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Abstract. It is well known that the copy language L = {ww | w ∈ Σ∗}
is not context-free despite its simplicity. We study pseudo-copy languages
that are defined to be sets of catenations of two similar strings, and
prove non-context-freeness of these languages. We consider the Hamming
distance and the edit-distance for the error measure of the two similar
strings in pseudo-copy languages. When the error has an upper bound or
a fixed value, we show that the pseudo-copy languages are not context-
free. Similarly, if the error has a lower bound of at least four, then such
languages are not context-free, either. Finally, we prove that all these
pseudo-copy languages are context-sensitive.

Keywords: Context-freeness · Pseudo-copy languages · Hamming
distance · Edit-distance

1 Introduction

For many years, people investigated the problems related to the repetition of
strings from various perspectives such as bioinformatics [3,7,12], stringology [2,
5,16,20] and formal language theory [1,14]. For example, it was already proved
in the early 80’s that one can decide whether or not a given string contains a
square—a string of the form ww with w nonempty—in O(n log n) time when n
is the length of an input string [2,5,16].

The problem of finding squares (also called tandem repeat or contiguous
repeat) from biological sequences has been an intriguing topic in bioinformat-
ics. Landau et al. [12] studied the problem of finding approximate tandem
repeats from a given string, which can be described as xy, where |x| = |y| and
d(x, y) ≤ k for a given k under the Hamming distance and the edit-distance
metrics. They showed that all approximate tandem repeats can be found in
O(nk log(n/k) + s) time, where n is the length of the given string and s is the
number of repeats found. Later, Kolpakov and Kucherov [10] slightly improved
the bound to O(nk log k + s) only in the case of the Hamming distance.
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We focus on the language-theoretic property related to the repetitions of
strings. A string is square-free if none of its substrings is a square. It is easily
seen that there are only finitely many square-free strings over one or two letters.
Over a ternary alphabet, the set of square-free strings is infinite and, more-
over, not context-free [15]. People also considered the complement of square-free
languages—a language contains strings with at least one square as a substring.
The language is also proved to be not context-free [6,18], and Ogden et al. [17]
established a simpler proof using the interchange lemma.

The set of all squares, often called the copy language (denoted by COPY),
is not context-free but can be recognized by realtime nondeterministic queue
automata (NQAs) [11,21]. The class rtNQA of languages recognized by realtime
NQAs is a proper subclass of context-sensitive languages (CS), and is incompa-
rable to the class of context-free languages (CF). Therefore, it is immediate that
the following relationship holds: COPY ∈ CF ∩ rtNQA ⊂ CS.

An interesting fact is that the complement of the copy language is context-free
unlike COPY [9,19]. Since COPY = {xy | dH(x, y) < 1} and its complement
of even-length1 strings COPY = {xy | dH(x, y) > 0, where |x| = |y|} can be
defined using the Hamming distance dH , one can consider the following question.

Problem 1. Consider the following language L:

L = {xy | x, y ∈ {0, 1}∗, |x| = |y|, dH(x, y) < k},

where dH(x, y) is the Hamming distance between x and y.

Q. Is L context-free?

We can think of the language L in Problem 1 as a set of catenations of
two similar strings—we call such L a pseudo-copy language. In other words,
the pseudo-copy language is a language with a bounded Hamming distance k
between two catenated strings.

Since one may consider different bound conditions such as threshold, inequal-
ity or equality relations, and error measures, a natural question that arises next
is, whether or not such languages are context-free. In particular, many people
conjecture that a complement of a pseudo-copy language with k = 2 would not
be context-free, yet there is no formal proof and the problem is still open2. Even
before, Bordihn [4] asked the following question, which has not been answered
yet.

Problem 2. Consider the following language L:

L = {xy | x, y ∈ {0, 1}∗, |x| = |y|, |x| − dH(x, y) ≥ 2}.

Q. Is L context-free?

We consider several variants of pseudo-copy languages and their complements
depending on the bound conditions, and demonstrate that most pseudo-copy
languages and their complements are not context-free.
1 We only consider even-length strings for the Hamming distance between two halves.
2 https://cs.stackexchange.com/q/11585.

https://cs.stackexchange.com/q/11585
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2 Preliminaries

Let Σ denote a finite alphabet of symbols. Then a string w is a finite sequence
of symbols from Σ and the length |w| of w is the number of symbols in w. The
character λ denotes an empty string.

For every string w and every natural number n, we define the n-th power of
the string w, denoted by wn, by w0 = λ and wk = wk−1w for k = 1, 2, . . . , n.
For a string w of even length, we call two substrings α and β of the same length,
where w = αβ, halves of w.

A context-free grammar (CFG) G is a tuple G = (V,Σ,R, S), where V is a
set of nonterminals, Σ is a set of terminals, R ⊆ V × (V ∪ Σ)∗ is a finite set of
productions and S ∈ V is the start symbol. Let αAβ be a string over V ∪ Σ,
where A ∈ V and A → γ ∈ R. Then, we say that A can be rewritten as γ
and the corresponding derivation step is denoted αAβ ⇒ αγβ. A production
A → t ∈ R is a terminating production if t ∈ Σ∗. The reflexive, transitive
closure of ⇒ is denoted by ∗⇒ and the context-free language generated by G is
L(G) = {w ∈ Σ∗ | S

∗⇒ w} [19].
The Hamming distance dH(x, y) measures the error between two strings x

and y of the same length by counting the number of different symbols on the same
position of each [8]. In other words, dH(x, y) =

∑
i d(xi, yi), where d(a, b) = 0 if

a = b and one otherwise. For example, dH(abca, acab) = 3 since there are three
positions with different symbols. dS(x, y) = |x| − dH(x, y), on the other hand,
can be seen as the similarity between x and y, denoting the number of identical
symbols at the same position of them.

An alignment of two strings x and y in Σ∗ is a sequence of n pairs (x1, y1),
(x2, y2), . . . , (xn, yn) where xi, yi ∈ Σ ∪{λ}, x1x2 · · · xn = x and y1y2 · · · yn = y.
The edit-distance dE(x, y) of two strings x and y is the minimum number of pairs
with different symbols in alignments of x and y [13]. For instance, strings abca
and acab have two alignments (a, a), (b, c), (c, a), (a, b) and (a, a), (b, λ), (c, c),
(a, a), (λ, b). Although the first alignment is shorter, the number of different
pairs is smaller for the second. Thus, the edit-distance of the two strings is two
with the second alignment. Note that (λ, λ), (a, a), (b, c), (c, a), (a, b) is also a
valid alignment for the strings.

We generalize the pseudo-copy language in Problem 1 by allowing different
conditions between the two catenated strings. First is to consider different error
measures. While Problem 1 defines a language with the Hamming distance dH

for the error measure. In Problem 2, we not only consider the conditions on
the number for mismatches between two catenated strings but also matches by
introducing the similarity measure dS as follows. For two equal-length strings
x, y, we define dS(x, y) = |x|−dH(x, y). Another measure is the edit-distance dE

of x and y, which does not require the two strings to be the same length. The
edit-distance allows more operations than the Hamming distance. From the per-
spective of error correction, a symbol is not only tripped but added or removed
in transmission, which resembles the edit operations: substitution, insertion and
deletion, respectively.
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Second is to consider the relations for error values. Similar to COPY where
the Hamming distance is nonzero, we examine languages with different error
bounds. Especially, these variants specify that the error (or similarity) of the two
catenated strings should be bounded. For instance, one can think of a language
with more than k different symbol positions in its halves (dH > k). Note that
the languages with a lower bound is a natural extension of COPY.

Problem 3. Given an integer k ≥ 0 and an alphabet Σ, let L = {αβ | α, β ∈
Σ∗, d(α, β) ◦ k}, where d ∈ {dH , dE , dS} and ◦ ∈ {≤,=,≥}.

Q. Is such L context-free?

Let LX◦k denote the language under d = dX . For example, LH=k is the
language under dH and ◦ as =. For d = dE , L is the language with its minimum
edit-distance considered. The languages with the same error measure define a
class with bounded errors.

3 Pseudo-copy Languages

The first problem is for LH=k, whose halves have exactly k different symbols.
Let us establish Lemma 4 for counting the Hamming distance on the specific
form of strings for the problem.

Lemma 4. For every string αβ = 0a1b0c1d, where |α| = |β|, dH(α, β) =
min(a + c, b + d,max (|a − c|, |b − d|)).
Proof (Sketch). If a 0-sequence occupies at least a half of αβ, then dH(α, β) is
the length b+d of two 1-sequences. Otherwise, there is no sequence occupying a
half. Without loss of generality, let us assume that a 0-sequence entirely aligns
with the other 0-sequence. Then, dH(α, β) is |a − c|, the number of 1’s aligning
with 0’s. �


Based on the result of Lemma 4, we next show that LH=k = {αβ | α, β ∈
Σ∗, |α| = |β|, dH(α, β) = k} for every non-negative integer k is not context-free.

Theorem 5. For all k ≥ 0, LH=k is not context-free.

Proof (Proof by contradiction). Suppose that LH=k is context-free. Then L′ =
LH=k ∩{0a1b0c1d | a, b, c, d ≥ k} must be context-free and satisfies the pumping
lemma. For an arbitrary pumping constant p, let z = 0l1l+k0l+k1l ∈ L′ where
l = max (p!, k). Then z must have a decomposition of uvwxy such that |vx| >
0, |vwx| ≤ p and uvnwxny ∈ L′ for all n ≥ 0. Note that vx can only be a part of
at most two consecutive sequences, each sequence of which consists of only 0’s
or only 1’s. By pumping v and x, we show that dH exceeds k, which contradicts
the pumping lemma.
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1. When vx consists of only 0’s or only 1’s (|vx|0 = 0 or |vx|1 = 0)
Without loss of generality, assume that vx is in a sequence of 0’s. We can
pump v and x until the sequence of 0’s that vx is in occupies over half of the
string. Let z′ = α′β′ = uv|z|wx|z|y and |α′| = |β′|. Then, since the sequence
containing vx dominates z′, dH(α′, β′) = 2l+k > k. The same procedure can
be applied when vx is in the sequence of 1’s.

2. When vx consists of both 0’s and 1’s (|vx|0 �= 0 and |vx|1 �= 0)
vx is in consecutive sequences in forms such as 0a1b or 1b0a. Apparently, when
either v or x contains both 0 and 1, by pumping up v and x, we obtain strings
that are not in L′ which contradicts the pumping lemma. In the following,
we assume that each of v and x contains only 0’s or 1’s. Without the loss of
generality, let |vx|0 = a and |vx|1 = b. Regarding which consecutive sequences
vx is placed in, one of the following holds:

– dH(α′, β′) = min (2l + k + min (a, b)i,max (|ai − k|, |bi + k|)),
– dH(α′, β′) = min (2l + k + min (a, b)i,max (|ai + k|, |bi + k|)) or
– dH(α′, β′) = min (2l + k + min (a, b)i,max (|ai + k|, |bi − k|))

where α′β′ = uvi+1wxi+1y. For example, when vx is in the first two
sequences, applying Lemma 4 yields the first condition. Similarly, the other
conditions can be computed from the remaining cases. All three cases show
dH(α′, β′) > k when i = 2k+2, contradicting the pumping lemma. Note that
l ≥ k and the first part cannot be the minimum.

By the above, L′ is not context-free and, thus LH=k is not context-free. �

For different error bounds, we examine a language LS=k = {αβ | α, β ∈

Σ∗, |α| = |β|, dS(α, β) = k} that consists of strings whose halves have k identical
symbols.

Theorem 6. For all k ≥ 0, LS=k is not context-free.

Proof (Proof by contradiction). Suppose that LS=k is context-free and let L′ =
LS=k ∩ L(0∗1∗0∗1∗0∗1∗). Then L′ must satisfy the pumping lemma. For an
arbitrary pumping constant p, choose z = 0P 1P+k0P 1P+k0P 1P , where P =
2(k+2)p. Then z must have a decomposition of uvwxy that satisfies the pumping
lemma. Let t = |vx|/2, and α and β denote the first and the latter half of
z. zi = uviwxiy denotes the string after pumping v and x up i − 1 times,
whose halves are α′ and β′, respectively. Note that |vx| must be even—otherwise
z0 /∈ L′. The following case-by-case proof shows that zk+3 /∈ L′.

1. vx is in α,
When vx is in the first half α of z, pumping sends latter part of α to β. This
results in having identical substring in the head of α and β. By pumping v
and x up k + 2 times, the last 0t(k+2) portion of α is pushed to the front of
the latter half, thus zk+3 = α′0t(k+2)1P+k0P 1P , as illustrated in Fig. 1. Then
dS(α′, β′) ≥ t(k + 2) > k.
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2. vx is in β,
Similar to the case when vx is in α, we pump vx to obtain identical substring
in the tail of α and β. By pumping up v and x by k+2 times, the first 1t(k+2)

portion of β is pushed to the first half, thus zk+3 = 0P 1P+k0P 1t(k+2)β′. Then
dS(α′, β′) ≥ t(k + 2) > k.

3. vx is in both α and β, vx = 0a1b.
Contrary to the above, pumping vx does not always result in having identical
substring in the head or tail of α and β. We, therefore, examine the inner
part of α and β, specifically, 1P+k.
(a) When a ≤ b, α′ = α0a(k+2)1(b−a)(k+2)/2 and β′ = 1(a+b)(k+2)/2β. Since

β is pushed by a+b
2 (k + 2) while α is not, the overlap in 1P+k strictly

increases. Thus dS(α′, β′) ≥ a+b
2 (k + 2) + k > k.

(b) When a > b, α′ = α0(a+b)(k+2)/2 and β′ = 0(a−b)(k+2)/21b(k+2)β. Thus
dS(α′, β′) ≥ a+b

2 (k + 2) + k > k.

Fig. 1. Illustration of zk+3 after pumping the first 0-sequence. The slanted lines denote
the alignment pairs with the same symbols. Note that the second and the third overlaps
already have k symbols aligned.

Since every case contradicts the pumping lemma, L′ is not context-free, which
leads to the fact that LS=k is not context-free. �


For the edit-distance case, we show that the Hamming distance and the
edit-distance between the two catenated strings of a pseudo-copy language are
the same. For a string w = αβ, we denote d̂H(w) = dH(α, β) and d̂E(w) =
min

w=α′β′
dE(α′, β′)—the smallest edit-distance among all possible α′, β′ for w.

Lemma 7. Let w ∈ L(0∗1∗0∗1∗) be a string of even length. Then, d̂E(w) =
d̂H(w).

Proof (Proof by induction). When |w| = 0, d̂E(w) = d̂H(w) = 0. Assume the
claim holds for |w| ≤ n. For |w| = n + 2, suppose that the claim does not hold.
Then, since d̂E(w) < d̂H(w) is the case, there must be an optimal alignment
with two symbols u, v that matches to λ. Let w′ be the string without u and
v, then d̂E(w) = d̂E(w′) + 2 = d̂H(w′) + 2 < d̂H(w). This cannot hold by case
analysis on Lemma 4, contradicting the claim. �
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Theorem 8. For all k ≥ 0, LE=k is not context-free.

Proof (Proof by contradiction). Let L′ = LE=k ∩ {0a1b0c1d | a, b, c, d ≥
k and (a + b + c + d) mod 2 = 0} and suppose LE=k is context-free. Then, L′

must be context-free and satisfies the pumping lemma. For an arbitrary pumping
constant p, let z = 0l1l+k0l+k1l ∈ L′, where l = max(p!, k). Then z must have a
factorization of uvwxy such that |vx| > 0, |vwx| ≤ p, and uvnwxny ∈ L′ for all
n ≥ 0. By pumping v and x, we show that dE exceeds k, which contradicts the
pumping lemma. Referring to Lemma 7, d̂E(w) = d̂H(w) for w ∈ L′. Instead of
handling dE , we can show that dH exceeds k and this is already proven in Theo-
rem 5. Therefore L′ is not context-free. By the above, LE=k is not context-free.

�

One can define a hierarchy of pseudo-copy languages over exact error with

these results. Theorem 5, 6 and 8 show that the class of languages with exact
Hamming distance (exact similarities, edit-distance, resp.) is different from that
of context-free languages.

From the proofs for the exact cases in Theorems 5, 6 and 8, one can observe
that the error value of the chosen string strictly increases after pumping. These
strings also apply to showing that the pseudo-copy languages are not context-
free.

Corollary 9. For all k ≥ 0, LH≤k, LS≤k and L≤k are not context-free.

Proof. In Theorem 5, we prove that LH=k is not context-free by showing the
strings in LH=k have a larger error value when pumped, following Theorem 5.
We can apply the exactly same procedure here. Instead of applying the pumping
lemma directly to LH≤k, define L′ = LH=k ∩{0a1b0c1d | a, b, c, d ≥ k}. We know
that L′ is not context-free as the pumped string has an error value larger than
k. This is, in other words, the string which has an upper-bounded error value
of k can be pumped until the error value exceeds k. Therefore, the same string
for LH=k contradicts the pumping lemma for LH≤k. Respectively on LS≤k and
LE≤k, we can use the proof procedure in each case similarly. �


4 Complements of Pseudo-copy Languages

The complements of pseudo-copy languages under the error measure dX ∈
{dH , dS , dE} are defined as follows:

LX≤k = LX≥k+1.

Therefore, only even-length strings exist in LdH≤k and LdS≤k for the Hamming
distance and similarity, respectively. On the other hand, the complements of
pseudo-copy languages under the edit-distance can have both odd-length and
even-length strings.

Theorem 10. For all k ≥ 4, LH≥k is not context-free.
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Proof (Proof by contradiction). The intuition is choosing a string of which a
symbol, say 0, occupies the largest portion. Then we make an alignment of the
sparse symbols, say 1’s, to reduce the Hamming distance between its halves
at least by one. For n ≥ 2, suppose that LH≥2n is context-free and let L′ =
LH≥2n ∩ {w | |w|1 = 2n + 1}. Then, by the pumping lemma, there must be a
pumping constant p for L′.

Choose z ∈ L′ so that the position indices of 1’s, ij ≥ 1 (1 ≤ j ≤ 2n+1) are

ij =

{
2jP, j ≤ n,

(2j + 1)P − 1, j > n,

where P = p!. In other words, we place 1’s in z so that when we divide the
string into halves, 1’s from the first half alternate with 1’s in the second half by
l = 2(n + 1)P − 1.

Fig. 2. An illustration of the chosen z

Let i′j denote the indices of 1’s after pumping v and x. It contradicts
the pumping lemma if there exist s and t such that i′s ≤ l + T < i′t and
i′t − i′s = l + T— two 1’s in each half are aligned in the Hamming distance
computation— where 2T is the length of the entire pumped string, and there-
fore, v and x duplicate 2T/|vx| times. The Hamming distance dH is at most
2n − 1 in this case since two 1’s do not contribute on the Hamming distance
computation.

1. |vx| is odd or |vx|1 = 1, i.e., the pumping part contains 1.
Since uv0xw0y /∈ L′, it contradicts the pumping lemma.

2. |vwx|1 = 0, i.e., the pumping occurs in a single 0-sequence. See Fig. 3 for an
example.
If vwx is in the h-th 0-sequence, the indices i′j of 1’s after pumping up v and
x 2T/|vx| times is

i′j =

{
ij , j < h,

ij + 2T, j ≥ h,

assuming 2T/|vx| is an integer.
(a) If h ≤ n, let s = h and t = h + n + 1. i′t − i′s = (2n + 3)P − 1. Figure 3(a)

depicts how two 1’s align. Note that the right-hand side of h-th 1 in the
first half shortens by T while that of (h + n + 1)-th in the second half
does not. These two 1’s eventually meet after the pumping, when
l + T = i′t − i′s, i.e., when T = P .
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(b) If n < h < 2n + 1, let s = h − n and t = h. i′t − i′s = (2n + 1)P + 2T − 1.
Figure 3(b) depicts how two 1’s align.

(c) If h ∈ {2n + 1, 2n + 2}, let s = 1 and t = n + 2. i′t − i′s = (2n + 3)P − 1.
Since, for all of three cases, i′t − i′s = l +T holds if T = P , we pump up v and
x 2P/|vx| times to contradict the pumping lemma for any positive integer p.
Note that P/|vx| = p!/|vx| is an integer.

3. |vwx|1 = 1, |vx|1 = 0, i.e., the pumping occurs in two 0-sequences.
For h such that the h-th 1 is in w, the indices i′j after pumping up v and x
2T/|vx| is

i′j =

⎧
⎪⎨

⎪⎩

ij , j < h,

ij + a, j = h,

ij + 2T, j > h,

where a = |v| · 2T/|vx|.
(a) h = 1: Let s = 2 and t = n + 3. i′t − i′s = (2n + 3)P − 1.
(b) 2 ≤ h ≤ n: Let s = 1 and t = n + 1. i′t − i′s = (2n + 1)P + 2T − 1.
(c) n + 1 ≤ h ≤ 2n − 1: Let s = n and t = 2n. i′t − i′s = (2n + 1)P + 2T − 1.
(d) h ∈ {2n, 2n + 1}: Let s = 1 and t = n + 2. i′t − i′s = (2n + 3)P − 1.
For all cases, i′t − i′s = l + T holds if P = T and it contradicts the pumping
lemma for CFLs.

Fig. 3. Pumping a 0-block in (a): the first half and (b): the latter half. On each half,
±X denotes that the length of the sequence increases by X and → X denotes that the
specific point is pushed by X.

Because every case contradicts the pumping lemma, L′ is not context-free
and neither is LH≥2n. The case for LH≥2n+1 is similar to the proof above. �


We have investigated languages with lower-bounded Hamming error values
and in most cases, they are not context-free. However, it is still unknown whether
or not LH≥2 and LH≥3 are context-free or non-context-free.

The case of LS≥k starts with an obvious observation that LS≥1 is context-
free. LS≥1 can be generated by the following CFG G = (V,Σ,R, S):

S → AA | BB,

A → 0A0 | 0A1 | 1A0 | 1A1 | 0,

B → 0B0 | 0B1 | 1B0 | 1B1 | 1.
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Regarding LS≥k with k ≥ 2, we establish that the language over ternary alphabet
is not context-free. Refer to the appendix for the full proof.

Theorem 11. For all k ≥ 2, LS≥k over a ternary alphabet is not context-free.

For binary case, some languages of the same type are not context-free.

Theorem 12. For all k ≥ 5, LS≥k over a binary alphabet is not context-free.

Proof (Sketch). This proof idea is similar to that of Theorem 10. Assume that
k is even and LS≥k is context-free, then the following L′ is also context-free and
should satisfy the pumping lemma.

L′ = LS≥k ∩ L([(01)∗00]k/2[(01)∗11]k/2(01)∗). (∗)

For the illustration purpose, let k = 6. For a pumping constant p, let P =
(max {p, k})! and choose

z = uvwxy = (01)P 00(01)2P 00(01)2P 00(01)4P+111(01)2P 11(01)2P 11(01)P .

The 00’s and 11’s alternate like the 1’s in Theorem 10. We can observe that v
and x must be in L((01)∗ + (10)∗), otherwise, uwy /∈ L′. It is also worth noting
that Fig. 4 is the target alignment of 00 and 11 in each half, which reduces the
similarity by two. Our goal is to show that similarity reduces for all possible
cases, contradicting the pumping lemma.

. . . 01010001010 . . .

. . . 10101110101 . . .

Fig. 4. The target alignment for z. The symbols not from (01)∗ are underlined. The
11 shifts to the right by one symbol.

We make z′ = uviwxiy to show such alignment by pumping up v and x
sufficiently large. For example, when both v and x are in the first (01)-block,
by shifting all 00’s and 11’s, z′ has similarity of 0 < k with (k/2) = 3 target
alignments. The following is z′ after pumping up v and x sufficiently so that
(i − 1) · |vx| = 4P , where i is the number of duplications.

z′ =(01)P+2P 00(01)2P 00(01)2P 00(01)2P−P 0

1(01)2P+P 11(01)2P 11(01)2P 11(01)P

One can make at least one target alignment for every factorization of uvwxy
and it reduces the similarity at least by two. Thus, z′ has similarity of at most
k − 2, which contradicts the pumping lemma—LS≥k is not context-free. This
argument also holds for odd k, but with k +1 instead of k for choosing a regular
language to intersect with LS≥k in (∗). �




Most Pseudo-copy Languages Are Not Context-Free 199

We then provide Lemma 13 as a simple conversion scheme from a language
with the edit-distance to a corresponding language with the Hamming distance.

Lemma 13. Let Γ = {0, 1,#} be an alphabet and h : Γ → Σ be a homomor-
phism such that h(0) = 0, h(1) = 1 and h(#) = λ. Then, h−1(LE≥k)∩L((Σ2)∗)
is the language with dH ≥ k over Γ .

Proof. For αβ ∈ LE≥k, every alignment of α and β has at least k different pairs.
Then, h−1 replaces λ in such alignment pairs in LE≥k or inserts (#,#) pairs.
Thus, the strings with even length represent alignments of the strings in LE≥k,
with at least k differences.

On the other hand, let L = LH≥k over Γ . Then, on its alignment of two
halves, one can derive an alignment for strings with at least k different pairs by
replacing # with λ. �


Since context-free languages are closed under inverse homomorphism [9], if
a language with the edit-distance is context-free, then the resulting language,
which is one with the Hamming distance, must be context-free. We now show
that such language is not context-free due to Theorem 10 and Lemma 13.

Theorem 14. For k ≥ 4, LE≥k is not context-free.

Proof (Proof by contradiction). Suppose that LE≥k is context-free. Consider the
alphabet Γ and the homomorphism h in Lemma 13. Since context-free languages
are closed under these operations, h−1(LE≥k) ∩ L((Σ2)∗) must be context-free.
However, this language is LH≥k over Γ , which is proven to be non-context-free
in Theorem 10 for k ≥ 4. �


Finally, we can easily show that the pseudo-copy languages are strictly
included in the class of context-sensitive languages by constructing realtime
NQAs. Refer to the appendix for full proofs.

5 Conclusions

We have examined the problems of determining non-context-freeness of pseudo-
copy languages and their complements defined under error measures such as
the Hamming distance and the edit-distance. Unlike COPY, the languages are
proved to be non-context-free. Especially, our results show that most pseudo-
copy languages as well as their complements are not context-free. It is interesting
as the complements are not significantly different from COPY which is context-
free.

There are, however, remaining problems that need further investigation to
determine their context-freeness. Even though our results show that the answer
for Problem 1 is not context-free, it still remains open for the complements
of extended pseudo-copy languages. LH≥k, LE≥k and LS≥k regarding errors
of small lower-bounds are to be examined in further study. We hope that our
findings are helpful for answering these questions.
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