
An Efficient Algorithm for Enumerating
Longest Common Increasing

Subsequences

Chun Lin(B), Chao-Yuan Huang, and Ming-Jer Tsai

National Tsing Hua University, Hsinchu, Taiwan
s108062571@m108.nthu.edu.tw

Abstract. The longest common increasing subsequence (LCIS) prob-
lem is the combination of two classic problems in algorithms: the longest
increasing subsequence (LIS) problem and the longest common subse-
quence (LCS) problem. In this paper, we propose an algorithm that finds
every LCIS of two sequences a, b of length n in O(n + σ + Ia) time and
space, where σ denotes the size of the alphabet set and Ia the total num-
ber of increasing subsequences contained in a (thus, the running time
is output-sensitive). Our algorithm employs the trie and some simple
data structures, and thus is implementation-wise simple. In addition, it
can be proved that our algorithm is optimal in time complexity when
σ ≤ log2 n.

Keywords: LCIS · Trie · Data structure

1 Introduction

The longest common increasing subsequence (LCIS) problem can be formulated
as follows: Given a sequence a = a1, a2, · · · , an, a sequence ai1 , ai2 , · · · , aik is a
subsequence of a if 1 ≤ ij < ij+1 ≤ n for all 1 ≤ j < k. And, given two sequences
a, b of length n, the LCIS problem asks for a longest common subsequence of
a, b that is strictly increasing.

This problem can be seen as a combination of the longest increasing subse-
quence (LIS) problem and the longest common subsequence (LCS) problem,
and was first introduced by Yang et al. [6] and then applied to the whole
genome alignment by Chan et al. [1] in 2005. Yang et al. and Chan et al. pro-
posed algorithms of O(n2) and O(min(r log σ, nσ + r) log log n + Sortn) time,
respectively, where Sortn denotes the time required to sort input sequences
a, b, and r the number of ordered pairs (i, j) such that ai = bj . In 2006, Sakai
presented a linear-space and O(n2)-time algorithm using a divide-and-conquer
approach [5]. In 2011, Kutz et al. designed an algorithm of O(n) space and
O(nl log log σ + Sortn) time [3], where l denotes the length of the LCIS of a, b.
And, for small alphabet set, algorithms of O(n) and O(n log log n) time were
proposed for σ = 2 and σ = 3, respectively. In 2016, Zhu et al. proposed an
c© Springer Nature Switzerland AG 2021
C.-Y. Chen et al. (Eds.): COCOON 2021, LNCS 13025, pp. 25–36, 2021.
https://doi.org/10.1007/978-3-030-89543-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89543-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-89543-3_3

26 C. Lin et al.

O(n2)-time and linear-space algorithm [7]. Recently, in 2020, Lo et al. proposed
an algorithm of O(n + l(n − l) log log σ) time and O(n) space [4], and Duraj
presented the first algorithm of subquadratic time [2].

The rest of this paper is organized as follows: In Sect. 2, the proposed algo-
rithm is presented. In Sect. 3, the correctness and complexity are analyzed.
Finally, we conclude this paper in Sect. 4.

2 The Proposed Algorithm

In this section, three assumptions are first introduced. Subsequently, we outline
the proposed algorithm, followed by a step-by-step explanation along with the
pseudocode. Finally, an example is given.

2.1 Assumptions

Input Format. Given the size of the alphabet set σ, we assume the alphabet
set consists of integers 0, 1, ..., σ − 1, i.e., each integer in the input sequences a, b
is in {0, 1, ..., σ − 1}.

Fast Computation. We assume that the bitwise shift (or bitwise OR) on one
(or two) binary encoded data of no more than σ bits can be done in O(1) time.

Constant Space. We assume that a bitstring of length up to σ takes O(1)
space.

Remark that when the desired input format is not satisfied, one can map
integers in a, b to the integers in [0, σ −1] without changing the order of integers
in O(n log σ) time using a balanced binary search tree.

2.2 Algorithm Overview

The main procedure of the proposed algorithm (Algorithm1) involves building a
trie T containing the information of every increasing subsequence in a. Let ISu

denote the increasing subsequence with binary encoding u, i.e., the i-th bit in
u is 1 if and only if i is contained in ISu. For example, IS10100100 denotes the
increasing subsequence [2, 5, 7] as σ = 8. Then, T has the following properties:

1. A node Tu associated with the length lu of ISu exists in T to denote an
increasing subsequence ISu if and only if ISu is found in a. Also, the binary
encoding u of ISu is stored in Tu to help retrieval of sequence information.

2. A directed edge associated with x ∈ {0, 1, ..., σ − 1} from Tu to Tv, denoted
by the tuple (Tu, Tv, x), exists in T if and only if ISv is the concatenation of
ISu and x.

An Efficient Algorithm for Enumerating LCIS 27

After building T , a similar trie-building process is run for sequence b; but
instead of building a new trie for b, we walk along the nodes of T that denote
the common increasing subsequences of a, b, and meanwhile record all the found
longest common increasing subsequences of a, b.

For the complexity of Algorithm1, the initialization step takes O(σ+n) time.
Building T takes O(n + Ia) time by using additional data structures that take
O(σ+Ia) space. And, walking on T takes O(n+Ia) time. To sum up, Algorithm 1
has space and time complexity of O(n + σ + Ia).

2.3 Detailed Description

See Algorithm 1 for the pseudocode. Algorithm 1 consists of 5 parts as follows.

Input/Output. Algorithm 1 takes two sequences a, b, the length n of a, b, and
the size of the alphabet set σ as the inputs, and outputs a list L containing the
binary encoding of every LCIS of a, b.

Initialization for First Loop (Lines 2–19). Firstly, build an array Cnt,
where Cnt[i] is the frequency of i in a for all i ∈ {0, 1, ..., σ − 1}. This can be
done in O(n) time by simply scanning a once. Secondly, build a doubly linked
list K of nodes to store every integer i with Cnt[i] > 0 in an increasing order
(from i = 0 to i = σ − 1). Then, a pointer array M of size σ is created. And, for
each integer i stored in K, the pointer to the node containing i in K is stored
in M [i] so that the node can be removed from K, if necessary, in O(1) time.
Thirdly, build the root node T0 of T , which denotes an empty sequence, and
set l0 to 0. Then, for every i with Cnt[i] > 0, create a trie node T2i containing
the binary encoding of the sequence [i], set l2i = 1, and add an edge (T0, T2i , i)
from T0 to T2i . Finally, build σ queues Next0, · · · , Nextσ−1, where each queue
supports O(1) push and pop (for our purpose, one can also use different data
structures such as stacks or dynamic arrays, as long as they support push and
pop in O(1) time). Let Au be the address of Tu. Then, for all i, queue Nexti
initially contains A2i if Cnt[i] > 0, and is left empty otherwise.

First Loop (Lines 20–31). Algorithm 1 iterates the following two steps when
sequence a is scanned one by one from left to right. Firstly, for the i-th integer ai

in a, we decrease Cnt[ai] by 1. Secondly, in the inner loop, Algorithm1 iterates
the following two substeps until queue Nextai

is empty. First pop Au from queue
Nextai

and get u from Tu. Then, in the (yet deeper) inner loop, for each integer
x with ai < x < σ and Cnt[x] > 0 (every such x can be found efficiently using
K), first create a new node Tv of T , set lv to lu +1, add an edge (Tu, Tv, x) from
Tu to Tv, where v = u + 2x, and then push Av into queue Nextx. At last, at the
end of the i-th iteration, remove the node containing ai from K if Cnt[ai] has
become 0.

28 C. Lin et al.

Algorithm 1: LCIS
Input: (n, σ, a, b): the length of each sequence, the size of the alphabet set,

the two sequences
Output: L: a list containing the binary code of every LCIS of (a, b)

1 begin
2 Cnt ← new 1D integer array of size σ;
3 M ← new 1D pointer array of size σ;
4 for i ← 0 to σ − 1 do
5 Cnt[i] ← 0;

6 for i ← 1 to n do
7 Cnt[ai] ← Cnt[ai] + 1;

8 K ← new doubly linked list;
9 create trie node T0;

10 l0 ← 0;
11 for i ← 0 to σ − 1 do
12 Nexti ← new queue;
13 if Cnt[i] > 0 then
14 add the node Ki containing i to K;
15 M [i] ← address of Ki;
16 create trie node T2i ;
17 l2i ← 1;
18 add edge (T0, T2i , i);
19 push A2i into Nexti;

20 for i ← 1 to n do
21 Cnt[ai] ← Cnt[ai] − 1;
22 for Au ∈ Nextai do
23 pop Au from Nextai and get u from Tu;
24 for x ← ai + 1 to σ − 1 in K do
25 v ← u + 2x;
26 create trie node Tv;
27 lv ← lu + 1;
28 add edge (Tu, Tv, x);
29 push Av into Nextx;

30 if Cnt[ai] = 0 then
31 remove the node containing ai from K;

32 len ← 0;
33 L ← new list;
34 insert 0 into L;
35 for i ← 0 to σ − 1 do
36 if trie node T2i exists then
37 push A2i into Nexti;

38 ...(continued in next page)

An Efficient Algorithm for Enumerating LCIS 29

37

38 for i ← 1 to n do
39 for Au in Nextbi do
40 pop Au from Nextbi and get u and lu from Tu;
41 if lu > len then
42 len ← lu;
43 empty L;

44 if len = lu then
45 insert u into L;

46 for every edge (Tu, Tv, x) from Tu do
47 push Av into Nextx;

48 return the list L;

Initialization for Second Loop (Lines 32–37). Firstly, set len, denoting
the length of LCIS of a, b currently found, to 0. Secondly, build a list L to store
the binary encoding of every common increasing subsequence (CIS) of length
len of a, b, where L contains only 0 (the binary encoding of the empty sequence)
initially. Thirdly, reuse Next queues and for each queue Nexti, push A2i into
queue Nexti if T2i exists in T .

Second Loop (Lines 38–47). Algorithm 1 iterates the following step when
sequence b is scanned one by one from left to right. For the i-th integer bi in b,
Algorithm 1 iterates the following substeps until queue Nextbi is empty in the
inner loop. First pop one Au from queue Nextbi . Then, since ISu is a newly
found CIS of a, b, we may need to update len and L accordingly: 1) if lu > len
(i.e., the length of ISu is greater than that of any CIS of a, b currently found),
empty L and update len to lu, and 2) if lu = len, add u into L. Finally, in the
(yet deeper) inner loop, push Av into queue Nextx for each edge (Tu, Tv, x) from
Tu.

2.4 Example

Figures 1a and 1b show the statuses of K, Next, and T on the termination of
the initialization and iteration 1, respectively, of the first loop of Algorithm1 for
a = [1, 4, 1, 0, 3] and σ = 5. During the execution of the initialization, Cnt[0] =
Cnt[3] = Cnt[4] = 1, Cnt[1] = 2, and Cnt[2] = 0 since the frequencies of integers
0, 1, 2, 3, 4 are 1, 2, 0, 1, 1, respectively. And, since Cnt[i] > 0 for i = 0, 1, 3, 4, the
nodes storing integers 0, 1, 3, 4 are doubly linked in sequence in K, the nodes T1,
T10, T1000, and T10000 (which contains the binary encodings of integers 0, 1, 3, 4,
respectively) are created in T , and A1, A10, A1000, and A10000 (which are the
addresses of T1, T10, T1000, and T10000, respectively) are contained in Next0,
Next1, Next3, and Next4, respectively. In iteration 1, a1 = 1. Thus, Cnt[1] is

30 C. Lin et al.

Fig. 1. The statuses of K, Next, and T on the termination of (a) the initialization, (b)
iteration 1, (c) the last iteration of the first loop of Algorithm 1 as the input sequence
a is [1, 4, 1, 0, 3].

An Efficient Algorithm for Enumerating LCIS 31

Fig. 2. The statuses of L, Next, and the encountered trie nodes in T on the termina-
tion (a) the initialization, (b) iteration 1, (c) the last iteration of the second loop of
Algorithm 1 as the input sequence b is [1, 4, 3, 1, 3], where the encountered trie nodes
in T are shown in grey.

32 C. Lin et al.

decreased to 1 and A10 is popped from Next1. Due to that a1 = 1 < x < 5 = σ
and Cnt[x] > 0 for x = 3, 4, the nodes T1010 and T10010 (which contains the
binary encodings of increasing sequences [1, 3], [1, 4], respectively) are added to
T , and A1010 and A10010 are pushed into Next3 and Next4, respectively. In
iteration 2, the node containing integer 4 is removed from K since a2 = 4 and
Cnt[4] becomes 0. Similarly, the nodes containing integers 1, 0, and 3 are removed
from K in iterations 3, 4, and 5, respectively. In addition, A10000 and A10010 are
popped from Next4 in iteration 2, A1 is popped from Next0, T1001 is added
to T , and A1001 is pushed into Next3 in iteration 4, and A1001 is popped from
Next3 in iteration 5. The statuses of K, Next, and T on the termination of the
first loop is shown in Fig. 1c.

Figures 2a and 2b show the statuses of L, Next and the encountered trie
nodes in T on the termination of the initialization and iteration 1, respectively,
of the second loop of Algorithm 1 for b = [1, 4, 3, 1, 3]. For the second loop,
initially, A1, A10, A1000, and A10000 are pushed into Next0, Next1, Next3, and
Next4, respectively, since trie nodes T1, T10, T1000, and T10000 exist in T ; also,
L contains a single element 0, and len is set to 0. In iteration 1, since b1 = 1,
A10 is popped from Next1, T10 is encountered, and L is updated to contain
10 only. Meanwhile, since edge (T10, T1010, 3) exists in T , A1010 is pushed into
Next3. Similarly, A10010 is pushed into Next4. In iteration 2, A10000 and A10010

is popped from Next4, T10000 and T10010 are encontered, and L is updated to
contain 10010. In iteration 3, A1000 and A1010 are popped from Next3, T1000 and
T1010 are encontered, and 1010 is inserted to L. In iteration 4 (or 5), the statuses
of L and Next remains unchanged since Next1 (Next3) is empty. Figure 2c shows
the statuses of L, Next and the encountered trie nodes in T on the termination
of the second loop.

3 The Analysis

In this section, we first show the correctness of the proposed algorithm. Subse-
quently, the time and space complexity of the proposed algorithm is studied.

3.1 Correctness

Lemma 1. In the first loop, a non-empty increasing subsequence ISu of a exists
if and only if Au has been popped from some Next queue.

Proof. It suffices to show for each i (1 ≤ i ≤ n), on the termination of iteration
i of the first loop, a non-empty increasing subsequence ISu exists in a1, a2, ..., ai

(a prefix of a) if and only if Au has been popped from some Next queue. We
show it by induction on the number of iterations executed.

Clearly, on the termination of iteration 1, [a1] is the only one non-empty
increasing subsequence of a. Besides, in the initialization of the first loop, Algo-
rithm1 pushes A2u into queue Nextu once for each integer u that exists in a.
Since Algorithm 1 pops all items in queue Nexta1 in iteration 1, only A2a1 has

An Efficient Algorithm for Enumerating LCIS 33

been popped on the termination of iteration 1. Thus, we have a basis. We then
assume the induction hypothesis: on the termination of iteration k, a non-empty
increasing subsequence ISu exists in a1, a2, ..., ak if and only if Au has been
popped from some Next queue. To complete the proof, we only need to show
the induction step: on the termination of iteration k+1, a non-empty increasing
subsequence ISu exists in a1, a2, ..., ak+1 if and only if Au has been popped from
some Next queue.

For the if part, if Au is popped from some Next queue before iteration
k + 1, ISu exists in a1, a2, ..., ak by induction hypothesis, and thus ISu exists in
a1, a2, ..., ak+1. So, we only need to consider the case where Au is popped from
some Next queue in iteration k + 1. Note that Algorithm 1 pops all items in
queue Nextak+1 in iteration k + 1. Also note that Algorithm 1 only pushes Au

into queue Nextak+1 when ISu ends with ak+1. Let ISu be the concatenation of
ISv and ak+1. Clearly, if ISv is an empty sequence, ISu = ak+1 is an increasing
subsequence of a. Otherwise, let ISv end with aj ; then, Av has been popped
from some Next queue on the termination of iteration k and aj < ak+1 because
otherwise, Au is not in Next queues in iteration k+1 by Algorithm 1. By induc-
tion hypothesis, ISv is an increasing subsequence in a1, a2, ..., ak. This implies
ISu is an increasing subsequence in a1, a2, ..., ak+1, completing the proof of the
if part.

For the only if part, if ISu does not end with ak+1, ISu exists in a1, a2, ..., ak,
and thus Au has been popped from some Next queue on the termination of
iteration k by the induction hypothesis. So, we only need to consider the case
where ISu ends with ak+1. Since Algorithm 1 pops all items in queue Nextak+1 in
iteration k+1, we only need to show Au is in queue Nextak+1 on the termination
of iteration k. Let ISu be the concatenation of ISv and ak+1. Then, if ISv is an
empty sequence, Au is pushed into queue Nextak+1 in the initialization of the
first loop. Otherwise, ISv is a non-empty increasing subsequence in a1, a2, ..., ak.
Let ISv end with aj . Since ISu is an increasing subsequence, we have aj <
ak+1. Then, on the termination of iteration k, Av has been popped from some
Next queue by induction hypothesis, and then Au has been pushed into queue
Nextak+1 due to aj < ak+1 and Cnt[ak+1] > 0, completing the only if part.

Theorem 1. In the first loop, ISu is a non-empty increasing subsequence of a
if and only if a trie node Tu is created in T .

Proof. Note that Algorithm 1 creates a trie node Tu right before Au is pushed
into some Next queue in the first loop. Thus, a trie node Tu is created in T if
and only if Au has been pushed into some Next queue. Besides, ISu is a non-
empty increasing subsequence of a if and only if Au has been popped from some
Next queue by Lemma 1. Thus, to complete the proof, we only need to show
Au has been pushed into some Next queue if and only if Au has been popped
from some Next queue. Clearly, Au has been pushed into some Next queue if
Au has been popped from some Next queue. On the other hand, suppose Au is
pushed into some Next queue, say Nextx, in iteration j. Then, Cnt[x] > 0 in
iteration j. This implies x exists in aj+1, aj+2, · · · , an. Let ak be the first integer

34 C. Lin et al.

in aj+1, aj+2, · · · , an such that x = ak. Then, Au is popped from queue Nextx
in iteration k. This completes the proof.

Lemma 2. In the second loop, a non-empty common increasing subsequence
ISu of a, b exists if and only if Au has been popped from some Next queue.

Proof. It suffices to show for each i (1 ≤ i ≤ n), on the termination of iteration
i of the second loop, a non-empty common increasing subsequence ISu of a, b
exists in b1, b2, ..., bi (a prefix of b) if and only if Au has been popped from some
Next queue. We show it by induction on the number of iterations executed. In
iteration 1, Algorithm 1 pops all items from queue Nextb1 . Let u be the binary
encoding of b1. Then, b1 exists in a1, a2, ..., an if and only if trie node Tu exists
in T by Theorem 1, and thus b1 exists in a1, a2, ..., an if and only if Au is pushed
into queue Nextb1 in the initialization of the second loop. This implies that a
non-empty common increasing subsequence ISu of a, b exists in b1 if and only if
Au has been popped from queue Nextb1 in iteration 1. Thus, we have a basis.
We omit the induction hypothesis and the proof of the induction step due to
their similarities to that of Lemma 1.

Theorem 2. By Algorithm1, the list L contains exactly the binary encoding of
every LCIS of a, b.

Proof. By Lemma 2, for every non-empty CIS ISu of a, b, Au has been popped
from some Next queue in the second loop. In Algorithm 1, when Au is popped
from some Next queue, the binary encoding of ISu is added to L if the length
of ISu is equal to that of the CIS of a, b in L, and L is updated to contain only
the binary encoding of ISu if the length of ISu is greater than that of the CIS
of a, b in L. This ensures the binary encoding of every LCIS of a, b is contained
in L.

3.2 Complexity

Lemma 3. Every Au for a non-empty increasing subsequence ISu of a is pushed
into Next queues at most once in (a) the first loop and (b) the second loop.

Proof. The proof of (b) is omitted due to its similarity to that of (a). We show
(a) by contradiction. Suppose that Au is the first one to be pushed into Next
queues more than once. Then, |ISu| must be greater than 1; otherwise, Au is
pushed into Next queues only once in the initialization step.

Let ISu be the concatenation of ISv and x (i.e., ISu ends with x). Note that
Au is pushed into queue Nextx right after Av is popped from some queue. Thus,
Au is pushed into Next queues the second time right after Av is popped from
some queue the second time. This implies Av is pushed into some queue twice
before Au is pushed into some queue twice. This constitutes a contradiction.

Theorem 3. The time and space complexity of Algorithm1 is O(n + σ + Ia).

An Efficient Algorithm for Enumerating LCIS 35

Proof. Apart from the input sequences a, b themselves, K and Cnt require O(σ)
space, and T and Next queues require O(Ia) space by Lemma 3, so the space
complexity is O(n + σ + Ia). Note that the space complexity can be reduced to
O(n + Ia) through removing integers that do not exist in both of a and b from
the alphabet set by additional preprocessing before Algorithm1.

For time complexity, the initialization steps of the first and second loops
require O(n + σ) time. In the first and second loops, there are O(Ia) queue and
trie node operations by Lemma 3. Each queue operation requires O(1) time. And,
since the address of Tu is pushed into Next queues, each trie node operation can
be achieved in O(1) time. Since Algorithm 1 uses Cnt and K to avoid iterations
without queue or trie node operation, the time complexity is O(n + σ + Ia).

Remark that due to that Ia ≤ 2σ, the time complexity of Algorithm 1 is
O(n), which is optimal for the LCIS problem, as σ ≤ log2 n.

4 Conclusion and Discussion

In this paper, we present an algorithm of O(n+σ+Ia) time and space complexity
to find every LCIS of sequences a, b of length n. If the proposed algorithm is run
on two computers in parallel, the time complexity can be improved to O(n +
σ + min(Ia, Ib)). When the alphabet set is small, an algorithm of O(n log log n)
time complexity was proposed in the literature for σ = 3 [3]. By contrast, the
proposed algorithm has O(n) time and space complexity as σ ≤ log2 n. For
the LCIS problem of k (k > 2) sequences, an algorithm of O(n + σ + kIa)
time complexity can be obtained through slight modification of the proposed
algorithm by just running the second loop for each sequence other than a and
keeping track of how many times each node in T is encountered. Whether the
proposed algorithm can be modified to better adapt to the cases of more than 2
sequences may be worthy of discussion.

References

1. Chan, W.T., Zhang, Y., Fung, S.P.Y., Ye, D., Zhu, H.: Efficient algorithms for
finding a longest common increasing subsequence. J. Comb. Optim. 13(3), 277–288
(2006). https://doi.org/10.1007/s10878-006-9031-7

2. Duraj, L.: A sub-quadratic algorithm for the longest common increasing subsequence
problem. arXiv:1902.06864 [cs], January 2020

3. Kutz, M., Brodal, G.S., Kaligosi, K., Katriel, I.: Faster algorithms for comput-
ing longest common increasing subsequences. J. Discret. Algorithms 9(4), 314–325
(2011). https://doi.org/10.1016/j.jda.2011.03.013

4. Lo, S.F., Tseng, K.T., Yang, C.B., Huang, K.S.: A diagonal-based algorithm for the
longest common increasing subsequence problem. Theor. Comput. Sci. 815, 69–78
(2020). https://doi.org/10.1016/j.tcs.2020.02.024. https://www.sciencedirect.com/
science/article/pii/S0304397520301158

5. Sakai, Y.: A linear space algorithm for computing a longest common increasing
subsequence. Inf. Process. Lett. 99(5), 203–207 (2006). https://doi.org/10.1016/j.
ipl.2006.05.005

https://doi.org/10.1007/s10878-006-9031-7
http://arxiv.org/abs/1902.06864
https://doi.org/10.1016/j.jda.2011.03.013
https://doi.org/10.1016/j.tcs.2020.02.024
https://www.sciencedirect.com/science/article/pii/S0304397520301158
https://www.sciencedirect.com/science/article/pii/S0304397520301158
https://doi.org/10.1016/j.ipl.2006.05.005
https://doi.org/10.1016/j.ipl.2006.05.005

36 C. Lin et al.

6. Yang, I.H., Huang, C.P., Chao, K.M.: A fast algorithm for computing a longest
common increasing subsequence. Inf. Process. Lett. 93(5), 249–253 (2005). https://
doi.org/10.1016/j.ipl.2004.10.014

7. Zhu, D., Wang, L., Wang, T., Wang, X.: A simple linear space algorithm for com-
puting a longest common increasing subsequence. arXiv:1608.07002 [cs], August
2016

https://doi.org/10.1016/j.ipl.2004.10.014
https://doi.org/10.1016/j.ipl.2004.10.014
http://arxiv.org/abs/1608.07002

	An Efficient Algorithm for Enumerating Longest Common Increasing Subsequences
	1 Introduction
	2 The Proposed Algorithm
	2.1 Assumptions
	2.2 Algorithm Overview
	2.3 Detailed Description
	2.4 Example

	3 The Analysis
	3.1 Correctness
	3.2 Complexity

	4 Conclusion and Discussion
	References

