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Abstract. Sudoku is a logic puzzle with an objective to fill a number
between 1 and 9 into each empty cell of a 9×9 grid such that every num-
ber appears exactly once in each row, each column, and each 3×3 block.
In 2020, Sasaki et al. proposed a physical zero-knowledge proof (ZKP)
protocol for Sudoku using 90 cards, which allows a prover to physically
show that he/she knows a solution without revealing it. However, their
protocol requires nine identical copies of some cards, which cannot be
found in a standard deck of playing cards (with 52 different cards and
two jokers). Therefore, nine identical decks are actually required in order
to perform that protocol. In this paper, we propose a new ZKP proto-
col for Sudoku that can be performed using only two standard decks of
playing cards. In general, we develop the first ZKP protocol for an n×n
Sudoku that can be performed using a deck of all different cards.

Keywords: Zero-knowledge proof · Card-based cryptography ·
Sudoku · Puzzle

1 Introduction

Sudoku is one of the world’s most popular logic puzzles. A Sudoku puzzle consists
of a 9× 9 grid divided into nine blocks of size 3× 3. Some of the cells in the grid
are already filled with numbers between 1 and 9. The player has to fill a number
into each empty cell such that every number from 1 to 9 appears exactly once
in each row, each column, and each 3 × 3 block [18] (see Fig. 1). There is also a
generalized version of Sudoku where the grid has size n × n and is divided into
n blocks of size

√
n × √

n, where n is a perfect square. The generalized Sudoku
is known to be NP-complete [25].

1.1 Zero-Knowledge Proof

We want to construct a zero-knowledge proof (ZKP) for Sudoku, which allows
a prover P to convince a verifier V that he/she knows a solution of the puzzle
without revealing any information about it. Formally, a ZKP is an interactive
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Fig. 1. An example of a 9 × 9 Sudoku puzzle (left) and its solution (right)

proof between P and V where both of them are given a computational problem
x, but only P knows a solution w. A ZKP with perfect completeness and perfect
soundness must satisfy the following properties.

1. Perfect Completeness: If P knows w, then V always accepts.
2. Perfect Soundness: If P does not know w, then V always rejects.
3. Zero-knowledge: V does not obtain any information about w. Formally,

there exists a probabilistic polynomial time algorithm S (called a simulator)
that does not know w, and the outputs of S follow the same probability
distribution as the outputs of the actual protocol.

The concept of a ZKP was first introduced by Goldwasser et al. [5]. Recently,
many results have been focusing on constructing physical ZKPs using objects
found in everyday life such as a deck of cards. These protocols have a benefit
that they do not require electronic devices, and also have didactic values since
they are easy to understand and verify the correctness, even for non-experts in
cryptography.

2 Previous Protocols

The first ZKP protocols for Sudoku were developed by Gradwohl et al. [6] in
2009. However, each of their six proposed protocols either has a nonzero sound-
ness error or requires special tools such as scratch-off cards. In 2020, Sasaki
et al. [24] proposed the improved ZKP protocols for Sudoku that have perfect
soundness without using special tools.

2.1 Uniqueness Verification Protocol

Before showing the protocol of Sasaki et al., we first explain the following subpro-
tocol, which was also developed by the same authors [24]. This protocol allows
the prover P to convince the verifier V that a sequence σ of n face-down cards
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is a permutation of different cards a1, a2, ..., an in some order, without revealing
their orders. It also preserves the orders of the cards in σ (so that the sequence
can be later used in other protocols).

Let x1, x2, ..., xn be another set of n different cards. P performs the following
steps.

Fig. 2. A 2 × n matrix constructed in Step 1

1. Publicly place face-down cards x1, x2, ..., xn below the face-down sequence σ
in this order from left to right to form a 2 × n matrix of cards (see Fig. 2).

2. Rearrange all columns of the matrix by a uniformly random permutation.
This can be performed in real world by putting both cards in each column
into an envelope and scrambling all envelopes together.

3. Turn over all cards in the top row. V verifies that the sequence is a permu-
tation of a1, a2, ..., an. Otherwise, V rejects.

4. Turn over all face-up cards. Rearrange all columns of the matrix by a uni-
formly random permutation.

5. Turn over all cards in the bottom row. Rearrange the columns such that the
cards in the bottom rows are x1, x2, ..., xn in this order from left to right. The
sequence in the top row now returns to its original state.

2.2 Protocol of Sasaki et al.

Sasaki et al. [24] proposed three protocols to verify a solution of an n×n Sudoku
puzzle. Here we will show only the first protocol, which is the one using the least
number of cards.

Each card used in this protocol has a positive number on the front side 1 , 2 ,
...; all cards have identical back sides ? . On each cell already having a number
j, P publicly places a face-down j . On each empty cell having a number j is
P ’s solution, P secretly places a face-down j .

P then applies the uniqueness verification protocol to verify that every row,
column, and block contains a permutation of 1 , 2 , ..., n .

In total, this protocol uses n2+n cards: n identical copies of 1 , 2 , ..., n (to
encode the numbers in the grid), and another set of n different cards (to use in
the uniqueness verification protocol). For a standard 9 × 9 puzzle, the protocol
uses 90 cards, which is less than the number of cards in two standard decks;
however, it requires nine identical copies of 1 , 2 , ..., 9 . As a standard deck
consists of 54 different cards (including two different jokers), nine identical decks
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are actually required in order to perform this protocol, which are too many to be
practical. Another choice is to use a different kind of deck (e.g. cards from board
games) that includes several identical copies of some cards, but these decks are
more difficult to find in everyday life.

Considering a drawback of this protocol, we aim to develop a more practical
ZKP protocol for a 9×9 Sudoku that can be performed using only two standard
decks of playing cards.

2.3 Related Work

After the discovery of the physical ZKP protocols for Sudoku, physical ZKP
protocols for other popular logic puzzles have been proposed as well, including
Nonogram [3], Akari [1], Takuzu [1,14], Kakuro [1,15], KenKen [1], Makaro [2],
Norinori [4], Slitherlink [12], Juosan [14], Numberlink [21], Suguru [20], Ripple
Effect [22], Nurikabe [19], Hitori [19], and Bridges [23].

Besides verifying solutions of logic puzzles, card-based protocols have also
been extensively studied in secure multi-party computation, a setting where
multiple parties want to jointly compute a function of their secret inputs without
revealing the input of any party. The vast majority of work in this area, however,
also uses identical copies of ♣ and ♥ in the protocols. The only exceptions are
[9,11,16,17] which introduced AND, XOR, and copy protocols using a standard
deck, and [13] which introduced a Yao’s millionaire protocol using a standard
deck. In [11], the authors also posed an open problem to develop ZKP protocols
for logic puzzles using a standard deck.

Pratically, a standard deck of playing cards consists of 54 different cards
(including two different jokers). Theoretically, it is also a challenging problem
to develop a protocol that uses a deck of all different cards, so we also study
the setting where the deck consists of 1 , 2 , ... where each card can have an
arbitrarily large number on it.

3 Our Contribution

In this paper, we propose a new ZKP protocol for a generalized n × n Sudoku
puzzle with perfect completeness and soundness using a set of all different cards.

There are two slightly different methods to implement our protocol. The
first one uses n2 + n

√
n + n +

√
n cards and 4n

√
n shuffles. The second one uses

n2 + 2n + 3
√

n cards and at most 2n2(
√

n − 1) + 2 shuffles (see Table 1).
In particular, for a standard 9 × 9 Sudoku puzzle, our protocol (with the

second method of implementation) uses 108 cards and can be performed using
two standard decks of playing cards, regardless of whether the two decks are the
same or different types (see Table 2).

Theoretically, this work is an important step in card-based cryptography as
it is the first ZKP protocol for any logic puzzle that can be performed using a
deck of all different cards, an open problem posed in [11].
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Table 1. The number of required cards and shuffles for an n× n Sudoku

Protocol Standard Deck? #Cards #Shuffles

Sasaki et al. [24] No n2 + n 5n

Ours (Sect. 5.1) Yes n2 + n
√

n + n +
√

n 4n
√

n

Ours (Sect. 5.2) Yes n2 + 2n + 3
√

n 2n2(
√

n − 1) for even n

2n2(
√

n − 1) + 2 for odd n > 9

Table 2. The number of required cards and shuffles for a 9 × 9 Sudoku

Protocol Standard Deck? #Cards #Shuffles

Sasaki et al. [24] No 90 45

Ours (Sect. 5.1) Yes 120 108

Ours (Sect. 5.2) Yes 108 322

4 Preliminaries

At first, we assume that all cards used in our protocols have different front sides
and identical back sides (although we will later show that some pairs of cards
can have identical front sides or different back sides, and our protocol still works
correctly).

4.1 Marked Matrix

Suppose we have a k × � matrix of face-down cards (we call these cards encoding
cards). Let Row i denote an i-th topmost row and let Column j denote a j-
th leftmost column. To the left of Column 1, publicly place face-down cards
p1, p2, ..., pk in this order from top to bottom; this new column is called Column
0. Analogously, above Row 1, publicly place face-down cards q1, q2, ..., q� in this
order from left to right; this new row is called Row 0.

We call this structure a k × � marked matrix (see Fig. 3), and we call the
cards in Row 0 and Column 0 marking cards.

4.2 Shuffle Operations

Suppose we have a k × � marked matrix. For a set S ⊆ {1, 2, ..., k}, an operation
row shuf(S) rearranges the rows in S (including marking cards in Column 0) by
a uniformly random permutation. For example, row shuf({1, 3, 4}) rearranges
Row 1, Row 3, and Row 4 of the matrix by a uniformly random permutation.
This can be performed in real world by putting all cards in each row in S into
an envelope and scrambling all envelopes together.

Analogously, for a set S ⊆ {1, 2, ..., �}, an operation col shuf(S) rearranges
the columns in S (including marking cards in Row 0) by a uniformly random
permutation.
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Fig. 3. An example of a 4 × 5 marked matrix

4.3 Rearrangement Protocol

After applying some shuffle operations to a marked matrix, a rearrangement
protocol reverts the matrix back to its original state. Slightly different variants of
this protocol with the same idea has been used in previous work [2,7,8,21,22,24].

Suppose we have a k × � marked matrix M with marking cards p1, p2, ..., pk

in Column 0 and q1, q2, ..., q� in Row 0. We perform the following steps.

1. Apply row shuffle({1, 2, ..., k}) and col shuffle({1, 2, ..., �}) to M .
2. Turn over all marking cards in Column 0 and Row 0. Rearrange the rows of

M such that the marking cards in Column 0 are p1, p2, ..., pk in this order
from top to bottom. Rearrange the columns of M such that the marking cards
in Row 0 are q1, q2, ..., q� in this order from left to right.

4.4 Standard Deck Chosen Cut Protocol

Given a k × � marked matrix M , this protocol allows the prover P to choose a
card located at Row i and Column j of M he/she wants without revealing i or
j. It was modified from an original chosen cut protocol of Koch and Walzer [10]
(which uses identical copies of ♣ and ♥ ) so that it can be performed using a
standard deck. P performs the following steps.

1. Secretly stack a face-down card x1 on a card located at Row i and Column j.
2. On each of the remaining k� − 1 cards in the matrix, secretly stack each

of face-down cards x2, x3, ..., xk� in a uniformly random order. The cards
x1, x2, ..., xk� are called helper cards.

3. Apply row shuffle({1, 2, ..., k}) and col shuffle({1, 2, ..., �}) to M .
4. Turn over all helper cards. Locate the position of x1. The encoding card in

that stack is the one originally located at Row i and Column j as desired.
5. Remove all helper cards. Apply the rearrangement protocol to revert M to

its original state.

This protocol will be implicitly used in our main protocol, with Step 3 being
replaced by equivalent operations.
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5 Main Protocol

For simplicity, we will show a protocol for a standard 9 × 9 Sudoku puzzle. Our
protocol can be straightforwardly generalized to an n × n puzzle.

We use the following cards in our protocol.

– encoding cards aj , bj , cj , dj , ej , fj , gj , hj , ij (j = 1, 2, ..., 9)
– marking cards pj (j = 1, 2, 3) and qj (j = 1, 2, ..., 9)
– helper cards xj , yj , zj (j = 1, 2, ..., 9)

Suppose the grid is divided into blocks A,B, ..., I (see Fig. 4). We use a card
aj (j = 1, 2, ..., 9) to encode a number j in Block A. Analogously, we use cards
bj , cj , ..., ij (j = 1, 2, ..., 9) to encode numbers j in blocks B,C, ..., I, respectively.

Fig. 4. Blocks A,B,C,D,E, F,G,H, and I in the grid

On each cell already having a number, P publicly places a face-down corre-
sponding card (e.g. places a card b3 on a cell with a number 3 in Block B). On
each empty cell, P secretly places a face-down corresponding card according to
his/her solution.

Apply the uniqueness verification protocol in Sect. 2.1 to verify that Block A
consists of cards a1, a2, ..., a9 in some order. Do the same for Blocks B,C, ..., I.
Now V is convinced that every number from 1 to 9 appears exactly once in each
block.

Next, we will show two methods to verify that every number from 1 to 9
appears exactly once in each row and column.

5.1 Method A

First, P performs the following steps to verify that a number 1 appears exactly
once in each of the three topmost rows.

1. Take the cards from the three topmost rows to form a 3 × 9 matrix and
publicly place marking cards p1, p2, p3 in Column 0 and q1, q2, ..., q9 in Row
0 to create a marked matrix M .
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2. Secretly stack face-down cards x1, y1, and z1 on a1, b1, and c1, respectively.
3. On each of the remaining 8 cards in Block A, secretly stack each of face-

down cards x2, x3, ..., x9 in a uniformly random order. Do the same for cards
y2, y3, ..., y9 in Block B and z2, z3, ..., z9 in Block C.

4. Apply row shuffle({1, 2, 3}), col shuffle({1, 2, 3}), col shuffle({4, 5, 6}),
and col shuffle({7, 8, 9}) to M .

5. Turn over all helper cards. Locate the positions of x1, y1, and z1. Turn over
the encoding cards in these three stacks to show that they are a1, b1, and
c1, respectively, and that they are all located at different rows. Otherwise, V
rejects.

6. Remove all helper cards and turn all encoding cards face-down. Apply the
rearrangement protocol in Sect. 4.3 to revert M to its original state.

Note that Steps 2 to 6 are equivalent to applying the standard deck chosen
cut protocol in Sect. 4.4 to Blocks A, B, and C, simultaneously. These steps
ensure that the three 1s in Blocks A, B, and C are all located at different rows.
Since it has already been shown that each block contains exactly one 1, this
implies there is exactly one 1 in each of the three topmost rows.

P performs these steps analogously for numbers 2, 3, ..., 9. Now V is convinced
that every number appears exactly once in each of the three topmost rows.

P then does the same for Blocks D, E, and F and for Blocks G, H, and I
to verify the rest of the rows. The verification for columns works analogously (P
takes the cards from Blocks A, D, and G, from Blocks B, E, and H, and from
Blocks C, F , and I, and just transposes the matrix).

This method uses 81 encoding cards, 12 marking cards, and 27 helper cards,
resulting in the total of 120 cards, slightly more than the number of cards in two
standard decks, and uses 342 shuffles.1 We aim to further reduce the number of
required cards as a trade-off between the numbers of cards and shuffles.

5.2 Method B

In Method A, we verify that the three 1s in Blocks A, B, and C are all located
at different rows by verifying these three blocks at the same time, which requires
a lot of marking and helper cards. Instead, we can first verify that the two 1s in
Blocks A and B are located at different rows, then do the same for Blocks A and
C, and for Blocks B and C. This leads to the same conclusion that the three
1s in Blocks A, B, and C are all located at different rows. The formal steps for
verifying Blocks A and B are shown below.

1. Take the cards from blocks A and B to form a 3×6 matrix and publicly place
marking cards p1, p2, p3 in Column 0 and q1, q2, ..., q6 in Row 0 to create a
marked matrix M .

2. Secretly stack face-down cards x1 and y1 on a1 and b1, respectively.

1 The number of shuffles can be reduced to 108 after optimization. See the full version.
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3. On each of the remaining 8 cards in Block A, secretly stack each of face-
down cards x2, x3, ..., x9 in a uniformly random order. Do the same for cards
y2, y3, ..., y9 in Block B.

4. Apply row shuffle({1, 2, 3}), col shuffle({1, 2, 3}), and col shuffle
({4, 5, 6}) to M .

5. Turn over all helper cards. Locate the positions of x1 and y1. Turn over the
encoding cards in both stacks to show that they are a1 and b1, respectively,
and that they are located at different rows. Otherwise, V rejects.

6. Remove all helper cards and turn all encoding cards face-down. Apply the
rearrangement protocol in Sect. 4.3 to revert M to its original state.

We say that two cards are from the same set if they are denoted by the same
letter with different indices (e.g. d2 and d5 are from the same set). Notice that
in both methods, cards from different sets never get mixed together. Therefore,
cards from different sets can have identical front sides or different back sides (or
even different sizes) and our protocol still works correctly. The only requirement
is that all cards from the same set must have different front sides and identical
back sides.

This method uses 81 encoding cards, nine marking cards, and 18 helper
cards, resulting in the total of 108 cards, which is exactly the number of cards
from two standard decks (including jokers), and uses 828 shuffles.2 We can, for
example, use 54 cards from the first deck in the sets aj , bj , ..., fj and 54 cards from
the second deck in the remaining sets. The protocol works correctly regardless
of whether the two decks are identical or different, since it allows cards from
different sets to have identical front sides (in case of identical decks) or different
back sides or sizes (in case of different decks). Note that in some decks, the two
jokers are identical; in that case, we just need to make sure that the two jokers
are in different sets.

5.3 Generalization

Our protocol can be straightforwardly generalized to an n × n puzzle.
Method A uses n2 encoding cards, n +

√
n marking cards, and n

√
n helper

cards, resulting in the total of n2 + n
√

n + n +
√

n cards. It uses 4n
√

n shuffles
(after the optimization).

Method B uses n2 encoding cards, 3
√

n marking cards, and 2n helper cards,
resulting in the total of n2 + 2n + 3

√
n cards. It uses at most 2n2(

√
n − 1) + 2

shuffles (after the optimization).

6 Proof of Correctness and Security

We will prove the perfect completeness, perfect soundness, and zero-knowledge
properties of our protocol.

2 The number of shuffles can be reduced to 322 after optimization. See the full version.
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Lemma 1 (Perfect Completeness). If P knows a solution of the Sudoku
puzzle, then V always accepts.

Proof. Suppose P knows a solution and places cards on the grid accordingly.
Every number from 1 to 9 will appear exactly once in each row, each column, and
each block. Hence, the uniqueness verification protocol will pass for every block.
Also, the same numbers from different blocks are always located at different rows
and columns, so both Methods A and B will pass. Therefore, V always accepts.

��
Lemma 2 (Perfect Soundness). If P does not know a solution of the Sudoku
puzzle, then V always rejects.

Proof. Suppose P does not know a solution. There will be a number that appears
at least twice in the same row, column, or block. If it appears twice in a block,
the uniqueness verification protocol for that block will fail. If it appears twice in
different blocks in the same row (resp. column), Method A will fail when verifying
the three blocks containing that row (resp. column); also, method B will fail when
verifying the two blocks where these two numbers appear. Therefore, V always
rejects. ��
Lemma 3 (Zero-Knowledge). During the verification, V learns nothing
about P ’s solution.

Proof. It is sufficient to show that all distributions of cards that are turned
face-up can be simulated by a simulator S that does not know P ’s solution.

– In Steps 3 and 5 of the uniqueness verification protocol in Sect. 2.1, the orders
of the n cards are uniformly distributed among all n! permutations. Hence,
it can be simulated by S.

– In Step 2 of the rearrangement protocol in Sect. 4.3, the orders of p1, p2, ..., pk

and q1, q2, ..., q� are uniformly distributed among all k! permutations and �!
permutations, respectively. Hence, it can be simulated by S.

– In Step 5 of Method A in Sect. 5.1, the rows where x1, y1, and z1 are located
are uniformly distributed among all 3! = 6 permutations of the first three
rows; the columns where they are located are uniformly distributed among
all 33 = 27 combinations of three columns from Blocks A, B, and C. Also, the
orders of x2, x3, ..., x9 are uniformly distributed among all 8! permutations of
the remaining cards in Block A; the same goes for y2, y3, ..., y9 in Block B
and z2, z3, ..., z9 in Block C. Hence, it can be simulated by S.

– In Step 5 of Method B in Sect. 5.2, the rows where x1 and y1 are located
are uniformly distributed among all 3!

1! = 6 2-permutations of the first three
rows; the columns where they are located are uniformly distributed among
all 32 = 9 combinations of two columns from Blocks A and B. Also, the
orders of x2, x3, ..., x9 are uniformly distributed among all 8! permutations of
the remaining cards in Block A; the same goes for y2, y3, ..., y9 in Block B.
Hence, it can be simulated by S. ��
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7 Future Work

We developed the first ZKP protocol for Sudoku, and also the first one for any
logic puzzle, that uses a deck of all different cards. Our protocol for a standard
9× 9 Sudoku can be performed using two standard decks of playing cards. How-
ever, the drawback of our protocol is that it uses a large number of shuffles,
which makes it impractical. A possible future work is to develop an equivalent
protocol for Sudoku that uses asymptotically less number of shuffles. Other chal-
lenging future work includes developing ZKP protocols for other logic puzzles
(e.g. Kakuro, Numberlink) that uses a deck of all different cards.
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