 
SNPs or SNVs
Requires high 
specialized equipment 
and personnel

Identification of SNVs that 
alter the innate immune 
response in inflammatory 
diseases [15].
Discovery of novel SNPs that 
represent risk for rheumatoid 
arthritis development [16]
Analysis of novel mutations in 
several cancer samples [17]

MLST DNA Sequencing of internal 
fragments of multiple 
housekeeping genes

Pathogenic bacteria genotyping 
and differentiation between 
strains
Characterization of pathogenic 
genes and resistant-associated 
alleles
Sequencing of more locus with 
higher coverage and deep

Needs the isolation and 
culture of pathogenic 
bacteria
Requires the use of 
specialized equipment, 
and sanger sequencer

MLST has been combined with 
NGS to classify H. pylori in 
seven different strain subtypes 
[18]

Transcriptomic detection methods
RNA-seq RNA Sequencing of all the 

transcripts in a sample. 
The RNA from a 
sample must be 
retrotranscribed into 
cDNA molecules and 
amplified by PCR, 
before its sequencing 
in a NGS platform

Analysis of differential expressed 
genes between conditions
Identification of novel transcripts 
and splicing isoforms
Identification of noncoding RNA 
molecules
RNA-seq metagenomics allows 
the identification of mRNAs 
expressed by pathogens and host

Some genomic features 
could not be identified, 
since not all the genome 
is expressed
Require the use of 
specialized equipment 
and personnel

Metagenomic and 
metatranscriptomic analysis 
were used to genotyping 
SARS-CoV-2 virus [19]
Study of the H. pylori response 
to antibiotics [20]
Identification of novel 
biomarkers for diagnosis in 
cancer [21]
Identification of new drug 
targets in cancer [22]

scRNA-seq RNA Sequencing of the 
entire transcriptome at 
the single cell level. 
The cells of a tissue or 
culture are isolated by 
flow cytometry or 
microfluidics 
technologies

Transcriptome analysis of the 
cellular heterogeneity of a 
population
Identification of low represented 
cellular populations in a tissue
Gives information about the 
components of a complex cell 
mixture, with proportions and 
high sequencing deepness

Difficulties with sample 
preparation
Tissues must be 
processed in fresh
Difficulties for the 
identification of low 
represented cellular 
populations
High cost and requires 
specialized equipment 
and personnel trained

Treatment response of the 
multicellular ecosystem in lung 
cancer [23]
Fibroblasts heterogeneity in 
synovial tissue from 
rheumatoid arthritis patients 
[24]
Peripheral immune cell 
landscape of COVID-19 
patients [25]
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the application of HT technologies in the identification of 
novel and rare SNPs of different diseases, in guiding viral 
infection control during the COVID-19 pandemic situation 
and in the prevention, diagnosis, and treatment of 
Helicobacter pylori bacterial infection and other chronic 
pathologies such as cancer and rheumatoid arthritis.

�NGS in the Study of Relevant SNVs and SNPs 
for Epidemiological Surveillance

Genomic variation is a naturally occurring phenomenon in 
all organismal populations, which is evidenced by differ-
ences in the DNA sequence among individuals of the same 
species. These differences in DNA sequences can be changes 
in a single nucleotide, such as single-nucleotide variations 
(SNVs) or single-nucleotide polymorphisms (SNPs) [28], 
but can also compromise several nucleotides (ranging from 
Kb to Mb), which could be (1) changes in tandem repeats, 
(2) insertions and deletions of several nucleotides (indels), 
(3) copy number variations (CNVs) which are additions or 
deletions that change the copy number of large sequences 
(even complete genes), and (4) chromosomal rearrange-
ments such as inversions, translocations, or deletions. All 

these variations could have important outputs in gene and 
regulatory sequence [29]. In this section, we will focus on 
the use of NGS to study important SNPs and SNVs for epi-
demiological surveillance, for example, as prognostic/risk 
factors for the development of specific diseases in an indi-
vidual or population and as markers to differentiate between 
individuals and populations.

SNPs are single-nucleotide changes in a given region of 
reference genomes and can include insertions, deletions, and 
substitutions that generate new alleles. They have a frequency 
of at least 1% of the population, being common SNPs those 
with minor allele frequencies higher than 5% [30]. The SNPs 
are the most common type of genetic variation, occurring at a 
rate of one SNP every DNA kb. The 1000 human genome 
project found that a typical human genome differs from the 
reference assembly in 4.1 to 5.0 million sites; importantly, 
more of the 99.9% of these changes correspond to SNPs and 
short indels. Also, a typical human genome contains between 
2100 and 2500 structural variants (including tandem repeats 
variations, large deletions, CNVs, inversions, and transposon 
insertions) which overall affect approximately 20 million 
bases of sequence [31]. A big proportion of the newly 
described SNPs in this project has minor allele frequencies 
below 1% of the population, which categorized them as SNVs 

Table 3.1  (continued)

Technology Molecule Test principle Advantages Disadvantages Epidemiological uses
Epigenomic detection methods
Methyl-
DNAseq

DNA Genome-wide 
sequencing to identify 
methylated cytosines in 
the human genome. 
This technology relies 
in bisulfite reduction of 
methyl-5-cytosine to 
uracil, which during 
sequencing it is read as 
thymidine. The 
changes in methylated 
cytosines can be 
addressed by its 
comparison with a 
genome reference

Assessment of epigenetic 
anomalous modifications that can 
highly correlate with specific 
diseases

Methyl-seq is usually 
restricted to research 
laboratories, due to its 
technical difficulties 
and high cost

DNA methylation analysis of 
18 genes in urine DNA allows 
the prognosis and risk 
stratification of patients with 
non-muscle invasive bladder 
cancer [26]

ChIP-Seq DNA It is used to study the 
interactions between a 
specific protein and the 
DNA. In ChIP-seq 
experiments, the target 
protein is 
immunoprecipitated 
using a specific 
antibody. After 
immunoprecipitation, 
the isolated genomic 
material is sequenced 
with NGS platforms

Allows the identification of all 
the DNA-binding regions for a 
specific protein in the genome
Profiling of transcription factors 
and modified histones in the 
entire genome

ChIP-seq is technically 
difficult to perform and 
expensive. This 
characteristic restricts 
its use mainly for 
research laboratories

Epigenetic landscape of 
fibroblast-like synoviocytes 
from rheumatoid arthritis 
patients [27]

WGS whole-genome sequencing, WES whole-exome sequencing, MLST multi-locus sequencing typing, CM clinical metagenomics, RNA-seq 
RNA sequencing, scRNA-seq single-cell RNA sequencing
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instead of SNPs. Since SNPs correspond to the major source 
of variation between human genomes, they are believed to be 
responsible of phenotypic differences. The diagnostic and 
prognostic potential of SNPs comes from studies where all 
the SNPs of an individual genome are used to make correla-
tions with a specific phenotypic trait, and these studies are 
called genome-wide association studies (GWAS) and allow 
the statistical selection of a group of SNPs that together can 
explain a specific phenotype [32]. For example, the analysis 
of WGS sequencing datasets and GWAS study of a group of 
SNPs allowed the identification of 13 SNPs highly associated 
with alcoholic disease [12]. The authors suggest that the use 
of specific drugs like magnesium valproate which targets one 
of the polymorphic proteins could serve in alcoholism treat-
ment. Another study performed a meta-analysis of two previ-
ous GWAS studies finding that in European populations, a big 
number of SNPs are associated with increased weight (3290) 
and body mass index (941) affecting 610 and 138 genes, 
respectively [33]. Also, the eye color, which is a very complex 
phenotypic trait, is the result of polymorphisms in 16 differ-
ent genes, and SNPs in HERC2 and OCA2 are the most highly 
associated with this phenotype [34]. In these examples, the 
identification of the SNPs in each genome is usually made by 
WGS, WES, or both, which makes the implementation of 
GWAS analysis expensive as routine diagnostic and prognos-
tic tests. This is mainly because of the high deep sequencing 
needed to identify SNPs (75x in WGS and 140  in WES). 
However, if the idea is not to identify novel SNPs, there are 
cheaper alternatives to NGS approaches like SNP microar-
rays. Microarrays have been used to identify SNPs associated 
with blood pressure homeostasis and hypertension focusing 
on only 148 alleles. In total, 874 SNPs have been associated 
with hypertension, with a minor allele frequency of 11%, 
being highly specific of each sampled population. 
Interestingly, half of the associated SNPs caused changes in 
the protein generating a high protein diversity [35]. Next, we 
will address some examples regarding the use of NGS and 
GWAS analysis to identify SNPs of epidemiological 
relevance.

Diabetes is one of the most important diseases of our days. 
Several efforts have been made to identify genomic variants 
associated with diabetes onset and progression. The regula-
tory subunit of the cyclin-dependent kinase 5 (CDKAL1) 
regulates insulin secretion and has been associated with dia-
betes development. A GWAS study identified a specific SNP 
(rs7756992) associated with CDKAL1 variants in diabetes. 
rs7756992 is associated with high-fat diets and the risk of 
developing diabetes in female populations [36]. Also, NGS 
and GWAS analysis have been used for the prognosis of dia-
betic retinopathy. A study found 76 SNPs previously associ-
ated with diabetes that function as risk factors for diabetic 
retinopathy, from which 55 SNPs explained a 2.5-fold 
increase in developing retinopathy [37]. NGS dataset meta-

analysis has been used to identify miRNA SNPs. miR-146a 
rs2910164 is associated with increased diabetes risk in the 
Latino population, while miR-27a rs895819 and miR-124 
rs531564 SNPs are associated with a reduced risk in the 
Asian population and overall population, respectively [38]. 
This study is interesting because the relevance of miRNAs 
gene variations with diabetic risk is controversial, but since 
miRNAs can be analyzed in blood samples, its genotyping 
could be an alternative to easily assess diabetogenic risks.

Myocardial infarction is another public health problem 
that can be studied by SNPs analysis. Genomic variance and 
SNPs can predict the risk of an individual to suffer myocar-
dial infarction and also serve as prognostic factors for dis-
ease progression. A study conducted using a big cohort of 
patients with early-onset myocardial infarction and controls 
found that 9 SNPs can help to significantly predict the risk to 
suffer myocardial infarction in the future [39]. Another 
GWAS study conducted in an Italian Mediterranean popula-
tion with myocardial infarction and controls found 4 SNPs 
located in chromosome 9p21 that were associated with myo-
cardial infarction risk. Interestingly, in this study, these four 
SNPs were strongly associated with patients with a familial 
history of myocardial infarction [40].

SNPs analysis and GWAS studies have also been used to 
determine genomic variations for different cancer risks and 
prognoses. For colorectal cancer, 30 SNPs can serve as risk 
assessment factors; interestingly, some of these SNPs are 
also negatively associated with progression measures such as 
disease-free survival and overall survival [41]. Similar stud-
ies have been conducted in breast cancer patients, where 
genetic factors account for 60% of the variation in breast 
density, and different SNPs have been correlated with high 
breast density and risk of developing breast cancer. Also, 
some of these SNPs can be used to predict the evolution of 
the disease and to take clinical decisions [42]. Finally, GWAS 
analysis has been used to generate novel statistical tools for 
the risk assessment of 11 different cancers. The genetic risk 
score (GRS) is a recent statistical tool to measure the cumu-
lative effect of all risk-associated SNPs. GRS tool has been 
used in the risk prediction of bladder, breast, colorectal, gli-
oma, lung, melanoma, ovarian, pancreatic, prostate, renal, 
and thyroid cancer with promising results [43]. These studies 
exemplify the possibility of using NGS and GWAS analysis 
in patients in order to have a global perspective of the 
genomic risk factors that can predispose for specific diseases 
in the future and take prophylactic measures to avoid the 
onset of these diseases.

The use of NGS and GWAS studies to address risk and 
prognostic factors has also been used in the epidemiological 
analysis of infectious diseases. In China, WGS has been used 
for genotyping Mycobacterium tuberculosis strains isolated 
from patients in urban and rural areas. Using WGS, the 
authors identified relevant SNPs that allowed a very precise 
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tracking and clustering of the isolated strains thus inferring 
with great confidence the transmission dynamics from rural 
to urban areas and their posterior local spreading [44]. In M. 
tuberculosis, some SNPs are associated with multidrug-
resistant phenotypes, and 86 SNPs are responsible for multi-
drug resistance in Chinese strains. The sequencing of these 
strains has allowed the identification of genomic variations 
for the design of novel antibiotic molecules that target these 
specific genotypes [45]. GWAS analysis has been used for 
the prognosis of tuberculosis infection, based on the pres-
ence of different SNPs in IL-1β, TNF-α, and IL-6 which 
affect the host immunological response to the bacteria [46]. 
Also, the FDA has developed a novel epidemiological sur-
veillance tool for Escherichia coli, which consists of a spe-
cific microarray (FDA-ECID) with designed probes targeting 
several genomic characteristics of E. coli including genome-
wide SNPs information. This novel microarray was applied 
to strains from food, environmental and clinical samples, 
outperforming other analytical methods in strain identifica-
tion, virulence assessment, and phylogenetic reconstruction 
of each strain. FDA-ECID allows a more precise and rapid 
analysis of pathogens with a higher quantity of information 
regarding risks for public health [47]. In viral infections, the 
study of the complete genome and identification of SNPs is 
also relevant for the prediction of virulence and reconstruc-
tion of infection dynamics by phylogenetic analysis. In the 
recent outbreak of the SARS-CoV-2 virus, it has been 
observed that the viral genome shows a tendency to mutate 
fast, showing different SNPs that correlate with pathogenic 
traits and can be responsible for the observed pharmacologi-
cal treatment inefficiency [48].

The use of SNPs for epidemiological studies is a powerful 
tool for the assessment of relevant variables such as risk, dis-
ease progression, prognosis, and in the case of infectious dis-
ease the relation between the host and the pathogen, and the 
phylogenetic evolution of a specific strain. NGSs are impor-
tant for the identification of novel SNPs in future genotypifi-
cations needed for the clinical management of several 
diseases.

�Implication of NGS Technologies 
on the Control of SARS-CoV-2 Pandemic

After the outbreak of severe acute respiratory syndrome coro-
navirus (SARS-CoV) in 2002 and Middle East respiratory 
syndrome coronavirus (MERS-CoV) in 2012, on December of 
2019, the World Health Organization (WHO) announced 
about cases of pneumonia of unknown etiology detected in 
China in the city of Wuhan, Hubei Province [49]. From 
December 31, 2019, to January 3, 2020, 44 patients were 
reported to the WHO, without an identified causative agent 
[49]. On January 7, a new type of coronavirus (CoV) was 

identified, and on February 11, the WHO named it as a coro-
navirus disease (COVID-19); at the same time that the 
International Virus Classification Commission recognized it 
as severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) [50–52]. Until March 12 of 2021, a total of 119,218,587 
and 2,642,673 confirmed cases and deaths, respectively, had 
been reported worldwide due to COVID-19 [49].

As an urgent investigation, NGS was used to ensemble 
the whole-genome sequence of SARS-CoV-2 from bron-
choalveolar lavage fluid and culture isolates of 9 Wuhan 
patients. The results showed that SARS-CoV-2 genome is 
29.8 kb and shares 88% identity with SARS-like coronavi-
ruses, 79% with SARS-CoV, and about 50% with MERS-
CoV [19]. Subsequently, phylogenetic analyses on 160 
genomes from human samples indicated the existence of 3 
SARS-CoV-2 variants (A, B, and C) which differ by few 
amino acids [53]. Mutation analysis in genome sequences of 
95 samples acquired at different times and locations found 
116 mutations as indicatives of viral genetic diversity that 
might guide to greater severity and spread of the SARS-
CoV-2 infection [54]. The sequencing of a large number of 
SARS-CoV-2 strains have generated knowledge about the 
pathogenesis, the vaccine development, and the antiviral 
drugs resistance [55].

Clinically, the diagnosis of COVID-19 infection is diffi-
cult because it can be confused with other viral infections 
such as influenza [56]. There are currently numerous com-
mercial SARS-CoV-2 detection kits available that identify 
(a) specific viral gene regions through nucleic acid amplifi-
cation technique [RT-PCR] and isothermal nucleic acid 
amplification, (b) antibodies produced by the immune sys-
tem in response to the viral infection (serology/immunoglob-
ulin M (IgM)/immunoglobulin G (IgG) tests), and (c) antigen 
testing by lateral flow assays.

The most common symptoms of COVID-19 are fever, dry 
cough, and tiredness. The less common symptoms include 
aches and pains, nasal congestion, headache, conjunctivitis, 
sore throat, diarrhea, loss of taste or smell, skin rash, and 
discoloration of fingers and toes. These symptoms are gener-
ally mild and begin gradually, while some infected people 
present only mild symptoms [57].

In the face of the imminent pandemic, several studies per-
formed scRNA-seq to reveal the cellular and molecular 
pathogenic mechanisms of SARS-CoV-2 [58]. For example, 
a reconfiguration of the peripheral immune cells landscape 
was discovered including an interferon-stimulated gene sig-
nature, HLA class II downregulation, and a neutrophil popu-
lation related to plasmablasts in those COVID-19 patients 
with acute respiratory failure [25]. The transcriptional pro-
files of immune cells showed an intensive expansion of cyto-
toxic effector T cells (CD8+ effector GNLY (granulysin), 
NKT CD160, and CD4+ effector-GNLY) in COVID-19 
patients with moderate and severe response. Moreover, 
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B-cell activity is strongly activated in severe patients, and 
unique B-cell receptor variable (V), joining (J), or diversity 
(D) gene segment (BCR-VDJ) rearrangements are observed 
in these patients [59]. scRNA-seq has also revealed that the 
acute respiratory dysfunction that occurs in severe COVID-19 
patients is associated with the mucin secretion from club 
cells which are stimulated by high levels of IL-1b and TNF-α 
production [60]. By combining scRNA-seq, mass cytometry, 
and scATAC-seq, it was found that the COVID-19 vulnera-
bility of the aged people is associated with an upregulation of 
the genes associated with SARS-CoV-2 susceptibility in cer-
tain cell subtypes (effector T cells, NK cells, age-associated 
B cells, inflammatory monocytes, and age-associated den-
dritic cells) [61].

COVID-19 transmission can occur by close contact with 
an infected person through respiratory droplets, or through 
contact with contaminated objects and surfaces [62, 63]. 
Evidence has shown that expulsion of the virus is highest in 
the upper respiratory tract within 3 days prior to the onset of 
symptoms, indicating that a person can transmit the disease 

1–3 days before it presents clinical manifestations [64]; the 
incubation period of the virus has been described between 5 
and 6 days and could be extended up to 14 days [65].

scRNA-seq studies also served to validate that the SARS-
CoV-2 entry factors (ACE2 and TMPRSS2) are highly 
expressed in the nasal epithelial cells but are lowly expressed 
in the conjunctival epithelium, suggesting that viral infection 
occurs mainly via the respiratory mucosa but not via the ocu-
lar surface [66–68].

From the perspective of public health, it is essential to 
have plans supported by rigorous epidemiological informa-
tion, which promote adequate decision-making. The above 
could be possible with the sufficient knowledge about SARS-
CoV-2 infection. In this sense, NGS technologies facilitate 
the knowledge about the virus biology, the transmission 
mechanisms, the human response during infection, and the 
origins and diversification of the pathogen. These have 
allowed the fast implementation of diagnostic methods, the 
development of the vaccine, and the better clinical manage-
ment of the more complicated patients (Fig. 3.2).

WGS
WES

ATAC-seq

DNA methylation
seq

ChlP-seq miRNA-seq

scRNA-seq

RNA-seq

Degenerative
diseases
*Genetic and risk factors
*Regulation of immune

*Diagnostic biomarkers
*Treatment response

Cancer

NGS

*Accurate Diagnosis
*Mutational signatures
*Clinicopathological

*Subclasification
*Risk stratification
*Individualized therapy

Bacterial
infections

*Antibiotics resistance
*New therapeutic

*Microenvironment

*Virulence factors
*Gastric cancer
biomarkers

Viral
infections

*Genome sequence
*Origin tracing
*Variants identification
*Molecular pathogenic
mechanisms
*Transmission and viral
entry factors

outcomesresponse molecules

interaction

Fig. 3.2  Impact of NGS technologies in different fields of clinical epidemiology. (Created with BioRender)
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�The Influence of Genomic Tools 
on the Management of Helicobacter pylori 
Infection

Helicobacter pylori (H. pylori) is extremely prevalent in 
humans showing different clinical settings going from 
asymptomatic state to even develop gastric adenocarcinoma 
[69] or mucosa associated tissue lymphoma (MALT) [70]. It 
is estimated that half of the world population is infected with 
this bacterium, and it is the main risk factor for stomach can-
cer [71]. Even the less serious clinical presentations such as 
gastric and/or duodenal ulcers have a great impact on people 
economics. The expense of diagnostics test including endos-
copy and biopsies and the relatively complicated and costly 
therapeutic scheme treatments lead patients to stop medica-
tion (bringing along antibiotic resistance, reinfection, 
relapse) or to have a chronic infection with associated com-
plications in which case there is a high risk of developing any 
form of cancer.

The aforementioned circumstances have prompted all 
kinds of concerns for the better understanding of the bacte-
rium biological behavior about the mechanisms involved in 
antibiotic resistance, the biofilm formation for survival, the 
genotypes associated with cancer development, and the inter-
actions with other gastrointestinal (GI) flora. Thanks to the 
fact that the complete genome sequence of H. pylori was pub-
lished since 1997; it has been easier to implement the use of 
genomic technologies for its study [72]. Recently, a group 
from Switzerland did a quite extensive review about the cur-
rent studies in H. pylori that have used NGSs, highlighting 
that these tools will play a crucial role in the development of 
new diagnostic and treatment strategies to tackle antibiotic 
resistance which is the most alarming trait of the disease [73].

The first-line strategy traditionally used to treat H. pylori 
comprises triple therapy using any proton-pump inhibitor 
(PPI), amoxicillin, and clarithromycin. Second line of treat-
ment includes use of quadruple scheme using bismuth subci-
trate, PPI, metronidazole, and tetracycline [74]. Resistance to 
clarithromycin is quite a major problem when H. pylori eradi-
cation is intended. Until 2014, it was known that this resis-
tance was mainly mediated by three point mutations (A2142G, 
A2143G, and A2142C) in the domain V of the 23S rRNA 
gene [75]. By using WGS, Binh et al. founded novel muta-
tions in the genes infB and rpl22 in two in vitro H. pylori-
resistant strains. Mutations in the 23S rRNA gene in 
combination with infB or rpl22 resulted in higher minimum 
inhibitory concentration (MIC) values, showing that all muta-
tions have synergic effect on the resistant phenotype of the 
bacterial strains [13]. Another WGS analysis in 106 metroni-
dazole- and levofloxacin-resistant strains isolated from dys-
peptic patients demonstrated that different point mutations 
(I837V, A2412T/V, Q2079K, and K2068R) in the rpoB gene 
are associated with resistance to the classic but also to the 
alternative antibiotics rifaximin and garenoxacin [76].

Until now, the usual technique to assess H. pylori behav-
ior toward any given antibiotic is to culture and make pheno-
typic drug susceptibility testing (DST). Until date, the 
standard method for evaluating H. pylori behavior toward a 
given antibiotic has been to culture the bacteria and do phe-
notypic drug susceptibility tests (DST). However, DST is not 
performed before the first-line treatment because it involves 
intrusive methods (endoscopy) to gather patient samples, 
which takes time and money. Some authors are proposing the 
use of WGS as an alternative, less invasive, low-cost, and 
accurate method to detect multiple antibiotic resistances at 
early stages of the diagnostic. A comparative study of DST 
and WGS results in 140 clinical samples showed that resis-
tance to levofloxacin, metronidazole, rifampicin, tetracy-
cline, and clarithromycin was phenotypic and genomic. It 
was concluded that DST highly correlates with certain SNPs 
identified in the 23S rRNA (A2146C, A2146G), gyrA (N87K, 
D91G, D91Y), and rpoB (H54ON, L525P) genes for clar-
ithromycin, levofloxacin, and rifampicin. Tetracycline sus-
ceptibility is related with the absence of double or triple 
substitutions (A926T, A926G, A928C) in the 16s rRNA 
gene, while metronidazole resistance does not correlate with 
the SNPs identified by WGS [77]. Furthermore, using WGS 
data of common mutations in the 23S rRNA gene, the CRHP 
webtool has been validated to predict clarithromycin resis-
tance in H. pylori strains. This bioinformatic tool can be used 
in the future to quickly monitor the clinical relevance of 
novel identified mutations [78].

Transcriptomic (RNA-seq) analysis is a genomic tool 
that has been used to study how medications influence the 
H. pylori metabolism. For example, through temporal 
dynamics profiling, it has been demonstrated that treatment 
with bismuth alters the expression level of 920 genes of in 
vitro strains, most of which are related to the bacterial 
energy metabolism at the level of tricarboxylic acid cycle 
(TCA cycle), oxidative phosphorylation, and the generation 
of oxidative stress [20]. These results explain why bismuth-
containing quadruple therapy is more effective for the treat-
ment of H. pylori-resistant infections [79] and serve as basis 
for the design of new therapeutic drugs that target the cen-
tral carbon metabolism of the bacterium to improve the 
clinical management. Similar studies have used RNA-seq to 
analyze how different treatments or environmental condi-
tions could modify the expression of multiple genes thus 
affecting important clinical traits of H. pylori including 
adherence to host cells, cell shape, and treatment suscepti-
bility [80, 81].

In general, NGS technologies have helped us to better 
understand the H. pylori evolution, structure, metabolism, 
and its interaction with the surroundings. Thanks to multi-
locus sequence typing (MLST) results; we now know that 
this bacterium has coevolved with humans and that classifies 
in seven different strain subtypes [18, 82]. This knowledge is 
of medical relevance as each strain is associated with specific 
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virulence factors thus varying the treatment responses [83]. 
In this regard, genomic tools could have several applications 
on the identification of genetic differences in H. pylori iso-
lates from patients, thus guiding to a new era of individual-
ized therapy.

Other groups are using genomics to study H. pylori 
behaviors during host adaptation. This adaptation requires 
fast changes at the genomic and transcriptomic level at the 
early stages of the infection establishment [84]. WGS analy-
sis has showed that clusters of genes of the bacterium have 
evolved as an advantage to increase genetic recombination 
events; in this manner, H. pylori could promote immune eva-
sion and different strategies to colonize in a dynamic envi-
ronment [85]. In this regard, RNA-seq results suggested that 
the bacterium responds to the gastric acidity by changing the 
expression of several genes involved in protective, acid accli-
mation, and pathogenic factors (i.e., antioxidant, flagellar, 
and urease components) [86], and growing as biofilms thus 
forming microcolonies [87]. With a variation of RNA-seq 
(dRNA-seq), it was revealed that changes in the bacterial 
gene expression occur by an active riboregulation conducted 
by several small regulatory RNAs [88]. Furthermore, single-
molecule real-time sequence analyses (SMRT) have revealed 
that DNA methylation is a key epigenetic factor that contrib-
utes in the gene regulation of virulence factors including fla-
gellar components (flgE), secretion components (cagY), 
urease biosynthesis components (ureC), and the vacuolating 
cytotoxin A (vacA) [89, 90].

Finally, the most fearsome complication of H. pylori 
infection is the induction of cancer. NGS technologies are 
having a profound impact in the search of prediction factors 
for gastric adenocarcinoma and MALT lymphoma develop-
ment. For example, by sequencing the 16S rRNA gene of 
chronic gastritis and gastric carcinoma specimens, it was dis-
covered that knowing the microbiome composition could 
serve to discriminate between gastritis and cancer. This is 
because the gastric carcinoma microbiota is characterized by 
a dysbiotic microbial community with a severe decrease in 
the abundance of Helicobacter and an increase in other intes-
tinal bacteria such as non-Helicobacter Proteobacteria and 
Firmicutes [91]. The sequencing of virulence genes cagA 
and vacA accompanied with MLST analysis had helped to 
identify novel candidate loci as potential biomarkers of gas-
tric malignancies – one locus in the cagA gene to distinguish 
between gastritis and MALT lymphoma and one locus in the 
vacA to distinguish gastritis from adenocarcinoma [92].

Overall, these studies highlight that using genomic tools 
can help predict antibiotic resistance, druf efficacy, virulence 
factors, and cancer risk in bacterial infections with high 
specificity and sensitivity. In this manner, an accurate diag-
nosis could be done in an adequate timeframe, and treatment 
could be personalized according to the characteristics of the 
H. pylori strain that has infected each patient. As NGS tech-

nologies continue to develop, genomic determinations will 
be cost-efficient in comparison with the actual and conven-
tional strategies of diagnostics (Fig. 3.2).

�General Applications of NGS Technologies 
in Oncology Practices

According to the World Health Organization (WHO), cancer 
disease represents the first up to the fourth leading cause of 
death in 194 countries. Cancer incidence and mortality are 
increasing worldwide due to overpopulation, aging, and 
exposure to carcinogens (occupational or environmental risk 
factors).

In 2020, the ten most common cancers by incidence in 
both sexes and all ages are breast, lung, colorectal, prostate, 
stomach, liver, cervix uteri, esophagus, thyroid, and bladder, 
whereas the ten most common cancers by mortality are lung, 
colorectal, liver, stomach, breast, esophagus, pancreas, pros-
tate, cervix uteri, and leukemia [93].

Human lifespan has increased dramatically from 48 years, 
by the mid-50s, to almost double it at an average of 72.2 years 
nowadays. Unfortunately, this impressive increase in life 
expectancy also comes with a higher risk of developing a 
neoplastic disease. In fact, it is predicted that by the year 
2030, there will be a rate of some 22 million new cancer 
cases each year. For the patients, the society, and the econ-
omy of any country, the cost burden of neoplastic diseases 
can reach astronomical amounts. It was estimated that in 
2017, the US cancer healthcare spending was US$161.2 bil-
lion, while the European Union healthcare spending was 
€57.3 billion [94].

Neoplastic disease treatment is costly because it includes 
not only diagnosis, treatment (surgical, medical, or both), 
and follow-up, but also dealing with a variety of complica-
tions and/or side effects of radiotherapy/chemotherapy, 
such as taking other medications, hospitalizations, emer-
gency department visits, and relapse. Traditional cancer 
diagnosis and treatment costs are increasing; therefore, pre-
vention and early detection efforts will be paramount 
toward more cost-effective treatment, and potentially cost-
saving. One of the aims of future management of cancer 
disease is to try to make it better, more suitable, individual-
ized, less aggressive for the patient as a whole, and ulti-
mately less expensive, and it is here where new genomic 
technologies come into play.

In the last decades, the advance in NGS technologies has 
made feasible their use in oncology practices. There are 
countless examples about their applications on several 
aspects of clinical management [95]. Here, we will give a 
general view about how the use of different genomic tools 
has impacted the diagnosis, risk prediction, classification, 
and cancer response to treatment.
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One of the biggest impacts that genomic tools has on 
oncology practices is in the field of diagnosis. Gene panels 
are one of the most used tools for the diagnosis of heredi-
tary cancers including breast, ovarian, and colorectal can-
cers. These consist in sequencing only a discrete number 
of genes of interest, which have been already classified as 
predisposition factors. Ideally, any diagnostic gene panel 
should be able to maximize clinical sensitivity and mini-
mize analysis of inappropriate/unnecessary genes that may 
result in variants of uncertain clinical significance [96]. 
For example, diverse gene panels that classify genes in 
high, moderate, and low risk are commercially available 
for diagnosis of hereditary breast cancer (HBC). BROCA 
is a gene panel which sequence all exons, repeated introns, 
and promoter regions to detect mutations in 17 high-risk 
genes (including APC, TP53, and BRCA1 and 2), 14 mod-
erate-risk genes, and 17 low-risk genes [97]. There are also 
commercially available gene panels for ovarian and 
colorectal cancer [98]. However, it has been reported that 
a high percentage of patients remain undiagnosed after 
gene panels testing [99], highlighting that profiling of a 
restricted number of genes could not be the most adequate 
approach.

Since 2009, the Cancer Genome Project started to use 
WES and WGS to decode the mutation landscape in all can-
cer types [100]. By analyzing 10,952 exomes and 1,048 
whole genomes across 40 different human cancer types, the 
catalogue of somatic mutations (COSMIC) has made avail-
able 30 “mutational signatures” which show unique combi-
nation of mutation types associated with the development of 
any specific cancer [101, 102]. Also, the Cancer Genome 
Atlas (TCGA) uses NGSs to discover molecular aberrations 
at the genome, epigenome, transcriptome, and proteome lev-
els, thus understanding the complexity of tumors and guid-
ing the diagnostics and clinical decision-making [17, 103]. 
More recently, the Pan-Cancer Analysis of Whole Genomes 
Consortium has fully sequenced 2,658 genomes across 38 
tumor types. They have found that 705 mutations constantly 
occurred in all cancer genomes and have evidenced the 
importance of mutations in noncoding regions as drivers for 
tumor growth [104]. To integrate the genomic knowledge 
into clinical applications, there are currently translational 
research projects trying to join the DNA information with 
the clinical data of each patient. For example, the GENIE 
project (Genomics Evidence Neoplasia Information 
Exchange from the AACR) has integrated their first dataset 
providing genomic and clinical data of 18,804 sequenced 
samples from 18,324 patients at 8 different medical centers. 
From this dataset, they have been able to associate clinico-
pathologic features and outcomes of breast cancer patients 
with metastasis, by examining ERBB2 and AKT1 rare muta-
tions [105].

In addition to the accuracy and robustness of mutational 
profiling, one important cue in diagnosis is the possibility to 
use presurgical biopsies. The genotyping of 143 fine-needle 
aspiration samples of thyroid nodules with the targeted 
ThyroSeq v2 NGS panel showed that this approach has a 
90−93% sensitivity and specificity with 83% positive pre-
dictive value and 92% accuracy with 96% negative predic-
tive value for malignant and benign nodules. ThyroSeq 
profiles point mutations in 13 genes and 42 types of gene 
fusions that are frequent in thyroid tumors, and it appears to 
be an accurate tool for preoperative diagnosis [106]. 
Furthermore, a recent clinical trial that compares the diag-
nostic performance between the RNA test “Afirma genomic 
sequencing classifier” and the new DNA-RNA test 
“ThyroSeq v3 genomic classifier” showed that both tests are 
highly specific for malignancy prediction and allowed 50% 
of patients with indeterminate nodules to avoid diagnostic 
thyroidectomy [107].

NGS analysis in noninvasive liquid biopsies is often hav-
ing good results in cancer diagnosis. Liquid biopsy allows 
real-time biomolecular characterization of a tumor by ana-
lyzing human body fluids. The sequencing of a biomarker 
panel (TERT, FGFR3, PIK3CA, TP53, HRAS, KDM6A, 
RXRA) made on 211 urinary samples from primary or recur-
rent bladder cancer (BC) and 20 healthy donors showed the 
high potential of this test to detect non-muscle-invasive blad-
der cancers (NMIBC) [108]. Also, by associating the FGFR3 
mutation assay with DNA methylation analysis of 18 genes 
in urine DNA, it was demonstrated that this strategy has a 
powerful use not only in diagnosis but also in prognosis and 
in risk stratification in NMIBC patients [26]. This kind of 
molecular testing is becoming one of the preferred diagnos-
tic strategies by patients instead of repeat biopsy or diagnos-
tic surgery [109, 110] and is now being extended for the 
diagnosis of several cancer types such as early lung cancer in 
which the genotyping of circulating tumor cells (CTCs) and 
cell-free DNA (cfDNA) has already entered clinical practice 
for detection of EGFR mutations [111].

Although less frequently, RNA-seq analysis has also been 
used for diagnosis and prognosis applications. RNA-seq 
results from tumor-educated platelets have been analyzed to 
screen mRNA markers with potential to distinguish several 
cancer types (breast, colorectal, glioblastoma, hepatobiliar, 
lung, and pancreas) from healthy patients. Eighteen func-
tional genes resulted to be important for distinguishing can-
cer including ribosome-associated genes, cell surface 
proteins, and confirmed tumor-associated genes [21]. 
Similarly, the expression of 3 mRNA biomarkers (SLC2A1, 
GPRC5A, KRT17) in urinary extracellular vesicles (EV) 
resulted to have a good potential to detect early-stage BC 
[112]. A recent study of integrative transcriptomics per-
formed in TCGA data from 400 patients with BC found a 
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five-RNA signature (three protein coding: ANXA1, TPST1, 
and PSMB10; one lncRNA: DLEU1; and one miRNA: miR-
497-5p) that could predict the outcome of patients by classi-
fying them into high- or low-risk groups [113]. The clinical 
utility of gene expression signature identification is reflected 
in the broader use of test such as MammaPrint and Oncotype 
DX (breast cancer), GeneFx (lung cancer), Prolaris (prostate 
cancer), and ColoPrint (colon cancer) [114].

The possibility to use NGS in the implementation of per-
sonalized therapy based on individual genetic profiles has 
been also studied for several types of cancer. In 2015, the 
SHIVA clinical trial published the results about the efficacy 
of molecularly targeted therapy in 741 patients with any kind 
of metastatic solid tumor refractory to conventional therapy. 
They found that choosing a therapy only on the basis of 
molecular profiling but outside its clinical indications does 
not improve the progression-free survival rates with those 
obtained in patients treated with conventional therapy [115]. 
However, the assessment of this kind of directed therapy has 
been encouraged by diverse large-scale protocols. The Drug 
Rediscovery Protocol from the Netherlands Cancer Institute 
has proved the efficacy of targeted therapies in 136 patients 
who have exhausted standard treatments. They identified a 
clinical benefit rate of 63% in a group of 30 patients with 
microsatellite unstable tumors that received nivolumab. 
Among them, one patient had a complete response while 18 
patients had a partial response or stable disease [116]. These 
results point up the impact that WGS genomic approaches 
could have on the selection of better therapeutic strategies 
for small groups of patients with no treatment options.

The potential use of NGSs to identify drug targets or 
treatment response is well documented. For example, the 
presence of a mutation in the TP53 gene on chronic lympho-
cytic leukemia means that patients won’t respond to any kind 
of chemoimmunotherapy; with this knowledge, physicians 
could decide early on to choose other kind of treatment such 
as stem cell transplantation [117, 118]. A research screened 
29 cervical cancer samples with a panel of 226 genes finding 
out that 48% of the participants displayed mutations in genes 
that can be targeted with approved drugs such as crizotinib, 
ceritinib, and other tyrosine kinase inhibitors [119]. The 
WGS analysis of 420 patients with colorectal metastatic can-
cer allowed the identification of metastasis-specific signa-
tures of genes that then could be studied as novel target 
molecules. Also, the researchers found that specific muta-
tions in the FBXW7 gene could be used as a predictive bio-
marker of poor response to EGFR-targeted treatment [14].

More recently, RNA-seq has been highly useful in the 
search for molecular drug targets and clinical outcomes bio-
markers. To understand transcriptional changes that occur in 
lung cancers, 3240 RNA-seq data from 23 cell lines treated 
with several compounds were analyzed. The expression of a 
module of genes related with stress response resulted to be a 

potential drug molecule that could be targeted by using bro-
modomain and extraterminal motif (BET) inhibitors. These 
are a new class of epigenome drugs that affect transcription 
by decreasing the chromatin accessibility of gene promoters 
[22]. Bioinformatic models can be used for the selection of 
drugs in personalized therapy. By collecting datasets from 
gene expression profiles associated with chemotherapy 
responses of 2786 individual cases, a large molecular collec-
tion has been created as guide for physicians to know if cer-
tain treatment protocols will have positive or negative 
response depending on the clinical history of each patient 
[120]. Finally, with the advent of the new single-cell RNA 
sequencing (scRNA-seq), it is now possible to study the 
treatment response of the multicellular ecosystem in cancer. 
The scRNA-seq of 49 biopsies from metastatic lung cancer 
patients found an alveolar-regenerative cell signature that 
characterizes a residual disease state (RD). RD samples were 
taken during treatment and represent those regressing or sta-
ble tumors. The increased expression of the alveolar-
regenerative signature is associated with a less aggressive 
malignant state and an improved patient survival. Within the 
molecular signature associated with RD cells, WNT/β--
catenin is a therapeutically targetable pathway for preventing 
tumor relapse [23].

NGS technologies have enabled an unprecedented under-
standing about the cancer biology, which has had a profound 
impact on clinical management. Molecular screening by 
genome or RNA analysis can aid personalized patient care. 
While these technologies still have full analysis limitations, 
they have been spreading in public and private oncological 
services as accurate and accessible tools to guide physicians 
in the diagnostics and selection of the best therapy option for 
each patient (Fig. 3.2).

�Advances on the Pathogenesis 
and Treatment Knowledge of Rheumatoid 
Arthritis by Using NGS

Rheumatoid arthritis (RA) is a chronic inflammatory autoim-
mune disease affecting the joints [121, 122]. It is character-
ized by a progressive symmetric inflammation of affected 
joints resulting in cartilage destruction, bone erosion, and 
disability [123].

RA is one of the most frequent chronic inflammatory dis-
eases, with a constant prevalence in many European and 
North-American populations ranging from 0.4% to 1.3% 
[123, 124] and a highly variable annual incidence (12–1200 
per 100,000 population) depending on gender, race/ethnicity, 
and calendar year [125]. Some exceptions are the native 
American-Indian populations, in whom the highest occur-
rence of RA was recorded, with a prevalence of 5.3% noted 
for the Pima Indians and of 6.8% for the Chippewa Indians 
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[125, 126]. Epidemiological studies have not found any RA 
case in two rural populations in South Africa and Nigeria 
[127, 128].

RA affects women two to three times more often than 
men [123]. Female sex hormones may play a protective role 
in RA [124]. Male sex hormones such as testosterone are 
lower in RA men. By contrast, levels of female sex hormones 
are not different between RA cases and controls [129]. The 
onset of RA seems to be a critical factor in its clinical spec-
trum and occurs usually in the fourth or fifth decade of life, 
with a new diagnostic peak in the sixth decade [13]; a patient 
suffers elderly onset rheumatoid arthritis (EORA) when the 
disease begins at the age of ≥60 years [130]. Since the gen-
eral population is aging, beginning of RA in older people is 
more and more common.

People with RA have a significantly increased risk of 
death (54%) [131] compared with age- and sex-matched 
controls without RA from the same community, and it is 
associated with reduced life expectancy [132]. Mortality 
rates in patients with RA are 1.5- to 1.6-fold higher than in 
the general population, with similar patterns over 60 years 
[133]. The mortality rate in RA cases incidence has declined 
significantly [134]; however, patients with RA have an 
increased risk of cardiovascular disease (CVD), in a large 
international cohort of RA patients, and 30% of CVD events 
were attributable to RA characteristics [135]. Also, mortality 
is higher for respiratory, musculoskeletal, and digestive sys-
tem diseases in patients with RA [131].

Multiple factors have been associated with RA risk. 
Within genetic factors are familial associations, particularly 
the first-degree relative’s status [136]. Environmental and 
other risk factors include the presence of alleles containing 
the shared epitope (SE); female sex; exposure to tobacco 
smoke; obesity; exposition to UV light; sex hormones; drugs; 
changes in microbiome of the gut, mouth, and lung; peri-
odontitis; infections; and some dietary factors such as intake 
of omega-3 fatty acids [136, 137].

NGSs such as deep exon sequencing and GWASs (see 
SNPs and SNVs section) have been used in order to know 
which genetic variants could be risk factors for RA [138]. In 
the Caucasian population, these studies identified several 
rare variants within the protein-coding portion of genes such 
as IL2RA and IL2RB as genetic contributors for RA develop-
ment [139]. Also, by using WGS, a rare mutation in the 
PLB1 gene was identified in RA family members with domi-
nant inheritance, suggesting it as a potent risk for RA [140]. 
The WES analysis of 19 RA Japanese cases also demon-
strated that three SNPs in the BTNL2 gene confer RA risk 
independently from the RA-susceptible genes DRB1 and 
NOTCH4 [16]. Also, a recent WES study in Chinese popula-
tion found five novel and rare variants in genes that alter 
innate immunity pathways contributing to the risk of RA 
[15]. More large-scale studies are needed to know which 

genetic variants are associated with the risk of RA develop-
ment in other populations.

In RA, an autoimmune tissue destruction is present as 
synovitis which is an inflammation of the joint capsule con-
sisting of the synovial membrane, synovial fluid, and the 
respective bones [141]. Several genetic aspects (i.e., major 
histocompatibility complex (MHC) genes, especially HLA-
DRB1 locus), cellular components, soluble mediators (i.e., 
IL-1β, IFN-γ, TNF cytokines) [142], adhesion molecules and 
autoantibodies (rheumatoid factor (RF), and anti-citrullinated 
protein antibodies (ACPAs)) contribute to the development 
of inflammation and structural changes of joints and internal 
organs [27].

By analyzing the whole transcriptome of CD4 + T (HLA-
DRAB1) cells, it was found that STAT3 and Wnt signaling 
networks and several transcription factors (i.e., ZEB1, 
ZNF292) have an aberrant expression in RA patients, sug-
gesting their pathogenic potential for RA development [143]. 
More recently, the RNA-seq of 7 CD4 + T cell subtypes iso-
lated from the peripheral blood of both healthy and RA 
patients showed that several genes involved in GTPase-
associated signaling and apoptosis are overexpressed in RA 
[144]. Also, the roles of synovial fibroblasts have been stud-
ied by RNA-seq allowing the identification of new genes and 
isoforms associated with RA pathogenesis [145]. The fibro-
blast heterogeneity in RA synovial tissue was studied by 
scRNA-seq analysis. The authors described a pathogenic 
fibroblast (FAPα+THY1-) subpopulation in RA patients. 
These fibroblasts are in the lining layer of the synovial tissue 
and have an invasive and destructive phenotype, causing 
damage to cartilage and bone. These results are of relevant 
importance for the implementation of new cell-based thera-
pies intended to modulate tissue damage [24].

Research at molecular and cellular levels has clarified 
some mechanisms that regulate the innate and adaptive 
immune responses (i.e., Th1/Tc1-type immune responses) in 
RA [24, 26]. For example, a recent study using Chip-seq, 
ATAC-seq, and RNA-seq revealed the epigenetic landscape 
of fibroblast-like synoviocytes (FLS) from RA.  The genes 
with different histone modification marks and open chroma-
tin resulted to be enriched for immune pathways and the 
“Huntington’s disease signaling”. This pathway is important 
for RA development as the HIP-1 gene regulates FLS inva-
sion into matrix [146]. Also, GWAS results showed that 
immune cells of patients with rheumatic diseases have non-
coding variants located at sites with epigenetic modifications 
[147]. Within them, several miRNAs including miR-4728-5p 
resulted to have a significant contribution in the RA patho-
genesis [148]. Using metagenomic shotgun sequencing, it 
was detected that functional changes in the mucosal micro-
biota (dysbiosis) are present in RA. Dysbiosis results in an 
imbalance of the immune status and epithelial barrier func-
tion, diminishes the general gene methylation level, and 
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increases NFκB and TNF-α production, thus resulting in the 
hyperactivation of T-helper cells (Th1 and Th17) which 
secrete inflammatory cytokines that finally contribute to the 
RA hyperinflammatory state [149]. These results highlight 
the potential of genomic and integrative analysis for the 
search of new therapeutic targets.

RA diagnosis requires biomarkers that should be detected 
in blood and/or in the synovial fluid [150]. A number of bio-
markers have been discovered and clinically used in RA 
[151], including anti-keratin antibodies (AKA), anti-cyclic 
citrullinated peptide (anti-CCP) antibodies, anti-perinuclear 
factor, anti-filaggrin antibodies (AFA), anti-citrullinated 
vimentin antibodies (anti-SA), rheumatoid factor (RF), 
melanoma-associated antigen genes family (MAGE) [152], 
C-reactive protein (CRP), and erythrocyte sedimentation rate 
(ESR).

However, the clinical activity of RA is not accurately pre-
dicted by current laboratory measures. Transcriptome analy-
sis in RA is spreading as a new strategy for the searching of 
predictive biomarkers of the RA pathogenesis [153–155]. 
For example, gene expression analysis made on biopsies 
from RA patients showed that some clusters of genes served 
to classify RA in three subtypes. The first subtype expressed 
genes of the adaptive immune response (MMP1, MMP3, and 
STAT-induced genes), the second expressed genes involved 
in the extracellular matrix remodeling, and the third 
expressed genes related to fibroblast differentiation [156, 
157]. Further study of this data could serve to validate the 
potential of some genes as classification biomarkers for a 
better diagnosis and treatment selection in each RA 
presentation.

RA therapy includes minimizing joint pain and swelling, 
preventing deformity (such as ulnar deviation) and radio-
graphic damage (such as erosions), maintaining quality of 
life, and controlling extra-articular manifestations [141]. 
Currently available drugs include nonsteroidal anti-
inflammatories (NSAIDs); oral, intramuscular, or intra-
articular immunosuppressive glucocorticoids; and 
disease-modifying antirheumatic drugs DMARDs (biologic 
or nonbiologic). DMARDs are the mainstay of RA therapy 
[123].

There is much interest in transcriptome analysis as a strat-
egy for predicting the effect of RA treatment. Although these 
kinds of analyses have generally focused on the study of 
whole peripheral blood mononuclear cells (PBMC), studies 
in particular cell subsets (such as CD4 + T cells or neutro-
phils) are now emerging, thus increasing our understanding 
about the disease response. The transcriptome profiling of 
PBMC from RA patients found a set of 193 genes that are 
differentially expressed between responders and nonre-
sponders RA patients treated with rituximab (RTX). The set 
of upregulated genes are involved in the NFκB inflammatory 
pathway, while the downregulated ones are related to the 

IFN pathway; these genes could be used as responsiveness 
markers to identify patients that will not respond to the RTX 
treatment [158]. The RNA-seq of neutrophils isolated from 
RA patients also demonstrated that the upregulation of the 
IFN-response genes is highly correlated with a good response 
to TNF inhibitor (TNFi) therapy [159].

Undoubtedly, while NGS technologies are better and 
more implemented on basic research, scientist and physi-
cians will have a better understanding of the complexity of 
RA disease. This is crucial for the implementation of new 
diagnostic and therapeutic strategies in the turn toward the 
individualized management (Fig. 3.2).

�Concluding Remarks

The advent of genomic technologies is having a significant 
impact on clinical epidemiology. SNPs are powerful tools for 
assessing epidemiological variables such as risk, disease 
progression, and prognosis. Also, different genomic 
approaches are now being used in the clinical management 
of a variety of pathologies, including cancer, where advanced 
technologies are spreading as an accurate tool guiding physi-
cians in screening, diagnosis, and therapy selection. 
Moreover, in less-explored areas, genomic tools have poten-
tial to transform the current epidemiological methods into 
strategies with high specificity and sensitivity on the predic-
tion for antibiotic resistance, drug efficacy, and virulence 
factors depending on each population.
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AHRR	 Aryl-hydrocarbon receptor repressor
ChIP-chip	 Chromatin immunoprecipitation coupled to 

microarrays
ChIP-seq	 Chromatin immunoprecipitation coupled to 
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CpG	 Cytosine nucleotide followed by a guanine
DNA	 Deoxyribonucleic acid
EWAS	 Epigenome-wide association study
FDA	 Food and Drugs Administration
PCR	 Polymerase chain reaction
PIWI	 P-element-induced wimpy testis
RNA	 Ribonucleic acid

�Introduction

Epigenetics is defined in several ways and is not a unique 
definition. Armstrong defines epigenetics as “the study of 
changes in gene function that are mitotically and/or meioti-
cally heritable and that do not entail a change in the sequence 
of DNA” [1]. Meanwhile, Conrad Waddington, who coined 
the term, defines epigenetics as “the interaction of genes 
with their environment, which bring the phenotype into 
being” [2]. The National Human Genome Research Institute 
defines epigenetics as an emerging field of science that stud-
ies heritable changes caused by the activation and deactiva-
tion of genes without any change in the underlying DNA 
sequence of the organism. The word epigenetics is of Greek 
origin and means over and above (epi) the genome. The lat-

est definitions are more related to the organism-environment, 
but others see epigenetics to a more cellular level [3, 4]. 
Nanney noted that cells with the same genotype might mani-
fest different phenotypes, and differences in the expression 
of these could persist during cellular division [5]. 
Independently of the definition, all suggested that the focus 
of epigenetics is not the gene’s sequence itself, but the sur-
roundings. A higher focus in human epigenetics began after 
the completion of the human genome sequence, to the oppor-
tunity to link the environment to the genome [6], and the 
field has emerged in different areas like biological develop-
ment, public health, cell differentiation, and epigenomic 
epidemiology.

�Epigenetic Process

The epigenetic process includes DNA methylation, histone 
modification (methylation, acetylation, phosphorylation, and 
ubiquitination), and those modulated by RNA (microRNAs 
and long noncoding RNA) [7]. These epigenetic processes 
are also called epigenetic marks [8].

DNA methylation is defined as adding a methyl group to 
a cytosine; the cytosine has to be linked to continuous gua-
nine and is also known as a CpG site. The addition of the 
methyl groups is catalyzed by enzymes, known as DNA 
methyltransferases (DNMTs). The main DNMTs are 
DNMT1, DNMT3A, and DNMT3B, which catalyze the 
transfer of methyl groups from the S-adenosyl-L-methionine 
(SAM) to the 5′ position of the cytosine [8]. DNMT1 is 
essential for maintenance, and DNMT3A/DNMT3B are de 
novo methyltransferases [9, 10]. DNA methylation is recog-
nized by DNA methyl-binding proteins that interfere with 
the union of transcription factors or promoters the recruit-
ment of chromatin remodeling proteins (SWI/SNF, ISW1, 
CHD, and INO80) [11]. One of the first mechanisms identi-
fied between DNA methylation and gene expression regula-
tion is the CpG islands’ effect present in gene promoters 
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[12]. CpG islands are sequences of more than 1000 base 
pairs with an elevated guanine and cytosine content, which 
could be present in high density in gene promoters. The 
methylation of CpG sites on CpG islands associated with 
promoters could recruit proteins that repress transcription of 
the gene, suppressing the expression. Nevertheless, the rela-
tionship between DNA methylation, principally outside 
CpG islands, in the control of gene expression is still under 
study [13].

DNA sequence and histone proteins conformed to the 
basic unit of chromatin, known as a nucleosome. The nucleo-
some is conformed to a core of two copies of histones H2A, 
H2B, H3, and H4 [14]. The structure of chromatin controls 
gene expression by altering the compaction of DNA and, 
consequently, the accessibility of transcription factors to 
regions of the DNA controlling gene expression [15]. The 
compaction of the DNA is regulated by adding functional 
groups (acetyl, methyl, and phosphoryl) to the histone pro-
teins, principally in the tails of the histones [15]. These func-
tional groups are produced as posttranslational modifications 
created by specific enzymes acting mainly at lysine (K) and 
arginine (R) amino acids. These modifications could be pres-
ent in multiple but specific sites of the histones. The main 
effect of these modifications is to activate or repress gene 
expression depending on the environment stimulus, acting at 
genes that coded transcription factors and signaling path-
ways of the cells [16]. Histone acetylation is principally 
added in the lysine residues; at the difference, methylation 
occurs at both residues (lysine and arginine). The enzymes 
that catalyzed the addition or removal of acetyl groups are 
known as histone acetyltransferases/histone deacetylases. In 
homology, the modifications by methyl groups are catalyzed 
by histone methyltransferases/histone demethylases [17, 
18]. Even when the dynamics of the histone modifications 
are complex, some marks have been associated with gene 
expression regulation [19, 20]. For example, trimethylation 
of the 27-lysine residue (H3K27me3) and trimethylation of 
the nine-lysine residue of the histone 3 (H3K9me3) are 
repressive marks. The same histone, trimethylation of 4 and 
36 residues of histone 3 (H3K4me3 and H3K36me3), is an 
activation mark that leads to a permissive state (i.e., allows 
binding of transcription factors) of chromatin.

The other epigenetic process is based on non-protein-
coding RNAs. Non-protein-coding RNAs (also called non-
coding RNAs) are functional transcripts that are not translated 
to proteins but could impact gene expression regulation [21]. 
Noncoding RNAs are highly diverse, but one characteristic 
that could classify the former is the base pair size. Mainly, 
we could find two different noncoding RNAs: small 
(<200 bp) including microRNAs silencing RNAs and PIWI-
interacting) and long noncoding (>200 bp) [22]. MicroRNAs 
are nucleotide guides (21–24 base pairs) that regulate the 
expression of messenger RNAs (mainly at 3′ untranslated 

regions) that contain complementary sequences for the par-
ticular microRNA [23]. In humans, the pairing of the mes-
senger RNA (protein-coding) and microRNAs reduced the 
expression of proteins by activating diverse mechanisms for 
messenger RNA degradation [24, 25]. Meanwhile, the effect 
of long noncoding RNAs is more diverse; in general, these 
RNAs could interact with DNA, RNA, and proteins, where 
the interaction modulates chromatin structure, and also RNA 
splicing, stability, and translation [26].

�Epigenetic Technology Analysis

The evaluation of the epigenetic process, in the laboratory 
setting, has three main essential points to be considered: (i) 
biological sample (tissues or liquid biopsies, blood, chemi-
cal fixed tissues) where the evaluation is going to be per-
formed, (ii) the epigenetic process to be analyzed (DNA 
methylation, RNA-based mechanisms), (iii) the extension of 
the genes evaluated, a limited number of genes (candidates 
or pathways) or genome-wide analysis (all the genome eval-
uated, mainly refer as epigenome-wide analysis). Concerning 
the biological sample, the epigenetic marks are stable in flu-
ids, like plasma, serum, or urine [27–29]. These kinds of 
marks had an advantage compared to other sources of molec-
ular marks (like metabolites). Also, some authors report that 
the stability of these epigenetic marks is seen on tissue prep-
arations (frozen, dried blood spots, or formalin-fixed 
paraffin-embedded tissues) [30, 31]. A disadvantage of the 
epigenetic marks related to the biological sample is the tis-
sue-specific and temporal changes of these marks [32–34]. 
The epigenetic marks depend on cell differentiation, making 
these marks fluctuate according to the development and tis-
sue microenvironment [35–37]. The tissue specific epigene-
tic marks outpoint the need to be evaluated in the tissue 
under interest or perform the analysis in proxy biological 
samples (i.e., tissues with high correlation between these 
marks). The use of these proxy tissues is exemplified in 
brain-related diseases, where having a biological brain sam-
ple is complicated, and blood samples are extensively used 
[38–40]. Another point to consider is the extension of genes 
to be evaluated, some or all the genome [41–43]. This exten-
sion of analysis will be crucial for the epigenetic technology 
to be applied during the study.

The most studied subfield of epigenetics is DNA methyla-
tion. The improvement of DNA methylation analysis became 
possible with the development of bisulfite transformation of 
DNA [44]. In bisulfite transformation, DNA is treated with 
bisulfite, which converts cytosine to uracil, while methylated 
cytosine is not converted [45]. Next, this bisulfite-treated 
DNA is amplified by PCR, whereby complementarity, non-
methylated cytosines are recognized as thymine, and methyl-
ated cytosines remain as cytosines. Once amplified, the DNA 
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could be evaluated by sequencing (whole-genome bisulfite 
sequencing) or by array-based analysis [46, 47]. Depending 
on the regions and number of samples targeted to be ana-
lyzed, the amount of data generated increases and now is the 
point to be processed by bioinformatic techniques to obtain 
meaningful biological information [48–50].

Histone modification is evaluated by a technique known 
as chromatin immunoprecipitation (ChIP) [51–53]. The 
basic steps in this technique are: (i) fixation of proteins [2], 
sonication [3], immunoprecipitation, and [4] analysis of the 
DNA. The fixation is mainly performed by cross-linking pro-
teins with formaldehyde; once this cross-linking is per-
formed, the proteins that interact with DNA act as a shield 
for the next step. In the next step, all the DNAs are sonicated 
to reduce the size of the fragments (200–1000 base pairs). 
Once sonicated, the DNA fragments are exposed to an anti-
body to precipitate all the complex (protein plus DNA) using 
a specific antibody. The antibody could target all the proteins 
that interact with DNA, transcription factors, enhancers, or 
histones, making this technique very versatile for identifying 
DNA sequences associated with these proteins. Posterior to 
antibody precipitation, the DNA that interacts with the pro-
tein (sequences co-precipitated with protein) is analyzed by 
DNA microarray (ChIP-chip) or sequencing techniques 
(ChIP-seq). The ChIP techniques allow us to identify all the 
DNA sequences associated with the specific protein.

The previously described techniques could be named now 
as high-resolution techniques. These high-resolution tech-
niques are characterized by generating large amounts of 
information (epigenome-wide), but the cost and infrastruc-
ture required for these techniques are not under every clinical 
laboratory. For these reasons, the use of these technologies in 
clinical settings is reduced. Some techniques with lower res-
olution have been developed to analyze the epigenetics under 
clinical laboratories, like pyrosequencing, methylation-
sensitive single-strand conformation analysis, single nucleo-
tide primer extension, photo-crosslinking hybridization 
assays, or PCR in situ hybridization, and others [54, 55].

�Overview of Bioinformatic Analysis 
of Epigenome

As previously mentioned, the most studied epigenome-wide 
mark is DNA methylation [32, 56]. Consequently, we will 
center on exposing some bioinformatic tools and pipelines to 
analyze this data with a focus on array-based analysis. The 
most commonly used arrays for DNA methylation analysis 
are the commercial Infinium 450  K (Illumina, USA) and 
recently updated to the Infinium Human Methylation Epic 
(Illumina, USA), being the first approximations to 
epigenome-wide analysis [57]. The previous arrays are a 
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Fig. 4.1  Overview of the steps for an epigenome-wide association study (EWAS)
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fixed collection of know sequence small nucleotide probes 
associated with silica beads and measured by the fluores-
cence intensity, depending on the hybridization to the target 
sequence [58]. Even when different software and algorithms 
perform the analysis of these arrays, most of them follow the 
next steps: (1) load, (2) filter, (3) normalize, (4) remove the 
source external variations, and (5) statistical tests (Fig. 4.1). 
Load or import the data is the action to store the information 
in the computer memory [59]. The load of the data could be 
a limitation state in hardware with low random-access mem-
ory, depending on sample size the need for computing power 
could increase exponentially, showing the necessity for high-
performance cluster computing [60]. The former computing 
clusters increase the cost of the bioinformatic analysis of 
epigenomic data and, consequently, have the same effect on 
the study budget.

Epigenomic data has a high level of complexity [61]. The 
complexity behind the epigenomic data adds the challenge to 
identify robust signals from noise; to overcome this, the fil-
ter, normalization, and removal of the source of external 
variations by bioinformatic and statistical algorithms are 
fundamental. The algorithms of the previous steps depend on 
the experiment design and the tissue explored, but we will 
expose some steps that could be a guide. Filtering array-
based epigenome data follow the next steps: (i) removal of 
probes and samples with low detection rates, (ii) remove of 
non-CpG probes, SNP-related, multi-hit, and sexual 
chromosome-associated probes. Next to filtering, the nor-
malization process reduces the systematic errors behind the 
differential distribution of probes. The most effective meth-
ods for normalization of epigenomic data are peak-based 
correction and Beta-mixture quantile normalization [62]. 
The end of these steps results in a matrix of levels of DNA 
methylation (Beta-values or M-values) by each probe and 
each analyzed sample [63].

The next step, remotion of the external sources of varia-
tion, requires some technical knowledge of the experiment 
design like tissue, type of cell distribution, experiment facili-
ties (experimental staff, number, and position of arrays), and 
covariates (i.e., species, age, gender, developmental stage, 
comorbidities, etc.) of the analyzed biological samples. 
Remotion of these sources of external variations is based on 
unsupervised statistical methods, like single-value deconvo-
lution, principal component analysis, mean centering, or 
standardization [64, 65]. The former evaluates if any of these 
sources of variation affect the DNA methylation data matrix 
and, by mathematical methods, removes these effects. 
Another source of variation that depends on the evaluated 
tissue is the cell-type distribution. Eukaryotic cells follow a 
process of differentiation and changes in DNA methylation 
patterns, promoting a source of experimental noise. The 
removal of cell-dependent DNA methylation patterns is 
based on supervised and unsupervised methods. The super-

vised methods are based on the development of a catalog of 
cell-specific DNA methylation signatures by sorting (Cell 
reference generation), posterior evaluation of DNA methyla-
tion, and mathematical computation (deconvolution) of the 
experimental data with this reference, to infer the probability 
distribution of the cell types in the samples [66–68]. 
Meanwhile, the unsupervised methods find from the data the 
probable distribution of the cells and adjust the data based on 
these distributions [69, 70]. The previous steps are known as 
preprocessing of data to allow us to have a reduction in the 
noise and increase the replicability of the results generated 
by the next step (statistical tests), the epigenome-wide asso-
ciation study (EWAS).

EWAS is the mathematical contrast of the preprocessed 
DNA methylation data with a phenotypic variable. The vari-
ables could be categorical or continuous depending on the 
study design. EWAS is explored in four primary study 
designs: case-control, families, cohorts, and longitudinal 
studies [71]. The most explored study design is the case-
control study, where cases are affected by a disease (named 
phenotype). However, this design has the limitation of 
requiring large sample sizes to get well-powered EWAS. The 
case-control statistical contrast is based on logistic regres-
sion models adjusted by different covariates (gender, age, 
ancestry, etc.) and with a p-value cutoff of 5e-8 to be consid-
ered as statistically significant [72]. Once generated the sta-
tistical analysis, the CpG sites (known as differentially 
methylated probes or sites) with lower p-values are the ones 
with the higher difference between both groups, suggesting 
an effect of disease on the CpG site or vice versa. The case-
control study could not establish causality between the CpG 
site and the disease, pointing to the need for functional stud-
ies [71]. The previous bioinformatic algorithms could be per-
formed in numerous software (Table 4.1).

Once performed the EWAS, a series of steps known as 
post-EWAS starts, including the prediction of biological 
functional impact and the generation of CpG sites that could 
predict the evaluated phenotype (epigenetic biomarkers). 
The biological functional impact could be predicted by a 
series of diverse prediction algorithms and databases access, 
like CpG site annotation to gene expression regulatory ele-
ments [50, 73, 74], enrichment analysis [75–77], protein-
protein interaction networks [78], and cell-specific epigenetic 
marks [79]. The former allows us to identify new etiologic 
mechanisms behind the analyzed disorder; Table  4.2 pres-
ents a summary of some EWAS that have generated some 
new etiological mechanisms for some diseases. The other 
post-EWAS step, the prediction of epigenetic biomarkers, is 
a more clinical and epidemiological application of the dif-
ferentially methylated sites generated by EWAS. The identi-
fication of epigenetic biomarkers follows the next two steps: 
(1) selection of the most predictive CpG sites and (2) evalu-
ation of the prediction capacity of the selected sites. 
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Well-powered EWAS generates many associated CpG sites, 
making it difficult to use these sites in clinical settings; dif-
ferent statistical techniques have been applied to reduce 
these CpG sites. The applied techniques are based on 
machine learning algorithms, like support vector machines, 
Gaussian-mixture models, random forest, hierarchical clus-
tering [80–82], methylation risk scores [83], or recently a 
combination of both [84]. The algorithms select the “best” 
conjunct of CpG sites and a mathematical model to predict 
the phenotype. Once this conjunct and model are generated, 
it must be evaluated on a different sample to know the repli-
cation capacity of the marker. If the conjunct has an accept-
able predictive capacity on the replication sample, then it 

could be called a possible epigenetic biomarker and ready 
for testing under other clinical settings. The most outstand-
ing EWAS appear depicted in Table 4.2.

�Epigenetic Biomarkers

The epigenetic alterations could be a significant source of 
knowledge behind the etiology of the diseases [95–97], but a 
more clinical application is developing epigenetic disease 
biomarkers [55]. The development of these epigenetic bio-
markers could be of great interest for epigenetic epidemiol-
ogy to characterize the utility of these biomarkers in different 

Table 4.1  Example of pipelines for epigenome-wide analysis data

Software Filter Normalization

External 
variation 
remotion EWAS Website

wateRmelon Yes Yes Yes No https://bioconductor.org/packages/release/bioc/html/wateRmelon.html
bigmelon Yes Yes Yes No http://bioconductor.org/packages/release/bioc/html/bigmelon.html
minfi Yes Yes Yes Yes https://www.bioconductor.org/help/course-materials/2015/BioC2015/

methylation450k.html
ChAMP (The Chip 
Analysis Methylation 
Pipeline)

Yes Yes Yes Yes https://bioconductor.org/packages/release/bioc/vignettes/ChAMP/inst/
doc/ChAMP.html

missMethyl Yes Yes Yes Yes https://www.bioconductor.org/packages/release/bioc/vignettes/
missMethyl/inst/doc/missMethyl.html

OSCA (OmicS-data-
based Complex trait 
Analysis)

No Yes Yes Yes https://cnsgenomics.com/software/osca/#Overview

EWAS No No No Yes http://www.bioapp.org/ewas./service.html
GLINT No No Yes Yes https://glint-epigenetics.readthedocs.io/en/latest/
Partek ® Yes Yes No Yes https://www.partek.com/application-page/methylation/
GenomeStudio ® Yes Yes No Yes https://www.illumina.com/techniques/microarrays/array-data-analysis-

experimental-design.html

Table 4.2  Examples of important epigenome-wide association studies (EWAS)

Phenotype Sample size Main findings Ethnicity Reference
Lifetime estrogen 
exposure

31,864 
unrelated

DNA methylation score associated with breast cancer risk European [85]

COVID-19 severity 406 
unrelated

Genes of the inflammasome and HLA-C European [86]

Coffee and tea 
consumption

15,789 
unrelated

Differential methylation of AHRR, F2RL3, FLJ43663, HDAC4, 
GFI1, and PHGDH genes

European and 
African-American

[87]

Kidney function 13,537 
unrelated

CpG sites enriched in kidney development Trans-ethnic [88]

Cigarette smoking-related 
lung diseases

6000 
unrelated

Hypomethylation and lower expression of CHRNA5 are causally 
linked to increased risk of COPD and lung cancer

European [89]

Alzheimer’s disease 1453 
unrelated

Differentially methylation on 121 genes associated with 
neuropathology

European [90]

Depression 724 twins Genes implicated in response to stress European [91]
Schizophrenia 1831 

unrelated
Genes in neuronal function, genes previously associated with 
schizophrenia, and genes also involved in T-cell development

European [92]

Educational attainment 10,767 
unrelated

Association with smoking European [93]

Birth weight 8825 
unrelated

CpG sites associated with maternal smoking and BMI European [94]
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human diseases, mainly to characterize the relationship 
between the exposures to different environments in clinical 
data [98–100]. An epigenetic biomarker could be any mark 
that could be applied in risk measurement, diagnosis, predic-
tion, and monitoring of any disease. Nevertheless, to be used 
in a daily clinical setting, an epigenetic biomarker must be 
sensible and specific, and inexpensive [101–103]. The 
amount of information generated in the last years regarding 
epigenetic biomarkers is large. A search in the PubMed data-
base (April 2021) using the term “epigenetic biomarkers” led 
to a total of 13,489 results. Even when the amount of infor-
mation is large, very few epigenetic markers have been 
approved for use under clinical diagnostic settings, like Epi 
proColon, Cologuard, AssureMDx, GynTect, PredictMDx, 
and others [104]. Most of these biomarkers focus on differ-
ent types of cancer (colorectal, hepatocellular carcinoma, 
lung, prostate, bladder, cervical, and glioblastoma). Most of 
the claimed biomarkers are still under preclinical evaluation 
or still under development. The gap between the number of 
epigenetic biomarkers and the information generated could 
be explained under the clinical laboratory settings. Most 
clinical laboratories do not have the required infrastructure 
to perform routine analysis of epigenetic information [105].

Epigenetic biomarkers had been applied more advanced 
as risk prediction and proposed to be used in epidemiologic 
studies. Some of these areas are applied in aging, substance 
use, and nutrition [106–112]. One of these applications is the 
development of epigenetic markers for cigarette smoking. 
Cigarette smoking is one of the leading causes of preventable 
mortality [113]. The accurate detection of smoking is of high 
priority for targeting those individuals for treatment pur-
poses [114, 115]. To detect smoking behavior in individuals 
is based on two measurements: self-reported and cotinine 
(nicotine metabolite) levels, but these indicators had some 
limitations. On the one hand, in epidemiological studies, the 
self-reported smoking behavior is reported to be accurate 
[116–118]; nevertheless, under some circumstances (adoles-
cents or pregnant women), the self-reported have elevated 
rates of disagreement [117, 119, 120]. On the other hand, the 
cotinine levels had a short half-life, promoting difficulty in 
being measured under epidemiological analysis [121–123]. 
To overcome these limitations, some authors proposed using 
epigenetic biomarkers, like the CpG site (cg05575921), 
located in the aryl hydrocarbon receptor repressor (AHRR). 
The demethylation of this site has been consistently associ-
ated with smoking behavior [123, 124] and has a high cor-
relation with other smoking biomarkers [107]. In a recent 
study, this CpG site is proposed to be a valuable marker to 
predict the risk of heavy smoking behavior.

Another example of an epigenetic biomarker that could 
be used in an epidemiological perspective is the epigenetic 
clocks. In 2013, the first epigenetic age, using DNA methyla-
tion data, estimation method with accuracy in different tis-

sues was published by Horvath [125]. The method proposed 
by Horvath estimates a statistical parameter based on an 
elastic net regression, which he called DNA methylation age. 
Comparing DNA methylation age (a proxy variable of bio-
logical aging) with chronological age allows us to calculate 
the acceleration or non-acceleration of aging and how the 
environment could alter this process [65, 108, 126, 127]. 
Since the publishing of this clock, many authors have applied 
this method to evaluate the effects of environmental expo-
sures on the aging process. In a recent meta-analysis, Ryan 
et al. report that body mass index increased DNA methyla-
tion age and was associated with frailty index [128]. Even 
when Horvath started a milestone in the epigenetic age, other 
authors had improved this method by adding other variables 
to the model to perform more accurate predictions, like 
PhenoAge [129] or GrimAge [130]. These clocks are highly 
associated with all causes of mortality (cancer, cardiovascu-
lar disorders, and cognitive impairment) and reduction in 
lifespan [131]. The accelerations on epigenetic age could 
capture different sources of stress promoting a shorting of 
life expectation in response to these events.

�Epigenetics in Pharmacology

Besides the development of epigenetic biomarkers and disease-
associated epigenetic changes, these changes could also affect 
the response to environmental factors [132]. Some environ-
mental factors that have demonstrated epigenetic changes are 
toxins, diet, stress, and xenobiotics [133, 134]. Inside the xeno-
biotics, we could find pharmacological drugs; moreover, some 
have been reported to promote epigenetic modification, known 
as epigenetic drugs. The use of these epigenetic drugs is a field 
under development. Some authors suggested that these drugs 
could have higher therapeutic response rates with lower adverse 
reactions, pointing to their use under a personalized medicine 
approach [135–138]. In deficiency, the use of these epigenetic 
drugs requires knowledge about the epigenetic alterations that 
are consistent in different disorders to target the most precise 
epigenetic alteration [138, 139]. These drugs are azacitidine 
and decitabine, which the FDA approved to treat chronic leuke-
mia and myelodysplastic syndrome. These drugs promote a 
hypomethylation of some genes that had been silent under can-
cer development [140, 141]. Other epigenetic drugs under 
development are oriented to treating multiple sclerosis, pain, 
and memory deficits [142–144].

�Conclusions

The epigenetics biomarkers are becoming more regularly 
analyzed in investigation settings, finding more associations 
with different disorders, and possibly will generate new 
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diagnostic strategies focusing on precision medicine. The 
perspective is that the development of new technologies and 
clinical guidelines using epigenetic biomarkers could help in 
the diagnosis, screening, and treatment of several human 
diseases.
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GTEx	 Genotype-Tissue Expression Project
GWAS	 Genome-wide association studies
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HGMD	 Human Gene Mutation Database
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pre-mRNA	 Precursor mRNA
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RNA-seq	 RNA sequencing
rRNA	 Ribosomal RNA
RT-PCR	 Reverse transcription PCR

RUST	 Regulated unproductive splicing and 
translation

SAGE	 Serial analysis of gene expression
sc-RNA-seq	 Single-cell RNA sequencing
snRNP	 Small nuclear ribonucleoprotein
SRE	 Splicing regulatory element
SS	 Splice site
TCGA	 The Cancer Genome Atlas Program
TWAS	 Transcription-wide association studies

�Introduction

With the introduction of molecular biology into the clinical 
framework as a toolbox for diagnosis and possible pathology 
treatment, a great effort has been put into linking diseases 
with their underlying genetic causes. The advent of the 
Human Genome Project in the early 1990s and other similar 
initiatives proved to be an invaluable tool for clinical 
researchers, as it opened human genetics entirely for dissec-
tion to find the origins of a wide variety of diseases and other 
pathological conditions [1]. Initially, this meant studying the 
entirety of an organism’s DNA sequences (the genome) and 
finding variations in these sequences (mutations) that could 
be linked to specific ailments. At this stage, aside from study-
ing individual genes to discover specific mutations that could 
alter their function or finding their expression patterns, 
genome-wide association studies (GWAS) became a widely 
used tool for assessing genotype-phenotype relationships 
[2]. GWAS in medical research essentially works by search-
ing the genome for common and recurring genetic variations 
that could be associated with the development of certain dis-
eases under the “common disease  – common variant” 
hypothesis [3]. Although GWAS proved to be a valuable tool 
in discovering novel pathogenic candidate genes and poten-
tial therapeutic molecular targets, its predictive power falls 
short as it fails to provide a direct causal link between genetic 
variants and disease susceptibility [4]. Also, to provide more 
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comprehensive results, GWAS require other types of infor-
mation such as functional gene annotation, genetic interac-
tion data, and other molecular analyses [5]. In this sense, one 
of the most striking discoveries provided by the sequencing 
of the human genome was that although over 90% of the 
human genome is transcribed into RNA, only between 1% 
and 2% of transcribed human genes are translated into pro-
teins [6, 7]. Such results suggest that there are other levels of 
complexity and functionality beyond the genome, such as 
the transcriptome.

Transcriptome refers to the set of all the RNA molecules 
(coding and noncoding) transcribed from an entire organ-
ism’s genes, tissue, or cell type in a particular moment and 
condition. The term was initially coined by Charles Auffray 
in 1996 and was first used on a research paper in 1997 [8, 9]. 
Before the term, there were several attempts to analyze gene 
expression since the early 1990s. For instance, in 1991, an 
effort led by J. Craig Venter compiled a set of 609 Expressed 
Sequence Tags (ESTs) from the human brain. This work was 
one of the first attempts to use the newly developed auto-
mated Sanger sequencing technology [10].

Unlike other fields that have recently acquired the “-ome” 
appendage (whether deservingly of it or not) [11], the tran-
scriptome, and therefore transcriptomics, has rapidly devel-
oped, thanks to intense development in both genomic 
technologies (that have rendered previous molecular tech-
niques obsolete). The diverse bioinformatic applications 
developed only for transcriptome analyses [12, 13]. 
Transcriptomics can generate massive amounts of informa-
tion, including gene expression levels, analysis of expression 
patterns, splicing and alternative splicing information, and 
the prevalence of transcript isoforms, among others. 
Nevertheless, the massive amounts of information generated 
by transcriptomic technologies represent quite a challenge 
for storage and analysis, taking into account that artifacts and 
biases still exist and need to be identified to generate con-
crete results and conclusions. In this context, transcriptomics 
has significantly benefited from big data technologies and 
novel statistical protocols [14].

Interestingly, transcriptomics could be used with other 
“omics” technologies as its results have molecular implica-
tions upstream or downstream on signaling pathways. Not all 
the classes of RNAs (coding and noncoding) are transcribed 
in every tissue or cell. Hence, understanding genetic expres-
sion under different contexts, such as environmental, chemi-
cal, genetic, and social, could provide valuable information 
applicable to diverse fields on human health. In this sense, 
the recently named transcriptome-wide association studies 
(TWAS) have demonstrated to be quite powerful tools to 
identify candidate genes whose genetically regulated expres-
sion is associated with traits of interest. TWAS methods are 
highly complex at statistical tests associating genetic expres-
sion and disease risk; they promise to prioritize candidate 

causal genes (genes mediating the phenotypic effects of dis-
ease) and tissues [15].

�The Leap From Classic Gene Expression 
Studies to Transcriptomics

Before transcriptomics was consolidated as the biological 
research powerhouse that it is today, efforts were made in pre-
vious decades to analyze individual or even reduced groups 
of transcripts. In 1979, a library of cDNA was constructed 
from silk moth (Bombyx mori) chorion (eggshell) enriched 
mRNA to analyze the evolution, chromosomal organization, 
and regulated developmental expression of the chorion multi-
gene families [16]. When low-throughput Sanger sequencing 
became more commonplace in the 1980s, expression sequenc-
ing tags (ESTs) began to be sequenced from cDNA libraries. 
During the 1990s, EST sequencing was a commonplace and 
efficient method to determine an organism’s gene content 
without the need to sequence the entire genome [17]. 
Alongside these more “in-bulk” techniques to study genes 
and genetic expression, molecular biology techniques to 
study individual transcripts were also being developed and 
widely used. Northern blots (and its reverse northern blot 
variant) and reverse transcriptase-polymerase chain reaction 
(RT-PCR) became popular methods to study gene expression. 
However, these methods were time-consuming and required a 
high degree of expertise and only allowed the capture of a 
transcriptome’s minimal subset [18, 19]. Despite the rapid 
technological and computational advancements until this 
point in time, how transcriptomes as a whole were expressed 
and regulated remained a scientific mystery. The Sanger 
method dominated sequencing technologies in the field until 
more high-throughput methods became more commonplace, 
and these methods were themselves overcome by the advent 
of next-generation sequencing (NGS) technologies, which 
have considerably surpassed Moore’s law expectations even 
more so that a new interpretation of Moore’s law was needed 
[20]. Interestingly, by 2008 two human transcriptomes were 
firstly published, and by 2015 hundreds of individuals’ tran-
scriptomes were published [21–24]. Currently, transcrip-
tomes of individual tissues, specific diseases, and even single 
cells are generated regularly. In the following sections, we 
will focus on the most used transcriptomic technologies.

�General Overview of Transcriptomic 
Technologies

As previously stated, knowledge of gene expression patterns 
can supply an overview of different active genetic pathways 
at a specific time or context [25]. In this sense, there are dif-
ferent methodologies for studying gene expression.
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�SAGE-Derived Sequencing Technologies

Serial analysis of gene expression (SAGE) was introduced in 
1995 to identify and quantify expressed genes [26]. SAGE 
technology is based on selecting, concatenating, and sequenc-
ing short but representative tags in expressed mRNAs. The 
first step in SAGE methodology is the mRNA extraction from 
the cell [27]. Once extracted, the mRNAs are retro-transcribed 
to cDNA with biotinylated oligo(dT) molecules which bind 
the poly-A tail and cleaved ~256 base pairs from the primer 
with a restriction enzyme called anchoring enzyme [26]. The 
biotin molecules attached to the oligo(dT) allow for binding 
the cDNA to a streptavidin bead [26]. The mixture is divided 
into two. Each division is now added with two different link-
ers, a restriction site for another restriction enzyme called tag-
ging enzyme and a restriction site for another anchoring 
enzyme [28]. The tagging enzyme is then supplemented in 
the mixture, cutting the fragment 14 base pairs from its recog-
nition site [28]. Two fragments, one from each mixture, are 
ligated on their free ends (the ones that do not contain the 
linker), forming di-tags, and finally, the anchoring enzyme 
cleaves the linker [28]. All the di-tags are concatenated and, 
lastly, sequenced [27]. The concatenation of all the tags 
allows the simultaneous sequencing of several mRNAs [27]. 
However, it must be noted that this methodology surged 
before next-generation sequencing techniques (see below); 
thus, other sequencing technologies such as Sanger were 
available, which generates ~600 base pair reads, allowing the 
sequencing of ~50 mRNA tags [27]. Tools such as the SAGE 
Software Suite are needed to quantify each tag and for its 
matching to reference sequences in databases [28].

Examples of modifications of SAGE are LongSAGE, 
microSAGE, miniSAGE, and DeepSAGE [29]. LongSAGE 
is similar to the original methodology, but the tagging 
enzyme cuts longer fragments, allowing a higher probability 
of single tags coming from a unique mRNA [29]. 
MicroSAGE, on the other side, adds a PCR amplification 
step to the original methodology, allowing the quantification 
of RNA, beginning with very little material; nonetheless, it 
has the disadvantage that PCR can introduce bias into the 
final quantification of transcripts [29]. Similarly, miniSAGE 
also reduces the initial amount of cells, but it does not require 
PCR amplification. Instead, it has additional mRNA purifica-
tion steps and uses a single tube from mRNA extraction until 
tagging to avoid genetic material loss [30]. Conversely, 
DeepSAGE uses a different sequencing methodology, known 
as 454 (see below) [30]. DeepSAGE simplifies the protocol 
and makes it better to detect low abundance transcripts, but 
454 sequencing was introduced until 1999, so for a long 
time, this SAGE modification was not available.

Since its creation and until the beginning of the millen-
nium, SAGE allowed the analysis of thousands of transcripts, 
including studies on cancer and immunology [27]. Although 

it has the advantage that it generally does not require PCR 
amplification, and thus, it provides highly accurate quantifi-
cation of transcripts, its methodology is extremely time-
consuming and complex [27]

�Microarrays

Microarrays are pretty important when we talk about tran-
scriptomics since such technologies allow the analysis of 
hundreds of thousands of transcripts simultaneously. They 
are mainly based on three different technologies: PCR, DNA 
libraries, and hybridization [31]. Microarrays were initially 
thought for DNA sequencing [32, 33]; however, they were 
introduced as a hybridization technique for measuring tran-
scription levels in the 1990s [32]. This first approach con-
sisted of a glass slide where cDNA probes were placed, a still 
widely used technique [25]. Library clones need to be gener-
ated; thus, mRNA sequences for different genes in an organ-
ism are inserted into identical bacterial DNA vectors [34]. 
Subsequently, robotic devices place each distinct clone cor-
responding to a single gene in the glass array at a known 
coordinate, and they are immobilized with DNA-binding 
chemicals [25]. Afterward, mRNA sequences from samples 
to be analyzed are retro-transcribed to cDNA. The latter are 
labeled with fluorescent dyes of different colors, for exam-
ple, green for control and red for test [25]. Robotic devices 
also place these new molecules over the same slide, but 
instead of placing them in a known coordinate, they are 
placed throughout the whole array; therefore, all of the 
cDNA from the samples analyzed will hybridize with the 
clones adhered to the slide in their corresponding coordinate 
[31]. Unhybridized fragments are washed away, and the slide 
is analyzed in a laser scanner [32]. The resulting colors in 
digital imaging can be interpreted either in both samples, 
present in none samples, present only in control samples and 
present only in test samples [32].

To date, two prominent companies produce microarray 
technologies: Thermo-Affymetrix and Illumina. The first 
one, Thermo-Affymetrix technology, is based on the synthe-
sis of the DNA probes (25 base pairs) directly over the glass 
slide using photolithography [31]. Once oligonucleotides are 
synthesized, the slide is provided with the cDNA for analysis 
[32]. Illumina technology is based on the assembly of pre-
synthesized oligonucleotides probes with a known code cou-
pled to a batch of silica microspheres called beads [32]. 
These beads are placed over a particular microarray with 
wells where they are immobilized and decoded, thus identi-
fying each gene sequence’s specific location [32]. The poste-
rior protocol and analysis are the same (Table 5.1).

Microarrays’ first application was the identification of 
transcripts’ presence in different samples. However, they 
have been used to detect splice variants and diagnose several 
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diseases, such as cancer, where the expression of different 
genes can help in the distinction of tumors [32]. It is essential 
to be noted that although microarrays are a powerful technol-
ogy for the detection of differentially expressed genes, their 
main limitation is that they may be insensitive for transcripts 
of low abundance, which may represent an essential loss for 
transcripts whose normal expression levels are low [35].

�RNA-seq

In contrast with microarrays and SAGE technologies, RNA 
sequencing (commonly known as RNA-seq) is a relatively 
recent field, which starts with the emergence of next-
generation sequencing (NGS) at the beginning of the last 
decade [39]. NGS methodologies allow the determination of 
base pairs order in a nucleotide sequence in an efficient and 
low-cost manner [40]. There are several sequencing method-
ologies, but most of them can only sequence DNA; thus, the 
generation of cDNA is a required step for most RNA-seq pro-
tocols [41]. Depending on the scope of the project, generally, 
the first step is the removal of cellular rRNAs for the selection 
of remaining RNA classes that might be differentially 
expressed, or, in contrast, the selection of specific RNA 
classes, such as mRNAs and lncRNAs by poly-A selection 
with oligo(dT) molecules, or miRNAs by size selection, 
among others [39]. Subsequently, selected RNAs are retro-
transcribed to cDNA and fragmented by sonication or with 
enzymes such as endonucleases or transposases. Most meth-
odologies can only sequence hundreds or a few thousands of 
base pairs [39]. It must be noted that the construction of 
cDNA libraries generates DNA sequences for the mRNA and 
its complementary sequence; thus, the maintenance of the 
strand identity, that is, which one proceeds from the mRNA, 
is required [39, 41]. The most common approach used for this 
issue is the addition of labels during synthesis that can be 
recognized for strand degradation, but many others exist [41].

The most common sequencing technology is Illumina, 
but SOLiD and Roche/454 are also widely used [42]. 

Illumina sequencing is done by synthesis: the fragment to be 
sequenced is adhered to a glass flow cell containing nanow-
ells. A polymerase synthesizes the complementary sequence 
with fluorescently labeled nucleotides − each nucleotide 
with a different label [43]. The cell is then excited with a 
light source, and the fluorescence emission is recorded, 
allowing the identification of the nucleotide added [43]. Like 
Illumina, SOLiD sequences by ligation, and the first step is 
emulsion PCR, where the fragments adhere to silica beads 
and these to a glass plaque [43]. SOLiD sequences by ligat-
ing an eight base pair probe adjacent to a primer (named n 
primer) and identifying the group to which the first two base 
pairs correspond, thanks to a fluorescent molecule added to 
the probe (there are 4 groups, each with 4 of the 16 possible 
combinations for 2 base pairs) [43]. Then, the last three 
nucleotides of the probe are removed, the remaining only 
five, and the process is repeated for the whole fragment [43]. 
Finally, the whole last process is repeated for a one base pair 
shorter primer (named n-1 primer), a two-base pair shorter 
primer (named n-2), and so on, until n-4, allowing the iden-
tification of the groups for the remaining three nucleotides of 
the probes, and with this, the identification of every single 
nucleotide [43]. Lastly, Roche/454 is based on pyrosequenc-
ing, which takes advantage of the pyrophosphate released in 
the nucleotide incorporation during DNA synthesis [43]. 
When the pyrophosphate reacts with the luciferin molecule 
and with ATP sulfurylase and luciferase enzymes, it gener-
ates oxyluciferin, which emits light [43]. The first step of 
Roche/454 also involves emulsion PCR [43]. Then, the 
nucleotides are added one by one, and when a polymerase 
incorporates the correct one, the light is detected, allowing 
the identification of the base pair added [43].

Once the sequence is available, reads must be mapped to 
the reference genome or an annotated transcriptome [44]. 
Mapping to the transcriptome is faster and computationally 
less demanding, but it cannot find new transcripts not previ-
ously described [44]. Bowtie is one of the most famous map-
ping algorithms, but it has the downside that its performance 
in identifying alternative splice sites is lacking [41]. Thus, 
other mapping algorithms, such as TopHat, are more useful 
for RNA mapping [44]. Finally, reads must be quantified to 
identify genomic regions under- or overexpressed consider-
ing biases, such as transcript length, which might affect the 
total fragments mapped to a locus [44]. Cufflinks, 
FluxCapacitor, and MISO are well-known tools that quantify 
reads and normalize them [41]. Quantified and normalized 
reads are now ready for differential gene expression analysis, 
which can be done with several R libraries, such as edgeR, 
NOISeq, and EDASeq, depending on the project’s scope [44].

RNA-seq has almost surpassed other transcriptomic analy-
sis methodologies because only small amounts of material are 
needed and have better transcript calls, even for genes whose 
expression is low [44]. However, it still has limitations. One 
of them is the inaccurate long transcripts reconstruction, 

Table 5.1  Available microarray brands with underlying working 
mechanisms

Microarray Principle Reference
Thermo-
Affymetrix

Photolithography synthesis of 25 base 
pairs DNA probes directly over the slide

[31, 32]

Illumina Inc. Coded probes coupled to beads [32]
Cy5-Cy3 Hybridization of DNA with two colors 

(Cy3 and Cy5) cDNA from samples. Also 
called home microarrays

[36]

Agilent Inc. Hybridization of DNA with different 
fluorescent samples. 60 base pairs of 
oligonucleotides. Allows multicolor 
hybridization

[37, 38]

Roche- 
Nimblegen

Photolithography synthesis of 70 base 
pairs DNA probes directly over the slide. 
Allows multicolor hybridization

[38]
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given the restriction that most methodologies can only 
sequence short reads [41]. Even though long read sequencing 
methodologies exist, such as PacBio and Nanopore, there is a 
lack of efficient and practical tools for mapping these kinds of 
reads [44]. Additionally, few reproducibility across different 
tools have been reported, which indicates that there is still the 
need for different parameter standardization [44]. However, 
the future of RNA sequencing is promising with new emerg-
ing protocols that exhibit vast opportunities, such as  
single-cell RNA-sequencing (scRNA-seq) [44]. The comple-
mentation of RNA-seq technologies with other emerging 
tools for analyzing chromatin accessibility, transcription fac-
tor binding sites, nucleosome occupancy, histone modifica-
tions, DNA methylation [45], SNPs, and regulatory elements 
will undoubtedly provide new insights about human genom-
ics, including promising clinical fields.

�Bulk Transcriptomics Profiling and Single-Cell 
Transcriptomics

Transcriptomic technologies such as microarrays and RNA-
seq utilize samples from bulk tissues and assume that all 
cells present in that material represent a homogenous popu-
lation with, at least, reasonably similar gene expression pat-
terns [46]. However, even among genetically identical cells 
of the same population, variations exist in their gene expres-
sion patterns; this happens mainly because of the stochastic 
nature of gene expression and randomness coming from both 
transcription and translation generating the cell-to-cell vari-
ability observed [47]. Even though cell-to-cell gene expres-
sion variations are something to account for, bulk 
transcriptomics has been a beneficial and successful approach 
in medical research when searching for novel disease bio-
markers, genetic mechanisms of specific pathologies, as well 
as potential therapeutic targets [46]. Single-cell transcrip-
tomics is a reasonably novel approach that, apart from taking 
into account the stochasticity of gene expression, can look 
past the biases of bulk transcriptomics by analyzing the gene 
expression patterns of a single-cell type in its tissue context. 
Single-cell transcriptomics uses a wide variety of techniques 
and protocols to isolate specific cell types, and they differ in 
the number of cells they isolate and how the cells are selected. 
Single-cell RNA-seq (scRNA-seq) has become a potent tool 
to analyze the transcriptome of a wide variety of cell types 
and coupled with spatial transcriptomic methods. It can 
investigate single-cell transcriptomes together with their 
physical location and tissue context [48, 49].

Single-cell transcriptomic technologies can be scaled to 
the entire human body. Efforts to generate cell atlases of the 
entire human body have already begun, and a result of this is 
the Human Cell Atlas (HCA) global consortium [50, 51]. Its 
mission states that the HCA wishes “to create comprehen-
sive reference maps of all human cells—the fundamental 

units of life—as a basis for both understanding human health 
and diagnosing, monitoring, and treating disease” [https://
www.humancellatlas.org]. Using high-throughput technolo-
gies at the single-cell resolution, the consortium aims to gen-
erate an analogue to a “Google Maps” of the human body. 
Efforts have been made to generate cell atlases of organs 
such as the brain, heart, liver, thymus, gut, and kidney, using 
single-cell technologies. Single-cell transcriptomics has also 
been used to study a wide variety of diseases such as cancer, 
chronic kidney disease, neurodevelopmental disorders, as 
well as an autoinflammatory disease [49].

�Splicing and Alternative Splicing

Aside from all the complexity that arises when trying to ana-
lyze how transcriptomes are expressed and regulated, the 
processing of mRNA once transcribed adds yet another layer 
of complexity that makes transcriptomic analyses an even 
more daunting enterprise. Eukaryotic genes are arranged in a 
discontinuous fashion where protein-coding segments, 
known as exons, are interspaced by noncoding sequences, 
known as introns. Once transcribed, precursor mRNA (pre-
mRNA) carries both exons and introns in its sequence. 
Through a highly regulated process known as splicing, 
introns are removed, and exons joined together, and this pro-
cess, in turn, forms the mature form of mRNA. While some 
genes have only one splicing isoform (those constitutively 
spliced), others can produce multiple mRNA isoforms from 
a single pre-mRNA molecule through a process known as 
alternative splicing (AS). The process of AS has gained noto-
riety in recent years as an essential regulator of organism 
development. It has been proposed that AS has been used in 
evolutionary history as a mechanism to overcome the rela-
tively low number of genes compared to the total size of the 
genome while attaining a higher level of genetic complexity 
[52, 53]. Recent RNA-seq data provides evidence that >95–
100% of human protein-coding genes undergo a process of 
AS, with at least two isoforms per gene [21, 54]. Compared 
to other organisms, humans are the ones that present a higher 
degree of occurrence of AS events, and together with tran-
scriptome data, these observations seem to suggest that a 
higher occurrence of AS is directly correlated with an 
increase in organism complexity [55–57].

Even though the process of splicing (and AS) is commonly 
referred to as a “cut and paste” event, the actual biochemical 
reactions that take place are two consecutive SN2-type trans-
esterification reactions involving functional groups from 
three reactive regions present in the pre-mRNA. Two of these 
regions are found at the 5′ or 3′ ends of introns are known as 
5′ or 3′ splice sites (SS). The third region involved in the 
splicing process is known as the branch point site (BPS) and 
is located near the 3′ end of the intron, around 15–50 nucleo-
tides upstream of the 3′ SS [58, 59].
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The splicing process is carried out by a piece of complex 
molecular machinery known as the spliceosome. The spli-
ceosome is composed of RNA and proteins, and it is com-
monly known as a ribonucleoprotein, with its catalytic core 
being composed of RNA [60]. The spliceosome is a highly 
regulated molecular complex that acts in a stepwise cycle, 
and with every splice reaction, it is assembled and disassem-
bled. The spliceosome is composed of different subunits of 
small nuclear ribonucleoproteins (snRNPs) at each of the 
splicing steps. In turn, each of these snRNPs is composed of 
a specific small nuclear RNA (snRNA) and other accompa-
nying proteins. These snRNAs are the ones that, through a 
base-pairing mechanism, can identify the sequences in the 
DNA (5′ and 3′ SS, BPS) that allow for differentiating introns 
from exons [61, 62].

As mentioned before, AS can give rise to several tran-
script isoforms from a single transcriptional event. AS can be 
regulated by many factors, including splicing sequences in 
the pre-mRNA, trans-acting splicing factors that can either 
promote or repress AS, the chromatin environment, and tran-
scription elongation activity [63]. AS can generate different 
splicing events depending on the organization of the 
sequences within the pre-mRNA. The AS events can occur 
exon skipping, intron retention, alternative 3′ and 5′ SS 
selection, mutually exclusive exons, alternative promoter, 
and alternative polyadenylation (Fig.  5.1). In humans, the 
most common AS event is exon skipping. All of these events 
can happen either individually or simultaneously, and this 
can, in turn, generate a wide variety of AS isoforms from a 
single transcript [22, 56].

�Implications of Alternative Splicing in Clinics

Evidence has surfaced linking mRNA splicing (both canoni-
cal and alternative) as an essential developmental regulator 
in recent years. Therefore, alterations of the splicing process 
have gained relevance as the source of many diseases [64, 
65]. Around 95% of human genes are subject to a process of 
AS. While AS has been described as a mechanism through 
which the transcriptome and proteome can be expanded 
without genome expansion, the many ways in which this 
highly complex and regulated process can be altered have 
spawned, an emerging field in which these numerous splic-
ing alterations are studied to uncover their role in the onset 
and severity of many diseases. Together with this, research 
has focused on how splicing factors and AS products can be 
used and targeted as therapeutic targets and on developing 
novel treatments of certain diseases [66, 67].

As mentioned before, mRNA splicing is a highly regu-
lated process modulated by cis- and trans-acting factors. 
Both of these can be subject to alterations that can lead to 
pathological conditions. Given that SS consensus sequences 
are poorly conserved, splicing efficiency must rely on other 

factors [63]. Cis-acting splicing factors, also known as splic-
ing regulatory elements (SREs), are sequences found within 
exons and introns that can act as either splicing enhancers or 
silencers. Therefore, these SREs can be intronic splicing 
enhancers (ISE) and silencers (ISS), as well as exonic splic-
ing enhancers (ESE) and silencers (ESS). SREs act as bind-
ing sites for trans-acting splicing regulators that recruit the 
different spliceosome subunits to a specific site within the 
genome. The trans-acting splicing factors are RNA-binding 
proteins that form multiprotein complexes that either favor 
or repress spliceosome components’ recruitment. Although 
many RNA-binding proteins can act as trans-acting splicing 
factors, two groups of these proteins are the most common 
and well-studied. In this sense, serine-arginine (SR)-rich 
proteins are generally considered to act as splicing promot-
ers; meanwhile, the heterogeneous nuclear ribonucleopro-
tein (hnRNP) family of proteins are considered splicing 
repressors. However, recent evidence suggests that the func-
tion of both of these types of proteins depends on the 
sequence to which they bind, meaning that they can act as 
both promoters and repressors of splicing [68–70].

Data from the Human Gene Mutation Database (HGMD) 
indicates that more than one-third of all disease-causing 
mutations in the human genome are related to mRNA splic-
ing [71–73]. These data only considers mutations located at 
established SSs, but not those present at other SREs or muta-
tions at loci of trans-acting splicing factors, meaning that the 
incidence of alterations of splicing and AS as a source of 
pathological conditions might be even higher than previ-
ously anticipated.

Splicing alterations can be grouped into these categories: 
mutations in the core splicing consensus sequences that 
include alterations of SS sequences and the BPS, mutations 
in additional cis-acting splicing elements (exonic and 
intronic splicing enhancers and silencers), mutations of 
trans-acting splicing factors (SR proteins and hnRNPs), and 
mutations of core spliceosome elements. In recent years, a 
great deal of research effort has been put into dissecting the 
causes of splicing alterations-related pathologies and look-
ing for therapeutic targets in both cis- and trans-acting splic-
ing factors [66].

mRNA splicing and AS can generate transcripts that har-
bor premature termination codons (PTC) that, if translated, 
these proteins can cause deleterious effects that can be detri-
mental to the development of an organism. In regards to this, 
eukaryotes have developed an RNA surveillance mechanism 
that recognizes and degrades faulty transcripts called 
nonsense-mediated mRNA decay (NMD). NMD was first 
described as a posttranscriptional surveillance and quality 
control mechanism that focused on degrading faulty PTC-
containing transcripts. However, more recent evidence has 
shown that the NMD pathway is also responsible for regulat-
ing the abundance of 10–20% of naturally occurring eukary-
otic mRNAs [74–76]. To make matters even more 
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complicated, it is known that not all PTC-containing tran-
scripts trigger the NMD pathway and that some transcripts 
that do not carry a PTC are also targeted by NMD [77]. In 
terms of medical interest, since its discovery, NMD has been 
implicated in human disease. The role of NMD during devel-
opment and neural development has also been shown. It has 
been reviewed how NMD can impact several physiological 
responses such as stress response, immune response, and 
viral replication [77, 78]. It is estimated that up to 30% of 

genetic-related diseases are caused by alterations that lead to 
PTC-carrying transcript, affected by NMD [78].

AS is considered a significant source of PTC-containing 
transcripts because alternatively spliced transcripts may con-
tain altered reading frames that can introduce a PTC. This 
process in which NMD regulates AS-derived transcripts has 
been termed AS coupled to NMD (AS-NMD) [78]. It has 
been predicted that around one-third of alternatively spliced 
transcripts can contain a PTC.  Therefore AS-NMD could 

pre-mRNA Mature mRNA isoform

Constitutive splicing

Exon skipping

Intron retention

Alternative 5’ site

Alternative 3’ site

Mutually  exclusive exons

Alternative promoters

Alternative polyadenilation sites

A A

Fig. 5.1  Canonical and 
noncanonical splicing events. 
Different splicing events can 
give rise to several transcript 
isoforms. These splicing 
events can happen 
individually or together 
within the same transcript
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function as a widely used mechanism of transcript regulation 
[79]. Some transcripts harboring PTCs or other sequence 
signals known to trigger NMD seem to escape NMD-
mediated degradation and, in turn, have managed to utilize 
AS-NMD as a mechanism to regulate their transcript abun-
dance, and this can occur in a wide variety of transcripts, 
both naturally occurring and disease-related [80]. 
Specifically, AS-NMD seems to be relatively frequent in 
members of splicing regulator families, such as SR proteins 
and hnRNPs [81, 82]. These splicing regulators, as well as 
some core spliceosomal components, seem to use this type 
of regulation as a way to self-limit their range of protein 
expression by binding their transcripts and catalyzing the 
splicing of the isoform targeted by NMD, in a process also 
known as regulated unproductive splicing and translation 
(RUST) [81, 82]. Even though AS-NMD may not be a 
widely spread regulatory mechanism as initially thought, it 

is known that it contributes to the diversity and abundance 
of transcripts involved in physiological processes such as 
tissue and brain development and the splicing regulation 
process [78]. It is also known that AS-NMD deregulation 
can lead to disease, and evidence suggests that such deregu-
lation is involved to some degree in cancer development and 
some neurological, neurodevelopmental, and neurodegen-
erative diseases [77].

�Applications of Transcriptomics in Clinical 
Disease

Table 5.2 is a very brief resume of different works in which 
transcriptomic technologies have been used in medical 
research in various tissues, organs, and the study of certain 
diseases.

Table 5.2  Examples of critical medical research studies where transcriptomics technologies were used to obtain important information from 
patients

Tissue/Disease Technology / Cohort Observations Reference
Transcriptomic age 7074 human peripheral blood samples from 

six independent cohort studies, including 
EGCUT, FHS, IN CHIANTI, KORA, 
ROTTERDAM STUDY, and SHIP-TREND.

Identification of 1497 differentially expressed genes 
associated with chronological age used the gene expression 
profiles to calculate the transcriptomic age associated with 
biological features related to aging’s molecular pillars

[83]

G-TEX 54 non-diseased tissue sites across nearly 
1000 individuals/Genotype-Tissue 
Expression (GTEx) project

An ongoing effort to build a comprehensive public resource 
to study tissue-specific gene expression and regulation 
(https://www.gtexportal.org/home/)

[84]

Chronic kidney 
disease

Microarrays/(ERCB) European Renal cDNA 
Bank

Transcript levels of the epidermal growth factor (EGF) 
mRNA in urine significantly correlate with the Glomerular 
Filtration Rate (GFR) and work as a chronic kidney disease 
risk indicator

[85]

Obesity RNA-seq RNA-seq performed on healthy and obese patients’ 
placenta revealed 288 differentially expressed genes 
enriched in lipid metabolism, angiogenesis, hormone 
activity, and cytokine activity

[86, 87]

Postmortem human 
occipital cortex – Rett 
syndrome

Single-cell RNA sequencing (sc-RNAseq) Rett syndrome is caused by mutations in the methyl-DNA-
binding protein (MECP2) gene, located on the X 
chromosome. The disease’s severity correlates with the 
fraction of mutant alleles present in brain cells after X 
chromosome inactivation

[88]

Whole peripheral 
blood

Microarray/The LIFE-Adult-Study Illumina Expression Bead-Chips were used for gene 
expression analysis in blood. The assays were associated 
with medical, physical, and cognitive examinations, 
together with interviews and questionnaires for ~10,000 
40–70-year-old adults

[89]

Diabetes Single-cell transcriptomics/human diabetic 
kidney samples three control and three early 
diabetic nephropathy samples

Cell-type-specific changes in gene expression that are 
important for ion transport, angiogenesis, and immune cell 
activation and increased potassium secretion and 
angiogenic signaling represent early kidney responses in 
human diabetic nephropathy

[90]

Alzheimer’s Disease Microarray/1440 of blood-based microarray 
gene expression profiles

Identified and replicated five genes (CREB5, CD46, 
TMBIM6, IRAK3, and RPAIN) as significantly 
dysregulated and that CREB5 was also associated with 
brain atrophy and increased amyloid-beta (Aβ) 
accumulation

[91]

Breast cancer Data obtained from the TCGA breast invasive 
carcinoma (BRCA) dataset, mainly from 
RNA-seq

The usage of an artificial intelligence algorithm for the 
integration of expression level and alternative splicing 
transcriptome data allowed the classification of breast 
cancer patients in cancer subtypes required for the 
appropriate diagnosis and treatment

[92]
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�Concluding Remarks

Although transcriptomics represents an excellent opportu-
nity due to the amount of information that we could generate 
from clinical studies, it is also quite a challenge at a techno-
logical, statistical, and computational level due to the amount 
of commercial platforms available and of bioinformatic 
approaches that need to be generated, including those con-
cerning data warehousing. Nevertheless, there is no doubt 
that transcriptomic studies will continue to improve our 
knowledge on the different fields that such technologies have 
permeated (oncology, aging, pharmacology, chronic dis-
eases, neurobiology, etc.) and that the number of articles 
generated in this field will only increase in the following 
years. Therefore, it becomes necessary to start to educate all 
medical researchers in using this technology, so we could 
accelerate its implementation and use accelerating the bench-
to-bedside process.
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Abbreviations

BLAST	 Basic local alignment search tool
Ca2+	 Calcium
CEA	 Carcinoembryonic antigen
CSF	 Cerebrospinal fluid
CATH	 Class Architecture Topology and 

Homologous superfamily
DNA	 Deoxyribonucleic acid
EGF	 Epidermal growth factor
GST-ORF	 Glutathione-S-transferase open reading 

frame
HIV	 Human immunodeficiency virus
HD	 Huntington’s disease
PARK7	 Parkin 7
PD	 Parkinson’s disease
PDB	 Protein Data Bank
QMEAN	 Qualitative Model Energy Analysis
RNA	 Ribonucleic acid

SARS-CoV-2	 Severe acute respiratory syndrome corona-
virus 2

SCOP	 Structural Classification of Protein
SOD1	 Superoxide dismutase 1
VEGF	 Vascular endothelial growth factor

�Introduction

The proteome refers to the set of proteins present in a cell or 
organism at any given time. In this context, since the DNA 
contains the needed information for the creation of proteins, 
the relation between the genome and the proteome is com-
plex, since one single gene may encode for more than a single 
protein (alternative splicing). Furthermore, posttranslational 
modifications and protein cleavage or modifications give rise 
to several protein isoforms for every single gene. Thus, study-
ing the proteome provides additional information that other-
wise we wouldn’t notice only by studying the genome or the 
transcriptome [1]. Moreover, it is important to highlight that 
since proteome varies among cells and tissues depending on 
the condition, allowing the discovery of specific biomarkers 
involved in health and disease [2]. As mentioned before, the 
phenotype can be better explained by the proteome than by 
the genome or the transcriptome due to differences in expres-
sion levels and to protein modifications [3]. Furthermore, the 
proteome is more stable and more easily assessed than the 
metabolome; thus, proteomics studies are a powerful tool 
preferentially used in studying disease, development, aging, 
and other conditions.

�Proteome

Unlike the genome, the genetic information contained in 
DNA is the sequencing of the 23 pairs of chromosomes in 
human and that is internalized in the heart of the cell “the 
nucleus,” “the proteome” is the information of all the pro-
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teins expressed in a cell and how this information can change 
regarding environmental conditions, genetic, hormonal, or in 
different stages of human development [4].

�Proteomics

Proteomics is the study of the information found in all the 
proteins expressed in an organism, and the change of these 
proteins under different situations in which different tech-
nologies are used for their identification, expression, and 
quantification; in addition to these technologies which we 
will list later, the study of the proteome is supplemented with 
other transcription and genomic techniques to expose the 
identity of the proteins of an organism and to know the struc-
ture and functions of a particular protein. These technologies 
are used in different basic and clinical research studies as 
markers for timely diagnosis. The points that the study of 
proteomics tries to clarify are identity and expression pat-
terns of proteins, functional pathways of proteins in different 
diseases, carbonylation, acetylations, and other conforma-
tional changes therapeutic white spots mechanisms of patho-
gens vaccine production [5].

�Proteomics Databases and Tools

There are several available protein databases and tools, rang-
ing from sequence databases, alignment tools, domain pre-
diction tools, motif prediction tools, and three-dimensional 
structure databases and tools, among many others.

Sequence databases provide the amino acid sequence for 
many proteins and are essential for the creation of other data-
bases and tools [6]. Some of the most important are GenBank, 
Ref-Seq, UniProt, TrEMBL, and SwissProt [7]. GenBank 
contains redundant sequence data and allows the alignment 
of sequences with BLAST [6]. Ref-Seq nonredundant data 
comes from the GenBank database and includes important 

sequence annotations, such as domains, CDSs, and variants, 
among others [6]. UniProt is the most important protein 
database and is divided into TrEMBL and SwissProt, which 
contain computationally obtained and manually curated 
data, respectively [6].

Structure databases contain information obtained in 
experimentally confirmed protein structure studies [6]. The 
most important structure database known is Protein Data 
Bank (PDB) [8]. However, there are other databases avail-
able, such as CATH and SCOP [7]. PDB provides three-
dimensional data structures along with significant 
annotations, including helices and sheets, variants in spe-
cific sites such as the active site, among other biochemical 
indicators [8]. Furthermore, there are available tools for the 
prediction of protein structures, such as SWISS-MODEL, 
which uses a UniProt identifier for the retrieval of the 
sequence, the alignment with sequences in the database and 
the prediction of the protein folding [9]. SWISS-MODEL 
allows the visualization of homologous protein structures 
and alignments, including options for amino acid classifica-
tion by charge, size, entropy, and amino acid groups, among 
others [9]. Finally, the selected models can be assessed by 
stoichiometry with a methodology named QMEAN and 
with Ramachandran plots [9]. Structure data either from a 
database or from a modeling tool can be downloaded for 
visualization in other tools, such as Pymol or Jmol [8].

�Proteomics Technologies

In 1975, the study of proteomics with the second-dimensional 
gel electrophoresis technique was used to detect proteins 
from a mixture of Escherichia coli [10]. Twenty-five years 
later, the biochemical genomics technique and methods for 
the quantification and analysis of proteins were introduced, 
which allowed researchers to identify proteins from genes 
with activities in biochemical metabolic pathways; the GST-
ORF technique (opening reading frame fused to glutathione 

Table 6.1  The relevant techniques of proteomics

Year of discovery Technique Type of technique Advantages References
1975 Two-dimensional gel 

electrophoresis
Conventional and advanced Separation of subunits O’ Farrell et al. [10]

1999 Biochemical genomics Advanced Fast precision Martzen et al. [11]
2001 Microarrays of Proteins Advanced Analyze the complex protein Zhu H et al. (2001)
2011 MS Advanced protein mixtures Analyze of complex Yates Iii (2011)
2006 ICAT labeling Quantitative Isotopes Shiio and Aebersol (2006)
2006 SILAC Quantitative Isotopes amino acids Ong et al. (2006)
2007 iTAQ Quantitative Relative and absolute Wies et al. (2007)
2000 X-ray crystallography High throughput High-throughput 3D structure Smith MS (2000)
2015 NMR-spectroscopy High throughput Understand biological function Krosveen et al. (2015)

MS Mass spectroscopy, ICAT labeling Isotope-codea affinity tag, SILAC Stable Isotope labeling with amino acids in cell culture, iTRAQ Isobaric 
tag for relative and absolute quantification
Advanced techniques; Timeline of techniques used in the study of proteomics
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S-transferase) is fast and sensitive and is applicable for 
almost any detectable activity [11]. These and all subsequent 
techniques in the advancement and evolution of the study of 
proteomics are listed in Table 6.1.

�Proteomics in Health and Disease

�Proteomics for the Diagnosis 
of Neurodegenerative Diseases

Neurodegenerative diseases are a wide and heterogeneous 
group of diseases that represent a common cause of morbid-
ity and cognitive impairment in the elderly. Unfortunately, 
the prevalence of such diseases is still growing, and the early 
diagnosis is challenging since most clinicians are not prop-
erly trained to diagnose these conditions. As in most chronic 
diseases, the opportune diagnosis of neurodegenerative dis-
eases is crucial for a patient’s outcome, since this allows an 
appropriate prescription and management that may impact 
the prognosis. Thus, in this section we briefly described the 
state of the art for proteomics applied for the diagnosis of 
most common neurodegenerative diseases.

�Alzheimer’s Disease (AD) and Related Dementias 
Diagnosis
AD is the most common neurodegenerative dementia; in 
2017, there were an estimated 46 million people with AD 
worldwide, and it has been suggested that the prevalence of 
such disease will continue to grow in the coming years. In 
the beginning, physicians identified AD as probable AD, 
since they only performed physical examination that revealed 
mild cognitive impairment or dementia; unfortunately, the 
definitive AD diagnosis came with the autopsy that showed 
the presence of amyloid plaques and tau neurofibrillary tan-
gles in the brain [12]. Currently, with the technological 
advances in neuroimaging (computed tomography, magnetic 
resonance imaging, or positron tomography), AD diagnosis 
relies on the evaluation of behavior tests that give informa-
tion about an individual’s memory and cognitive functions; it 
has been reported that these novel technologies offer sensi-
tive and specific imaging biomarkers for AD diagnosis. Most 
of these biomarkers reflect glial inflammation, epigenomic 
alterations, structural and functional brain alteration, and 
synaptic or cellular degeneration from the early stages of AD 
[13]. Unfortunately, the main limitation to transfer these 
technologies to daily medical practice is both the affordabil-
ity and unavailability of the equipment in most hospitals.

In this context, proteomic biomarkers for AD have gained 
relevance in the clinical field, since these enable us to under-
stand the etiology and identify potential targets for improv-
ing the management of AD patients, leading to the 

development of personalized medicine [14]. The main bio-
markers derived from this omic technology are the amyloid 
plaque, which is composed of Aβ-peptides derived from the 
APP. Thus, the early-stage AD patients show elevated levels 
of Aβ40 and Aβ42, and both diminish in the late stage of the 
disease [12]. Another proteomic study suggests a set of five 
proteins that differentiates AD from non-AD individuals, 
which includes ɑ-1-microglobulin, apolipoprotein E (ApoE), 
brain natriuretic peptide, interleukin-16, and serum glutamic 
oxaloacetic transaminase; these biomarkers are highly sensi-
tive and (89.36%) and specific (79.1%). However, when 
these proteins are compared with previous published studies, 
only ApoE is reproducible among the different cohorts [15]. 
As well, proteomics are helpful to understand the biological 
network, pathway, and cell type changes in human tissue; in 
this sense, a recent study performed in the early 400 CSF 
samples identifies 3334 proteins that help to differentiate 
among AD and other dementias, proteins involved in inflam-
mation, sugar metabolism, mitochondrial function, synaptic, 
RNA-associated proteins, and glial activation [16]. Similarly, 
another study identifies a list of 26 core proteins linked to 
neurodegeneration such as PARK7, SOD1, YWHAZ, and 
YKL-40, reflecting the astrocytic activation, glucose metab-
olism, and antioxidant defenses in independent multicentric 
cohorts, with a significantly specificity (87%) and sensitivity 
for AD individuals. Moreover, a meta-analysis reveals that 
along the proteomic studies performed in three different 
cohorts, identify six candidate biomarkers (alpha-2-
macroglobulin, pancreatic polypeptide, apolipoprotein A-1, 
afamin, insulin growth factor binding protein-2, and 
fibrinogen-gamma-chain) for the early diagnosis of AD [17].

�Proteomic Studies in Parkinson’s Disease
As mentioned by several authors Parkinson’s disease (PD) is 
a chronic and neurodegenerative disease commonly associ-
ated with the aging process. PD is mainly characterized by 
the loss of dopaminergic neurons in substantia nigra pars 
compacta region, reduced dopamine level in the striatum, 
and accumulation of α-synuclein protein aggregates (Lewy 
bodies). As well, this neurodegenerative disease is featured 
by motor symptoms such as tremors, rigidity, bradykinesia/
akinesia, and postural instability [18, 19].

Currently, PD clinical diagnosis is based on the physical 
examination; however, similar to AD, the symptoms are vis-
ible when 70% of dopaminergic neurons have been lost. In 
this sense, research is focused on reliable biomarkers that 
help in the early diagnosis of PD, in an attempt to identify 
potential therapeutic targets. In this sense, proteomics have 
contributed to the understanding of the etiology and molecu-
lar mechanisms underlying this disease. For instance, several 
studies performed in brain tissue demonstrate that proteins 
implicated in Ca2+ homeostasis (regucalcin) and transport 
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(kinectin) [20], cell signaling phosphoinositide-dependent 
protein kinase 1, ERK 1/2, monomeric α-synuclein, and p38 
[21], mitochondrial integrity (Prx2, ATP synthase D chain, 
electron transport chain complexes I and III, and prohibitin) 
[22, 23], cytoskeleton (profilin, fatty-acid binding protein, 
and γ-glutamyl hydrolase) [24], aldehyde metabolism (alde-
hyde dehydrogenase A and cellular retinol-binding protein 
1), L-DOPA methylation (S-adenosyl homocysteine hydro-
lase 1), glial activation (glial fibrillary acidic protein, glial 
maturation factor-β, galectin 1, and sorcin A) [25], oxidative 
stress (H-ferritin, SOD1, DJ-1, Prx2, Prx6, and Prx3) [26, 
27], energy metabolism (cytochrome b-c1 subunit 2 and ATP 
synthase subunit D, aldolase A, enolase, and glyceraldehyde 
dehydrogenase) [27, 28], and ubiquitination pathway 
(UCHL1) [29] are dysregulated in PD.

Additionally, in the quest of reliable biomarkers derived 
from less invasive procedures, liquid biopsies (or biofluids) 
such as cerebrospinal fluid (CSF), tears, blood, and blood-
derived components have become relevant for PD diagnosis. 
For instance, neurexin-1, R-1-acid glycoprotein, β-2-
glycoprotein 1, DJ-1, α-synuclein [30], apolipoprotein E 
(ApoE), autotaxin, SOD1 [31], ceruloplasmin, chromogranin 
C, and ApoH [32] have been identified in CSF samples from 
PD patients. Blood samples derived from AD patients show 
proteomic profiles involved in hemoglobin clearance 
(haptoglobin-related protein precursor, truncated β-globin) 
[33, 34], inflammation (PRNP, HSPG2), lipid metabolism 
(clusterin, complement C1r subcomponent, fibrinogen 
γ-chain), immunoregulation (immunoglobulin kappa-chain 
VK-1, Ig-γ-3, chain C region), protein folding (ApoA1, 
fibrinogen γ-chain), protein aggregation (serum amyloid P 
component), intracellular transport, cell proliferation immu-
noregulation, blood clotting (fibrinogen γ-chain, full size 
inter-α-trypsin inhibitor heavy chain H4), inflammation 
(transthyretin ApoAq complement factor H) [35], and mito-
chondria (mitochondrial ATP synthase β-subunit) [36] are 
dysregulated in PD patients in comparison to healthy con-
trols. Finally, tears are a novel source of potential biomarkers 
of PD, suggesting that protein involved in immune response, 
lipid metabolism, and oxidative stress (PRx6, annexin-A-5, 
glutathione-S-transferase-A, ApoD, ApoA4, Apo AI, lacto-
transferrin, galectin 3, and profilin 1) [37].

�Huntington’s Disease
Huntington’s disease (HD) is a neurodegenerative disease 
which is triggered in adulthood, and patients show emotional 
problems, cannot control their physical movements, have 
speech disorders and dementia, lose the ability to think, and 
die within 15–20 years of diagnosis; Huntington’s disease is 
genetically inherited through an autosomal dominant gene 
located on chromosome 4; it is caused by DNA mutation of 
generally 37 or more repetition of CAG nucleotides. 
Proteomic analysis with gel electrophoresis, mass spectros-
copy, Western blot, and technology based on chromatogra-

phy and X-ray crystallography, where it is shown that there 
are molecular changes that occur in HD, improves the spe-
cific treatment [38].

Aggregation of polyglutamine-expanded Huntingtin exon 
1 (HttEx1) in Huntington’s disease (HD) is characterized by 
the aggregation of soluble oligomers to late-stage inclusions, 
until today the nature of the aggregates and how they lead to 
neuronal dysfunction is not fully understood.

Proteomic analysis of this protein by mass spectrometry 
(MS) in a murine model was observed that HD has extensive 
remodeling of the soluble brain proteome, which was corre-
lated with the formation of insoluble aggregates during dis-
ease progression. This deep and quantitative analysis shows 
differences in protein expression levels, sequence character-
istics [39], low complexity regions, and spiral domains. In a 
cell-based model of HD, overexpression of a subset of the 
sequestered proteins in most cases rescued viability and 
reduced aggregate size, indicating widespread loss of cellu-
lar protein function contributes to mediated toxicity by 
aggregates of HttEx1 [40].

In addition to the protein aggregation characteristic in 
HD, it has been discovered that another failure that occurs in 
HD is the protein misfolding process, which can generate 
protein oligomers or larger aggregates. This may be due to 
high temperatures, low pH, oxidative stress, abnormal pres-
ence of metal ions, mutations, transcriptional, translational 
or posttranslational errors, and aging [41, 42].

The toxicity is due to soluble oligomers rather than the 
large protein inclusions that develop over time; therefore, 
researchers are currently focusing on developing aggregation 
inhibitors, although so far this has not been achieved with 
success [39]

�Cancer

The main clinical application of proteomics is the discovery 
of changes in the proteome in certain diseases for the identi-
fication of biomarkers that may lead to more efficient diag-
nosis and treatments [43]. One example of particular interest 
is cancer, in which several genes are mutated or rearranged 
[43]. Cancer cells often show aberrant gene expression, pro-
tein localization, and posttranslational modifications, affect-
ing protein function and cell stability [44]. Furthermore, 
distinct cancer types show different cellular gene expres-
sions and behavior [44]. Therefore, the molecular hallmarks 
in cancer have a promising future in the understanding of the 
development of the disease, as well as in prognosis and ther-
apies [44].

Several studies on breast cancer patients’ tissues or cells 
have shown differentially expressed proteins when compared 
to healthy subjects [45]. Examples include differences in 
normal epithelial tissues and invasive tissues and between 
estrogen receptor positive and negative cells [45]. In the 
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latter, ontology term enrichment analysis included focal 
adhesion and lipid metabolism proteins [45]. Furthermore, 
studies comparing different subtypes of breast cancer pro-
teomes have been done, with subsequent clustering analysis, 
achieving the grouping of subtypes according to expression 
patterns [45]. Some identified differentially expressed pro-
teins include ER, PR, HER2, p53, PIK3CA, and GATA3, 
among others [45].

On the other hand, proteomic studies on lung cancer, the 
most prevalent cancer type, have revealed different biomark-
ers as potential therapeutic targets [46]. The protein carcino-
embryonic antigen (CEA) has been found to be overexpressed 
in lung cancer tissues [46]. Although its diagnostic potential 
is not high, when used in combination with other proteins, 
such as CYFRA, it loses lung cancer specificity [46]. 
Ontology term enrichment analysis has revealed these pro-
teins as components of the cell membrane and the cytoskel-
eton, respectively [46]. Other differentially expressed 
proteins useful for treatment include TPA, ProGRP, NSE, 
and mutations in the epidermal growth factor (EGFR) pro-
tein [46].

There are several other studies on different cancer types 
[47]. Other common cancer types include prostate cancer 
[47]. Proteins found to be differentially expressed include 
calgranulin B, radical scavenger enzymes, and GTP-binding 
proteins [47]. Furthermore, PCOTH overexpressing cells 
showed elevated phosphorylation of oncoproteins, suggest-
ing an important role in cell growth and its potential target 
for therapies [47]. Additionally, mass spectrometry revealed 
chemokines and aberrant isoforms of serum amyloid A pro-
tein (the latter in metastasized bone patients) present in sero-
logical samples, which functioned for diagnosis with 
artificial intelligence algorithms, showing promising results 
[47].

Although proteomics has amazing advantages that have 
favorable future applications, including its ability to detect 
protein isoforms, including posttranslational modifica-
tions—which would go unnoticed using other technolo-
gies, such as transcriptomics—and to detect intracellular 
localization, it is important to be noticed that clinical pro-
teomics as a still emerging application has several draw-
backs [48]. Some of the main problems are the impossibility 
of protein amplification (in comparison with nucleic acids), 
limiting studies to the exact protein amount in the cell, and 
accordingly, the inability to detect important proteins hav-
ing important roles even under low expression levels [48]. 
For these reasons, more studies in the field of clinical pro-
teomics must be done, with greater cohorts and larger tis-
sues or cell samples for greater statistical significance, 
together with other important fields, such as genomics, 
transcriptomics, and metabolomics [48]. These improve-
ments could make omics technologies scale from laborato-
ries to clinics, with promising results for disease treatments 
and diagnosis [48].

�Mitochondria and Proteomics

Mitochondria is a double membrane organ in which the 
respiratory complexes responsible for electron transport and 
oxidative phosphorylation by ATP synthase coexist in the 
inner mitochondrial membrane; it also contains its own 
genetic material for the synthesis of some of its high-
molecular-weight and highly lipophilic protein complexes. 
The mitochondrial proteome plays a crucial role in different 
diseases such as type 1 and 2 diabetes, cardiovascular, and 
neurodegenerative, among others, in addition to playing a 
crucial role in cell signaling and different metabolic path-
ways for the generation of intermediate metabolites. It is 
known that when there is a condition linked to redox unbal-
ance, the mitochondria are also damaged, specifically com-
plex I and complex III [49].

The human mitochondrial proteome is made up of 1158 
genes encoding for proteins; the human mitochondrion 2.0 
was updated in which 240 new genes were added to the 918 
already existing, and they are compared with the proteome of 
14 mouse organs where it was also observed that the pro-
teome consists of 1158 genes encoded for proteins [50].

MitoMiner, developed by Smith and Robinson in 2017, 
centralizes data on the localization of mitochondrial proteins 
prioritizing target genes for mitochondrial diseases for 
research [51]. MitoCarta2.0 and MitoMiner are updated cat-
alogs offering access to all mitochondrial proteins that sup-
port and facilitate the investigation of mammalian 
mitochondrial proteins.

�Proteomics of Infectious Diseases

Viral Infections
As we previously described, proteins are responsible for 
controlling the various signaling pathways of cell function. 
The field of studying the proteins of an organism has become 
the main field for the identification and characterization of 
proteins.

The proteome of a cell, tissue, or organism is influenced 
by a variety of external and environmental stimuli, including 
those caused by infectious viral diseases such as HIV, hepa-
titis C, and currently SARS-COV-2.

HIV  The human immunodeficiency virus (HIV) proteome 
has been extensively explored, and representative genomes 
of each virus family have been sequenced, Databases main-
tained by the Los Alamos National Laboratories (www.hiv.
lanl.gov) and BioAfrica (www.bioafricrica.net).

The application of proteomics in HIV studies has been 
achieved to study interactions and measure protein levels 
quickly and accurately with microarrays, chips, and ELISA 
tests, where they identified a high expression of vascular 
endothelial growth factor (VEGF) and the factor of epider-
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mal growth (EGF) in HIV patients who have paradoxically 
low CD4 + T-cell counts despite a low viral load. If protein 
experiments are standardized, efficient, and inexpensive, 
they could pave the way for research on HIV and other dis-
eases [52].

Also, in other experiments analyzing the immune response 
in patients with antiretroviral treatment (ART), Arnaud et al. 
data showed a decrease in the immunoaffinity of antibodies 
vs the original strain of HIV after 4 weeks of ART, which 
was interpreted as evidence of viral adaptation to patients’ 
immune responses, ART, or both [53].

Hepatitis  Several proteomic studies have been analyzed for 
the hepatitis virus (HV). In particular in hepatitis B virus 
(HBV), a C-terminal fragment of complement factor C3 and 
an apolipoprotein A1 (ApoA1) isoform are known to be 
impaired in this disease [54]. The proteins haptoglobin, trans-
thyretin, antitrypsin, topoisomerase II, ApoA1, and ApoA4, 
1-a are overexpressed in patients with chronic hepatitis B 
[55]. Using the 2D gel technique with serum samples, the 
amyloid P component was detected in patients with healthy 
and chronic HBV, but not in patients with HBV-HCC [56].

SARS-CoV-2  In 2019, a highly infectious disease was dis-
covered in Wuhan in the Chinese People’s Republic that 
affects human health; this SAR-Cov 2 virus causes coronavi-
rus disease COVID-19. Although the underlying mecha-
nisms are unknown, patients can develop acute respiratory 
distress syndrome (ARDS) or even die suddenly in a short 
period. This sudden change implies a “two-stage” pattern of 
disease progression.

On March 11, 2020, the World Health Organization 
declared the coronavirus disease COVID-19 a pandemic, 
until in March 2021 a little over 117,644,021 cases and 
2,612,360 deaths had already been reported (WHO, 2021).

Proteomics studies for COVID-19 have already been car-
ried out, such as the one carried out by Chinese researchers 
in 2020 with urine samples from 37 patients in which they 
applied a quantitative proteomic approach of independent 
data acquisition (DIA), based on mass spectrometry; the 
analysis consisted of three experimental groups which were 
(1) healthy, (2) non-COVID-19, and (3) non-COVID-19 
pneumonia; 5991 proteins were found in the 37 urine sam-
ples, 1986 protein levels changed significantly in the 
COVID-19 group compared to the other groups.

It can be concluded that patients with COVID-19 in the 
early stage show changes in the proteomics that reveal immu-
nosuppression, while patients with COVID-19 in late stages 
show proteomics of immune activation, which provides the 
basis of molecular biology to understand clinical symptoms 
and develop strategies to elucidate the stage of the disease 
that patients will develop. [57]

Bacterial Infections
The study of diseases caused by bacteria has gained rele-
vance in recent years because the number of bacteria with 
antibiotic resistance has increased alarmingly. Also, diseases 
that were practically under control are having a rebound in 
the number of infections per year. Therefore, proteomic 
approaches to detail how these microorganisms interact with 
the host and the changes they generate in the host are 
extremely important [58].

Such interventions can be useful for precision medicine 
strategies by determining which bacterium is causing the 
infection, whether it is a variant, and then applying the most 
appropriate treatment. Also, with antibiotic resistance prob-
lems, docking and molecular dynamic techniques make it 
possible to search or synthesize molecules with antibiotic 
potential or to reposition drugs in this area [58, 59].

One of the bacterial infections with the greatest impact on 
public health is Mycobacterium tuberculosis. The diagnosis 
is complex, and this allows it not only to affect the lungs but 
also to spread to other organs of the body [60]. Besides, the 
presence of several variants makes treatment complex, so in 
a recent analysis, they reviewed biomarkers in serum and 
plasma from 18 studies performed in different parts of the 
world, using various techniques from ELISA to mass spec-
trometry [61]. Interestingly, most of the studies show differ-
ent combinations of cytokines and other proteins that could 
be characteristic of that regional variant of the bacterium. It 
is important to continue researching and using proteomic 
tools to be able to apply them to the clinical setting as soon 
as possible [58].

Another recurrent infection is caused by Salmonella spp. 
bacteria. In vitro studies in which the proteomic profile of 
these bacteria has been evaluated during their interaction 
with human cells found that proteins belonging to metabolic 
pathways such as glycolysis, pyrimidine degradation, as well 
as flagellar proteins and glucose transporters are overrepre-
sented and that proteins related to anaerobic respiration, 
TCA, and chemotaxis are underrepresented [62].

The application of proteomic tools in precision medicine, 
in this case in the fight against infectious diseases caused by 
bacteria, is very important to improve diagnostics. This will 
make it possible to combat the problem of antibiotic resis-
tance by generating new strategies to make existing treat-
ments more efficient and the possibility of generating new 
ones.

Parasitic Infections
Parasites are organisms responsible for several types of 
infections and may be classified into three main groups: 
protozoa, helminths, and ectoparasites. Protozoans are 
eukaryotic unicellular organisms responsible for infections 
such as malaria, toxoplasmosis, and trichomoniasis. On the 
other hand, helminths are worm-like multicellular organisms 
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usually found in the gastrointestinal tracts of humans. 
Ascariasis, trichuriasis, and hookworm are the most com-
mon helminths infections, which present a high prevalence 
in developing countries [63]. Finally, ectoparasites are organ-
isms that cause skin infections, such as pediculosis and tung-
iasis [64].

Parasitic infections have several problems: firstly, diagno-
sis is usually done with classic microscopy technologies 
[65]. For this reason, diagnosis usually has low specificity 
and sensitivity and additionally depends on technician abili-
ties, which is time-consuming and costly. Secondly, treat-
ments are commonly unsuccessful, resulting in high mortality 
and morbidity [66]. Finally, the most commonly used tests 
are ineffective in current and past infections, making progno-
sis difficult [65]. Parasitic infections are of special interest in 
low-income countries, where they are endemic [66]. For 
these reasons, it is necessary to develop new, more accurate, 
and affordable diagnosis tools [66].

Proteomic technologies have a promising solution for 
these problems, since they have the ability to identify spe-
cific biomarkers expressed in parasitic infections, facilitating 
diagnosis and treatments [66]. Furthermore, proteomics may 
enable the distinction between current and past infections 
with the detection of pathogen-derived molecules [66]. 
Several studies analyzing the proteome during parasitic 
infections have been already done, yielding significant and 
useful results. For example, in malaria, hypoxanthine phos-
phoribosyltransferase, phosphoglycerate mutase, lactate 
dehydrogenase, and fructose-bisphosphate aldolase were 
found at higher concentrations in patients than in healthy 
control individuals. Additionally, currently there are rapid 
malaria diagnosis tests available, which measure histidine-
rich protein 2, lactate dehydrogenase, and aldolase levels. 
Similarly, opisthorchiasis, an infection caused by the hel-
minth Opisthorchis viverrini, may cause severe long-term 
effects, including the development of cholangiocarcinoma. 
However, most of the patients don’t present any symptoms 
during the early infection, making diagnosis a highly diffi-
cult task. Proteomics analysis revealed increases in fibronec-
tin in opisthorchiasis patients [67].

Leishmaniasis, caused by the protozoan parasites of the 
genus Leishmania, benefits from proteomics, since current 
evidence demonstrates the discovery of potential biomarkers 
with a wide range of applications such as diagnosis, progno-
sis, therapeutic targets, monitoring disease progression, treat-
ment follow-up, and identification of vaccine candidates [68].

It is expected that in future years, more studies regarding 
the proteome in parasitic diseases are developed, thus, allow-
ing the identification of more biomarkers that may be useful 
both for diagnosis and as therapeutic targets [66]. 
Furthermore, immunoproteomics, a technique integrating 
proteomics with immunological responses, may help in anti-
gen discovery for vaccine development. Finally, develop-

ment and commercialization of new diagnosis devices are 
required for accurate and the early parasitic infections diag-
nosis, addressing mortality issues, especially in low-income 
countries [66].

�Aging, Frailty, and Skeletal Muscle  
Wasting

The advances in medicine and technology have made possi-
ble the extension of human longevity, but when it comes to 
the state of health of older adults there is a negative correla-
tion, seriously affecting their quality of life.

Age-related diseases are one of the obstacles to overcome 
to improve the health span of older adults and proteomics as 
a diagnostic tool can contribute to timely detection and treat-
ment. Despite its usefulness, there are not many reports on 
the status of protein levels throughout life and particularly in 
aging. However, some studies cover issues related to protein 
synthesis and its quality control in aging, muscle-related dis-
eases, and frailty.

Protein synthesis and its quality control are biological 
processes of high importance for the correct functioning of 
the organism [69, 70], so the changes that these processes 
undergo throughout life are very relevant. The functionality 
of the whole system depends on a balance between the syn-
thesis, degradation, and function of each protein, and in 
aging, changes in this balance are often observed that can 
trigger pathologies [70].

Some studies suggest that there is a decline in protein syn-
thesis in aging, the ability of cells to fold and degrade pro-
teins [70]. In many cases, this loss of proteostasis in aging 
leads to the accumulation of damaged proteins and other 
molecules, which in turn can inhibit cell functionality and 
thus trigger an aging-associated disease [69, 71].

Undoubtedly, one of the most accepted theories is that 
during aging there is an accumulation of oxidized proteins 
[72]. This oxidation modifies the folding of the protein, and 
this leads to its aggregation, which often interferes with its 
degradation, making it easier for more oxidized proteins to 
aggregate, eventually altering and compromising the viabil-
ity of the cell. The aggregation of proteins, lipids, and other 
molecules leads to the formation of lipofuscins. It consists of 
approximately 30%–70% cross-linked proteins and 20%–
50% lipids, but carbohydrates were also identified to be a 
component of lipofuscin [70, 73]. The number of oxidized 
proteins or the detection of lipofuscins may be useful to 
detect changes in proteostasis and provide a warning of pos-
sible pathology [74].

However, a recent study involving 36 different proteomic 
analyses identifying proteins that change significantly with 
age reveals 1128 proteins reported by at least 2 analyses and 
a set of 32 proteins reported in 5 or more analyses. These 32 
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proteins become more relevant because of their known asso-
ciations with aging and age-related diseases [75]. Within this 
list, we find proteins such as EGFR, GDF15, GSTP1, HGF, 
LAMC1, and VEGF.

As a result of this meta-analysis of the 1128 proteins, they 
propose a proteomic aging clock based on detectable pro-
teins in plasma, which have been reported to change their 
levels with aging in at least 3 different studies [75].

One of the major limitations for an older adult has to do 
with mobility, strength, and control of his or her body. 
Skeletal muscle plays an important role in this aspect as it is 
one of the tissues most affected during aging. The loss of 
this tissue associated with pathologies such as sarcopenia or 
neuromuscular diseases greatly affects people’s quality of 
life [76].

In this sense, several studies have been carried out in 
which a proteomic signature has been determined for dis-
eases such as amyotrophic lateral sclerosis in which CRP, 
NfH/NfL, TDP-43, apoA-I, and clusterin proteins are dereg-
ulated. In the case of Duchene muscular dystrophy, the 
affected proteins are fibronectin, MMP-9, TIMP-1, osteo-
pontin, haptoglobin, myostatin, and dystroglycan. On the 
other hand, sarcopenia shows important changes in CAF, 
myostatin, eHSP72, sTnT, C1q, adiponectin, and myokine 
irisin proteins [77].

Similarly, another study that focused on skeletal muscle 
proteomics found that in older individuals, ribosomal pro-

teins and proteins associated with energy metabolism (par-
ticularly the TCA cycle, mitochondrial respiration, and 
glycolysis) were underrepresented. On the other hand, pro-
teins associated with innate and adaptive immunity, pro-
teostasis, and alternative splicing processes were 
overrepresented [78].

�Conclusions

Proteome study represents a challenge since it is highly 
dynamic and interconnected; hence, the advances in this 
field evolved quickly looking for more sensitive and spe-
cific methodologies that depict accurately both physio-
logical and pathophysiological processes in the organism. 
In this sense, the current technologies based on large-
scale, high-throughput proteomics represent a powerful 
tool for the discovery of potential biomarkers not only for 
diagnosis or prognosis; it also contributes for the individ-
ual follow-up during a drug treatment leading the physi-
cians to make more accurate decisions to obtain the best 
outcomes (Fig.  6.1). However, there are few limitations 
such as the lack of harmonized experiment methodologies 
and data processing that may be solved in the upcoming 
years in order to move forward proteomics into clinical 
usage.

Fig. 6.1  Clinical applications of proteomic analyses. Proteomic stud-
ies are large-scale, high-throughput tools that offer valuable informa-
tion regarding physiological and pathophysiological processes. The 
current proteomic analyses comprise protein arrays, 2D-electrophoresis 

gel, and mass spectrometry. Altogether, proteomics have relevant clini-
cal applications such as characterization of biomarkers in health and 
disease, or during a drug treatment. (Modified from [79])
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UHPLC/MS/MS	 Ultra high-performance liquid 
chromatography with tandem 
mass spectrometry

USE	 Ultrasound elastography

�Introduction

Medicine is undergoing a revolution that will transform the 
practice of healthcare in virtually every way [1]. Personalized 
medicine aims to assess medical risks and monitor, diagnose, 
and treat patients according to their specific genetic composi-
tion and molecular phenotype [2]. The “omics” data, referring 
to large-scale datasets in the biological and molecular field [3], 
contributes to the integration of quantitative data within order 
to system biology approach [4, 5] through computer technol-
ogy [6]. Even more the “connectomics” big data era allows the 
development of high-performance platforms needed for the 
exploration of the biological mechanism [7] characterizing the 
molecular underpinning of human disease [5] and allowing the 
medical treatments to be individualized [8]. Metabolomics is 
considered as “totalomic” or “panomic,” because it is part of a 
technological tool in molecular biology [9] being defined as 
the study of small molecules called metabolites [4]. The appli-
cations of metabolomics support to uncover relevant patho-
physiological mechanisms and to identify biomarkers of risk 
and progression in obesity and diabetes, as well as in digestive 
[10] and other diseases. This personalized medicine/therapy is 
based on tailored biology attributes as genetics, proteomics, 
and metabolomics [11], with mass spectrometry as the most 
useful technique in biomarker discovery toward clinical appli-
cations and improvement in clinical diagnostics [12].

Biomarkers are a key part of precision of personalized or 
individualized medicine [10]. Metabolomics encompasses 
the diverse metabolic activity of cells [13], which allows 
directing a more supportive diagnosis as well as a personal-
ized treatment [14]. Inclusive, metabolomic analysis has 
made it possible to determine the impact of traditional 
Chinese medicine in human pathologies such as osteoporosis 
[15] and polycystic ovary [16].

The focus of this chapter is to analyze the performance of 
metabolomics in the diagnosis of various diseases, as well as 
its implementation in the clinical therapy.

�The “Omics Science” in Human Health

The “omics technologies” are now applied in all aspects of 
knowledge of life. The various subdisciplines include 
genomics (DNA), transcriptomics (mRNA), proteomics 
(proteins), and metabolomics (metabolites), among a host of 
other emerging areas [17]. Metabolomics is the “systematic 

study of the unique chemical fingerprints that specific cellu-
lar processes leave behind” [18]. Specifically, it focuses on 
the study of the profiles of small metabolites that play a key 
role in understanding the phenotype of an organism and the 
changes it undergoes due to various factors such as perinatal 
asphyxia, the action of drugs, changes in diet, and the physi-
ological impacts of the environment [19]. Moreover, metab-
olomics is a rapidly evolving field that aims to identify and 
quantify the concentration changes of all the metabolites in a 
given bio-fluid, or tissue extract, from a patient [20]. Using 
metabolomic markers, diagnostic accuracy may in the near 
future outperform mammography and ultrasound and set 
new standards for breast cancer screening and diagnosis 
[21]. In recent years, metabolomics, also called “metabo-
nomics,” has been successfully applied in the field of cancer 
research, in which prognostic markers that can distinguish 
indolent from aggressive prostate cancer could have substan-
tial benefit in patients [22], providing insights into the 
dynamics of cellular response to ionizing radiation [4]. Even, 
this metabolic approach could also provide new insights into 
the pathophysiology of airway dysfunction, suggesting novel 
pathways for drug discovery [23].

Furthermore, metabolomics and proteomics have allowed 
the characterization of the proteins and metabolites of 
COVID-19, as well as the dysregulation of multiple apolipo-
proteins APO-A1, APO-A2, APO-H, APO-L1, APO-D, and 
APO-M [24]. Another disease that can be predicted via met-
abolic profiles is polycystic ovary syndrome, which pre-
sented biomarkers [25]. Tuberculosis meningitis presents 20 
metabolites in contrast to healthy controls [26]. Moreover, 
metabolomic and lipidomic analyses have been used for the 
profiling of neurodegenerative processes [27] and patho-
physiological conditions as gestational diabetes mellitus 
[28]. Nowadays, the Duke researchers continue to study the 
bacteria and metabolomics of the babies, with the goal to 
improve survival and reduce illness in this population [29]. 
Recently, the potential use of an automated metabolomic 
robotic platform, employing the principle of laser-assisted 
rapid evaporative ionization mass spectrometry (LA-REIMS) 
in cervical cancer screening 130 women, improves the accu-
racy and efficiency of the current national screening program 
[30]. The evidence states that “omics” will irrevocably 
change the practice of medicine [31]. In this manner, the 
“omics sciences” arrived with the best understanding of dis-
eases, being complementary to the traditional clinic.

�Toward Personalized Medicine

�Predictive Technologies in Human Diseases

The explosion of new technologies and knowledge, particu-
larly in the field of “omics,” calls for further efforts to imple-
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ment these new and promising diagnostic tools in clinical 
practice [31]. Chemical analytical methods, such as mass 
spectrometry and nuclear magnetic resonance (NMR), are 
noninvasive methods that have been widely useful in the 
diagnosis of several diseases [Table 7.1].

A biomarker is a biochemical entity used to measure 
the progress of a disease or the effects of treatment on 
clinical. In medicine, the term refers to a protein/metabo-
lite measured in blood, whose concentration reflects the 

presence or severity of a disease state [64]. In addition, 
exhaled biomarkers “denominated as breathomics” can be 
validated in the diagnosis, monitoring, and treatment of 
patients in respiratory diseases, contributing to the devel-
opment of personalized medicine [65]. Inclusive, “phar-
macometabolomics” focuses on the analysis of the 
pre-dose bio-fluid metabolite profile, which could reflect 
the complex interactions among physiopathological con-
ditions [66].

Table 7.1  Methodology, instrumentation, and human diseases diagnosed by metabolomics

Pre-analysis

Technology used Analysis/post-analysis

Author
MS NMR Other

Organism/methods Instrumentation Results/conclusion
35 children with allergic 
asthma: breath samples

HS-SPME /GCMS – – 44 volatiles: MS rapid and noninvasive diagnostic tool [32]

54 patients with ADPKD: 
urine

– 1H, HSQC – Identification of ADPKD patients [33]

21 gout patients: urine and 
serum

– – HPLC-
DAD

Multiple biomarkers can provide an overall pattern to 
predict the disease

[34]

35 persons with hepatic 
steatosis: plasma

UHPLC/MS/
MS. GC-MS

– – 437 metabolites. Marked changes in bile salts and in 
biochemicals related to glutathione

[35]

135 children with asthma: 
breath

– 1H: 600 MHz – Difference of metabolites between individuals with 
asthma and healthy

[23]

365 patients with PPGLs: 
plasma

– – PCR O-methylated metabolite of dopamine is the 
biomarker in patients with metastasis

[36]

32 children with asthma: 
breath

GC × GC-ToFMS – – 134 metabolites regarding diagnostic, prognostic, and 
treatment follow-up

[37]

42 patients with breast 
cancer: serum

– 1H: 
600.29 MHz

– 12 metabolites as part of metabolic syndrome 
associated with a poor response in breast cancer

[38]

10 women: blood plasma – 1H: 
499.97 MHz

– Changes across menstrual stages, helping predictive 
fertility analysis

[39]

21,788 newborns: dried 
blood spot

LC-MS – – Differences in metabolites by gestational age, birth 
weight, gender, and season

[40]

15 subjects during the graft 
recovery process of kidney 
transplantation: urine

– 1H: 600 MHz – NMR methods allow monitoring of kidney graft 
recovery patients who are not progressing within the 
normal range.

[41]

12 children hospitalized by 
spontaneous micturition: 
urine

GC-MS – – GC-MS method aiming to support pediatric clinics 
and assist in diagnostics.

[42]

452 participants (majority 
obese): serum

UPLC-QTOF-MS – – Free fatty acids levels with metabolic phenotypes 
among several groups of obese participants

[43]

6 newborns with perinatal 
asphyxia: urine

– 1H: 600 MHz - – Increase: lactate, threonine, 3-OH isovalerate, glucose, 
and aspartate. Decrease: acetate, formate, urea, 
aconitate, creatinine, dimethylamine, 
dimethylglycine,and betaine

[19]

127,987 newborns were 
screened for AADC 
deficiency: plasma

LC-MS/MS – RT-PCR Newborn screening of AADC deficiency was achieved 
with a 100% positive predictive rate

[44]

136 elderly person 
>55 years: plasma

LC/MS-MS 1H: 600 MHz – Deficiency of ergothioneine predisposing individuals 
to neurodegenerative diseases

[45]

24 pregnant women with 
GDM: plasma

GC-MS – – 2-Hydroxybutyrate and 3-hydroxybutyrate to predict 
the onset of diabetic complications in women with 
GDM

[46]

40 patients (miscarriage): 
maternal blood samples and 
urine

UPLC-MS – – Urine metabolites as a noninvasive screening tool for 
the risk stratification of women presenting with 
threatened miscarriage

[47]

252 persons having prevalent 
hypertension: plasma sample

LC/MS-MS – – Elevated F2-isoprostane levels do not increase the risk 
of hypertension

[48]

(continued)
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Thereby, numerous success stories have been widely 
reported. The urinary proteomics by NMR spectroscopic fin-
gerprinting was applied in patients with autosomal dominant 
polycystic kidney disease (ADPKD) [33] and hepatic steato-
sis [35]. Furthermore, metabolomics helped to detect the 
methoxytyramine in metastatic pheochromocytomas and 
paragangliomas (PPGLs) [36], as well as in breast cancer 
[38, 53], in the process of kidney transplantation, [41] and in 
Parkinson diagnosis [54].

In the same way, metabolic profile allows the amount of 
acylcarnitines in the plasma to vary depending on the type of 
depressive disorder in patients [67]. NMR of proton (1H 

NMR) allows fast and reliable detection of a large number of 
metabolites. In this way, it was detected in a cohort of 180 
serum samples that 30% were related to mild cognitive 
impairment (MCI) and increased risk of Alzheimer’s disease 
(AD), showing the coexistence of inflammation, metabolic 
syndrome, as well as elevated glycoproteins [68]. In addi-
tion, metabolomics was employed to screen and identify 
novel biomarkers of gout based on human serum and urine 
samples [34] in asthma [23, 69] and arthritis diseases [70]. 
Moreover, metabolic syndrome is commonly observed in 
metastatic breast cancer and associated with a poor response 
to chemotherapy, suggesting the importance of metabolome 

Table 7.1  (continued)

Pre-analysis

Technology used Analysis/post-analysis

Author
MS NMR Other

Organism/methods Instrumentation Results/conclusion
113 adult outpatients with 
cirrhosis: Plasma sample

UPLC-MS/MS – – Ascorbate and aldarate metabolism, methylation, and 
cellular glucuronidation as metabolomic signature

[49]

15 first-episode drug-naïve 
major depressive disorder 
patients: plasma sample

LC-MS – – Biomarkers in plasma lipid species such as LPCs, 
PCs, PEs, CEs, and TGs are correlated with several 
depressive sub-symptoms

[50]

13 mother carrying fetus: 
posterior urethral valves, 
urinary sample of fetus

CE-MS – – The potential of cumulative different omics traits in 
biomarker research

[51]

46 patients with diabetic 
nephropathy: serum

GC/MS – – Serum citric acid level is potentially a biomarker that 
could assist in the diagnosis of diabetic nephropathy

[52]

217 pregnant women with 
GDM: serum. Metformin vs 
insulin

– 1H – Compared to insulin, metformin caused an increase in 
alanine, isoleucine, and lactate concentrations

[28]

9125 patient samples (breast 
cancer)

HRMS – RT-PCR Metabolic heterogeneity within and across cancer 
types

[53]

60 patients with Parkinson’s 
disease: plasma

GC–MS – – Integrating blood metabolomics enhances the 
diagnostic discrimination power

[54]

33 patients with diabetes 
type 2: urine

– 1H: 600 MHz – Metabolites in diabetic subjects: urinary creatine, 
glutamic acid, and 5-hydroxyindoleacetic acid

[5]

VOC’s exhaled breath of 
patients

TD-GC × GC-FID/
qMS

– – Analysis of breath VOCs by GC × GC is clinically 
viable with low storage cost.

[55]

660 patients (fertility status): 
seminal plasma

LC-MS – – Phthalates may affect the semen quality by causing 
disorders of seminal plasma

[56]

46 volunteers with dengue: 
breath sample

SPME-GC/Q-TOF – – Six dengue breath biomarkers. Rapid and easy 
diagnosis of dengue disease

[57]

658 volunteers (metabolic 
syndrome): plasma

LC-ESI-MS/MS – – Numerous lipid species that were associated with 
metabolic risk factors cross-sectionally

[58]

100 volunteers (idiopathic 
cervical dystonia): plasma

LC-HRMS – – 289 metabolite biomarkers [15]

1515 volunteers with 
tuberculosis: urine sample

– – EIA 7 biomarkers showed potential as tuberculosis 
diagnostic

[59]

104 patients with HCC: 
blood sample

GC-MS – PCR Good performance in predicting early HCC in patients 
who had tumor size <2 cm

[60]

2969 women (DHEA-S): 
blood sample

LC-MS/MS – EIA Low DHEA-S is associated with impaired lung 
function, predicted airflow limitation

[61]

31 patients: Saliva (Sjögren’s 
syndrome)

– – USE, 
RAMAN

Molecular composition of saliva yielded an overall 
accuracy of 81%

[62]

39 patients (breast cancer): 
blood sample

HPLC-TQ/M – – Metabolomic profiling proposed biomarkers in 
discovery of early breast cancer patients

[21]

46 patients with COVID-19: 
serum

UPLC-MS/MS – – 105 proteins were expressed in COVID-19 patients but 
not in the non-COVID-19 patients

[24]

100 patients: plasma 
(idiopathic cervical dystonia

LC-HRMS – – Provide potential novel insights into the biology of 
cervical dystonia

[63]
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correlation with personalized therapy [38]. Furthermore, in 
cystic fibrosis, metabolomic profiling of regulatory lipid 
allows for the creation of a unique set of biomarkers for fur-
ther characterization and biologic impact in lung function 
[71]. Inclusive, breath metabolic profile allows the diagnosis 
of dengue disease and achieved a 100% rate [57].

Thereby, not only in adults these technologies have been 
applied; some examples are applied in the following: metab-
olomic assay to find biomarker molecules in children with 
allergic asthma [32, 37] and in children with spontaneous 
micturition [42], the presence of phthalate compounds in the 
urinary metabolome from children with cystic fibrosis [72], 
as well as an increase in fat and body weight, altering the 
endocrine system [73]. Metabolomics is a tool that has been 
used in studies in newborn with perinatal asphyxia [43] as 
well as in deficiency of L-amino-acid decarboxylase [44], 
even in fetus diagnosis [51]. On the other hand, it has been 
used in the diagnosis in human fertility issues due to the 
accumulation of phthalates in human semen [56]. Thus, 
metabolomic profile of metaphase I and II oocytes was 
obtained by near-infrared spectroscopy (NIR), which allows 
for the prediction of embryo viability [74].

Otherwise, metabolomic techniques permit detection of 
gestational diabetes mellitus in pregnant women [46] [28], 
inclusive in women with risk of threatened miscarriage [47]. 
In persons with diabetes mellitus, biomarkers have been 
detected to diagnose nephropathy [52] as well as in meta-
bolic syndrome [58]. In addition, metabolomics is a useful 
tool in patients with depressive disorder [50], Sjögren’s syn-
drome [62], in women with impaired lung function [61], 
idiopathic cervical dystonia [15], as well as in patients with 
tuberculosis disease [59]. Finally, genomic sciences have 
allowed the study and analysis of the SARS-CoV-2 virus 
present in infected people [24].

The application of “omics technologies” in various human 
diseases has been widely reported, with great success and 
without presenting an invasive sampling technique toward 
the patient.

�How to Implement Clinical Analysis Through 
Metabolomics

�Instrumentation in the Metabolomic Clinic

The complexities of translating basic discoveries into clini-
cal trials and studies, followed by the implementation of 
results in medical practice, must be considered a fundamen-
tal part of the curriculum for laboratory medicine residents 
[31]. The medical system, by contrast, is holistic and utilizes 
all types of biological information  – DNA, RNA, protein, 
metabolites, small molecules, interactions, cells, tissues, 
organs, individuals, social networks, and external environ-
mental signals – integrating them, so as to lead to predictive 

and actionable models for health and disease [1]. In recent 
years, there has been a tremendous effort to develop bio-
markers for prognosis and prediction of clinical response to 
a given treatment by studying the difference between the 
normal tissue and tumors as well as the differences in the 
tumors across a cohort of patients [75], being the metabolo-
mic evaluation crucial to assisted reproduction technology 
[76]. For example, hepatocellular carcinoma is the sixth 
most widespread tumor and the third leading cause of cancer-
related death worldwide [60], being the cancer treatment lies 
in a personalization of medicine, where each patient’s treat-
ment regime is tailored to the genetic diversity of their 
tumors [77]. Today, the combination of these techniques 
(NMR, LC/MS, and CG/MS) is desirable in order to detect, 
identify, and quantify hundreds of thousands of metabolites 
in a given automatism and useful in biomarker discovery 
toward clinical applications [12, 19].

Therefore, mass spectrometry (MS) has been a routine 
technique in the diagnosis of various diseases, being coupled 
to various other techniques. Thus, in the HS-SPME/GC tech-
nique, the facility to acquire the biological sample was 
reported, which is noninvasive [32]. Moreover, the analysis 
of exhaled air composition could be especially useful because 
metabolomic changes occur in the human body at the incipi-
ent phase of a disease, which are transmitted to the alveolar 
exhaled air via the lungs [57].

Also, the liquid chromatography technique (LC) has been 
reported widely, with different experimental conditions, as 
well as the mass analyzer, which is more powerful and robust, 
allowing the metabolic identification with greater assertive-
ness. Generally, the biological samples obtained from most of 
the patients were kept frozen at −80 °C, until their subsequent 
spectrometric analysis. Before the introduction of the sample 
into the mass analyzer, the samples first pass through a chro-
matographic column (reversed phase) with very different 
characteristics. Thus, high-resolution mass spectrometry 
(HRMS) in an Orbitrap mass spectrometer has been used to 
analyze the seminal plasma metabolites [56] as well as the 
therapeutic drug monitoring and quantification of antidepres-
sants [78]. In addition, quadrupole mass spectrometer has 
been employed successfully for the detection of phthalate in 
urine samples [72] and oxylipin molecules, which act as bio-
markers for monitoring renal function in the post-renal trans-
plantation period [79], as well as to monitor the amino acid 
composition in bone to correlate possible risks in bone frac-
tures in older adults [80]. Meanwhile, triple-quadrupole mass 
analyzer has been employed to the detect metabolites related 
to cardiovascular disease [81], to identify biomarkers in pul-
monary hypertension [82], and to monitor the tryptophan in 
inflammatory bowel diseases [83]. Besides, a double quadru-
pole has been employed to identify the acylcarnitine in 
Alzheimer’s disease [84]. Other mass spectrometers – such as 
quadrupole time-of-flight (qTOF)  – permit analysis of the 
glycosylation profiles as prognostic markers in patients with 
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granulomatosis and polyangiitis [85], as well as monitoring 
the metabolic transition from pregnancy to postpartum in ges-
tational diabetes mellitus [86] and the identification of bio-
markers in tuberculosis diseases [87]. Even MS imaging 
presents versatility in clinical applications such as biomarker 
diagnostics of different diseases [12].

Meanwhile, NMR allows for the identification of tumor 
metabolism in hepatocellular carcinoma using 600 MHz 1H 
NMR [88]. By means of 1H NMR of 500 MHz, the metabolic 
profile in the cerebrospinal fluid of children with tuberculous 
meningitis was characterized [26]. Even, using 1H NMR 
600 MHz, it allows the evaluation of hemodialysis efficiency 
in patients affected with end-stage renal disease [89] as well 
as to characterize serum samples of mild cognitive impair-

ment in Alzheimer’s disease [68]. Using 1H NMR at 
600 MHz, it also allows us to understand the pathogenesis of 
osteoporosis [15].

Thus, technological improvement in spectroscopic and 
spectrometric equipment allows clinical analysis, something 
that was not possible until a few years ago.

�Mass Spectral Library and Bioinformatics

Posteriorly to the acquisition of metabolome data, it is neces-
sary to identify and quantify the metabolites in whole metab-
olome [Fig. 7.1]. The “big data” bring the capacity to improve 
the clinical observations and measurements to corroborate 

Fig. 7.1  General strategy of metabolomic analysis. 1. Sampling: non-
invasive sample (urine, blood, plasma, and breath) and samples ultra-
frozen until use (−80  °C). 2. Metabolomic technique: LC-MS, 

HS-SPME, GC-MS, CE, and NMR. 3. Metabolome obtained: mass 
spectra and/or resonance spectra. 4. Bioinformatics: consultation of 
biological libraries and clinical decision

E. A. Estrella-Parra et al.
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patient’s outcomes [3]. The generation of biological infor-
mation has led to the creation of databases such as 
BioBankWarden, which can be used to store and retrieve 
specific information from different clinical fields linked to 
biomaterials collected from patients, providing the function-
alities required to support translational research in the field 
of cancer [90]. The Georgetown Database of Cancer 
(G-DOC) is a web platform that enables basic and clinical 
research by integrating patient characteristics and clinical 
outcome data from more than 2500 breast cancer patients 
and 800 gastrointestinal cancer patients, which includes bio-
informatics and biology tools for analysis and visualization 
of “omics” types [20].

For example, LC-MS raw data were imported into 
Progenesis QI data software and compared with the Human 
Metabolome Database (HMDB) and LIPID MAPS database 
[91]. Using the MATLAB script, the metabolites were 
extracted by using unique mass channels and retention indi-
ces in the mass spectral library at the Swedish Metabolomics 
Centre [86]. Meanwhile, in NMR experiments, the spectra 
were exported to MATLAB R2010 and compared in a com-
bined analysis of Nigerian and Egyptian data [88] as well as 
pure compounds in the spectral libraries [26, 68]. In addi-
tion, metabolites were identified by databases such as HMDB 
and SDBS, MetaboAnalyst platform, KEGG, and SMPDB 
[15].

Therefore, the generation of biological libraries of differ-
ent diseases – due to use of the omics’ technologies – will 
allow a more precise diagnosis in a context of globalization 
in health.

�Conclusions

In clinical diagnosis, it is essential to obtain with greater pre-
cision a diagnosis as well as a treatment that restores the 
health of the patient, whatever the disease. For this – besides 
the traditional clinical diagnosis and evaluation – the use of 
new technologies such as “omics science” is necessary, 
allowing greater precision in the diagnosis and follow-up of 
the treatment of any disease. For this purpose, analytical 
chemistry tools such as NMR and MS that were previously 
only used in scientific matters and in industry have been 
applied in medical matters such as the monitoring and diag-
nosis of various diseases such as SARS-COV-2. This is why 
it is crucial to understand, comprise, and apply the omics 
sciences in medical therapy for an assertive and unambigu-
ous diagnosis. Moreover, the globalization of medicine 
allows the creation of clinical libraries based on the “omics 
technologies,” which can be consulted by medical staff in 

“real time” in any particular case, being a reference for a 
precise diagnosis.
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Abbreviations

CLSM	 Confocal laser scanning microscopy
CMV	 Cytomegalovirus
CSF	 Cerebrospinal fluid
EM	 Electron microscopy
FM	 Fluorescence microscopy
HE	 Hematoxylin and eosin
HPV	 Human papillomavirus
HSV	 Herpes simplex virus
LSCM	 Laser scanning confocal microscopy
RCM	 Reflectance confocal microscopy
SSCM	 Slit scanning confocal microscopy
TEM	 Transmission electron microscopy
VZV	 Varicella-zoster virus

�Introduction

Epidemiological diseases and pandemics are not a new issue; 
they have had great importance in the history of humanity. 
Globalization, the constant exploitation of natural resources, 
the great dependence we have on livestock, and the ease with 
which we can travel today, has allowed humans to be in con-
tact with various infectious agents [1, 2].

Pandemics are caused by specific etiological agents; the 
conditions of human-animal proximity and environmental 
changes promoted the appearance of zoonotic diseases. 
Some very clear examples are the agents of measles, small-
pox, tuberculosis, and many other pandemic diseases that 
evolved from diseases that only had affected domestic ani-
mals and are now capable of infecting humans [3].

The biomedical and clinical sciences have developed var-
ious technologies not only to discover the etiological agents 
of diseases that affect humans, but they have also been 
expected to understand their infection mechanisms to make 
an accurate and timely diagnosis but also to find possible 
cures for these diseases [4].

One of the most used tools for the discovery of infectious 
agents that cause epidemiological diseases is the microscope, 
which has accompanied doctors and researchers for more 
than three centuries [5].

�Brief History of the Development 
of the Microscope

The cell is the morphological and functional unit of every 
living being, and it is the smallest element that can be consid-
ered alive. A typical animal cell measures between 10 and 20 
μm in diameter, which is about one fifth of the smallest par-
ticle observable by the human eye. Because cells are small 
and complex, it is difficult to see their structure, discover 
their molecular structure, and even more difficult to know 
how their components work.

The tools that scientists and physicians have at their dis-
posal determine how much we can learn about cells. The 
introduction of new techniques frequently results in an 
advance in the knowledge of cell biology, medicine, pathol-
ogy, and the diagnosis of diseases. To understand how cells 
work, one needs to know the identity and structure of their 
molecular components and how they interact. One of the 
technological advances that have allowed the development 
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of knowledge of biology, physiology, and pathology is the 
microscope [6].

The compound microscope was invented by Zacharias 
Janssen in 1590; however, it was not until 1665 that it took 
on real importance, when Robert Hook published his work 
Micrographia in which diagrams of images obtained in opti-
cal microscopy appeared for the first time. It is also Hook 
who, when observing a slice of cork, notes that its structure 
is composed of small cavities organized like cells, minting 
the term “cell.” Even though Hook observed dead cells, his 
discovery started the cell theory movement.

On the other hand, in the mid-seventeenth century, 
Antonie Van Leeuwenhoek made improvements to the sim-
ple microscope using more powerful lenses. In this way they 
recorded the first observations of muscle fibers, sperm, red 
blood cells, protozoa, and bacteria using simple microscopes 
of their own manufacture.

Only after the first light microscopes became available in 
the early part of the nineteenth century did Schwann and 
Schleiden suggest that cells are the basic units of life, for-
mally proposing the cell theory and formally initiating the 
cell biology.

Currently microscopy depends as much on specimen 
preparation techniques as on the development of microscopy 
itself [7].

�Photonic Microscope

�The Use of Microscopy in the Life Sciences

As it was demonstrated a long time ago, life is not limited to 
what we can observe with the naked eye, and for this modern 
science has several simple optical microscopes for general or 
already very specialized use. These microscopes can be dif-
ferentiated mainly in factors such as the wavelength with 
which the sample is illuminated, the physical alteration of the 
light that reaches or emanates from the sample, and the spe-
cific analytical processes that can be applied to the final image.

With these technologies it has been possible to cover a 
wide variety of needs within life sciences, since these tech-
nologies have provided tools to study the structure and func-
tions of molecules, cells, and organisms. It is used in forensic 
science to study biomolecules at crime scenes, in biotechnol-
ogy and pharmaceutical industry for product quality control, 
and in clinical medicine as a useful tool for detection, diag-
nosis, interventionist guidance, monitoring of response to 
treatment, and treatment of the disease, since they have pro-
vided abundant biochemical and structural information in 
biological samples, which has increased sensitivity and spec-
ificity for the detection and localization of diseases, which 
has resulted in a practical, safe (minimally invasive), and 
relatively affordable technique.

�Generalities

Generally, we can describe the existence of two types of 
microscopes that use light as a source of energy to form 
enlarged and detailed images of objects that the human eye 
could never observe:

	1.	 Simple photon microscope or magnifying glass
	2.	 Compound photonic microscope

Currently, there are various types of compound photonic 
microscopes, ranging from general use or to microscopes that 
are highly specialized, and their differences mainly settle in fac-
tors such as the wavelength with which the sample is illumi-
nated, the physical alteration of the light that reaches the sample 
or emanates from it, and the specific analytical processes that 
can be applied to the final image. These types of microscopes 
have a wide range of utility ranging from teaching, research, 
and clinical diagnostic laboratories, among others [Fig. 8.1].

�Components of the Photon Microscope

The compound photon microscope is mainly made up of 
three types of components:

	1.	 Mechanical components: It is basically the structure of 
the microscope, which serves to support, move, and hold 
the optical and lighting systems as well as the samples or 
objects to be observed.

	2.	 Optical components: This system is formed by the objec-
tives, the eyepieces, the condenser, and the prisms.

	3.	 Lighting components: Any instrument that provides light 
energy to the microscope is considered within these com-
ponents, while there are natural and artificial sources of 
light energy.

�Types of Photon Microscopes

�Bright-Field Microscope

The microscope used by most students, researchers, and phy-
sicians is the bright-field microscope which comes directly 
from the microscopes that were used in the nineteenth cen-
tury and that inaugurated the first great era of microscopic 
research. In this microscope, light is passed through the 
sample, or it can be reflected by said sample; however, for 
the image to be clearly visible, it is necessary to stain the 
sample of interest. The staining allows the cellular and tissue 
components of the structure to be contrasted by specific col-
orants that absorb and transmit certain wavelengths of the 
visible spectrum. The rest of the microscopic field will be 
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clear or transparent, since the light rays pass directly to the 
objective; on the other hand, if samples are examined with-
out staining, the image will only show little contrasted 
details, and they can even be seen transparent.

However, it is important to mention that the samples to be 
observed must be thin with a thickness of 5 μm to 50 μm, to 
be able to take full advantage of the resolving power and 
sharper contours.

�Dark-Field Microscope

It is called this way because the image is formed by a series 
of bright structures on a dark background; these structures 

refract the light rays toward the objective, and to observe this 
it is necessary that the microscope is equipped with a special 
condenser that illuminates the sample with a lot of intensity 
in an oblique way, making the field look dark and on it the 
sample stands out, which reflects part of the light and appears 
in a bright way.

The dark-field microscope has been used to observe a 
large number of samples, such as seeing living cells (proto-
zoa, bacteria, desquamated cells, etc.); it should be mentioned 
that in this type of samples, it is not necessary to stain them or 
use substances. On the other hand, since the oblique light rays 
form a halo of bright luminous light around the samples, it is 
possible to see particles smaller than 0.2 micrometers. It has 
been observed that by using this microscope, the spirochete 

light source

Condenser

eyepiece lens

Specimen

objectives

Light source

Condenser lens

Specimen

Objective lens

Eyepiece lens

Fig. 8.1  Diagram of light microscope. Schematic representation of an 
inverted microscope, where the main components of the instrument are 
observed (left side). Internal diagram of the light path (summarized): 
The light source represented by the yellow cylinder generates the light 
rays (light yellow) that pass through the converging lenses of the con-
denser allowing the light to follow a parallel path; below the condenser 
is the diaphragm (not schematized), in charge of regulating the incident 

light cone. Rays of light pass through the sample and reach the objec-
tive lens. This is where the first real magnified image of the sample is 
formed (this magnification depends on the magnification of the objec-
tive). Then the image passes through the eyepieces generating a virtual 
image, which is ten times larger than the real image. The image at the 
bottom of the schematic was obtained at Olympus IX71 by María 
Fernanda Ramírez, IFC-UNAM (right side)
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bacterium Treponema pallidum, which is the cause of syphi-
lis, can be easily distinguished, since the shape and helical 
movement of this bacterium can be easily observed.

�Phase Contrast Microscope

It is the most widely used photonic microscope to observe 
transparent objects or structures without staining, since it 
facilitates the observation of living cells in which it can be 
differentiated and thus be able to analyze in a more detailed 
way the morphological components as well as certain func-
tions that they may develop (phagocytosis, mitosis, amoe-
boid, ciliary or flagellar movements, etc.).

The phase-contrast microscope has the ability to trans-
form the small refractive indices in the samples of each of its 
components into different light intensities, offering images 
where the object’s structures appear contrasted in dark tones 
or bright tones and intermediate tones.

�Staining of Biological Samples, for Use 
in Different Types of Photon Microscopy

During the emergence of microscopy, biological samples 
were used to be observed under the microscope without stain-
ing; however, the Dutchman Antonie van Leeuwenhoek was 
probably the first scientist to use a biological dye to apply 
color to microscopic objects, immensely revolutionizing the 

way of observing tiny structures more clearly visible than 
they were unstained, which revolutionized biological science. 
On the other hand, the use of dyes for use in microscopy did 
not become common until the middle of the nineteenth cen-
tury. Today stains have become an indispensable tool in biol-
ogy and medicine, where they are used in various disciplines, 
mainly histology, cytology, and microbiology [8].

Most samples are treated with stains that color the micro-
organisms, thus highlighting them from the background, 
although fresh preparations without staining can be used to 
detect fungi and some other pathogens.

Around the world, methods and technical specifications 
of the different existing staining techniques have been estab-
lished and standardized, with the sole objective of promoting 
the establishment of procedures that produce coloring sub-
stances that produce results capable of being reproducible in 
different countries in areas of cytology, bacteriology, histo-
pathology, and hematology, among others [Table 8.1] [9].

Today different biological sample staining procedures are 
used to diagnose a condition. Table  8.1 describes some 
aspects of the most used stains.

�The Use of the Photon Microscope in Clinical 
Diagnosis

Microscopy currently plays a crucial role in both research 
and diagnostic aspects; this generally involves the use of 
optical microscopes for the analysis of microbiological, 

Table 8.1  Histological techniques commonly used for pathological or bacteriological diagnosis

Staining Description and characteristics Staining color Objective of staining
Hematoxylin 
(basic)

As hematoxylin is cationic or basic, it stains acidic 
structures (basophils), such as cell nuclei

Blue and purple tones In histopathology it is used to 
give a morphological 
diagnosis in tissues [9, 10]Eosin (acidic) Eosin stains basic components (acidophiles), due to 

their anionic or acidic nature, like the cytoplasm
Shades of pink

Gram staining Initially, all bacteria absorb the crystal violet dye; 
however, with the use of solvent, the lipid layer of 
gram-negative organisms dissolves, losing the 
primary staining. The basic fuchsin stain is then used 
to give the discolored gram-negative bacteria a 
pinkish color for easier identification

Gram-positive bacteria that appear 
purple
Gram-negative bacteria that appear 
pink and red

Microbiology, bacterial cell 
morphology, so as to be able 
to make a first approximation 
to bacterial differentiation 
[11]

Ziehl-Neelsen stain It is used for the identification of acid-fast bacillus 
(AFB), which will be stained for the incorporation 
of basic fuchsin, which requires heat and is resistant 
for the discoloration process that uses an alcohol-
acid combination and then a counterstain with 
methylene blue

AFB appear red Used in the diagnosis of 
Mycobacterium tuberculosis 
[12]

Kinyoun cold stain Is a modified Ziehl-Neelsen staining. The 
incorporation of fuchsin is allowed by phenol as a 
chemical mordant and heat is not required

AFB appear red Used in the diagnosis of 
Mycobacterium tuberculosis 
[12]

Giemsa 
(Romanowsky-
Giemsa effect 
“RGE”)

Gives a differential coloring. Contains a mixture of 
methylene blue, azure A and azure B as basic dyes, 
and eosin Y as an acidic dye

Chromatin in purple, basophil 
cytoplasm in blue, neutrophil 
granules in purple, eosinophil 
granules in red-brown, basophil 
granules in purple-black, 
erythrocytes in pink-red

Applied in bacteriology, 
cytogenetics, cytology, 
hematology, histopathology, 
and parasitology [13, 14]
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cytological, and pathological samples, among others. The 
introduction of the microscope has had an influential effect 
in the field of medical diagnosis, since in some cases it has 
turned out to be a simple, fast, and low-cost test, and in addi-
tion to that it can be performed close to the patient. 
Microscopy diagnosis only requires the microscope, the 
sample, and, for some techniques, a staining process. 
Microscopy has been the primary diagnostic tool for decades, 
and although other techniques may exist, the results often 
still require confirmation by microscopy. Microscopy can 
turn out to be very sensitive and specific in some cases and 
ideal for systematic detections, which has helped to reinforce 
the diagnoses of certain pathologies, which in turn contribute 
and guide a better treatment [15]. It is worth mentioning that 
to obtain good results, a good technique is essential when 
obtaining the sample to be analyzed, in addition to the fact 
that the interpretation of the microscopic image is a skill that 
requires training, which implies a good practical knowledge 
of the microscope.

�Microscopy as a Diagnostic Method

As mentioned above, stains are vastly practical for detecting 
most human pathogens, but there are limitations in specific-
ity, so other additional diagnostic techniques are not ruled 
out. The sensitivity of special stains to detect pathogens 
depends on a number of factors such as:

	1.	 Number of microorganisms present at the site
	2.	 Technical factors associated with obtaining samples
	3.	 Observer capacity
	4.	 Magnification used
	5.	 Availability of specific confirmatory tests

Therefore, through appropriate morphological diagnosis, 
one can greatly contribute to the timely diagnosis of infec-
tious diseases.

�The Use of the Photon Microscope 
in Histopathology for the Diagnosis 
of Diseases

For more than a century, conventional optical microscopy 
has been the basic tool for the evaluation of tissues, cells, and 
microorganisms, so it has played a fundamental role in path-
ological diagnosis; for this type of studies it is necessary to 
obtain a biopsy which is a diagnostic procedure that consists 
of the extraction of a total or partial sample of tissue or a 
smear which consists of the extension of a sample of body 
fluid to be examined under a microscope and thus be able to 
study the composition, structure, and characteristics of the 

tissue extracted through the use of stains with dyes or more 
specific through antibodies (histochemical), in order to high-
light particular characteristics that are being sought [16].

Through histopathology, it seeks to understand the nor-
mal structure and function of the different tissues, it can be 
very useful to make a diagnosis and to determine the severity 
and progression of a disease, and it has been used initially 
and is still used today to diagnose diseases, infectious, 
degenerative, or neoplastic in humans or animals. These 
qualitative diagnoses are based on a sum of observable 
changes in the morphology of the analyzed tissue. The cog-
nition of these changes is based on the recognition of pat-
terns by the observer and the comparison of these patterns 
with the known physiological variation in the morphology of 
the tissues in the respective species [17].

Histological examination of tissues can help to diagnose 
the disease, because each condition produces a characteristic 
set of changes in their structure. Although diseases are very 
diverse, the body’s responses are more limited and are clas-
sified into specific categories.

Inflammation is a characteristic process of most infec-
tious diseases, and it can also be associated with neoplasia, 
dysplasia, autoimmune diseases, allergic conditions, and 
idiopathic disorders. It is important to be able to differentiate 
between inflammatory conditions caused by infectious 
agents from those with non-infectious etiologies; now the 
probability that the inflammatory response is due to an infec-
tion will be determined, and the next step is to find out which 
etiological agents are the possible causes of infection, taking 
into account that each type of pathogen tends to provoke a 
particular response [18]. Some of the most common patho-
logical processes are described below, with examples of their 
analysis under the microscope.

�Diagnosis of Viral Infections

During their replication in the cells they infect, it has been 
observed that viruses are capable of inducing morphological 
changes, such as the formation of inclusion bodies in the host 
cell nucleus, the cytoplasm, or both, the formation of multi-
nucleated giant cells, the presence of a perinuclear halo 
around the infected cell, lymphocytic infiltration, or even 
cell necrosis, among others [Table 8.2] [19].

�Diagnosis of Bacterial Infections

Accurate and rapid identification and characterization of 
pathogens are essential for the proper treatment of infec-
tions, which represent a growing problem. The gold standard 
in the detection of bacterial infections has been based on the 
growth of pathogens in cell culture, followed by evaluation 
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by biochemical methods designed to identify strains and spe-
cies of microorganisms; many of these methods are per-
formed through stains that help to speculate or highlight the 
presence of bacteria through the help of microscopy [Table 
8.3]. Bacterial culture is cost-effective and generally results 
in a diagnosis with good specificity [20].

�Diagnosis of Parasitic Infections

Parasitic infections are truly devastating and prevalent in the 
world, causing millions of morbidities and mortality annu-
ally. Quick and accurate diagnosis is of utmost importance in 
the fight against parasitic infections. However, the morpho-
logical identification of the life cycle stages of parasites is 
the main way of diagnosing parasitic diseases.

The main method for the diagnosis of possible infection 
by a parasite is to examine biological samples in search of 
stages of the parasite’s life cycle, based on morphology, 
through the use of a microscope on wet samples of sputum, 
urine, vaginal smears, aspirates, duodenal, sigmoidoscopic 
material, abscesses, and tissue biopsies [21]. In Table 8.4 are 
some examples of parasitic infections and the use of the pho-
tonic microscope as a diagnostic tool.

The comparatively low cost of these methods has perpetu-
ated their sustained use, especially in economically disad-
vantaged regions of the world, where the cost of molecular 
and immunological kits remains prohibitive.

�Use of the Microscope in Examination of Urine 
Sediment

Microscopic examination of centrifuged urinary sediment by 
an experienced nephrologist is an important tool in diagnos-
ing and monitoring a number of conditions that affect the 
kidneys. Sometimes, although not routinely, it is necessary 
to use staining techniques in the sediment that allow the 
identification of particular elements, eosinophils, bacteria, 
and fats, or differentiate some elements from others: cubic 
cells of leukocytes, red cells of yeast, and amorphous salts of 
bacteria, among others [Table 8.5] [32].

�Fluorescence Microscopy

Fluorescence microscopy (FM) requires that objects of inter-
est have fluorescence. Fluorescence is the emission of light 
that occurs within a few nanoseconds after the absorption of 
light that is typical of a short wavelength. The difference 
between excitation and emission wavelengths is known as 
the “Stokes’s shift”; it is the property of converting the invis-
ible of ultraviolet (UV) light into longer wavelength, visible 
radiation [33].

�Fluorophores
The molecules that are used in this type of microscopy are 
called fluorophores. The outermost electron orbitals in the 
fluorophore molecule determine its efficacy as a fluorescent 
compound and the absorption and emission wavelengths. 
When fluorescent compounds absorb the energy of light 
(photons) in their ground state, alterations occur in the elec-
tronic, vibrational, and rotational states of the molecule. The 
absorbed energy sometimes moves an electron into a differ-
ent orbital, which is on average the furthest from the nucleus. 
This transition to an excited state occurs in femtoseconds. 
Usually, the excitation process also establishes molecular 
vibrations in which the internuclear distances vary in time. 
All that stored energy is eventually lost. Vibrational relax-

Table 8.2  The most recognized viral infections due to histopathologi-
cal changes

Microorganism

Typical 
histopathologic 
features

Histochemical 
stains

Viruses HSV, VZV Nuclear molded 
multinucleated cells, 
where the nuclei are 
clean “Glassy”

HE, 
Papanicolaou, 
Giemsa, or 
Wright stains

CMV Inflammation with 
endothelial damage is 
usually observed

HE, Papanicolaou 
stains

HPV Koilocytosis HE, Papanicolaou 
stains

Adenovirus Smudge cells present HE stain

Table 8.3  Classic bacterial stains, for the diagnosis of diseases of 
clinical relevance

Microorganism

Typical 
histopathologic 
features

Histochemical 
stains

Bacteria Helicobacter 
pylori

Neutrophilic and/or 
chronic 
inflammation, 
bacteria are often 
visible in 
HE-stained sections

Giemsa and 
Warthin-Starry are 
the most used 
stains

Bartonella Groups of bacilli 
can be found within 
the formation of 
granulomas

Warthin-Starry or 
comparable silver 
stain

Legionella 
pneumophila

Neutrophilic; 
bacillary forms are 
not discernible on 
HE or tissue gram 
stain

Warthin-Starry or 
comparable silver 
stain

Mycobacteria Associated with 
necrotizing and 
non-necrotizing 
granulomas, as well 
as acute 
inflammation

Gram-positive, 
beaded, non- 
branching bacilli; 
Ziehl-Neelsen or 
auramine- 
rhodamine stain

N. A. Rivero-Segura et al.



93

ation and fluorescence emission are the main ways that a 
fluorophore returns to its low-energy state [33].

�Excitation Spectrum
When a fluorophore absorbs light, all the energy possessed by 
a photon is transferred to the fluorophore. This energy is 
inversely proportional to the wavelength of the photon. If the 
energy of the absorbed photon is greater than that necessary 
for the transition from the ground state to the lowest energy 
level, the molecule also undergoes a change in vibration, rota-

tion, or motion even within a larger electron orbital. It is neces-
sary to consider that just as a photon of the appropriate energy 
causes this transition, it is also possible that several photons 
add their energy to bring a molecule to its excited state.

�The Fluorescence Microscope
The preferred approach in modern fluorescence microscopy 
is epi-illumination. In this configuration, the microscope 
objective not only has the known function of imaging and 
magnifying the sample but also serves as the condenser that 
illuminates it. The advantage of this approach over 
transmission, or diascopic, microscopy is that in fluores-
cence microscopy (in which the excitation light comes 
through the condenser and the emission is picked up by the 
objective), only a small percentage of the path of the excita-
tion light that is reflected off the sample has to be blocked in 
the path of the return light in the epi-illumination mode. The 
main technical hurdle with this approach is that the excite-
ment light and emission fluorescence overlapping the light 
path require a special type of beam splitter, a dichroic mirror, 
to separate the excitation light from the emission light. The 
dichroic mirror is designed to be used in 45° light paths. In 
ordinary fluorescence microscopes, the dichroic mirror 
reflects the short wavelength light from the light source and 

Table 8.4  Diagnostic microscopy for the detection of protozoan and helminth infections

Pathogen Microscopy detection of parasite Test used for diagnosis
Detection of 
blood-borne 
protozoa infection

Leishmania species (Amastigote) in aspirates from spleen, 
bone marrow, or lymph nodes [22]

Direct examination, saline

Toxoplasma gondii Blood or CSF as well as parasite 
detection from stained tissues [23]

Trypanosoma brucei (Trypomastigote) in the blood (first 
stage) or CSF (second stage)[24]

Trypanosoma cruzi (Trypomastigote) in blood smears [25]
Plasmodium species Blood smears [26]
Babesia microti Examination of blood smears [27]

Detection of 
intestinal 
protozoan 
infections

Cryptosporidium parvum and 
C. hominis

Procedure to detect oocysts from stool 
[28]

Modified acid-fast staining

Giardia lamblia Detect cysts from stool [15] Trichrome or iron hematoxylin staining
Sedimentation/concentration techniques followed 
by microscopy

Entamoeba histolytica Staining of stool samples [29] Microscopy almost obsolete because E. 
histolytica cysts and trophozoites are 
morphologically identical to those of Entamoeba 
dispar

Detection of 
helminth Infections

Schistosoma species Stool for intestinal schistosomiasis, 
detection of eggs in urine for urinary 
schistosomiasis [15]

Kato-Katz technique

Soil-transmitted helminths Detection of eggs in stool [15] Fresh and after Giemsa stain, in direct peripheral 
blood preparations

Lymphatic filariasis (Brugia 
malayi and Wuchereria 
bancrofti)

Examination of concentrated blood 
smears [30]

Giemsa or Wright stains (taken during the 
nocturnal activity period) for microfilariae

Taenia solium Detection of eggs in stool [15] Kato-Katz technique or direct examination
Onchocerca volvulus Skin snips placed to detect larva and 

examine surgically removed nodules 
for adult worms [31]

Direct examination, saline

Table 8.5  Example of stains usable in microscopic examination of 
urine sediment

Structures Staining Equipment
Study of 
sediment in 
urine

Lipid granules 
and fatty oval 
bodies

Sudán III
Oil Red

Bright field, 
phase contrast, 
and polarization 
at 40x and 10x
Ó or
100x staining

Bacteria, yeasts Gram
Epithelial cells 
and leukocytes

Alcian 
blue-Pyronine
Toluidine blue
Methylene blue

Eosinophils Hansel
Hemosiderin Prussian blue
Starch and starch 
granules

Lugol’s iodine
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transmits longer wavelengths of the emitted fluorescence. 
Each dichroic is designed to have a transition from reflection 
to transmission that resides between the excitation and emis-
sion peaks for which each fluorophore is designed. Dichroics 
are rarely used without two additional filters: the excitation 
filter, which preselects the excitation wavelength, and the 
sweep filter, which only allows longer wavelength light to 
pass behind the detector.

�Confocal Microscopy
In 1957 the first confocal microscope was patented by 
Marvin Minsky; however, it was not until 1987 that they 
became commercially available for biological systems. 
Confocal microscopy has made it possible to obtain a better 
quality of biological images, increasing their resolution and 
processing.

Recall that resolution is defined as the ability to distin-
guish the distance between two points and is determined by 
Abbe’s point spread function.

In conventional microscopy, a condenser lens is used to 
illuminate an extended area and the volume of the specimen 
simultaneously and uniformly. In thick samples, this results 
in blurry and unfocused areas from volumes above and below 
the plane of focus. This out-of-focus light can reduce con-
trast and resolution and significantly prevents the interpreta-
tion of detail in images obtained under the microscope. In an 

effort to minimize these problems, thin or ultrathin sections 
of tissue have been used in conventional microscopy to allow 
a clear view of the structure of the specimen to be obtained.

In confocal microscopes, the illumination is sequential 
and is concentrated in a small volume of the sample, where 
the more distant regions of the focal plane receive less illumi-
nation, which reduces both the out-of-focus area and the blur-
ring of the image. Also, the detection and lighting systems are 
focused on the same volume element of the sample. Therefore, 
the illumination, the sample, and the detector are all centered 
in the same volume and are therefore confocal. By adding a 
carefully aligned aperture at a focal point in the optical path, 
further reduction of out-of-focus areas is achieved [34].

�Architecture of the Confocal Microscope
A light source, usually a laser, is reflected by a dichroic mir-
ror or beam splitter and brought to a focus point on the objec-
tive lens at the level of the “plane of focus.” Fluorescence is 
emitted by the sample from the point of focus and passes 
back through the objective lens, through the dichroic mirror 
and the confocal aperture (pinhole) for the detector. However, 
fluorescence is also emitted in various planes above and 
below the plane of focus, but thanks to the confocal aperture, 
light that is outside the field of focus is prevented from pass-
ing into the detector. So, image quality is better than in other 
kinds of fluorescence imaging [Fig. 8.2].

Photomultiplier detector

Light out-of-of-focus

Excitation filter

Laser excitation source

Pinhole aperture

Fluorescence
barrier filter

Dichromatic mirror

Objective

Sample

Excitation
light rays

Light source pinhole
aperture

Focal
planes

In-focus
light rays

Fig. 8.2  Diagram of confocal microscope working principle. Confocal microscopy allowed the analysis of fluorescent labeled samples
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�Confocal Microscopy in Molecular 
Epidemiology: Clinical Applications 
and Further Directions

Confocal microscopy is widely used in research laboratories, 
and currently its application has successfully penetrated the 
clinical field, since this tool provides high-resolution images 
with the minimum damage to the sample. According to the 
available literature, confocal microscopy is useful in the 
diagnosis of both communicable and noncommunicable dis-
eases and leads to the early detection and management of a 
disease, improving patient’s outcomes [35].

On the other hand, there are two confocal systems cur-
rently available for clinical applications: the reflectance con-
focal microscopy (RCM), based on the natural differences in 
refractive indices of subcellular structures within a tissue, 
and the fluorescence confocal microscopy, based on the use 
of fluorochromes, increasing the cell-to-soma contrast [36]. 
In this context, both confocal systems have benefits in the 
field of ophthalmology (monitoring the retina and the cornea 
pathologies), dermatology (diagnosis of neoplastic and 
inflammatory skin diseases), and oncology (histopathologic 
diagnosis and for the excision margins in surgery). Hence, in 
the following paragraphs we aim to depict briefly the most 
outstanding examples of the clinical application of confocal 
microscopy.

�Confocal Microscopy in Ophthalmology

As mentioned above ophthalmology is one of the most ben-
efited areas from confocal microscopy, since this represents 
a noninvasive tool for the diagnosis of the eye’s surface dis-
orders, including allergies, ulcers, corneal erosions, aller-
gies, keratitis, infectious diseases, corneal dystrophies, and 
corneal opacity; as well, corneal confocal microscopy is 
widely used to take decisions in cataract surgery or to ana-
lyze the feasibility of donor corneas for keratoplasty. 
Additionally, confocal microscopy helps to analyze cornea 
thickness to assess changes in the dynamics and structure or 
to monitor the status of graft after a transplant [37, 38].

Currently, the RCM is the most employed microscopy in 
ophthalmology since it brings accurate information for the 
diagnosis and requires minimal contact between the cornea 
and the objective lenses of the microscope. In this sense, 
there are two kinds of confocal microscopes available for eye 
scanning [38, 39], the slit scanning confocal microscope 
(SSCM), that uses a fixed laser beam and the preparation is 
scanned by a motorized stage on the microscope, and the 
laser scanning confocal microscope (LSCM) which per-
forms the scanning by moving the laser beam through galva-
nometric mirrors which allows modifying the laser beam 
incidence through the eye [40].

A major number of studies have been performed in the 
cornea; thus, we will focus on describing the main dystro-
phies and diseases that are currently diagnosed in this struc-
ture by confocal microscopy. Cornea is the tissue which 
allows the light to pass from the outside to inside the eye; this 
also provides protection to the iris and the crystalline lens 
and protects the eye from infections and other risks from the 
environment. The cornea conformation comprises five layers 
[Fig. 8.3].

Confocal microscopy is a noninvasive tool which allows 
the analysis of all the layers that the cornea comprises, even 
in cornea with decreased transparency. Hence the current 
knowledge in this field has help in the diagnosis of the most 
common corneal dystrophies such as dystrophy of the basal 
layer, characterized by the split of the intraepithelial basal 
membrane from the normal epithelial cells, leading to a 
reduplication of basement membrane; Meesmann corneal 
dystrophy, identified by hyporeflective areas and punctual 
reflective points; and Lisch corneal epithelial dystrophy fea-
tured by rounded dark injuries with reflective areas in the 
center. Other types of corneal dystrophy are the Bowman’s 
layer that is currently diagnosed by confocal microscopy; 
Reis-Bücklers corneal dystrophy, characterized by well-
defined deposits in Bowman’s membrane and epithelium; 
Thiel-Behnke corneal dystrophy; and diagnosis of dry eye.

Meesmann corneal dystrophy is a rare condition that has 
been attributed to mutations in the keratin 3 gene or keratin 
12 gene, on the chromosome 12 or 17, respectively. Clinically, 
such a condition is characterized by cystic changes in the 
corneal epithelium, which may be identified by histological 
assessment, electron microscopy, or confocal laser scanning 
microscope. Such assessment reveals both clumped keratin 
into the intraepithelial cysts that migrate to the corneal sur-
face and irregularities in cell arrangement including granular 
deposits and thickened basement membrane; however, the 
confocal microscopy represents a noninvasive method that 
confirms the diagnosis accurately over the other two 
approaches [40] .

As well, laser in  vivo confocal microscopy aids in the 
diagnosis of infectious diseases such as keratitis caused by 
parasites, bacteria, virus, or fungus. Particularly, keratocon-
junctivitis caused by adenoviruses leads to the development 
of nummular lesion in the keratocytes, which conduct to the 
reduction of visual acuity and increased glare sensitivity, due 
to the accumulation of immune cells such as lymphocytes, 
histiocytes, and fibroblasts. The diagnosis of viral keratocon-
junctivitis by confocal microscopy derives from the identifi-
cation of hyperreflective punctate structures in the epithelium; 
additionally, the appearance of corpuscular changes with 
dendritic extension has been reported that may correspond to 
the Langerhans’s cells, which migrate to the central cornea 
in response to traumatic, chemical, or inflammatory stimuli. 
On the other hand, keratitis may be elicited by Acanthamoeba; 
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unfortunately such infection is diagnosed at a late stage, 
causing blindness. Hence, the role of confocal microscopy is 
quite useful since Acanthamoeba cysts are easily identified 
in the cornea. However, despite the high-resolution images 
that confocal microscopy offers in a short period of time, this 
tool does not substitute the traditional laboratory analysis 
(culture or smears), yet. As well, fungal keratitis (keratomy-
cosis), induced by Aspergillus spp. and Fusarium spp., is 
currently diagnosed by confocal microscopy so efficiently 
since this brings a rapid in vivo visualization of the fungal 
filaments in the cornea, enabling the opportune therapeutic 
management of the infection.

As well another use of corneal confocal microscopy 
regards on both the quantification of the corneal C-fiber 
pathology and the identification of the severity of peripheral 
neuropathy in diabetic individuals [41, 42]. As well, in recent 
years it has been developed in novel noninvasive protocols 
for neuropathy, particularly in Fabry disease; such is charac-
terized by the accumulation of glycosphingolipids (globotri-

aosylceramide) in blood vessels, renal epithelia, myocardium, 
skin, dorsal root ganglion cells, and cornea. Since Fabry dis-
ease induces progressive renal failure, cardiac hypertrophy, 
arrhythmias, and cerebral infarction, the life span of the 
individuals is approximately 50 years. So, the accurate diag-
nosis and progression of the disease is crucial for patients. 
Hence, Fabry disease is characterized by a small nerve fiber 
damage which is difficult to quantify by conventional neuro-
physiology and quantitative sensory testing; corneal confo-
cal microscopy provides a novel noninvasive tool to quantify 
nerve damage in patients with Fabry disease [43].

As described above confocal microscopy has shown great 
results; particularly the laser in  vivo confocal microscopy 
has demonstrated that in fact such tool has been used in this 
sense, and confocal microscopy has been suggested as a use-
ful noninvasive tool for in vivo imaging of the cornea, lead-
ing to assess, monitor, and diagnose several infections and 
corneal disease accurately. For instance, according to 
Bhutani et al. confocal microscopy may be helpful to detect 
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Fig. 8.3  Cornea comprises five layers. From the upper to the lower 
layer, the layers are the epithelium, Bowman’s membrane, stroma, 
Descemet’s membrane, and the endothelium. The main function of the 

cornea is to give protection to the inner eye components from infections 
or external threats
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and manage conditions such as dystrophy, ecstasy, graft 
rejection, or endothelial decomposition. Also, confocal 
microscopy may contribute to assessing tissue repair follow-
ing surgery or assessing corneal nerve fiber damage.

In fact, the high-resolution imaging of the living cornea is 
comparable with the histochemical methods traditionally 
used for such tasks [44].

Moreover, confocal microscopy has represented a useful 
tool for systemic disease such as metabolic and neurologi-
cal, since this represents good sensitivity and specificity for 
identifying potential risk of neuropathy and foot 
ulceration.

�Confocal Microscopy in Dermatology

Dermatology is another field where confocal microscopy use 
has permeated successfully, mainly because this approach is 
low invasive and offers accuracy during the early diagnosis 
of skin cancers or in the evaluation of benign skin diseases 
[45]. Currently, the confocal laser scanning microscopy 
(CLSM) facilitates imaging acquisition in vivo with the min-
imum invasiveness, leading to avoiding cosmetic scars in 
sensitive areas.

In this sense, CLSM working principle bases on differ-
ences in reflectivity induced by the endogenous skin chro-
mophores (i.e., melanin) found in keratinocytes and 
melanocytes and contrasts with other skin structures such as 
keratin, collagen, and hemoglobin [46].

Particularly, clinical applications of CLSM have been 
used in the early diagnosis of skin cancer, leading to an 
opportune management of the disease and reducing both the 
mortality and morbidity of the patients, concomitantly. 
Among the skin cancers diagnosed by CLMS, melanoma 
and the nonmelanoma skin cancers stand out (basal cell car-
cinoma, actinic keratosis, and squamous cell carcinoma) [47, 
48]. As well, in vivo CLSM is widely used for the diagnosis 
of contact dermatitis, since the conventional analysis is low 
accurate and yields significantly false-positive test results, 
offering a sensitivity/specificity higher as compared to the 
traditional evaluation of patch test [49]. As well, both benign 
non-melanocytic neoplasia (solar lentigo, seborrheic kerato-
sis, lichen planus-like keratosis, sebaceous hyperplasia, clear 
cell acanthoma, lymphangioma) and benign melanocytic 
neoplasms (benign nevus, dysplastic nevus, Spitz nevus, 
blue nevus) are currently diagnosed by confocal microscopy 
with excellent results, since this tool enabled feasible results 
and an early diagnosis, thus avoiding pain [50]

Besides diagnosis confocal microscopy has become a 
useful tool for monitoring skin cancer therapies based on 
topical chemotherapy, photodynamic therapy, cryosurgery, 
or radiation therapy [45], suggesting a wide range of clinical 
applications such tool represent.

Moreover, confocal microscopy has also been used for the 
diagnosis of the most common pigmentary skin disorder, 
melasma, which is characterized by abnormal melanin 
deposits. In this sense, several studies report that the CLSM 
facilitates the diagnosis, follow-up, and the prognosis fol-
lowing the therapeutic interventions [51, 52].

�Rare Diseases and Confocal Microscopy

Primary ciliary dyskinesia (PCD) appears in one in 15,000 
individuals in the population; such disease is characterized 
by defective ciliary beating and reduced mucociliary clear-
ance. The conventional diagnosis consists in the ciliary func-
tion assessment using high-speed microscopy and electron 
microscopy. However, such devices and experimented tech-
nicians are not easily available elsewhere. Hence, to make 
the PCD diagnosis more achievable, several research groups 
have focused on developing strategies based on the use of 
fluorescent antibodies to target ciliary proteins often altered 
in this disease. In this sense, in two cohorts (35 individuals 
diagnosed with PDC and 368 individuals suspected of PCD), 
confocal microscopy showed immunofluorescence antibod-
ies that target altered proteins such as DNAL1, DNAH5, and 
RSPH4A, which are involved in ultrastructural defects 
including outer dynein arm defect and central complex/
transposition defect [53].

�Electron Microscopy

Several centuries after the development of the light micro-
scope (sixteenth century), revolutionary studies for innova-
tion in the field of microscopy (twentieth century) began. 
The history of electron microscopy was born thanks to the 
contributions of Louis de Broglie with his novel proposals 
that small particles, such as electrons, could behave as waves 
[54]; and Hans Busch, who developed electromagnetic 
lenses [55]. Busch suggested that the electromagnetic field 
generated in the short coil of a cathode ray tube could be 
used to direct electron beams in the same way that light 
passes through a convex optical lens. His work published in 
the academic journal Archiv für Elektrotechnik was read by 
Ernst Ruska, who together with Max Knoll in 1931 devel-
oped the first Transmission Electron Microscope (TEM) pro-
totype [56].

Although the idea of an electron microscope (EM) was 
revolutionary and innovative, no company wanted to risk 
commercializing it, despite having the ability to magnify a 
specimen 12,000 times; there was no commercial appeal. 
This completely changed when the young physician Helmut 
Ruska (younger brother of 1986 Nobel Laureate Ernst Ruska 
for the invention of EM) began to investigate the medical/
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biological applications of the instrument and convinced his 
mentor, Dr. Richard Siebeck (director of the medical clinic 
of the Hospital Charité in Berlin), to make a review of the 
electron microscope. Siebeck wrote that the electron micro-
scope would help him in his investigations into the causality 
of diseases and infectious agents that are not possible to 
solve with light microscopy; such would be the case with 
many viruses [57][58]. And as we will review later, this was 
the case.

�Wave Particle Duality

Based on quantum mechanics, both electrons and light can 
behave as waves or particles; in both cases its speed and 
wavelength can be variable [54, 59]. Thinking particularly in 
the case of electron microscopes, it is essential to understand 
that the wavelength of an electron is a function of its speed. 
To decrease the wavelength of an electron, it is necessary to 
increase the acceleration voltage, and because of this 
decrease in the wavelength, the resolving power of the instru-
ment increases.

Despite the differences in the source of “illumination” 
between optical and electron microscopes, in both cases the 
best resolution is sought, a good depth of focus and well-
contrasted images. That is the heart of microscopy.

Unlike light microscopy, electron microscopes work with 
a beam of electrons. However, it is necessary to consider that 
these last instruments require that the specimen to be 
observed be subjected to a vacuum chamber, which will be 
radiated with the beam. For that reason, the preparation of a 
sample that will be observed in the TEM must be carefully 
carried out.

�Components of the TEM

The TEM design hasn’t changed much since the Ruska 
model in 1931. However, improvements have been imple-
mented in the instrument correcting spherical and chromatic 
aberrations and astigmatism in electromagnetic lenses, 
improving the resolution, which was 100 nm in the first mod-
els and is now less than 0.1 nm (1 Angstrom, Å).

The principal components of the TEM are the electron 
gun, the column that contains diverse electromagnetic lenses 
and which work in a vacuum environment, the apertures, the 
sample holder, and the camera.

At the top of the TEM, the electron gun is located, and the 
electron beam travels its way along the column through the 
high vacuum. The column is made up of a series of electro-
magnetic lenses along the optical axis of the microscope. At 
the top of the column, there are at least two condenser lenses, 
the first (upper), allowing regulation of the size of the spot of 

the electron beam. Below this, the next condenser lens con-
trols intensity of the beam; the function of both condenser 
lenses is to control the shape of the electron beam. Below is 
the objective lens; most TEMs are designed with a double 
objective lens composed of two electromagnetic fields, posi-
tioned so that they flank the sample; the top one allows addi-
tional control over the electron beam, while the bottom one 
magnifies the image about 50 times. Next are the projector 
lenses, fluorescent screen, and camera [Fig. 8.4].

The next parameters should be considered in each compo-
nent of the TEM:

•	 Electron gun. The stability (variation of the electron cur-
rent), brightness (the current density per unit solid angle), 
and coherence (electrons that are in the same phase and 
have the same wavelength from the origin) are determin-
ers of the performance of the source of electrons.

•	 Electromagnetic lenses. Can present three types of aber-
rations: spherical aberration, chromatic aberration, and 
astigmatism. As a result of this aberration the image is 
obtained with a reduced quality. For this reason, the cor-
rect adjustment of the condenser and objective lenses is 
necessary. The quality of the electron beam is determined 
by condenser lenses, while the objective lenses can mag-
nify the aberrations several thousand times [60].

•	 Camera. The TEMs have a coupled CCD camera, which 
translates the photons into a scintillation layer, in this way 
the electrons are registered indirectly, the thicker the scin-
tillation layer the better sensitivity will be. The limitation 
of CCD cameras is that they are slow and require long 
exposure times to obtain a good quality image, although 
they remain limited for protein applications. However, the 
development of DDD (direct detection device) cameras 
has brought about an improvement in resolution, since 
DDDs are in the ability to detect electrons directly and 
consequently blur is avoided and the speed of capture is 
improved [61].

�Sample Preparation

So far it is clear that the samples that you want to observe at 
TEM cannot be alive, since they will be subjected to high 
vacuum (which inevitably dehydrates the specimen) and to 
the radiation of the electron beam [Table 8.6]. Therefore, it is 
necessary to preserve them properly, since by having such a 
high resolution, the TEM is able to detect if the membranes 
of a cell were preserved correctly in order to make an accu-
rate diagnosis in the case of pathological samples. The 
method chosen to prepare the sample must maintain the cel-
lular state of the sample as it was in the native state; it must 
allow adequate contrast to be carried out for its observation, 
and it needs to have an achievable resolution. In the case of 

N. A. Rivero-Segura et al.



99

biological samples, staining is the best option to post fix, pre-
serve, and observe the sample; additionally it protects the 
sample from dehydration and electron beam radiation and 
improves contrast.

The standard technique used in most laboratories that 
work with biological samples performs a chemical fixation 

with aldehydes (generally a mixture of buffered paraformal-
dehyde and glutaraldehyde), followed by a post fixation 
(regularly with osmium tetroxide), then dehydration of the 
sample and its inclusion in resins (generally epoxy). A very 
important intermediate step must be added to the preparation 
of samples and observation at TEM: the realization of semi-
fine and ultrafine cuts using an ultramicrotome which will be 
mounted on the grids (with different mesh) and which will 
undergo different techniques such as negative staining or 
immunostaining with gold [62, 63].

However, even though TEM allows us to observe cell 
ultrastructure, it has the disadvantage that standard protocols 
have a long processing time, which can last between 3 and 
5 days. It is important to mention that at present, there are 
rapid processing protocols, with which the sample prepara-
tion can be carried out in 6 h, which allows TEM to be a 
useful tool in the diagnosis of diseases [64].

TEM

Column

Specimen

Fluoresent
screen

Condenser lens 1 (spot size)

Condenser lens 2 (spot size)

Upper objective lens  (focus)

Lower objective lens  (focus)

Diffraction lens (focus ED)

Intermediate lens
(magnification)

Projection lens
(magnification)

Electron gun

Condenser
aperture

Specimen
Objective aperture

Image viewed on
Fluorescent screen or

Via CCD camera

Fig. 8.4  Diagram of a transmission electron microscope. Schematic 
representation of a transmission electron microscope where the electron 
source is observed and the high vacuum column where the electromag-
netic lenses and the fluorescent screen are housed (left side). Internal 
diagram of the TEM: The electron gun is represented by the green cyl-
inder, the green lines represent the electron beam, on the sides of the 
beam path the different lenses are outlined with black brackets along 
with the name of the lenses and the function they perform in the TEM, 

and the thick black bars positioned vertically at the height of the con-
denser lens and the objective lens are the apertures. The different paths 
that scattered electrons can take are represented in red and purple. The 
yellow arrow is the specimen and its intermediate images (right side) 
(Modified from Franken et al. [61]). The TEM image at the bottom of 
the schematic was obtained at a JEOL-JEM-1200 by Rodolfo Díaz 
Paredes, IFC-UNAM

Table 8.6  Analysis techniques that can be performed in the TEM

Analysis method Information provided
Electron diffraction Crystalline structure
Bright field Morphology, size, and distribution
Dark field Morphology in relation to crystal 

structure
High-resolution or network 
images

Crystalline structure

Electron energy loss Electronic composition and structure
X-ray energy Elemental chemical composition
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�The Role of the Electron Microscopy in Virus 
Diagnostic

The use of electron microscopy as a diagnostic tool has been 
a fundamental component of viral diagnosis [65]. From its 
invention to the present day, countless viruses have been dis-
covered, allowing not only their correct classification but 
also the diagnosis of the diseases they cause.

�The Role of the TEM in Viral Gastrointestinal 
Diseases

The Norovovirus
Norwalk virus or Norovirus is an RNA virus of the 
Caliciviridae family [66]. The disease caused by this virus 
was described for the first time in 1929 and called “winter 
vomiting disease”; it was described as the causative agent of 
nonbacterial gastroenteritis. The transmission of the virus is 
carried out mainly fecal-orally, or by consuming contami-
nated food or water, affecting adults and children [67]. 
Patients with this disease have a characteristic feature: vom-
iting and diarrhea; and it has a mean duration of illness of 12 
to 60 hours and negative stool cultures (routine studies).

Despite attempts to characterize the etiological agent 
in vitro, it was not found despite being the second most com-
mon disease found in a 10-year family study [68]. In an 
attempt to find the etiologic agent, thought to be of viral ori-
gin, an immune electron microscopy protocol was adapted 
that had already proven useful in other virus findings. They 
used filtered stool from a patient who had developed viral 
gastroenteritis and inoculated ten volunteers with this fil-
trate, six of whom developed gastroenteritis. Then, inacti-
vated serum from inoculated convalescent patients was used 
as a specific source of antibodies. Stool-serum mixtures were 
made and incubated for 1 hour. After processing the samples 
with several centrifugations, the mixtures were placed on 
400 mesh copper grates covered with Formvar/carbon; 
observations were made at 400, 000x magnification. The 
results of the observation to the EM showed the particle 
aggregates of 27 nm in diameter, which were directly associ-
ated as the etiological agent of viral gastroenteritis [69].

Viral gastroenteritis caused by the Norwalk virus has seen 
outbreaks around the world, many of which have been diag-
nosed, in just 2 days, using the solid-phase immune electron 
microscopy technique [70–73]. This common disease is not 
diagnosed correctly due to its similarity to other gastrointes-
tinal disorders, and it only attracts attention when outbreaks 
occur in populations, so the calculation of the impact it has is 
only an estimate [74].

The Rotavirus
Rotavirus is a double-stranded RNA virus of the Reoviridae 
family. The disease it causes is viral gastroenteritis in infants 

(0–5 years). An attempt was made to characterize the disease 
after the appearance of six separate epidemics of acute diar-
rhea in newborns in three hospitals in Baltimore-Washington 
air over 2 years (1941–1942). The last four epidemics (1942) 
had a very high mortality. During the activity of the cases, 
fluids were collected from sick infants (feces, blood, and 
nasal washing), which were injected into different animal 
species, but no conclusive results were obtained; stool cul-
ture was also performed in the appropriate media, and the 
results obtained were negative for organisms (known until 
then) that cause diarrhea. Changing the route of administra-
tion, several calves were again inoculated via the nasal route 
with the feces of the sick infants until the disease was repli-
cated and with which the disease could be described, but not 
the etiological agent [75].

The following year (1944), transmission electron micros-
copy studies were carried out, using fecal samples from 
infants with acute gastroenteritis and fecal samples from 
newborn calves with the same condition. It was found that in 
both cases the causative agent was a virus whose both size 
and shape were indistinguishable between the samples taken 
from infants and calves. The virus found differed morpho-
logically from the reoviruses and orbiviruses; it was pro-
posed to call these viruses “rotavirus,” due to their 
resemblance to a wheel. Different authors reported virion 
sizes between 65 and 75 nm; however, mean estimates were 
72 nm [76].

The route of infection is oral-fecal; patients with viral 
gastroenteritis caused by rotavirus develop vomiting, watery 
diarrhea, and fever. It is a disease that can be fatal due to the 
high dehydration suffered by patients due to acute diarrhea. 
Unlike Norovirus, rotaviruses are cultivable viruses, which 
has allowed the development of rotavirus vaccines, which 
are currently used in global health programs [76, 77]. 
Currently it is diagnosed by molecular biology techniques 
such as ELISA and in some cases also by TEM.

The Role of TEM in Viral Respiratory Diseases
Throughout human history, many diseases evolved from ani-
mal pathogens that changed hosts to transform into human 
infectious agents. As human populations have migrated with 
increasing ease, these etiological agents have initiated epi-
demics and pandemics.

The Influenza Virus
From the last century to the present day, we are aware of five 
pandemics caused by influenza viruses. The first of them was 
registered in 1918 and the most important during the twenti-
eth century, the so-called Spanish flu caused by the H1N1 
virus and which caused the death of more than 50 million 
people around the world [78]. The first signs of the disease 
emerged in the military camps of the United States, which 
sent soldiers to Europe during the First World War. One of 
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the theories of the emergence of the disease postulates that 
the virus changed host, possibly being the pigs that were 
used to feed the troops, the original carriers. The military 
authorities did not stop sending soldiers to the war front, so 
outbreaks quickly began in different parts of the world and 
the consequence was a pandemic that lasted 3  years. The 
virus circulating in 1918 mainly affected young adults. 
Despite worldwide concern, the etiologic agent remained 
unknown. Fifteen years later studies were conducted in fer-
rets, which allowed the virus to be isolated [79]. Molecular 
characterization was carried out in the 1990s [80], and it was 
not until the beginning of the twenty-first century that a frag-
ment of the virus sequence was able to reconstruct the virus 
to evaluate its pathogenicity [Fig. 8.5] [81, 82].

In 1957 another pandemic was registered; this time it 
appeared in Asia and was caused by the H2N2 influenza 
virus, which originated from an avian influenza virus, caus-
ing more than one million deaths. In 1968, the H3N2 influ-
enza virus claimed the lives of one million people. It 
originated in Hong Kong and later spread to other parts of 
the world. This virus is the causative agent of bird flu and 
swine flu [83, 84].

In 1977, there was a resurgence of the H1N1 virus; this 
time the age group of those under 25 years of age had mild 
symptoms. On this occasion, TEM images were made, which 
allowed for the elucidation of the appearance of the virion, 
the viral envelope, and the viral nucleus [85]. In 2009, the 
H1N1 influenza virus began a pandemic resulting in the 
death of 282,000 people. That same year we learned about 
the structure of this causal agent with images obtained by 
TEM [Fig. 8.5] [86].

�The Role of Electron Microscopy and the Last 
Pandemic
Coronavirus epidemics have also been present throughout 
the history of humanity; however, we are currently facing the 
first pandemic of the twenty-first century.

The SARS-CoV-2 virus is the causal agent of the disease 
called COVID-19, which emerged at the end of 2019  in 
China and very quickly spread throughout the world. The 
most common symptoms experienced by COVID-19 patients 
are fever, dry cough, and fatigue; however, some patients 
also have diarrhea, conjunctivitis, headache, loss of sense of 
taste and smell, some skin rashes, and/or loss of finger color. 
It is a highly contagious virus that is transmitted from person 
to person and that infects the host for 10 to 14 days [87, 88].

Thanks to electron microscopy, we have been able to 
know the structure of the virus [Fig. 8.6], just a couple of 
months after the pandemic was declared. In addition to the 
viral structure, various studies have also been carried out on 
various organs that are infected by SARS-CoV-2, such as the 
lungs, brain, and heart, among others. Particularly in the case 
of this virus, the use of microscopy has made it possible to 

understand its pathogenesis and the consequences it leaves in 
the human body; however, it is not yet known exactly what 
sequelae it will leave in people with the disease [89–94].

�Concluding Remarks

As it was demonstrated a long time ago, life is not limited to 
what we can observe with the naked eye; for more than a 
century, conventional light microscopy has been the basic 
tool for the evaluation of tissues, cells, and microorganisms, 
which is why it has played a fundamental role in pathologi-
cal diagnosis; it has been tirelessly sought to overcome the 
limits of optical resolution in search of biological under-
standing; consequently, innovation in optical microscopy has 
been parallel to important advances in the understanding of 
the biological mechanisms. In addition, in many cases it is 
usually a tool for rapid clinical diagnosis and is a low-cost 
test.

With these technologies it has been possible to cover a 
wide variety of needs within the life sciences, since these 
technologies have provided tools to study the structure and 
functions of molecules, cells, and organisms; however, to 
expand the range of possibilities in the obtention of biologi-
cal information, various types of microscopes have been 
designed, which allow, among other things, to increase the 
contrast and sharpness of the image, modifying either the 
lighting system, or the type of lenses used to form the images, 
or whatever another element that conforms the structure of 
the instrument. Based on the above considerations, dark-
field, phase-contrast, confocal, and electronic microscopes, 
among others, have been created, being called microscopes 
with special applications.

In general terms in the clinical field, with the help of 
microscopy, it has been sought to understand the normal 
structure and function of the different biological samples to 
be studied, since it can be very useful to make a diagnosis 
and to determine the severity and progression of diseases; it 
has been used initially and is used today to diagnose infec-
tious, degenerative, or neoplastic diseases. These qualitative 
diagnoses are based on a sum of observable changes in the 
morphology of the analyzed tissue. The cognition of these 
changes is based on the recognition of patterns by the 
observer and the comparison of these patterns with the 
known physiological variation in the morphology of the tis-
sues in the respective species.

Additionally, it is important to mention that microscopy is 
about solving structures that are not observable with the 
naked eye. For this the approaches are varied; although light 
microscopy has a resolution of 200 nm, this is not a limita-
tion, as new protocols are being developed for rapid sample 
preparation for electron microscopy. Many authors mention 
that the golden age of electron microscopy occurred during 
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Influenza virus

Fig. 8.5  Micrograph of reconstructed influenza virus (Spanish flu, 
1918) (a), versus H1N1 influenza virus from the 2009 pandemic (b), 
observed by TEM. Photo credit: Cynthia Goldsmith Content 
Providers(s): CDC/ Dr. Terrence Tumpey/Cynthia Goldsmith  – This 
media comes from the Centers for Disease Control and Prevention’s 

Public Health Image Library (PHIL), with identification number #8243 
(A), and digitally colorized transmission electron microscopic (TEM), 
H1N1 influenza virus particles. Contributed by the Public Health Image 
Library (PHIL) [86]

SARS-CoV-2

Fig. 8.6  SARs-CoV-2. Two-dimensional electron micrograph of a SARS-CoV-2 virus particle (scale bar, 100 nm). (With permission from Michael 
Laue [90])
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the decades of the 1950s and 1960s. However, the challenge 
of COVID-19 has once again put this tool on the rise, indis-
pensable in the study of viruses and cellular ultrastructure, 
allowing accurate diagnoses to be made.
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�Physiomics

The term physiome, as well as physiomics, first appeared in 
the 1990s, shortly after the boom of the other “omics.” 
Physiomics can be defined as the systematic study of the 
physiome in biology. Likewise, the term physiome (coming 
from the roots “physi” meaning “life” and “ome” meaning 
“as a whole”) intends to provide a quantitative description of 
the physiological dynamics and functional behavior of an 
intact organism and is built upon information and structure 
(genome, proteome, and the morpheme) [1, 2]. Stated differ-
ently, an organism reacts to its environment and its stimuli by 
numerous dynamic and intricately orchestrated responses 
(i.e., the genome and proteome, create the metabolome). So, 
the physiome could be seen as the complete system integrat-
ing those responses from a cellular to organism level, por-
tending an inclusive framework of an organism’s 
physiological processes [3].

In the last decades, the diverse branches of biology have 
provided an extremely detailed repository of the diverse 
components of a living human being, yet a limited under-
standing of how all those parts continuously interact and 
integrate. Thus, physiomics seek an understanding of the 
interaction between the physiological phenotypes of genes, 
expressed proteins, and their underlying networks [4]. For 
this task, physiomics need to rely on exhaustive databases 
and bioinformatics for the construction and analysis of the 
networks between diverse genes and its proteins, so, it may 
also be seen as a mean to integrate biology with informatics 
and its complex systems approach.

Thus, the ultimate objective of research in the field of 
physiomics can be the integration of biological and physio-
logical information into complex mathematical models as a 
way to untangle an individual’s physiology with the goal of 
surmounting disease [5].

This ambitious goal can only be envisioned by the prog-
ress that the diverse disciplines surrounding physiomics have 
had in the previous years, starting by computational 
science.

Innovations in computational sciences have profoundly 
impacted the fields of mathematics, engineering, and phys-
ics. Subsequently, those improvements (particularly in com-
plex computational algorithms as they need to consider 
continuous multisystem interactions) are being collectively 
applied into biophysical models of human physiology that 
try to integrate the immense amount of data hierarchically 
derived from the rest of the “omics” (i.e., genomics, tran-
scriptomics, proteomics, glycomics, etc.) and systems biol-
ogy into the living structure of the human body [6]. As this 
colossal feat needs to access and integrate databases contain-
ing interactive models that span genes, proteins, functional 
cells and their structures, functional tissues and their struc-
tures, functional organs and their structures, and finally, the 
whole body, diverse publicly available models and open-
source software repositories are being created [7].
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�Practical Applications of Physiomics

While a whole-body physiological model of the human being 
may not be available yet, currently there are diverse practical 
applications for physiomic-based models.

�Drug Research

Pharmaceutical research was one of the first disciplines that 
found applications for physiomic-based approaches. 
Particularly, potential oncological treatments have been 
studied using cell cycle models and the effects that the treat-
ments will have on them [8]. This process differs from con-
ventional drug research as the used cellular models may 
incorporate signature abnormalities in the cell cycle, and the 
expression of abnormal molecules and proteins, to estimate 
the effect of the potential treatment [9].

�Organ Models

Physiomical-styled models (accounting for physical conser-
vation laws) of diverse organ systems are being developed or 
are already available. As for other physiomic-based projects, 
the goals are to construct simulations that incorporate not 
only anatomically accurate structures but also their respec-
tive cellular components and expressed proteins [7]. Some of 
the more advanced projects include the heart, lungs, muscu-
loskeletal, and digestive system models. To exemplify the 
intricacies of the physiomic approach in an organ, we can 
take one the collaboratively developed models of the heart. 
For the model to work properly, it needs to informatically 
integrate the geometrical and structural properties of the 
myocardium and connective tissue, membrane currents, ion 
channels, voltage changes, propagation of the electrical exci-
tation, blood flow and oxygen delivery into the coronary ves-
sels, etc. [10, 11]. These models hold an important promise 
for the better understanding and treatment of organic specific 
conditions (i.e., arrythmias, ischemia, or drug toxicity at 
heart level).

�“The Human Physiome Project”

The “Physiome Project” was presented along with the work-
ing definition of physiome, as well as its intention to provide 
a quantitative description of physiological dynamics and 
functional behavior of the intact organism, as a report from 
the Commission on Bioengineering in Physiology to the 
International Union of Physiological Sciences (IUPS) 
Council at its 32nd World Congress in Glasgow, UK, in 
1993. The rationale of the project can be understood by con-

trasting it with the Human Genome Project, in which the 
main objective was to dissect and describe each of the base 
pairs that conforms to human DNA. On the other hand, the 
Physiome Project intends to describe how every element on 
the human body works integrally in a complex, yet orches-
trated fashion (the Human Physiome Project) [7].

Since its presentation, the Physiome Project has been 
striving to promote investigation that deepens the knowl-
edge on how each component of the human body works as 
a component of a whole. In the same vein, diverse institu-
tions are continuously contributing to develop computa-
tional and mathematical modelling frameworks that will 
integrate all those levels of human biology. With those tools 
one of the aims of the Physiome Project is to eventually 
produce an integral virtual physiological human (account-
ing for individual variability), with all the advantages that 
would bring to diverse fields of research including preci-
sion medicine.

This previous concept is important since diseases that 
affect the human body (e.g., cancer, hereditary diseases, neu-
rological conditions) equally behave in a complex manner, 
affect diverse domains, and have numerous interactions with 
an individual’s environment and lifestyle. However, clinical 
use of physiomic models remains limited as individual phys-
iological systems have not been largely studied.

�Phenomics

Our next omic of interest is phenomics, which is the acquisi-
tion of high-dimensional phenotypic data on an organism-
wide scale, or the systematic study and analysis of qualitative 
and quantitative characteristics of the phenome [12]. The 
phenome is composed of the measurable traits that result 
from the often-complex interactions between genes, epi-
genetics, environmental, and stochastic factors [13]. Those 
measurable characteristics of physical, chemical, and bio-
logical phenotypes of an organism may span from mecha-
nisms underlying genomic architecture and its regulatory 
pathways, the proteome, metabolome, and cellular features 
to the developed organs at the organism level.

Given its complex interests and objectives, phenomics (as 
well as physiomics) is considered a trans-discipline that 
relies on other fields as biology, physiology, epidemiology, 
computational and data sciences, as well as engineering. 
Those complementary disciplines allow us to consider and 
interpret the influence of the many potential sources of varia-
tion on the phenome.

Among the many potential advantages of phenomics is 
that it may assist, for example, in the tracing of complex 
causal links between a given genotype, a set of environmen-
tal factors, and a phenotype, which has been referred to as a 
genotype-phenotype map [13, 14].
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Establishing potential causal explanations for a given 
phenotype is an alluring matter for different fields due to its 
relation to diverse important outcomes of interest like comor-
bidities in human beings, efficiency, adaptability, and resis-
tance of seeds and plant life (or animals under domestication). 
Hence, in-species or populational variations of a phenotype 
that confer a certain risk or adaptation for a condition is one 
of the principal promises of phenomics. However, as previ-
ously mentioned this demands a transdisciplinary approach 
since potential causal interactions between a trait and an out-
come can be complex in nature, for example, the effect of 
being obese on cancer risk.

For the purpose of a broad categorization of phenotypes, 
phenomics rely on some tools and technologies that already 
exist, yet that need to be improved for large-scale measure-
ments, as they need to capture the whole spectrum of an 
organism (e.g., hierarchically spanning from DNA/RNA and 
molecular structures to physiological, morphological traits). 
These tools include transcriptomics, epigenomics (which are 
the most comprehensive sources for phenomic data), pro-
teomics, metabolomics, and imagery techniques as spectro-
scopic imaging or MRI (even traditional microscopy). 
Among others, one of the currently needed improvements on 
phenomics-related measurements is the domain of gene 
expression. It still represents a great challenge to phenomics 
as it may change in function of cellular type and the temporal 
point on which it measured; hence, the construction of exten-
sive datasets concerning this domain remains a test yet to 
overcome.

�Practical Applications of Phenomics

The agricultural sector and plant sciences share an interest 
in phenomics given the ever-growing food supply needs 
amidst a continuously changing global environment. As an 
increase in crop demand is expected over the coming years, 
crop performance and productivity are key factors to con-
sider when assuring its supply [15]. However, as previously 
mentioned, a crop’s phenotype is heavily influenced by its 
genotype and its surrounding environment. Hence, crop 
phenomic research combines agronomy, data sciences, 
mathematics, and engineering sciences to explore pheno-
typic information of crops and their complex environmen-
tal interactions in order to develop new methods of mining 
genes associated with relevant agronomic traits for preci-
sion breeding [16]. Diverse associations as the International 
Plant Phenotyping Network (IPPN) have been established 
to promote those purposes.

There are other phenome projects focused on insects 
(Drosophila Genome Reference Panel), small rodents and 
mammals as mice (Mouse Phenome Database), and dogs 
(Canine Phenome Project).

A phenomics project in humans is already under way, 
with phenotypes being longitudinally examined and mea-
sured in diverse studies. One of the pioneer fields interested 
in phenomic applications is cardiovascular medicine. 
Cohorts like the Framingham Heart Study and the Cohorts 
for Heart and Aging Research in Genomic Epidemiology 
(CHARGE) have already recorded a vast amount of phe-
nomic data concerning thousands of their participants, as 
well as their medical history and environment-related vari-
ables. This, in conjunction with the use of data sciences and 
novel informatics techniques to integrate data from diverse 
omics, will provide new insights into cardiovascular dis-
ease [17].

Another example of an interdisciplinary and multi-
centered phenomics project is the Consortium for 
Neuropsychiatric Phenomics (CNP), funded by the NIH, in 
which genomic data and structural and functional informa-
tion related to the central nervous system is being con-
ducted in a case-control fashion for three psychiatric 
syndromes [18].

These projects, as well as the phenomic effort in general, 
may change current ways or visions on how to use experi-
mental models to uncover the influence of genetic and envi-
ronmental stimuli on a given phenotype. Likewise, they may 
represent an improvement on how to test causal hypothesis 
for different diseases and environmental exposures. In the 
long run, robust phenomics may even improve our under-
standing of complex longitudinal events, as aging, and their 
influence on health and disease.

�Closing Remarks

The physiome hierarchically entails the genome, the 
expressed proteome, metabolome, and their continuous 
interactions. Physiomics as one of the most recent omics 
benefits from diverse disciplines, including bioinformatics, 
to build physiological networks between the rest of those 
omics instead of focusing on a reduced scope or only one 
domain.

Phenomics work with the expressed phenotypes in organ-
isms. The expressed phenotypes in organisms range from 
subcellular structures to a given physiological state and may 
change over time, and in relation to diverse stimuli (environ-
ment). However, causal relations between a given phenotype 
and the conditions surrounding it may be constructed with 
the appropriate input of diverse disciplines. Longitudinally, 
this may help to improve our understanding of the relation 
between diverse exposures and their potentially associated 
outcomes.

On the same vein, molecular epidemiology could be one 
of those disciplines whose input may help bridging the gap 
to causal relations. As one of its main interest is the analy-
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sis between given genetic and environmental risk factors at 
molecular level, the integration of powerful tool such as 
physiomics and phenomics to etiologic models of diseases 
may not only enhance the understanding of the subcellular 
origins of medical conditions but also the eventual develop-
ment of preventive strategies on individual and popula-
tional level.
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�Introduction

The classical health model is based primarily on the provi-
sion of medical services through the systems of hospitals and 
outpatient clinics. Several factors of the health services influ-
ence the quality of this model, such as the qualification of 
medical personnel, hospital facilities, and the availability of 
updated equipment [1]. It should be noted that although this 

model may vary from country to country, the basic principles 
are the same. The first principle is a “patient-oriented” 
approach and supporting infrastructure that provides optimal 
access to healthcare. In our days, platforms have experienced 
new challenges due to the rapid growth of technologies and 
the demand of the population for a high-quality medical ser-
vice. These new digital technologies have offered the possi-
bility of expanding the potential of various tools and of 
various diagnostic and therapeutic systems [2].

The implementation of digital medical technologies is 
intended to provide better access and flexibility to healthcare 
for the general public. This includes better availability of 
information about health, treatment, complications, and bio-
medical research on the Internet [1]. This chapter discusses 
recent trends and achievements in the field of digital medical 
technologies, social media, wearables and biosensors, their 
various applications, and their relationship to the physiome 
to solve real problems in healthcare.

�Digital Health

Digital health is an emerging field of study at the intersection 
of healthcare and digital technologies, with high impact in 
the last decade. In 2019, the American Medical Association 
has reported that companies have made a large capital invest-
ment in new digital health endeavors [3]. Digital health is 
considered by the US Food and Drug Administration as a 
wide range of technologies, which include mobile health, 
wearable devices, telehealth and telemedicine, health infor-
mation technologies, and personalized medicine [3]. 
Furthermore, the WHO emphasizes that digital health can be 
beneficial in achieving the Sustainable Development Goals 
by making health and wellness services accessible to high 
standards for all people around the world [3]; however, con-
cept of digital health continues to evolve [4].

In the past decade, the potential for digital health inter-
vention has grown rapidly through the use of devices such as 
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laptops, tablets, smartphones, and wearable devices, and our 
understanding of how digital interventions can be theorized 
has improved [5]. Digital health technologies are now being 
applied more widely within medicine to improve diagnosis, 
treatment, clinical decision support, care management, and 
care delivery. Currently with regard to mobile health applica-
tions, there are around 3,000,000 health applications with 
more than 200 health applications added daily [5]. This 
makes it more apparent that there is an interest within medi-
cal care (patients, providers, payers, industry, and regulators) 
with respect to digital health, so there is a recurring chal-
lenge in finding solutions that provide real value [4].

�Wearables and Biosensors

Due to the growing increase in the population, the increase in 
life expectancy, and as a consequence, aging and chronic dis-
eases have had an economic impact with respect to medical 
care, and due to this reason, the medical care system has led 
to carry out a transformation from the traditional hospital-
centered system to an individual-centered system [6]. Since 
the last century, portable sensors have been included within 
biomedical and healthcare monitoring systems, allowing 
continuous measurement of critical biomarkers to monitor 
the condition and health of the disease, medical diagnosis, 
and evaluation in biological fluids [6] like saliva, blood, and 
sweat. Currently, the developments of these devices have 
focused on electrochemical and optical biosensors, along 
with advances in the noninvasive monitoring of biomarkers, 
bacteria, and hormones, among others.

Technological advances in wearable sensors (WS) and 
wearable biosensors (WBS) have received great relevance 
due to their ability to collect useful information in real time 
about the health of an individual and their high specificity, 
portability, data acquisition speed, low costs, and low energy 
consumption that have improved over time [6].

WS are used to monitor various processes, such as body 
movements, or signals from the environment outside the 
body, such as exposure to vapors or environmental toxins. 
The WBS, on the other hand, have a much higher specificity 
and are characterized by having biological recognition sen-
sors, allowing the specific detection of some type of ion, 
molecule, enzyme, cell receptor, antibody, or organelle in 
biological fluids [7], such as sweat, interstitial fluid (ISF), 
tears, or saliva through enzymatic, electrochemical, or colo-
rimetric (optics) reactions [6].

Thanks to innovation and the latest advances in materials 
science and the development of mechanical engineering and 
wireless communication technologies, we have been able to 
develop portable devices (watches, straps, etc.) to simultane-
ously process and analyze biomarkers to improve health 
management [7, 8] . In addition, it has been seen that as the 
population has aged, the evidence of food safety and disease 

outbreaks has increased, so that the sale in the market of 
wearable technology is expected to increase to 70 billion US 
dollars in 2025 due to its ease of use [9].

A biosensor consists of two fundamental elements: a spe-
cific biological receptor in charge of the selective recognition 
of the analyte (enzyme, antibody, DNA, nucleic acid, pep-
tide) and a transducer (such as optical, electrochemical, 
piezoelectric, and thermal) whose function is to convert the 
detected signal into a useful signal [10, 11]. Originally, the 
first biosensor devices were designed and developed for 
single-use or in vitro measurements, such as the glucometer 
and glucose test strips. In addition, advancement in biosen-
sor technologies has paved the way to initiate improvements 
in modern portable biosensors for noninvasive monitoring in 
biomedical and healthcare applications [11].

In wearable devices, the main component is wearable sen-
sors which have built-in functions for measuring identified 
markers in order to solve problems in the field of health, medi-
cine, and sports [6]. According to their different measurement 
parameters, the WBS are classified into biophysical, biochemi-
cal, and state of motion sensors. Motion status sensors are used 
to measure human physical parameters such as gait, sleep, and 
tremor for real-time monitoring and collection of long-term 
information [12, 13]. With integrated laboratory-on-chip tech-
nology, portable biochemical sensors are used to measure the 
trace and run of different samples in parallel [6]. Portable bio-
chemical sensors are used to accurately measure biomarkers in 
biological fluids in order to monitor health conditions and 
metabolism. The characteristics of portable biophysical sen-
sors are determined by skin contact to provide real-time mea-
surement of biophysical parameters such as blood pressure, 
heart rate, and temperature, which have significant values in 
healthcare applications [6]. It should be noted that of the differ-
ent types of sensors, only the biophysical and state of motion 
are circulating in the market and are widely used by consumers, 
in contrast to biochemical biosensors, and due to their nature of 
having significant potential since biological fluids are complex 
and challenging matrices to detect the analyte of interest, they 
are not yet commercialized to the general public [14]. In addi-
tion, in recent years there has been an increase in the use of 
portable devices. In 2015, around 500 different healthcare-
related wearable devices were found circulating in the market 
and more than 34.3 million of these devices were sold. This 
amount in devices sold is equivalent to three times the number 
sold in 2013 [15].

�Social Media and Health

Since ancient times, humanity has thrived in social commu-
nities where each member shared so much knowledge, opin-
ions, and experiences. As humanity advances in terms of 
technology, social media (SM), which are defined as “a 
group of Internet-based applications (apps) that allow the 
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creation and exchange of user-generated content,” have had 
an impact on the lives of millions of people [16]. However, 
the definition of SM is always evolving; the Merriam-
Webster Dictionary defines it as “any form of electronic 
communication through which users create web-based com-
munities to share information, personal messages, ideas, and 
other content such as photos and videos” [17].

The SM has become a tool for healthcare by allowing its 
users to acquire and share information, connect with others 
in the field, and communicate with colleagues, patients, or 
the public about health issues. Additionally, SM has sup-
ported the patient to expand their knowledge and place them 
in a position where they can take control of their own health-
care needs [18], including the recent use of SM during the 
COVID-19 pandemic. On the other hand, SM have gained 
relevance within the current scenario because the use of SM 
and social networking sites (SNS) is increasing around the 
world, especially in the healthcare industry [16].

�Social Media in Healthcare

With the increasing orientation of the world toward digital, 
the healthcare industry sees SM as an important channel for 
promoting healthcare and employment, attracting new clients 
or patients, marketing for healthcare professionals, and build-
ing a captivating brand. On the other hand, health profession-
als have observed that SM goes much further than a platform 
for posting vacation photos and interacting with followers. 
Possibly the four most common areas in which SM has a 
strong influence in the healthcare industry are health promo-
tion, research, marketing and branding for the public and 
practices, and recruitment. Also the SM has impacted on doc-
tor-patient relationships as patients better understand health 
information and play a more active role in maintaining it [18]. 
SM have played an important role in public health surveil-
lance in different aspects such as epidemiological surveil-
lance and monitoring, awareness of the situation during 
emergency response, and communications surveillance.

�Monitoring and Retrieval of Official Information
The use by public health officials has been seen to monitor 
official information disclosed by foreign authorities and to 
monitor national official accounts [19].

Disease Detection
Social networks can function as additional data sources for 
public health surveillance because they serve to detect dis-
ease outbreaks and estimate their incidence. This syndromic 
surveillance is carried out by detecting, through human read-
ers or computer algorithms or through participatory epidemi-
ology, the symptoms revealed by people on social networks 
for purposes not related to public health, where the applica-

tions allow participants to self-report their symptoms to 
patients, as has happened with the current COVID-19 pan-
demic [20]. On the other hand, the circulation of unofficial 
information or rumors about a new disease has served to 
detect it through surveillance based on events, as has hap-
pened with a patient with influenza A H7N9 uploaded to 
Weibo in 2013 [21], which was broadcast through an SM. On 
the other hand the official sites in SM of print media, radio, 
and television can be detected by surveillance systems based 
on events in order to find news about diseases [22]. In addi-
tion, digital data sources also provide epidemiologists with 
additional means to detect, investigate, and verify 
outbreaks.

Timely Estimates and Forecasts of Disease Incidence
Epidemiologists are currently conducting searches for the 
use of social media and other digital data to generate timely 
estimates and forecasts of disease incidence. This has been 
the case for influenza-related Twitter data which could gen-
erate timely incidence estimates, as it was found to correlate 
with seasonal influenza data in the United States of America 
(USA). The Wikipedia access log data also showed potential 
for the prognosis of certain infectious diseases in some coun-
tries. Advanced forecasting methods are being developed, 
and some use digital data as experimental inputs.

�Situational Awareness During Emergency 
Response
Social media is also useful in situational awareness of 
humanitarian crises after natural or man-made disasters. In 
the event of dangerous situations, people have resorted to 
using social media to seek help and connect with family, 
friends, and first responders, and the authorities can use SM 
to identify people in danger and be able to help them. On the 
other hand, nongovernmental organizations have used SM 
for the purpose of tracking and mapping the needs of dis-
placed people, as seen with the 2011 earthquake and tsunami 
in Japan [23]  and the earthquake in Haiti in 2010 [24].

�Communication Surveillance

�Global Awareness
Social media data can also be used as a complement to more 
traditional methods for global awareness of disease out-
breaks, as trends in SM can help quantify changes in aware-
ness of the disease among people, users, and feelings toward 
treatments and preventive interventions [25].

�Reaction to Public Health Campaigns 
and Messages
Analyses of SM data related to specific health promotion 
events have provided insights into useful information for 
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public health professionals as they evaluate their cam-
paigns [26].

�Applications

According to the WHO in the upcoming years, the use of 
wearables monitoring our health will increase significantly 
and will revolutionize the way that people achieve higher 
standards of health. In fact, according to the WHO the so-
called digital health provides the opportunity to improve the 
well-being since individuals will attend promptly to their 
health. Hence, in this section we will delve into the outstand-
ing programs, initiatives, and clinical applications that are 
currently ongoing.

Recently, the WHO has developed a global strategy, 
named Global Strategy on Digital Health 2020–2024, which 
focuses on the promotion of healthy lives and well-being 
through the integration of technological resources [27]. In 
this context, several programs and initiatives have been pow-
ered by the WHO in collaboration with other institutions or 
corporations. For instance, the Digital Health Technical 
Advisory Group and Roaster of Experts developed by the 
WHO in collaboration with the public institutions, busi-
nesses, social enterprise, and investors aims to lead a strategy 
focused on advancing the universal digital health coverage 
(https://www.who.int/health-topics/digital-health/dh-tag-
membership); Be He@lthy/Be mobile was develop by the 
WHO and the International Telecommunication Union 
(https://www.who.int/activities/Addressing-mobile-health), 
as well as hearWHO and Google Fit. For a more detailed 
review on the Global Strategy on Digital Health 2020–2024, 
we recommend referring to https://www.who.int/health-
topics/digital-health. As well, in the clinic digital health has 
been used as an intervention in children with asthma [28] or 
in the oncology field [29] (https://www.physiomics.co.uk/).

Digital health interventions have been shown to have 
some clinical benefits in the treatment of musculoskeletal 
conditions [30], such as pain and functional disability; these 
conditions are the second largest contributor to disability 
worldwide and have important individual implications, 
social and economic [31]. Due to the increasing burden of 
musculoskeletal disability, there has been an urgent need for 
an integrated and strategic response, which is why digital 
health has been seen as an option because it provides high-
scope, low-cost, easily accessible interventions and scalable 
for large patient populations that address time and resource 
constraints [30].

In a recent systematic review, the following databases 
were searched: Medical Literature Analysis and Retrieval 
System Online (MEDLINE), Excerpta Medica database 
(EMBASE), Cumulative Index to Nursing and Allied Health 
Literature (CINAHL), and Scopus since January 1, 2000. As 

of November 15, 2019, it showed that at a total of 19 studies 
evaluating musculoskeletal pain, nine reported statistically 
significant reductions after digital intervention. In total, 16 
studies investigated functional disability, while ten studies 
showed statistically significant improvement; however, with 
heterogeneous results, it was not possible to perform a meta-
analysis. Despite this, digital health interventions have the 
potential to positively contribute to reducing the multifac-
eted burden of musculoskeletal conditions for the individual, 
the economy, and society [30].

When the original SARS-CoV epidemic of 2002–2003 
occurred and with seasonal influenza, geographic informa-
tion systems (GIS) and methods allowed us to map online 
real or near real-time disease cases and reactions of social 
networks to the spread of diseases; in addition the population 
travel data provides us with a predictive mapping of risks and 
tracing of contact trajectories of super-spreaders in space and 
time [32]. Due to these characteristics that this technology 
offers, they make it a new source of information about dis-
eases, dynamics, and epidemiology, allowing us to generate 
an effective response to them [33]. Modern GIS technologies 
focus on web-based tools, and they have been extremely 
popular for sharing and understanding the spread of SARS-
CoV-2 [34]. On the other hand, communication through 
map-based dashboards has offered accessible information to 
many users, providing information about the places with the 
highest concentration of COVID-19 cases, helping to protect 
themselves and their communities. In addition, this type of 
tool improves the transparency of the data and helps the 
authorities to disseminate information [33].

�Digital Health and Physiome

Physiomics is a branch of omics that uses large-scale data-
bases and experimental databases together with computer 
algorithms to study and understand the physiological pheno-
types of genes, proteins, their networks, and their relation-
ships. It also uses bioinformatics to build networks of 
physiological characteristics associated with the network of 
genes and proteins. On the other hand, the total integration of 
these systems, from cells to organisms, can be called 
“Physiome” [35].

Physiome is a combinatorial word from “physio” and 
“ome” for “life” and “as a whole,” respectively. It is the 
quantitative and integrated description of the functional 
behavior of the physiological state of an individual or spe-
cies. It describes the physiological dynamics of the intact 
normal organism and is based on information and structure 
(genome, proteome, and morphome). In its broadest sense, 
physiology should define the relationships of the genome 
to the organism and from functional behavior to gene regu-
lation. In the context of the Physiome Project, it includes 
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integrated models of components of organisms, such as 
particular organs or cell systems or biochemical or endo-
crine systems (www.physiome.org) [36]. The Physiome 
Project was created with the purpose of understanding 
both human physiology and other eukaryotic organisms 
through a computational framework; this is carried out 
through the development of integrative models of all levels 
that are the biological organization of an organism. This 
project has established physiological databases accessible 
on the web that address different aspects such as data 
related to models and bibliographic information, at the 
level of cells, tissues, organs, and organ systems. However, 
a major problem for modelers today is the lack of stan-
dards for exchanging biological models, since the models 
published mathematically in journals were frequently 
incomplete and contained errors that made it difficult for 
anyone else to code the data [35].

The latest generations of portable biosensors have allowed 
us to obtain frequent measurement of health-related physiol-
ogy. Studies have shown that these devices have served to 
determine the physiological changes of various users during 
various activities, resulting in better health management and 
diagnosis, in addition to disease analysis. Interestingly, dif-
ferent environments such as airline flights have been found 
that there is a decrease in peripheral capillary oxygen satura-
tion [SpO2] and increased exposure to radiation; these pro-
cesses were found to be associated with physiological 
macrophenotypes such as fatigue, thus being able to associ-
ate the reduction of pressure/oxygen and fatigue in high alti-
tude flights [37].

These studies showed that wearable devices were helpful 
in identifying early signs of diseases such as Lyme disease 
and inflammatory responses; they were also able to distin-
guish physiological differences between insulin-sensitive 
and insulin-resistant individuals; therefore, these findings 
suggest that individuals have personal physiome and activity 
patterns that can be tracked using wearable sensors, so these 
devices could play an important role in health management, 
as well as allowing affordable access to healthcare for groups 
traditionally limited by socioeconomic class or remote geog-
raphy [37].

�Conclusion

The digital revolution has influenced healthcare systems 
around the world; it has changed from the principles to the 
fundamental approaches of medical service and education. 
Different investigations where this digital revolution was 
applied have shown to present an improvement in terms of 
accessibility, quality, and flexibility of medical care for the 
public not only in Western countries but also in developing 
countries.

However, currently the implementation of digital health 
platforms faces many limitations, including the clinical effi-
cacy of the proposed technologies and their validation and 
also the question about the reliability and safety of these 
innovations. Therefore, extensive testing and clinical studies 
established in accordance with ethical principles are neces-
sary. In addition, another problem that digital health faces is 
the lack of regulations and official recommendations, from 
interested parties, such as private and governmental organi-
zations, as well as the appropriate validation and approval of 
new digital health technologies.

This chapter has shown that digital health interventions 
have some clinical benefits in the treatment of some diseases, 
in addition to showing the potential that digital health inter-
ventions have a positive effect on the personal, social, and 
economic impact of diseases. However, it should be noted 
that more research is needed to identify certain characteris-
tics of the diseases, such as the identification of subgroups of 
patients who respond more positively to digital health inter-
ventions, and also to determine the pertinent characteristics 
of the interventions that are likely to achieve more successful 
patient outcomes. It is expected that as demand and techno-
logical improvements arise, the expansion of these devices 
will have a significant impact on daily life, being able to 
solve all current limitations and allowing a new interpreta-
tion and management mode of the health of its users to be 
obtained.
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Abbreviations

AD	 Alzheimer’s Disease
BOLD	 Blood Oxygen Level Dependent
CT	 Computed Tomography
DWI	 Diffusion Weighted Imaging
MRI	 Magnetic Resonance Imaging fMRI
Functional MRI
PET	 Positron Emission Tomography
SPECT	 Single-Photon Emission Computed Tomography

�Introduction to Imaging Methods 
in Epidemiology

Imaging methods have been consistently used in biomedical 
research given that they have become invaluable resources 
for diagnosis, monitorization, and prognosis of many dis-
eases. Imaging has been adopted by several clinical and 
basic research models and plays a fundamental role in many 
translational research studies [1, 2]. Particularly, imaging 
methods have had a strong presence in clinical trials and 
observational studies, where they can be used as a diagnostic 
method to confirm a clinical condition, whether it be as an 
inclusion criterion or as a clinical endpoint for the study [3, 
4]. However, imaging methods are vastly helpful beyond a 
clinical setting, as they have been utilized on basic research 
on animal models and even in tissue preparations [4, 5]. The 
noninvasive nature of imaging methods has been exploited to 

a great extent in preclinical and clinical research focusing on 
countless areas of biomedical research.

In the last few years, medical image analysis has grown 
exponentially largely due to the development of high-
throughput computing. The increased number of pattern rec-
ognition tools, increase in dataset sizes, and the development 
of processes for high-throughput extraction of innumerable 
quantitative features result in the conversion of images into 
mineable data and with the subsequent analysis permit sup-
port the epidemiological and clinical decisions. Advanced 
technologies that include complex imaging methods, such as 
computed tomography (CT) or magnetic resonance imaging 
(MRI), can provide information on subclinical and clinical 
diseases in a very short time. In addition, application of these 
methods to epidemiological studies is increasingly frequent. 
The large-scale acquisition of medical images in controlled 
population-based cohort is known as population imaging. 
These approaches can be used to identify persons at risk of 
developing specific diseases or may aid in disease-specific 
outcome prediction [3].

Representativity is the main assumption required in imag-
ing studies to establish reference values that are generaliz-
able to the entire source population. Reference values’ 
importance lies on a method’s capacity of distinguishing 
“normal” and “abnormal” or between “healthy” and 
“unhealthy.” Therefore, large-scale population-based studies 
allow the definition of reference ranges dependent on sex, 
age, or body weight. The resulting dataset provides an oppor-
tunity to interrelate between risk factors, imaging pheno-
types, and clinical outcomes resulting in the identification of 
subgroups of patients based on their individual risk factors 
and subclinical phenotypes. Typically, large-scale population-
based studies are designed as cohort studies which include 
multiple examinations and follow-ups for morbidity and 
mortality; these studies allow the identification of individual 
risk factors, development of predictive models for incident 
disease, and/or risk scores that are useful tool for clinical 
practice patient’s individual risk stratification.
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Interestingly, comprehensive phenotyping is usually sup-
plemented by in-depth characterization of the genome, the 
metabolome, and other omic approaches. These approaches 
allow the identification of pathophysiological mechanisms 
and provide useful information for clinical practice. 
Radiomics is defined as the conversion of images to higher-
dimensional data and the subsequent mining of this data to 
improve decision support. Radiomics is a relatively new field 
with substantial challenges for its implementation in a clini-
cal setting; however, radiomics is motivated by the concept 
that biomedical images contain information which reflects 
underlying pathophysiological information, and these rela-
tionships can be revealed via quantitative image analysis. 
Radiomics offers a supply of imaging biomarkers that could 
aid in detection, diagnosis, assessment of prognosis predic-
tion to treatment response, and monitoring of disease status. 
Furthermore, the correlation of radiomic data with genomic 
patterns is known as radiogenomics; this field has elicited 
especially great interest within the research community [6].

Finally, it is important to understand that population 
imaging differs from medical imaging as applied in clinical 
practice; these differences are highlighted in Table 11.1. In 
clinical settings a single imaging examination can provide 
insights for a certain diagnosis, whereas images acquired in 
large-scale population-based studies are regarded in much 
broader context. Population imaging combines imaging 
data with a variety of information collected from the partici-
pants that include questionnaires, physical examination, 
and/or laboratory measurement, and these factors permit 
transferring results from epidemiological studies to clinical 
practice.

In this chapter, we sought to evaluate how imaging is cur-
rently used in epidemiological research in several disciplines 
in medical research to understand their applications and lim-
itations as currently used. Furthermore, we discuss how 
imaging is currently used in large-scale population-based 
epidemiological studies and imaging biobanks and finalize 
discussing the challenges and innovations required to mean-
ingfully integrate imaging findings onto epidemiological and 
clinical research.

�Imaging Applications in Neurological 
and Psychiatric Research

The field of neurology comprises a multitude of degenerative 
diseases with a steadily changing disease progression, where 
imaging follow-up might prove to be a useful tool to monitor 
disease progression and evaluate prognosis [7]. 
Neuroepidemiology studies how risk and protective factors 
may exert their effect directly on the underlying neuropa-
thology of diseases or how this may influence the clinical 
expression of signs and symptoms in the presence of pro-
gressive neurological damage. The implementation of imag-
ing to neuroepidemiology has improved the identification of 
subclinical neurological disorders and study of the natural 
course of the neurological diseases [8]. Similarly, neuroim-
aging has given to us the ability to study brain structure and 
function in vivo generating great excitement over an oppor-
tunity to address many of the scientific questions about brain 
development, damage, human cognition, and emotion in liv-
ing humans [9].

There are numerous imaging techniques to study neuro-
logical disorders, such as MRI to assess brain atrophy and 
positron emission tomography (PET) to detect amyloid-beta 
aggregation. PET can also be used to visualize the presence 
of dopamine transporters, which can be beneficial in the 
evaluation of Parkinson’s disease [10]. Tissues at greater 
risk of stroke can be detected with [15O]-PET, which can be 
used to calculate the oxygen extraction fraction (OEF). 
Furthermore, diffusion-weighted MR imaging (DWI) offers 
vascular data that can reveal a mismatch between perfusion 

Table 11.1  Differences between advantages and disadvantages of 
clinical and population imaging and its potential applications for epide-
miological studies

Advantages Weakness/disadvantage
Clinical 
imaging

Sequences applied are 
specific to define a disease
Immediate clinical 
relevance
Tailored to particular 
patient profile

Not easily reproducible
Relevance is 
context-specific
Limited knowledge 
extraction for other uses

Population 
imaging

It can establish reference 
values generalizable
Coupled with other types of 
data (e.g., risk factors, 
clinical outcomes, and 
omics), it can serve for 
identification of subgroups 
of patients based on their 
individual risk factors or 
subclinical phenotypes and 
increase understanding of 
molecular pathogenesis of 
diseases
It can be used to identify 
disease markers or risk 
factors associated with 
adverse outcomes

Sequences applied are too 
nonspecific to define 
diseases
Usually less importance 
given to external validity 
which leads to reduced 
comparability among 
studies (e.g., imaging 
devices may have 
company-specific 
software not readily 
available everywhere)
Generalizability requires 
huge sample size that 
includes healthy 
participants
Underpowered to identify 
small high-risk groups
Less suitable for 
investigating the 
individual effects of a 
given drug on imaging-
based diagnosis
Relatively high 
investment and costs that 
may limit the number of 
studies using high-end 
imaging technologies

Source: Adapted from Gillam et al. [3]
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and oxygen consumption [1]. Regarding epilepsy, glucose 
consumption rates are elevated during seizures, and a 
decrease in its metabolism between episodes can be used to 
obtain an anatomical guide for treatment of the epileptic 
foci [1].

These advantages often make it difficult to recognize that 
brain imaging is a technological tool like many others in the 
research field, with their own strengths and weaknesses and 
with a fundamental limitation clearly described by Horga 
et al. as “No technology alone can generate valid scientific 
findings. Rather it is only technology coupled with a strong 
experimental design that can generate valid and reproduc-
ible findings […]” [12]. Most of the neuropsychopatholo-
gies have one characteristic in common which makes them 
difficult to study: uncertainty in clinical diagnosis. 
Psychiatric disorders including depression, schizophrenia, 
or autism are still diagnosed primarily using behavioral 
signs and symptoms, diagnostic criteria which do not seem 
to have clear relations to the biological processes involving 
their pathogenesis. Similarly, these disorders have several 
neural systems throughout the brain, and patients’ lack of 
focal damage makes it harder to classify, study, and diag-
nose the illness. Imaging has a key role as a “window” on 
the brain without physical invasive techniques, but despite 
this incredible approach, it still has one important problem 
to solve: relationship between structure, function, and 
behavior [9, 10, 13].

�Illustrative Example: Population Imaging 
in Alzheimer’s Disease

Neuroimaging in Alzheimer’s disease (AD) has moved 
from an assistive tool in research to a notable place in diag-
nosis and temporal and spatial evolution of the illness. 
Multiple imaging studies have shown characteristic traits in 
brain function and structure in patients with AD. The bio-
logical, functional, and topographical information imaging 
can quantify has been notable in recent years and has shown 
its potential for improving correlation between clinical AD 
and its biological aspects, helping in the recognition of the 
prevalence of mixed pathology in mental diseases. Here, 
we continue describing the most relevant neuroimaging 
modalities used in AD, with observations about their advan-
tages and limitations that conform their complementary 
roles.

Structural MRI  AD has a characteristic topographic pattern, 
and the earliest changes are found in the medial temporal 
lobe, entorhinal and perirhinal cortex, and the hippocampus. 
These characteristics, previously observed with computed 
tomography, allowed for the exploration of more anatomical 
patterns linked with preclinical features and progression of 

AD [14]. In atrophy evaluation, one of the most notable 
advantages of MRI is the visualization of changes described 
by histopathology in the living brain. Neuronal counts at 
autopsy are closely related to volumes that can be measured 
with MRI, and since neuronal damage in certain regions 
(e.g., hippocampal region) is interpreted as decreased vol-
ume, volumetric MRI scans have been accepted as an accu-
rate method for assessing AD progression. MRI findings 
include a pattern of loss described as insidious and progres-
sive atrophy that has its first occurrence in the medial tempo-
ral lobe. Typically, the entorhinal cortex is the earliest zone 
of atrophy followed by the hippocampus, amygdala, and 
parahippocampus. Nevertheless, the accuracy of entorhinal 
cortex measurements has high variability due to anatomic 
ambiguity in its cortex boundaries, so over time measure-
ment of the hippocampus has been established as one of the 
best biomarkers for AD [15]. Longitudinal MRI studies of 
individuals who were initially asymptomatic and subse-
quently develop AD or that were measured during their pro-
gression from amnesic mild cognitive impairment to 
clinically diagnosed AD support the idea that before the 
clinical diagnosis is made, atrophy is established [16–18]. In 
fact, one study of Sluimer et  al. found that higher rate of 
brain atrophy was associated with an elevated risk of devel-
oping dementia [18].

Despite these promising results, MRI has some disadvan-
tages. Most of the studies have small sample sizes often 
below a hundred participants, despite the wider availability 
of MRI compared to other imaging tools. This situation may 
be related with the high cost of repeated MRI measurements 
and technological complexity that often requires a multidis-
ciplinary team, which is the case for longitudinal studies that 
gather repeat measurements over time to address the gap in 
knowledge of AD progression [19]. Similarly, atrophy is not 
entirely AD specific; patterns overlap with other diseases and 
atypical presentations of AD. Volume changes on MRI could 
be produced by more factors related or not with neuronal 
loss, like changes that could be attributable to the multidi-
mensional aspect of AD as we commented before. Decreased 
hippocampal volume is also not AD-specific, as other dis-
eases and conditions have been characterized with this ana-
tomical feature such as Parkinson’s disease, epilepsy, 
Huntington’s disease, cardiac arrest, and chronic alcohol 
abuse [15]. Finally, as we previously pointed out, structure 
does not necessarily assess function. It remains difficult to 
distinguish whether anatomical findings, even if they are 
strongly related with mental functions observed in patients 
during the progression of the disease, are a consequence or a 
cause of the medical condition. MRI cannot explain com-
pletely why the presence of atrophy in early stages does not 
correlate with the clinical diagnosis of the disease as the 
signs and symptoms appear years later. It appears that the 
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clinical state could be related not with the presence but with 
the extent of neurodegeneration.

Functional MRI (fMRI)  fMRI is a noninvasive imaging 
technique which provides an indirect measure of neural 
activity using blood-oxygen-level-dependent (BOLD) sig-
nals and its changes. This imaging tool has the advantage of 
measuring changes in blood oxyhemoglobin/deoxyhemoglo-
bin ratio, which reflects the integrated synaptic activity of 
neurons, without contrast agents. Therefore, fMRI is an 
attempt to assess the function-structure relationship that 
structural MRI cannot. fMRI can be assessed using two 
broad perspectives: (1) resting state, which measures changes 
in BOLD signals during “inactivity” or without a specific 
task, so specific brain networks can be observed, and (2) 
task-related fMRI in which patients perform different cogni-
tive tasks that produce certain BOLD signals that could be 
compared with a control condition (e.g., encoding new infor-
mation or activity compared with viewing familiar informa-
tion) [20].

Having said that, we can highlight some important points:
	1.	 Assumption in the BOLD signal: The concentration of 

deoxyhemoglobin depends on the metabolic activity 
within the studied area. The assumption of fMRI is that 
neuronal activity increases oxygen consumption, show-
ing an increase in deoxyhemoglobin concentration which 
is measured with the fMRI scan, and the overall measured 
hemodynamic response function reflects the effects of 
changes in metabolic rate of oxygen, cerebral blood flow, 
and cerebral blood function. According to Schleim and 
Roiser, there are influential studies which showed a strong 
correlation of the BOLD signal with focal potentials 
reflecting synaptic activity; nevertheless caution should 
be taken when concluding from this activity and its cor-
relation with the BOLD signal because it is only an indi-
rect indicator of neuronal activity [20].

	2.	 Correlation in time: Images representing BOLD signals 
must be processed in basically three forms: (1) First, they 
are realigned to make them lie in the same space because 
image slices were collected at different times. (2) Then, 
images often are co-registered with the findings in ana-
tomical scans and spatially normalized. (3) Finally, 
images are smoothed slightly. The BOLD responses 
needed for this procedure occur slowly, so each event is 
modified to match the form of an average hemodynamic 
response function (convolution) [20]. Convolution pro-
cess reflects the fact that fMRI cannot have the same tem-
poral resolution of other functional studies as 
electroencephalography, for example. This is one of the 
most noticeable limitations.

	3.	 Group-level analysis: The analysis of the fMRI in groups 
of participants or patients conducted in most studies 

shows the results in an image of statistical values, and 
voxels (or 3D pixels, spatial unit of measurement of 
fMRI) are colored according to t-values. Therefore, col-
ors on the final images do not represent activity per se but 
represent statistical values based on BOLD signals.
As fMRI compares the performance of cognitive task 

studies that include patients with an advanced condition of 
AD or other neurological disorders, we are losing one of the 
most important advantages of this technique if participants 
are unable to perform the cognitive activity adequately, par-
ticularly in resting-state fMRI. Another challenge in inter-
preting fMRI data is the variability of the results. BOLD 
response is variable across subjects and even across the cir-
cumstances as BOLD measurements can be influenced by 
age and disease. Similarly, BOLD signal is also questionable 
since there are studies that show lower neural activation 
associated with stronger BOLD signals or patterns that sug-
gest adaptation in the case of patients clinically diagnosed 
with AD who exhibit decreased hippocampal activity during 
encoding of new information but increased prefrontal corti-
cal activity [20, 21].

AD is itself a challenge because there are a relatively 
small number of fMRI studies that have been realized with 
AD patients and mild cognitive impairment and genetically 
at-risk individuals; studies often count with a small sample 
size as structural MRI studies and the effect of medication in 
BOLD response of psychiatric patients has not been clari-
fied, representing similar limitations that we assessed before, 
in structural MRI. So, it will not be plausible to affirm fMRI 
can completely differentiate function and specific processing 
or can assess the complexity of the interaction between net-
works and neuromodulation. References to neural aspects as 
“activation, processes, cognitive function,” and so on 
required discretion.

�Imaging Applications in Cardiovascular 
Research

Over the last few decades imaging methods in cardiovascular 
research have provided very detailed information about the 
structure and function of the heart and its vasculature. 
Imaging cardiology has provided unique ways to assess isch-
emic heart disease and a myriad of other heart conditions 
through the use of pharmacologic stress testing, SPECT and 
PET viability, vascular plaque imaging, and other techno-
logical breakthroughs [22]. The current frontiers of imaging 
cardiology research are directed toward the use of targeted 
molecular imaging methods to further assess cardiovascular 
conditions and the evaluation of inflammation in various dis-
ease states [23].

Several population-based cohort studies have used imag-
ing methods for cardiovascular risk stratification and predic-
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tion of all-cause and cardiovascular mortality. In this context, 
coronary artery calcium (CAC) scanning is a rapid non-
contrast CT of the heart used to identify calcification within 
epicardial coronary arteries. This imaging method has been 
repeatedly demonstrated to be the most effective predictor of 
coronary events in asymptomatic subjects. Several large-
scale studies have shown that CAC is superior to risk factor 
scores in the reclassification of patients, and its prognostic 
value has been replicated in many studies, including MESA, 
Dallas Heart, and Rotterdam, among others.

Other imaging method useful in cardiovascular screening 
of asymptomatic populations is ultrasonography, used for the 
measurement of carotid artery intima-media thickness and 
carotid plaque. This approach for detection of subclinical 
atherosclerosis is attractive as it requires no ionizing radia-
tion, is highly reproducible, and can be done in an office set-
ting with appropriately trained personnel. Also, large-scale 
cohort studies have assessed its prognostic value to predict 
relevant cardiovascular outcomes, with the most important 
including MESA, Rotterdam, Three-City study, Tromso 
study, MDCS, ARIC, CAPS, and CHS [24].

Nuclear medicine is a relatively new area of knowledge 
concerned with the use of artificial radionuclides for clinical, 
therapeutical, and biomedical research. Radionuclides are 
typically bound to other chemical substances constituting 
radiopharmaceuticals, which after administration are metab-
olized by the body physiological pathways. The energy emit-
ted by the decay of radiopharmaceuticals can be registered 
by special devices (e.g., γ-camera, SPECT or PET systems) 
and generate an image which can be coupled with other 
imaging methods (e.g., CT or MRI). Because of the intrinsic 
relationship of radiopharmaceuticals with physiologic path-
ways, one of the main advantages of nuclear imaging meth-
ods over traditional radiological images is that they can 
directly assess function rather than just anatomical structures 
[22]. In this way, the Hamburg City Health Study (HCHS) is 
a single-center, prospective, and population-based cohort 
which aims at identifying novel risk factors for major cardio-
vascular diseases, such as coronary artery disease, atrial 
fibrillation, heart failure, dementia, and stroke. The cohort 
includes about 45,000 volunteers between 45 and 74 years 
old with a baseline cardiovascular and neurological exami-
nation. HCHS focuses on evaluating the prognostic value of 
cardiovascular MRI that is performed in a sub-cohort with 
increased risk of cardiovascular disease; the imaging proto-
col includes stress perfusion MRI and radionuclide perfusion 
imaging. The cardiac MRI objective is to evaluate measure-
ment of cardiac volumes, mass, and function. Therefore, the 
excellent reproducibility of quantitative measurements com-
pared with other techniques, such as ultrasonography, posi-
tioned cardiac MRI as an attractive imaging method for 
large-scale population-based studies. Other cohorts that 
include the cardiac MRI examination are UK Biobank, 

German National Cohort, and the Canadian Alliance for 
Healthy Hearts and Minds [25].

Characteristics of this technique make it a very useful tool 
not only for clinical medicine but also for research endeav-
ors. Depending on the radiopharmaceutical employed, vari-
ous organ systems such as the central nervous system, the 
endocrine system, the respiratory system, and many others 
can be studied with novel unique perspectives. An interesting 
and novel research approach that does not require the need of 
implementing new technologies or radiopharmaceuticals is 
the use of radiomic methods to further improve the precision 
of diagnosis and risk stratification [23]. Radiomics in imag-
ing cardiology may supersede the current semiquantitative 
approach in interpreting study results and could enhance the 
reliability and reproducibility of studies. One example in 
which radiomics has been useful is in the assessment of cor-
onary artery calcification using myocardial perfusion studies 
[26, 27]. Furthermore, the correlation between cardiac imag-
ing data and genomic data could provide a better understand-
ing of subclinical disorders and improve the performance of 
cardiovascular scores for risk stratification in asymptomatic 
population. Further advances in the field of radiomics may 
prove useful to translate the insights of clinical utility of car-
diovascular imaging into significant research advances and 
implications for epidemiological research in cardiovascular 
health.

�Imaging Applications in Cardio-Metabolic 
Research

The current obesity and diabetes epidemic is a major chal-
lenge in developed and developing countries. Insulin resis-
tance and impaired insulin secretion are key features in the 
physiopathology of these diseases that lead to well-known 
adverse cardiovascular outcomes [28, 29]. These phenomena 
interact with adipose tissue function to increase risk of 
adverse outcomes depending on the localization of adipose 
tissue depots and its specific function [30, 31]. To assess this 
latter function, advance imaging modalities that include 
whole-body composition assessed by bioelectrical imped-
ance analysis (BIA), dual-energy x-ray densitometry (DXA), 
and MRI as the gold standard have provided the opportunity 
to analyze parameters of subclinical disease and body com-
position independent of BMI.

Body composition is important in order to analyze trends 
in obesity, adipose tissue function, sarcopenia, and other 
weight-related health conditions. The National Health and 
Nutrition Examination Survey (NHANES) using a national 
representative sample of the US population has included 
body composition analysis to estimate total body water 
(TBW), fat-free mass (FFM), total body fat (TBF), visceral 
adipose tissue (VAT), and percentage of body fat (%BF). 
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These assessments had been evaluated using BIA and 
DXA. This approach has permitted for the establishment of 
the percentiles of body composition parameters across the 
US population by age, sex, and ethnicity. Also, large-scale 
population-based studies as NHANES have evaluated the 
sex-specific body composition and determined that males 
had higher mean of TBW and FFM than did females, whereas 
females had higher mean of TBF and %BF than males, 
regardless of age and ethnic status [32, 33].

VAT is the most deleterious fat deposition in the body that 
it is strongly related to insulin resistance and increases the 
risk of developing cardio-metabolic disease and certain types 
of cancer [34, 35]. Large cohort studies that have evaluated 
VAT using DXA, CT, or MRI have demonstrated that the 
association between VAT and all-cause mortality is an inde-
pendent risk factor of several variables and that the use of 
reduction of VAT as a primary target for obesity-reduction 
strategies even in the absence of weight loss is associated 
with less risk of developing cardio-metabolic diseases [36, 
37]. In the KORA-MRI study, metabolic findings associated 
with diabetes and prediabetes included ectopic fat accumula-
tion, particularly of hepatic lipids, and differential adipose 
tissue distribution compared to healthy subjects. Similarly, in 
the Framingham Heart Study using CT, VAT was strongly 
associated with an adverse metabolic risk profile even 
according to standard anthropometric indexes [38]. The use 
of imaging techniques in the evaluation of ectopic fat accu-
mulation in subjects with subclinical or clinical risk has 
allowed for the identification of fatty liver disease as an 
important risk factor for morbidity and mortality [39].

Whole-body imaging examination in large-scale studies 
has shown the presence of white matter lesions, presence of 
carotid plaque, impaired function left ventricle, and signifi-
cantly increased myocardial mass in patients with diabetes, 
even in subjects with prediabetes [40]. These findings have 
been reported previously in different studies using ultra-
sound, echocardiography, and CT, and all these large stud-
ies confirm diabetes as a major cardiovascular risk factor 
[41]. However, using a population imaging approach, epi-
demiological research has made possible the identification 
of subclinical phenotype at high cardiovascular risk in dia-
betes [42].

In summary, the implementation of the population imag-
ing to the study of cardio-metabolic diseases offers clear evi-
dence of subclinical changes associated with high 
cardiovascular risk and shows substantial variability of sub-
clinical and clinical phenotypes between healthy and 
unhealthy subjects [43]. This could explain the very hetero-
geneous relative risk observed in longitudinal studies that 
depend on the observed subclinical and clinical manifesta-
tions. Additionally, implementation in population-based 
cohort studies of the radiomic approach which includes vol-
ume, shape, intensity, and texture of metabolic tissues 

assessed with imaging features will allow more accurate risk 
stratification across cardio-metabolic phenotypes [6].

�Imaging Applications in Cancer Research

Implementation of imaging in the study of cancer is primar-
ily focused on evaluating strategies for early cancer detec-
tion, stratification, and management and follow-up for 
prognosis. Correlation between bio-specimen-derived bio-
markers and imaging biomarkers is common in the oncology 
field. In this way, imaging biomarkers offer available, cost-
effective, and noninvasive tools for screening, staging, prog-
nosis, therapy planning, and serial monitoring of patients to 
evaluate therapy response, recurrence, and palliation [44]. 
Imaging methods vary in physical characteristics, such as 
sensitivity and temporal and spatial resolution. In this case, 
X-ray is the less sensitive clinical imaging technique, in con-
trast to PET and nuclear medicine which are the most sensi-
tive imaging techniques. Worldwide, the most important 
population-based imaging studies for cancer screening 
involve breast, lung, colorectal, and prostate cancer. For 
example, the population-based Cancer Screening Program in 
Urban China is an ongoing national program initiated in 
2012, and about 72,000 participants have a valid ultrasound 
screening. With this approach adjuvant screening value of 
the ultrasonography in women with dense breast has been 
evaluated and determined that this imaging method is a help-
ful tool for designing large-scale effective cancer screening 
strategies [45].

However, large-scale studies for breast cancer screening 
have used mammography and MRI methods for the detec-
tion and follow-up of patients at risk. In Cote d’Or, France, a 
population-based study of breast cancer screening investi-
gated factors affecting the adequacy of breast cancer screen-
ing rounds using mammography and the clinical implications 
of this approach. Comparatively, in the Breast Cancer 
Surveillance Consortium, using background parenchymal 
enhancement on breast MRI showed that this method is a 
strong predictor of breast cancer risk, independent of breast 
density and another established risk factor [46, 47]. Similarly, 
CT is useful for the evaluation of tumor size and density, 
whereas dynamic CT with contrast perfusion can further aid 
in the evaluation of blood flow, blood volume, and capillary 
permeability in patients with cancer. MRI allows for a more 
detailed examination of soft tissues compared to CT, and 
contrast-enhanced MRI using gadolinium has been employed 
to detect tumor angiogenesis and to monitor antiangiogenic 
drugs such as bevacizumab [1]. The combination of CT and 
MRI with nuclear medicine has additionally increased diag-
nostic sensitivity, reproducibility, and reliability, and these 
technologies have been used for cancer staging and monitor-
ing of post-therapy tumor response [1, 48, 49]. Diffusion-
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weighted MR imaging (DWI) can also be used to differentiate 
tumors with a high cellularity from those with necrosis, 
swelling, and cell lysis. As discussed above, imaging mass 
spectrometry (IMS) can be used in the detection of a myriad 
of molecular biomarkers on a specific tissue; moreover, these 
biomarkers can be combined to determine specific metabolic 
dysregulations. In the oncology area this can be helpful to 
assess tumor-specific molecules to inform prognosis, diag-
nosis, and treatment response [50]. One important drawback 
from this methodology is the great influence of sample prep-
aration on the quality and reproducibility of results, but in 
recent years significant progress has been made in this regard 
[50, 51].

Optical imaging can also be utilized in cancer research as 
there is a wide range of chromophores available to assess 
neoplasia, both endogenous including deoxyhemoglobin, 
water, amino acids, nicotinamide, flavins, porphyrins, colla-
gen, and elastin and exogenous including drugs, small pep-
tides, and antibodies targeting specific surface proteins 
overexpressed in tumors [52]. For example, these probes 
have been used to discriminate malignant breast tumors by 
assessing deoxyhemoglobin concentrations and water con-
tent within the tissue and to detect up-regulation of HER-2/
neu to assess tumor growth and metastasis using fluorescent 
probes conjugated with trastuzumab, a drug that has high 
affinity for the receptor [53, 54]. Depending on the radio-
pharmaceutical employed, various organ systems such as the 
central nervous, endocrine, respiratory, and many other sys-
tems can be studied with novel imaging perspectives. Since 
1970, nuclear medicine has been deeply intertwined with 
oncology, and it currently is vital for screening, diagnosis, 
characterization, stratification, and performing special pro-
cedures in various types of cancers [2]. The IP1-
PROSTAGRAM study is a population-based prostate cancer 
screening that compared the prostate-specific antigen, ultra-
sonography, and non-contrast MRI to screen prostate cancer. 
The study concluded that non-contrast MRI screening may 
be a useful tool for community-based screening compared 
with ultrasonography [55]. Similarly, screening with MRI is 
a useful method for lung cancer detection in asymptomatic 
individuals [56].

Although radiomics is applied to many fields, in oncology 
it is most developed because of support from many institu-
tions that include the National Cancer Institute, Quantitative 
Imaging Network, and other initiatives from the Cancer 
Imaging Program. This approach offers quantitative image 
features based on texture, shape, size, and volume informa-
tion from the tumor phenotype and microenvironment. The 
correlation with clinical and biochemical information could 
help in clinical decisions and potentially cancer detection, 
diagnosis, prognosis assessment, prediction of response to 
treatment, and disease status monitoring. Recently, PET 
radiomics has been the subject of matter in oncology research 

in order to determine the extent by which these methods can 
provide a comprehensive quantification of neoplasm pheno-
type and to fine-tune outcome predictions of patients. While 
valuable results have been reported, there is still much more 
to be clarified and it is a worthwhile area of opportunity. 
Particularly in the field of oncology, radiomics has been 
investigated to great extent. For instance, it has been applied 
for the differentiation of pheochromocytoma and other ade-
nomas in the workup of adrenal incidentalomas [57], for dis-
crimination between lung-invasive adenocarcinoma and 
other noninvasive lesions in the management of lung nodules 
[58], for differentiation between benign and malignant renal 
tumors [59], and many other cancers with very good results. 
The main advantage of radiomics over traditional interpreta-
tion is that the deep learning approaches used to analyze the 
data can provide insights that may be omitted by the naked 
eye or by traditional statistical methods [60, 61].

�Use of Imaging in Population-Based 
Epidemiological Studies

Population-based epidemiological studies are conducted 
from a sample randomly selected from population registry 
databases. These studies allow the generalizability of their 
results to the rest of the population in contrast to studies car-
ried out in specialized centers. Application of large-scale 
population-based epidemiological studies using imaging 
techniques can be both logistically and technically challeng-
ing as the heterogeneity of methods and its applications 
exposed before show that there is no single effective method 
or approach to design, conduct, develop, evaluate, and ana-
lyze studies based on imaging data. Below, we will describe 
some examples of epidemiological studies which have pri-
marily focused on imaging using population-based 
approaches to obtain more grounded statistical inferences.

�Study of Health in Pomerania (SHIP)

The SHIP is a population-based epidemiological cohort 
study which includes two independent projects: SHIP and 
SHIP-TREND, conducted in the northeast of Germany. 
Between 1997 and 2001, the first SHIP cohort enrolled 6265 
subjects followed in 5 years from 2002 to 2006, then again 
during 2008–2012, and finally in 2014. The second cohort 
(SHIP-TREND) was conducted between 2008 and 2012 and 
enrolled 8016 subjects, and the first follow-up was scheduled 
in 2015. The main aims include the evaluation of common 
risk factors, subclinical disorders, and manifest diseases 
using highly innovative noninvasive methods, involving the 
collection and assessment of data relevant to prevalence and 
incidence of common diseases and their risk factors. The 
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SHIP was the first population-based cohort study worldwide 
which includes whole-body MRI.  The inclusion of MRI 
evaluation allowed for the establishment of population-based 
MRI reference parameters for certain systems. Furthermore, 
this study provided prevalence, incidence, and progression 
estimates for different MRI findings and their correlation 
with clinical examinations, metabolomics, and genome-wide 
analysis to help elucidate the complex interactions between 
risk factors and diseases [62].

�Cooperative Health Research in the Region 
Augsburg (KORA)

KORA is a research platform for population-based surveys and 
subsequent follow-up studies in the south of Germany. This 
project was started in 1996 to continue and expand the MONICA 
project. In total, KORA cohort comprises about 18,000 subjects 
drawn from the population registry as a random sample of all 
25–74-year-old residents of south of Germany. Examinations 
have been conducted at 5-year intervals since 1984. However, in 
2004 an extensive biobank was set up. Between 2013 and 2014, 
a subgroup of subjects was included to undergo a whole-body 
MRI, KORA-FF4 MRI sub-study; in total 400 subjects were 
enrolled to design a case-control study to evaluate metabolic 
and cardiovascular disorders [63].

�Generation R

Generation R is a population-based prospective cohort study 
initiated in Rotterdam. The main aims include the identifica-
tion of early environmental and genetic factors and causal 
pathways leading to normal and abnormal growth, develop-
ment, and health during fetal life until adulthood. In total, 
9778 mothers with delivery date between 2002 and 2006 
were enrolled. The cohort included data from mothers, 
fathers, and children and includes questionnaires, physical 
and ultrasound examinations, behavioral observations, and 
biological samples. The inclusion of MRI measurements in 
about 4000 children aims to assess cardiac, pulmonary, body 
composition, and liver parameters [64, 65].

�Imaging Biobanks for Epidemiological 
Research

Imaging biobanks are organized databases of medical 
images. These imaging biomarkers are linked to other biore-
positories with the aim to give researchers access to large 
collection of imaging datasets from healthy subjects or 
patients with specific diseases integrated with clinical, demo-
graphic, and biospecimen data. Due to development of mod-

ern radiology and nuclear medicine, the access to huge 
imaging biomarker datasets from all sources of digital imag-
ing, such as CT, MRI, PET, SPECT, and US, has increased 
exponentially, opening up the possibilities of developing 
large-scale imaging biobanks. The European Society of 
Radiology established a working group aimed at monitoring 
and implementing imaging biobanks in Europe. Imaging 
biobanks allow storage of image data and metadata and stor-
age of associated non-imaging data. In Europe, many coun-
tries count with imaging biobanks; however, most of them 
are for research and clinical reference and are disease-
oriented, primarily in oncology and cardiovascular research. 
Currently, access to most imaging biobanks is restricted to 
local department/hospital personnel [66].

The UK Biobank and the German National Cohort (GNC) 
are two of the largest repositories of imaging data. UK Biobank 
is one of the largest ongoing population studies that includes 
about 100,000 volunteers examined using medical imaging 
starting in 2014. Imaging methods include ultrasonography, 
DXA, and whole-body MRI covering neuroradiological, car-
diovascular and musculoskeletal assessment. These imaging 
data can be correlated with demographic, biometric, and func-
tional data as well as biological samples and genetic data. In 
the last few years, genetic associations performed in large 
populations such as UK Biobank have been receiving particu-
lar attention. Radiomic approaches as an emergent field might 
make it possible to combine imaging datasets and genetic data 
for stratification of metabolic risk phenotypes or evaluation of 
subclinical and clinical conditions. Access to the UK Biobank 
is granted to scientific community members who meet the cri-
teria of scientific quality and public interest [67].

The GNC is a large-scale epidemiological study that 
enrolled 200,000 individuals between 20 and 69 years old 
from different regions of Germany. The main aim is to iden-
tify genotypic and phenotypic features associated with health 
and disease. However, in a sub-cohort of 30,000 volunteers, 
whole-body MRI examinations were performed; the imaging 
protocol includes neurological, cardiovascular, and musculo-
skeletal evaluation. In addition to the imaging examination, 
the protocol includes biometrical and functional test as well 
as biological samples that are stored in a biobank in Southern 
Germany. The GNC-MR study in the beginning was planned 
as a cross-sectional study, but follow-up studies are planned 
and underway [68].

�Analysis of Imaging Data from Population-
Based Studies

�Big Data Challenges

Because a large amount of biological, clinical, genetic, 
metabolomic, and imaging data have been generated and col-
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lected at an exceptional speed and scale, high-throughput 
computing has made possible the efficient analysis of large-
scale data, as well as enabled the access of information to the 
medical and scientific community. In epidemiology, imaging 
data represent a big data challenge in multiple ways, with 
significant technical challenges ranging from data acquisi-
tion, data management, and data analysis [69]. The combina-
tion of traditional data and new forms of data at the individual 
and population level has permitted the incorporation of 
imaging data into epidemiological research. Datasets from a 
multitude of sources have improved and supported faster and 
more reliable research and discovery. However, the statistical 
analysis can be a big challenge which limits the fast growth 
of the research. In this field, the characteristics of the big data 
are defined by the four major “Vs”:

	1.	 Volume which implies the enormous volumes of data, 
and depending on the machine, it is possible to capture a 
huge volume of data.

	2.	 Variety refers to the sources and different types of struc-
tured and unstructured data. Currently, biomedical data 
can be gathered from emails, photos, videos, and imag-
ing, among other modalities, and this variety of unstruc-
tured data can be a challenge for storing, mining, and 
analyzing data.

	3.	 Velocity implies the speed of production and processing 
of the data.

	4.	 Veracity, which refers to the biases, noise, and abnormal-
ities in medical data, which is vital for the taking deci-
sions in medicine [69–71].

Although big data offers exciting new opportunities for 
research, in the imaging field images must be processed in 
order to get an enhanced image or to extract useful informa-
tion. In summary, imaging processing includes importing via 
image acquisition tools, analysis and manipulation of the 
image, and output in which results can be altered images or 
reports based on image analysis. Five major challenges 
which involve the image processing are speckle noise, com-
putation time, feature dimensionality, retrieval accuracy, and 
semantic gap [69, 71]:

•	 Speckle reduction – A major problem for handling medi-
cal images is the presence of various granular structures 
such as speckle noise. Some real-time algorithms can 
remove speckles and allow smooth regions where no fea-
tures or edges exist while maintaining and enhancing 
edges and borders. These algorithms do not eliminate 
information, and this improves image quality and can 
increase consistency in diagnosis, reducing patient and 
operator dependence. In this way, speckle reduction imag-
ing is a real-time algorithm available exclusively on 
ultrasonography.

•	 Image registration – This process consists of combining 
two or more images obtained from different modalities 
for providing more information. For example, combina-
tion of information from an MRI and CT modalities pro-
vides more information than each individual modality 
separately [72].

•	 Image segmentation – Tissues and body organs are ana-
lyzed as delimited images; therefore, the procedure to 
segment images for extracting the region of interest (ROI) 
through an automatic or semiautomatic process is called 
image segmentation, for example, border detection in 
angiograms of coronary arteries, tumor detection and seg-
mentation, brain studies that include functional mapping, 
and heart segmentation, among others. This procedure 
can be used for separating different tissues from each 
other, through extracting and classifying features. In this 
context, image classification in pixels may be useful in 
extracting bones, muscles, and blood vessels from spe-
cific anatomical regions. Currently, there are many medi-
cal image segmentation methods, algorithms, and 
applications that can be useful tools for imaging segmen-
tation [69].

•	 Image classification and retrieval – The main challenge 
of image processing is the retrieval accuracy, which 
means achieving meaningful mappings between the high-
level semantic concepts and the low-level features includ-
ing color, shape, and texture, known as the semantic gap. 
For example, in the body composition analysis in images 
from DXA, CT, or MRI scans, other tissues such as cysts 
can be content in the fat deposits and the results might be 
biased. However, retrieval accuracy of images might 
improve correct classification and quantification.

If image acquisition and processing appear to be a great 
challenge, statistical analysis for classification or simply for 
reporting the characteristics for populations may be the 
greatest challenge for researchers. However, the develop-
ment of multivariate techniques and other fields of statistical 
analysis like artificial intelligence and Bayesian statistics has 
permitted the study of asymptomatic population in more 
detail to differentiate them into different risk groups.

�Multivariate Analysis in Imaging

Multivariate analysis (MVA) includes statistical and pattern 
recognition techniques which involve the processing of data 
that contains multiple measurements per sample. MVA is 
ideal for imaging tasks and can be used to analyze the cor-
relation within the entire image dataset in order to provide 
valuable guides for the unveiling and understanding of 
related processes. MVA techniques are quite varied in their 
potential applications [73, 74]:
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•	 Principal component analysis (PCA) is the most popular 
unsupervised MVA which computes orthogonal compo-
nents that maximize the variance captured from the 
underlying measurements. PCA relies implicitly on two 
assumptions: Large variances have important dynamics 
and data has a high signal-to-noise ratio, while the inde-
pendent component analysis is a useful technique based 
on discovering non-Gaussian distributions in datasets 
resulting in the exhibition of mixed signals.

•	 Clustering methods like K-means is an expectation-
maximization algorithm which iteratively alternates. For 
example, K-means iteratively alternates between assign-
ing pixels to the closest available cluster center and recal-
culating cluster centers as the mean spectrum of all the 
pixels in the cluster; this permits data to be grouped in 
different clusters. This unsupervised method can be 
refined using a supervised methods as linear discriminant 
analysis (LDA) that is a classification method for the 
observation of a dataset into groups using regression 
equations which maximize between group variances and 
minimize within group variance. This method has been 
applied to imaging mass spectrometry to improve the data 
classification more than clustering methods.

Overall, dimensionality reduction methods have permit-
ted modeling the relationship between statistical analysis 
techniques and computational technologies that are used 
automatically and semiautomatically [73, 74].

�Artificial Intelligence: Machine Learning 
and Deep Learning

Artificial intelligence (AI) deals with all aspects of mimick-
ing cognitive functions for real-world problem-solving and 
building systems that learn. This field has been able to build 
causal models which support explanations and understand-
ing as well as solving recognition patterns which often occur 
in imaging analyses [75, 76]. AI techniques play an impor-
tant role in imaging analysis in the big data era because of 
the applications that include imaging processing, computer-
aided diagnosis, imaging interpretation, fusion, registration, 
segmentation, retrieval, and analysis [77]. Machine learning 
and deep learning algorithms have been developed to 
improve imaging analysis, such as triaging screening mam-
mograms, reducing or eliminating gadolinium-based con-
trast media for MRI, reducing the radiation dose of CT 
imaging to improve image noise reduction, etc. However, the 
use of supervised learning requires large and heterogeneous 
training, validation, and testing datasets. In this context, if 
the images are from a specific population or are measured by 
specific machines, the performance will be affected, and the 
algorithm capacity will be biased. Furthermore, the valida-

tion phase is very important as it allows the algorithm to be 
tuned until the final performance of the model is evaluated 
with a test dataset. Currently, multiple internal validation 
methods are available; however, independent validation on 
an external dataset is preferred to internal validation to assess 
model generalizability [75].

AI techniques are composed of conventional algorithms 
without learning such as support vector machine (SVM) and 
deep learning algorithms which include convolutional neu-
ral networks (CNN), recurrent neural networks (RNN), long 
short-term memory (LSTM), and extreme learning model 
(ELM), among others. These algorithms are fed by raw data 
and try to learn multiple levels of abstraction, representa-
tion, and information automatically from large imaging 
datasets. However, these techniques are limited by the pro-
cessing of images in their raw form; are computationally 
intensive and time-consuming, based on expert knowledge; 
and require considerable time for feature tuning. Although 
AI algorithms in imaging analysis are a fascinating and 
exponentially growing research area, there are several barri-
ers which slow down its progress. One of the biggest issues 
is the so-called black-box problem, which refers to the fact 
that the mathematical concepts used to construct the models 
are straightforward, but the output is exceedingly compli-
cated and the understanding how the model works could be 
a huge issue [75].

�Bayesian Statistics in Imaging

The Bayesian approach permits the incorporation of prior 
knowledge into data analysis and revolves around estimating 
posterior probabilities, which summarizes the degree of 
one’s certainty concerning a given situation. Therefore, 
Bayesian approaches have multiple applications in image 
analysis and interpretation because it permits the use of prior 
knowledge concerning the situation under study. In the 
image analysis, the number of variables can range from thou-
sands to millions. Although the same Bayesian principles 
apply, the computational burden is obviously magnified [78]. 
One of the major applications of these methods is imaging 
reconstruction. For example, some authors have used the 
Bayesian approach to interpret medical image adapting the 
prior of Geman and Geman which smooths images inside 
identified regions but avoids smoothing across region bound-
aries. The application to bone-scan images results in 
improvements in images and analysis quality. In the analysis 
of positron emission tomography and MRI, Bayesian analy-
sis permits reconstruction using these line processes, as well 
as freely adaptable ones [79].

Bayesian inference is also a useful tool for the analysis of 
imaging datasets. Because many advanced methods for a 
variety of imaging techniques have been developed, such as 
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BOLD fMRI, diffusion, and ASL perfusion, Bayesian infer-
ence provides a mathematical framework which makes pos-
sible to take an approach to the complex problems in imaging 
analysis.81 This approach offers a consistent way to handle 
the uncertainty and then to quantify the resulting uncertainty 
in the estimates. However, when we use a Bayesian approach, 
it is important to define the prior information as well as the 
analysis goal since the final interpretation can be affected by 
an excessive use of prior information. Therefore, the incor-
poration of prior information to image processing and analy-
sis aims to provide a unified framework that incorporates 
external information and that can be adjusted through com-
putational techniques such as simulation [80].

�Limitations and Biases in Imaging Studies

To understand some of the limitations of imaging studies in 
epidemiological settings, we will retrieve the case study of 
Alzheimer’s disease from Sect. 2 of this chapter. Alzheimer’s 
disease is challenging to study because of its complex patho-
physiology but also because many of the imaging findings 
which have been identified in epidemiological studies have 
offered limited insight into pathophysiology, management, 
and monitoring of the disease [81]. The following assess-
ments are applicable to many disease models but are particu-
larly relevant for studies related to Alzheimer’s disease and 
cognitive impairment.

�Anatomical and Incidental Findings

One of the major challenges of all imaging studies is distin-
guishing which findings represent pathophysiological pro-
cesses, which represent adaptive changes derived for the 
presence of illness and which are simply anatomical varia-
tions due to age, ethnicity, sex, and so on [82]. For example, 
in neurological research the best understanding of the human 
mind requires the relationship between brain structure and 
function, coupled with mental processes. The brain of patients 
with psychiatric disorders could look similar to those of con-
trols, and anatomical findings often overlap between diseases, 
so at the end they will not be as specific as we would like. 
This problem is particularly relevant of studies that include 
already-affected individuals. Structural, emotional, physio-
logical adaptations and cognitive changes associated with the 
development of disease, especially in those which have 
chronic evolution, are thus likely to induce new alterations 
that coexist with the primary disturbances that caused the ill-
ness in the first place. If neuroimaging analysis is designed to 
identify similarities between these already-affected individu-
als, it will be more difficult to discern causes and signs of an 
illness from its consequences. Having said that, it would be 

reasonable to be cautious when an anatomical finding appears 
even as a common pattern in the group of study because this 
does not necessarily translate into saying that every patient 
will show the same sign or saying that this finding can sepa-
rate entirely this pathology from others [19, 83].

�Nonrepresentative Samples

Having a nonrepresentative sample implies that there are 
limitations to what can be concluded from the differences 
detected between groups. In case-control imaging studies 
there are at least three important considerations:

•	 Samples of convenience: Recruited patients come from 
local clinics which admit certain subtypes of an illness or 
patients that fit on certain diagnostic criteria, advocacy 
organizations, and particular socioeconomic groups. 
Differences detected across the cases and controls likely 
represent their sociodemographic variability and not the 
relative risk.

•	 Select participants based on their diagnosis: This has led 
to a bias toward studying diseases in patients who have 
different states of the illness. For example, in Alzheimer’s 
research individuals who are mildly cognitively impaired 
compared with patients who have progressed to the dis-
ease state. Having in mind that only a fraction of patients 
with mild cognitive impairment progress to clinical 
Alzheimer’s disease over 5–10  years or even later, the 
problem of discerning between findings linked to the 
pathogenic process, aging, and casual abnormalities 
becomes bigger.

•	 Ethnically representative sample: For example, in the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
study, over 90% of participants were Caucasian, meaning 
that Afro-Americans, Asians, and Hispanics were under-
represented in this sample because people with white 
Caucasian ancestry in that time represent 63% of the total 
population [19].

�Establishing Causal Relationships

Observed associations between neural and physiological 
traits do not necessarily imply a causal relationship; in fact, 
these associations could result from an unmeasured third 
variable that independently influences the other measures as 
a confounding factor. One of the best methods to infer causal 
effects is a systematic manipulation of an independent vari-
able and the subsequent observation of its effects on the 
dependent variable. This allows for the interpretation of any 
observed relationships as causal, and imaging studies have 
tried to achieve this goal with different designs [15, 19].
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Most imaging studies experimentally manipulate psycho-
logical processes by presenting a stimulus or task to the sub-
ject so investigators can infer that brain activity, or a part of 
it, was caused by performing these psychological functions, 
but they can infer with confidence that this brain features are 
causally responsible for the psychological process under 
study. Another interesting strategy is the adoption of ran-
domized controlled trial designs to study the casual effects of 
therapeutic interventions, where the outcome measure is a 
brain imaging measure instead of changes in symptoms. The 
random assignment allows the inference that the treatment 
caused the observed change in imaging measure without say-
ing, of course, that these changes can absolutely have a 
causal relationship with the illness being treated. For exam-
ple, it seems quite reasonable to infer that not because a 
medication with an affinity for a particular neurotransmitter 
receptor can change the severity, frequency, or manifestation 
of an abnormal activity in an illness, the illness itself is a 
consequence of abnormal activity of that neurotransmitter or 
receptor [13, 15].

Brain structure linked with function is also another impor-
tant point that has been assessed with imaging studies; its 
importance rests on the fact that structure and function influ-
ence each other, and the description of that interaction could 
sustain the biological component on the diagnosis, treatment, 
and understanding in this kind of pathologies. Nevertheless, 
this point remarks the importance of integrating different 
imaging modalities in imaging studies as each one has their 
own weaknesses that could be compensated by another tech-
nique. For example, structural abnormalities or differences 
between patients and controls could be related with findings 
in the same region using other modalities, improving their 
interpretations and neurobiological validity [13].

�Costs in Population Imaging

Costs associated with imaging can represent a limitation 
when developing these large-scale studies and especially in 
those with serial evaluations in prospective cohort studies. 
These costs include those related to data acquisition, use of a 
hospital-based scanner, development and continuation of a 
well-functioning research infrastructure that includes per-
sonnel, and storage facilities of large-scale datasets and 
imaging analysis. However, the costs can vary considering 
the imaging method and the number of the participants 
included in the study. Despite this, some large-scale studies 
are in follow-up, such as UK Biobank and German National 
Cohort. Although there are some population-based studies, 
development of large-scale imaging studies in developing 
countries could result in a great limitation, and the sub-
representation of these populations in other large-scale stud-
ies might limit the generalizability of the findings to 

developing countries with populations with specific 
characteristics.

�Concluding Remarks

Besides the ethical issues, the standardization of processes, 
analysis, and costs, most large-scale epidemiological studies 
strive to ensure high internal validity, that is, that the equip-
ment and software used to obtain the images remains 
unchanged for a certain period and during this period the per-
sonnel receives intensive training to achieve the standardiza-
tion of obtaining the images. However, external validity is 
complex since the use of a specific methodology which 
includes the imaging method used and the protocol for obtain-
ing the image may prevent comparability between studies. 
These problems are clearly exemplified when comparing dif-
ferent imaging methods and software, even inside of each 
imaging method. For example, there are many devices and 
software for magnetic resonance imaging and computed 
tomography, which limits the comparison between popula-
tions or even studies. However, cohort studies should keep the 
imaging methods used stable throughout follow-up. For 
example, the Rotterdam study in 1990 started using a 1.5 tesla 
MRI method and 22 years after continued to use the same 
method [24], even considering that now three Tesla scanners 
have improved the imaging process and are gaining ground in 
clinical implementation. Thus, implementing the latest in 
technology when large-scale studies are started is essential.
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�Introduction: Bioinformatics Applied 
to Modern Epidemiology

The shape and focus of clinical and epidemiological research 
have had significant advances over the last few years. 
Traditional research approaches based on exposures and rela-
tion to outcomes for clinical characterization of human dis-
eases are significantly limited given the vast amount of data 
available at hand. Similarly, the scope and speed at which 
data are being gathered and analyzed is growing fast, and the 
use of traditional statistical approaches may be undermined 
by the curse of multidimensionality and multiple hypothesis 
testing, which may complicate the identification of true posi-
tive findings, which is pivotal to translate genomic findings 
into significant clinical and epidemiological findings. 
Furthermore, characterization of disease processes has led to 
the identification of multidimensional factors involved in 

highly incident diseases such as diabetes, cancer, allergies, 
rheumatic, or neurodegenerative diseases [1].

Epidemiological designs for human research during the 
last century have been primarily focused on the characteriza-
tion of human diseases using a traditional epidemiology 
approach, which can be defined as “the study of the distribu-
tion and determinants of health-related states or events in 
specified populations, and the application of this study to the 
control of health problems” [2]. While this approach makes it 
possible to study the general effects of a disease process on 
the population, in a broad sense, the current medical trend 
demands a more integrative, systems biology-driven perspec-
tive [3]. In this context, the Human Genome Project (HGP) 
has been considered one of the most important and ambitious 
steps in medical history. From its proposal in May 1985 until 
its approval and initiation in October 1990, the HGP has 
attracted the participation of the Wellcome Trust Sanger 
Institute, the Broad Institute of MIT and Harvard, the Genome 
Institute of Washington University, the Joint Genome 
Institute, and the Whole Genome Laboratory at Baylor 
College of Medicine; overall, the HGP had brought this sys-
tems biology perspective as an attractive and applicable 
approach to epidemiology. The HGP has also brought forth 
technical advances in sequencing technologies, mathemati-
cal, computational, and statistical tools for the management 
and storage of genetic information, which overall represented 
the most significant achievement for medical sciences to 
comprehend human diseases in the last century [4].

The need for dedicated investigators who could perform 
and maintain the complex needs of large-scale data analysis 
has been of interest to academia and industry, but most 
importantly for human research. With a growing need for 
experts in this field, most laboratories seek to have a depart-
ment in bioinformatics among their toolbox and main areas 
of work. Beyond data acquisition and analysis, the individual 
researcher would certainly need external advice for any com-
plex analysis derived from modern epidemiological studies 
[5]. The challenge is amped up when investigators aim to 
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integrate patient information, clinical data, laboratory evalu-
ations, imaging, and genetic data to solve a clinically rele-
vant problem. The integration of multidimensional datasets 
enables the potential to identify unique biological signatures, 
providing a unique platform for advances in clinical and 
translational sciences.

In recent years, the term “omics” has spread across the 
fields of genomics, proteomics, metabolomics, and others to 
provide an insight view for understanding the systems biol-
ogy mechanisms within human diseases. This unified vision 
allows the traditional epidemiology approach to have a novel 
interaction between other disciplines such as computational 
biology, genetics, and most importantly, bioinformatics [1, 
6]. Specialized areas, such as clinical bioinformatics, have 
been created to analyze the massive amount of data that 
modern epidemiology generates within current populational 
studies. The field of clinical bioinformatics includes the 
analysis of not only genetic microarrays and other omics data 
but also an interplayed combination of medical, demo-
graphic, and psychometric information extracted from clini-
cal research and human databases. Overall, the current 
systems biology perspective allowed for the integration of 
clinical bioinformatics in modern epidemiology to better 
comprehend human diseases.

In this chapter, we focus on evaluating three main appli-
cations in the use of genomics and bioinformatics in modern 
epidemiological approaches. We evaluate the necessary bio-
informatics tool to engage in genomics discovery through 
genome- or exome-wide association studies, the develop-
ment and use of genetic risk scores to predict outcomes and 
disease processes, and the integration of information from 
multiple omics technologies to identify pathways which may 
have biological relevance to model disease processes using a 
systems biology approach. We aim to provide a comprehen-
sive understanding on the potential applications of genomics 
into epidemiology and refer for further reading to gain a 
more in-depth understanding of the application of genomics 
to inform epidemiological studies.

�Applications of Bioinformatics in Modern 
Epidemiology

�The Need for Clinical Bioinformaticians 
in the Era of Big Data in Epidemiology

The implementation of new techniques that allow for a more 
robust sequencing of the human genome has been introduced 
in public health laboratories worldwide. Methods such as 
pulse-field gel electrophoresis have been displaced by tech-
niques related to whole-genome sequencing that could pro-
vide a high load of information and definition at the 
nucleotide level for a specific human disease. Furthermore, 

this type of technique could establish causality mechanisms 
through the analysis of nearby genetic structures [6, 7]. The 
tremendous amount of data that can be extracted from a sin-
gle patient can now be translated into new information and 
that new information into new knowledge which, in turn, 
will lead to action on how to treat human disease and ideally 
how to prevent it, opening a new era where personalized 
medicine shifts from wishful thinking to a tantalizing and 
feasible application of bioinformatics.

Bioinformatics’ importance in modern epidemiology 
relies on integrating multimodal patients’ data obtained from 
sources at different biological levels, including population, 
demographic, psychometrics, clinical, tissue-specific, and 
cellular data to identify physiological routes for the timely 
diagnosis and treatment of diseases even in preclinical 
stages. Hence, bioinformatics has a unique domain within 
this current epidemiology perspective [8]. Moreover, novel 
specialties such as translational bioinformatics have been 
created to focus on “the development of storage, analytic, 
and interpretive methods to optimize the transformation of 
increasingly voluminous biomedical data, and genomic data, 
into proactive, predictive, preventive, and participatory 
health.” It has been emphasized that the integration of clini-
cal bioinformatics into research could improve medical care 
and provide an integration of multidisciplinary research with 
the unique objective to provide relevant information for per-
sonalized medical care [9, 10]. If there is data in medicine, 
there will be an area for bioinformatics.

�Technical and Conceptual Limitations 
in Bioinformatics

Bioinformatics continues to be a growing area of application 
in epidemiology, and its recent use has led to the identifica-
tion of various challenges and difficulties in its systematiza-
tion in various research and clinical centers. The great benefit 
that is expected to be obtained from the techniques and 
knowledge of bioinformatics within personalized medicine 
underlies its various limitations. Despite the advances pre-
sented for the applied genomic analysis, some limitations 
have been identified on technology necessary to provide suf-
ficient technical and computational capacity to analyze the 
information provided by novel sequencing techniques. This 
has also provided exciting opportunities for the development 
and advancement of the computer science field and has 
accelerated its integration into health-related research.

First, a great deal of computational power is required to 
manipulate all the components extracted from genomic 
sequencing. It has been recognized that desktop and laptop 
computers may not have the computational capacity to process 
and analyze large datasets in short periods of time with the 
level of technical complexity required to achieve causal infer-
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ence using systems biology approaches. With so-called work-
stations and graphics processing units (GPU), along with 
appropriately trained bioinformatics staff, hundreds of 
genomes can be generated and analyzed in approximately 
2–3 days, providing near real-time results for surveillance and 
monitoring of emerging disease outbreaks and deep genotyp-
ing for the characterization of complex chronic diseases.

Second, appropriate knowledge in bioinformatics is 
required to guide the hypothesis-focused analysis plan. An 
appropriate analysis of the data generated from sequencing 
starts by choosing the best algorithm tool to compare our 
query sequences with database sequences. It has been pro-
posed a wide variety of analyzing tools, like the Basic Local 
Alignment Search Tool (BLAST), that can be chosen accord-
ing to the purposes of the study. This requires an expert in 
bioinformatics to know the possibilities for the best approach 
to the analysis. Moreover, programming languages are 
widely used in data processing (e.g., Python, Perl, R, Julia, 
or Shell). A good domain of this programming language 
allows a more efficient analysis.

Finally, conclusions must be interpreted by a multidisci-
plinary team dedicated to the area of interest in the problem 
to be limited. Given the large amount of information that is 
managed and the possible confounders that may be impli-
cated, investigators should have experience in the area of 
interest for a correct interpretation of the result. This needs to 
be assessed from the point of view of statistical and biologi-
cal significance. Whatever a genome sequence variation is 
characterized in a group of individuals, its physiological and 
pathological implications must be established to determine 
the real impact on health’s influence.

�Genome-Wide Association Studies

Fundamentally, epidemiology aims to establish a relation-
ship between outcomes and exposures, as well as pursuing 
understanding of disease processes to improve public health 
and healthcare in general [11]. Genomic technology and data 
integration into public health research has highlighted its 
usefulness and common goals [12]. Genetic epidemiology 
continues to be a growing field; it is predicted that this 
approach will soon replace the role of family studies when 
investigating heritability mechanisms and the identification 
of how risk factors may influence disease risk at an individ-
ual level. Focus on single nucleotide polymorphisms (SNP), 
which are substitution or variations of single nucleotides, 
inside the dense amount of genome data that has become 
more common, along with microarray technology progress, 
has allowed to better map genetic relationships which diverge 
from Mendelian mechanisms [13]. Throughout the following 
segment, we will discuss how two of the most common 
genomic studies, GWAS (genome-wide association studies) 

and EWAS (epigenome-wide association studies), could be 
applied for epidemiological research and how these can be 
useful to inform research designs.

�A Primer on GWAS and its Applications 
to Epidemiology

Genome Wide Association Studies (GWAS) is a genomic 
analysis technique at a population level centered in the study 
of SNP, and sometimes copy number variants (CNVs), the 
linkage disequilibrium (LD) associated to them, and their 
relationship with a phenotype, be it a disease or a specific 
disease trait. For instance, in the locus where a group of a 
population could have a cytosine (C), the other group could 
have a thiamine (T). Even though there are four different 
theoretic possibilities for nucleotides in a locus, in practice, 
the number of alleles commonly found is primarily reduced 
to two. When two or more substitutions of this type have a 
population frequency of 1% or greater, they are called SNPs. 
This type of genetic change accounts for approximately 75% 
of all genetic variation [14].

When SNPs are studied, a concrete combination of them 
is expected to be found depending on their prevalence among 
the population. As an illustration, if the SNP “A” has a preva-
lence of 80% and the SNP “B,” which resides at another 
locus, has a prevalence of 30%, the expected proportion of 
subjects with both SNPs present at the same time would be 
24% (0.8*0.3 = 0.24). Linkage disequilibrium is the differ-
ence between the expected prevalence of two SNPs and the 
one observed or obtained through an experimental measure-
ment, being positive in the case it is greater than the one 
expected or negative, if it is lower. Both concepts, SNPs and 
LD, are fundamental in order to be able to understand 
GWAS. Using LD, dependence patterns between previously 
characterized allele groups can be inferred, and correlation 
analysis can be done, grouping them in LD blocks. These LD 
blocks allow for genealogical and familial tracking, as well 
as database building, from which polymorphisms that will 
not be measured in a posterior study can be predicted or 
imputed. Data imputation in GWAS has been proven useful 
and gives the opportunity to perform an extensive analysis of 
the obtained genetic code [15].

The study of SNPs is important because in classic 
Mendelian genetics, mutations could be followed for genera-
tions due to the great effect that a single gene had in a trait or 
a disease; however, not every trait has a clear monogenetic 
inheritance, nor every gene has a strong effect on the 
phenotype. In consequence, the study of multiple genes with 
moderate or mild effects was necessary if these more com-
plex inheritance and diseases were to be explained. This is 
where GWAS comes into play, as it allows the simultaneous 
observation of the whole genome when searching for these 
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variants, and their cohesive analysis, making the association 
between the genetic code and the observed phenotype pos-
sible. The rarer a variant, the larger the sample size will need 
to be to reduce the possibility of false-positive or false-
negative findings. It is for this reason that cooperation among 
researchers and institutions is frequent and that more com-
mon variants are the ones studied.

�How Is the GWAS Approach Applied 
to Epidemiology?

Methodologically, a cases-control study design is often used 
for GWAS. A few hundred samples are genotyped, which 
could belong to a cohort, such as the Rotterdam or Framingham 
cohorts, or to a biobank. A ratio of 1:1 control to cases is 
regarded as the gold standard, but a ratio of 1:4 is often pre-
ferred [16]. Once the genetic material is extracted, the geno-
type is obtained through hybridization to quartz chips with 
oligonucleotides of approximately 50 base pairs that are 
flanking the desired SNP, then, DNA amplification is per-
formed, along with washing steps, and finally, an ultrahigh-
definition laser that detects the fluorochromes is used in the 
process. This allows for many SNPs to be rapidly genotyped, 
as current SNP arrays range in size from 200,000 to 2,000,000 
[15]. A large amount of computational power is required for 
the process and storage of obtained information, as a 10,000 
sample database could be as large as 15 terabytes [16].

GWAS can also be done in two stages. First, relevant or 
clinically significant variants are identified and followed by 
a technical and statistical quality control. Second, another 
independent analysis is performed to verify the findings. For 
a SNP to be genome-wide significant, a p value of 10−8 is 
often used [17]. After getting the genotype, the stored infor-
mation is analyzed. The objective is to associate known phe-
notypes to the identified variants. The minor allele frequency 
(MAF) is the proportion of the second most common allele 
in a population. When this frequency is <1%, the assump-
tions could no longer hold and should be studied with a 
larger sample size [16].

For those SNPs that are statistically significant, a poste-
rior analysis is made to find its relationship with adjacent or 
near genes and LD blocks. A great benefit from GWAS is 
that associations and correlations for variants that had no 
previous information are found, and this fact opens a new 
opportunity for future research and therapeutic targets. On 
the other hand, GWAS suffers from the limitation of not 
offering an explanation of the mechanisms which underlie 
the variant’s effect on the phenotype, which makes the selec-
tion of a new variant to study difficult, as many loci could 
have newly identified associations and characterizations.

Linkage analysis was the main method used to study the 
causal implication of certain variants. It was specifically use-

ful for Mendelian traits, but it was not as effective for com-
plex traits and common diseases. For this reason, a method 
for analyzing mutations that had a small effect on the pheno-
type and that could not be identified through linkage analysis 
was needed. The International HapMap Project, or Haplotype 
Map, was an international collaboration project focused on 
mapping the most relevant SNPs in such a way that out of the 
ten million in total, 500,000 could be enough to be represen-
tative of the entire genome, and haplotypes or groups of 
these SNPs could be formed. This allowed for an efficient 
approach to genetic variation and made possible the calcula-
tion of linkage disequilibrium.

Advances in metabolic, psychiatric, and autoimmune dis-
eases have happened as a direct result from GWAS, ranging 
from the discovery of a new therapeutic target to medication 
repurposing. There is no doubt that GWAS has been a power-
ful resource since its first implementation and that it will 
continue to be in the foreseeable future. It is highly likely 
that GWAS will continue to allow for discoveries of new 
SNPs and their association with known diseases, being sup-
ported with larger sample sizes and bigger databases to work 
with. Almost 10,000 genome-wide significant associations 
between genetic variants and complex traits have been 
reported [18]. From the data that GWAS has provided, it has 
been clear that nearly every complex trait has multiple loci 
contributing to the genetic variation and that the same genetic 
variants can be associated with multiple traits or diseases, a 
characteristic called pleiotropy.

�Incorporating GWAS Findings into 
Epidemiology

Incorporation of genetic information into epidemiological 
findings is a relatively new approach. However, with the 
newest advancements in sequencing and microarray tech-
nologies, the challenge has shifted from the performance of 
individual GWAS to the management of the enormous 
amount of data that has originated from these analyses and in 
identifying meaningful biological and clinical ways to inter-
pret and integrate the data into current frameworks [19]. 
Genetic epidemiology, per se, involves a mixture of both 
complex epidemiologic models and additional statistical 
designs which have evolved from physical mapping to 
Hardy-Weinberg equilibrium and, further on, for their under-
standing. GWAS data and epidemiology should aim to be 
studied in an intersectional manner, as a more accurate 
statistical modelling may help understand genetic multicau-
sality in hereditable diseases. Nevertheless, it should be 
noted that one of the main limitations of GWAS analysis is 
its lack of reproducibility and further inconsistency, which 
makes strong case for a need to systematize and optimize 
quality of GWAS in epidemiology [20].
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GWAS focuses on the identification of common SNP 
alleles for an evaluation of disease risk and is a popular 
approach to investigate associations between genetic infor-
mation and diseases [21]. Originating from the premise of 
penetrance, the most basic probabilistic genetic model, 
which describes the probability of a phenotype for a given 
genotype [22], altogether with Mendelian (or chromosomic) 
inheritance, genetic models have evolved to adapt with the 
immense amount of information supplied by GWAS. As of 
February 2020, there were more than 175,000 SNP and dis-
ease outcome associations [21], and more than a million 
SNPs were identified from every individual sample, captur-
ing human genome variability, based on the idea that com-
mon alleles in a given population would explain, at least 
partly, disease heritability [23]. Today, complementary to the 
first wave of studies that explored if and which specific DNA 
sequences or genes were associated with a single disease, 
GWAS is focusing more and more toward comparing the 
buildup of the transcriptome and RNA composition in 
affected and unaffected individuals, pretending to answer 
what could be going on in the cell from a dynamic and time-
dependent perspective during the physiopathology of a dis-
ease [24].

Population studies from GWAS data have shifted from 
focus into familial or close-relation cases where the studied 
disease was common into massive numbers of unrelated 
individuals for case-control or cohort stratified studies. 
Associations have been found as commonly in coding 
regions as they have in genetic deserts. However, the detec-
tion of rare variants remains more likely in extended pedi-
gree analysis; although they co-segregate with family traits, 
the effect size is still relevant despite the small sample size 
[25]. Family information remains relevant for study and sta-
tistical analysis design. The ultimate goal of a case-control 
study with GWAS data is to identify allelic frequency differ-
ences between controls and cases in order to identify particu-
lar SNPs that could be related to disease susceptibility [26]. 
For GWAS analysis, both findings in independent cohorts 
and a large sample functional analysis should be completed 
as gold standard.

�Analyzing GWAS Data

There are several considerations to be made when perform-
ing statistical analyses on the observations from a SNP array, 
regarding experimental design, data cleaning, and further 
analysis. Although GWAS has become more and more com-
mon since its introduction, there are still several challenges 
regarding its analysis [27], which will be covered throughout 
this section.

The first thing to consider, as in any statistical analysis 
one aims to perform, is the quality of the data. Most of the 

variants that show relationship with disease outcomes that 
are detected during the analysis have small effects, account-
ing for a small fraction of the sample’s genetic variance. 
Given this, special attention should be paid to data quality 
control in order to ensure the observed variability is not 
caused by random or systematic error [26]. A large data size 
is critical for this analysis, but quality control and assurance 
may be even more relevant. However, numerous quality con-
trol strategies have been developed, and there are different 
software packages [28] (and R packages) which can take 
care of this procedure before taking on any analysis. It is 
relevant to point out that it has been observed that SNP call-
ing is closely related with the software used for the analysis 
[25]. Common problems in analysis quality arise from 
experimental factors which relate to allelic frequency, such 
as differences in population structures, related individuals 
under independence assumptions, or non-random missing 
data [26].

Missing data in GWAS is measured with the missing call 
rate. This metric refers to “the fraction of missing calls per 
SNP over samples or the fraction per sample over SNPs” 
[26], which refers overall to genotyping efficiency. When 
samples have a low genotyping efficacy, they should be 
removed from the analysis. The threshold for the missing 
call rate should be established considering the specific effi-
cacy of the genotyping of the SNPs of interest for each indi-
vidual [29]. When there is a high missing call rate for a 
certain SNP, for example, >5%, the SNP should not be con-
sidered for the analysis. Missing data can be dealt with using 
imputation techniques based on reference datasets, like the 
HapMap Project [30], or with known haplotype data [31]. 
SNP alleles with a very low frequency (<1%) also should be 
excluded from the analysis, given that they are likely repre-
sentative of genotyping error and on themselves have low 
statistical power. Outliers should also be dealt with nearest-
neighbor analysis, considering ~4 standard deviations. There 
are no established thresholds for quality data control, but 
they should always be specified and determined according to 
the current sample characteristics [32].

As preliminary data quality control, Hardy-Weinberg 
equilibrium (HWE) should be evaluated. If a deviation exists 
for SNPs of interest in case groups, it is normally regarded as 
a signal of true association [32]. Normally, after a Chi-squared 
evaluation, a statistical significance of p < 5x10−8 is consid-
ered, given that there is multiple hypothesis testing going on. 
Other corrections, such as Bonferroni or false discovery rate, 
could also be performed to determine optimal statistical sig-
nificance, as well as the use of Bayes factor [33]. When a 
“normal” p-value limit of 0.05 is considered, it means that 
there is five in a hundred chances that the null hypothesis is 
being wrongly rejected. However, when the analysis includes 
around a million different SNPs, there could be up to 50,000 
false-positive carriers. That is why, to try to minimize error 
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related to multiple testing, significance is established at such 
threshold [20]. It is recommended to ensure HWE in control 
groups; if there is a deviation in this group, there probably 
exists genotyping error or even genetic association [27].

Another relevant aspect to consider for epidemiologic 
GWAS application is population structure. Preexisting dif-
ferences in ancestry contrary to disease could lead to spuri-
ous observations, so population stratification should be 
checked within groups as part of quality data control [29]. 
This condition is one of the most common reasons for the 
lack of reproducibility of GWAS analysis. Population strati-
fication is defined as when the difference in allele frequen-
cies between cases and controls “is due to systematic 
ancestral differences” [32]. Different approaches, such as 
genomic control based on Chi-squared tests [34], structured 
association involving clustering based on a Bayesian algo-
rithm [35], principal component analysis (PCA) [36], and 
multidimensional scaling [28], have been proposed to both 
correct and detect population structure.

Once quality control has been guaranteed, the statistical 
analysis for association in GWAS data has as main objective 
the comparison of allele or phenotype frequency between 
cases and controls [32]. One of the most common tests in 
single genetic association studies is the Cochran-Armitage 
test, which follows the gene-dosage model and is distributed 
asymptotically as a Chi-squared distribution. However, the 
gene-dosage assumption tends to deviate from reality, so 
other optimal trend tests for basic genetic association, espe-
cially for heterogeneous diseases, have been developed [37]. 
These tests are improved by considering HWE inside the 
test. This provides a more sensitive testing alternative for 
each case. Other methods as logistic and linear models, 
t-tests, or survival analysis can also be used depending on the 
viability of the data. When considering complex diseases, 
penalized regression models are often considered after a 
selection screening process. After relevant SNP identifica-
tion, further independent validation should be carried on in 
order to discard spurious relationships in replication sam-
ples. However, biological evaluation and analysis should be 
considered before discarding any association [32]. The final 
step for any basic association analysis then consists in data 
visualization in order to understand GWAS observations. 
The most common and used tool for this is the Manhattan 
plot, which graphs p-values in the log-scale against SNP 
physical position in order to distinguish possible SNPs 
related with the studied condition [32].

�Epigenome-Wide Association Studies

The term genetic epidemiology has been defined as “the 
integration of epigenetic analyses into population-based 
epidemiological research with the goal of identifying both 

the causes and the phenotypic consequences” [38]. Genetic 
epidemiology also includes the consideration of data com-
ing from epigenome-wide association studies or EWAS, 
whose main goal is to inform on environmental factors 
which influence gene expression in genetic studies [39]. 
With the same aim to that of a GWAS, EWAS seek to 
replace familial genetic studies and look for association 
for common conditions instead of rare variants. Tissue 
specificity is key in these studies; however, ideal tissues 
for analyses might not always be readily available. 
Therefore, common samples are drawn from peripheral 
blood, and white blood cells are selected depending on 
research interest [40] or drawn from easily accessible 
sources, such as saliva, nasal swabs, or urine samples. 
Tissue heterogeneity is another important issue to be con-
sidered for sample selection for EWAS, as also the ideal 
sample choice depends on the pathological nature of the 
disease under study. For more information regarding sam-
ple selection, readers are suggested to consult Rakyan 
et al. and Michels et al.

The epigenome has the peculiarity that it is dynamic; it 
can show hereditable changes in chromatin that modify 
genetic expression without modifying its sequence, and 
these same modifications could be caused by environmental 
factors. Studying the epigenome is of epidemiologic interest 
given that it is inheritable across cell generations, so it repre-
sents a reliable way to study long-term environmental expo-
sure and its outcomes for disease processes [41]. Its study 
has been of special interest for cancer genomics and herita-
bility, especially regarding hypomethylation in CpG islands, 
local hypermethylation, and silencing of DNA repair-related 
genes. The epigenome regulates dynamic gene expression 
that determines cellular phenotypes, with genomic imprint-
ing being one of the most important mechanisms regulated 
by the epigenome.

The most common epigenetic marker is DNA methyla-
tion, whose regulation is essential for the correct functioning 
of the cell, and it occurs most commonly in CpG islands. 
Although EWAS is centered on cytosine methylation analy-
sis, it is the most accessible epigenetic modification to be 
analyzed [42]. The epigenome involves other modifications, 
such as histone modification (methylation, ubiquitination, 
acetylation), or enzymatic modifications in either DNA or 
histones [43]. DNA methyltransferases (DNMTs) are 
responsible for the maintenance of methylation patterns in 
the cell; these methylation patters are plastic, enzymatically 
reversible, cell-type specific, and can be affected by SNPs 
[11]. This is why, unlike GWAS, EWAS associations can be 
both causal and consequential for a determined phenotype 
[42], making its analysis relevant not only for disease com-
prehension but for its prevention, as it includes a time-
varying component [44]. EWAS might be a very relevant 
tool to find epidemiologically significant biomarkers.
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�Methods for Conducting EWAS

EWAS were first introduced in 2011  in a review, as a new 
proposal for a novel analysis in identification of loci associ-
ated with common diseases [42], but one of the first reported 
EWAS was performed in 2010 by Patel et al. for type 2 dia-
betes mellitus (T2D), in which methodology from GWAS 
was adapted to identify relevant environmental factors which 
could influence T2D etiology [39]. Before this, epigenetic 
studies were performed with limitations such as inadequate 
genome coverage or inadequate sample size, considering 
microarray technology (e.g., Illumina array) to identify 
methylation signatures in patients with ovarian cancer, blad-
der cancer, and breast cancer, among others [43]. These stud-
ies did not present independent validation, therefore lacking 
reproducibility. Today, 450  K array are used to perform 
EWAS, and although it covers less than 2% of the CpG sites 
in the genome, it tries to cover all known genes. Some of the 
most robust EWAS findings have been the relationships 
between methylation and smoking status and methylation 
and increasing age. EWAS-based sequencing is a promising 
approach which could influence future studies, perhaps using 
Bis-Seq data [43].

Methods for EWAS have passed through several itera-
tions. The first one to be used included arrays, such as 
MethylScope and CHARM, and methylation-sensitive 
restriction enzymes, which were aimed to detect differen-
tially methylated sequences. The limitations of this method 
are the large volume of starting DNA required (100  ng to 
1000 ng), the susceptibility to false-positives, and the quali-
tative or semiquantitative nature of the results. Chip-based 
methods are largely in disuse. Affinity enrichment uses 
5-methylcytosine (5mC)-specific antibodies or MBD cap 
proteins (methyl-CpG-binding domain) to detect methylated 
DNA segments and is another method for epigenomic analy-
sis. Methyl-DNA immunoprecipitation (MeDIP-chip) is an 
example of this. MeDIP-chip targets preferentially zones of 
DNA with low CpG concentration and can work with 
approximately 5 ng of DNA. It is a good option for large-
scale EWAS and has been used to study cell-free DNA for 
cancer detection. The results are semiquantitative, it has a 
low resolution, and it is susceptible to batch effects.

The current gold standard for epigenetic analysis are the 
bisulfite conversion-based methods. These are based on the 
differential conversion of unmethylated cytosines to uracil 
by sodium bisulfite, which are then converted to thiamine 
during the following polymerase chain reaction (PCR) and 
are finally compared to the reference sequence for analysis. 
Bisulfite conversion-based techniques allow for single nucle-
otide definition and quantitative results. Among this group, 
there are DNA methylation arrays and bisulfite sequencing. 
An example of the former is Illumina’s DNA MethylationEPIC 
array, with a coverage of 850,000 CpG sites, a 3% of the total 

in the human genome. It has the advantage of being rela-
tively inexpensive, having a simple setup, and allowing for 
analysis of large volumes of data. It is the most popular 
method for large quantities of samples. This method requires 
~500 ng of DNA, making its application in liquid biopsies or 
needle samples difficult.

The latter is a wider group of techniques. Bisulfite 
sequencing could be classified by the coverage of the epig-
enome they have. Whole-genome bisulfite sequencing 
(WGBS) has the largest coverage, with 28 million CpG sites, 
and is the most expensive and time-consuming, which makes 
it unviable for a large volume of samples, and it is excellent 
at characterizing epigenomes of specific cell types and is the 
gold standard for fine-mapping of CpG sites. Reduced repre-
sentation bisulfite sequencing (RRBS) has a smaller cover-
age ranging from 3 to five million CpG sites. It relies on 
methylation-sensitive restriction enzymes and has proven 
useful to analyze DNA from single cells and cell-free 
DNA. Bisulfate sequencing can also be done targeting spe-
cific desired sections by probe hybridization. It has an 
approximate coverage of five million CpG sites, and it 
enables tens of thousands of probes to be utilized simultane-
ously. This method has been used to approach hepatocellular 
carcinoma.

�Application of EWAS in Epidemiological 
Studies

Epidemiology constantly faces the challenge of distinguish-
ing causal inferences from statistical associations with con-
founded causality, and in the case of genomic data, this 
becomes more relevant. GWAS look for direct causality 
only, given that DNA remains constant throughout life; how-
ever, mechanisms cannot be ascertained as expression of cer-
tain variants is not guaranteed. EWAS, on the other hand, 
allow for more flexibility, being that different epigenomic 
markers may indicate both either cause or consequence of 
several disease processes [45]. Some considerations should 
be made before starting any EWAS analysis, including study 
design, study population, sample size, and consideration of 
possible confounders.

After tissue and epigenetic markers had been chosen, 
the best study design must be chosen to ensure the possi-
bility of identifying meaningful causal associations. 
Missing data and population stratification should be dealt 
with in a similar manner as if data were analyzed using a 
GWAS approach. However, EWAS data presents more 
challenges compared to GWAS data. The epigenome is 
widely modified by environmental factors, which do not 
have any known matrices or theories as to how they behave, 
being additionally heterogeneous along the life course 
[11]. Similarly, lack of consensus and quality control in 
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environmental confounders is still a major challenge for 
EWAS data analysis [44]. Methylation states are tissue-
specific, and significant measurement error may impair 
precise identification of causal associations. Common epi-
genetic confounders include aging, specific allele methyla-
tion, and other environmental factors to which individuals 
are constantly exposed. There is a great way to go still on 
information regarding EWAS data; there is still work in 
progress mapping the human epigenome and cataloguing 
the inter-individual epigenetic variable regions within the 
genome [38]. The information provided by epigenomic 
analysis is invaluable in understanding the mechanics of 
disease, and it should be pursued alongside statistical and 
epidemiological rigor for the greatest benefit of public 
health studies.

�Polygenic Risk Scores

�Polygenic Risk Scores in Personalized Medicine

Over the past decade, the decreasing cost of whole-genome 
sequencing (WGS) has made increasingly accessible for its 
application in large genome-wide association studies 
(GWAS). More and more single nucleotide polymorphisms 
(SNPs) extracted from GWAS of high prevalent diseases 
such as diabetes, cancer, and cardiovascular disease have 
been derived [46–49]. However, the question remained as to 
how these SNPs could be combined to predict a relevant 
clinical outcome. This approach has led to the development 
of polygenic risk scores (PRS) as a way of integrating genetic 
information onto epidemiological or clinical applications in 
the new era of personalized medicine. Today the terms 
genetic risk scores, polygenic scores, and PRS are used 
indistinctively and consider the incorporation of genetic 
markers for the prediction of specific disease traits or its rel-
evant outcomes [50].

Genetic risk scores (GRS) have two main goals: 1) to pre-
dict the likelihood of developing a disease or disease trait 
and 2) to estimate the predictive capacity that is captured by 
the associated genetic variants onto a specific outcome or 
trait [51]. The proposed applications of PRS range from 
assisting disease diagnosis, informing the selection of thera-
peutic interventions, improving risk prediction, and report-
ing disease detection even in a preclinical state [49]. 
Furthermore, the implementation of GRS has aided the eval-
uation of the cumulative effect of genetic factors taken 
together with clinical indicators over the outcome of specific 
disease traits [52], and given that genomic profiling alone is 
still debatable to be able to predict complex diseases for rou-
tine clinical use, PRS may offer an attractive alternative [52]. 
Development of PRS has increased in recent years, but it has 
also led to a reframing of its current approaches regarding 

their methodological and pragmatical application within per-
sonalized medicine.

�First Approaches within the Estimation of GRS

GRS found their very first primitive origins in marker-
assisted selection (MAS), which was first applied for animal 
breeding in 1998 [53]. This technique originated from the 
use of molecular markers to find individual quantitative trait 
loci that control important traits and therefore combining the 
effects the loci have on them to develop a ranking to aid 
development of lines or populations. These effects were 
determined through population genetics and linkage disequi-
librium (LD), and although these methodologies were not 
applied into human populations until 2001 [54], they set a 
first approach toward what we know today as genetic risk 
scores. Furthermore, common GRS have evolved to PRS 
from the premise that heritable traits are not due to the trans-
mission of one relevant loci, but to the combination of the 
smaller effect of other genes [50]. For most diseases, a single 
variant is not enough for the assessment of disease risk, so a 
PRS is formed from a set of independent risk variants associ-
ated with a disorder, based on evidence from GWAS data and 
weighted by the number of alleles the subject is carrying and 
the specific risk for the variant [49]. A PRS then is defined as 
a “single value estimate of an individual’s genetic liability to 
a phenotype, calculated as a sum of their genome-wide geno-
types, weighted by corresponding genotype effect size esti-
mates derived from GWAS data” [55].

�Determination of Genetic Risk Scores

The creation of PRS has been improving over the past few 
years. As originally conceptualized, PRS are created using 
the weighted sum of the risk alleles of single nucleotide 
polymorphisms (SNPs) extracted from GWAS of a specific 
disease. Numerous examples of PRS had been created using 
thousands of SNPs for several diseases including diabetes, 
breast cancer, and coronary artery disease [48]. The advances 
in statistical methods, computational capacity, and the avail-
ability of large population datasets have led to the rapid 
development of PRS applied to modern epidemiology over 
the past few years.

There are many different approaches for GRSs’ determi-
nation. They range over a simple sum of odds ratios derived 
from logistic regression multiplied by the number of risk 
alleles [28] to a Bayesian mixture for additionally complex 
traits for PRS [55]. One of the main issues concerning GRSs 
and PRSs’ determination is missing data from GWAS or 
EWAS, specially missing measurements on SNPs of interest 
[51]. Nevertheless, it should be noted that GRSs and PRSs’ 
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accuracy is normally assessed by the area under the receiver 
operating characteristic (ROC) curve using a cutoff of >0.75 
for informative screening and > 0.99 for use as a diagnostic 
aid [56]. Other metrics are also used to estimate the propor-
tion of trait variability established by the determined mark-
ers, such as the population attributable risk (PAR) which 
expresses the fraction of cases attributable to a single expo-
sure [51]. All these metrics have important statistical consid-
erations, along with the need for calibration curves to 
evaluate if there is overfitting. Even though GRS have 
become popular in use, until recently there had not been a 
solid delimitation of steps and methodology to perform and 
interpret them [55]. Readers are recommended to follow 
methods proposed within the TRIPOD statement for report-
ing on the development of predictive models using popula-
tion data, which can be applicable to PRS [57].

PRS require two datasets in order to be performed: the 
base data (composed of GWAS/EWAS data with summary 
statistics corresponding to SNPs and genotype-phenotype 
associations) and the target data (which is composed of an 
independent sample from the base data used for PRS analy-
sis). Similarly, as in GWAS/EWAS analysis [32], shrinkage 
algorithms should be performed to ensure the ideal number 
of SNPs are included considering effect size. PRS will tend 
to predict heritability and phenotype as GWAS data size 
increases [58]. Next, data should be submitted to a strict 
quality control process, starting from an adequately large 
sample size and with several considerations such as the effect 
allele and the genotyping method; these should be known 
and equal for both sets of data in order to be able to ensure 
trustworthy results [55], as well as avoidance of sample over-
lapping to avoid result inflation. It should be remembered 
that data mishandling at this stage could result in false posi-
tives and observations, as described for GWAS/EWAS. To 
perform any PRS analysis, there should be LD in the selected 
SNP(s) in order to ensure that the observations are due to 
polygenicity and not confounding [59]. GWAS should be 
performed on standardized protocols to ensure reproducibil-
ity, as previously described in this chapter. For more details 
on this, the work of Marees et  al. proposes an additional 
guidance in the matter [60].

After ensuring that selected data is appropriate for analy-
sis, the corresponding PRS should be calculated. Normal 
methodologies rely heavily on shrinking or clumping algo-
rithms similar to GWAS/EWAS, which could include regu-
larization such as penalized regression using Least Absolute 
Shrinkage and Selection Operator (LASSO) or ridge penal-
ization [61] or other Bayesian approaches, considering 
p-values as explained in GWAS section. These algorithms 
are also useful to control for LD inside observations and 
must be optimized based on biological observations as well 
in order to avoid overfitting; furthermore, the selected 
method will go in accordance with what the researcher is 

aiming to observe. It should be remembered that PRS units 
will be concordant with those observed during GWAS. 
Finally, a regression using the calculated PRS as a predictor 
for the outcome must be performed in the target data, adjust-
ing by covariates if necessary. Adequate graphic representa-
tion and the aforementioned goodness-of-fit metrics should 
then be estimated [55].

�Limitations of Polygenic Risk Scores when 
Applied to a Real-World Scenario

The limitations that have arisen to the application of GRS 
in a real-world context have been discussed. First, there is 
great heterogeneity attributable to the type of cohorts that 
are used for the creation of PGS [51]. Most cohorts in 
which RMPs are developed may not be representative of 
the high ethnic diversity, suggesting that RMPs can only be 
applied in populations of origin and opening a public health 
gap in minority populations which are often underrepre-
sented in genetic research [62]. Second, biobanks which 
have been used for the creation of PGR (e.g., UK Biobank) 
may not have enough individuals for a particular disease, 
limiting the size effect substantially. Third, the creation of 
a PGR has generated a debate regarding the ethical, legal, 
and social (ELSI) aspects of its application in clinical prac-
tice. It has been pointed out that for some health conditions, 
such as neurodegenerative and psychiatric diseases, the use 
of PGR has to be advised from an ethical-medical point of 
view [63].

For epidemiology, the utility on PRS lies on its interpreta-
tion and its applicability. There are four stated considerations 
for this:
•	 Previous known information for the individual.
•	 What is not known for the individual, such as the subject’s 

environment or missing data in sequencing.
•	 Potential for incorrect information, such as possible bias 

at the time of sample selection.
•	 The ultimate goal for the PRS for the individual [49].

These four considerations encompass much of the 
unknowns that epidemiologists are facing when dealing 
when GWAS, EWAS, or genomic data in general. However, 
clinical utility of PRS is yet to be established. There are still 
some challenges, such as the basal risk for many of these 
scores has not been yet determined, and there are still disad-
vantages in individuals that were not subjected to familial 
evaluation. Sample size also presents a challenge in applica-
bility and transferability for these observations, including 
ethnic considerations [64]. The great majority of genomic 
analyses have been performed in individuals of European 
ancestry, and this also presents another issue regarding study 
transferability, as not all polygenic risk scores may not be 
equally useful for all ethnicities [65].
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�Perspectives for Bioinformatics 
and Genomics Using Systems Biology

Nowadays, approaches to study of disease processes have 
evolved from trait-driven toward including a more compre-
hensive view of their components and the interactions they 
hold between each other. Although the study of the entire 
genome in a population has made it possible to establish 
associations between the presence of gene variants and the 
development of diseases or specific traits, many of these 
associations have not resulted in the determination of spe-
cific disease mechanisms or have made their way into per-
sonalized medicine approaches. Pathophysiological 
processes comprise a more complex set of elements in which 
the influence that transcription has on certain regions of the 
genome contributes to the regulation of the expression of 
other genes; similarly, expression of said transcripts on spe-
cific protein patterns or its influence on metabolic profiles 
also has specific influences on the course of diseases and its 
understandings. Thus, the presence of Gene Regulation 
Networks (GRN) represents one of the fundamental para-
digms in the relationship between genomics and systems 
biology.

Systems biology is defined as the “study of interactions 
between parts of a system through the use of experimental 
and computational methods.” This involves the integration of 
both structural elements, which included genomics and tran-
scriptomics analyses, and functional elements, which con-
sider expression levels of transcripts ranging from protein 
expression, metabolic profiles, and cross talks between tis-
sues and its environment. Sciences such as physiology, 
genomics, metabolomics, proteomics, and population biol-
ogy are the fundamental pillars of systems biology. In its 
essence, systems biology aims to provide a more compre-
hensive view of epidemiological findings at different levels 
in order to reconstruct disease processes to identify biomark-
ers, targets for the development of therapeutic interventions, 
and predictors of clinically meaningful outcomes. Therefore, 
systems biology is a multidisciplinary field and has two main 
approaches: 1) the top-down approach, which uses omics 
data in an integrative fashion, and 2) the bottom-up approach, 
which uses detailed specific information, like channel physi-
ology, to construct a model describing the overall system and 
specific interactions among its components [18].

Emerging technologies, such as genome-wide association 
studies (GWAS) and epigenome-wide association studies 
(EWAS), allow for population-level analysis of the genome 
and epigenome, which are known to continuously influence 
each other and to have extensive networks of interactions 
that shape their impact on the phenotype. They also produce 
vast amounts of data that require considerable computational 
power and storage capacity to allow for casual inference of 

the impact of identified associations into disease processes 
and specific disease traits. These technologies have benefited 
from the analysis brought forth by modern bioinformatics 
and continue to make discoveries on the influence of SNPs 
and methylation patterns on specific diseases, such as diabe-
tes mellitus and schizophrenia [66]. Approaches which inte-
grate omics data to infer biological pathways and disease 
patterns require multivariate techniques which are often 
coupled with machine learning algorithms to increase feasi-
bility for causal inference and reduce the possibility of false-
positive findings. These have led to the development of 
systems medicine, which integrate systems biology findings 
onto clinical practice by means of innovative ways to model 
complex diseases processes, drug discovery, and biomarker 
identification for prevention, prediction, diagnosis, and treat-
ment as a means of furthering the field of personalized medi-
cine [3]. Among the main applications that this interrelation 
between genomics and systems biology keeps is the develop-
ment of personalized medicine. For example, flow balance 
analysis has been used to model the metabolism of patients 
with hereditary hemorrhagic telangiectasia in order to iden-
tify alterations in the metabolic pathways. Likewise, other 
applications revolve around developing new drugs with 
broader safety profiles in less time and costs. The role of 
pharmacogenomics is particularly important in identifying 
interactions between drugs and the genotype of the individ-
ual to facilitate individualized treatment and monitoring and 
increased the likelihood of therapeutic benefit while mini-
mizing adverse reactions.

Another very promising area is the study of the composi-
tion and interactions of bacterial communities with their 
environment, which is considered in the study of the micro-
biome [67]. A variety of sequencing projects have revealed 
that many undefined microbial species interact cooperatively 
with the environment in every imaginable ecological niche. 
This includes microbial communities associated with spe-
cific niches of the human body that cause a wide variety of 
diseases such as inflammatory bowel disease and obesity; 
furthermore, these microbial species modify the influence of 
genetic and environmental associations in disease processes 
and have a relevant role in predicting the development of 
complications, response to treatment, and prognosis in con-
junction with mechanistic insights [68]. While we accumu-
late large sets of metagenomic data and catalog the bacterial 
genomes that make up the human microbiome, under both 
normal and pathological conditions, it is still very difficult to 
connect the presence or change in the frequency of specific 
bacterial species with the associated phenotypes.

These previous examples only demonstrate the increasing 
need for an approach which considers more and more vari-
ables at different biological levels into consideration. 
Systems biology considers the assessment of different 
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aspects of a specific process which are identified through a 
wide array of methods and techniques and which individu-
ally provide unique insights on the particularities of a disease 
process and the interaction of all involved components [69]. 
Due to the ever-growing size of data collected from multiple 
fields of biological sciences, an integrated analytic technique 
or which that can measure, predict, or model the interactions 
among all the components of a system will need to be devel-
oped, and its development is currently an area of active bio-
informatics research. Although systems biology brings a 
more holistic approach that is different from the historic 
reductionist view of epidemiology and has made important 
contributions, like chronotherapeutics, that take into account 
the endogenous biological rhythms to treat diseases, theories 
that integrate all these different components are yet to be 
confirmed and its translation into personalized medicine 
requires further validation studies [70]. This is an area of 
opportunity for complexity sciences which seek to explain 
the general principles that underlie complex systems, and 
their common properties, so they can be understood as a 
whole and beyond the explanation of a single element. 
Promising contributions of systems biology to epidemiologi-
cal research require that further research efforts aim for mul-
tidisciplinary approaches to target these findings [71].

�Conclusions

As discussed throughout this chapter, the applications of bio-
informatics and genetics to epidemiological research are 
vast. Epidemiological associations identified using GWAS, 
EWAS, GRS, PRS, and systems biology offer insights onto 
how many of them are modified by complex interactions 
between genetics, the environment, and intrinsic disease pro-
cesses. It should be considered that these different techniques 
are like a chain of knowledge, or multiple levels of data 
refinement, which offer insights onto different levels of bio-
logical complexity but ultimately require integrative multi-
disciplinary approaches to meaningfully unravel their 
contribution to the understanding of pathophysiology and its 
implications for clinical and epidemiological practice. 
Genomics brings the fundamental and basic physiology, the 
building blocks of a vast system that affects the phenotype, 
and bioinformatics builds networks from the multiple dis-
covered elements, identifying interactions among them, and 
complexity sciences will attempt to find general rules which 
apply to genomics and the organism, taking into consider-
ation the nonlinear nature of many of those systems. 
However, in order to make more accurate models, which 
meaningfully represent the processes they sought to repre-
sent, more information is required, and as more technologies 
that contribute large amounts of information are developed, 

the application of the proposed models will increase and 
become more useful to predict future outcomes and to 
explain the whole network of systems which integrate them.
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Spatial Statistics and Health Sciences: 
Methods and Applications

Ricardo Ramírez-Aldana

�Introduction

Nowadays, the availability of more and more information 
and sources to obtain it requires the use of the most sophisti-
cated analyses. This can be seen in the exponential increase 
in the number of jobs and research papers concerning data 
science and statistics, particularly concerning Big Data. 
Additionally, there is a lot of georeferenced data, a term 
commonly used in the Geographic Information Systems 
(GIS) framework, see for example [1], meaning the associa-
tion of maps or images with spatial locations, that is, posi-
tions on the earth surface. GIS corresponds to technology 
joining information and informatics tools for the analyses of 
spatial data, thus organizing and visualizing these data, pro-
ducing maps, and allowing spatial consultations and analy-
ses or even the creation of models.

The availability of spatial data is usually of two types: 
raster (or image files) or vectorial. The latter corresponds to 
points, lines, and polygons, for instance representing loca-
tions of trees in an area, rivers, and states, respectively. 
Perhaps the most known vectorial format is a shapefile, but 
there are other formats depending on the software used. In 
terms of the shapefile, at first it can be confusing that the 
format does not consist of one, but at least three files, a .shp 
file containing the geometric characteristics of the objects, a 
.shx file including indexes of the spatial data, and a .dbf 
including the data set or attributes associated with the objects, 
and all of them should be contained in the same directory. 
The availability of software in which different aspects con-
cerning spatial analyses are available is broad, but some 
examples are ArcGIS [2], QGIS [3], GeoDa [4], and R in 
specific packages [5].

Now, considering that we already have software available 
to analyse spatial information, the question is: What type of 
analyses are possible? It depends on the data type and the 

aim of our study. For instance, in a more geographical study, 
they may be interested in representing specific zones and 
transportation available between them, identifying through 
images the orographic characteristics of the zones. However, 
for spatial statistics analyses, the topic we are interested in 
this chapter, we usually have vectorial data, frequently just 
points or polygons (Fig. 13.1), and the questions are closer to 
those related with statistics and data science, for instance, 
mapping, clustering, predicting, and explaining a variable 
through others.

�Descriptive Statistics

As in classical statistics, the first type of analysis we could 
perform is descriptive. This mainly consists of mapping or, 
more specifically, representing our data through figures. This 
could seem easy at first, but the required process could vary 
according to the data and software available. In terms of the 
data, for instance, we might get a shapefile consisting of the 
states of a country containing as information (in the .dbf file) 
only the names of each state. However, our research perhaps 
concerns the analysis of unemployment; thus we would have 
to get that information from other sources and join our 
shapefile with this information. Another possibility is that we 
do not want all the states in our country, only a zone; thus we 
would have to select first that zone and then work from this 
selection. Also, someone would want to represent the states 
including also the rivers in all the country, both files obtained 
separately; and thus, the person should have to join the two 
corresponding layers and, what is more, must be sure that the 
scale in both is the same, this being a challenge by itself. 
Since the earth is spherical-shaped, we require a spherical 
coordinate system, usually latitude and longitude; however, 
it is difficult to obtain measures in that system, and thus pla-
nar coordinates systems are used by projecting the data from 
the sphere to a plane, see for example [6]. There are several 
types of projections, according to their type, references used, 
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etc., and those decisions should be made. This is not the 
proper place to further introduce these topics; thus, in the 
following we will assume that all our data is in an adequate 
projection system, and that if we wanted to add layers con-
cerning different geographical information, they are in the 
same scale.

Let us return to our study concerning descriptive analyses 
in spatial data and consider that we calculated all the vari-
ables we need, defined an appropriate zone of study, and 
obtained the adequate layers if we wanted to add geographi-
cal information. Assume that our interest is to geographically 
represent one variable and to understand how it is distributed 
along a territory. For instance, considering unemployment by 
states in a country, we might be interested to identify places 
in which it is greater. Of course, we could represent all pos-
sible values with a different colour or even colour them 
according to a colour gradient; however, we usually try to 
group the information, for instance, by calculating quantiles 
and associated groups representing each one with a different 
colour, for instance, from darkest to lightest. We could also 
identify the states that are possibly outliers when considering 
interquartile ranks, or any other method, or map the standard 
deviation of our variable, among other possibilities.

When mapping risks or rates, something common in epi-
demiological studies, an additional discussion is needed. In 
that case, we can calculate these measures and represent 
them as any other variable; however, we could also represent 
other measures as standardized mortality risks (SMR) or 
risks adjusted for sex or other variables using certain stan-
dardization processes. For instance, the SMR can be calcu-
lated by obtaining the expected value that our variable can 
take in a state considering that the rates are the same as those 
associated with all the country and comparing the true values 
by state with these expected values. There are also some 
smoothing procedures, for instance, using Bayesian proce-
dures, that improve these measures, considering that in geo-
graphical units with lower risks there is a greater variability. 
And, of course, we could use any other conventional descrip-
tive analysis such as histograms, box plots, dispersion dia-
grams, etc. to have a better understanding of our data. In 
Fig. 13.2, we show a map concerning SMR associated with 
COVID-19 in Mexico and a map of quartiles associated with 
a variable for the same population. There is software, for 
instance, GeoDa, that even allows an interaction between a 
map and one of these classical descriptive representations; 
for instance, we could identify a point corresponding to an 

Polygons Points

a b
Fig. 13.1  Maps associated 
with two shapefiles: (a) A 
polygon shapefile and (b) A 
point shapefile corresponding 
to the centroids of the 
polygons in (a)
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outlier in a box plot and identify in real time to which spatial 
unit it corresponds (Fig. 13.3).

As in classical statistics, a descriptive analysis corre-
sponds to a first step in the analyses we perform to under-
stand a phenomenon. Unfortunately, perhaps due to the effort 
that is required to obtain the information and maps, or the 
lack of knowledge concerning the availability of other analy-
ses, some studies end in this step.

�Global and Local Spatial Autocorrelation

Two aspects we are interested in when studying spatial data 
is whether one variable is spatially associated; that is, 
whether we expect that nearby places have similar values 

and if there is spatial clustering. To be able to analyse these 
aspects, we are required to define when spatial units are 
neighbours and from there define a spatial weight matrix, see 
for example [7]. This matrix is used to calculate measures of 
spatial autocorrelation, as well as in some spatial linear 
models.

�Neighbours

When polygons are used, the neighbours can be defined 
according to two criteria:

	1.	 Queen: Neighbours correspond to polygons having a 
common vertex as in Fig. 13.4a in which neighbours are 
shown in yellow.

	2.	 Rook: Neighbours correspond to polygons having a bor-
der (line) in common as in Fig. 13.4b.

A problem with these criteria is when there are islands, 
polygons not connected with the others, which according to 
the criteria would not have neighbours, or when we have a 

MUERTCOVID / Casos2

Pmigint14

< 0.25 (3)
0.25 - 0.50 (4)
0.50 - 1.00 (12)
1.00 - 2.00 (9)
2.00 - 4.00 (4)
> 4.00 (0)

a

SMR
b

Internal migration

[1.200 : 2] (7)
[2.100 : 2.600] (8)
[2.700 : 3.600] (9)
[3.800 : 8.200] (8)

Fig. 13.2  Two descriptive representations: (a) Standardized mortality 
risks or SMR (standardization compared with national values) from 
COVID-19 among tested individuals in Mexico at the beginning of the 
pandemic and (b) Quartiles associated with the proportion of internal 
migration (rate of people moving between states in Mexico) for the 
same population
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Fig. 13.3  Linking, in yellow, between possible outliers according to 
(a) A box plot and (b) A map
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sample of spatial units, and consequently we could have 
many islands. In these cases and when spatial units corre-
spond to points, we could define the neighbours according to 
distances, usually the Euclidean distance, considering the 
information is appropriately projected. Centroids are 
commonly used to measure distances between the polygons. 
There are two types of neighbours for this case:

	1.	 Threshold distance. We define a distance to consider units 
as neighbours, usually the minimum distance such that 
every spatial unit has at least one neighbour.

	2.	 k-nearest neighbours. We define a value of k, k ∈ N+ and 
choose the k closest neighbours for each spatial unit.

�Spatial Weights

According to the neighbours, we can obtain a weight matrix 
W of dimension N  ×  N, where N is the number of spatial 
units. Matrix W has entries wij, where wij = 0 when the spatial 
units i and j are not neighbours and wii = 0 for all i. The sim-
plest way is assigning a value of 1 to wij if i y j are neighbours 
and 0 otherwise, which is called a binary method. Another 
possibility is calculating a row-standardized matrix Ws with 
entries wij

s , that is, using weights such that their sum for 
every spatial unit is one.

	 j

N

ijw i
=
∑ =

1

1, .for all
	

(13.1)

There are other types of weights, which vary according to 
the software.

To illustrate these concepts, consider data corresponding 
to four spatial units (points) with coordinates (1,3), (3,2), 
(2,4), and (5,4) as in Fig. 13.5. We can calculate the Euclidean 
distance between each pair of points, for instance, consider-
ing Point 1, we have distances 5 2 236= . , 2 1 414= . , 
and 17 4 123= .  to Points 2, 3, and 4, respectively. Consider 
that a threshold distance of 3 is used, that is, two points are 
neighbours when their distance is between 0 and 3. Hence, 
the neighbours to Point 1 are Points 2 and 3. According to 
this process, we have neighbours for each point as follows:

Point Neighbours
1 2 3
2 1 3 4
3 1 2 4
4 2 3

Queen Rook

a b

Fig. 13.4  Neighbours according to two different criteria: (a) Queen and (b) Rook
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Fig. 13.5  Points representing spatial units in a Cartesian plane
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Hence, the row-standardized weight matrix corresponds to:

	

W s =



















    

  

  

    

0 1 2 1 2 0

1 3 0 1 3 1 3

1 3 1 3 0 1 3

0 1 2 1 2 0

When this matrix is applied over one variable, we obtain 
the average of a variable over all the neighbours. For instance, 
if Y corresponds to the total income for each of the four 
Points defined above, with values 150, 155, 200, and 185, for 
the Points 1,2, 3, and 4, respectively, or

	

Y =



















150

155

200

185

,

	

then W sY includes averages, for instance, for Point 1, we 
have (155  +  200)/2  =  177.5. A variable calculated in this 
way, applying a weight matrix, is known as a spatially lagged 
variable, and it is a measure of how the values of a variable 
are modified according to its spatial position. Algebraically, 
the spatially lagged variable associated with a spatial unit i, 
yi

s , i = 1, …, N, corresponds to:

	

y w y ii
s

j

N

ij j=
=
∑

1

, ,for all
	

(13.2)

where yj is the original value associated to a spatial unit j. 
The importance of spatially lagged variables is that a mea-
sure of spatial autocorrelation, Moran’s I [8, 9], is associated 
with these variables.

Standardizing variable Y, that is, obtaining

	

z
y y

y y N
ii

i

i

=
−

∑ −( )2
/

, ,for all

	

(13.3)

Moran’s I corresponds to

	

I
w z z

w

i

N

j

N

ij i j

i

N

j

N

ij

=
= =

= =

∑ ∑
∑ ∑

1 1

1 1

,

	
(13.4)

and when the row-standardized weight matrix is used, it sim-
ply corresponds to:

	
I

w z z

N

i

N

j

N

ij
s

i j

=
= =∑ ∑1 1 .

	
(13.5)

Thus, Moran’s I corresponds to a type of correlation, spa-
tially weighted according to the weight matrix W. It has values 
between −1 and 1, with values near to zero indicating that there 
is not spatial autocorrelation, and positive values indicating 
positive autocorrelation, that is, large values (small) of the vari-

able in a spatial unit are associated with large (small) values in 
their neighbours, whereas negative values indicate dispersion.

Geometrically, Moran’s I also corresponds to the slope 
of a line, the best linear predictor, between a variable and 
its corresponding spatially lagged version. If we divide 
the diagram in four segments or quadrants as in the scatter 
plot shown in Fig. 13.6a, the first (positive values for both 
variables or high-high) and third quadrants (negative val-
ues for both variables or low-low) correspond to spatial 
units in which there could be possible clustering of high 
or low values, whereas the other two quadrants (high-low 
and low-high) correspond to outliers, units with large 
(small) values surrounded by unit with small (large) 
values.

We can calculate the contribution of each unit over 
Moran’s I as:

	

I z w z i Ni i
j

N

ij j= = …
=
∑

1

1, , ,for all
	

which clearly depends on spatially lagged variables, and it is 
known as the local indicator of spatial association or LISA 
[10]. When the row-standardized matrix Ws is used, Moran’s 
I is the average of these LISA values:

	
I

I

N
i=

∑
.
	

Using similar ideas, a multivariate spatial autocorrelation 
measure can be defined between vectors corresponding to the 
values associated with two different vectors zk  zlzl, as:

	
I

W

Nkl

s

=
′z zk l .

	

Denoting zi
k as the value associated with spatial unit i, the 

corresponding multivariate LISA is:

	

I z w z i Nkl
i

k
i

j

N

ij l
i= = …

=
∑

1

1, , , .for all
	

After calculating all these indicators, inference can be 
obtained to define whether spatial autocorrelation is signifi-
cant through a hypothesis of the form.

•	 H0: No spatial autocorrelation vs H1: Spatial 
autocorrelation

Inference is performed through normal approximations or 
simulation processes.

In terms of the LISA, we test

•	 H0: LISA for spatial unit i is not similar as that for the 
neighbours

•	 vs
•	 H1: LISA for spatial unit i is similar as that for the 

neighbours
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LISA maps, as the one shown in Fig.  13.6b, can be 
obtained to determine where the null hypothesis is rejected at 
different significance levels. We can also obtain heat maps 
concerning significant spatial clustering formation, as in 
Fig. 13.6c, which allows us to see whether a spatial unit is 
surrounded by spatial units with similar values. These clus-
ters are of the type high-high in red, low-low in blue, 
indicating that in a spatial location and their neighbours there 
are significant similar high or low values, respectively, or 
high-low and low-high corresponding to significant spatial 
outliers.

�Interpolation and Geostatistics

Another important task in spatial statistics consists of inter-
polating spatial information, part of the branch of statistics 
called geostatistics, see for example [11], concerning ran-
dom variables associated with spatial information. In other 
words, given information concerning a variable correspond-
ing to a set of points, or centroids in the case of polygons, we 

want to predict which values take another set of points based 
on this information. To be able to perform this, we first 
require to find a rule of how a variable is associated accord-
ing to the location of the points, at least in terms of the dis-
tance between them. The concept of variogram, for example 
[12], is useful in this process.

�Variogram

Mathematically, we have a spatial random process Z(s), 
where s corresponds to a spatial unit in geographical coordi-
nates, usually projected, or in other words a random variable 
associated with different locations. Additionally, we assume 
this process is stationary, which means that the association 
between the values that a variable takes in two locations only 
depends on the distance or spatial lag between them. Thus, a 
measure of the association between the values of the variable 
in two locations separated by a distance h can be given by the 
variogram:

Moran’s I: 0.479487
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Fig. 13.6  Moran’s I and LISA maps associated with male lip cancer 
incidence in Scotland: (a) Scatter plot associated with Moran’s I, repre-
senting incidence (raw values, R_RAWRATE) and the associated spa-
tially lagged variable, (b) significant spatial units at a 0.05 (green) and 

0.01 (light green) significance level and not significant units (grey), and 
(c) LISA spatial clustering associated with spatial units with significant 
clustering according to a 0.05 significance level. Clusters are of the 
form high-high (red), low-low (blue), and low-high (purple)
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γ h E Z Z h( ) = ( ) − +( )( )





1

2

2
s s . 	 (13.6)

Another measure of association is the covariogram, which 
assuming that s2 = s1 + h, the location moved in h units, cor-
responds to the covariance C(h)  =  Cov(Z(s1), Z(s2)). Both 
measures are linked between them considering that:

	
γ σh C h( ) = − ( )2 	 (13.7)

where σ2 is the variance associated with the process. Both are 
measures of spatial correlation between spatial units accord-
ing to the distance separating them.

The variogram and covariogram can be represented in a 
graph with distances h in the X axis and γ(h) or C(h) in the 
Y axis, respectively. The variogram is a non-decreasing 
function asymptotic to σ2, whereas the covariogram is a 
non-crescent function starting in the value σ2. These prop-
erties make sense, and in the case of the variogram, the 
form of the function indicates that values of a variable are 
first similar since the distance between the places is small, 
and then, they differ more and more once the distance 
increases until the variogram is close or equal to the full 
dispersion σ2, or still, of the process. Meanwhile, in the 
case of the covariogram, the shape of the function indicates 
that when there is a distance of zero (in the same location), 
the covariance corresponds to the variance, and as the dis-
tance increases, it is expected that the values in two loca-
tions are not or not closely related, and the covariance is 
then close to zero.

In particular, in data without spatial correlation, we would 
expect a constant value in the variogram γ(h), corresponding 
to σ2, since the association between variables does not depend 
on the distances, whereas C(h) = 0, for all distance h.

Both functions are relevant in terms of obtaining spatial 
interpolation, but also in terms of fitting some spatial linear 
models.

In practice, we have to estimate these functions using our 
data. For this process, we define sets of distance intervals or 
bins, to calculate through moment estimators the sampling var-
iogram considering different separations between points. Since 
in each bin there could be several points separated by the dis-
tances included in an interval, average values are considered. In 
the end, we can obtain a sampling variogram as in Fig. 13.7a.

Once we obtain the sampling variogram, we replace it 
with a model [13]. There are several options and we choose 
the one with the best fit for our data. The models include as 
parameters some or all of the following terms. A nugget is 
the variation at a small scale plus a measure error or, in other 
words, the value corresponding to γ(h) for h = 0. The sill is 
the asymptotic value of the variogram, that is, γ(h) when 
h → ∞, and corresponds to the variance of the process. The 
range is the distance such that the values of the process are 
no longer associated when distances greater to this value are 
considered or, alternatively, the value in which the sill is 
reached. In Fig. 13.7b each of these parts is shown.

Examples of models associated with a variogram are the 
nugget model, which considering c as a constant term cor-
responds to:

	
g h
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Other possible models are the spherical,
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Fig. 13.7  Variogram: (a) An example of a sampling variogram, (b) parts of a variogram, and (c) models associated with a variogram
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and Gaussian
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In all these models, a is the range and c is the sill. In 
Fig. 13.7c, we show the graph associated with instances of 
these and other models.

The variogram is fitted according to weighted least 
squares, and once the model with a best fit to our data is 
obtained, we also derive the correlogram. In simple terms, 
we obtain from our data the best rules of association of a 
variable according to the distance separating the points, 
which allow us to understand the spatial correlation between 
a variable.

Assuming that our variable depends on a set of explana-
tory variables through a linear model, we can perform the 
same process using the residuals. This will be used for inter-
polation processes and for fitting linear models that consider 
the spatial relationships between data.

�Spatial Interpolation

There are different options to obtain a spatial interpolation; 
the first one corresponds to a spatial average and the second 
one is based on the ideas previously presented to define the 
variogram.

�Inverse Distance Weight
We predict the unknown value corresponding to a spatial 
location using a spatial weighted average, which is called the 
inverse distance weight (IDW) [14]. The weights correspond 
to a metric identifying the distance between the point in 
which the interpolation is required, s0, and the other points. 
Mathematically, the value estimated for the process in s0, 
ˆ ,Z s0( )  is:

	

Ẑ
w Z

w

i

N

i i

i

N

i

s
s s

s
0

1

1

( ) =
( ) ( )

( )
=

=

∑
∑ 	

with

	
w i i

ps s s( ) = − −
 0 , 	

where si corresponds to the coordinates of the locations in 
which we have the true value of our variable of interest, for 
i = 1, …, N, p refers to the type of distance used, p ∈ R, usu-
ally p = 2, and consequently ‖ • ‖ is the Euclidean distance. 

If s0 is the same as si, for some i = 1, …, N, that is, the loca-
tion in which we want to predict is the same as the location 
of one of the available points, then the predicted value is 
equal to the observed value, Ẑ Z is s0( ) = ( ) . The weights 
decrease as the distance to s0 decreases, and p indicates the 
degree in which the values associated with the nearest points 
are preferred, and a large p indicates assigning a greater 
importance to those points nearest to s0. Since 

 w wi
i

N

is s( ) ( )
=
∑/

1
 is between 0 and 1, any interpolated value 

cannot be outside of the range of the observed values.
This is a very simple method since it is just an average; 

however, it ignores the spatial association, which the follow-
ing method considers.

�Kriging
In this case, we assume that the values of our variable of 
interest depending on different locations, or process Z(s), can 
be linearly modelled according to a set of explanatory vari-
ables, considering, as it is usual, a random error in the model. 
Mathematically, and considering that we have N observed 
locations in which the values of our variable are known, si; 
for i = 1, …, N:

	
Z Xs s( ) = + ( )β  , 	 (8)

where Z(s) are the values of our variable of interest in each 
location, X is a matrix including the values associated with 
the explanatory variables, β are the parameters indicating the 
degree of association of each explanatory variable with our 
response variable, and ϵ(s) is a random error, being each 
component of dimension N × 1, N × p, p × 1, and N × 1, 
respectively.

We assume that the error associated with the model is 
close to zero for each location, or E[ϵ(s)] = 0, and that the 
variance and covariance associated with the process is 
Var(ϵ(s))  =  Var(Z(s))  =  V, a matrix of dimension N  ×  N 
formed by variances and measures of the association of our 
variable of interest in two different locations, Cov(Z(si), 
Z(sj)). In simple terms, we define a model including a set of 
variables explaining the variable we want to predict in a new 
location, including also the correlation structure between the 
observations according to where they are located.

Assuming that we have the values of the explanatory vari-
ables over the point s0 in which we want to interpolate, x(s0) 
of dimension 1  ×  p, and that v includes the covariances 
between the values in the observed points Z(s) and the point 
in which we want to interpolate Z(s0), that is, v is a vector of 
dimension N including Cov(Z(si), Z(s0)); for i = 1,..., N, we 
can predict the unknown value of our variable in the point s0, 
Ẑ s0( ) , as:
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ˆ ˆ ˆZ x v V Z Xs s s0 0

1( ) = ( ) + ( ) −( )−β β9 	 (13.9)

where

	
ˆ .β = ( ) ( )− − −X V X V ZX9 91 1 1 s 	

In other words, we estimate the unknown value of our vari-
able in a new location as the sum of two parts. The first part 
is a linear combination depending on the values that the 
explanatory variables take in this location and estimated 
parameters, the latter depending on the values of our response 
and explanatory variables and the spatial autocorrelation in 
the points in which the true values of our variable are known. 
The second part corresponds to another linear combination 
consisting of the spatial correlation between the values of 
our variable in the new location and the other locations and a 
measure of the error between the true values of our variable 
and the values estimated considering the explanatory 
variables.

Since we need the spatial variances and covariances, 
according to V, or in other words the covariogram C(h) if we 
assume stationarity, we first obtain the variogram and asso-
ciated model. This type of interpolation is known as 
Universal Kriging [12, 13], which was first introduced by 
Krige [15].

We can perform this process at each point in which the 
values of our variable are unknown. After that, we can even 
obtain a smoothed map with values predicted for a variable 
in different locations.

There are simpler variants of Universal Kriging. Ordinary 
Kriging corresponds to applying Kriging without consider-
ing explanatory variables in the model, only a constant term. 
On the other hand, simple Kriging corresponds to the case in 
which β is known, or in other words, we know the true linear 
association between our explanatory variables and the vari-
able we wish to interpolate. In Fig. 13.8, we present exam-
ples of a spatial interpolation, through both IDW and 
Universal Kriging, which are based on the analyses presented 
in [5].

Kriging, in all their variants, allows us to predict values of 
a variable in unknown locations. However, as in any predic-
tive model, it is recommended to perform model validation. 
For instance, we can separate the data into two, the training 
and test data sets, fitting the model (applying Kriging) in the 
former and predicting over the other set. If the model fitted 
well, we should expect the true and estimated values to be 
similar in the test set.

Of course, Kriging is not the only possible method to 
obtain spatial predictions. For instance, a simpler method 
consists of including functions of the coordinates, latitude 
and longitude, as explanatory variables in a linear model [16, 
17], and after fitting this model, we predict values for new 
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Fig. 13.8  Spatial interpolation for the logarithm of the concentration 
of a metal: (a) Interpolation using inverse distance weight (IDW) with 
a value of p (inverse distance power) of 2.5 and (b) Universal Kriging 
in which the squared distance to a river is used as explanatory variable 
and an exponential model is associated with the variogram
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points by including their longitude and latitude. However, 
this method does not consider the spatial association inher-
ent in the phenomenon we are modelling, though it is easier 
to implement in any available software that fits linear 
models.

�Linear Models for Spatial Data

In this part, our aim is to explain a response variable through 
a set of explanatory variables, possibly including confound-
ers, considering that each observation corresponds to one of 
N spatial units. Thus, our main aim is explaining instead of 
predicting a variable, the latter being the main aim in the 
geostatistics framework discussed above.

To face this problem, a first possibility is fitting a classical 
linear model; however, it is possible that there is spatial auto-
correlation in the errors, thus violating the independence 
between observations assumed in these models. The possible 
spatial autocorrelation could be measured over the residuals 
using Moran’s I, a variogram, or any other available method. 
If we identify the existence of spatial autocorrelation, we 
should try to use another type of model.

One first possibility is fitting a linear model considering 
the heteroscedasticity induced by the spatial information. 
For instance, we could consider a weighted least squares 
(WLS) estimator considering the spatial unit size as weight. 
We could also consider a model fitted by generalized least 
squares (GLS) by including the variance and covariance 
matrix V including the spatial correlation [18], for instance 
that derived from the variogram. Mathematically, we fit a 
model:

	
Y X Nn= + ∼ ( )β  , ,with ,0 Σ 	

where the variance and covariance terms in Σ are estimated 
according to the variogram of the residuals obtained after 
fitting the classical multivariable linear model:

	
Y X N In= + ∼ ( )β σ , .with , 0 2

	

Hence, the process consists first of obtaining and estimat-
ing the parameters of a model associated with the variogram 
of the residuals (estimating the sill, nugget, range, etc.) and 
obtaining the covariogram C(h) and consequently Σ. Hence, 
considering that Σ is known, the GLS estimators, which are 
well known, correspond to:

	
ˆ ,β = ( )− − −X X X Y9 9Σ Σ1 1 1

	

with variance and covariance also obtained from the GLS 
framework as:

	
V X Xˆ .β( ) = ( )− −

9Σ 1 1

	

In simple terms, we consider the lack of independence 
between the spatial units and inference is more precise since 
we are not violating statistical assumptions associated with 
the model.

Other possibility is to use variants of linear models that 
include the spatial correlation by using a spatial weight 
matrix, W [19].

�Spatial Lag Model

A spatial lag model or spatially lagged y model includes the 
spatially lagged variable associated with the response as an 
additional explanatory variable. Mathematically, considering 
Y as a vector of dimension N associated with the response 
and X as a matrix corresponding to the regressors or inputs, 
with β the residuals associated with model is:

	
Y WY X N IN= + + ∼ ( )ρ β σ , ,with , 0 2

	 (13.10)

where W is a spatial weight matrix, WY is the spatially lagged 
response variable, and ϵ is a vector of dimension N corre-
sponding to an error, which is assumed to be normally dis-
tributed, as in classical linear models.

In other words, we are assuming that the values of the 
response in the neighbours of a spatial unit are associated 
with the values in that spatial unit. Parameter ρ, which is an 
scalar, is such that if ρ = 0, then (10) corresponds to a usual 
regression model; additionally, it is a measure of spatial 
autocorrelation.

Maximum likelihood estimators associated with the 
parameters corresponding to the regressors β and spatial 
association parameter ρ are estimated through a process in 
which the former are obtained using GLS and the latter by 
maximizing a function depending on the eigenvalues associ-
ated with the weight matrix W. In order to obtain real instead 
of imaginary eigenvalues, W should be symmetric and con-
sequently neighbours should be obtained with only specific 
methods. For instance, k-nearest neighbours should not be 
used to generate W since a spatial unit can be a neighbour of 
another, the opposite not being true. On the other hand, 
methods to obtain neighbours as threshold distance, Queen, 
or Rook using a binary method for constructing the weight 
matrix could be used. When the number of spatial units is 
large, a Cholesky decomposition associated with W might be 
preferred instead of calculating the eigenvalues.
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�Spatial Autoregressive and Spatial Error 
Models

A spatial autoregressive (SAR) model is such that the spatial 
structure, considered through a matrix, is associated with an 
error term. Mathematically:

	
Y X B NN= + = + ∼ ( )β e,e e with ,   ; ,0 Σ 	 (13.11)

where B is a known squared matrix of dimension N that allows 
us to identify neighbours and e is a random vector of dimen-
sion N, which depends on itself once it is spatially lagged 
through B, thus the name of the spatial autoregressive model.

Usually, B = λW, with W a spatial weight matrix, and

	
Y X W N IN N N= + + ∼ ( )×β λ σe with ,  ; ,0 2

	 (13.12)

which is known as a spatial error model. The model is appro-
priate when we consider that some unmeasured characteris-
tics are responsible for spatial clustering, having an influence 
over the response variable in a spatial unit and their neigh-
bours, but that are omitted from the specification of the 
model.

Once again, the parameters are estimated through maxi-
mum likelihood, depending on GLS estimators for the 
parameters associated with the regressors and depending on 
the eigenvalues associated with W for the spatial parameter. 
The same problems as with the spatial lag model arise and λ 
is a parameter measuring spatial autocorrelation.

�Inference with the Models

The two types of spatial models introduced before are not 
nested between them; however, the regression model (without 
spatial terms or minimum least squares, LS, model) is nested 
in both. Hence, to decide whether to use a spatial lagged or a 
spatial error model, the usual procedure consists of compar-
ing with a linear regression model. Consequently, likelihood 
ratio tests (LRT) are used to perform tests of the type:

H0: ρ = 0 (usual regression has a good fit) vs
H1: ρ ≠ 0 (spatial lag model has a good fit)

and similar for the spatial error model. Other statistics can be 
used for similar hypothesis tests, for instance, the Wald statis-
tic (normal approximation) or the Lagrange multiplier (LM) 
and robust LM statistics. Hence, we can decide whether a spa-
tial model has a good fit to the data. For instance, we could 
first use the LM statistic to decide which of the two spatial 
models has a good fit, and if both have a good fit, then we 
could use the robust LM for our final decision. Of course, we 

can also use information criteria, as for instance the Akaike 
information criterion (AIC) or similar to compare the models.

�Other Spatial Models

�Simultaneous Moving Average
A simultaneous moving average (SMA) model is similar to a 
moving average model in time series, in the sense that the 
error term associated with the model and its corresponding 
lagged version, in this case spatially lagged, are included in 
the linear model. Mathematically, it corresponds to:

	
Y X B NN= + = + ∼ ( )β e,e with ,    ; ,0 Σ 	 (13.13)

where usually B = λW and Σϵ = σ2IN × N, similar as with the 
models in the previous sections. This model is used when 
there are localized effects, when spatial effects only affect 
the errors in neighbours according to matrix W.

This and the previous models can be generalized, obtain-
ing the so-called SARMA models, including the spatially 
lagged response as explanatory plus moving average effects 
for the error terms. They are analogous to ARMA models in 
the time series analysis framework. Mathematically, they 
correspond to:

	

Y WY X W

N IN N N

= + + = +
∼ ( )×

ρ β λ
σ
e,e

with , 

 


;

.0 2
	 (13.14)

Other type of spatial model corresponds to conditional 
autoregressive models (CAR) in which the distribution, 
assumed Gaussian, of the errors associated with each spatial 
unit depends on the other spatial units, the neighbours of 
each unit. The parameters in this distribution are restricted as 
in the previous models.

�Geographically Weighted Regression

Geographically weighted regression [20–22] is another type 
of available model used to understand the relationship 
between a set of variables and a response. It consists of fit-
ting a linear model for every spatial unit, considering for the 
estimation process the distance such that the variables have 
an influence over the response and the degree in which this 
influence decreases according to different functions of the 
distance. Mathematically, we have a linear model associating 
p explanatory variables with the response for each of the N 
analysed spatial units:

	

Y u v u v x u v x

u v x
i i i i i i i i i

p i i pi i

= ( ) + ( ) + ( ) +…
+ ( ) +

β β β
β

0 1 1 2 2, , ,

,  , 	 (13.15)
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where βj(ui, vi) is a function of the location for the parameter 
associated with the explanatory variable j th; j = 1,..., p and 
β0(ui, vi) is a constant term, all depending on the coordinates 
of a point (ui, vi), with i = 1,..., N. The error terms correspond 
to independent random variables with ϵi ∼ N(0, σ2).

This method can be applied to point data or to the cen-
troids of polygon data. Since βj is a function of the coordi-
nates, there are as many parameters for each explanatory 
variable as spatial units. In other words, we fit a model with 
p different parameters plus the constant term in each of the N 
spatial units. Hence, model (15) cannot be estimated since 
there are more unknown parameters than observations. This 
problem can be solved by estimating a model using weighted 
least squares (WLS) for each spatial unit i, where the weights 
are given by functions that measure how near to i are the 
other spatial units, that is, we consider heteroscedasticity 
derived from the closeness to a point i.

Mathematically, considering the vector of parameters 
associated to a unit i, for i = 1,...,N, as.

	

β

β
β

β

i

u v

u v

u v

i i

i i

p i i

( ) =

( )
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
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




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model (15) corresponds to

	
Y x x ii i pi i= …( ) ( ) +1 1 β  , 	

whose estimator by WLS of β̂ i( )  corresponds to

	
ˆ ,β i X W i X X W i Y( ) = ( )( ) ( )−

9 9
1

	

where W(i)  =  W(ui, vi) is a diagonal matrix of dimension 
N  ×  N associated with the location (ui, vi) indicating how 
much attraction there is to other points. X is as always a 
matrix corresponding to the explanatory variables for all the 
observations, and Y is a vector including the values associ-
ated with the response. More specifically,
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with wij; j = 1,..., N, the weight in a calibration from point i to 
point j, evidently wii = 1, and if wij = 1, for all j, we have the 
usual regression model. In the model, the values associated 
with locations closer to the spatial unit i should have more 
weight and less variability, when compared with those units 
farther apart, which is reflected in the WLS estimators.

Functions used to generate the spatial weights or kernels 
have to satisfy that they decrease as the distance from a point 
increases. Some instances of these functions are:

Bi-square:

	

w
d
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Gaussian:
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Here, dij corresponds to the Euclidean distance between 
units i and j and b is the bandwidth, which is the distance 
such that the explanatory variables still have an important 
influence over the response variable. For a very large band-
width, b → ∞, observe that the weights are close to one, 
wij → 1, and we have a usual regression model.

The fit depends on the weighting function and the band-
width, and the latter can be the same in any spatial unit, 
which is known as a fixed kernel, which in some data can 
induce certain bias since in some spatial units the bandwidth 
can be larger than necessary when compared with denser 
regions. Hence, it can be used as an adaptive kernel, which 
variates the bandwidth according to the observation.

To select the bandwidth, usually a criterion is chosen such 
that the bandwidth minimizing it is selected. Examples of 
criteria correspond to cross validation (CV), generalized CV, 
Akaike information criterion (AIC), etc. We usually first 
select the bandwidth (fixed or adaptive) and afterwards we fit 
the model. Then, we can obtain maps corresponding to the 
coefficients of the explanatory variables for each spatial unit, 
that is, the differential effect that an explanatory variable has 
over the response in each spatial unit, the standard errors, 
t-statistics, etc. We can even obtain predictions over observa-
tions outside of our sample. There are also variants consider-
ing generalized linear models. In Fig.  13.9, we present an 
example of GWR concerning data presented by [23].

�Conclusion

In this chapter, we have introduced spatial analyses which 
can be useful in the epidemiological framework. Of course, 
there are more types of analyses, for instance, spatiotempo-
ral, which consider spatial information through time. For 
spatiotemporal analyses, there is direct generalization of the 
methods shown here; for instance, there is Krigin consider-
ing both time and space information or linear models includ-
ing simultaneously the time and space correlation structures, 
see for example [24]. There are also spatial models from a 
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Fig. 13.9  Geographically weighted regression between exposure 
potential to trichloroethylene (TCE), percentage of people in each spa-
tial unit aged 65 or more (P65), and percentage of people in each spatial 
unit owning their home (POH) and the logarithmic transformation of 
the incidence of leukaemia as response, in eight central New York state 

counties divided into census tracts. A fixed bandwidth obtained through 
a cross-validation method and Gaussian spatial weighting (kernel) is 
considered. The estimated coefficients for (a) TCE, (b) P65, (c) POH 
by spatial unit, and (d) the residuals associated with the model are 
presented
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Bayesian perspective [25], or clustering methods parting 
from considering the spatial information as a random pro-
cess instead of using weight matrices, as we presented here 
in the interpolation section. However, the main aim of this 
chapter is to introduce readers with spatial analyses, and it is 
not intended as a summary of all available methods in spatial 
statistics or as an extensive review. As such, we hope this 
chapter awakens in the reader the curiosity and interest in 
studying these types of models, being a first step in their 
learning process.
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Abbreviations

ANN	 Artificial neural networks
DAGs	 Directed acyclic graphs
FI	 Frailty index
HIV	 Human immunodeficiency virus
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MLP	 Multi-layer perceptron network
NIAID	 National Institute of Allergy and Infectious Diseases
NIH	 National Institute of Health
PGM	 Probabilistic graphical models
PGM	 Probabilistic graphical models
SB	 Systems Biology
SEp	 Systems Epidemiology
SNA	 Social Network Analysis
SNA	 Social Network Analysis
SNA	 Social network analysis
TGF-β	 Transforming growth factor beta

�Introduction

Classical epidemiology relates to lifestyle and environmen-
tal exposure to several diseases. The one-level paradigm, a 
method most used in research, focuses mainly on modeling 
one risk for a disease, thus limiting epidemiology advances 
since [1]: most of the diseases depend on the interaction of 
genetics and environmental variables; there are individual 

differences among the expression of diseases (there are no 
diseases, there are patients); there is a high variability on the 
pharmacological responses (each individual has different 
reactions to treatment); there are no clinical studies or 
approximations to evaluate the complex dynamics on the 
exposition to multiple risk factors during the whole life of an 
individual (we change habits, locations, and customs during 
life); phenotypes of diseases are codified at different levels of 
complexity, which diminish average statistical power to 
associate the disease with only one variable (association is 
not causality). Thus, the classical epidemiology paradigm 
should be reconsidered since it becomes clear that the health 
state is more complicated than previously known since it 
involves the interaction of multiple variables. Consequently, 
a real approximation of causality and association among dis-
eases requires a holistic approach, as epidemiology is the 
first field to understand relationships of diseases, risk, and 
exposure factors [2].

In this sense, one of the best ways to analyze complex 
relationships over several amounts of variables and several 
members of a system is those based on networks that have 
proven to be useful. By using them, one can have a big pic-
ture of the whole relationship between different pieces of 
information and identify whether there are members of a sys-
tem that are more important than others. These methods have 
been introduced recently, mainly because of the computa-
tional power they require, which is nowadays available. 
Interestingly, most of these have been implemented with 
relative success by experts in computational data sciences, 
engineering, and mathematics. Hence, the terms used to 
define them and the way they are presented and described is 
generally aimed for experts in these areas. Therefore, in the 
present chapter, we attempt to present in a simple format the 
most used network-based models that could be useful for 
epidemiological and biomedical problems that could not be 
approached with standard linear models.
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�Systems Epidemiology

Systems Biology (SB) represents an attempt to understand 
how biological systems work at different levels of complex-
ity and multidimensions. One definition of SB is that of 
Serrano in 2007. It defines it as computational modeling of 
molecular systems, which, due to its interdisciplinary nature, 
is presented in a wide variety of fields [3]. In this sense, as 
defined by the National Institute of Health (NIH), SB could 
be defined as an attempt to understand the larger picture 
(depending on the level of complexity, i.e., organism, tissue, 
or cell) by putting its pieces together, an exciting contrast to 
the standard approach used by reductionist biology. SB has 
taken an essential momentum due to the advantage in multi-
omics technologies (genomics, transcriptomics, proteomics, 
epigenomics, metabolomics, and health informatics) and 
bio-bigdata rapidly generated by them.

SB has been applied to different fields in medicine, 
including epidemiology and public health, to integrate all the 
different levels of complexity in such disciplines, including 
epidemiological data, physiology, environment, genetics, 
socioeconomic variables, and others. Thus, a combination of 
complex mathematical models could help understand the 
causality among different states of health and risk factors, 
leading to a deeper understanding of black-boxes in epidemi-
ology by relating genetics to the environment and making 

possible approaches to different types of interventions [4]. In 
this sense, Systems Epidemiology (SEp) has been defined by 
Lund and Dumeaux [5] as the observational side of SB that 
“seeks to integrate pathway analyses on different observa-
tional studies, to improve our understanding of biological 
processes in the human organism.” Moreover, methods in 
networks could help to create causality diagrams, where dif-
ferent variables at different levels can be grouped as a daily 
method to inferring the causality of diseases [6].

SEp could be helpful to quickly implement Bradford Hill 
criteria to assess causality covering strength and specific 
association, biological plausibility, dose–response relation-
ship, rationality, and experimental evidence [7]. In the field 
of causality directed acyclic graphs (DAGs), diagrams have 
been applied to clarify ideas to visualize hypotheses. DAG’s 
per se could be considered as SEp, since they attempt to 
visualize critical concepts that correlate the clinical variables 
with the biomedical results at different levels, due to expo-
sure (Fig. 14.1).

Several examples of the multidisciplinary approach of 
SEp have already been published, especially on infectious 
diseases. For instance, the National Institute of Allergy and 
Infectious Diseases (NIAID) and the Broad Institute pre-
sented a couple of initiatives that allow having an in-depth 
knowledge of the type of interaction that exists in the epide-
miological triad (Koch theory) of tuberculosis, supported by 
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Fig. 14.1  Directed acyclic graphs for causality as tools for SEp. (a) 
General network for a simple DAG. (b) Network with common vari-
ables related to cause and effect. (c) Multiple independent causes for a 

single effect. (d) Dependent causes for multiple effects related with 
other effects. (e) Application of technologies for DAG’s causality 
improvements. Red arrows are causal relations
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computer sequencing and modeling technologies [8]. Results 
show a strong relationship between the different genotypes 
of Mycobacterium tuberculosis strains and human geno-
types, which impacts the susceptibility of a population. They 
explained the different geographical distribution of diverse 
strains, as a result of some environmental factors, like diet 
and socioeconomic variables [9]. Another interesting exam-
ple was with Ebola outbreaks in West Africa, where models 
in epidemiology have been successful in efficiently monitor-
ing not only at the public health level but from the capability 
to sequence samples quickly. Epidemiological fences cover a 
different perspective since phylogenetic divergence could 
help to establish the origin of the outbreak or even where it 
could be mutating [10]. In this context, the importance of 
spatial and ecological variables, the so-called geoepidemiol-
ogy, have proven to be quite a useful tool for epidemiological 
studies as, for instance, Pybus O.G. et al. demonstrated by 
using phylogenetics reconstructions with spatial autocorrela-
tions that it was possible to calculate the diffusion coeffi-
cient, a robust nonparametric estimator of the spreading of 
the West Nile virus across North America [11]. Moreover, 
the use of remote sensing data from global satellites demon-
strated an evident seasonal variation in the vulnerability in 
the scattered areas of urban and mixed horticulture land due 
to the climate factor [12].

Interestingly, the introduction of SB network models has 
been successfully implemented to different chronic diseases 
(that per se are quite complex) and aging to simplify the way 
we approach them and its possible interventions [13]. For 
instance, Drenos et al., in 2015, demonstrated a loss of com-
plexity of association network maps before a cardiovascular 
event [14]. On the other side, the introduction of a new chi-
squared model network to detect differences between groups, 
derived from biomarkers and exposure indicators, proved a 
significant association between smoking and insulin signal-
ing pathways with DNA methylation [15]. On the other hand, 
Ji et al. developed a statistical methodology based on a boot-
strap on different samples from acute myeloid leukemia, 
showing that the transforming growth factor beta (TGF-®) 
route could be the most important signaling pathway and a 
potential therapeutic target for this disease [16]. In this sense, 
Mitnitski et al. implemented a complex theoretical network 
model of health deficits to better understand the changes in 
health captured by the frailty index (FI) [17]. Moreover, 
Garcia-Peña et  al. demonstrated using Bayesian networks 
with data from the Mexican Health Aging Study (MHAS) 
that not all deficits are equally related in the construction of 
the FI [18].

Another exciting topic where network models have been 
successfully implemented is on network meta-analysis. A 
novel statistical method for comparing multiple treatments 
in a single analysis by combining direct (evidence from 

randomized clinical trials) and indirect (evidence obtained 
through one or more common comparators) evidence 
within a network of randomized controlled trials and is 
quite useful for pharmacology treatments among others 
[19]. These types of analyses have been beneficial over the 
last years for the pharmaceutical industry; nodes represent 
treatments connected by standard comparators that repre-
sent evidence. Therefore, the most connected two nodes are 
with the most evidence (direct or indirect) exists. Since 
these models offer a unique opportunity to obtain informa-
tion from clinical trials, statistical heterogeneity and inco-
herence, as well as conceptual coherence, must be seriously 
considered in the network construction before implement-
ing these models [20].

In this context, considering previous reports, in the pres-
ent chapter, we will define SEp as a novel tool where holis-
tic approaches (network models) and sophisticated 
mathematical models (particularly non-linear models) are 
implemented to understand complex problems in epidemi-
ology and public health. Such approaches must be based on 
analysis at multiple levels with the implementation of novel 
tools from multi-omics approaches to remote sensing data 
with conventional tools from epidemiology such as clinical 
trials, longitudinal studies, and surveys. Interestingly, the 
core of most SEp approximation is the implementation of 
network methodologies that will allow us to understand the 
association, causality relationships, classification, impor-
tance, and hierarchy, to understand variables as measures 
associated with individuals or even as individuals per se. In 
the following sections, we will present the most used types 
of methodologies at date based on networks: probabilistic 
graphical models (PGM), social network analyses (SNA), 
and artificial neural networks (ANN). We show examples of 
their use, as well as their classification, advantages and dis-
advantages, and examples of software in which they can be 
implemented.

�Network Models

In Table 14.1, we present the main three types of networks 
(social, probabilistic, and neural), how the user should pro-
vide the data, the types of variables according to the type of 
analysis, and the model names identifying each combination 
of a model with the data type.

In Table 14.2, we present each type of model defined in 
the previous table (Table 14.1), the goals or utility of each 
model, and the limitations or problems a researcher could 
find when using each model inherent to any technique under 
development. We also present examples of software or 
libraries (e.g., in R) that can be implemented for each 
analysis.
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Table 14.1  Type of network analysis. Social network analysis (SNA), probabilistic graphical models (PGM), and artificial neural networks 
(ANN), data provided by the user, type of admitted variables, and models associated with each type

Model Data Data type Models
SNA Through an adjacency, similarity, distance, 

or social matrix or through expert’s 
knowledge. Matrices can be obtained from a 
bibliometric analysis. Weighted networks 
(ties weighted) are available

The importance is the 
relationships between nodes and 
their cause, not the variable type

Exponential (statistical) random graph (ERG), 
random, and dynamic network models

PGM From data through structural learning (using 
algorithms, e.g., hc and PC) or using 
experts’ knowledge to build the network, 
associated probabilities, or both

Discrete Loglinear graphical (undirected)
Discrete Bayesian networks (directed)
Discrete chain models (both)

Continuous Undirected Gaussian graphical models
Directed Gaussian graphical models
Gaussian chain graph models (directed and 
undirected)

Mixed Mixed interaction models (undirected)
Mixed chain graph models (directed and/or 
undirected)

ANN From data: specify an input, output, or 
another kind of node, number of hidden 
layers and nodes in each layer

Discrete and continuous Feed-forward networks
Recurrent neural networks (RNN) or feedback 
network (use of loops allowed)
Pattern recognition (mainly unsupervised, i.e., the 
number of clusters and clusters obtained from data): 
Kohonen network (self-organized map), Hopfield 
network, Boltzmann machines, generative 
adversarial networks, and deep belief networks

Table 14.2  Network models, goals, disadvantages, and examples of software available for each model

Types Models Goals Disadvantages Software examples
SNA ERG, random, and 

dynamic network 
models

Nodes relevance, social cohesion and 
community detection; understand the 
nature and causes of the relationships 
between nodes and simulate 
networks

It is time-consuming; convergence 
problems can be difficult, particularly for 
dynamic network models

R (igraph, statnet, 
intergraph, UserNetR, ergm, 
tnet, etc.), Cytoscape, 
Python (networkX)

PGM Loglinear graphical Understand marginal and conditional 
independence between variables

The computational time directly 
proportional to the number of nodes, 
particularly for structural learning; thus, 
other techniques and/or graph 
restrictions (e.g., use of trees, 
approximations, etc.) can be necessary. 
Arcs direction or forbidding of certain 
direction must be validated by experts. 
Not all types of graphical models 
(particularly the mixed type) are as well 
developed, particularly in the same 
software. Gaussian distribution assumed 
in the continuous and mixed network 
types

R (gRbase, gRain, gRim, 
bnlearn, ggm, pcalg, etc.), 
HuginDiscrete Bayesian 

networks
Understand marginal and conditional 
independence between variables, 
understand causality between all 
variables (not just one), and evidence 
propagation (prediction and 
classification)

Discrete chain models

Undirected Gaussian 
graphical models

Understand marginal and conditional 
independence between variables

Directed Gaussian 
graphical models

Understand marginal and conditional 
independence between variables, 
understand causality between all 
variables, and evidence propagation 
(prediction and classification)

Gaussian chain graph 
models

Mixed interaction 
models

Understand marginal and conditional 
independence between variables

Mixed chain graph 
models

Understand marginal and conditional 
independence between variables, 
understand causality between 
variables, and evidence propagation 
(prediction and classification)

ANN Feed-forward 
networks

Prediction and classification. Some 
models allow parameter 
interpretation (causal explanation)

There is not a standard of how many 
hidden layers and associated nodes 
should be used. Risk of overfitting, for 
example, a model could correctly 
classify all data in the train data but 
misclassify data in the test data

R (neuralnet, nnet, RSNNS, 
rnn, mxnet, h2o, etc.), 
Matlab, SPSS, Python 
(scikit-learn, theano, keras, 
tensor-flow, pyTorch)

RNN They have memory, and feedback 
used to improve model

More complex pattern 
recognition networks

Clustering and classification (images, 
voice recognition, etc.)
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�Probabilistic Graphical Models (PGM)

Probabilistic graphical models, including Bayesian net-
works, are multidimensional models, in which, according to 
a graph, the joint probability associated with all variables is 
factorized, representing a set of marginal and conditional 
independencies, also known as Markov properties. For 
instance, in an undirected network, the absence of an edge 
between two variables indicates that such variables are con-
ditionally independent, given the remaining variables. The 
edges associated with the graph can be undirected or 
directed, where in both cases independence is represented, 
but in the latter (Bayesian networks), the dependence 
between variables is represented through conditional prob-
abilities; technical details can be found in Lauritzen, 1996 
[21] and Sucar, 2015 [22]. For instance, considering that 
two nodes u and v point to a node w, u and v are said to be 
the parent nodes of w, and we have the probability density 
associated with w given specific values to u and v. For a bet-
ter understanding, in Fig. 14.2, we show a practical example 
of a Bayesian network concerning arterial damage. We 
include the associated conditional (depending on the parent 
nodes) and marginal probabilities (when there are no parent 
nodes), and this is a directed network for discrete data. 
When continuous variables are involved, conditional 
Gaussian distributions are applied.

Experts can provide the network structure and param-
eters (e.g., probabilities) associated with the models 
according to their knowledge. They can also be learned 

from the data through algorithms and statistical methods 
or a combination of both processes. We must identify 
coherent relationships, forbidding those illogical or 
forced, using different algorithms, comparing the net-
works obtained, or randomly simulating several networks 
to identify the most repeated relationships. Additionally, 
when directed networks are used, appropriate directions 
must be validated.

In Bayesian networks, we can also assign values to a set 
of nodes A (evidence) and see how these values affect another 
set of variables B, getting the conditional probability of those 
variables in B given specific values to nodes in A [23] [24]. 
Consequently, these networks can be used to understand 
dependence and causality or even to establish a classifica-
tion. PGM and Bayesian networks represent dependence 
between all variables at the same time and not associations as 
in other commonly used models. A recent work shows the 
application of this type of analysis in epidemiology, for 
instance, Haddawy et  al. who obtained a good prediction 
model through the use of Bayesian networks to obtain a spa-
tiotemporal malaria prediction at the village level in Thailand 
[25]. On the other side, Bui et al. analyze the spread routes of 
avian influenza subtypes H5N1 and H7N9 through a phylo-
geographical analysis. They found differences in transmis-
sion dynamics between both subtypes, suggesting the need 
for discrete control strategies for each one [26]. These two 
examples represent accurate applications of the use of 
Bayesian networks to public health, particularly in the con-
tention of diseases.
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Fig. 14.2  Network representing a model concerning artery damage. 
Being overweight may be considered as a cause of both diabetes and 
hypertension. Smoking and diabetes are linked into a node (either) indi-
cating whether a subject smokes or has diabetes. The presence of any of 
these two problems, represented in the node named as either, and the 

possible presence of hypertension are possible causes of artery damage. 
Using data, or according to expert knowledge, the conditional and mar-
ginal probabilities associated with each node can be obtained, and pos-
sible values are shown beside the network
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�Neural Networks

Neural networks are another new tool that has raised the 
baseline for a significant number of tasks, including visual 
pattern recognition, natural language translation, and math-
ematical modeling. The most basic model of a neural net-
work could be appreciated in Fig. 14.3. In this sense, there is 
a multitude of network variations (topologies) and training 
schemes suited to different tasks.

All neural systems try to incorporate common elements 
observed in nature, such as the connectivity of the network, 
the response function, the learning rate, and the memory (the 
ability of the network to incorporate information seen in a 
past sample to predict a response). Neural networks receive 
this name since they mimic the brain; the neurons are a func-
tion of their inputs and outputs that lead to other functions. 
The most basic and oldest kind of neural network is the per-
ceptron [27]. These neurons are usually arranged in a multi-
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Flu

Hidden 3

Overcrowded
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Fig. 14.3  Neural network built to predict the number of cases of flu in 
each district; all districts are of a specific geographical area. The inputs 
(red) correspond to proportion of people that reports having a park near 
home, the proportion of women, the number of people with respiratory 
allergies, the approximate proportion of a district corresponding to 
green areas, and the proportion of people that, according to the last 
census, live in an overcrowded home. The output (purple) corresponds 
to the number of cases of flu in each district. A hidden layer (green) 

formed by three hidden nodes is used. There are directed edges from 
each of the input nodes to each node in the hidden layer, and from each 
node of the hidden layer to the output variable, each directed edge has 
an associated weight. A bias term (blue) and its associated directed 
edges are associated with each node in the hidden layer (like a constant 
term from the input layer), and another bias term is associated with the 
output node, and they also have associated weights
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layer perceptron network (MLP) and proved to be a universal 
function approximator [28]. MLP relies on supervised learn-
ing for either classification or prediction tasks. However, 
neural networks are not only used for supervised learning, 
but there are also variations used for unsupervised learning 
(cluster identification) [29].

MLPs are arranged in layers, where the input layer is a 
vector formed of the input variable’s set, and the desired 
result set forms the output layer. A set of neurons can be 
specified as hidden layers to give more discernment power 
to the network. All neurons are characterized by their inputs 
and the connection weights assigned to them; sometimes an 
additional neuron is added in each input and hidden layer, 
not receiving information, in a single-layer perceptron; this 
neuron acts as a constant term as in a linear regression 
model and is referred to as the bias neuron. The weights 
adjust the signal strength of the different inputs, and the 
non-linear part of the approximation is achieved by apply-
ing a non-linear activation function to the output [30]. A 
weight is associated with each edge either joining an input 
variable with each variable in a hidden layer or joining an 
input variable with each variable in the output layer when 
hidden layers are not present. The weights of a neural net-
work are estimated with algorithms; one of the most popu-
lar is the error backpropagation algorithm [31]. The same 
occurs with those edges joining variables in a hidden layer 
(when two or more hidden layers are present) or the output 
layer (Fig.  14.3). There are network variations that have 
edges linking a variable with itself; this is called a recurrent 
neural network (RNN), which can be useful in time series 
forecasting.

Networks are mostly used as predictive instead of explan-
atory ones, to avoid overfitting a neural network; it is recom-
mended to use training and test sets to validate our model 
and avoid using too many hidden layers. There are different 
kinds of learning algorithms used to train a neural network. 
These methods are optimization algorithms that optimize the 
network weights and the network topology [32]. This second 
class of algorithms is pruning algorithms that eliminate little-
used nodes (nodes with small weights), making it smaller 
and faster. There exist different kinds of network topologies 
and neuron types, allowing for different kinds of uses. If an 
output corresponds to a quantitative variable, we can predict 
values associated with the output (as in a regression model); 
on the contrary, if the output is a qualitative variable, a clas-
sifier can be obtained. Application of neural networks to epi-
demiology has been made regarding the generation of risk 
models [33, 34] and for survival prediction [35] in pediatric 
medicine. In Fig. 14.3, we show a neural network with an 
output variable, the number of cases of flu in each geographi-
cal district, five input variables, and one hidden layer with 
the corresponding estimated weights.

�Social Network Analysis (SNA)

SNA is the most common network model performed at the 
date in several studies on epidemiology, and it is a quantita-
tive and qualitative analysis using graph theory. SNA maps 
and measures the flow and changes of social relationships, 
and usually it is represented with points (nodes) and lines 
(edges), being the graphs representing either symmetric or 
asymmetric relations between discrete pairs of objects. The 
networks can be built from experts’ knowledge, bibliometric 
studies, using an association or correlation measure between 
pairs of actors, etc. The nodes can represent objects, people, 
variables, diseases, etc. The edges usually represent interac-
tion among nodes. They can contain associated values or 
weights, can be direct or undirected, and can define the 
strength of the interaction or relationship, among others.

SNA can be used to determine the relevance of nodes 
according to several properties and centrality measures, 
most of which are expressed in Table  14.3. This model 
could be used to obtain whether there is social cohesion and 
detect communities of nodes (clusters or modules), com-
pare the relation of the network structure with well-known 
models based on simulation, or explain such structure 
through statistical models cross-sectional or longitudinal. 
Applications of social network methodology in biology 
include logistical networks, gene regulatory networks, met-
abolic networks, and, more recently, the interactomics or 
connectomics (Fig.  14.4). Mainly, in molecular biology, 
this approach has been used since there are signaling path-
ways that behave as a social network with quite connected 
nodes (hubs) and nodes connecting different clusters of 
vertices (bottlenecks). The number of publications with 
SNA and molecular networks to approach epidemiological 
studies has increased over the last years due to the develop-
ment and improvement of genomic and proteomic tech-
niques, as well as the improvement of computer programs 
capable of processing these data. For instance, the study by 
Gardy et al. in 2011 uses SNA and whole genome sequenc-
ing of Mycobacterium tuberculosis in order to describe the 
outbreak dynamics at a higher resolution in a medium-sized 
community in British Columbia [36]. This methodology 
has also been used in longitudinal studies of cognitive per-
formance and depression [37], studies of human immuno-
deficiency virus (HIV) epidemiology [38, 39], studies of 
inclusion of marginalized women into government support 
programs, [40] or genome-wide association studies in bipo-
lar disorder [41], just to mention few examples of its appli-
cations. A large-scale meta-analysis from epigenome-wide 
association studies of 24 birth cohorts shows that birth 
weight is associated with widespread differences in DNA 
methylation in neonates. The difference persisted only min-
imally across childhood and into adulthood [42]. Hence, 
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the applications of these methodologies allow an in-depth 
and detailed analysis, having the ability to find new asso-
ciations that facilitate the study of complex pathologies and 
the finding of new prognostic marker determinants in the 
transition process between physiologically healthy states 
toward a pathological one.

�Perspectives

In this chapter, we have seen that network and graphical 
models are useful mathematical approaches that study com-
plex systems in epidemiological research, having in common 
a graphical representation that considers multidimensional 
relationships between sets of variables, giving results to a 
different branch of SB the so-called SEp. Additionally, we 
briefly review the leading techniques and software available 
according to the data type.

Mainly, PGM and Bayesian networks are applied to ana-
lyze causality relationships to see how some variables affect 
others in descriptive analyses or even for classification pur-
poses. On the other hand, neural networks are machine learn-
ing models that can be used for prediction and classification. 
There are several types of neural networks; the simpler ones 
include a set of inputs and a set of outputs related through 
non-linear functions, and even some include additional hid-
den nodes to improve the discernment power. One of the 
main disadvantages of neural networks is the opacity of the 

Table 14.3  Main network properties, which can be calculated to ana-
lyze the properties and main characteristics of networks

Property Characteristics or definition
Size The number of nodes in a network.
Density It is defined as a relation between the number 

of edges to the number of possible edges in a 
network. It corresponds to the proportion of 
potential edges in a network.

Connectedness and 
connected 
components

An undirected graph is connected when it has 
at least one vertex, and there is a path between 
every pair of vertices. A graph that is not 
connected is said to be disconnected, and the 
number of connected components (maximal 
set of nodes such that a path connects each pair 
of nodes) can be calculated.

Clustering 
coefficient

It is a measure of the extent to which nodes in 
a graph tend to cluster together. It is defined as 
the proportion of closed triangles to the total 
number of open or closed triangles.

Diameter It corresponds to the longest of all the 
calculated shortest paths in a network. When 
the graph is disconnected, it is calculated using 
the largest connected component.

Average shortest 
path length

It is a measure defined as the average number 
of steps along the shortest paths for all possible 
pairs of network nodes.

Node centrality It depends on the type of relations and 
interactions among nodes, but in general, it 
measures the most important nodes within a 
graph. Three commonly used measures of 
centrality are degree, betweenness, and 
closeness.

Degree The number of connections associated with 
each node in an undirected graph.

Closeness A measure of the extent a node is near or far to 
all other nodes in the network. It is calculated 
as the reciprocal of the sum of the length of the 
shortest paths between the node and all other 
nodes in the graph.

Betweenness It is a measure that represents how much a 
node stands between other nodes.

Average degree Characteristic of an undirected graph used to 
measure the number of edges compared to the 
number of nodes. To calculate it, we divide the 
summation of all nodes’ degree by the total 
number of nodes.

Number of hubs A hub is a node with a number of degrees 
greatly than the average. When a hub is 
connected to several hubs, it is called 
“meta-hub.”

Bottlenecks A bottleneck is a hot spot, central nodes that 
provide the only connection between different 
parts of the network; usually, they are nodes 
that connect clusters. Sometimes they are hubs, 
but not necessarily.
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Fig. 14.4  Network representing APP interacting proteins. The image 
shows a set of proteins able to interact with amyloid precursor protein 
(APP), a key element in Alzheimer’s disease (AD) pathology. Nodes 
including red color represent relevant proteins involved in AD path-
ways. Meanwhile, the nodes including blue represent those involved 
with NOTCH (membrane receptor) signaling pathway. Components of 
the gamma-secretase complex are nodes including green color, and 
those nodes including white represent other pathways. The data demon-
strate the complexity of finding new drugs for gamma-secretase due to 
the overlapping of pathways involved in AD and NOTCH (neuronal 
survival). Line thickness represents the strength of data support, which 
depends on an index (edge confidence) obtained from experimental 
proof, available data sets, and text mining: low (>0.15), medium (0.16–
0.40), high (0.41–0.70), and highest (<0.70). When the tridimensional 
protein structure is known, the node is included inside the correspond-
ing 3D representation. The network analysis was performed in the 
STRING consortium website (https://string-db.org)
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generated model, as the network deepens, and more nodes 
are added, except for the single-layer feed-forward percep-
tron where we can refer directly from the network. Finally, 
SNA are, at the date, the most used models since they can be 
easily obtained and interpreted. Networks can be built from 
any pairwise relationship: people, genes, socioeconomic 
measures, among others, which can or cannot have a direc-
tion or even a weight indicating the strength of the relation-
ship. Several results could be obtained when this model of 
the network is implemented such as relationships, the most 
relevant nodes, clustering, structure, dyad-level predictors 
(e.g., friendships could be more likely between people of the 
same sex), or using the information of a network represent-
ing another type of relationship with the same actors.

�Conclusions

Lastly, SEp models represent a challenge since they are 
mathematically more complex than those traditionally used. 
Nevertheless, they allow us to combine and generate models 
of diseases considering several levels of complexity. In this 
context, these models could help us to understand causality 
and open black-boxes in public health, since we could get to 
know how infectious or chronic diseases spread, how envi-
ronmental changes interact with disease, and how this will 
later impact over whole human populations, meaning taking 
every variable and everyone into account, as a novel para-
digm in epidemiology.
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AABPP	 Amino acid–based protein or peptide 
prediction

ADME	 Absorption, distribution, metabolism and 
excretion

CoMFA	 Comparative molecular field analysis
DFT	 Density functional theory
EMA	 European Medicines Agency
FB-QSAR	 Fragment-based two-dimensional QSAR
FDA	 Food and Drug Administration
HIV/AIDS	 Human immunodeficiency virus/acquired 

immunodeficiency syndrome
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of Technical Requirements for 
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IDLS	 Iterative double least squares
MF-3D-QSAR	 Multiple field three-dimensional QSAR
NDA	 New Drug Application
PD	 Pharmacodynamics
PDB	 Protein Data Bank
PI3K-AKT	 Phosphatidylinositol 3-kinase/serine/

threonine-specific protein kinase
PK	 Pharmacokinetics
QSAR	 Quantitative structure relationship
QSP	 Quantitative systems pharmacology
QSPR	 Quantity structure–property relationship 

SAR structure–activity relationship

SBDD	 Structure-based drug design
US	 United States of America

�Introduction

Drug development is essential to understand modern medicine 
because of the appearance of novel infectious diseases and the 
increase of the incidence of chronic degenerative conditions 
related to the human lifestyle. In this sense, the introduction of 
new drugs has reduced the various complications such as peptic 
ulcers [1] or HIV/AIDS, which has improved seriously from a 
deadly disease to a chronic condition [2]. Drug discovery 
involves rational design through medicinal chemistry for the 
efficient identification and optimization of active compounds. 
For this reason, it is crucial that clinicians deeply understand the 
drug discovery process since several observations could only be 
identified from the clinic and epidemiological perspective. Such 
an understanding will drive innovation for patients to under-
stand the importance of participating in clinical trials, report any 
adverse events to improve pharmacovigilance, improve person-
alized medicine, and improve the communication between 
pharmacists and clinicians [3, 4].

�Drug Discovery

A drug discovery program is a process through which poten-
tial new medicines are identified. It involves a wide range of 
scientific disciplines, including biology, chemistry and phar-
macology. It started because there is a disease or clinical con-
dition with epidemiological relevance and no pharmacological 
or inefficient treatment. Initial research often occurs in the 
academic world [5]. Nevertheless, drug development is a 
multifaceted process involving public and private institutions 
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that generate enough data to develop a relevant hypothesis 
(inhibition or activation of a target from a specific pathway), 
which will eventually lead to the identification of a poten-
tially active compound biotechnological product [5, 6].

Finding and progressing a new drug from the original idea 
to the launch of a finished product is a complex process that 
can take between 12 and 15 years and requires an investment 
of approximately $ 900 million to 2 billion dollars [7]. The 
stages of drug discovery and development focused on identi-
fying a possible target or pathway and validating such a tar-
get against different compounds. These processes are 
traditionally carried out in preclinical, experimental models, 
which lead to the identification of compounds that could 
modulate somehow the target, and then through a process of 
optimization (hit-to-lead), choosing the best of the hits based 
not only on their pharmacodynamic potential but also on 
their pharmacokinetic and pharmaceutical properties wherein 
such a compound could not only be easily formulated and 
administered but also produced so that it could reach the 
patient as rapidly as possible (Fig. 15.1).

�Target Identification

The first step in drug discovery is identifying the biological 
origin of a disease and the possible targets for intervention. 
A target could be defined as a molecule (nucleic acid, metab-

olite, or protein) involved in gene regulation or intracellular 
signaling disease processes [9]. The ideal target must be 
effective and safe and meet clinical and commercial require-
ments. Target identification techniques may be based on 
principles from molecular biology, biochemistry, genetics, 
biophysics, and other disciplines [10].

�Validation of the Target

Once we identify a potential target (metabolite, gene, protein 
or nucleic acid), it must be demonstrated that such target is 
involved in the progression of a given disease and that its 
activity can be modulated [5]. Validation experiments range 
from in silico and in vitro to in vivo models. Validation of 
efficacy and toxicity, including mutagenicity, must be careful 
and precise for successful drug development in the following 
stages [11].

�Lead Identification

The hit-to-lead process involves a procedure to identify from the 
complete set of active molecules (hits) a compound that could 
be considered as the leader due to its unique interaction with the 
selected target (potency and selectivity) and to its toxicological 
and pharmaceutical properties (absorption, distribution, metab-
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Fig. 15.1  Schematic representation of the drug discovery process. For 
example, of all the phases that cover drug discovery and the approxi-
mate amount of compounds and time of each process, only one ulti-

mately gets approval [8]. Success requires immense resources, from 
scientific to highly sophisticated laboratories and technologies
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olism, and excretion) [5]. It is worth mentioning that this evalu-
ation reveals compounds that could fail during the drug 
development process. Additionally, it is important to remember 
that screening experiments could be performed with already 
known drugs with already proven pharmaceutical properties to 
identify novel activities. Alternatively, synthetic compounds can 
be specifically designed to target without interfering with other 
cellular processes.

�Lead Optimization

After a lead compound is identified, the goal is to move into 
clinical trials; therefore, possible deficiencies in its structures 
may need to be improved to produce a drug candidate. Skipping 
this stage could lead to a lack of efficacy, pharmacokinetics 
(PK), and compounds’ safety issues. This stage can determine 
how chemical structure and biological activity are related to 
interacting with the target and its metabolism [12]. For this pro-
cess, a combination of specialists in computational chemistry, 
medical chemistry, drug metabolism, and other areas is recom-
mended to provide insight into this last stage. Additionally, it is 
crucial to consider the manufacture of new drugs since you 
could have a lead compound with unusual pharmacological 
activity but challenging to meet the dosage needs of the popula-
tion affected by the disease; let us think, for example, of a drug 
that will be used for the treatment of diabetes type 2 worldwide 
and the amount of compound you have to obtain to meet the 
need. After this stage, the next phase is the clinical trials, which 
serve as the gold standard to evaluate tested drugs’ efficacy and 
safety before marketing authorization.

�Clinical Trials

�Phase I

In general, during this phase, compounds are tested in 20 to 
100 healthy volunteers or people with the disease/condition 
depending on the study’s design; the purpose of this phase is 
mainly focused on determining safety and dosage. The dura-
tion of the study, on average, is several months [13].

�Phase II

Phase II is mainly focused on characterizing the compound’s 
efficacy and the possible side effects; in such a phase, the 
number of participants increases to several hundred people 
with the disease/condition. In this phase, novel information 
is obtained, such as the optimal dose, frequency of intake, 
and the disease’s effect, and the duration of this phase could 
be between several months and 2 years [13].

�Phase III

In Phase III trials, researchers study the drug in participant 
groups of 300 to 3000 volunteers who have the disease or 
condition, generate statistically significant data, and study the 
changes of doses and efficacy over different populations. The 
duration of this phase is around 1–4 years [13].

�Phase IV

In Phase IV, participants increase to several thousands who 
have the disease/condition. The purpose is to validate its 
safety and efficacy on significant populations and perform a 
new drug’s follow-up, including a pharmacovigilance phase 
[13] (Fig. 15.2).

In most cases, a drug research agency (such as the FDA in 
the USA or the EMA in the European Union) must approve 
the sale’s effectiveness. Phase 4 trials: Here, you do ongoing 
monitoring after an investigational drug agency approves a 
drug. The purpose of this phase is to monitor and find more 
information about the risks, benefits, and optimal use of the 
approved drug.

�In Silico vs In vitro

Scientific knowledge arises from applying the scientific 
method, which is based on the observation of a natural phe-
nomenon, the formulation of a hypothesis, and its verification 
through experiments [14]. The experiment is a generally con-
trolled situation in which an observed phenomenon is repro-
duced. In this sense, biological sciences rely on different 
experimental models to test hypotheses such as in  vivo, 
in vitro, and/or in silico [15]. In vivo tests are defined as those 
carried out in the conditions closest to the observed phenom-
enon of incomplete living organisms [16]. Meanwhile, in 
vitro methods are used as preliminary tests, carried out on 
experimental isolated models such as cell cultures, microbio-
logical cultures, and organoids, among others, reducing the 
number of animals [17]. There are several opinions that 
in vitro tests may be better than in vivo tests because there is 
better control of the conditions, ethical considerations, and a 
lower cost, among others [17]. It is important to carry out 
in vivo studies since results are easily extrapolated to other 
species, and you could analyze how the drug behaves in a 
complete living organism. Nevertheless, the best model to 
study a complete phenomenon does not exist because each of 
them will play a key role in explaining a natural phenomenon. 
Complementing models are recommended with the appropri-
ate experimental designs and statistical tests.

With the advancement of technology, the possibility of 
modeling natural phenomena, also known as in silico 
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modeling, has become more common due to the speed at 
which models can be solved with computer science [18, 19]. 
The interrelation of biological sciences with computer science 
and engineering has made it possible to build and solve math-
ematical models that allow a specific phenomenon to be incor-
porated by a computer [20]. These computational mathematical 
models or in silico models allow us to simulate real situations 
[21, 22], modifying the values ​​of the variables involved in a 
wide range of values ​​and contrasting them with the actual val-
ues. In this way, they will show us behaviors that might take 
decades to obtain from observation or experimentation.

In silico models at the biological level are emerging 
slowly but steadily; the number of periodical publications in 
this area supports it. However, the current deficiency of these 
models is based on the scarce necessary knowledge in the 
phenomena at the biological level and their interaction with 
other phenomena. The benefits of in silico models are evi-
dent in countless studies on pharmacodynamics (PD) and 
pharmacokinetics [23]. A recent development that deserves 
mention is a simulator for preclinical studies in diabetes, 
which the Food and Drug Administration (FDA) approved as 
a substitute for animal studies [24]. Such a simulator uses 
algorithms that model the human metabolic system based on 
data from 300 diabetic patients of different ages and has 26 
parameters that allow modeling individual states of each 

patient. It allows you to enter variables such as physical exer-
cise, diet, and insulin injection and study the effectiveness of 
new products or compare them with existing ones.

�Sources of Pharmacologically Active 
Compounds

�Natural Products

The nature of a pharmacological compound can be synthetic 
or derived from a natural source (natural products) either in 
its unaltered state or with several chemical modifications 
[25, 26]. A natural product is understood as a chemical com-
pound or substance produced by a biological organism (it 
could be a primary or secondary metabolite) with 
pharmacological activity [27]. Historically, at the core of tra-
ditional medicine, we have turned to natural products as a 
source of treatment for many diseases [28, 29]. Over 35% of 
available drugs are currently derived either directly or indi-
rectly from a natural product source [30]. Moreover, in cer-
tain areas, the discovery of natural products has been 
particularly prolific, such as antibiotics and antineoplastic 
agents, where 60–80% of them are derived from natural 
sources [31]. In this sense, many notable discoveries 
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Fig. 15.2  Clinical trial phases. Phase 1 trials: in this phase, the drug’s 
safety is evaluated, and side effects are identified; these tests are per-
formed in a small group of healthy people (10–20). Phase 2 trials: here, 
the drug’s efficacy is determined, and its safety further evaluated; these 
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trials: In this phase, different aspects of the new drug are corroborated, 
such as the drug’s efficacy, monitoring of side effects, and its compari-
son with standard or equivalent treatments, as well as collecting infor-
mation to ensure that it is new. The drug can be used safely. Large 
groups of people (1000–3000) are used in this phase
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revolutionized medicine and encouraged the continuation of 
research involving natural products in drug discovery, such 
as penicillin, derived from a species of Penicillium notatum, 
by Alexander Fleming [30, 32]. Other notable discoveries 
are that of ivermectin and artemisinin, derived from 
Streptomyces avermitilis and Artemisia annua, respectively, 
which were discoveries awarded with Nobel prizes [33].

The study of these natural products has long been 
explored, especially with the rise of metabolomics. The 
study of these products’ intricate molecular structures serves 
as a framework and inspiration for drug discovery [26, 34]. 
Metabolomics is defined as the study of the entirety of the 
molecular profile found within a biological system, facili-
tated with the improved high throughput screening technolo-
gies in chromatography and spectroscopy [34, 35]. Through 
this process, we can elucidate the standout compounds com-
prising the natural products that produce the therapeutic 
effects, often consisting of simultaneous synergistic action 
from several of the chemicals within [26, 34]; please refer to 
Chap. 7, focused only on metabolomics.

The innovative development and the implementation of 
novel technologies in informatics and analytical technologies 
such as quantum computing, profiling technologies, computa-
tional biology techniques, big data, and microfluidics will 
enable a multidisciplinary approach to the study of the metabo-
lite profile of natural products; it serves for a quick and efficient 
analysis of large data sets of metabolite libraries, providing 
great insight into the potential of these specimens in the medi-
cal field and their potential in drug discovery to meet the ever-
growing needs for novel treatments of the health challenges of 
today [26, 34]. The focus of metabolomics in the identification 
of metabolites and the study of the biological mechanisms acti-

vated following the effects of a pharmacological compound 
[26, 34]. A growing interest in this field came along the neces-
sity for databases, both open and commercial, dedicated to 
natural products that optimizes their analysis, some examples 
being: Super Natural II, Universal Natural Product Database, 
Chinese Natural Product Database, Drug Discovery Portal, 
iSmart, NuBBE, and many more [34].

�Quantitative Structure Relationship (QSAR)

According to the rational drug design approach’s primary 
hypothesis, the essential effects of drugs are generated from 
the molecular recognition and the binding of ligands to the 
active site of targets (nucleic acids, receptors, and enzymes). 
These drugs affect both inhibiting or activating signal trans-
duction through the binding of enzymatic activity or molecu-
lar transport. Medicinal chemistry used small chemical 
compounds that already existed in nature, and their activity 
was revealed by empiricism [36].

The quantitative structure–activity relationship (QSAR) is 
used to build computational or mathematical models whose 
purpose is to find a statistically significant correlation tech-
nique between structure and function using a chemometric 
technique. The aims of QSAR include correlating the relation-
ship between trends in chemical structure alterations and 
changes in the biological endpoint of their biological activities. 
Optimize the available leads to improve your biological activi-
ties and predict the biological activities of untested compounds; 
Table 15.1 shows the traditional methodology of QSAR [37].

Quantitative structure–activity relationships (QSAR) and 
quantitative structure–property relationships (QSPR) are of 

Table 15.1  Examples of classification of QSAR methodologies

QSAR 
models Concept Explanation of each model References
1D-QSAR Molecular representations and molecular 

fragments, such as H-donors, H-acceptors, 
pKa, log P with biological activity.

Such models reflect only the composition of the molecule. It is 
impossible to solve “structure–activity” tasks using such approaches 
adequately. These models have an auxiliary role.

[43]

2D-QSAR Representation that contains topological 
information as physicochemical properties 
with biological activity.

These models are trendy and reflect only the molecule’s topology, 
which contains information about possible conformations of the 
compound.

[43]

3D-QSAR Correlation of various properties generates a 
3D representation of the molecule.

These models are the most widespread. However, the choice of the 
analyzed conformer is primarily accidental.

[43]

4D-QSAR Representation of ligand receptor 
interactions of the drug molecule with the 
3D properties.

These models have similarity to 3D models; however, when 4D 
models are compared to them, the structural information is considered 
for a set of conformers (conditionally, the fourth dimension) instead of 
one fixed conformation.

[43]

5D-QSAR Representing different induced fit models in 
4D-QSAR.

This fifth dimension helps to identify the active site’s molecular 
fragments that are responsible for the biological activity of the 
molecule.

[44]

6D-QSAR Incorporating different solvation models in 
5D-QSAR.

It considers the solvation function in QSAR analysis, which is an 
expansion of the QUASAR (5D-QSAR), employing simulations for 
different solvation models.

[45]

7D-QSAR One more dimension has been added to the 
6D-QSAR to introduce another higher 
dimension (7D-QSAR).

This analysis comprises real receptor or target-based receptor model 
data.

[45]
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great importance in current chemistry and biochemistry. 
QSAR was conceived as a comprehensive and competent 
method widely used in pharmaceutical problems; it uses 
molecular descriptors to predict the relationships between 
the target’s molecular properties and its biological context 
[38]. These molecular descriptors are universal variables 
used for QSAR-based activity prediction modeling [39].

For a model drug candidate to be considered, it needs to 
possess specific properties, such as chemical properties, 
solubility, enzymatic stability, permeation through biologi-
cal membranes, low clearance from the liver or kidneys, 
potency, and safety [36]. Although there are countless 
molecular descriptors, selecting these is the most critical 
challenge in a QSAR. Therefore, to understand the QSAR 
model, decrease overfitting, speed up training, and improve 
the model’s overall predictability, choosing appropriate and 
interpretable descriptors to configure QSAR models is a 
highly crucial, challenging, and complicated step. The pri-
mary assumption of the QSAR methodology is that the 
observed discrepancy in biological activity is correlated 
with molecular structure [36].

The construction of QSAR models for drug discovery 
consists of a general, systematized protocol and several mod-
ular steps that involve cheminformatics and machine learn-
ing techniques. The first step of the protocol is “molecular 
coding,” where chemical characteristics and properties are 
obtained from chemical structures or the search for experi-
mental results. The next step is to perform feature selection 
using unsupervised learning techniques to identify the most 
relevant properties and reduce the feature vector’s dimen-
sionality. During the final phase, a supervised machine learn-
ing model is applied to discover an empirical function (it can 
be explicitly or implicitly) to achieve an optimal mapping 
between the input feature vectors and the biological 
responses. An accurate QSAR model’s construction requires 
careful consideration and selection of the SAR data sets used 
for training and model validation [40].

Besides, conventional QSAR methods have recently 
changed, due to the introduction of sophisticated mathemati-
cal tools and well-designed theoretical models, thus leading to 
three modern QSAR methods [41, 42]. The first model is frag-
ment-based two-dimensional QSAR (FB-QSAR). A series of 
drug candidates’ molecular structures are segregated into sev-
eral fragments depending on the surrogate being examined. 
The physicochemical characteristics of the molecular frag-
ments are compared with the drug candidate’s bioactivities 
with the help of two sets of coefficients, of which one is for the 
molecular fragments while the other is for the physicochemi-
cal characteristics. The second QSAR type is the multiple field 
three-dimensional QSAR (MF-3D-QSAR). In this category, 
the additional molecular potential field (thermodynamic and 
non-thermodynamic) is incorporated into a comparative 
molecular field analysis (CoMFA), using two sets of coeffi-
cients, one for the position of the three-dimensional Cartesian 

space and the other for the field of potential, and this was used 
for the first time for the analysis of the three-dimensional 
structure of the ligands and to describe the structure–activity 
relationships. This three-dimensional plane or network corre-
sponds to a surrogate for the actual biological receptor binding 
site. The third category of the QSAR comprises the amino 
acid–based protein or peptide prediction (AABPP), which is 
used for the analysis of peptide and protein activity using two 
sets of coefficients, one for the physicochemical properties of 
amino acids and the other for residues in the peptide chain 
[36]. These three recent QSAR approaches are characterized 
by simultaneous three-dimensional equations that enclose two 
sets of indeterminate coefficients. Furthermore, these new 
QSAR approaches, compared to traditional QSAR approaches, 
can increase the predictive power of QSAR and offer more 
information on the molecular structure.

�Docking

In recent years, the number of proteins with known three-
dimensional structure has shown an increase in their quan-
tity, thanks to technological advances and the fact that these 
structures are available to the public through servers present 
on the network [46, 47]. On the other hand, improvements in 
techniques for determining structures, such as high-
performance X-ray crystallography, have led to an increase 
in the number of structural targets [47].

Molecular docking is a computational method used to 
predict two interactions of molecules, generating a binding 
model. The docking method has proven helpful in small mol-
ecule drug discovery and design; in this context, the docking 
method is performed between a small molecule and a macro-
molecule creating a protein–ligand docking. However, for 
the molecular modeling of significantly more flexible and 
larger peptides, these coupling methods designed for small 
molecule interactions are not entirely suitable [48]. On the 
other hand, interest in peptide therapy [49] led to new tech-
niques focused on protein–peptide coupling [50, 51]. 
Protein–peptide coupling methods fall into three categories: 
template-based coupling, local docking, and global docking. 
These different approaches provide different prediction pre-
cision levels, which are focused on the amount of interaction 
information provided as input.

Comparative coupling methods use known structures 
(templates) as scaffolds to generate a model of the complex. 
One of the most common practices is receptor threads and/or 
peptide sequences via a template structure. This method can 
be efficient if the template is like the complex investigated 
[49]. This type of template-based coupling is commonly per-
formed manually or semi-automatically using a set of tools 
for sequence–structure comparison and analysis. Complex 
models are subsequently built using energy-based optimiza-
tion and refinement that allow for structural flexibility. 

O. S. Barrera-Vázquez et al.



175

Template-based docking of highly homologous complexes is 
provided by protocols focused on predicting and designing 
peptide binding specificity [52]. On the other hand, template-
based modeling methods can also use monomeric protein 
fragments and protein–protein complex interfaces, which are 
used to build modeling structures—the structures of the 
interaction of protein–protein interfaces help design peptide 
inhibitors of protein–protein interactions [49].

�Global Docking

Global docking methods are used to perform a coupled search 
for the peptide binding site and pose. This global protein–pep-
tide coupling is focused on treating the input protein and pep-
tide conformations as rigid and, subsequently, performing an 
exhaustive body-rigid docking. The more sophisticated meth-
ods automatically predict peptide conformation from a user-
supplied sequence, which is divided into three steps: (i) 
generation of input peptide conformations, (ii) rigid docking 
model, and (iii) scoring of the models and/or refinement. 
Alternatively, the overall coupling can be combined with bind-
ing site predictions. Three main challenges have been encoun-
tered for protein–peptide docking: (i) flexibility problems, 
which are generated by modeling significant conformational 
changes of both peptide and protein molecules, (ii) scoring 
problems, which are caused by the selection of the most precise 
structure among many generated models, and (iii) integrative 
modeling or integration of experimental data and computa-
tional predictions in the protein–peptide docking scheme.

The difficulty of docking and the accuracy of prediction lie 
in the number of flexible bonds in a peptide, size, and defined 
secondary structure. Small molecule docking programs are 
usually limited to very short peptides, down to a few residues 
[53, 54]. Longer peptide patterning can be overcome by dock-
ing peptide fragments followed by their fusion [55, 56]. The 
receptor’s flexibility upon binding can range from minor side-
chain rearrangement to large-scale spinal rearrangements [57, 
58]. The difficulty of coupling increases with increasing 
receptor conformational changes, and explicitly addressing 
spinal flexibility can become a significant challenge [57, 59]. 
The most straightforward approach is to perform a rigid body 
coupling ignoring the flexibility of the receiver. This meth-
od’s main advantage is the low computational cost, which 
allows a comprehensive sampling of the receptor surface in 
search of a binding site. Rigid body coupling is often used as 
the main or one of the main components of global coupling 
protocols. However, those protocols allow at least side-chain 
flexibility in other modeling steps. Finally, coarse-grained 
protein models can be used to model large-scale rearrange-
ments of the spine, such as disordered regions of significant 
length [60] or a loop region near the binding site [61].

Among the various challenges that docking presents, it is 
the most successful selection of the most accurate model to 

use. In most cases, the highest-ranked models are of lower 
quality than the most accurate models present in the docking 
results. Most docking tools use energy-based scoring meth-
ods for model classification. Except for energy-based scor-
ing, some of the protein–peptide docking tools use additional 
methods to improve model selection; these methods include 
structural clustering and selecting the most significant clus-
ters, incorporating co-evolutionary technical information, 
mutagenesis data comparison with template structures, or 
sequence-based predictions [49].

�Network Pharmacology and Drug Repurposing

Among the most recent tools implemented for the acceleration 
of drug discovery is the so-called network pharmacology, 
which takes advantage of the enormous amount of information 
generated by the recent advances in several omics interna-
tional projects, as well as the development of novel tools in 
bioinformatics in a combination of systems biology and poly-
pharmacology knowledge [62]. To understand such an 
approach, it is essential to define some of the primary systems 
biology principles. Systems biology could be defined as an 
effort to understand from a holistic point of view the complex-
ity of biological systems (biomolecules, cells, tissues, human 
body, groups of humans with a particular characteristic) as a 
whole (“the whole of living organisms are more than the sim-
ple sum of their parts”). To get closer to such knowledge, one 
integral approach is the development of mathematical models 
that capture the complexity of biological systems and their 
emergent properties [63], which in general obey nonlinear 
dynamics; in this context, computational approaches are 
needed to solve such models and their equations. There are 
several options for choosing an adequate model depending on 
the system and the complexity you are looking to approach, 
for instance, time-dependent phenomena, biological pro-
cesses, concentrations, sampling, and the possibility to access 
experimental data. It is not the same to study the molecular 
changes associated with gout than to study the changes in 
social behavior that having gout represents, although both are 
closely associated. In this sense, some of the most fundamen-
tal and valuable approaches to understanding how several vari-
ables on a biological system interact with each other under 
specific parameters and at different levels are the network 
approaches. These models have shown to be quite helpful and 
relatively easy to implement and understand the “big picture” 
of the relationships (edges) among variables (nodes) [28]. 
Network approaches are often built with experimental knowl-
edge and sometimes are data hungry; the more accurate you 
want your model, the more information is needed [64]. At the 
same time, these models are helpful; you could use a network 
to describe from our genome to the cells that make up the 
organs in our bodies to ourselves in our world; as stated by the 
Institute of Systems Biology, “we are fundamentally a network 
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of networks.” An interaction network could be more than a 
simple binary relationship between individuals and could be 
probabilistic relationships or confidential information at dif-
ferent; for a complete description of network models, please 
refer to Chap. 14.

On the other hand, the traditional pharmacology para-
digm is “one disease-one target-one drug” nevertheless; this 
approach oversimplifies therapeutics for diseases. It makes it 
extremely difficult to discover novel drugs since you have to 
focus on one target; this may be pretty selective; however, 
diseases result from several mechanisms from environmental 
to genetic. Moreover, diseases share clinical symptoms mak-
ing them even more complex [65]. In this context, to increase 
the therapeutic tools, the network paradigm from systems 
biology was applied to pharmacology, giving birth to the so-
called systems pharmacology, also known as network phar-
macology, which is considered the next paradigm in drug 

discovery [66]. Network pharmacology could be defined as a 
systems biology–based methodology based on biological 
networks to search for multitarget drugs [67]. It uses molecu-
lar pathway knowledge to integrate several concepts, includ-
ing polypharmacology, toxicology, and drug repurposing, 
based on evaluating the selectivity among shared targets. In 
this sense, this tool could improve the potency of drugs and 
diminish the adverse effects [62].

There are several ways to approach network pharmacol-
ogy analyses; for instance, you can reconstruct and predict a 
network based on the drug targets, or you can base your anal-
ysis on the chemical characteristics of the drug itself. 
Additionally, you can base your analysis on the network equi-
librium model based on the structural network analysis rather 
than pure nodes properties. In general, there is a pipeline that 
can vary depending on the analysis but that describes well 
how to perform a network pharmacology analysis (Fig. 15.3).

Data collection
from different

sources

Biocuration

Validation

Comparability

Node ?

edge ?

Target

Drug

Drug

Network characteristics

Analysis

Network visualization

Disease A Disease B

Drug repurposing or novel properties

Fig. 15.3  General pipeline for a network pharmacology analysis. Data 
collection and the biocuration of the data are among the first steps in 
any bioinformatic analysis. To establish nodes and edge properties and 

characteristics, it is pretty important so we could pass to the network 
visualization and consequent analysis. Finally, once we have the results, 
we could establish novel properties for drug repurposing or similar
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There are several successful examples of network phar-
macology analysis already implemented in several fields; 
for instance, Wang et al. used a network approach to iden-
tify the possible mechanisms of Zingiberis rhizoma, and 
Coptidis rhizoma reported as antitumoral herbal medicine 
on Chinese medicine and identified that phosphatidylinosi-
tol 3-kinase/serine/threonine-specific protein kinase 
(PI3K-AKT) pathway might be targeted by different active 
compounds previously isolated on such plants [68]. 
Interestingly, Qin-Qin et  al. identify that carvedilol may 
help treat ischemic cerebrovascular disease through the 
use of a disease–disease association network-assisted 
model [69]. Moreover, several studies have demonstrated 
that network pharmacology analysis is quite reproducible 
at the practical level, such as Casas et al. [65] and Gomez-
Verjan et  al. [70]. Additionally, there are several tools 
developed by different international groups freely avail-
able online to be used in this pharmacology novel 
(Table 15.2).

�Quantitative Systems Pharmacology

We obtain a very recent subdiscipline called quantitative 
systems pharmacology (QSP) if we combine systems 
pharmacology with data from pharmacometrics analyses. 
Such subdiscipline has taken an interest over recent years 
in the pharmaceutical industry [79] since it bears the 
promise to support and improve the drug development 
process mainly to accelerate the knowledge on drug 
absorption, distribution, metabolism, and excretion 
(ADME). In this context, QSP uses systems biology tools 
to generate quantitative models that involve both pharma-
cokinetics (PK) and pharmacodynamics (PD). The ulti-
mate goal of QSP is to generate approaches that involve 
toxicology quantitatively, are biological, and involve dis-
eases in response to different therapeutic regimes, giving 
the idea of a “spatiotemporal” mechanism of action that 
could be used to improve the preclinical data [79] 
(Fig. 15.4).

Table 15.2  Most widely network pharmacology tools and software freely available

Tool Description Link
Cytoscape It is one of the most widely used open-source software for visualizing molecular 

interaction networks and biological pathways and integrating them with several data 
form annotations to gene expression profiles. It has several apps and tools that could 
be used for enrichment analysis and genetic expression or in general to draw and 
analyze network properties [71].

https://cytoscape.org/

GUESS It is an exploratory data analysis and visualization tool for graphs and networks. It 
offers a visualization front end that supports the export of static images and dynamic 
movies.

http://graphexploration.
cond.org/index.html

KNIME It is a commercial tool for data-driven innovation, designed for discovering the 
potential hidden in data. It possesses several extensions for chemoinformatic analysis 
and easy to use. It has two versions, one for simple data scientist analysis and a 
commercial one for companies.

https://www.knime.com/
software-overview

SmartGraph It is a predictive web-based platform that supports complex cheminformatics 
workflows. It allows integration of additional biomedical data layers, such as 
pharmacological action of drugs, non-small molecule drugs, disease information, and 
target categories [72].

https://smartgraph.ncats.io/

FangNet This freely available tool ranks several herbs used in traditional Chinese medicine 
based on their relative topological importance using a PageRank algorithm and the 
constructed symptom–herb network from a collection of empirical clinical 
prescriptions [73].

http://fangnet.herb.ac.cn.

YaTCM It is a free web-based toolkit, which provides comprehensive information about 
traditional Chinese medicine and correlates several active compounds with different 
molecular pathways [74].

http://cadd.pharmacy.nankai.
edu.cn/yatcm/home

Comparative 
Toxicogenomics  
database

It is an innovative web tool that relates toxicological information from different 
chemicals, genes, phenotypes, diseases, and exposures and is literature-based and 
manually curated [75].

http://ctdbase.org/

Swiss target prediction This web tool aims to predict the most probable protein targets of small molecules. 
Its predictions are mainly based on the similarity principle. It is possible to use a set 
of targets from Mus musculus, Homo sapiens, and Rattus norvegicus [76].

www.swisstargetprediction.
ch

STITCH (search tool for 
interactions of 
chemicals)

This tool integrates information about interactions from metabolic pathways, crystal 
structures, binding experiments, and drug–target relationships. It uses information 
from metabolic pathways, crystal structures, binding experiments, and drug–target 
relationships to predict relations between chemicals [77].

http://stitch.embl.de/

Drug set enrichment 
analysis

Drug set enrichment analysis works with the same principles of a gene set 
enrichment analysis to use a set of drugs that are tested against a database of 
pathways [78].

http://dsea.tigem.it
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In part, much of the QSP approaches’ success has been 
linked to the advances in physiological-based pharmacokinet-
ics (PBPK) models. Such models have been used and refined 
for several decades but have recently been successful, thanks 
to advances in computing power [80]. In general, most PBPK 
models are based on the assumption that the body’s physiolog-
ical organs are compartments linked by different tubes (circu-
lating blood system); in this sense, each compartment has a 
particular volume and a specific blood rate [81]. Moreover, 
each body compartment is defined by both perfusion rate and 
permeability rate, and kinetics governing such phenomena is 
delimited by pharmaceutical properties of the molecules, 
including lipophilicity, metabolic rate, molecular size, hydro-
gen bond acceptors or donors, albumin, and p-glycoprotein 
interaction, just to mention a few examples [82]. In this con-
text, ordinary differential equations have proven to be quite 
valuable to perform mass balance analysis for QSP models. 
Such models are algae composed of two main sides; the first 
side always contains the physiological parameters (humans or 
experimental animal models) independent of the drug itself. 
The second side consists of the previously mentioned pharma-
ceutical properties of the drug itself. Interestingly, PBPK mod-
eling has gained attention in regulatory bodies such as the 
FDA and the European Medicines Agency (EMA) [81, 82]. 
Interestingly, there has been an increase in the modeling work 

in the documentation for novel drug submission over recent 
years, helping pharmaceutical companies perform clinical 
development decisions for novel candidate selection.

�Conclusions

Pharmacology is a discipline that has taken advantage of the 
recent innovations in bio- and cheminformatics, leading to 
the development of novel tools as web servers, network phar-
macology, QSAR, and docking analysis, just to mention a 
few examples. In this sense, in the present chapter, we try to 
resume some of the most exemplary methods, emphasizing 
their importance in epidemiology. In this sense, it is essential 
to mention that both branches are more closely related than 
expected. The more we learn from epidemiological models, 
the more we will learn about the necessities to develop drugs 
epidemiologically based on the needs of the population pri-
orities in public health. Similarly, the more we learn to 
develop novel molecules, the more tools we will have to 
counter the effects of diseases in the population.
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�Bioinformatic Tools for Medicine

The development of new computational methods and the 
ever-growing decrease in sequencing costs have generated a 
massive amount of biological data. Basic research applica-
tions aside, the clinical field has also greatly benefited from 
this information, as novel insights into a wide array of patho-
logical conditions and diseases have been discovered through 
data analysis. Digital web repositories and international con-
sortiums have been created from the data generated by novel 
high-throughput technologies. This data has been instrumen-
tal in a wide variety of clinical applications. In Table 16.1, 
we briefly summarize some of these online information 
repositories and their clinical applications.

These massive amounts of data have opened the way to 
new research methodologies and approaches in a broader 
sense. Among these novel fields, systems biology is an excit-
ing new area that allows us to study biological phenomena in 
a new light.

�What Is Systems Biology?

Talking about systems biology is a complex issue. Having 
been established as a novel discipline relatively recently and 
named only two decades ago [1, 2], attempting to find a con-
sensus definition of systems biology is a futile task. Its defi-
nition seems to change depending on its source you ask. 
However, a consensus exists on what systems biology does 
and how it does it. Driven by François Jacob’s statement that 
“every object that biology studies are a system of systems 
[3],” scientists began to use tools from seemingly unrelated 
fields to start dissecting biological systems as a whole instead 
of independently analyzing the components that make up the 
said system. Firstly cells, tissues, and organs were studied as 
complex biological systems [4], then the accelerated devel-
opment of omics technologies (genomics, transcriptomics, 
proteomics, metabolomics, etc.) and decreasing costs of 
sequencing technologies generated enormous data sets that 
uncovered the essential components that formed these com-
plex systems [5]. Finally, novel computational methods and 
technologies allowed scientists to study how the interactions 
between these essential components gave rise to behaviors 
that could not be predicted or explained if you only studied 
the isolated components of the system [6, 7].

Breitling (2010) argues that systems biology’s founda-
tions and what makes it a genuinely independent discipline 
rests upon the three main aesthetic principles: diversity, sim-
plicity, and complexity. Breitling states that any research that 
claims to be systems biology must have all three of these 
principles as a theoretical and philosophical background [8]. 
Diversity in a systems biology context refers to the myriad of 
molecules that form a complex system, such as a cell, genes, 
transcripts, proteins, and metabolites, which all can be com-
ponents of this complex biological system. The said diversity 
comes from the development of all the omics technologies 
currently available and the massive amounts of data that have 
been generated from them. However, in the world of systems 
biology, all these molecules do not come alone; in this 
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context, they all come with their peculiarities and molecular 
characteristics and their interactions with other molecules 
and their place in a more general context (or network). 
Simplicity is a fundamental principle of systems biology that 
may seem contradictory as it was previously stated that sys-
tems biology studied complex phenomena and because 
diversity is anything but simple. However, simplicity in sys-
tems biology stems from its roots in physical sciences, as 
systems biology attempts to identify general laws and prin-
ciples applicable beyond the specific object of study. Even 
then, the relevance of searching for general laws in biology 
is debatable, although some patterns and structural arrange-
ments seem to be recurrent and follow some general laws. 
However, it is essential to understand that theoretical princi-
ples that derive from these observations might be nothing 
more than useful predictive tools [8]. According to Breitling, 
complexity is the final and most fundamental principle of 
systems biology [8]. As mentioned earlier, the interactions of 
individual components of a complex system give rise to 
complex behaviors that cannot be observed when studying 
these components independently. Defining complexity, espe-
cially in biological systems, can be a daunting endeavor 
because when studying a complex system, one must define 
basic features of the said system while excluding irrelevant 
or random features. Defining which features of a complex 
system are essential can fall to a certain degree into an arbi-
trary task. The fact that complex biological systems have 
evolved from non-adaptive processes makes it even more 

difficult [9, 10]. Nevertheless, data integration is the most 
critical aspect of systems biology. A complex system is the 
sum of all the interactions of every single isolated compo-
nent that makes up the said system [11].

In terms of systems biology, complexity may seem to be 
antithetical to simplicity, taking into account that the latter 
aims to discover and establish general and, in some cases, 
more specific laws. In that sense, systems biology may seem 
to be incompatible with traditional scientific research meth-
odology. Individual components of a more extensive network 
are examined, isolated from the rest of the system or delim-
ited in specific network modules. However, this apparent con-
troversy may be overrated. Although systems biology may 
seem incompatible with the reductionist approach that per-
meates classical research methods and hypothesis testing, 
systems biology must also be predictive [12], and this is best 
done by testing (and/or refuting) hypotheses by introducing 
perturbations in individual components of the system, there-
fore doing so in a reductionist approach. Also, and maybe 
most importantly, systems biology is dependent on the exper-
imental data that comes from such “reductionist” research.

�Principles of Network Biology

The complexity aspect of systems biology is deeply rooted in 
the research areas of systems and network theory. As men-
tioned earlier, biological systems are the sum of all the 

Table 16.1  Summary of some existing clinically relevant biological information databases

Database Objective Information Website
The Cancer 
Genome Atlas 
(TCGA)

Molecular characterization of different types of 
cancer with applications toward diagnosis, 
treatment, and prevention

Genomic, epigenomic, 
transcriptomic, and proteomic data

https://www.cancer.gov/
about-nci/organization/ccg/
research/structural-genomics/
tcga

Database of 
Genotypes and 
Phenotypes 
(dbGaP)

Study of the interaction between genotype and 
phenotype in humans

Genome-wide association studies, 
medical sequencing, molecular 
diagnostic assays, and association 
between genotype and non-clinical 
traits

https://www.ncbi.nlm.nih.gov/
gap/

Human Cell Atlas 
(HCA)

“To create comprehensive reference maps of all 
human cells—The fundamental units of life—As 
a basis for both understanding human health and 
diagnosing, monitoring, and treating disease”

High-throughput data generated 
from single-cell technologies

https://www.humancellatlas.
org/

UK Biobank “Improving the prevention, diagnosis, and 
treatment of a wide range of serious and 
life-threatening illnesses—Including cancer, heart 
diseases, stroke, diabetes, arthritis, osteoporosis, 
eye disorders, depression, and forms of dementia”

Imaging, genetic, health-related 
records, biomarkers, physical 
activity data, data from online 
questionnaires

https://www.ukbiobank.ac.uk/

Roadmap 
Epigenomics 
Mapping 
Consortium

Production of a public resource of epigenomic 
maps for stem cells and primary ex vivo tissues 
selected to represent the regular counterparts of 
tissues and organ systems frequently involved in 
human disease

Genome-wide, histone modification, 
DNase, DNA methylation, and 
RNA-Seq data sets

http://www.
roadmapepigenomics.org/

BioModels “Provide the systems modelling community with 
reproducible, high-quality, freely-accessible 
models published in the scientific literature”

Literature-based physiologically and 
pharmaceutically relevant 
mechanistic models

https://www.ebi.ac.uk/
biomodels/
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different and intricate interactions of all their different com-
ponents. Therefore biological systems can be studied as a 
network generated by the interactions of different molecular 
components (genes, transcripts, proteins, metabolites, etc.) 
[11]. Five biological networks exist: genetic interaction, 
transcription factor binding, protein–protein interactions, 
protein phosphorylation, and metabolic interaction networks 
[13]. Each one of the components of a network is termed a 
node, and the interactions between each one of these nodes 
are called edges for networks without directionality (such as 
protein–protein and genetic interaction networks) or arcs for 
networks that have directionality (transcription factor bind-
ing, phosphorylation, and metabolic networks). Undirected 
networks represent the interaction between nodes without 
any hierarchical specifications, and the data used to construct 
the network usually comes from sizable high-throughput 
data sets. Directed networks specify how a signal is propa-
gated and the hierarchy of the said propagation, from one 
upstream node to a downstream node, for example [11].

Networks can be mathematically defined as graphs and 
studied as computational units and systems [14, 15]. 
Computation is one of the defining features of systems biol-
ogy [11]. As with any graph, networks possess certain topo-
logical features that are important to analyze and to 
understand the said network (graph) (Fig.  16.1) [13]. The 
degree of a node is the number of links connected to a defined 
node or, simply said, the number of interactions of a node in 
a network (Fig. 16.1a). A node with a degree higher than the 
average of all nodes in the network is known as a hub [16]. 
There are cases in which the interactions between nodes are 
not fixed but conditional. The networks where edges are 
probabilistic are called Bayesian networks [17]. This type of 
networks allows for the discovery of probabilistic relation-
ships among nodes of a network and aids in defining the con-
ditions that increase or decrease the probability of the said 
relationships [18–20]. The degree distribution is the proba-
bility distribution of all degrees of nodes in a network. The 
assembly of biological data into networks shows that these 
“real” networks behave differently than random networks 
and have a specific degree distribution [21].

Other important properties of a network are its robustness 
and its sensitivity to perturbations. Perturbations can be intro-
duced into a network by removing specific nodes and analyz-
ing the network’s resistance to change. Biological networks 
are highly robust and remain primarily unaffected by random 
removal of a node; however, removing a hub can severely 
alter the function of these types of networks [14, 22, 23]. The 
shortest path between two nodes is called distance (Fig. 16.1b), 
and the maximum distance between two nodes in a network is 
called (graph) diameter (Fig.  16.1c). Next, the clustering 
coefficient is the percentage of existing interactions among 
the neighborhood of one node (Fig. 16.1d). A network with a 
high clustering coefficient indicates that the said network is a 

small-world network; the said type of network is that any two 
network nodes can be connected through relatively short 
paths [24]. Finally, betweenness is the fraction of the shortest 
paths between all pairs of nodes that pass through one node 
(Fig. 16.1e). Betweenness estimates the traffic load that goes 
through one specific node, assuming that the flow of informa-
tion follows the shortest paths available [13].

Networks present subunits called modules formed by 
groups of densely associated components (nodes) that are 
loosely connected, interact to receive a signal, process it, and 
transduce it to other modules [25, 26]. Integration and analy-
ses of a large amount of data in a network can give rise to 
smaller common functional patterns or motifs used with a 
relatively higher frequency relative to randomized networks 
[13, 27, 28]. These network motifs present a specific dynam-
ical behavior, and a group of motifs with a particular func-
tion is called a functional module [28, 29].

The interactions of a biological network exhibit complex 
temporal dynamics regarding signal propagation and 

a b

c d

e

Fig. 16.1  Graph representation of commonly used topological param-
eters of a network. (a) A degree is the number of connections a specific 
node has. (b) The distance is the shortest path between nodes. (c) 
Diameter represents the maximum distance between two nodes. (d) The 
clustering coefficient is the number of connections that are present in 
the neighborhood of a single node. (e) Betweenness is the number of 
shortest paths from all nodes to all others that pass through that node
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processing [11, 30]. Network-based models present limita-
tions when trying to account for the temporal aspects of the 
system. However, this complex dynamic behavior allows the 
components of a biological network (e.g., cells) to react to 
various conditions or states [13]. Therefore, network analy-
sis needs to be combined with dynamic quantitative mathe-
matical models. Studying the temporal dynamics of a 
network can be done by translating its components into ordi-
nary differential equations (ODEs) [31, 32]. Another way of 
translating the components of a network into a mathematical 
workspace is by using a modelling approach named Boolean 
logic. This approach assigns each component of the network 
either an active or “on” state (actual state) or a deactivated or 
“off” state (false state) [33–35]. These types of networks are 
used to approximate the dynamics of gene regulatory net-
works (GRNs). This modelling approach may introduce 
rough approximations as the binary states that the compo-
nents are assigned neglect possible intermediate states; how-
ever, it is useful when analyzing the robustness and stability 
of GRNs [36]. Qualitative networks enhance the possibilities 
of working with Boolean networks by allowing its compo-
nents to assume a finite number of possible values and 
increasing the variety of states possible to model through this 
approach [37]. Merging both ODEs-based modelling and 
Boolean/qualitative state-based networks, hybrid models use 
a combination of Boolean logic and functions with differen-
tial equations, representing discrete nodal values with con-
tinuous dynamics in each state [38]. This type of modelling 
is suitable when combining qualitative and quantitative 
information [39].

Choosing which type of modelling approach best depends 
entirely on the objectives, scope, and system under study, as 
every type of model comes with its strengths and limitations. 
More frequently than not, multiple modelling approaches are 
necessary to generate an accurate predictive system model. 
Statistical models generate probabilistic relationships built 
upon correlations. These types of models are helpful in a 
clinical environment because most complex diseases and 
pathological conditions are associated with molecular mark-
ers (genes) in a probabilistic manner. However, these models 
cannot explain the underlying mechanisms of the said condi-
tions [40, 41]. Network and dynamic models allow us to 
understand the nature and direction of interactions of the 
components of the system (cell). Even then, experimental 
evidence is needed to build these types of models [11].

�Systems Medicine, a Novel Branch

As mentioned earlier, systems biology can be defined as the 
analysis of interactions with different biological systems at 
different complex levels (molecules, cells, tissues, organs, 

individuals, societies, and ecosystems) through different 
network approaches [42]. In this sense, systems biology 
has permeated to other fields such as epidemiology (see the 
chapter of Systems Epidemiology) and the health sciences 
known as systems medicine, which uses novel advanced 
omics technologies to impact personalized medicine. 
Systems medicine could interpret and understand the patho-
genesis and pathophysiology of different diseases with dif-
ferent perspectives through the use of complex 
computational models from the molecular search biomark-
ers to discover novel therapeutic targets [43]. In this con-
text, since considerable amounts of information are needed, 
most of these models are “data-hungry” to understand a 
system and its dynamics. Systems medicine workflows 
need the use of omics technologies and the free availability 
of databases with clinically relevant information from 
patients. The correct use and implementation of such tech-
nologies with clinical perspective allow for the so-called 
interactome to be defined as a complex representation of 
functional interactions between molecules either within a 
cell or within the organism as a whole [44] could be imple-
mented into a novel concept or perspective with the final 
object of diagnosis or therapeutics. However, since there 
are no specific tools for pathologies, a higher degree of 
understanding and integrating all this novel information 
will be needed. Clinicians need to have an open mind for its 
implementation and potential applications to change the 
predominant years of reductionism. Systems medicine 
could be defined as a holistic approach where human health 
is integrated from different perspectives, from biomedical 
to environmental and social.

�Applications of Systems Medicine to Clinical 
Research

Systems medicine has begun to be implemented in several 
fields; for instance, in novel drug research, one of the main 
challenges is searching for novel drug adverse reactions. 
In this context, a clear example is the flux balance analysis 
of genome-scale metabolic network of human hepatocyte, 
which can qualitatively link gene activity perturbation 
with bile acid homeostasis, permitting the assessment of 
the role of genetic polymorphism in toxicity [45], and 
another exciting example of the systems medicine applica-
tions is the development of the so-called physiologically 
based pharmacokinetic (PBPK) models, which through the 
use of complex mathematical modelling based on ODEs 
could predict the concentration of a xenobiotic in the body 
and with the use of omics technologies could help to 
develop pharmacodynamic prediction models [46]. Other 
exciting applications of systems medicine are cardiovascu-
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lar disease, where the CARDIoGRAMplusC4D consor-
tium has identified 152 loci related to such disease, shading 
light on novel pathways and phases of clinical phenotypes 
[47, 48]. Moreover, the concept of genetic risk score has 
been implemented to assess predictive values to single-
nucleotide polymorphisms [49, 50]. Also, on the health-
care approach, a new paradigm is being depicted with the 
so-called “systems healthcare” [50]. Based on a model of 
clinical care that compresses conventional clinical infor-
mation, imaging data, biological (omics data) and linked 
information from social media it was easy to provide a pre-
cise risk stratification and a more precise diagnoses and 
prognoses for patients. In this sense, social media (inter-
personal communication, information sharing, crowd-
sourcing, mobility information, among others) are helping 
public health surveillance to replace traditional informa-
tion. For instance, in 2015, during the Middle East respira-
tory syndrome coronavirus (MERS-CoV) outbreak in 
South Korea, it was demonstrated that social media could 
significantly increase preventive behaviors via the self-
relevant emotion and the public’s risk perception [51]. In 
this context, the correct synchronization of such technolo-

gies with the novel omics tools and biomarkers could help 
develop a novel public health approach (Fig. 16.2).

�Future Directions and Conclusion

Studying biological phenomena as complex systems 
allows clinicians to integrate various qualitative and quan-
titative information, temporal and spatial. In this sense, 
applying systems biology methodologies such as statisti-
cal, dynamical, and network models to health leads to the 
development of the so-called systems medicine, which has 
impacted the discovery of emerging functions in thera-
peutics, at different scales, from the cell level to whole 
organisms including those of social behavior. Such 
advances applied to clinical settings will lead to precision 
and individualized medicine treating each patient and 
their needs as a specific complex system. Current and 
future developments in computational and experimental 
methodologies will be fundamental to expand the applica-
tions of systems medicine further to advance diagnoses 
and therapeutics.

Omics technologies

Clinical information

Social media information

Patient’s health
Diagnosis and treatment

- Risk stratification

- Novel therapies

- Preventive behaivors
Complex computational

modelling

Fig. 16.2  Systems healthcare. Novel approaches could help to have a novel perspective on public health to develop novel strategies for diagnos-
tics, treatments, therapeutics, and preventive behaviors with the correct timing for patients
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MAPK	 Mitogen-activated protein kinase
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miRNA	 MicroRNA
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associated
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NGS	 Next generation sequencing
NOLC1	 Nucleolar and coiled-body phosphoprotein 1
p53	 Protein p53
pCPF5603	 Plasmid pCPF4969
PCR	 Polymerase chain reaction
PD	 Parkinson’s disease
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PGR	 Progesterone receptor
PNH	 Non-human primates
qRT-PCR	 Quantitative reverse transcription PCR
RNA	 Ribonucleic acid
RNA-seq	 RNA-sequencing
ROS	 Reactive oxygen species
RT-PCR	 Reverse transcription PCR
RUNX3	 RUNX family transcription factor 3
SARS-CoV-2	 Severe acute respiratory syndrome coronavi-

rus 2
scRNA-seq	 Single-cell RNA sequencing
SLC39A6	 Solute carrier family 39 member 6
SNPs	 Single nucleotide polymorphism
Spp.	 Species pluralis
SRF	 Serum response factor
STAT1	 Signal transducer and activator of transcrip-

tion 1
STAT4	 Signal transducer and activator of transcrip-

tion 4
TBC1D9	 TBC1 domain family member 9
TIGIT	 T cell immunoreceptor with Ig And ITIM 

domains
US	 United States
VMAT2	 Vesicular monoamine transporter 2
VNTRs	 Variable number of tandem repeats
WGS	 Whole-genome sequencing
YFV	 Yellow fever virus

�Genomics in Public Health

Advances in sequencing techniques and the gradual decrease 
in costs have made genomics a powerful tool for public 
health. Since the human genome project, sequencing tech-
nologies have made the genome of various pathogenic organ-
isms easy to detect and follow up on diseases and their 
prognosis. Genomic techniques applied to public health are 

becoming increasingly crucial for identifying, detecting, and 
following up on the dynamics of diseases in populations rep-
resenting an excellent advantage for their correct manage-
ment [1].

We are used to putting all the patients with certain dis-
eases in the same “therapeutic box,” getting them the same 
treatment. However, human genomics can specifically distin-
guish the best treatments, showing that they can be directed 
to the best available pharmacological treatment based on 
their genomic profile, making personalized treatments more 
effective and less risky (pharmacogenomics) [2]. The 
advancement of sequencing technology and the prevalence 
of diseases in various populations is the right niche for apply-
ing pharmacogenomics. A clear example is the use of small 
personalized sequencers known as MinION® adapted to 
detect Mycobacterium tuberculosis (MTB) variants and pro-
vide the appropriate treatment based on the drug resistance 
in a record time [3]. Similarly, several infectious diseases 
have found genomic techniques invaluable for diagnosis and 
treatment [4, 5].

However, these technologies are not limited to infectious 
diseases; it is also beneficial for chronic diseases. Among 
the most studied are cancer, neurodegenerative, and meta-
bolic diseases (see below). Genomic studies in these dis-
eases can detect variants and establish a prognosis of these 
diseases using genetic signatures [5]. It is also important to 
emphasize that since most of these diseases are heavily 
influenced by external factors, public health authorities 
could use these technologies to accurately diagnose the con-
dition of each patient to be treated appropriately and develop 
new health policies [6]. Therefore, in the present chapter, 
we discuss the importance of genomic tools in the context of 
epidemiological surveillance of infectious and chronic 
diseases.

�Genomic Tools for Epidemiological 
Surveillance

Different tools allow us to delve into the expression levels of 
genes associated with different pathologies or conditions. 
These include next generation sequencing (NGS) techniques 
that allow us to know the complete genome sequence 
(genomic DNA), transcriptome (mRNA), and even part of 
the epigenome (miRNAs or DNA methylation). NGS allows 
us to know in detail every aspect of sequence to determine in 
subsequent analyses all the changes between individuals or 
conditions. A similar case is that of microarrays that, unlike 
NGS techniques, serve to determine whether some mRNAs 
or miRNAs are present in the sample and a relative propor-
tion of these genes. Both NGS and microarrays allow us to 
identify genetic signatures associated with variants or the 
prognosis of various disease scenarios. They can even help 
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determine the affinity of available treatments. On the other 
hand, if the purpose is to know the special status of a gene or 
a small set of genes, PCR and qRT-PCR allow us to deter-
mine the presence and proportion compared to another sam-
ple quickly. The latter can be handy as a diagnostic tool or to 
verify whether genetic signatures of diseases are present, 
helping determine the patient’s prognosis and the most effec-
tive treatment [2, 5, 7, 8].

The existence of these tools makes the identification and 
detection of diseases faster and more accurate. Besides, the 
availability of information in open-access databases of vari-
ous health institutions online allows for a broader view of the 
dynamics of infectious diseases and patterns associated with 
economic, social, or environmental variables in the develop-
ment and prevalence of cancer, metabolic, or neurodegenera-
tive diseases [5, 6]. Moreover, groups can access this data 
and start working on treatments to mitigate the effects of the 
disease [1, 4, 5].

The information generated from real-time disease sur-
veillance is important, because in the case of an outbreak 
somewhere in the world, changes in contagion dynamics 
and the region where it originated, such as environmental 
factors, demographics, and economic conditions, can be 
observed [5]. Moreover, such results could synergize with 
remote perception technologies, for instance, GPS data 
from the detected cases of an outbreak, allowing its spatial 
analysis and distribution in a particular region, followed by 
a geographic information system (GIS) analysis using sat-
ellite data that often helps to reveal an environmental fac-
tor, such as zoonotic risk caused by deforestation of the 
nearby area. Then, an alert is triggered. The field response 
team takes samples of the patients, immediately analyzed 
using portable DNA sequencers like MinION®, coupled to 
a phone or computer that allows a report to be generated of 
the clinical metagenomic results in real time revealing the 
identity of the pathogen. The sequencing data derived from 
this intervention is immediately uploaded to a public repos-
itory, tagged with metadata about the host, sample type, 
and location, allowing scientists, specialists, and govern-
ments to collaborate against the outbreak [5]. Another 
exciting tool or novel approach is mobile apps that helped 
to understand the movement of individuals across neigh-
borhoods; in this sense, such technologies seem to play an 
interesting novel role in the recent outbreak of COVID-19 
[9]. This information allows health authorities to quickly 
attend to the affected population and determine whether it 
is a known disease, more susceptible populations or com-
munities to the disease, and the sanitary measures neces-
sary for its containment. One of the clearest examples is the 
case of SARS-CoV-2, where NGS techniques were used to 
determine the genome sequence of the virus just a few 
weeks after the beginning of the pandemic. With the help of 
different techniques, it was possible to determine a qRT-

PCR for correct diagnosis in all countries and the follow-up 
and development of novel strains all around the globe [5, 
10] (Fig. 17.1).

The changing dynamics of emerging viruses have made 
it increasingly crucial to discover and diagnose viruses in 
clinical medicine and public health. The globalization of 
travel and trade in domestic animals and animal products, 
bushmeat trafficking, political instability, and bioterrorism, 
as well as climate change and its effects on vector geograph-
ical distribution, have facilitated the emergence and re-
emergence of zoonosis, as we have seen with the current 
pandemic caused by SARS-Cov-2 or some of the novel den-
gue outbreaks [11, 12]. Previously, some of these viruses 
were restricted to a host species or geographic regions; how-
ever, this has changed. Moreover, these alterations have 
generated confusion among clinicians, making them unable 
to recognize new syndromes or detect new pathogens with 
the existing diagnostic tests. Such conditions have gener-
ated a growing interest in discovering and diagnosing these 
novel diseases. They have generated the rapid implementa-
tion of novel practical applications for molecular diagnostic 
tools, drugs, and vaccines, targeting them in a more specific 
way [11].

�Genomic and Molecular Research Tools

�Culture Methods for Virus

Although tissue culture for virus detection is sometimes 
considered a cumbersome, expensive, and somewhat 
archaic method, it continues to be used for a few reasons. 
First, the growth of an agent in culture provides an excel-
lent source of enriched template for molecular character-
ization, while on the other hand, such cultures help to have 
both an inoculum for studies of animal models and cell 
assays for serology or a titled stock for neutralization tests 
in order to search for evidence of the cause of disease, in 
addition to in vitro evaluation of vaccines and to test drug 
candidates and visualization of an agent by electron micros-
copy, because in it, a more optimal quantity can be obtained 
than in a clinical sample. However, because it is not possi-
ble to cultivate these agents in tissue culture, the only sys-
tem that may be useful for virus amplification is animal 
inoculation [11].

�Imaging

The technique used as the first step toward identifying candi-
dates for molecular assays was immunohistochemistry until 
the use of rapid, inexpensive unbiased high-throughput 
sequencing. An example of this process was applied in 1999, 
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at the Centers for Disease Control and Prevention in Atlanta, 
by Sherif Zaki, before conducting flavivirus consensus PCR 
assays, previously used immunoassays with brain extract 
from victims of the encephalitis outbreak in New  York. 
Currently, microscopy images have been used mainly to 
examine the association between an infectious agent and a 
disease by testing its presence at the site of the pathology. 
However, although there are rapid protocols for electron 
microscopy to visualize viruses in a few hours, substantial 
operator experience and a high concentration of viral agents 
were required. Other faster methods can be immunohisto-
chemical tests using serum from an infected individual, indi-
viduals with similar pathology, or antibodies generated in 
animal models immunized with viral proteins. However, in 
the case of new viral agents, this type of analysis takes time 
due to the need to create immunological reagents, so an alter-
native method is in situ hydration. In this relatively rapid 
method, the genetic sequence of the pathogen can be used to 
design specific probes to detect it in infected tissues [11] 
(Table 17.1).

�High-Performance Sequencing

Culture-independent methods used to search for virus dis-
covery and characterization, surveillance, and outbreak 
investigation were achieved by implementing fast and inex-
pensive platforms for DNA sequencing. In the last decade, 
the cost per base for sequencing has dropped 10,000 times, 
from $ 5000 per megabase using capillary electrophoresis to 
$ 0.5 per megabase using the Illumina platform. Consequently, 
the challenge has shifted from sequence acquisition to analy-
sis. The complexity of the bioinformatic analysis lies in the 
read length, which ranges from 150 bp on the Illumina HiSeq 
or MiSeq instruments to 700  bp on the Roche GS FLX 
Titanium pyrosequencing [11]. The shorter the read length, 
the greater the number of calculations required to assemble 
continuous chains of genomic sequence.

Moreover, in recent years, single-molecule sequencers 
are being developed to increase fidelity and extended 
sequences [11]. Regardless of the platform used, the process 
that follows sequence acquisition is similar for pathogen 
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discovery: contiguous sequences (the host sequence is sub-
tracted) and residual sequences (examined for similarities 
with known microbial sequences nucleotide or amino acid). 
When there are no similarities, nucleotide composition or 
order is examined for patterns consistent with viral genera 
and host species. This approach can have the critical advan-
tage of examining fecal samples in which the sequences can 
represent both viruses that infect the host or an animal con-
sumed by the host. Interestingly, the methods for preparation 
and sequencing of samples are becoming more straightfor-
ward and more efficient. In the distant future, sequencing 

will be used primarily for clinical diagnosis and discovery of 
new etiological agents [11].

�Virus Outbreaks and Genomic Surveillance

Whole-genome sequencing (WGS) is a standard tool for 
pathogen identification and monitoring, transmission routes, 
and outbreak control. Advances in this field over recent 
years have been quite remarkable; for instance, in late 2019, 
metagenomic RNA sequencing was used to identify the eti-

Table 17.1  Comparison and main characteristics of the different testing methods for diagnosing infectious diseases

Diagnostic Advantages Disadvantages References
Molecular Biology Research Tools
Serology Potential for diagnosis after 

acute infection
Inexpensive cost

May be harmful and inefficient during early infection
False negatives in humoral immunodeficiencies
False positives under certain conditions

[7]

Microscopy and staining (such 
as Gram stain, auramine–
rhodamine, calcofluor-white)

Rapid
Inexpensive

To have better efficiency, low sensitivity must be a 
significant burden of disease or sample of the etiologic agent
Low specificity

[7]

Culture Capable of holding large 
sample volumes
Best-studied model
Inexpensive

Limited sensitivity due to the use of antibiotics and 
antifungals
Limited sensitivity for fastidious organisms
Long time to result in the generation of acid-fast and fungal 
cultures
Limited use in viral testing

[7]

Matrix-assisted laser 
desorption/ionization time-of-
flight mass spectrometry

High specificity
Rapid after culture

Requires positive-culture isolate forcibly [7]

Genomic Research Tools
Conventional PCR Simple

Rapid
Inexpensive
Potential for quantitative PCR

Depends on the hypothesis
Requires primers that may not always work
Limited to a tiny portion of the genome
Requires specific conditions to work

[7]

Multiplex PCR Rapid
Can detect multiple organisms

Low specificity and false positives for many organisms due 
to difficulty in quantitation
Often requires more than one amplification
Requires specific conditions to work
Limited to a small portion of the genome
Requires primers that may not always work

[7]

Targeted universal multiplex 
PCR (such as 16S, ITS) for 
Sanger sequencing

Able to differentiate multiple 
species within one pathogen 
type

Requires primers that may not always work
Limited to a tiny portion of the genome

[7]

Targeted universal multiplex 
PCR (such as 16S, ITS) for 
NGS

Can differentiate multiple 
species within one pathogen 
type
Multiplexing capability
Potential for quantitation

Requires primers that may not always work
Expensive and time-consuming
Often requires more than one amplification
Limited to a tiny portion of the genome

[7]

Targeted NGS Sensitive detection for selected 
organism types
Potential for quantitation
Potential to be combined with 
16S NGS

Sequencing library preparation more complex, typically 
with more than one amplification
Limited to a small portion of the genome
Expensive and time-consuming
Vulnerable to contamination with environmental species

[7]

Metagenomic NGS Hypothesis-free, or unbiased, 
testing
Discovery of new or 
unexpected organisms
Potential for quantitation
Able to detect any portion of 
the genome

Must also sequence human host background
Expensive
Time-consuming
Not all genomes are available
Susceptible to contamination with environmental species

[7]
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ology of an unknown respiratory disease that was present in 
only one patient in Wuhan, China. Subsequently, the etio-
logical agent causing this syndrome was identified as a new 
coronavirus by reconstructing the viral genome of the bron-
choalveolar lavage fluid sample. In early January 2020, the 
virus genome sequence was released, facilitating rapid 
molecular diagnostic assays in other laboratories world-
wide; this virus was later named SARS-CoV-2 [10]. In 
March 2020, a national genomic surveillance network was 
created in the United Kingdom to track viral transmission, 
identify viral mutations, and integrate viral data with health 
data. Interestingly, by June 2020, approximately 20,000 
SARS-CoV-2 genomes were sequenced, and transmission 
lineages were defined based on phylogeny [13]. As of June 
2020, about >57,000 SARS-CoV-2 genomes from about 
100 countries have been uploaded to the GISAID database 
[10].

Between 2016 and 2018, São Paulo had its largest out-
break of yellow fever virus (YFV) in decades. To contextu-
alize human cases, identify epizootic foci, and discover the 
rate and direction of the spread of YFV in São Paulo, 
genomic data of the virus were generated and analyzed. 
Thanks to current personalized genomic tools such as 
MinION genome sequencing, 51 new virus genomes from 
positive YFV cases were identified in 23 different munici-
palities in São Paulo, mostly sampled between October 
2016 and January 2018. The findings of this study suggest 
that wild transmission of YFV took place in highly frag-
mented forested regions of the state of São Paulo, so it is 
essential to carry out continuous surveillance for zoonotic 
pathogens in sentinel species such as non-human primates 
(PNH) [14]. On the other hand, genomic surveillance 
became very important during Ebola virus outbreaks to elu-
cidate the transmission chains and developed diagnostic 
tests. For instance, in 2020, Postigo-Hidalgo et al. combined 
31 parallel PCR assays with Illumina/MinION-based 
sequencing, allowing genomic surveillance of the Ebola 
virus outbreak in Sudan, and this new methodology allowed 
rapid genomic surveillance of both such virus outbreaks, 
regardless of variant divergence [15]. Another compelling 
example of using genomic data with the help of Global 
Positioning System (GPS) technology has been used to 
monitor rabies outbreaks to understand the processes that 
affect viral spread, evolution, and host restriction and 
develop intervention strategies for rabies in the future [16].

The information generated on the sequence of influenza 
virus genomes helped to the development of new methods of 
multiplex reverse transcription PCR (RT-PCR) of the influ-
enza A and B virus of single reaction (Flu A/B) that made it 
possible to amplify the most critical genomic segments, such 
as hemagglutinin (HA), neuraminidase (NA) and matrix (M) 
of seasonal influenza viruses A and B, regardless of viral 
type, subtype, or lineage. This will help to understand more 

about the mechanisms that support antigenic evolution and 
antiviral resistance. However, due to the sequence diversity 
and dynamics of influenza virus evolution, rapid and high-
throughput sequencing of influenza viruses remains a chal-
lenge [17].

Another example is the Epstein–Barr virus (EBV), a 
tumor virus related to different malignant neoplastic pro-
cesses, such as Burkitt’s lymphoma and nasopharyngeal car-
cinomas, which is an endemic trend and has a skewed 
geographical distribution around the world. Recent advances 
in deep sequencing technology have enabled high-throughput 
sequencing of the EBV genome from clinical specimens. In 
addition, it has become possible to perform both rapid clon-
ing and sequencing of cancer-derived EBV genomes, fol-
lowed by reconstitution of the infectious virus. These 
advances have made it possible to find that several EBV 
strains are distributed differentially throughout the world. 
There is a different behavior of EBV strains derived from 
cancer concerning the prototype EBV strain of non-cancerous 
origin [18]. On the other side, genomic surveillance has the 
potential for monitoring HIV drug resistance during the con-
tinued expansion of antiretroviral therapy and the deploy-
ment of pre-exposure prophylaxis. Furthermore, single 
genome sequencing has helped characterize HIV integration 
sites and clonal expansions of infected cells [19].

�Bacterial Outbreaks and Genomic 
Surveillance

During the mid-1990s, to carry out epidemiological surveil-
lance on pathogenic bacteria, the so-called standardized 
molecular subtypes based on pulsed-field gel electrophoresis 
(PFGE) were used to identify and study outbreaks. Over 
time, this has transitioned from PFGE to WGS [20, 21]. 
Comparing both methodologies, WGS offers better resolu-
tion by generating sequences of three to six million base 
pairs, compared to a gel pattern with ten to twenty bands, 
which show slight changes in parts of the genome. On the 
other hand, the WGS data are entirely digital and standard-
ized and do not depend on the choice of a laboratory proto-
col. In addition, the results of this technique show 
evolutionary relationships between bacterial isolates, allow-
ing us to understand more about the transmission and the 
relationship between the cases [22]. Among the advantages 
of WGS is that it predicts phenotypic characteristics, which 
include virulence, serotype, and antimicrobial resistance.

Regarding costs, the WGS is priced at approximately 
$200–$250 for insulation, higher than the PFGE, priced at 
about $ 100. Nevertheless, these high costs can be partially 
or entirely offset since the need for traditional phenotyping 
assays is eliminated, and automation can further reduce costs 
[22]. A remarkable example of the benefits of genomic 
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surveillance is that on common foodborne pathogens where 
Listeria sp. surveillance has been encouraging since in the 
first years of WGS implementation (2013–2016), 18 listerio-
sis outbreaks (6 per year) were resolved with a median of 4 
cases per outbreak [23].

�Mycobacterium Tuberculosis

An exciting example of genomic surveillance applications is 
Mycobacterium tuberculosis (MTB). Since closely related 
strains are identified to detect cases and their possible recent 
transmission, various DNA fingerprint technologies have 
been used for subtyping strains from this pathogen [24, 25]. 
As mentioned above, the WGS offers a more acceptable res-
olution and greater fidelity and confidence in the inferred 
relationships between cases. For instance, the US tuberculo-
sis control program has expanded sequencing isolates from 
all culture-confirmed cases in the United States, allowing 
public health workers to rebut more than half of the sus-
pected outbreaks initially identified by conventional geno-
typing in California, saving time and resources.

Interestingly, other countries (United Kingdom [25, 26], 
Canada [27, 28], and the Netherlands) have implemented 
effectively the use of WGS in their tuberculosis programs 
[29] with massive success for defining outbreaks more pre-
cisely. Providing information on the dynamics of transmis-
sion and the presence of previously unidentified cases or 
possible “super-spreaders” should be prioritized for isolation 
and treatment [22]. Another advantage of the WGS is the 
capability to indicate whether recurrent cases are due to reac-
tivation or reinfection, providing helpful information to eval-
uate the effectiveness of the public health programs [22].

A different application of MTB sequencing in low-income 
countries is its diagnostics directly from sputum [30], thus 
avoiding the use of expensive techniques such as spreading 
the infectious agent in culture [22]. Such methodology 
allows a rapid inference of the identified strains concerning 
drug susceptibility rapidly available for appropriate treat-
ment with efficient drugs; additionally, NGS will reduce the 
need for routine phenotypic tests and complex, time-
consuming challenges to perform in laboratories with lim-
ited resources [22]. Moreover, these advances have led to 
laboratories in both the New  York State Department of 
Health and Public Health England receiving regulatory 
approval to avoid the use of traditional drug susceptibility 
tests of isolates [31]. Since WGS predicts a greater efficiency 
of Tuberculous meningitis (TBM)'s susceptibility to the first-
line drugs from between 70% and 80% of all isolates [31, 
32], however, it should be noted that for a sequence-based 
method for inferring drug susceptibility, it is essential the 
continuous updating of databases with correlated genotypic 
and phenotypic data [31].

�Clostridium Perfringens

Clostridium perfringens is another medically necessary 
enteric pathogen as the etiologic agent of significant gastro-
enteritis outbreaks in most adult humans [33]. Limited stud-
ies based on WGS have been conducted, allowing information 
about the virulence genes of C. perfringens strains. Under 
this approach, phylogenomic analysis of human and food 
isolates obtained from cases reported in Wales between 2011 
and 2017 showed a remarkable discriminatory capacity of 
such genomic approach in the profiling of C. perfringens 
strains, compared to the current fluorescence amplified frag-
ment length polymorphism test, which is a reference test 
proposed by public health authorities in England [34]. Other 
findings from this large-scale genomic study suggest three 
main genotypes encoding cpe (toxinotype F) implicated in 
the outbreaks: plasmid pCPF5603, plasmid pCPF4969, and 
chromosome-cpe strains [34]. Such results suggest that more 
studies should be carried out to probe the dissemination and 
regional reservoirs of this enteric pathogen in a more pro-
found way, allowing the design of prevention strategies to 
reduce the burden of morbidity from food poisoning in vul-
nerable patients.

�Mycobacterium Leprae

Leprosy, a chronic infectious disease caused by Mycobacterium 
leprae (M. leprae), has shown great importance in public 
health in tropical countries. Although the burden of disease 
has decreased in recent decades, thanks to the implementation 
of WHO multi-drug therapy (MDT) in countries such as India, 
about 120 334 new cases of leprosy were reported during the 
year 2018–2019, which yields an annual new case detection 
rate of 9.27 per 100,000 individuals [35]. Unlike the free-liv-
ing cultivable bacteria, M. leprae has the particularity of being 
an obligate pathogen (it needs a suitable host to carry out its 
life cycle), and this has been a limitation for its laboratory 
isolation and the understanding of the molecular diversity of 
strains and their genomics, fundamental aspects of the trans-
mission of the disease, and its biology. However, recent 
advances in molecular techniques have allowed the identifica-
tion of a variable number of tandem repeats (VNTRs) [36] 
and single nucleotide polymorphisms (SNPs) [37] in the M. 
leprae genome, which has helped to understand the diversity 
of strains in addition to determining the more excellent geo-
graphic distribution of these strains. Moreover, WGS is 
employed to characterize the genetic background and trace 
the origin of M. leprae strains circulating the world. 
Interestingly, this methodology has been used extensively in 
Madagascar and the Comoros, two islands where leprosy is 
considered a public health problem and is monitored as part of 
a drug resistance surveillance program [38].
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�Genomic Surveillance over Other Infectious 
Diseases

Parasites include several diseases such as leishmaniasis, 
malaria, taeniasis, or dengue, just to mention a few exam-
ples. Leishmaniasis is a neglected tropical disease spread 
across 98 countries from different continents, caused by 
several species of the parasitic intracellular protozoa 
Leishmania spp. by the sandfly bites. Leishmania genomic 
studies are pretty essential to evaluate its mechanism of 
drug resistance and variability. However, currently, genomic 
analysis is being performed from cultured parasites, which 
causes sampling biases [39]. Nevertheless, there are several 
efforts being performed to directly sequencing from visceral 
leishmaniasis [39]. Another essential disease is malaria 
caused by four different Plasmodium spp. transmitted by the 
infective female of the Anopheles mosquito. Interestingly, 
Plasmodium vivax, the second most abundant cause of 
malaria [40], can survive for several months of years as dor-
mant hypnozoites in the liver where they can cause blood-
stage infection later at any other time; therefore, relapses 
cannot be distinguished from reinfections, and genotyping 
does not effectively resolve the relationship of lineages. In 
this context, there is the need for more data from more geno-
types around the world and novel techniques such as the 
DNA-parasite enrichment methods. To this end, several pro-
grams have started sequencing more than 4000 genotypes of 
Plasmodium spp. [41]. Cysticercosis is caused by eating 
undercooked beef or pork that contains tapeworm eggs 
(Taenia solium, Taenia saginata, and Taenia asiatica). The 
most potentially lethal ways of such infections are neuro-, 
ocular, and subcutaneous cysticercosis; interestingly, when 
T. solium was analyzed, they were divided into two clades, 
Asian and Afro/American, with a difference in pathogenic-
ity and antigenicity for both genotypes [42]. Interestingly, 
several candidate nuclear genes have been suggested to dif-
ferentiate genotypes, which is quite essential since several 
inconsistencies between genotypes have been reported. 
Such results suggest the importance of analyzing molecu-
larly such parasites since hybrids of the genotypes have 
been reported [43], and identifying the location and geo-
graphical distribution of strains becomes crucial for the cor-
rect surveillance of such disease.

Dengue virus is transmitted to humans by the mosquito 
Aedes aegypti, which, due to the rapid urbanization and cli-
mate change, has increased its availability to transmit such 
disease [44]. Dengue virus generally causes a mild disease; 
however, there are severe forms of the infection such as hem-
orrhagic fever and hemorrhagic fever with shock, which is a 
fatal hypovolemic shock that could result in death, particu-
larly in susceptible populations [45]. Amplification and 
sequencing dengue virus is becoming quite common in many 

laboratories analyzing genetic variations and viral evolution. 
In this sense, there are five genotypes through different geo-
graphical regions [46]; epidemiological data suggest that 
specific viral genotypes differ in their availability to cause 
severe forms of the disease; moreover, WGS analyses sug-
gest that there are two different genotypes (Asian and 
American) with different rates of dissemination. Additionally, 
results suggest that selective pressure imposed by specific 
viral genes differ between mosquito and human host [47]; 
further genomic studies will help us to generate more infor-
mation to correlate genotypes with virulence and have more 
precise control of the disease.

�Chronic Diseases and Genomic Surveillance

Millions of people suffer chronic diseases, such as cancer, 
cardiovascular diseases, diabetes, obesity, and neurodegen-
erative diseases, among others [48]. These diseases are 
highly complex to genomic surveillance since most of their 
etiological background depends on environmental–behavior 
situations (epigenetics). They have been associated with 
multiple non-coding genomic regions that make it hard to 
distinguish common haplotypes for epidemiological sur-
veillance [48]. In this context, genome-wide association 
studies (GWASs) are pretty helpful for the detection of 
genomic variants in the whole genome associated with a 
particular trait in a population [49]. Employing these stud-
ies, it is now possible to evaluate the risk an individual has 
for developing a specific disease [50]. In this sense, the 
development of the so-called polygenic risk scores becomes 
essential since such scores can describe how a person’s risk 
compares to others with a different genetic constitution by a 
correlation measure. In the present section, we will cover 
some of the primary chronic diseases and their advances in 
genomics that could be used for epidemiological 
surveillance.

�Cancer

Cancer is the second leading cause of death worldwide; 
therefore, it is a significant concern across healthcare provid-
ers [51]. Cancer is a given name to a collection of almost 200 
diseases, characterized by the body’s cells beginning to 
divide without control and spread to surrounding tissues. 
Several alterations characterize it at different molecular lev-
els, such as DNA, RNA, proteins, or metabolite.

Cancer cells are characterized by having high mutation 
rates and incidence, promoting cell division and tumor 
growth [52]. Diverse omic approaches, such as genomics, 
transcriptomics, proteomics and metabolomics, enabled 
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identifying mutations, altered pathways, and expressed 
molecules, and potential therapeutic targets also named 
biomarkers for understanding such a disease [51]. For 
instance, WGS allows identifying mutational signatures 
present in different kinds of cancer, enabling patients to 
predict specific types of treatments [53]. On the other 
hand, transcriptomic technologies, such as RNA-seq or 
microarrays, contribute to differential gene expression 
studies and non-coding RNA molecules, such as miRNAs 
and lncRNAs, known to have essential roles in cancer [53]. 
Moreover, RNA-seq enables the characterization of splice 
variants solely expressed in disease contexts [51]. Recently, 
single-cell RNA-seq (scRNA-seq) has helped portray 
intratumor cellular heterogeneity. Likewise, proteomic 
technologies have been implicated in cancer studies since 
they represent the functional molecules and provide infor-
mation on signaling pathways [51]. Proteomic technolo-
gies, such as mass spectrometry, supply details on protein 
expression levels, intracellular localization, post-transla-
tional modifications, and protein–protein interaction net-
works [51].

Furthermore, methylation profiling permits the character-
ization of aberrant DNA methylation hallmarks, known to be 
related to cancer [51]. Similarly, ChIP-seq enables character-
izing transcription factor binding sites and nucleosome occu-
pancy, providing information on regulatory events leading to 
disease [53]. In this sense, bioinformatic tools such as the 
Cancer Genome Atlas (TCGA) project compile results from 
these platforms to freely access its results [53].

Genomic studies have revealed alterations in cancer 
patients’ genomes. Acquired mutations are a common cancer 
cause, which may be due to different environmental condi-
tions such as smoking, radiation, ageing, or viruses [54]. 
Mutations in tumor suppressor genes prevent the cell from 
dividing normally. They instead begin dividing uncontrolla-
bly, giving rise to the appearance of tumors [54]. Early iden-
tification of mutations in these genes may help prevent the 
appearance of the tumor, as well as in early diagnosis and 
promising prognosis [54]. On the other hand, studies per-
formed in the transcriptome in cancer patients showed 
expression signatures correlated with survival and chemo-
therapy efficacy and drug responses [55]. Circulating tumor 
cells of patients with metastatic breast cancer show overex-
pression of TFF1. Furthermore, there have been found 
expression signatures of PGR, GABRP, ESR1, TBC1D9, 
SLC39A6, and LRBA associated with mortality and with 
recurrence of cancer, proving transcriptomes’ usefulness in 
patients’ prognosis. Finally, there have been similar findings 
for other classes of cancer, including signatures of DUP6, 
MMD, STAT1, ERBB3, and LCK in lung cancer and HELLS 
and NOLC1 in colorectal cancer, which was proven to reduce 
tumor growth [55].

�Neurodegenerative Diseases

Adult-onset neurodegenerative diseases are characterized by 
neuron degeneration, causing cognitive, motor, and emo-
tional impairment, depression, apathy, sleep alterations, and 
anxiety [56, 57]. Furthermore, both diseases present overlap 
in the activation of diverse pathways, including MAPK and 
GSK3B, associated with the toxicity caused by β-amyloid 
plaques and tau proteins in Alzheimer’s disease and abnor-
mal α-synuclein filaments in Parkinson’s disease [57]. 
Despite current attempts at finding treatments and diagnosis 
and prevention tools, there are still very few available, cir-
cumventing the possibility of halting disease progression 
[56]. For this reason, it is necessary to find new biomarkers 
that may help in early disease diagnosis and disease progres-
sion tracking and those that may be used as new therapeutic 
targets [57].

In neurodegenerative diseases, neurons show activated 
pathways that may result in the finding of new valuable bio-
markers. Some of these are misguided apoptosis and autoph-
agy, mitochondrial functioning and cytoskeleton impairment, 
and aberrant protein expression [58]. Cells show altered cell 
adhesion pathways, leading to impairments at the tissue 
level, including faulty neurotransmission and cell prolifera-
tion [58]. Furthermore, additional neurodegeneration mani-
festations include exacerbated immunological and 
inflammatory responses in microglia and astrocytes, along 
with increased cytokine expression [57]. Thus, anti-
inflammatory treatments may be promising for neurodegen-
erative diseases treatment, but none has been effective to date 
[57, 58].

GWASs have revealed hundreds of genetic variants linked 
to risk for AD and PD onset. Most of them present in non-
coding regions of the genome, such as the HLA-DR locus, 
which has common variants in many neurodegenerative dis-
eases. Furthermore, H3K27ac, an active enhancer histone 
mark, and DNA methylation analysis have revealed genomic 
regions contributing to disease heritability [56]. Tissue sam-
ples from neurodegenerative disorder show differential 
H3K27ac and DNA methylation patterns mainly in GWAS 
genetic variants’ adjacent regions, demonstrating that these 
variants are often found in gene regulatory regions [56].

On the other hand, transcriptomic technologies have 
revealed gene expression patterns intersecting between sev-
eral neurodegenerative diseases, including Alzheimer’s and 
Parkinson’s disease [58]. Many of them were highly enriched 
in pathways related to the cellular response to hypoxia, 
downregulated apoptosis, upregulated angiogenesis and 
cytokines, and extracellular matrix structure [58].

Post-mortem brain tissues from Parkinson’s disease and 
healthy controls have revealed altered gene expression 
related to dopamine transmission and synapse, 
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mitochondrial function, and protein degradation [59]. For 
example, VMAT2, a dopamine transporter, shows a signifi-
cant downregulation [59]. Furthermore, mitochondrial dys-
function, caused by aberrant gene expression in genes such 
as the ATP synthase and the cytochrome C, results in severe 
outcomes in dopaminergic cells, as the whole ATP produc-
tion is downregulated and neurotoxic ROSs are generated 
[59]. Finally, tissues exhibit changes in the ubiquitin–pro-
teasome system, altering the unfolded protein response 
[59]. Similarly, blood samples from Alzheimer’s disease 
patients and healthy subjects reveal alterations in tran-
scripts related to inflammatory responses and fatty acid 
metabolism [60]. In addition, several studies performed in 
different human samples have revealed essential roles of 
miRNAs in the abnormal expression of genes contributing 
to the disease, instead of by being upregulated and lowering 
the expression of “protective” genes or by being downregu-
lated and allowing higher expression of “harmful” genes 
[61]. miRNAs’ altered expression is commonly associated 
with inflammation, cell survival, apoptosis, and neuropro-
tective pathways [61].

In contrast, proteomic approaches, including mass spec-
trometry, enable the characterization and quantification of 
abnormal protein expression, as well as unusual isoforms 
and protein localization. In PD, alterations in the unfolded 
protein response conduct to misguided protein expression 
[59]. Downregulation of the parkin protein, an E3 ligase that 
guides tagged proteins for degradation in the proteasome, 
increases the accumulation of misfolded and damaged pro-
teins in dopaminergic cells, severely altering their correct 
functioning [59]. In AD, proteins related to the processing 
pathway of the β-amyloid peptide and neuronal cell adhesion 
pathways are frequently found, suggesting essential roles for 
these proteins in AD pathogenesis [61]. The β-amyloid pep-
tide has been found with diverse isoforms due to different 
alternative splicing pathways of the amyloid precursor pro-
tein (APP) [61]. Furthermore, protein–protein interaction 
studies revealed essential interactions between the APP and 
other proteins, including the brain transglutaminase, which 
may contribute to the formation of peptide aggregates in the 
disease [61].

Finally, in the context of metabolomics, glucose shows 
region-dependent increases both in Alzheimer’s and 
Parkinson’s disease, including in the brain cortex, and glu-
cose metabolism decreases [62]; this indicates that glucose 
could be a robust biomarker for diagnosis. However, it is also 
likely that glucose has etiological roles in these diseases 
[62]. This could explain possible links between diabetes and 
neurodegenerative diseases and its associated ROS increase 
and mitochondrial dysfunction [62]. Nevertheless, further 
investigation is still required [62]. On the other hand, uric 
acid was found to be at lower concentrations, consistent with 
its antioxidant roles [62].

�Cardiovascular Diseases

Cardiovascular diseases are the leading causes of the dead 
across the world [63]. Furthermore, it is expected that by 
2030, almost half of the adult population will have cardio-
vascular disease [64]. Cardiovascular diseases encompass a 
wide range of pathologies affecting the heart and the blood 
vessels, including heart failure, cardiomyopathies, and coro-
nary artery diseases, among many others [65]. Several fac-
tors have been associated with these diseases; some of them 
are smoking, obesity, hypertension, and hypercholesterol-
emia, increasing the risk for their development [65]. 
However, it is essential to be noted that, since these diseases 
are complex, none of these factors is sufficient nor necessary 
for its appearance [65]. For this reason, it is now of great 
interest to identify genetic regions associated with the occur-
rence of cardiovascular diseases, as well as the interplay 
between the genome and the environment, usually mani-
fested in the epigenome [65].

GWASs are essential because significantly few cardiovas-
cular diseases have been associated with a single gene, 
including some classes of premature myocardial infarction, 
hypertrophic cardiomyopathy, heart failure, long QT syn-
drome, and aortic aneurysms, among others [66]. Although 
these diseases are more easily treatable, they are relatively 
rare in the population [66]. Therefore, GWASs have served 
as an essential implement in the discovery of cardiovascular 
diseases’ genetic background. These studies have yielded 
thousands of related genome loci. Some examples are loci 
9p21.3 and TCF21, associated with coronary artery disease 
[66, 67].

Transcriptomic approaches have revealed significant 
expression patterns in cardiovascular diseases in specific tis-
sues and cell types, including blood, lymphoblastoid cell 
lines, and peripheral blood mononuclear cells [68]. 
Furthermore, leukocytes have been proved to show altered 
gene expression in response context, serving as a potential 
diagnose tool [68]. Transcriptome analysis in heart biopsies 
from heart failure patients revealed differentially expressed 
genes from patients and controls with functions associated 
with cardiac muscle contraction, oxidative phosphorylation, 
and cell and matrix composition and organization, as well as 
the inhibition of STAT4, SRF, and p53 and activation of 
HEY2 and KDM5A [69]. Similarly, it has been proven that 
HDAC9 (a histone deacetylase) is overexpressed in cardiac 
muscle; this exhibits a link between gene expression and 
function since one of these enzyme’s targets, MEF2, has 
been proven to be implicated in hypertrophic cardiomyopa-
thy [70]. Additionally, the presence of other classes of RNA 
molecules, including miRNAs and lncRNAs preferentially 
expressed in heart tissue and with functions in its function, 
could serve as a diagnostic tool, such as miR-1, miR133a, 
miR-208a/b, and miR-499 [64].
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On the other hand, proteomic technologies are a promis-
ing area for discovering serum biomarkers [71]. For exam-
ple, troponin assays have served as diagnostic tools for acute 
coronary diseases [71]. Myocardiopathy is the preferred car-
diovascular disease for research [72]. In comparison with 
coronary disease patients, two-dimensional gels from biop-
sies of dilated cardiomyopathy patients revealed downregu-
lation of several proteins, including desmin, ATP synthase, 
creatine kinase, myosin, HSP60, and HSP70, among others 
[72]. Blood samples have yielded relevant information as 
well [73]. For example, mass spectrometry and protein array 
assays suggested IGFBP1) and ApoA-1/HDL-C, isoforms of 
haptoglobin, and ApoC1, ApoC2, and ApoE as potential bio-
markers for abdominal aortic aneurysm, acute myocardial 
infarction, and acute ST-elevation myocardial infarction, 
respectively [73].

A highly relevant area for cardiovascular disease research 
is epigenetics since these modifications have been proved to 
serve as the intercommunication between environment and 
phenotype [64]. Nonetheless, epigenetic modifications are 
harder to assess since approaches are diverse. It is necessary 
to use a combination of them to obtain a more comprehen-
sive view of the epigenetic landscape [64]. Furthermore, a 
study showed a 46% reduction of cardiovascular disease 
onset in subjects with genetic predisposition and a healthy 
lifestyle compared to those with an unhealthy one (consider-
ing diet, exercise, and tobacco and alcohol consumption, 
among others) [64, 74]. For these reasons, the study of the 
exposome has gained increasing attention [64]. Examples of 
these measurements include devices able to monitor chemi-
cal compounds and microorganisms in the environment and 
early markers of disease [64]. Additionally, it is expected 
that in future years, artificial intelligence algorithms may 
help in the identification of a subject’s lifestyle based on data 
published in social media, such as photos and quotes of their 
meals or habits in Facebook, Instagram, or Twitter, which 
may help predict disease risks [64].

It is highly likely that in the future, people may have 
access to this type of information, not only from genomic, 
transcriptomic, or proteomic studies but also from the expo-
some and the epigenome [64]. However, it is still compul-
sory that more research and investment be made in 
cardiovascular diseases [64]. Furthermore, the new creation 
of databases that encompass diverse data from omic studies, 
such as HeartBioPortal, is a requisite for the gathering of all 
of the massive data published every day on the topic [63].

�Other Chronic Diseases

Other diseases have also had fundamental advances; for 
example, in diabetes, it is thought that SNPs in the 
HLA-DR3/4 and HLA-DQ2/8 alleles in chromosome 6  in 

CD4 cells are responsible for the creation of antibodies 
against pancreatic cells in type 1 diabetes [75]. Furthermore, 
SNPs in CDKAL1, KCNQ1, and CDKN2A/B are associated 
with type 2 diabetes and may serve as blood biomarkers 
since they are expressed in this tissue [75]. Similarly, tran-
scriptomic approaches have found differential expression of 
several miRNAs, commonly found in patients’ plasma [75]. 
Many of these miRNAs are in charge of the regulation of 
autoantigens in type 1 diabetes, therefore providing an 
immediate link between the genome and its expression [75]. 
Type 2 diabetes cells also exhibit miRNA aberrant expres-
sion, many of them in charge of the regulation of insulin 
resistance genes [75]. Finally and with great interest, metage-
nomic analysis has found alterations in the microbiome of 
diabetes patients in comparison with healthy subjects, high-
lighting the presence of Actinobacteria, Bacteroidetes, and 
Proteobacteria and Bacteroides caccae, Desulfovibrio, 
Eggerthella lenta, and Escherichia coli in type 1 and type 2 
diabetes, respectively [75].

Another example is chronic obstructive pulmonary dis-
ease (COPD) [76]. GWASs have found FAM13A, CHRNA3/
CHRNA5 IREB2, and HHIP as relevant disease-associated 
loci [76]. Interestingly, CHRNA3/CHRNA5 is associated 
with tobacco use, suggesting associations between smoking 
and disease COPD [76]. Furthermore, SNPs associated with 
lung function (measured with FEV1 and FVC) such as 
FAM13A, HHIP, and HTR4 have been found to increase 
COPD risk, which may suggest changes in lung function 
influenced by COPD risk [76]. Epigenomic analysis in 
COPD revealed hypomethylation of il13, RUNX3, and 
TIGIT [76]. Additionally, it is speculated that changes in the 
epigenome associated with COPD might be partly due to 
tobacco use since smoking affects DNA methylation patterns 
[76]. Finally, metabolomic approaches have discovered mol-
ecules that could serve as early diagnosis biomarkers [76]. 
Examples include higher expression of sphingolipids in 
COPD smokers’ sputum compared with “healthy” smokers 
and association of glycosphingolipids with COPD in plasma 
[76].

�Concluding Remarks

Undoubtedly, the importance of genomic tools for disease 
surveillance and their impact on public health has increased 
rapidly. Thanks to integrating all the information in different 
databases around the world, it has been possible to understand 
the dynamics of infection of different diseases, a more evi-
dent diagnosis, and the growing use of pharmacogenomics 
for adequate and efficient treatments. One of the significant 
limitations of these tools and their applications is undoubt-
edly access to them. Although the costs of equipment and 
supplies have fallen considerably in recent years, they are 
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still difficult to access for many health institutions in devel-
oping countries. On the other hand, the participation of gov-
ernment agencies and access to information on disease 
outbreaks and prevalence is essential for proper surveillance 
and to establish containment strategies to prevent contagion, 
particularly in the case of infectious diseases with pandemic 
potential.
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