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Abstract. Thorup and Zwick [19] introduced the notion of approxi-
mate distance oracles, a data structure that produces for an n-vertices,
m-edges weighted undirected graph G = (V,E), distance estimations in
constant query time. They presented a distance oracle of size O(kn1+1/k)
that given a pair of vertices u, v ∈ V at distance d(u, v) produces in O(k)
time an estimation that is bounded by (2k − 1)d(u, v), i.e., a (2k − 1)-
multiplicative approximation (stretch). Thorup and Zwick [19] presented
also a lower bound based on the girth conjecture of Erdős.

For sparse unweighted graphs (i.e., m = Õ(n)) the lower bound does
not apply. Pǎtraşcu and Roditty [10] used the sparsity of the graph and
obtained a distance oracle that uses Õ(n5/3) space, has O(1) query time
and a stretch of 2. Pǎtraşcu et al. [11] presented infinity many distance
oracles with fractional stretch factors that for graphs with m = Õ(n)
converge exactly to the integral stretch factors and the corresponding
space bound of Thorup and Zwick.

It is not known, however, whether graph sparsity can help to get
a stretch which is better than (2k − 1) using only Õ(kn1+1/k) space.
In this paper we answer this open question and prove a separation
between sparse and dense graphs by showing that using sparsity it is
possible to obtain better stretch/space tradeoffs than those of Thorup
and Zwick. We show that for every k ≥ 2 there is a distance oracle of
size O(knm1/k logn) that produces in O(k) time an estimation d∗(u, v)
that satisfies d(u, v) ≤ d∗(u, v) ≤ (2k − 1)d(u, v) − 4, for k > 2, and
d(u, v) ≤ d∗(u, v) ≤ 3d(u, v) − 2, for k = 2.

Another contribution of this paper is a refined stretch analysis of
Thorup and Zwick distance oracles that allows us to obtain a better
understanding of this important data structure. We present simple con-
ditions for every w ∈ V that characterizes the exact scenarios in which
every query that involves w produces an estimation of stretch strictly
better than 2k − 1, even in the case of dense graphs. We complement
this contribution with an experiment on real world graphs. The main
finding in the experiment is that different real world graphs are likely
to satisfy the required conditions and hence the stretch of Thorup and
Zwick distance oracles is much better than its worst case bound in these
real world graphs.
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1 Introduction

An approximate distance oracle is a data structure that is required to produce
distance estimations in constant query time. Thorup and Zwick [19] showed that
given an undirected weighted graph G = (V,E) with m edges and n vertices and
an integer k ≥ 1, there is a data structure of size O(kn1+1/k) that for every
pair of vertices u, v ∈ V returns in O(k) time an estimation d̂(u, v) which is
a (2k − 1) multiplicative approximation (stretch) of d(u, v), that is, d(u, v) ≤
d̂(u, v) ≤ (2k−1)d(u, v), where d(u, v) is the length of the shortest path between
u and v in G.

Thorup and Zwick [19] presented also a lower bound based on the girth
conjecture of Erdős1. More specifically, they proved that, for every k ≥ 1, if
there is a graph of Ω(n1+1/k) edges whose girth is 2k + 2 then any distance
oracle with stretch t ≤ 2k, requires Ω(n1+1/k) bits on some input. A careful
examination of their proof reveals that it relies on the stretch of the estimation
for vertex pairs u, v ∈ V for which (u, v) ∈ E, that is, d(u, v) = 1. Therefore, it
still might be possible to obtain a data structure with constant query time and a
stretch better than 2k−1 using O(kn1+1/k) space, for vertex pairs u, v ∈ V that
satisfy d(u, v) ≥ 2, or for graphs with m = o(n1+1/k), that is, sparse graphs2.

We present a new distance oracle for unweighted undirected graphs, that uses
O(knm1/k log n) space and provides in O(k) query time an estimation d∗(u, v)
that satisfies d(u, v) ≤ d∗(u, v) ≤ (2k − 1)d(u, v) − 4, for every k > 2, and
d(u, v) ≤ d∗(u, v) ≤ 3d(u, v) − 2, for k = 2. This implies that for sparse graphs
with m = Õ(n)3 our new distance oracle uses the same space as Thorup and
Zwick’s distance oracle (up to poly-logarithmic factors) and produces in O(k)
time an estimation of strictly better stretch than the stretch of Thorup and
Zwick’s distance oracle. Sparse graphs with m = Õ(n) edges are very interesting
both from the practical perspective and the theoretical perspective.

From the practical perspective, it is important to note that many real world
graphs are sparse and m = Õ(n). This is usually the case in social networks and
in many other types on networks4.

From the theoretical perspective, Pǎtraşcu, Roditty and Thorup [11] proved
a conditional lower bound for the case of sparse graphs with m = Õ(n), based on
a set intersection hardness conjecture. They showed that for any � > 1, a distance
oracle that for every pair of vertices at distance �+1, provides in constant query
time an estimation strictly smaller than 3(�+1)−2 requires Ω̃(n1+ 1

2−1/� ) space.
Notice that for k = 2 our distance oracle has an estimation that is at most
3d(u, v) − 2, for every u, v ∈ V and uses Õ(n1.5) space for sparse graphs with

1 The girth is the length of the shortest cycle in an unweighted graph.
2 A trivial way to get a smaller space for sparse graphs is to simply save the graph and

answer any query in O(m) time by doing BFS, this however, violates the additional
requirement for distance oracles of a constant or almost a constant query time.

3 Throughout the paper we will use the Õ(·) notation to hide small poly-logarithmic
factors.

4 See for more examples https://snap.stanford.edu/index.html.

https://snap.stanford.edu/index.html
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m = Õ(n). It follows from [11] that bounding the estimation by a value strictly
smaller than 3d(u, v) − 2 requires Ω̃(n1.5+ε) space, where ε > 0.

Pǎtraşcu et al. [11] showed also that there are infinitely many distance oracles
for sparse graphs with fractional stretch factors. Their distance oracles converge
exactly to the integral stretch factors and the corresponding space bound of
Thorup-Zwick distance oracles. Our new construction implies that for space
Õ(km1+1/k) a stretch that is strictly better than the corresponding integral
stretch of 2k − 1 is possible.

The implications of our new distance oracles are not restricted only for sparse
graphs with m = Õ(n). Consider graphs with m ∈ [n, o(n1+1/k)] edges. A natural
question is whether a distance oracle for such graphs requires Ω(n1+1/k) for
stretch 2k − 1. The girth based approach, as in the lower bound of Thorup and
Zwick [19], is not possible here since we can store the entire graph. This implies
that for vertex pairs u, v ∈ V with d(u, v) = 1, we can store the exact distance.
Our new distance oracle rules out also the option to use pairs of vertices u, v ∈ V
for which d(u, v) = 2, as a possible source of hardness for a possible lower bound.
If we construct our new distance oracle with parameter k + 1 then the space
required is in the range [n, o(n1+1/k)] and for every pair of vertices u, v ∈ V , for
which d(u, v) = 2, the estimation is at most (2(k + 1) − 1)2 − 4 = (2k − 1)2, and
therefore, when d(u, v) = 2 the stretch is at most 2k − 1 .

The distance oracles of Thorup and Zwick, beside being an important data
structure on their own, are also extremely useful as a tool in many applications.
They were a crucial building block in several important dynamic graph algo-
rithms along the last decade (e.g., [2,7,8,16]). They also play a pivotal role in
designing distance labeling and compact routing schemes as was already shown
by Thorup and Zwick [18] and in subsequent works (e.g., [1,3,13,14]). Distance
oracles were also implemented and tested (e.g., [6,12]) and found useful on real
world graphs. Therefore, any further understanding that we gain on the basic
properties of distance oracles is of great interest.

We obtain our new distance oracle by a careful combination of a variant of
Thorup and Zwick distance oracles with a new idea that interplays between a
hitting set of vertices and a hitting set of edges to overcome a certain hard case
that is relatively common in analysis of algorithms of shortest paths. Therefore,
our new approach is of independent interest, as it might be found useful in other
closely related problems.

Motivated by our theoretical finding, another contribution that we make in
this paper is a refined analysis of the stretch of Thorup and Zwick distance
oracles. At the base of the distance oracles there is an hierarchy of vertex sets
A0, A1, . . . , Ak, where A0 = V , Ak = ∅ and Ai is formed by picking each vertex
of Ai−1, independently, with some probability p. For every u ∈ V the distance
d(u,Ai) between u and Ai is computed and saved. We introduce a simple param-
eter, called the average distance, which is roughly defined5 for every i ∈ [1, k−1]
as the distance between u and Ai divided by i, that is d(u,Ai)/i. Our refined
analysis characterizes several cases in which the stretch is strictly better than

5 In the formal definition we take the ceiling of the average distance.
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2k − 1 using only the average distance, which can be easily computed using the
current information saved with the distance oracle. Roughly speaking, if there
exist i, j ∈ [1, k−1] such that i �= j and d(u,Ai)/i �= d(u,Aj)/j, then the stretch
is strictly better than 2k − 1 for every distance query that includes the vertex u.

Based on similar ideas we also show that if D(u) = {Δ1, . . . ,Δ�} is the set
of all possible distances of u ∈ V with other vertices in the graph then there is
at most one value Δ ∈ D(u) for which the stretch of the distance estimation is
exactly 2k − 1, that is, only for vertices v that satisfy d(u, v) = Δ it might be
that d̂(u, v) = (2k − 1)d(u, v).

We complement the refined stretch analysis by conducting a small experiment
on real world graphs. In the experiment we check how frequent are the cases that
allow for a better stretch in these real world graphs. Interestingly, these cases
are quite frequent and thus in many cases the actual stretch is much better than
the worst case stretch bound.

1.1 Related Work

Since their introduction by Thorup and Zwick [19] distance oracles were studied
by many researchers. Chechik [4,5], presented a (2k − 1)-stretch distance oracle
with O(1) query time and O(n1+1/k) space. (See also [9,20].)

Pǎtraşcu and Roditty [10] showed a distance oracle for weighted undirected
graphs with stretch 2 and size O(n4/3m1/3). For m = o(n2), this distance oracle
has o(n2) size and stretch 2. Pǎtraşcu, Roditty and Thorup [11] showed for
every integer k ≥ 0 and � > 0 distance oracles, that use Õ(m1+1/(k±1/�)) space
and answer distance query in O(k + �) time with stretch 2k + 1 ± 2/�. Sommer,
Verbin, and Yu [17] provided a lower bound in the cell probe model. They showed
that there are sparse graphs for which constant stretch and query time requires
m1+Ω(1) space6.

Due to lack of space, we refer the reader to the full version of this paper [15]
for the rest of the related work section.

1.2 Paper Organization

In the next section we present some necessary preliminaries, the distance oracles
of Thorup-Zwick and a standard variant of it, that is required in order to obtain
our new distance oracle. In Sect. 3 we present our new distance oracles. In Sect. 4
we present our refined stretch analysis for Thorup-Zwick distance oracles. In
Sect. 5 we present some concluding remarks and open problems. Due to lack
of space, we omit here some of the proofs of Sect. 2 and the technical part of
Sect. 4. We refer the reader to [15] for the full version of this paper. Also, in [15]
we present the experiment that we have conducted on real world graphs. In the
experiment we examine how frequent are the cases that are characterized in our
refined stretch analysis from Sect. 4.
6 Using current techniques of cell probe lower bounds we cannot hope for more specific

tradeoff since it is not possible to separate asymptotically the query times of data
structures of size m1.99 and m1.01 for input size m.
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2 Preliminaries and Previous Work

Let G = (V,E) be an n-vertices m-edges undirected unweighted graph. For every
u, v ∈ V , let d(u, v) be the length of the shortest path between u and v. Let N(u)
be the vertices that are neighbours of u and let deg(u) = |N(u)| be the degree
of u.

For every set A ⊆ V , let pA(u) be the closest vertex to u from A, that
is pA(u) := arg minv∈A(d(u, v)), where ties are broken in favor of the vertex
with a smaller identifier, and let d(u,A) = d(u, pA(u)). Notice that it follows
from this definition that if v is on a shortest path between u and pA(u), then
pA(u) = pA(v). For a set E′ ⊆ E let V (E′) = {u | (u, v) ∈ E′}. Let N(u, s,A)
be the s closest vertices to u from the set A.

Let B(u, r) = {v ∈ V | d(u, v) < r} and let B(u, r,X) = {v ∈ X | d(u, v) <
r}, where X ⊆ V . Let L(u, r) = {v ∈ V | d(u, v) = r}.

The following Lemma is a standard tool in the area of approximate shortest
paths and we provide it here for completeness.

Lemma 1. (e.g. Lemma 3.6 in [19]). Let U be a set of size u. Let
Q1, . . . , Qn ⊆ U . If |Qi| ≥ s, for every 1 ≤ i ≤ n then a hitting set A of
size Õ(u/s) such that Qi ∩A �= ∅ can be found with a deterministic algorithm in
O(u +

∑n
i=1 |Qi|) time.

2.1 The Distance Oracle of Thorup and Zwick

In their seminal paper Thorup and Zwick [19] showed that there is a data struc-
ture of size O(kn1+1/k) that returns a (2k − 1) multiplicative approximation
(stretch) of the distances of an undirected weighted graph in O(k) time. Let
k ≥ 1 and let A0, A1, . . . , Ak be sets of vertices, such that A0 = V , Ak = ∅ and
Ai is a subset of Ai−1 of size at most Õ(|Ai−1|/s) that hits for every v ∈ V the set
N(v, s, Ai−1), where s is a parameter. The set Ai is computed using Lemma 1.
For every u ∈ V , let pi(u) = pAi

(u) and �i(u) = d(u,Ai) = d(u, pi(u)). We set
p0(u) to u, pk(u) to be null and �k(u) to ∞.

For every 0 ≤ i ≤ k − 1, let Bi(u) = B(u, �i+1(u), Ai). The bunch of u ∈ V
is B(u) = ∪k−1

i=0 Bi(u).
The information saved in the distance oracle for every u ∈ V is B(u) =

∪k−1
i=0 Bi(u), the value of d(u, v), for every v ∈ B(u), in a 2-level hash table and

the vertex pi(u), where 0 ≤ i ≤ k.
Thorup and Zwick proved the following:

Lemma 2. [Theorem 3.7 [19]]. For every u ∈ V and i ∈ [0, k − 2], the size of
Bi(u) is at most s and the size of Bk−1(u) is Õ(n/sk−1).

Setting s = n1/kc log n yields the desired size bound O(kn1+1/k). The query
algorithm dist(u, v) of the distance oracle is presented in [15]. We look for
the smallest even i such that pi(u) ∈ Bi(v) or pi+1(v) ∈ Bi+1(u). Since both
pk−1(u) ∈ Bk−1(v) and pk−1(v) ∈ Bk−1(u) the algorithm always stops. Let
f(u, v) be the largest value that i reached to during the run of dist(u, v). In other
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words, f(u, v) is the largest value such that for every even j < f(u, v), it holds
that pj(u) /∈ Bj(v) and for every odd j < f(u, v) it holds that pj(v) /∈ Bj(u).
Since dist(u, v) always stops it follows that f(u, v) ≤ k − 1.

To bound the stretch we first prove the following Lemma that is implicit
in [19]. We prove it explicitly in [15] since we use it in our proofs

Lemma 3. For every even i ≤ f(u, v) it holds that �i(u) ≤ i · d(u, v) and for
every odd i ≤ f(u, v) it holds that �i(v) ≤ i · d(u, v).

We proceed with the following useful observation on Thorup-Zwick distance
oracle that we will use later on. Consider the set Ai−j , where i and j are even
and 0 ≤ j < i ≤ f(u, v). From Lemma 3 it follows that �i−j(u) ≤ (i − j) · d(u, v)
and �i(u) ≤ i · d(u, v). But what if we have a bound for �i−j(u) that is better
than (i−j) ·d(u, v), can we use it to obtain a better bound for �i(u)? In the next
Lemma we present a generalization of Lemma 3 and show that this is indeed
possible. The proof is given in [15].

Lemma 4. For every even i ≤ f(u, v): (i) �i(u) ≤ �i−j(u)+ j ·d(u, v), for every
even j ≤ i, and (ii) �i(u) ≤ �i−j(v) + j · d(u, v), for every odd j ≤ i.

For every odd i ≤ f(u, v): (i) �i(v) ≤ �i−j(u) + j · d(u, v), for every even
j ≤ i, and (ii) �i(v) ≤ �i−j(v) + j · d(u, v), for every odd j ≤ i.

We finish the description of Thorup-Zwick distance oracle with a bound on
dist(u, v).

Lemma 5. dist(u, v) outputs an estimation that is bounded by 2�f(u,v)(u) +
d(u, v) ≤ (2f(u, v)+1)d(u, v) ≤ (2k−1)d(u, v), for even f(u, v) and by 2�f(u,v)(v)
+d(u, v) ≤ (2f(u, v) + 1)d(u, v) ≤ (2k − 1)d(u, v), for odd f(u, v).

Proof. Let i = f(u, v) be even. The algorithm returns d(u, pi(u)) + d(v, pi(u)).
Using the triangle inequality we get d(u, pi(u)) + d(v, pi(u)) ≤ 2�i(u) + d(u, v).
From Lemma 3 we have �i(u) ≤ i ·d(u, v) and since i ≤ k−1 we get d(u, pi(u))+
d(v, pi(u)) ≤ (2i + 1)d(u, v) ≤ (2k − 1)d(u, v). For the case that f(u, v) is odd
the proof is the same with u and v switching their roles.

2.2 A Standard Variant of the Distance Oracle of Thorup and
Zwick

In order to obtain the new distance oracle we are using a slightly different but
relatively standard variant of the distance oracle of Thorup and Zwick (e.g. [5]),
which we present below.

In this variant we also save in the distance oracle the exact distance for every
pair 〈u, v〉 ∈ Ak/2 × Ak/2−1, when k is even, and every pair 〈u, v〉 ∈ A(k−1)/2 ×
A(k−1)/2 when k is odd. In both cases the space remains O(kn1+1/k log n), since
|Ak/2| · |Ak/2−1| = O(kn1+1/k log n), when k is even and |A(k−1)/2| · |A(k−1)/2| =
O(kn1+1/k log n), when k is odd.
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The query will work as follows. Let u, v ∈ V . Let f = min(f(u, v), f(v, u)). If
f ≤ 
k/2� then we output min(dist(u, v), dist(v, u)). If f > 
k/2� then we output
min

(
�k/2(u)+d(pk/2(u), pk/2−1(v))+�k/2−1(v), �k/2(v)+d(pk/2(v), pk/2−1(u))+

�k/2−1(u)
)
, for an even k, and �(k−1)/2(u) + d(p(k−1)/2(u),

p(k−1)/2(v)) + �(k−1)/2(v), for an odd k.
In the next Lemma we establish an upper bound on the query output when

f > 
k/2�.
Lemma 6. When f > 
k/2� the query algorithm described above returns
an estimation that is at most min(2�k/2(u) + 2�k/2−1(v) + d(u, v), 2�k/2(v) +
2�k/2−1(u) + d(u, v)), when k is even and at most 2�(k−1)/2(u) + 2�(k−1)/2(v) +
d(u, v), when k is odd.

Proof. Let a = �k/2(u) + d(pk/2(u), pk/2−1(v)) + �k/2−1(v). Let b = �k/2(v) +
d(pk/2(v), pk/2−1(u)) + �k/2−1(u). Let A = 2�k/2(u) + 2�k/2−1(v) + d(u, v) and
let B = 2�k/2(v)+2�k/2−1(u)+ d(u, v). For even k, the query returns min

(
a, b

)
.

We show that this value is at most min(A,B).
Using the triangle inequality we get that d(pk/2(u), pk/2−1(v)) ≤ �k/2(u) +

d(u, v)+�k/2−1(v). Therefore, a ≤ A. Similarly, we get that d(pk/2(v), pk/2−1(u))
≤ �k/2(v) + d(u, v) + �k/2−1(u). Therefore, b ≤ B. Adding it all together we get
that min(a, b) ≤ min(A,B), as required.

When k is odd, the query returns �(k−1)/2(u) + d(p(k−1)/2(u), p(k−1)/2(v)) +
�(k−1)/2(v) ≤ �(k−1)/2(u) + (�(k−1)/2(u) + d(u, v) + �(k−1)/2(v)) + �(k−1)/2(v) =
2�(k−1)/2(u) + 2�(k−1)/2(v) + d(u, v).

It is relatively straightforward to prove that the estimation produced by
the updated query algorithm has 2k − 1 stretch by combining Lemma 6 with
Lemma 3.

Throughout the paper we will refer to this variant of Thorup-Zwick distance
oracle as the standard variant of Thorup-Zwick distance oracle.

3 Distance Oracles with Improved Stretch

In this section we present our new distance oracle construction. We combine
between two ideas. The first idea is to interplay between a hitting set of vertices
and a hitting set of edges. This allows us to obtain, in some cases, a better
bound on �1(u), for every u ∈ V . Consider a pair of vertices u, v ∈ V such
that d(u, v) = Δ. In Thorup and Zwick distance oracles if v /∈ B0(u) then it
follows that �1(u) ≤ Δ and this bound is used, among other bounds, to bound
the estimation. In our distance oracles we will have to use �1(u) to bound the
estimation only in the case that �1(u) ≤ Δ − 1. Our second idea is that in
order to amplify the affect of this better bound we can use the standard variant
of Thorup and Zwick distance oracles, presented in Sect. 2.2, since it allows to
combine in the bound of the estimation both �1(u) and �1(v) in the case that
both �1(u) ≤ Δ − 1 and �1(v) ≤ Δ − 1.

We now prove the following Theorem:
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Theorem 1. Let G = (V,E) be an n-vertices m-edges undirected unweighted
graph. For every k > 2 there is a distance oracle that uses O(knm1/k log n)
space and for every pair of vertices u, v ∈ V returns in O(k) time an estimation
d∗(u, v) such that:

d(u, v) ≤ d∗(u, v) ≤ (2k − 1)d(u, v) − 4.

For k = 2, the estimation d∗(u, v) satisfies: d(u, v) ≤ d∗(u, v) ≤ 3d(u, v) − 2.

Proof. Our new distance oracle is constructed as follows. Let s = m1/kc log n.
We start with the set A1 that will be the union of two sets, Av

1 and Ae
1. The set

Av
1 ⊆ V is a hitting set of size Õ(m/s) of the sets N(v, s, V ), for every v ∈ V ,

computed using Lemma 1.
The set Ae

1 is computed as follows. We first compute for every u ∈ V the
set L(u, d(u,Av

1)). Let V H = {u | |L(u, d(u,Av
1))| ≥ s}. For every u ∈ V H let

EH(u) = {(x, y) ∈ E | x ∈ L(u, d(u,Av
1)−1)∧y ∈ L(u, d(u,Av

1))}, that is, all the
edges with one endpoint at distance d(u,Av

1) − 1 from u and another endpoint
at distance d(u,Av

1) from u. Consider now the sets EH(u), for every u ∈ V H .
Each such set contains at least s edges and there are at most n such sets. Thus,
we can apply Lemma 1 to compute a hitting set EH ⊆ E of size Õ(m/s). Let
Ae

1 = V (EH). We set A1 to Av
1 ∪ Ae

1.

We now proceed with the sets A2, . . . , Ak−1 as in the distance oracle of Tho-
rup and Zwick, that is, Ai is a subset of Ai of size at most Õ(|Ai−1|/s) that hits
for every v ∈ V the set N(v, s, Ai−1). The set Ak is empty.

We use the sets V = A0, A1, . . . , Ak to construct the standard variant of the
distance oracle. The special way we used to compute the set A1 allows us to
prove the following crucial Lemma:

Lemma 7.
∑

u∈V |L(u, �1(u))| = Õ(nm1/k).

Proof. Assume, towards a contradiction, that there exists u ∈ V such that
|L(u, �1(u))| > s. Since A1 = Av

1 ∪ Ae
1 we have �1(u) = min(d(u,Av

1), d(u,Ae
1)).

It cannot be that �1(u) = d(u,Av
1) because this implies that |L(u, d(u,Av

1))| > s
and u ∈ V H . In such a case, an edge (x, y) from EH(u) is in EH and
x ∈ Ae

1 is added to A1. Since d(u,Ae
1) ≤ d(u, x) = d(u,Av

1) − 1 and �1(u) =
min(d(u,Av

1), d(u,Ae
1)) we get that it must be that �1(u) < d(u,Av

1).
So we have |L(u, �1(u))| > s and �1(u) = d(u,Ae

1) < d(u,Av
1). The set Av

1

is a hitting set for the sets N(v, s, V ), for every v ∈ V . From Lemma 2 it
follows that |B(u, d(u,Av

1))| ≤ s. Since �1(u) = d(u,Ae
1) < d(u,Av

1) we get that
L(u, �1(u)) ⊆ B(u, d(u,Av

1)), a contradiction to the fact that |L(u, �1(u))| > s.
Thus, we get that

∑
u∈V |L(u, �1(u))| = s · n = Õ(nm1/k), as required.

It follows from the above Lemma that we can save also the set L(u, �1(u)),
for every u ∈ V , in a 2-level hash table, without increasing the total size of the
distance oracle.
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Given a pair u, v ∈ V the query works as follows. First, we check if (u, v) ∈ E
and if so return 1 and stop. Otherwise, we check if either v ∈ L(u, �1(u)) or
u ∈ L(v, �1(v)) and if so return the exact distance and stop. If this is not the
case we use the query of the standard variant of Thorup-Zwick distance oracle
on u, v and on v, u and report the minimum of these two estimations.

Next, we analyze the stretch of the distance oracle. Let u, v ∈ V and let
Δ = d(u, v). If (u, v) ∈ E or u ∈ B0(v) or v ∈ B0(u) then the exact distance is
returned. Therefore, we can assume that (u, v) /∈ E, u /∈ B0(v) and v /∈ B0(u).
Let d(u′, v) = d(u, v′) = Δ − 1, where u′ ∈ N(u) and v′ ∈ N(v). If u′ ∈ B0(v)
(respectively, v′ ∈ B0(u)) then u ∈ L(v, �1(v)) (respectively, v ∈ L(u, �1(u))) and
the exact distance is returned. Therefore, we can assume also that u′ /∈ B0(v)
and v′ /∈ B0(u). This implies that �1(v) ≤ Δ − 1 and �1(u) ≤ Δ − 1.

For k = 2 the standard variant of Thorup-Zwick distance oracle degenerates
to the regular one since the additional distances stored are for pairs from A1×A0.
The query returns �1(u) + d(v, p1(u)) which is bounded by 2�1(u) + Δ. Using
the bound �1(u) ≤ Δ − 1 we get that the estimation is bounded by 3Δ − 2, as
required.

Consider now the case that k ≥ 3. As we have checked whether (u, v) ∈ E, we
can assume that Δ ≥ 2. Let f = min

(
f(u, v), f(v, u)

)
. In the case that f ≤ 
k/2�

the query returns min(dist(u, v), dist(v, u)). From Lemma 5 it follows that this
estimation is bounded by (2(k/2)+1)d(u, v) = (k+1)Δ ≤ (2k−1)Δ−4 for even
k ≥ 4 and Δ ≥ 2, and bounded by (2((k−1)/2)+1)d(u, v) = kΔ ≤ (2k−1)Δ−4
for odd k ≥ 3 and Δ ≥ 2.

For f > 
k/2� the query returns min
(
�k/2(u) + d(pk/2(u), pk/2−1(v)) +

�k/2−1(v), �k/2(v) + d(pk/2(v), pk/2−1(u)) + �k/2−1(u)
)
, for an even k, and

�(k−1)/2(u) + d(p(k−1)/2(u), p(k−1)/2(v)) + �(k−1)/2(v), for an odd k.
Consider the case of an even k. Let i = k/2 and assume that i is even. It

follows from Lemma 6 that 2�i(u) + 2�i−1(v) + d(u, v) is an upper bound for
the estimation. From Lemma 4 we have �i(u) ≤ �1(v) + (i − 1)Δ and �i−1(v) ≤
�1(u) + (i − 2)Δ. Thus, we get:

2�i(u) + 2�i−1(v) + d(u, v) ≤ 2(�1(v) + (i − 1)Δ) + 2((�1(u) + (i − 2)Δ)) + Δ

≤ 2�1(u) + 2�1(v) + 4iΔ − 5Δ

≤ 4(Δ − 1) + 4(k/2)Δ − 5Δ

≤ (2k − 1)Δ − 4

Assume now that i is odd. It follows from Lemma 6 that 2�i(v) + 2�i−1(u) +
d(u, v) is an upper bound for the estimation. From Lemma 4 we have �i(v) ≤
�1(v) + (i − 1)Δ and �i−1(u) ≤ �1(v) + (i − 2)Δ. Thus, we get:

2�i(v) + 2�i−1(u) + d(u, v) ≤ 4�1(v) + 4iΔ − 5Δ

≤ 4(Δ − 1) + 4(k/2)Δ − 5Δ

≤ (2k − 1)Δ − 4

Consider now the case that k is odd. Let i = (k − 1)/2. It follows from
Lemma 6 that 2�i(u) + 2�i(v) + d(u, v) is an upper bound for the estimation.
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From Lemma 4 we have �i(v) ≤ �1(u) + (i − 1)Δ and �i(u) ≤ �1(v) + (i − 1)Δ if
i is even or odd. Thus, we get:

2�i(u) + 2�i(v) + d(u, v) ≤ 2(�1(v) + (i − 1)Δ) + 2(�1(u) + (i − 1)Δ) + Δ

≤ 4(Δ − 1 + (i − 1)Δ) + Δ

≤ 4(iΔ − 1) + Δ

≤ (2k − 1)Δ − 4

Remark. The hierarchal nature of the query algorithm that is based on the
bunches induced by the sets V = A0, A1, . . . , Ak makes it tempting to try to
apply the interplay between a hitting set of vertices and a hitting set of edges
not only to A1 but also to the sets A2, . . . , Ak. This however is not possible
from the following reason. To obtain the improved bound on �1(u) we need that
pA1(u) ∈ Ae

1. Thus, in the next step of the query we need to check if pA1(u) ∈ Ae
1

is in B2(v). To get a better bound now for �2(v) we need to be able to either
save the vertices of A1 that are at distance �2(v) from v, in case that there are
at most s such vertices or to improve the bound on �2(v) by a tighter hitting set
of size Õ(m/s2), if there are strictly more than s such vertices. However, in the
later case, the fact that there are more than s vertices of A1, which all might be
vertices of Ae

1, at distance �2(v) does not imply that the number of edges with
one endpoint at distance �2(v)−1 from v and another endpoint at distance �2(v)
from v is more than s2. It might be that there are many edges (strictly more
than s2) with both endpoints at distance �2(v) from v. These edges can cause to
strictly more than s vertices of Ae

1 to be at distance �2(v) from v. On the other
hand, hitting these set of edges might result with an edge whose both endpoints
are at distance �2(v) and will not improve �2(v).

4 A Refined Stretch Analysis of Thorup-Zwick Distance
Oracle

In this section we present several different conditions that can be easily checked
and once fulfilled by the distance oracle of Thorup-Zwick guarantee that the
estimation has a stretch which is strictly better than 2k − 1.

The main parameter that we use is the average distance between a vertex
and the sets A1, . . . , Ak−1. We define the average distance between u ∈ V and
Ai to be �̄i(u) = ��i(u)/i�, where i ∈ [1, k − 1].

Let d̂(u, v) = min(dist(u, v), dist(v, u)). We prove the following properties:

Property 1. Let u ∈ V . If �̄i(u) �= �̄j(u) for some i, j ∈ [1, k − 1] then for every
v ∈ V the stretch of d̂(u, v) is strictly better than (2k − 1).

Property 2. Let u, v ∈ V . If �̄i(u) �= �̄i(v) for some i ∈ [1, k − 1] then the stretch
of d̂(u, v) is strictly better than (2k − 1).



Approximate Distance Oracles with Improved Stretch for Sparse Graphs 99

Property 3. Let u, v ∈ V . If �̄i(u) = �̄i(v) = q, for every i ∈ [1, k − 1] and
d(u, v) �= q then the stretch of d̂(u, v) is strictly better than (2k − 1).

Before we turn into the technical part of this section we discuss these proper-
ties. First notice to the nice relation between these properties. If the conditions
of Property 1 do not hold then the conditions of Property 2 can still hold, and
if the conditions of both Properties 1 and 2 do not hold then the conditions of
Property 3 can still hold.

From the implementation perspective we can verify whether Property 1 and
Property 2 hold using a simple computation that does not require the actual
computation of the distance oracle itself. Moreover, if Property 1 does not hold
then we have �̄i(u) = �1(u), for every i ∈ [1, k − 1], since �̄1(u) = �1(u). Thus,
�1(u) − 1 ≤ �i(u)/i ≤ �1(u) and we get that �i(u) ∈ [i�1(u) − i, i�1(u)]. In such
a scenario the shortest paths tree of u has a relatively well defined structure in
which |B(u, �1(u))| ≤ n1/k and for every i ∈ [2, k−1] it holds that |B(u, i�1(u)−
i)| ≤ ni/k and ni/k ≤ |B(u, i�1(u))|. It is a plausible conjecture that such a
well defined structure is not common. For the sake of completeness we do a
small experiment on several different datasets of real world graphs to test how
frequent these properties are. We elaborate more on this experiment in [15].

Due to lack of space, we omit the technical part of this section, which can be
found in [15].

5 Concluding Remarks

In this paper we proved that for every k ≥ 2 there is a distance oracle of size
O(knm1/k log n) that produces in O(k) time an estimation d∗(u, v) that satisfies
d(u, v) ≤ d∗(u, v) ≤ (2k − 1)d(u, v) − 4, for k > 2, and d(u, v) ≤ d∗(u, v) ≤
3d(u, v) − 2, for k = 2.

An interesting open problem is whether it is possible to obtain a distance
oracle with the same size and query time whose estimation d∗(u, v) satisfies
d(u, v) ≤ d∗(u, v) ≤ (2k − 1)d(u, v) − Ω(k), for large enough k.
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