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Abstract. The conditional fractional strong matching preclusion num-
ber of a graph G is the minimum size of F such that F ⊂ V (G) ∪ E(G)
and G−F has neither a fractional perfect matching nor an isolated ver-
tex. In this paper, we obtain the conditional fractional strong matching
preclusion number for burnt pancake graphs and a subset of the class of
pancake-like graphs.
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1 Introduction

Parallel computing is an important area of computer science and engineering.
The underlying topology of such a parallel machine or a computer network is the
interconnection network. Computing nodes are processors where the resulting
system is a multiprocessor supercomputer, or they can be computers in which
the resulting system is a computer network. It is unclear where the computing
future is headed. It may lead to more research in multiprocessor supercomputers,
physical networks or networks in the cloud. Nevertheless, the analysis of such
networks will always be important. One important aspect of network analysis
is fault analysis, that is, the study of how faulty processors/links will affect
the structural properties of the underlying interconnection networks, or simply
graphs.

All graphs considered in this paper are undirected, finite and simple. We refer
to the book [3] for graph theoretical notation and terminology not described here.
For a graph G, let V (G), E(G), and (u, v) (uv for short) denote the set of vertices,
the set of edges, and the edge whose end vertices are u and v, respectively. For
any subset X of V (G) or E(G), let G[X] denote the subgraph induced by X.
We use G−F to denote the subgraph of G obtained by removing all the vertices
and (or) the edges of F . Some portions of this paper containing definitions are
reused unchanged from [19].
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1.1 Matchings

A perfect matching in a graph is a set of edges such that each vertex is incident
to exactly one of them, and an almost perfect matching is a set of edges such
that each vertex but one is incident to exactly one edge in the set, and the
remaining vertex is incident to none. We can define a perfect matching as an
indicator function as follows: let S be a set of edges in G. Then fS is the indicator
function of S, with fS : E(G) → {0, 1} such that fS(e) = 1 iff e ∈ S. Let δ′(v)
be the set of edges for which one end is v. Then M is a perfect matching of G if∑

e∈δ′(v) fM (e) = 1 for each vertex v ∈ G
A standard relaxation from an integer setting to a continuous setting is

to extend the codomain of the indicator function from {0, 1} to [0, 1]. Let
f : E(G) → [0, 1]. Then f is a fractional perfect matching if

∑
e∈δ′(v) f(e) = 1

for each vertex v ∈ G. We note that the specification that such a matching be
“perfect” is somewhat redundant, as unlike a perfect matching, a fractional per-
fect matching can exist on odd graphs; the concept of fractional almost perfect
matchings is not really necessary to consider or study.

Proposition 1. [23] The graph G has a fractional perfect matching if and only
if there is a partition {V1, V2, . . . , Vn} of the vertex set of V (G) such that, for
each i, the graph G[Vi] is either K2 or a Hamiltonian graph on odd number of
vertices.

Any graph with such a decomposition can be trivially assigned a fractional
perfect matching by assigning each K2 of the decomposition a weight of 1 and
each edge in an odd cycle a weight of 1

2 , then replacing all removed edges. We call
such a fractional perfect matching nice. For notational convenience, we assume
that if a graph G has a fractional perfect matching f , then f is nice. Furthermore,
if a nice fractional perfect matching contains an edge with weight 1, we refer to
it as a complete edge, and if it contains an edge with weight 1

2 , we refer to it as
a half edge. Finally, if we claim that any vertex u or edge vw is in an odd cycle
in a fractional perfect matching, then we mean u is in a half edge with each of
two other vertices, and that vw is a half edge.

1.2 Matching Preclusion

In [1], Brigham et al. first introduced the concept of matching preclusion. A set
of edges F of G is called a matching preclusion set if G − F has neither perfect
matchings nor almost-perfect matchings, and it is called an optimal matching
preclusion set if |F | is minimal. Then if F1 is an optimal matching preclusion set,
any set F2 for which |F2| < |F1| is not a matching preclusion set. The matching
preclusion number of G, denoted by mp(G), is the cardinality of an optimal
matching preclusion set. A set F of edges and vertices of G is a strong matching
preclusion set (SMP set for short) if G − F has neither perfect matchings nor
almost-perfect matchings, and it is called an optimal strong matching preclusion
set if F is one with the smallest size. The strong matching preclusion number
(SMP number for short) of G, denoted by smp(G), is the cardinality of an
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optimal SMP set. An optimal SMP set is trivial if G − F is even and there is a
vertex v such that every vertex in F is a neighbour of v and every edge in F is
incident to v. The concept of strong matching preclusion was proposed by Park
and Ihm in 2011. We refer the readers to [4,7–9,16,20,22] for further details and
additional references.

Recently, Liu and Liu in [18] introduced generalizations of the above concepts.
An edge subset F of G is a fractional matching preclusion set (FMP set for short)
if G−F has no fractional perfect matchings. The fractional matching preclusion
number (FMP number for short) of G, denoted by fmp(G), is the minimum
size of FMP sets of G, that is, fmp(G) = min{|F | : F is an FMP set}. A
set F of edges and vertices of G is a fractional strong matching preclusion set
(FSMP set for short) if G−F has no fractional perfect matchings. The fractional
strong matching preclusion number (FSMP number for short) of G, denoted by
fsmp(G), is the minimum size of FSMP sets of G, that is, fsmp(G) = min{|F | :
F is an FSMP set}. A FMP (FSMP) set of minimal cardinality is called optimal,
and an optimal FMP (FSMP) set F is trivial if G−F contains an isolated vertex
v (δ(v) = 0). If F is a trivial FMP (FSMP) set, every element in F is adjacent
or incident to some v which is isolated in G−F . A graph G is fractional strongly
super matched if every optimal FSMP set is trivial.

We can further constrain the conditions for FSMP by requiring that G−F has
no isolated vertices. An edge and vertex subset F of G is a conditional fractional
strong matching preclusion set (CFSMP set for short) if G−F has neither a frac-
tional perfect matching, nor an isolated vertex. The conditional fractional strong
matching preclusion number (CFSMP number for short) of G is the minimum
size of a CFSMP set of G, that is, cfsmp(G) = min {|F | : F is a CFSMP set}. A
CFSMP set of minimal cardinality is called optimal, and a CFSMP set F is triv-
ial if the graph G−F contains some vertices u, v, w for which δ(u) = 1, δ(v) = 1,
and uw, vw ∈ E(G − F ). A graph G is conditionally fractional strongly super
matched if every optimal CFSMP set is trivial.

The pancake graphs and burnt pancake graphs, introduced in [11], are two
well-studied interconnection networks. Although these graphs have nice struc-
tures, it seems that some problems in them are difficult and are still open, such
as optimal routing problem. However, researchers have found that they are excel-
lent candidates as interconnection networks. Some papers on the pancake graphs
include [2,6,10,14,17,21,24] and papers on the burnt pancake graphs include [5],
[6,12,13,15]. In particular, in [12], the burnt pancake graphs are used for genome
analysis. In [19], the FSMP number of general pancake and burnt pancake graphs
was found (using the same inductive proof strategy we use here).

The pancake-like graphs are a broad class of graphs which contain the pan-
cake graphs and burnt pancake graphs. Although the main result of this paper
applies to burnt pancake graphs, the result also extends to a subset of pancake-
like graphs.

In this paper, we study the conditional fractional strong matching preclusion
problems for the pancake graphs and obtain the following main result.
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Theorem 1. Let n ≥ 3 be an integer, and let Bn be the burnt pancake graph
of dimension n. Then cfsmp(Bn) = 2n − 2, and Bn is conditionally fractional
strongly super matched.

Theorem 2. Let L be an arbitrary pancake-like graph composed of n ≥ 3 sub-
graphs, such that every subgraph is k−1-regular with k ≥ 4 and has girth at least
5. If every subgraph is fractional strongly super matched and conditionally frac-
tional strongly super matched, then L must be fractional strongly super matched
and conditionally fractional strongly super matched.

The rest of this paper is organized as follows. In Sect. 2, we provide some
definitions and known results regarding the pancake graphs and burnt pancake
graphs, followed by the pancake-like graph class. In Sect. 3, we note the condi-
tional fractional strong matching preclusion of B3, to serve as a base case. In
Sect. 4, we discuss the proof technique.

2 Preliminaries

We first review the construction of pancake and burnt pancake graphs, as stated
in [19], and present some related results.

The pancake graph of dimension n, denoted by Pn, has as its vertex set the
set of all n! permutations on {1, 2, 3, . . . , n}. Two vertices [a1, a2, a3, . . . , an] and
[b1, b2, b3, . . . , bn] are adjacent if there exists an integer k with 2 ≤ k ≤ n such
that ai = bk+1−i for every i with 1 ≤ i ≤ n, and ai = bi for k + 1 ≤ i ≤ n;
in other words, we take the “substring” a1, a2, a3, . . . , an and reverse the order.
The edge generated by such an adjacency is called a k-edge. It follows directly
from the definition that Pn is (n−1)-regular. Although Pn is vertex-transitive, it
is not edge-transitive except for n = 3. (However, it is not difficult to determine
the edge-transitive classes.) Indeed, let Hi be the subgraph of Pn induced by
the vertices with i in the nth position, which is isomorphic to Pn−1. We call Hi

to be a copy of Pn. We remark that Pn can be decomposed into n copies, i.e.,
P 1

n−1, P
2
n−1, . . . , P

n
n−1. We note that P2 is a complete graph with two vertices,

P3 is the cycle with six vertices and P4 is given in Fig. 1. The edges between
different copies are n-edges, which form a perfect matching in Pn. To highlight
this property, we will refer to these edges as cross edges, and if uv is a cross
edge, we call it the cross edge of u, and call v the cross neighbour of u. It is
easy to see from the definition that if u is a vertex in Hi, then it has n − 2
neighbours in Hi (the set of these neighbours is denoted by NHi

(u)), and the
n − 1 cross neighbours of the vertices in {u} ∪ NHi

(u) are in different Hj ’s (one
in each). It is also easy to see that there are exactly (n − 2)! independent cross
edges between two different Hi’s. Hence by an inductive argument we get that
for each k, the set of k-edges forms a perfect matching in Pn. So the edges of Pn

can be partitioned into n − 1 edge-disjoint perfect matchings. See Fig. 1 for P4,
the pancake graph of dimension 4.

The definition of the burnt pancake graphs is related to the definition of the
pancake graphs. Let n ≥ 3. The burnt pancake graph of dimension n, denoted
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by Bn, is defined similarly to the pancake graphs. We say the list [a1, a2, . . . , an]
is a signed permutation on {1, 2, 3, . . . , n} if [|a1|, |a2|, . . . , |an|] is a permutation
on {1, 2, 3, . . . , n}. For notational simplicity, which is customary for this class
of graphs, we use the notation ā instead of −a. The burnt pancake graph Bn

has the set of signed permutations on {1, 2, 3, . . . , n} as its vertex set. Two
vertices [a1, a2, . . . , an] and [b1, b2, . . . , bn] are adjacent if there exists a k with
1 ≤ k ≤ n such that ai = bk+1−i for every i with 1 ≤ i ≤ k, and ai = bi for
k+1 ≤ i ≤ n. The edge generated by such an adjacency is again called a k-edge.
It follows directly from the definition that Bn is n-regular with n!2n vertices.
We remark that Bn is vertex transitive but not edge transitive. Indeed, let Ha

be the subgraph of Bn induced by the vertices with a in the nth position where
a ∈ {1, 2, 3, . . . , n}∪ {1̄, 2̄, 3̄, . . . , n̄}, which is isomorphic to Bn−1. We call Ha to
be a copy of Bn. Like Pn, Bn is recursive in structure and can be decomposed into
2n copies, i.e., B1

n−1, B
2
n−1, . . . , B

n
n−1, B

1̄
n−1, B

2̄
n−1, . . . , B

n̄
n−1 We note that B1 is

a complete graph with two vertices, B2 is the cycle with eight vertices and B3 is
given in Fig. 2. The n-edges are the edges between different Ha’s, and they form
a perfect matching in Bn. Again we will refer to the n-edges as cross edges, and
if uv is a cross edge, we call it the cross edge of u, and call v the cross neighbour
of u. It is easy to see from the definition that if u = [a1, a2, . . . , an] is a vertex in
Han

, then it has n−1 neighbours in Han
, and the cross neighbours of the vertices

in {u}∪Nan
(u) are in different Hj ’s. Indeed, the cross neighbour of u is in Ha1 ,

and the cross neighbours of the neighbours of u are in Ha1 ,Ha2 , . . . , Han−1 . It is
easy to see that there are exactly (n − 2)!2n−2 independent cross edges between
Ha and Hb if a = b, and there are no edges between Ha and Hā. We note that
for each k, the set of k- edges forms a perfect matching in Bn. So the edges of
Bn can be partitioned into n-edge-disjoint perfect matchings. See Fig. 2 for B3,
the burnt pancake graph of dimension 3.

From the definition of Pn and Bn, the following observations are immediate.

Proposition 2. For n ≥ 4, the cross neighbours of two adjacent vertices in a
copy of Pn are in different copies.

Proposition 3. For n ≥ 3, the cross neighbours of two adjacent vertices in a
copy of Bn are in different copies.

From [19], we have the following results on the FSMP numbers of pancake
and burnt pancake graphs:

Theorem 3. [19] Let n ≥ 4 be an integer, and let Pn be the pancake graph of
dimension n. Then fsmp(Pn) = n − 1, and every optimal FSMP set of Pn is
trivial when n ≥ 5.

Directly, for integer n ≥ 5, Pn is fractional strongly super matched.

Theorem 4. [19] Let n ≥ 3 be an integer, and let Bn be the burnt pancake
graph of dimension n. Then fsmp(Bn) = n, and every optimal FSMP set of Bn

is trivial.
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Fig. 1. The pancake graph of dimension 4.

Fig. 2. The burnt pancake graph of dimension 3.
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Directly, for integer n ≥ 3, Bn is fractional strongly super matched.
A pancake-like graph is any graph G which exhibits the property that it has

a partition {V1, V2, . . . , Vn} of the vertex set of V (G) such that, for each i, the
graph G[Vi] satisfies the following two properties: (i) each vertex is incident to
exactly one cross edge, and (ii) the cross neighbours of two adjacent vertices are
not in the same vertex subset in the partition, where a cross edge is any edge in
the set E(G) − E(G[V1]) − E(G[V2]) − . . . − E(G[Vn]) and cross neighbors are
any two vertices a, b for which ab is a cross edge. We further define each G[Vi] as
a subgraph of G. Clearly, this definition aims to replicate the top-level structure
of pancake and burnt pancake graphs.

3 Results for B3

The following results are important in our analysis.

Lemma 1. [19] Let G be a fractional strongly super matched graph with δ(G) ≥
2. If F is a trivial FSMP set of G and G − F has an isolated vertex v, then
G − F − v has a fractional perfect matching.

We also prove an analogous result for conditionally fractional strongly super
matched graphs.

Lemma 2. Let a conditionally fractional strongly super matched and fractional
strongly super matched graph G with girth at least 5 and δ(G) = k have a trivial
CFSMP set F such that G − F contains some vertices u, v, w for which δ(u) =
1, δ(v) = 1, and uw, vw ∈ E(G − F ). Then G − F − u and G − F − v have
fractional perfect matchings.

Proof. Since u and v are transitive, we prove for G − F − u. Let F contain at
least one vertex x adjacent to u. The graph G − (F − x) must either contain an
isolated vertex or contain a fractional perfect matching. If G − (F − x) contains
an isolated vertex, since G − F does not contain an isolated vertex, the isolated
vertex must be x, which is adjacent to u. Then G − (F − x) must contain a
fractional perfect matching f . Since δ(v) = 1, then f(vw) = 1, so f(ux) = 1.
Then G − (F − x) − u − x = G − F − u has a fractional perfect matching.

If F does not contain at least one vertex adjacent to u, then we let Fu be
the set of edges in F adjacent to u. Then G − Fu − u = G − u which must
have a fractional perfect matching, so we consider G − u − (F − Fu). Because
|u∪(F −Fu)| = k−1, we have that G−u−(F −Fu) must have either a fractional
perfect matching or an isolated vertex, but since v is adjacent to w, there are
no isolated vertices. Then G − u − (F − Fu) = G − F − u must have a fractional
perfect matching.

We use the following result to find that fractionally strongly conditionally
super matched graphs with isolated vertices removed must have a fractional
perfect matching.
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Lemma 3. Let a fractionally strongly conditionally super matched graph G of
degree k ≥ 3 have a fault set F ⊂ V (G)∪E(G) with |F | ≤ 2k − 2. If G−F does
not have an isolated vertex or three vertices u, v, w for which δ(u) = 1, δ(v) = 1,
and uw, vw ∈ E(G − F ), then it must have a fractional perfect matching.

Proof. The proof follows from the definition of fractionally strongly conditionally
super matched. For such a graph, every optimal CFSMP set of size 2k − 2 must
be trivial, so the set F must either be a trivial CFSMP set, a non-CFSMP set
which fails to be a CFSMP set by isolating a vertex, or a non-CFSMP set which
fails to be a CFSMP set by leaving a fractional perfect matching.

We use the next result to show that graphs must effectively “concentrate”
faults towards one of two categories in order to preclude a fractional perfect
matching; if faults are allocated towards isolating a vertex, there are not enough
faults left over to create the 3-vertex precluding structure.

Lemma 4. Let a conditionally fractional strongly super matched k-regular graph
G of girth at least 5 have a fault set F ⊆ V (G) ∪ E(G) with |F | = 2k − 2. Then
if G − F contains an isolated vertex e, the graph G − (F − {e}) must contain a
fractional perfect matching.

Proof. There are two cases.
Case 1. G−F contains two isolated vertices, e and g. Then e and g are either

adjacent or they share at most one common neighbor. If they are adjacent, then
there are k faults adjacent or incident to each of e and g with at most one of
those faults shared (the edge eg). Since 2k − 1 > 2k − 2, this can not occur. If
they share a common neighbor, the minimum fault set size required is the same.
If they do not share a common neighbor, then |F | ≥ 2k. Thus G − F contains
at most one isolated vertex.

Case 2. G−F −{e} contains three vertices u, v, w for which δ(u) = 1, δ(v) =
1, and uw, vw ∈ E(G−F −{e}). There are k−1 faults adjacent to u and another
disjoint k − 1 faults adjacent to v in G. The vertex e can be adjacent or incident
to at most two of the faults adjacent or incident to either u or v, so an additional
k −2 faults are adjacent or incident to e. Then |F | ≥ 3k −4, and 3k −4 > 2k −2
for k ≥ 3, so this construction can not be made.

Finally, we prove the base case result on B3 using a computer check.

Lemma 5. cfsmp(B3) = 4. Moreover, every optimal CFSMP set of B3 is triv-
ial, that is, B3 is fractional strongly super matched.

Proof. This was verified by computer check. Due to the relatively small size of
the minimum CFSMP set and the graph B3, this was checked in about 1 day
on a conventional computer. The program was written in Python and used the
NetworkX package for graph analysis and the SciPy package for a linear program
solver to check for fractional perfect matchings. The verification was completed
by looping through all possible fault sets on B3 of size 4. After optimizing for
vertex transitivity, there are 1, 302, 609 such fault sets.
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We remark that a similar result for P5 likely exists; however, due to the size
of the graph, the linear optimization problem requires much longer to compute
for each fault set case, and there are more cases for fault sets. This may be
feasible by using a computer cluster.

4 The Main Results

First we note the following result.

Theorem 5. [19] Let H be a (k − 1)-regular graph with k ≥ 4. Let G be
a k-regular graph constructed from at least three copies of H by adding edges
between the copies, such that G satisfies the following properties: (i) each vertex
is incident to exactly one cross edge, and (ii) the cross neighbours of two adjacent
vertices in a copy of H are in different copies. Then if H is fractional strongly
super matched, G is fractional strongly super matched.

Although this theorem states that G must be composed of copies of H, the
proof of this theorem does not actually require every subgraph to be isomorphic.
Thus, we restate the theorem as follows.

Theorem 6. Let H1,H2, . . . , Hn be a set of (k − 1)-regular graphs with k ≥ 4
and n ≥ 3. Let G be a k-regular graph constructed from all Hi with 1 ≤ i ≤
n by adding edges between the subgraphs, such that G satisfies the following
properties: (i) each vertex is incident to exactly one cross edge, and (ii) the
cross neighbours of two adjacent vertices in any Hi are in different copies for
1 ≤ i ≤ n. Then if every H1,H2, . . . , Hn is fractional strongly super matched, G
is fractional strongly super matched.

This modified theorem allows us to extend our main result from burnt pan-
cake graphs to pancake-like graphs.

In this section, we use the same notation as in the previous sections, but in
a more general context. Suppose G is a graph constructed from disjoint copies
of a graph H by adding edges between the copies. If uv is an edge joining two
vertices from different copies of H, we call it a cross edge, and say u and v are
cross neighbours.

Theorem 7. Let H1,H2, . . . , Hn be a set of (k − 1)-regular graphs with k ≥ 4
and n ≥ 3, and girth at least 5. Let G be a k-regular graph constructed from all
Hi with 1 ≤ i ≤ n by adding edges between the subgraphs, such that G satisfies
the following properties: (i) each vertex is incident to exactly one cross edge, and
(ii) the cross neighbours of two adjacent vertices in a copy of H are in different
copies. Then if every H1,H2, . . . , Hn is fractional strongly super matched and
conditionally fractional strongly super matched, G is fractional strongly super
matched and conditionally fractional strongly super matched.

We omit the proof in this extended abstract due to a space constraint. The
proof is long and technical, involving a careful case analysis based on the distri-
bution of faults in the substructures based on the recursive properties and other
properties that we have developed here.



434 S. Gupta et al.

5 Conclusion

We apply Theorem 7 inductively to Bn, given Proposition 3 and Theorem 4 along
with the base case Lemma 5 to complete the proof of Theorem 1.

We also note that Theorem 2 is a direct restatement of Theorem 7, and is
thus proven.

Because the conditional fractional matching preclusion number must be
greater than or equal to the conditional fractional strong matching preclusion
number, it is not necessary to separately consider this problem for the burnt
pancake graph or the subset of pancake-like graphs we described.

References

1. Brigham, R.C., Harary, F., Violin, E.C., Yellen, J.: Perfect-matching preclusion.
Congr. Numer. 174, 185–192 (2005)

2. Bennes, R., Latifi, S., Kiruma, N.: A comparative study of job allocation and
migration in the pancake network. Inform. Sci. 177, 2327–2335 (2007)

3. Bondy, J.A., Murty, U.S.R.: Graph Theory. GTM, vol. 244. Springer, Heidelberg
(2008)

4. Cheng, E., Jia, R., Lu, D.: Matching preclusion and conditional matching preclu-
sion for augmented cubes. JOIN 11, 35–60 (2010)

5. Cheng, E., Kelm, J.-T., Orzach, R., Xu, B.: Strong matching preclusion of burnt
pancake graphs. Int. J. Parallel Emergent Distrib. Syst. 31, 220–232 (2016)

6. Cheng, E., Hu, P., Jia, R., Liptak, L., Scholten, B., Voss, J.: Matching preclusion
and conditional matching preclusion for pancake and burnt pancake graphs. Int.
J. Parallel Emergent Distrib. Syst. 29(5), 499–512 (2014)

7. Cheng, E., Liptak, L.: Matching preclusion for some interconnection networks.
Networks 50, 173–180 (2007)

8. Cheng, E., Lesniak, L., Lipman, M.J., Liptak, L.: Conditional matching preclusion
sets. Inform. Sci. 179, 1092–1101 (2009)

9. Cheng, E., Shah, S., Shah, V., Steffy, D.-E.: Strong matching preclusion for aug-
mented cubes. Theor. Comput. Sci. 491, 71–77 (2013)

10. Compeau, P.E.C.: Girth of pancake graphs. Discret. Appl. Math. 159, 1641–1645
(2011)

11. Gates, W.H., Papadimitriou, C.H.: Bounds for sorting by prefix reversal. Discret.
Math. 27, 47–57 (1979)

12. Gu, Q.-P., Peng, S., Sudborough, I.H.: A 2-approximation algorithm for genome
rearrangements by reversals and transpositions. Theor. Comput. Sci. 210, 327–339
(1999)

13. Hu, X.L., Liu, H.Q.: The (conditional) matching preclusion for burnt pancake
graph. Discret. Appl. Math. 161, 1481–1489 (2013)

14. Hung, C.-N., Hsu, H.-C., Liang, K.-Y., Hsu, L.H.: Ring embedding in faulty pan-
cake graphs. Inform. Proc. Lett. 86, 271–275 (2003)

15. Kaneko, K.: Hamiltonian cycles and Hamiltonian paths in faulty burnt pancake
graphs. IEICE-Trans. Inform. Syst. E90–D, 716–721 (2007)

16. Li, Q.L., He, J.H., Zhang, H.P.: Matching preclusion for vertex-transitive networks.
Discret. Appl. Math. 207, 90–98 (2016)



Conditional Fractional Matching Preclusion 435

17. Lin, C.-K., Huang, H.-M., Hsu, L.-H.: The super connectivity of the pancake graph
and the super laceability of the star graph. Theor. Comput. Sci. 339, 257–271
(2005)

18. Liu, Y., Liu, W.: Fractional matching preclusion of graphs. J. Comb. Optim. 34(2),
522–533 (2016). https://doi.org/10.1007/s10878-016-0077-x

19. Ma, T., Mao, Y., Cheng, E., Melekian, C.: Fractional matching preclusion for
(burnt) pancake graphs. In: Proceedings to the Fifteen International Symposium
on Pervasive, Algorithms, and Networks, pp. 133–141 (2018)

20. Mao, Y., Wang, Z., Cheng, E., Melekian, C.: Strong matching preclusion number
of graphs. Theor. Comput. Sci. 713, 11–20 (2018)

21. Mohamed, A., Ramakrishna, R.S.: Linear election in pancake graphs Inform. Proc.
Lett. 106, 127–131 (2008)

22. Park, J.-H., Ihm, I.: Strong matching preclusion. Theor. Comput. Sci. 412, 6409–
6419 (2011)

23. Scheinerman, E.R., Ullman, D.H.: Fractional Graph Theory: A Rational Approach
to the Theory of Graphs. Wiley, New York (1997)

24. Tsai, P.-Y., Fu, J.-S., Chen, G.-H.: Edge-fault-tolerant Hamiltonicity of pancake
graphs under the conditional fault model. Theor. Comput. Sci. 409, 450–460 (2008)

https://doi.org/10.1007/s10878-016-0077-x

	Conditional Fractional Matching Preclusion for Burnt Pancake Graphs and Pancake-Like Graphs (Extended Abstract)
	1 Introduction
	1.1 Matchings
	1.2 Matching Preclusion

	2 Preliminaries
	3 Results for B3
	4 The Main Results
	5 Conclusion
	References




