
Exact Algorithms for Maximum Weighted
Independent Set on Sparse Graphs

(Extended Abstract)

Sen Huang1, Mingyu Xiao1(B) , and Xiaoyu Chen2

1 University of Electronic Science and Technology of China, Chengdu, China
2 Nanjing University, Nanjing, China

Abstract. The maximum independent set problem is one of the most
important problems in graph algorithms and has been extensively stud-
ied in the line of research on the worst-case analysis of exact algorithms
for NP-hard problems. In the weighted version, each vertex in the graph
is associated with a weight and we are going to find an independent set
of maximum total vertex weight. In this paper, we design several reduc-
tion rules and a fast exact algorithm for the maximum weighted indepen-
dent set problem, and use the measure-and-conquer technique to analyze
the running time bound of the algorithm. Our algorithm works on gen-
eral weighted graphs and it has a good running time bound on sparse
graphs. If the graph has an average degree at most 3, our algorithm runs
in O∗(1.1443n) time and polynomial space, improving previous running
time bounds for the problem in cubic graphs using polynomial space.

Keywords: Maximum weighted independent set · Exact algorithms ·
Measure-and-Conquer · Graph algorithms · Reduction rules

1 Introduction

The Maximum Independent Set problem on unweighted graphs belongs to
the first batch of 21 NP-hard problems proved by Karp [12]. In the line of
research on the worst-case analysis of exact algorithms for NP-hard problems,
Maximum Independent Set, as one of the most fundamental problems, is
used to test the efficiency of new techniques of exact algorithms. There is a long
list of contributions to exact algorithms for Maximum Independent Set in
unweighted graphs [2,8,11,13,16,17]. Now it can be solved in O∗(1.1996n) time
and polynomial space [21]. If the maximum degree of the graph is 3, the running
time bound can be improved to O∗(1.0836n) [20].

In this paper, we will consider the weighted version of Maximum Indepen-

dent Set, called Maximum Weighted Independent Set, where each vertex
in the graph has a nonnegative weight and we are asked to find an independent
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set with the maximum total vertex weight. It has many applications in vari-
ous real-world problems. For example, the dynamic map labeling problem [1,15]
can be naturally encoded as Maximum Weighted Independent Set. Some
experimental algorithms, such as the algorithms in [14,19] have been developed
to solve instances from real world and known benchmarks. These algorithms
run fast even on large scale sparse instances but lack running time analysis.
For running time bounds, most known results were obtained via two counting
problems: Counting Maximum Weighted Independent Set and Count-

ing Weighted 2-SAT. Most of these counting algorithms can also list out
all independent sets and then we can find a maximum one by increasing only a
polynomial factor. Dahllöf et al. [4] presented an O∗(1.3247n)-time algorithm for
Counting Maximum Weighted Independent Set. Later, the running time
bound was improved to O∗(1.2431n) by Fomin et al. [6]. Counting Maximum

Weighted Independent Set can also be reduced to Counting Weighted

2-SAT, preserving the exponential part of the running time. For Counting

Weighted 2-SAT, the running time bound was improved from O∗(1.2561n) [5]
to O∗(1.2461n) [9] and then to O∗(1.2377n) [18]. Wahlström [18] also showed
that the running time bound could be further improved to O∗(1.1499n) and
O∗(1.2117n) if the maximum degree of the variables or the vertices in the graph
is bounded by 3 and 4, respectively. Most of the above algorithms use only poly-
nomial space. If exponential space is allowed, dynamic programming algorithms
based on tree decompositions, by using the treewidth bound on degree-3 graphs
in [7], may achieve a better running time bound O∗(1.1225n).

In this paper, we will focus on exact algorithms specifying for Maximum

Weighted Independent Set. We develop structural properties and design
reduction rules for the problem, and then design a fast exact algorithm based
on them. By using the measure-and-conquer technique, we can prove that the
algorithm runs in O∗(1.1443(0.624x−0.872)n) time and polynomial space, where
x is the average degree of the graph. For some sparse graphs, our result beats
the known bounds. For example, the running time bound of our algorithm in
graphs with the average degree at most three is O∗(1.1443n), which improves the
previously known bound of O∗(1.1499n) using polynomial space [18]. For graphs
with the average degree at most 3.68, the running time of our algorithm is strictly
better than the running time bound O∗(1.2117n) for Maximum Weighted

Independent Set in degree-4 graphs [18].
Due to the limited space, the proofs of lemmas marked with (*) were omitted,

which can be found in the full version of this paper [10].

2 Preliminaries

Let G = (V,E,w) denote an undirected vertex-weighted graph with |V | = n
vertices and |E| = m edges, where each vertex v ∈ V is associated with a
positive weight w(v). Although our graphs are undirected, we may use an arc to
denote the relation of the weights of the two endpoints of an edge. An arc −→uv
from vertex u to vertex v means that there is an edge between u and v and it
holds that w(u) ≥ w(v).
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Let V ′ ⊆ V be a vertex subset. We let w(V ′) =
∑

v∈V ′ w(v), and N(V ′)
denote the set of vertices not in V ′ but adjacent to at least one vertex in V ′. We
also denote d(V ′) = |N(V ′)| and N [V ′] = N(V ′) ∪ V ′. We use G[V ′] to denote
the subgraph of G induced by V ′ and use G−V ′ to denote G[V \V ′]. For a graph
G′, we use C(G′) to denote the set of connected components of G′. A chain is
an induced path such that the degree of each vertex except the two endpoints
of the path is exactly 2. One vertex is a chain-neighbor of another vertex if they
are connected by a chain. For a vertex-weighted graph, a maximum weighted
independent set is an independent set S such that w(S) is maximized among
all independent sets in the graph. We use S(G) to denote a maximum weighted
independent set in graph G and α(G) to denote the total vertex weight of S(G).
Our problem is defined below.

Maximum Weighted Independent Set (MWIS)

Input: An undirected vertex-weighted graph G = (V,E,w).
Output: the weight of a maximum weighted independent set in G., i.e., α(G).

2.1 Measure-and-Conquer

Our algorithm is a branch-and-search algorithm. We will use a measure to eval-
uate the time complexity. For a branching operation, if the measure decreases by
at least ai in the i-th substance, then we say the branching vector of the opera-
tion is [a1, a2, . . . , al]. The largest root of the function f(x) = 1 − ∑l

i=1 x−ai is
called the branching factor of the recurrence.

The measure-and-conquer technique, introduced in [8], is a powerful tool to
analyze branch-and-search algorithms. The main idea is to use a non-traditional
measure to evaluate the running time. Let ni denote the number of vertices of
degree i in the graph. We associate a cost δi ≥ 0 for each degree-i vertex in the
graph. Our measure p is defined as follows:

p :=
n∑

i=0

niδi. (1)

The cost δi in this paper is given by

δi=

⎧
⎪⎪⎨

⎪⎪⎩

0 if i ≤ 1
0.376 if i = 2
1 if i = 3
1 + 0.624(i − 3) if i ≥ 4.

(2)

We also define δ<−k>
i := δi − δi−k for each integer k ≥ 0. In our analysis,

we may use the following inequalities and equalities to simplify some arguments:
δ<−1>
i = δ<−1>

3 for i ≥ 4; δ3 ≥ 2.5δ2; 3δ2 ≥ δ3.
With the above setting, we know that when p ≤ 0, the instance contains

only degree-0 and degree-1 vertices and can be solved directly. We will design
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an algorithm with running time bound O∗(cp) for some constant c. If the initial
graph has degree at most 3, then we have that p ≤ n and then the running
time bound of the algorithm is O∗(cn). In general, if we have p ≤ f(n) for some
function f on n, then we can get a running time bound of O∗(cf(n)). We have
the following lemma for the relation between p and n.

Lemma 1. (*) For a graph of n vertices, if the average degree of the graph is
at most x, then the measure p of the graph is at most (0.624x − 0.872)n.

3 Reduction Rules

We first introduce reduction rules that will be applied to reduce the instance
directly by eliminating some local structures of the graph. Some reduction rules
may include a set S of vertices in the solution set directly. We use Mc to store
the weight of the vertices that have been included in the solution set. When a
set S of vertices is included in the solution set, we will remove N [S] from the
graph and update Mc by adding w(S).

3.1 General Reductions for Some Special Structures

We use several reduction rules based on unconfined vertices, twins, vertices with
a clique neighborhood, and heavy vertices. Some of these reduction rules were
introduced in [14] and [19].

Unconfined Vertices. A vertex v in G is called removable if α(G) = α(G− v),
i.e., there is a maximum weighted independent set in G that does not contain v.
We can say that a vertex v is removable if a contradiction is obtained from the
assumption that every maximum weighted independent set in G contains v. A
sufficient condition for a vertex to be removable in unweighted graphs has been
studied in [20]. We extend this concept to weighted graphs.

For an independent set S of G, a vertex u ∈ N(S) is called a child of S
if w(u) ≥ w(S ∩ N(u)). A child u is called an extending child if it holds that
|N(u) \ N [S]| = 1, and the only vertex v ∈ N(u) \ N [S] is called a satellite of S.

Lemma 2. (*) Let S be an independent set that is contained in any maximum
weighted independent set in G. Then every maximum weighted independent set
contains at least one vertex in N(u) \ N [S] for each child u of S.

We introduce a method based on Lemma 2 to find possible removable vertices.
Let v be an arbitrary vertex in the graph. After starting with S := {v}, we repeat
(1) until (2) or (3) holds:

(1) If S has some extending child in N(S), then let S′ be the set of satellites.
Update S by letting S := S ∪ S′.

(2) If S is not an independent set or there is a child u such that N(u)\N [S] = ∅,
then halt and conclude that v is unconfined.

(3) If |N(u) \ N [S]| ≥ 2 for all children u ∈ N(S), then halt and return Sv = S.
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Obviously, the procedure can be executed in polynomial time for any starting
set S of a vertex. If the procedure halts in (2), we say vertex v unconfined. If
the procedure halts in (3), then we say that the set Sv returned in (3) confines
vertex v and vertex v is also called confined. Note that the set Sv confining v is
uniquely determined by the procedure with starting set S := {v}. It is easy to
observe the following lemma.

Lemma 3. (*) Any unconfined vertex is removable.

Reduction Rule 1 (R1). If a vertex v is unconfined, remove v from G.

Twins. A set A = {u, v} of two non-adjacent vertices is called a twin if they
have the same neighbor set, i.e., N(u) = N(v).

Reduction Rule 2 (R2) [14]. If there is a twin A = {u, v}, delete v and
update the weight of u by letting w(u) := w(u) + w(v).

Clique Neighborhood. A vertex v has a clique neighborhood if the graph
G[N(v)] induced by the open neighbor set of v is a clique, which was introduced
as isolated vertices in [14].

Reduction Rule 3 (R3) [14]. If there is a vertex v having a clique neighbor-
hood and w(v) < w(u) holds for all u ∈ N(v), then remove v from the graph,
update the weight w(u) := w(u) − w(v) for all u ∈ NG(v), and add w(v) to Mc.

Heavy Vertices. A vertex v is called a heavy vertex if its weight is not less the
weight of the maximum weighted independent set in subgraph induced by the
open neighborhood of it, i.e., w(v) ≥ α(G[N(v)]).

Reduction Rule 4 (R4). If there is a heavy vertex v of degree at most 5, then
delete N [v] from the graph and add w(v) to Mc.

It is an effective rule that has been used in some experimental algorithms [14,
19]. In this paper, we will only check heavy vertices of degree bounded by 5 and
then it can be done in polynomial time. Note that degree-0 vertices will be
reduced as heavy vertices in this step.

3.2 Reductions Based on Degree-2 Vertices

For unweighted graphs, we have good reduction rules to deal with all degree-2
vertices (see the reduction rule in [3]). However, for weighted graphs, it becomes
much more complicated. The following R5 is generalized from the concept of
folding degree-2 vertices in unweighted graphs in [3], which has been also used
in some experimental algorithms [14,19]. We also consider more reduction rules
for degree-2 vertices in some complicated structures.
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Reduction Rule 5 (R5). If there is a degree-2 vertex v with two neigh-
bors {u1, u2} such that w(u1) + w(u2) > w(v) ≥ max{w(u1), w(u2)}, then
delete {v, u1, u2} from the graph G, introduce a new vertex v′ adjacent to
NG({v, u1, u2}) with weight w(v′) := w(u1) + w(u2) − w(v), and add w(v) to
Mc.

Reduction Rule 6 (R6) ([19]). If there is a path v1v2v3v4 such that dG(v2) =
dG(v3) = 2 and w(v1) ≥ w(v2) ≥ w(v3) ≥ w(v4), then remove v2 and v3 from
the graph, add an edge v1v4 if it does not exist, update the weight of v1 by letting
w(v1) := w(v1) + w(v3) − w(v2), and add w(v2) to Mc.

Reduction Rule 7 (R7) ([19]). If there is a 4-cycle v1v2v3v4 such that
dG(v2) = dG(v3) = 2 and w(v1) ≥ w(v2) ≥ w(v3), then remove v2 and v3,
update the weight of v1 by letting w(v1) := w(v1)+w(v3)−w(v2), and add w(v2)
to Mc.

Reduction Rule 8 (R8). If there is a 4-path v1v2v3v4v5 such that dG(v2) =
dG(v3) = dG(v4) = 2 and w(v1) ≥ w(v2) ≥ w(v3) ≤ w(v4) ≤ w(v5), then
remove v2 and v4, add edges v1v3 and v3v5, update the weight of v1 by letting
w(v1) := w(v1)+w(v3)−w(v2) and the weight of v5 by letting w(v5) := w(v5)+
w(v3) − w(v4), and add w(v2) + w(v4) − w(v3) to Mc.

Reduction Rule 9 (R9). For a 5-cycle v1v2v3v4v5 such that dG(v2) =
dG(v3) = dG(v5) = 2, min{d(v1), d(v4)} ≥ 3, and w(v1) ≥ w(v2) ≥ w(v3) ≤
w(v4),

(1) if w(v3) > w(v5), then remove v5, update the weight of vi by letting w(vi) :=
w(vi) − w(v5) for i = 1, 2, 3, 4, and add 2w(v5) to Mc.

(2) if w(v3) ≤ w(v5), then remove v2 and v3, update the weight of v1 by letting
w(v1) := w(v1) − w(v2), the weight of v4 by letting w(v4) := w(v4) − w(v3)
and the weight of v5 by letting w(v5) := w(v5)−w(v3), and add w(v2)+w(v3)
to Mc.

Reduction Rule 10 (R10). For a 6-cycle v1v2v3v4v5v6 such that dG(v2) =
dG(v3) = dG(v5) = dG(v6) = 2, w(v1) ≥ max{w(v2), w(v6)}, w(v4) ≥
max{w(v3), w(v5)}, and w(v6) ≥ w(v5),

(1) if w(v2) ≥ w(v3), then remove v5 and v6, and update the weight of v2 by
letting w(v2) := w(v2) + w(v6) and the weight of v3 by letting w(v3) :=
w(v3) + w(v5);

(2) if w(v2) < w(v3), then remove v6, add edge v1v5, and update the weight of
v2 by letting w(v2) := w(v2) + w(v6), the weight of v3 by letting w(v3) :=
w(v3) + w(v5), and the weight of v5 by letting w(v5) := w(v6) + w(v3) −
max{w(v2) + w(v6), w(v3) + w(v5)}.

3.3 Reductions Based on Small Cuts

We also have some reduction rules to deal with vertex-cuts of size one or two,
which can even be used to design a polynomial-time divide-and-conquer algo-
rithm. However, a graph may not always have vertex-cuts of small size.
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Reduction Rule 11 (R11). For a vertex-cut {u} with a connected component
G∗ in G − u such that 2δ3 − δ2 ≤ ∑

v∈G∗ δdG(v) ≤ 10,

(1) if w(u) + α(G∗ − N [u]) ≤ α(G∗), then remove G∗ and {u} from G and add
α(G∗) to Mc;

(2) if w(u)+α(G∗ −N [u]) > α(G∗), then remove G∗ from G, update the weight
of u by letting w(u) := w(u)+α(G∗ −N [u])−α(G∗), and add α(G∗) to Mc.

Lemma 4. (*) Let {u, u′} be a vertex-cut of size two in G and G∗ be a connected
component in G−{u, u′}, where we assume w.l.o.g. that α(G∗ −N [u]) ≥ α(G∗ −
N [u′]). We construct a new graph G′ from G as follows: remove G∗; add three
new vertices {v1, v2, v3} with weight w(v1) = α(G∗ −N [u′])−α(G∗ −N [{u, u′}]),
w(v2) = α(G∗ −N [u])−α(G∗ −N [{u, u′}]) and w(v3) = α(G∗)−α(G∗ −N [u]),
and add five new edges uv1, v1v2, v2u

′, uv3 and u′v3. It holds that

α(G) = α(G′) + α(G∗ − N [{u, u′}]).

Reduction Rule 12 (R12). For a vertex-cut {u, u′} of size two with a con-
nected component G∗ in G − {u, u′} such that 2δ3 + δ2 ≤ ∑

v∈G∗ δdG(v) ≤ 10,
we construct the graph G′ in Lemma 4, replace G with G′, and add α(G∗ −
N [{u, u′}]) to Mc.

3.4 Analyzing Reduction Rules

It is easy to see that each application of our reduction rules can be executed in
polynomial time. We also show that

Lemma 5. The measure p will not increase after applying any reduction rule.

Definition 1. An instance is reduced, if no reduction rule can be applied.

Lemma 6. (*) In a reduced instance, any two degree-2 vertices in different
chains have at most one common chain-neighbor of degree at least 3, and each
cycle contains at least three vertices of degree ≥ 3.

Lemma 7. (*) For a triangle C in a reduced instance, each vertex in C is a
vertex of degree ≥ 3 and it has a chain-neighbor of degree at least 3 not in C.

4 Branching Rules

4.1 Two Branching Rules

We have two branching rules. The first branching rule is to branch on a vertex
v by considering two cases: (i) there is a maximum weighted independent set in
G which does not contain v; (ii) every maximum weighted independent set in
G contains v. For the former case, we simply delete v from the graph. For the
latter case, by Lemma 2 we know that we can include the set Sv confining v in
the independent set. So we delete N [Sv] from the graph.
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Branching Rule 1 (Branching on a vertex). Branch on a vertex v to gen-
erate two sub instances by either deleting v from the graph or deleting N [Sv]
from the graph and adding w(Sv) to Mc.

Since each independent set contains at most two vertices in each 4-cycle, we
have the second rule.

Branching Rule 2 (Branching on a 4-cycle). Branch on a 4-cycle v1v2v3v4
to generate two sub instances by deleting either {v1, v3} or {v2, v4} from G.

4.2 The Analysis and Some Properties

The hardest part is to analyze how much we can decrease the measure in each
sub-branch of a branching operation. Usually, we need to deeply analyze the local
graph structure and use case-analysis. Here we try to summarize some common
properties. The following notations will be frequently used in the whole paper.

Let S be a vertex subset in a reduced graph G. We use G−S to denote the
graph after deleting S from G and iteratively applying R1 to R4 until none of
them can be applied. We use RS to denote the set of deleted vertices during
applying R1 to R4 on G − S. Then G−S = G − (S ∪ RS). We also use eS to
denote the number of edges between S ∪ RS and V \ (S ∪ RS) in G. We have
the following lemmas for some bounds on p(G) − p(G−S). Note that G−S may
not be a reduced graph because of reduction rules from R5 to R12 and we may
further apply reduction rules to further decrease the measure p.

Lemma 8. (*) It holds that

p(G) − p(G−S) ≥
∑

u∈S∪RS

δdG(u) + eSδ<−1>
3 . (3)

In some cases, we can not use the bound in (3) directly, since we may not know
the vertex set RS . So we also consider some special cases and relaxed bounds.

Lemma 9. (*) Let S = {v} be a set of a vertex of degree ≥ 3. We have that

p(G) − p(G−S) ≥ δd(v) +
∑

u∈N(v)

δ<−1>
d(u) + q2δ

<−1>
3 ,

where q2 is the number of degree-2 vertices in N(v).

Lemma 10. (*) If S ∪ RS contains N [v] for some vertex v of degree ≥ 3, then
we have that

p(G) − p(G−S) ≥
∑

u∈N [v]

δd(u) + q2δ
<−1>
3 ,

where q2 is the number of degree-2 vertices in N(v).

Recall that we use C(G′) to denote the set of connected components of the
graph G′. We can easily observe the following lemma, which will be used to prove
several bounds on p(G) − p(G−S).



Maximum Weighted Independent Set on Sparse Graphs 625

Lemma 11. Let S be a vertex subset. Let S′ be a subset of S ∪ RS and R′ =
S ∪RS \S′. The number of edges between S ∪RS and V \ (S ∪RS) is eS, and the
number of edges between S′ and V \ S′ is k. For any component H ∈ C(G[R′]),
the number of edges between S′ and H is lH and the number of edges between H
and N(S ∪ RS) is rH . We have that

k − eS =
∑

H∈C(G[R′])

(lH − rH).

Furthermore, for any component H ∈ C(G[R′]) containing only degree-2 vertices,
it holds that lH − rH = 0 or 2.

Lemma 12. (*) For any subset S′ ⊆ S∪RS with k edges between S′ and V \S′,
it holds that

p(G) − p(G−S) ≥
∑

u∈S′
δdG(u) + eSδ<−1>

3 +

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, k − eS ≤ 0
δ3, k − eS = 1
δ2, k − eS = 2
δ3, k − eS = 3
2δ2, k − eS > 3.

Lemma 13. (*) Assume that a reduced graph G has a maximum degree 3 and
has no 3 or 4-cycles. For any subset S′ ⊆ S ∪ RS with k edges between S′ and
V \ S′, if the diameter of the induced graph G[S′] is 2, then it holds that either
p(G) − p(G−S) > 10 or

p(G) − p(G−S) ≥
∑

u∈S′
δdG(u) + 3δ<−1>

3 +

⎧
⎪⎪⎨

⎪⎪⎩

0, k ≤ 3
δ<−1>
3 , k = 4

2δ2, k = 5
δ2 + δ3, k = 6.

Lemma 14. (*) Assume that a reduced graph G has a maximum degree 3, and
each cycle C in it contains at least five vertices, where at least four vertices are
degree-3 vertices. For any subset S′ ⊆ S∪RS with k edges between S′ and V \S′,
if each path P in the induced graph G[S′] contains either at most three vertices
or at most two degree-3 vertices, then it holds either p(G) − p(G−S) > 10 or

p(G) − p(G−S) ≥
∑

u∈S′
δdG(u) +

{
kδ<−1>

3 , k ≤ 5
δ3 + 2δ2 + 3δ<−1>

3 , k = 6.

5 The Algorithm

Now we describe the main steps of the algorithm. When the algorithm executes
one step, we assume that all previous steps can not be applied.

Step 1 (Applying Reductions). If the instance is not reduced, iteratively
apply reduction rules in order, i.e., when one reduction rule is applied, no reduc-
tion rule with a smaller index can be applied on the graph.
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Step 2 (Solving Small Components). If there is a connected component
G∗ of G such that p(G∗) ≤ 10, solve the component G∗ directly and return
α(G − G∗) + α(G∗).

Step 3 (Branching on Vertices of Degree ≥ 5). If there is a vertex v with
degree d(v) ≥ 5, then branch on v with Branching Rule 1 by either excluding v
from the independent set or including Sv in the independent set.

Lemma 15. (*) Step 3 followed by applications of reduction rules creates a
branching vector covered by [5.368, 7.248].

Step 4 (Branching on 4-Cycles with Chords). If there is a 4-cycle C =
v1v2v3v4 with a chord v1v3 ∈ E, then branch on the 4-cycle with Branching
Rule 2 by excluding either {v1, v3} or {v2, v4} from the independent set.

Lemma 16. (*) Step 4 followed by applications of reduction rules cre-
ates a branching vector covered by one of [3δ4 + δ<−1>

3 , 4δ4 + 2δ<−1>
3 ] =

[5.496, 7.744] and [4δ4, 2δ4 + 2δ3 + 2δ2] = [6.496, 6].

Step 5 (Branching on Degree-4 Vertices). If there is a degree-4 vertex v,
then branch on it with Branching Rule 1 by either excluding v from the indepen-
dent set or including Sv in the independent set.

Lemma 17. (*) Step 5 followed by applications of reduction rules creates
a branching vector covered by one of [5.624, 5.624], [5.248, 6], [4.872, 6.624],
[4.496, 7.248], and [4.12, 7.872].

Step 6 (Branching on Other 4-Cycles). If there is a 4-cycle C = v1v2v3v4,
then branch on the 4-cycle with Branching Rule 2 by excluding either {v1, v3} or
{v2, v4} from the independent set.

Lemma 18. (*) Step 6 followed by applications of reduction rules creates a
branching vector covered by [6δ3 − 2δ2, 6δ3 − 2δ2] = [5.248, 5.248].

Step 7 (Branching on Triangles). If there is a triangle C = v1v2v3, where
we assume without loss of generality that w(v1) ≥ max{w(v2), w(v3)} and v1 is
chain-adjacent to a degree-3 vertex u 
= v2, v3, then branch on u with Branching
Rule 1.

Lemma 19. (*) Step 7 followed by applications of reduction rules creates a
branching vector covered by one of [6δ3 − 3δ2, 7δ3 + δ2] = [4.872, 7.376] and
[6δ3 − 2δ2, 5δ3 + 2δ2] = [5.248, 5.752].

Step 8 (Branching on Cycles Containing Three Degree-3 Vertices). If
there is a cycle C containing exactly three degree-3 vertices {v1, v2, v3}, where we
assume without loss of generality that v1 is chain-adjacent to a degree-3 vertex
u 
= v2, v3, then branch on u with Branching Rule 1.

Lemma 20. (*) Step 8 followed by applications of reduction rules can create a
branching vector covered by one of [6δ3 − 4δ2, 8δ3 − 2δ2] = [4.496, 7.248], [6δ3 −
3δ2, 6δ3 − δ2] = [4.872, 5.624], and [6δ3 − 2δ2, 6δ3 − 2δ2] = [5.248, 5.248].



Maximum Weighted Independent Set on Sparse Graphs 627

Step 9 (Branching on Degree-3 Vertices with Two Degree-2 Neigh-
bors). If there is degree-3 vertex u having two degree-2 neighbors and one degree-
3 neighbor v, then branch on v with Branching Rule 1.

Lemma 21. (*) Step 9 followed by applications of reduction rules creates a
branching vector covered by one of [4δ3 −δ2, 8δ3 −δ2] = [3.624, 7.624], [4δ3, 8δ3 −
4δ2] = [4, 6.496], and [4δ3 + δ2, 6δ3] = [4.376, 6].

Step 10 (Branching on Degree-3 Vertices of a Mixed Case). If a degree-
3 vertex u without degree-3 neighbors is chain-adjacent to a degree-3 vertex v with
exactly two degree-3 neighbors, then branch on v with Branching Rule 1.

Lemma 22. (*) Step 10 followed by applications of reduction rules creates a
branching vector covered by [4δ3, 8δ3 − 2δ2] = [4, 7.248].

Step 11 (Branching on Degree-3 Vertices With At Least Two Degree-
3 Neighbors). If there is a connected component H containing a degree-3 vertex
with at least two degree-3 neighbors, we let u be the vertex of the maximum weight
in H and let v be a degree-3 neighbor of u, and branch on v with Branching Rule
1.

Lemma 23. (*) Step 11 followed by applications of reduction rules creates a
branching vector covered by one of [4δ3 − δ2, 8δ3 − δ2] = [3.624, 7.624], and
[4δ3, 8δ3 − 4δ2] = [4, 6.496].

Step 12 (Branching on Other Degree-3 Vertices). Pick up an arbitrary
degree-3 vertex v and branch on it with Branching Rule 1.

Lemma 24. (*) Step 12 followed by applications of reduction rules creates a
branching vector covered by [4δ3 + 6δ2, 4δ3 + 6δ2] = [6.256, 6.256].

It is easy to see that above steps cover all the cases. Among all the branching
vectors, the bottleneck ones are [4δ3, 8δ3 − 4δ2] = [4, 6.496] in Lemma 21, [4δ3 +
δ2, 6δ3] = [4.376, 6] in Lemma 21, and [4δ3, 8δ3 − 4δ2] = [4, 6.496] in Lemma 23.
All of them have a branching factor of 1.14427. So we get that

Theorem 1. Maximum Weighted Independent Set can be solved in
O∗(1.1443p) time and polynomial space.

By Lemma 1 and Theorem 1, we get that

Corollary 1. Maximum Weighted Independent Set in graphs with average
degree x can be solved in O∗(1.1443(0.624x−0.872)n) time and polynomial space.

Let x = 3 in Lemma 1, we get that p ≤ n and the following result.

Theorem 2. Maximum Weighted Independent Set in graphs with the
average degree at most 3 can be solved in O∗(1.1443n) time and polynomial
space.
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