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Preface

The 27th International Computing and Combinatorics Conference (COCOON 2021)
was held during October 24–26, 2021. COCOON 2021 provided an excellent venue for
researchers working in the area of algorithms, theory of computation, computational
complexity, and combinatorics related to computing. The technical program of the
conference included 56 regular papers selected by the Program Committee from 131
full submissions received in response to the call for papers. All the papers were peer
reviewed by at least three (3.10 on average) Program Committee members or external
reviewers. Papers of high quality will be invited to special issues of Algorithmica,
Theoretical Computer Science (TCS), the Journal of Combinatorial Optimization
(JOCO), and the International Journal of Computer Mathematics: Computer Systems
Theory (IJCM:CST), respectively.

The conference also included four invited presentations, delivered by Ding-Zhu Du
(University of Texas at Dallas), Takeshi Tokuyama (Kwansei Gakuin University), Ralf
Klasing (CNRS andUniversity of Bordeaux), andTonyQ.S.Quek (SingaporeUniversity
of Technology and Design). Abstracts of their talks are included in this volume. We
thank everyone who made this meeting possible: the authors for submitting papers,
the Program Committee members, and external reviewers for volunteering their time
to review conference papers. We thank Springer for publishing the proceedings in the
Lecture Notes in Computer Science series. We would also like to extend special thanks
to the other chairs and the conference Organizing Committee for their work in making
COCOON 2021 a successful event.

September 2021 Chi-Yeh Chen
Wing-Kai Hon
Ling-Ju Hung
Chia-Wei Lee
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Abstracts of Invited Talks



Coupon Allocation in Social Market: Robust and Machine
Learning

Ding-Zhu Du

University of Texas at Dallas, USA

Abstract. In this talk, we consider the coupon allocation problem in
marketing. It has been reported that 40% of consumers will share an
email offer with their friend and 28% of consumers will share deals via
social media platforms. What does this mean for a business? Essentially
discounts should not just be treated as short term solutions to attract
individual customer, instead, allocating coupon to a small fraction of
users (called seed users) may trigger a large cascade in a social market.
This motivates us to study the influence maximization coupon allocation
problem: given a social network and budget, we need to decide to which
initial set users should offer the coupon, and howmuch should the coupon
be worth. Our goal is to maximize the number of customers who finally
adopt the target product. The talk is based on recent research paper of
Jianxiong Guo et al.



Discrepancy Theory in Combinatorics, Geometry
and Computation

Takeshi Tokuyama

Kwansei Gakuin University, Japan

Abstract.Discrepancy theory investigates uniformity, and appears in sev-
eral aspects ofmathematics and computer science. Consider a range space
consisting of a set of n pointsP in the unit square [0, 1]×[0, 1] (in general,
d-dimensional unit cube) and a family R of subregions in the square. For
a region R ∈ R with area Area(R), let D(P, R) = |n Area (R) − |P ∩ R||.
If P is ideally uniformly distributed, D(P, R) should be small for each
R, and we define D(P, {∈ R}) = supR∈RD(P, R). The geometric dis-
crepancy of n points with respect to R is D(n, R) = infP,|P|=nD(P, R),
which gives the limit of uniformity of point distribution with respect to
R. A classical result is that D(n, R) = �logn if R is the set of all axis-
parallel rectangular regions. There are some other related discrepancies
defined on hypergraphs. In this talk, discrepancy theory and its applica-
tions including recent results on consistent digital curved rays will be
discussed.



Learning Graphs with Topology Properties

Tony Q. S. Quek

Singapore University of Technology and Design, Singapore

Abstract. Graphs are mathematical tools, consisting of nodes (vertices)
and links (edges), used in various fields to represent, process, visualize,
and analyze structured data. Inmany cases, datasets consist of an unstruc-
tured list of samples, and the underlying graph topology (representing the
structural relations between samples) is unknown. It is thus desirable to
learn the graph from data. Typically, graph learning is an ill-posed prob-
lem since multiple solutions may exist associating a graph with the data.
In this talk, we show how constraints can be imposed directly on the
learned graphs so as to enforce certain topology properties that can best
fit the data. Specifically, inspired by a specific application domain (e.g.,
community detection), we develop a graph learning method that learns a
graph with overlapping community structure. Our method encompasses
and leverages the community structure information, along with attributes
such as sparsity and signal smoothness to capture the intrinsic relation-
ships between data entities, such that the estimated graph can optimally fit
the data. Furthermore,we extend tomore complex datasetswith heteroge-
neous graph signals. In summary, our methods can incorporate topology
properties in graph learning, which makes it possible to capture com-
plex and non-typical behavior of graph signals that cannot be explicitly
handled just by observed data.



Bamboo Garden Trimming Problem
(Perpetual Maintenance of Machines with Different Urgency

Requirements)

Ralf Klasing

CNRS and University of Bordeaux, France

Abstract.A garden G is populated by n ≥ 1 bamboos b1, b2, ..., bn with
the respective daily growth rates h1 ≥ h2 ≥ · · · ≥ hn. It is assumed that
the initial heights of bamboos are zero. The robotic gardener maintain-
ing the garden regularly attends bamboos and trims them to height zero
according to some schedule. The Bamboo Garden Trimming Problem
(BGT) is to design a perpetual schedule of cuts to maintain the eleva-
tion of the bamboo garden as low as possible. The bamboo garden is a
metaphor for a collection of machines which have to be serviced, with
different frequencies, by a robot which can service only one machine
at a time. The objective is to design a perpetual schedule of servicing
which minimizes the maximum (weighted) waiting time for servicing.
We consider two variants of BGT. In discrete BGT the robot trims only
one bamboo at the end of each day. In continuous BGT the bamboos can
be cut at any time, however, the robot needs time to move from one bam-
boo to the next. For discrete BGT, we show a simple 4-approximation
algorithm and, by exploiting relationship between BGT and the classi-
cal Pinwheel Scheduling Problem, we derive a 2-approximation for the
general case and a tighter approximation when the growth rates are bal-
anced. For continuous BGT,we propose approximation algorithmswhich
achieve approximation ratios O(log(h1/hn)) and O(logn).
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Abstract. The classic Impagliazzo–Nisan–Wigderson (INW) pseudo-
random generator (PRG) (STOC ‘94) for space-bounded computation
uses a seed of length O(log n · log(nw/ε) + log d) to fool ordered branch-
ing programs of length n, width w, and alphabet size d to within error
ε. A series of works have shown that the analysis of the INW genera-
tor can be improved for the class of permutation branching programs or
the more general regular branching programs, improving the O(log2 n)
dependence on the length n to O(log n) or Õ(log n). However, when also
considering the dependence on the other parameters, these analyses still
fall short of the optimal PRG seed length O(log(nwd/ε)).

In this paper, we prove that any “spectral analysis” of the INW gen-
erator requires seed length

Ω (log n · log log(min{n, d}) + log n · log(w/ε) + log d)

to fool ordered permutation branching programs of length n, width w,
and alphabet size d to within error ε. By “spectral analysis” we mean an
analysis of the INW generator that relies only on the spectral expansion
of the graphs used to construct the generator; this encompasses all prior
analyses of the INW generator. Our lower bound matches the upper
bound of Braverman–Rao–Raz–Yehudayoff (FOCS 2010, SICOMP 2014)
for regular branching programs of alphabet size d = 2 except for a gap
between their O(log n · log log n) term and our O(log n · log log min{n, d})
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(STOC 2011), De (CCC 2011), and Steinke (ECCC 2012) for constant-
width (w = O(1)) permutation branching programs of alphabet size
d = 2 to within a constant factor.

To fool permutation branching programs in the measure of spectral
norm, we prove that any spectral analysis of the INW generator requires
a seed of length Ω(log n·log log n+log n·log(1/ε)+log d) when the width
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of Hoza–Pyne–Vadhan (ITCS ‘21) to within a constant factor.
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1 Introduction

Starting with the work of Babai, Nisan, and Szegedy [BNS92], there has been
three decades of work of constructing and analyzing pseudorandom generators
for space-bounded computation, motivated by obtaining unconditional deran-
domization (e.g. seeking to prove that BPL = L) and a variety of other appli-
cations (e.g. [Ind06,Siv02,HVV06,HHR11]). Although we still remain quite far
from having pseudorandom generators that suffice for a full derandomization of
space-bounded computation, there has been substantial progress on pseudoran-
dom generators for restricted models of space-bounded computation. In partic-
ular, a series of works has shown that the analysis of the classic Impagliazzo–
Nisan–Wigderson (INW) generator [INW94] can be significantly improved for
restricted models (e.g. “permutation branching programs”), but these analyses
have not matched the parameters of an optimal pseudorandom generator. In this
work, we show that there are inherent limitations to the analysis of the INW
generator for these restricted models, proving lower bounds that nearly match
the known upper bounds.

1.1 Pseudorandom Generators for Space-Bounded Computation

Like previous work, we will work with the following nonuniform model of space-
bounded computation.

Definition 1. An ordered branching program (OBP) B of length n, width
w and alphabet size d computes a function B : [w] × [d]n → [w]. On an
input σ ∈ [d]n, the branching program computes as follows. It starts at a fixed
start state v0 ∈ [w]. Then for t = 1, . . . , n, it reads the next symbol σt and
updates its state according to a transition function Bt : [w] × [d] → [w] by taking
vt = Bt(vt−1, σt). Note that the transition function Bt can differ at each time
step.

Moreover, there is a set of accept states Ve ⊆ [w]. Let u be the final state
of the branching program on input σ. If u ∈ Ve the branching program accepts,
denoted B(σ) = 1, and otherwise the program rejects, denoted B(σ) = 0.

An ordered branching program can be viewed as a layered digraph, consist-
ing of (n + 1) layers of w vertices each, where for every t = 1, . . . , n and
v ∈ [w], the v’th vertex in layer t − 1 has d outgoing edges, going to the vertices
Bt(v, 1), Bt(v, 2), . . . , Bt(v, d) ∈ [w] in layer t.

An ordered branching program corresponds to a streaming algorithm, in that
the n input symbols from [d] are each read only once, and in a fixed order. This is
the relevant model for derandomization of space-bounded computation because
a randomized space-bounded algorithm processes its random bits in a streaming
fashion. Specifically, if on an input x, a randomized algorithm A uses space s
and n random bits σ, the function Bx(σ) = A(x;σ) can be computed by an
ordered branching program of length n, width w = 2s and alphabet size 2. In
particular, if A is a randomized logspace algorithm (i.e. a BPL algorithm), then
n = w = poly(|x|).
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The standard definition of pseudorandom generator is as follows.

Definition 2. Let F be a class of functions f : [d]n → {0, 1}. An ε-
pseudorandom generator (ε-PRG) for F is a function GEN : {0, 1}s → [d]n

such that for every f ∈ F ,
∣
∣
∣
∣
∣

E
x←U[d]n

[f(x)] − E
x←U{0,1}s

[f(GEN(x))]

∣
∣
∣
∣
∣
≤ ε,

where US is the uniform distribution over the set S. The value s is the seed
length of the PRG. We say a generator GEN is explicit if the ith symbol of
output is computable in space O(s). We say that GEN ε-fools F if it is an
ε-PRG for F .

By the Probabilistic Method, it can be shown that there exist (non-explicit)
ε-PRGs for the class of ordered branching programs of length n, width w, and
alphabet size d with seed length s = O(log(nwd/ε)), and it can be shown that
this is optimal up to a constant factor (provided that 2n ≥ w, n, d, w ≥ 2, d is
even, and ε ≤ 1/3). An explicit construction with such a seed length (even for
d = 2 and ε = 1/3) would suffice to fully derandomize logspace computation
(i.e. prove BPL=L).

The classic constructions of Nisan [Nis92] and Impagliazzo, Nisan, and
Wigderson [INW94] give explicit PRGs with seed length s = O(log n·log(nw/ε)+
log d). For the case corresponding to derandomizing general logspace computa-
tion, where d and ε are constant and w is polynomially related to n, we have
s = O(log2 n), quadratically worse than the optimal seed length of s = O(log n).
Brody and Verbin [BV10] showed that these classic pseudorandom generators
require seed length Ω(log2 n) even for width w = 3. Meka, Reingold, and
Tal [MRT19] recently gave a completely different explicit construction of pseu-
dorandom generator for width w = 3 with seed length s = Õ(log n · log(1/ε))),
but for width w = 4 no explicit constructions with seed length o(log2 n) are
known.

1.2 Permutation Branching Programs

Motivated by the lack of progress on the general ordered branching program
model, there has been extensive research on restricted models:

Definition 3. An (ordered) regular branching program of length n, width
w, and alphabet size d is an ordered branching program where the associated lay-
ered digraph consists of regular bipartite graphs between every pair of consecutive
layers. Equivalently, for every t = 1, . . . , n and every v ∈ [w], there are exactly
d pairs (u, σ) ∈ [w] × [d] such that Bt(u, σ) = v.

Definition 4. An (ordered) permutation branching program of length n,
width w, and alphabet size d is an ordered branching program where for all t ∈ [n]
and σ ∈ [d], Bt(·, σ) is a permutation on [w].
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Every ordered permutation branching program is a regular branching program,
but not conversely.

A series of works has shown that the Impagliazzo–Nisan–Wigderson (INW)
pseudorandom generator can be instantiated with smaller seed length for regular
or permutation branching programs. First, Rozenman and Vadhan [RV05] ana-
lyzed the INW generator for carrying out random walks on d-regular w-vertex
graphs, which correspond to regular branching programs in which all of the tran-
sition functions Bt are the same. They showed that if the graph is consistently
labelled (equivalently, that we have a permutation branching program), then a
seed length of s = O(log(nwd/ε)) suffices for the random walk to get within
distance ε of the uniform distribution on vertices, provided that the length n of
the pseudorandom walk is polynomially larger than the mixing time of a truly
random walk. (This “pseudo-mixing” property is nonstandard but has applica-
tions, including giving a simpler proof of Reingold’s Theorem that Undirected
Connectivity is in deterministic logspace [Rei08] and the construction of almost
k-wise independent permutations [KNR05].)

Next, Braverman, Rao, Raz, Yehudayoff [BRRY10] analyzed the INW gen-
erator for regular branching programs of alphabet size d = 2, and achieved
seed length s = O(log n · log log n + log n · log(w/ε)), thereby improving the
dependence on the length n from O(log2 n) to Õ(log n) for the standard pseudo-
randomness property. For the case of permutation branching programs of con-
stant width w = O(1) and alphabet size d = 2, Koucký and Nimbhorkar and
Pudlák [KNP11] further improved the seed length to s = Ow(log n · log(1/ε)).
The hidden constant in the Ow(.) depended exponentially on the width w, but
was subsequently improved to a polynomial by De [De11] and Steinke [Ste12].

Recently, Hoza, Pyne, and Vadhan [HPV21] turned their attention to per-
mutation branching programs of unbounded width, and showed that the INW
generator fools such programs in “spectral norm” with seed length s = O(log n ·
log log n + log n · log(1/ε) + log d). Here, fooling in spectral norm means that
the w × w matrix of probabilities of going from each initial state to each final
state under the generator has distance at most ε in spectral norm from the same
matrix under truly random inputs. ε-fooling in spectral norm can be shown
to imply the standard notion of pseudorandomness for programs with a single
accept state. Surprisingly, the seed length of [HPV21] even beats the Probabilis-
tic Method; indeed they show that a random function requires seed length Ω(n)
to fool permutation branching programs of unbounded width and a single accept
vertex with high probability.

We summarize the aforementioned analyses of the INW generator in Table 1.
Let us elaborate on how all of these results are instantations of the INW genera-
tor. Specifically, the INW generator can be viewed as a template for a recursive
construction of a PRG, where a PRG INWi−1 generating ni−1 = 2i−1 output
symbols is used to construct a PRG INWi generating ni = 2i output symbols,
by running INWi−1 twice on a pair of correlated seeds. The pair of seeds are
chosen according to a random edge in an auxiliary expander graph Hi:

INWi(e) = INWi−1(x) · INWi−1(y) for each edge e = (x, y) of Hi, (1)
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Table 1. Spectral analyses of the INW generator

Model Seed length Pseudorandomness Reference

General O(log n · log(nwd/ε)) Standard [INW94]

Perm., same trans. O(log(nwd/ε)) Pseudo-mixing [RV05]

Regular, d = 2
O(logn · log log n+

logn · log(w/ε))
Standard [BRRY10]

Permutation, d = 2 Ow(logn · log(1/ε)) Standard [KNP11,De11,Ste12]

Permutation
O(logn · log log n +

logn · log(1/ε) + log d)
Spectral [HPV21]

where · denotes concatenation. Thus different choices of the sequence of graphs
H1,H2, . . . , Hlog n yield different instantiations of the INW generator. In all of
the aforementioned works,1 the pseudorandomness property of the generator is
proven using only the spectral expansion properties of the graphs Hi, namely
requiring that all of the nontrivial normalized eigenvalues of Hi have absolute
value at most some value λi for i = 1, . . . , log n. We call such an analysis a spectral
analysis of the INW generator. Given a spectral analysis of the INW generator,
the degrees of the expanders Hi are then determined by the optimal relationship
between expansion and degree di = poly(1/λi), which in turn determines the
seed length of the final generator, namely

s = Θ (log (d · d1 · d2 · · · dlog n)) = Ω

(

log d +
log n
∑

i=1

log(1/λi)

)

. (2)

1.3 Our Results

Given the improved analyses of the INW generator described in Table 1, it is
natural to wonder how much further these analyses can be pushed. In particular,
can the INW generator ε-fool permutation branching programs of length n, width
w, and alphabet size d with seed length matching the optimal seed length of
O(log(nwd/ε))? Our main result is that the answer is no:

Theorem 1 (informally stated). Any spectral analysis of the INW generator
for ε-fooling permutation branching programs of length n, width w, and alphabet
size d requires seed length

s = Ω (log n · log log(min{n, d}) + log n · log(w/ε) + log d) .

Notice that this lower bound nearly matches the upper bounds in Table 1. In
particular, we match the upper bound of [BRRY10] for regular branching pro-
grams, except that we get a log n · log log n term only when d = nΩ(1) while
1 Braverman et al. [BRRY10] analyze the INW generator constructed with random-
ness extractors [NZ96], but the extractor parameters they use follow from spectral
expansion properties of the underlying graphs [GW97].
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they have such a term even when d = 2. We also match the upper bounds of
[KNP11,De11,Ste12] for permutation branching programs of alphabet size d = 2
and constant width w = O(1).

For fooling with respect to spectral norm, we can get a lower bound of log n ·
log log n whenever w = nΩ(1), in particular matching the result of [HPV21] for
unbounded-width permutation branching programs:

Theorem 2 (informally stated). For ε-fooling in spectral norm, any spectral
analysis of the INW generator for permutation branching programs of length n,
width w, and alphabet size d requires seed length

s = Ω (log n · log log(min{n,w}) + log n · log(1/ε) + log d) .

While our theorems are quite close to the upper bounds, they leave a few
regimes where a spectral analysis of the INW generator could potentially yield
an improved seed length. In particular, a couple of open questions stand out
regarding the log n · log log n in terms in the bounds:

– Can we achieve seed length O(log n · log(w/ε)) for permutation (or even reg-
ular) branching programs of alphabet size d = 2? When the alphabet size
is d = 2, the log log(min{n, d}) term disappears in Theorem 1. However,
the upper bound of [BRRY10] for regular branching programs still has an
O(log n · log log n) term, and the upper bounds of [KNP11,De11,Ste12] only
achieve a polynomial dependence on the width w.

– Can we achieve seed length O(log n · log(1/ε)) for permutation branching
programs with a single accept vertex, alphabet size d = 2, and width w = n
(or even unbounded width)? The best upper bound for this model is [HPV21],
which has a additional O(log n · log log n) term. This term is necessary for
fooling in spectral-norm by Theorem 2 but may not be necessary for the
easier task of fooling programs with a single accept vertex.

A second opportunity for improvement is to go beyond spectral analysis of
the INW generator, and exploit graphs Hi with additional properties. To indicate
that there is some hope for this, we include an observation showing that there
exists an instantiation of the INW generator that achieves optimal seed length,
even against more general ordered branching programs:

Theorem 3. For all n,w, d ∈ N and ε > 0, there exists a sequence of graphs
H such that the INW generator constructed with this sequence ε-fools ordered
branching programs of length n, width w and alphabet size d and has seed length
O(log(nwd/ε)).

This is an application of the Probabilistic Method, and so does not give an
explicit PRG.

Our lower bounds also say nothing about constructions that deviate from
the template of the INW generator, and better seed lengths can potentially
be obtained by modifying the INW generator or using it as a tool in more
involved constructions. Examples include the pseudorandom generator for width
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3 ordered branching programs [MRT19], which combines the INW generator with
pseudorandom restrictions, and [BCG18,CL20,CDR+21,PV21b,Hoz21], which
construct “weighted pseudorandom generators” with a better dependence on the
error by taking linear combinations of the INW generator (or blends of the Nisan
and INW generator).

1.4 Techniques

Theorem 1 is really three separate lower bounds, which we state as separate
theorems here to discuss the proof ideas separately. (The lower bound of s =
Ω(log d) is very simple.)

Theorem 4 (informally stated). Any spectral analysis of the INW generator
for (1 − 1/wΩ(1))-fooling permutation branching programs of length n, width w,
and alphabet size d = 2 requires seed length s = Ω(log n · log w).

Note that the lower bound holds for a very large error parameter, namely ε =
1 − 1/wΩ(1). In fact, it holds even for obtaining a hitting-set generator, where
we Definition 2 is relaxed to only require that Ex←U[d]n [f(x)] > ε implies that
Ex←U{0,1}s [f(GEN(x))] > 0.

To prove this Theorem 4, we show that most of the λi’s parameterizing the
INW generator must have λi < 1/wΩ(1), which implies the seed-length lower
bound by Eq. (2). If that is not the case for some value of i, we construct an
auxiliary graph Hi to use in the INW generator (with λ(Hi) ≤ λi) such that
a permutation branching program only needs width poly(1/λi) ≤ w in order
to perfectly distinguish a random edge in Hi from a pair of vertices in Hi that
are disconnected. Specifically, we can take Hi to be an expander with degree
ci = poly(1/λi) and c2i vertices. To be able to use such a graph in most levels
in the INW generator, we may need to pad the number of vertices to a value
larger than ci. We do this by taking a tensor product with a complete graph,
which retains both the expansion of Hi and the ability of a width w permutation
branching program to distinguish edges and non-edges. We use complete graphs
(with an appropriate edge labelling) for the remaining graphs Hj in the INW
generator, and argue a permutation branching program of width w can still
distinguish the output from uniform.

Theorem 5 (informally stated). Any spectral analysis of the INW generator
for ε-fooling permutation branching programs of length n, width w = 2, and
alphabet size d = 2 requires seed length s = Ω(log n · log(1/ε)).

To prove Theorem 5 we use a construction from [RV05] used to show that
the tightness of their analysis of the “derandomized square” operation on
graphs. (Composing the INW generator with a permutation branching programs
amounts to performing log n iterated derandomized square operations on the
graph of the branching program.) Specifically, in order to show that each λi

satisfies λi = O(ε), we consider a graph Hi that has a self-loop probability of
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λi but has λ(Hi) ≤ λi. When the self-loop is taken, it means that two consecu-
tive subsequences of the output of the INW generator of length 2i−1 are equal to
each other, by Eq. (1). Thus the permutation branching program of width 2 that
computes the parity of the input bits on the union of those two subsequences
will distinguish the output of the INW generator from uniform with advantage
Ω(λi).

Theorem 6 (informally stated). Any spectral analysis of the INW generator
for .1-fooling permutation branching programs of length n, width w = 2, and
alphabet size d requires seed length s = Ω(log n · log log(min{n, d})).

To prove Theorem 6, we want to show that most of the λi’s must satisfy
λi ≤ O(1/ log n), where we assume without loss of generality that d = n. It
suffices to prove that

∑log n
i=1 λi ≤ O(1). To do this, we again consider graphs Hi

that have a self-loop probability of λi, but rather than considering only one such
graph, we use all of them in the INW generator. Intuitively, we want to show that
the errors of Ω(λi) accumulate to lead to an overall error of Ω(

∑

i λi) > ε. We
consider a permutation branching program that corresponds to a random walk on
a graph G with w = 2 vertices that has a self-loop probability of 1−1/d = 1−1/n.
A truly random walk of length n on G will end at its start vertex with probability
at most 1 − n · (1/n) · (1 − 1/n)n−1 < .64. We show that a pseudorandom walk
using the INW generator with the graphs Hi will end at its start vertex with
probability at least .75. Specifically, we choose our edge and vertex labellings
carefully so that the self-loops in the graphs Hi cause random walks to backtrack
with a high constant probability, so that it is as if we are typically doing random
walks on G of length at most n/4.

Turning to Theorem 7, the only part of the lower bound that does not follow
from the same arguments as above is the following:

Theorem 7 (informally stated). For 1/3-fooling in spectral norm, any spec-
tral analysis of the INW generator for permutation branching programs of
length n, width w, and alphabet size d = 2 requires seed length s = Ω(log n ·
log log(min{n,w})).

The proof of Theorem 7 is similar to that of Theorem 6, but instead of considering
random walks on a 2-vertex graph G with large degree d, we use an graph
G of degree 2 and a large number of vertices. Specifically we take G to be
the undirected cycle on w = Θ(

√
n) vertices. The key point is that the truly

random walk on the cycle mixes in n = Θ(w2) steps in spectral norm. So a truly
random walk of length n will differ from complete mixing by at most, say 1/3, in
spectral norm, but due to backtracking, the pseudorandom walks using the INW
generator will differ from complete mixing by at least 2/3 in spectral norm.
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Abstract. New deadlock-free unicast-based all-to-all broadcast algo-
rithms are proposed for dragonfly networks. An all-to-all broadcast deliv-
ers a message from each router to all routers. Two different all-to-all
broadcast algorithms GFA2A and RFA2A using the previous group-first
and router-first one-to-all broadcast schemes are presented. A new all-to-
all broadcast algorithm named A2A is presented by collecting all mes-
sages from all routers in the same group to a single router first and
combining them, which are forwarded to all routers in the same group.
Each router forwards messages to all other routers in the same groups
after receiving all messages from other groups. The proposed algorithms
can be implemented with the unicast hardware, that is, each input port
is assigned two indistinguishable buffers.

1 Introduction

Economical optical signaling enables high-radix topologies with long channels,
which are less expensive than the short electrical channels. The use of high-
radix routers attracts more interests than those of low-radix ones by maintain-
ing a small number of ports and increasing the bandwidth per port. Dragonfly
networks [4,6,8,11,21,22] have been popular in the past decade. It consists of
a number of router groups, where each group contains completely connected
routers for 1D router groups. Any pair of groups are connected by at least one
global channel. Each router group can also be connected as a 2D flattened but-
terfly [3,15]. Each router has multiple global links that are connected to other
groups.

Collective communication has received considerable attention since it places
a high demand on network bandwidth and has a great impact on algorithms
execution time. Multicast is one of the most useful collective communication
operations. Multicast can be easily implemented with no hardware overhead by
serially sending a multicast message with d destinations d times and it is delivered
to a particular destination for each time, which causes a significant amount of
traffic, and introduces an intolerably long delay at the injection point.

Broadcast is frequently used by many important applications such as parallel
search, parallel graph and matrix algorithms. One-to-all broadcast is used to
implement more complex communication operations, such as, personalized all-
to-all broadcast, gather, and barrier synchronization [5,13,17].
c© Springer Nature Switzerland AG 2021
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Collective communication is classified as follows: (1) tree-based [9,10], (2)
path-based [1,14], and (3) unicast-based [12,19–22]. The unicast-based scheme
in [12] is purely software-based, which does not need any modification on the
hardware.

A multicast message is delivered to all destinations by using a recursive uni-
cast scheme [12] unlike the serial unicast scheme stated earlier, where each multi-
cast message must be delivered to the neighbors of the source ln(d+1) times from
the injection port and d is the number of destinations. The unicast-based mul-
ticast scheme in [12] does not duplicate the message to any intermediate node.
This unicast-based multicast scheme is promising and cost-effective (Fig. 1).

G GG

R R0 1 Rm−1

0 1 n−1

group

global channel

tc
0 tc

1
tcp−1tc0 tc1

tcp−1 tc0 tc
1

tcp−1

channel
local

intra−group 

 network
    interconnection

network
interconnection

inter−group

channel
global

Fig. 1. The dragonfly interconnection network.

Collective communication in dragonfly networks [2,22] is very important.
Hardware support multicast for tree-based or path-based techniques is very diffi-
cult to implement, which makes the switch too complex. McKinley, et al. [12] pre-
sented efficient algorithms to implement multicast communication in wormhole-
routed meshes and hypercubes in the absence of hardware multicast support, by
exploiting the properties of the switching technology. Suh and Yalamanchili [16]
used message combining to minimize message start-ups at the expense of larger
message sizes. Juurlink, et al. [7] optimized the trade-off between contributions
due to start-ups and those due to the bounded capacity of the connections. Up to
now, we still do not have any work on all-to-all broadcast in dragonfly networks.
It is essential to propose an efficient all-to-all broadcast algorithm for dragonfly
networks.

We presented two all-to-all broadcast algorithms using the one-to-all broad-
cast schemes in [22]. Each of all routers delivers a one-to-all broadcast message
separately for both schemes. In the group-first (GFA2A) algorithm, each of all
routers delivers a message to all groups in the network first from the source
router, which is forwarded to all routers in each group after that. In the router-
first all-to-all broadcast (RFA2A) algorithm, each of all routers sends a message
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to all routers in the source group first, which is delivered from separate routers
in the source group to all groups concurrently. The message is finally forwarded
to all routers in each group. Both GFA2A and RFA2A algorithms produce quite
different global channel traffic, and sequential global channel traversals.

The third all-to-all broadcast algorithm (A2A) contains four separate phases:
(1) packet collection inside a router group, (2) packet scattering in the group, (3)
delivery of all packets at the router to all directly connected routers in the other
groups, and (4) each router scattering all packets received from all g = m/2
directly connected routers in other groups to all routers in its own group.

In the rest of this paper, the preliminaries are presented in Sect. 2. The all-to-
all broadcast algorithms based on the one-to-all broadcast schemes are presented
in Sect. 3. The message combining based all-to-all broadcast algorithm A2A is
presented in Sect. 4. The paper is concluded in Sect. 5.

2 Preliminaries

Connection of the global links has an impact on the performance of the network.
We use the same scheme to connect the global channels for the dragonfly net-
works as presented in [22]. Let each group have m routers R0, R1, . . . , Rm−1.
The groups are labeled as G0, G1, G2, . . . , Gn−1, while for i ∈ {0, 1, 2, . . . , n−2},
the last router of Gi is connected to the first router of Gi+1 for 0 < i < n − 1.
Figure 2 presents the global connections between any pairs of adjacent groups
for a system with nine groups and each group contains four routers.

Fig. 2. Connecting the global links for the dragonfly networks.

There are n router groups G0, G1, . . . , Gn−1, where each group contains m
routers R0, R1, . . . , Rm−1. Let each router be connected to g = m/2 global
links, therefore, each group has m · g global links. Our method connects the first
group G0 to any other group Gj (j ≥ 2) from j = 2 to n−1 in the following way:
the router in G0 with the highest ID, that has an available slot, is connected
to the router in Gj with the lowest ID and an available slot. The group G1 is
then connected with all other groups Gj (j ≥ 3) in the same way. This process
continues until Gn−3 has connected a global link with Gn−1 finally.

For each pair of groups that are not adjacent, Rv ∈ Gi and Rv′ ∈ Gj with
i + 1 < j, Rv is connected to Rv′ . Let Rv ∈ Gi be connected to Rv′ ∈ Gj . We
have the following equations for the IDs of the routers Rv and Rv′ .
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Figure 2 presents the global link connections in a dragonfly network with nine
groups, where each group contains four routers. Each router can be connected
to up to g = 2 separate groups. Figure 2 presents the global link connections
between any pair of groups. All local connections in the same group are not
presented. The scheme to connect global channels for 1D dragonfly networks can
be applied to dragonfly networks with each group established by a 2D flattened
butterfly, such as, the Cray Cascade system [3] and Slingshot [15].

We give each unidirectional link a unique label plus or minus by the identities
(IDs) of source and sink. Each router can be represented by a 2-element tuple
(a, b), where a and b are the group ID, and router ID, respectively. A link (s, d)
with s (a1, b1), and d (a2, b2) in the same group is plus if b1 < b2, otherwise it is
minus. A global link (s, d), that connects nodes s ∈ Ga1 and d ∈ Ga2 , is plus if
a1 < a2; otherwise, the global link (s, d) is minus.

The minus-first routing (MFR) algorithm was proposed in [18,22] for dragon-
fly networks without any VCs. Assume that the dragonfly network is connected
as stated above. The main idea of the MFR algorithm is: any packet cannot be
delivered across a plus hop unless all minus hops have been traversed.

The MFR algorithm is a partially adaptive routing scheme, which can be
enhanced to a minimum routing by using a simple flow control scheme. Each
input port for local link contains two indistinguishable buffers, which is enough
to keep the whole packet. Our method classifies packets as safe or unsafe: A safe
packet at a router can be delivered to the destination by the baseline routing
scheme MFR provided hops; otherwise, the packet is unsafe.

The flow controlled minimum routing requires two buffers that are indistin-
guishable. The proposed all-to-all broadcast algorithms are completed by multi-
ple unicast steps, where each unicast step conforms to the flow controlled mini-
mum routing scheme. A message is delivered along an MFR path if it is delivered
across one or more minus hops first, followed by one or more plus hops.

An unsafe packet is kept in a separate buffer. Each input port keeps two
buffers which can be written and read directly, however, at most one packet kept
in the same input port can be delivered via any output channel. At most one
unsafe packet can be kept at the same input port. The flow controlled minimum
routing algorithm can forward a safe packet to the next hop that conforms to the
MFR algorithm if one of the following conditions can be satisfied: (1) the input
port of the next hop contains one empty buffer, and the next hop conforms to
the MFR algorithm, (2) two empty buffers at the input port are available, (3)
the input port contains one empty buffer and one safe packet no matter whether
the next hop conforms to the MFR algorithm. More details on the baseline
routing algorithm MFR and the flow controlled minimum routing algorithm can
be found in [21].
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Algorithm 1. group-first-all-to-all()
Input:

The dragonfly network, the normalized applied load;
Output:

Each processor deliver the message to all processors;
1: Order the groups into an MFR chain G.
2: For each router r ∈ G, call deliver(r,G) to deliver a message from r to all groups

in G.
3: for each group Gi ∈ G with router set Di do
4: call forward(vi, Di) to multicast the message from vi to all routers Di in the

group, where vi is the router that received the message in the group-level stage.
5: end for

Algorithm 2. deliver(c,G)
Input:

Coordinates of the source node s;
Output:

Deliver the message to all processors in the network;
1: if |G| = 2 then
2: deliver the message to the remaining group via an MFR path, exit;
3: end if
4: divide G into two equal subsets G′ and G′′.
5: if c is in the lower half G′′ then
6: deliver the message from c to a router c1 in the group in the upper half G′ with

the lowest group label; call deliver(c,G′) at c, and call deliver(c1, G
′′) at c1.

7: end if
8: if c is in the upper half G

′
of G then

9: deliver the message from c to the router c2 in the group with the highest label
in the lower half G′′;

10: call deliver(c,G′) at c, and call deliver(c2, G
′′) at c2.

11: end if

3 All-to-All Broadcast Using One-to-All Broadcast
Schemes

We proposed two all-to-all broadcast algorithms using the one-to-all broadcast
schemes in [22]: (1) group-first, and (2) router-first. The group-first broadcast
scheme directly delivers the message from the source router to all groups in the
network first, which is forwarded to all routers in the same group. The router-
first broadcast scheme sends the broadcast message from the source to all routers
in the source group first, which is delivered from separate routers in the source
group to all groups concurrently. The message is finally forwarded to all routers
in each group.

Unicast-based broadcast algorithms require no extra hardware support if
we implement broadcast by using the baseline routing scheme. The partially
adaptive routing scheme called minus-first routing (MFR) is used as the baseline
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Algorithm 3. forward(v,D)
Input:

Coordinates of the current node c;
Coordinates of the destination list D;

Output:
Deliver the message to all processors in D;

1: if |D| = 2 then
2: Forward the message to the other router in D.
3: end if
4: Divide D into two equal subsets D1 and D2, exit.
5: if v is in the first half D1 then
6: deliver the message from v to the first router v2 in the latter half D2; call

forward(v2, D2) at v2, and call forward(v,D1) at v;
7: end if
8: if v is in the latter half D2 then
9: deliver the message from v to the last node v1 in the first half D1; call

forward(v1, D1) at v1, and call forward(v,D2) at v.
10: end if

routing scheme, which can be replaced by a fully adaptive routing algorithm or
the flow-controlled minimum routing one in [21]. However, we think that the
MFR algorithm is enough for the router-first all-to-all broadcast algorithm and
the message combining all-to-all broadcast algorithm because all paths to deliver
packets conforms the minimum MFR paths.

Just like the original group-first and router-first broadcast schemes, the all-
to-all broadcast algorithms based on the group-first and router-first broadcast
schemes are also implemented by unicast steps, which requires no hardware
support. They have the following features: (1) all routers receive the message
via minimum feasible paths, (2) no router receives the message more than once.
Our all-to-all broadcast algorithms are implemented by unicast steps.

The general framework of the group-first all-to-all broadcast algorithm
(GFA2A, for short) is presented in Algorithm 1. The groups in the network are
ordered into an MFR chain first. For each router r, the procedure deliver(r,G)
forwards a message from r to all groups in G.

The procedure deliver(r,G) as presented in Algorithm 2 is a recursive one.
The group set G is equally partitioned into two subsets G′ and G”, where the
broadcast message is recursively delivered inside G′ and G”. There may exist
some paths for a unicast step that do not conform to the MFR algorithm. How-
ever, the length of a unicast path for the procedure deliver(r,G) is at most two
in the group-first based all-to-all broadcast algorithm.

After the broadcast message from a single router has reached all groups.
Assume that a router v receives the message, and D contains all routers in the
same group. Algorithm 3 recursively delivers the message at v to all routers in
the same group. The path for each unicast step is always an MFR path because
all routers are directly connected.
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Fig. 3. Delivering a packet inside a group for the router-first A2A broadcast algorithm:
(a)-(h) scattering from each of the routers in the same group.

The general framework for the router-first based all-to-all broadcast algo-
rithm (RFA2A, for short) is presented in Algorithm 4. For each router r in the
network, call forward(r,Gr) as presented in Algorithm 3 to deliver the message
from r to all other routers in the router group Gr. Figure 3 presents the separate
multicast schemes for different routers in the same group. As shown in Fig. 3(a)
presents the multicast scheme to deliver a packet to all eight routers. It takes 3
unicast steps to complete the multicast.

Figure 3(e) shows the multicast details for the router R4. The packet is deliv-
ered to the last router R3 of the first half in the first unicast step. The second
half of the router set is further equally partitioned, and the packet is delivered
to the first router of the second half from R4 in the second unicast step. The
packet is simultaneously delivered to R1 from R3 in the second unicast step. The
packet is delivered to R0, R2, R5, and R7 simultaneously from R1, R3, R4, and
R6, respectively in the third unicast step.
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Fig. 4. Collection and scattering inside a router group for the proposed A2A algorithm:
(a) collection, (b) scattering, and (c) multicasting after receiving packets from other
groups.
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Algorithm 4. router-first-A2A()
Input:

Coordinates of the source node v;
Output:

Deliver the message to all processors in the network;
1: For each router r in the network, call forward(r,Gr) as presented in Alg. 3 to deliver

the message from r to all other routers in the router group Gr.
2: for each router v in the network do
3: Call urouter(v,D) to multicast the m messages from Rv to all routers in the

groups that are connected to v via global channels as shown in Fig. 3.
4: end for
5: for each router Rv′ ∈ Gj do
6: Call forward(Rv′ , Gj) to multicast each of the g ·m messages, that Rv′ receives,

to all other routers in Gj .
7: end for

Algorithm 5. urouter(s,D)
Input:

Coordinates of s and g routers directly connected to s by global channels;
Output:

Deliver the message to the g routers in D;
1: Let |D| = 1, deliver the message from s to the single router via a minimum MFR

path;
2: |D| ≥ 2, divide the g routers in D into two subsets D1 and D2 with ||D1|−|D2|| ≤ 1,

which are routers in g/2 groups with the least IDs and g/2 groups with greater
IDs;

3: Let c2 be the router in the group with the least ID in D2. Deliver the message from
s to c2, and call urouter(c2, D2 − {c2}) at c2;

4: Let c1 be the router in the group with the greatest ID in D1. Deliver the message
from s to the node c1, call urouter(c1, D1 − {c1}) at c1.

The RFA2A algorithm delivers the packet from r to all g = m/2 routers in
other groups after receiving a packet from any other router in the same group by
using the recursively procedure urouter(r,D) as shown in Algorithm 5, where D
contains the g routers, that are directly connected to router r, in other groups.
All the unicast steps for the recursive procedure urouter(r,D) follows the MFR
algorithm as presented in Fig. 5. The router Rv′ receives in the other group
Gj multicasts the received packet to all m routers in its own group Gj with
forward(Rv′ , Gj) as presented in Algorithm 3.

4 The Proposed All-to-All Broadcast Algorithm A2A

The general framework of the proposed all-to-all broadcast algorithm A2A is
presented in Algorithm 6. The A2A contains four separate phases: (1) packet
collection inside a router group, (2) packet scattering in the group, (3) delivery
of all packets at the router to all directly connected routers in the other groups,
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Algorithm 6. A2A()
Input:

The dragonfly network;
Output:

Each processor deliver a message to all processors;
1: For each router r ∈ Gi, call collect(r,Gi) to collect messages at r for all routers in

Gi as shown in Fig. 4(a).
2: for each group Gi with router set Di do
3: call scatter(r,Di) to scatter the messages at the selected router r, that collected

in step 1, to all routers in Di as presented in Fig. 4(b).
4: end for
5: for each router in the network do
6: Deliver the m messages at r received from all routers in the its group by

urouter(r,G) to all g = m/2 groups via the global channels;
7: end for
8: for each router r ∈ Gj do
9: Forward all m messages received at r to all other routers in the group Gj as

presented in Fig. 4(c).
10: end for

and (4) each router scattering all packets received from all g = m/2 directly
connected routers in other groups to all routers in its own group.

The packet collection phase collects all m packets along the selected tree and
keeps them at the root router of the tree. The packet scattering phase forwards
all packets at the root of the tree to each router in the group. The third phase for
each router in the network forwards all packets received from all routers inside
its group to all routers in other groups, which are directly connected to it. In
phase four, each router scatters all g ·m received packets to all routers in its own
group. Totally, each router receives g · m · m + m − 1 packets.

As shown in Fig. 4(a), we give an example for a group with eight routers to
collect packets. Each leaf in the multicast tree delivers the packet to its pre-
decessor. The predecessor delivers the packet and its own packet to its own
predecessor. The process continues until the root has been reached. As shown
in Fig. 4(a), each data contains two number a(b), where a and b represent the
unicast step, and the number of packets. The leaves R1, R3, R5, and R7 deliver a
single packet to their predecessors R0, R2, R4, and R6 in unicast step 1, respec-
tively. R2 and R6 sends two packets to their predecessors R0 and R4 in unicast
step 2, respectively. In unicast step 3, R4 sends four packets to R0. Finally, R0

receives eight packets.
The root router R0 scatters all m (it is eight in Fig. 4) packets to all the m

routers in the same group. The root router R0 delivers four packets to R4 as
shown in Fig. 4(b) in the first unicast step, where the four packets are received
from R0-R3 in the process of packet collection. Router R0 delivers six packets
to R2 in the second unicast step, which include the packets from R4-R7, R0 and
R1. Simultaneously, router R4 delivers six packets to R6 in the second unicast
step, which includes four packets from R0-R3, R4 and R5. In the third unicast
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step, routers R0, R2, R4, and R6 deliver seven packets to R1, R3, R5, and R7,
respectively. The seven packets include packets from all other routers.

After all m packets have been delivered to all m routers in the same group,
each router keeps m separate packets. It is required that each router deliver
the m packets to the g = m/2 directly connected routers in other groups. For
each router r, the procedure urouter(r,G) is used to deliver the m packets to all
g = m/2 routers in other groups via the global channels.

As shown in Fig. 5, we present the case when g = 4. Figure 5(a) shows the
case when all groups connected to the router r have lower group labels than
Gs. Figure 5(b) shows the case when g/2 groups connected to the router r have
lower group labels than Gs, and g/2 groups connected to the router r have higher
group labels than Gs. Figure 5(c) shows the case when all groups connected to
the router r have higher group labels than Gs. In all cases in Fig. 5, m packets
are packetized into a single big packet, which saves m − 1 start-up latency at
the source and m−1 receipt latency at the destination compared to the GFA2A
and RFA2A algorithms.

Gk G Gk+2
(a)

Gk+3 G Gi+1

1(8)2(8) 2(8)3(8)

ik+1
Gs Gs

(b)

1(8)2(8) 2(8)

Gj Gj+1

3(8)

Gs G
i

Gi+1 Gi+2 Gi+3

2(8)

1(8)
3(8)2(8)

(c)

Fig. 5. The A2A algorithm: (a) all groups are before the source group, (b) the source
group is in the middle, and (c) all groups are after the source group.

In all cases in Fig. 5 for two consecutive unicast steps, all packets can be
delivered along MFR paths. As presented in Fig. 5(a), the eight packets are
delivered together from Gs to Gk+1 in the first unicast step, which are delivered
from Gk+1 to Gk in the second unicast step. In both cases, the packets are
delivered along MFR paths.

For each router r in the network, it multicasts all m packets to all routers in
its own group after it has received all m packets as shown in Fig. 5(c). Just like
Fig. 3, each router multicasts the received packets along a separate multicast
tree. As shown in Fig. 5(c), our method multicasts all m packets together in
lnm unicast steps to all m routers in the same group. It is shown that all m
packets are delivered together in all unicast steps. This can reduce the number
of start-ups from m to one, and receipts from m to one for each unicast step
compared to the RFA2A algorithm. Based on the proposed A2A algorithm, each
router multicasts all m packets to all routers in the same group immediately after
received them from any other group. It is not necessary to wait until all g · m
packets have been received from other groups.

5 Conclusions

New deadlock-free unicast-based all-to-all broadcast algorithms were proposed
for dragonfly networks without any special hardware support. The proposed all-
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to-all broadcast algorithms work under the unicast environment, that is, each
input port requires two indistinguishable buffers. An all-to-all broadcast delivers
a message from each router to all other routers. The group-first and router-first
one-to-all broadcast algorithms [22] were used to implement all-to-all broadcast,
named GFA2A and RFA2A, respectively. A new all-to-all broadcast algorithm
named A2A is proposed by using message combining. It collects all messages from
all the routers in the same group to a single router first, which are forwarded to
all the routers in the same group. Packets at each router are directly delivered to
routers in other groups in a recursive way. Each router in the network forwards
messages to all other routers in the same groups after receiving all messages from
other groups.
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Abstract. The longest common increasing subsequence (LCIS) prob-
lem is the combination of two classic problems in algorithms: the longest
increasing subsequence (LIS) problem and the longest common subse-
quence (LCS) problem. In this paper, we propose an algorithm that finds
every LCIS of two sequences a, b of length n in O(n + σ + Ia) time and
space, where σ denotes the size of the alphabet set and Ia the total num-
ber of increasing subsequences contained in a (thus, the running time
is output-sensitive). Our algorithm employs the trie and some simple
data structures, and thus is implementation-wise simple. In addition, it
can be proved that our algorithm is optimal in time complexity when
σ ≤ log2 n.

Keywords: LCIS · Trie · Data structure

1 Introduction

The longest common increasing subsequence (LCIS) problem can be formulated
as follows: Given a sequence a = a1, a2, · · · , an, a sequence ai1 , ai2 , · · · , aik is a
subsequence of a if 1 ≤ ij < ij+1 ≤ n for all 1 ≤ j < k. And, given two sequences
a, b of length n, the LCIS problem asks for a longest common subsequence of
a, b that is strictly increasing.

This problem can be seen as a combination of the longest increasing subse-
quence (LIS) problem and the longest common subsequence (LCS) problem,
and was first introduced by Yang et al. [6] and then applied to the whole
genome alignment by Chan et al. [1] in 2005. Yang et al. and Chan et al. pro-
posed algorithms of O(n2) and O(min(r log σ, nσ + r) log log n + Sortn) time,
respectively, where Sortn denotes the time required to sort input sequences
a, b, and r the number of ordered pairs (i, j) such that ai = bj . In 2006, Sakai
presented a linear-space and O(n2)-time algorithm using a divide-and-conquer
approach [5]. In 2011, Kutz et al. designed an algorithm of O(n) space and
O(nl log log σ + Sortn) time [3], where l denotes the length of the LCIS of a, b.
And, for small alphabet set, algorithms of O(n) and O(n log log n) time were
proposed for σ = 2 and σ = 3, respectively. In 2016, Zhu et al. proposed an
c© Springer Nature Switzerland AG 2021
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O(n2)-time and linear-space algorithm [7]. Recently, in 2020, Lo et al. proposed
an algorithm of O(n + l(n − l) log log σ) time and O(n) space [4], and Duraj
presented the first algorithm of subquadratic time [2].

The rest of this paper is organized as follows: In Sect. 2, the proposed algo-
rithm is presented. In Sect. 3, the correctness and complexity are analyzed.
Finally, we conclude this paper in Sect. 4.

2 The Proposed Algorithm

In this section, three assumptions are first introduced. Subsequently, we outline
the proposed algorithm, followed by a step-by-step explanation along with the
pseudocode. Finally, an example is given.

2.1 Assumptions

Input Format. Given the size of the alphabet set σ, we assume the alphabet
set consists of integers 0, 1, ..., σ − 1, i.e., each integer in the input sequences a, b
is in {0, 1, ..., σ − 1}.

Fast Computation. We assume that the bitwise shift (or bitwise OR) on one
(or two) binary encoded data of no more than σ bits can be done in O(1) time.

Constant Space. We assume that a bitstring of length up to σ takes O(1)
space.

Remark that when the desired input format is not satisfied, one can map
integers in a, b to the integers in [0, σ −1] without changing the order of integers
in O(n log σ) time using a balanced binary search tree.

2.2 Algorithm Overview

The main procedure of the proposed algorithm (Algorithm1) involves building a
trie T containing the information of every increasing subsequence in a. Let ISu

denote the increasing subsequence with binary encoding u, i.e., the i-th bit in
u is 1 if and only if i is contained in ISu. For example, IS10100100 denotes the
increasing subsequence [2, 5, 7] as σ = 8. Then, T has the following properties:

1. A node Tu associated with the length lu of ISu exists in T to denote an
increasing subsequence ISu if and only if ISu is found in a. Also, the binary
encoding u of ISu is stored in Tu to help retrieval of sequence information.

2. A directed edge associated with x ∈ {0, 1, ..., σ − 1} from Tu to Tv, denoted
by the tuple (Tu, Tv, x), exists in T if and only if ISv is the concatenation of
ISu and x.
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After building T , a similar trie-building process is run for sequence b; but
instead of building a new trie for b, we walk along the nodes of T that denote
the common increasing subsequences of a, b, and meanwhile record all the found
longest common increasing subsequences of a, b.

For the complexity of Algorithm1, the initialization step takes O(σ+n) time.
Building T takes O(n + Ia) time by using additional data structures that take
O(σ+Ia) space. And, walking on T takes O(n+Ia) time. To sum up, Algorithm 1
has space and time complexity of O(n + σ + Ia).

2.3 Detailed Description

See Algorithm 1 for the pseudocode. Algorithm 1 consists of 5 parts as follows.

Input/Output. Algorithm 1 takes two sequences a, b, the length n of a, b, and
the size of the alphabet set σ as the inputs, and outputs a list L containing the
binary encoding of every LCIS of a, b.

Initialization for First Loop (Lines 2–19). Firstly, build an array Cnt,
where Cnt[i] is the frequency of i in a for all i ∈ {0, 1, ..., σ − 1}. This can be
done in O(n) time by simply scanning a once. Secondly, build a doubly linked
list K of nodes to store every integer i with Cnt[i] > 0 in an increasing order
(from i = 0 to i = σ − 1). Then, a pointer array M of size σ is created. And, for
each integer i stored in K, the pointer to the node containing i in K is stored
in M [i] so that the node can be removed from K, if necessary, in O(1) time.
Thirdly, build the root node T0 of T , which denotes an empty sequence, and
set l0 to 0. Then, for every i with Cnt[i] > 0, create a trie node T2i containing
the binary encoding of the sequence [i], set l2i = 1, and add an edge (T0, T2i , i)
from T0 to T2i . Finally, build σ queues Next0, · · · , Nextσ−1, where each queue
supports O(1) push and pop (for our purpose, one can also use different data
structures such as stacks or dynamic arrays, as long as they support push and
pop in O(1) time). Let Au be the address of Tu. Then, for all i, queue Nexti
initially contains A2i if Cnt[i] > 0, and is left empty otherwise.

First Loop (Lines 20–31). Algorithm 1 iterates the following two steps when
sequence a is scanned one by one from left to right. Firstly, for the i-th integer ai

in a, we decrease Cnt[ai] by 1. Secondly, in the inner loop, Algorithm1 iterates
the following two substeps until queue Nextai

is empty. First pop Au from queue
Nextai

and get u from Tu. Then, in the (yet deeper) inner loop, for each integer
x with ai < x < σ and Cnt[x] > 0 (every such x can be found efficiently using
K), first create a new node Tv of T , set lv to lu +1, add an edge (Tu, Tv, x) from
Tu to Tv, where v = u + 2x, and then push Av into queue Nextx. At last, at the
end of the i-th iteration, remove the node containing ai from K if Cnt[ai] has
become 0.
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Algorithm 1: LCIS
Input: (n, σ, a, b): the length of each sequence, the size of the alphabet set,

the two sequences
Output: L: a list containing the binary code of every LCIS of (a, b)

1 begin
2 Cnt ← new 1D integer array of size σ;
3 M ← new 1D pointer array of size σ;
4 for i ← 0 to σ − 1 do
5 Cnt[i] ← 0;

6 for i ← 1 to n do
7 Cnt[ai] ← Cnt[ai] + 1;

8 K ← new doubly linked list;
9 create trie node T0;

10 l0 ← 0;
11 for i ← 0 to σ − 1 do
12 Nexti ← new queue;
13 if Cnt[i] > 0 then
14 add the node Ki containing i to K;
15 M [i] ← address of Ki;
16 create trie node T2i ;
17 l2i ← 1;
18 add edge (T0, T2i , i);
19 push A2i into Nexti;

20 for i ← 1 to n do
21 Cnt[ai] ← Cnt[ai] − 1;
22 for Au ∈ Nextai do
23 pop Au from Nextai and get u from Tu;
24 for x ← ai + 1 to σ − 1 in K do
25 v ← u + 2x;
26 create trie node Tv;
27 lv ← lu + 1;
28 add edge (Tu, Tv, x);
29 push Av into Nextx;

30 if Cnt[ai] = 0 then
31 remove the node containing ai from K;

32 len ← 0;
33 L ← new list;
34 insert 0 into L;
35 for i ← 0 to σ − 1 do
36 if trie node T2i exists then
37 push A2i into Nexti;

38 ...(continued in next page)
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37

38 for i ← 1 to n do
39 for Au in Nextbi do
40 pop Au from Nextbi and get u and lu from Tu;
41 if lu > len then
42 len ← lu;
43 empty L;

44 if len = lu then
45 insert u into L;

46 for every edge (Tu, Tv, x) from Tu do
47 push Av into Nextx;

48 return the list L;

Initialization for Second Loop (Lines 32–37). Firstly, set len, denoting
the length of LCIS of a, b currently found, to 0. Secondly, build a list L to store
the binary encoding of every common increasing subsequence (CIS) of length
len of a, b, where L contains only 0 (the binary encoding of the empty sequence)
initially. Thirdly, reuse Next queues and for each queue Nexti, push A2i into
queue Nexti if T2i exists in T .

Second Loop (Lines 38–47). Algorithm 1 iterates the following step when
sequence b is scanned one by one from left to right. For the i-th integer bi in b,
Algorithm 1 iterates the following substeps until queue Nextbi is empty in the
inner loop. First pop one Au from queue Nextbi . Then, since ISu is a newly
found CIS of a, b, we may need to update len and L accordingly: 1) if lu > len
(i.e., the length of ISu is greater than that of any CIS of a, b currently found),
empty L and update len to lu, and 2) if lu = len, add u into L. Finally, in the
(yet deeper) inner loop, push Av into queue Nextx for each edge (Tu, Tv, x) from
Tu.

2.4 Example

Figures 1a and 1b show the statuses of K, Next, and T on the termination of
the initialization and iteration 1, respectively, of the first loop of Algorithm1 for
a = [1, 4, 1, 0, 3] and σ = 5. During the execution of the initialization, Cnt[0] =
Cnt[3] = Cnt[4] = 1, Cnt[1] = 2, and Cnt[2] = 0 since the frequencies of integers
0, 1, 2, 3, 4 are 1, 2, 0, 1, 1, respectively. And, since Cnt[i] > 0 for i = 0, 1, 3, 4, the
nodes storing integers 0, 1, 3, 4 are doubly linked in sequence in K, the nodes T1,
T10, T1000, and T10000 (which contains the binary encodings of integers 0, 1, 3, 4,
respectively) are created in T , and A1, A10, A1000, and A10000 (which are the
addresses of T1, T10, T1000, and T10000, respectively) are contained in Next0,
Next1, Next3, and Next4, respectively. In iteration 1, a1 = 1. Thus, Cnt[1] is
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Fig. 1. The statuses of K, Next, and T on the termination of (a) the initialization, (b)
iteration 1, (c) the last iteration of the first loop of Algorithm 1 as the input sequence
a is [1, 4, 1, 0, 3].
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Fig. 2. The statuses of L, Next, and the encountered trie nodes in T on the termina-
tion (a) the initialization, (b) iteration 1, (c) the last iteration of the second loop of
Algorithm 1 as the input sequence b is [1, 4, 3, 1, 3], where the encountered trie nodes
in T are shown in grey.
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decreased to 1 and A10 is popped from Next1. Due to that a1 = 1 < x < 5 = σ
and Cnt[x] > 0 for x = 3, 4, the nodes T1010 and T10010 (which contains the
binary encodings of increasing sequences [1, 3], [1, 4], respectively) are added to
T , and A1010 and A10010 are pushed into Next3 and Next4, respectively. In
iteration 2, the node containing integer 4 is removed from K since a2 = 4 and
Cnt[4] becomes 0. Similarly, the nodes containing integers 1, 0, and 3 are removed
from K in iterations 3, 4, and 5, respectively. In addition, A10000 and A10010 are
popped from Next4 in iteration 2, A1 is popped from Next0, T1001 is added
to T , and A1001 is pushed into Next3 in iteration 4, and A1001 is popped from
Next3 in iteration 5. The statuses of K, Next, and T on the termination of the
first loop is shown in Fig. 1c.

Figures 2a and 2b show the statuses of L, Next and the encountered trie
nodes in T on the termination of the initialization and iteration 1, respectively,
of the second loop of Algorithm 1 for b = [1, 4, 3, 1, 3]. For the second loop,
initially, A1, A10, A1000, and A10000 are pushed into Next0, Next1, Next3, and
Next4, respectively, since trie nodes T1, T10, T1000, and T10000 exist in T ; also,
L contains a single element 0, and len is set to 0. In iteration 1, since b1 = 1,
A10 is popped from Next1, T10 is encountered, and L is updated to contain
10 only. Meanwhile, since edge (T10, T1010, 3) exists in T , A1010 is pushed into
Next3. Similarly, A10010 is pushed into Next4. In iteration 2, A10000 and A10010

is popped from Next4, T10000 and T10010 are encontered, and L is updated to
contain 10010. In iteration 3, A1000 and A1010 are popped from Next3, T1000 and
T1010 are encontered, and 1010 is inserted to L. In iteration 4 (or 5), the statuses
of L and Next remains unchanged since Next1 (Next3) is empty. Figure 2c shows
the statuses of L, Next and the encountered trie nodes in T on the termination
of the second loop.

3 The Analysis

In this section, we first show the correctness of the proposed algorithm. Subse-
quently, the time and space complexity of the proposed algorithm is studied.

3.1 Correctness

Lemma 1. In the first loop, a non-empty increasing subsequence ISu of a exists
if and only if Au has been popped from some Next queue.

Proof. It suffices to show for each i (1 ≤ i ≤ n), on the termination of iteration
i of the first loop, a non-empty increasing subsequence ISu exists in a1, a2, ..., ai

(a prefix of a) if and only if Au has been popped from some Next queue. We
show it by induction on the number of iterations executed.

Clearly, on the termination of iteration 1, [a1] is the only one non-empty
increasing subsequence of a. Besides, in the initialization of the first loop, Algo-
rithm1 pushes A2u into queue Nextu once for each integer u that exists in a.
Since Algorithm 1 pops all items in queue Nexta1 in iteration 1, only A2a1 has
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been popped on the termination of iteration 1. Thus, we have a basis. We then
assume the induction hypothesis: on the termination of iteration k, a non-empty
increasing subsequence ISu exists in a1, a2, ..., ak if and only if Au has been
popped from some Next queue. To complete the proof, we only need to show
the induction step: on the termination of iteration k+1, a non-empty increasing
subsequence ISu exists in a1, a2, ..., ak+1 if and only if Au has been popped from
some Next queue.

For the if part, if Au is popped from some Next queue before iteration
k + 1, ISu exists in a1, a2, ..., ak by induction hypothesis, and thus ISu exists in
a1, a2, ..., ak+1. So, we only need to consider the case where Au is popped from
some Next queue in iteration k + 1. Note that Algorithm 1 pops all items in
queue Nextak+1 in iteration k + 1. Also note that Algorithm 1 only pushes Au

into queue Nextak+1 when ISu ends with ak+1. Let ISu be the concatenation of
ISv and ak+1. Clearly, if ISv is an empty sequence, ISu = ak+1 is an increasing
subsequence of a. Otherwise, let ISv end with aj ; then, Av has been popped
from some Next queue on the termination of iteration k and aj < ak+1 because
otherwise, Au is not in Next queues in iteration k+1 by Algorithm 1. By induc-
tion hypothesis, ISv is an increasing subsequence in a1, a2, ..., ak. This implies
ISu is an increasing subsequence in a1, a2, ..., ak+1, completing the proof of the
if part.

For the only if part, if ISu does not end with ak+1, ISu exists in a1, a2, ..., ak,
and thus Au has been popped from some Next queue on the termination of
iteration k by the induction hypothesis. So, we only need to consider the case
where ISu ends with ak+1. Since Algorithm 1 pops all items in queue Nextak+1 in
iteration k+1, we only need to show Au is in queue Nextak+1 on the termination
of iteration k. Let ISu be the concatenation of ISv and ak+1. Then, if ISv is an
empty sequence, Au is pushed into queue Nextak+1 in the initialization of the
first loop. Otherwise, ISv is a non-empty increasing subsequence in a1, a2, ..., ak.
Let ISv end with aj . Since ISu is an increasing subsequence, we have aj <
ak+1. Then, on the termination of iteration k, Av has been popped from some
Next queue by induction hypothesis, and then Au has been pushed into queue
Nextak+1 due to aj < ak+1 and Cnt[ak+1] > 0, completing the only if part.

Theorem 1. In the first loop, ISu is a non-empty increasing subsequence of a
if and only if a trie node Tu is created in T .

Proof. Note that Algorithm 1 creates a trie node Tu right before Au is pushed
into some Next queue in the first loop. Thus, a trie node Tu is created in T if
and only if Au has been pushed into some Next queue. Besides, ISu is a non-
empty increasing subsequence of a if and only if Au has been popped from some
Next queue by Lemma 1. Thus, to complete the proof, we only need to show
Au has been pushed into some Next queue if and only if Au has been popped
from some Next queue. Clearly, Au has been pushed into some Next queue if
Au has been popped from some Next queue. On the other hand, suppose Au is
pushed into some Next queue, say Nextx, in iteration j. Then, Cnt[x] > 0 in
iteration j. This implies x exists in aj+1, aj+2, · · · , an. Let ak be the first integer
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in aj+1, aj+2, · · · , an such that x = ak. Then, Au is popped from queue Nextx
in iteration k. This completes the proof.

Lemma 2. In the second loop, a non-empty common increasing subsequence
ISu of a, b exists if and only if Au has been popped from some Next queue.

Proof. It suffices to show for each i (1 ≤ i ≤ n), on the termination of iteration
i of the second loop, a non-empty common increasing subsequence ISu of a, b
exists in b1, b2, ..., bi (a prefix of b) if and only if Au has been popped from some
Next queue. We show it by induction on the number of iterations executed. In
iteration 1, Algorithm 1 pops all items from queue Nextb1 . Let u be the binary
encoding of b1. Then, b1 exists in a1, a2, ..., an if and only if trie node Tu exists
in T by Theorem 1, and thus b1 exists in a1, a2, ..., an if and only if Au is pushed
into queue Nextb1 in the initialization of the second loop. This implies that a
non-empty common increasing subsequence ISu of a, b exists in b1 if and only if
Au has been popped from queue Nextb1 in iteration 1. Thus, we have a basis.
We omit the induction hypothesis and the proof of the induction step due to
their similarities to that of Lemma 1.

Theorem 2. By Algorithm1, the list L contains exactly the binary encoding of
every LCIS of a, b.

Proof. By Lemma 2, for every non-empty CIS ISu of a, b, Au has been popped
from some Next queue in the second loop. In Algorithm 1, when Au is popped
from some Next queue, the binary encoding of ISu is added to L if the length
of ISu is equal to that of the CIS of a, b in L, and L is updated to contain only
the binary encoding of ISu if the length of ISu is greater than that of the CIS
of a, b in L. This ensures the binary encoding of every LCIS of a, b is contained
in L.

3.2 Complexity

Lemma 3. Every Au for a non-empty increasing subsequence ISu of a is pushed
into Next queues at most once in (a) the first loop and (b) the second loop.

Proof. The proof of (b) is omitted due to its similarity to that of (a). We show
(a) by contradiction. Suppose that Au is the first one to be pushed into Next
queues more than once. Then, |ISu| must be greater than 1; otherwise, Au is
pushed into Next queues only once in the initialization step.

Let ISu be the concatenation of ISv and x (i.e., ISu ends with x). Note that
Au is pushed into queue Nextx right after Av is popped from some queue. Thus,
Au is pushed into Next queues the second time right after Av is popped from
some queue the second time. This implies Av is pushed into some queue twice
before Au is pushed into some queue twice. This constitutes a contradiction.

Theorem 3. The time and space complexity of Algorithm1 is O(n + σ + Ia).
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Proof. Apart from the input sequences a, b themselves, K and Cnt require O(σ)
space, and T and Next queues require O(Ia) space by Lemma 3, so the space
complexity is O(n + σ + Ia). Note that the space complexity can be reduced to
O(n + Ia) through removing integers that do not exist in both of a and b from
the alphabet set by additional preprocessing before Algorithm1.

For time complexity, the initialization steps of the first and second loops
require O(n + σ) time. In the first and second loops, there are O(Ia) queue and
trie node operations by Lemma 3. Each queue operation requires O(1) time. And,
since the address of Tu is pushed into Next queues, each trie node operation can
be achieved in O(1) time. Since Algorithm 1 uses Cnt and K to avoid iterations
without queue or trie node operation, the time complexity is O(n + σ + Ia).

Remark that due to that Ia ≤ 2σ, the time complexity of Algorithm 1 is
O(n), which is optimal for the LCIS problem, as σ ≤ log2 n.

4 Conclusion and Discussion

In this paper, we present an algorithm of O(n+σ+Ia) time and space complexity
to find every LCIS of sequences a, b of length n. If the proposed algorithm is run
on two computers in parallel, the time complexity can be improved to O(n +
σ + min(Ia, Ib)). When the alphabet set is small, an algorithm of O(n log log n)
time complexity was proposed in the literature for σ = 3 [3]. By contrast, the
proposed algorithm has O(n) time and space complexity as σ ≤ log2 n. For
the LCIS problem of k (k > 2) sequences, an algorithm of O(n + σ + kIa)
time complexity can be obtained through slight modification of the proposed
algorithm by just running the second loop for each sequence other than a and
keeping track of how many times each node in T is encountered. Whether the
proposed algorithm can be modified to better adapt to the cases of more than 2
sequences may be worthy of discussion.
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Abstract. We study the subclass of singleton congestion games in
which there are identical resources with increasing cost functions. In this
domain, we prove that there always exists an outcome that is resilient to
weakly-improving deviations by singletons (i.e., the outcome is a Nash
equilibrium), by the grand coalition (i.e., the outcome is Pareto efficient),
and by coalitions with respect to an a priori given partition coalition
structure (i.e., the outcome is a partition equilibrium). To our knowledge,
this is the strongest existence guarantee in the literature on congestion
games when weakly-improving deviations are considered. Our proof tech-
nique gives the false impression of a potential function argument but it
is a novel application of proof by contradiction.

1 Introduction

Game forms are useful mathematical abstractions to study strategic behavior
in real-life situations. There is a long tradition of using game forms to analyze
real-life multi-agent systems. It goes at least as far back to Wardrop [14], who
used a game form to model traffic flow in transportation networks. Ever since,
the literature has grown, and today game forms are extensively used to model
strategic behavior in a variety of real-life settings where agents interact.

In this paper, we contribute to this line of research by studying the following
simple problem: There are n agents and m resources. Each agent has access to
a subset (possibly all) of resources. From within her accessible set, the agent’s
goal is to utilize the “least-crowded” resource, i.e., the one that is used by the
smallest number of agents. This game form is a subset of the more general
class of singleton congestion games [11]. The additional restriction here is that
resources have identical (and increasing) congestion cost functions. Therefore,
in the following, we refer to this class of games as identical singleton congestion
games (ISCGs).

This game form captures the essence of real-life interactions of agents wherein
there is collision or interference, as is typical in many settings. For instance, in the
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field of multi-agent navigation, the need for autonomous control of potentially a
large number of robots running in the same workspace makes collision avoidance
a fundamental issue; see [3]. Figure 1 below presents a motivating toy example.
In the figure, robots navigate on a 2-dimensional workspace. At each iteration, a
robot either stays put or moves to a neighboring cell. The robot’s goal is to avoid
crowded cells where collision is more likely, and therefore, at each iteration, the
robots play an ISCG. More recently, singleton congestion games have been used
to model blockchain competition between miners: With more miners, a miner’s
likelihood of becoming the first to solve a mining puzzle decreases, and miners’
available strategies can change due to political and economic restrictions [1].

Fig. 1. A simple example of a multi-agent navigation problem where dots represent
robots and bold lines represent obstacles.

Although they are a restricted form of singleton congestion games, ISCGs
draw attention for their simplicity and applications. In this paper, we present
another reason for why this game form is noteworthy. The main result of our
paper, detailed below, shows that ISCGs give rise to “very stable” outcomes: In
an ISCG, there always exists an outcome that is resilient to “weakly-improving
deviations” by singletons, the grand coalition, and an a priori given partition
coalition structure. To our knowledge, this existence guarantee is the strongest
one in the literature on congestion games when weakly-improving deviations are
considered. Due to a prior finding by Caskurlu et al. [5], we also know that
our existence result cannot be extended to the singleton congestion games in
general, or even to their restricted form in which every resource is accessible to
every agent.

On a technical side, we should note that our proof technique is a novel appli-
cation of proof by contradiction, although it gives the false sense of a proof by
the potential function argument. To ease reading our fairly complicated proof,
we should elaborate: In an existence proof, on a finite domain X, one needs to
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show that there exists x ∈ X such that x satisfies a set of properties, P . A proof
by the potential function argument proceeds as follows:

– A potential function f is defined on the domain X. It is shown that for x1 ∈ X,
if x1 does not satisfy P , then there exists x2 ∈ X such that f(x2) > f(x1).
This proves that for x such that x is f -maximal in X, x satisfies P .

Our proof technique in contrast follows the following outline:

– We introduce an asymmetric and transitive relation. For ease in exposition,
let it be �. As in the potential function argument, we show that P is satisfied
by the �-maximal elements in X. But we show this by way of contradiction
and as follows: For x such that x is �-maximal in X, we suppose that x does
not satisfy P . Then, we update the set X (we make it smaller) and we show
that in the updated set X, x is still �-maximal and x still does not satisfy P .
(In our case, x not satisfying P is a non-trivial observation because the set of
properties P is a function of X.) We iterate and keep on updating the set X.
Eventually, we obtain that x being �-maximal in X leads to a contradiction.
This proves that for x such that x is �-maximal in X, x satisfies P .

Our Results. A coalition of agents deviates (i.e., they jointly change their
strategies) from an outcome of the game if the deviation results in an outcome
where coalition members are better off in the Pareto sense. In other words,
we consider “weakly-improving deviations,” which lead to no coalition mem-
ber becoming worse off and at least one coalition member becoming better off.
Ideally, we would be interested in a stable outcome that is resilient to weakly-
improving deviations by every coalition of agents. An outcome satisfying this
property is known as a super-strong equilibrium. However, a super-strong equi-
librium does not exist in most game forms, including ISCGs [7]. Instead, we
prove the existence of outcomes simultaneously satisfying the following three
properties:

(P1) Resilience to weakly-improving deviations by singletons (i.e., the outcome
should be a Nash equilibrium)
(P2) Resilience to weakly-improving deviations by the grand coalition (i.e., the
outcome should be Pareto efficient)
(P3) Resilience to weakly-improving deviations by an a priori given partition
coalition structure (i.e., the outcome should be a partition equilibrium)

The property P1, requiring that an outcome be a Nash equilibrium, is the
simplest notion of stability one can consider, and it is commonly used in game-
theoretic studies. In a similar vein, the property P2, requiring that an outcome
be Pareto efficient, is the most natural notion of efficiency, and it is commonly
used in the economics literature. A few words are in order, however, on property
P3.

Since a super-strong equilibrium does not always exist in most game forms,
a growing trend in the recent literature is to study equilibrium outcomes under
various restrictions on coalition formation. The kind of coalitions that agents
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may form can be specified in the form of an a priori given coalition structure.
In resource selection games (RSGs), Feldman and Tennenholtz [7] considered
a partition coalition structure: i.e., the set of viable coalitions is a partition
of the set of agents. And on the basis of a partition coalition structure, they
introduced the notion of a partition equilibrium. Also related to this notion, a
major theme in multi-agent systems is how autonomous agents come together
and form coherent groupings to pursue their individual or collective goals more
effectively. This problem is known as the coalition structure generation problem;
see [12]. How a coalition structure is formed is beyond the scope of our paper. In
our paper, we proceed under the assumption that a partition coalition structure
is a priori given.

In singleton congestion games, even in the special case when every resource
is accessible by everyone, there may not exist an outcome that satisfies the
properties P1, P2, P3; see [5]. However, we show (in Theorem 1) that in ISCGs,
there always exists an outcome that satisfies the above three properties. In other
words, we show that in ISCGs, one need not sacrifice efficiency even if attention
is confined to Nash and partition equilibrium outcomes.

Other Related Studies. RSGs mentioned above are similar to ISCGs in that
they also involve a set of agents selecting from a set of resources to utilize. But
in RSGs, it is assumed that every resource is accessible to everyone, and in this
sense, they are more restrictive than ISCGs. On the other hand, in RSGs, cost
functions need not be identical, and in this sense, they are more general than
ISCGs. Singleton congestion games generalize both these game forms: Resources
need not be accessible to everyone, and resource cost functions may be non-
identical (and non-monotonic). For related studies on these game forms, see
[6,7,9]. It is also worth mentioning that ISCGs are equivalent to the subclass of
project games with identical rewards and agent weights [4].

Note that every finite game admits an outcome that satisfies property P2
since the Pareto dominance relation is asymmetric and transitive. In singleton
congestion games, an outcome that satisfies property P1 also always exists,
since it is a subclass of congestion games, for which the existence of a Nash
equilibrium is guaranteed; see [13]. In RSGs with increasing cost functions, there
always exists an outcome that satisfies properties P1 and P3 [2]. However, as
mentioned earlier, there does not always exist an outcome that also satisfies
property P2 [5].

It is worth emphasizing that in our analysis, we consider “weakly-improving
deviations,” not “improving deviations.” An improving deviation makes every
coalition member better off. An outcome resilient to improving deviations by all
coalitions is known as a strong equilibrium. We should note that a strong equilib-
rium always exists in singleton congestion games with monotone cost functions
[10].

The remainder of the paper is organized as follows: In Sect. 2, we formally
define ISCGs, and then we present three lemmas that become useful in showing
our main result. In Sect. 3, we present our main result (Theorem 1), and then
we discuss various aspects of its proof with some examples.
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2 The Model and the Preliminaries

An identical singleton congestion game (ISCG) is a triplet 〈N,M, f〉 where:

– N = {1, 2, · · · , n} is the set of agents.
– M = {1, 2, · · · ,m} is the set of resources.
– f = (fi)i∈M is a sequence, called the feasibility constraint, such that for each

i ∈ M , fi ⊆ N , and for each j ∈ N , j ∈ fi for some i ∈ M .

An allocation (or an outcome) is an ordered sequence a = (ai)i∈M such that
ai ∩ ai = ∅ for all i, i ∈ M , i �= i, and a1 ∪ · · · ∪ am = N . An allocation a is
feasible if for each i, ai ⊆ fi. Let A be the domain of allocations. Let Af ⊆ A
be the domain of feasible allocations.

The interpretation of the game is as follows: Under allocation a, the agents
in ai are served by resource i. The congestion level at resource i is |ai|. And
agents try to avoid congested resources.

A coalition c ⊆ N is a nonempty subset of agents. We say that coalition c
blocks an allocation a ∈ Af if there exists an allocation a ∈ Af such that:

– for each resource i ∈ M , ai � c = ai � c,
– for each (j, i1, i2) ∈ (c × M × M) such that j ∈ ai1 and j ∈ ai2 , |ai2 | ≤ |ai1 |,
– for some (j, i1, i2) ∈ (c × M × M) such that j ∈ ai1 and j ∈ ai2 , |ai2 | < |ai1 |.
In simpler terms: Coalition c blocks allocation a if by changing their utilized
resources, the coalition can become better off in the Pareto sense. We refer to
the allocation that results (above, a) “the allocation induced when c blocks a”.

Let P≥1(N) be the domain of coalitions, i.e., P≥1(N) = P(N) � {∅}, where
P(N) is the power set of N . A coalition structure C ⊆ P≥1(N) is a potential
set for viable coalitions. We say that an allocation a ∈ Af is C-stable if there
exists no c ∈ C such that c blocks a. Note that defined this way, a super-strong
equilibrium is a P≥1(N)-stable allocation. That is, a super-strong equilibrium is
a feasible allocation a such that there exists no coalition that blocks a.

Though the super-strong equilibrium is a very appealing notion, it does not
always exist even for the very restricted instances of ISCGs.1 Therefore, in this
paper we consider less demanding conditions. Specifically, we are interested in
the existence of feasible allocations that are Pareto efficient, a Nash equilibrium,
and a partition equilibrium. We define them next.

Let P=1(N) = {{1} , {2} , · · · , {n}}. Notice that under the coalition structure
P=1(N), the only viable coalitions are singletons. Also, note that when expressed
using our “C-stable” terminology: An allocation a ∈ Af is a Nash equilibrium if
it is P=1(N)-stable, and it is Pareto efficient if it is {N}-stable.

We also consider the situation where the set of viable coalitions is a partition
of the set of agents. Formally, a partition coalition structure C is such that for
all c, c ∈ C, c �= c, c∩c = ∅, and

⋃
c∈C = N . Given a partition coalition structure

C, we refer to an allocation a ∈ Af as a partition equilibrium if a is C-stable.
1 See Feldman and Tennenholtz [7] for a very simple ISCG instance, with only three

agents and two resources, for which a super-strong equilibrium does not exist.
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The main result of our paper is that in an ISCG, for any given partition
coalition structure C, there exists a feasible allocation that is P=1(N)-stable,
{N}-stable, and C-stable. That is, we show that there always exists an outcome
that satisfies the properties P1, P2, P3 given in Sect. 1. We present this result
in Theorem 1 in Sect. 3. The key to our proof of this result is what we call the
“kernel values” of an allocation a. Therefore, in the remainder of this section, we
define kernel values, and we present three lemmas related to kernel values that
become useful in showing Theorem 1. To ease understanding, we will illustrate
the concepts that we introduce by referring to the following example.

Example 1. In an ISCG with four resources and eight agents, consider the coali-
tion c = {1, 2, 6}, and the allocation a such that: a1 = {1, 2} , a2 = {3, 4, 5} , a3 =
{6, 7, 8} , a4 = ∅. ♦

Given an allocation a, let ω : M → M be a bijection such that |aω(1)| ≥
|aω(2)| ≥ · · · ≥ |aω(m)|. That is, the bijection ω orders resources, in order of the
number of agents assigned to them under a. For instance, for a in Example 1, ω
may be as follows: ω(1) = 2, ω(2) = 3, ω(3) = 1, ω(4) = 4. Looking at ω, note
that under a, the cardinality is maximal for resource 2 and minimal for resource
4.

† The kernel of allocation a, denoted by k (a), is the ordered list: (|aω(1)|,
|aω(2)|, · · · , |aω(m)|). For instance, for a in Example 1, we have k(a) = (3, 3, 2, 0).

Given an allocation a, for some coalition c, let ωc : M → M be a bijection
such that |c ∩ aωc(1)| ≥ |c ∩ aωc(2)| ≥ · · · ≥ |c ∩ aωc(m)|. That is, the bijection
ωc orders resources, in order of the number of members of coalition c assigned
to them under a. For instance, for a and c in Example 1, ωc may be as follows:
ωc(1) = 1, ωc(2) = 3, ωc(3) = 2, ωc(4) = 4. Looking at ωc, note that under a,
it is resource 1 which is assigned the maximum number of members of coalition
c, which is followed by resource 3. The resources 2 and 4 are ordered at the end
under ωc since no member of coalition c is assigned to these them under a.

†† The c-kernel of allocation a, denoted by k(c, a), is the ordered list: (|c ∩
aωc(1)|, |c ∩ aωc(2)|, · · · , |c ∩ aωc(m)|). For instance, for a and c in Example 1, we
have k(c, a) = (2, 1, 0, 0).

Given an allocation a, for coalition c, let c1, · · · , cn be its partition such that
for each j ∈ cs, if j ∈ ai then |ai| = s. That is, under a, the agents in cs are
those coalition members assigned to resources with cardinality s. For instance,
for a and c in Example 1, we have: c1 = ∅, c2 = {1, 2}, c3 = {6}, c4 = c5 = c6 =
c7 = c8 = ∅.

† † † The c-welfare-kernel of allocation a, denoted by w (c, a), is the ordered
list: (|cn|, |cn−1|, · · · , |c1|). For instance, for a and c in Example 1, we have
w (c, a) = (0, 0, 0, 0, 0, 1, 2, 0). Looking at w (c, a), we can say that under a, no
member of coalition c is assigned to a resource with cardinality 8, 7, 6, 5, 4, or
1. And one coalition member is assigned to a resource with cardinality 3, and
two coalition members are assigned to resources with cardinality 2.

Below we present three lemmas. They are straightforward observations
related to kernel values, and hence, we omit their proofs. The lemmas become
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instrumental in showing Theorem 1. Before presenting them, however, we need
to introduce the notion of a “chain”, which helps simplify our exposition.

Consider two allocations, say a and a. An aa-chain, represented as i1 →
(j1) → i2 → (j2) → · · · → (js−1) → is (s ≥ 2), refers to the situation such that:

– j1 ∈ ai1 , j1 ∈ ai2 , and i1 �= i2;
...

– js−1 ∈ ais−1 , js−1 ∈ ais , and is−1 �= is.

In essence, an aa-chain specifies how the allocation a can be transformed into
allocation a: The transformation involves moving agent j1 from resource i1 to i2,
agent j2 from resource i2 to i3, and so on. To transform a into a, it is necessary
to “execute” this aa-chain, and perhaps some others, too. Above, we refer to s
as the length of the aa-chain. Note that the minimum length of an aa-chain is
2. Also, note that there always exists an aa-chain unless a = a.

We also introduce the “chain addition operator,” denoted by ⊕. We write:
a = a ⊕ i1 → (j1) → i2 → (j2) → · · · → (js−1) → is if

– i1 → (j1) → i2 → (j2) → · · · → (js−1) → is is an aa-chain,
– for each j ∈ N � {j1, j2, · · · , js−1}, the resource to which j is assigned is the

same under a and a.

The above statement basically states that the allocation a can be transformed
into allocation a by “executing” a single aa-chain. Notice that if a = a ⊕ i1 →
(j1) → i2 → (j2) → i3, then we can also write a = (a ⊕ i1 → (j1) → i2) ⊕ i2 →
(j2) → i3.

Lemma 1 below states that given a partition coalition structure C, under
some allocation, if two members of some coalition c ∈ C switch their positions,
then the kernel values remain the same as before.

Lemma 1. Let C be a partition coalition structure. Let j1, j2 ∈ c ∈ C. Let
allocations a, a ∈ A be such that a = a ⊕ i1 → (j1) → i2 → (j2) → i1. Then, the
kernel values of a and a are the same. Also, for each c̃ ∈ C, the c̃-kernel and
c̃-welfare-kernel values of a and a are the same.

We now introduce two asymmetric and transitive relations that become essen-
tial in showing Theorem 1. These relations involve lexicographical comparisons
of kernel values defined above. We will use the notation ≺ to denote the “lexico-
graphically smaller than” relation. For instance, (1, 4, 5) ≺ (2, 3, 4) because 1 < 2
(by comparison of the first entries). And (2, 3, 4) ≺ (2, 5, 2) because 2 = 2, 3 < 5
(by comparison of the second entries because the first entries are the same).

Our first asymmetric and transitive relation is defined for partition coalition
structures. Given a partition coalition structure C, we say that allocation a
C-balance dominates a,

– if k (a) ≺ k (a);
– or if k (a) = k (a) and

* for each c ∈ C, k (c, a) ≺ k (c, a) or k (c, a) = k (c, a),
* for some c ∈ C, k (c, a) ≺ k (c, a).



44 B. Caskurlu et al.

In loose terms: Allocation a C-balance dominates a if under a, the distribution of
agents to resources is more even. If there is a tie in this regard, then a C-balance
dominates a if under a, the distribution of coalition members to resources is
more even. Lemma 2 below is a straightforward observation on the C-balance
dominance relation.

Lemma 2. Let C be a partition coalition structure. Let j1 ∈ c ∈ C. Let allo-
cations a and a be such that a = a ⊕ i1 → (j1) → i2. Then, allocation a C-
balance dominates a: (a) if |ai1 | ≥ |ai2 | + 2, or (b) if |ai1 | = |ai2 | + 1 and
|c ∩ ai1 | ≥ |c ∩ ai2 | + 2.

The second relation that we introduce compares c-welfare-kernel values of
allocations, again, lexicographically. For a coalition c, we say that allocation
a c-welfare-dominates a if w (c, a) ≺ w (c, a). Lemma 3 below pertains to this
relation.

Lemma 3. Let C be a partition coalition structure. Let c ∈ C be a coalition.
Let a be an allocation.
(a) Suppose that coalition c blocks allocation a. Let ã be the allocation induced
when c blocks a. Then, ã c-welfare-dominates a.
(b) Suppose that allocation a c-welfare-dominates a. Also, suppose that M̃ ⊂ M
is such that for each s ∈ {1, 2, · · · , n},

∑
i∈˜M,|ai|=s

|c ∩ ai| =
∑

i∈˜M,|ai|=s
|c ∩ ai| .

Let kmax = max
i∈M�

˜M
|ai| and kmax = max

i∈M�
˜M

|ai|. Then,

kmax ≤ kmax, and
∑

i∈M�
˜M,|ai|=kmax

|c ∩ ai| ≥ ∑
i∈M�

˜M,|ai|=kmax
|c ∩ ai| .

3 The Main Result

This section is devoted to our main result: In Theorem 1, we show that in an
ISCG, there always exists an allocation that satisfies the properties P1, P2, and
P3, given in Sect. 1. The proof of the theorem is fairly involved. We prove the
theorem by showing that every maximal outcome with respect to the C-balance
dominance relation satisfies the three properties. At the end of the section, we
also present an example and show that it is possible that an outcome satisfies
the three properties and yet not be maximal with respect to the C-balance
dominance relation.

Theorem 1. In an ISCG, for any given partition coalition structure C, there
always exists an allocation a ∈ Af such that a is P=1(N)-stable, {N}-stable,
and C-stable. That is, in an ISCG there always exists a Pareto efficient outcome
that is a Nash equilibrium and a partition equilibrium.
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Proof. Let C be a given partition coalition structure. Let κ
(
C,Af

) ⊆ Af be
such that for each a ∈ κ

(
C,Af

)
, there exists no a ∈ Af such that a C-balance

dominates a. That is, κ
(
C,Af

)
is the set of maximal allocations in Af with

respect to the C-balance dominance relation. Note that κ
(
C,Af

) �= ∅ since the
C-balance dominance relation is transitive and asymmetric. Let a ∈ κ

(
C,Af

)
.

To show the theorem, we need to show that a is P=1(N)-stable (P1), {N}-
stable (P2), and C-stable (P3). The observation that a is P=1(N)-stable and
{N}-stable is fairly easy, and it is known due to [8]. Thus, below, we only show
that a is C-stable.

By way of contradiction, suppose that a is not C-stable. Then, there exists
c ∈ C such that c blocks a. Let a ∈ Af be the allocation induced when c blocks
a. Then, by Lemma 3(a), we obtain that a c-welfare-dominates a. Thus, the
following two statements are true:

(S1) a ∈ κ
(
C,Af

)
,

(S2) a ∈ Af and a c-welfare-dominates a.

We will prove that a is C-stable by showing the supposition that S1 and S2
are true leads to a contradiction. The outline of the proof is as follows: Below, in
Steps 1 and 2, we update a and Af iteratively. We show that after each update,
S1 and S2 remain to be true. And in the end, once we are done with all our
updates, we derive a contradiction.
Step 1: Update the feasibility constraints as follows:

– for each i ∈ M , let fi = ai ∪ ai.

Step 2: As long as there exists an aa-chain whose length is bigger than 2,
represented as

i1 → (j1) → i2 → (j2) → i3 → · · · (js−1) → is,

update the feasibility constraint fi3 and the allocation a as follows:

– fi3 := fi3 � {j2} ∪ {j1};
– a := a ⊕ i3 → (j2) → i2 → (j1) → i3.

Consider the update at Step 1: After the update, note that the set Af becomes
smaller, but we still have a, a ∈ Af . Hence, S1 and S2 remain to be true.
Consider an update at Step 2: After the update, note that a and Af change, but
we still have a, a ∈ Af . Also, by Lemma 1, for a the kernel values remain the
same as before. Hence, after the update, S2 remains to be true.

Let ã be an allocation that was infeasible before the update but that becomes
feasible after the update. It is clear that under ã, j1 ∈ ãi3 and j2 ∈ ãi2 . To show
that after the update S1 remains to be true, we need to show that ã does not
C-balance dominate a. Let â = ã ⊕ i3 → (j1) → i2 → (j2) → i3. Note that
before the update, â was feasible. Thus, â does not C-balance dominate a. But
by Lemma 1, for ã and â the kernel values are the same. Then, ã does not
C-balance dominate a either. Hence, after the update, S1 remains to be true.
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Also, notice that at Step 2 each time a and Af are updated, the length of an
aa-chain becomes smaller. Therefore, Step 2 terminates after a finite number of
iterations. And when it terminates, we obtain that:

– for a, a, Af , the statements S1 and S2 are true,
– every aa-chain that remains is of length 2.

We are now ready to derive a contradiction. Since every aa-chain that remains
is of length 2, we can divide the set M into the following three subsets:

M0 = {i ∈ M : ai = ai} , M− = {i ∈ M : ai ⊂ ai} , M+ = {i ∈ M : ai ⊃ ai} .

Note that for a and a, each aa-chain is of the form i1 → (j) → i2, where
i1 ∈ M− and i2 ∈ M+. We also divide the sets M− and M+ into their par-
titions with respect to the cardinalities of resources under a: Let M−(k) =
{i ∈ M− : |ai| = k} and M+(k) = {i ∈ M+ : |ai| = k}.

We derive a contradiction using Lemma 3(b). We proceed as follows: First,
we identify a set M̃ ⊂ M for which the suppositions in Lemma 3(b) are satisfied.
Then, using some arguments (presented below under the heading Iteration), we
show that the set M̃ can be updated iteratively such that after each iteration, its
cardinality increases and yet the suppositions in Lemma 3(b) are still satisfied.
Eventually, we obtain that M̃ = M and for each s ∈ {1, 2, · · · , n},

∑
i∈M,|ai|=s |c ∩ ai| =

∑
i∈M,|ai|=s |c ∩ ai|.

This will imply that for a and a, the c-welfare-kernel values are indeed the same,
which will contradict that a c-welfare-dominates a (S2) and complete our proof.

Initially, we set M̃ = M0.
For M̃ = M0, it is easy to verify that the suppositions in Lemma 3(b) are

satisfied. Let kmax = max
i∈M�

˜M
|ai| and kmax = max

i∈M�
˜M

|ai|. Then, by
Lemma 3(b), we have kmax ≤ kmax and

∑
i∈M�

˜M,|ai|=kmax
|c ∩ ai| ≥ ∑

i∈M�
˜M,|ai|=kmax

|c ∩ ai| . (∗)

Iteration: Consider M+ (k) where k ≥ kmax. Suppose that M+ (k) �= ∅. Let
i ∈ M+ (k). Since |ai| = k and ai ⊃ ai, we obtain that |ai| ≥ k + 1 ≥ kmax + 1.
But this contradicts that kmax ≤ kmax. Thus, for k ≥ kmax, M+ (k) = ∅.

We now restrict our attention to the sets M− (kmax) and M+ (kmax − 1):
Let i1 ∈ M− (kmax). Consider an aa-chain of the form i1 → (j1) → i2. Let
ã = a ⊕ i1 → (j1) → i2. Note that ã ∈ Af . By Lemma 2, if |ai2 | ≤ kmax − 2,
or if |ai2 | = kmax − 1 and |c ∩ ai1 | ≥ |c ∩ ai2 | + 2, we obtain that ã C-balance
dominates a. But this contradicts that a ∈ κ

(
C,Af

)
. Thus, i2 ∈ M+ (kmax − 1)

and |c ∩ ai1 | ≤ |c ∩ ai2 | + 1. Suppose that there exists an aa-chain of the form
i → (j) → i2 where j �= j1. Then, ai2 ∪ {j, j1} ⊆ ai2 . Then, |ai2 | ≥ |ai2 | + 2 =
kmax +1. But this contradicts that kmax ≤ kmax. Thus, there exists a one-to-one
function υ : M− (kmax) → M+ (kmax − 1) such that:
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– for each i ∈ M− (kmax), there exists an aa-chain of the form i → (j) → υ (i).

And for υ, as argued above, the following holds:

– for each i ∈ M−(kmax), |c ∩ aυ(i)| = |c ∩ aυ(i)| + 1 ≥ |c ∩ ai|.
But then the inequality above in (∗) holds only if υ is a bijection (i.e.,

|M−(kmax)| = |M+(kmax −1)|) and for each i ∈ M− (kmax), |c∩aυ(i)| = |c∩ai|.
Therefore,

∑
i∈M�

˜M,|ai|=kmax
|c ∩ ai| =

∑
i∈M�

˜M,|ai|=kmax
|c ∩ ai|.

But then if we update M̃ and set M̃ := M̃ ∪M−(kmax)∪M+(kmax −1), the
suppositions in Lemma 3(b) are still satisfied.

Therefore, as argued above, we can iterate these arguments and update M̃
until we obtain that M̃ = M . And then we can conclude that for both a and a,
the c-welfare-kernel values are actually the same. However, this contradicts that
a c-welfare-dominates a (S2). Therefore, our initial supposition must be wrong,
i.e., allocation a must be C-stable. This completes our proof. ��

In the proof of Theorem 1, we showed that if a ∈ κ(C,Af ), then a satisfies
the properties P1, P2, and P3, given in Sect. 1. The following example shows
that the converse of this statement is not true.

Example 2. Consider an ISCG with two resources and fifteen agents such that
both resources are accessible to every agent. Consider the following partition
coalition structure C = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}, {13, 14, 15}}.
Let allocation a be as follows: a1 = {1, 2, 4, 5, 7, 8, 10, 11}, a2 = {3, 6, 9, 12, 13, 14,
15}. Also, let allocation a be as follows: a1 = {1, 2, 4, 7, 8, 10, 13, 14}, a2 = {3, 5,
6, 9, 11, 12, 15}. It is easy to verify that the allocation a is P=1(N)-stable, {N}-
stable, and C-stable. However, a /∈ κ(C,Af ) since a C-balance dominates a. ♦

As a technical note, in the example below, we show that the C-balance dom-
inance relation is not a potential function. More specifically, we show that when
a coalition c ∈ C blocks an allocation a, the induced allocation, say ā, does not
necessarily C-balance dominate a.

Example 3. Consider an ISCG with four resources and eighteen agents such
that all resources are accessible to every agent. Consider the following parti-
tion coalition structure: C = {{1, . . . , 13}, {14, . . . , 18}}. Let allocation a be
as follows: a1 = {1, 14, 15, 16}, a2 = {2, 3, 4, 5}, a3 = {6, 7, 8, 9, 17}, a4 =
{10, 11, 12, 13, 18}. Notice that coalition c = {1, . . . , 13} blocks allocation a
inducing the following allocation, ā: ā1 = {6, 10, 14, 15, 16}, ā2 = {7, 8, 9, 11, 12},
ā3 = {1, 2, 3, 17}, ā4 = {4, 5, 13, 18}. Note that under ā, no agent in coalition
c becomes worse off and agent 13 becomes better off. However, ā does not C-
balance dominate allocation a. This is because k(a) = k(ā) yet k(c, a) �≺ k(c, ā)
since k(c, a) = (4, 4, 4, 1) and k(c, ā) = (5, 3, 3, 2). ♦
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It is also natural to ask whether Theorem 1 can be extended in a way that
also incorporates overlapping coalitions, instead of a partition coalition structure
as in property P3. The following example shows that this is not possible even
in very restricted settings.

Example 4. Consider an ISCG with two resources and three agents such that
agent 1 can only access resource 1, agent 2 can only access resource 2, and
agent 3 can access both resources. Consider the following coalition structure
C = {{1, 3}, {2, 3}}. Notice that there are two possible allocations and neither
of them is C-stable. ♦
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Abstract. We use a greedy strategy to list the spanning trees of the
fan graph, Fn, such that successive trees differ by pivoting a single edge
around a vertex. It is the first greedy algorithm for exhaustively generat-
ing spanning trees using such a minimal change operation. The resulting
listing is then studied to find a recursive algorithm that produces the
same listing in O(1)-amortized time using O(n) space. Additionally, we
present O(n)-time algorithms for ranking and unranking the spanning
trees for our listing; an improvement over the generic O(n3)-time algo-
rithm for ranking and unranking spanning trees of an arbitrary graph.

Keywords: Spanning tree · Greedy algorithm · Fan graph ·
Combinatorial generation

1 Introduction

This paper is concerned with the algorithmic problem of listing all spanning
trees of the fan graph. Applications of efficiently listing all spanning trees of
general graphs are ubiquitous in computer science and also appear in many
other scientific disciplines [3]. In fact, one of the earliest known works on listing
all spanning trees of a graph is due to the German physicist Wilhelm Feussner in
1902 who was motivated by an application to electrical networks [7]. In the 120
years since Feussner’s work, many new algorithms have been developed, such as
those in the following citations [1,4,6,8,9,12–17,19–22,24].

For any application, it is desirable for spanning tree listing algorithms to have
the asymptotically best possible running time, that is, O(1)-amortized running
time. The algorithms due to Kapoor and Ramesh [14], Matsui [16], Smith [22],
Shioura and Tamura [20] and Shioura et al. [21] all run in O(1)-amortized time.
Another desirable property of such listings is to have the revolving-door prop-
erty, where successive spanning trees differ by the addition of one edge and the
removal of another. Such listings where successive objects in a listing differ by a
constant number of simple operations are more generally known as Gray codes.
The algorithms due to Smith [22], Kamae [13], Kishi and Kajitani [15], Holzmann
and Harary [12] and Cummins [6] all produce Gray code listings of spanning trees
for an arbitrary graph. Of all of these algorithms, Smith’s is the only one that

c© Springer Nature Switzerland AG 2021
C.-Y. Chen et al. (Eds.): COCOON 2021, LNCS 13025, pp. 49–60, 2021.
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produces a Gray code listing in O(1)-amortized time. A stronger notion of a Gray
code for spanning trees is where the revolving-door makes strictly local changes.
More specifically, we would like the differing edges to share a common endpoint.
Such a Gray code property, which we call a pivot Gray code, is not given by any
previously known algorithm. This leads to our first research question.

Research Question #1 Given a graph G (perhaps from a specific class),
does there exist a pivot Gray code listing of all spanning trees of G?
Furthermore, can the listing be generated in polynomial (ideally constant)
time per tree using polynomial space?

A related question that arises for any listing is how to rank, that is, find
the position of the object in the listing, and unrank, that is, return the object
at a specific rank. For spanning trees, an O(n3)-time algorithm for ranking and
unranking a spanning tree of a specific listing for an arbitrary graph is known [5].

Research Question #2 Given a graph G (perhaps from a specific class),
does there exist a (pivot Gray code) listing of all spanning trees of G that
can be ranked and unranked in O(n2) time or better?

An algorithmic technique recently found to have success in the discovery of
Gray codes is the greedy approach. An algorithm is said to be greedy if it can pri-
oritize allowable actions according to some criteria, and then choose the highest
priority action that results in a unique object to obtain the next object in the list-
ing. When applying a greedy algorithm, there is no backtracking; once none of the
valid actions lead to a new object in the set under consideration, the algorithm
halts, even if the listing is not exhaustive. The work by Williams [23] notes that
some very well-known combinatorial listings can be constructed greedily, includ-
ing the binary reflected Gray code (BRGC) for binary strings, the plain change
order for permutations, and the lexicographically smallest de Bruijn sequence.
Recently, a very powerful greedy algorithm on permutations (known as Algo-
rithm J, where J stands for “jump”) generalizes many known combinatorial Gray
code listings including many related to permutation patterns, rectangulations,
and elimination trees [10,11,18]. However, no greedy algorithm was previously
known to list the spanning trees of an arbitrary graph.

Research Question #3 Given a graph G (perhaps from a specific class),
does there exist a greedy strategy to list all spanning trees of G? Moreover,
does such a greedy strategy exist where the resulting listing is a pivot Gray
code?

In most cases, a greedy algorithm requires exponential space to recall which
objects have already been visited in a listing. Thus, answering this third question
would satisfy only the first part of Research Question #1. However, in many
cases, an underlying pattern can be found in a greedy listing which can result
in space efficient algorithms [10,23].

To address these three research questions, we applied a variety of greedy
approaches to structured classes of graphs including the fan, wheel, n-cube, and
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the compete graph. From this study, we were able to affirmatively answer each
of the research questions for the fan graph. It remains an open question to find
similar results for other classes of graphs.

1.1 New Results

The fan graph on n vertices, denoted Fn, is obtained by joining a single vertex
(which we label v∞) to the path on n − 1 vertices (labeled v2, ..., vn) – see
Fig. 1. Note that we label the smallest vertex v2 so that the largest non-infinity

Fig. 1. F5

labeled vertex equals the total number of vertices.
Let Tn denote the set of all spanning trees of Fn.
We discover a greedy strategy to generate Tn in
a pivot Gray code order. We describe this greedy
strategy in Sect. 2. The resulting listing is stud-
ied to find an O(1)-amortized time recursive algo-
rithm that produces the same listing using only
O(n) space, which is presented in Sect. 3. We also
show how to rank and unrank a spanning tree of the greedy listing in O(n)
time in Sect. 3, which is a significant improvement over the general O(n3)-time
ranking and unranking that is already known. We conclude with a summary in
Sect. 4.

2 A Greedy Generation for Tn

With our goal to discover a pivot Gray code listing of Tn, we tested a variety of
greedy approaches. There are two important issues when considering a greedy
approach to list spanning trees: (1) the labels on the vertices (or edges) and
(2) the starting tree. For each of our approaches, we prioritized our operations
by first considering which vertex u to pivot on, followed by an ordering of the
endpoints considered in the addition/removal. We call the vertex u the pivot.

Our initial attempts focused only on pivots that were leaves. As a specific
example, we ordered the leaves (pivots) from smallest to largest. Since each
leaf u is attached to a unique vertex v in the current spanning tree, we then
considered the neighbours w of u in increasing order of label. We restricted the
labeling of the vertices to the most natural ones, such as the one presented in
Sect. 1.1. For each strategy we tried all possible starting trees. Unfortunately,
none of our attempts lead to exhaustive listings. Applying these strategies on
the wheel, n-cube, and complete graph was also unsuccessful.

By allowing the pivot to be any arbitrary vertex, we experimentally discov-
ered several exhaustive listings for Tn for n up to 12 (testing every starting tree
for n = 12 took about eight hours). One listing stood out as having an easily
defined starting tree as well as a nice pattern which we could study to construct
the listing more efficiently. It applied the labeling of the vertices as described in
Sect. 1.1 with the following prioritization of pivots and their incident edges:
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Prioritize the pivots u from smallest to largest and then for each pivot, pri-
oritize the edges uv that can be removed from the current tree in increasing
order of the label on v, and for each such v, prioritize the edges uw that
can be added to the current tree in increasing order of the label on w.

Since this is a greedy strategy, if an edge pivot results in a spanning tree that
has already been generated or a graph that is not a spanning tree, then the
next highest priority edge pivot is attempted. Let Greedy(T ) denote the list-
ing that results from applying this greedy approach starting with the spanning
tree T . The starting tree that produced a nice exhaustive listing was the path
v∞, v2, v3, . . . , vn, denoted Pn throughout the paper. Figure 2 shows the listings
Greedy(Pn) for n = 2, 3, 4, 5. The listing Greedy(P6) is illustrated in Fig. 3.
It is worth noting that starting with the path v∞, vn, vn−1, . . . , v2 or the star
(all edges incident to v∞) did not lead to an exhaustive listing of Tn.

As an example of how the greedy algorithm proceeds, consider the listing
Greedy(P5) in Fig. 2. When the current tree T is the 16th one in the listing
(the one with edges {v2v∞, v2v3, v3v4, v5v∞}), the first pivot considered is v2.
Since both v2v3 and v2v∞ are present in the tree, no valid move is available
by pivoting on v2. The next pivot considered is v3. Both edges v3v2 and v3v4
are incident with v3. First, we attempt to remove v3v2 and add v3v∞, which
results in a tree previously generated. Next, we attempt to remove v3v4 and add
v3v∞, which results in a cycle. So, the next pivot, v4, is considered. The only
edge incident to v4 is v4v3. By removing v4v3 and adding v4v5 we obtain a new
spanning tree, the next tree in the greedy listing.

To prove that Greedy(Pn) does in fact contain all trees in Tn, we demon-
strate it is equivalent to a recursively constructed listing that we obtain by study-
ing the greedy listings. Before we describe this recursive construction we mention
one rather remarkable property of Greedy(Pn) that we will also prove in the
next section: If Xn is last tree in the listing Greedy(Pn), then Greedy(Xn) is
precisely Greedy(Pn) in reverse order.

3 An O(1)-Amortized Time Pivot Gray Code Generation
for Tn

In this section we develop an efficient recursive algorithm to construct the listing
Greedy(Pn). The construction generates some sub-lists in reverse order, similar
to the recursive construction of the BRGC. The recursive properties allow us
to provide efficient ranking and unranking algorithms for the listing based on
counting the number of trees at each stage of the construction. Let tn denote
the number of spanning trees of Fn. It is known that

tn = f2(n−1) = 2
((3 − √

5)/2)n − ((3 +
√

5)/2)n−2

5 − 3
√

5
,

where fn is the nth number of the Fibonacci sequence with f1 = f2 = 1 [2].
By studying the order of the spanning trees in Greedy(Pn), we identified

four distinct stages S1, S2, S3, S4 that are highlighted for Greedy(P6) in Fig. 3.
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Fig. 2. Greedy(Pn) for n = 2, 3, 4, 5. Read left to right, top to bottom.

From this figure, and referring back to Fig. 2 to see the recursive properties,
observe that:

– The trees in S1 are equivalent to Greedy(P5) with the added edge v6v5.
– The trees in S2 are equivalent to the reversal of the trees in Greedy(P5)

with the added edge v6v∞.

The trees in S3 and S4 have both edges v6v5 and v6v∞ present.
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Fig. 3. Greedy(P6) read from left to right, top to bottom. Observe that S1 is
Greedy(P5) with v6v5 added, S2 is the reverse of Greedy(P5) with v6v∞ added, S3
is Greedy(P4) with v6v5 and v6v∞ added, except the edge v4v∞ is replaced by v4v5,
and S4 is the last five trees of Greedy(P4) in reverse order (v4v∞ is now present) with
v6v5 and v6v∞ added.
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– In S3, focusing only on the vertices v4, v3, v2, v∞, the induced subgraphs cor-
respond to Greedy(P4), except whenever v4v∞ is present, it is replaced with
v4v5 (the last five trees).

– In S4, focusing only on the vertices v4, v3, v2, v∞, the induced subgraphs cor-
respond to the trees in Greedy(P4) where v4v∞ is present, in reverse order.

Generalizing these observations for all n ≥ 2 leads to the recursive procedure
Gen(k, s1, varEdge) given in Algorithm 1, which uses a global variable T to store
the current spanning tree with n vertices. The parameter k indicates the number
of vertices under consideration; the parameter s1 indicates whether or not to
generate the trees in stage S1, as required by the trees for S4; and the parameter
varEdge indicates whether or not a variable edge needs to be added as required
by the trees for S3. The procedure RevGen(k, s1, varEdge), which is left out due
to space constraints, simply performs the operations from Gen(k, s1, varEdge)
in reverse order. For each algorithm the base cases correspond to the edge moves
in the listings Greedy(P2) and Greedy(P3).

Let Gn denote the listing obtained by initializing T to Pn, printing T , and
calling Gen(n, 1, 0). Let Ln denote the last tree in this listing. Let Rn denote the
listing obtained by initializing T to Ln, printing T , and calling RevGen(n, 1, 0).
Thus, Rn is the listing Gn in reverse order.

Algorithm 1
1: procedure Gen(k, s1, varEdge)
2: if k = 2 then � F2 base case
3: if varEdge then T ← T − v2v∞ + v2v3; Print(T )

4: else if k = 3 then � F3 base case
5: if s1 then
6: if varEdge then T ← T − v3v2 + v3v4; Print(T )
7: else T ← T − v3v2 + v3v∞; Print(T )

8: T ← T − v2v∞ + v2v3; Print(T )
9: else

10: if s1 then
11: Gen(k − 1, 1, 0) � S1
12: if varEdge then T ← T − vkvk−1 + vkvk+1; Print(T )
13: else T ← T − vkvk−1 + vkv∞; Print(T )

14: RevGen(k − 1, 1, 0) � S2
15: T ← T − vk−1vk−2 + vk−1vk; Print(T )
16: Gen(k − 2, 1, 1) � S3
17: if k > 4 then T ← T − vk−2vk−1 + vk−2v∞; Print(T )

18: RevGen(k − 2, 0, 0) � S4

Our goal is to show that Gn exhaustively lists all trees in Tn and moreover,
the listing is equivalent to Greedy(Pn). We accomplish this in two steps: first
we show that Gn has the required size, then we show that Gn is equivalent to
Greedy(Pn). Before doing this, we first comment on some notation. Let T − vi
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denote the tree obtained from T by deleting the vertex vi along with all edges
that have vi as an endpoint. Let T + vivj (resp. T − vivj) denote the tree
obtained from T by adding (resp. deleting) the edge vivj . For the remainder of
this section, we will let Tn denote the tree T specified as a global variable for
Gen and RevGen, and we let Tn−1 = T − vn and Tn−2 = T − vn − vn−1.

Lemma 1. For n ≥ 2, |Gn| = |Rn| = tn.

Proof. This result applies the Fibonacci recurrence and straightforward induc-
tion by counting the number of trees recursively generated in each stage S1, S2,
S3, S4 as described earlier in this section. The base cases for n = 2, 3, 4 are easily
verified by stepping through the algorithms. A formal proof is omitted due to
space constraints. ��

To prove the next result, we first detail some required terminology. If T ∈ Tn,
then we say that the operation of deleting an edge vivj and adding an edge vivk
is a valid edge move of T if the result is a tree in Tn that has not been generated
yet. Conversely, if the result is not a tree in Tn, or the result is a tree that has
already been generated, then it is not a valid edge move of T . We say an edge
vivj is smaller than edge vivk if j < k. An edge move Tn − vivj + vivk is said
to be smaller than another edge move Tn − vxvy + vxvz if i < x, if i = x and
j < y, or if i = x, j = y, and k < z.

Lemma 2. For n ≥ 2, Gn = Greedy(Pn) and Rn = Greedy(Ln).

Proof. By induction on n. It is straightforward to verify that the result holds
for n = 2, 3, 4 by iterating through the algorithms. Assume n > 4, and that
Gj = Greedy(Pj) and Rj = Greedy(Lj) for 2 ≤ j < n. We begin by showing
Gn = Greedy(Pn), breaking the proof into each of the four stages for clarity.

S1: Since n > 4 and s1 = 1, Gen(n−1, 1, 0) is executed. By our inductive hypoth-
esis, Gn−1 = Greedy(Pn−1). These must be the first trees for Greedy(Pn),
as any edge move involving vnvn−1 or vnv∞ is larger than any edge move
made by Greedy(Pn−1). Since Greedy(Pn−1) halts, it must be that no edge
move of Tn−1 is possible. So Greedy(Pn) must make the next smallest edge
move, which is Tn − vnvn−1 + vnv∞. Since Tn is a spanning tree, it follows that
Tn − vnvn−1 + vnv∞ is also a spanning tree (and has not been generated yet),
and therefore the edge move is valid. At this point, Gen(n, 1, 0) also makes this
edge move, by line 13.

S2: RevGen(n − 1, 1, 0) (Tn−1 = Ln−1) is then executed. By our inductive
hypothesis, Rn = Greedy(Ln−1). Since Greedy(Ln−1) halts, it must be that
no edge moves of Tn−1 are possible. At this point, Tn−1 = Pn−1 because
RevGen(n − 1, 1, 0) was executed. The smallest edge move now remaining is
Tn − vn−2vn−1 + vnvn−1. This results in Tn = Pn−2 + vnvn−1 + vnv∞, which
is a spanning tree that has not been generated. So, Greedy(Pn) must make
this move. Gen(n, 1, 0) also makes this move, by line 15. So, Gn must equal
Greedy(Pn) up to the end of S2.
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S3: Next, Gen(n − 2, 1, 1) starting with Tn−2 = Pn−2 is executed. Since
varEdge = 1, vn−2vn−1 is added instead of vn−2v∞. Greedy(Pn) also adds
vn−2vn−1 instead of vn−2v∞ since vn−2vn−1 is smaller than vn−2v∞ and this
edge move results in a tree not yet generated. Other than the difference in this
one edge move, which occurs outside the scope of Tn−2, Gen(n − 2, 1, 0) and
Gen(n − 2, 1, 1) (both starting with Tn−2 = Pn−2) make the same edge moves.
Since we also know that Gn−2 = Greedy(Pn−2) by the inductive hypothesis, it
follows that Gn continues to equal Greedy(Pn) after line 16 of Gen(n, 1, 0)
is executed. We know that Tn−2 = Ln−2 after Gen(n − 2, 1, 0). However,
Tn−2 = Ln−2 − vn−2v∞ + vn−2vn−1 instead because Gen(n − 2, 1, 1) was exe-
cuted (varEdge = 1). It must be that no edge moves of Tn−2 are possible
because Greedy(Pn−2) (and Gen(n − 2, 1, 1)) halted. The smallest edge move
now remaining is Tn − vn−2vn−1 + vn−2v∞. This results in Tn−2 = Ln−2. Also,
Tn = Tn−2 + vnvn−1 + vnv∞ is a spanning tree since Tn−2 is a spanning tree of
Fn−2. So Greedy(Pn) makes this move. Gen(n, 1, 0) also makes this move, by
line 17, and thus Gn = Greedy(Pn) up to the end of S3.

S4: Finally, RevGen(n − 2, 0, 0) starting with Tn−2 = Ln−2 is executed. By
our inductive hypothesis, Rn−2 = Greedy(Ln−2). From the recursive defini-
tion of RevGen, it is clear that RevGen(n − 2, 0, 0) and RevGen(n − 2, 1, 0)
make the same edge moves until RevGen(n − 2, 0, 0) finishes executing. So,
by the inductive hypothesis, the listings produced by RevGen(n − 2, 0, 0) and
Greedy(Ln−2) are the same until this point, which is where Gen(n, 1, 0) fin-
ishes execution. By Lemma 1 we have that |Gn| = tn. Therefore, Greedy(Pn)
has also produced this many trees, and each tree is unique. Thus, it must be
that all tn trees of Fn have been generated. Thus, Greedy(Pn) also halts.

Since Gn and Greedy(Pn) start with the same tree, produce the same trees
in the same order, and halt at the same place, it follows that Gn = Greedy(Pn).
It is relatively straightforward to show that Rn = Greedy(Ln) by using similar
arguments as above. This proof is omitted due to space constraints. ��
Since Gn is the reversal of Rn, we immediately obtain the following corollary.

Corollary 1. For n ≥ 2, Greedy(Pn) is equivalent to Greedy(Ln) in reverse
order.

Because Greedy(Pn) generates unique spanning trees of Fn, Lemma 1
together with Lemma 2 implies our first main result. This result answers
Research Question #3 and the first part of Research Question #1 for
fan graphs.

Theorem 1. For n ≥ 2, Gn = Greedy(Pn) is a pivot Gray code listing of Tn.

To efficiently store the global tree T , the algorithms Gen and RevGen can
employ an adjacency list model where each edge uv is associated only with
the smallest labeled vertex u or v. This means v∞ will never have any edges
associated with it, and every other vertex will have at most 3 edges in its list.
Thus the tree T requires at most O(n) space to store, and edge additions and
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deletions can be done in constant time. Our next result answers the second part
of Research Question #1 for fan graphs.

Theorem 2. For n ≥ 2, Gn and Rn can be generated in O(1)-amortized time
using O(n) space.

Proof. For each call to Gen(n, s1, varEdge) where n > 3, there are at most four
recursive function calls, and at least two new spanning trees generated. Thus,
the total number of recursive calls made is at most twice the number of spanning
trees generated. Each edge addition and deletion can be done in constant time as
noted earlier. Thus each recursive call requires a constant amount of work, and
hence the overall algorithm will run in O(1)-amortized time. There is a constant
amount of memory used at each recursive call and the recursive stack goes at
most n−3 levels deep; this requires O(n) space. As mentioned earlier, the global
variable T stored as adjacency lists also requires O(n) space. ��

3.1 Ranking and Unranking

We now provide ranking and unranking algorithms for the listing Gn of all span-
ning trees for the fan graph Fn.

Given a tree T in Gn, we calculate its rank by recursively determining which
stage (recursive call) T is generated. We can determine the stage by focusing on
the presence/absence of the edges vnvn−1, vnv∞, vn−2v∞, and vn−2vn−1. Based
on the discussion of the recursive algorithm, there are tn−1 trees generated in
S1, tn−1 trees generated in S2, tn−2 trees generated in S3, and tn−2 − tn−3 trees
generated in S4. S3 is partitioned into two cases based on whether vn−2vn−1

(varEdge) is present. For the remainder of this section we will let Tn−1 = T −vn
and Tn−2 = T − vn − vn−1.

For n > 1, let Rn(T ) denote the rank of T in the listing Gn. If n = 2, 3, 4,
then Rn(T ) can easily be derived from Fig. 2. Based on the above discussion, for
n ≥ 5:

Rn(T ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2tn−1 + 2tn−2 − Rn−2(Tn−2) + 1 if e1, e2, e3 ∈ T

2tn−1 + Rn−2(Tn−2 + e3) if e1, e2, e4 ∈ T, e3 �∈ T

2tn−1 + Rn−2(Tn−2) if e1, e2 ∈ T, e3, e4 �∈ T

2tn−1 − Rn−1(Tn−1) + 1 if e2 ∈ T, e1 �∈ T

Rn−1(Tn−1) if e1 ∈ T, e2 �∈ T

where e1 = vnvn−1, e2 = vnv∞, e3 = vn−2v∞, and e4 = vn−2vn−1.
Determining the tree T at rank r in the listing Gn follows similar ideas by

constructing T starting from a set of n isolated vertices one edge at a time. Let
Un(T, r, e) return the tree T at rank r for the listing Gn. Initially, T is the set of
n isolated vertices, r is the specified rank, and e = vnv∞. If n = 2, 3, 4, then T
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is easily derived from Fig. 2. For these cases, if the edge vnv∞ is present, then it
is replaced by the edge e that is passed in.

Un(T, r, e) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Un−1(T+e1, r, vn−1v∞) if 0 < r ≤ tn−1,

Un−1(T+e, 2tn−1−r+1, vn−1v∞) if tn−1 < r ≤ 2tn−1,

Un−2(T+e1+e, r−2tn−1, e4) if 2tn−1 < r ≤ 2tn−1+tn−2,

Un−2(T+e1+e, 2tn−1+2tn−2−r+1, e3) otherwise.

where e1 = vnvn−1, e3 = vn−2v∞, and e4 = vn−2vn−1.
Since the recursive formulae to perform the ranking and unranking operations

each perform a constant number of operations and the recursion goes O(n)
levels deep, we arrive at the following result provided the first 2(n−2) Fibonacci
numbers are precomputed. We note that the calculations are on numbers up to
size tn−1.

Theorem 3. The listing Gn can be ranked and unranked in O(n) time using
O(n) space under the unit cost RAM model.

This answers Research Question #2 for fan graphs.

4 Conclusion

We answer each of the three Research Questions outlined in Sect. 1 for the fan
graph, Fn. First, we discovered a greedy algorithm that exhaustively listed all
spanning trees of Fn experimentally for small n with an easy to define starting
tree. We then studied this listings which led to a recursive construction producing
the same listing that runs in O(1)-amortized time using O(n) space. We also
proved that the greedy algorithm does in fact exhaustively list all spanning
trees of Fn for all n ≥ 2, by demonstrating the listing is equivalent to the
aforementioned recursive algorithm. It is the first greedy algorithm known to
exhaustively list all spanning trees for a non-trivial class of graphs. Finally,
we provided an O(n) time ranking and unranking algorithms for our listings,
assuming the unit cost RAM model. It remains an interesting open problem to
answer the research questions for other classes of graphs including the wheel,
n-cube, and complete graph.
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Abstract. In the general max-min fair allocation, also known as the
Santa Claus problem, there are m players and n indivisible resources,
each player has his/her own utilities for the resources, and the goal is to
find an assignment that maximizes the minimum total utility of resources
assigned to a player. We introduce an over-estimation strategy to help
overcome the challenges of each resource having different utilities for dif-
ferent players. When all resource utilities are positive, we transform it to
the machine covering problem and find a

(
c

1−ε

)
-approximate allocation

in polynomial running time for any fixed ε ∈ (0, 1), where c is the max-
imum ratio of the largest utility to the smallest utility of any resource.
When some resource utilities are zero, we apply the approximation algo-
rithm of Cheng and Mao [9] for the restricted max-min fair allocation
problem. It gives a

(
1 + 3ĉ + O(δĉ2)

)
-approximate allocation in poly-

nomial time for any fixed δ ∈ (0, 1), where ĉ is the maximum ratio of
the largest utility to the smallest positive utility of any resource. The
approximation ratios are reasonable if c and ĉ are small constants; for
example, when the players rate the resources on a 5-point scale.

Keywords: Max-min allocation · Hypergraph matching ·
Approximation algorithms

1 Introduction

We consider the general max-min fair allocation problem. The input consists of
a set P of m players and a set R of n indivisible resources. Each player p ∈ P
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has his/her own non-negative utilities for the n resources, and we denote the
utility of the resource r for p by vp,r. In other words, each resource r has a set
of non-negative utilities {vp,r : p ∈ P}, one for each player. For every subset
S of resources, define the total utility of S for p to be vp(S) =

∑
r∈S vp,r. An

allocation is a disjoint partition of R into {Sp : p ∈ P} such that Sp ⊆ R for all
p ∈ P , and Sp ∩ Sq = ∅ for any p �= q. That is, p is assigned the resources in
Sp. The max-min fair allocation problem is to find an allocation that maximizes
min{vp(Sp) : p ∈ P}.

The problem has received considerable attention in recent decades. A related
problem is a classic scheduling problem that minimizes the maximum makespan
of scheduling on unrelated parallel machines. The problem has the same input as
the max-min fair allocation problem. The only difference between them is that
the goal of the scheduling problem is to minimize the maximum load over all
machines. Lenstra et al. [16] proposed a 2-approximation algorithm by round-
ing the relaxation of the assignment linear programming model (LP). However,
Bezáková and Dani [6] proved that the assignment LP cannot guarantee the
same performance on the general max-min allocation problem.

The machine covering problem is a special case of the general max-min fair
allocation problem where the objective is to assign n jobs to m parallel identical
machines so that the minimum machine load is maximized. Every job (resource)
has the same positive utility for every machine (player), i.e., every r ∈ R has a
positive value vr such that vp,r = vr > 0 for all p ∈ P . Deuermeyer et al. [13]
proved that the heuristic LPT algorithm returns a 4

3 -approximation allocation.
Csirik et al. [11] improved the approximation ratio to 4m−2

3m−1 . Later, Woegin-
ger [18] presented a polynomial time approximation scheme to develop a 1

1−ε -
approximation algorithm, where ε > 0. For another machine covering problem
that considers the machine speed sp and the processing time vp,r = vr/sp, Azar et
al. [4] also proposed a polynomial time approximation scheme. Furthermore, the
online machine covering problem was studied in [14,15] for identical machines.

Bansal and Sviridenko [5] proposed a stronger LP relaxation, the configura-
tion LP, for the general max-min fair allocation problem. They showed that the
integrality gap of the configuration LP is Ω(

√
m), where m is the number of

players. Based on the configuration LP, Asadpour and Saberi [3] developed an
approximation algorithm that achieves an approximation ratio of O(

√
m log3 m)

by rounding. Later, Saha and Srinivasan [17] reduced the approximation ratio to
O(

√
m log m). Chakrabarty et al. [7] developed a method to provide a trade-off

between the approximation ratio and the running time: for all δ ∈ (0, 1), an
approximation ratio of O(mδ) can be obtained in O(m1/δ) time.

Bansal and Sviridenko [5] also introduced an interesting restricted max-min
fair allocation. In the restricted case, each resource has the same utility vr for
all players who are interested in it, that is, vp,r ∈ {0, vr} for all p ∈ P . They
proposed an O

(
log log m

log log log m

)
-approximation algorithm by rounding the configu-

ration LP. Later, Asadpour et al. [2] used the bipartite hypergraph matching
technique to attack the restricted max-min fair allocation problem. They used
local search to show that the integrality gap of the configuration LP is at most
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4. However, it is not known whether the local search in [2] runs in polynomial
time. Inspired by [2], Annamalai et al. [1] designed an approximation algorithm
that enhances the local search with a greedy player strategy and a lazy update
strategy. Their algorithm runs in polynomial time and achieves an approxima-
tion ratio of 12.325 + δ. Cheng and Mao [8] adjusted the greedy strategy in a
more flexible and aggressive way, and they successfully lowered the approxima-
tion ratio to 6 + δ. Very recently, they introduced the limited blocking idea and
improved the ratio to 4 + δ [9,10]. This ratio was also obtained by Davies et
al. [12]. Table 1 lists the related results.

Table 1. Results on the max-min allocation problem

Problem Approximation ratio Running time Ref.

Restricted O
(

log log m
log log log m

)
poly(m,n) [5]

General O
(√

m log3 m
)

poly(m,n) [3]
General O

(√
m log m

)
poly(m,n) [17]

General O
(
mδ

)
nO(1/δ) [7]

Restricted 12.325 + δ poly(m,n) · mpoly(1/δ) [1]
Restricted 6 + δ poly(m,n) · mpoly(1/δ) [8]
Restricted 4 + δ poly(m,n) · mpoly(1/δ) [9,12]
General
(positive utilities)

c/(1 − ε) O(n log m) This paper

General 1 + 3ĉ + O(δĉ2) poly(m,n) · mpoly(1/δ) This paper

The major challenge for the general max-min fair allocation problem is that
a resource may have different utilities for different players. Our key idea is to use
a player-independent value to estimate the value of a particular set: for every
resource r ∈ R, its over-estimated utility is vmax

r = max{vp,r : p ∈ P}. Consider
an instance where every utility in the set {vp,r : p ∈ P, r ∈ R} is positive.
Such a problem setting is closely related to the machine covering problem. The
main difference is that players are not identical and players have their own
preferences for the resources. Using the player-independent over-estimation, we
can transform this case to the machine covering problem. Then, we can apply
the currently best algorithm proposed by [18] to obtain an allocation in which
every player gets at least (1 − ε)T ∗

oe worth of resources, where T ∗
oe denotes the

optimal solution for the transformed machine covering problem. Due to the over-
estimation before the transformation, the allocation may be off by an additional
factor of c = max

{
vp,r/vq,r : r ∈ R ∧ p, q ∈ P

}
. This gives our first result which

is summarized in Theorem 1 below. Further discussions are provided in Sect. 2.

Theorem 1. For all ε ∈ (0, 1), there is a polynomial-time
(

c
1−ε

)
-approximation

algorithm for the case that every resource has a positive utility for every player.
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The problem becomes much more complicated when some resource has zero
utility for some players. Our strategy is to apply the algorithm of Cheng and
Mao [9,10] for the restricted max-min fair allocation. To this end, we use the over-
estimation strategy so that we can discuss active and inactive resources using
maximum resource utilities when applying the technique of limited blocking as
in [9,10]. Interestingly, we use each player’s own utilities for the resources when
running the algorithm although players may have different utilities for the same
resource. Then, in the analysis, we use the over-estimation strategy again to
reconcile the analysis in [9,10] for the restricted case with the general case that
we consider. Since the approximation ratio given in [9] is 4 + δ, one may think
that the approximation ratio is 4 times the over-estimation factor plus some
low-order terms. We adapt the analysis in [9,10] to show a better approximation
ratio of 1+3ĉ+O(δĉ2), where ĉ = max

{
vp,r/vq,r : r ∈ R ∧ p, q ∈ P ∧ vq,r > 0

}
.

Theorem 2. For all δ ∈ (0, 1), there is a (1+3ĉ+O(δĉ2))-approximation algo-
rithm that runs in polynomial time for the case that some resources have zero
utility for some players.

The approximation ratios in Theorems 1 and 2 are reasonable if c and ĉ are
small; for example, when the players rate the resources on a 5-point scale.

2 Every Resource Has a Positive Utility for Every Player

In this section, we consider the general max-min fair allocation problem in which
all utilities are positive. This model is similar to the machine covering problem,
but the major difference is that every player has his/her own preferences for the
resources. There is a polynomial time approximation scheme for the machine
covering problem, proposed by Woeginger [18], that achieves an approximation
ratio of 1/(1 − ε) in polynomial time.

Fr each resource r ∈ R, we use vmax
r = max{vp,r : p ∈ P} as the player-

independent utility for r. Hence all players become identical. This transformed
problem is exactly the machine covering problem which we denote by H ′. Let
H denote the original problem before the transformation. Let T ∗ be the optimal
target value for H, and let T ∗

oe be the optimal target value for H ′. So T ∗ ≤
T ∗

oe. Using the PTAS algorithm [18], we can find an approximation allocation
{Sp : p ∈ P}, where

∑
r∈Sp

vmax
r ≥ (1 − ε)T ∗

oe for every p ∈ P . When we
consider the actual value vp(Sp), we have to allow for the over-estimation factor
c = max{vp,r/vq,r : r ∈ R ∧ p, q ∈ P}.

The definition of c implies that
∑

r∈Sp
vmax

r ≤ c·vp(Sp), which further implies
that (1−ε)T ∗

oe ≤ ∑
r∈Sp

vmax
r ≤ c·vp(Sp). That is, we guarantee that every player

receives at least (1−ε)T ∗
oe/c worth of resources. Since T ∗

oe ≥ T ∗, the allocation is
a

(
c

1−ε

)
-approximation for the original problem H. This completes the discussion

of Theorem 1.
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3 Some Resources Have Zero Utility for Some Players

As mentioned previously, we will combine the over-estimation and the algorithm
in [9,10] for the restricted max-min allocation problem. We will guess a target
value T of the general max-min allocation problem and then try to find an
allocation in which the resources assigned to every player have a total utility of
at least λT . Depending on whether we succeed or not, we increase or decrease
T correspondingly in order to zoom into the value T ∗ of the optimal max-min
allocation. The initial range for T for binary search is (0, 1

m

∑
r∈R vmax

r ).
In the rest of this section, we assume that T = 1, which can be enforced by

scaling all resource utilities, and we describe how to find an allocation such that
every player obtains resources with a total utility of at least λ.

3.1 Resources and Over-Estimation

We call a resource r fat if vp,r ≥ λ for all p ∈ P . Otherwise, there exists a player
p such that vp,r < λ, and we call r thin in this case. The input resources are
thus divided into fat and thin resources.

Furthermore, we modify the resource utilities as follows: for every r ∈ R and
every p ∈ P , if vp,r > λ, we reset vp,r := λ. This modification does not affect
our goal of finding an allocation in which the resources assigned to every player
have a total utility of at least λ. Note that vp,r is left unchanged if it is at most
λ. Therefore, fat resources remain fat, and thin resources remain thin. Note that
r still has zero utility for those players who are not interested in r, and different
players may have different utilities for the same resource.

Since we have reset each vp,r so that it is at most λ, we have vmax
r ≤ λ. For

any subset D of thin resources, let vmax(D) =
∑

r∈D vmax
r . For every player p,

vp(D) still denotes
∑

r∈D vp,r.

3.2 Fat Edges and Thin Edges

For better resource utilization, it suffices to assign a player p either a single fat
resource (whose utilities are all equal to λ after the above modification), or a
subset D of thin resources such that vp(D) ≥ λ. We model the above possible
assignment of resources to players using a bipartite graph G and a bipartite
hypergraph H. The vertices of G are the players and fat resources. For every
player p and every fat resource rf , G includes the edge (p, rf ) which we call a fat
edge. The vertices of H are the players and thin resources. For every subset D
of thin resources and every player p, the hypergraph H includes the edge (p,D)
if vp(D) ≥ λ.

3.3 Overview of the Algorithm

We focus on finding an allocation that corresponds to a maximum matching M
in G and a subset E of hyperedges H such that every player is incident to an
edge in M or E , and no two edges in M ∪ E share any resource.
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To construct such an allocation, we start with an arbitrary maximum match-
ing M of G and an empty E , process unmatched players one by one in an arbitrary
order, and update M and E in order to match the next unmatched player. Once
the algorithm matches a player, that player remains matched until the end of
the algorithm. Also, although M may be updated, it is always some maximum
matching of G. We call any intermediate M ∪ E a partial allocation.

Let GM be a directed graph obtained by orienting the edges of G with respect
to M of G as follows. If a fat edge {p, rf} belongs to the matching M , we orient
{p, rf} from rf to p in GM . Conversely, if {p, rf} does not belong to the matching
M , we orient {p, rf} from p to rf in GM .

Let p0 be an arbitrary unmatched player with respect to the current partial
allocation M ∪ E . We find a directed path π from p0 to a player q0 in GM . If
p0 = q0, then π a trivial path. In this case, if q0 is covered by a thin edge a
that does not share any resource with the edges in M ∪ E , then we can update
the partial allocation to be M ∪ (E ∪ {a}) to match p0. If p0 �= q0, then π a
non-trivial path. Note that π has an even number of edges because both p0 and
q0 are players. For i ≥ 0, every (2i + 1)-th edge in π does not belong to M ,
but every (2i + 2)-th edge in π does. It is an alternating path in the matching
terminology. The last edge in π is a matching edge (rf , q0) in M for some fat
resource rf . Suppose that q0 is incident to a thin edge a that does not share any
resource with any edge in M ∪ E . Then, we can update M to another maximum
matching of G by flipping the edge in π. That is, delete every (2i+2)-th edge in
π from M and add every (2i + 1)-th edge in π to M . Denote this update of M
by flipping π as M ⊕ π. Consequently, p0 is now matched by M . Although q0 is
no longer matched by M , we can regain q0 by including the thin edge a. In all,
the updated partial allocation is (M ⊕ π) ∪ (E ∪ {a}).

However, sometimes we cannot find a thin edge a that is incident to q0 and
shares no resource with the edges in M ∪ E . Let b be an edge in M ∪ E . If a
and b share some resource, then a is blocked by b. That is, if we want to add a
into E , we must release the resources in b first. Thus, a is an addable edge and
b is a blocking edge that forbids the addition of a. We will provide the formal
definitions of addable and blocking edges shortly. To release the resources covered
by b, we need to reconsider how to match the player covered by b. This defines a
similar intermediate subproblem that needs to be solved first, namely, finding a
thin edge that is incident to the player covered by b and shares no resource with
the edges in M ∪ E . In general, the algorithm maintains a stack that consists of
layers of addable and blocking edges; each layer correspond to some intermediate
problems that need to be solved. Eventually, every blocking edge needs to be
released in order that we can match p0 in the end.

Annamalai et al. [1] introduced two ideas to enhance the above local search for
the restricted max-min allocation problem. They are instrumental in obtaining
a polynomial running time. First, when an unblocked addable edge is found, it
is not used immediately to update the partial allocation. Instead, the algorithm
waits until there are enough unblocked addable edges to reduce the number of
blocking edges significantly. This ensures that the algorithm makes a substantial
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progress with each update of the partial allocation. This is called the lazy update
strategy. Second, when the algorithm considers an addable edge (p,D), it requires
vp(D) to be a constant factor larger than λ. As a result, (p,D) will induce more
blocking edges, which will result in a geometric growth of the blocking edges in
the layers from the bottom of the stack towards the top of the stack. This is
called the greedy player strategy.

The greedy player strategy causes trouble sometimes, and a blocking edge
may block too many addable edges. To this end, Cheng and Mao [9,10] intro-
duced limited blocking which stops the resources in a blocking edge b from being
picked in an addable edge if b shares too many resources with addable edges.

We provide more details of the algorithm in the remaining subsections.

3.4 Layers of Addable and Blocking Edges

For every thin edge e, we use Re to denote the resources covered by e. Given a
set X of thin edges, we use R(X ) to denote the set of resources covered by the
edges in X .

Let Σ = (L0, L1, . . . , L�) denote the current stack maintained by the algo-
rithms, where each Li = (Ai,Bi) is a layer that consists of a set Ai of addable
edges and a set Bi of blocking edges. That is, Bi = {e ∈ E : Re ∩ R(Ai) �= ∅}.
The layer Li+1 is on top of the layer Li. The layer L0 = (A0,B0) at the stack
bottom is initialized to be (∅, {(p0, ∅)}). It signifies that there is no addable edge
initially, and replacing (p0, ∅) by some edge is equivalent to finding an edge that
covers p0 without causing any blocking. In general, when building a new layer
L�+1 in Σ, the algorithm starts with A�+1 = ∅, B�+1 = ∅, and addable and
blocking edges will be added to A�+1 and B�+1.

We use A≤i to denote A0 ∪ . . . ∪ Ai. Similarly, B≤i = B0 ∪ . . . ∪ Bi.
The current configuration of the algorithm can be specified by a tuple

(M, E , Σ, �, I), where M ∪ E is the current partial allocation, Σ is the current
stack of layers, � is the index of the highest layer, and I is a set of thin edges
in H such that they cover the players of some edges in B≤� and each edge in I
does not share any resource with any edge in E . Although the edges in I can be
added to E immediately to release some blocking edges in B≤�, we do not do so
right away in order to accumulate a larger I which will release more blocking
edges in the future.

Definition 1. Let (M, E , Σ, �, I) be the current configuration. A thin resource
r can be active or inactive. It is inactive if at least one of the following three
conditions is satisfied: (a) r ∈ R(A≤�∪B≤�), (b) r ∈ R(A�+1∪I), and (c) r ∈ Rb

for some b ∈ B�+1 and vmax

(
Rb∩R(A�+1)

)
> βλ, where β is a positive parameter

to be specified later. If none is satisfied, then r is active.

Condition (c) is a modification of the limited blocking strategy introduced
in [9,10] that fits with our over-estimation strategy. The utilities of inactive
resources are disregarded in judging whether a thin edge contributes enough total
utility to be considered an addable edge. Avoiding inactive resources, especially
those in condition (c), helps to improve the approximation ratio.
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Let Ai, Bi, and I denote the sets of players covered by the edges in Ai, Bi,
and I, respectively. Let A≤i = A0 ∪ . . . Ai, and let B≤i = B0 ∪ . . . ∪ Bi. Given
two subsets of players S and T , we use fM [S, T ] to denote the maximum number
of node-disjoint paths from S to T in GM . The alternating paths in GM from
B≤� to I and other players are relevant. If we flip the alternating paths to I,
we can release some blocking edges in B≤� because they will be matched to fat
resources instead. Also, if there is an alternating path from B≤� to a player p,
then we can look for a thin edge that covers p to release a blocking edge.

Definition 2. Let (M, E , Σ, �, I) be the current configuration. A player p is
addable if fM [B≤�, A� ∪ I ∪ {p}] = fM [B≤�, A� ∪ I] + 1.

Definition 3. Let (M, E , Σ, �, I) be the current configuration. Given an addable
player p, a thin edge (p,D) in H is addable if D is a set of active thin resources
and vp(D) ≥ λ.

As mentioned before, the edges in I can be deployed any time to replace some
blocking edges, but we only do so when we can release a significant number of
blocking edges. When this is possible for a layer in Σ, we call that layer collapsible
as defined below.

Definition 4. Let (M, E , Σ, �, I) be the current configuration. Let μ ∈ (0, 1)be a
parameter to be specified later. The layer L0 in Σ is collapsible if fM [B0, I] = 1
(note that |B0| = 1), and for i ∈ [1, �], the layer Li is collapsible if fM [B≤i, I]−
fM [B≤i−1, I] > μ|Bi|.

3.5 The Local Search Step

We discuss how to match the next unmatched player p0. Let M ∪ E be the
current partial allocation. Let Σ =

(
L0

)
be the initial stack. Let I = ∅. We go

into the Build phase to add a new layer to Σ. Afterwards, if some layer becomes
collapsible, we go into the Collapse phase to prune Σ and update the current
partial allocation. Afterwards, we go back into the Build phase to add new layers
to Σ again. The above is repeated until Σ becomes empty, which means that p0
is matched eventually. We describe the Build and Collapse phases below.

Build Phase. We start with A�+1 = B�+1 = ∅. We grow A�+1 and B�+1 as
long as we can find some appropriate thin edge (p,D) in H:

– Suppose that there is an unblocked addable thin edge (p,D). That is, R(D)∩
R(E) = ∅. It is natural to add such an edge to I, but for better resource
utilization, there is no need to use the whole D if vp(D) is way larger than
λ. We greedily extract a λ-minimal thin edge (p,D′) from (p,D): (i) D′ is a
subset of D such that vp(D′) ≥ λ, and (ii) vp(D′′) < λ for all subset D′′ ⊂ D′.
We add (p,D′) to I.
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– Assume that all addable thin edges are blocked. Suppose that there is blocked
addable thin edge (p,D) that is (1+γ)λ-minimal for an appropriate γ ∈ (0, 1)
that will be specified later. That is, vp(D) ≥ (1 + γ)λ and for all D′ ⊂ D,
vp(D′) < (1 + γ)λ. This is in accordance with the greedy player strategy.
Let E be the subset of thin edges in E that block (p,D), i.e., E = {e ∈ E :
Re ∩ R(D) �= ∅}. Add (p,D) to A�+1 and update B�+1 := B�+1 ∪ E.

Our definitions of λ-minimal and (1 + γ)λ-minimal thin edges are player-
dependent, in contrast to their player-independent counterparts in the restricted
max-min case [9,10].

If no more edge can be added to I, or A�+1 and B�+1, then we push
(A�+1,B�+1) onto Σ and increment �. If some layer becomes collapsible, we
go into the Collapse phase; otherwise, we repeat the Build phase to construct
another new layer.

Collapse Phase. Let Lk be the lowest collapsible layer in Σ. We are going to
prune Bk which will make all layers above Lk invalid. Correspondingly, some of
the unblocked addable edges in I also become invalid because they are generated
using blocking edges in Bi for i ∈ [k + 1, �]. So a key step is to decompose I into
a disjoint partition

⋃�
i=0 Ii such that, among the fM [B≤�, I] paths in GM from

B≤� to I, there are exactly |Ii| paths from Bi to Ii for i ∈ [0, �], where Ii denotes
the set of players covered by Ii.

We remove Li for i ≥ k+1 from Σ, and we also forget about Ii for i ≥ k+1.
We change M by flipping the alternating paths from Bk to Ik. The sources of
these paths form a subset of Bk, which are covered by a subset B∗

k ⊆ Bk. The
flipping of the alternating paths from Bk to Ik has the effect of replacing B∗

k by
Ik in E .

If k = 0, it means that the next unmatched player p0 is now matched and
the local search has succeeded. Otherwise, some of the addable edges in Ak may
no longer be blocked due to the removal of B∗

k from E . We reset I := I≤k−1. For
each edge (p,D) ∈ Ak that becomes unblocked, we delete (p,D) from Ak, and if
fM [B≤k−1, I ∪{p}] = fM [B≤k−1, I] + 1,1 then we extract a λ-minimal thin edge
(p,D′) from (p,D) and add (p,D′) to I. After pruning Ak, we reset � := k.

We repeat the above as long as some layer in Σ is collapsible. When this no
longer the case and p0 is not matched yet, we go back to the Build phase.

3.6 Analysis

For any δ ∈ (0, 1), we show that we can set γ = Θ(δ), β = γ2, and μ = γ3 so that
the local search runs in polynomial time, and if the target value 1 is feasible, the
local search returns an allocation that achieves a value of λ = 1/(1+3ĉ+O(δĉ2)).
Recall that ĉ = max{vp,r/vq,r : r ∈ R ∧ p, q ∈ P ∧ vq,r > 0}.

The key is to show that the stack Σ has logarithmic depth for these choices
of γ, β and μ. The numbers of blocking edges |Bi| for i ∈ [0, �] induce a signature
1 As proved in [9,10], this is equivalent to checking the addability of player p.
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vector that increases lexicographically as the local search proceeds. Therefore,
if Σ has logarithmic depth, the local search must terminate in polynomial time
before we run out of all possible signature vectors. To show that Σ has log-
arithmic depth, we are to prove that the number of blocking edges increases
geometrically from one layer to the next as we go up Σ.

First, we extract Lemmas 1–3 from [9,10]; either the original proofs still hold
or minor adaptations work for our setting.

Lemma 1. For i ∈ [0, �], let zi = |Ai| right after the creation of the layer Li.
Whenever no layer in collapsible, |Ai+1| ≥ zi+1 − μ|B≤i| for i ∈ [0, � − 1].

Lemma 2. For each blocking edge b ∈ Bi, there exists an edge a ∈ Ai such that
vmax

(
Rb ∩ R(Ai \ {a})

) ≤ βλ.

Lemma 3. For i ∈ [0, �], |Ai| <
(
1 + β

γ

)|Bi|.

The analogous version of Lemma 4 below in [9,10] gives the inequality |B′
i| <

(2+γ)
β |Ai| in the restricted max-min case. We prove that a similar bound with

the extra over-estimation factor ĉ holds for the general max-min case.

Lemma 4. Let B′
i be the subset of Bi such that all resources in B′

i are inactive,
i.e., B′

i =
{
b ∈ Bi | vmax

(
Rb ∩ R(Ai)

)
> βλ

}
. Then, |B′

i| < (2+γ)ĉ
β |Ai|.

Proof. Summing over the edges in B′
i gives vmax

(
R(B′

i) ∩ R(Ai)
)

> βλ|B′
i|.

Every edge (p,D) ∈ Ai is (1 + γ)λ-minimal by definition, so vp(D) ≤ (2 + γ)λ.
Summing over the edges in Ai gives

∑
(p,D)∈Ai

vp(D) ≤ (2 + γ)λ|Ai|. The
definition of ĉ implies that vmax

r ≤ ĉ vp,r, which implies that vmax(R(Ai)) ≤∑
(p,D)∈Ai

ĉ vp(D) ≤ (2 + γ)λĉ |Ai|. Combining the inequalities above gives
βλ|B′

i| < vmax(R(B′
i) ∩ R(Ai)) ≤ vmax(R(Ai)) ≤ (2 + γ)λĉ |Ai|, which implies

that |B′
i| < (2+γ)ĉ

β |Ai|. ��
Lemma 4 is instrumental to proving Lemma 5 which is the key to showing a

geometric growth in the numbers of blocking edges.

Lemma 5. Assume that the target value 1 is feasible for the general max-min
allocation problem. Then, immediately after the construction of a new layer L�+1,
if no layer is collapsible, then |A�+1| > 2μ|B≤�|.

We show how to use Lemma 5 to obtain the geometric growth.

Lemma 6. If no layer is collapsible, then
∣
∣Bi+1

∣
∣ > γ3

1+γ

∣
∣B≤i

∣
∣. Hence,

∣
∣B≤i+1

∣
∣ >

(
1 + γ3

1+γ

∣
∣B≤i

∣
∣
)
.

Proof. Let (L0, L1, . . . , L�) be the current stack Σ. Take any i ∈ [0, � − 1]. Since
the most recent construction of Li+1, Li+1 and any layer below it is not collapsi-
ble. If not, Li+1 would be deleted, which means that there would be another
construction of it after the most recent construction, a contradiction. Therefore,
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Lemma 5 implies that zi+1 > 2μ|B≤i|, where zi+1 is the value of |Ai+1| right
after the construction of Li+1. By Lemma 1, |Ai+1| ≥ zi+1 − μ|B≤i|. Substitut-
ing zi+1 > 2μ|B≤i| into this inequality gives |Ai+1| > 2μ|B≤i|−μ|B≤i| = μ|B≤i|.
Lemma 3 implies that |Bi+1| > γ

γ+β |Ai+1| > γμ
γ+β |B≤i|. Plugging in β = γ2 and

μ = γ3 gives |Bi+1| > γ3|B≤i|/(1 + γ). ��
The next result shows that a polynomial running time follows from Lemma6.

Lemma 7. Suppose that the target value 1 is feasible for the general max-
min allocation problem. Then, the local search matches a player in poly(m,n) ·
mpoly(1/δ).

Proof. The proof follows the argument in [1]. Let h = γ3/(1 + γ). Define
the signature vector (s1, s2, ..., s�,∞), where si =

⌊
log1/(1−μ)

(|Bi|h−i−1
)⌋

. By
Lemma 6, |B�| ≥ h|B≤�−1| ≥ h|B�−1|. So ∞ > s� ≥ s�−1, which means that the
coordinates of the signature vector are non-decreasing. When a (lowest) layer Lt

is collapsed in the Collapse phase, we update Bt to B′
t where (1 − μ)|Bt| > |B′

t|.
The signature vector is updated to (s1, s2, ..., s′

t) where s′
t ≤ st − 1. So the

signature vector decreases lexicographically. By Lemma 6, the number of layers
in Σ is at most log1+h m, where m is the number of players. One can ver-
ify that the sum of coordinates in every signature vector is at most U2 where
U = log m · O( 1

μh log 1
h ). Every signature vector corresponds to a distinct parti-

tion of an integer that is no more than U2. By summing up the number of distinct
partitions of integers that are no more than U2, we get that the upper bound of
mO( 1

µh log 1
h ) on the number of signature vectors. Since γ = Θ(δ), μ = γ3, and

h = γ3/(1 + γ), this upper bound is mpoly(1/δ). This also bounds the number of
calls on Build and Collapse. It is not difficult to make the construction of a
layer and the collapse of a layer run in polynomial time. ��

We have not discussed how to handle the case that the target value 1 is
infeasible for the general max-min allocation problem. In this case, the local
search must fail at some point. From the previous proofs, we know that as
long as the conclusion of Lemma 5 holds immediately after the construction of
a new layer L�+1, that is, if no layer is collapsible, then |A�+1| > 2μ|B≤�|, the
local search must succeed and finish in polynomial time. As a result, we must
encounter a situation that no layer is collapsible and yet |A�+1| ≤ 2μ|B≤� for the
first time during the local search. This situation can be checked explicitly and
we can abort and guess the next target value. Since the conclusion of Lemma5
has held so far, the running time up to the point of abortion is polynomial.

4 Conclusion

We provide two solutions for the general max-min fair allocation problem. If
every resource has a positive utility for every player, the problem can be trans-
formed to the machine covering problem using our over-estimation strategy. By
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using an existing polynomial time approximation scheme for the machine cover-
ing problem, we obtain a

(
c

1−ε

)
-approximation algorithm which runs in polyno-

mial time, where ε is any constant in the range (0, 1), and c = max{vp,r/vq,r :
r ∈ R ∧ p, q ∈ P}. If some resource has zero utility for some players, we show
how to combine the over-estimation strategy with the approximation algorithm
in [9] for the restricted max-min allocation problem to obtain an approxima-
tion ratio of 1 + 3ĉ + O(δĉ2) for any δ ∈ (0, 1) in polynomial time, where
ĉ = max{vp,r/vq,r : r ∈ R ∧ p, q ∈ P ∧ vq,r > 0}. We conclude with two
research questions. The first question is whether the approximation ratios pre-
sented here can be improved further. Despite its theoretical guarantee, the local
search step is still quite challenging to implement. So the second question is
whether there is a simpler algorithm that can also achieve a good approxima-
tion ratio in polynomial time.
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Abstract. Given a graph, a geodetic set (resp. edge geodetic set) is a
subset of its vertices such that every vertex (resp. edge) of the graph is on
a shortest path between two vertices of the subset. A strong geodetic set
is a subset S of vertices and a choice of a shortest path for every pair of
vertices of S such that every vertex is on one of these shortest paths. The
geodetic number (resp. edge geodetic number) of a graph is the minimum
size of a geodetic set (resp. edge geodetic set) and the strong geodetic
number is the minimum size of a strong geodetic set. We first prove
that, given a subset of vertices, it is NP-hard to determine whether it is
a strong geodesic set. Therefore, it seems natural to study the problem
of maximizing the number of covered vertices by a choice of a shortest
path for every pair of a provided subset of vertices. We provide a tight 2-
approximation algorithm to solve this problem. Then, we show that there
is no 781/780 polynomial-time approximation algorithm for edge geodetic
number and strong geodetic number on subcubic bipartite graphs with
arbitrarily high girth. We also prove that geodetic number and edge
geodetic number are both LOG-APX -hard, even on subcubic bipartite
graphs with arbitrarily high girth. Finally, we disprove a conjecture of
Iršǐs and Konvalinka by proving that the strong geodetic number can be
computed in polynomial time in complete multipartite graphs.

1 Introduction

Geodetic Number and Edge Geodetic Number. A geodesic between two vertices
of a graph G is a path of minimum length between x and y. The geodetic number
of G is the minimum size of a subset X of the vertices such that, for every vertex
v, there exists a geodesic between two vertices of X containing v. The geodetic
number of a graph has been introduced by Harary et al. in [13], where the authors
showed that deciding whether a graph has a geodetic number less than an integer
k is NP-complete. The complexity of this problem has also been investigated in
several classes of graphs, such as bipartite graphs [11] and chordal graphs [10]
where it remains NP-complete. Recently, Chakraborty et al. proved that finding
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C.-Y. Chen et al. (Eds.): COCOON 2021, LNCS 13025, pp. 76–88, 2021.
https://doi.org/10.1007/978-3-030-89543-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89543-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-89543-3_7


On the Approximation Hardness of Geodetic Set and Its Variants 77

the geodetic number of a graph is NP-hard on planar graphs with maximum
degree six and line graphs [6]. They also proved in [7] that, unless P = NP,
there is no polynomial time o(log n)-approximation algorithm for computing the
geodetic number of a graph, even on graphs that have a universal vertex and
where n stands for the number of vertices in the input graph.

The edge version of the geodetic number has been introduced independently
in [3] and in [22]. A subset X of the vertices is an edge geodetic set if, for every
edge e, there is a geodesic between two vertices of X containing e. The edge
geodetic number of G is the size of the smallest geodetic set of G. Note that,
given a graph G, the geodetic number of G is smaller than its edge geodetic
number. This edge version is also known to be NP-hard [3]. This problem has
been studied on several classes of graphs, such as Cartesian products [1,21] and
fuzzy graphs [20]. From a structural point of view, Santhakumaran and Ullas
Chandran characterized graphs with a prescribed edge geodetic number [23]. For
more results and motivations about geodetic sets, see [5].

Strong Geodetic Number and Strong Edge Geodetic Number. A subset of vertices
X is a strong geodetic set if there exists a function Ĩ that associates a unique
geodesic to each pair of vertices of X and such that every vertex v is contained
in a geodesic Ĩ(a, b), where {a, b} ⊆ X. In the following, we call such a function a
geodesic assignation for X. The strong geodetic number of a graph G is the size of
the smallest strong geodetic set. The strong geodetic number has been introduced
recently by Arokiaraj et al. [2]. In their original paper, the authors motivate this
variation by social network applications. Furthermore, they also prove that this
problem is NP-complete. Note that it remains NP-hard even when restricted
to bipartite graphs [15]. This problem has been studied on complete Apollonian
networks [2], grids and cylinders [16], and on Cartesian product of graphs [12],
on complete bipartite graphs [14], on complete multipartite graphs [15] and on
outerplanar graphs [18]. Connections to the diameter of the graph were studied
in [14] and to the isometric path problem [2].

Finally, the edge version of the strong geodetic problem, where we want to
cover every edge of the graph, has been introduced by Manuel et al. [17] and
were proved NP-complete. Zmazek recently studied the values of the edge strong
geodetic number on grids [25].

Our Results. The results of our paper are divided in four sections. In Sect. 3,
we propose a variant of the strong geodetic problem where, given a subset S of
vertices, the question is to determine whether S is a strong geodesic set of the
graph. Using a reduction from Monotone Balanced 3-SAT-(4), we prove
that this problem is NP-hard. Then, we consider in Sect. 4 the problem of max-
imizing the number of covered vertices by a choice of a geodesic for each pair of
a provided subset of vertices, and provide a tight 2-approximation algorithm to
solve it. In Sect. 5, we reduce the geodetic problems from Set Cover. We first
give it in the general case, and then we adapt the previous construction on bipar-
tite graphs with arbitrarily high girth. Using the previous reductions, we show
in Sect. 6 that there is no approximation of Edge Geodetic Number with an
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approximation factor better than 781/780. We also prove that geodetic number
and edge geodetic number are both LOG-APX -hard, even on subcubic bipar-
tite graphs with arbitrarily high girth. Finally, in Sect. 7, we give a polynomial
time algorithm which computes the Strong Geodetic Number of complete
multipartite graphs, disproving the conjecture of [15] which states that Strong
Geodetic Number is NP-hard on complete multipartite graphs.

Due to space constraints, the proofs have been omitted. However, a full ver-
sion can be found in https://hal-lirmm.ccsd.cnrs.fr/lirmm-03328636.

2 Notations

We first introduce some notations and formally define the problems. Given a
set X, we denote by P2(X) the set of its pairs. Given two sets X and Y , we
denote by X �Y the union X ∪Y when X and Y are disjoint. Let G be a graph,
we denote by V (G) its set of vertices and by E(G) its set of edges. We denote
by D1(G) the set of vertices of degree one in G. Let X be a subset of vertices
of G and x be a vertex, we say that x is selected by X if x ∈ X and that x
is covered by X if x is contained in a geodesic between two vertices of X (or
simply selected or covered if there is no ambiguity on X). Likewise, let uv be an
edge, we say that uv is covered by X (or simply covered) if uv is contained in a
geodesic between two vertices of X.

Let g be a path that contains the vertices u and v. We denote by g[u, v]
the subpath of g with extremities u and v. Furthermore, we denote by V (g) the
vertices of g. Similarly, given a geodesic assignation Ĩ for a set of vertices X, we
denote by V (Ĩ) the vertices covered by the geodesics of Ĩ.

We now introduce the problems studied in this work.

(Strong) (Edge) Geodetic Number
Input: a simple graph G and an integer k.
Question: is there a (strong) (edge) geodetic set X ⊆ V of size k?

The following already known property will be fundamental in the proofs of
our reductions as it helps to force some vertices to be part of a (strong) (edge)
geodetic set.

Property 1. If G is a graph and X is a solution of any geodesic problem, then
we have D1(G) ⊆ X.

3 Hardness to Find a Geodesic Assignation

In the proof that computing the strong geodesic number is NP-complete, the
geodesic assignation is rather trivial [2]. In this section, we show that determining
if a set of vertices is a strong geodetic set (i.e. computing a geodesic assignation)
is in itself NP-complete. To do so, we reduce from a special case of 3-SAT
called Monotone Balanced 3-SAT-(4). In this variant, the boolean formula
is composed of monotone clauses, that is, clauses that contains only positive

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03328636
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literals or only negative literals. Monotone Balanced 3-SAT-(4) is defined
as follows.

Monotone Balanced 3-SAT-(4)
Input: a monotone 3-SAT formula ϕ where each variable occurs exactly

two times positively and two times negatively.
Question: is ϕ satisfiable?
Darman and Döcker showed that this problem is NP-complete [8]. We intro-

duce the following construction.

Construction 1. Let ϕ be a Monotone Balanced 3-SAT-(4) formula, we
construct the following graph G:

– For each clause Cj, introduce a vertex qj.
– For each variable xi, introduce two edges v0

i v1
i and u0

i u
1
i . Furthermore, let Cj

and Cj′ , with j < j′ be the two clauses where xi occurs with the same polarity
(i.e. it appears positively in both clauses, or negatively in both), construct a
path (v1

i , qj , qj′ , u1
i ).

– For each pair of vertices v1
i and u1

i′ with i �= i′, introduce a vertex ti,i′ and
construct the path (v1

i , ti,i′ , u1
i′).

– Finally, construct two vertices kv and ku, and for each variable xi, introduce
the edges v1

i kv and u1
i ku.

Fig. 1. Example of a subgraph induced by Construction 1. In the Boolean formula, the
variable x1 appears positively in C2 and C7 and negatively in C1 and C8. The variable
x4 appears positively in C3 and C6 and negatively in C4 and C5. The paths p1, p̄1 and
p1,4 are depicted in dotted, dashed and bold, respectively.

For each variable xi, let Cj and Cj′ (resp. Ck and Ck′) with j < j′ be
the clauses where xi occurs positively (resp. negatively). We denote by pi the
path (v0

i , v1
i , qj , qj′ , u1

i , u
0
i ), by p̄i the path (v0

i , v1
i , qk, qk′ , u1

i , u
0
i ) and by pi,i′ the

path (v0
i , v1

i , ti,i′ , u1
i′ , u0

i′), for any i �= i′. An example of a graph produced by
Construction 1 is depicted in Fig. 1.
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Algorithm 1: Greedy Algorithm
Data: A graph G and a set of vertices V ′ ⊆ V (G).
Result: A geodetic assignation Ĩ for V ′.

1 A ← P2(V
′) ;

2 while A �= ∅ do
3 {u, v} ← first element of A;

4 g ← geodesic between u and v that maximizes |V (g) \ V (Ĩ)|;
5 Set Ĩ(u, v) := g; A ← A\{{u, v}};
6 end

7 return Ĩ;

Lemma 1. Let ϕ be a Monotone Balanced 3-SAT-(4) formula and G its
graph resulting from Construction 1. Let Ĩ be a geodesic assignation for D1(G).
It is possible to construct a geodesic assignation Ĩ ′ for D1(G) such that |V (Ĩ ′)| ≤
|V (Ĩ)|, and:
(1) for any i �= i′, the geodesic between v0

i and u0
i′ in Ĩ ′ is pi,i′ , and

(2) for any i, the geodesic between v0
i and u0

i in Ĩ ′ is either pi or p̄i.

Theorem 1. It is NP-hard to determine if a set of vertices V ′ is a strong
geodetic set even if, for every strong geodetic set Vstrong, we have V ′ ⊆ Vstrong.

From this theorem, we can derive a result about the residue variant of
Strong Geodetic Number. The residue variant of an optimisation problem
has been defined recently in [24] and consists of, given a partial solution P for
an instance I, finding an optimal partial solution R such that P ∪R is a solution
for I. The complexity class RAPX contains the residue variant optimisation
problems such that the score of the residue can be approximated by a constant.

Corollary 1. Strong Geodetic Number �∈ RAPX .

4 Approximation

Since it is hard to determine if a subset of vertices is a strong geodetic set,
a natural question that arises is to find, given a subset of vertices, a geodetic
assignation that maximizes the number of covered vertices. We call this problem
Max Geodesic Assignation. By Theorem 1, this problem is also NP-hard
and we show that this problem belongs to APX , i.e. approximable within a
constant ratio. In this part, we show that this problem is 2-approximable using
a simple greedy algorithm, defined in Algorithm 1.

Theorem 2. Algorithm 1 computes in polynomial time a solution for Max
Geodesic Assignation with an approximation ratio of 2 and this ratio is tight
(Fig. 2).
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Fig. 2. Tightness of the approximation ratio of Algorithm 1. Consider a, c and e as
selected (in black in the graph). The optimal solution consists in taking the geodesics
(a, b, e), (c, d, e) and (a, c, d) which cover the non-selected vertices b and d. The greedy
algorithm can start by taking the geodesic (a, d, e) between a and e. Then the algorithm
will choose (c, d, e) and (a, c, d) for the last two pairs. This leads to a set of geodesics
which only covers d.

5 Reduction from Set Cover

In this part, we prove preliminary results that will be used in the next section.
More specifically, we reduce the geodetic problems from the classic NP-complete
problem Set Cover described as follows.

Set Cover (SC)
Input: A collection C = {S1, . . . , Sm } of finite sets over the universe

U = {E1, . . . , En }.
Question: Find a minimum C ⊆ C such that every element of U is

contained in a set of C .
For the strong versions, we use a version of Set Cover, denoted (k, k′)-Set

Cover, where the size of the intersection between two sets is at most k and the
set sizes are bounded by k′. Notice that since Vertex Cover is a particular
case of (1, k′)-Set Cover, then (k, k′)-Set Cover is NP-complete.

In the following, we first show how this reduction works in the general case
and then, we adapt it in subcubic bipartite graphs with arbitrary high girth.

5.1 On General Case

Construction 2. Let (C,U) be an instance of Set Cover. We construct a
graph G as follows:

– For each set Si, create a 3-path spi = (v0
i , v1

i , v2
i ).

– For each element Ej, create a 4-path epj = (u0
j , u

1
j , u

2
j , u

3
j ). We denote the

edge u2
ju

3
j as ej.

– For each set Si and each element Ej ∈ Si, introduce a 3-path cpi
j between v1

i

and u2
j ) and a 2-path lpi

j between v2
i and u3

j .
– For each pair of elements Ej and Ej′ , introduce the edge tj,j′ = u1

ju
1
j′ .

The paths epj , spi, cp
i
j and lpi

k are called element paths, set paths, cut paths
and long paths, respectively. An example of a graph produced by Construction
2 is depicted in Fig. 3.
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Fig. 3. Example of a graph produced by Construction 2 (left) and Construction 4
(right) on the collection containing S1 = {E1, E3}, S2 = {E1, E2} and S3 = {E2, E3}.
Element paths, set paths, cut paths and long paths are depicted in dashed, dotted,
bold dashed and bold, respectively. In the right graph, the squiggly edges represent
paths of length h, 2h or 3h

Clearly, the construction can be carried in polynomial time. In order to show
that Construction 2 constitutes a reduction, we introduce the following lemmas.

Lemma 2. Let (C,U) be an instance of Set Cover (resp. (1, k′)-Set Cover)
and let G be its graph resulting from Construction 2. The set D1(G) covers (resp.
strongly covers) every edge of G′ except the edges in {ej | Ej ∈ U}.

In the following, let Y S
i ⊂ V (G) denote the set containing spi\{v0

i } and every
long path lpi

j and cut path cpi
j incident to cpi minus vertices of every element

path epj . Formally, Yi = (spi\{v0
i }) ∪ {(cpi

j ∪ lpi
j)\epj | ∀Ej ∈ Si}. For each

element Ej ∈ U , we also denote Y E
j = {Yi | Ej ∈ Si} ∪ epj\{u0

j}.
Lemma 3. Let (C,U) be an instance of Set Cover and let G be its graph
resulting from Construction 2. For each element Ej, every geodesic containing
the edge ej has an extremity in Y E

j .

In order to easily produce a set cover in G from a (strong) edge geodetic set
X of G′, we need X to respect a certain property. Hence, we use the following
lemma.

Lemma 4. Let (C,U) be an instance of Set Cover (resp. (1, k′)-Set Cover)
and G its graph resulting from Construction 2. Let X ⊆ V (G) be an edge geode-
tic set (resp. strong edge geodetic set) of G. It is possible to construct an edge
geodetic set (resp. a strong edge geodetic set) X ′ of G such that |X ′| ≤ |X| and

X ′ ⊆ {v2
i | Si ∈ C} ∪ D1(G)

.
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Lemma 5. Let (C,U) be an instance of Set Cover (resp. (1, k′)-Set Cover)
and G its graph resulting from Construction 2. Then the instance (C,U) contains
a set cover of size k if and only if G contains an edge geodetic set (resp. strong
edge geodetic set) of size k + |C| + |U |.

5.2 On Subcubic Bipartite Graphs

We now extend the previous result to subcubic and bipartite graphs. First, we
show that the result holds in graph with maximum degree three. We introduce
the following construction.

Construction 3. Given a graph G, a vertex u ∈ V (G), a set of non-adjacent
neighbours N0 = {v0

0 , . . . , v
0
k−1} ⊆ N(u) and an integer h > log k, emplace a

h-pyramid Py(h, u,N0) consists of removing all edges between u and N0 and
replacing them with the following subgraph. For each 0 < i < h, construct recur-
sively the sets N i:

– create t = 
|Ni−1|/2� vertices vi
0, . . . , v

i
t, and

– introduce the edges vi
t′v

i−1
2t′ , and vi

t′v
i−1
2t′+1 (if vi−1

2t′+1 exists) for each t′ < t.

Finally, introduce the edge uvh−1
0 (Nh−1 consists of a single vertex since h >

log k) (Fig. 4).

Fig. 4. Example of a 3-pyramid Py(3, v, {w, x, y}) produced by Construction 3. Left:
v and its neighbours in the original graph. Center: emplaced 3-pyramid. Right: Rep-
resentation of the pyramid used in Fig. 3.

Let Py(h, v,N) be a h-pyramid. We can make the following observations.

– The maximum degree of Pyh(h, v,N) is three.
– Let n1, n2 ∈ N , the distance between n1 and n2 in Pyh(h, v,N) is between 2
and 2h and the distance between v and n1 or n2 is h.

We now use the previous structure to modify Construction 2 as follows.

Construction 4. Let (C,U) be an instance of Set Cover and G be its graph
resulting from Construction 2. Let h > logΔ(G) be an integer. We modify G as
follows:
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– for each set Si and each integer k ∈ {1, 2}, emplace a h-pyramid
Py(h, vk

i , N(vk
i )\{vk−1

i }),
– for each element Ej and each integer k ∈ {1, 2, 3}, emplace a h-pyramid

Py(h, uk
j , N(uk

j )\{uk−1
j }), and

– replace each edge of G that does not belong to a h-pyramid by a path of length
h.

Note that the resulting graph has maximum degree three. Moreover, if k is
odd then the resulting graph is bipartite. Finally, by taking an arbitrary high
value of k, the resulting graph has an arbitrary high girth. We use a similar
vocabulary than for Construction 2: an element tree etj is the tree induced by
the vertices of epj in the h-pyramids emplaced in it in the original graph. A set
tree sti is defined the same way. For each element Ej , the h-path that replaces
the edge ej is denoted pj . An example of a graph produced by Construction 4
is depicted in Fig. 3. Since Construction 4 multiplies the length of every path of
Construction 2 by h, we can adapt Lemmas 2 to 4 to it by replacing epj by etj
and spi by sti in the geodesics descriptions. Using the same idea as for Lemma
5, we can now show that Construction 4 constitutes a reduction: if a path pj

is (strongly) covered, then there is a vertex v2
i , such that Ej ∈ Si, is selected.

Thus, given a solution for a geodetic problem X the set {Si | v2
i ∈ X} is a set

cover of G. Hence, we obtain the following result.

Lemma 6. Let (C,U) be an instance of Set Cover (resp. (1, k′)-Set Cover)
and G its graph resulting from Construction 2. Then the instance (C,U) contains
a set cover of size k if and only if G contains an edge geodetic set and a geodetic
set (resp. strong edge geodetic set and a strong geodetic set) of size k+ |C|+ |U |.

6 Non-approximability

In this section, we use the results of the previous section to find hardness of
approximation results for the geodetic problems.

6.1 Strong Geodetic Set and Strong Edge Geodetic Set

First, recall the definition of L-reduction between two hard problems Π and Π ′

(with respective cost functions valΠ and valΠ′), as described by Papadimitriou
and Yannakakis [19]. Let OPTΠ(x) and OPTΠ′(x) be the optimal value of valΠ
and valΠ′ on an instance x, respectively. An L-reduction consists of polynomial-
time computable functions f and g such that, for each instance x of Π, f(x) is
an instance of Π ′ and for each feasible solution y′ for f(x), g(y′) is a feasible
solution for x. Moreover, there are constants α1, α2 > 0 such that:

1. OPTΠ′(f(x)) ≤ α1 · OPTΠ(x) and
2. |valΠ(g(y′)) − OPTΠ(x)| ≤ α2 · |valΠ′(y′) − OPTΠ′(f(x))|.
Using Construction 4, we obtain an L-reduction with α1 = (2k′+2) and α2 = 1.
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Lemma 7. Let ρk′ be the best possible polynomial time approximation factor of
(1, k′)-Minimum Set Cover. Then Strong Geodetic Number and Strong
Edge Geodetic Number cannot be approximated with a factor better than

1 +
ρk′ − 1
2k′ + 2

,

in subcubic bipartite graphs with arbitrary high girth.

Since Minimum Vertex Cover with bounded maximum degree k′ is a
particular case of (1, k′)-Minimum Set Cover, we can pick the value of k′

(and so the corresponding best-known value ρk′) that maximize the previous
inapproximation ratio. Thus, since Berman and Karpinski showed thatMinimum
Vertex Cover cannot be approximated with a factor better than 79/78 in
graphs with maximum degree four [4], we obtain the following result.

Corollary 2. Strong Geodetic Number and Strong Edge Geodetic
Number cannot be approximated with a factor better than 781/780 in subcubic
bipartite graphs with arbitrary high girth.

6.2 Geodetic Set and Edge Geodetic Set

Now, we provide approximation lower bounds for Geodetic Number and
Strong Geodetic Number. We apply the following modification to Construc-
tion 4.

Construction 5. Let (C,U) be an instance of Set Cover, G be its graph
produced by Construction 4 and k > |V (G)| be an integer. We construct a graph
G′ as follows:

– create k disjoint copies {G1, . . . , Gk} of G,
– for each vertex x of D1(G),

• create an edge s0xs1x,
• for each G� ∈ {G1, . . . , Gk} and for each vertex x ∈ D1(G�), construct a

k-path p�
x between x and s1x, and

• emplace a k-pyramid Py(k, s1x, N(s1x)\{s0x}).
Notice that the resulting graph has maximum degree three.

Set Cover is hard to approximate with a factor better than a logarithmic
function [9]. Therefore, we can transfer the lower bounds of approximation of
Set Cover to Geodetic Number and Edge Geodetic Number. This result
is in addition to the one proved by Chakraborty et al. [7].

Theorem 3. Geodetic Number and Edge Geodetic Number are LOG-
APX -hard, even in bipartite subcubic graphs with arbitrary high girth.
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7 Strong Geodetic Number on Complete Multipartite
Graphs

First, remark that geodesics of complete multipartite graphs are easy to deter-
mine: for any pair of vertices which are not in the same part, the edge between
them is the unique shortest path between them. For a pair of vertices which are
in the same part, the shortest paths between them are all the paths of length
two between them with all the vertices not in this part as middle vertices.

In this section, we develop a polynomial algorithm which computes the strong
geodetic number of a complete multipartite graph. The algorithm is based on
dynamic programming where we not only look after a minimum strong geodetic
set of vertices covering all the graph, but we look after all sets of vertices max-
imizing the number of pairs not used to cover other vertices among sets with
some fixed parameters.

Let Kn1,...,nr
denotes a complete multipartite graph whose parts are noted

X1, . . . , Xr such that |Xi| = ni for every i ∈ {1, . . . , r}. We denote Ni =
∑i

j=1 nj

for every i ∈ {1, . . . , r} and Kn1,...,ni
by Gi.

Definition 1. A selection of Kn1,...,nr
is a set of selected vertices S in which we

pick a set of pairs of non-adjacent vertices C to cover some non-selected vertices.
Formally, a selection is a triplet (S,C, f), where

– S ⊆ V ,
– C ⊆ ⋃r

j=1 P2(S ∩ Xj) and,
– f : C → V \S is an injective map such that ∀c ∈ C

⋂ P2(S
⋂

Xi), f(c) �∈ Xi

(i.e. two vertices of Xi can not cover another vertex of Xi).

Given a selection s(S,C, f), we denote by

– s(S,C, f) = |S|, the number of selected vertices,
– r(S,C, f) = |V \(S � f(C))| = n − s(S,C, f) − |C|, the number of vertices

that are neither selected nor covered, and
– d(S,C, f) = | ∪n

j=1 P2(S ∩ Sj)\C| = ∑n
j=1

(
S∩Xj

2

) − |C|, the number of pairs
of non-adjacent vertices that are not in C.

We denote by d(i, j, r) the maximum of d(S,C, f) for any selection (S,C, f)
of Gi such that s(S,C, f) = j and r(S,C, f) = r. This quantity is set to −∞ if
no such selection of Gi exists.

Lemma 8. For any integers i, s, r and integers k, u, q we define the following
quantities:

s′ = s − k, r′ = r − ni + u + q + k and d′ = d(i − 1, s′, r′)

We deduce that: d(i, s, r) = max

⎧
⎨

⎩
(d′) +

(
k
2

) − q − u

∣
∣
∣
∣
∣
∣

0 ≤ k ≤ ni

0 ≤ u ≤ min(ni − k, d′)
0 ≤ q ≤ min(

(
k
2

)
, r′)

⎫
⎬

⎭
.
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From previous lemma we deduce the following theorem.

Theorem 4. There exists an algorithm in O(n8) computing the geodetic number
of a complete multipartite graph with n vertices.

Notice that a complete multipartite graph can be described with the list of
integers n1, . . . , nk. In that case, the dynamic programming that we described
is not polynomial if the values of the ni are exponential. Thus, if we formulate
Edge Geodetic Number on complete multipartite graph as a specific problem
on this class, the question whether such a problem is weak NP-hard or not is
open.

8 Conclusion

In this paper, we investigated the hardness of the approximation of the geodetic
set problems. Given our approximation lower bound for Geodetic Number
and Edge Geodetic Number, the question of the existence of a O(log(n))-
approximation algorithm seems natural. We also proved that deciding whether a
set admits a geodesic assignation NP-hard. Therefore, a second question arises:
is it also hard to decide whether a set of vertices is a strong geodetic set. We
also give a tight 2-approximation of this problem. Finding a lower bound for
this problem is probably a good question for further work. Finally, for Strong
Geodetic Number, we proved that it was polynomial on complete multipartite
graphs. What about other graph classes?

References

1. Anand, B.S., Changat, M., Ullas Chandran, S.V.: The edge geodetic number of
product graphs. In: Panda, B.S., Goswami, P.P. (eds.) CALDAM 2018. LNCS, vol.
10743, pp. 143–154. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
74180-2 12

2. Arokiaraj, A., Klavzar, S., Manuel, P.D., Thomas, E., Xavier, A.: Strong geodetic
problems in networks. Discuss. Math. Graph Theory 40(1), 307–321 (2020)

3. Atici, M.: On the edge geodetic number of a graph. Int. J. Comput. Math. 80(7),
853–861 (2003)

4. Berman, P., Karpinski, M.: On some tighter inapproximability results (extended
abstract). In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999.
LNCS, vol. 1644, pp. 200–209. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48523-6 17

5. Bresar, B., Kovse, M., Tepeh, A.: Geodetic sets in graphs. In: Dehmer, M.
(ed.) Structural Analysis of Complex Networks, pp. 197–218. Birkhäuser/Springer,
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Approximate Distance Oracles
with Improved Stretch for Sparse Graphs

Liam Roditty and Roei Tov(B)

Bar Ilan University, Ramat Gan, Israel

Abstract. Thorup and Zwick [19] introduced the notion of approxi-
mate distance oracles, a data structure that produces for an n-vertices,
m-edges weighted undirected graph G = (V,E), distance estimations in
constant query time. They presented a distance oracle of size O(kn1+1/k)
that given a pair of vertices u, v ∈ V at distance d(u, v) produces in O(k)
time an estimation that is bounded by (2k − 1)d(u, v), i.e., a (2k − 1)-
multiplicative approximation (stretch). Thorup and Zwick [19] presented
also a lower bound based on the girth conjecture of Erdős.

For sparse unweighted graphs (i.e., m = Õ(n)) the lower bound does
not apply. Pǎtraşcu and Roditty [10] used the sparsity of the graph and
obtained a distance oracle that uses Õ(n5/3) space, has O(1) query time
and a stretch of 2. Pǎtraşcu et al. [11] presented infinity many distance
oracles with fractional stretch factors that for graphs with m = Õ(n)
converge exactly to the integral stretch factors and the corresponding
space bound of Thorup and Zwick.

It is not known, however, whether graph sparsity can help to get
a stretch which is better than (2k − 1) using only Õ(kn1+1/k) space.
In this paper we answer this open question and prove a separation
between sparse and dense graphs by showing that using sparsity it is
possible to obtain better stretch/space tradeoffs than those of Thorup
and Zwick. We show that for every k ≥ 2 there is a distance oracle of
size O(knm1/k logn) that produces in O(k) time an estimation d∗(u, v)
that satisfies d(u, v) ≤ d∗(u, v) ≤ (2k − 1)d(u, v) − 4, for k > 2, and
d(u, v) ≤ d∗(u, v) ≤ 3d(u, v) − 2, for k = 2.

Another contribution of this paper is a refined stretch analysis of
Thorup and Zwick distance oracles that allows us to obtain a better
understanding of this important data structure. We present simple con-
ditions for every w ∈ V that characterizes the exact scenarios in which
every query that involves w produces an estimation of stretch strictly
better than 2k − 1, even in the case of dense graphs. We complement
this contribution with an experiment on real world graphs. The main
finding in the experiment is that different real world graphs are likely
to satisfy the required conditions and hence the stretch of Thorup and
Zwick distance oracles is much better than its worst case bound in these
real world graphs.

Keywords: Graph algorithms · Approximate shortest paths ·
Approximate distance oracles
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1 Introduction

An approximate distance oracle is a data structure that is required to produce
distance estimations in constant query time. Thorup and Zwick [19] showed that
given an undirected weighted graph G = (V,E) with m edges and n vertices and
an integer k ≥ 1, there is a data structure of size O(kn1+1/k) that for every
pair of vertices u, v ∈ V returns in O(k) time an estimation d̂(u, v) which is
a (2k − 1) multiplicative approximation (stretch) of d(u, v), that is, d(u, v) ≤
d̂(u, v) ≤ (2k−1)d(u, v), where d(u, v) is the length of the shortest path between
u and v in G.

Thorup and Zwick [19] presented also a lower bound based on the girth
conjecture of Erdős1. More specifically, they proved that, for every k ≥ 1, if
there is a graph of Ω(n1+1/k) edges whose girth is 2k + 2 then any distance
oracle with stretch t ≤ 2k, requires Ω(n1+1/k) bits on some input. A careful
examination of their proof reveals that it relies on the stretch of the estimation
for vertex pairs u, v ∈ V for which (u, v) ∈ E, that is, d(u, v) = 1. Therefore, it
still might be possible to obtain a data structure with constant query time and a
stretch better than 2k−1 using O(kn1+1/k) space, for vertex pairs u, v ∈ V that
satisfy d(u, v) ≥ 2, or for graphs with m = o(n1+1/k), that is, sparse graphs2.

We present a new distance oracle for unweighted undirected graphs, that uses
O(knm1/k log n) space and provides in O(k) query time an estimation d∗(u, v)
that satisfies d(u, v) ≤ d∗(u, v) ≤ (2k − 1)d(u, v) − 4, for every k > 2, and
d(u, v) ≤ d∗(u, v) ≤ 3d(u, v) − 2, for k = 2. This implies that for sparse graphs
with m = Õ(n)3 our new distance oracle uses the same space as Thorup and
Zwick’s distance oracle (up to poly-logarithmic factors) and produces in O(k)
time an estimation of strictly better stretch than the stretch of Thorup and
Zwick’s distance oracle. Sparse graphs with m = Õ(n) edges are very interesting
both from the practical perspective and the theoretical perspective.

From the practical perspective, it is important to note that many real world
graphs are sparse and m = Õ(n). This is usually the case in social networks and
in many other types on networks4.

From the theoretical perspective, Pǎtraşcu, Roditty and Thorup [11] proved
a conditional lower bound for the case of sparse graphs with m = Õ(n), based on
a set intersection hardness conjecture. They showed that for any � > 1, a distance
oracle that for every pair of vertices at distance �+1, provides in constant query
time an estimation strictly smaller than 3(�+1)−2 requires Ω̃(n1+ 1

2−1/� ) space.
Notice that for k = 2 our distance oracle has an estimation that is at most
3d(u, v) − 2, for every u, v ∈ V and uses Õ(n1.5) space for sparse graphs with

1 The girth is the length of the shortest cycle in an unweighted graph.
2 A trivial way to get a smaller space for sparse graphs is to simply save the graph and

answer any query in O(m) time by doing BFS, this however, violates the additional
requirement for distance oracles of a constant or almost a constant query time.

3 Throughout the paper we will use the Õ(·) notation to hide small poly-logarithmic
factors.

4 See for more examples https://snap.stanford.edu/index.html.

https://snap.stanford.edu/index.html
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m = Õ(n). It follows from [11] that bounding the estimation by a value strictly
smaller than 3d(u, v) − 2 requires Ω̃(n1.5+ε) space, where ε > 0.

Pǎtraşcu et al. [11] showed also that there are infinitely many distance oracles
for sparse graphs with fractional stretch factors. Their distance oracles converge
exactly to the integral stretch factors and the corresponding space bound of
Thorup-Zwick distance oracles. Our new construction implies that for space
Õ(km1+1/k) a stretch that is strictly better than the corresponding integral
stretch of 2k − 1 is possible.

The implications of our new distance oracles are not restricted only for sparse
graphs with m = Õ(n). Consider graphs with m ∈ [n, o(n1+1/k)] edges. A natural
question is whether a distance oracle for such graphs requires Ω(n1+1/k) for
stretch 2k − 1. The girth based approach, as in the lower bound of Thorup and
Zwick [19], is not possible here since we can store the entire graph. This implies
that for vertex pairs u, v ∈ V with d(u, v) = 1, we can store the exact distance.
Our new distance oracle rules out also the option to use pairs of vertices u, v ∈ V
for which d(u, v) = 2, as a possible source of hardness for a possible lower bound.
If we construct our new distance oracle with parameter k + 1 then the space
required is in the range [n, o(n1+1/k)] and for every pair of vertices u, v ∈ V , for
which d(u, v) = 2, the estimation is at most (2(k + 1) − 1)2 − 4 = (2k − 1)2, and
therefore, when d(u, v) = 2 the stretch is at most 2k − 1 .

The distance oracles of Thorup and Zwick, beside being an important data
structure on their own, are also extremely useful as a tool in many applications.
They were a crucial building block in several important dynamic graph algo-
rithms along the last decade (e.g., [2,7,8,16]). They also play a pivotal role in
designing distance labeling and compact routing schemes as was already shown
by Thorup and Zwick [18] and in subsequent works (e.g., [1,3,13,14]). Distance
oracles were also implemented and tested (e.g., [6,12]) and found useful on real
world graphs. Therefore, any further understanding that we gain on the basic
properties of distance oracles is of great interest.

We obtain our new distance oracle by a careful combination of a variant of
Thorup and Zwick distance oracles with a new idea that interplays between a
hitting set of vertices and a hitting set of edges to overcome a certain hard case
that is relatively common in analysis of algorithms of shortest paths. Therefore,
our new approach is of independent interest, as it might be found useful in other
closely related problems.

Motivated by our theoretical finding, another contribution that we make in
this paper is a refined analysis of the stretch of Thorup and Zwick distance
oracles. At the base of the distance oracles there is an hierarchy of vertex sets
A0, A1, . . . , Ak, where A0 = V , Ak = ∅ and Ai is formed by picking each vertex
of Ai−1, independently, with some probability p. For every u ∈ V the distance
d(u,Ai) between u and Ai is computed and saved. We introduce a simple param-
eter, called the average distance, which is roughly defined5 for every i ∈ [1, k−1]
as the distance between u and Ai divided by i, that is d(u,Ai)/i. Our refined
analysis characterizes several cases in which the stretch is strictly better than

5 In the formal definition we take the ceiling of the average distance.
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2k − 1 using only the average distance, which can be easily computed using the
current information saved with the distance oracle. Roughly speaking, if there
exist i, j ∈ [1, k−1] such that i �= j and d(u,Ai)/i �= d(u,Aj)/j, then the stretch
is strictly better than 2k − 1 for every distance query that includes the vertex u.

Based on similar ideas we also show that if D(u) = {Δ1, . . . ,Δ�} is the set
of all possible distances of u ∈ V with other vertices in the graph then there is
at most one value Δ ∈ D(u) for which the stretch of the distance estimation is
exactly 2k − 1, that is, only for vertices v that satisfy d(u, v) = Δ it might be
that d̂(u, v) = (2k − 1)d(u, v).

We complement the refined stretch analysis by conducting a small experiment
on real world graphs. In the experiment we check how frequent are the cases that
allow for a better stretch in these real world graphs. Interestingly, these cases
are quite frequent and thus in many cases the actual stretch is much better than
the worst case stretch bound.

1.1 Related Work

Since their introduction by Thorup and Zwick [19] distance oracles were studied
by many researchers. Chechik [4,5], presented a (2k − 1)-stretch distance oracle
with O(1) query time and O(n1+1/k) space. (See also [9,20].)

Pǎtraşcu and Roditty [10] showed a distance oracle for weighted undirected
graphs with stretch 2 and size O(n4/3m1/3). For m = o(n2), this distance oracle
has o(n2) size and stretch 2. Pǎtraşcu, Roditty and Thorup [11] showed for
every integer k ≥ 0 and � > 0 distance oracles, that use Õ(m1+1/(k±1/�)) space
and answer distance query in O(k + �) time with stretch 2k + 1 ± 2/�. Sommer,
Verbin, and Yu [17] provided a lower bound in the cell probe model. They showed
that there are sparse graphs for which constant stretch and query time requires
m1+Ω(1) space6.

Due to lack of space, we refer the reader to the full version of this paper [15]
for the rest of the related work section.

1.2 Paper Organization

In the next section we present some necessary preliminaries, the distance oracles
of Thorup-Zwick and a standard variant of it, that is required in order to obtain
our new distance oracle. In Sect. 3 we present our new distance oracles. In Sect. 4
we present our refined stretch analysis for Thorup-Zwick distance oracles. In
Sect. 5 we present some concluding remarks and open problems. Due to lack
of space, we omit here some of the proofs of Sect. 2 and the technical part of
Sect. 4. We refer the reader to [15] for the full version of this paper. Also, in [15]
we present the experiment that we have conducted on real world graphs. In the
experiment we examine how frequent are the cases that are characterized in our
refined stretch analysis from Sect. 4.
6 Using current techniques of cell probe lower bounds we cannot hope for more specific

tradeoff since it is not possible to separate asymptotically the query times of data
structures of size m1.99 and m1.01 for input size m.
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2 Preliminaries and Previous Work

Let G = (V,E) be an n-vertices m-edges undirected unweighted graph. For every
u, v ∈ V , let d(u, v) be the length of the shortest path between u and v. Let N(u)
be the vertices that are neighbours of u and let deg(u) = |N(u)| be the degree
of u.

For every set A ⊆ V , let pA(u) be the closest vertex to u from A, that
is pA(u) := arg minv∈A(d(u, v)), where ties are broken in favor of the vertex
with a smaller identifier, and let d(u,A) = d(u, pA(u)). Notice that it follows
from this definition that if v is on a shortest path between u and pA(u), then
pA(u) = pA(v). For a set E′ ⊆ E let V (E′) = {u | (u, v) ∈ E′}. Let N(u, s,A)
be the s closest vertices to u from the set A.

Let B(u, r) = {v ∈ V | d(u, v) < r} and let B(u, r,X) = {v ∈ X | d(u, v) <
r}, where X ⊆ V . Let L(u, r) = {v ∈ V | d(u, v) = r}.

The following Lemma is a standard tool in the area of approximate shortest
paths and we provide it here for completeness.

Lemma 1. (e.g. Lemma 3.6 in [19]). Let U be a set of size u. Let
Q1, . . . , Qn ⊆ U . If |Qi| ≥ s, for every 1 ≤ i ≤ n then a hitting set A of
size Õ(u/s) such that Qi ∩A �= ∅ can be found with a deterministic algorithm in
O(u +

∑n
i=1 |Qi|) time.

2.1 The Distance Oracle of Thorup and Zwick

In their seminal paper Thorup and Zwick [19] showed that there is a data struc-
ture of size O(kn1+1/k) that returns a (2k − 1) multiplicative approximation
(stretch) of the distances of an undirected weighted graph in O(k) time. Let
k ≥ 1 and let A0, A1, . . . , Ak be sets of vertices, such that A0 = V , Ak = ∅ and
Ai is a subset of Ai−1 of size at most Õ(|Ai−1|/s) that hits for every v ∈ V the set
N(v, s, Ai−1), where s is a parameter. The set Ai is computed using Lemma 1.
For every u ∈ V , let pi(u) = pAi

(u) and �i(u) = d(u,Ai) = d(u, pi(u)). We set
p0(u) to u, pk(u) to be null and �k(u) to ∞.

For every 0 ≤ i ≤ k − 1, let Bi(u) = B(u, �i+1(u), Ai). The bunch of u ∈ V
is B(u) = ∪k−1

i=0 Bi(u).
The information saved in the distance oracle for every u ∈ V is B(u) =

∪k−1
i=0 Bi(u), the value of d(u, v), for every v ∈ B(u), in a 2-level hash table and

the vertex pi(u), where 0 ≤ i ≤ k.
Thorup and Zwick proved the following:

Lemma 2. [Theorem 3.7 [19]]. For every u ∈ V and i ∈ [0, k − 2], the size of
Bi(u) is at most s and the size of Bk−1(u) is Õ(n/sk−1).

Setting s = n1/kc log n yields the desired size bound O(kn1+1/k). The query
algorithm dist(u, v) of the distance oracle is presented in [15]. We look for
the smallest even i such that pi(u) ∈ Bi(v) or pi+1(v) ∈ Bi+1(u). Since both
pk−1(u) ∈ Bk−1(v) and pk−1(v) ∈ Bk−1(u) the algorithm always stops. Let
f(u, v) be the largest value that i reached to during the run of dist(u, v). In other
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words, f(u, v) is the largest value such that for every even j < f(u, v), it holds
that pj(u) /∈ Bj(v) and for every odd j < f(u, v) it holds that pj(v) /∈ Bj(u).
Since dist(u, v) always stops it follows that f(u, v) ≤ k − 1.

To bound the stretch we first prove the following Lemma that is implicit
in [19]. We prove it explicitly in [15] since we use it in our proofs

Lemma 3. For every even i ≤ f(u, v) it holds that �i(u) ≤ i · d(u, v) and for
every odd i ≤ f(u, v) it holds that �i(v) ≤ i · d(u, v).

We proceed with the following useful observation on Thorup-Zwick distance
oracle that we will use later on. Consider the set Ai−j , where i and j are even
and 0 ≤ j < i ≤ f(u, v). From Lemma 3 it follows that �i−j(u) ≤ (i − j) · d(u, v)
and �i(u) ≤ i · d(u, v). But what if we have a bound for �i−j(u) that is better
than (i−j) ·d(u, v), can we use it to obtain a better bound for �i(u)? In the next
Lemma we present a generalization of Lemma 3 and show that this is indeed
possible. The proof is given in [15].

Lemma 4. For every even i ≤ f(u, v): (i) �i(u) ≤ �i−j(u)+ j ·d(u, v), for every
even j ≤ i, and (ii) �i(u) ≤ �i−j(v) + j · d(u, v), for every odd j ≤ i.

For every odd i ≤ f(u, v): (i) �i(v) ≤ �i−j(u) + j · d(u, v), for every even
j ≤ i, and (ii) �i(v) ≤ �i−j(v) + j · d(u, v), for every odd j ≤ i.

We finish the description of Thorup-Zwick distance oracle with a bound on
dist(u, v).

Lemma 5. dist(u, v) outputs an estimation that is bounded by 2�f(u,v)(u) +
d(u, v) ≤ (2f(u, v)+1)d(u, v) ≤ (2k−1)d(u, v), for even f(u, v) and by 2�f(u,v)(v)
+d(u, v) ≤ (2f(u, v) + 1)d(u, v) ≤ (2k − 1)d(u, v), for odd f(u, v).

Proof. Let i = f(u, v) be even. The algorithm returns d(u, pi(u)) + d(v, pi(u)).
Using the triangle inequality we get d(u, pi(u)) + d(v, pi(u)) ≤ 2�i(u) + d(u, v).
From Lemma 3 we have �i(u) ≤ i ·d(u, v) and since i ≤ k−1 we get d(u, pi(u))+
d(v, pi(u)) ≤ (2i + 1)d(u, v) ≤ (2k − 1)d(u, v). For the case that f(u, v) is odd
the proof is the same with u and v switching their roles.

2.2 A Standard Variant of the Distance Oracle of Thorup and
Zwick

In order to obtain the new distance oracle we are using a slightly different but
relatively standard variant of the distance oracle of Thorup and Zwick (e.g. [5]),
which we present below.

In this variant we also save in the distance oracle the exact distance for every
pair 〈u, v〉 ∈ Ak/2 × Ak/2−1, when k is even, and every pair 〈u, v〉 ∈ A(k−1)/2 ×
A(k−1)/2 when k is odd. In both cases the space remains O(kn1+1/k log n), since
|Ak/2| · |Ak/2−1| = O(kn1+1/k log n), when k is even and |A(k−1)/2| · |A(k−1)/2| =
O(kn1+1/k log n), when k is odd.
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The query will work as follows. Let u, v ∈ V . Let f = min(f(u, v), f(v, u)). If
f ≤ k/2� then we output min(dist(u, v), dist(v, u)). If f > k/2� then we output
min

(
�k/2(u)+d(pk/2(u), pk/2−1(v))+�k/2−1(v), �k/2(v)+d(pk/2(v), pk/2−1(u))+

�k/2−1(u)
)
, for an even k, and �(k−1)/2(u) + d(p(k−1)/2(u),

p(k−1)/2(v)) + �(k−1)/2(v), for an odd k.
In the next Lemma we establish an upper bound on the query output when

f > k/2�.
Lemma 6. When f > k/2� the query algorithm described above returns
an estimation that is at most min(2�k/2(u) + 2�k/2−1(v) + d(u, v), 2�k/2(v) +
2�k/2−1(u) + d(u, v)), when k is even and at most 2�(k−1)/2(u) + 2�(k−1)/2(v) +
d(u, v), when k is odd.

Proof. Let a = �k/2(u) + d(pk/2(u), pk/2−1(v)) + �k/2−1(v). Let b = �k/2(v) +
d(pk/2(v), pk/2−1(u)) + �k/2−1(u). Let A = 2�k/2(u) + 2�k/2−1(v) + d(u, v) and
let B = 2�k/2(v)+2�k/2−1(u)+ d(u, v). For even k, the query returns min

(
a, b

)
.

We show that this value is at most min(A,B).
Using the triangle inequality we get that d(pk/2(u), pk/2−1(v)) ≤ �k/2(u) +

d(u, v)+�k/2−1(v). Therefore, a ≤ A. Similarly, we get that d(pk/2(v), pk/2−1(u))
≤ �k/2(v) + d(u, v) + �k/2−1(u). Therefore, b ≤ B. Adding it all together we get
that min(a, b) ≤ min(A,B), as required.

When k is odd, the query returns �(k−1)/2(u) + d(p(k−1)/2(u), p(k−1)/2(v)) +
�(k−1)/2(v) ≤ �(k−1)/2(u) + (�(k−1)/2(u) + d(u, v) + �(k−1)/2(v)) + �(k−1)/2(v) =
2�(k−1)/2(u) + 2�(k−1)/2(v) + d(u, v).

It is relatively straightforward to prove that the estimation produced by
the updated query algorithm has 2k − 1 stretch by combining Lemma 6 with
Lemma 3.

Throughout the paper we will refer to this variant of Thorup-Zwick distance
oracle as the standard variant of Thorup-Zwick distance oracle.

3 Distance Oracles with Improved Stretch

In this section we present our new distance oracle construction. We combine
between two ideas. The first idea is to interplay between a hitting set of vertices
and a hitting set of edges. This allows us to obtain, in some cases, a better
bound on �1(u), for every u ∈ V . Consider a pair of vertices u, v ∈ V such
that d(u, v) = Δ. In Thorup and Zwick distance oracles if v /∈ B0(u) then it
follows that �1(u) ≤ Δ and this bound is used, among other bounds, to bound
the estimation. In our distance oracles we will have to use �1(u) to bound the
estimation only in the case that �1(u) ≤ Δ − 1. Our second idea is that in
order to amplify the affect of this better bound we can use the standard variant
of Thorup and Zwick distance oracles, presented in Sect. 2.2, since it allows to
combine in the bound of the estimation both �1(u) and �1(v) in the case that
both �1(u) ≤ Δ − 1 and �1(v) ≤ Δ − 1.

We now prove the following Theorem:
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Theorem 1. Let G = (V,E) be an n-vertices m-edges undirected unweighted
graph. For every k > 2 there is a distance oracle that uses O(knm1/k log n)
space and for every pair of vertices u, v ∈ V returns in O(k) time an estimation
d∗(u, v) such that:

d(u, v) ≤ d∗(u, v) ≤ (2k − 1)d(u, v) − 4.

For k = 2, the estimation d∗(u, v) satisfies: d(u, v) ≤ d∗(u, v) ≤ 3d(u, v) − 2.

Proof. Our new distance oracle is constructed as follows. Let s = m1/kc log n.
We start with the set A1 that will be the union of two sets, Av

1 and Ae
1. The set

Av
1 ⊆ V is a hitting set of size Õ(m/s) of the sets N(v, s, V ), for every v ∈ V ,

computed using Lemma 1.
The set Ae

1 is computed as follows. We first compute for every u ∈ V the
set L(u, d(u,Av

1)). Let V H = {u | |L(u, d(u,Av
1))| ≥ s}. For every u ∈ V H let

EH(u) = {(x, y) ∈ E | x ∈ L(u, d(u,Av
1)−1)∧y ∈ L(u, d(u,Av

1))}, that is, all the
edges with one endpoint at distance d(u,Av

1) − 1 from u and another endpoint
at distance d(u,Av

1) from u. Consider now the sets EH(u), for every u ∈ V H .
Each such set contains at least s edges and there are at most n such sets. Thus,
we can apply Lemma 1 to compute a hitting set EH ⊆ E of size Õ(m/s). Let
Ae

1 = V (EH). We set A1 to Av
1 ∪ Ae

1.

We now proceed with the sets A2, . . . , Ak−1 as in the distance oracle of Tho-
rup and Zwick, that is, Ai is a subset of Ai of size at most Õ(|Ai−1|/s) that hits
for every v ∈ V the set N(v, s, Ai−1). The set Ak is empty.

We use the sets V = A0, A1, . . . , Ak to construct the standard variant of the
distance oracle. The special way we used to compute the set A1 allows us to
prove the following crucial Lemma:

Lemma 7.
∑

u∈V |L(u, �1(u))| = Õ(nm1/k).

Proof. Assume, towards a contradiction, that there exists u ∈ V such that
|L(u, �1(u))| > s. Since A1 = Av

1 ∪ Ae
1 we have �1(u) = min(d(u,Av

1), d(u,Ae
1)).

It cannot be that �1(u) = d(u,Av
1) because this implies that |L(u, d(u,Av

1))| > s
and u ∈ V H . In such a case, an edge (x, y) from EH(u) is in EH and
x ∈ Ae

1 is added to A1. Since d(u,Ae
1) ≤ d(u, x) = d(u,Av

1) − 1 and �1(u) =
min(d(u,Av

1), d(u,Ae
1)) we get that it must be that �1(u) < d(u,Av

1).
So we have |L(u, �1(u))| > s and �1(u) = d(u,Ae

1) < d(u,Av
1). The set Av

1

is a hitting set for the sets N(v, s, V ), for every v ∈ V . From Lemma 2 it
follows that |B(u, d(u,Av

1))| ≤ s. Since �1(u) = d(u,Ae
1) < d(u,Av

1) we get that
L(u, �1(u)) ⊆ B(u, d(u,Av

1)), a contradiction to the fact that |L(u, �1(u))| > s.
Thus, we get that

∑
u∈V |L(u, �1(u))| = s · n = Õ(nm1/k), as required.

It follows from the above Lemma that we can save also the set L(u, �1(u)),
for every u ∈ V , in a 2-level hash table, without increasing the total size of the
distance oracle.
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Given a pair u, v ∈ V the query works as follows. First, we check if (u, v) ∈ E
and if so return 1 and stop. Otherwise, we check if either v ∈ L(u, �1(u)) or
u ∈ L(v, �1(v)) and if so return the exact distance and stop. If this is not the
case we use the query of the standard variant of Thorup-Zwick distance oracle
on u, v and on v, u and report the minimum of these two estimations.

Next, we analyze the stretch of the distance oracle. Let u, v ∈ V and let
Δ = d(u, v). If (u, v) ∈ E or u ∈ B0(v) or v ∈ B0(u) then the exact distance is
returned. Therefore, we can assume that (u, v) /∈ E, u /∈ B0(v) and v /∈ B0(u).
Let d(u′, v) = d(u, v′) = Δ − 1, where u′ ∈ N(u) and v′ ∈ N(v). If u′ ∈ B0(v)
(respectively, v′ ∈ B0(u)) then u ∈ L(v, �1(v)) (respectively, v ∈ L(u, �1(u))) and
the exact distance is returned. Therefore, we can assume also that u′ /∈ B0(v)
and v′ /∈ B0(u). This implies that �1(v) ≤ Δ − 1 and �1(u) ≤ Δ − 1.

For k = 2 the standard variant of Thorup-Zwick distance oracle degenerates
to the regular one since the additional distances stored are for pairs from A1×A0.
The query returns �1(u) + d(v, p1(u)) which is bounded by 2�1(u) + Δ. Using
the bound �1(u) ≤ Δ − 1 we get that the estimation is bounded by 3Δ − 2, as
required.

Consider now the case that k ≥ 3. As we have checked whether (u, v) ∈ E, we
can assume that Δ ≥ 2. Let f = min

(
f(u, v), f(v, u)

)
. In the case that f ≤ k/2�

the query returns min(dist(u, v), dist(v, u)). From Lemma 5 it follows that this
estimation is bounded by (2(k/2)+1)d(u, v) = (k+1)Δ ≤ (2k−1)Δ−4 for even
k ≥ 4 and Δ ≥ 2, and bounded by (2((k−1)/2)+1)d(u, v) = kΔ ≤ (2k−1)Δ−4
for odd k ≥ 3 and Δ ≥ 2.

For f > k/2� the query returns min
(
�k/2(u) + d(pk/2(u), pk/2−1(v)) +

�k/2−1(v), �k/2(v) + d(pk/2(v), pk/2−1(u)) + �k/2−1(u)
)
, for an even k, and

�(k−1)/2(u) + d(p(k−1)/2(u), p(k−1)/2(v)) + �(k−1)/2(v), for an odd k.
Consider the case of an even k. Let i = k/2 and assume that i is even. It

follows from Lemma 6 that 2�i(u) + 2�i−1(v) + d(u, v) is an upper bound for
the estimation. From Lemma 4 we have �i(u) ≤ �1(v) + (i − 1)Δ and �i−1(v) ≤
�1(u) + (i − 2)Δ. Thus, we get:

2�i(u) + 2�i−1(v) + d(u, v) ≤ 2(�1(v) + (i − 1)Δ) + 2((�1(u) + (i − 2)Δ)) + Δ

≤ 2�1(u) + 2�1(v) + 4iΔ − 5Δ

≤ 4(Δ − 1) + 4(k/2)Δ − 5Δ

≤ (2k − 1)Δ − 4

Assume now that i is odd. It follows from Lemma 6 that 2�i(v) + 2�i−1(u) +
d(u, v) is an upper bound for the estimation. From Lemma 4 we have �i(v) ≤
�1(v) + (i − 1)Δ and �i−1(u) ≤ �1(v) + (i − 2)Δ. Thus, we get:

2�i(v) + 2�i−1(u) + d(u, v) ≤ 4�1(v) + 4iΔ − 5Δ

≤ 4(Δ − 1) + 4(k/2)Δ − 5Δ

≤ (2k − 1)Δ − 4

Consider now the case that k is odd. Let i = (k − 1)/2. It follows from
Lemma 6 that 2�i(u) + 2�i(v) + d(u, v) is an upper bound for the estimation.
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From Lemma 4 we have �i(v) ≤ �1(u) + (i − 1)Δ and �i(u) ≤ �1(v) + (i − 1)Δ if
i is even or odd. Thus, we get:

2�i(u) + 2�i(v) + d(u, v) ≤ 2(�1(v) + (i − 1)Δ) + 2(�1(u) + (i − 1)Δ) + Δ

≤ 4(Δ − 1 + (i − 1)Δ) + Δ

≤ 4(iΔ − 1) + Δ

≤ (2k − 1)Δ − 4

Remark. The hierarchal nature of the query algorithm that is based on the
bunches induced by the sets V = A0, A1, . . . , Ak makes it tempting to try to
apply the interplay between a hitting set of vertices and a hitting set of edges
not only to A1 but also to the sets A2, . . . , Ak. This however is not possible
from the following reason. To obtain the improved bound on �1(u) we need that
pA1(u) ∈ Ae

1. Thus, in the next step of the query we need to check if pA1(u) ∈ Ae
1

is in B2(v). To get a better bound now for �2(v) we need to be able to either
save the vertices of A1 that are at distance �2(v) from v, in case that there are
at most s such vertices or to improve the bound on �2(v) by a tighter hitting set
of size Õ(m/s2), if there are strictly more than s such vertices. However, in the
later case, the fact that there are more than s vertices of A1, which all might be
vertices of Ae

1, at distance �2(v) does not imply that the number of edges with
one endpoint at distance �2(v)−1 from v and another endpoint at distance �2(v)
from v is more than s2. It might be that there are many edges (strictly more
than s2) with both endpoints at distance �2(v) from v. These edges can cause to
strictly more than s vertices of Ae

1 to be at distance �2(v) from v. On the other
hand, hitting these set of edges might result with an edge whose both endpoints
are at distance �2(v) and will not improve �2(v).

4 A Refined Stretch Analysis of Thorup-Zwick Distance
Oracle

In this section we present several different conditions that can be easily checked
and once fulfilled by the distance oracle of Thorup-Zwick guarantee that the
estimation has a stretch which is strictly better than 2k − 1.

The main parameter that we use is the average distance between a vertex
and the sets A1, . . . , Ak−1. We define the average distance between u ∈ V and
Ai to be �̄i(u) = ��i(u)/i�, where i ∈ [1, k − 1].

Let d̂(u, v) = min(dist(u, v), dist(v, u)). We prove the following properties:

Property 1. Let u ∈ V . If �̄i(u) �= �̄j(u) for some i, j ∈ [1, k − 1] then for every
v ∈ V the stretch of d̂(u, v) is strictly better than (2k − 1).

Property 2. Let u, v ∈ V . If �̄i(u) �= �̄i(v) for some i ∈ [1, k − 1] then the stretch
of d̂(u, v) is strictly better than (2k − 1).
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Property 3. Let u, v ∈ V . If �̄i(u) = �̄i(v) = q, for every i ∈ [1, k − 1] and
d(u, v) �= q then the stretch of d̂(u, v) is strictly better than (2k − 1).

Before we turn into the technical part of this section we discuss these proper-
ties. First notice to the nice relation between these properties. If the conditions
of Property 1 do not hold then the conditions of Property 2 can still hold, and
if the conditions of both Properties 1 and 2 do not hold then the conditions of
Property 3 can still hold.

From the implementation perspective we can verify whether Property 1 and
Property 2 hold using a simple computation that does not require the actual
computation of the distance oracle itself. Moreover, if Property 1 does not hold
then we have �̄i(u) = �1(u), for every i ∈ [1, k − 1], since �̄1(u) = �1(u). Thus,
�1(u) − 1 ≤ �i(u)/i ≤ �1(u) and we get that �i(u) ∈ [i�1(u) − i, i�1(u)]. In such
a scenario the shortest paths tree of u has a relatively well defined structure in
which |B(u, �1(u))| ≤ n1/k and for every i ∈ [2, k−1] it holds that |B(u, i�1(u)−
i)| ≤ ni/k and ni/k ≤ |B(u, i�1(u))|. It is a plausible conjecture that such a
well defined structure is not common. For the sake of completeness we do a
small experiment on several different datasets of real world graphs to test how
frequent these properties are. We elaborate more on this experiment in [15].

Due to lack of space, we omit the technical part of this section, which can be
found in [15].

5 Concluding Remarks

In this paper we proved that for every k ≥ 2 there is a distance oracle of size
O(knm1/k log n) that produces in O(k) time an estimation d∗(u, v) that satisfies
d(u, v) ≤ d∗(u, v) ≤ (2k − 1)d(u, v) − 4, for k > 2, and d(u, v) ≤ d∗(u, v) ≤
3d(u, v) − 2, for k = 2.

An interesting open problem is whether it is possible to obtain a distance
oracle with the same size and query time whose estimation d∗(u, v) satisfies
d(u, v) ≤ d∗(u, v) ≤ (2k − 1)d(u, v) − Ω(k), for large enough k.
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Abstract. A Roman {3}-dominating function (Double Italian dominat-
ing function) of a graph G = (V, E) is a function f : V → {0, 1, 2, 3}
having the property that for every vertex v ∈ V , if f(v) = 0, then∑

u∈N(v) f(u) ≥ 3 and if f(v) = 1, then
∑

u∈N(v) f(u) ≥ 2. The

weight, f(V ), of a Roman {3}-dominating function f is Σu∈V f(u).
The minimum weight of a Roman {3}-dominating function in a graph
G is known as Roman {3}-domination number of G and is denoted
by γ{R3}(G). Minimum Roman {3}-Domination problem is to find a
Roman {3}-dominating function of minimum weight andDecide Roman
{3}-Domination is the decision version of Minimum Roman {3}-
Domination problem. Decide Roman {3}-Domination is known to be
NP-complete for bipartite graphs. In this paper, we show that Decide
Roman {3}-Domination is NP-complete for chordal graphs. We show
that Minimum Roman {3}-Domination problem is polynomial-time
solvable for threshold graphs which is a subclass of chordal graphs. We
propose an O(lnΔ(G)) approximation algorithm for Minimum Roman
{3}-Domination problem for a graph G with maximum degree Δ(G).
Finally, we show that Minimum Roman {3}-Domination problem is
APX-complete for bounded degree graphs.

Keywords: Roman {3}-Domination · NP-complete · Approximation
algorithm

1 Introduction

Let G = (V,E) be a finite, simple and undirected graph with vertex set V
and edge set E. A set D ⊆ V is called a dominating set of G if every vertex
v ∈ V \ D is adjacent to at least one vertex in D. The domination number of
G is the minimum cardinality among all dominating sets of G and it is denoted
by γ(G). Minimum Domination problem is to find a dominating set of mini-
mum cardinality and Decide Domination is the decision version of Minimum
Domination problem. Domination in graphs has been studied extensively and
has several applications (see [5,6]).

A Roman dominating function (RDF) of a graph G is a function f : V →
{0, 1, 2} such that any vertex u with f(u) = 0 has at least one neighbor v
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with f(v) = 2. The weight of f is f(V ) = Σu∈V f(u). The minimum weight
of a RDF in a graph G is known as Roman domination number of G and is
denoted by γR(G). Minimum Roman Domination problem is to find a Roman
dominating function of minimum weight and Decide Roman Domination is
the decision version of Minimum Roman Domination problem. The concept
of Roman domination was defined by Ian Stewart in an article entitled “Defend
the Roman Empire!” [10].

A Roman {3}-dominating function (R3DF) of a graph G = (V,E) is a func-
tion f : V → {0, 1, 2, 3} having the property that for every vertex v ∈ V , if
f(v) ∈ {0, 1}, then

∑
u∈N [v] f(u) ≥ 3. Formally, a Roman {3}-dominating func-

tion on a graph G is a function f : V → {0, 1, 2, 3} such that the following
conditions are met:

(i) if f(v) = 0, then one of the following conditions must hold
(a) there exist at least three vertices in V1 ∩ N(v),
(b) there exist one vertex in V1 ∩ N(v) and one in V2 ∩ N(v),
(c) there exist two vertices in V2 ∩ N(v),
(d) there exist one vertex in V3 ∩ N(v)

(ii) if f(v) = 1, then one of the following conditions must hold
(a) there exist at least two vertices in V1 ∩ N(v),
(b) there exist one vertex in (V2 ∪ V3) ∩ N(v)

The weight of f is f(V ) = Σu∈V f(u). The minimum weight of a R3DF in
a graph G is known as Roman {3}-domination number of G and is denoted by
γR3(G).

For a graph G = (V,E), a Roman {3}-dominating function f : V →
{0, 1, 2, 3} can be denoted by (V0, V1, V2, V3), where Vi = {v ∈ V | f(v) = i}
for i ∈ {0, 1, 2, 3}. Note that there exists a one to one correspondence between
the function f : V → {0, 1, 2, 3} and the ordered partition (V0, V1, V2, V3) of V .
Thus, we will write f = (V0, V1, V2, V3).

Minimum Roman {3}-domination problem and its decision version are
defined as follows:

Minimum Roman {3}-Domination problem
Instance: A graph G = (V,E).
Solution: A minimum Roman {3}-dominating function f of G.

Decide Roman {3}-Domination
Instance: A graph G = (V,E) and a positive integer r.
Question: Deciding whether the Roman {3}-domination number of G is equal
to r?

Mojdeh and Volkmann [9] introduced the concept of Roman {3}-domination.
Authors initiated the algorithmic study of Roman 3-domination and showed its
relationship to domination, Roman domination, Roman {2}-domination (Ital-
ian domination) and double Roman domination. Further, Azvin and Jafari [2]
obtained some bounds on Roman {3}-domination number.
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In this paper, we extend the algorithmic study of Minimum Roman {3}-
Domination problem. The main contributions of the paper are as follows.

• We show that Decide Roman {3}-Domination is NP-complete for chordal
graphs.

• We propose a polynomial-time algorithm for Minimum Roman {3}-
Domination problem for threshold graphs, a subclass of chordal graphs.

• We propose an approximation algorithm with approximation ratio
O(ln(Δ(G))) for Minimum Roman {3}-Domination problem for a graph
G with maximum degree Δ(G).

• We show that Minimum Roman {3}-Domination problem for bounded
degree graphs is APX-complete.

2 Preliminaries

Let G = (V,E) be a finite, simple and undirected graph with no isolated vertex.
The open neighborhood of a vertex v in G is NG(v) = {u ∈ V | uv ∈ E} and
the closed neighborhood is NG[v] = {v} ∪ NG(v). The degree of a vertex v is
|NG(v)| and is denoted by dG(v). If dG(v) = 1, then v is called a pendant vertex
and the neighbor of a pendant vertex is called a support vertex. The minimum
and the maximum degree of G will be denoted by δ(G) and Δ(G), respectively.
For D ⊆ V , G[D] denote the subgraph induced by D. For any C ⊆ V , if G[C]
is a complete subgraph of G, then C is called a clique of G. For any I ⊆ V , if
G[I] has no edge, then I is called an independent set of G. We use the standard
notation [k] = {1, 2, . . . , k}.

A bipartite graph is an undirected graph G = (X,Y,E) whose vertices can
be partitioned into two disjoint sets X and Y such that every edge has one end
vertex in X and the other in Y . A bipartite graph G = (X,Y,E) is complete
bipartite if for every x ∈ X and y ∈ Y , there is an edge xy ∈ E. A complete
bipartite graph with partitions of size |X| = m and |Y | = n, is denoted Km,n.
In particular for m = 1, K1,n is known as star graph. A graph G = (V,E) is
said to be a chordal graph if every cycle of length at least four has a chord, i.e.,
an edge joining two non-consecutive vertices of the cycle.

Observation 1. (see [9]) For any graph G = (V,E), γ(G) + 2 ≤ γR3(G) ≤
3γ(G). These bounds are sharp.

3 NP-completeness Result

Mojdeh and Volkmann [9] have shown that Decide Roman {3}-Domination
is NP-complete for bipartite graphs. In this section, we strengthen this NP-
completeness result by showing that this problem remains NP-complete for
chordal graphs. For this we recall the definition of Exact-3-Cover.
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Exact-3-Cover (X3C)
Instance: A finite set X with |X| = 3q and a collection C of 3-element subsets
of X.
Question: Does C contain an exact cover for X, that is, a sub-collection C ′ ⊆ C
such that every element in X occurs in exactly one member of C ′?

Theorem 2. Decide Roman {3}-Domination is NP-complete for chordal
graphs.

Proof. Given a function f : V → {0, 1, 2, 3} of weight at most r for a graph
G = (V,E), it can be checked in polynomial time whether f is a Roman {3}-
dominating function of G. Hence, Decide Roman {3}-Domination is in NP
for split graphs. To show the hardness, we give a polynomial reduction from
Exact-3-Cover, which is known to be NP-complete (see [7]). Given an arbi-
trary instance (X, C) of X3C, X = {x1, x2, . . . , x3q} and C = {C1, C2, . . . , Ct}.
We construct a chordal graph G = (V,E) from the system (X, C) as follows:

• For each vertex xj ∈ X, we build a graph Hj obtained from a path P4 :
xjyjzjuj by adding a star graph K1,3 centered at uj .

• For each Ci ∈ C, we add a vertex ci and add a star graph K1,3 centered at
di. Further, add edges {dici, cick | i, k ∈ [t], i 	= k}.

• Finally add edges xjci if and only if xj ∈ Ci.

We show an example in Fig. 1. A chordal graph G is obtained from the system
(X, C), where X = {x1, x2, x3, x4, x5, x6} and C = {{x1, x2, x3}, {x2, x4, x5},
{x3, x5, x6}, {x4, x5, x6}}.

Now to complete the proof, it suffices to prove the following claim:

Claim. The system (X, C) has an exact cover if and only if G has a Roman
{3}-dominating function with weight equal to r = 16q + 3t.

Proof. Suppose that C ′ is a solution of (X, C). We define a function f : V →
{0, 1, 2, 3} as follows.

f(v) =

⎧
⎪⎪⎨

⎪⎪⎩

3, if v ∈ {ui | i ∈ [3q]} ∪ {dj | j ∈ [t]}
2, if v ∈ {yi | i ∈ [3q]}
1, if v ∈ {u | u ∈ C ′}
0, otherwise.

We label all pendant vertices by 0. All uj ’s and di’s are labelled by 3. Also,
every yj is labelled by 2 and every xj is labelled by 0. For any i, we label ci

by 1 if Ci ∈ C ′ and label ci by 0 if Ci /∈ C ′. Observe that since C ′ exists, its
cardinality is exactly q, and so the number of ci’s with weight 1 is q. Since C ′

is a solution for X3C, any vertex of X has a neighbor Ci labelled by 1. Every
vertex xj has a neighbor cj labelled by 1 and a neighbor yj labelled by 2. Hence,∑

v∈NG(xj)
f(v) ≥ 3. Every vertex ci has a neighbor di labelled by 3. Hence, f

is a R3DF of G with f(V ) = 3 · 5q + 3t + q = r.
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Fig. 1. An illustration of the construction of G from system (X, C) in the proof of
Theorem 2.

Observe that, Hj has a Roman {3}-domination number less than equal to 6,
i.e. f(V (Hj)) ≤ 6. More precisely, if f(V (Hj)) = 6, then we may assume, without
loss of generality, that f(uj) = 3, f(zj) = 0, f(yj) = 2 and f(xj) = 1. Also, if
f(V (Hj)) = 5, then clearly at least one vertex of Hj (including xj) is not Roman
{3}-dominated. In this case, we may assume that vertices of Hj are assigned as
follows so that only xj is not Roman {3}-dominated: f(uj) = 3, f(yj) = 2 and
f(zj) = f(xj) = 0.

Conversely assume that G has a R3DF f = (V0, V1, V2, V3) of weight r =
16q + 3t. Clearly, each star needs a weight of at least 3, and so we may assume,
without loss of generality, that f(uj) = f(di) = 3 and all its leaves are assigned 0.
Since dici ∈ E(G), it follows that each vertex ci may be assigned the value 0. Next
we show that no xj needs to be assigned a positive value, where f(xj) ∈ {0, 1}(as
mentioned above). Assume f(V ) = r and there exist l number of xj ’s such that
f(xj) 	= 0, i.e. f(xj) = 1 (as discussed above). Then the number of xj ’s with
f(xj) = 0 is 3q − l. In other words, there exist l number of Hj ’s such that
f(V (Hj)) = 6 and 3q − l number of Hj ’s such that f(V (Hj) = 5. Since f is a
R3DF, each xj with f(xj) = 0 should have a neighbor ci with f(ci) = 1(since
f(yj) = 2). Let y be the number of ci’s labelled with 1. Thus, 3y ≥ 3q − l. Hence
f(V ) = r = 3t+6 · l +5 · (3q − l)+ y ≥ 3t+15q + l + 
 3q−l

3 �. On solving this, we
get y = q and l = 0. Therefore for each xj ∈ X, f(xj) = 0. Clearly, there exist
q number of ci’s with weight 1 such that each xj is adjacent to a ci of weight 1.
Consequently, C ′ = {ci | f(ci) = 1} is an exact cover for C. This completes the
proof of claim. �
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Therefore, Decide Roman {3}-Domination is NP-complete for chordal
graphs. This completes the proof of theorem. �

4 Algorithm for Threshold Graphs

In this paper, we have shown that Decide Roman {3}-Domination remains
NP-complete for chordal graphs. In this section, we present a positive result
by proposing a polynomial-time algorithm to solve Minimum Roman {3}-
Domination problem in threshold graphs, a subclass of chordal graphs. Firstly,
we will define threshold graphs.

A graph G = (V,E) is called a threshold graph if there is a real number T
and a real number w(v) for every v ∈ V such that a set S ⊆ V is independent
if and only if Σv∈Sw(v) ≤ T [3]. Many characterizations of threshold graphs are
available in the literature. An important characterization of threshold graph,
which is used in designing polynomial-time algorithms is following: A graph G
is threshold graph if and only if it is a split graph and, for any split partition
(C, I) of G, there is an ordering (x1, x2, . . . , xp) of the vertices of C such that
NG[x1] ⊆ NG[x2] ⊆ . . . ⊆ NG[xp], and there is an ordering (y1, y2, . . . , yq) of the
vertices of I such that NG(y1) ⊇ NG(y2) ⊇ . . . ⊇ NG(yq) [8].

Theorem 3. Let G = (V,E) be a connected threshold graph with split partition
(C, I) as defined above, then γR3(G) = 3.

Proof. Let f : V → {0, 1, 2, 3} be a function on G defined as follows.

f(v) =
{

3, if v = xp

0, otherwise

Since vertex xp of label 3 is adjacent to every other vertex of the graph of label
0. Thus, f is Roman {3}-dominating function of G of weight 3 and γR3(G) ≤ 3.
Since γ(G) = 1, from Observation 1 we have, γR3(G) ≥ 3. Thus, γR3(G) = 3. �

5 Approximation Results

In this section, we propose an O(ln(Δ(G)))-approximation algorithm for Min-
imum Roman {3}-Domination problem for a graph with maximum degree
Δ(G). Next we show that Minimum Roman {3}-Domination problem is APX-
complete for bounded degree graphs.

5.1 Approximation Algorithm

In this subsection, we propose an approximation algorithm for Minimum Roman
{3}-Domination problem. To obtain the approximation ratio of Minimum
Roman {3}-Domination problem for any graph, we require approximation
ratio of Minimum Domination problem.
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Theorem 4. [4] Minimum Domination problem in graph G with maximum
degree Δ can be approximated with an approximation ratio of 1 + ln(Δ + 1).

By Theorem 4, there exists a polynomial time algorithm, APPROX-DOM-SET
algorithm, that outputs a dominating set D of a graph G and achieves the
approximation ratio of 1 + ln(Δ + 1); that is, |D| ≤ (1 + ln(Δ + 1))γ(G).

Next, we propose an algorithm APPROX-R3D to compute an approximate
solution of Minimum Roman {3}-Domination problem. In our algorithm, first
we compute a dominating set D of the input graph G using the approximation
algorithm APPROX-DOM-SET. Next, we construct an ordered partition f =
(V0, V1, V2, V3) of V in which every vertex in D will be labelled by 3 and the
remaining vertices will be labelled by 0.

Now, let f = (V \D, ∅, ∅,D) be the ordered partition returned by APPROX-
R3DF algorithm. It can be easily seen that every vertex v ∈ V is assigned with
weight either 0 or 3. Since D is a dominating set of G, every vertex v ∈ V \ D
labelled by 0 is adjacent to a vertex u ∈ D labelled by 3. Hence,

∑
u∈N [v] f(u) ≥

3, for every v ∈ V . Thus, f gives a Roman {3}-dominating function of G. We
note that the algorithm APPROX-R3DF computes a Roman {3}-dominating
function of a given graph G in polynomial time. Hence, we have the following
algorithm.

Algorithm 1. APPROX-R3DF
Input: A graph G = (V, E).
Output: A Roman {3}-dominating function f = (V0, V1, V2, V3) of graph G.
begin

Compute a dominating set D of G using algorithm APPROX-DOM-SET;
f = (V \ D, ∅, ∅, D);
return f ;

Theorem 5. Minimum Roman {3}-Domination problem in a graph G =
(V,E) with maximum degree Δ can be approximated with an approximation ratio
of 3(1 + ln(Δ + 1)).

Proof. Let D be the dominating set returned by the algorithm APPROX-DOM-
SET and f be the Roman {3}-dominating function returned by the algorithm
APPROX-R3DF. It can be observed that f(V ) = 3|D|. It is known that |D| ≤
(1 + ln(Δ + 1))γ(G). Therefore, f(V ) ≤ 3(1 + ln(Δ + 1))γ(G) ≤ 3(1 + ln(Δ +
1))(γ(G)+2). Thus, Observation 1 leads to f(V ) ≤ 3(1+ln(Δ+1))γR3(G). Thus,
Minimum Roman {3}-Domination problem in a graph G can be approximated
with an approximation ratio of 3(1 + ln(Δ + 1)). �

5.2 APX-completeness for bounded degree graphs

In this section, we show that Minimum Roman {3}-Domination problem is
APX-complete for bounded degree graphs. Note that the class APX is the set of
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all optimization problems which admit a c-approximation algorithm, where c is
a constant.

By Theorem 5, Minimum Roman {3}-Domination problem for bounded
degree graphs can be approximated within a constant ratio. Thus, Minimum
Roman {3}-Domination problem for bounded degree graphs is in APX.

Next, we show that Minimum Roman {3}-Domination problem is APX-
complete for graphs with maximum degree 7. For this purpose, we recall the
concept of L-reduction.

Definition 1. Given two NP optimization problems π1 and π2 and a polynomial
time transformation f from instances of π1 to instances of π2, we say that f is an
L-reduction if there are positive constants α and β such that for every instance
x of π1:

1. optπ2(f(x)) ≤ α · optπ1(x).
2. for every feasible solution y of f(x) with objective value mπ2(f(x), y) = c2,

we can find a solution y
′
of x in polynomial time with mπ1(x, y

′
) = c1 such

that |optπ1(x) − c1| ≤ β · |optπ2(f(x)) − c2|.
To show the APX-completeness of a problem π ∈ APX, it suffices to show

that there is an L-reduction from some APX-complete problem to π.

To show the APX-completeness of Minimum Roman {3}-Domination prob-
lem, we give an L-reduction from Minimum Vertex Cover problem. A set
S ⊆ V of a graph G = (V,E) is called a vertex cover of G if for every edge
uv ∈ E, either u ∈ S or v ∈ S. Minimum Vertex Cover problem for a
graph G is a problem to find a minimum cardinality vertex cover of G. Now, the
following theorem is required.

Theorem 6. ([1]) Minimum Vertex Cover problem is APX-complete for
graphs with maximum degree 3.

Now, we are ready to prove the following theorem.

Theorem 7. Minimum Roman {3}-Domination problem is APX-complete for
graphs with maximum degree 7.

Proof. Since by Theorem 6, Minimum Vertex Cover problem is APX-
complete for graphs with maximum degree 3. So, it is enough to construct an
L-reduction f from the instances of Minimum Vertex Cover problem for
graphs with maximum degree 3 to the instances of Minimum Roman {3}-
Domination problem. Given a graph G = (V,E), where V = {v1, v2, . . . , vn}
and E = {e1, e2, . . . , em}. We construct a graph H = (V ′, E′) from the graph G
in the following way.

(a) For every vi ∈ V , add a vertex vi in H and add a star graph K1,3 centered
at pi with pendant vertices qi, ri and si. Add the edges vipi, piqi, piri, pisi.

(b) For every ej ∈ E, we build a graph Hj obtained from a path P5 : ejajbjcjdj

by adding the edges ajcj and bjdj .
(c) Finally add edges ejvi, ejvk and vivk in H, where ej = vivk ∈ E.
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Fig. 2. An illustration of the construction of H from G in the proof of Theorem 7.

Formally, V ′ = {vi, pi, qi, ri, si | vi ∈ V } ∪ {ej , aj , bj , cj , dj | ej ∈ E} and E′ =
{vipi, piqi, piri, pisi | vi ∈ V } ∪ {vivk, ejvi, ejvk, ejaj , ajbj , bjcj , cjdj , cjaj , bjdj |
ej = vivk ∈ E, j ∈ [m]}. Note that if maximum degree of G is 3, then maximum
degree of H is 7. Now, we first prove the following claim (Fig. 2).

Claim. γR3(H) = |V C∗(G)| + 4m + 3n, where V C∗(G) is the minimum cardi-
nality vertex cover of G.

Proof. Let C∗ be a minimum vertex cover of G. We define a function f : V ′ →
{0, 1, 2, 3} as follows.

f(v) =

⎧
⎪⎪⎨

⎪⎪⎩

3, if v ∈ {pi | i ∈ [n]}
2, if v ∈ {aj , dj | j ∈ [m]}
1, if v ∈ {u | u ∈ C∗}
0, otherwise

Let ek = uv ∈ E(G). Since C∗ is a vertex cover for G, at least one of u, v
must be in C∗. Hence, f(u) = 1 or f(v) = 1. Without loss of generality, assume
that f(u) = 1. Hence for every edge ek of weight 0 there exists an adjacent
vertex u of weight 1 and a neighbor ak of weight 2. Hence, for every edge ek,∑

w∈N [ek]
f(w) ≥ 3. For every j ∈ [m], vertex bj and cj have two neighbors aj

and dj assigned 2. Also for every i ∈ [n], vertex vi and all pendant vertices have
a neighbor pi assigned weight 3. Hence, it is straightforward to see that f is a
Roman {3}-dominating function with weight f(V ′) = 4m + 3n + |C∗|. Thus, for
a minimum weight R3DF f∗ of H, f∗(V ′) ≤ 4m + 3n + |C∗|.

Observe that, Hj has a Roman {3}-domination number less than equal to 5,
i.e. f(V (Hj)) ≤ 5. More precisely, if f(V (Hj)) = 5, then we may assume, without
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loss of generality, that f(bj) = 3, f(ej) = 2 and f(aj) = f(cj) = f(dj) = 0.
Also, if f(V (Hj)) = 4, then clearly at least one vertex of Hj (including ej) is
not Roman {3}-dominated. In this case, we may assume that vertices of Hj are
assigned as follows so that only ej is not Roman {3}-dominated: f(aj) = f(dj) =
2 and f(bj) = f(cj) = 0.

Conversely, let f = (V0, V1, V2, V3) be a Roman {3}-dominating function of
H with weight at most k. Clearly, each star needs a weight of at least 3, and so
we may assume, without loss of generality, that f(pi) = 3 and all its leaves are
assigned 0. Since pivi ∈ E(H), it follows that each vertex vi may be assigned
the value 0. Moreover, as mentioned above, for each j, f(V (Hj)) ∈ {4, 5}. We
may assume that f(V (Hl)) = 5, for some l ∈ [m]. Hence, f(bl) = 3 and f(el) =
2. Then we can get a Roman {3}-dominating function of same weight by re-
assigning the value 1 to el, the value 2 to al and 2 to dl, and to the remaining
vertices the same values as their values under f . Also, for some l′ ∈ [m], we
may assume that f(V (Hl′)) = 4. Hence, f(al′) = f(dl′) = 2. Since f(al′) = 2,
to Roman {3}-dominate the vertex el′ ∈ E(H), either f(el′) = 1 or f(u) = 1,
where u is an adjacent vertex of el′ in graph G. Further, if f(ek) = 1 for some
k ∈ [m], then we can get a Roman {3}-dominating function of same weight by
re-assigning the value 0 to ek, the value 1 to u where u is adjacent vertex of ek,
and to the remaining vertices the same values as their values under f . Hence,
there is a minimum weight R3DF, say f∗ = (V0, V1, V2, V3) of H such that for
every i ∈ [n], f∗(pi) = 3 and for every j ∈ [m], f∗(aj) = f∗(dj) = 2 and
NH(ej) ∩ V1 	= ∅. Hence for each e = uv ∈ E, either f∗(u) = 1 or f∗(v) = 1.
Thus, C = V ∩ V1 is a vertex cover of G. Hence, for a minimum cardinality
vertex cover C∗ of G, |C∗| ≤ |C| ≤ f∗(V ′) − 4m − 3n.

Hence, f∗(V ′) = |C∗| + 4m + 3n. This completes the proof of claim. �
We now return to the proof of Theorem 7. Let V C∗ be a minimum vertex

cover of G and f : V ′ → {0, 1, 2, 3} be a minimum weight R3D function of H.
From the above Claim it is evident that f(V ′) = |V C∗(G)| + 4m + 3n.

Since the maximum degree of G is 3, so m ≤ 3n
2 and |V C∗(G)| ≥ n

4 . Thus,
γR3(H) = |V C∗(G)|+4m+3n ≤ |V C∗(G)|+6n+3n ≤ |V C∗(G)|+36|V C∗(G)| =
37|V C∗(G)|.

Now consider a R3D function, say f , of H of weight k, we can convert it into
a R3D function, say f∗ with f∗(V ′) ≤ k, such that f∗(aj) = f∗(dj) = 2 for every
j ∈ [m] and f∗(pi) = 3 for every i ∈ [n]. Then V C = {vi ∈ V | f∗(vi) 	= 0} is a
vertex cover of G (as explained in the proof of the above claim) of size less than
or equal to k −4m−3n. Analogously as in the proof of above Claim, the set V C
is a vertex cover of G and |V C| ≤ f∗(V ′)−4m−3n. Hence, ||V C|−|V C∗(G)|| ≤
|f∗(V ′) − 4m − 3n − (γR3(H) − 4m − 3n)| = |f∗(V ′) − γR3(H)|.

From these two inequalities, it is clear that the above reduction is an
L-reduction with α = 37 and β = 1. Therefore, Minimum Roman {3}-
Domination problem is APX-complete for graphs with maximum degree 7. �
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6 Conclusion

In this paper, we have shown that Decide Roman {3}-Domination is NP-
complete for chordal graphs. On the positive side, we have shown that Minimum
Roman {3}-Domination problem can be solved in polynomial time for thresh-
old graphs. We have then proposed an O(ln(Δ(G)))-approximation algorithm for
finding minimum weight R3DF in any graph G with maximum degree Δ(G). It
would be interesting to give some inapproximability result of Minimum Roman
{3}-Domination problem. Finally, we have shown that Minimum Roman {3}-
Domination problem is APX-complete for bounded degree graphs. It would be
interesting to study the complexity of this problem in other graph classes and
also the relation between Roman {3}-domination number and other domination
parameters.
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Abstract. In the Priority Steiner Tree (PST) problem, we are given an
undirected graph G = (V, E) with a source s ∈ V and terminals T ⊆
V \{s}, where each terminal v ∈ T requires a nonnegative priority P (v).
The goal is to compute a minimum weight Steiner tree containing edges
of varying rates such that the path from s to each terminal v consists
of edges of rate greater than or equal to P (v). The PST problem with k
priorities admits a min{2 ln |T | + 2, kρ}-approximation [Charikar et al.,
2004], and is hard to approximate with ratio c log log n for some constant
c [Chuzhoy et al., 2008]. In this paper, we first strengthen the analysis
provided by [Charikar et al., 2004] for the (2 ln |T | + 2)-approximation
to show an approximation ratio of �log2 |T |� + 1 ≤ 1.443 ln |T | + 2, then
provide a very simple, parallelizable algorithm which achieves the same
approximation ratio. We then consider a more difficult node-weighted
version of the PST problem, and provide a (2 ln |T | + 2)-approximation
using extensions of the spider decomposition by [Klein & Ravi, 1995].
This is the first result for the PST problem in node-weighted graphs.
Moreover, the approximation ratios for all above algorithms are tight.

Keywords: Priority steiner tree · Approximation algorithms ·
Network design

1 Introduction

We consider generalizations of the Steiner tree and node-weighted Steiner tree
(NWST) problems in graphs where the terminals T possess varying priority or
quality of service (QoS) requirements, in which we seek to connect the terminals
using edges of the appropriate rate or better. These problems have applications
in multimedia and electric power distribution [4,21,27], multi-level graph visu-
alization [1], and other network design problems where a source or root is to be
connected to a set of heterogeneous receivers possessing different bandwidth or
priority requests. We define a Priority Steiner Tree (PST) as follows:

Definition 1 (Priority Steiner Tree (PST)). Given an undirected graph
G = (V,E), a source s ∈ V , and terminals T ⊆ V \ {s}, where each terminal
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v ∈ T requires a nonnegative priority P (v), a PST is a tree T ⊆ G rooted at s
containing edges of varying rates such that for all terminals v ∈ T , the s–v path
in T consists of edges of rate P (v) or higher.

We denote by k the number of distinct priorities. Vertices in V \ (T ∪ {s}) have
zero priority but may be included in T . Let w(e, r) denote the weight of edge e
at rate r. We assume w(e, 0) = 0 and w(e, r1) ≤ w(e, r2) for all 0 ≤ r1 ≤ r2 and
edges e (i.e., higher-rate edges weigh at least as much as lower-rate edges). The
weight of a PST T is the sum of the weights of the edges in T at their respective
rates, namely w(T ) :=

∑
e∈E(T ) w(e,R(e)).

Problem 1 (Priority Steiner Tree problem). Given a graph G = (V,E),
source s, terminals T ⊆ V , priorities P (·), and edge weights w : E×R≥0 → R≥0,
compute a PST T with minimum weight.

While Problem1 in the case where edge weights are proportional to rate (i.e.,
w(e, r) = r·w(e, 1) for all e ∈ E and r ≥ 0) admits O(1)–approximations [1,6,18],
the best known approximation ratio for Priority Steiner tree with arbi-
trary weights is min{2 ln |T | + 2, kρ} by Charikar et al. [6] (see Sect. 2). On
the other hand, Chuzhoy et al. [9] show that Priority Steiner tree can-
not be approximated with ratio c log log n for some constant c unless NP ⊆
DTIME(nO(log log log n)), even with unit edge weights1.

In Sect. 3, we introduce a node-weighted variant of Priority Steiner
Tree, called Priority NWST (Definition 2). Here we assume edges have zero
weight, as an instance with edge and vertex weights can be converted to an
instance with only vertex weights by subdividing each edge uv into two edges
uw, wv and assigning the weight of edge uv to vertex w.

Definition 2 (Priority Node-Weighted Steiner Tree (PNWST)). Given
an undirected graph G = (V,E), source s, and terminals T ⊆ V \{s}, where each
terminal v ∈ T requires a nonnegative priority P (v), a priority node-weighted
Steiner tree (PNWST) is a tree T rooted at s containing vertices of varying rates
R(v) such that for all terminals v ∈ T , the s–v path in T consists of vertices of
rate P (v) or higher.

In particular, we require R(v) ≥ P (v) for all v ∈ T . Further, we can assume
w.l.o.g. that the path from s to each terminal uses vertices of non-increasing rate
(see Definition 3). As in the NWST problem, it is conventional to also assume
terminals have zero weight, as they must be included in any feasible solution;
thus, we assume w(v, r) = 0 for 0 ≤ r ≤ P (v) and w(v, r1) ≤ w(v, r2) for all
0 ≤ r1 ≤ r2. The weight of a PNWST T with vertex rates R(·) is w(T ) :=∑

v∈V (T ) w(v,R(v)).

1 We remark that the formulation of Priority Steiner Tree given in [9] is slightly
more specific; each edge has a single weight ce as well as a quality of service (priority)
Q(e) on input, and the goal is to compute a Steiner tree such that the path from
root to each terminal v uses edges of quality of service greater than or equal to P (v).
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Problem 2 (Priority NWST problem). Given a graph G = (V,E), source s,
terminals T ⊆ V \ {s}, vertex priorities P (·), and vertex weights w : V ×R≥0 →
R≥0, compute a PNWST T with minimum weight.

The Priority NWST problem generalizes the NWST problem, and hence
cannot be approximated with ratio (1−o(1)) ln |T | unless P = NP [12,13,19], via
a reduction from the set cover problem. In Sect. 3, we show that the Priority
NWST problem admits a 2 ln(|T |+1)–approximation (Theorem2) using exten-
sions of the spider decomposition given by Klein and Ravi [19] to accommodate
the priority constraints of the Priority NWST problem. The generalization is
not immediately obvious; in particular it is not immediate whether an instance of
Priority NWST can be formulated as an instance of NWST. However, NWST
and Priority NWST can be easily reduced to Steiner arborescence (or directed
Steiner tree), which admits a quasi-polynomial O

(
log2 |T |

log log |T |
)
-approximation [14].

Notation. A graph G = (V,E) with n = |V | and m = |E| is undirected and con-
nected, unless stated otherwise. Given terminals u, v ∈ T for the PST problem,
denote by σ(u, v) the weight of a minimum weight u–v path in G using edges of
rate min{P (u), P (v)}, and let puv denote such a path. For terminals u, v ∈ T in
the Priority NWST problem, we define σ(u, v) to be the weight of a minimum
u–v path using vertices of rate min{P (u), P (v)} not including the endpoints u
and v, and similarly define σb(u, v) to be the weight of a minimum weight vertex-
weighted path using vertices of rate b, so that σ(u, v) = σmin{P (u),P (v)}(u, v). In
particular, we have σb(v, v) = 0. Note that σ is symmetric but does not sat-
isfy the triangle inequality, and is not a metric. Let ρ denote an approximation
ratio for the (edge-weighted) Steiner tree problem, and let STEINER(n) denote
the running time of such an approximation algorithm on an n-vertex graph. We
denote by OPT the weight of a min-weight PST or PNWST. Lastly, for n ∈ Z

+,
we denote by [n] the set {1, 2, . . . , n}.

1.1 Related Work

The Steiner tree problem in graphs has been studied in a wide variety of contexts;
see the compendium [16]. The (edge-weighted) Steiner tree problem admits a
folklore 2

(
1 − 1

|T |
)
–approximation, and is approximable with ratio ρ = ln 4 +

ε ≈ 1.387 [5], but NP-hard to approximate with ratio 96
95 ≈ 1.01 [8]. As stated

previously, NWST cannot be approximated with ratio (1 − o(1)) ln |T | unless
P = NP [12,13,19], but algorithms with logarithmic approximation ratio exist.
Klein and Ravi [19] give a 2 ln |T |–approximation for NWST, which was improved
to 1.61 ln |T | and a less practical (1.35 + ε) ln |T | by Guha and Khuller [15].
Demaine et al. [11] give an O(1)–approximation for NWST when the input graph
G is H–minor free, and a 6-approximation when G is planar. Naor et al. [23] give
a randomized O(log n log2 |T |)-approximation algorithm for the online version.

The (edge-weighted) Priority Steiner tree problem and variants thereof
have been studied under various other names including Hierarchical Network
Design [10], Multi-Level (or k-Level) Network Design [4], Multi-Tier Tree [22],
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Grade of Service Steiner Tree [28], Quality of Service Multicast Tree [6,18], and
Multi-Level Steiner Tree [1,2]. Earlier results on this problem typically consider
a small number of priorities or restricted definition of weight [4,10]. In the spe-
cial case where edge weights are proportional to rate, Charikar et al. [6] give the
first O(1)–approximations with approximation ratios 4ρ and eρ ≈ 4.214 (with
ρ ≈ 1.55 [25]) independent of the number of priorities k. Karpinski et al. [18] give
a slightly stronger variant of the eρ-approximation [6] which achieves approxima-
tion ratio 3.802. Ahmed et al. [1] give an approximation ratio of 2.351ρ ≈ 3.268
for k ≤ 100. Xue et al. [28] consider this problem where the terminals are embed-
ded in the Euclidean plane, and give 4

3ρ (resp. 5+4
√
2

7 ρ ≈ 1.522ρ)–approximations
for two (resp. three) different priorities. Integer programming formulations have
been proposed and evaluated over realistic problem instances [1,24].

If edge weights are not necessarily proportional to rate, Charikar et al. [6] give
a simple min{2 ln |T |+2, kρ}-approximation (see Sect. 2), which remains the best
known to date. Recently, Ahmed et al. [2] proposed an approximation based on
Kruskal’s MST algorithm which achieves the same approximation ratio, and pro-
vided an experimental study comparing the two methods. Chuzhoy et al. [9] show
that Priority Steiner tree cannot be approximated with ratio c log log n for
some constant c unless NP ⊆ DTIME(nO(log log log n)). Angelopoulos [3] showed
that every deterministic online algorithm for online Priority Steiner tree

has ratio Ω(min{k log |T |
k , |T |}). Interestingly, no node-weighted variant of Pri-

ority Steiner tree has been studied in existing literature. However, a related
problem is the (single-source) node-weighted buy-at-bulk problem (NSS-BB)
studied by Chekuri et al. [7], who show a 3H|T | = O(log |T |)–approximation for
NSS-BB by giving a randomized algorithm then derandomizing it using an LP
relaxation, where Hn = 1

1 + 1
2 + . . . + 1

n is the nth harmonic number.

1.2 Our Results

In Sect. 2, we strengthen the analysis of the simple (2 ln |T | + 2)-approximation
(Algorithm 1) by Charikar et al. [6] to show that it is a 	log2 |T |
 + 1 ≤
(1.443 ln |T | + 2)-approximation. We then give a parallelizable algorithm (Algo-
rithm2) with the same approximation ratio that does not require that terminals
be connected sequentially or in a particular order. This contrasts with the inher-
ently serial Algorithm 1 [6], where the shortest path for each terminal depends
on the partial PST computed at the previous iteration.

Theorem 1. Algorithm1 [6] is a (	log2 |T |
 + 1)-approximation for Priority
Steiner tree with running time O(nm+n2 log n), and there is a parallelizable
algorithm for Priority Steiner tree with the same approximation ratio.

Moreover, the approximation ratio is tight up to a factor of 2, as there exists an
input graph in which Algorithms 1–2 may output a PST with weight 1

2 log2 |T |+1
times the optimum [17]. In Sect. 3, we show the following result for Priority
NWST:

Theorem 2. There exists a 2 ln(|T |+1)–approximation algorithm for Priority
NWST with running time O(n4k log n).
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This is the first known approximation algorithm for Priority NWST, and is
the main technical contribution of this paper. The analysis extends the spider
decomposition of Klein and Ravi [19] in their greedy (2 ln |T |)–approximation
for the NWST problem, to accommodate priority constraints in the Priority
NWST problem. Note the additional +1 arises as we do not consider the source
s a terminal. Proofs omitted for space are in the arXiv version [26].

2 Priority Steiner Tree: Two Logarithmic Approximations

We first review the greedy min{2 ln |T | + 2, kρ} approximation for Priority
Steiner tree given by Charikar et al. [6]. This returns the better solution
of two sub-algorithms; we focus primarily on the (2 ln |T | + 2)-approximation
(Algorithm 1). This algorithm sorts the terminals T from highest to lowest pri-
ority. Then for i = 1, . . . , |T |, the ith terminal vi in the sorted list is connected
to the existing tree (containing the source s) using a minimum weight path of
rate P (vi). The weight of this path is the connection cost of vi. Cycles can be
removed in the end by removing an edge from each cycle with the lowest rate.

Algorithm 1 R(·) = QoSMT(graph G, priorities P, edge weights w, source s)
[6]
1: Sort terminals T by decreasing priority P (·)
2: Initialize V ′ = {s}, R(e) = 0 for e ∈ E
3: for i = 1, 2, . . . , |T | do
4: Connect ith terminal vi to V ′ using minimum weight path pi of rate P (vi)
5: R(e) = P (vi) for e ∈ pi

6: V ′ = V ′ ∪ V (pi)

7: Remove lowest-rate edge from each cycle
8: return edge rates R(·)

Algorithm 1 is based on a (log2 |T |)-approximation for an online Steiner tree
problem analyzed by Imase and Waxman [17]; however, Charikar et al. [6] give a
simpler analysis which proves a weaker approximation ratio of 2 ln |T |+2, based
on the following lemma:

Lemma 1 ([6]). For 1 ≤ x ≤ |T |, the xth most expensive connection cost
incurred by Algorithm1 is at most 2OPT

x .

Lemma 1 implies the weight of the PST is at most 2OPT
(

1
1 + 1

2 + . . . + 1
|T |

)
=

2OPTH|T | ≤ (2 ln |T | + 2)OPT. Line 4 can be executed by running Dijkstra’s
algorithm from vi with edge weights w(·, P (vi)) until reaching a vertex in V ′;
hence Algorithm 1 runs in O(nm + n2 log n) time.

We strengthen the analysis by Charikar et al. [6] to prove an approxima-
tion ratio of 	log2 |T |
 + 1, thus matching the result for the online Steiner tree
problem [17]. Instead of an upper bound on the xth most expensive connection
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cost, we establish a bound on the |T |
2 least expensive connection costs; a simi-

lar technique was used in [20] for a bicriteria diameter-constrained Steiner tree
problem. For simplicity, we assume w.l.o.g. |T | is a power of 2; this can be done
by adding up to one dummy terminal of priority 1 to each terminal, connected
with a zero-weight edge.

Lemma 2. The sum of the |T |
2 least expensive connection costs incurred by Algo-

rithm1 is at most OPT.

Theorem 3. Algorithm1 is a (	log2 |T |
 + 1)-approximation for Priority
Steiner tree.

Lemma 2 is proved by considering pairs of consecutive terminals in a depth-first
traversal of the optimum PST T ∗, and Theorem 3 is proved by applying Lemma2
	log2 |T |
 + 1 times.

In the following, we give a simpler, parallelizable algorithm for Priority
Steiner tree which achieves the same approximation ratio of 	log2 |T |
+1. For
simplicity we assume P (s) = ∞ and every (non-source) terminal has a different
priority; ties between terminals of the same priority can be broken arbitrarily.
The idea is to connect each terminal v to the “closest” terminal or source with
a greater priority than v. Specifically, for v ∈ T , find a vertex u ∈ T ∪ {s} with
P (u) > P (v) which minimizes σ(u, v), and connect v to u with edges of rate
P (v). This can be done by executing Dijkstra’s algorithm from v using edge
weights w(·, P (v)) and stopping once we find a vertex with a greater priority
than v. Moreover, this algorithm is parallelizable as the corresponding path for
each terminal can be found in parallel. The weight of connecting v to its parent
u is the connection cost of v. As before, cycles can be removed in the end by
removing an edge from each cycle with the lowest rate.

Algorithm 2 R(·) = PST(graph G, priorities P, edge weights w, source s)
1: Initialize R(e) = 0 for e ∈ E
2: for v ∈ T do
3: Find u ∈ T ∪ {s} with P (u) > P (v) such that σ(u, v) is minimized
4: R(e) = max{R(e), P (v)} for e ∈ pvu

5: Remove lowest-rate edge from each cycle
6: return edge rates R(·)

Algorithm 2 produces a valid PST which spans all terminals, since there is
a path from each terminal v to the source using edges of rate P (v) or higher.
Moreover, Lemma 1 and Theorem 3 extend easily:

Lemma 3. The sum of the |T |
2 least expensive connection costs incurred by Algo-

rithm2 is at most OPT.

Theorem 4. Algorithm2 is a (	log2 |T |
 + 1)-approximation for Priority
Steiner tree.
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One main difference compared to Algorithm 1 [6] is that Algorithm 2 is not
required to connect the terminals sequentially, or even by order of priority.
Further, unlike Algorithm1, Algorithm 2 is not dependent on the solution com-
puted at the previous iteration. If k � |T |, a simple kρ-approximation given
by Charikar et al. [6] is to compute a ρ-approximate Steiner tree over the ter-
minals of each priority separately, taking O(k · STEINER(n)) time. Execut-
ing both approximations and taking the better of the two solutions yields a
min{	log2 |T |
 + 1, kρ}-approximation as desired.

3 An O(log |T |)-Approximation for Priority NWST

We remark that the analysis of Algorithms 1–2 does not extend to Priority
NWST; one can construct an example input graph in which Algorithm1 or 2
(considering minimum weight node-weighted paths) returns a poor NWST with
weight Ω(|T |)OPT. In this section, we extend the (2 ln |T |)-approximation by
Klein and Ravi [19] which maintains a collection of trees, and greedily merges
a subset of these trees at each iteration to minimize a cost-to-connectivity ratio
(Algorithm 3). For Priority NWST, we need to ensure that the priority con-
straint is always maintained throughout the construction process. To this end,
we first define a rate tree:

Definition 3 (Rate tree). Let G = (V,E), and let Tr be a subtree of G (not
necessarily a Steiner or spanning tree of G) which includes vertex r. Let R :
V → R≥0 be a function which assigns rates to the vertices in G. We say that Tr

is a rate tree rooted at r if, for all v ∈ V (Tr) \ {r}, the path from r to v in Tr

consists of vertices of non-increasing rate.

The main idea of Algorithm 3 is to maintain a set (not necessarily a forest)
of rate trees. By simply connecting the roots of the rate trees with paths of
appropriate vertex rates, we can satisfy the priority constraints.

Another challenge to tackle involves properly devising a definition of weight
when greedily merging rate trees at each iteration. The greedy NWST algorithm
by Klein and Ravi [19] simply sums the weights from a root vertex to each
terminal. In our algorithm, we cannot simply connect the root of a rate tree to
other roots of other rate trees of lower or equal priority and compute the weight
similarly. This is due to a technical challenge needed for the analysis of the
algorithm (see Sect. 3.2) that it is not possible, in general, to perform a spider
decomposition (similar to [19]) on a rate tree such that paths from the center to
leaves have non-increasing rates. To overcome this challenge, we introduce the
notion of rate spiders and prove the existence of a rate spider decomposition,
which further guides us to properly define weight computations at each iterative
step.

3.1 Algorithm Description

In the following, let p1 < p2 < . . . < pk denote the k vertex priorities. Initialize a
set F (not necessarily a forest) of |T | + 1 rate trees so that each terminal v ∈ T ,
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including the source s, is a singleton rate tree whose root is itself. Initialize vertex
rates R(v) = P (v) for v ∈ T , R(s) = pk, and R(v) = 0 for v ∈ T ∪ {s}. While
|F| > 1, the construction proceeds iteratively as follows. Each iteration consists
of greedily selecting the following:

– a rate tree Tr ∈ F rooted at r, called the root tree
– a special vertex v ∈ V called the center (note v could equal r)
– a real number b ≤ P (r) representing the rate which v is “upgraded” to
– a nonempty subset S = {Tr1 , . . . , Tr|S|} ⊂ F of rate trees where Tr ∈ S, and

P (rj) ≤ b for all roots rj associated with the rate trees in S

By connecting r to the center v using vertices of rate b, upgrading R(v) to b,
then connecting v to the root of each rate tree Trj ∈ S using vertices of rate
P (rj), we can replace the |S|+1 rate trees in F with a new rate tree T new

r rooted
at r (see Fig. 1).

Fig. 1. Illustration of an iteration step in Algorithm 3 with P (r) = 2, b = 2, P (r1) =
P (r2) = 2, and P (r3) = 1. Vertices with larger circles (not necessarily terminals) have
rate 2; vertices with smaller circles have rate 1.

The root tree, center, b, and S are greedily chosen to minimize a cost-to-
connectivity ratio γ, defined as follows:

γ :=
1

|S| + 1

⎛

⎝σb(r, v) + w(v, b) +
|S|∑

j=1

σP (rj)(v, rj)

⎞

⎠ (1)

where rj denotes the root of the jth rate tree Trj in S. The second expression
σb(r, v) + w(v, b) +

∑|S|
j=1 σP (rj)(v, rj) gives an upper bound on the weight of

connecting r to v, upgrading R(v) to b, then connecting v to |S| roots, and the
denominator |S| + 1 represents the “connectivity”, or the number of connected
rate trees. Lemma 6 shows how to execute this iteration step in polynomial time.

Once Tr, v, b, and S are chosen, we “upgrade” the vertex rates R(·) along a
shortest r–v path to b, then upgrade the vertex rates along each shortest v–rj
path to P (rj). In the case that some vertex u is on multiple v–rj paths, then
R(u) is upgraded to the maximum over all root priorities P (rj) for which u
appears on the corresponding path. Pseudocode is shown in Algorithm3.
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Algorithm 3 R(·) = PNWST(G, terminals T, priorities P, vertex weights w)
1: Initialize F , R(v) = P (v) if v ∈ T ∪ {s} and R(v) = 0 if v �∈ T ∪ {s}
2: while |F| > 1 do
3: Find Tr, v, b, S which minimize γ (Lemma 6)
4: R(u) = max{R(u), b} for u on r–v path
5: R(v) = max{R(v), b}
6: for j = 1, . . . , |S| do
7: R(u) = max{R(u), P (rj)} for u on v–rj path

8: F = F \ ({Tr} ∪ S)
9: F = F ∪ {T new

r }
10: return vertex rates R(·)

3.2 Analysis of Algorithm3

We show Theorem 2 by asserting that Algorithm3 is a 2 ln(|T | + 1)–
approximation for Priority NWST. We extend the spider decomposition given
by Klein and Ravi [19] to account for the priority constraints in the Priority
NWST problem.

Definition 4 (Spider). A spider is a tree where at most one vertex has degree
greater than 2. A nontrivial spider is a spider with at least 2 leaves.

A spider is identified by its center, a vertex from which all paths from the center
to the leaves of the spider are vertex-disjoint. A foot of a spider is a leaf; if the
spider has at least three leaves, then its center is unique and is also a foot. Klein
and Ravi [19] show that given a graph G and subset M ⊆ V of vertices, G can
be decomposed into vertex-disjoint nontrivial spiders such that the union of the
feet of the nontrivial spiders contains M . We extend the notions of spider and
spider decomposition to the Priority NWST problem.

Definition 5 (Rate spider). A rate spider is a rate tree X which is also a
nontrivial spider. It is identified by a root r as well as a center v such that:

– The root r is either the center or a leaf of X , and the path from r to every
vertex in X uses vertices of non-increasing rate R(·)

– The paths from the center v to each non-root leaf of X are vertex-disjoint
and use vertices of non-increasing rate R(·).

In Fig. 2, right, rate spiders X2 and X3 have centers distinct from their roots r2,
r3 while X1 has center v = r1. In Definition 6, we supply a notion of a “minimal”
weight tree with respect to a subset M of vertices.

Definition 6 (M–optimized rate tree). Let Tr be a rate tree rooted at r
with vertex rates R. Let M ⊆ V (Tr) with r ∈ M . Then Tr is M–optimized
if every leaf of Tr is in M , and if for every vertex v ∈ V (Tr) \ M , we have
R(v) = max R(w) over all vertices w ∈ M in the subtree of Tr rooted at v.

We show any M–optimized rate tree has a rate spider decomposition.
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Lemma 4 (Rate spider decomposition). Let M ⊆ V (Tr) with |M | ≥ 2, and
let Tr be an M–optimized rate tree where r ∈ M . Then Tr can be decomposed
into vertex-disjoint rate spiders X1, . . . , Xd rooted at r1, . . . , rd such that:

– the leaves and roots of the rate spiders are contained in M
– every vertex in M is a either a leaf, root, or center of some rate spider

Figure 2, right, shows an example of an M–optimized rate tree Tr for |M | = 10
and a rate spider decomposition X1, X2, X3 over M .

3
r

2 3

2 2 2 3 3

1 2 2 2 3 1

1 2 1 1 1

3
r32 2

1 2 2 2

1 2
r1

2
r2

1 1

1 2 1 1
X1

X2

X3

Fig. 2. Left: A rate tree rooted at r with rates R(·) indicated and vertices in M shown
in black. Right: An M–optimized rate tree Tr and a rate spider decomposition X1, X2,
X3 with roots r1, r2, r3.

For i ≥ 1, let Fi denote the set of rate trees at the beginning of iteration
i of Algorithm 3, and let hi ≥ 2 denote the number of rate trees in Fi which
are connected on iteration i (i.e., hi = |S| + 1). Let ΔCi denote the actual
weight incurred on iteration i by upgrading vertex rates in line 7. Let γi denote
the minimum cost-to-connectivity ratio (Eq. (1)) computed by Algorithm 3 on
iteration i. Lemma 4 (rate spider decomposition) yields the following lemma:

Lemma 5. For each iteration i of Algorithm3, we have
ΔCi

hi
≤ OPT

|Fi|
.

Using Lemma 5, we can prove Theorem 2, by asserting that Algorithm3 is a
2 ln(|T | + 1)–approximation for Priority NWST. The remainder of the proof
can be completed by following the analysis by Klein and Ravi [19].

It is worth noting that the extension of the (2 ln |T |)-approximation by Klein
and Ravi [19] to the Priority NWST problem is not immediately obvious,
as we must be careful when merging multiple rate trees while simultaneously
satisfying the priority and rate requirements.

Lemma 6. On iteration i of Algorithm3, a choice of Tr, v, b, and S which
minimizes γ can be found in O(n3k log n) time.

Algorithm 3 runs for I ≤ |T | iterations, as the size of |F| decreases by at least 1
at each iteration. By Lemma 6, the running time of Algorithm3 is O(n4k log n).
The approximation ratio is tight as is the case for the Ravi-Klein algorithm [19].
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4 Conclusions and Future Work

By strengthening the analysis of [6], we showed that Priority Steiner tree is
approximable with ratio min{	log2 |T |
+1, kρ} ≤ min{1.443 ln |T |+2, kρ}, then
provided a simple, parallelizable algorithm with the same approximation ratio.
Second, we showed that a natural node-weighted generalization of Priority
Steiner tree admits a O(log |T |)-approximation using a generalization of the
Ravi-Klein algorithm [19] and spider decomposition. It remains open whether the
approximability gap between c log log n [9] and O(log n) for Priority Steiner
tree can be tightened, or whether a more efficient approximation algorithm for
Priority NWST can be formed. As both problems can be reduced to directed
Steiner tree, this suggests a hierarchy in terms of hardness of approximation.

Acknowledgments. The authors wish to thank Alon Efrat and Spencer Krieger for
their discussions related to the priority NWST problem.
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8. Chleb́ık, M., Chleb́ıková, J.: The Steiner tree problem on graphs: inapproximability
results. Theoret. Comput. Sci. 406(3), 207–214 (2008)

9. Chuzhoy, J., Gupta, A., Naor, J.S., Sinha, A.: On the approximability of some
network design problems. ACM Trans. Algorithms 4(2), 23:1–23:17 (2008)

10. Current, J.R., ReVelle, C.S., Cohon, J.L.: The hierarchical network design problem.
Eur. J. Oper. Res. 27(1), 57–66 (1986)

11. Demaine, E.D., Hajiaghayi, M.T., Klein, P.N.: Node-weighted Steiner tree and
group Steiner tree in planar graphs. In: Albers, S., Marchetti-Spaccamela, A.,
Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp.
328–340. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02927-
1 28

https://doi.org/10.1007/978-3-642-03367-4_4
https://doi.org/10.1007/978-3-642-02927-1_28
https://doi.org/10.1007/978-3-642-02927-1_28


Approximation Algorithms for Priority Steiner Tree Problems 123

12. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Proceedings
of the Annual ACM Symposium on Theory of Computing (2013). https://doi.org/
10.1145/2591796.2591884

13. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652
(1998)

14. Grandoni, F., Laekhanukit, B., Li, S.: O(log2 k/ log log k)-approximation algorithm
for directed Steiner tree: a tight quasi-polynomial-time algorithm. In: Proceed-
ings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2019, pp. 253–264. Association for Computing Machinery, New York (2019).
https://doi.org/10.1145/3313276.3316349

15. Guha, S., Khuller, S.: Improved methods for approximating node weighted Steiner
trees and connected dominating sets. J. Inform. Comput. 150(1), 57–74 (1999)

16. Hauptmann, M., Karpinski, M.: A compendium on Steiner tree problems (2015).
http://theory.cs.uni-bonn.de/info5/steinerkompendium/

17. Imase, M., Waxman, B.M.: Dynamic Steiner tree problem. SIAM J. Discret. Math.
4(3), 369–384 (1991)
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Abstract. In the Max r-SAT problem, the input is a CNF formula
with n variables where each clause is a disjunction of at most r literals.
The objective is to compute an assignment which satisfies as many of the
clauses as possible. While there are many polynomial-time approximation
algorithms for this problem, we take the viewpoint of space complexity
following [Biswas et al., Algorithmica 2021] and design sublinear-space
approximation algorithms for the problem.

We show that the classical algorithm of [Lieberherr and Specker,
JACM 1981] can be implemented to run in nO(1) time while using
O(log n) bits of space. The more advanced algorithms use linear or semi-
definite programming, and seem harder to carry out in sublinear space.
We show that a more recent algorithm with approximation ratio

√
2/2

[Chou et al., FOCS 2020], designed for the streaming model, can be
implemented to run in time nO(r) using O(r log n) bits of space. While
known streaming algorithms for the problem approximate optimum val-
ues and use randomization, our algorithms are deterministic and can
output the approximately optimal assignments in sublinear space.

For instances of Max r-SAT with planar incidence graphs, we devise
a factor-(1 − ε) approximation scheme which computes assignments in
time nO(r/ε) and uses max{√

n log n, (r/ε) log2 n} bits of space.

Keywords: Max SAT · Approximation · Sublinear space ·
Space-efficient · Memory-efficient · Planar incidence graph

1 Introduction

Starting in the 70’s, there has been a long line of work on the approximation prop-
erties of NP-hard problems. The classical approach has been to obtain better-
than-trivial approximations for such problems with polynomial-time algorithms.
Later on, a number of such problems were also studied in the streaming model of
computation, where an algorithm must read the input in a fixed (possibly adver-
sarial) sequence. The goal is typically to compute an approximation by making
a constant number of passes over the input using space sublinear in the input
size. Recently, there has been some interest in studying approximation problems
in the sublinear-space RAM model, a model halfway between the RAM and
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streaming models of computation. In this paper, we continue the work initiated
in [5] and devise sublinear-space approximation algorithms for Max r-SAT.

An instance of Max r-SAT is a CNF formula F = C1 ∧· · ·∧Cm, where each
of the clauses C1, . . . , Cm is a disjunction of at most r literals over a variable
set {x1, ..., xn}. The objective is to compute an assignment which satisfies as
many of the clauses as possible. Viewing the variables and clauses as elements
of an incidence structure yields an incidence graph where clauses and variables
are vertices, and there is an edge between a variable x and a clause C whenever
x appears in C. We call the restriction of Max r-SAT to instances with planar
incidence graphs Planar Max r-SAT.

The classical approximation algorithm [17] for Max r-SAT achieves an
approximation ratio of 1/2 (shown to be 2/3 in [7]). Later on, the ratio
was improved to (

√
5 − 1)/2 in [19]. Our first observation is that these

ratios can be achieved using logarithmic space. Algorithms computing (3/4)-
approximations are known [15], but they use linear or semi-definite program-
ming. Under logarithmic-space reductions, it is P-complete to approximate
Linear Programming to any constant factor [27]. This makes it unlikely that
such approaches will yield simultaneously polynomial-time and sublinear-space
algorithms. In Sect. 3, we show that the previously mentioned factor-((

√
5−1)/2)

algorithm, and a more recent factor-(
√

2/2) approximation algorithm [8], devised
for the streaming model, can be implemented so as to run in polynomial time
using logarithmic space.

For Planar Max r-SAT, it is possible to compute factor-(1 − ε) approx-
imations in polynomial time for any constant ε > 0 [18]. In Sect. 4, we give a
sublinear-space implementation of this scheme using recent results about com-
puting tree decompositions [11] and BFS traversal sequences [1].

The Model. We use the standard RAM model and constrain the amount of
space available to be sublinear in the input size. The input to an algorithm is
provided using some canonical representation, which it can read but not modify,
i.e. it has read-only access to the input. It also has read-write access to a certain
amount of auxiliary space. Output is written to a stream: once something is
output, the algorithm cannot read it back at a later point as it executes. We
count the amount of auxiliary space in single-bit units, and the objective is to
use as little auxiliary space as possible.

Related Work. In the RAM model, earlier works with an emphasis on space
efficiency study problems such as reachability [4,24,26], sorting and selec-
tion [14,21,22] and graph recognition [2,12,23]. In recent years, new results on
the computability of separators for planar graphs in sublinear space have been
used to devise sublinear-space algorithms for BFS [1] and DFS [16] with better
running times than algorithms for general graphs.

Results. Since our model is less restrictive than the streaming model, we are
able to compute approximately optimal assignments for Max r-SAT instead of
approximating optimum values. On the other hand, our model is more restrictive
than the RAM model of classical approximation algorithms where the amount
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of space used by an algorithm can potentially be polynomially large in the input
size.

– For general Max r-SAT (Sect. 3), we convert a classical algorithm of Lieber-
herr and Specker [19] to our model, obtaining a ((

√
5 − 1)/2)-approximation

algorithm which uses O(log n) bits of space. We also convert a more recent
algorithm of Chou et al. [8] to obtain a (

√
2/2)-approximation algorithm

which uses O(r log n) bits of space.
– For Planar Max r-SAT (Sect. 4), we show how a (1 − ε)-approximation

scheme of Khanna and Motwani [18] can be implemented to use
max{√

n, (r/ε) log n} bits of space.

2 Preliminaries

We use the following standard notation and concepts. The set {0, 1, . . . } of natu-
ral numbers is denoted by N and the set {1, 2, . . . } of positive integers is denoted
by Z

+. For n ∈ Z
+, [n] denotes the set {1, 2, . . . , n}. An r-CNF formula is a

conjunction (OR) of disjunctions (AND) of at most r literals (variables or their
negations). The individual disjunctions are called clauses of the formula. A clause
that consists of a single literal is called a unit clause. For k ∈ [r], a k-clause is a
clause which contains exactly k literals.

2.1 Time and Space Overheads

In proofs, we measure resource costs in terms of overheads for individual steps.
Since the space available to an algorithm is limited, objects created by processing
the input are not stored, but recomputed on the fly. For example, consider a
procedure (call it A) that reads an input formula F and produces a subformula
F ′ consisting of the unit clauses of F . The procedure outputs F ′ as a stream SF ′ .
Later on, when another procedure (call it B) reads a portion of SF ′ , A recomputes
the entire stream SF ′ . Suppose the resource costs of A are tA time and sA space,
and (assuming random, constant-time access to F ′) suppose the resource costs
of B are tB time and sB space.

In this scenario, we call tB and sB the resource overhead of B. Combining this
overhead with resource costs of A, we obtain the actual resource costs of B: tB · tA
time and sB + sA space.

2.2 Universal Hash Families

Algorithms appearing later on use the trick of randomized sampling to show that
certain good assignments exist, and then compute such assignments using univer-
sal hashing, a well-known derandomization technique. The following proposition
arises from constructions of universal hash families described in [13] and the
observation that the constructions can be carried out in logarithmic space.
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Proposition 1 (Fredman et al. [13]). Let n, k, a, b ∈ Z
+ with n ≥ b ≥ a

and n ≥ k. One can enumerate a family Univ(n, k, a, b) of functions from [n] to
{0, 1} such that if Xi = f(i) (i ∈ [n]) are random variables that arise when f is
sampled uniformly at random from Univ(n, k, a, b), then X1, . . . , Xn are k-wise
independent and for i ∈ [n], P(Xi = 1) = a/b. The procedure runs in time nO(k)

and uses O(k log n) bits of space.

3 MAX r-SAT

In this section, we devise sublinear-space (
√

5−1)/2)- and (
√

2/2)-approximation
algorithms for Max r-SAT.

3.1 Factor-((
√
5 − 1)/2) Approximation Algorithm

In what follows, we give a logarithmic-space implementation of the following
result.

Proposition 2 (Lieberherr and Specker [19], Theorem 1). Let F be an
r-CNF formula with m clauses. There is an assignment for F which satisfies at
least (

√
5 − 1)m/2 clauses.

Definition 1 (2-Satisfiability). An r-CNF formula F is called 2-satisfiable if
any two of its clauses can be simultaneously satisfied, i.e. F does not contain a
pair (l,¬l) of literals as clauses.

The following proposition is based on arguments in [19] (see also [30]).

Proposition 3. Let F be a 2-satisfiable r-CNF formula with m clauses in which
all unit clauses are positive literals. For the pairwise-independent random assign-
ment where each variable of F is set to 1 with probability p = 0.618 ≈ (

√
5−1)/2,

the expected number of satisfied clauses is 0.618m.

We now show how the above proposition can be used to compute 0.618-
approximate optimal Max r-SAT assignments for general r-CNF formulas in
logarithmic space.

Theorem 1. For any instance of Max r-SAT with n variables, one can com-
pute a 0.618-approximate optimal assignment in time nO(1) using O(log n) bits
of space.

Proof. Let F be an r-CNF formula with variables x1, . . . , xn. In what follows,
we describe an algorithm which proves the claim.

Computing an Equivalent 2-Satisfiable Formula F ′. For each clause C in
F with at least two literals, check if any variables x appearing in C also appear
as a negated clauses ¬x in F . If they do, flip the x-literals (replace x with ¬x
or ¬x with x) in C and output the resulting clause. Otherwise, output C. The
clauses not output yet are unit clauses, i.e. they have exactly 1 literal. For each
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variable xi, check if xi appears as a unit clause in F . If it does, output xi. Then
output the special flag #NEG, to indicate that clauses to follow appear negated
in F . For each variable xi, check if it appears as a unit clause ¬xi in F . If it
does, check if the unit clause xi also appears in F . If both ¬xi and xi are clauses
in F , output nothing. Otherwise, output xi. Observe that the only clauses of F
not output are unit clauses that appear in pairs (l, ¬l).

Let F ′ be the conjunction of the clauses output and SF ′ be the stream output.
With random access to F , SF is produced in time nO(1) using O(log n) bits of
space. Clearly, F ′ is 2-satisfiable. Let φ be an assignment for F ′. Define φ′(xi) =
1 − φ(xi) for every xi appearing after the #NEG flag in SF ′ and define φ′(xi) =
φ(xi) otherwise. It is easy to see that φ satisfies the same number of clauses
in F ′ as φ′ does in F , and that given access to SF ′ and φ, the overhead for
computing φ′ is nO(1) time and O(log n) space. We use this transformation later
on to compute an assignment for F from an assignment for F ′.

Computing an Assignment for F ′. Using the procedure of Proposition 1,
compute the family H = Univ(n, 2, 618, 1000) and denote the stream of functions
by SH . Note that for f sampled uniformly at random from H, the random
variables Xi = f(i) (i ∈ [n]) form a pairwise independent random assignment
and for i ∈ [n], P(Xi = 1) = 0.618. Thus, one of the assignments in SH achieves
(for the 2-satisfiable formula F ′) the expectation value in Proposition 3.

Let m′ be the number of clauses in F ′. For each assignment φ in SH , scan S′
F

to determine the number c of clauses φ satisfies. If c > 0.618m′, output φ and
skip to the next step. By Proposition 1, the family H is computed in time nO(1)

and O(log n) bits of space. The overhead of this step is therefore nO(1) time and
O(log n) bits of space. Denote the output stream of this step by Sφ.

Computing an Assignment for F . Now convert the assignment φ from the
previous step to an assignment φ′ (according to the transformation described
earlier) as follows. For each xi, scan Sφ to determine the value v = φ(xi), and
scan SF ′ to determine if xi appears after the #NEG (it was flipped). If it does,
output the assignment φ′(xi) = 1−v. Otherwise, output the assignment φ′(xi) =
v. Since φ satisfies c ≥ 0.618m′ clauses in F ′, φ′ satisfies the same number of
clauses in F . In particular, it satisfies at least a 0.618-fraction of the non-unit
clauses, and unit clauses that do not appear in (l,¬l) pairs.

Of the pairs (l,¬l) of unit clauses appearing in F , exactly half are satisfied by
any assignment for the variables appearing in them. Now for each xi, scan Sφ, to
determine if φ assigns it a value. If it does not, output the assignment φ′(xi) = 1.
Clearly, φ′ now also satisfies exactly half of the unit clauses in F appearing in
pairs (l,¬l), i.e. it is an optimal assignment for those clauses. Thus, φ′ is 0.618-
optimal assignment for all of F . The overhead of this conversion step is also
nO(1) time and O(log n) bits of space.

Since the overheads for all steps are nO(1) time and O(log n) space, the overall
running time is (nO(1))

3
= nO(1) and the space used is 3 ·O(log n) = O(log n). ��
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3.2 Factor-(
√
2/2) Approximation Algorithm

In the following, we adapt arguments in [8] to devise a (
√

2/2)-approximation
algorithm which runs in time nO(r) and uses O(r log n) bits of space. Consider
the following definitions.

Definition 2 (Bias). Let F be an r-CNF formula with variables x1, . . . , xn.
For i ∈ [n], the bias of xi is bias(xi) =

∑
j∈[r](#(j-clauses containing xi) −

#(j-clauses containing ¬xi))/2j.
The bias of the entire formula is bias(F ) =

∑
i∈[n]|bias(xi)| and the formula

F is called positively biased if bias(xi) ≥ 0 for each i ∈ [n].

The next proposition shows that depending on whether the bias of a formula
is smaller than a certain value, one can satisfy a good proportion (in expectation)
of the clauses in it by setting each variable to 1 with fixed (bias-dependent)
probability.

Proposition 4 (Chou et al. [8]). Let F be a positively-biased r-CNF formula
with m clauses. For i ∈ [r], let mi be the number of i-clauses in F . The following
statements are true.

– The all-1’s assignment satisfies at least bias(F )
2 +

∑
i∈[r]

imi

2i clauses in F .
– When bias(F ) ≤ b∗ = 4

∑
i∈[r](1 − i+1

2i )mi, an r-wise independent random

assignment where variables are set to 1 with probability m−bias(F )
2m−4 bias(F ) ≤ 1 sat-

isfies, in expectation, at least
∑

i∈[r](1 − 1
2i )mi + bias(F )2

4b∗ clauses in F .
– The best of the two assignments above satisfies at least a (

√
2/2)-fraction of

the maximum number of simultaneously-satisfiable clauses in F .

We now show how the above proposition can be used to compute good
approximations in sublinear space. For any r-CNF formula F , we first compute
an equivalent positively-biased formula F ′ and then using Proposition 1, com-
pute an assignment for F ′ which is a (

√
2/2)-approximation. We then convert

this to an assignment for F satisfying the same number of clauses.

Theorem 2. For any instance of Max r-SAT with n variables, one can com-
pute a (

√
2/2)-approximate optimal assignment in time nO(r) using O(r log n)

bits of space.

Proof. Let F be an r-CNF formula with variables x1, . . . , xn and for i ∈ [n], let
mi be the number of i-clauses in F . In what follows, we describe an algorithm
which proves the claim.

Computing bias(F ) and b∗. Set bF , b∗ ← 0. For each i ∈ [n], compute bi =
bias(xi) and mi. It is easy to see that with random access to F , this can be done
in logarithmic space. Set bF ← bF + |bi|, b∗ ← b∗ + (1 − (i + 1)/2i)mi, and if
bi < 0, output xi to indicate that xi has negative bias in F . Then discard (bi,mi)
and move to the next iteration. Finally, store bF and b∗ ← 4b∗ for later steps
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using O(log n) bits of space. The entire loop takes time nO(1) and uses O(log n)
bits of space. Let SB be the stream output.

Computing an Equivalent Positively-Biased Formula F ′. For each clause
C in F , check if any variables x appearing in C also appear in the stream SB .
If they do, flip the x-literals (replace x with ¬x or ¬x with x) in C and output
the resulting clause. Otherwise, output C. Observe that the variables x flipped
are precisely those for which bias(x) < 0 in the previous step. Thus, the clauses
output form a positively-biased formula. Denote the output stream by SF ′ . The
overhead of this step is nO(1) time and O(log n) space.

Computing an Assignment for F ′. If bF > b∗, then output the all-1’s assign-
ment and skip to the next step. Otherwise, using the procedure of Proposition 1,
compute the family H = Univ(n, r, �m−bF �, �2m−4bF �) and denote the stream
of functions by SH . Similarly as in the proof of Theorem 1, one of the assignments
in SH achieves the expectation value in Proposition 4.

For each assignment φ in SH , scan S′
F to determine the number c of clauses

φ satisfies. If c ≥ bF
2/(16

∑k
i=2(1− (i+1)/2i)mi), output φ and skip to the next

step. The family of assignments is computed in time nO(r) and O(r log n) bits
of space, so the overhead of this step is nO(r) time and O(r log n) bits of space.
Denote the output stream of this step by Sφ.

Computing an Assignment for F . Convert the assignment φ from the previ-
ous step to an assignment φ′ for F as follows. For each xi, scan Sφ to determine
the value v = φ(xi), and scan SB to check if xi appears in it (it was flipped). If
it does, output the assignment φ′(xi) = 1−v. Otherwise, output the assignment
φ′(xi) = v. Clearly, φ satisfies the same number of clauses in F ′ as φ′ does in
F . By Proposition 4, this number is at least a (

√
2/2)-fraction of the maximum

number of simultaneously-satisfiable clauses in F . With access to Sφ and SB ,
the overhead of this step is nO(1) time and O(log n) space.

Thus, the algorithm outputs a (
√

2/2)-approximate optimal assignment as
required. Observe that the maximum overhead of any of the steps is nO(r) time
and O(r log n) space. Combining the (constantly many) overheads, the overall
running time is nO(r)·O(1) = nO(r) and the space used is O(r log n) · O(1) =
O(r log n). ��

4 PLANAR MAX r-SAT

In this section, we devise a sublinear-space PTAS for Planar Max r-SAT along
the lines of [18] using the partitioning approach in [3] for planar graph problems.
We use the following result to perform a BFS traversal of (the incidence graphs
of) the input instances in sublinear space.

Proposition 5. (Chakraborty and Tewari [9], Theorem 1). There is an
algorithm which takes as input a planar graph on n vertices and computes a BFS
sequence for G in time nO(1) using O(

√
n log n) bits of space.

The next result shows how to use the BFS traversal procedure to partition—
in sublinear space—the input formulas into subformulas of bounded diameter.
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Lemma 1. Let F be an r-CNF formula with n variables and m clauses that has
a planar incidence graph and let k ∈ N. One can compute a sequence F1, . . . , Fl

of subformulas of F such that

1. the diameter of the incidence graph of each Fi (i ∈ [l]) is at most k,
2. Fi and Fj have no variables in common for all i, j ∈ [l] with i = j, and
3. F1, . . . , Fl together contain at least (1 − 1/k)m clauses of F .

The procedure runs in time nO(1) and uses O(
√

n log n) bits of space.

Proof. Let x1, . . . , xn be the set of variables in F , {C1, . . . , Cm} be the set of
clauses in F , GF be the incidence graph of F , and VF (resp. CF ) be the vertices
of GF corresponding to the variables (resp. clauses) of F . In what follows, we
describe a procedure which proves the claim.

Adding a Dummy Vertex. This step ensures that GF is connected. Determine
the connected components of GF using the connectivity algorithm of Asano et
al. [1]: for any two vertices, it runs in time nO(1) and uses O(

√
n log n) bits of

space to check if the two vertices are connected. Then add a dummy variable
vertex xn+1 which has an edge to an arbitrary clause vertex in each connected
component, making GF connected. Additionally, add the clause ¬xn+1 (with
an edge to xn+1) to ensure that assignments for the formula F ′ determined by
the resulting graph GF ′ are in 1-1 correspondence with assignments for F . Now
output F ′ and GF ′ , and denote this output stream by SF ′ . With random access
to GF , it is not hard to see that this transformation runs in time nO(1) and uses
O(

√
n log n) bits of space.

Determining the BFS Levels of GF ′ . Consider a BFS traversal of GF ′ start-
ing at (the variable vertex corresponding to) xn+1. Suppose the depth of the
traversal is d0. Let d = d0 if d0 is even and d = d0 + 1 otherwise. For i ∈ [d],
set Li = {v ∈ V (GF ′) | dist(u, v) = i − 1}. Observe that L1, . . . , Ld are precisely
the levels of the BFS tree, with Li ⊆ VF for odd i and Li ⊆ CF for even i.

Splitting GF . Consider the following subsets of V(GF ′).

– For i ∈ [d/2 − 1], let Ui = L2i ∪ L2i+1 ∪ L2i+2. Observe that Ui ∩ Uj = ∅ iff
|i − j| ≤ 1 and for i ∈ [d/2 − 1], Ui ∩ Ui+1 = L2i+2.

– For i ∈ {0, . . . , k − 1}, let Wi =
⋃

j≡i (mod k) Uj . Observe that Wi ∩ Wj = ∅
iff i− j ≡ ±1 (mod k) and for i ∈ [d/2− 1], Wi ∩Wi+1 =

⋃
j≡i (mod k) L2j+2.

– For any A ⊆ VF ∪ CF , let C(A) be the clause vertices that appear in A, i.e.
C(A) = A ∩ CF .

Clearly, for i ∈ [d/2 − 1], C(Wi) =
⋃

j≡i (mod k) L2j ∪ L2j+2 and CF =
⋃

i∈0,...,k−1 C(Wi). By the inclusion-exclusion principle, we have

|C(W0)| + · · · + |C(Wk−1)| = |CF | + |C(W0) ∩ C(W1)| + · · · + |C(Wk−1) ∩ C(W0)|
= |CF | +

∑

i∈{0,...k−1}
|L2j+1| ≤ |CF | + |CF | = 2|CF |.
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Thus, for some i ∈ {0, . . . , k − 1}, we have |C(Wi)| ≤ 2|CF |/k, i.e. Wi con-
tains at most a (2/k)-fraction of the clauses in F ′ (and F ). Consider the graph
GF ′ − Wi. Observe that Wi comprises groups of 3 consecutive layers of the BFS
traversal, and consecutive groups are k−2 layers apart. Thus, removing Wi from
GF ′ disconnects GF ′ into connected components which contain at most k − 2
layers of the BFS traversal each, i.e. their diameters are at most k −2. It follows
that the formula F+ corresponding to GF ′ − Wi satisfies the conditions of the
claim.

To compute F+, perform the following steps. Using the procedure of Propo-
sition 5, perform a BFS traversal of the GF ′ portion of S′

F , starting at xn+1. Let
SB be the stream produced by this procedure. The overhead of the procedure is
nO(1) time and O(

√
n log n) bits of space. For each i ∈ [k], scan SB to determine

the number |C(Wi)| of clauses in Wi. For i achieving the smallest |C(Wi)| in the
loop, scan SB and output only the levels (and edges between them) which do
not appear in Wi. Let SF+ be this output stream. Now scan SF+, and for each
sequence of consecutive (connected) levels, output the subformula of F induced
by those levels. Observe that SF+ is produced by scanning SF ′ and the final
output is produced by scanning SF+ . Each scan only involves counting elements
in the stream and truncating parts of the stream to produce the output stream.
Thus, the overhead of this entire step is nO(1) time and O(

√
n log n) bits of space.

For the various steps, the maximum overhead is nO(1) time and O(
√

n log n)
bits of space. Thus, combining the overheads for the various steps, the resource
costs of the entire algorithm are nO(1) time and

√
n log n bits of space. ��

The next two results allow us to compute tree decompositions for incidence
graphs of bounded diameter in sublinear space.

Proposition 6 (Robertson and Seymour [25], Theorem 2.7). The
treewidth of any planar graph with diameter d is at most 3d + 1.

Proposition 7 (Elberfeld et al. [11], Lemma III.1). Let G be a graph on
n vertices with treewidth k ∈ N. One can compute a tree decomposition of width
4k + 1 for G such that the decomposition tree is rooted, binary and has depth
O(log n). The procedure runs in time nO(k) and uses O(k log n) bits of space.

We now show how one can solve Planar Max r-SAT exactly on formulas
with incidence graphs of bounded diameter.

Lemma 2. Let F be an r-CNF formula with n variables that has a planar inci-
dence graph with diameter k ∈ N. One can compute an assignment for F satis-
fying the maximum number of clauses in time nO(rk) using O(rk log2 n) bits of
space.

Proof. Let G be the incidence graph of F . Since the diameter of G is k, its
treewidth is at most 3k + 1 (Proposition 6). Consider a tree decomposition
(T,B) for G computed by the procedure of Proposition 7. T is the underlying
tree (rooted at a vertex vr ∈ V(T )) and B = {Bv | v ∈ V(T )} is the set of bags
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Procedure 1, BdTWMaxSAT: find an optimal assignment
Input: (T, v, B, ψ)

1 max ← 0, φmax ← ∅;
2 if v has no children in T then
3 store Vv, the set of variables in Bv;
4 let Av be the set of assignments Vv that extend ψ;
5 foreach φ ∈ Av do
6 determine val, the number of clauses appearing in Bv that φ satisfies;
7 if val > max then max ← val, φmax ← φ

8 return (max, φmax)

9 else
10 determine the left child vl and the right child vr of v in T if they exist;
11 store Vv, the set of variables in Bv, and those in Bvl and Bvr adjacent to

clause variables in Bv;
12 let Av be the set of assignments for Vv that extend ψ;
13 foreach φ ∈ Av do
14 (vall, φl) ← BdTWMaxSAT(T, vl, B, φ);
15 (valr, φr) ← BdTWMaxSAT(T, vr, B, φ);
16 if vall + valr > max then max ← vall + valr, φmax ← φl ∪ φr

17 return (max, φmax)

in the decomposition. By the proposition, the depth of T is O(log n) and its
width is at most 4 · (3k + 1) + 1 = O(k), i.e. |Bv| = O(k) for all v ∈ V(T ).

For each v ∈ V(T ), let Fv be the subformula of F consisting of all clauses
appearing in bags of the subtree of T rooted at v. Let Vv be the set of variables
in Bv, and those in the bags of v’s children (if they exist) that are adjacent to
variables in Bv.

In what follows, we prove that BdTWMaxSAT (T, vr,B, ∅) (∅ denotes the empty
assignment) computes an assignment for F satisfying the maximum number of
clauses. We momentarily assume constant-time access to G and (T, B).

Assume for induction that for any v ∈ V(T ), any assignment ψ for Vv and
any child vc of v, that BdTWMaxSAT(T, vc,B, ψ) returns an assignment for Fvc

which extends ψ and satisfies the maximum number of clauses in Fvc
among

all such assignments. Now consider a procedure call BdTWMaxSAT(T, v,B, ψ). The
procedure first determines if v has any children. If it does not, then the procedure
iterates over all assignments for Vv that extend ψ, finds one that satisfies the
maximum number of clauses in Fv and returns it. Thus, the procedure is correct
in the base case. Since |Vv| ≤ |Bv| = O(k), the number of such assignments is
2O(k). The call stack stores ψ and Vv, so the assignments can be enumerated in
time 2O(k) · nO(1) using O(rk log n) bits of extra space. Thus, this section of the
procedure runs in time 2O(k) · nO(1) and uses O(k log n) bits of space.

In the other case, i.e. v has children, the procedure determines the left and
right children of v by scanning (T,B) and stores Vv. Since each clause in Bv

has at most r literals, we have |Vv| ≤ r · |Bv| = O(rk). The loop iterates over
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the set Av of assignments φ for Vv that extend ψ. The assignments can be
enumerated (since ψ and Vv are stored on the call stack) in time 2O(rk) · nO(1)

using O(rk log n) bits of extra space. Next, the procedure calls itself recursively
and stores the tuples returned. Because of the inductive assumption, φl (resp.
φr) extends φ and satisfies the maximum number of clauses in Fvl

(resp. Fvr
)

among all such assignments.
Observe that because (T,B) is a tree decomposition, the variables outside

of Vv that φl sets are distinct from the variables outside of Vv that φr sets.
Thus, φl and φr do not conflict with each other. In the loop, the procedure
finds an extension φ of ψ such that its extensions φl and φr, respectively, satisfy
the maximum number of clauses in Fl and Fr. Overall, φ is an extension of ψ
which satisfies the maximum possible number of clauses in Fv. This proves the
inductive claim, and thus the procedure is correct.

We now prove the resource bounds of the procedure (assuming constant-time
access to G and (T,B)). Observe that in each recursive call, the individual steps
use O(rk log n) bits of space and the loops also use O(rk log n) bits of space.
Since T has depth O(log n), the depth of the recursion tree is also O(log n), and
therefore the call BdTWMaxSAT(T, r,B, ∅) uses a total of O(rk log2 n) bits of space.

Outside of the recursive calls, the individual steps of the procedure are
polynomial-time and the total running time for the other operations in the loops
is 2O(rk) ·nO(1). Thus, if the recursive calls take time T , the overall running time
of the procedure is 2O(rk) · 2T + 2O(rk) · nO(1). Since the depth of the recursion
tree is O(log n), this expression solves to nO(rk).

Now consider the overheads for computing G and (T, B). G is clearly com-
putable in polynomial time and logarithmic space and by Proposition 7, (T, B)
is computable in time nO(k) using O(k log n) bits of space. The real resource
costs of BdTWMaxSAT(T, vr,B, ∅) are therefore nO(rk) · nO(k) = nO(rk) time and
O(rk log2 n) + O(k log n) = O(rk log2 n) bits of space. ��

The next theorem combines the previous results to devise a sublinear-space
PTAS for Planar Max r-SAT.

Theorem 3. For any 0 < ε < 1, one can compute (1 − ε)-approximate
optimal assignments for Planar Max r-SAT in time nO(r/ε) using
max{√

n log n, (r/ε) log2 n} bits of space.

Proof. Consider the following algorithm. Using the procedure of Lemma 1 with
k = �1/ε�, partition F into subformulas F1, . . . , Fl. Then for each i ∈ [l], use the
procedure of Lemma 2, compute an exact solution for Fi and output an assign-
ment. In the end, output assignments x = 0 for all variables x not appearing in
F1, . . . , Fl.

Observe that since the partitioning procedure outputs the subformulas as a
stream SF = F1, . . . , Fl, each access to Fi costs a single pass over SF , which
adds only an nO(1)-time, O(log n)-space overhead. By Lemma 1, the partition-
ing procedure runs in time nO(1) and uses O(

√
n log n) bits of space. Combining

the overhead for access to Fi and the resource bounds from Lemma 2, solv-
ing Fi exactly takes time nO(1) · nO(rk) = nO(r/ε) (since k = �1/ε�) and uses
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O(log n)+O(
√

n log n)+O(rk log2 n) = max{√
n log n, (r/ε) log2 n} bits of space.

Finally, each x = 0 assignment for a variable not appearing in F1, . . . , Fl costs a
single pass over SF . It follows that the total resource costs are nO(r/ε) time and
max{√

n log n, (r/ε) log2 n} bits of space.
We now prove the approximation bound. Let m be the number of clauses in

F . Observe that Lemma 1 guarantees any two subformulas Fi and Fj (i, j ∈ l
with i = j) have no variables in common, and the subformulas together contain
at least (1 − 1/k)m ≥ (1 − ε)m clauses of F . Thus, the assignment produced
is valid and satisfies at least (1 − ε)m clauses, i.e. it is a (1 − ε)-approximate
optimal Planar Max r-SAT assignment for F . ��
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A Further Improvement
on Approximating TTP-2
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Abstract. The Traveling Tournament Problem (TTP) is a hard but
interesting sports scheduling problem inspired by Major League Baseball,
which is to design a double round-robin schedule such that each pair of
teams plays one game in each other’s home venue, minimizing the total
distance traveled by all n teams (n is even). In this paper, we consider
TTP-2, i.e., TTP with one more constraint that each team can have at
most two consecutive home games or away games. Due to the different
structural properties, known algorithms for TTP-2 are different for n/2
being odd and even. For odd n/2, the best known approximation ratio is
about (1+12/n), and for even n/2, the best known approximation ratio
is about (1 + 4/n). In this paper, we further improve the approximation
ratio from (1+4/n) to (1+3/n) for n/2 being even. Experimental results
on benchmark sets show that our algorithm can improve previous results
on all instances with even n/2 by 1% to 4%.

Keywords: Sports scheduling · Traveling tournament problem ·
Approximation algorithms · Timetabling combinatorial optimization

1 Introduction

The Traveling Tournament Problem (TTP), first systematically introduced
in [5], is a hard but interesting sports scheduling problem inspired by Major
League Baseball. This problem is to find a double round-robin tournament sat-
isfying several constraints that minimizes the total distances traveled by all
participant teams. There are n participating teams in the tournament, where n
is always even. Each team should play 2(n − 1) games in 2(n − 1) consecutive
days. Since each team can only play one game on each day, there are exact n/2
games scheduled on each day. There are exact two games between any pair of
teams, where one game is held at the home venue of one team and the other one
is held at the home venue of the other team. The two games between the same
pair of teams could not be scheduled in two consecutive days. These are the
constraints for TTP. We can see that it is not easy to construct a feasible sched-
ule. Now we need to find an optimal schedule that minimizes the total traveling
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distances by all the n teams. A well-known variant of TTP is TTP-k, which has
one more constraint: each team is allowed to take at most k consecutive home
or away games. If k is very large, say k = n − 1, then this constraint will lose
its meaning and it becomes TTP again. For this case, a team can schedule its
travel distance as short as the traveling salesmen problem. On the other hand,
in a sports schedule, it is generally believed that home stands and road trips
should alternate as regularly as possible for each team [3,15]. The smaller the
value of k, the more frequently teams have to return their homes. TTP and its
variants have been extensively studied in the literature [10,13,15,19].

1.1 Related Work

In this paper, we will focus on TTP-2. We mainly survey the results on TTP-k.
For k = 1, TTP-1 is trivial and there is no feasible schedule [17]. But when k ≥ 2,
the problem suddenly becomes very hard. It is not easy to find a simple feasible
schedule. Even no good brute force algorithm with a single exponential running
time has been found yet. In the online benchmark [16], most instances with more
than 10 teams are still unsolved completely even by using high-performance
machines. The NP-hardness of TTP-k with k = 3 or k = n − 1 has been proved
[2,14]. Although the hardness of other cases has not been theoretically proved,
most people believe TTP-k with k ≥ 2 is very hard. In the literature, there is
a large number of contributions on approximation algorithms [8,9,12,15,18–20]
and heuristic algorithms [1,4,6,7,11].

In terms of approximation algorithms, most results are based on the assump-
tion that the distance holds the symmetry and triangle inequality properties.
This is natural and practical in the sports schedule. For TTP or TTP-k with
k ≥ n − 1, Westphal and Noparlik [18] proved an approximation ratio of 5.875
and Imahori et al. [9] proved an approximation ratio of 2.75 at the same time.
For TTP-3, the current approximation ratio is 5/3+O(1/n) [20]. The first record
of TTP-2 seems from the schedule of a basketball conference of ten teams in [3].
This paper did not discuss the approximation ratio. In fact, any feasible schedule
for TTP-2 is a 2-approximation solution [15]. Although any feasible schedule will
not have a very bad performance, no simple construction of feasible schedules is
known now. In the literature, all known algorithms for TTP-2 are different for
n/2 being even and odd. This may be caused by different structural properties.
One significant contribution to TTP-2 was done by Thielen and Westphal [15].
They proposed a (3/2+O(1/n))-approximation algorithm for n/2 being odd and
a (1+16/n)-approximation algorithm for n/2 being even. Now the approximation
ratio was improved to (1+ 12

n + 8
n(n−2) ) for odd n/2 [22] and to (1+ 4

n + 4
n(n−2) )

for even n/2 [19].

1.2 Our Results

In this paper, we design an effective algorithm for TTP-2 with n/2 being even
with an approximation ratio (1 + 3

n − 6
n(n−2) ), improving the ratio from (1 +
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4
n +Θ( 1

n(n−2) )) to (1+ 3
n −Θ( 1

n(n−2) )). Now the ratio is small and improvement
becomes harder and harder. Our major algorithm is based on packing minimum
perfect matching. We first find a minimum perfect matching in the distance
graph, then pair the teams according to the matching, and finally construct a
feasible schedule based on the paired teams (called super-teams). Our algorithm
is also easy to implement and runs fast. Experiments show that our results beat
all previously-known solutions on the 17 tested instances in [19] with an average
improvement of 2.10%. Due to limited space, the proofs of some lemmas and
theorems are omitted, which can be found in the full version of this paper [21].

2 Preliminaries

We will always use n to denote the number of teams and let m = n/2, where n
is an even number. We also use {t1, t2, . . . , tn} to denote the set of the n teams.
A sports scheduling on n teams is feasible if it holds the following properties.

– Fixed-game-value: Each team plays two games with each of the other n − 1
teams, one at its home venue and one at its opponent’s home venue.

– Fixed-game-time: All the games are scheduled in 2(n − 1) consecutive days
and each team plays exactly one game in each of the 2(n − 1) days.

– Direct-traveling : All teams are initially at home before any game begins, all
teams will come back home after all games, and a team travels directly from
its game venue in the ith day to its game venue in the (i + 1)th day.

– No-repeat : No two teams play against each other on two consecutive days.
– Bounded-by-k: The number of consecutive home/away games for any team is

at most k.

The TTP-k problem is to find a feasible schedule minimizing the total trav-
eling distance of all the n teams. The input of TTP-k contains an n×n distance
matrix D that indicates the distance between each pair of teams. The distance
from the home of team i to the home of team j is denoted by Di,j . We also
assume that D satisfies the symmetry and triangle inequality properties, i.e.,
Di,j = Dj,i and Di,j ≤ Di,h + Dh,j for all i, j, h. We also let Di,i = 0 for each i.

We will use G to denote an edge-weighted complete graph on n vertices
representing the n teams. The weight of the edge between two vertices ti and
tj is Di,j , the distance from the home of ti to the home of tj . We also use Di

to denote the weight sum of all edges incident on ti in G, i.e., Di =
∑n

j=1 Di,j .
The sum of all edge weights of G is denoted by DG.

We let M denote a minimum weight perfect matching in G. The weight sum of
all edges in M is denoted by DM . We may consider the endpoint pair of each edge
in M as a super-team. We use H to denote the complete graph on the m vertices
representing the m super-teams. The weight of the edge between two super-teams
ui and uj , denoted by D(ui, uj), is the sum of the weight of the four edges in G
between one team in ui and one team in uj , i.e., D(ui, uj) =

∑
ti′ ∈ui&tj′∈uj

Di′,j′ .
We also let D(ui, ui) = 0 for any i. We give an illustration of the graphs G and
H in Fig. 1.
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Fig. 1. An illustration of graphs G and H, where there four dark lines form a minimum
perfect matching M in G

The sum of all edge weights of H is denoted by DH . It holds that

DH = DG − DM . (1)

2.1 Independent Lower Bound and Extra Cost

The independent lower bound for TTP-2 was firstly introduced by Campbell and
Chen [3]. The basic idea of the independent lower bound is to obtain a lower
bound LBi on the traveling distance of a single team ti independently without
considering the feasibility of other teams.

The road of a team ti in TTP-2, starting at its home venue and coming back
home after all games, is called an itinerary of the team. The itinerary of ti is
also regarded as a graph on the n teams, which is called the itinerary graph of
ti. In an itinerary graph of ti, the degree of all vertices except ti is 2 and the
degree of ti is greater than or equal to n since team ti will visit each other team
venue only once. Furthermore, for any other team tj , there is at least one edge
between ti and tj , because ti can only visit at most 2 teams on each road trip
and then team ti either comes from its home to team tj or goes back to its home
after visiting team tj . We decompose the itinerary graph of ti into two parts:
one is a spanning star centered at ti and the forest of the remaining part. Note
that in the forest, only ti may be a vertex of degree ≥2 and all other vertices
are degree-1 vertices. See Fig. 2 for illustrations of the itinerary graphs.

⋯
1

⋯
23

4⋯ ⋯
12

3

(a) Example (b) Example

Fig. 2. The itinerary graph of ti, where the light edges form a spanning star and the
dark edges form the remaining forest. In the right example (b), the remaining forest is
a perfect matching of G

For different itineraries of ti, the spanning star is fixed and only the remaining
forest may be different. The total distance of the spanning star is

∑
j �=i Di,j = Di.
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On the other hand, the distance of the remaining forest is at least as that of a
minimum perfect matching of G by the triangle inequality. Recall that we use
M to denote a minimum perfect matching of G. Thus, we have a lower bound
LBi for each team ti:

LBi = Di + DM . (2)

The itinerary of ti to achieve LBi is called the optimal itinerary. The inde-
pendent lower bound for TTP-2 is the traveling distance such that all teams
reach their optimal itineraries, which is denoted as

LB =
n∑

i=1

LBi =
n∑

i=1

(Di + DM ) = 2DG + nDM . (3)

To analyze the quality of a schedule of the tournament, we will compare the
itinerary of each team with the optimal itinerary. The different distance is called
the extra cost. We may consider the extra cost for a subpart of the itinerary. A
road trip in an itinerary of team ti is a simple cycle starting and ending at ti.
So an itinerary consists of several road trips. Let L and L′ be two itineraries of
team ti, Ls be a sub itinerary of L consisting of several road trips in L, and L′

s

be a sub itinerary of L′ consisting of several road trips in L′. We say that the
sub itineraries Ls and L′

s are coincident if they visit the same set of teams. We
will only compare a sub itinerary of our schedule with a coincident sub itinerary
of the optimal itinerary and consider the extra cost between them.

3 Constructing the Schedule

Our construction consists of two parts. First, we arrange super-games between
super-teams, where each super-team contains a pair of normal teams. Then
we extend super-games to normal games between normal teams. To make the
itinerary as similar as the optimal itinerary, we take each team pair in the min-
imum perfect matching M of G as a super-team. There are n normal teams
and then there are m = n/2 super-teams. We denote the set of super-teams as
{u1, u2, . . . , um} and relabel the n teams such that ui = {t2i−1, t2i} for each i.

Each super-team will attend m − 1 super-games in m − 1 time slots. Each
super-game on the first m− 2 time slots will be extended to eight normal games
between normal teams on four days, and each super-game on the last time slot
will be extended to twelve normal games between normal teams on six days. So
each normal team ti will attend 4 × (m − 2) + 6 = 4m − 2 = 2n − 2 games. This
is the number of games each team ti should attend in TTP-2. In our algorithm,
the case of n = 4 is easy, and hence we assume here that n ≥ 8.

We construct the schedule for super-teams from the first time slot to the last
time slot m−1. In each of the m−1 time slots, we have m

2 super-games. In fact,
our schedules in the first time slot and in the last time slot are different from
the schedules in the middle time slots.
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For the first time slot, the m
2 super-games are arranged as shown in Fig. 3.

All of these super-games are called normal super-games. Each super-game is
represented by a directed edge, the information of which will be used to extend
super-games to normal games between normal teams.

Fig. 3. The super-game schedule on the first time slot for an instance with m = 10

In Fig. 3, the last super-team um is denoted as a dark node, and all other
super-teams u1, . . . , um−1 are denoted as white nodes which form a cycle. In the
second time slot, we keep the position of um and change the positions of white
super-teams in the cycle by moving one position in the clockwise direction, and
also change the direction of each edge except for the most left edge incident
on um. This edge will be replaced by a double arrow edge. The super-game
including um is also called a left super-game in the middle m − 3 time slots.
So in the second time slot, there are m

2 − 1 normal super-games and one left
super-games. An illustration of the schedule in the second time slot is shown in
Fig. 4.

Fig. 4. The super-game schedule on the second time slot for an instance with m = 10

In the third time slot, there are also m
2 − 1 normal super-games and one

left super-games. We also change the positions of white super-teams in the cycle
by moving one position in the clockwise direction while the direction of each
edge is reversed. The position of the dark node will always keep the same. An
illustration of the schedule in the third time slot is shown in Fig. 5.

The schedules for the other middle slots are derived analogously. Before we
introduce the super-games in the last time slot m − 1, we first explain how to
extend the super-games in the first m − 2 time slots to normal games. In these
time slots, we have two different kinds of super-games: normal super-games and
left super-games. We first consider normal super-games.

Case 1. Normal Super-Games: Each normal super-game will be extended to
eight normal games on four days. Assume that in a normal super-game, super-
team ui plays against the super-team uj on time slot q (1 ≤ i, j ≤ m and
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Fig. 5. The super-game schedule on the third time slot for an instance with m = 10

1 ≤ q ≤ m − 2). Recall that ui represents normal teams {t2i−1, t2i} and uj

represents normal teams {t2j−1, t2j}. The super-game will be extended to eight
normal games on four corresponding days from 4q − 3 to 4q, as shown in Fig. 6.
A directed edge from team ti′ to team ti′′ means ti′ plays against ti′′ at the
home venue of ti′′ . Note that if there is a directed edge from uj to ui, then the
direction of all the edges in Fig. 6 should be reversed.

Fig. 6. Extending normal super-games

Case 2. Left Super-Games: Assume that in a left super-game, super-team um

plays against super-team ui on time slot q (2 ≤ i ≤ m − 2 and 2 ≤ q ≤ m − 2).
Recall that um represents normal teams {t2m−1, t2m} and ui represents normal
teams {t2i−1, t2i}. The super-game will be extended to eight normal games on
four corresponding days from 4q − 3 to 4q, as shown in Fig. 7 for even time slot
q. For odd time slot q, the direction of edges in the figure will be reversed.

Days: − 3 − 2 − 1
2 2 2 2
−1 −1 −1 −1 −1 −1 −1 −1………………………………………

Fig. 7. Extending left super-games

The first m−2 time slots will be extended to 4(m−2) = 2n−8 days according
to the above rules. Each normal team will have six remaining games, which will
be corresponding to the super-games on the last time slot. We will call a super-
game on the last time slot a last super-game. Figure 8 shows an example of the
schedule on the last time slot.
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Fig. 8. The super-game schedule on the last time slot for an instance with m = 10

Case 3. Last Super-Games: Next, we extend a last super-game into twelve
normal games on six days. Assume that on the last time slot q = m − 1, super-
team ui plays against super-team uj (1 ≤ i, j ≤ m). Recall that ui represents
normal teams {t2i−1, t2i} and uj represents normal teams {t2j−1, t2j}. The last
super-game will be extended to twelve normal games on six corresponding days
from 4q − 3 to 4q + 2, as shown in Fig. 9.

Fig. 9. Extending last super-games

Theorem 1 (*). For TTP-2 with n teams such that n ≡ 0 (mod 4), the above
construction can generate a feasible schedule.

We have introduced a method to construct a feasible schedule. Next, we will
specify the order of some teams or super-teams to minimize the extra cost.

4 Approximation Quality of the Schedule

To show the quality of our schedule, we compare it with the independent lower
bound. We will check the difference between our itinerary of each team ti and
the optimal itinerary of ti and compute the extra cost. As mentioned in the last
paragraph of Sect. 2, we will compare some sub itineraries of a team. We will
look at the sub itinerary of a team on the four or six days in a super-game, which
is coincident with a sub itinerary of the optimal itinerary: all teams stay at home
before the first game in a super-game and return home after the last game in
the super-game. In our algorithm, there are three types of super-games: normal
super-games, left super-games, and last super-games. We analyze the total extra
cost of all normal teams caused by each type of super-games.

Lemma 1 (*). Assume there is a super-game between super-teams ui and uj in
our schedule.
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(a) If the super-game is a normal super-game, then the extra cost of all normal
teams in ui and uj is 0;

(b) If the super-game is a left or last super-game, then the extra cost of all
normal teams in ui and uj is at most D(ui, uj).

In our schedule, there are m
2 + (m − 3)(m2 − 1) normal super-games, which

contribute 0 to the extra cost. There are m − 3 left super-games on the
m − 3 middle time slots. By Lemma 1, we know that the total extra cost is
E1 =

∑m−2
i=2 D(um, ui). There are m

2 last super-games on the last time slot. By
Lemma 1, we know that the total extra cost is E2 =

∑m/2
i=1 D(ui, um+1−i).

Lemma 2. The total extra cost of our schedule is at most

E1 + E2 =
m−2∑

i=2

D(um, ui) +
m/2∑

i=1

D(ui, um+1−i).

Next, we will make E1 and E2 as small as possible by reordering the teams.
First, we consider E2. The extra cost is the sum of the weight of edges

{uium+1−i}m/2
i=1 in H, which form a matching in H. Our algorithm is to reorder

ui such that {uium+1−i}m/2
i=1 is a minimum perfect matching in H. Note that

H is a complete graph on m (even) vertices and then we can use O(m3) time
algorithm to find the minimum perfect matching MH in H. Our algorithm will
reorder ui such that {uium+1−i}m/2

i=1 = MH . For the cost of MH , we have that

E2 = DMH
≤ 1

m − 1
DH . (4)

Second, we consider E1. Our idea is to choose um such that
∑m−2

i=2 D(um, ui)
is minimized. Note that once um is determined, super-team u1 is also determined
by the matching MH (umu1 should be an edge in MH). After determining um

and u1 together, we sill need to decider um−1. We first let um be the super-team
such that

∑m−1
i=2 D(um, ui) is minimized (There are m possible candidates for

um). Thus, we have that

m−1∑

i=2

D(um, ui) ≤ 2(DH − DMH
)

m
.

Then we let um−1 be the super-team such that D(um, um−1) ≥ D(um, ui) for
all 2 ≤ i ≤ m − 2. Thus, we have that

E1 =
m−2∑

i=2

D(um, ui) ≤
m−1∑

i=2

D(um, ui)
m − 3
m − 2

≤ 2(m − 3)(DH − DMH
)

m(m − 2)
. (5)
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By (1), (3), (4) and (5), we know that the total extra cost of our schedule is

E1 + E2 ≤ DMH
+ 2(m−3)(DH−DMH

)

m(m−2)

= (1 − 3
m + 1

m−2 )DMH
+ ( 3

m − 1
m−2 )DH

≤ ( 3
m − 3

m(m−1) )DH

≤ ( 3
2m − 3

2m(m−1) )LB = ( 3
n − 6

n(n−2) )LB.

(6)

Next, we analyze the running-time bound of our algorithm. Our algorithm
first uses O(n3) time to compute the minimum perfect matching M and the
minimum perfect matching MH . It takes O(n2) time for us to determine um and
um−1 such that (4) and (5) hold and the remaining construction of the schedule
also use O(n2) time. Thus, our algorithm runs in O(n3) time.

Theorem 2. For TTP-2 on n teams where n ≥ 8 and n ≡ 0 (mod 4), a feasible
schedule can be computed in O(n3) time such that the total traveling distance is
at most (1 + 3

n − 6
n(n−2) ) times of the independent lower bound.

5 Experimental Results

To test the performance of our schedule algorithm, we will implement it on
well-known benchmark instances. For experiments, we will also use some simple
heuristic methods to get further improvements.

5.1 Heuristics Based on Local Search

In the above analysis, we choose the permutation such that we can get a good
approximation ratio. This is just for the purpose of the analysis. We do not
guarantee this permutation is optimal. Other permutations may lead to better
results on each concrete instance. However, the number of permutations is expo-
nential and it is not effective to check all of them. Our idea is to only consider
the permutations obtained by swapping the indexes of two super-teams and by
swapping the indexes of the two teams in the same super-team. First, to check
all possible swapping between two super-teams, we will have O(m2) loops, and
the running-time bound will increase a factor of m2. Second, for each last super-
game between two super-teams, we consider the two orders of the two teams in
each super-team and then we get four cases. We directly compute the extra cost
for the four cases and select the best one. There are m/2 last super-games and
then we only have O(m) additional time. Note that we do not apply the second
swapping for normal and left super-games since this operation will not get any
improvement on them (this can be seen from the proof of Lemma 1).

5.2 Applications to Benchmark Sets

Our tested benchmark comes from [16], where introduces 62 instances and most
of them are instances from the real world. There are 34 instances of n teams
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Table 1. Experimental results on the 17 instances with n teams (n is divisible by 4)

Data set ILB values Previous

results

Before

swapping

After

swapping

Our gap

(%)

Improvement

ratio (%)

Galaxy40 298484 307469 306230 305714 2.42 0.57

Galaxy36 205280 212821 211382 210845 2.71 0.93

Galaxy32 139922 145445 144173 144050 2.95 0.96

Galaxy28 89242 93235 92408 92291 3.42 1.01

Galaxy24 53282 55883 55486 55418 4.01 0.83

Galaxy20 30508 32530 32082 32067 5.11 1.42

Galaxy16 17562 19040 18614 18599 5.90 2.32

Galaxy12 8374 9490 9108 9045 8.01 4.69

NFL32 1162798 1211239 1199619 1198091 3.04 1.09

NFL28 771442 810310 798208 798168 3.46 1.50

NFL24 573618 611441 598437 596872 4.05 2.38

NFL20 423958 456563 444426 442950 4.48 2.98

NFL16 294866 321357 310416 309580 4.99 3.66

NL16 334940 359720 351647 350727 4.71 2.50

NL12 132720 144744 140686 140686 6.00 2.80

Super12 551580 612583 590773 587387 6.49 4.11

Brazil24 620574 655235 643783 642530 3.54 1.94

with n ≥ 4 and n ≡ 0 (mod 4). Half of them are very small (n ≤ 8) or very
special (all teams are in a cycle or the distance between any two teams is 1)
and they were not tested in previous papers. So we only test the remaining 17
instances. The results are shown in Table 1, where the column ‘ILB Values’ indi-
cates the independent lower bounds, ‘Previous Results’ lists previously known
results in [19], ‘Before Swapping ’ is the results obtained by our schedule algo-
rithm without using the local search method of swapping, ‘After Swapping ’ shows
the results after swapping, ‘Our Gap’ is defined to be AfterSwapping − ILB V alues

ILB V alues

and ‘Improvement Ratio’ is defined as Previous Results − AfterSwapping
Previous Results .

From Table 1, we can see that our schedule algorithm can improve all the 17
instances with an average improvement of 2.10%. In these tested instances, the
number of teams is at most 40. So our algorithm runs very fast. On a standard
laptop with a 2.30 GHz Intel(R) Core(TM) i5-6200 CPU and 8 gigabytes of
memory, all the 17 instances can be solved together within 0.1 s before applying
the local search and within 8 s including local search.

6 Conclusion

In this paper, we introduce a new schedule for TTP-2 with n ≡ 0 (mod 4) and
prove an approximation ratio of (1 + 3

n − 6
n(n−2) ), improving the previous ratio

of (1 + 4
n + 4

n(n−2) ) in [19]. The improvement looks small. However, the ratio
is quite close to 1 now and further improvements become harder and harder.
Furthermore, the new construction method is simpler and more intuitive, com-
pared with the previous method in [19]. Experiments also show that the new
schedule improves the results on all tested instances in the benchmark [16]. In
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the analysis, we can see that the extra cost of our schedule is contributed by left
and last super-games. So we can decompose the analysis of the whole schedule
into the analysis of left and last super-games. To get further improvements, we
only need to reduce the number of left and last super-games.
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Abstract. Several language models rely on an assumption modeling
each local context as a (potentially oriented) bag of words, and have
proven to be very efficient baselines. Sequence graphs are the natural
structures encoding their information. However, a sequence graph may
have several realizations as a sequence, leading to a degree of ambigu-
ity. In this paper, we study such degree of ambiguity from a combina-
torial and computational point of view. In particular, we present the-
oretical properties of sequence graphs. Several combinatorial problems
are presented, depending on three levels of generalisation (window size,
graph orientation, and weights), that we characterize with new complex-
ity results. We establish different algorithms, including an integer pro-
gram and a dynamic programming formulation to respectively recognize
a sequence graph and to count the number of its distinct realizations.

Keywords: Graphs · Sequences · Combinatorics · Inverse problem ·
Complexity class

1 Introduction

The automated treatment of familiar objects, either natural or artifacts, always
relies on a translation into entities manageable by computer programs. However,
the correspondence between the object to be treated and “its” representation is
not necessarily one-to-one. The representations used for learning algorithms are
no exception to this rule. In particular, natural language words and textual docu-
ments representations are essential for several tasks, including document classifi-
cation [12], role labelling [9], and named entity recognition [6]. The models based
on pointwise mutual information, or graph-of-words (GOW), [3,7,10], supple-
ment the content of bag-of-words (TF, TFIDF) with statistics of co-occurrences
within a window of fixed size w, introduced to mitigate the degree of ambiguity.
Several models [1,5,8,11] also use the same type of information and constitute
strong baselines for natural language processing.

While these representations are more precise than the traditional bag-of-
words (e.g. Parikh vectors), they still induce some level of ambiguity, i.e. a
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Fig. 1. Sequence digraphs (or directed graphs-of-words) built for the sentence “Linux
is not UNIX but Linux” using window sizes 3 (a) and 2 respectively (b). In the second
case, the sequence graph is ambiguous, since any circular permutation of the words
admits the same representation.

Fig. 2. Sequence digraphs (or directed graphs-of-words) built for the sentence “a b r a
c a d a b r a” using window sizes 2 (a), 3 (b), 4 (c) and 5 (d).

given graph can represent several sequences. Our study is thus motivated by a
quantification of the level of ambiguity, seen as an algorithmic problem.

Related Work

Sequence graphs encode the information of several co-occurences based mod-
els [1,8]. To the best of our knowledge, the ambiguity and realizability questions
addressed in this work were never addressed by prior work in computational
linguistics. Furthermore, we believe the problems studied in this paper are new
and interesting from an algorithmic point of view, and appear to be devoid of
reduction to other well-known problems.

The problem we consider in this paper can appear to be similar to the Univer-
sal Reconstruction of a String problem [2], which consists in determining the set
of strings of a fixed length, with the most distinct letters satisfying substrings
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equations of the form: s[q1 . . . qp] = s[q′
1 . . . q′

p], . . . , s[r1 . . . rm] = s[r′
1 . . . p′

m]
where we denote the substring sq1 . . . sqp by s[q1 . . . qp], and such that all the
considered indexing sequences are strictly increasing. In this paper, we show
that these problems are actually very different, and in particular, our complex-
ity results imply the absence of reduction to the Universal Reconstruction of a
String, which can be solved in linear time.

Furthermore, some similarities exist between our problem and others studied
in the Distance Geometry (DG) literature. In distance geometry, the input con-
sists of a set of pairwise distances between points, having unknown positions in
a d-dimensional space. The problem then consists in determining a set of posi-
tions for the points (if they exist), satisfying the distance constraints. Since a
position is fully characterized from d + 1 constraining neighbors, the problem
can be solved by finding a sequential order for processing points, such that the
assignment of a point is always by at least d + 1 among its neighbors [4]. This
statement shares some level of similarity with our problem since a realization
for a window w = d + 2 also represents a linear ordering of its nodes, in which
w − 1 = d + 1 of the neighbors have lower value with respect to the order.

The reasons for the insufficiency of linear ordering in DG to solve our realiz-
ability problem are threefold. First, each element of the sequence x is associated
a unique vertex. This is not the case we investigate here, since a symbol can be
repeated several times, but only one vertex is created in the graph. This implies
that the vertex associated to the ith element (i ≥ w) of x can have strictly
less than w − 1 distinct neighbors in its predecessors in x. Second, the absence
of loops in distance geometry, because an element is at distance 0 from itself.
Finally, the graphs are essentially undirected in distance geometry.

After introducing in Sect. 2 the formal definition of a sequence graph and the
descriptions of our main problems, we establish in Sect. 3.1 complexity aspects of
deciding the existence and counting sequences in GOWs associated with a win-
dow size w = 2. Then we consider in Sect. 3.2 the general case w ≥ 3, present our
theoretical results, and propose a integer program and a dynamic programming
algorithm to respectively recognize a sequence graph and count its realizations.

2 Definitions and Problem Statement

Let x = x1, x2, ..., xp be a finite sequence of discrete elements among a finite
vocabulary X. Without loss of generality, we can suppose that X = {1, ..., n}.
In the following, let Xp = {1, ..., p}. This motivates the following definition:

Definition 1. G = (V,E) is the graph of the sequence x with window size w ∈
N

∗ if and only if V = {xi | i ∈ Xp}, and
(i, j) ∈ E ⇐⇒ ∃(k, k′) ∈ X2

p , |k − k′| ≤ w − 1, xk = i and xk′ = j (1)

A sequence graph G is endowed with a weights matrix Π(G) = (πij) such
that

πij = Card {(k, k′) ∈ X2
p | |k − k′| ≤ w − 1, xk = i and xk′ = j} (2)
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Finally, for digraphs, the absolute value in the inequalities of Eq. (1) and
Eq. (2) is replaced with k ≤ k′ ≤ k + w − 1. We say that x is a w-realization of
G (or a realization if there is no ambiguity), if G is the graph of sequence x with
window size w.

The natural integers πij represent the number of co-occurrences of i and j
in a window of size w. Hence, the graph of a sequence x is unique given w. A
linear time algorithm to construct a weighted sequence digraph is presented in
a separate appendix. Other cases are obtained similarly. This procedure defines
a correspondence between the sequence set X� into the graph set G: φw : X� →
G, x 	→ Gw(x). Based on these definitions, we consider the following problems:

Problem 1 (Weighted-Realizable (W-Realizable)).
Input: Possibly directed graph G, matrix weights Π, window size w
Output: True if (G,Π) is the w-sequence graph of some sequence x, False
otherwise.

Problem 2 (Unweighted-Realizable (U-Realizable))).
Input: Possibly directed graph G, window size w
Output: True if G is the w-sequence graph of some sequence x, False otherwise.

We denote D-Realizable (resp. G-) the restricted version of Realizable
where the input graph G is directed (resp. undirected), and W -Realizable
(resp. U-) the restricted version of Realizable where the input graph G is
weighted (resp. unweighted), possibly in combination with the D- or G- variants.
We write Realizablew for the case where w is a fixed (given) constant. We
also consider the variants of W-Realizable, denoted GW-Realizable and
DW-Realizable where the input graph is restricted to be respectively undi-
rected and directed. We define GU-Realizable and DU-Realizable simi-
larly. Finally, we write (GW-, DW-, ...) Realizablew for the case where w is a
fixed positive integer.

Problem 3 (Unweighted-NumRealizations (U-NumRealizations))).
Input: Possibly directed graph G, window size w
Output: The number of realizations of G, i.e. preimages of G through φw

such that |{x ∈ X� | φw(x) = G}| if finite, or +∞ otherwise.

Problem 4 (Weighted-NumRealizations (W-NumRealizations)).
Input: Possibly directed graph G, matrix weights Π, window size w
Output: The number of realizations of G in the weighted sense.

Similarly, we use the same prefix for the directed or undirected versions of (D-,
G-, i.e. DU- for directed and unweighted). We also denote NumRealizationsw

for the case where w is a fixed strictly positive integer. Note that
NumRealizations strictly generalizes the previous one, as Realizable can be
solved by testing the nullity of the number of suitable realization computed by
NumRealizations.

DW Directed Weighted DU Directed Unweighted
GW Undirected Weighted GU Undirected Unweighted
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3 Theoretical Results

In this section, we present our main theoretical results. Due to length limitations,
all of the proofs presented in this section are left in a separate appendix.

3.1 A Complete Characterization of 2-sequence Graphs

A graph has a sequential realization with w = 2 when there exists a path visit-
ing every vertex and covering all of its edges (at least once for the unweighted
case and exactly πe for the edge e in the weighted case). This characterization
enables relatively simple characterization and algorithmic treatment, leading to
the results summarized in Table 1.

Table 1. Complexity for various instances of our problems (w = 2)

Data instance NumRealizations2 Realizable2

Complexity # Sequences Complexity Characterization

GU P {0,+∞} P G connected

GW #P-hard {0, 1} ∪ 2N∗ P ψ(G) (semi) Eulerian

DU P {0, 1,+∞} P Theorem 1

DW P N (BEST Theorem) P ψ(G) (semi) Eulerian

Theorem 1. Let G = (V,E) be an unweighted digraph. Let R+(G) be the
weighted DAG obtained by contracting the strongly connected components of G,
such that the weight of an edge is attributed the number of distinct arcs from two
strongly connected components in G. Then, G is a 2-sequence graph if and only
if R+(G) is a directed path and its weights are all equal to 1.

3.2 General Sequence Graphs and REALIZABLEw≥3

The characterization of more general sequence graphs, such as 3-graphs is not
the same for 2-graphs, as shows the counterexample in Fig. 3a: the depicted
graph has no self-edge so there must be at least one clique of size 3. Sim-
ilarly, Fig. 3b depicts a counter example for directed graphs: G does not
have loops, so if it had a 3-realization, such sequence must be of the form
{1 2 3 1..., 1 3 2 1..., 2 3 1 2..., 3 2 1 3..., 2 1 3 2...} but then (2, 1) would form an edge.

A Polynomial Time Algorithm for GU-Realizablew

To construct our poly-time algorithm, we will use an auxiliary graph built on G.
Let H(G) = (E,EH) be the new graph obtained with the following procedure.
Two edges e = (v1, v2), f = (v3, v4) of E are connected in H(G) if and only if:

v2 = v3 and (v1, v4) ∈ E (3)
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Fig. 3. Counter examples for w = 3

An edge of H(G) can be seen as an unique triplet v1, v2, v3 where (v1, v2), (v1, v3)
and (v2, v3) ∈ E. Therefore, by definition, a walk P in H(G) is always of the
form:

P = (t1, t2), ..., (tp−1, tp) s.t ∀i ∈ {1, ..., p − 1}, (ti, ti+1) ∈ E (4)

It is clear that if H(G) is a 2-graph, then G is a 3-graph since there is a walk
going through all edges of H(G) (so visiting every non isolated node and creating
all edges of G). However, the converse is not true as depicted in Fig. 4. In order
to determine if G = (V,E) has a realization in the general case, a procedure
is to recursively merge pairs of vertices, maintaining constraints depending on
E. These constraints are similar to Eq. 3. We adopt the following notations,
ui,j = (ui, uj) and u1:k = (u1, ..., uk). The iterative procedure for w ≥ 3 is
summed up in the following equation. Namely, ∀k ∈ {2, ..., w − 2}, one has

E(k) = {u1:k+1 ∈ V k+1 | u1:k ∈ E(k−1), u2:k+1 ∈ E(k−1) ∧ (u1, uk+1) ∈ E} (5)

Let H(k) = (E(k), E(k+1)), it can be defined recursively through:

H(0) = G ∀k ∈ N
∗, H(k) = f(H(k−1)) (6)

where f transforms edges into vertices and creates edges between new vertices
that verify Eq. 5.

Definition 2. Let u be a vertex of H(k) for k ∈ N, u = (u1, ..., uk, uk+1). The
sequence u1, ..., uk+1 is the authentic sequence of u. We also call an authentic
sequence of a walk on H(k): P = (x1, ..., xk+1), (x2, ..., xk+2), ..., (xv, ..., xv+k) the
sequence x1, x2, ..., xv+k.

In order to obtain realizations of length p, the computation of H(p) requires
p iterations, and the number of vertices and edges of H(k) can increase during
iterations (the complete graph is an example for which these numbers increase
exponentially). The next Proposition states a correspondence between realiza-
tions and authentic sequences.

Proposition 1. Let x = x1, ..., xp be a w-realization of a graph (or digraph)
G = (V,E). If w ≤ p, then x is an authentic sequence of a walk of length
p − w + 1 on H(w−2).
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Main Complexity Results
In this subsection we present the remaining complexity results, which are sum-
marized in Theorem 2 and Table 2. We first show that GU-Realizablew

∈ P, ∀w ≥ 3. Besides, for GU, the number of realizations of a graph G is
either 0 (not realizable), +∞ (realizable and there exists a cycle in a component
of H generating G), or 1 (realizable but no cycle in any component of H generat-
ing G). These three cases can be tested in polynomial time using our algorithm,
showing that GU-NumRealizationsw ∈ P, ∀w ≥ 3.

Theorem 2. All variations of NumRealizationsw and Realizablew are NP-
hard, except GU. Besides, NumRealizations, Realizable are para-NP-hard
for all variations, except GU, in which case they are both W[1]-hard and XP.

Table 2. Complexity for various instances of our problems (w ≥ 3). We remind that a
para-NP-hard problem does not admit any XP algorithm unless P = NP.

Variation Constant w, w ≥ 3 Parameter w

NumRealizationsw
complexity

Realizablew
complexity

NumRealizations
complexity

Realizable
complexity

GU P P W[1]-hard; XP W[1]-hard; XP

GW NP-hard NP-hard Para-NP-hard Para-NP-hard

DU NP-hard NP-hard Para-NP-hard Para-NP-hard

DW NP-hard NP-hard Para-NP-hard Para-NP-hard

In the remaining of this section, we present more details about these com-
plexity results.

A Special Case: GU

Proposition 2. Let w ∈ N
∗. GU-Realizablew is in P .

For digraphs, the analogue of the procedure mentioned in the proof of Propo-
sition 2 (left in the appendix) would consist in enumerating all paths in the
DAG R(H(w−2)), where R(G) is the DAG obtained by contracting the strongly
connected components of G. However, the number of paths can be exponen-
tial, even for a sequence graph. In the next subsection, we will prove that DU-
Realizablew is actually NP-hard. Finally, if x1, ..., xc are vertices of a strongly
component of H(w−2), which order should be considered to form a new vertex
attribute xC? The following lemma shows that this order is not important, as
long as it represents a walk in the component. Moreover, it is possible to recon-
struct all realizations from walks on R(Hw−2). With the same notations:

Lemma 1. Let x be a walk on H(w−2) whose authentic sequence is a w-
realization for G. If x goes through a strongly component C of H(w−2), adding
any supplementary path included in C lets x a w-realization. Any graph generated
by a walk on H(w−2) can be generated by a walk on R(H(w−2)).
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Fig. 4. Procedure to find a 3-realization. 34234, 41: is a 3-realization, with authentic
sequence 3 4 2 3 4 1

Other Variations

In the following, Clique is the problem which takes as input an undirected
graph G and should return the maximal size of a clique in G.

Proposition 3. Clique admits a polynomial time parameterized reduction to
GU-Realizable.

Corollary 1. GU-Realizable is W[1]-hard for parameter w.

Proposition 4. DU-Realizablew, GW-Realizablew, and DW-Realizablew are all
NP-hard for any w ≥ 3.

All proofs of NP-hardness are left in a separate appendix.

4 Effective General Algorithms

4.1 Realizablew : Linear Integer Programming Formulation

Let G = (V,E) be a graph with integer weights πe∈E . In this model, we represent
a sequence x over the alphabet {1, ...n}, as a (0 − 1) matrix X ∈ Mn,p({0, 1})
encoding the sequence x:

Xi,j =
{

1 if xj = i
0 otherwise

We represent the set of sequences over the alphabet {1, ...n} by the (0 − 1)
matrices such that ∀j ∈ {1, ..., p},

∑n
i=1 Xi,j = 1.

Given a window size w, a unit of πe=(v1,v2) corresponds to the appearance
of two elements v1, v2 at a distance i ∈ {1, ..., w − 1} in the sequence. Now,
let us consider a fixed distance i, and a starting index j ∈ {1, ..., p − i}, we
use a intermediary slack variable ye

j (i) ∈ {0, 1} to model the presence of such
appearance using the constraint:

Xv1,jXv2,j+i = ye
j (i) (7)
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Then, the Boolean variable ye
j (i) is equal to 1 when v1 is located at position

j and v2 at position j + i. We linearise Eq. 7 as:

−Xv1,j + ye
j (i) ≤ 0

− Xv2,j+i + ye
j (i) ≤ 0

Xv1,1 + Xv2,j+i − ye
j (i) ≤ 1

(8)

Each slack variable ye
k(i) is attributed to an edge e, a relative distance i ∈

{1, ..., w − 1} and a starting position k ∈ {1, ..., p − i}. Given our constraint
formulation, every slack variable is attributed 3 constraints. For a digraph, the
number of possible pair positions for a unit of πe=(v1,v2) is given by:

C =
w−1∑
i=1

(p − i) = p(w − 1) − w(w − 1)
2

= (w − 1)(p − w

2
)

Therefore, in our model, C corresponds to the number of slack variables
attributed to constraints for an edge of the graph.

On the contrary, the absence of an edge e = (v1, v2), corresponding to πe =
0, can be modeled for a distance i ∈ {1, ..., w − 1} and a starting position
j ∈ {1, ..., p − i} as:

Xv1,j + Xv2,j+i ≤ 1

Then, Realizablew can be formulated as the following linear integer pro-
gram:

min
X∈{0,1}p×n,y∈{0,1}|E|×C

∑
e∈E

∑
i∈{1,...,w−1}

ye
1(i) + ... + ye

p−i(i)

under the constraints

∀j ∈ {1, ..., p}
n∑

i=1

Xi,j = 1

∀e = (v1, v2) ∈ E

∀e
′
= (v

′
1, v

′
2) /∈ E

∀i ∈ {1, ..., w − 1}

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Xv1,1 + ye
1(i) ≤ 0

− Xv2,1+i + ye
1(i) ≤ 0

Xv1,1 + Xv2,1+i − ye
1(i) ≤ 1

.

..

−Xv1,p−i + ye
p−i(i) ≤ 0

− Xv2,p + ye
p−i(i) ≤ 0

Xv1,p−i + Xv2,p − ye
p−i(i) ≤ 1

Xv′
1,1

+ Xv′
2,1+i ≤ 1

.

.

.

Xv′
1,p−i + Xv′

2,p
≤ 1

and ∀e ∈ E
∑

i∈{1,...,w−1}
ye
1(i) + ... + ye

p−i(i) ≥ πe

If the objective function reaches
∑

e∈E πe at its minimum then the output of
Realizablew(G,Π) is True, and False otherwise.
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4.2 NumRealizationsw : Dynamic Programming Formulation

We did not present a way to count realizations in the general case. We present
in this subsection a method based on dynamic programming valid for all cases.

The recursion proceeds by extending a partial sequence, initially set to be
empty, keeping track of for represented edges along the way. Namely, consider
Nw[Π, p,u] to be the number of w-realizations of length p for the graph G =
(V,E), respecting a weight matrix Π = (πij)i,j∈V 2 , preceded by a sequence of
nodes u := (u1, . . . , u|u|) ∈ V �. It can be shown that, for all ∀p ≥ 1, Π ∈ N

|V 2|

and u ∈ V ≤w, Nw[Π, p,u] obeys the following formula, using the notations of
Sect. 3.2:

Nw [Π, p,u] =
∑
v∈V

⎧⎨
⎩

Nw

[
Π ′

(u,v), p − 1, (u1, ..., u|u|, v)
]

if |u| < w − 1

Nw

[
Π ′

(u,v), p − 1, (u2, ..., uw−1, v)
]

if |u| = w − 1
(9)

with Π ′
(u,v) := (πij − |{k ∈ [1, |u|] | (uk, v) = (i, j)}|)(i,j)∈V 2 . The base case of

this recurrence corresponds to p = 0, and is defined as

∀ Π, Nw[Π, 0,u] =

{
1 if Π = (0)(i,j)∈V 2

0 otherwise.
(10)

The total number of realizations is then found in Nw[Π, p, ε], i.e. setting u to
the empty prefix ε, allowing the sequence to start from any node.

The recurrence can be computed in O(|V |w × ∏
i,j∈V 2(πi,j + 1)) time using

memoization, for p the sequence length. The complexity can be refined by noting
that: ∑

i,j∈V 2

πi,j ≤ w × p

To investigate the worst case scenario, we can consider the optimisation problem:

maxΠ

∏
i,j∈V 2(πi,j + 1) such that

∑
i,j πi,j = w p. (11)

This problem is equivalent to maximise a product under a budget constraint.
When n2 ≥ w × p, which is the case in practice, the maximum is reached for a
Boolean matrix Π = (πi,j) ∈ {0, 1}|V |2 , verifying the constraint. This property
can be deduced from the inequality:

1 ≤ a < b − 1 =⇒ log a + log b < log(a + 1) + log(b − 1)
=⇒ ab < (a + 1)(b − 1)

It follows that, in the worst-case scenario,
∏

i,j∈V 2(πi,j + 1) ∈ O(2w p). Thus,
despite the, apparently extreme complexity of our algorithm, it is still possible
to compute Nw[Π, p, u1:w] for “reasonable” values of p and w.
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5 Conclusion

In this study, we visited a series of problems related to the ambiguity of sequence
graphs representations, which are popular in the context of text mining and nat-
ural language processing. We derived theoretical properties and practical algo-
rithms for the family of sequence graphs, which are suitable to estimate the
ambiguity level of several pointwise mutual information models [1,5,8,11].

Acknowledgments. The authors wish to express their gratitude to Guillaume Fertin
and an anonymous reviewer of an earlier version of this manuscript, for their valuable
suggestions and constructive criticisms. Sammy Khalife acknowledges Agence Nationale
de la Recherche for partially funding this paper.

References

1. Arora, S., Li, Y., Liang, Y., Ma, T., Risteski, A.: A latent variable model app-
roach to PMI-based word embeddings. Trans. Assoc. Comput. Linguist. 4, 385–399
(2016)

2. Gawrychowski, P., Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: Uni-
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Abstract. The closure of deterministic context-free (dcf) languages
under logarithmic-space many-one reductions (L-m-reductions), known
as LOGDCFL, has been studied in depth from an aspect of parallel com-
putability because it is nicely situated between L and AC1 ∩ SC2. By
changing a memory device from pushdown stacks to access-controlled
storage tapes, we introduce a computational model of deterministic
depth-k storage automata (k-sda’s) whose tape cells are freely mod-
ified during the first k accesses and then erased and frozen forever.
These k-sda’s naturally induce the language family kSDA. Similarly to
LOGDCFL, we study the closure LOGkSDA of all languages in kSDA
under L-m-reductions. We demonstrate that DCFL ⊆ kSDA ⊆ SCk

by significantly extending Cook’s early result (1979) of DCFL ⊆ SC2.
The entire hierarchy of LOGkSDA for all k ≥ 1 therefore lies between
LOGDCFL and SC. As an immediate consequence, we obtain the same
simulation bounds for Hibbard’s limited automata. We characterize
LOGkSDA in terms of a new machine model, called logarithmic-space
deterministic auxiliary depth-k storage automata that run in polynomial
time. These machine are also shown to be as powerful as a polynomial-
time two-way multi-head deterministic depth-k storage automata.

Keywords: Parallel computation · Deterministic context-free
language · Logarithmic-space many-one reduction · LOGDCFL · SC ·
Depth-k storage automata · Auxiliary storage automata · Multi-head
storage automata

1 DCFL, LOGDCFL, and Beyond

In the literature, numerous computational models have been proposed to cap-
ture various aspects of parallel computation. Of those models, we wish to pay
special attention to the model known as LOGDCFL, which is obtained from
the family DCFL of all deterministic context-free (dcf) languages by taking
the closure under logarithmic-space many-one reductions (or L-m-reductions,
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for short) [2,12]. These dcf languages were first defined in 1966 by Ginsburg
and Greibach [5] and their fundamental properties were studied extensively
since then. Although dcf languages are accepted by one-way deterministic
pushdown automata (or 1dpda’s), these languages have a close connection to
highly parallelized computation, and thus LOGDCFL has played a key role in
discussing parallel complexity issues within P because of the nice inclusions
L ⊆ LOGDCFL ⊆ AC1 ∩ SC2.

It is known that LOGDCFL can be characterized without using L-m-
reductions by several other intriguing machine models. Such a variety of charac-
terizations prove LOGDCFL to be a robust and fully-applicable notion. A basis
of LOGDCFL is of course 1dpda’s, each of which is equipped with a read-once1

input tape together with a storage device called a stack. Each stack allows two
major operations. A pop operation is a deletion of a symbol and a push operation
is an addition of extra symbols to the top of the stack. A rewriting of a topmost
stack symbol is also allowed. The stack usage of pushdown storage seems too
restrictive in practice and various extensions of such pushdown automata have
been sought in the past literature. For instance, a stack automaton of Ginsburg,
Greibach, and Harrison [6,7] is capable of freely traversing the inside of the stack
to access each stored item but it is disallowed to modify them unless the scan-
ning stack head eventually comes to the top of the stack. Thus, each cell of the
stack could be accessed a number of times.

In real-life circumstances, it seems reasonable to limit the number of times
to access data sets in the storage device. For instance, rewriting data items in
blocks of a memory device, such as external hard drives or rewritable DVDs, is
usually costly and it needs to be restricted during each execution of a computer
program. Therefore, every memory cell on such a device must be permitted to be
modified only during the first few accesses and, in case of exceeding the intended
access limit, say, k ≥ 2, the storage cell turns unusable and no more rewriting
is possible. Such a storage device is referred to, in this exposition, as a depth-k
storage tape and its scanning tape head is hereafter called a depth-k storage-tape
head for convenience. The underlying machines are referred to as deterministic
depth-k storage automata (or k-sda’s, for short).

Our model of k-sda also expands the rewriting systems of Hibbard [9],
known as deterministic scan limited automata.2 Those rewriting system were
lately remodeled in [10,11,13] as single input/storage-tape Turing machines that
should modify the contents of tape cells whenever the associated tape heads
access them; however, such modifications are limited to only the first k accesses.
A drawback of this model is that the use of a single tape prohibits us from
accessing memory and input simultaneously.

We introduce the notation kSDA for each index k ≥ 2 to express the family
of all languages recognized by appropriately chosen k-sda’s. It turns out that

1 A read-only tape is called read once if, whenever it reads a tape symbol (except for
ε-moves), it must move to the next unread cell.

2 This claim comes from the fact that Hibbard’s rewriting systems satisfy the so-
called blank-skipping property [13], by which each tape cell becomes blank after the
k accesses and inner states cannot be changed while reading any blank symbol.
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1SDA contains even non-context-free languages. With the use of L-m-reductions
analogously to LOGDCFL, for any index k ≥ 2, we consider the closure of
kSDA under L-m-reductions, denoted LOGkSDA. It follows from the definition
that LOGDCFL ⊆ LOGkSDA ⊆ LOG(k + 1)SDA ⊆ P. We raise two essential
questions regarding this new language family LOGkSDA. (1) What is the com-
putational complexity of language families kSDA as well as LOGkSDA? (2) Is
there any natural machine model that can precisely characterize LOGkSDA in
order to avoid the use of L-m-reductions? The sole purpose of this exposition is
to answer these two questions.

All the omitted proofs and more elaborate explanations will appear in a
forthcoming complete version of this exposition.

2 Storage Tapes and Storage Automata

The two notations Z and N represent the set of all integers and that of all natural
numbers (i.e., nonnegative integers), respectively. Given two numbers m,n ∈ Z

with m ≤ n, [m,n]Z denotes the integer interval {m,m + 1,m + 2, . . . , n}. In
particular, when n ≥ 1, we abbreviate [1, n]Z as [n]. Given a set S, P(S) denotes
the power set of S, namely, the set of all subsets of S. An alphabet is a nonempty
finite set of “symbols” or “letters”. The length of a string x is denoted by |x|.
The special notation ε is used to express the empty string of length 0.

Due to the page limit, we assume the reader’s familiarity with multi-tape
Turing machines and we abbreviate deterministic Turing machines as DTMs.
An output tape is said to be write-once if its tape head never moves to the left
and, whenever its tape head writes a nonempty symbol, it must move to the
right. Given two languages L1 over alphabet Σ1 and L2 over Σ2, we say that
L1 is L-m-reducible to L2 (denoted by L1 ≤L

m L2) if there exists a function f
computed by an appropriate polynomial-time DTM using only O(log n) space
such that, for any x ∈ Σ∗

1 , x ∈ L1 iff f(x) ∈ L2. Given an index k ≥ 1, the
kth Steve’s class, SCk, is the family of all languages recognized by DTMs in
polynomial time using O(logk n) space.

We expand the standard model of pushdown automata by substituting its
stack for a more flexible storage device, called a storage tape. A storage tape is
a semi-infinite rewritable tape whose cells are initially blank (filled with distin-
guished initial symbols �) and are accessed sequentially by a storage-tape head
that can move back and forth along the tape by changing tape symbols as it
passes through.

Fix a constant k ∈ N
+. A (one-way) deterministic depth-k storage automa-

ton (or a k-sda, for short) M is formally a 2-tape DTM of the form
(Q,Σ, {Γ (e)}e∈[0,k]Z , {�,�}, δ, q0, Qacc, Qrej) with a finite set Q of inner states,
an input alphabet Σ, storage alphabets Γ (e) for indices e ∈ [0, k]Z with Γ =⋃

e∈[0,k]Z
Γ (e), a “deterministic” transition function δ from (Q−Qhalt)× Σ̌ε ×Γε

to P(Q×Γε ×D1×D2) with Qhalt = Qacc ∪Qrej , Σ̌ = Σ ∪{�,�}, Σ̌ε = Σ̌ ∪{ε},
Γε = Γ ∪ {ε}, D1 = {0,+1}, and D2 = {−1, 0,+1}, an initial state q0 in Q, and
sets Qacc and Qrej of accepting states and rejecting states, respectively, with
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Qacc ∪ Qrej ⊆ Q and Qacc ∩ Qrej = ∅, provided that Γ (0) = {�} (where � is
a distinguished symbol), Γ (k) = {�, B} (where B is a unique symbol indicating
that a tape cell is completely erased and frozen forever) and Γ (e1)∩Γ (e2) = ∅ for
any distinct pair e1, e2 ∈ [0, k]Z. The two sets D1 and D2 indicate the direction
of the input-tape head and that of the storage-tape head, respectively. A single
move (or step) of M is dictated by δ. If M is in inner state q, scanning σ on the
input tape and τ on the storage tape, a transition δ(q, σ, τ) = (p, ξ, d1, d2) forces
M to change q to p, overwrite τ by ξ, and move the input-tape head and the
storage-tape head in directions d1 and d2, respectively.

Notice that a k-sda allows ε-moves (i.e., a tape head neither moves nor reads
any tape symbol) on both the input tape and the storage tape so that the
machine can continue working on one tape without scanning the content of the
other tape. The tape head direction “0” indicates such an ε-move.

All tape cells are indexed by natural numbers from left to right. The leftmost
tape cell is a start cell indexed 0. An input tape has endmarkers {�,�} and a
storage tape has only the left endmarker �. When an input string x is given to
the input tape, it should be surrounded by the two endmarkers as �x� so that
� is located at the start cell and � is at the cell indexed |x| + 1.

For any input string x of length n and any index i ∈ [0, n + 1]Z, x(i) denotes
the tape symbol written on the ith input-tape cell, provided that x(0) = � (left
endmarker) and x(n+1) = � (right endmarker). Similarly, when z represents the
non-� portion of the content of a storage tape, the notation z(i) expresses the
symbol in the ith tape cell. Note that z(0) = �.

For the storage tape, we request the following rewriting restriction, called
the depth-k requirement, to be satisfied. Whenever the storage-tape head passes
through a tape cell containing a symbol in Γ (e) with e < k, the machine must
replace it by another symbol in Γ (e+1) except for the case of the following “turns”.
We distinguish two types of turns. A left turn at step t refers to M ’s step at which,
after M ’s tape head moves to the right at step t−1, it moves to the left at step t.
Similarly, we say that M makes a right turn at step t if M ’s tape head moves from
the left at step t− 1 and changes its direction to the right at step t. Whenever a
tape head makes a turn, we treat this case as “double accesses.” More formally,
at a turn, any symbol in Γ (e) with e < k must be changed to another symbol in
Γ (min{k,e+2}). No symbol in Γ (k) can be modified at any time. A storage tape
that satisfies the depth-k requirement is succinctly called a depth-k storage tape.

A configuration of M on input x is of the form (x, q, l1, l2, z) with q ∈ Q,
l1 ∈ [0, |x| + 1]Z, l2 ∈ N, and z ∈ (Γ − {�})∗, which indicates the situation
where M is in state q, the storage tape contains z (except for the tape symbol
�), and two tape heads scan the l1th cell of the input tape containing �x�
and the l2th cell of the storage tape. The initial configuration has the form
(x, q0,�, 0, 0) and δ describes how to reach the next configuration in a single
step. For convenience, we define the depth value dv(C) of a surface configuration
C = (q, l1, l2, z) to be the number e satisfying z(l2) ∈ Γ (e). The k-sda M accepts
(resp., rejects) x if M starts with the initial configuration with the input x and
reaches an accepting configuration (resp., a rejecting configuration). Hereafter,
we will pay attention only to k-sda’s that always halt on any input. We say that
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M recognizes a language L over alphabet Σ if, for any x ∈ L, M accepts x and,
for any x ∈ Σ∗−L, M rejects x. We write kSDA for the collection of all languages
recognized by k-sda’s and we set ωSDA =

⋃
k∈N+ kSDA. Moreover, LOGkSDA

and LOGωSDA denote the collections of all languages that are L-m-reducible to
ceratin languages in kSDA and ωSDA, respectively.

Recall that every tape cell of a k-sda is completely erased after the first k
accesses. If we allow such a tape cell to keep the last written symbol instead
of erasing it, then the resulting machine gains enough power to solve even the
circuit value problem (which is known to be P-complete). In this exposition, we
do not further delve into this topic.

3 A Complexity Upper Bound of kSDA

A clear lower bound of the computational complexity of kSDA is DCFL. Here-
after, we discuss its non-trivial upper bound. Earlier, Cook [3] demonstrated that
DCFL is included in SC2. In the next theorem, we prove that kSDA is included
in SCk for any index k ≥ 2. Since DCFL ⊆ kSDA, our result significantly extends
Cook’s old result. Let SC =

⋃
k≥1 SCk.

Theorem 1. For any integer k ≥ 2, kSDA ⊆ SCk. Thus, ωSDA ⊆ SC holds.

Since SCk is closed under L-m-reductions, Theorem 1 instantly implies that
LOGkSDA ⊆ SCk and LOGωSDA ⊆ SC. However, whether the inclusion
SCk−1 ⊆ LOGkSDA holds or not is unknown at this moment.

As another immediate consequence of Theorem 1, we obtain a complexity
upper bound of Hibbard’s deterministic k-limited automata (k-lda’s, for short)
because k-lda’s (satisfying the blank-skipping property [13]) can be easily sim-
ulated by k-sda’s simply by pretending that all input symbols are written on a
storage tape. Notice that, in the past literature, no upper bound except for CFL
has been shown for Hibbard’s language families [9].

Corollary 2. For any k ≥ 2, all languages recognized by Hibbard’s k-lda’s are
in SCk.

To prove Theorem 1, we attempt to employ a divide-and-conquer argument,
which is based on [1] but expanded significantly to cope with more complex moves
of k-sda’s. Due to the page limit, we expect that the reader is familiar with [1].
Fix k ≥ 2 and let M = (Q,Σ, {Γ (e)}e∈[0,k]Z ,�,�, δ, q0, Qacc, Qrej) denote any
k-sda. We further fix an arbitrary input x ∈ Σ∗ and set n = |x|.

To simulate the behavior of M on x, we introduce an important notion of
“marker”. A marker C is a sextuple (q, l1, l2, σ, r, t) that indicates the following
circumstance: at time t with section time r (which will be explained later), M is
in inner state q, its input-tape head is located at cell l1, the storage-tape head is
at cell l2 containing symbol σ. To express each entry of C, we set state(C) = q,
in-loc(C) = l1, st-loc(C) = l2, symb(C) = σ, sectime(C) = r, and time(C) = t.
Let Mx denote the set of all markers of M on x. To emphasize the value “l2”,
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Fig. 1. [left] A history of consecutive moves of a storage-tape head for k = 3. In
the leftmost vertical lines indicate d-sections for d = 2, 3, 4. The other vertical lines
indicate the tape cell numbers from 0 to 10 and the horizontal lines show section time
from 0 to 32. All storage-ε-moves are suppressed into filled circles and boxes. [right] A
contingency tree, in which each node (except for the root) is a contingency list.

we occasionally call C an l2-marker if st-loc(C) = l2. Similarly, we call C a
t-marker if time(C) = t.

A computation of a k-sda is characterized by a series of markers in the fol-
lowing way. Assume that Ct has the form (q, l1, l2, σ, r, t) and δ has a transi-
tion of the from δ(q, x(l1), σ) = (p, τ, d1, d2). We then set next-state(Ct) = p,
next-loc(Ct) = l2 + d2, and next-symb(Ct) = τ . To calculate the next marker
Ct+1 (at time t+1) from Ct, we need the information on the most recent (l2+d2)-
marker C ′ with time(C ′) < t. Once C ′ is obtained with ξ′ = next-symb(C ′), the
sextuple (p, l1 + d1, l2 + d2, ξ

′, r + |d2|, t + 1) becomes the desired marker Ct+1.
We remark that, when ξ′ is known, we do not need to use C ′ to compute Ct+1.

Next, we introduce critical notions. Let C = (q, l1, l2, σ, r, t) and C ′ =
(q′, l′1, l

′
2, σ

′, r′, t′) be two arbitrary markers of M on x. We say that C ′ is left-
visible from C if (i) C ′ is a marker with l′2 < l2 and t′ < t and (ii) there is no
marker C̃ satisfying both st-loc(C̃) ≤ l′2 and t′ + 1 ≤ time(C̃) < t. Moreover,
C ′ is the left-cut of C if C ′ is left-visible from C and t′ is the largest number
with t′ < t (i.e., C ′ is the most recent left-visible marker). In symmetry, we can
define the notions of right-visibility and right-cut.

Recall that the storage-tape head may make ε-moves. To distinguish those
from any other ε-move of the input-tape head, we call the former storage-ε-moves.
A 0-section consists of either (a) a right/left turn (i.e., leftmost/rightmost point)
or (b) a non-storage-ε-move to the right/left followed by a (possibly empty) series
of consecutive storage-ε-moves. For any d ≥ 0, a (d + 1)-section is the union
of two consecutive d-sections. The section time of C is the total number of 0-
sections before C (thus, not including the 0-section containing C). The leftmost
(resp., rightmost) marker in each d-section S is called the left-representative
(resp., right-representative) of S. Given a set of markers, C is said to be the
leftmost marker (resp., the rightmost marker) if st-loc(C) is the smallest (resp.,
the largest) among the markers in the given set.
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Given a marker C, a section S is called current for C if S contains C, S is
completed for C if C appears at or after the end of S, and S is the last-left-good
for C if S is the latest completed section whose left-representative is left-visible
from C. In a similar way, we define the notion of “last-right-good”.

In what follows, we will introduce a subroutine, called A, which simu-
lates one step of M on input x. Let ex = 
log |x|�. This subroutine needs
to maintain a data structure of nested lists, called a k-contingency tree. Let
Ct = (q, l1, l2, σ, r, t) be any marker. To explain the notion of contingency tree,
we first define a contingency list at time t, L(e1, e2, l2, t), which consists of the
items described below. Given each index d ∈ [0, ex]Z and any a ∈ {l, r}, let
L(a)(d, l2, t) = L

(a)
last(d, l2, t) ∪ L

(a)
cur(d, l2, t). For any pair e1, e2 ∈ [0, ex]Z, we

set L(e1, e2, l2, t) = (
⋃

d∈[0,e1]Z
L(l)(d, l2, t))∪ (

⋃
d∈[0,e2]Z

L(r)(d, l2, t)). We always
assume that all markers in L(e1, e2, l2, t) are enumerated according to their time.

(a) L
(l)
last(d, l2, t), which consists of all markers C satisfying the following require-

ment: there exist a d-section S and a (d + 1)-section S′ such that (i) S is
enclosed in S′, (ii) S′ is the last-left-good section for Ct, and (iii) C is the
left-representative of S.

(b) L
(l)
cur(d, l2, t), which consists of all markers C satisfying the following require-

ment: there exist a d-section S and a (d + 1)-section S′ such that (i) S is
enclosed in S′, (ii) S′ is current for Ct, (iii) S is left-visible from Ct, and (iv)
C is the left-representative of S.

(c) Two more items, L
(r)
cur(·) and L

(r)
last(·), are defined similarly using right-

visibility and right-representatives.

Notice that the left-cut (resp., the right-cut) for Ct is the latest marker in
L(l)(0, l2, t) (resp., L(r)(0, , l2, t)). The contingency list L(e1, e2, l2, t) is said to
be linked to Ct. A 2-contingency tree at time t is a two-node tree whose root is
Ct and its only child is a contingency list linked to Ct. A (k + 1)-contingency
tree at time t is a leveled, rooted tree whose top 2 levels form a 1-contingency
tree at time t and each t′-marker (except for Ct) appearing in this 2-contingency
tree is a root of another k-contingency tree at time t′ with t′ < t. See Fig. 1.
In particular, C0 links itself to a unique empty contingency list. To describe a
k-contingency tree at time t, we use the notation D(k, e1, e2, l2, t). The principal
contingency list refers to the node attached directly to the root Ct.

Subroutine A takes an input of the form (Ct, dv, l′2, e1, e2, ,D(dv, e, l2, t)) with
Ct = (q, l1, l2, σ, r, t) ∈ Mt, l′2 = next-loc(Ct), dv ∈ [0, k]Z, and e1, e2 ∈ [0, ex]Z.
If dv ≥ dv(Ct+1), then A returns (Ct+1,D(dv, e1, e2, l

′
2, t + 1)) with the (t + 1)-

marker Ct+1 = (q′, l′1, l
′
2, σ

′, r′, t+1) by making a series of recursive calls to itself.
Otherwise, it may return anything.
[Subroutine A]

(1) In the case where the storage-tape head stays still (i.e., makes a storage-
ε-move), since l′2 = l2, we define r′ = r. Since we do not need to alter
the contingency tree, in the principal contingency list, we automatically set
L(l)(d, l′2, t + 1) = L(l)(d, l2, t) and L(r)(d′, l′2, t + 1) = L(r)(d′, l2, t) for any
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d ∈ [0, e1]Z and d′ ∈ [0, e2]Z. We can compute Ct+1 from Ct directly by
applying δ.

(2) We skip the case where the storage-tape head is moving to the right, that
is, l′2 = l2 + 1.

(3) In the case where the storage-tape head is moving to the left, since l′2 = l2−1,
we define r′ = r + 1. We need to compute three sets: L(l)(·) at location < l′2,
L(r)(·) at location > l′2, and Ct+1. Here, we focus only on L(l)(·) and Ct+1.
Consider the principal contingency list of D(dv, e, l2, t). Define d0 to be the
maximum number in [0, e1]Z satisfying r′ ≡ 0 (mod2d0) and let d1 denote the
minimal number in [0, e1]Z satisfying |L(l)(d1, l2, t)| ≥ 2. If there is no such d1,
then we set d1 = e1. Initially, for each d ∈ [0, d1]Z, we reset L(l)(d, l2, t) to be
L(l)(d, l2, t)−{C ′}, where C ′ is the latest marker in L(l)(d, l2, t). (i) If d1 = 0,
then we define L(l)(d, l′2, t+1) = L(l)(d, l2, t) for any d ∈ [0, e1]Z. (ii) Assume
otherwise. If there is no right-cut C ′′ for Ct stored in D(dv, e1, e2, l2, t), then
we choose the latest marker C ′ from L(l)(d1, l2, t). Let l′ = st-loc(C ′) and
t′ = time(C ′). Since C ′ is the left-representative of a completed d1-section,
we need to compute the new left-cut C ′′ for Ct+1, which appears in certain
new last-left-good d′-sections with d′ < d1, where st-loc(C ′′) = l′2 and t′ <
time(C ′′) < t. Starting from C ′ with D(k, d1 − 1, e2, l

′, t′), we inductively
generate a pair of C̃ and D(k, d1 − 1, e2, l̃, t̃) with t̃ = time(C̃) and l̃ =
st-loc(C̃), and run A(C̃, k, l̃, d1−1, e2,D(k, d1−1, e2, l̃, t̃)) to obtain the next
marker C̃ ′ and D(k, d1 − 1, e2, l̃

′, t̃ + 1) with l̃′ = st-loc(C̃ ′) until we reach
C ′′, except that the final recursive call is of the form A(C̃, dv − 1, l′2, d1 −
1, e2,D(dv −1, d1 −1, e2, l

′
2 −1, t̃)) with l′2 −1 = st-loc(C̃). Finally, we define

B0 = L
(l)
cur(0, l′2, t

′)∪{C ′′} and Bi+1 = L
(l)
cur(i, l′2, t

′)∪{C̄i} for any i ∈ [0, d1−
1]Z, where C̄i is the oldest marker in Bi. We then define L

(l)
last(i, l

′
2, t+1) = Bi

and L
(l)
cur(i, l′2, t + 1) = ∅ for any i ∈ [0, d1 − 1]Z, and L

(l)
cur(d1, l′2, t + 1) = ∅

and L
(l)
last(d1, l

′
2, t + 1) = L

(l)
last(d1, l2, t) ∪ Bd1 . In the case of d0 > d1, we

define E0 = ∅ and Ei+1 = L
(l)
cur(i, l2, t) ∪ {C̄} for every i ∈ [d1 + 1, d0 − 1]Z,

where C̄ is the oldest marker in Ei. We then define L
(l)
last(i, l

′
2, t+1) = Ei and

L
(l)
cur(i, l′2, t+1) = ∅ for any i ∈ [d1+1, d0−1]Z, and L

(l)
cur(d0, l′2, t+1) = Ed0 .

We update all the others without changing the content of the old contingency
lists. For all the remaining “nodes” in D(dv, e1, e2, l2, t), we also update them
according to the above changes.

To compute marker Ct+1, we first assume that dv ≥ 1. If there is a right-cut
C ′′ for Ct at time < t either stored inside D(dv, e, l2, t) or obtained by the above
procedure, then Ct+1 is directly calculated from Ct and symb(C ′′) by applying δ.
Otherwise, if there is a left-representative for Ct at time t0 < t and no left turn
exists at location ≥ l′2 at time < t0, then we start with the left-representative
Crep and compute a series of markers C̃ one by one (by incrementing time)
from Crep using � as inputs with no recursive call until we obtain the l′2-marker
C ′. We then compute Ct+1 from Ct and symb(C ′) by applying δ. In the case
of dv ≤ 0, by contrast, the cell l′2 must be already blank B. Let σ′ = B and
computer Ct+1 from Ct alone by applying δ.
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Lemma 3. Let Ct and Ct+1 be two markers.

1. The total number of markers inside D(k, e1, e2, l2, t) is O(logk−2 n).
2. If dv ≥ dv(Ct+1), then Subroutine A(Ct, dv, l2, e1, e2,D(dv, e1, e2, l2, t)) cor-

rectly returns (Ct+1,D(dv, e1, e2, l
′
2, t + 1)) and the depth of recursion is

O(log n).

Proof of Theorem 1. Fix k ≥ 2. Our goal is to prove that kSDA ⊆
SCk. Take an arbitrary language L in kSDA and a k-sda M that recog-
nizes L. Consider the following procedure that simulates M on input x
step by step. Initially, we prepare the marker C0 = (q0, 0, 0,�, 0) and the
unique k-contingency list D(k, ex, ex, 0, 0) linked to C0. Inductively, assuming
that Ct and D(k, ex, ex, l2, t) have been already obtained, we run Subroutine
A(Ct, k, ex, ex, l′2,D(k, ex, ex, l2, t)) to compute (Ct+1,D(k, ex, ex, l′2, t+1)) until
M enters a halting state (i.e., either an accepting or a rejecting states). We then
decide whether x is in L by checking whether M enters an accepting state. To
store a contingency tree requires O(logk−1 n) bits by Lemma 3(1) since each
contingency list in the tree needs O(log n) bits to express. Lemma 3(2) then
concludes that we need only polynomial runtime and O(logk n) memory bits to
perform the entire simulation procedure. Therefore, L belongs to SCk.

4 Two Machine Models that Characterize LOGkSDA

In Sect. 2, LOGkSDA is defined to be the closure of kSDA under L-m-reductions.
To remove the use of L-m-reductions from this definition, we wish to expand
Cook’s notion of deterministic auxiliary pushdown automata to deterministic
auxiliary depth-k storage automata (or aux-k-sda’s, for short), each of which is
equipped with a two-way read-only input tape, an auxiliary rewritable work tape,
and a storage tape whose cells are rewritten only during the first k accesses and
then turns blank forever after k accesses. We further introduce another machine
model, called (two-way) 
-head deterministic depth-k storage automata (or k-
sda2(
), for short), each of which is allowed to use 
 two-way tape heads to
access a single input tape.

4.1 Deterministic Auxiliary Depth-k Storage Automata

To understand LOGkSDA better, we want to seek other characterizations
of it with no use of L-m-reduction. For this purpose, we intend to expand
Cook’s auxiliary pushdown automata. For the description of the desired machine
model, firstly we prepare a two-way read-only input tape and a depth-k stor-
age tape and secondly we supply a new space-bounded auxiliary rewritable
work tape whose cells are freely modified by a two-way tape head. Notice
that the storage-tape head is allowed to make ε-moves. A deterministic aux-
iliary depth-k storage automaton (or an aux-k-sda, for short) M is formally a 3-
tape DTM (Q,Σ,Θ, {Γ (e)}e∈[0,k]Z ,�,�, δ, q0, Qacc, Qrej) with a read-only input
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tape, an auxiliary rewritable work tape with an alphabet Θ, and a depth-k
storage tape. Initially, the input tape is filled with � x �, the auxiliary tape
is blank, and the depth-k storage tape has only designated blank symbols
� except for the left endmarker �. The “deterministic” transition function δ
maps (Q − Qhalt) × Σ̌ε × Θ × Γε to P(Q × Θ × Γε × D1 × D2 × D3), where
D1 = D2 = D3 = {−1, 0,+1}. A transition δ(q, σ, τ, γ) = (p, θ, ξ, d1, d2, d3)
means that, on reading input symbol σ, M changes inner state q to p by moving
its tape head in direction d1, changes auxiliary tape symbol τ to θ by moving
its tape head in direction d2, and changes storage tape symbol γ to ξ by moving
its tape head in direction d3. A string x is accepted (resp., rejected) if M enters
an inner state in Qacc (resp., Qrej). By excluding (Θ,D3) from the definition of
M , the resulting automaton must fulfill the depth-k requirement of k-sda’s.

4.2 Multi-head Deterministic Depth-k Storage Automata

We further argue another characterization of LOGkSDA using two-way multi-
head machines. For each fixed number 
 ≥ 1, we define an 
-head deterministic
depth-k storage automaton as a 2-tape DTM with 
 two-way read-only tape heads
scanning over an input tape and a single read/write tape head over a depth-k
storage tape. For convenience, we call such a machine by a k-sda2(
), where
the subscript “2” emphasizes that all input-tape heads move in both directions
(except for ε-moves). Notice that each k-sda2(
) has actually 
 + 1 tape heads,
including one tape head moving along the storage tape. For convenience, we call
such a unique tape head the (
 + 1)th tape head. More formally, a k-sda2(
) is
a tuple (Q,Σ, {Γ (e)}e∈[0,k]Z ,�,�, δ, q0, Qacc, Qrej) with a “deterministic” transi-
tion function δ mapping (Q − Qhalt) × Σ̌�

ε × Γε to P(Q × Γε × D� × D), where
D = {−1, 0,+1}. A transition δ(q, σ1, . . . , σ�, γ) = (p, ξ, d1, . . . , d�, d�+1) means
that M is at present in state q, scanning (σ1, . . . , σ�) on the input tape by the 

read-only tape heads and γ on the rewritable depth-k storage tape, and then M
enters state p and writes ξ on the depth-k storage tape by moving the ith tape
head in direction di for every index i ∈ [
+1]. The acceptance/rejection criteria
is the same as k-sda’s. A read-only tape head is called sweeping if it changes its
direction (ignoring ε-moves) only at the two endmarkers.

4.3 Characterizations of LOGkSDA

We demonstrate that the two new machine models introduced in Sects. 4.1 and
4.2 precisely characterize LOGkSDA. This result naturally extends Sudborough’s
machine characterizations of LOGDCFL to LOGkSDA.

Theorem 4. Let k ≥ 2. Let L be any language. The following three statements
are logically equivalent.

1. L is in LOGkSDA.
2. There exists an aux-k-sda that recognizes L in polynomial time using logarith-

mic space.
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3. There exist a number 
 ≥ 2 and a k-sda2(
) that recognizes L in polynomial
time.

Sudborough’s characterization of LOGDCFL [12] heavily relies on a simula-
tion procedure [8, pp. 338–339] of Hartmanis and a proof argument [4, Lemma
4.3] of Galil; however, we cannot directly use them. This is because Sudbor-
ough’s proof [12, Lemmas 3–6] is based on the use of pushdown-automata’s
stack operations, which are applied only to the topmost symbol of the stack but
the other symbols in the stack are intact. In our case, on the contrary, we need
to deal with the operations on a depth-k storage tape whose head can move
back and forth along the storage tape by modifying each cell’s content during
the first k accesses. Thus, a new idea is definitely needed to establish Theorem 4.
The proof of the theorem therefore requires a technically challenging simulation
among three different computational models.

We begin with the following easy lemma.

Lemma 5. For each fixed constant s ∈ N
+, there exists a two-way 3-head deter-

ministic finite automaton such that all input-tape heads are sweeping with making
no ε-move and the automaton, on input of the form (axb)|axb| with |x| > s, moves
one of the tape heads to cell |x|s in O(|x|s) steps, where a and b are designated
tape symbols and x contains neither a nor b.

For convenience, we call by the 3 marking heads the 3 tape heads guaranteed
to exist by Lemma 5. We then transform any given aux-k-sda to an equivalent
k-sda2(5c + 2) for a certain constant c > 0.

Lemma 6. Let k ≥ 2. Given a polynomial-time, log-space aux-k-sda M , there
are a constant c > 0 and a k-sda2(5c+2) simulating M in polynomial time.

To reduce the number of input-tape heads from 2
 + 3 to 
 + 3, we need to
record the movement of multiple input-tape heads onto a depth-k storage tape.
For this purpose, we use the 3 marking heads of Lemma 5 to make enough blank
space on the depth-k storage tape.

Lemma 7. Let k ≥ 2, s ≥ 1, and 
 ≥ 1. Given a language L over alphabet Σ
and any k-sda2(2
 + 3) with the 3 marking heads recognizing L within |x|s steps
(where x is an input), there exists a polynomial-time k-sda2(
 + 3) with the 3
marking heads that recognizes La,b = {(axb)|axb| | x ∈ L}, where a and b are
tape symbols not in Σ.

Sudborough’s proof also utilizes Galil’s argument [4], which uses a stack for
storing and removing specific symbols to remember the distance of a tape head
from a particular input tape cell. However, since tape cells on a storage tape are
not allowed to modify more than k times, we need to develop a different strategy
to prove Lemma 7. The last important lemma is stated below.

Lemma 8. Let s ∈ N
+. For any polynomial-time k-sda2(4) M with 3 marking

heads running within |x|s steps, the language Lrev = {(|cx̃#x̃R)|x|s | x ∈ L(M)}
is recognized by an appropriate polynomial-time k-sda, where |c and # are special
separators and x̃ = 1|x|sx11|x|sx2 · · · 1|x|sxn for x = x1x2 · · · xn.
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Proof of Theorem 4. The implication (1)⇒(2) is relatively easy. Lemma 6
obviously implies (2)⇒(3). Finally, we want to show that (3) implies (1). Given a
language L, we assume that there is a polynomial-time k-sda2(
) M recognizing
L for a certain number 
 ≥ 2. Our goal is to define a polynomial-time, log-
space computable function f and a new k-sda K such that f reduces L(M) to
L(K). This concludes that L belongs to LOGkSDA. Take the smallest integer

′ satisfying 
 ≤ 2
′ + 3. We repeatedly apply Lemma 7 by adjusting the value
of 
′ (e.g., by setting 
′ = 3, we first reduce 2
′ + 3 = 9 to 
′ + 3 = 6 and,
by resetting 
′ = 2, we then reduce 2
′ + 3 = 7 to 
′ + 3 = 5). Eventually,
we obtain a polynomial-time k-sda2(4) N with the 3 marking heads that can
simulate M . By Lemma 8, there exists a k-sda K that correctly recognizes the
language Lrev. Next, we define f(x) = (|cx̃#x̃R)|x|s for any x. We then obtain
Lrev = {f(x) | x ∈ L(M)}. Since Lrev = L(K), it follows that x ∈ L(M) iff
f(x) ∈ L(K). Therefore, L(M) is L-m-reducible to L(K). ��
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Abstract. In the constrained synchronization problem we ask if a given
automaton admits a synchronizing word coming from a fixed regular con-
straint language. We show that intersecting a given constraint language
with an ideal language does not increase the computational complexity.
Additionally, we state a theorem giving PSPACE-hardness that broadly
generalizes previously used constructions and a result on how to combine
languages by concatenation to get polynomial time solvable constrained
synchronization problems. We use these results to give a classification of
the complexity landscape for small constraint automata of up to three
states.

Keywords: Synchronization · Computational complexity · Automata
theory · Finite automata · Constrained synchronization

1 Introduction

A deterministic semi-automaton is synchronizing if it admits a reset word, i.e., a
word which leads to a definite state, regardless of the starting state. This notion
has a wide range of applications, from software testing, circuit synthesis, commu-
nication engineering and the like, see [14,15]. The famous Černý conjecture [2]
states that a minimal length synchronizing word, for an n-state automaton, has
length at most (n − 1)2. We refer to the mentioned survey articles [14,15] for
details.

Due to its importance, the notion of synchronization has undergone a range
of generalizations and variations for other automata models. In some generaliza-
tions, related to partial automata [11], only certain paths, or input words, are
allowed (namely those for which the input automaton is defined).

In [7] the notion of constrained synchronization was introduced in connection
with a reduction procedure for synchronizing automata. The paper [5] introduced
the computational problem of constrained synchronization. In this problem, we
search for a synchronizing word coming from a specific subset of allowed input
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sequences. For further motivation and applications we refer to the aforemen-
tioned paper [5]. In this paper, a complete analysis of the complexity landscape
when the constraint language is given by small partial automata with up to two
states and an at most ternary alphabet was done. It is natural to extend this
result to other language classes, or even to give a complete classification of all
the complexity classes that could arise. For commutative regular constraint lan-
guages, a full classification of the realizable complexities was given in [8]. In [9],
it was shown that for polycyclic constraint languages, the problem is always
in NP.

Let us mention that restricting the solution space by a regular language has
also been applied in other areas, for example to topological sorting [1], solv-
ing word equations [3,4], constraint programming [12], or shortest path prob-
lems [13]. The road coloring problem asks for a labelling of a given graph such
that a synchronizing automaton results. A closely related problem to our prob-
lem of constrained synchronization is to restrict the possible labeling(s), and this
problem was investigated in [16].

Contribution and Motivation: In [5] a complete classification of the compu-
tational complexity for partial constraint automata with up to two states and
an at most ternary alphabet was given. Additionally, an example of a a three-
state automaton over a binary alphabet realizing an NP-complete constrained
synchronization problem and a three-state automaton over a binary alphabet
admitting a PSPACE-complete problem were given. The question was asked, if,
and for what constraint automata, other complexity classes might arise. Here,
we extend the classification by extending the two-state case to arbitrary alpha-
bets and giving a complete classification for three-state automata. It turned out
that only PSPACE-complete, or NP-complete, or polynomial time solvable con-
strained problems arise. In [5], the analysis for the small constraint automata
were mainly carried out by case analysis. As for larger alphabets and automata
this quickly becomes tedious, here we use, and present, new results to lift, extend
and combine known results. Among these are three main theorems, which, when
combined, allow many cases to be handled in an almost mechanical manner. More
specifically, the motivation and application of these theorems is the following.

1. The UV ∗W -Theorem describes how to combine languages with concatenation
to get polynomial time solvable constrained problems.

2. The uC-Theorem gives a general condition on the form of a constraint lan-
guage to yield a PSPACE-complete constrained synchronization problem.

3. The Ideal Separation Theorem. In general, if the constraint language could be
written as the union of two languages, and for one of them the constrained
problem is hard, we cannot deduce hardness for the original languages. How-
ever, under certain circumstances, namely if the hard language is contained
in a unique regular ideal language, we can infer hardness for the original
languages.

We apply these results to small constraint automata of up to three states.
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2 General Notions and Definitions

By Σ we will always denote a finite alphabet, i.e., a finite set of symbols, or
letters. A word is an element of the free monoid Σ∗, i.e., the set of all finite
sequences with concatenation as operation. For u, v ∈ Σ∗, we will denote their
concatenation by u · v, but often we will omit the concatenation symbol and
simply write uv. The subsets of Σ∗ are also called languages. By Σ+ we denote
the set of all words of non-zero length. We write ε for the empty word, and for
w ∈ Σ∗ we denote by |w| the length of w. Let L ⊆ Σ∗, then L∗ =

⋃
n≥0 Ln, with

L0 = {ε} and Ln = {u1 · · · un | u1, . . . , un ∈ L} for n > 0, denotes the Kleene
star of L. For some language L ⊆ Σ∗, we denote by Pref(L) = {w | ∃u ∈ Σ∗ :
wu ∈ L}, Suff(L) = {w | ∃u ∈ Σ∗ : uw ∈ L} and Fact(L) = {w | ∃u, v ∈ Σ∗ :
uwv ∈ L} the set of prefixes, suffixes and factors of words in L. The language L
is called prefix-free if for each w ∈ L we have Pref({w})∩L = {w}. If u,w ∈ Σ∗,
a prefix u ∈ Pref({w}) is called a proper prefix if u �= w. A language L ⊆ Σ∗ is
called a right (left-) ideal if L = L ·Σ∗ (= Σ∗ ·L), or a two-sided ideal (or simply
an ideal for short), if L is both, a right and a left ideal. A language L ⊆ Σ∗ is
called bounded, if there exist words w1, . . . , wn ∈ Σ∗ such that L ⊆ w∗

1 · · · w∗
n.

Throughout the paper, we consider deterministic finite automata (DFAs).
Recall that a DFA A is a tuple A = (Σ,Q, δ, q0, F ), where the alphabet Σ is
a finite set of input symbols, Q is the finite state set, with start state q0 ∈ Q,
and final state set F ⊆ Q. The transition function δ : Q × Σ → Q extends to
words from Σ∗ in the usual way. The function δ can be further extended to
sets of states in the following way. For every set S ⊆ Q and w ∈ Σ∗, we set
δ(S,w) := { δ(q, w) | q ∈ S }. We sometimes refer to the function δ as a relation
and we identify a transition δ(q, σ) = q′ with the tuple (q, σ, q′). We call A
complete if δ is defined for every (q, a) ∈ Q×Σ; if δ is undefined for some (q, a),
the automaton A is called partial. The set L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F }
denotes the language recognized by A.

A semi-automaton is a finite automaton without a specified start state and
with no specified set of final states. The properties of being deterministic, par-
tial, and complete of semi-automata are defined as for DFA. When the context
is clear, we call both deterministic finite automata and semi-automata simply
automata. We call a deterministic complete semi-automaton a DCSA and a par-
tial deterministic finite automaton a PDFA for short. If we want to add an
explicit initial state r and an explicit set of final states S to a DCSA A, which
changes it to a DFA, we use the notation Ar,S .

A complete automaton A is called synchronizing if there exists a word w ∈ Σ∗

with |δ(Q,w)| = 1. In this case, we call w a synchronizing word for A. We call
a state q ∈ Q with δ(Q,w) = {q} for some w ∈ Σ∗ a synchronizing state.

For an automaton A = (Σ,Q, δ, q0, F ), we say that two states q, q′ ∈ Q are
connected, if one is reachable from the other, i.e., we have a word u ∈ Σ∗ such
that δ(q, u) = q′. A subset S ⊆ Q of states is called strongly connected, if all pairs
from S are connected. A maximal strongly connected subset is called a strongly
connected component. A state from which some final state is reachable is called
co-accessible. An automaton A is called returning, if for every state q ∈ Q, there
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exists a word w ∈ Σ∗ such that δ(q, w) = q0, where q0 is the start state of A. A
state q ∈ Q such that for all x ∈ Σ we have δ(q, x) = q is called a sink state.

The set of synchronizing words forms a two-sided ideal. We will use this fact
frequently without further mentioning.

For a fixed PDFA B = (Σ,P, μ, p0, F ), we define the constrained synchro-
nization problem:

Definition 2.1. L(B)-Constr-Sync
Input: DCSA A = (Σ,Q, δ).
Question: Is there a synchronizing word w for A with w ∈ L(B)?

The automaton B will be called the constraint automaton. If an automaton A
is a yes-instance of L(B)-Constr-Sync we call A synchronizing with respect to
B. Occasionally, we do not specify B and rather talk about L-Constr-Sync. We
are going to inspect the complexity of this problem for different (small) constraint
automata. The unrestricted synchronization problem, i.e., Σ∗-Constr-Sync in
our notation, is in P [15].

We assume the reader to have some basic knowledge in computational
complexity theory and formal language theory, as contained, e.g., in [10]. For
instance, we make use of regular expressions to describe languages. We also
identify singleton sets with its elements. And we make use of complexity classes
like P, NP, or PSPACE. With ≤log

m we denote a logspace many-one reduction. If
for two problems L1, L2 it holds that L1 ≤log

m L2 and L2 ≤log
m L1, then we write

L1 ≡log
m L2.

3 Known Results on Constrained Synchronization

Here we collect results from [5,8,9], and some consequences, that will be used
later.

Lemma 3.1 ([8]). Let X denote any of the complexity classes PSPACE, NP and
P. If L(B) is a finite union of languages L(B1), L(B2), . . . , L(Bn) such that for
each 1 ≤ i ≤ n we have L(Bi)-Constr-Sync ∈ X , then L-Constr-Sync ∈ X .

The next result from [5] states that the computational complexity is always
in PSPACE.

Theorem 3.2 ([5]). For any constraint automaton B = (Σ,P, μ, p0, F ) the
problem L(B)-Constr-Sync is in PSPACE.

In [5, Theorems 24, 25 and 26], for a two-state partial constraint automaton
with an at most ternary alphabet, the following complexity classification was
proven. In Sect. 5.1, we will extend this result to arbitrary alphabets.

Theorem 3.3 ([5]). Let B = (Σ,P, μ, p0, F ) be a PDFA. If |P | ≤ 1 or |P | = 2
and |Σ| ≤ 2, then L(B)-Constr-Sync ∈ P. For |P | = 2 with |Σ| = 3, up to
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symmetry by renaming of the letters, L(B)-Constr-Sync is PSPACE-complete
precisely in the following cases for L(B):

a(b + c)∗ (a + b + c)(a + b)∗ (a + b)(a + c)∗ (a + b)∗c
(a + b)∗ca∗ (a + b)∗c(a + b)∗ (a + b)∗cc∗ a∗b(a + c)∗

a∗(b + c)(a + b)∗ a∗b(b + c)∗ (a + b)∗c(b + c)∗ a∗(b + c)(b + c)∗

and polynomial time solvable in all other cases.

The next result from [5, Theorem 17] will also be useful to single out certain
polynomial time solvable cases.

Theorem 3.4 ([5]). If B is returning, then L(B)-Constr-Sync ∈ P.

The next result allows us to assume a standard form for two-state constraint
automata. We will prove an analogous result for three-state constraint automata
in Sect. 5.2.

Lemma 3.5 ([5]). Let B = (Σ,P, μ) be a partial deterministic semi-automaton
with two states, i.e., P = {1, 2}. Then, for each p0 ∈ P and each F ⊆
P , either L(Bp0,F )-Constr-Sync ∈ P, or L(Bp0,F )-Constr-Sync ≡log

m

L(B′)-Constr-Sync for a PDFA B′ = (Σ,P, μ′, 1, {2}).

The next result combines results from [9] and [6] to show that for bounded
constrained languages, the constrained synchronization problem is in NP.

Theorem 3.6. For bounded constraint languages, the constrained synchroniza-
tion problem is in NP.

The following condition will be useful to single out, for bounded constraint
languages, those problems that are NP-complete.

Proposition 3.7 ([9]). Suppose we find u, v ∈ Σ∗ such that we can write
L = uv∗U for some non-empty language U ⊆ Σ∗ with:

u /∈ Fact(v∗), v /∈ Fact(U), Pref(v∗) ∩ U = ∅.

Then L-Constr-Sync is NP-hard.

4 General Results

Here, we state various general results, among them our three main theorems:
the Ideal Separartion Theorem, the UV ∗W -Theorem and the uC-Theorem. The
first result is a slight generalization of a Theorem from [5, Theorem 27].

Theorem 4.1. Let ϕ : Σ∗ → Γ ∗ be a homomorphism and L ⊆ Σ∗. Then
ϕ(L)-Constr-Sync ≤log

m L-Constr-Sync.

We will also need the next slight generalization of a Theorem from [5, Theorem
14].
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Theorem 4.2. Let L,L′ ⊆ Σ∗. If L ⊆ Fact(L′) and L′ ⊆ Fact(L), then
L-Constr-Sync ≡log

m L′-Constr-Sync.

Next, we state a result on how we can combine languages using concatenation,
while still getting polynomial time solvable problems. Another result, namely
Theorem 4.5, is contrary in the sense that it states conditions for which the
concatenation yields PSPACE-hard problems.

Theorem 4.3 (UV ∗W -Theorem). Let U, V,W ⊆ Σ∗ be regular and B =
(Σ,P, μ, p0, {p0}) be a PDFA, whose initial state equals its single final state,
such that (1) V = L(B), (2) U ⊆ Suff(V ) and (3) W ⊆ Pref(V ). Then
(UV W )-Constr-Sync ∈ P.

Proof (sketch). Every synchronizing word from UV W could be enlarged, by a
suitable prefix and a suitable suffix, to a synchronizing word in V . Conversely,
every synchronizing word in V could be enlarged to a synchronizing word in
UV W . So, searching for a synchronizing word in UV W has the same complexity
as searching in V , the latter being polynomial-time solvable by Theorem 3.4. ��
Remark 1. Note that in Theorem 4.3, U = {ε} or W = {ε} is possible. In
particular, L(B)-Constr-Sync ∈ P for every PDFA B = (Σ,P, μ, p0, {p0}).

The next theorem is useful, as it allows us to show PSPACE-hardness by
reducing the problem, especially ones that are written as unions, to known
PSPACE-hard problems. Please see Example 2, or the proof sketch of Theo-
rem 5.6, for applications.

Theorem 4.4 (Ideal Separation Theorem). Let I ⊆ Σ∗ be a fixed regular
ideal language. Suppose L ⊆ Σ∗ is any regular language, then

(I ∩ L)-Constr-Sync ≤log
m L-Constr-Sync.

In particular, let u ∈ Σ∗ and L ⊆ Σ∗. Then (L ∩ Σ∗uΣ∗)-Constr-Sync ≤log
m

L-Constr-Sync.

Proof (sketch). It could be shown that the minimal complete automaton AI of I
has precisely I as the set of synchronizing words. Then an input automaton has
a synchronizing word in I ∩ L if and only if the product automaton of AI and
the input automaton has a synchronizing word in L. ��

Mostly, we apply Theorem 4.4 with principal ideals Σ∗uΣ∗ for u ∈ Σ∗. The
next proposition is a generalization of arguments previously used to establish
PSPACE-hardness [5,8] for constraints as, for example, a(b + c)∗.

Theorem 4.5 (uC-Theorem). Suppose u ∈ Σ+ is a non-empty word.

1. Let C ⊆ Σ∗ be a finite prefix-free set of cardinality at least two with C∗ ∩
Σ∗uΣ∗ = ∅.

2. Let Γ ⊆ Σ be such that u /∈ Γ ∗, i.e., u uses at least one symbol not in Γ .
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Then, the problem (Γ ∗uC∗)-Constr-Sync is PSPACE-hard. If, additionally, we
have Suff(u) ∩ Pref({u}) = {ε, u} and the following is true:

There exists x ∈ C such that, for v, w ∈ Σ∗, if vxw ∈ (C ∪ {u})∗, then
vx ∈ (C ∪ {u})∗.

Then, (C∗uΓ ∗)-Constr-Sync is PSPACE-hard.

Example 1. Set L = (a + b)∗ac(b + c)∗. Using Theorem 4.5 with Γ = {a, b},
u = ac and C = {b, c} gives PSPACE-hardness. Hence, by Theorem 3.2, it is
PSPACE-complete. Note that (a + b)∗c(b + c)∗ ∩ Σ∗acΣ∗ = L. Hence, together
with Theorem 4.4, we get PSPACE-completeness for (a + b)∗c(b + c)∗. For the
latter language, this was already shown in [5], as stated in Theorem 3.3, by more
elementary means, i.e., by giving a reduction from a different problem.

Example 2. For the following L ⊆ {a, b}∗ we have that L-Constr-Sync is
PSPACE-hard. For the first two, this is implied by a straightforward applica-
tion of Theorem 4.5, for the last one a more detailed proof is given.

1. L = Γ ∗aa(ba + bb)∗ for Γ ⊆ {b}.
2. L = Γ ∗aba(a + bb)∗ for Γ ⊆ {b}.
3. L = b∗a(a + ba)∗. Then L = b∗bba(a + ba)∗ ∪ ba(a + ba)∗ ∪ a(a + ba)∗. Set

U = L ∩ Σ∗bbaΣ∗ = b∗bba(a + ba)∗. By Theorem 4.4,

U -Constr-Sync ≤log
m L-Constr-Sync.

For U , with Γ = {b}, u = bba and C = {a, ba} and Theorem 4.5, we find
that U -Constr-Sync is PSPACE-hard. So, L-Constr-Sync is also PSPACE-
hard.

5 Application to Small Constraint Automata

Here, we apply the results obtained in Sect. 4. In Subsect. 5.1 we will give a
complete overview of the complexity landscape for two-state constraint automata
over an arbitrary alphabet, thus extending a result from [5], where it was only
proven for an at most ternary alphabet. In Subsect. 5.2 we will give a complete
overview of the complexity landscape for three-state constraint automata, the
least number of states such that we get PSPACE-complete and NP-complete
constrained synchronization problems [5].

Notational Conventions in this Section: Let B = (Σ,P, μ, p0, F ) be a constraint
PDFA with |P | = n. Here, we will denote the states by natural numbers
P = {1, . . . , n}, and we will assume that 1 always denotes the start state, i.e.,
p0 = 1. In this section, B will always denote the fixed constraint PDFA. By
Lemma 3.5, for |P | = 2, we can assume F = {2}. We will show in Sect. 5.2,
stated in Lemma 5.5, that also for |P | = 3 we can assume F = {3}. So, if noth-
ing else is said, by default we will assume F = {n} in the rest of this paper.
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Also, for a fixed constraint automaton1, we set Σij := { a ∈ Σ | μ(i, a) = j } for
1 ≤ i, j ≤ n. As B is deterministic, Σi1 ∩ Σi2 = ∅.

5.1 Two States and Arbitrary Alphabet

Let B = (Σ,P, μ, p0, F ) be a two-state constraint PDFA. Recall the definitions
of the sets Σi,j , 1 ≤ i, j ≤ 2 and that here, by our notational conventions,
P = {1, 2}, p0 = 1 and F = {2}. In general, for two states, we have

L(B) = (Σ∗
1,1Σ1,2Σ

∗
2,2Σ2,1)∗Σ∗

1,1Σ1,2Σ
∗
2,2.

First, as shown in [5], for two-state constraint automata, some easy cases could
be excluded from further analysis by the next result, as they give polynomial
time solvable instances.

Proposition 5.1 ([5]). If one of the following conditions hold, then L(B1,{2})-
-Constr-Sync ∈ P: (1) Σ1,2 = ∅, (2) Σ2,1 �= ∅, (3) Σ1,1 ∪ Σ1,2 ⊆ Σ2,2, or (4)
Σ1,1 ∪ Σ2,2 = ∅.

Next, we will single out those cases that give PSPACE-hard problem in
Lemma 5.3 and Lemma 5.2. Finally, in Theorem 5.4 we will combine these results
and show that the remaining cases all give polynomial time solvable instances.

Lemma 5.2. Suppose (Σ1,1∪Σ1,2)\Σ2,2 �= ∅, Σ1,2 �= ∅, Σ2,1 = ∅ and |Σ2,2| ≥ 2.
Then L(B)-Constr-Sync is PSPACE-hard.

Proof. Choose a ∈ (Σ1,1 ∪ Σ1,2)\Σ2,2. Then

L ∩ Σ∗aΣ∗ =
{

Σ∗
1,1aΣ∗

2,2 if a ∈ Σ1,2;
Σ∗

1,1aΣ∗
1,1Σ1,2Σ

∗
2,2 if a ∈ Σ1,1.

In the first case we can apply Theorem 4.5 with Γ = Σ1,1, u = a and C = Σ2,2 to
find that (L∩Σ∗aΣ∗)-Constr-Sync is PSPACE-hard. In the second case, choose
some x ∈ Σ1,2, then, as, by determinism of B, x /∈ Σ1,1, we find L ∩ Σ∗axΣ∗ =
Σ∗

1,1axΣ∗
2,2 and we can apply Theorem 4.5 with Γ = Σ∗

1,1, u = ax and C = Σ2,2

to find that (L ∩ Σ∗axΣ∗)-Constr-Sync is PSPACE-hard. Finally, the claim
follows by Theorem 4.4. ��

The next lemma states a condition such that we get PSPACE-hardness if the
set Σ1,1 contains at least two distinct symbols.

Lemma 5.3. Suppose |Σ1,1| ≥ 2, Σ1,2 �= ∅, Σ2,1 = ∅ and (Σ1,1∪Σ1,2)\Σ2,2 �= ∅.
Then L(B)-Constr-Sync is PSPACE-hard.
1 Note that this notation only makes sense with respect to a fixed alphabet and a

fixed automaton, or said differently we have implicitly defined a function dependent
on both of these parameters. But every more formal way of writing this might be
cumbersome, and as the automaton used in this notation is always the (fixed) con-
straint automaton, in the following, usage of this notation should pose no problems.
It is just a shorthand whose usage is restricted to the next two sections.
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Proof. Set C = Σ1,1 and Γ = Σ2,2. By assumption, we find a ∈ (Σ1,1 ∪
Σ1,2)\Σ2,2. If a ∈ Σ1,2, then set u = a. If a ∈ Σ1,1\Σ1,2, then choose b ∈ Σ1,2

and set u = ab. Note that, by determinism of the constraint automaton, we
have Σ1,1 ∩ Σ1,2 = ∅. Then, L(B) ∩ Σ∗uΣ∗ = C∗uΓ ∗. For this language, the
conditions of Theorem 4.5 are fulfilled and hence, together with Theorem 4.4,
the claim follows. ��

Combining everything, we derive our main result of this section.

Theorem 5.4. For a two-state constraint PDFA B, L(B)-Constr-Sync is
PSPACE-complete precisely when Σ1,2 �= ∅, Σ2,1 = ∅ and

(Σ1,1 ∪ Σ1,2)\Σ2,2 �= ∅ and max{|Σ1,1|, |Σ2,2|} ≥ 2.

Otherwise, L(B)-Constr-Sync ∈ P.

Proof. We can assume Σ1,2 �= ∅, Σ2,1 = ∅ and (Σ1,1 ∪ Σ1,2)\Σ2,2 �= ∅, for
otherwise, by Proposition 5.1, we have L(B)-Constr-Sync ∈ P. If |Σ1,1| ≥ 2 or
|Σ2,2| ≥ 2, by Lemma 5.3 or Lemma 5.2, we get PSPACE-hardness, and so, by
Theorem 3.2, it is PSPACE-complete in these cases. Otherwise, assume |Σ1,1| ≤ 1
and |Σ2,2| ≤ 1. With the other assumptions,

L =
⋃

x∈Σ1,2

Σ∗
1,1xΣ∗

2,2.

Each language of the form Σ∗
1,1xΣ∗

2,2 is over the at most ternary alphabet Σ1,1 ∪
{x} ∪ Σ2,2. Hence, each such language has the form y∗xz∗, xz∗ or y∗x with
|{y, z, x}| ≤ 3 and {x, y, z} ⊆ Σ. If a letter is not used in the constraint language,
we can, obviously, assume the problem is over the smaller alphabet of all letters
used in the constraint, as usage of letters not occurring in any accepting path
in the constraint automaton is forbidden in any input semi-automaton. So, by
Theorem 3.3, for the languages y∗xz∗ the constraint problem is polynomial time
solvable, and by Lemma 3.1 we have L-Constr-Sync ∈ P. ��

5.2 Three States and Arbitrary Alphabet

Let B = (Σ,P, μ, p0, F ) be a three-state constraint PDFA. Recall the definitions
of the sets Σi,j , 1 ≤ i, j ≤ 2 and that here, by our notational conventions,
P = {1, 2, 3}, p0 = 1 and F = {3}. First, we will show an analogous result
to Lemma 3.5 for the three-state case, which justifies the mentioned notational
conventions.

Lemma 5.5. Let B = (Σ,P, μ, p0, F ) be a PDFA with three states. Then, either
L(B)-Constr-Sync ∈ P, or L(B)-Constr-Sync ≡log

m L(B′)-Constr-Sync
for a PDFA B′ = (Σ, {1, 2, 3}, μ′, 1, {3}).

In the general theorem, stated next, the complexity classes we could real-
ize depend on the number of strongly connected components in the constraint
automaton.
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Table 1. The constraint automata Bi, i ∈ {1, . . . , 6}, with the respective computational
complexities of L(Bi)-Constr-Sync, for which these complexities are proven in the
proof sketch of Theorem 5.6. Please see the main text for more explanation.

Type Automaton Complexity Type Automaton Complexity

B1
a

a, b

b

PSPACE-c B2
a

a
b

bb

P

B3

b

a

a
b

a

PSPACE-c B4

b

a

b
a

b

PSPACE-c

B5
a

Σ3,3Σ2,2
Σ2,3

a ∈ Σ3,2

P B6
a

b

a

a

b

NP-c

Theorem 5.6. For a constraint PDFA B with three states over an arbi-
trary alphabet L(B)-Constr-Sync is either in P, or NP-complete, or
PSPACE-complete. More specifically,

1. if B is strongly connected the problem is always in P,
2. if the constraint automaton has two strongly connected components, the prob-

lem is in P or PSPACE-complete,
3. and if we have three strongly connected components, the problem is either in

P or NP-complete.

Proof (sketch). This is only a proof sketch for the binary alphabet Σ = {a, b},
as even up to symmetry, more than fifty cases have to be checked. We only show
a few cases to illustrate how to apply the results from Sect. 4. We will handle the
cases illustrated in Table 1, please see the table for the naming of the constraint
automata. In all automata, the left state is the start state 1, the middle state is
state 2 and the rightmost state is state 3. If not said otherwise, 3 will be the single
final state, a convention in correspondence with Lemma 5.5. By Theorem 3.2,
for PSPACE-completeness, it is enough to establish PSPACE-hardness.

1. The constraint automaton2 B1: Here L(B1) = a(a + b)(bb + ba)∗. Set U =
L(B1) ∩ Σ∗aaΣ∗ = aa(bb + ba)∗. By Theorem 4.4, U -Constr-Sync ≤log

m

L(B1)-Constr-Sync. As (bb + ba) ∩ Σ∗aaΣ∗ = ∅ and {bb, ba} is prefix-free,
by Theorem 4.5, U -Constr-Sync is PSPACE-hard, which gives PSPACE-
hardness for L(B1)-Constr-Sync.

2. The constraint automaton B2: Here L(B2) = aa∗b(ba∗b)∗ ∪ b(ba∗b). We have
aa∗b ⊆ Suff((ba∗b)∗) and b ⊆ Suff((ba∗b)∗). By Theorem 4.3 and Lemma 3.1,
L(B2)-Constr-Sync ∈ P.

2 This constraint automaton was already given in [5] as the single example of a three-
state constraint automaton yielding a PSPACE-complete problem.
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3. The constraint automaton B3: Here L(B3) = b∗aa∗b(aa∗b)∗. Set U =
L(B3) ∩ Σ∗bbabaΣ∗ = b∗bbaba(a + ba)∗b. We have b∗bbaba(a + ba)∗b ⊆
Fact(b∗bbaba(a+ba)∗) and b∗bbaba(a+ba)∗ ⊆ Fact(b∗bbaba(a+ba)∗b). Hence,
by Theorem 4.2, U -Constr-Sync has the same computational complexity
as synchronization for b∗bbaba(a + ba)∗. As (a + ba)∗ ∩ Σ∗bbabaΣ∗ = ∅ and
{a, ba} is a prefix-free set, by Theorem 4.5, (b∗bbaba(a+ ba)∗)-Constr-Sync
is PSPACE-hard, and so also synchronization by U . As, by Theorem 4.4,
U -Constr-Sync ≤log

m L(B3)-Constr-Sync, we get PSPACE-hardness for
L(B3)-Constr-Sync.

4. The constraint automaton B4: Here L(B4) = ab∗a(bb∗a)∗ ∪ b(bb∗a)∗. Set U =
L(B4) ∩ Σ∗aabΣ∗ = aab(b + ab)∗a. As (b + ab)∗ ∩ Σ∗aabΣ∗ = ∅ and {b, ab}
is a prefix-free set, as above, PSPACE-hardness follows by a combination of
Theorem 4.2, Theorem 4.4 and Theorem 4.5.

5. The constraint automaton B5: Here, B5 denotes an entire family of automata.
In general, L(B5) = aΣ∗

2,2Σ2,3(Σ∗
3,3Σ3,2Σ

∗
2,2Σ2,3)∗ with a ∈ Σ3,2. As a ∈ Σ3,2,

we have aΣ∗
2,2Σ2,3 ⊆ Σ3,2Σ

∗
2,2Σ2,3. So,

aΣ∗
2,2Σ2,3 ⊆ Suff((Σ∗

3,3Σ3,2Σ
∗
2,2Σ2,3)∗)

and by Theorem 4.3 we find L(B5)-Constr-Sync ∈ P.
6. The constraint automaton B6: Here, L(B6) = ab∗aa∗ ∪ ba∗. As L(B6) ⊆

a∗b∗a∗a∗ the language L(B6) is a bounded language, hence by Theorem 3.6
we have L(B6)-Constr-Sync ∈ NP. Furthermore L(B6) ∩ Σ∗abb∗aΣ∗ =
abb∗aa∗. So, by Theorem 4.4, the original problem is at least as hard as
for the constraint language abb∗aa∗. As ab /∈ Fact(b∗), b /∈ Fact(aa∗) and
Pref(b∗) ∩ aa∗ = ∅, by Proposition 3.7, for abb∗aa∗ the problem is NP-hard.
So, by Theorem 4.4, L(B6)-Constr-Sync is NP-complete. ��

6 Conclusion

We have presented general theorems to deduce, for a known constraint language,
the computational complexity of the corresponding constrained synchronization
problem. We applied these results to small constraint automata, generalizing the
classification of two-state automata [5] from an at most ternary alphabet to an
arbitrary alphabet. We also gave a full classification for three-state constraint
automata. Hence, we were able, by using new tools, to strengthen the results
from [5]. In light of the methods used and the results obtained so far, it seems
probable that even for general constraint languages only the three complexity
classes P, PSPACE-complete or NP-complete arise, hence giving a trichotomy
result. However, we are still far from settling this issue, and much remains to be
done to answer this question or maybe, surprisingly, present constraint languages
giving complete problems for other complexity classes. Inspection of the results
also shows that the NP-complete cases are all induced by bounded languages.
Hence, the question arises if this is always the case, or if we can find non-bounded
constraint languages giving NP-complete constrained problems.
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Abstract. It is well known that the copy language L = {ww | w ∈ Σ∗}
is not context-free despite its simplicity. We study pseudo-copy languages
that are defined to be sets of catenations of two similar strings, and
prove non-context-freeness of these languages. We consider the Hamming
distance and the edit-distance for the error measure of the two similar
strings in pseudo-copy languages. When the error has an upper bound or
a fixed value, we show that the pseudo-copy languages are not context-
free. Similarly, if the error has a lower bound of at least four, then such
languages are not context-free, either. Finally, we prove that all these
pseudo-copy languages are context-sensitive.

Keywords: Context-freeness · Pseudo-copy languages · Hamming
distance · Edit-distance

1 Introduction

For many years, people investigated the problems related to the repetition of
strings from various perspectives such as bioinformatics [3,7,12], stringology [2,
5,16,20] and formal language theory [1,14]. For example, it was already proved
in the early 80’s that one can decide whether or not a given string contains a
square—a string of the form ww with w nonempty—in O(n log n) time when n
is the length of an input string [2,5,16].

The problem of finding squares (also called tandem repeat or contiguous
repeat) from biological sequences has been an intriguing topic in bioinformat-
ics. Landau et al. [12] studied the problem of finding approximate tandem
repeats from a given string, which can be described as xy, where |x| = |y| and
d(x, y) ≤ k for a given k under the Hamming distance and the edit-distance
metrics. They showed that all approximate tandem repeats can be found in
O(nk log(n/k) + s) time, where n is the length of the given string and s is the
number of repeats found. Later, Kolpakov and Kucherov [10] slightly improved
the bound to O(nk log k + s) only in the case of the Hamming distance.
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We focus on the language-theoretic property related to the repetitions of
strings. A string is square-free if none of its substrings is a square. It is easily
seen that there are only finitely many square-free strings over one or two letters.
Over a ternary alphabet, the set of square-free strings is infinite and, more-
over, not context-free [15]. People also considered the complement of square-free
languages—a language contains strings with at least one square as a substring.
The language is also proved to be not context-free [6,18], and Ogden et al. [17]
established a simpler proof using the interchange lemma.

The set of all squares, often called the copy language (denoted by COPY),
is not context-free but can be recognized by realtime nondeterministic queue
automata (NQAs) [11,21]. The class rtNQA of languages recognized by realtime
NQAs is a proper subclass of context-sensitive languages (CS), and is incompa-
rable to the class of context-free languages (CF). Therefore, it is immediate that
the following relationship holds: COPY ∈ CF ∩ rtNQA ⊂ CS.

An interesting fact is that the complement of the copy language is context-free
unlike COPY [9,19]. Since COPY = {xy | dH(x, y) < 1} and its complement
of even-length1 strings COPY = {xy | dH(x, y) > 0, where |x| = |y|} can be
defined using the Hamming distance dH , one can consider the following question.

Problem 1. Consider the following language L:

L = {xy | x, y ∈ {0, 1}∗, |x| = |y|, dH(x, y) < k},

where dH(x, y) is the Hamming distance between x and y.

Q. Is L context-free?

We can think of the language L in Problem 1 as a set of catenations of
two similar strings—we call such L a pseudo-copy language. In other words,
the pseudo-copy language is a language with a bounded Hamming distance k
between two catenated strings.

Since one may consider different bound conditions such as threshold, inequal-
ity or equality relations, and error measures, a natural question that arises next
is, whether or not such languages are context-free. In particular, many people
conjecture that a complement of a pseudo-copy language with k = 2 would not
be context-free, yet there is no formal proof and the problem is still open2. Even
before, Bordihn [4] asked the following question, which has not been answered
yet.

Problem 2. Consider the following language L:

L = {xy | x, y ∈ {0, 1}∗, |x| = |y|, |x| − dH(x, y) ≥ 2}.

Q. Is L context-free?

We consider several variants of pseudo-copy languages and their complements
depending on the bound conditions, and demonstrate that most pseudo-copy
languages and their complements are not context-free.
1 We only consider even-length strings for the Hamming distance between two halves.
2 https://cs.stackexchange.com/q/11585.

https://cs.stackexchange.com/q/11585
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2 Preliminaries

Let Σ denote a finite alphabet of symbols. Then a string w is a finite sequence
of symbols from Σ and the length |w| of w is the number of symbols in w. The
character λ denotes an empty string.

For every string w and every natural number n, we define the n-th power of
the string w, denoted by wn, by w0 = λ and wk = wk−1w for k = 1, 2, . . . , n.
For a string w of even length, we call two substrings α and β of the same length,
where w = αβ, halves of w.

A context-free grammar (CFG) G is a tuple G = (V,Σ,R, S), where V is a
set of nonterminals, Σ is a set of terminals, R ⊆ V × (V ∪ Σ)∗ is a finite set of
productions and S ∈ V is the start symbol. Let αAβ be a string over V ∪ Σ,
where A ∈ V and A → γ ∈ R. Then, we say that A can be rewritten as γ
and the corresponding derivation step is denoted αAβ ⇒ αγβ. A production
A → t ∈ R is a terminating production if t ∈ Σ∗. The reflexive, transitive
closure of ⇒ is denoted by ∗⇒ and the context-free language generated by G is
L(G) = {w ∈ Σ∗ | S

∗⇒ w} [19].
The Hamming distance dH(x, y) measures the error between two strings x

and y of the same length by counting the number of different symbols on the same
position of each [8]. In other words, dH(x, y) =

∑
i d(xi, yi), where d(a, b) = 0 if

a = b and one otherwise. For example, dH(abca, acab) = 3 since there are three
positions with different symbols. dS(x, y) = |x| − dH(x, y), on the other hand,
can be seen as the similarity between x and y, denoting the number of identical
symbols at the same position of them.

An alignment of two strings x and y in Σ∗ is a sequence of n pairs (x1, y1),
(x2, y2), . . . , (xn, yn) where xi, yi ∈ Σ ∪{λ}, x1x2 · · · xn = x and y1y2 · · · yn = y.
The edit-distance dE(x, y) of two strings x and y is the minimum number of pairs
with different symbols in alignments of x and y [13]. For instance, strings abca
and acab have two alignments (a, a), (b, c), (c, a), (a, b) and (a, a), (b, λ), (c, c),
(a, a), (λ, b). Although the first alignment is shorter, the number of different
pairs is smaller for the second. Thus, the edit-distance of the two strings is two
with the second alignment. Note that (λ, λ), (a, a), (b, c), (c, a), (a, b) is also a
valid alignment for the strings.

We generalize the pseudo-copy language in Problem 1 by allowing different
conditions between the two catenated strings. First is to consider different error
measures. While Problem 1 defines a language with the Hamming distance dH

for the error measure. In Problem 2, we not only consider the conditions on
the number for mismatches between two catenated strings but also matches by
introducing the similarity measure dS as follows. For two equal-length strings
x, y, we define dS(x, y) = |x|−dH(x, y). Another measure is the edit-distance dE

of x and y, which does not require the two strings to be the same length. The
edit-distance allows more operations than the Hamming distance. From the per-
spective of error correction, a symbol is not only tripped but added or removed
in transmission, which resembles the edit operations: substitution, insertion and
deletion, respectively.
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Second is to consider the relations for error values. Similar to COPY where
the Hamming distance is nonzero, we examine languages with different error
bounds. Especially, these variants specify that the error (or similarity) of the two
catenated strings should be bounded. For instance, one can think of a language
with more than k different symbol positions in its halves (dH > k). Note that
the languages with a lower bound is a natural extension of COPY.

Problem 3. Given an integer k ≥ 0 and an alphabet Σ, let L = {αβ | α, β ∈
Σ∗, d(α, β) ◦ k}, where d ∈ {dH , dE , dS} and ◦ ∈ {≤,=,≥}.

Q. Is such L context-free?

Let LX◦k denote the language under d = dX . For example, LH=k is the
language under dH and ◦ as =. For d = dE , L is the language with its minimum
edit-distance considered. The languages with the same error measure define a
class with bounded errors.

3 Pseudo-copy Languages

The first problem is for LH=k, whose halves have exactly k different symbols.
Let us establish Lemma 4 for counting the Hamming distance on the specific
form of strings for the problem.

Lemma 4. For every string αβ = 0a1b0c1d, where |α| = |β|, dH(α, β) =
min(a + c, b + d,max (|a − c|, |b − d|)).
Proof (Sketch). If a 0-sequence occupies at least a half of αβ, then dH(α, β) is
the length b+d of two 1-sequences. Otherwise, there is no sequence occupying a
half. Without loss of generality, let us assume that a 0-sequence entirely aligns
with the other 0-sequence. Then, dH(α, β) is |a − c|, the number of 1’s aligning
with 0’s. �

Based on the result of Lemma 4, we next show that LH=k = {αβ | α, β ∈
Σ∗, |α| = |β|, dH(α, β) = k} for every non-negative integer k is not context-free.

Theorem 5. For all k ≥ 0, LH=k is not context-free.

Proof (Proof by contradiction). Suppose that LH=k is context-free. Then L′ =
LH=k ∩{0a1b0c1d | a, b, c, d ≥ k} must be context-free and satisfies the pumping
lemma. For an arbitrary pumping constant p, let z = 0l1l+k0l+k1l ∈ L′ where
l = max (p!, k). Then z must have a decomposition of uvwxy such that |vx| >
0, |vwx| ≤ p and uvnwxny ∈ L′ for all n ≥ 0. Note that vx can only be a part of
at most two consecutive sequences, each sequence of which consists of only 0’s
or only 1’s. By pumping v and x, we show that dH exceeds k, which contradicts
the pumping lemma.
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1. When vx consists of only 0’s or only 1’s (|vx|0 = 0 or |vx|1 = 0)
Without loss of generality, assume that vx is in a sequence of 0’s. We can
pump v and x until the sequence of 0’s that vx is in occupies over half of the
string. Let z′ = α′β′ = uv|z|wx|z|y and |α′| = |β′|. Then, since the sequence
containing vx dominates z′, dH(α′, β′) = 2l+k > k. The same procedure can
be applied when vx is in the sequence of 1’s.

2. When vx consists of both 0’s and 1’s (|vx|0 �= 0 and |vx|1 �= 0)
vx is in consecutive sequences in forms such as 0a1b or 1b0a. Apparently, when
either v or x contains both 0 and 1, by pumping up v and x, we obtain strings
that are not in L′ which contradicts the pumping lemma. In the following,
we assume that each of v and x contains only 0’s or 1’s. Without the loss of
generality, let |vx|0 = a and |vx|1 = b. Regarding which consecutive sequences
vx is placed in, one of the following holds:

– dH(α′, β′) = min (2l + k + min (a, b)i,max (|ai − k|, |bi + k|)),
– dH(α′, β′) = min (2l + k + min (a, b)i,max (|ai + k|, |bi + k|)) or
– dH(α′, β′) = min (2l + k + min (a, b)i,max (|ai + k|, |bi − k|))

where α′β′ = uvi+1wxi+1y. For example, when vx is in the first two
sequences, applying Lemma 4 yields the first condition. Similarly, the other
conditions can be computed from the remaining cases. All three cases show
dH(α′, β′) > k when i = 2k+2, contradicting the pumping lemma. Note that
l ≥ k and the first part cannot be the minimum.

By the above, L′ is not context-free and, thus LH=k is not context-free. �
For different error bounds, we examine a language LS=k = {αβ | α, β ∈

Σ∗, |α| = |β|, dS(α, β) = k} that consists of strings whose halves have k identical
symbols.

Theorem 6. For all k ≥ 0, LS=k is not context-free.

Proof (Proof by contradiction). Suppose that LS=k is context-free and let L′ =
LS=k ∩ L(0∗1∗0∗1∗0∗1∗). Then L′ must satisfy the pumping lemma. For an
arbitrary pumping constant p, choose z = 0P 1P+k0P 1P+k0P 1P , where P =
2(k+2)p. Then z must have a decomposition of uvwxy that satisfies the pumping
lemma. Let t = |vx|/2, and α and β denote the first and the latter half of
z. zi = uviwxiy denotes the string after pumping v and x up i − 1 times,
whose halves are α′ and β′, respectively. Note that |vx| must be even—otherwise
z0 /∈ L′. The following case-by-case proof shows that zk+3 /∈ L′.

1. vx is in α,
When vx is in the first half α of z, pumping sends latter part of α to β. This
results in having identical substring in the head of α and β. By pumping v
and x up k + 2 times, the last 0t(k+2) portion of α is pushed to the front of
the latter half, thus zk+3 = α′0t(k+2)1P+k0P 1P , as illustrated in Fig. 1. Then
dS(α′, β′) ≥ t(k + 2) > k.
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2. vx is in β,
Similar to the case when vx is in α, we pump vx to obtain identical substring
in the tail of α and β. By pumping up v and x by k+2 times, the first 1t(k+2)

portion of β is pushed to the first half, thus zk+3 = 0P 1P+k0P 1t(k+2)β′. Then
dS(α′, β′) ≥ t(k + 2) > k.

3. vx is in both α and β, vx = 0a1b.
Contrary to the above, pumping vx does not always result in having identical
substring in the head or tail of α and β. We, therefore, examine the inner
part of α and β, specifically, 1P+k.
(a) When a ≤ b, α′ = α0a(k+2)1(b−a)(k+2)/2 and β′ = 1(a+b)(k+2)/2β. Since

β is pushed by a+b
2 (k + 2) while α is not, the overlap in 1P+k strictly

increases. Thus dS(α′, β′) ≥ a+b
2 (k + 2) + k > k.

(b) When a > b, α′ = α0(a+b)(k+2)/2 and β′ = 0(a−b)(k+2)/21b(k+2)β. Thus
dS(α′, β′) ≥ a+b

2 (k + 2) + k > k.

Fig. 1. Illustration of zk+3 after pumping the first 0-sequence. The slanted lines denote
the alignment pairs with the same symbols. Note that the second and the third overlaps
already have k symbols aligned.

Since every case contradicts the pumping lemma, L′ is not context-free, which
leads to the fact that LS=k is not context-free. �

For the edit-distance case, we show that the Hamming distance and the
edit-distance between the two catenated strings of a pseudo-copy language are
the same. For a string w = αβ, we denote d̂H(w) = dH(α, β) and d̂E(w) =
min

w=α′β′
dE(α′, β′)—the smallest edit-distance among all possible α′, β′ for w.

Lemma 7. Let w ∈ L(0∗1∗0∗1∗) be a string of even length. Then, d̂E(w) =
d̂H(w).

Proof (Proof by induction). When |w| = 0, d̂E(w) = d̂H(w) = 0. Assume the
claim holds for |w| ≤ n. For |w| = n + 2, suppose that the claim does not hold.
Then, since d̂E(w) < d̂H(w) is the case, there must be an optimal alignment
with two symbols u, v that matches to λ. Let w′ be the string without u and
v, then d̂E(w) = d̂E(w′) + 2 = d̂H(w′) + 2 < d̂H(w). This cannot hold by case
analysis on Lemma 4, contradicting the claim. �
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Theorem 8. For all k ≥ 0, LE=k is not context-free.

Proof (Proof by contradiction). Let L′ = LE=k ∩ {0a1b0c1d | a, b, c, d ≥
k and (a + b + c + d) mod 2 = 0} and suppose LE=k is context-free. Then, L′

must be context-free and satisfies the pumping lemma. For an arbitrary pumping
constant p, let z = 0l1l+k0l+k1l ∈ L′, where l = max(p!, k). Then z must have a
factorization of uvwxy such that |vx| > 0, |vwx| ≤ p, and uvnwxny ∈ L′ for all
n ≥ 0. By pumping v and x, we show that dE exceeds k, which contradicts the
pumping lemma. Referring to Lemma 7, d̂E(w) = d̂H(w) for w ∈ L′. Instead of
handling dE , we can show that dH exceeds k and this is already proven in Theo-
rem 5. Therefore L′ is not context-free. By the above, LE=k is not context-free.

�
One can define a hierarchy of pseudo-copy languages over exact error with

these results. Theorem 5, 6 and 8 show that the class of languages with exact
Hamming distance (exact similarities, edit-distance, resp.) is different from that
of context-free languages.

From the proofs for the exact cases in Theorems 5, 6 and 8, one can observe
that the error value of the chosen string strictly increases after pumping. These
strings also apply to showing that the pseudo-copy languages are not context-
free.

Corollary 9. For all k ≥ 0, LH≤k, LS≤k and L≤k are not context-free.

Proof. In Theorem 5, we prove that LH=k is not context-free by showing the
strings in LH=k have a larger error value when pumped, following Theorem 5.
We can apply the exactly same procedure here. Instead of applying the pumping
lemma directly to LH≤k, define L′ = LH=k ∩{0a1b0c1d | a, b, c, d ≥ k}. We know
that L′ is not context-free as the pumped string has an error value larger than
k. This is, in other words, the string which has an upper-bounded error value
of k can be pumped until the error value exceeds k. Therefore, the same string
for LH=k contradicts the pumping lemma for LH≤k. Respectively on LS≤k and
LE≤k, we can use the proof procedure in each case similarly. �

4 Complements of Pseudo-copy Languages

The complements of pseudo-copy languages under the error measure dX ∈
{dH , dS , dE} are defined as follows:

LX≤k = LX≥k+1.

Therefore, only even-length strings exist in LdH≤k and LdS≤k for the Hamming
distance and similarity, respectively. On the other hand, the complements of
pseudo-copy languages under the edit-distance can have both odd-length and
even-length strings.

Theorem 10. For all k ≥ 4, LH≥k is not context-free.
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Proof (Proof by contradiction). The intuition is choosing a string of which a
symbol, say 0, occupies the largest portion. Then we make an alignment of the
sparse symbols, say 1’s, to reduce the Hamming distance between its halves
at least by one. For n ≥ 2, suppose that LH≥2n is context-free and let L′ =
LH≥2n ∩ {w | |w|1 = 2n + 1}. Then, by the pumping lemma, there must be a
pumping constant p for L′.

Choose z ∈ L′ so that the position indices of 1’s, ij ≥ 1 (1 ≤ j ≤ 2n+1) are

ij =

{
2jP, j ≤ n,

(2j + 1)P − 1, j > n,

where P = p!. In other words, we place 1’s in z so that when we divide the
string into halves, 1’s from the first half alternate with 1’s in the second half by
l = 2(n + 1)P − 1.

Fig. 2. An illustration of the chosen z

Let i′j denote the indices of 1’s after pumping v and x. It contradicts
the pumping lemma if there exist s and t such that i′s ≤ l + T < i′t and
i′t − i′s = l + T— two 1’s in each half are aligned in the Hamming distance
computation— where 2T is the length of the entire pumped string, and there-
fore, v and x duplicate 2T/|vx| times. The Hamming distance dH is at most
2n − 1 in this case since two 1’s do not contribute on the Hamming distance
computation.

1. |vx| is odd or |vx|1 = 1, i.e., the pumping part contains 1.
Since uv0xw0y /∈ L′, it contradicts the pumping lemma.

2. |vwx|1 = 0, i.e., the pumping occurs in a single 0-sequence. See Fig. 3 for an
example.
If vwx is in the h-th 0-sequence, the indices i′j of 1’s after pumping up v and
x 2T/|vx| times is

i′j =

{
ij , j < h,

ij + 2T, j ≥ h,

assuming 2T/|vx| is an integer.
(a) If h ≤ n, let s = h and t = h + n + 1. i′t − i′s = (2n + 3)P − 1. Figure 3(a)

depicts how two 1’s align. Note that the right-hand side of h-th 1 in the
first half shortens by T while that of (h + n + 1)-th in the second half
does not. These two 1’s eventually meet after the pumping, when
l + T = i′t − i′s, i.e., when T = P .
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(b) If n < h < 2n + 1, let s = h − n and t = h. i′t − i′s = (2n + 1)P + 2T − 1.
Figure 3(b) depicts how two 1’s align.

(c) If h ∈ {2n + 1, 2n + 2}, let s = 1 and t = n + 2. i′t − i′s = (2n + 3)P − 1.
Since, for all of three cases, i′t − i′s = l +T holds if T = P , we pump up v and
x 2P/|vx| times to contradict the pumping lemma for any positive integer p.
Note that P/|vx| = p!/|vx| is an integer.

3. |vwx|1 = 1, |vx|1 = 0, i.e., the pumping occurs in two 0-sequences.
For h such that the h-th 1 is in w, the indices i′j after pumping up v and x
2T/|vx| is

i′j =

⎧
⎪⎨

⎪⎩

ij , j < h,

ij + a, j = h,

ij + 2T, j > h,

where a = |v| · 2T/|vx|.
(a) h = 1: Let s = 2 and t = n + 3. i′t − i′s = (2n + 3)P − 1.
(b) 2 ≤ h ≤ n: Let s = 1 and t = n + 1. i′t − i′s = (2n + 1)P + 2T − 1.
(c) n + 1 ≤ h ≤ 2n − 1: Let s = n and t = 2n. i′t − i′s = (2n + 1)P + 2T − 1.
(d) h ∈ {2n, 2n + 1}: Let s = 1 and t = n + 2. i′t − i′s = (2n + 3)P − 1.
For all cases, i′t − i′s = l + T holds if P = T and it contradicts the pumping
lemma for CFLs.

Fig. 3. Pumping a 0-block in (a): the first half and (b): the latter half. On each half,
±X denotes that the length of the sequence increases by X and → X denotes that the
specific point is pushed by X.

Because every case contradicts the pumping lemma, L′ is not context-free
and neither is LH≥2n. The case for LH≥2n+1 is similar to the proof above. �

We have investigated languages with lower-bounded Hamming error values
and in most cases, they are not context-free. However, it is still unknown whether
or not LH≥2 and LH≥3 are context-free or non-context-free.

The case of LS≥k starts with an obvious observation that LS≥1 is context-
free. LS≥1 can be generated by the following CFG G = (V,Σ,R, S):

S → AA | BB,

A → 0A0 | 0A1 | 1A0 | 1A1 | 0,

B → 0B0 | 0B1 | 1B0 | 1B1 | 1.
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Regarding LS≥k with k ≥ 2, we establish that the language over ternary alphabet
is not context-free. Refer to the appendix for the full proof.

Theorem 11. For all k ≥ 2, LS≥k over a ternary alphabet is not context-free.

For binary case, some languages of the same type are not context-free.

Theorem 12. For all k ≥ 5, LS≥k over a binary alphabet is not context-free.

Proof (Sketch). This proof idea is similar to that of Theorem 10. Assume that
k is even and LS≥k is context-free, then the following L′ is also context-free and
should satisfy the pumping lemma.

L′ = LS≥k ∩ L([(01)∗00]k/2[(01)∗11]k/2(01)∗). (∗)

For the illustration purpose, let k = 6. For a pumping constant p, let P =
(max {p, k})! and choose

z = uvwxy = (01)P 00(01)2P 00(01)2P 00(01)4P+111(01)2P 11(01)2P 11(01)P .

The 00’s and 11’s alternate like the 1’s in Theorem 10. We can observe that v
and x must be in L((01)∗ + (10)∗), otherwise, uwy /∈ L′. It is also worth noting
that Fig. 4 is the target alignment of 00 and 11 in each half, which reduces the
similarity by two. Our goal is to show that similarity reduces for all possible
cases, contradicting the pumping lemma.

. . . 01010001010 . . .

. . . 10101110101 . . .

Fig. 4. The target alignment for z. The symbols not from (01)∗ are underlined. The
11 shifts to the right by one symbol.

We make z′ = uviwxiy to show such alignment by pumping up v and x
sufficiently large. For example, when both v and x are in the first (01)-block,
by shifting all 00’s and 11’s, z′ has similarity of 0 < k with (k/2) = 3 target
alignments. The following is z′ after pumping up v and x sufficiently so that
(i − 1) · |vx| = 4P , where i is the number of duplications.

z′ =(01)P+2P 00(01)2P 00(01)2P 00(01)2P−P 0

1(01)2P+P 11(01)2P 11(01)2P 11(01)P

One can make at least one target alignment for every factorization of uvwxy
and it reduces the similarity at least by two. Thus, z′ has similarity of at most
k − 2, which contradicts the pumping lemma—LS≥k is not context-free. This
argument also holds for odd k, but with k +1 instead of k for choosing a regular
language to intersect with LS≥k in (∗). �
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We then provide Lemma 13 as a simple conversion scheme from a language
with the edit-distance to a corresponding language with the Hamming distance.

Lemma 13. Let Γ = {0, 1,#} be an alphabet and h : Γ → Σ be a homomor-
phism such that h(0) = 0, h(1) = 1 and h(#) = λ. Then, h−1(LE≥k)∩L((Σ2)∗)
is the language with dH ≥ k over Γ .

Proof. For αβ ∈ LE≥k, every alignment of α and β has at least k different pairs.
Then, h−1 replaces λ in such alignment pairs in LE≥k or inserts (#,#) pairs.
Thus, the strings with even length represent alignments of the strings in LE≥k,
with at least k differences.

On the other hand, let L = LH≥k over Γ . Then, on its alignment of two
halves, one can derive an alignment for strings with at least k different pairs by
replacing # with λ. �

Since context-free languages are closed under inverse homomorphism [9], if
a language with the edit-distance is context-free, then the resulting language,
which is one with the Hamming distance, must be context-free. We now show
that such language is not context-free due to Theorem 10 and Lemma 13.

Theorem 14. For k ≥ 4, LE≥k is not context-free.

Proof (Proof by contradiction). Suppose that LE≥k is context-free. Consider the
alphabet Γ and the homomorphism h in Lemma 13. Since context-free languages
are closed under these operations, h−1(LE≥k) ∩ L((Σ2)∗) must be context-free.
However, this language is LH≥k over Γ , which is proven to be non-context-free
in Theorem 10 for k ≥ 4. �

Finally, we can easily show that the pseudo-copy languages are strictly
included in the class of context-sensitive languages by constructing realtime
NQAs. Refer to the appendix for full proofs.

5 Conclusions

We have examined the problems of determining non-context-freeness of pseudo-
copy languages and their complements defined under error measures such as
the Hamming distance and the edit-distance. Unlike COPY, the languages are
proved to be non-context-free. Especially, our results show that most pseudo-
copy languages as well as their complements are not context-free. It is interesting
as the complements are not significantly different from COPY which is context-
free.

There are, however, remaining problems that need further investigation to
determine their context-freeness. Even though our results show that the answer
for Problem 1 is not context-free, it still remains open for the complements
of extended pseudo-copy languages. LH≥k, LE≥k and LS≥k regarding errors
of small lower-bounds are to be examined in further study. We hope that our
findings are helpful for answering these questions.
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Abstract. Chvátal and Klincsek (1980) gave an O(n3)-time algorithm
for the problem of finding a maximum-cardinality convex subset of an
arbitrary given set P of n points in the plane. This paper examines a
generalization of the problem, the Bottleneck Convex Subsets problem:
given a set P of n points in the plane and a positive integer k, select
k pairwise disjoint convex subsets of P such that the cardinality of the
smallest subset is maximized. Equivalently, a solution maximizes the
cardinality of k mutually disjoint convex subsets of P of equal cardinality.
We show the problem is NP-hard when k is an arbitrary input parameter,
we give an algorithm that solves the problem exactly, with running time
polynomial in n when k is fixed, and we give a fixed-parameter tractable
algorithm parameterized in terms of the number of points strictly interior
to the convex hull.

Keywords: Computational geometry · Convex set · FPT-algorithm ·
NP-Hard

1 Introduction

A set P of points in the plane is convex if for every p ∈ P there exists a closed
half-plane H+ such that H+ ∩ P = {p}. Determining whether a given set P
of n points in the plane is convex requires Θ(n log n) time in the worst case,
corresponding to the time required to determine whether the convex hull of P
has n vertices on its boundary [19]. Chvátal and Klincsek [4] gave an O(n3)-time
and O(n2)-space algorithm to find a maximum-cardinality convex subset of any
given set P of n points in the plane. Later, Edelsbrunner and Guibas [8] improved
the space complexity to O(n). In this paper, we examine a generalization of the
problems to multiple convex subsets of P . Given a set P of points in the plane and
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(a) (b) (c)

Fig. 1. (a) A point set P . (b) A solution to the Bottleneck Convex Subsets problem
when k = 2. (c) A solution when k = 3.

a positive integer k, we examine the problem of finding k convex and mutually
disjoint subsets of P , such that the cardinality of the smallest set is maximized
(e.g., see Fig. 1). We define the problem formally, as follows.

BOTTLENECK CONVEX SUBSETS
Instance: A set P of n points in R

2, and a positive integer k.
Problem: Select k sets P1, . . . , Pk such that

– ∀i ∈ {1, . . . k}, Pi ⊆ P ,
– ∀i ∈ {1, . . . k}, Pi is convex,
– ∀{i, j} ⊆ {1, . . . k}, i �= j ⇒ Pi ∩ Pj = ∅, and
– min

i∈{1,...,k}
|Pi| is maximized.

Since every subset of a convex set of points remains convex, any k convex sets
can be made to have equal cardinality by removing points from any set whose
cardinality exceeds that of the smallest set. Therefore, an equivalent problem is
to find k mutually disjoint convex subsets of P of equal cardinality, where the
cardinality is maximized. The problem also relates to the problem of finding a
convex point set embedding of a graph in a point set [7], where in this case the
graph consists of k cycles.

1.1 Our Contributions

In this paper we examine the problem of finding k large convex subsets of a
given point set with n points. Our contributions are as follows:

1. We give a polynomial-time algorithm that solves Bottleneck Convex Subsets
for any fixed k. The algorithm constructs a directed acyclic graph G whose
vertices correspond to distinct configurations of edges passing though vertical
slabs between neighbouring points of P . A solution to the problem is found
by identifying a node in G associated with a maximum-cardinality set that is
reachable from the source node.

2. Using a reduction from a restricted version of Numerical 3-Dimensional
Matching, which is known to be NP-complete, we show that Bottleneck Con-
vex Subsets is NP-hard when k is an arbitrary input parameter.
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3. We show that Bottleneck Convex Subsets is fixed-parameter tractable when
parameterized by the number of points that are strictly interior to the convex
hull of the given point set, i.e., the number of non-extreme points. Therefore,
if the number of points interior to the convex hull is fixed, then for every k,
Bottleneck Convex Subsets can be solved in polynomial time.

1.2 Related Work

A convex k-gon is a convex set with k points. A convex k-hole within a set P is
a convex k-gon on a subset of P whose convex hull is empty of any other points
of P . A rich body of research examines convex k-holes in point sets [22]. By
the Erdős-Szekeres theorem [12], every point set with n points in the Euclidean
plan contains a convex k-gon for some k ∈ Ω(log n). Urabe [23] showed that by
repeatedly extracting such a convex Ω(log n)-gon, one can partition a point set
into O(n/ log n) convex subsets, each of size O(log n).

Given a set P of n points in the plane, there exist O(n3)-time algorithms to
compute a largest convex subset of P [4,8] and a largest empty convex subset
of P [2]. Both problems are NP-hard in R

3 [15]. In fact, finding a largest empty
convex subset is W[1]-hard in R

3 [15]. González-Aguilar et al. [16] have recently
examined the problem of finding a largest convex set in the rectilinear setting.

The convex cover number of a point set P is the minimum number of disjoint
convex sets that covers P . The convex partition number of a point set P is the
minimum number of convex sets with disjoint convex hulls (in addition to their
vertex sets being pairwise vertex disjoint) that covers P . Urabe [23] examined
lower and upper bounds on the convex cover number and the convex partition
number. He showed that the convex cover number of a set of n points in R

2

is in Θ(n/ log n) and its convex partition number is bounded from above � 2n
7 	.

Furthermore, there exist point sets with convex partition number at least �n−1
4 	.

Arkin et al. [1] proved that both finding the convex cover number and the
convex partition number of a point set are NP-hard problems, and gave a
polynomial-time O(log n)-approximation algorithm for both problems. Although
the Bottleneck Convex Subsets problem appears to be similar to the convex
cover number problem as both problems attempt to find disjoint convex sets,
the objective functions are different. Neither the NP-hardness proof nor the
approximation result for convex cover number [1] readily extends to the Bottle-
neck Convex Subsets problem. Previous work has also considered partitioning
a point set into empty convex sets, where the convex hulls of the sets do not
contain any interior point. For the number of empty convex point sets, an upper
bound of � 9n

34 	 and a lower bound of �n+1
4 	 is known [5]. We refer the readers

to [10,11] for related problems on finding convex sets with various optimization
criteria.

Another related problem in this context is to partition a given point set using
a minimum number of lines (Point-Line-Cover), which Megiddo and Tamir [21]
showed to be NP-hard, and was subsquently shown to be APX-hard [3,20].
Point-Line-Cover is known to be fixed-parameter tractable when parameterized
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on the number of lines. Whether the minimum convex cover problem is fixed-
parameter tractable remains an open problem [9]. Note that for any fixed k, one
can decide whether the minimum convex cover number of a point set is at most
k in polynomial time [1].

Previous work on the Ramsey-remainder problem provides insight into the
Bottleneck Convex Subsets problem [13]. Given an integer i, the Ramsey-
remainder is the smallest integer rr(i) such that for every sufficiently large point
set, all but rr(i) points can be partitioned into convex sets of size at least i.
Therefore, a Bottleneck Convex Subsets problem with sufficiently large n and
with k ≤ �n−rr(k)

k � must have a solution where the size of the smallest convex
set is at least k. Note that the Bottleneck Convex Subsets problem is straightfor-
ward to solve for the case when k ≥ n/3, i.e., one needs to compute a balanced
partition without worrying about the convexity of the sets. However, the case
when k = n/4 already becomes nontrivial. Károlyi [18] derived a necessary and
sufficient condition for a set of 4n points in general position to admit a partition
into n convex quadrilaterals, and gave an O(n log n)-time algorithm to decide
whether such a partition exists.

2 A Polynomial-Time Algorithm for a Fixed k

Given a set P of n points in the plane and a fixed integer k, we describe an
O(kn5k+3)-time algorithm that solves Bottleneck Convex Subsets for any fixed
k. The idea is to construct a directed acyclic graph G whose vertices each corre-
spond to a vertical slab of the plane in a given state with respect to the selected
subsets P1, . . . , Pk of P , with an edge from one slab to the slab immediately
to its right if the states of the two neighbouring slabs form a locally mutually
compatible solution. A feasible solution (P1, . . . , Pk are mutually disjoint convex
subsets of P ) corresponds to a directed path starting at the root node in G,
i.e., a sequence of consecutive compatible slabs. Among the feasible solutions,
an optimal solution (mini∈{1,...,k} |Pi| is maximized) corresponds to a path that
ends at a node for which the cardinality of the smallest set is maximized.

Rotate P such that no two of its points lie on a common vertical line. Partition
the plane into n − 1 vertical slabs, S1, . . . , Sn−1, determined by the n vertical
lines through points of P . Let L be the set of

(
n
2

)
line segments whose endpoints

are pairs of points in P . Within each slab, Si, consider the set of line segments
Li = {l ∩ Si | l ∈ L}. A convex point set corresponds to the vertices of a convex
polygon; in a feasible solution, j convex polygons intersect Si for some j ∈
{0, . . . , k}. Each of these polygons has a top segment and a bottom segment in Li.
There are at most

(|Li|
2

)
possible choices of segments in Li for the first polygon,

(|Li|−2
2

)
for the second polygon, . . ., and

(|Li|−2(j−1)
2

)
for the jth polygon, giving

∏j−1
x=0

(|Li|−2x
2

) ∈ O(|Li|2j) = O(n4j) possible combinations of edges in Si for a
given j ∈ {0, . . . , k}.

We construct an unweighted directed acyclic graph G. Each vertex in V (G)
corresponds to a slab Si, a j ∈ {0, . . . , k}, and a top edge and a bottom edge
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S1 S2 S3 S4 S5

level 1

level 2

level 3

Fig. 2. Each slab Si has various combinations of pairs of edges possible, each of which
corresponds to a vertex in G, which is copied at levels 1 through n/k. Directed edges are
added from a vertex associated with slab Si to a vertex associated with a compatible
slab Si+1. The edge remains at the same level if the cardinality of the smallest set in
S1 ∪ · · · ∪ Si+1 remains unchanged; the level of Si+1 is one greater than the level of Si

if the cardinality of the smallest set in S1 ∪ · · · ∪ Si+1 increases. Some vertices cannot
be reached by any path from any source node at level 1 in slab S1; these vertices and
their out-edges are shaded gray. A feasible solution corresponds to a path rooted at a
source node associated with the slab S1 on level 1. An optimal solution ends at a sink
node at the highest level among all feasible solutions.

for each of the j convex polygons that intersect Si. Consequently, the number
of vertices in G is O(

∑n−1
i=1

∑k
j=0 n4j) = O(kn4k+1).

Furthermore, we create (n/k)k copies of each vertex associated with a slab
Si, each of which is assigned a distinct value (�1, . . . , �k) ∈ Z

k, where for each
j ∈ {1, . . . , k}, �j = |Pj∩(S1∪· · ·∪Si)|, i.e., the number of points of Pj that lie in
the first i slabs. We refer to � = minj∈{1,...,k} �j as the vertex’s level. Each vertex
at level � in G corresponds to a slab Si, such that the minimum cardinality of any
polygon in S1∪ . . .∪Si (or partial polygon if it includes points to the right of Si)
is �. Therefore, the resulting graph G has O((n/k)kkn4k+1) ⊆ O( 1

kk−1 · n5k+1)
vertices. See Fig. 2.

Every slab has exactly one point of P on its left boundary and one on its
right boundary. For each vertex v in G, let vl and vr denote these two points of
P for the slab corresponding to v. We add an edge from vertex u to vertex v in
G if they are compatible. See Fig. 3. The vertices u and v are compatible if:

– u and v correspond to neighbouring slabs, u to Si and v to Si+1, for some i,
and

– all top and bottom segments associated with u that do not pass through pi
continue in v, where pi = ur = vl is the point of P on the common boundary
of Si and Si+1, and

– one of the four following conditions is met:
Case 1. either (a) one top associated with u ends at pi and one top associated

with v begins at pi, forming a right turn at pi, or (b) one bottom
associated with u ends at pi and one bottom associated with v begins
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(a) Case 1

pi

Si Si+1 (b) Case 2

pi

Si Si+1 (c) Case 3

pi

Si Si+1 (c) Case 4

pi

Si Si+1

Fig. 3. The four cases in which we add an edge between the vertices u (associated with
the slab Si) and v (associated with the slab Si+1) in G; i.e., u and v are compatible.
In this example, k = 2, corresponding to two polygons, for which the edges through Si

and Si+1 are coloured blue and red, respectively. In Fig. 3(a), pi lies on the upper hull
of the blue polygon, so the polygon makes a right turn at pi, i.e., the angle below pi
must be convex. Figure 3(d), pi is omitted from the selection.

at pi, forming a left turn at pi (all polygons in Si continue in Si+1; the
number of edges in Si is equal to that in Si+1);

Case 2. one top and one bottom associated with u end at pi, (one polygon ends
in Si and all remaining polygons continue into Si+1);

Case 3. no top or bottom associated with u end at pi, but one top and one
bottom associated with v start at pi (one polygon starts in Si+1 and all
remaining polygons continue from Si into Si+1).

Case 4. all edges in u continue into v and no edge passes through pi = ur = vl
(all polygons in Si continue into Si+1; the number of edges in Si is equal
to that in Si+1).

For a given vertex u at most n − 2 edges satisfy Case 1 (there are at most
n − 2 possible edges that continue from pi to form a convex bend), at most
one edge satisfies Case 2, at most

(
n−3
2

)
edges satisfy Case 3, and at most one

edge satisfies Case 4. Consequently, the number of edges in G is O(n2|V (G)|) ⊆
O( 1

kk−1 · n5k+3).
Any path from a source on level 1 to a highest-level node corresponds to an

optimal solution, and can be found using breadth-first search in time propor-
tional to the number of edges in G. The resulting worst-case running time is
proportional to the number of vertices and edges in G: O(|V (G)| + |E(G)|) =
O( 1

kk−1 ·n5k+3). In addition to storing a single in-neighbour from which a longest
path reaches each node u, we can maintain a list of all of its in-neighbours that
give a longest path, allowing the algorithm to reconstruct all distinct optimal
solutions with the running time increased only by the output size.

The time for constructing the graph G is proportional to its number of edges.
The combinations of

(
n
2j

)
line segments in a slab Si on level j can be enumer-

ated and created in O(1) time each, with O(1) time per edge added if graph
vertices are indexed according to their slab, their level, and the line segments
they include. The level of each node in G is determined in O(1) time per node
by examining the level of any of its in-neighbours; the level increases by one in
Cases 1 and 2 if the point pi is added to the minimum-cardinality set and that
set is the unique minimum.

Theorem 1. Given a set P of n points in the plane, and a positive integer k,
Bottleneck Convex Subsets can be solved exactly in O( 1

kk−1 · n5k+3) time.
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3 NP-Hardness

In this section we show that Bottleneck Convex Subsets is NP-hard. We first
introduce some notation. Let x(p), y(p) be the x and y-coordinates of a point p.
An angle ∠pqr determined by points p, q and r is called a y-monotone angle if
y(p) > y(q) > y(r). A y-monotone angle is left-facing (resp. right-facing) if the
point q lies interior to the left (resp., right) half-plane of the line through pr. If
q lies on the line through pr, then we refer to ∠pqr as a straight angle.

The idea of the hardness proof is as follows. We first prove that given a
set of 3n points in the Euclidean plane, it is NP-hard to determine whether the
points can be partitioned into n y-monotone angles, where none of them are right
facing (Sect. 3.1). We then reduce this problem to Bottleneck Convex Subsets
(Sect. 3.2).

3.1 Covering Points by Straight or Left-Facing Angles

In this section we show that given a set of 3n points in the Euclidean plane, it is
NP-hard to determine whether the points can be partitioned into n y-monotone
angles, where none of them are right facing. In fact, we prove the problem to be
NP-hard in a restricted setting, as follows:

ANGLE PARTITION
Instance: A set P of 3n points lying on three parallel horizontal lines (y =
0, y = 1 and y = 2) in the plane, where each line contains exactly n points.
Problem: Partition P into at most n y-monotone angles, where none of them
are right facing.

We reduce Distinct 3-Numerical Matching with Target Sums (DNMTS),
which is known to be strongly NP-complete [17, Corollary 8].

DISTINCT NUMERICAL MATCHING WITH TARGET SUM
Instance: Three sets A = {a1, . . . , an}, B = {b1, . . . , bn}, C = {c1, . . . , cn},
each with n distinct positive integers, where

∑n
i=1 ai +

∑n
i=1 bi =

∑n
i=1 ci.

Problem: Decide whether there exist n triples (ai, bj , ck), where 1 ≤ i, j, k ≤
n, such that ai + bj = ck and no two triples share an element.

Theorem 2. Angle Partition is NP-hard.

Proof. Let M = (X,Y,Z) be an instance of DNMTS, where each set A,B,C
contains n positive integers. We now construct an instance Q of Angle Partition
as follows: (I) For each a ∈ A, create a point at (a, 0). (II) For each b ∈ B, create
a point at (b, 2). (III) For each c ∈ C, create a point at (c/2, 1).

This completes the construction of the point set P of the Angle Partition
instance Q (e.g., see Fig. 4(a)). Since the numbers in A,B,C are distinct, no
two points in P will coincide. Note that by definition, a y-monotone angle must
contain one point from each of the lines y = 0, y = 1 and y = 2. Further-
more, every straight angle ∠pqr will satisfy the equation x(p)+x(r)

2 = x(q). This
transformation is inspired by a 3-SUM hardness proof for ‘GeomBase’ [14].
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A = {16, 14, 10}, B = {8, 6, 12}, C = {18, 28, 20}

(16,0)(14,0)(10,0)

T = {(16, 12, 28), (14, 6, 20), (10, 8, 18)}

y = 0

y = 1

y = 2

(14,1)(10,1)

(6,1) (8,1) (12,1)

(9,1)

(a) (b)

Fig. 4. (a) Construction of Q from an instance M of DNMTS. (b) A solution for M
and the corresponding angles of Q.

We now show that M has an affirmative solution if and only if P admits a
partition into n y-monotone angles where none of them are right facing.

First consider that M has an affirmative answer, i.e., a set of n triples
(ai, bj , ck), where 1 ≤ i, j, k ≤ n, such that ai + bj = ck and no two triples
share an element. Therefore, we will have (ai+bj)

2 = ck
2 . Hence we will find a

straight line through (ai, 0), (bk, 2), (cj/2, 1). These lines will form n y-monotone
straight angles (e.g., see Fig. 4(b)). Since none of these angles are right facing,
this provides an affirmative solution for the instance Q.

Consider now the case when Q has an affirmative solution T , i.e., a partition
of P into n y-monotone angles, where none of them are right facing. We first
claim that (Step 1) all these n y-monotone angles must be straight angles and
then (Step 2) show how to construct an affirmative solution for M .

Step 1: Suppose for a contradiction that the solution T contains one or more
left-facing angles. For each left-facing angle ∠rst, where r, s, t are on lines y =
0, y = 1 and y = 2, respectively, we have x(s) < x(r)+x(t)

2 . For each straight angle
∠rst, we have x(s) = x(r)+x(t)

2 . Since we do not have any right-facing angle, the
following inequality holds:

∑
∠rst∈T x(s) <

∑
∠rst∈T

x(r)
2 +

∑
∠rst∈T

x(t)
2 . Since

no two angles share a point, we have
∑n

i=1(ci/2) <
∑n

i=1(ai/2) +
∑n

i=1(bi/2),
which contradicts that M is an affirmative instance of DNMTS.

Step 2: We now transform the y-monotone straight angles of T into n triples for
M . For each angle, ∠rst, where r, s, t are on lines y = 0, y = 1 and y = 2, we
construct a triple (x(r), x(t), 2x(s)). Since ∠rst is a straight angle, x(r)+x(t) =
2x(s). Since no two angles share a point, the triples will be disjoint. ��

3.2 Bottleneck Convex Subsets Is NP-Hard

In this section we reduce Angle Partition to Bottleneck Convex Subsets. Let
P be an instance of Angle Partition, i.e., three lines y = 0, y = 1 and y = 2,
each line containing n points. We construct an instance H of Bottleneck Convex
Subsets with k = n.

Construction of H: We first take a copy P ′ of the points of P and include
those in H. Let Δ be a sufficiently large number (to be determined later). We
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y = 0

y = 1

y = 2

y = 3

(Δ,−Δ2 − 1) (2Δ,−Δ2 − 1) (3Δ,−Δ2 − 1)

(Δ,Δ2 + 3) (2Δ,Δ2 + 3) (3Δ,Δ2 + 3)

U1 U2 U3

V1 V2 V3

(2Δ, 3) (3Δ, 3) (4Δ, 3)

(2Δ,−1) (3Δ,−1)
y = −1

(4Δ,−1)

Fig. 5. Illustration for the construction of H. Note that this is only a schematic rep-
resentation, which violates the property that all the chains are inside the wedge deter-
mined by the y-monotone angles.

now construct n upper chains. The ith upper chain Ui, where 1 ≤ i ≤ n, is
constructed following the step below (see Fig. 5).

Construction of Ui: Place two points at the coordinates (iΔ,Δ2 + 3) and
((i+1)Δ, 3). Let C be the curve determined by y = Δ2+3− (x− iΔ)2, which
passes through these two points. Place 2n points uniformly on C between
(iΔ,Δ2 + 3) and ((i + 1)Δ, 3).

Each upper chain contains (2n+2) points. We define the n lower chains symmetri-
cally, where each lower chain Vi starts at (iΔ,−Δ2−1) and ends at ((i+1)Δ,−1).

We now choose the parameter Δ. Let t be the maximum x-coordinate of the
points in P , and set Δ to be t4. This ensures that for any line � with non-zero
slope passing through two points of P , the upper and lower chains lie on the
right half-plane of �. This concludes the construction of the Bottleneck Convex
Subsets instance H, where k = n. Note that H has 3n + n(4n + 4) = n(4n + 7)
points. In the best possible scenario, one may expect to cover all the points and
have a partition into n disjoint convex subsets, where each set contains (4n + 7)
points. The proof of Lemma 1 is in the full version [6].

Lemma 1. Let W be a partition of the upper and lower chains into a set L of
at most n disjoint convex sets. Then each convex set in L contains at least one
point from an upper chain and one point from a lower chain.

Reduction: We now show that the Angle Partition instance P admits an affir-
mative solution if and only if the Bottleneck Convex Subsets instance H admits
k(= n) disjoint convex sets with each set containing (4n + 7) points.
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Assume first that P admits an affirmative solution, i.e., P admits a set of n
y-monotone angles such that none of these are right facing. By the construction
of H, the corresponding point set P ′ must have such a partition into y-monotone
angles. For each i from 1 to n, we now form a point set Ci that contains the ith y-
monotone angle, the upper chain Ui and the lower chain Vi. By the construction
of H, all the chains are inside the wedge determined by the y-monotone angle
and hence Ci is a convex set with (4n + 7) points. Since the sets are disjoint, we
obtain the required solution to the Bottleneck Convex Subsets instance.

Consider now that the points of H admits n disjoint convex sets with each
set containing (4n+7) points. Since H contains n(4n+7) points, the convex sets
form a partition of H. Let L be such a partition. We now show how to construct
a solution for P using L. Let L′ be a set of convex sets obtained by removing
the points of P ′ from each convex set of L. By Lemma 1, each set of L′ contains
at least one point from the upper chains and one point from the lower chains.
Since there are 3n points on P ′, to partition P ′ into n convex sets, we must need
each convex set of L to contain a y-monotone angle with exactly one point from
y = 0, one point from y = 1 and one point from y = 2. Since each convex set
contains one point from an upper chain and one point from a lower chain, none
of these y-monotone angles can be right facing. Hence we obtain a partition of
P ′ into the required y-monotone angles, which implies a partition also for P .
This completes the reduction. The following theorem summarizes the results.

Theorem 3. The Bottleneck Convex Subsets problem is NP-hard.

4 Point Sets with Few Points Inside the Convex Hull

In this section we show that the Bottleneck Convex Subsets problem is fixed-
parameter tractable when parameterized by the number of points r inside the
convex hull, i.e., these points do not lie on the convex-hull boundary.

Theorem 4. Let P be a set of n points and let r be the number of points inte-
rior to the convex hull of P . Then one can solve the Bottleneck Convex Subsets
problem on P in f(r) · nO(1) time, i.e., the Bottleneck Convex Subsets problem
is fixed-parameter tractable when parameterized by r.

Proof. (Sketch: see the full version [6] for the complete proof) Let k be the num-
ber of disjoint convex sets that we need to construct. We guess the cardinality of
the smallest convex set in an optimal solution and perform a binary search. For
a guess q, we check whether there exists k disjoint convex sets each with at least
q points. Assume that j of the k convex sets contain points from the interior.
Since there are only r interior points, we enumerate for each j from 0 to r, all
possible j convex sets such that each set in these j convex sets contains at most
q points from the interior of P . For each set of length � ≤ r, we also consider
all � possible convex orderings of the points. Therefore, we have

∑k
j=0 r

(
2r

j

)
pos-

sibilities to consider. We need an additional consideration when all the points
of a convex set lie on a straight line L. In that situation, we enumerate two
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further cases one that considers the left halfplane and the other that considers
the right halfplane of L. Thus the number of elements in the enumeration is at
most

∑k
j=0 r

(
2r

j

)
2j ≤ ∑k

j=0 r2r
j+1 ≤ r2r

k+2
. The idea now is to examine whether

these j sets can be extended to contain q points each and to check whether the
remaining points can be used to construct the remaining (k − j) convex sets by
modelling this with a maximum flow problem. ��

5 Discussion

We examined the Bottleneck Convex Subsets problem of selecting k mutually
disjoint convex subsets of a given set of points P such that the cardinality of
the smallest set is maximized. We described an algorithm that solves Bottleneck
Convex Subsets for small values of k, showed Bottleneck Convex Subsets is
NP-hard for an arbitrary k, and proved Bottleneck Convex Subsets to be fixed
parameter tractable when parameterized by the number of points interior to
the convex hull. The problem is also solvable in polynomial time for specific
large values of k. If k > n/4, then some subset has cardinality at most three;
a solution is found trivially by arbitrarily partitioning P into k subsets of size
�n/k� or �n/k	. If k ∈ {�n/5� + 1, . . . , n/4} then some subset has cardinality
at most four. As discussed in Sect. 1.2, Károlyi [18] characterized necessary and
sufficient conditions for a set of n points in general position to admit a partition
into k = n/4 convex quadrilaterals, and gave an O(n log n)-time algorithm to
decide whether such a partition exists; if no such partition exists, then some set
must contain at most three points, which can be solved as described above. It
remains open to determine whether Bottleneck Convex Subsets can be solved in
polynomial time for all k ∈ Θ(n).

As a direction for future research, a natural question is to establish a good
lower bound on the time required to solve these problems for small fixed values
of k. In particular, is the O(n3)-time algorithm of Chvátal and Klincsek [4]
optimal for the case k = 1? Note that our algorithm has time O(n8) when k = 1.
It would also be interesting to examine whether a fixed-parameter tractable
algorithm exists for Bottleneck Convex Subsets when parameterized by k, and
to find approximation algorithms for Bottleneck Convex Subsets when k is an
arbitrary input parameter, with running time polynomial in n and k.
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Abstract. Given an n-point metric space (M, d), metric 1-median
asks for a point p ∈ M minimizing

∑
x∈M d(p, x). We show that for

each computable function f : Z
+ → Z

+ satisfying f(n) = ω(1), metric
1-median has a deterministic, o(n)-query, o(f(n) · logn)-approximation
and nonadaptive algorithm. Previously, no deterministic o(n)-query o(n)-
approximation algorithms are known for metric 1-median.

Keywords: Median selection · 1-median problem · Metric space ·
Sublinear algorithm · Query complexity

1 Introduction

An n-point metric space (M,d) is a size-n set M endowed with a distance func-
tion d : M × M → [0,∞) such that

– d(x, y) = 0 if and only if x = y,
– d(x, y) = d(y, x), and
– d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality)

for all x, y, z ∈ M [13]. Metric 1-median asks for a point p ∈ M minimizing∑
x∈M d(p, x). Clearly, it has a brute-force O(n2)-time algorithm. Furthermore,

it generalizes the classical median selection [5] and can be generalized further to
metric k-median clustering. In social network analysis, metric 1-median asks
for an actor with the maximum closeness centrality [14]. For all β ≥ 1, a β-
approximate 1-median of (M,d) is a point p ∈ M satisfying

∑
y∈M d(p, y) ≤ β ·

minq∈M

∑
y∈M d(q, y). By convention, a β-approximation algorithm for metric

1-median must output a β-approximate 1-median of (M,d). A query inspects
d(x, y) for some x, y ∈ M . An algorithm is nonadaptive if its ith query (xi, yi) ∈
M2 is independent of the first i − 1 queries, for all i > 1.

Indyk [9,10] gives a Monte Carlo O(n/ε2)-time (1 + ε)-approximation algo-
rithm for metric 1-median, where ε > 0. His time complexity is opti-
mal w.r.t. n. When restricted to R

D, metric 1-median has a Monte Carlo
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O(exp(poly(1/ε)))-time (1 + ε)-approximation algorithm [12]. The more gen-
eral k-median clustering in metric spaces has streaming approximation algo-
rithms [8] and is inapproximable to within (1 + 2/e − Ω(1)) unless NP ⊆
DTIME(nO(log log n)) [11]. For R

D and graph metrics, a well-studied problem
is to find the average distance from a query point to a finite set of points [1,6,7].

Deterministic o(n2)-query computation is almost completely understood for
metric 1-median: For all constants ε ∈ (0, 1), the best approximation ratio
achievable by deterministic o(n2)-query and O(n1+ε)-query algorithms is 4 and
2�1/ε	, respectively [2,4,15]. The same holds with “query” replaced by “time”
and regardless of whether the algorithms can be adaptive [2,4]. In contrast, we
study the largely unknown deterministic o(n)-query computation. The query
complexity of o(n) has a special meaning: An o(n)-query algorithm must ignore
a 1−o(1) fraction of all n points. This is in contrast with o(n2)-query algorithms,
which ignore a 1 − o(1) fraction of all

(
n
2

)
distances.

It is folklore that every point is an (n − 1)-approximate 1-median. Surpri-
singly, this is the current best upper bound for deterministic o(n)-query algo-
rithms. In particular, no deterministic o(n)-query o(n)-approximation algorithms
are known for metric 1-median. Currently, the best lower bound against deter-
ministic o(n)-query algorithms is that they cannot be O(1)-approximate; this
remains true with “o(n)” replaced by “O(n)” [4].

We give a deterministic, o(n)-query, o(f(n) · log n)-approximation and non-
adaptive algorithm for each computable function f : Z

+ → Z
+ satisfying f(n) =

ω(1). So, e.g., metric 1-median has a deterministic o(n)-query o(α(n) · log n)-
approximation algorithm for the very slowly growing inverse Ackermann func-
tion α(·). Previously, no deterministic o(n)-query o(n)-approximation algorithms
are known. Our main technical discovery is that a β-approximate 1-median
of (S, d|S×S) (where d|S×S denotes d restricted to S × S) is an O(βn/|S|)-
approximate 1-median of (M,d), for all ∅ � S ⊆ M and β ≥ 1. We do
not know whether metric 1-median has a deterministic o(n)-query O(log n)-
approximation algorithm, though.

2 Main Result

Take an n-point metric space (M,d) and ∅ � S ⊆ M . Define

x∗ ≡ argmin
x∈M

∑

y∈M

d(x, y),

x∗
S ≡ argmin

x∈S

∑

y∈S

d(x, y)

to be a 1-median of (M,d) and (S, d|S×S), respectively, breaking ties arbitrarily.
Furthermore, pick u and v independently and uniformly at random from S. So

r̄S ≡ E [ d (u,v) ]

is the average distance in (S, d|S×S).
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Lemma 1.

∑

y∈S

d (x∗, y) ≥ |S| r̄S

2
.

Proof. We have
∑

y∈S

d (x∗, y) = |S| · E [ d (x∗,u) ]

=
1
2

· (|S| · E [ d (x∗,u) ] + |S| · E [ d (x∗,v) ])

≥ 1
2

· |S| · E [ d (u,v) ] .

�
Lemma 2.

∑

y∈S

d (x∗
S , y) ≤ |S| r̄S .

Proof. By the optimality of x∗
S ,

∑

y∈S

d (x∗
S , y) ≤ E

⎡

⎣
∑

y∈S

d (u, y)

⎤

⎦ .

Clearly,

E

⎡

⎣
∑

y∈S

d (u, y)

⎤

⎦ = |S| · E [ d (u,v) ] .

�
For all x′

S ∈ S,
∑

y∈M

d (x′
S , y) ≤

∑

y∈M

d (x′
S , x∗) + d (x∗, y) = n · d (x′

S , x∗) +
∑

y∈M

d (x∗, y) . (1)

The next two lemmas constitute our main discovery.

Lemma 3. For all x′
S ∈ S and β ≥ 1 satisfying

∑
y∈S d(x′

S , y) ≤ β ·∑
y∈S d(x∗

S , y) and d(x′
S , x∗) ≤ 2βr̄S, x′

S is an O(βn/|S|)-approximate 1-median
of (M,d).

Proof. By Lemma 1,

n · d (x′
S , x∗) ≤ n · d (x′

S , x∗) · 2
|S| r̄S

·
∑

y∈S

d (x∗, y) . (2)
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As d(x′
S , x∗) ≤ 2βr̄S and S ⊆ M ,

∑

y∈M

d (x′
S , y) ≤ O

(
βn

|S|
)

·
∑

y∈M

d (x∗, y)

by Eqs. (1)–(2). �
Lemma 4. For all x′

S ∈ S and β ≥ 1 satisfying
∑

y∈S d(x′
S , y) ≤ β ·∑

y∈S d(x∗
S , y) and d(x′

S , x∗) > 2βr̄S, x′
S is an O(n/|S|)-approximate 1-median

of (M,d).

Proof. By the triangle inequality,
∑

y∈S

d (x∗, y) ≥
∑

y∈S

d (x′
S , x∗) − d (x′

S , y) = |S| · d (x′
S , x∗) −

∑

y∈S

d (x′
S , y) . (3)

Furthermore,

∑

y∈S

d (x′
S , y) ≤ β ·

∑

y∈S

d (x∗
S , y)

Lemma 2≤ β |S| r̄S . (4)

As d(x′
S , x∗) > 2βr̄S ,

∑

y∈S

d (x∗, y)
(3)−(4)

≥ |S| · d (x′
S , x∗) − β |S| r̄S >

|S|
2

· d (x′
S , x∗) .

So

n · d (x′
S , x∗) =

2n
|S| · |S|

2
· d (x′

S , x∗) <
2n
|S| ·

∑

y∈S

d (x∗, y) .

This and Eq. (1) imply

∑

y∈M

d (x′
S , y) ≤ O

(
n

|S|
)

·
∑

y∈M

d (x∗, y) .

�
Lemmas 3–4 imply the following.

Lemma 5. For all β ≥ 1, every β-approximate 1-median of (S, d|S×S) is an
O(βn/|S|)-approximate 1-median of (M,d).

The following theorem is due to Chang [3].

Theorem 1 ([3]). For all constants ε > 0, metric 1-median has a deter-
ministic, O(exp(O(1/ε)) · n log n)-time, O(exp(O(1/ε)) · n)-query, O(ε · log n)-
approximation and nonadaptive algorithm.
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Below is our main theorem.

Theorem 2. For each computable function f : Z
+ → Z

+ satisfying f(n) =
ω(1), metric 1-median has a deterministic, o(n)-query, o(f(n) · log n)-
approximation and nonadaptive algorithm.

Proof. Take any S ⊆ M of size Θ(n/
√

f(n)). Applying Theorem 1 to (S, d|S×S),
an O(log |S|)-approximate 1-median x′

S of (S, d|S×S) can be found deterministi-
cally and nonadaptively with O(|S|) queries. By Lemma 5 (with β = O(log |S|)),
x′

S is an O((log |S|) · n/|S|)-approximate 1-median of (M,d). �
Taking a very slowly growing f(·) (e.g., the iterated logarithm or the inverse

Ackermann function), Theorem 2 allows deterministic o(n)-query algorithms to
be very close to being O(log n)-approximate.

3 Conclusions

We give a deterministic o(n)-query o(f(n) · log n)-approximation algorithm for
metric 1-median, where f(n) = ω(1) is any computable function. This yields
the first deterministic o(n)-query o(n)-approximation algorithm. Two questions
remain:

– When we want an approximation ratio close to O(log n), our query complexity
will be close to Θ(n) in the proof of Theorem 2. Could it be improved to be
far below Θ(n) such as O(

√
n)?

– Our approximation ratio, albeit close to O(log n), is still ω(log n). Could it be
improved to O(log n) or even to o(log n)? Or is there a lower bound forbidding
deterministic o(n)-query algorithms from being o(log n)-approximate?
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Abstract. Given a set C of points and a horizontal line L in the plane
and a set F of points on L, we want to find a set of disks such that (1)
each disk has the center at a point in F (but with arbitrary radius), (2)
each point in C is covered by at least one disk, and (3) the cost of the set
of disks is minimized. Here the (transmission) cost of a disk with radius r
is rα, where α is a constant depending on the power consumption model,
and the cost of a set of disk is the sum of the cost of disks in the set.

In this paper we first give an algorithm based on dynamic program-
ming method to solve the problem in L1 metric. A naive dynamic pro-
gramming algorithm runs in O(|C|3|F |2) time. We design an algorithm
which runs in O(|C||F |2) time.

Then we design another algorithm to solve the problem in L1 metric
based on a reduction to a shortest path problem in a directed acyclic
graph. The running time of the algorithm is O(|C|2 + |C||F |).

Keywords: Algorithm · Disk coverage problem

1 Introduction

The traditional k-center problem finds a set of k disks covering a given set of
points on the plane minimizing the largest radius of the disks, and the traditional
k-median problem finds a set of k disks covering a given set of points on the
plane minimizing the sum of the distances from the points to their nearest disk
centers. Those problems are in general NP-hard [10]. However for some special
cases polynomial time algorithms are known, for the 1D cases [2,4,5,7,11], and
the 1.5 D cases (explained below) [1,3,8,9,12–14].

In this paper we consider a similar problem for the 1.5D case, called the
aligned disk coverage problem.

It is known that, given a set C of points and a line L in the plane, one can
find a set of disks such that (1) each disk has the center on the line L (with
arbitrary radius), (2) each point in C is covered by at least one disk, and (3)
the cost of the set of disks is minimized [12]. Here the (transmission) cost of a
disk with radius r is rα. We assume that we can compute rα in a constant time,
where α is a constant depending on the power consumption model. The cost of
a set of disks is the sum of the cost of the disks in the set. The number of disks

c© Springer Nature Switzerland AG 2021
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Fig. 1. An example of aligned disks covering a set of points in L1 metric.

is not limited. The running time is O(|C|2) for any constant α in any fixed Lp

metric [12]. In this problem one can locate each disk center at any point on L.
In this paper we consider a “discrete” version of the problem. Given a set C

of points and a horizontal line L in the plane and a (discrete) set F of points on
L, we want to find a set S of disks such that (1) each disk has the center at a
point in F (with arbitrary radius), (2) each point in C is covered by at least one
disk, and (3) the cost of S is minimized. See an example in Fig. 1. The cost of
a disk and the cost of a set of disks are defined as above. The number of disks
is not limited, but we want to minimize the cost of S. We call the problem the
discrete aligned disk coverage problem.

Intuitively we are planning to install a set of base stations for a set of clients.
We are allowed to locate each base station at a location among the candidate
locations on the main (horizontal straight) road. For each base station at fi we
can choose its radius ri (corresponding to the transmission distance from the
base station), and we assume that if the distance to a client from fi is at most
ri, the client can receive a message from the base station. We want to choose
a set {f1, f2, · · · } of base stations with their radii {r1, r2, · · · } so that the sum
of rα

i is minimized. Here α is a constant depending on the power consumption
model, and the sum of rα

i is the total power consumption of the base stations.
Note that for the model in [12] one can locate each base station at any place on
the main road. In contrast in the discrete model we can locate each base station
only at a location among “the candidate locations” on the main road. So this
model is more natural for some applications.

If all points in C also lie on L (the 1D problem) and α = 1, one can solve
the problem in O((|C|+ |F |)3) time [9]. If the points in F lie on anywhere in the
plane (the 2D problem) the problem with any fixed α > 1 is NP-hard [1], and if
α = 1 a PTAS is known [9].

In this paper we first give an algorithm to solve the discrete aligned disk
coverage problem for any fixed α. A naive algorithm runs in O(|C|3|F |2) time.
We design an algorithm which runs in O(|C||F |2) time. The algorithms are based
on efficient dynamic programming method.
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Then we design an O(|C|2 + |C||F |) time algorithm to solve the discrete
aligned disk coverage problem for L1 metric. If |F |2 > |C| then the algorithm
runs faster than the first algorithm. The algorithm is based on a reduction to a
shortest path problem in a directed acyclic graph.

The rest of the paper is organized as follows. In Sect. 2 we give some basic
definitions and lemmas. In Sect. 3 we give an O(|C||F |2) time algorithm to solve
the discrete aligned disk coverage problem in L1 metric. In Sect. 4 we give an
O(|C|2 + |C||F |) time algorithm to solve the discrete aligned disk coverage prob-
lem in L1 metric. Finally Sect. 5 is a conclusion.

2 Preliminary

In this section we give some definitions and lemmas.
Let d(u, v) be the distance between two points u and v. Let C and L be a set

of points and a horizontal line in the plane, respectively, and F a set of points
on L. We assume |C| > |F |. A disk with center at f ∈ F and radius r is a set of
points having distance at most r from f . We denote such disk as D(f, r). Note
that a disk in L1 metric is a region with a rotated square boundary. Without
loss of generality we can assume that L is a line on the x-axis. Let x(p) and
y(p) be the x− and y−coordinates of point p. We also assume that all points in
C are located above or on L, since if a point p ∈ C is located below L we can
replace p with its symmetrical point p′ with L without affecting the (optimal)
solution. Note that a disk D centered at f ∈ F contains p iff D contains p′. Also
we can assume that no two point in C have the same x-coordinate, since if a
point p ∈ C lies directly above another point p′ ∈ C, we can remove p′ from C
without affecting the (optimal) solution. Note that any disk centered at f ∈ F
and containing p also contains p′.

A set of disks are aligned disks if each disk in the set has the center at a point
in F . We say that aligned disks AD cover C if each point in C is contained in at
least one disk in AD. The cost of aligned disks AD is the sum of the costs of disks
in AD, and the cost of a disk with radius r is rα. We want to find aligned disks
covering C with the minimum cost. We call the problem the discrete aligned disk
coverage problem in this paper.

Let AD be aligned disks covering C with the minimum cost. We have the
following three lemmas. Those three lemmas hold for any constant α.

Lemma 1. One can assume that each disk in AD does not contain another disk
in AD.

Proof. If D ∈ AD contains D′ ∈ AD then by removing D′ from AD one can
have aligned disks covering C with less cost. A contradiction. ��
Lemma 2. Let D� and Dr be two consecutive disks in AD, f�, fr ∈ F are their
centers, and x(f�) < x(fr). Every point p ∈ C with x(f�) ≤ x(p) ≤ x(fr) is
covered by either D� or Dr.



224 S. Nakano

Proof. Assume otherwise. Then there are two consecutive disks D� and Dr in
AD, with centers at f� and fr, and there exists a point p ∈ C with x(f�) ≤
x(p) ≤ x(fr) not covered by D� and Dr, but covered by some other disk, say D′

in AD. Then D′ contains either D� or Dr, which contradicts Lemma 1. ��
We say a disk D� with the center at f� is a possible left neighbour of a disk Dr

with the center at fr if every point p ∈ C with x(f�) ≤ x(p) ≤ x(fr) is covered
by either D� or Dr. Note that if AD has a disk D and it is not the leftmost one,
then the disk located immediately left of D in AD is a possible left neighbour
of D.

Lemma 3. Each disk in AD has some point p ∈ C on its boundary.

Proof. Assume otherwise. Now some disk D(f, r) in AD has no point in C on
its boundary. Then we can decrease the radius r of D(f, r) to d(f, p′), where p′

is the furthest point in C from f located in D(f, r), so that the resulting aligned
disks still cover C with less cost. A contradiction. ��

Thus the number of disks possibly appear in AD is at most |C||F |.

3 Algorithm 1

A simple dynamic programming algorithm to solve the discrete aligned disk
coverage problem in L1 metric runs in O(|C|3|F |2) time. (The number of possible
disks in a solution is at most |C||F | by Lemma 3. Then for each disk we compute
if each other disk can appear as the preceding disk in an optimal solution in
O(|C|) time, so the running time is O(|C||F |) × O(|C||F |) × O(|C|).) In this
section we design a more efficient dynamic programming algorithm to solve the
problem which runs in O(|C||F |2) time. We assume that we can compute rα in
a constant time.

Given a set C of points and a horizontal line L in the plane and a set F of
points on L, let AD be aligned disks covering C with the minimum cost. We
append f∞ to F as a hypothetical rightmost point. Let C(f) be the subset of C
consisting of the points not located on the right of f ∈ F , that is C(f) = {p ∈
C|x(p) ≤ x(f)}. Let uf be the farthest point in C(f) from f , or equivalently the
point uf ∈ C(f) attaining the maximum y(uf ) − x(uf ).

Now we define the subproblems for our dynamic programming algorithm, as
follows. The subproblem P (f, r) is the problem of finding aligned disks AD(f, r)
including disk D(f, r) (as the rightmost disk) covering C(f) with the minimum
cost. Let C(f, r) be the cost of AD(f, r). Note that AD(f∞, 0) − {D(f∞, 0)} is
a solution of our original problem. Note that disk D(f∞, 0) has the radius 0, so
it covers no point in C.

Fix f ∈ F . Let pi in C be the i-th farthest point from f . Then set ri =
d(pi, f). We are going to compute C(f, ri) and AD(f, ri) for each P (f, ri). Fix
ri. We have the following two cases. Note that AD(f, ri) covers only C(f) not
entire C.
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Fig. 2. An illustration for Case 2.

Case 1: AD(f, ri) consists of exactly one disk.
If ri ≥ d(uf , f) then the disk D(f, ri) covers C(f), so C(f, ri) = rα

i and
AD(f, ri) = {D(f, ri)}.

Otherwise, ri < d(uf , f) holds, and then D(f, ri) cannot cover uf ∈ C(f),
and to cover C(f) we need more disks so this is not in Case 1.

Case 2: AD(f, ri) consists of two or more disks.
Now f is not the leftmost point in F . For each f ′ ∈ F with x(f ′) < x(f),

D(f, ri) has a possible left neighbor, say D(f ′, r′), for large enough r′.
If AD(f, ri) has the 2nd rightmost disk D(f ′, r′), then P (f, ri) has a solution

AD(f, ri) = AD(f ′, r′) ∪ {D(f, ri)} with cost C(f, ri) = C(f ′, r′) + rα
i . However

we do not know whether P (f, ri) has a solution with two or more disks, and if
it has, which one is the 2nd rightmost disk D(f ′, r′) in AD(f, ri).

For each f ′ with x(f ′) < x(f), we compute the following r′. Among all
possible r′ we choose the r′ with (1) D(f ′, r′) is the possible left neighbor of
D(f, ri) and (2) C(f ′, r′) is the minimum over the choice of r′.

Then, among all possible f ′, we choose the 2nd rightmost disk D(f ′, r′)
in AD(f, ri) which minimizes C(f ′, r′) + rα

i . Now AD(f, ri) = AD(f ′, r′) ∪
{D(f, ri)} and C(f, ri) = C(f ′, r′) + rα

i hold.
Thus we can design a dynamic programming algorithm to solve the problem.
The running time of the algorithm is as follows.

The search of uf .
In the preprocessing step, sort the points in C with respect to their x-coordinates
in the increasing order. This sort needs O(|C| log |C|) time. For each f ∈ F in
increasing order of x(f), compute each uf above by scanning the prefix of the
sorted list of C upto x(f) incrementally, corresponding to the current C(f),
then choose the point u as uf having the maximum y(u) − x(u). This needs
O(|C| + |F |) time in total for the whole algorithm. Since |C| > |F | the running
time is O(|C|).
The sorted list of C with respect to the distance from f .
In the preprocessing step, sort the points in C with respect to their y(p)−x(p)’s
in decreasing order, and sort the points in C with respect to their y(p) + x(p)’s
in decreasing order. By using the two sorted lists, for a fixed f , we can construct



226 S. Nakano

the sorted list of C(f) with respect to y(p)−x(p), and the sorted list of C−C(f)
with respect to y(p) + x(p), then construct the sorted list of C with respect to
the distance from f in O(|C|) time. Thus, we need O(|C||F |) time in total for
this part.

The table for each f .
For each f ∈ F we maintain the list
((r1, C(f, r1), AD(f, r1)), (r2, C(f, r2), AD(f, r2)), · · · ) in the decreasing order of
ri. The list for f has element (ri, C(f, ri), AD(f, ri)) iff P (f, ri) has aligned
disks AD(f, ri) covering C(f) including disk D(f, ri) (as the rightmost disk)
with the minimum cost C(f, ri). Each AD(f, ri) is stored as its rightmost disk
D(f, ri) and a pointer to AD(f ′, r′), where D(f ′, r′) is the 2nd rightmost disk
in AD(f, ri). So the size of space for each AD(f, ri) is a constant.

Each time if we find a solution of P (f, ri) we append (ri, C(f, ri), AD(f, ri))
to the list of f .

The computation of r′ for each f ′.
Fix f and f ′. For each r1, r2, · · · of f if we compute every r′ of f ′ independently,
and choose the best r′ of f ′, then we need O(|C|) time for each ri of f . Our idea
is, for each fixed f ′, we can compute r′ for each r1, r2, · · · of f incrementally in
O(|C|) time in total, as follows. Construct the list S of the points in C located
between x(f ′) and x(f) in decreasing order of y(p) − x(p). Since, in the prepro-
cessing step, we have sorted C with respect to y(p)−x(p) we can construct S in
O(|C|) time. Let pi ∈ C be the i-th farthest point from f , and set ri = d(pi, f).
We have two cases depending on whether D(f, ri) covers S or not.

If D(f, ri) covers S, that is d(uf , f) ≤ ri, where uf is the farthest point from
f in S, then r′ is the one with the minimum C(f ′, r′).

If D(f, ri) does not cover S, then we first compute the point v ∈ S, (1) not
covered by D(f, ri) and (2) having the maximum d(v, f ′). (If we have computed
v for ri−1 of f then one can compute v for ri by incrementally scanning S. The
v remains as it was or pi−1 becomes new v. See Fig. 2.) Now D(f ′, d(v, f ′)) is
a possible left neighbor of D(f, ri). Then choose the minimum r′ such that (1)
r′ ≥ d(v, f ′) and (2) C(f ′, r′) is bounded. One can compute such v incrementally
for all r1, r2, · · · , r|C| in O(|C|) time in total. Thus, for f and f ′, we can choose
each r′ for all r1, r2, · · · , r|C| in O(|C|) time in total.

Thus, for fixed f and f ′, our algorithm needs only O(|C|) time. Therefore
we need O(|C||F |2) time for this part.

Theorem 1. One can solve the discrete aligned disk coverage problem in L1

metric in O(|C||F |2 + |C| log |C|) time.

Our algorithm is shown in Algorithm Aligned-disk-coverage.
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Algorithm 1. Aligned-disk-coverage
1: Append f∞ to F as the rightmost point.
2: for each f ∈ F} /* in increasing order of x(f) */ do
3: Let C(f) = {p ∈ C|x(p) ≤ x(f)}
4: Let uf be the farthest point in C(f) from f
5: for each pi ∈ C /* in decreasing order of y(pi) − x(pi) */ do
6: set ri = d(pi, f)
7: /* Case 1: Aligned disk cover for C(f) consists of exactly one disk */
8: if ri ≥ d(us, f) then
9: C(f, ri) = ri

α

10: AD(f, ri) = {D(f, ri)}
11: else
12: C(f, ri) = ∞
13: end if
14: /* Case 2: Aligned disk cover for C(f) consists of two or more disks */
15: for each f ′ ∈ F with x(f ′) < x(f) do
16: Let r′ be the one such that (1) C(f ′, r′) is a possible left neighbor of D(f, ri),

and (2) r′ is the minimum one such that C(f ′, r′) is bounded
17: /* AD(f ′, r′) ∪ {D(f, ri)} covers C(f) */
18: if C(f ′, r′) + ri

α < C(f, ri) then
19: C(f, ri) = C(f ′, r′) + rα

i

20: AD(f, ri) = AD(f ′, r′) ∪ {D(f, ri)}
21: end if
22: end for
23: end for
24: end for
25: Output AD(f∞, 0) − D(f∞, 0).

4 Algorithm 2

In this section we design an O(|C|2+ |C||F |) time algorithm to solve the discrete
aligned disk coverage problem in L1 metric.

Given a set C of points and a horizontal line L in the plane and a set F
of points on L, let AD = {D1,D2, · · · ,Dk} be a set of aligned disks covering
C with the minimum cost. Note that we have assumed that all points in C are
located above or on L, and a disk in L1 metric is a region with a rotated square
boundary. So, to cover the points in C, we need only the upper half regions of
disks in AD, each of which is a right isosceles triangle. See Fig. 3.

Let �(D) be the line segments with slope 1 on the boundary of the right
isosceles triangle corresponding to a disk D in AD. Similarly, let r(D) be the line
segments with slope −1. For two consecutive disks D�,Dr in AD, let c(D�,Dr)
be the intersection point of two segments r(D�) and �(Dr) if D� and Dr intersect,
and the midpoint of two centers of D� and Dr otherwise.

Fix AD. Now we define the responsible point set C(D) ⊂ C for each
D ∈ AD, as follows. For the leftmost disk D1 in AD we define C(D1) =
{p|x(p) < x(c(D1,D2))}. For the rightmost disk Dk in AD we define
C(Dk) = {p|x(c(Dk−1,Dk)) ≤ x(p)}. For other disk Di in AD, C(Di) =
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Fig. 3. An illustration for the graph.

{p|x(c(Di−1,Di)) ≤ x(p) < x(c(Di,Di+1))}. Thus C(D1)∪C(D2)∪ · · · ∪C(Dk)
is a partition of C.

One can observe that each Di in AD has at least one point p ∈ C(Di) with
x(c(Di−1,Di)) ≤ x(p) < x(c(Di,Di+1))} on its boundary, since otherwise we can
shrink the disk so that it still covers C(Di) but with less radius. A contradiction.
Thus each D in AD is a disk with the minimum radius covering some consecutive
points {ps, ps+1, · · · , pt}, and the number of such disks, corresponding to some
consecutive points, is at most |C|2.

Therefore there is a natural correspondence between (1) aligned disks AD =
{D1,D2, · · · ,Dk} covering C (with the minimum cost) and (2) a shortest path
in the following graph. See Fig. 3.

The set of vertices of the graph is {v0, v1, · · · , v|C|}. (Intuitively vi corre-
sponds to the midpoint of pi and pi+1.) For each i, j with 0 ≤ i < j ≤ n we
append the directed edge from vi to vj with weight w = rα, where r is the
minimum radius of a disk covering pi+1, pi+2, · · · , pj and having the center at
some point in F .

Let D be a disk centered at some point, say f , in F covering P =
{pi+1, pi+2, · · · , pj} ⊂ C with the minimum radius, p� ∈ P the farthest point
from f among P located on the left of f , and pr ∈ P the farthest point from f
among P located on the right of f .

Given P , D, p� and pr, one can compute the disk D′ centered at some point,
say f ′, in F covering P plus one more point pj+1, that is, covering P ′ = P ∪
{pj+1} with the minimum radius, the farthest point q� from f ′ among P ′ located
on the left of f ′, and the farthest point qr from f ′ among P ′ located on the right
of f ′, as follows.
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Fig. 4. An illustration for Case 2(b).

We have the following three cases.

Case 1: D contains pj+1.
Then D′ = D (so f ′ = f), q� = p�, and qr = pr hold.

Case 2: Otherwise. (D does not contain pj+1.)
We have the following two subcases.

Case 2(a): x(f ′) ≤ x(pj+1).
Now f ′ is located on the left of pj+1. The center f ′ of D′ is the point f ′ ∈ F

with the minimum max{d(p�, f ′), d(pj+1, f
′)}. One can find f ′ by scanning F

from f to right. The radius of D′ is max{d(p�, f ′), d(pj+1, f
′)}. q� is p� and qr

is pj+1.

Case 2(b): x(pj+1) < x(f ′).
Now f ′ is located on the right of pj+1. The center f ′ of D′ is the leftmost

f ′ ∈ F with x(f ′) > x(pj+1). The radius of D′ is max{d(p�, f ′), d(pj+1, f
′). See

Fig. 4. Now q� is p� or pj+1, and qr is not defined.
Thus, for a fixed i, one can compute the weight of each possible edge in

(vi, vi+1), (vi, vi+2), · · · , (vi, v|C|) in O(|C| + |F |) time in total. So one can com-
pute all weights of possible at most |C|2 edges in O(|C|2 + |C||F |) time.

Since the graph is directed acyclic we can compute the shortest path from
v0 to v|C| in O(|C|2) time by a simple dynamic programming algorithm. See
Chap. 24.2 of [6].

Theorem 2. One can solve the discrete aligned disk coverage problem in L1

metric in O(|C|2 + |C||F |) time.

5 Conclusion

In this paper we have designed two algorithms to solve the discrete aligned
disk coverage problem in L1 metric. The running time of the first algorithm is
O(|C||F |2). A similar algorithm can solve more generalized problem in which the
cost of a disk Di centered at fi with radius ri is rα

i + oi where oi is an opening
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additive cost for a disk center at fi. The running time remains the same. For
more general cost, which is any non-decreasing function with respect to ri, a
similar algorithm can solve the problem. The running time remains the same if
one can compute the cost in a constant time.

The running time of the second algorithm is O(|C|2 + |C||F |).
Can we generalize the algorithms for other Lp metric? Can we solve the

problem when L is not horizontal?
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Yannick Bosch1, Peter Schäfer1, Joachim Spoerhase2 , Sabine Storandt1,
and Johannes Zink2(B)

1 University of Konstanz, Konstanz, Germany
2 University of Würzburg, Würzburg, Germany

zink@informatik.uni-wuerzburg.de

Abstract. The Polyline Bundle Simplification (PBS) problem is
a generalization of the classical polyline simplification problem. Given
a set of polylines, which may share line segments and points, PBS asks
for the smallest consistent simplification of these polylines with respect
to a given distance threshold. Here, consistent means that each point is
either kept in or discarded from all polylines containing it. In previous
work, it was proven that PBS is NP-hard to approximate within a factor

of n
1
3−ε for any ε > 0 where n denotes the number of points in the input.

This hardness result holds even for two polylines. In this paper we first
study the practically relevant setting of planar inputs. While for many
combinatorial optimization problems the restriction to planar settings
makes the problem substantially easier, we show that the inapproxima-
bility bound known for general inputs continues to hold even for planar
inputs. We proceed with the interesting special case of PBS where the
polylines form a rooted tree. Such tree bundles naturally arise in the
context of movement data visualization. We prove that optimal simplifi-
cations of these tree bundles can be computed in O(n3) for the Fréchet
distance and in O(n2) for the Hausdorff distance (which both match the
computation time for single polylines). Furthermore, we present a greedy
heuristic that allows to decompose polyline bundles into tree bundles in
order to make our exact algorithm for trees useful on general inputs.
The applicability of our approaches is demonstrated in an experimental
evaluation on real-world data.

Keywords: Polyline simplification · Hardness of approximation · Tree
graph · Dynamic program · Planarity

1 Introduction

Polyline simplification is a well-studied optimization problem [4,5,10,11,15] with
a wide field of applications, e.g., in computer graphics, map visualization, or data
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smoothing. In the classical sense, polyline simplification means removing some
polyline bend points while keeping a small distance to the original polyline. Given
a distance threshold, the optimal simplification of a single polyline, i.e., the sim-
plification keeping as few polyline points as possible, respecting that threshold
can be computed in polynomial time [11]. However, in case the input is a set of
(partially) overlapping polylines, individual simplification of each polyline leads
to visually unpleasing results as shared parts may be simplified in different ways.
Moreover the visual complexity might even increase which opposes the simplifi-
cation concept. Aiming at more appealing and sensible results, the problem of
Polyline Bundle Simplification (PBS) was introduced in [14]. It adds as
an additional constraint that shared parts must be simplified consistently (i.e.
each point is either kept in or discarded from all polylines containing it).

Definition 1 (Polyline Bundle Simplification [14]). An instance of PBS
is a triple (P,L, δ) where P = {p1, . . . , pn} is a set of n points in the plane,
L = {L1, . . . L�} is a set of � simple polylines, each represented as a list of points
from P (here, simple means that each point appears at most once in Li), and δ
is a distance parameter. The goal is to obtain a minimum size subset P ∗ ⊆ P
such that for each polyline L ∈ L its induced simplification L ∩ P ∗ contains the
start and end point of L and has a segment-wise distance of at most δ to L.

PBS is a generalization of the classical polyline simplification problem but
was proven to be NP-hard to approximate within a factor of n

1
3−ε for any ε > 0

already for two polylines for the Hausdorff and the Fréchet distance [14]. Moti-
vated by this strong hardness result, we investigate the complexity of practically
interesting special cases of PBS, and we design and evaluate practical algorithms.

Related Work. Simultaneous simplification of multiple polylines was consid-
ered in previous work e.g. in the context of computational biology or for map
generation. The so called chain pair simplification problem asks for two poly-
lines for their simplifications such that for given k ∈ N and δ > 0 each simplified
chain contains at most k segments, and the Fréchet distance between them is
at most δ [1]. The problem arises in protein structure alignment or map match-
ing tasks and was studied from a theoretical and practical perspective [6,7,16].
While the basic idea to preserve resemblance between polylines after simplifica-
tion is similar to the motivation behind PBS, chain pair simplification only ever
considers two polylines and does not put further restrictions on the simplification
of shared parts. Analyzing bundles of (potentially overlapping and intersecting)
movement trajectories is an important means to study group behavior and to
generate maps. For example, the RoadRunner approach [9] infers high-precision
maps from GPS trajectories. In [3], an approach was proposed that computes
a concise graph that represents all trajectories in a given set sufficiently well.
But these and similar methods do not produce valid simplifications of each input
polyline, but allow to discard outliers or to let a polyline be represented by a
completely disjoint polyline which is quite different from the PBS setting.

The PBS problem was introduced in [14]. In addition to the above mentioned
inapproximability result, there were also two algorithms for PBS discussed in
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the paper. For PBS with the Fréchet distance, a bi-criteria (O(log(� + n)), 2)-
approximation algorithm was presented. This algorithm is allowed to return
results within a distance threshold of 2δ, and based on this constraint relaxation
achieves a logarithmic approximation factor (compared to the optimal solution
for δ) in polynomial time. Furthermore, it was shown that PBS is fixed-parameter
tractable in the number k of points that are shared by at least two polylines,
based on a simple algorithm with a running time of O(2k · � · n2 + � · n3).

Contribution. We present the following new theoretical and practical results:

– PBS remains NP-hard to approximate to within a factor n
1
3−ε for any ε > 0

on planar inputs (Sect. 3).
– The special case of PBS where the polylines form a rooted tree can be solved

optimally in polynomial time. Similar to the Imai-Iri algorithm for simplifi-
cation of a single polyline [11], our algorithm precomputes the possible set of
shortcuts for the given distance threshold and thereupon transforms the given
geometric problem into a graph problem. But while in the Imai-Iri algorithm
a simple search for the minimum link-path in the shortcut graph suffices, we
need a more intricate dynamic programming approach (DP) to deal with the
tree structure (Sect. 4).

– We devise a greedy heuristic that decomposes a general polyline bundle into
tree bundles, which then can be simplified independently and optimally with
our DP (Sect. 5).

– In the experimental evaluation, we use our new approach to simplify polyline
bundles that model movement data or public transit maps. We compare our
approach in terms of efficiency and quality to the bi-criteria approximation
algorithm proposed in [14] (Sect. 6).

2 Preliminaries

The two most commonly used distance functions d to govern polyline simplifica-
tion are the Fréchet distance dF and the Hausdorff distance dH . In the context
of polyline simplification, the distance function d is used to measure the distance
of a line segment (a, b) in the simplification to the corresponding sub-polyline of
L, which we abbreviate by L(a, b). For any line segment (a, b) in a valid simpli-
fication, we require d((a, b), L(a, b)) ≤ δ. Given a single polyline L of length n,
a distance function d, and a distance threshold δ, an optimal simplification of
L can be computed in time O(n3) using the Imai-Iri algorithm [11]. The algo-
rithm starts by constructing a so called shortcut graph, in which there is an edge
between pairs of points a, b in L if d((a, b), L(a, b)) ≤ δ. Checking this property
for each of the Θ(n2) point pairs takes O(n3) time when using the Fréchet or the
Hausdorff distance. In the created shortcut graph, the best simplification can be
identified by computing the minimum-link path between the start and the end
node of L with a BFS run. As this only takes time linear in the graph size, the
shortcut graph computation dominates the overall running time.

An impoved method for shortcut graph construction presented by Chan and
Chin [4] can reduce the running time to O(n2) for d = dH . The algorithm uses
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sweeps to first compute directed shortcuts from which then subsequently the
valid undirected shortcuts can be deduced. More precisely, in each sweep, every
point p is considered as possible starting point of a directed shortcut in forward
direction. To then efficiently decide whether a later point on the polyline is a
valid endpoint of such a directed shortcut, a cone is maintained in which all
valid endpoints have to lie. Updating that cone and making the containment
check is possible in constant time, hence all directed shortcuts starting in p can
be computed in O(n). The respective total time for considering every point as
starting point in both sweeps is O(n2). A valid undirected shortcut exists if and
only if both of its directed versions are constructed in the sweep phase. This
obviously can be checked for each potential shortcut in constant time, leading
to an overall shortcut graph construction time of O(n2).

3 Hardness of Approximating Planar Polyline Bundle
Simplification

In this section, we show that we cannot approximate polyline bundle simplifica-
tion on planar inputs by the same polynomial factor that was previously shown
for general, non-planar inputs [14]. Here, planar means that no two polyline
segments touch or intersect each other unless they share a common endpoint.

Theorem 1. PBS with a planar polyline bundle as input is NP-hard to approx-
imate within a factor of n

1
3−ε for any ε > 0, where n is the number of points in

the polyline bundle.

We build upon the hardness reduction from minimum independent dominating
set (MIDS) from [14] by modifying their gadgets and the arrangement of their
gadgets such that the constructed polyline bundle is planar. In the MIDS prob-
lem, we are given a graph G = (V,E) with n̂ vertices and cn̂ edges, and the task
is to find a set S of vertices that is independent (no two vertices in S are adja-
cent) and dominating (each vertex not in S has a neighbor in S). This problem
has been shown to be NP-hard to approximate within a factor of n̂1−ε for any
ε > 0 [8], even for constant c, i.e., sparse graphs.

The construction uses vertex gadgets allowing exactly one shortcut; see
Fig. 1a. Taking this shortcut represents that the corresponding vertex of the
minimum independent dominating set instance is not included in S. Moreover it
uses edge gadgets connecting for each edge its two corresponding vertex gadgets.
They are comprised of long zizag pieces that can only be skipped if the inde-
pendent set property for each edge is fulfilled; see Fig. 1c. Similarly, we have a
neighborhood gadget connecting for each vertex the vertex gadgets of its neigh-
borhood to ensure that the domination property is satisfied; see Fig. 1d.

On a high level, vertex gadgets are vertical pieces arranged horizontally
next to each other and edge and neighborhood gadgets are horizontal pieces
arranged vertically above each other and across the vertex gadgets. This yields
a grid-like structure with many crossings between vertex gadgets and unrelated
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Fig. 1. Schematization of the gadgets of the reduction from MIDS to PBS with planar
instances. Shortcuts are indicated by dashed green line segments and points that are
shared between two gadgets are drawn as squares. (Color figure online)

edge/neighborhood gadgets; see Fig. 2. The key idea is to planarize the non-
planar construction by replacing crossings by new polyline points. However, we
have to be careful where to insert these new points. Just inserting points wherever
a crossing occurs would allow new shortcuts and hence destroy the mechanics of
the gadgets. We can prevent this from happening by reshaping the construction
so that crossings occur only close to existing polyline points. There, we can insert
new polyline points onto the crossings sufficiently close to existing other polyline
points. This ensures that for any shortcut starting or ending at a crossing point,
this crossing point could either be replaced by an original polyline point or that
the total saving incurred by the new crossing points does not severely impact
the gap in the objective function between completeness and soundness in the

Fig. 2. Combination of three vertex gadgets (for the vertices v1, v2, v3; blue back-
ground) with two edge gadgets (for the edges v1v2 and v1v3; red background) and
three neighborhood gadgets (for the vertices v1, v2, v3; green background). We use a
crossing as in Fig. 1b between the vertex gadget of v2 and the edge gadget of v1v3,
between the vertex gadget of v3 and the neighborhood gadget of v2, and between the
vertex gadget of v2 and the neighborhood gadget of v3. (Color figure online)
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hardness proof. We describe in the full version [2] in detail, how to reshape the
gadgets in order to ensure correctness. Our basic reduction uses one polyline per
gadget. But we can connect all vertex gadgets to one polyline and all edge and
neighborhood gadgets to another polyline, which means our results hold true
even for only two polylines (the connections have to be made carefully to not
violate planarity as discussed in the full version [2]).

Corollary 1. PBS with a planar polyline bundle as input is not fixed-parameter
tractable (FPT) in the number of polylines �. In particular, PBS with two poly-
lines in a planar polyline bundle is already NP-hard to approximate within a
factor of n

1
3−ε for any ε > 0.

4 Simplification of Polyline Tree Bundles

With the general PBS problem being hard to approximate better than n
1
3 even

on planar inputs, we now consider tree bundles as another interesting special
case of PBS. To form a tree bundle, the polylines have to start in a common
root point and then branch out.

Definition 2 (Polyline Tree Bundle (PTB)). An instance of PTB is a PBS
instance (P,L, δ) where we additionally require that L is a set of simple polylines
such that all L ∈ L start at the root point pr, and for any pair of polylines
L,L′ ∈ L, the only intersection is a common prefix L(pr, pi) = L′(pr, pi).

We remark that this definition does not demand the tree bundle to be planar as
the intersection constraint is only concerned with common points of the polylines.
Moreover, we do not need to consider the case here where a polyline L′ ∈ L is
a sub-polyline of L ∈ L. By definition, we will include the endpoints of all
polylines in our simplification and hence if the endpoint of L′ lies on L, we could
simply consider that point as the root of another PTB which can be simplified
independently. We will show that tree bundles can be consistently simplified to
optimality in polynomial time.

Problem Transformation. We transform the PTB simplification problem into
a graph problem by constructing two directed graphs from the input data: a tree
graph and a shortcut graph. We start by considering the polylines as embedded
directed paths which start at the root point. The tree graph Gt = (V,Et) is the
union of these paths. More precisely, for each point occurring in the PTB there
is a corresponding node v ∈ V (with vr corresponding to the root point pr),
and there exists a directed edge (v, w) ∈ Et if there is a polyline L ∈ L which
contains the segment between the respective points (in that direction). For a
given distance function d and threshold δ > 0, the shortcut graph Gs = (V,Es) is
the union of all valid shortcut edges, i.e. edges (v, w) ∈ (

V
2

)
where for all polylines

L ∈ L that contain v and w (in that order), we have d((v, w), L(v, w)) ≤ δ.
Figure 3 shows Gt and Gs for an example PTB. Note that no matter the distance
function and the value of δ, we always have Et ⊆ Es, i.e. all tree graph edges
are also contained in the shortcut graph.
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Lemma 1. The tree graph Gt = (V,Et) has size O(n) and can be constructed
in time O(n2).

Theorem 2. The shortcut graph Gs = (V,Es) has size O(n2) and can be con-
structed for the Fréchet distance in time O(n3) and for the Hausdorff distance
in time O(n2).

The respective proofs are provided in the full version [2]. Based on the notion
of the tree graph and the shortcut graph, we are now ready to restate the PTB
simplification problem (PTBS) as a graph problem.

Definition 3 (Polyline Tree Bundle Simplification (PTBS)). Given a
tree graph Gt = (V,Et) and a shortcut graph Gs = (V,Es), the goal is to find a
smallest node subset S ⊆ V such that:

– The root node and all leaf nodes of the tree graph are contained in S.
– The induced subgraph Gs[S] is connected.

Exact Polytime Algorithm. Next, we describe a dynamic programming (DP)
approach that only operates on Gt and Gs, and returns an optimal PTBS solution
in time O(n2). Let Sub(v) ⊆ Gt be the sub-tree rooted at node v in the tree
graph. Our main observation is that we can break down an optimal solution
recursively. If a node v is part of the solution, it’s easy to see that there can’t
be shortcuts bypassing v. Thus, the solution S can be split into two parts: an
optimal solution for Sub(v) and an optimal solution for Gt \ Sub(v). We denote
the size of an optimal solution for Sub(v) by s(v). As we don’t know a priori
which nodes will end up in the solution, we strive for computing s(v) for each
node v ∈ V in an efficient manner. For leaf nodes v, we obviously get s(v) = 1. To
compute s(v) for an inner node v, we assume that s(w) is already known for all
nodes w ∈ Sub(v) \ {v}. Each path from a leaf u to v in Sub(v) needs to contain
a cover node w such that (v, w) ∈ Es (that means there is a valid shortcut from
v to w). To identify the best selection of such cover nodes, we compute a helping
function h : V → N for each node w ∈ Sub(v) as follows: Initially, h(w) = s(w) if
(v, w) ∈ Es, and h(w) = ∞ otherwise. Then, in a post-order traversal of Sub(v),
for each non-leaf node w we set h(w) = min{h(w),

∑
u∈N(w) h(u)} where N(w)

denotes the set of children (out-neighbors) of w in Gt. In that way, h(w) encodes

Fig. 3. Left: Example of a PTB instance. Right: Thick blue edges represent the tree
graph Gt. The combination of the thick blue and the green edges build the shortcut
graph Gs for dH for the distance threshold δ (indicated via the light green tubes).
Examples of invalid shortcuts are drawn dashed violet. (Color figure online)
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Fig. 4. The left image shows an example tree graph with optimum sub-tree simplifica-
tion sizes (black) known for all nodes except the root node. The purple line segments
indicate valid shortcuts from the root node. The middle image depicts the same tree
after initial assignment of the helping values (red). Here, only end nodes of valid short-
cuts have finite values assigned to them. The right image shows the final helping values
(green) after propagation as well as the respective optimum simplification size of the
tree assigned to the root node (black). The blue marked nodes are the ones that are
contained in the optimal simplification. (Color figure online)

the smallest number of nodes that have to be kept in Sub(w) if for all paths from
v to leaf nodes in Sub(w) the respective cover node is contained in Sub(w). The
optimal solution size s(v) for Sub(v) is then h(v)+1 (as we have to additionally
include v itself). Note that s(v) is always well-defined (i.e., finite) as the tree
edges are all valid shortcuts in Gs. To make sure that at the time we compute
s(v) all values s(w) for w ∈ Sub(v)\{v} are known, we also globally traverse the
nodes in the tree graph in post-order. Figure 4 illustrates the computation of s(v).
The optimal set of simplification nodes can then be determined by backtracking.

For a faster running time of the DP in practice (used in our experiments), we
only compute h-values for nodes in Sub(v) which are on a path from v to some
node w with (v, w) ∈ Es. These nodes can easily be identified by computing the
reverse path from each such node w to v and marking all nodes along the way
(stopping as soon as a marked node is encountered to avoid redundancy). For
marked nodes w with an unmarked neighbor, we just set

∑
u∈N(w) h(u) to ∞ to

maintain correctness. Especially for small distance thresholds δ and large sub-
trees Sub(v), this modification accelerates the computation of s(v) significantly.

Theorem 3. PTBS can be solved optimally in time O(n2).

The proof is given in the full version [2]. Combining the time for problem trans-
formation with the time of the DP, we get an overall running time of O(n3)
for PTBS when using the Fréchet distance and a running time of O(n2) when
using the Hausdorff distance. Hence – although having to use more complicated
machinery – we end up with running times for tree bundle simplification that
match the best known running times for simplification of a single polyline.

5 Tree Bundle Decompositions

To leverage our algorithm for optimal tree bundle simplification for general bun-
dles, we next consider the problem of decomposing a general bundle into (a small
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set of) tree bundles. To formalize the Tree Bundle Decomposition (TBD)
problem we first introduce the notion of a D-decomposition of a polyline.

Definition 4 (D-Decomposition). Let L = (s, . . . , t) be a simple polyline
(represented as a list of points) and let D be a point set. Further let d1, d2, . . . , dk

be the points in L ∩ D in the order in which they appear in L. The D-
decomposition of L denoted by L(D) is the set of subpolylines L(di, di+1) for
i = 1, . . . , k − 1.

We strive to find a sensible set D that partitions a given bundle into tree bundles.

Definition 5 (Tree Bundle Decomposition (TBD)). Given a PBS instance
(P,L, δ), we seek to find a point subset D ⊆ P (the decomposition points) with
the following requirements:

– Each polyline L ∈ L starts and ends in a point in D.
– Let GI be the intersection graph in which we have a node for each subpolyline

in
⋃

L∈L L(D) and an edge between two nodes if the subpolylines L̃, L̄ share
a point that is not in D, i.e. (L̃ ∩ L̄) \ D �= ∅. Then the subpolylines within a
connected component in GI form a PTB.

Based on a TBD, we can simplify the given bundle by simplifying each of the tree
bundles induced by D independently. The union of all tree simplifications then
yields S. The goal, of course, is still to end up with a small set S. To achieve
that, we aim at TBDs which induce few but large tree bundles with a small
decomposition set D. In the following we assume that all polyline endpoints are
already included in D as they have to be part of S by definition.

A Simple Greedy Heuristic. Nodes in the set D might end up being the root
node of a tree bundle or a leaf node (or both). One way to construct D is hence
to greedily select root nodes and grow trees from those (adding the respective
leaf nodes to D as well).

For root selection, we use the line degree of the point, that is, the number
of polylines in L that contain the point. As only polylines that contain the
root can be part of the respective PTB, we always choose the node with the
highest line degree that is not already part of a tree bundle next. To compute
the largest prossible tree bundle for a selected root node r, we first construct
the union graph GU (V,E) of the polyline bundle. Here, each point in the bundle
is represented by a node in V and an edge exists between two nodes if there
is a polyline segment between the respective points. Additionally, we assign to
each edge in GU the set of polylines that traverse it. A tree bundle can then
be computed in a BFS-like fashion in GU starting from r, always pushing edges
instead of nodes in the queue. The edges incident to r are always included in
the PTB and are hence used for initialization of the queue (artificially directed
away from r). In any later step, if an edge (u, v) is extracted from the queue, we
first check whether all other edges incident to v are unvisited. If that is the case,
we need to make sure that the polyline set assigned to each incident edge is a
(not necessarily proper) subset of the polylines assigned to (u, v). If and only if
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those conditions are met for all incident edges, these edges are included in the
subtree, marked as visited, and inserted in the queue. Otherwise v is added to
D. The process takes O(� · n) time.

6 Experimental Evaluation

We implemented the dynamic programming approach (DP) for exact tree bundle
simplification as well as the greedy tree bundle decomposition algorithm (TBD)
in C++. Furthermore, we also provide the first implementation of the bi-criteria
approximation algorithm (BCA) from [14]. BCA demands to first compute a
small star cover of the polyline bundle where a star is a point p in the bundle
together with selected shortcuts that end in p. A feasible star cover has to ensure
that for each polyline L ∈ L and for each segment in L, there is a star in the
cover with a shortcut that bridges said segment. The set of points of all stars in
the star cover induces a simplified polyline bundle for a distance threshold of 2δ
(that is, twice the actual threshold). The number of retained points is at most
a factor of O(log(� + n)) larger than the optimal solution for threshold δ. The
running time of BCA is in O(� · n3). As this result only holds when using the
Fréchet distance, we will focus in the experiments on dF . All experiments were
run on a single core of an Intel Core i9 processor at 2.4 GHz.

Benchmark Data. We used two types of polyline bundle data to evaluate
the algorithms: (i) Path bundles from embedded road networks (extracted from
OpenStreetMap [13]). Such bundles are a good model for movement data. Bun-
dles were constructed by first extracting a connected subgraph with a given
number of nodes from the network. To obtain a tree bundle, we then performed
a BFS run from a randomly selected root node in the subgraph and backtracked
all paths from the leaves to the root of the BFS-tree. For general bundles, we
select not one but several root nodes in the subgraph, construct a tree bundle
for each and then combine those into a single bundle. (ii) Public transit net-
works (GTFS data provided by OpenMobilityData [12]). We used the data from
Stuttgart, Freiburg, Manhattan and Chicago. Here each bus or train line forms
a polyline in our bundle.

Tree Bundle Simplification Results. We compared the performance of DP
and BCA on tree bundles of different sizes extracted from road networks. While
it might seem to be an apples-to-oranges comparison, when we have an exact
algorithm on the one side and a bicriteria approximation on the other, it is not
a priori clear which algorithm would produce the smaller simplification when
tested with the same δ (as BCA is allowed to exceed it by a factor of 2). We
observe, however, that on all tested instances, the exact DP algorithm produces
better simplification results than BCA, even though BCA is allowed to use a
distance threshold of 2δ. If we call BCA with δ/2 to then end up with a solution
that obeys the δ-constraint, the quality deteriorates significantly (with up to 50%
larger outputs). Table 1 provides some selected results which reflect the general
behavior. It is interesting that the BCA algorithm indeed produces solutions
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Table 1. Comparison of DP and BCA on tree bundles (note that BCA is tested for the
original δ and δ/2). δF denotes the resulting Fréchet distance and δF /δ the distance
relative to the threshold δ. n is the input size, and |S| the number of points in the
computed solution for δ (in geo coordinates). Timings are in milliseconds.

δ · 104 δF · 104 δF /δ n |S| Time

DP 5.00 4.99 0.99 500 204 3

BCA 5.00 9.81 1.96 500 216 3

BCA 2.50 3.17 1.27 500 251 6

DP 5.00 5.00 1.00 8,000 4009 21

BCA 5.00 8.77 1.75 8,000 4029 407

BCA 2.50 4.04 1.61 8,000 5276 350

DP 5.00 5.00 1.00 50,000 24,076 248

BCA 5.00 9.68 1.94 50,000 24,195 14,800

BCA 2.50 5.00 2.00 50,000 32,457 13,500

where the δ threshold is violated by a factor of 2, proving the theoretical analysis
to be tight in this respect. We also observe that the DP approach scales much
better, with running times up to a factor of 50 faster than BCA on our largest
test instance.

Results on General Bundles. We used path bundles from road networks as
well as public transit networks to evaluate the performance of TBD+DP and
BCA. Again, BCA results are allowed to exceed the distance threshold δ by a
factor of 2. This slack is indeed strongly exploited also on public transit networks
as confirmed by our detailed BCA experiments reported in the full version [2]. We
now focus on a comparative evaluation. We observe that our heuristic approach
of first computing a tree decomposition and then simplifying the resulting trees
individually is always faster than BCA, computing results within a second even
for roadnetwork bundles with around 10,000 nodes while BCA takes 30 times
longer. In terms of quality, TBD+DP produce comparable or even better results
than BCA on the Stuttgart and Freiburg network, and clearly superior results
on road network bundles. Detailed results and illustrations are provided in the
full version [2]. The instances on which TBD+DP was outperformed by BCA
in terms of simplification size are bundles with large grid-like structures as the
Chicago and the Manhattan public transit network. Here, our tree decomposition
results in a huge set of trees of which we need to keep all root and leaf nodes in
the simplification. A post-processing step in which for each point in S, we test
whether it could be removed without constraint violation could help to close
that gap.

But especially for large instances, the simplicity and the fast computation
time of TBD+DP is a great advantage over BCA; in particular as the TBD is
independent of δ and individual tree simplification can be easily parallelized for
further improvement.
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7 Future Work

Based on our finding that the bi-criteria approximation algorithm indeed exceeds
the distance threshold bound by a factor of 2 on practical instances but produces
high-quality solutions, future work could investigate whether improved bi-criteria
approximation factors can be proven. Furthermore, it might be interesting to
investigate the existence of FPT algorithms for PBS for suitable parameters.
Our results that tree bundles can be processed in polynomial time might hint at
parameterizability by e.g. the treewidth of the union graph of the polylines. On
the practical side, further development of heuristics for PBS or the consideration
of non-simple polylines could be sensible avenues for future work.
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Abstract. We investigate the total number of edge crossings (i.e.,
the crossing number) of the Euclidean minimum weight Laman graph
MLG(P ) on a planar point set P . Bereg et al. (2016) showed that the
upper and lower bounds for the crossing number of MLG(P ) are 6|P |−9
and |P |−3, respectively. In this paper, we improve these upper and lower
bounds given by Bereg et al. (2016) to 2.5|P | − 5 and (1.25 − ε)|P | for
any ε > 0, respectively. Especially, for improving the upper bound, we
introduce a novel counting scheme based on some geometric observations.

Keywords: Laman graphs · Sparse and tight graphs · Plane graphs ·
Geometric graphs · Edge crossings

1 Introduction

A graph G = (V,E) is called Laman if |E| = 2|V |−3 and |E(H)| ≤ 2|V (H)|−3
for any subgraph H of G with E(H) �= ∅. A Laman graph has a property
of being minimally rigid in the plane if it is realized as a generic bar-joint
framework [5,8]. A bar-joint framework is a straight-line realization of a graph
in the plane, and by regarding each edge as a bar and each point as a joint the
rigidity of such a graph can be defined in a natural way (see, e.g., [5]). One of the
most fundamental results in combinatorial rigidity theory asserts that a graph
G realized on a generic point set (i.e., the set of the coordinates is algebraically
independent over the rational field) is rigid if and only if G contains a spanning
Laman subgraph [8]. Laman graphs appear in a wide range of applications, not
only statics but also mechanical design such as linkages, design of CAD systems,
analysis of protein flexibility, and sensor network localization [9,10].

Given a set P of n points in the Euclidean plane, let G(P ) denote a geometric
graph on P , i.e., G(P ) = (P,E) where E is a set of edges each of which is drawn
as a segment between two points in P . Throughout the paper, we assume that no
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three points in P are collinear and all interpoint distances are distinct. The point
set satisfying these assumptions is called semi-generic. A two-dimensional bar-
joint framework is considered as a geometric graph, thus in this paper, we deal
with geometric graphs where the underlying graphs are Laman, called Euclidean
Laman graphs. It is then natural to consider the Euclidean Laman graph on a
planar point set P with the minimum total edge-length over all Euclidean Laman
graphs on P , i.e., the Euclidean minimum weight Laman graph on P denoted by
MLG(P ).

In order to realize a geometric graph as a bar-joint framework in the real
world, it is important to consider the crossing property of the geometric graph.
A geometric graph is called plane (or non-crossing) if any two edges do not have
a crossing except possibly at their endpoints. In fact, the Euclidean minimum
spanning tree on a semi-generic planar point set P (MST(P ) for short) is plane.
Observe that both Laman graphs and spanning trees are characterized by similar
sparsity conditions: A graph G is called (k, l)-sparse if |E(H)| ≤ k|V (H)| − l
for any subgraph H of G with E(H) �= ∅, and a (k, l)-sparse graph is called
(k, l)-tight if it has exactly k|V (H)|− l edges (see, e.g., [8]). A spanning tree is a
(1, 1)-tight graph while a Laman graph is a (2, 3)-tight graph. Since (k, l)-sparse
graphs have several common combinatorial properties such as being independent
sets of a matroid, a natural question is whether the Euclidean minimum weight
(k, l)-tight graph on a point set has a nice crossing property as does the Euclidean
minimum weight (1, 1)-tight graphs.

Bereg et al. [3] studied crossing properties of MLG(P ). They proved as the
main results that MLG(P ) is 6-planar, i.e., each edge in MLG(P ) has at most
six crossings, and MLG(P ) is also quasi-planar, i.e., no three edges in MLG(P )
pairwise cross. In addition, they showed an instance P for which there exists an
edge that has six crossings in MLG(P ).

In the following, we use the terminology crossing number to denote the total
number of crossings. According to the results by Bereg et al. [3], it is easy to
see that the crossing number of MLG(P ) is at most 6 × (2|P | − 3)/2 = 6|P | − 9.
Bereg et al. [3] also provided an instance P for which the crossing number of
MLG(P ) is |P | − 3 (as shown in Fig. 3), therefore, there has been a gap between
upper and lower bounds for the crossing number of MLG(P ). In this paper, we
improve these upper and lower bounds given by Bereg et al. [3] to 2.5|P | −
5 and (1.25 − ε)|P | for any ε > 0, respectively. Especially, for improving the
upper bound, we introduce a novel counting scheme based on some geometric
observations, which is the most important contribution presented in the paper.

As for the crossing number of geometric graphs, several classes of proximity
graphs are studied by Ábrego et al. [1], e.g., nearest neighbor graphs, relative
neighborhood graphs, Gabriel graphs and Delaunay graphs. In a k-nearest neigh-
bor graph on a point set P (k −NNG(P ) for short), for p, q ∈ P , pq1 is included
if and only if p is the i-th closest point among p from q for some i ≥ k or
vice versa. In a k-relative neighborhood graph on a point set P (k − RNG(P ) for
short), for p, q ∈ P , pq is included if and only if Dp(pq) ∩ Dq(pq) (where Dp(r)

1 Throughout the paper, for two points p, q, we abuse the notation pq to denote the
line segment between p and q or the length of itself, depending on the context.
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denotes the closed disk with center p and radius r) contains at most k points
among P \ {p, q}. In a k-Gabriel graph on a point set P (k − GG(P ) for short),
for p, q ∈ P , pq is included if and only the circle through p and q with diameter
pq contains at most k points among P \ {p, q}. In a k-Delaunay graphs on a
point set P (k − DG(P ) for short), for p, q ∈ P , pq is included if and only if
there is a circle through p and q that contains at most k other points. Ábrego
et al. [1] proved that for any set P of n points, k − NNG(P ) has at most k3n
crossings, k −RNG(P ) has at most 9k3n crossings, k −GG(P ) has at most 3k2n2

crossings, and k −DG(P ) has at most 3k2n2 crossings. Note that Bereg et al. [3]
showed the relation among k −NNG(P ), k − RNG(P ), k −GG(P ) and MST(P ).
See Lemma 1 for the details.

The rest of the paper is organized as follows. In Sect. 2, we introduce some
notations and properties of MLG(P ) given by Bereg et al. [3], that are used
throughout the paper. In Sect. 3, we provide new geometric observations and
give an efficient counting scheme for improving the upper bound based on the
shown observations. In Sect. 4, we show how to construct an instance which
achieves the improved lower bound. In Sect. 5, we discuss future works, which
concludes the paper.

2 Preliminaries

First of all, we introduce some notations used throughout the paper. The closed
disk (resp. circle) with center p and radius r is denoted Dp(r) (resp. Cp(r)).
Consider two points p, q in the plane. Let Lens(pq) = Dp(pq) ∩ Dq(pq). Let
bisect(pq) denote the perpendicular bisector of segment pq. Let Up Lens(pq)
(resp. Low Lens(pq)) denote the intersection of Lens(pq) and the halfplane deter-
mined by bisect(pq) that contains p (resp. q). Let L Lens(pq) (resp. R Lens(pq))
denote the intersection of Lens(pq) and the halfplane determined by the support-
ing line of segment pq that contains a point p′ such that p, q, and p′ are arranged
on triangle pqp′ in clockwise (resp. counterclockwise) order. For a point p and
two half lines � and �′ starting at p in the plane, let anglep(�, �

′) denote the
smaller angle between � and �′, and Conep(�, �′) denote the cone with apex at p
delimited by � and �′, which corresponds to anglep(�, �

′).
In the rest of this section, we introduce several lemmas and theorems shown

by Bereg et al. [3] since those are useful to prove our main lemmas provided in
the next section. In the following, let P be a set of semi-generic n points in the
Euclidean plane, and for a geometric graph G(P ), we abuse notation G(P ) to
denote a set of edges in G(P ).

Let us start with a property based on which our counting scheme is.

Lemma 1. (Theorem 1.1 in [3]) It holds

MST(P ) ∪ 2 − NNG(P ) ⊆ MLG(P ) ⊆ 1 − GG(P ) ∩ 2 − RNG(P ).

Focusing on MST(P ) ⊆ MLG(P ), we classify the edges in MLG(P ) into ones in
MST(P ) and ones not in MST(P ). The details will be given in the next section.
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Fig. 1. (a) A lens-crossing edge cd for ab. (b) A fan-crossing edge cd for ab.

The following lemma shows properties which points of P in Lens(ab) for
ab ∈ MLG(P ) satisfy.

Lemma 2. (Lemma 2.3 in [3]) Consider an edge ab ∈ MLG(P ).

(i) There exists at most one point of P in each of L Lens(ab) and R Lens(ab).
(ii) If there exists one point of P in each of L Lens(ab) and R Lens(ab), i.e.,

c ∈ L Lens(ab) and d ∈ R Lens(ab), it then holds that ab < cd and cd /∈
MLG(P ).

We introduce key concepts both in our paper and [3]. See also Fig. 1.

Definition 1. (lens-crossing edge) For four points a, b, c, d ∈ P , suppose that
segments ab and cd cross each other, and c, d /∈ Lens(ab). Then, cd is called a
lens-crossing edge for ab.

Definition 2. (fan-crossing edge) For four points a, b, c, d ∈ P , suppose that
segments ab and cd cross each other, and c ∈ Lens(ab) and d /∈ Lens(ab). Then,
cd is called a fan-crossing edge for ab.

The following two lemmas show properties on lens-crossing edges for ab ∈
MLG(P ).

Lemma 3. (Lemma 3.3 in [3]) For four points a, b, c, d ∈ P , suppose that seg-
ment cd is a lens-crossing edge for segment ab, and cd cuts only Up Lens(ab)
(i.e., it does not cut Low Lens(ab)). Then, it holds a ∈ Lens(cd).

Lemma 4. (Lemma 4.1 in [3]2) Consider an edge ab ∈ MLG(P ). Then, MLG(P )
includes

(i) at most one lens-crossing edge for ab that cuts only Up Lens(ab),
(ii) at most one lens-crossing edge for ab that cuts only Low Lens(ab), and
(iii) no lens-crossing edge for ab that cuts both Up Lens(ab) and Low Lens(ab).

2 Lemma 4.1 in [3] corresponds to Lemma 4(i)(ii).
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Fig. 2. Illustration of Lemma 4(iii).

Lemma 4 means that MLG(P ) includes at most two lens-crossing edges for ab ∈
MLG(P ). Especially, it is easy to see the proof of Lemma 4(iii) as follows: Suppose
that a lens-crossing edge for ab, say cd, is also included in MLG(P ), and cd cuts
both Up Lens(ab) and Low Lens(ab) as shown in Fig. 2. Then, it holds ab < cd
and a, b ∈ Lens(cd), which contradicts Lemma 2(ii).

As for fan-crossing edges for ab ∈ MLG(P ), we have the following lemma.

Lemma 5. (Lemma 4.3 in [3]) Consider an edge ab ∈ MLG(P ). Then, MLG(P )
includes at most four fan-crossing edges for ab.

Based on the proof of Lemma 5 written in [3], we analyze more details and obtain
Lemmas 10 and 11 provided in the next section. Note that, indeed, the proof
of Lemma 5 for the case where only one point exists in Lens(ab) immediately
follows from the proof of Lemma 10.

Let σ(P ) denote the crossing number of MLG(P ). By Lemmas 4 and 5, we
see that every edge in MLG(P ) has at most six crossings. Therefore, σ(P ) is at
most 6 × (2n − 3)/2.

Theorem 1 [3]. For any set of semi-generic points P , it holds σ(P ) ≤ 6|P |−9.

Bereg et al. [3] also provide an instance P whose crossing number is |P | − 3 as
shown in Fig. 3.

Theorem 2 [3]. There exists a set of semi-generic points P such that σ(P ) ≥
|P | − 3.

Fig. 3. MLG(P ) that has |P | − 3 crossings (indicated by black-colored circles).
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To conclude this section, we introduce the following useful lemmas implicitly
shown in [11] and [3].

Lemma 6 [11]. For three points a, b, c ∈ P , suppose that anglea(�, �
′) < 60◦

and b, c ∈ Conea(�, �′). Then, the longer of ab and ac is not included in MST(P ).

Lemma 7 [3]. For four points a, b, c, d ∈ P , suppose that anglea(�, �
′) < 60◦

and b, c, d ∈ Conea(�, �′). Then, the longest of ab, ac, and ad is not included in
MST(P ).

3 Improved Upper Bound for σ(P )

In this section, we show a novel counting scheme based on some geometric
observations, which improves the upper bound for σ(P ) shown in Theorem 1.
Recall that MST(P ) ⊆ MLG(P ) as shown in Lemma 1. In the following, let
MST(P ) = MLG(P ) \ MST(P ). For counting σ(P ), we basically classify the
edges in MLG(P ) into ones in MST(P ) and ones in MST(P ).

Let us first see the following lemma.

Lemma 8. For an edge ab ∈ MST(P ), there is no fan-crossing edge.

Proof. We prove by contradiction that there exists no point of P in Lens(ab):
Suppose that c ∈ P lies in Lens(ab). We then have max{ab, bc, ca} = ab. Since
for any triangle whose vertices are points in P the longest edge is not in MST(P ),
it holds ab /∈ MST(P ), a contradiction. This completes the proof. 
�

At this point, it is easy to see σ(P ) ≤ 4n− 7 as follows: By Lemmas 4 and 8,
an edge in MST(P ) has at most two crossings in MLG(P ). Therefore, we obtain

σ(P ) ≤ 2|MST(P )| + 6|MST(P )|
2

=
2(n − 1) + 6(n − 2)

2
= 4n − 7.

In the rest of this section, we further improve this upper bound.
Next see the following lemma.

Lemma 9. For four points a, b, c, d ∈ P , suppose that cd is a lens-crossing edge
for ab. Then, ab is a fan-crossing edge for cd.

Proof. By Lemma 4, without loss of generality, cd cuts Up Lens(ab) and does
not cut Low Lens(ab) (see Fig. 4). Then, by Lemma 3, we have a ∈ Lens(cd). On
the other hand, it holds b /∈ Lens(cd) by Lemma 2(ii). This completes the proof.


�
We now consider classifying crossings in MLG(P ) into two cases.

Definition 3. (f-f crossing/f-l crossing) For four points a, b, c, d ∈ P , suppose
that two segments ab and cd intersect each other.
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a

b

c d

Fig. 4. Illustration of the proof of Lemma 9.

(i) If cd is a fan-crossing edge for ab, and ab is a fan-crossing edge for cd, we
call the crossing between ab and cd an f-f crossing.

(ii) If cd is a fan-crossing edge for ab, and ab is a lens-crossing edge for cd, we
call the crossing between ab and cd an f-l crossing.

Note that if cd is a lens-crossing edge for ab, by Lemma 9, ab must be a fan-
crossing edge for cd. Therefore, every crossing in MLG(P ) is an f-f crossing or
an f-l crossing. Furthermore, since there is no fan-crossing edge for any edge
in MST(P ) by Lemma 8, every crossing in MLG(P ) is a crossing between an
edge e ∈ MST(P ) and a fan-crossing edge for e, which implies that σ(P ) can be
counted only by checking fan-crossing edges for edges in MST(P ).

Prior to details of our counting scheme, we show the following two lemmas.

Lemma 10. Consider an edge ab ∈ MST(P ). Among the crossings between ab
and fan-crossing edges for ab in MLG(P ), there exist at most two f-l crossings.

Proof. First of all, if there exists no point of P in Lens(ab), the statement clearly
holds. According to Lemma 2, we consider other two cases: [Case 1] There exists
one point of P in Lens(ab). [Case 2] There exist two points of P in Lens(ab).

Case 1: Without loss of generality, c ∈ P lies in L Lens(ab). Let �a be a
half line emanating from c to a and �′

a be a half line emanating from c such
that anglec(�a, �

′
a) = 60◦ and �′

a cuts R Lens(ab). Similarly, let �b be a half
line emanating from c to b and �′

b be a half line emanating from c such that
anglec(�b, �

′
b) = 60◦ and �′

b cuts R Lens(ab).
Let d be a point of P such that cd is a fan-crossing edge for ab and cd lies in

Conec(�a, �′
a) (see Fig. 5(a)). Let d′ be the crossing between segment cd and the

boundary of Lens(ab). Since bisect(ad′) passes through b since ad′ is a chord
of Cb(ab), it is easy to see that a and c lie in the same side of bisect(ad′),
which means ca < cd′. By cd′ ≤ cd, we obtain ca < cd. On the other hand,
since ∠dca ≤ 60◦ < ∠dac, we have ad < cd. Hence, it holds a ∈ Lens(cd), i.e., a
crossing between ab and cd is an f-f crossing. In a symmetric manner, we obtain
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Fig. 5. (a) Illustration of Case 1 in the proof of Lemma 10. (b) Illustration of Case 2
in the proof of Lemma 10.

the same conclusion even if cd lies in Conec(�b, �′
b). Therefore, only if cd lies in

Conec(�′
a, �

′
b), a crossing between ab and cd can be an f-l crossing. By the fact of

anglec(�
′
a, �

′
b) < 60◦ and Lemma 7, MLG(P ) includes at most two fan-crossing

edges lying in Conec(�′
a, �

′
b), which completes the proof for Case 1.

Case 2: According to Lemma 2, without loss of generality, c, d ∈ P lie in
L Lens(ab) and R Lens(ab), respectively. Let p (resp. q) be the intersection point
of two circles Ca(ab) and Cb(ab) in L Lens(ab) (resp. R Lens(ab)) (see Fig. 5(b)).
We can see c /∈ Dq(ab) and d /∈ Dp(ab) since otherwise c ∈ Dq(ab) or d ∈ Dp(ab)
holds, and then cd < ab holds, which contradicts Lemma 2.

We consider only fan-crossing edges for ab emanating from c since ones ema-
nating from d are symmetric. Let �a, �b, �q be a half line emanating from c to
a, b, q respectively. Let h be a point of P such that ch is a fan-crossing edge
for ab and ch lies in Conec(�a, �q). Let h′ be the crossing between segment ch
and the boundary of Lens(ab), and c′ be the crossing (inside Lens(ab)) between
segment ch and Cq(ab). Since bisect(ah′) passes through b, it is easy to see
that a and c lie in the same side of bisect(ah′), which means ca < ch′. By
ch′ ≤ ch, we obtain ca < ch. Similarly, by considering bisect(ac′), we obtain
ah < ch. Hence, it holds a ∈ Lens(ch), i.e., a crossing between ab and ch is an
f-f crossing. In a symmetric manner, we obtain the same conclusion even if ch
lies in Conec(�b, �q), which implies that there exists no f-l crossing between ab
and fan-crossing edges for ab. This completes the proof for Case 2. 
�

Lemma 11. For an edge ab ∈ MST(P ), at most one fan-crossing edge is
included in MST(P ).

Proof. Consider the same cases as in the proof of Lemma 10.

Case 1: As shown in the proof of Lemma 10, if cd is a fan-crossing edge for ab
and cd lies in Conec(�a, �′

a) or Conec(�b, �′
b), Lens(cd) includes a or b, respectively,

i.e., cd /∈ MST(P ). Therefore, only if cd lies in Conec(�′
a, �

′
b), cd can be included

in MST(P ). By the fact of anglec(�
′
a, �

′
b) < 60◦ and Lemma 6, MST(P ) includes
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at most one fan-crossing edges lying in Conec(�′
a, �

′
b), which completes the proof

for Case 1.

Case 2: As shown in the proof of Lemma 10, if ch is a fan-crossing edge for ab
and ch lies in Conec(�a, �q) or Conec(�b, �q), Lens(cd) includes a or b, respectively,
i.e., ch /∈ MST(P ). Therefore, no fan-crossing edge is included in MST(P ). This
completes the proof for Case 2. 
�

3.1 Counting Scheme

Recall that every crossing in MLG(P ) is a crossing between an edge e ∈ MST(P )
and a fan-crossing edge for e. In the following, we classify each edge e ∈ MST(P )
into two types: [Type 1] There exists at least one f-l crossing among the crossings
between e and fan-crossing edges for e in MLG(P ). [Type 2] There exists no f-l
crossing among the crossings between e and fan-crossing edges for e in MLG(P ).
Let mi be the number of edges of Type i in MST(P ). Clearly, it holds

m1 + m2 = |MST(P )| = n − 2. (1)

We then consider numbering edges in Type i from 1 to mi in any order, and use
eij to denote the j-th edge in Type i. Recall that every crossing in MLG(P ) is an
f-f crossing or an f-l crossing. For every edge eij ∈ MST(P ), let σf−f

ij (resp. σf−l
ij )

be the number of f-f (resp. f-l) crossings between eij and fan-crossing edges for
eij in MLG(P ). By Lemma 10, it holds

σf−l
1j ≤ 2 for j = 1, . . . ,m1. (2)

Also, we have by the definition

σf−l
2j = 0 for j = 1, . . . ,m2. (3)

Let σf−f (resp. σf−l) denote the number of f-f (resp. f-l) crossings in MLG(P ).
Clearly, it holds

σ(P ) = σf−f + σf−l. (4)

First, we consider counting σf−f and σf−l by checking fan-crossing edges for
every eij ∈ MST(P ). While counting, each f-f crossing is counted exactly twice.
We thus have

σf−f =
1
2

⎛
⎝

2∑
i=1

mi∑
j=1

σf−f
ij

⎞
⎠ . (5)

On the other hand, each f-l crossing is counted exactly once. We thus have

σf−l =
2∑

i=1

mi∑
j=1

σf−l
ij =

m1∑
j=1

σf−l
1j . (6)
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Note that the second equality in Eq. (6) holds by applying Eq. (3). Summarizing
Eq. (4), Eq. (5) and Eq. (6), we obtain

σ(P ) =
1
2

⎛
⎝

2∑
i=1

mi∑
j=1

σf−f
ij

⎞
⎠ +

m1∑
j=1

σf−l
1j

=
1
2

⎛
⎝

2∑
i=1

mi∑
j=1

σf−f
ij +

m1∑
j=1

σf−l
1j

⎞
⎠ +

1
2

m1∑
j=1

σf−l
1j . (7)

Next, consider counting the number of fan-crossing edges in MST(P ), say
α, for every eij ∈ MST(P ). Recall that the crossing between eij and an edge
in MST(P ) is always an f-l crossing. Hence by Lemma 11, for an edge e1j , the
number of fan-crossing edges in MST(P ) is at least σf−f

1j + σf−l
1j − 1, and for an

edge e2j , it is exactly σf−f
2j + σf−l

2j = σf−f
2j (by Eq. (3)), i,e,. it holds

α ≥
m1∑
j=1

(σf−f
1j + σf−l

1j − 1) +
m2∑
j=1

σf−f
2j =

2∑
i=1

mi∑
j=1

σf−f
ij +

m1∑
j=1

σf−l
1j − m1. (8)

On the other hand, since each edge in MST(P ) is counted at most twice, and
|MST(P )| = n − 2, we have

α ≤ 2(n − 2). (9)

Summarizing Eq. (8) and Eq. (9), we obtain

2∑
i=1

mi∑
j=1

σf−f
ij +

m1∑
j=1

σf−l
1j ≤ 2(n − 2) + m1. (10)

Hence, we have an improved upper bound for σ(P ) as follows:

σ(P ) ≤ 2(n − 2) + m1

2
+

1
2

m1∑
j=1

σf−l
1j (by substituting Eq. (10) into Eq. (7))

≤ 2(n − 2) + m1

2
+

1
2

· 2m1 (by Eq. (2))

≤ 5
2
(n − 2) (since m1 ≤ n − 2 by Eq. (1)).

Theorem 3. For a set of any semi-generic points P , it holds σ(P ) ≤ 2.5|P |−5.

4 Improved Lower Bound for σ(P )

In this section, we show how to construct an instance P for which there exist
more crossings in MLG(P ) than one shown by Bereg et al. [3].
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Fig. 6. (a) A unit w.r.t. (o, R, r). (b) Illustration of how to connect two units.

Consider a set of five points {a, b, c, d, e} as shown in Fig. 6(a). For a point o,
and two real numbers R and r with R > r > 0, points a, b, c, d are arranged on
Co(R) in this order so that ab = bc = cd = r, and point e is located in Do(R)
such that be = ce = 2r. We call such a set of five points unit w.r.t. (o,R, r) in
the following.

For an integer t > 0, let us consider t numbered units w.r.t. (o,R, r). We
identify points a, b, c, d, e of i-th unit as ai, bi, ci, di, ei, respectively. We now put
t units so that di = ai+1 (regarded as one point) for i = 1, . . . , t − 1 as shown
in Fig. 6(b). Let P (o,R, r, t) denote a set of points constructed in the above
manner. It is then easy to see

|P (o,R, r, t)| = 4t + 1. (11)

Let us consider MLG(P (o,R, r, t)). In the following, we take values R, r, t so
that R/t > 1 � r. It is then easy to see that

aibi = bici = cidi(= r) < aici = bidi = cibi+1( 2r) < biei = ciei(= 2r)

< aiei = diei(
√

6r) < eiei+1( 3r),

thus MLG(P (o,R, r, t)) consists of edges aibi, bici, cidi, aici, bidi, biei, ciei for
i = 1, . . . , t, and edges cibi+1 for i = 1, . . . , t − 1. Since there are three crossings
in the i-th unit, and each edge cibi+1 has two crossings, it holds

σ(P (o,R, r, t)) = 3t + 2(t − 1) = 5t − 2. (12)

By Eq. (11) and Eq.(12), we have

σ(P (o,R, r, t))
|P (o,R, r, t)| =

5t − 2
4t + 1

=
5
4

− 13
16t + 4

,

which can be larger than 5/4 − ε for any ε > 0 by taking t as a sufficiently large
integer. Notice that P (o,R, r, t) is not semi-generic, however by moving each
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point in P (o,R, r, t) infinitesimally, we can obtain a set of semi-generic points P
such that the topology of MLG(P ) is the same as one of MLG(P (o,R, r, t)) and
σ(P ) = σ(P (o,R, r, t)).

Theorem 4. For any ε > 0, there exists a set of semi-generic points P such
that σ(P ) ≥ (1.25 − ε)|P |.

5 Future Works

Several problems related to the crossing number of MLG(P ) remain open.
One problem is to further improve upper or lower bounds for σ(P ). Although

in this paper, we have improved upper and lower bounds for σ(P ) as shown in
Theorems 3 and 4, respectively, there is still a gap.

Another interesting problem is to analyze the thickness of MLG(P ). The
thickness of a geometric graph G(P )3 is the smallest number of layers necessary
to partition the edges of G(P ) into layers in such a way that no two edges of
the same layer cross. It is easy to see that the thickness of MLG(P ) is at most
4 since it holds MLG(P ) ⊆ 1 − GG(P ) by Lemma 1, and it is shown by Bose et
al. [4] that the thickness of 1 − GG(P ) is at most 4. Therefore, a problem of
whether the thickness of MLG(P ) is at most 3 naturally arises. In order to prove
this, one direction worth considering is as follows: Define a graph H = (W,F )
for MLG(P ) such that each vertex e ∈ W corresponds to each edge e ∈ MLG(P ),
and for two vertices e, e′ ∈ W , edge (e, e′) is included in F if and only if edges e
and e′ cross each other in MLG(P ). We then notice that the thickness of MLG(P )
is equal to the chromatic number of H. It is proved by Grötzsch [6] that a planar
triangle-free graph is 3-colorable. On the other hand, Bereg et al. [3] show the
quasi-planarity of MLG(P ), i.e., no three edges in MLG(P ) pairwise cross, which
means that H is triangle-free. Hence, once we prove the planarity of H, the claim
immediately holds.
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Abstract. Let R be a set of n colored imprecise points, where each
point is colored by one of k colors. Each imprecise point is specified by a
unit disk in which the point lies. We study the problem of computing the
smallest and the largest possible minimum color spanning circle, among
all possible choices of points inside their corresponding disks. We present
an O(nk logn) time algorithm to compute a smallest minimum color
spanning circle. Regarding the largest minimum color spanning circle, we
show that the problem is NP-Hard and present a 1

3
-factor approximation

algorithm. We improve the approximation factor to 1
2

for the case where
no two disks of distinct color intersect.

Keywords: Color spanning circle · Imprecise points · Algorithms ·
Computational complexity

1 Introduction

Recognition of color spanning objects of optimum size, in the classical (precise)
setting, is a well-studied problem in the literature [2,3,7,14]. The motivation of
color spanning problems stems from facility location problems. Here facilities of
type i ∈ {1, 2, . . . , k} are modeled as points with color code i, and the objective
is to identify the location of a desired geometric shape containing at least one
facility of each type such that the desired measure parameter (width, perimeter,
area, etc.) is optimized. Other applications of color spanning objects can be found
in disk-storage management systems [5] and central-transportation systems [23].

The simplest type of two-dimensional problem considered in this setup is
the minimum color spanning circle (MCSC) problem, defined as follows. Given a
colored point set P in the plane, such that each point in P is colored with one of
k possible colors, compute a circle of minimum radius that contains at least one
point of each color (see Fig. 1a). As observed in [1], the minimum color spanning
c© Springer Nature Switzerland AG 2021
C.-Y. Chen et al. (Eds.): COCOON 2021, LNCS 13025, pp. 257–268, 2021.
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Fig. 1. (a) MCSC for a precise colored point set. (b, c) S-MCSC and L-MCSC for an
imprecise colored point set. The representative for each disk is marked as a point of
the corresponding color (for interpretation of the references to color in figure legends,
the reader is referred to the web version).

circle can be computed in O(nk log n) time using results on the upper envelope
of Voronoi surfaces obtained in [14].

In this work, the exact coordinates of the input points in P are unknown.
Instead, we are given a set R = {R1, R2, . . . , Rn} of n unit disks of diameter 1 in
the plane, where each disk is colored with one of k possible colors. A colored point
set P is a realization of R if there exists a color-preserving bijection between P
and R such that each point in P is contained in the corresponding disk in R.
Each realization of R gives a MCSC of a certain radius. We are interested in
finding realizations of R such that the corresponding MCSC has the smallest
(S-MCSC) and largest (L-MCSC) possible radius (see Fig. 1b and c).

Imprecise Points. Uncertainty in data is paramount in contemporary geometric
computations. The motivation of the studies on location-based data uncertainty
stems from many real-life situations where the locations of the points are subject
to errors and their exact coordinates are unknown. Such a set of points is known
as an imprecise or uncertain point set and the set of all possible locations of
a point is called its region [22,26]. In the literature, different variations have
been considered where the regions are modelled as simple geometric objects
such as line segments, disks or squares [22,26]. Computing the smallest circle
intersecting a set of disks or convex regions of total complexity n is called the
intersection radius problem, and can be solved in O(n) time [15]. Robert and
Toussaint [25] studied the problem of computing the smallest width corridor
intersecting a set of convex regions (disks and line segments) and proposed two
O(n log n) time algorithms, where n is the number of convex regions. Löffler and
van Kreveld [22] considered the problem of computing the smallest and largest
possible axis-parallel bounding box and circle of a set of regions modelled as
circles or squares. Their proposed algorithms have running times ranging from
O(n) to O(n log n).

Color Spanning Objects. In the precise setting, an obvious variation of the small-
est color spanning circle is the smallest color spanning square problem, which can
also be computed using the upper envelope of Voronoi surfaces in O(nk log n)
time [1]. Das et al. [7] showed that the smallest color spanning strip and axis-
parallel rectangle can be computed in O(n2 log n) and O(n(n − k) log k) time,
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respectively. They also proposed an algorithm to compute the arbitrarily ori-
ented smallest color spanning rectangle, which runs in O(n3 log k) time. The
color spanning 2-interval [16], equilateral triangle of a fixed orientation [13], and
axis-parallel square [18] can be computed in O(n2), O(n log n) and O(n log2 n)
time, respectively. Acharyya et al. [2] proposed several efficient algorithms to
compute the narrowest color spanning annulus for circles, axis-parallel squares,
rectangles, and equilateral triangles of a fixed orientation. The minimum diam-
eter color spanning set (MDCS) problem has also been studied [11,17,27]. Its
general version is known to be NP-Hard in Lp metric, for 1 < p < ∞, while in
L1 and L∞ metrics the problem can be solved in polynomial time [11].

Colored variations of other geometric problems have also been studied in
the context of imprecise points [6,8,24]. Given a set of colored clusters, the
problem of computing the minimum-weight color spanning tree (generalized MST
problem) is APX-Hard [8]. Even when each cluster contains exactly 2 points the
problem remains NP-Hard [12]. The problem admits a 2δ-approximation, where δ
is the maximum size of the cluster for any imprecise vertex of the MST [24]. In the
generalized TSP problem (GTSP), the imprecision is defined by neighborhoods
(which are either continuous or discrete) and the goal is to find the shortest
tour that visits all neighborhoods. It is known that GTSP with neighborhoods
defined by subsets of cardinality two is inapproximable [8].

Dispersion Problems. The L-MCSC problem is closely related to the dispersion
problem in unit disks, where for a given set of n unit disks the goal is to select n
points, one from each disk, such that the minimum pairwise distance among the
selected points is maximized. This problem was introduced by Fiala et al. [10]
who proved that the problem is NP-Hard, unless P = NP . It is also known that
the problem is APX-hard [9]. Constant factor approximation algorithms for this
problem are given in [4,9].

1.1 Our Contribution

In this paper, we present the following results:

✒ The S-MCSC problem can be solved in O(nk log n) time.
✒ The L-MCSC problem is NP-Hard,
✒ 1

2 -factor and 1
3 -factor approximations to the L-MCSC problem can be com-

puted in O(nk log n) time when no two distinct color disks intersect and after
relaxing the disjointness criterion, respectively.

To the best of our knowledge there is no prior result on the minimum color
spanning circle problem for imprecise point sets. Due to lack of space, some
proofs are omitted; they will be provided in the full version of the paper.

2 The Smallest MCSC (S-MCSC) Problem

Given a set R of n imprecise points modeled as unit disks, we present an algo-
rithm that finds a S-MCSC, denoted by Copt, and the realization of R achieving
it. Let ropt be the radius of Copt.
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Fig. 2. Illustration of Lemma 1. The dotted circle Cc is the MCSC of the disk centers
and the circle C′

c is obtained by decreasing Cc’s radius by 1
2
.

Let C = {c1, . . . , cn} be the set of center points of the disks in R. Let Cc be a
MCSC of the colored set C, and let rc be its radius. The following relation holds:

Lemma 1. If rc > 1
2 , then rc = ropt + 1

2 .

Proof. Consider a circle C ′
c concentric with Cc with radius r′

c = rc − 1
2 (see

Fig. 2). For every disk Ri such that ci is contained in Cc, we have that C ′
c

contains ci or the intersection between the boundary of Ri and the segment
connecting ci with the center of Cc. Thus, C ′

c contains at least one point of each
color and ropt ≤ r′

c = rc − 1
2 .

If ropt < r′
c, we would get a feasible solution for the MCSC problem of C

by increasing the radius of Copt by 1
2 . Since such a solution would have radius

ropt + 1
2 < r′

c + 1
2 = rc, we would get a contradiction with the fact that rc is the

radius of any MCSC of C. ��
Next, we compute Copt using Algorithm 1:

Algorithm 1 Algorithm for the S-MCSC problem

Input: A set R of n unit disks
Output: A S-MCSC of R with radius ropt

1: compute Cc;
2: if rc > 1/2 then
3: Copt is a circle concentric with Cc, ropt ← rc − 1

2 ;
4: else
5: Copt is a circle concentric with Cc, ropt ← 0; � Copt is a point
6: return Copt

Theorem 1. A smallest minimum color spanning circle of R can be computed
in O(nk log n) time.
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Fig. 3. (a) A stack of disks; (b) the distance from the left endpoint of the red disk to
its farthest point in the top blue disk is 9

8
; (c, d) the two placements of points with

red-blue distances equal to c.

3 The Largest MCSC (L-MCSC) Problem

In this section, we consider the L-MCSC problem, where for the given set R the
goal is to find a realization such that any MCSC is as large as possible. We show
that the problem is NP-Hard, already for k = 2, using a reduction from planar
3-SAT [21]. Our reduction is inspired by those described in [10,19].

Given a planar 3-SAT instance, we construct a set of colored unit disks with
the following property: There exists a realization such that any MCSC has diam-
eter c if and only if the 3-SAT instance is satisfiable, where c = 9

8 . We use disks
of colors red and blue. Thus, a point set having any MCSC of diameter at least
c is equivalent to saying that there is no red-blue pair of points at distance less
than c. We denote the family of realizations with this property by Pc.

A stack of disks is a set of three vertically aligned disks of alternating colors.
As shown in Fig. 3a, for a blue-red-blue stack of disks, the distance between the
centers of the blue disks and the center of the red disk is 3

8 .

Lemma 2. There exist two realizations in Pc of a stack of disks.

Proof. The red point can only be placed at the left or right extreme position of
the red disk (see Fig. 3c and d), and such a placement forces the placement of
points in the blue disks at distance c (see Fig. 3b). Thus, there exist only two
realizations in Pc, shown in Fig. 3c and d. ��

Variable Gadget. Our variable gadget (see Fig. 4) is an alternating chain of red
and blue disks, whose centers lie on a hexagon, together with some stacks of
disks. The distance between the centers of two consecutive red and blue disks
along the same edge of the hexagon is c. Each edge of the hexagon contains two
stacks of disks placed near the endpoints, and every pair of consecutive edges is
joined by a blue disk. In the following description, we say that pi and p′

i are the
leftmost and rightmost points of disk Ri if they are its leftmost and rightmost
points after the hexagon has rotated so that the edge containing the center of
Ri is horizontal and the center of the hexagon is below the edge.

At the top-left corner of the variable gadgets, the disks are placed as follows
(the other corners are constructed similarly). Let Ri be the last disk in clockwise
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Fig. 4. A variable gadget with zoomed in view for the top-left corner. The dashed
circles are centered at p′

k, pk, p
′
i, pi and have radius c.

order along the top-left edge of the hexagon, and let Rj and Rk be the first and
second disks along the top edge (see Fig. 4). The point pj lies at the top left
corner of the hexagon, and the centers of Rj and Rk are at distance c. Regarding
Ri, it is placed in such a way that the lower blue disk of its stack contains a
point z which is at distance c from both pk and pi (see Fig. 4). Notice that, if a
realization in Pc chooses p′

i, the choice for Rj is not unique; however, none of
the points in Rj at distance at least c from p′

i is compatible with the choice of pk

for Rk. Therefore, the choice of p′
i forces the choice of p′

k, and clearly the choice
of pk forces the choice of pi.

For a realization in Pc of a variable gadget, the following holds: By Lemma 2,
the stack containing Rk is constrained to choose either pk or p′

k. Let us assume
that it chooses p′

k. This choice propagates to the right through the chain of disks
in the top edge. The red disk of the stack on the right of the edge also chooses
its rightmost point, and this forces the red disk of the first stack of the top right
edge to choose its rightmost point too. Therefore, the choice of p′

k propagates
through the whole hexagon. If Rk chooses pk, the same phenomenon occurs. We
conclude:

Lemma 3. For any realization in Pc of a variable gadget, either all disks cen-
tered at the edges of the hexagon, except for the ones intersecting corners of the
hexagon, choose their rightmost point, or they all choose their leftmost point.
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Fig. 5. (a-c) A clause gadget with distinct truth assignments. In the placement in
(a), the red-blue pairs are at distance smaller than c, while in (b) and (c) they are at
distance greater than c. (d) Connection gadget for a positive variable in a clause; the
variable has truth value T .

Clause Gadget. Clause gadgets are illustrated in Fig. 5a-c. We consider an equi-
lateral triangle of side length 3.5 and center c0, and we place one red disk at
every corner of the triangle in such a way that the center of the disk is aligned
with c0 and its nearest corner of the triangle. Then we place a blue disk centered
at c0. Each red disk of a clause gadget is associated to one of the literals occur-
ring in the clause, and is connected to the corresponding variable gadget via
a connection gadget. Intuitively, to decide if there exists any realization in Pc,
each red disk Rτ of the clause gadget has essentially two relevant placements,
called tRτ

and fRτ
(see Fig. 5a). As we will see, when the associated literal is

set to true, we can choose the placement tRτ
, and when it is set to false, we are

forced to choose fRτ
. It is easy to see that any realization in Pc of the clause

gadget does not choose fRτ
for at least one of the disks Rτ (see Fig. 5b and c).

Connection Gadget. A variable gadget is connected to each of its corresponding
clause gadgets with the help of a connection gadget. A connection gadget consists
of an alternating chain of red and blue disks together with some stacks of disks
(see Fig. 5d).

The precise connection of the variable gadget to the clause gadget by a con-
nection gadget depends on whether the variable in the clause is positive or
negative. For a positive variable, the connection is established through a pair of
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Fig. 6. Point placements corresponding to (a) positive and (b) negative variable in
a clause, at the intersection of a connection gadget and a variable gadget. In both
figures, the left subfigures correspond to the truth value T for the variable, and the
right subfigures to the truth value F .

a red disk Ri and a blue disk Rj which appear consecutive along an edge of the
hexagon, and such that none of them intersects a corner of the hexagon, and
Ri comes before Rj in clockwise order (see Fig. 6a). Let Rk be the first red disk
of the connection gadget. The top-most point of Rk is at distance c from pj ,
and its bottom-most point is at distance c from p′

j . For a negative variable, the
connection is established through a pair of blue-red disks in the variable gadget.
The placement of the first red disk of the connection gadget is analogous to the
one in the red-blue configuration (see Fig. 6b).

The truth value T of a variable is associated with the choice of the rightmost
points of the disks in the variable gadget. If the variable appears positive at a
clause, this allows the choice of the bottom-most point of Rk, and this propagates
through the connection gadget and eventually allows the choice of the associated
point tRτ

in the clause gadget (see Fig. 5d). If the truth value is F , pj is selected,
which forces the choice of a point in a close vicinity of the top-most point of Rk,
and eventually of fRτ

. The analysis of the other cases are similar.
The chain in a connection gadget might be bent by 120◦, maintaining the

planarity and the distance constraint c. The placement of disks at each bend
of a connection gadget is similar to the placements at the corners of a variable
gadget. Stacks of disks are used around the bends, next to the first disk Rk, and
next to the red disk of the clause gadget associated to the literal.

Given a planar 3-SAT instance, we construct an instance of our problem as
follows: Its dependency graph can be embedded so that all variables lie on a
horizontal line, all clauses are on either side of them, and each edge connecting a
clause to a variable is an orthogonal edge with at most one bend (see Fig. 7 for an
example) [20]. Moreover, the construction can be easily modified so that edges
only have bends of 120◦. Then, we replace the vertices with variable and clause
gadgets which are connected using the connection gadgets as described above.
The number of disks in a variable gadget depends on the number of times the
associated variable appears in the given 3-SAT formula. The whole construction
has polynomial size. We have the following:

Lemma 4. The planar 3-SAT formula has a satisfying assignment if and only
if there exists a realization of the disks in Pc.

Proof. Let us consider the 3-SAT formula F with n variables x1, x2, . . . , xn and
m clauses C1, C2, . . . , Cm.
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Fig. 7. Planar embedding of F = (x1 ∨ x2 ∨ x̄4) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x̄3 ∨ x̄4).

(Necessity) Suppose that F is satisfiable. Thus, every clause contains a literal
whose truth value is T . We describe a realization of the disks in Pc.

Let Cj be a clause and let �i be the literal making the clause true. Then
we pick tRi

from the associated disk Ri in the clause. This choice propagates
through the connection gadget and eventually forces one of the realizations for
the variable gadget described in Lemma 3: the one choosing the rightmost points
of the disks, if �i’s truth value is T and it appears in the clause positively; or
the one choosing the leftmost points of the disks, if �i’s truth value is F and it
appears in the clause negatively. Notice that a variable might appear in several
clauses, but the obtained realizations of the variable gadget are consistent with
each other.

For the cases where a variable’s truth value is T and it appears in a clause
negatively, or a variable’s truth value is F and it appears in a clause positively,
the placement described above forces the realizations of the corresponding con-
nection gadget and associated disk in the clause gadget. Regarding the central
blue disks in the clause gadgets, since at least one of the three surrounding red
disks has its representative at the position tRτ

, it is possible to find a realization
of the blue disk such that the realization of the clause gadget is in Pc.

It is trivial to complete the realization to a realization of the whole construc-
tion so that the final realization is in Pc.

(Sufficiency) Suppose that there exists a realization R of the disks in Pc. Let
Cj be a clause. Since the realization of the clause is in Pc, at least one of the
red disks Ri of the clause does not have the representative at the position fRi

.
If the corresponding literal appears positive in the clause, we set the associated
variable to T . Otherwise, we set it to F . In this way, we ensure that every clause
is true, but we need to argue that we did not assign T and F simultaneously to
the same variable due to two distinct clauses.

Since in the connection gadget there is a stack of disks next to Ri, the fact
that Ri does not have the representative at the position fRi

forces the choice
of the representative of the blue disk in the stack. The choice propagates to the
connection gadget and eventually to the variable gadget: If the literal associated
to Ri appears positive in Cj , the variable has been set to T and the realization
in the variable gadget is the one choosing the rightmost points of the disks. If
the literal appears negative, the variable has been set to F and the realization
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Fig. 8. The tilted grid. We choose pi as the red corner of Q contained in Ri.

in the variable gadget chooses the leftmost points of the disks. Since in R the
realization of the variable gadget is either the rightmost or the leftmost, the
variable has either been set to T or F . ��
Theorem 2. The problem of finding the largest minimum color spanning circle
of R is NP-Hard.

Remark 1. Given a yes-instance, we can verify in O(nk log n) time whether the
given realization is correct and the radius of its MCSC is at least c. Therefore,
the decision version of the problem is NP-Complete.

4 Approximation Algorithms

In this section, we provide approximation algorithms for the L-MCSC problem.
Let r̃opt denote the radius of a largest possible minimum color spanning circle
of R. We first prove bounds on r̃opt.

Lemma 5. r̃opt ≥ 1/4.

Proof. It is easy to see that it is enough to prove the result for the case where
k = 2. We show that the bound holds when k = 2 by providing a realization P
whose MCSC achieves the bound. Consider a regular square grid rotated by π/4
such that the side of every cell of the grid has length 1/2. We color the corners
of the cells in red or blue in such a way that all corners lying in some vertical
line are colored red, all corners lying in the next vertical line are colored blue,
and so on (see Fig. 8). Now let Ri ∈ R have red color, and let Q be the cell of
the grid containing the center of Ri (if the center of Ri lies on an edge or vertex
of the grid, we assign it to any of the adjacent cells). Notice that at least one
of the two red corners of Q lies inside Ri. We choose such a corner as pi ∈ P .
Similarly, for every Rj ∈ R of blue color, P contains one of the blue corners of a
cell containing the center of Rj . We obtain that P is a subset of the grid corners.
Since the distance between any pair of red and blue corners is at least 1/2, the
radius of any MCSC is at least 1/4. ��
Lemma 6. r̃opt ≤ rc + 1

2 .
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Let P g denote the realization of R described in the proof of Lemma 5. Our
algorithm to compute the approximate L-MCSC is presented in Algorithm 2:

Algorithm 2 1
3 -factor approximation algorithm for the L-MCSC problem

Input: A set R of n unit disks
Output: A MCSC of a realization of R with radius at least r̃opt/3
1: compute Cc;
2: if rc ≥ 1/4 then
3: return Cc;
4: else
5: return a MCSC of P g;

Theorem 3. A 1
3 -factor approximation for the L-MCSC problem can be com-

puted in O(nk log n) time. If no two distinct colored disks of R intersect, the
approximation factor becomes 1

2 .
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Abstract. As the scale of systems increased, the probability of a sin-
gle node failure also increasing. Therefore, exploring the reliability of
complex systems is crucial to the operation of the network. Few of
Scholar focus on the reliability of subsystems of irregular networks. While
exchanged hypercube EH(s, t) was firstly proposed by Loh et al. [9]
and it is a irregular network. In this paper, we evaluate the reliability
of EH(s, t) by studying the reliability of subsystems EH(s − 1, t − 1).
Specifically, we use the PIE (Principle of Inclusion-Exclusion) method to
derive the approximate value of the reliability and the upper bound with
the intersection of no more than 3 subgraphs EH(s− 1, t− 1) under the
probability fault model.

Keywords: EH(s · t) · Reliability · Probability fault model ·
Approximate value

1 Introduction

With the increase of the scale of multiprocessor systems, the probability of failure
of subsystems also increases. We define the reliability of the system as the prob-
ability that the system is fault-free and it is a function of time. The longer the
system runs, the reliability of the system deteriorates. There are many models for
evaluating the reliability of the system, which can be referred to [1,3,7,14,16].
In recent years, many scholars have also devoted to studying the reliability of
various network subsystems in [5,6,8,11,12,15,17,18].

As one of the variant of hypercube, exchanged hypercube was first introduced
by Loh et al. [9], which remains some important performances, such as hierar-
chicality, strong connectivity, and hamiltonicity, while it is an irregular network.
Recently, more properties of exchanged hypercube have been explored in Fan
et al. [2] obtained an efficient algorithm for embedding exchanged hypercubes
into grids. Ren and Wang [13] determined strong local diagnosability property
of exchanged hypercubes under the comparison model, etc.

2 Preliminaries

2.1 Notations

To facilitate discussion, we usually use a undirected and simple graph G =
G(V (G), E(G)) to simulate a network, where V (G) represents the set of
c© Springer Nature Switzerland AG 2021
C.-Y. Chen et al. (Eds.): COCOON 2021, LNCS 13025, pp. 271–282, 2021.
https://doi.org/10.1007/978-3-030-89543-3_23
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processors in the network and E(G) represents the set of communication links
in the network. If two distinct nodes u and v are linked by an edge, then
uv ∈ E(G). We use NG(u) = {v ∈ V | uv ∈ E} to represent the neigh-
borhood of any node u in G, that is, the set of nodes are adjacent to u.
We use dG(u) to denoted the degree of node u in G, which represents the
number of edges incident with u in G. Then, we have dG(u) = |NG(u)|. We
denote minimum degree δ(G) = min{dG(u) | ∀u ∈ V (G)} and maximum degree
Δ(G) = max{dG(u) | ∀u ∈ V (G)}. Moreover, [n] represents the integers from 1
to n, where n ≥ 1.

2.2 Exchanged Hypercube

Definition 1. [10] For s ≥ 1 and t ≥ 1, the exchanged hypercube,
EH(s, t), has 2s+t+1 nodes. Its node set is {u1 · · · usus+1 · · · us+tus+t+1 | ui ∈
{0, 1} ∀i ∈ [s + t + 1]}. Two nodes u = u1 · · · usus+1 · · · us+tus+t+1 and
v = v1 · · · vsvs+1 · · · vs+tvs+t+1 are linked by a r-dimensional edge for some
1 ≤ r ≤ s + t + 1, if and only if the following conditions are satisfied:
(a) u and v differ exactly in one bit on the rth bit;
(b) us+t+1 = vs+t+1 = 1 if u and v are different in some bit r ∈ [s + t] − [s];
(c) us+t+1 = vs+t+1 = 0 if u and v are different in some bit r ∈ [s].

Obviously, EH(s, t) is a bipartite from the construction, where δ(EH(s, t)) =
min{s, t} + 1, and Δ(EH(s, t)) = max{s, t} + 1.

2.3 Subsystem Reliability Under the Probability Fault Model

If the probability for any node in exchanged hypercube to be fault-free is p, then
we use Rs−1,t−1

s,t (p) to denote the probability that at least one fault-free subgraph
EH(s−1, t−1) in EH(s, t). Moreover, we use R(i)(p) to represent the reliability
of the ith subgraph; R(i, j)(p) to represent the conjunctive reliability of the ith
and jth subgraph, i.e., the probability that both ith subgraph and jth subgraph
are fault-free; etc.

3 Approximate Value of Rs−1,t−1
s,t (p)

Under the probability fault model, we assume that each node in a graph such
that the probability for a node to be fault-free is p, and the occurrence of failures
among nodes are mutually independent. Thus, we can get 4st different subgraphs
EH(s − 1, t − 1) from EH(s, t). While some subgraphs EH(s − 1, t − 1) share
common nodes, we use the PIE (Principle of Inclusion-Exclusion) method to
calculate disjoint events under the probability fault model.

Rs−1,t−1
s,t (p) =

4st∑

i=1

R(i)(p) + (−1)1
∑

i<j

R(i, j)(p)

+ (−1)2
∑

i<j<k

R(i, j, k)(p) + (−1)3
∑

i<j<k<l

R(i, j, k, l)(p)

+ · · · + (−1)4st−1R(1, 2, . . . , 4st)(p).
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In order to give the calculation of the approximate value of R
(s−1,t−1)
(s,t) (p), we list

the following 4st subgraphs EH(s − 1, t − 1):

(0, 0) (0, 1) (1, 0) (1, 1)
0Y · · ·Y
︸ ︷︷ ︸

s

0Y · · ·Y
︸ ︷︷ ︸

t

0Y · · ·Y
︸ ︷︷ ︸

s

1Y · · ·Y
︸ ︷︷ ︸

t

1Y · · ·Y
︸ ︷︷ ︸

s

0Y · · ·Y
︸ ︷︷ ︸

t

1Y · · ·Y
︸ ︷︷ ︸

s

1Y · · ·Y
︸ ︷︷ ︸

t

· · · · · · · · · · · ·
0Y · · ·Y
︸ ︷︷ ︸

s

Y Y · · · 0
︸ ︷︷ ︸

t

0Y · · ·Y
︸ ︷︷ ︸

s

Y Y · · · 1
︸ ︷︷ ︸

t

1Y · · ·Y
︸ ︷︷ ︸

s

Y Y · · · 0
︸ ︷︷ ︸

t

1Y · · ·Y
︸ ︷︷ ︸

s

Y Y · · · 1
︸ ︷︷ ︸

t

Y 0 · · ·Y
︸ ︷︷ ︸

s

0Y · · ·Y
︸ ︷︷ ︸

t

Y 0 · · ·Y
︸ ︷︷ ︸

s

1Y · · ·Y
︸ ︷︷ ︸

t

Y 1 · · ·Y
︸ ︷︷ ︸

s

0Y · · ·Y
︸ ︷︷ ︸

t

Y 1 · · ·Y
︸ ︷︷ ︸

s

1Y · · ·Y
︸ ︷︷ ︸

t

· · · · · · · · · · · ·
Y 0 · · ·Y
︸ ︷︷ ︸

s

Y Y · · · 0
︸ ︷︷ ︸

t

Y 0 · · ·Y
︸ ︷︷ ︸

s

Y Y · · · 1
︸ ︷︷ ︸

t

Y 1 · · ·Y
︸ ︷︷ ︸

s

Y Y · · · 0
︸ ︷︷ ︸

t

Y 1 · · ·Y
︸ ︷︷ ︸

s

Y Y · · · 1
︸ ︷︷ ︸

t

· · · · · · · · · · · ·
Y Y · · · 0
︸ ︷︷ ︸

s

0Y · · ·Y
︸ ︷︷ ︸

t

Y Y · · · 0
︸ ︷︷ ︸

s

1Y · · ·Y
︸ ︷︷ ︸

t

Y Y · · · 1
︸ ︷︷ ︸

s

0Y · · ·Y
︸ ︷︷ ︸

t

Y Y · · · 1
︸ ︷︷ ︸

s

1Y · · ·Y
︸ ︷︷ ︸

t

· · · · · · · · · · · ·
Y Y · · · 0
︸ ︷︷ ︸

s

Y Y · · · 0
︸ ︷︷ ︸

t

Y Y · · · 0
︸ ︷︷ ︸

s

Y Y · · · 1
︸ ︷︷ ︸

t

Y Y · · · 1
︸ ︷︷ ︸

s

Y Y · · · 0
︸ ︷︷ ︸

t

Y Y · · · 1
︸ ︷︷ ︸

s

Y Y · · · 1
︸ ︷︷ ︸

t

Note that each row above is divided by ith position and jth position, which can
obtain four disjoint subgraphs, where i ∈ {1, . . . , s}, j ∈ {s+1, . . . , s+t}. We use
Rs−1,t−1

s,t (i, p) to denote the probability of the fault-free four disjoint subgraphs
in the ith row mentioned above, where 1 ≤ i ≤ st. Then

Rs−1,t−1
s,t (i, p) = 4p2

s+t−1 −
(

4
2

)
p2·2s+t−1

+
(

4
3

)
p3·2s+t−1 −

(
4
4

)
p4·2s+t−1

= 1 − (
1 − p2

s+t−1)4

Furthermore,

Rs−1,t−1
s,t (1, p) = Rs−1,t−1

s,t (2, p) = · · · = Rs−1,t−1
s,t (st, p) = 1 − (1 − p2

s+t−1
)4.

By considering all the Rs−1,t−1
s,t (i, p) and with the help of using PIE, we obtain

the approximate value of Rs−1,t−1
s,t (p):

Rs−1,t−1
s,t (p) ≈

st∑

i=1

(−1)i−1

(
st

i

)(
Rs−1,t−1

s,t (i, p)
)i

= 1 − (
1 − p2

s+t−1)4st
.

4 Upper Bound of Rs−1,t−1
s,t (p)

Lemma 1. If the probability for any node in exchanged hypercube to be fault-free

is p, then
4st∑
j=1

R(j)(p) = 4stp2
s+t−1

.
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Proof. Obviously, there are totally 4st distinct subgraphs EH(s−1, t−1). More-
over, the size of each subgraph is 2s+t−1, the desired. ��
Lemma 2. If the probability for any node in exchanged hypercube to be fault-free
is p, then

∑

i<j

R(i, j)(p) =

[

6

(

s

1

)(

t

1

)

+ 8

(

s

1

)(

t

2

)

+ 8

(

s

2

)(

t

1

)]

· p2s+t

+

[

8

(

s

1

)(

t

2

)

+ 8

(

s

2

)(

t

1

)]

· p3·2s+t−2

+ 32

(

s

2

)(

t

2

)

· p7·2s+t−3
.

Proof. Without loss of generality, we assume that EH[i1, j1 : u1, v1] and
EH[i2, j2 : u2, v2] are two distinct subgraphs. Let S = {i1, i2}, T = {j1, j2},
|S| = ŝ, |T | = t̂. Obviously, 1 ≤ ŝ ≤ 2, 1 ≤ t̂ ≤ 2. Moreover, we denote (ŝ, t̂) to
select ŝ positions from {1, . . . , s} and select t̂ positions from {s + 1, . . . , s + t}.
Thus, there are

(
s
ŝ

)
ways to select ŝ positions from {1, . . . , s}, and there are

(
t
t̂

)

ways to select t̂ positions from {s + 1, . . . , s + t}. We have the following cases.

Case 1. (ŝ, t̂) = (1, 1).
In this case, i1 = i2, j1 = j2. Therefore, there are totally

(
s
1

)(
t
1

)(
4
2

)
2-subgraph

groups. Since EH[i1, j1 : u1, v1] and EH[i2, j2 : u2, v2] are disjoint, the size of the
two subgraphs is 2 · 2s+t−1 = 2s+t. Thus, the probability for EH[i1, j1 : u1, v1]
and EH[i2, j2 : u2, v2] to be fault-free is p2

s+t

.

Case 2. (ŝ, t̂) = (1, 2).
Then, i1 = i2, j1 	= j2. If |{u1, u2}| = 1, then u1 = u2. Thus, EH[i1, j1 :

u1, v1] and EH[i2, j2 : u2, v2] are two intersecting subgraphs. Therefore, there
are totally 2 ·2s+t−1−2s+t−2 = 3 ·2s+t−2 nodes in EH[i1, j1 : u1, v1]∪EH[i2, j2 :
u2, v2]. Moreover, each of position i1, j1, j2 has two distinct codes (0 or 1)
to select. Thus, there are totally

(
s
1

)(
t
2

) ·23 2-subgraph groups. Otherwise,
|{u1, u2}| = 2. That is, u1 	= u2. Hence, EH[i1, j1 : u1, v1] and EH[i2, j2 : u2, v2]
are two disjoint subgraphs. Therefore, there are totally 2 · 2s+t−1 = 2s+t nodes
in EH[i1, j1 : u1, v1] ∪ EH[i2, j2 : u2, v2]. Thus, there are totally

(
s
1

)(
t
2

) ·23
2-subgraph groups.

Case 3. (ŝ, t̂) = (2, 1).
Similar to the Case 2, if v1 = v2, then there are totally 2 · 2s+t−1 − 2s+t−2 =

3 · 2s+t−2 nodes in EH[i1, j1 : u1, v1] ∪ EH[i2, j2 : u2, v2] and there are totally(
s
2

)(
t
1

) ·23 2-subgraph groups. Otherwise, if v1 	= v2, then there are totally 2 ·
2s+t−1 = 2s+t nodes in EH[i1, j1 : u1, v1] ∪ EH[i2, j2 : u2, v2] and there are
totally

(
s
2

)(
t
1

) ·23 2-subgraph groups.

Case 4. (ŝ, t̂) = (2, 2).
Obviously, |{i1, i2}| = 2, |{j1, j2}| = 2. Hence, there are totally

(
s
2

)(
t
2

) · 2 ·24
2-subgraph groups. ��
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Lemma 3. If the probability for any node in exchanged hypercube to be fault-free
is p, then we have

∑

i<j<k

R(i, j, k)(p) =

[

8

(

s

1

)(

t

2

)

+ 8

(

s

2

)(

t

1

)

+ 64

(

s

2

)(

t

2

)]

· p2s+t

+

[

48

(

s

1

)(

t

3

)

+ 48

(

s

3

)(

t

1

)

+ 32

(

s

1

)(

t

2

)

+ 32

(

s

2

)(

t

1

)

+ 96

(

s

2

)(

t

2

)

+ 192

(

s

2

)(

t

3

)

+ 192

(

s

3

)(

t

2

)
]

· p5·2s+t−2
+

[

4

(

s

1

)(

t

1

)

+ 8

(

s

1

)(

t

2

)

+ 8

(

s

2

)(

t

1

)
]

· p3·2s+t−1
+

[

16

(

s

1

)(

t

3

)

+ 16

(

s

3

)(

t

1

)
]

· p7·2s+t−3
+ 128

(

s

2

)(

t

2

)

· p9·2s+t−3

+ 64

(

s

2

)(

t

2

)

· p11·2s+t−3
+

[

192

(

s

2

)(

t

3

)

+ 192

(

s

3

)(

t

2

)
]

· p17·2s+t−4
+ 384

(

s

3

)(

t

3

)

· p37·2s+t−5
.

Proof. Without loss of generality, we assume that EH[i1, j1 : u1, v1], EH[i2, j2 :
u2, v2], and EH[i3, j3 : u3, v3] are three distinct subgraphs. Let S = {i1, i2, i3},
T = {j1, j2, j3}, |S| = ŝ, |T | = t̂. Obviously, 1 ≤ ŝ ≤ 3, 1 ≤ t̂ ≤ 3. Moreover,
we denote (ŝ, t̂) to ŝ positions from {1, . . . , s} and select t̂ positions from {s +
1, . . . , s + t}. Thus, there are

(
s
ŝ

)
ways to select ŝ positions from {1, . . . , s}, and

there are
(
t
t̂

)
ways to select t̂ positions from {s + 1, . . . , s + t}. We distinguish

the following cases.

Case 1. (ŝ, t̂) = (1, 1).
Obviously, |{i1, i2, i3}| = 1, |{j1, j2, j3}| = 1, that is, i1 = i2 = i3, j1 = j2 =

j3. According to the definition of EH(s, t), as each position has two distinct
codes 0 and 1 to select, we can obtain 4 disjoint subgraphs EH(s − 1, t − 1) by
fixing position i and j, where i ∈ {1, . . . , s}, j ∈ {s+1, . . . , s+t}. Therefore, there
are totally

(
s
1

)(
t
1

)(
4
3

)
3-subgraph groups. Since the three subgraphs are mutually

disjoint (see Fig. 1(1)), there are 3·2s+t−1 nodes in EH[i1, j1 : u1, v1]∪EH[i2, j2 :
u2, v2] ∪ EH[i3, j3 : u3, v3]. Thus, the probability of these nodes are fault-free
is p3·2s+t−1

.

Case 2. (ŝ, t̂) = (1, 2).
Obviously, |{i1, i2, i3}| = 1, |{j1, j2, j3}| = 2, that is, i1 = i2 = i3. Without

loss of generality, we assume that j1 = j2 and j1 	= j3. We distinguish the
following cases.

Subcase 2.1. |{u1, u2}| = 2.
Thus, u1 	= u2. ui ∈ {0, 1} for any i ∈ {1, 2}, then u3 ∈ {u1, u2}. Without

loss of generality, we assume that u3 = u1. It means that EH[i1, j1 : u1, v1] and
EH[i3, j3 : u3, v3] are intersecting, while both of them are not intersecting with
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(1) (2) (3) (4)

1 1 1 1[ , : , ]EH i j u v

2 2 2 2[ , : , ]EH i j u v 3 3 3 3[ , : , ]EH i j u v 1 1 1 1[ , : , ]EH i j u v

3 3 3 3[ , : , ]EH i j u v

2 2 2 2[ , : , ]EH i j u v

2 2 2 2[ , : , ]EH i j u v1 1 1 1[ , : , ]EH i j u v

3 3 3 3[ , : , ]EH i j u v3 3 3 3[ , : , ]EH i j u v

2 2 2 2[ , : , ]EH i j u v
1 1 1 1[ , : , ]EH i j u v

Fig. 1. Intersection of three subgraphs

EH[i2, j2 : u2, v2] (see Fig. 1(3)). Therefore, there are totally 3·2s+t−1−2s+t−2 =
5 · 2s+t−2 nodes in EH[i1, j1 : u1, v1] ∪ EH[i2, j2 : u2, v2] ∪ EH[i3, j3 : u3, v3].
In view of u1 	= u2, there are 2 ways to put codes in positions i1 and i2 (u1 =
0, u2 = 1 or u1 = 1, u2 = 0). In addition, since each of position j1, j2, i3, i4 has
two distinct codes (0 or 1) to select, there 24 ways to select codes to put the four
positions. Hence, there are totally

(
s
1

)(
t
2

) · 2 · 24 = 32
(
s
1

)(
t
2

)
3-subgraph groups.

Subcase 2.2. |{u1, u2}| = 1.
Obviously, u1 = u2. In order to facilitate the discussion, we distinguish the

following situations. If u1 = u2 = u3. Then, EH[i1, j1 : u1, v1] and EH[i2, j2 :
u2, v2] are disjoint, while both of them are intersecting with EH[i3, j3 : u3, v3]
(see Fig. 1(4)). Therefore, there are totally 3 ·2s+t−1 −2 ·2s+t−2 = 2s+t nodes in
EH[i1, j1 : u1, v1]∪EH[i2, j2 : u2, v2]∪EH[i3, j3 : u3, v3]. Discuss similarly, there
are totally

(
s
1

)(
t
2

)·2·2·2 = 8
(
s
1

)(
t
2

)
3-subgraph groups. Otherwise, |{u1, u2, u3}| =

2, then u1 = u2 	= u3. Moreover, EH[i1, j1 : u1, v1], EH[i2, j2 : u2, v2], and
EH[i3, j3 : u3, v3] are mutually disjoint (see Fig. 1(1)). Therefore, there are
totally 3 · 2s+t−1 nodes in EH[i1, j1 : u1, v1] ∪ EH[i2, j2 : u2, v2] ∪ EH[i3, j3 :
u3, v3]. Discuss similarly, there are totally

(
s
1

)(
t
2

) · 2 · 2 · 2 = 8
(
s
1

)(
t
2

)
3-subgraph

groups.

Case 3. (ŝ, t̂) = (2, 1).
Similar to the Case 2, we have |{i1, i2, i3}| = 2, |{j1, j2, j3}| = 1, that is,

j1 = j2 = j3. Without loss of generality, we assume that i1 = i2 and i1 	= i3. We
distinguish the following cases.

Subcase 3.1. |{v1, v2}| = 2.
Obviously, v1 	= v2. Therefore, there are totally 3·2s+t−1−2s+t−2 = 5·2s+t−2

nodes in EH[i1, j1 : u1, v1]∪EH[i2, j2 : u2, v2]∪EH[i3, j3 : u3, v3]. Hence, there
are totally

(
s
2

)(
t
1

) · 2 · 24 = 32
(
s
2

)(
t
1

)
3-subgraph groups.

Subcase 3.2. |{v1, v2}| = 1.
Obviously, v1 = v2. If |{v1, v2, v3}| = 1, then v1 = v2 = v3. Hence, there are

totally 3 · 2s+t−1 − 2 · 2s+t−2 = 2s+t nodes in EH[i1, j1 : u1, v1] ∪ EH[i2, j2 :
u2, v2] ∪ EH[i3, j3 : u3, v3]. Hence, there are totally

(
s
2

)(
t
1

) · 2 · 2 · 2 = 8
(
s
2

)(
t
1

)
3-

subgraph groups. Otherwise, |{v1, v2, v3}| = 2. Then, v1 = v2 	= v3. Hence, there
are totally 3 · 2s+t−1 nodes in EH[i1, j1 : u1, v1]∪EH[i2, j2 : u2, v2]∪EH[i3, j3 :
u3, v3]. Hence, there are totally

(
s
2

)(
t
1

) · 2 · 2 · 2 = 8
(
s
2

)(
t
1

)
3-subgraph groups.
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Case 4. (ŝ, t̂) = (1, 3).
In this case, we have i1 = i2 = i3, |{j1, j2, j3}| = 3. We distinguish the

following cases.
If |{u1, u2, u3}| = 1, then u1 = u2 = u3. Thus, EH[i1, j1 : u1, v1], EH[i2, j2 :

u2, v2], and EH[i3, j3 : u3, v3] are mutually intersecting (see Fig. 1(4)). Therefore,
there are totally

3 · 2s+t−1 −
(

3
2

)
· 2s+t−2 +

(
3
3

)
· 2s+t−3 = 7 · 2s+t−3

nodes in EH[i1, j1 : u1, v1] ∪ EH[i2, j2 : u2, v2] ∪ EH[i3, j3 : u3, v3]. Discuss
similarly, there are totally

(
s
1

)(
t
3

)·2·23 = 16
(
s
1

)(
t
3

)
3-subgraph groups. Otherwise,

|{u1, u2, u3}| = 2. Then, u1 	= u2 = u3 or u2 	= u1 = u3 or u3 	= u1 = u2.
Without loss of generality, we assume that u1 	= u2 = u3. Therefore, EH[i1, j1 :
u1, v1] is not intersecting with EH[i2, j2 : u2, v2] and EH[i3, j3 : u3, v3], while
EH[i2, j2 : u2, v2] and EH[i3, j3 : u3, v3] are intersecting (see Fig. 1(3)). So, there
are totally 3 ·2s+t−1−2s+t−2 = 5 ·2s+t−2 nodes in EH[i1, j1 : u1, v1]∪EH[i2, j2 :
u2, v2] ∪ EH[i3, j3 : u3, v3]. Discuss similarly, there are totally

(
s

1

)(
t

3

)
· 23 · 2 ·

(
3
2

)
= 48

(
s

1

)(
t

3

)

3-subgraph groups.

Case 5. (ŝ, t̂) = (3, 1).
Similar to the Case 4, |{i1, i2, i3}| = 3, j1 = j2 = j3. We distinguish the

following cases.
If |{v1, v2, v3}| = 1, then, v1 = v2 = v3. Hence, there are totally

3 · 2s+t−1 −
(

3
2

)
· 2s+t−2 +

(
3
3

)
· 2s+t−3 = 7 · 2s+t−3

nodes in EH[i1, j1 : u1, v1]∪EH[i2, j2 : u2, v2]∪EH[i3, j3 : u3, v3]. Hence, there
are totally

(
s
3

)(
t
1

) ·2 ·23 = 16
(
s
3

)(
t
1

)
3-subgraph groups. Otherwise, |{v1, v2, v3}| =

2. Thus, we have v1 	= v2 = v3 or v2 	= v1 = v3 or v3 	= v1 = v2. Then, there
are totally 3 · 2s+t−1 − 2 · 2s+t−2 = 2s+t nodes in EH[i1, j1 : u1, v1] ∪ EH[i2, j2 :
u2, v2] ∪ EH[i3, j3 : u3, v3]. Hence, there are totally

(
s
3

)(
t
1

) · 23 · 2 · (32
)

= 48
(
s
3

)(
t
1

)

3-subgraph groups.

Case 6. (ŝ, t̂) = (2, 2).
Obviously, |{i1, i2, i3}| = 2, |{j1, j2, j3}| = 2. We distinguish the following

cases.

Subcase 6.1. i1 = i2, j1 = j2.
Then, EH[i1, j1 : u1, v1] and EH[i2, j2 : u2, v2] are not intersecting, while

they are not intersecting with EH[i3, j3 : u3, v3] (see Fig. 1(4)). So, there are
totally

3 · 2s+t−1 − 2 · 2s+t−3 = 5 · 2s+t−2
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nodes in EH[i1, j1 : u1, v1] ∪ EH[i2, j2 : u2, v2] ∪ EH[i3, j3 : u3, v3]. Discuss
similarly, there are totally

(
s

2

)(
t

2

)(
4
2

)
· 22 · 2 · 2 = 96

(
s

2

)(
t

2

)

3-subgraph groups.

Subcase 6.2. i2 = i3, j2 	= j3.
Since t̂ = 2, j1 ∈ {j2, j3}. In order to facilitate discussion, we assume that

j1 = j3. Then, EH[i1, j1 : u1, v1] and EH[i2, j2 : u2, v2] are intersecting.

Subcase 6.2.1. |{u2, u3}| = |{v1, v3}| = 1.
Obviously, u2 = u3, v1 = v3, three subgraphs EH[i1, j1 : u1, v1], EH[i2, j2 :

u2, v2], and EH[i3, j3 : u3, v3] are mutually intersecting. So, there are totally

3 · 2s+t−1 − 2 · 2s+t−2 − 2s+t−3 + 2s+t−3 = 2s+t

nodes in EH[i1, j1 : u1, v1] ∪ EH[i2, j2 : u2, v2] ∪ EH[i3, j3 : u3, v3]. Discuss
similarly, there are totally

(
s

2

)(
t

2

)
· 2 · 2 · 2 · 2 · 2 · 2 = 64

(
s

2

)(
t

2

)

3-subgraph groups.

Subcase 6.2.2. |{u2, u3}| = 1, |{v1, v3}| = 2 or |{u2, u3}| = 2, |{v1, v3}| = 1.
Then, u2 = u3, v1 	= v3 or u2 	= u3, v1 = v3. Without loss of generality,

we assume that u2 = u3, v1 	= v3. Therefore, EH[i1, j1 : u1, v1] and EH[i3, j3 :
u3, v3] are disjoint, while they are not intersecting with EH[i2, j2 : u2, v2] (see
Fig. 1(4)). So, there are totally

3 · 2s+t−1 − 2s+t−3 − 2s+t−2 = 9 · 2s+t−3

nodes in EH[i1, j1 : u1, v1] ∪ EH[i2, j2 : u2, v2] ∪ EH[i3, j3 : u3, v3]. Since u2 =
u3, v1 	= v3, , there are totally

(
s

2

)(
t

2

)
· 2 · 2 · 2 · 2 · 2 · 2 = 64

(
s

2

)(
t

2

)

3-subgraph groups. Since u2 	= u3, v1 = v3 is similar to the situation u2 =
u3, v1 	= v3. Hence, there are totally

(
s

2

)(
t

2

)
· 2 · 2 · 2 · 2 · 2 · 2 · 2 = 128

(
s

2

)(
t

2

)

3-subgraph groups.

Subcase 6.2.3. |{u2, u3}| = |{v1, v3}| = 2.
Obviously, u2 	= u3 and v1 	= v3. In this situation, EH[i1, j1 : u1, v1]

and EH[i2, j2 : u2, v2] are intersecting, while they are not intersecting with
EH[i3, j3 : u3, v3] (see Fig. 1(4)). So, there are totally 3 · 2s+t−1 − 2s+t−3 =
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11 · 2s+t−3 nodes in EH[i1, j1 : u1, v1] ∪ EH[i2, j2 : u2, v2] ∪ EH[i3, j3 : u3, v3].
Discuss similarly, there are totally

(
s

2

)(
t

2

)
· 2 · 2 · 2 · 2 · 2 · 2 = 64

(
s

2

)(
t

2

)

3-subgraph groups.

Case 7. (ŝ, t̂) = (2, 3).
Obviously, |{i1, i2, i3}| = 2, |{j1, j2, j3}| = 3. Then, i1 	= i2 = i3 or i2 	= i1 =

i3 or i3 	= i1 = i2. Without loss of generality, we assume that i1 	= i2 = i3.
In this situation, EH[i2, j2 : u2, v2] and EH[i3, j3 : u3, v3] are intersecting with
EH[i1, j1 : u1, v1]. We distinguish the following cases. If |{u2, u3}| = 1, then
u2 = u3, and EH[i1, j1 : u1, v1], EH[i2, j2 : u2, v2], and EH[i3, j3 : u3, v3] are
mutually intersecting (see Fig. 1(2)). So, there are totally

3 · 2s+t−1 − 2 · 2s+t−3 − 2s+t−2 + 2s+t−4 = 17 · 2s+t−4

nodes in EH[i1, j1 : u1, v1] ∪ EH[i2, j2 : u2, v2] ∪ EH[i3, j3 : u3, v3]. Discuss
similarly, there are totally

(
s

2

)(
t

3

)
· 2 · 23 · 2 · 2 ·

(
3
2

)
= 192

(
s

2

)(
t

3

)

3-subgraph groups. Otherwise, |{u2, u3}| = 2. Obviously, u2 	= u3. In this
situation, EH[i2, j2 : u2, v2] and EH[i3, j3 : u3, v3] are disjoint, while they
are intersecting with EH[i1, j1 : u1, v1] (see Fig. 1(4)). So, there are totally
3 · 2s+t−1 − 2 · 2s+t−3 = 5 · 2s+t−2 nodes in EH[i1, j1 : u1, v1] ∪ EH[i2, j2 :
u2, v2] ∪ EH[i3, j3 : u3, v3]. Discuss similarly, there are totally

(
s

2

)(
t

3

)
· 2 · 23 · 2 · 2 ·

(
3
2

)
= 192

(
s

2

)(
t

3

)

3-subgraph groups.

Case 8. (ŝ, t̂) = (3, 2).
Similar to the proof of Case 7, |{i1, i2, i3}| = 3, |{j1, j2, j3}| = 2. Then,

j1 	= j2 = j3 or j2 	= j1 = j3 or j3 	= j1 = j2. Without loss of generality, we
assume that j1 	= j2 = j3. In this situation, EH[i1, j1 : u1, v1] is intersecting with
EH[i2, j2 : u2, v2] and EH[i3, j3 : u3, v3]. We distinguish the following cases.

If |{v2, v3}| = 1, then v2 = v3. Then, there are totally

3 · 2s+t−1 − 2 · 2s+t−3 − 2s+t−2 + 2s+t−4 = 17 · 2s+t−4

nodes in EH[i1, j1 : u1, v1]∪EH[i2, j2 : u2, v2]∪EH[i3, j3 : u3, v3]. Hence, there
are totally

(
s

3

)(
t

2

)
· 2 · 23 · 2 · 2 ·

(
3
2

)
= 192

(
s

3

)(
t

2

)

3-subgraph groups. Otherwise, |{v2, v3}| = 2. Then v2 	= v3. Thus, there are
totally

3 · 2s+t−1 − 2 · 2s+t−3 = 5 · 2s+t−2
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nodes in EH[i1, j1 : u1, v1]∪EH[i2, j2 : u2, v2]∪EH[i3, j3 : u3, v3]. Hence, there
are totally

(
s

3

)(
t

2

)
· 2 · 23 · 2 · 2 ·

(
3
2

)
= 192

(
s

3

)(
t

2

)

3-subgraph groups.

Case 9. (ŝ, t̂) = (3, 3).
Obviously, |{i1, i2, i3}| = |{j1, j2, j3}| = 3. EH[i1, j1 : u1, v1], EH[i2, j2 :

u2, v2] and EH[i3, j3 : u3, v3] are mutually intersecting (see Fig. 1(2)). So, there
are totally

3 · 2s+t−1 −
(

s

3

)
2 · 2s+t−3 +

(
s

3

)
3 · 2s+t−5 = 37 · 2s+t−5

nodes in EH[i1, j1 : u1, v1] ∪ EH[i2, j2 : u2, v2] ∪ EH[i3, j3 : u3, v3]. Discuss
similarly, there are totally

(
s

3

)(
t

3

)
· 26 · 3! = 384

(
s

3

)(
t

3

)

3-subgraph groups.

By Lemmas 1, 2, and 3, we have the following result.

Theorem 1. If the probability for any node in exchanged hypercube to be fault-
free is p, then we have

Rs−1,t−1
s,t (p) ≤ 4stp2

s+t−1 −
{[

6

(

s

1

)(

t

1

)

+ 8

(

s

1

)(

t

2

)

+ 8

(

s

2

)(

t

1

)
]

· p2s+t

+

[

8

(

s

1

)(

t

2

)

+ 8

(

s

2

)(

t

1

)
]

· p3·2s+t−2
+ 32

(

s

2

)(

t

2

)

· p7·2s+t−3
}

+

{[

8

(

s

1

)(

t

2

)

+ 8

(

s

2

)(

t

1

)

+ 64

(

s

2

)(

t

2

)
]

· p2s+t

+

[

48

(

s

1

)(

t

3

)

+ 48

(

s

3

)(

t

1

)

+ 32

(

s

1

)(

t

2

)

+ 32

(

s

2

)(

t

1

)

+ 96

(

s

2

)(

t

2

)

+ 192

(

s

2

)(

t

3

)

+ 192

(

s

3

)(

t

2

)
]

· p5·2s+t−2
+

[

4

(

s

1

)(

t

1

)

+ 8

(

s

1

)(

t

2

)

+ 8

(

s

2

)(

t

1

)
]

· p3·2s+t−1
+

[

16

(

s

1

)(

t

3

)

+ 16

(

s

3

)(

t

1

)
]

· p7·2s+t−3

+ 128

(

s

2

)(

t

2

)
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5 Comparative Analysis and Discussion

In this section, we compare the value Rs−1,t−1
s,t (p) of the approximation in Sect. 3

and upper bound in Sect. 4 by drawing, respectively. Wu and Latifi [15] investi-
gated the reliability p of node as a function of time. And f increases with time
passes, where f is the number of faulty nodes, with a constant failure rate a:

f = 2s+t+1(1 − e−at),

where 2s+t+1 is the order of EH(s, t).
Then, we have

p = 1 − f

2s+t+1
= e−at.

It is not difficult to observe that when the system do not operate (t = 0),
each node is fault-free (p = 1). However, as the running time passes, each node
is fault-free probability will decrease.

Figure 2 depicts the changes about reliability when s, t, and a are different.
It is easy to see that when p is higher, the approximate value of reliability is
obviously lower than the upper bound value. But when p is small or even tends
to 0, the approximate value of reliability and the upper bound value almost
coincide, that is, the upper bound of reliability and the approximate value of
reliability are close to the true reliability of the system.
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Fig. 2. The reliability of subgraph EH(s − 1, t − 1).
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Abstract. Large scale multiprocessor systems or multicomputer sys-
tems, taking interconnection networks as underlying topologies, have
been widely used in the big data era. System level diagnosis is a pri-
mary strategy to identify the faulty processors in multiprocessor systems.
To enhance the robustness of networks against processors and links fail
simultaneously, Zhu et al. [21] proposed a novel fault diagnostic model,
the hybrid PMC diagnostic model, which involves the failing of vertices
and edges. In this paper, we determine the diagnosability of the triangle-
free regular networks under the hybrid PMC model. As by-products, we
apply the general results to the state-of-the-art regular networks, such as
hypercube-like network as well as hypercube-based compound network,
for example, DQcube, exchanged hypercube, dual cube, half-hypercube,
hierarchical cubic network and so on.

Keywords: Multiprocessor systems · Fault tolerance ·
Diagnosability · Hybrid PMC model

1 Introduction

Multiprocessor system commonly use interconnection networks (or graphs) as
the underlying topological model, in which the processors and communication
links are portrayed as vertices and edges, respectively. Networks may fail due to
different ways of attacks and different mechanisms of failure. The first type is
physical attack via removal of some vertices or edges. It has been shown that in
multiprocessor systems attacked by the malicious attackers, the overall network
connectivity is measured by the sizes of the giant connected components and
the diameters does not change significantly in response to random removal of a
small fraction of vertices. The second type is the cascading failure of attacks,
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which naturally appears in rumour spreading, disease spreading, voting, and
advertising. It has been shown that in social networks generated by the PA model
even a weakly virulent virus can spread. This result explains a fundamental
characteristic of the security of networks.

Fault tolerance is becoming an essential attribute in multiprocessor systems
as the number of processors is getting larger. In order to ensure the stable run-
ning of the systems, we must find out the faulty processors and repair or replace
them accurately. System-level diagnosis, as a powerful tool, has been widely
deployed. The field of system-level diagnosis has evolved from the pioneering
work of Preparata, Metze, and Chien [16], who established the first diagnostic
model, namely, the PMC model. The PMC model assumes that each processor
can test its neighbors, and the test results are either faulty or fault-free, which
has been extensively applied in kinds of multiprocessor systems. The diagnos-
ability of a system, is the maximum number of faulty nodes that the system is
guaranteed to identify.

As a fundamental issue in the robustness analysis of multiprocessor systems,
the topic on diagnosability has attracted great attention over the few decades,
which has been regarded as a crucial technique to enhance the invulnerability
of large scale networks. A great amount of effort has been devoted to the devel-
opment to investigate diagnosability of networks under the PMC model. For
example, Chang [1] investigated the diagnosabilities of regular networks. Chang
and Hsieh [2,3] explored the conditional diagnosability of (n, k)-star graphs and
alternating group networks under the PMC model. Guo et al. [6] studied the g-
good neighbor conditional diagnosability of crossed cubes under the PMC model
and MM* model. Liu et al. [12] studied the g-good neighbor conditional diag-
nosability of twisted hypercubes under the PMC model and MM* model. Lin et
al. [11] explored the relationship between the h-extra vertex-connectivity and h-
extra conditional diagnosability for regular networks under the PMC diagnostic
model. Later, Cheng, Qiu and Shen [4,5] outlined the research development of
diagnosability of interconnection networks. Zhu et al. [22] resolved hybrid fault
identification capability of hypercubes under the PMC model and MM* model.
Furthermore, studies on h-edge tolerable diagnosability for some interconnected
networks under the PMC model are explored by many scholars [10,17,18,24].

However, the classic diagnostic model, the PMC model, assumes that only
the processor can occur faulty. In practice, processor and communication link
can be attacked by the adversary simultaneously in real system. To address this
deficiency, Zhu et al. [21] introduced the Hybrid PMC model, marked as the
HPMC model, accompanied by the emergence of vertex and link failure. Fur-
thermore, they also determined the fault diagnosability of hypercube under the
HPMC model. Later, Zhang et al. [23] established the hybrid diagnosability of
exchanged hypercube under the HPMC model. Motivated by the idea above, we
addressed fault diagnosability of a class of triangle-free regular networks under
the HPMC model. As an empirical study, we apply the newly obtained results
to a class of the state-of-the-art regular networks, including hypercube-like net-
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Table 1. An illustration of some notions

Notions Interpretation and Significations

NG(u) The open neighborhood set of u in G

NG[u] The close neighborhood set NG(u) ∪ {u}
NEG(u) The edge set of all its incident edge in G

(u, v) An edge between vertices u and v

NG(S) (
⋃

u∈S
NG(u)) \ S

G[S] The subgraph induced by S in G

G − F The graph obtained by removing the vertex of F and their incident edges from G

〈n〉 {1, 2, . . . , n}
|S| The cardinality of S

F1�F2 (F1 ∪ F2) \ (F2 ∩ F1)

work as well as hypercube-based compound network, such as DQcube, exchanged
hypercube, dual cube, half-hypercube, hierarchical cubic network, etc.

The rest of this paper is organized as follows. Section 2 introduces some
preliminaries and some related definition and some key lemmas. Our main results
as well as the detailed proofs are presented in Sect. 3. Empirical results are
reported and analyzed in Sect. 4, where we apply the obtained results to a class
of regular networks to directly determine their fault diagnosability under the
HPMC model. Finally, we conclude the paper with a summary and future work
in Sect. 5.

2 Preliminaries

Throughout this paper, a graph G = (V (G), E(G)) represents an interconnection
network, where each vertex u ∈ V (G) denotes a processor and each edge (u, v) ∈
E(G) denotes a communication link between two processors u and v. Table 1
demonstrates some basic notations in this context. One can review [19,20] to
learn more concepts and notations of graph and network theory.

In fault diagnosis, the PMC model was initially introduced by Preparata,
Metze, and Chien [16], the well-known diagnostic model, which is based on graph
modelling and has been widely applied. Along with the model above, considering
comprehensively the failure of processor and link within a network, the hybrid
PMC model has been proposed by Zhu et al. [21] recently. A test of the HPMC
model, denoted by δ(u, v; e), involves three elements, including the tester u, the
testee v, the test link e. Figure 1 demonstrates distinct test results under the
HPMC model (where X represents that the testee might be faulty or fault-free).
It is widely recognized that, if the tester is fault-free, the test result is reliable;
while the tester is faulty, the test result is unreliable. Furthermore, when a
faulty processor is replaced or removed, its incident links have to be rechecked
or removed. In the HPMC model, the vertices incident with any faulty link are
fault-free, and the links incident with any faulty vertex are fault-free [21].
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Fig. 1. Illustration of test results in the HPMC model.

Definition 1 [21]. For a multiprocessor system G, (F, S) is a consistent faulty
pair of G if all vertices in F cannot be incident to any edge in S.

Definition 2 [21]. For a multiprocessor system G,

(1) given two positive integers t, s, G is (t, s)-diagnosable if and only if for any
two distinct faulty pairs (F1, S1) and (F2, S2) of V (G) such that |F1|, |F2| ≤ t
and |S1|, |S2| ≤ s, (F1, S1) and (F2, S2) are distinguishable;

(2) For any two positive integers h and r, the h-restricted vertex diagnosability
of G, denoted by teh(G), is the maximum value of t such that G is (t, h)-
diagnosable; the r-restricted edge diagnosability of G, denoted by svr(G), is
the maximum value of s such that G is (r, s)-diagnosable.

Intuitively, when h = 0, the h-restricted vertex diagnosability of G equals to
its vertex diagnosability, i.e., teh(G) = t(G); when r = 0, the r-restricted edge
diagnosability of G equals to its edge diagnosability.

Lemma 1 [21]. Let G = (V (G), E(G)) be a multiprocessor system, F1, F2 ⊆
V (G) and S1, S2 ⊆ E(G). Then, for any two distinct faulty pairs (F1, S1) and
(F2, S2), they are distinguishable under the HPMC model if and only if one of
the following conditions holds:

(1) there exists a vertex u ∈ V (G) \ (F1 ∪ F2), which is adjacent to a vertex
v ∈ F1�F2 and e = (u, v) /∈ S2;

(2) there exists a vertex u ∈ V (G) \ (F1 ∪ F2), which is adjacent to a vertex
v ∈ F2�F1 and e = (u, v) /∈ S1;

(3) there exists an edge e = (u, v) ∈ S1 \ S2 and u, v /∈ F2;
(4) there exists an edge e = (u, v) ∈ S2 \ S1 and u, v /∈ F2.

Lemma 2 [21]. Let G be a multiprocessor system. For any two positive integers
h, r, if teh(G) ≥ r, then svr(G) ≥ h.

Lemma 3 [23]. For the multiprocessor system G = (V (G), E(G)) and two
distinct faulty pairs (F1, S1) and (F2, S2), if F1, F2 ⊆ V (G) and S1, S2 ⊆
E(G), (F1, S1) and (F2, S2) are distinguishable under the HPMC model, then
F1ΔF2 �= ∅.
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3 Fault Diagnosability of Regular Networks Under
the HPMC Model

In general, fault diagnosis has been viewed as an essential strategy for the robust-
ness analysis of multiprocessor systems. In this section, a characterization of the
vertex and edge restricted diagnosability of a class of regular networks under the
HPMC model is presented.

3.1 h-Restricted Vertex Diagnosability of Networks

First, we establish the h-restricted vertex diagnosability of regular networks
under the HPMC model.

Theorem 1. Given a k-regular connected network G and an integer h with
1 ≤ h ≤ k − 2. Let teh(G) be the h-restricted vertex diagnosability of G. If G
satisfies the following conditions:

(1) |V (G)| ≥ 2k − h for t ≥ 3;
(2) G is triangle-free,

then, the h-restricted vertex diagnosability of G under the HPMC model is
teh(G) = k − h.

Proof. We first show that the upper bound of h-restricted vertex diagnosability
of G under the HPMC model is teh(G) ≤ k − h.

Fig. 2. Illustration of the upper bound of teh(G).

For any vertex u in V (G), we select a subgraph A induced by the vertex
set V (A) = {u, u1, u2, . . . , uk} such that A is isomorphic to K1,k with (u, ui) ∈
E(G) (see Fig. 2). Furthermore, we set F1 = {u, uh+1, uh+2, . . . , uk} and F2 =
{uh+1, uh+2, . . . , uk}. It follows that |F1| ≤ k − h + 1 and |F2| ≤ k − h. Take
S1 = ∅ and S2 = {(u, u1), (u, u2), . . . , (u, uh)}. Clearly, |S2| ≤ h. In terms of
Lemma 2, (F1, S1) and (F2, S2) are indistinguishable under the HPMC model.
Therefore, teh(G) ≤ k − h for 1 ≤ h ≤ k − 2.

Next, it suffices to show that teh(G) ≥ k −h under the HPMC model. To this
aim, we shall adopt a method of contradiction and assume that teh(G) ≤ k−h−1
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for 1 ≤ h ≤ k − 2. Let (F1, S1) and (F2, S2) be two distinct indistinguishable
faulty pairs of G with |F1| ≤ k − h, |F2| ≤ k − h as well as |S1| ≤ h, |S2| ≤ h.
Because (F1, S1) and (F2, S2) are different, we need to distinguish two cases, i.e.,
F1ΔF2 �= ∅ or S1ΔS2 �= ∅.

Case 1: F1ΔF2 �= ∅.
In this situation, by the symmetry of F1 and F2, three possibilities need to

be explored.

Subcase 1.1: |F1 \ F2| = 1 and |F2 \ F1| = 0.
Since |F1 \ F2| = 1 and |F2 \ F1| = 0, we have F2 ⊂ F1. Denote F1 \ F2 =

{u}. As (F1, S1) and (F2, S2) are indistinguishable under the HPMC model,
NEV (G)\(F1∪F2)(u) ⊂ S2. In terms of |S2| ≤ h, u has at least k − h neighbors
in F2. Thus, |F2| ≥ k − h. Due to the assumption of |F2| ≤ k − h, we have
|F2| = k − h. As a result, |F1| = |F1 \ F2| + |F2| = k − h + 1 which contradicts
with |F1| ≤ k − h. Therefore, teh(G) ≥ k − h.

Subcase 1.2: |F1 \ F2| = 1 and |F2 \ F1| = 1.
In this situation, we set F1 \ F2 = {u} and F2 \ F1 = {v}. As (F1, S1) and

(F2, S2) are indistinguishable, NEV (G)\(F1∪F2)(u) ⊂ S2. In view of |S2| ≤ h, u
has at least k − h neighbors in F2. Thus, |F2| ≥ k − h. Due to the assumption
of |F2| ≤ k − h, we have |F2| = k − h. Analogously, |F1| = k − h.

If u is not adjacent to v, then NF1∪F2(u) ⊂ F1 ∩ F2 and |F1 ∩ F2| ≥ k − h.
Therefore, |F1| ≥ k − h + 1, a contradiction. If u is adjacent to v, then there
are k − h − 1 common neighbors for u and v. Because of 1 ≤ h ≤ k − 2, we
have k − h − 1 ≥ 1. And so there exists at least one triangle in G which yields a
contradiction with the fact that G is triangle-free. Therefore, teh(G) ≥ k − h.

Subcase 1.3: |F1 \ F2| ≥ 2 or |F2 \ F1| ≥ 2.
Without loss of generality, we suppose |F1 \ F2| ≥ 2, and u, v ∈

F1 \ F2. As (F1, S1) and (F2, S2) are two indistinguishable faulty pairs,
NEV (G)\(F1∪F2)({u, v}) ⊂ S2. Since |S2| ≤ h, we have

|NF1∪F2({u, v})| = |NV (G)({u, v})| − |NV (G)\(F1∪F2)({u, v})|
≥ |NV (G)({u, v})| − |S2|
≥ 2k − 2 − h.

Thus,

|F1 ∪ F2| = |F1 \ F2| + |F1 ∩ F2| + |F2 \ F1|
≥ |F1 \ F2| + |NF1∪F2({u, v})|
≥ 2 + (2k − 2 − h)
≥ 2(k − h)
≥ |F1| + |F2|,

which is a contradiction. Therefore, teh(G) ≥ k − h.

Case 2: S1ΔS2 �= ∅.
Without loss of generality, we suppose S1 \ S2 �= ∅, and (u, v) ∈ S1 \ S2.
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We first consider the situation subject to u ∈ F1 ∪ F2, v ∈ F1 ∪ F2. When
(F1, S1) is faulty and (F2, S2) is fault-free, δ(u, v; e) = 1; while (F1, S1) is fault-
free and (F2, S2) is faulty, δ(u, v; e) = 0. Thus, (F1, S1) and (F2, S2) are distin-
guishable, a contradiction.

When both of u and v are in F1, clearly, both of u and v are not in F2. In
terms of (u, v) ∈ S1 \ S2, by condition (3) of Lemma 1, (F1, S1) and (F2, S2) are
distinguishable, a contradiction.

Hence, at least one of u and v in F2 \ F1, i.e., F1ΔF2 �= ∅. However, by
the proof of Case 1 in Theorem 1, when F1ΔF2 �= ∅, it implies a contradiction.
Therefore, teh(G) ≥ k − h, the desired.

From what has been analysed above, the h-restricted vertex diagnosability
of G under the HPMC model is teh(G) = k − h. �

3.2 r-Restricted Edge Diagnosability of Networks

Here, the r-restricted edge diagnosability of G under the HPMC model is char-
acterized in the following theorem.

Theorem 2. Given a k-regular connected network G and an integer r with
1 ≤ r ≤ k − 1. Let svr(G) be the r-restricted edge diagnosability of G. If G
satisfies the following conditions:

(1) |V (G)| ≥ 2k − r for k ≥ 3;
(2) G is triangle-free,

then, the r-restricted edge diagnosability of G under the HPMC model is

svr(G) =
{

k − 2, r = 1 and k ≥ 3;
k − r, 2 ≤ r ≤ k − 1.

Fig. 3. Illustration of the upper bound of sv1(G).

Proof. We first show that, under the HPMC model, svr(G) = k − 2 when r = 1
and k ≥ 3. For any edge e = (u, v), we set NE(u) = {e1, e2, . . . , ek−1, (u, v)}
and NE(v) = {f1, f2, . . . , fk−1, (u, v)}. We set F1 = {u} and F2 = {v}, S1 =
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{f1, f2, . . . , fk−1} and S2 = {e1, e2, . . . , ek−1} (see Fig. 3). By Lemma 1, (F1, S1)
and (F2, S2) are indistinguishable under the HPMC model. Therefore, sv1(G) ≤
k − 2 for k ≥ 3.

Next, it suffices to show that sv1(G) ≥ k − 2 by contradiction. Suppose, to
the contrary, that sv1(G) < k − 2. Let (F1, S1) and (F2, S2) be two distinct
indistinguishable faulty pairs of G with |F1| ≤ 1, |F2| ≤ 1 as well as |S1| ≤ k−2,
|S2| ≤ k − 2. As (F1, S1) and (F2, S2) are different, we have F1ΔF2 �= ∅ or
S1ΔS2 �= ∅. If S1ΔS2 �= ∅, we assume S1 \ S2 �= ∅ and denote S1 \ S2 = {(u, v)}.
Because (F1, S1) and (F2, S2) are indistinguishable, by Lemma 1, at least one of
u and v is in F2. Thus, F1ΔF2 �= ∅. Without loss of generality, set F1 = {u}. By
Lemma 1, all edges of NEV (G)\F2(u) are located in S2. Since G is k-regular and
|F2| ≤ 1, we have |S2| ≥ k − 1, which contradicts with |S2| ≤ k − 2.

Furthermore, we prove that svr(G) = k − r for 2 ≤ r ≤ k − 1. Let u be any
vertex of V (G) and NG(u) = {u1, u2, . . . , uk}. Take F1 = {u1, u2, . . . , ur−1},
F2 = {u, u1, u2, . . . , ur−1}, and S1 = {(u, ur), (u, ur+1), . . . , (u, uk)}, S2 = ∅.
Clearly, |S1| ≤ k − r + 1. By means of Lemma 1, (F1, S1) and (F2, S2) are
indistinguishable under the HPMC model. Therefore, svr(G) ≤ k − r for 2 ≤ r ≤
k − 1.

Now, it suffices to show the lower bound of svr(G) for 2 ≤ r ≤ k − 1. Set
h = k − r. In terms of 2 ≤ r ≤ k − 1, we obtain 1 ≤ h ≤ k − 2. By Theorem 1,
teh(G) ≥ k − h. Applying Lemma 2, we have svr(G) ≥ h = k − r.

Summing up above, we have

svr(G) =
{

k − 2, r = 1 and k ≥ 3;
k − r, 2 ≤ r ≤ k − 1.

as desired. �

4 Applications to Regular Networks

In previous section, we have established the h-restricted vertex diagnosability
and r-restricted edge diagnosability of networks. In this section, we will apply
the key results of Theorems 1 and 2 to the state-of-the-art regular networks
without triangle.

4.1 The Hypercube-Like Networks HLn

The n-dimensional hypercube-like networks, denoted by HLn, is a class of n-
regular n-connected graphs with 2n vertices and n2n−1 edges that are defined
recursively as follows.

Definition 3. Given a positive integer n(n ≥ 1), the one-dimensional
hypercube-like networks is K2. A graph G is called the n-dimensional hypercube-
like networks, denoted by HLn, if there exist two disjoint subsets of V (HLn),
V0 and V1, subject to the following two conditions:
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(1) V (HLn) = V0 ∪ V1, where G[V0], G[V1] ∈ HLn−1;
(2) E(HLn) = E(G[V0)]∪E(G[V1])∪M , where M is a perfect matching between

G[V0] and G[V1].

Note that the HLn network is triangle-free. Every HLn, by fixing the last
dimensional ordinate of nodes, can be divided into two subgraphs HL0

n and
HL1

n, each of which is isomorphic to HLn−1. Additionally, there exists a perfect
matching between HL0

n and HL1
n. Based on the properties above, we estab-

lish the h-restricted vertex diagnosability and r-restricted edge diagnosability of
HLn.

Theorem 3. For the hypercube-like network HLn with n ≥ 3,

(1) the h-restricted vertex diagnosability of HLn is teh(HLn) = n − h for 1 ≤
h ≤ n − 2;

(2) the r-restricted edge diagnosability of HLn under the HPMC model is

svr(HLn) =
{

n − 2, r = 1 and n ≥ 3;
n − r, 2 ≤ r ≤ n − 1.

Zhu et al. [21] have determined the h-restricted vertex diagnosability and
r-restricted edge diagnosability of Qn under the HPMC model, which is easily
derived by our technical route.

Corollary 1 [21]. For the hypercube Qn with n ≥ 3,

(1) the h-restricted vertex diagnosability of Qn is teh(Qn) = n − h for 1 ≤ h ≤
n − 2;

(2) the r-restricted edge diagnosability of Qn is

svr(Qn) =
{

n − 2, r = 1 and n ≥ 3;
n − r, 2 ≤ r ≤ n − 1.

4.2 The DQcube DQ(m,d, n)

DQcube, introduced by Hung [7], is a new compound network based on hyper-
cube network. Sort all vertices of hypercube cluster in the ascending order of the
vertex labels. Then the smallest, second smallest, and the largest nodes will be
α1 = 00 · · · 00, α2 = 00 · · · 01, and β = 11 · · · 11, respectively. Let γi be the i-th
smallest node excluding any one of {α1, α2, β} for 1 ≤ i ≤ 2n − 3. According to
the construction methodology of DQ(m, d, n) proposed by Hung [7], we review
the definition of DQcube network, and some available properties of it as follows.
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Fig. 4. Illustration of DQ(4, 2, 2).

Definition 4 [14]. The DQcube is characterized by DQ(m, d, n) where 1 ≤ d ≤
m and d + 2 = 2n. The vertex-set V is represented as {(z1z2, bn−1bn−2 · · · b0)}
where z1z2 is the label of cluster in D(m, d) and bn−1bn−2 · · · b0 is the
label of the node in Qn. Two vertices u = (z1z2, bn−1bn−2 · · · b0) and v =
(z′

1z
′
2, b

′
n−1b

′
n−2 · · · b′

0) are linked if and only if one of the following conditions
is satisfied (see DQ(4, 2, 2) in Fig. 4):

(1) z1z2 = z′
1z

′
2 and

n−1∑
i=0

| bi − b′
i |= 1;

(2) z1 = z′
1, z′

2 = z2 + 1, bn−1bn−2 · · · b0 = α1 and b′
n−1b

′
n−2 · · · b′

0 = α2;
(3) z1 − z′

1 = 1, z2 = z′
2 and bn−1bn−2 · · · b0 = b′

n−1b
′
n−2 · · · b′

0 = β;
(4) z1 = 0, z′

1 = 1, z′
2 = z2 + i and bn−1bn−2 · · · b0 = b′

n−1b
′
n−2 · · · b′

0 = γi.

Lemma 4 [14]. DQ(m, d, n) has the following properties:

(1) 2n = d + 2;
(2) DQ(m, d, n) is (n + 1)-regular, and DQ(m, d, n) has m2n+1 vertices and

(n + 1)m2n edges;
(3) DQ(m, d, n) is triangle-free and contains no 5-cycle.

Theorem 4. For the DQcube network DQ(m, d, n) with 1 ≤ d ≤ m and d+2 =
2n,

(1) the h-restricted vertex diagnosability of DQ(m, d, n) is teh(DQ(m, d, n)) =
n + 1 − h for 1 ≤ h ≤ n − 1 and n ≥ 3;

(2) the r-restricted edge diagnosability of DQ(m, d, n) is

svr(DQ(m, d, n)) =
{

n − 1, r = 1 and n ≥ 3;
n + 1 − r, 2 ≤ r ≤ n − 1.
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Proof. (1) Since |V (DQ(m, d, n))| = m2n+1 as well as 1 ≤ h ≤ n − 1, we have

|V (DQ(m, d, n))| − (2(n + 1) − h) ≥ m2n+1 − 2n − 2 + h

≥ m2n+1 − 2n − 2 + n − 1

≥ m2n+1 − n − 3
> 0,

for n ≥ 3. Moreover, By Lemma 4, DQ(m, d, n) has no triangle. Applying The-
orem 1, teh(DQ(m, d, n)) = n + 1 − h, as required.

(2) Similar to the proof of Theorem 4(1), one can easily verify that these
conditions that DQ(m, d, n) is triangle-free and |V (DQ(m, d, n))| = m2n+1 are
in accord with conditions of Theorem 1. Thus, Theorem 4 holds. �

Fig. 5. Illustration of the exchanged hypercubes EH(1, 2).

4.3 The Exchanged Hypercube EH(s, t)

The exchange hypercube, was initially proposed by Loh et al. [15]. Next, we
introduce the definition of the exchange hypercube.

Definition 5 [9]. The (s, t)-dimensional exchanged cubes is defined as a graph
EH(s, t) = (V (EH(s, t)), E(EH(s, t))) for s, t ≥ 1. EH(s, t) consists of two dis-
joint subgraphs L′ and R′. And L′ contains 2t subgraphs, denoted by L′

i, i ∈ 〈2t〉.
Analogously, R′ contains 2s subgraphs, denoted by R′

j , j ∈ 〈2s〉. Furthermore,
EH(s, t) satisfies the following conditions: (see Fig. 5)

(1) for any i ∈ 〈2t〉 and j ∈ 〈2s〉, L′
i
∼= Qs and R′

i
∼= Qt;

(2) each vertex in V (L′
i) has a unique neighbor in V (R′

j) and vice versa. In
addition, for distinct vertices in each L′

i, their neighbors locate in distinct
R′

js;
(3) For any two different subgraphs L′

p and L′
q with p �= q, there exists no edge

between them. Similar for R′
j and R′

k with j �= k.

Zhang and Zhu [23] recently addressed the h-restricted vertex diagnosability
and r-restricted edge diagnosability of EH(s, t) under the HPMC model. The
obtained results are presented as follows.
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Theorem 5 [23]. For the exchange hypercube EH(s, t) with 1 ≤ s ≤ t,

(1) the h-restricted vertex diagnosability of EH(s, t) is teh(EH(s, t)) = s−h+1
for 1 ≤ h ≤ s − 1;

(2) the r-restricted edge diagnosability of EH(s, t) is

svr(EH(s, t)) =
{

s − 1, r = 1 and s ≥ 2;
s − r + 1, 2 ≤ r ≤ s.

Note that, when s = t = n, EH(s, t) is isomorphic to the dual-cube DCn.
Hence, we have the following corollaries.

Corollary 2. For the dual-cube DCn with n ≥ 2,

(1) the h-restricted vertex diagnosability of DCn is teh(DCn) = n − h + 1 for
1 ≤ h ≤ n − 1;

(2) the r-restricted edge diagnosability of DCn is

svr(DCn) =
{

n − 1, r = 1 and n ≥ 2;
n − r + 1, 2 ≤ r ≤ n.

4.4 The Half Hypercube Network HHn

The n-dimensional half-hypercube network, denoted by HHn, proposed by Kim
et al. [8], which owns the same number of vertices as the hypercube but reduces
the degree by approximately half, is constructed as follows.

Definition 6 [8]. Every vertex of HHn is expressed by an n-bit binary strings,
i.e., the vertex set V (HHn) = {unun−1 · · · u1 | ui ∈ {0, 1}, i = 1, 2, . . . , n}.

Suppose u ∈ HHn, we denote C(u) the leftmost �n
2 �-bit binary string of u,

and P (u) the rest, i.e.,

C(u) = un · · · u�n
2 �+1, P (u) = u�n

2 � · · · u2u1.

In fact

P (u) =
{

u�n
2 � · · · u2u1, n is even;

u�n
2 � · · · u2, n is odd.

Two vertices u = unun−1 · · · u1 and v = vnvn−1 · · · v1 in HHn have an edge if
and only if (u, v) satisfies one of the following two collections (Fig. 6):

E(HHn) = {(u, v) |C(u) = C(v),

� n
2 �

∑

i=1

|ui − vi| = 1},

E (HHn) = {(u, v) | if C(u) �= P (u), then C(v) = P (u), P (v) = C(u); otherwise, v = u}.
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Fig. 6. Illustration of half hypercube HHn (n = 3, 4, 5).

Lemma 5 [13]. The half hypercube network HHn has the following properties:

(1) HHn is (�n
2 � + 1)-regular, and has 2n vertices and 2n−1(�n

2 � + 1) edges;
(2) HHn is triangle-free;
(3) Let u and v be any two vertices of HHn(n ≥ 3). Then, cn(u, v) ≤ 2.

Theorem 6. For the half hypercube HHn with n ≥ 3,

(1) the h-restricted vertex diagnosability of HHn is teh(HHn) = �n
2 � − h + 1 for

1 ≤ h ≤ �n
2 � − 2;

(2) the r-restricted edge diagnosability of HHn under the HPMC model is

svr(HHn) =
{ �n

2 � − 1, r = 1 and n ≥ 3;
�n
2 � − r + 1, 2 ≤ r ≤ �n

2 � − 1.

Proof. (1) In terms of |V (HHn)| = 2n and 1 ≤ h ≤ �n
2 � − 2, we have

|V (HHn)| − (2(�n

2
� + 1) − h) ≥ 2n − 2�n

2
� − 2 + h

≥ 2n − 2�n

2
� − 2 + (�n

2
� − 2)

≥ 2n − �n

2
� − 4

≥ 2n − n + 1
2

− 4

> 0,

for n ≥ 3. Moreover, By Lemma 5, HHn has no triangle. Applying Theorem 1,
teh(HHn) = �n

2 � − h + 1, as required.
(2) By Lemma 5, the half hypercube network HHn(n ≥ 3) satisfies conditions

of Theorem 2. Similar to verification of Theorem 6(1), we directly determine the
r-restricted edge diagnosability of HHn under the HPMC model. �
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In particular, when n is even, the n-dimensional half hypercube network is
isomorphic to a n

2 -dimensional hierarchical cubic network, i.e., HHn
∼= HCNn

2
.

Note that HCNn an (n+1)-regular triangle-free network. Therefore, we directly
determine the h-restricted vertex diagnosability and r-restricted edge diagnos-
ability of hierarchical cubic networks as follows.

Corollary 3. For the hierarchical cubic network HCNn with n ≥ 3,

(1) the h-restricted vertex diagnosability of HCNn is teh(HCNn) = n − h + 1
for 1 ≤ h ≤ n;

(2) the r-restricted edge diagnosability of HCNn is

svr(HCNn) =
{

n − 1, r = 1 and n ≥ 3;
n − r + 1, 2 ≤ r ≤ n − 1.

5 Conclusions

Hybrid fault diagnosis against processors and links fault may be more useful for
the robustness of a network. In this paper, we establish the h-restricted vertex
diagnosability and r-restricted edge diagnosability of regular networks under the
hybrid PMC model. As applications, we apply the general results obtained to
the state-of-the-art regular networks, such as hypercube-like network as well
as hypercube-based compound network, DQcube, exchanged hypercube, dual
cube, half hypercube, hierarchical cubic network and so on. As for the future
research, we will consider the novel fault diagnostic model, namely, the hybrid
MM* model, and apply it to general networks.
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Abstract. Due to the increasing size of a multi-processor system, pro-
cessor fault diagnosis has played an important role in measuring the
reliability of the system. The diagnosability of many well-known multi-
processor systems has been widely investigated. The conditional diag-
nosability is a new measure of diagnosability by restricting an additional
condition that any faulty set cannot contain all the neighbors of any node
in a system. In this paper, we evaluate the conditional diagnosability for
pancake graphs under the PMC model. We first derive several properties
of pancake graphs, and then based on these properties, the conditional
diagnosability of an n-dimensional pancake graph is shown to be 2 for
n = 3 and 8n − 21 for n ≥ 4.

Keywords: Interconnection networks · Diagnosis model · Conditional
diagnosability · Pancake graphs · Fault tolerance · Multiprocessor
systems

1 Introduction

With the rapid development of multi-processor systems, a multi-processor system
may consist of hundreds or even thousands of processors (nodes), and some of
them may be failed when the system is put to use. As the number of processors
in a system increases, faulty processors grows at the same time. In order to
ensure the reliability of the systems, we need to find out the faulty processors
to replace or repair them, this motivates us to the issue of reliability of multi-
processor systems. The system reliability means that it can distinguish between
faulty processors and faulty-free processors, and the faulty processors can be
replaced by a faulty-free one. The process of identifying the faulty processors is
called diagnosis of the system, and the diagnosability of a system is the maximum
number of faulty processors that the system can guarantee to identify.

There are several diagnosis models has been proposed in the diagnosabil-
ity of multi-processors systems. In particular, there are two of well-known and
widely used in the above models. The PMC model [27], named and proposed by
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Preparata, Metze, and Chien’s model, is a tested-based diagnosis model; and the
MM model [24,25], proposed by Maeng and Malek’s model, which is comparison-
based diagnosis model. In the PMC model, a processor performs the diagnosis
by testing on their neighboring processors via the communication links between
them. It is assumed that a test result is reliable (resp. unreliable) if the proces-
sor evaluating the test is fault-free (resp. faulty). There are numerous studies
on diagnoability of interconnection network that have been dedicated on the
PMC model [2–6,11,22,30,34]. In the MM model, a comparison is performed
by choosing a processor called comparator, which deals with the fault diagnosis
by sending the same input or task to a pair of its neighboring processors and
compare their response. As well as the PMC model, many researches studied
the diagnosability of multi-processor systems under the MM model [8–10,12–
14,20,21,23,29,31,32].

It is well known that the pancake graphs is one of the most popular multipro-
cessor systems for parallel computer/communication system. An n-dimensional
Pancake graph Pn is an undirected regular graph with n! nodes and with degree
n − 1. The pancake graph is a great substitute to the hypercube in a parallel
system, which can interconnect processors with a lower degree, smaller diameter,
and recursive structure. There are several properties have been investigated on
pancake graphs [16–18,26].

In classical measures of system-level diagnosability for multi-processor sys-
tems, if all the neighbor of a processor are faulty nodes, the processor must can
not be determined is faulty-free or faulty. Consequently, the diagnosability of a
system is bounded from its minimum node degree. However, in some large-scale
multi-processor systems, the probability that all the neighbors of a processor are
failed concurrently is extremely small. Based on this assumption, Lai et al. [19]
introduced the concept of conditional diagnosability, which assumed that all the
neighbors of any node do not failed at the same time, and showed that the con-
ditional diagnosability of an n-dimensional hypercube Qn is 4n − 7 for n ≥ 5.
Moreover, the study of conditional diagnosability for some interconnection net-
works has attracted the attention of research worker [5,12–14,19,23,30,33,34],
In this paper, we evaluate the conditional diagnosability for Pn under the PMC
model to be 8n − 21, for n ≥ 5.

The rest of this paper is organized as follows: In Sect. 2, we provides the
terminology and preliminaries for system-level diagnosis. In Sect. 3, some new
properties of Pn are derived, which are used in Sect. 4 to evaluate the conditional
diagnosability of Pn. Finally, some concluding remarks are given in Sect. 5.

2 Preliminaries

An undirected graph (graph for short) G consists of a vertex (node) set V (G)
and an edge set E(G), where V (G) is a finite set and E(G) is a subset of
{(u, v)| (u, v) is an unordered pair of V (G)}. We usually represents a mul-
tiprocessor system or an interconnection network by an undirected graph G,
where a node u ∈ V (G) represents a processor in the system and an edge
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uv ∈ E(G) represents a communication link between the nodes u and v. Given
a vertex subset U ⊆ V (G), the subgraph of G induced by U is defined as
G[U ] = (U, {uv ∈ E(G) | u, v ∈ U}).

Let G be a graph, and v ∈ V (G) be a node. The neighborhood of a node
v in G, denoted by NG(v), is the set of all nodes adjacent to v in G. The
degree of a node v, denoted by degG(v), is the number of edges incident to v,
which equals to the cardinality NG(v) (i.e., degG(v) = |NG(v)|). The minimum
degree δ(G) equals min{degG(v)| v ∈ V (G)}. Graph G is said to be k-regular
if all the nodes in G has the same degree k. For a subset of nodes V ′ ⊆ V (G),
the neighborhood set of V ′ in G is defined as NG(V ′) =

(⋃
u∈V ′ NG(u)

) \ V ′.
Let NG[V ′] = NG(V ′) ∪ V ′. For a node set T ⊆ V (G), the notation G \ T
is used to denote the graph obtained by G with removing all the nodes in T
from G. The components of a graph G are its maximal connected subgraphs. A
component called trivial component if it has no edges; otherwise, it called non-
trivial component. A path P [v0, vt] = 〈v0, v1, . . . , vt〉 in a graph G is a sequence of
distinct vertices such that any two consecutive vertices are adjacent, and vertices
v0 and vt are called the endpoints of the path.

(Formal definitions for several terms about diagnosability are omitted due to
space constraints.)

Since the test result performed by a faulty tester is unreliable, a given node
set F can produce different syndromes. Let σ(F ) represents the set of all syn-
dromes that consistent with the node set F . For two distinct node sets F1 and
F2 in a system G, F1 and F2 are said to be distinguishable if σ(F1) ∩ σ(F2) = ∅;
otherwise, F1 and F2 are said to be indistinguishable. Moreover, (F1, F2) is an
distinguishable pair if σ(F1) ∩ σ(F2) = ∅; otherwise, (F1, F2) is an indistinguish-
able pair.

Some known results about the definition of a t-diagnosable system and related
concepts are described as follows.

Definition 1. [27] A system of n nodes is t-diagnosable if all the faulty nodes
can be identified without replacement, provided that the number of faulty nodes
presented does not exceed t.

Lemma 1. [7] A system G is t-diagnosable if and only if for any pair F1, F2 ⊆
V (G) with |F1|, |F2| ≤ t and F1 �= F2, there exists at least one test from V (G) \
(F1 ∪ F2) to F1ΔF2.

The following lemma follows directly from Lemma 1, which gives a necessary
and sufficient condition for a pair of fault sets F1 and F2 to be distinguishable.

Lemma 2. [19] Let G be a system. Then, for any two sets F1, F2 ⊆ V (G) with
F1 �= F2, (F1, F2) is a distinguishable pair if and only if there exists a node
u ∈ V (G) \ (F1 ∪ F2) which is adjacent to a node v ∈ F1ΔF2.

3 Properties of Pancake Graphs

The n-dimensional pancake graph, denoted by Pn, is a graph whose node set con-
sists of all permutations on 〈n〉. Each node is assigned a unique label x1x2 . . . xn,
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where xi ∈ 〈n〉 for 1 ≤ i ≤ n and xi �= xj for i �= j. Each node x1x2 . . .
xi−1xixi+1 . . . xn is adjacent to node xixi−1 . . . x2x1xi+1 . . . xn, also referred as i-
neighbor, by an edge in dimension i for 2 ≤ i ≤ n. In other words, an i-neighbor
of x1x2 . . . xi−1xixi+1 . . . xn is obtained by reversing from the first coordinate
to the ith coordinate of the node. As a result, there exist n! nodes in an n-
dimensional pancake graph, and each node has degree n− 1. Let u = x1x2 . . . xn

be a node in an n-dimensional pancake graph Pn. We use [u]i to denote the ith
coordinate of u for 1 ≤ i ≤ n (i.e., [u]i = xi). Moreover, we use (u)i to denote
the unique i-neighbor of u for 2 ≤ i ≤ n (i.e., (u)i = xixi−1 . . . x2x1xi+1 . . . xn).
Obviously, ((u)i)i = u. In addition, Pn can be decomposed into n copies of
(n − 1)-dimensional pancake graphs (subpancakes for short), denoted by Pi

n|j
over dimension j, that is, each subpancake Pi

n|j is the subgraph induced by the
nodes u with [u]j = i, where 1 ≤ i ≤ n and 2 ≤ j ≤ n. The notation Pi

n|j can
be simplified as Pi

n when the index j is not important. Clearly, each subpancake
Pi
n is isomorphic to Pn−1. For 1 ≤ i �= j ≤ n, we use Ei,j to denote the set of

edges between two subpancakes Pi
n and Pj

n.
Some well-known properties about pancake graphs are described as follows.

Property 1. [1,15,26,28]

1. Pn is (n − 1)-regular with n! nodes for n ≥ 1.
2. The connectivity of Pn is n − 1 (i.e., κ(Pn) = n − 1), where n ≥ 1.
3. The girth of Pn, denoted by girth(Pn), equals 6 (i.e., girth(Pn) = 6), where

n ≥ 3.
4. |Ei,j | = (n − 2)!, where 1 ≤ i �= j ≤ n.

Lemma 3. [18] The n-dimensional Pancake graph Pn, where n ≥ 3, has 6-
cycle of canonical form C6 = r3r2r3r2r3r2, where ri represents the reversion of
the first coordinate to the ith coordinate of label, and each node of Pn belongs to
exactly one 6-cycle.

Let T ⊆ V (Pn) be a subset of nodes in Pn. We need to prove some lemmas
on the cardinalities of T such that Pn\T has a large component with some small
components. The results are shown in the following lemmas.

Lemma 4. Let T be a node subset of Pn with |T | ≤ 2n− 5, where n ≥ 4. Then,
Pn \ T has a large component and up to one trivial component.

Proof. (The remaining proof is omitted due to space constraints.)

Lemma 5. Let T be a node subset of Pn with |T | ≤ 3n− 8, where n ≥ 4. Then,
Pn\T has a large component and at most two small components containing up to
2 nodes in total.

Proof. (The detailed proof is omitted due to space constraints.)

Lemma 6 determines the cardinality of neighborhood of a path with length
seven in P4, which is required to our method.

Lemma 6. Let S to be a path of length seven in P4, then |NP4(S)| ≥ 8 for
n = 4.

Proof. (The detailed proof is omitted due to space constraints.)



302 N.-W. Chang et al.

4 Conditional Diagnosability of Pancake Graphs

In an n-dimensional pancake graph Pn, there are
(

n!
n−1

)
node subsets of size n−1,

among which there are only n! node subsets containing all the neighbors of some
nodes. Since the ratio n!

( n!
n−1)

is extremely small for large n, the probability that a

fault set contains all the neighbors of some node is relatively low. For this reason,
Lai et al. [19] proposed a new restricted diagnosis strategy called conditional
diagnosability for multiprocessor systems. They considered the situation that
any fault set cannot contain all the neighbors of any node in a system. A fault
set F ⊆ V (G) is called a conditional fault set if NG(u) � F for every node
u ∈ V (G). The definition of a conditionally t-diagnosable system is given as
follows:

Definition 2. [19] A system G is conditionally t-diagnosable if and only if F1

and F2 are distinguishable for each pair of conditional fault sets F1, F2 ⊆ V (G),
where F1 �= F2 and |F1|, |F2| ≤ t.

Let F1, F2 be two sets with F1 �= F2. We say that (F1, F2) is a distinguish-
able conditional-pair (resp. an indistinguishable conditional-pair) if F1 and F2

are both conditional fault sets and distinguishable (resp. indistinguishable). An
equivalent way of representing the above definition is listed below, which will be
used in our main theorem.

Lemma 7. [19] A system G is conditionally t-diagnosable if and only if for
each indistinguishable conditional-pair F1, F2 ⊆ V (G) with F1 �= F2, it implies
that |F1| > t or |F2| > t.

The conditional diagnosability of G, denoted by tc(G), is defined to be the
maximum value of t such that G is conditionally t-diagnosable.

Lemma 8. For a system G, tc(G) ≥ t(G).

Before discussing the conditional diagnosability, we have some observations
about the neighborhood of a node in a system having an indistinguishable
conditional-pair (F1, F2). Lai et al. [19] state this phenomenon in the follow-
ing lemma.

Lemma 9. [19] Let (F1, F2), where F1 �= F2, be an indistinguishable conditional-
pair in a system G. Denote X = G \ (F1 ∪F2). Then, the following two conditions
hold:

1. |NG(u) ∩ (V (G) \ (F1 ∪ F2))| ≥ 1 for u ∈ V (X), and
2. |NG(v) ∩ (F1 \ F2)| ≥ 1 and |NG(v) ∩ (F2 \ F1)| ≥ 1 for v ∈ F1ΔF2.

The following lemma exploits some properties of graphs with the girth at
least six.

Lemma 10. [4] Let G be a system with girth(G) ≥ 6. Given an indistinguish-
able conditional-pair (F1, F2) in G with F1 �= F2, and let T = F1 ∩ F2. Then
G \ T has a component H with
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1) V (H) ⊆ F1ΔF2.
2) δ(H) ≥ 2.
3) H must contain a path of length seven P as a subgraph.
4) |V (H)| ≥ 8.

Next, we demonstrate that the conditional diagnosability of a pancake graph
Pn does not exceed 8n − 20 for n ≥ 4. We consider a subgraph of Pn that is an
8-cycle C8 = 〈v1, v2, v3, v4, v5, v6, v7, v8, v1〉, where v2 = (v1)3, v3 = (v2)2,
v4 = (v3)3, v5 = (v4)4, v6 = (v5)2, v7 = (v6)3, and v8 = (v7)2 = (v1)4. Let
F1 = NPn

(C8) ∪ {v1, v2, v5, v6} and F2 = NPn
(C8) ∪ {v3, v4, v7, v8}. First, it is

not difficult to verify that both F1 and F2 are conditional fault sets. Further, by
the fact that NPn

(C8) = F1 ∩ F2, there exist no edges between V (G) \ (F1 ∪ F2)
and F1ΔF2. According to Lemma 2, (F1, F2) is an indistinguishable conditional
pair. In addition, because |F1 ∩ F2| = |NPn

(C8)| = 8(n − 3) = 8n − 24 and
|F1 \ F2| = |F2 \ F1| = 4, we have |F1| = |F2| = 8n − 20. By Lemma 7, Pn is not
conditionally (8n−20)-diagnosable. Hence, the following result can be obtained.

Lemma 11. tc(Sn) ≤ 8n − 21 for n ≥ 4.

We are now ready to show that the conditional diagnosability of Pn is 8n−21
for n ≥ 5. Let (F1, F2) be an indistinguishable conditional-pair in Pn, where
n ≥ 5. The following shows that |F1| ≥ 8n − 20 or |F2| ≥ 8n − 20.

Lemma 12. Let (F1, F2), where F1 �= F2, be an indistinguishable conditional-
pair in Pn for n ≥ 5. Then, we have |F1| ≥ 8n − 20 or |F2| ≥ 8n − 20.

Proof. (The remaining proof is omitted due to space constraints.)

By Lemma 11, tc(Pn) ≤ 8n−21, and by Lemmas 7 and 12, we conclude that
Pn is conditionally (8n − 21)−diagnosable for n ≥ 5. Hence, tc(Pn) = 8n − 21,
for n ≥ 5. Finally, the conditional diagnosability of a pancake graph Pn is
represented as follows:

Theorem 1. tc(Pn) = 8n − 21 for n ≥ 5.

5 Conclusion

In a multiprocessor system, the processors in the system may fail independently.
Thus, the diagnosis of system is an important aspect in system design. Because
of the probability that an faulty set contains all the neighbors of some processor
is extremely small, we are interested in conditional diagnosability, which restricts
that each processor of a system is adjacent to at least one fault-free processor.

In this paper, we studied the conditional diagnosability of the n-dimensional
pancake graph Pn under the PMC model. We discovered several new properties
of Pn and then utilize these properties to prove that tc(Pn) = 8n−21 for n ≥ 5.
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Abstract. PMC model is the test-based diagnosis which a vertex per-
forms the diagnosis by testing the neighbor vertices via the edges between
them. Hsu and Tan proposed two structures to diagnose a vertex. But
these structures don’t always exist for any vertex. Here, we propose a
new testing structure to diagnose a vertex under PMC model to solve the
problem above. It can fit more general networks. Let S be a set of faulty
edges of the n-dimensional hypercube Qn. Using this structure, we show
that every vertex u of Qn is degQn−S(u)-diagnosable if δ(Qn − S) ≥ 2,
degQn−S(x) + degQn−S(y) ≥ 5 for every two adjacent vertices x and y
in Qn − S, and n ≥ 5.

1 Introduction

Due to the growth of network related applications such as cloud computing,
Internet of things (IoT), and vehicle to everything (V2X), it is important to
ensure the reliable operation of devices. As the number of processors increases,
the communication link between processors becomes more and more complex.
Therefore, one cannot avoid some processors failure. How to identify the faulty
processors accurately is the key to ensure the normal operation of the network.
System level diagnostics is to distinguish each processor failure or not, and then
replace the faulty processors by fault-free ones to ensure the reliable operation
of the system. A system is called t-diagnosable if all faulty processors can be
identified without replacement as long as the number of faulty processors does
not exceed t [20]. The diagnosability of a system is the maximum value of t
such that it is t-diagnosable [5,17,20]. That is, the maximum number of faulty
processors that can be identified in this system.

PMC model proposed by Preparata, Metze and Chien in 1967 [20] is the
original diagnosis model. Lin and Teng [18] characterized the diagnosability for
triangle-free graphs under PMC model. Lee and Hsieh [15,16] characterized the
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(1, 2)-composition networks as t-diagnosable under PMC model. The diagnos-
ability of the hypercubes, the crossed cubes, the Möbius cubes, the twisted cubes,
the enhanced hypercubes, the exchanged generalized hypercubes under the PMC
model were studied in [1,3,8,9,14,17,22,23].

In order to diagnose who are the faulty nodes in the system, we need to do
2m times tests under PMC model, where m stands for the number of the links
in the system. If we want to know a specific node u is faulty or not, instead of
doing the global diagnosis, Hsu and Tan proposed the concept of local diagnosis
[12]. They showed that if there exists T (u; t) or T (u; t − 2, 2) structure for the
node u (see Fig. 1) then u is t-diagnosable.

Fig. 1. Two diagnosis structures

However, such structures don’t always exist for a node. To make up for that,
we propose a new structure for u and prove that if the number of faulty nodes
in this structure doesn’t exceed t then u can be correctly diagnosed, where t is
the degree of u. The rest of this paper is organized as follows. First, we give
the necessary definitions and notations, the detail of PMC model, the definition
of the local diagnosability in Sect. 2. In Sect. 3, we propose a new structure
to diagnose a node, we also provide the corresponding algorithm to prove our
theorem. In Sect. 4, we apply the new proposed structure to show that each node
of an incomplete hypercube is locally t-diagnosable, where t is the degree of the
node in the incomplete hypercube.

2 Preliminaries

We model a network as a graph, the nodes (resp. links) of the network can
be viewed as the vertices (resp. edges) of the graph. Let G = (V,E), where V
represents the vertex set and E represents the edge set. A matching M of G is
a subset of E such that any two distinct elements of M are not incident to a
common vertex. A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and
E(H) ⊆ E(G). Let V ′ be a subset of V (G). We say that H is a subgraph of G
induced by V ′ if V (H) = V ′ and E(H) = {(u, v) | u, v ∈ V ′ and (u, v) ∈ E(G)}.
Let u be any vertex in G. The neighborhood of u in G, NG(u) = {v | (u, v) ∈
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E(G)}, is the set of vertices adjacent to u. The neighbor of a vertex subset A of
graph G is NG(A) =

⋃
u∈A NG(u)−A. The degree of u in G, degG(u) = |NG(u)|,

is the number of edges incident with u in G. We use δ(G) = minv∈V (G) degG(v)
to denote the minimum degree of the vertices of G. The distance of two vertices
u and v, distG(u, v), is the number of the edges in the shortest path connecting
u and v in G. The diameter of G, d(G) = maxu,v∈V (G)distG(u, v). A graph G
is bipartite if its vertices can be partitioned into two disjoint vertices subsets V1

and V2 such that for every edge in G, one of its end vertex is in V1 and the other
one is in V2. For standard graph-theoretic terminology, we follow [2,13].

The diagnostic strategy of PMC model is proposed as follows. It assumes
that two adjacent vertices can test each other. Let x and y be any two adjacent
vertices. We use σ(x, y) to represent the result of x testing y. Suppose that x is
fault-free. If y is fault-free, then σ(x, y) = 0; otherwise, σ(x, y) = 1. Suppose x
is faulty. Then the test result is unreliable, that is, σ(x, y) ∈ {0, 1} no matter y
is faulty or not.

The set of all test outcomes is called a syndrome of the system. For a given
syndrome σ, a vertex subset F of V (G) is said to be consistent with σ if syndrome
σ can be produced when the faulty set of G is F . We set σ(F ) = {σ | F is
consistent with σ}. For any two distinct subsets F1 and F2 of V (G), (F1, F2) is
an indistinguishable pair if σ(F1) ∩ σ(F2) �= ∅; otherwise, it is a distinguishable
pair.

Let A and B be any two sets. The difference set for A and B, A − B, is
{x | x ∈ A and x /∈ B}, and the symmetric difference of A and B is AΔB =
(A − B) ∪ (B − A).

Theorem 1 [20]. For any two distinct vertex subsets F1 and F2 of a graph G,
(F1, F2) is a distinguishable pair of G under PMC model if and only if there is
a vertex u ∈ V (G) − (F1 ∪ F2) and a vertex v ∈ F1ΔF2 such that uv ∈ E(G).

Lai et al. gave a necessary and sufficient condition of t-diagnosable under
PMC model.

Theorem 2 [17]. A graph G is t-diagnosable under PMC model if and only if,
for each distinct pair of subsets F1 and F2 of V (G) with max{|F1|, |F2|} ≤ t, F1

and F2 are distinguishable.

If we are only interested in the status of some vertices, instead of doing the
global diagnosis, Hsu and Tan proposed the concept of local diagnosis [12].

Definition 3 [12]. Let G = (V,E) be a graph and v ∈ V be a vertex. G is locally
t-diagnosable at vertex v if, given a syndrome σF produced by a set of faulty
vertices F ⊆ V containing vertex v with |F | ≤ t, every set of faulty vertices F ′

compatible with σF and |F ′| ≤ t must also contain vertex v.

Definition 4 [12]. Let G = (V,E) be a graph and v ∈ V be a vertex. The local
diagnosability of vertex v, written as tl(v), is defined to be the maximum value
of t such that G is locally t-diagnosable at vertex v.
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The following proposition related to locally t-diagnosable was proposed by
Hsu and Tan.

Proposition 5 [12]. Let G = (V,E) be a graph and u ∈ V be a vertex. G is
locally t-diagnosable at vertex u if and only if, for any two distinct sets of vertices
F1, F2 ⊂ V , |F1| ≤ t, |F2| ≤ t, u ∈ F1ΔF2, and (F1, F2) is a distinguishable pair.

Hsu and Tan [12] showed that t(G) = minu∈V (G)tl(u). They gave two suffi-
cient conditions for a vertex to be t-diagnosable. For a vertex u, if there exists
Type I structure T (u; t) or Type II structure T (u; t − 2, 2) for u then u is t-
diagnosable. However, it exists neither Type I nor Type II structure for some
vertex. In this paper, we propose a new structure T (u; a, 2b) to diagnose a ver-
tex u under PMC model, where a, b ≥ 0. Let F be the faulty vertices in G and
degG(u) = t, we prove that if there exists the structure T (u; a, 2b) for u and
|F ∩ V (T (u; a, 2b))| ≤ t, then u is t-diagnosable, where t = a + 2b. We also
provide the corresponding algorithm. Let S be a set of faulty edges of the n-
dimensional hypercube Qn. Using this structure, we show that every vertex u of
Qn is degQn−S(u)-diagnosable if δ(Qn − S) ≥ 2, degQn−S(x) + degQn−S(y) ≥ 5
for every two adjacent vertices x and y in Qn − S, and n ≥ 5.

3 Local Diagnosis Algorithm

Let u be any vertex of G. Suppose that F is any set of faulty vertices of G. If there
are two distinct vertices p and q of G − {u} such that {(u, p), (p, q)} ⊂ E(G),
then Table 1 shows min |F ∩{p, q}|. Moreover, Table 2 shows min |F ∩{w, x, y, z}|
if {w, x, y, z} ⊂ G − {u} and {(u,w), (u, x), (w, y), (x, y), (y, z)} ⊂ E(G).

Definition 6. Let G = (V,E) be a graph and let u be any vertex in G. The
mix structure T (u; a, 2b) of order a + 2b at vertex u is a subgraph of G where
(1) V (T (u; a, 2b)) = {u} ∪ {pi, qi | 1 ≤ i ≤ a} ∪ {wj , xj , yj , zj | 1 ≤ j ≤ b}
and (2) E(T (u; a, 2b)) = {(u, pi), (pi, qi) | 1 ≤ i ≤ a} ∪ {(u,wj), (u, xj), (wj , yj),
(xj , yj), (yj , zj) | 1 ≤ j ≤ b}. Figure 2 shows an illustration for T (u; 3, 6).

We set B0 = {(0, 0, 0, 0, 0), (0, 0, 0, 1, 0), (0, 0, 1, 0, 0)}, B1 = {(1, 1, 0, 0, 0),
(1, 1, 0, 1, 0), (1, 1, 1, 0, 0)}, B2 = {(0, 0, i, j, 1) | i, j ∈ {0, 1}}∪{(0, 1, 0, 1, 0), (1, 0,
1, 0, 0)}, B3 = {(1, 1, i, j, 1) | i, j ∈ {0, 1}}∪{(0, 1, 1, 0, 0), (1, 0, 0, 1, 0)}, and B4 =

Table 1. The minimum number of faulty vertices in the set {p, q}

(σ(p, u), σ(q, p)) min |F ∩ {p, q}|
u ∈ F u /∈ F

(0, 0) 2 0

(0, 1) 1 1

(1, 0) 0 2

(1, 1) 1 1
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Table 2. The minimum number of faulty vertices in the set {w, x, y, z}

(σ(w, u), σ(x, u), σ(y, w), σ(y, x), σ(z, y)) min |F ∩ {w, x, y, z}|
u ∈ F u /∈ F

(0, 0, 0, 0, 0), (0, 0, 0, 1, 0), (0, 0, 1, 0, 0) 4 0

(1, 1, 0, 0, 0), (1, 1, 0, 1, 0), (1, 1, 1, 0, 0) 0 4

(0, 0, 0, 0, 1), (0, 0, 0, 1, 1), (0, 0, 1, 0, 1),
(0, 0, 1, 1, 1), (0, 1, 0, 1, 0), (1, 0, 1, 0, 0)

3 1

(0, 1, 1, 0, 0), (1, 0, 0, 1, 0), (1, 1, 0, 0, 1),
(1, 1, 0, 1, 1), (1, 1, 1, 0, 1), (1, 1, 1, 1, 1)

1 3

(0, 0, 1, 1, 0), (0, 1, 0, 0, 0), (1, 0, 0, 0, 0), (0, 1, 0, 0, 1),
(0, 1, 0, 1, 1), (0, 1, 1, 0, 1), (0, 1, 1, 1, 0), (0, 1, 1, 1, 1),
(1, 0, 0, 0, 1), (1, 0, 0, 1, 1), (1, 0, 1, 0, 1), (1, 0, 1, 1, 0),
(1, 0, 1, 1, 1), (1, 1, 1, 1, 0)

2 2

u 
p 3 p 1 

q 1 
q 2 q 3 

w 1 

w 2 

w 3 x 1 

x 2 

x 3 

y 1 

y 2 

y 3 

z 1 z 2 z 3 

p 2 

Fig. 2. Example of T (u; 3, 6)

{(i1, i2, i3, i4, i5) | i1, i2, i3, i4, i5 ∈ {0, 1}} − ⋃3
j=0 Bj . Let T (u; a, 2b) be a mix

structure of order a + 2b at vertex u of graph G. For any faulty vertices set F of
G, we set αj(u, F ) = {i | i ∈ {1, 2, . . . , a} and (σ(pi, u), σ(qi, pi)) = (j, 0)} for j ∈
{0, 1}, α2(u, F ) = {i | i ∈ {1, 2, . . . , a} and (σ(pi, u), σ(qi, pi)) ∈ {(0, 1), (1, 1)}},
and βk(u, F ) = {i | i ∈ {1, 2, . . . , b} and (σ(wi, u), σ(xi, u), σ(yi, wi), σ(yi, xi),
σ(zi, yi)) ∈ Bk} for k ∈ {0, 1, 2, 3, 4}. Denote |αi(u, F )| (resp. |βi(u, F )|) by
αi(u) (resp. βi(u)). If it is clear, we also use the symbol αi (resp. βi) for short.
We have

∑2
i=0 αi +

∑4
j=0 2βj = a + 2b.

We propose the algorithm LDAMIX (see Algorithm 1) for the mix structure
T (u; a, 2b) and prove it can identify the state of u correctly under PMC model
if the number of faulty vertices do not exceed O(a + b).

In LDAMIX, we initialize the variables of this algorithm from step 2 to step
6, and it takes O(1) times. If a > 0, then the for loop from step 8 to step 11
executes O(a) times to determine α0 and α1. Similarly, the for loop from step
14 to step 18 executes O(4b) times to determine β0, β1, β2 and β3 if b > 0.
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Algorithm 1: Local diagnosis algorithm for mix structure (LDAMIX)
Input: A mix structure T (u; a, 2b) with min{a, b} ≥ 0.
Output: The value is 0 or 1 if u is fault-free or faulty, respectively.

1 begin
2 B0 ← {(0, 0, 0, 0, 0), (0, 0, 0, 1, 0), (0, 0, 1, 0, 0)};
3 B1 ← {(1, 1, 0, 1, 0), (1, 1, 1, 0, 0), (1, 1, 0, 0, 0)};
4 B2 ← {(0, 0, i, j, 1) | i, j ∈ {0, 1}} ∪ {(0, 1, 0, 1, 0), (1, 0, 1, 0, 0)};
5 B3 ← {(1, 1, i, j, 1) | i, j ∈ {0, 1}} ∪ {(0, 1, 1, 0, 0), (1, 0, 0, 1, 0)};
6 (α0, α1, β0, β1, β2, β3) ← (0, 0, 0, 0, 0, 0);
7 if a > 0 then
8 for (i = 1; i < a + 1; i = i + 1) do
9 if (σ(pi, u), σ(qi, pi)) = (0, 0) then α0 ← α0 + 1;

10 else if (σ(pi, u), σ(qi, pi)) = (1, 0) then α1 ← α1 + 1;

11 end

12 end
13 if b > 0 then
14 for (i = 1; i < b + 1; i = i + 1) do
15 for (j = 0; j < 4; j = j + 1) do
16 if (σ(wi, u), σ(xi, u), σ(wi, yi), σ(xi, yi), σ(yi, zi)) ∈ Bj then

βj ← βj + 1;
17 end

18 end

19 end
20 if α0 + 2β0 + β2 ≥ α1 + 2β1 + β3 then return 0;
21 else return 1;

22 end

Finally, it takes O(1) to determine its output at step 20 and step 21. So the time
complexity of LDAMIX is O(a + 4b) = O(a + b).

Theorem 7. Let T (u; a, 2b) be any mix structure of order a + 2b at vertex u,
and let F be any faulty set of G. If |F | ≤ a + 2b, then LDAMIX (Algorithm 1)
can identify the state of u correctly under PMC model. That is, u is fault-free if
α0(u) + 2β0(u) + β2(u) ≥ α1(u) + 2β1(u) + β3(u); otherwise, u is faulty.

Proof. We prove this Theorem by contradiction.
Suppose that u is fault-free and α1(u) + 2β1(u) + β3(u) > α0(u) + 2β0(u) +

β2(u). According to Table 1 and Table 2, we have |F | ≥ β2(u)+2β4(u)+3β3(u)+
4β1(u)+2α1(u)+α2(u) >

∑2
i=0 αi(u)+

∑4
i=0 2βi(u) = a+2b which contradicts

to |F | ≤ a+2b. Thus, u is faulty if α1(u)+2β1(u)+β3(u) > α0(u)+2β0(u)+β2(u).
Suppose that u is faulty and α0(u)+2β0(u)+β2(u) ≥ α1(u)+2β1(u)+β3(u).

According to Table 1 and Table 2, we have |F | ≥ 2α0(u) + α2(u) + 4β0(u) +
3β2(u) + 2β4(u) + β3(u) + 1 = (α0(u) + 2β0(u) + 2β2(u)) + (α0(u) + 2β0(u) +
β2(u))+2β4(u)+β3(u)+α2(u)+1 ≥ (α0(u)+2β0(u)+2β2(u))+(α1(u)+2β1(u)+
β3(u))+2β4(u)+β3(u)+α2(u)+1 = a+2b+1 which contradicts to |F | ≤ a+2b.
Thus, u is fault-free if α0(u) + 2β0(u) + β2(u) ≥ α1(u) + 2β1(u) + β3(u). ��
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Next, we provide an example to show that by our new structure, the local diag-
nosability can be improved a lot for some vertices compared to the previous two
structures.

Example 8. Let G = (V,E), where V = {p} ∪ {xi|1 ≤ i ≤ 4n} ∪ {ui, zi|1 ≤ i ≤
2n} and E = {(p, xi)|1 ≤ i ≤ 4n} ∪ {(xi, uj), (x2n+i, un+j)|1 ≤ i ≤ 2n, 1 ≤ j ≤
n} ∪ {(ui, zj)|1 ≤ i, j ≤ 2n}. For any 1 ≤ i ≤ 4n and 1 ≤ j ≤ 2n, we know that
degG(p) = 4n, degG(xi) = n + 1, degG(uj) = 4n, degG(zj) = 2n.

By Type I and Type II structures, we have tl(p) ≥ 2n, tl(xi) ≥ n+1, tl(uj) ≥
2n, tl(zj) ≥ 2n for any i ∈ {1, 2, . . . , 4n}, j ∈ {1, 2, . . . , 2n}.

By the new structure we propose in this paper, we get that tl(p) ≥ 4n, tl(xi) ≥
n + 1, tl(uj) ≥ 2n + 1, tl(zj) ≥ 2n for any i ∈ {1, 2, . . . , 4n}, j ∈ {1, 2, . . . , 2n}.

As we can see, the local diagnosability of the vertices p, uj (j ∈ {1, 2, . . . , 2n})
has been improved by our new structure compared to the Type I and Type II
structures.

4 Local Diagnosis of Incomplete Hypercube

In this section, we show that every vertex u of an incomplete hypercube is locally
t-diagnosable, where t is the degree of the vertex u in this incomplete hypercube.
The incomplete hypercube is obtained by removing some edges from hypercube.

Let x = xn−1xn−2 · · · x0 and y = yn−1yn−2 · · · y0 be two binary strings with
length n. We set xi = qn−1qn−2 · · · q0 being the binary string such that qi = 1−xi

and qj = xj for each j �= i. The Hamming distance between x and y, H(x,y), is
the number of distinct positions between them, i.e., H(x,y) =

∑n−1
i=0 |xi − yi|.

The n-dimensional hypercube, Qn is one of the most popular interconnection
networks [10,19,21]. It is high symmetrical such as edge-transitivity and vertex-
transitivity. And there are several well-known graphs of its variants such as the
crossed cube [7], Möbius cube [4], twisted cube [11], folded hypercube [6], etc. Its
vertex set is V (Qn) = {xn−1xn−2 · · · x0 | xi ∈ {0, 1} for each i ∈ {0, 1, . . . , n −
1}}, and its edge set E(Qn) = {(x,y) | x,y ∈ V (Qn) with H(x,y) = 1}. That is,
two vertices in Qn are adjacent if they differ in exactly one coordinate. Figure 3
shows Qn for n ∈ {1, 2, 3, 4}.

In order to construct the T (u; a, 2b) structure for every vertex u ∈ V (Qn),
we need the following known results.

Theorem 9 (Hall Theorem). Suppose that G = (V1 ∪V2, E) is a bipartite graph
with |V1| ≤ |V2|. Then G has a matching saturating every vertex of V1 if and
only if |N(A)| ≥ |A| for every subset A ⊆ V1.

Next is the weak version of Hall Theorem.

Theorem 10. Suppose that G = (V1 ∪ V2, E) is a bipartite graph with |V1| ≤
|V2|. If every vertex from V1 has at least t neighbors in V2 and every vertex
from V2 has at most t neighbors in V1 for some t ≥ 1. Then G has a matching
saturating every vertex of V1.
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Fig. 3. Qn for n ∈ {1, 2, 3, 4}

Let S be a set of faulty edges in Qn. For any vertex u ∈ V (Qn) and a
number i ∈ {1, 2, . . . , d} where d stands for the diameter of Qn − S, we define
Γi(u) = {v ∈ V (Qn) : distQn−S(u, v) = i}. We have the following observation.

Lemma 11. For any vertex u ∈ V (Qn) and any two vertices x, y ∈ Γ2(u), if u
and x, u and y are in two edge-disjoint 4-cycles, then x and y are distance four.

We set δadj(G) = min{degG(x) + degG(y) | (x, y) ∈ E(G)}.

Theorem 12. For n ≥ 5, let S be any set of faulty edges in Qn. Then the local
diagnosability of any vertex u in the incomplete hypercube Qn − S under PMC
model is degQn−S(u) if δ(Qn − S) ≥ 2 and δadj(Qn − S) ≥ 5.

Proof. Let Γ1(u) = {u1, u2, . . . , ut}, where t = degQn−S(u). We want to show
that there exists T (u; a, 2b) in Qn − S, where t = a + 2b. We classify into two
cases.
Case 1. degQn−S(ui) ≥ 3 for each i ∈ {1, 2, . . . , t}. Since Qn is triangle-free,
ui has at least two adjacent vertices in Γ2(u) for each i ∈ {1, 2, . . . , t}. By the
definition of Qn, every vertex v ∈ Γ2(u) has at most two adjacent vertices in
Γ1(u). By Theorem 10, there is a matching M in the subgraph of Qn−S induced
by Γ1(u) ∪ Γ2(u) saturates every vertex in Γ1(u). Thus, T (u; a, 2b) = (A;B) is
the structure we are looking for, where A = {u} ∪ V (M) and B = {(u, ui) | 1 ≤
i ≤ t} ∪ M .
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Case 2. degQn−S(ui) = 2 for some i ∈ {1, 2, . . . , t}. Without loss of general-
ity, we assume degQn−S(ui) = 2 for each i ∈ {1, 2, . . . , k} where 1 ≤ k ≤ t.
We set Z = {u1, u2, . . . , uk}. Let {v1, v2, . . . , vl} be the adjacent vertex set of
Z in Γ2(u). Denote {v1, v2, . . . , vl} by Y . Notice that vj has at most two adja-
cent vertices in Z, where j ∈ {1, 2, . . . , l}. For every i ∈ {k + 1, k + 2, . . . , t},
we know degQn−S(ui) ≥ 3. Let R = NQn−S({uk+1, uk+2, . . . , ut}) ∩ Γ2(u). By
Theorem 10, there is a matching M ′ in the subgraph of Qn − S induced by
{uk+1, uk+2, . . . , ut} ∪ R saturates every vertex in {uk+1, uk+2, . . . , ut}.
Case 2.1. k = l. That is, vj has exactly one adjacent vertex in Z for every j ∈
{1, 2, . . . , l}. Thus, we assume that (uj , vj) ∈ E(Qn−S), where j ∈ {1, 2, . . . , k}.
Case 2.1.1. |V (M ′) ∩ Y | = 0. We set T (u; a, 2b) = (A;B), where A = {u} ∪
{ui, vi | 1 ≤ i ≤ k} ∪ V (M ′) and B = {(u, ui) | 1 ≤ i ≤ t} ∪ {(ui, vi) | 1 ≤ i ≤
k} ∪ M ′. Then T (u; a, 2b) is the structure we are looking for.
Case 2.1.2. |V (M ′) ∩ Y | = r for some r ≥ 1. Without loss of generality, we
assume that V (M ′) ∩ Y = {v1, v2, . . . , vr} and M ′ = {(uk+i, vi) | 1 ≤ i ≤
r} ∪ {(uk+r+j , pj) | 1 ≤ j ≤ t − k − r}. Then we know that for every i ∈
{1, 2, . . . , r}, degQn−S(vi) ≥ 3 since degQn−S(ui) = 2 and δadj(Qn − S) ≥ 5. By
Lemma 11, there exist {w1, w2, . . . , wr} ⊆ Γ3(u) such that (vi, wi) ∈ E(Qn − S)
for i ∈ {1, 2, . . . , r}. Therefore, T (u; a, 2b) = (A;B) is the structure we are
looking, where A = {u} ∪ Γ1(u) ∪ Y ∪ {p1, p2, . . . , pt−k−r, w1, w2, . . . , wr} and
B = {(u, ui) | 1 ≤ i ≤ t} ∪ {(uj , vj) | 1 ≤ i ≤ k} ∪ {(vi, wi) | 1 ≤ i ≤ r} ∪ M ′.
Case 2.2. k > l. That is to say, there are some index i in {1, 2, . . . , l} such that vi
has two adjacent vertices in Z. Without loss of generality, we assume that vi is
adjacent to u2i−1 and u2i for each i ∈ {1, 2, . . . , s}, and vs+j is adjacent to u2s+j

for each j ∈ {1, 2, . . . , l−s}. Thus, k = s+l. Obviously, V (M ′)∩{v1, v2, . . . , vs} =
∅.
Case 2.2.1. |V (M ′) ∩ {vs+1, vs+2, . . . , vl}| = 0. Without loss of generality, we
assume that M ′ = {(uk+j , pj) | 1 ≤ j ≤ t − k}. Similar to Case 2.1.2, there
exist s distinct vertices w1, w2, . . . , ws in Γ3(u) such that (vi, wi) ∈ E(Qn − S)
for each i ∈ {1, 2, . . . , s}. Then T (u; a, 2b) = (A;B) forms the structure we are
looking for, where A = {u} ∪ Z ∪ {vi | 1 ≤ i ≤ l} ∪ V (M ′) ∪ {wi | 1 ≤ i ≤ s}
and B = {(u, ui) | 1 ≤ i ≤ t} ∪ {(u2i−1, vi), (u2i, vi), (vi, wi) | 1 ≤ i ≤ s} ∪
{(u2s+j , vs+j) | 1 ≤ j ≤ l − s} ∪ M ′.
Case 2.2.2. |V (M ′) ∩ {vs+1, vs+2, . . . , vl}| ≥ 1. Without loss of generality, we
assume that V (M ′) ∩ {vs+1, vs+2, . . . , vl} = {vs+1, vs+2, . . . , vs+q}. Notice that
degQn−S(vi) ≥ 3 for i ∈ {1, 2, . . . , l} since degQn−S(ui) = 2 and δadj(Qn −
S) ≥ 5. We know that u and every vertex from {v1, v2, . . . , vs+q} are in edge-
disjoint 4-cycles. By Lemma 11, any two vertices from {v1, v2, . . . , vs+q} have no
common neighbor. So there exist {w1, w2, . . . , ws+q} ⊆ Γ3(u) such that (vi, wi) ∈
E(Qn−S) for each i ∈ {1, 2, . . . , s+q}. Therefore, T (u; a, 2b) = (A;B) forms the
structure we are looking for, where a = {u}∪{ui | 1 ≤ i ≤ k}∪{vj | 1 ≤ j ≤ l}∪
{wi | 1 ≤ i ≤ s+q}∪V (M ′) and B = {(u, ui) | 1 ≤ i ≤ t}∪{(u2i−1, vi), (u2i, vi) |
1 ≤ i ≤ s} ∪ {(u2s+j , vs+j) | 1 ≤ i ≤ l − s} ∪ M ′ ∪ {(vi, wi) | 1 ≤ i ≤ s + q}. ��

Next, we provide two examples to show that our bound is optimal.
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Example 13. For n ≥ 5, let u = 000 · · · 0, v = 100 · · · 0, w = 110 · · · 0, z =
010 · · · 0 ∈ V (Qn). Let S be the set of edges incident with v, w, z except the
four edges in the four cycle uvwzu, then degQn−S(u) = n, δ(Qn − S) = 2 and
δadj(Qn − S) = 4. Let F1 = {u} ∪ N(u) − {v}, F2 = {w} ∪ N(u) − {z}, we have
|F1| = |F2| = n and (F1, F2) is indistinguishable in Qn − S. By Proposition 5, u
is not locally n-diagnosable.

Example 14. For n ≥ 5, let u = 000 · · · 0, v = 100 · · · 0 ∈ V (Qn). Let S be
the set of edges incident with v except the edge (u, v), then degQn−S(u) = n,
δ(Qn −S) = 1 and δadj(Qn −S) ≥ 5. Let F1 = {u}∪N(u)−{v}, F2 = N(u), we
have |F1| = |F2| = n and (F1, F2) is indistinguishable in Qn −S. By Proposition
5, u is not locally n-diagnosable.
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4. Cull, P., Larson, S.: The Möbius cubes. IEEE Trans. Comput. 44(5), 647–659

(1995)
5. Dahbura, A.T., Masson, G.M.: An O(n2.5) fault identification algorithm for diag-

nosable systems. IEEE Trans. Comput. 33(6), 486–492 (1984)
6. EI-Awawy, A., Latifi, S.: Properties and performance of folded hypercubes. IEEE

Trans. Parallel Distrib. Syst. 2(1), 31–42 (1991)
7. Efe, K.: The crossed cube architecture for parallel computation. IEEE Trans. Par-

allel Distrib. Syst. 3(5), 513–524 (1992)
8. Fan, J.: Diagnosability of crossed cubes under the two strategies. Chin. J. Comput.

21(5), 456–462 (1998)
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Abstract. The diamond is the graph obtained by removing an edge
from the complete graph on 4 vertices. A graph is (P6, diamond)-free
if it contains no induced subgraph isomorphic to a six-vertex path or
a diamond. In this paper we show that the chromatic number of a (P6,
diamond)-free graph G is no larger than the maximum of 6 and the clique
number of G. We do this by reducing the problem to imperfect (P6,
diamond)-free graphs via the Strong Perfect Graph Theorem, dividing
the imperfect graphs into several cases, and giving a proper colouring for
each case. We also show that there is exactly one 6-vertex-critical (P6,
diamond, K6)-free graph. Together with the Lovász theta function, this
gives a polynomial time algorithm to compute the chromatic number of
(P6, diamond)-free graphs.

Keywords: Graph colouring · k-critical graph · P6-free graph ·
Diamond-free graph

1 Introduction

All graphs in this paper are finite and simple. For general graph theory notation
we follow [1]. A q-colouring of a graph G assigns a colour from a colour set
{1, . . . , q} to each vertex of G such that adjacent vertices are assigned different
colours. We say that a graph G is q-colourable if G admits a q-colouring. The
problem of deciding if a graph is q-colourable is called the q-colouring problem.
This decision problem is NP-complete for general graphs for every q ≥ 3. How-
ever, there exist polynomial time algorithms when the input graphs are restricted
to certain graph classes. For example, Chudnovsky, Spirkl, and Zhong [9] recently
showed that the 4-colouring problem can be solved in polynomial time for the
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class of P6-free graphs. The chromatic number of a graph G, denoted by χ(G),
is the minimum number q for which G is q-colourable.

Let Pn, Cn and Kn denote the path, cycle and complete graph on n vertices,
respectively. The diamond is the graph obtained from K4 by removing an edge.
For two graphs G and H, we use G + H to denote the disjoint union of G and
H, and G ∨ H to denote the graph obtained from the disjoint union of G and
H by adding an edge between every vertex in G and every vertex in H. For a
positive integer r, we use rG to denote the disjoint union of r copies of G. A
hole is an induced cycle on 4 or more vertices. An antihole is the complement
of a hole. A hole or antihole is odd or even if it has an odd or even number
of vertices. We say that a graph G contains a graph H if an induced subgraph
of G is isomorphic to H. A graph G is H-free if it does not contain H. For a
family H of graphs, G is H-free if G is H-free for every H ∈ H. The graphs
in H are the forbidden induced subgraphs of the family of H-free graphs. We
write (H1, . . . , Hn)-free instead of {H1, . . . , Hn}-free. A clique is a vertex set
whose elements are pairwise adjacent. A vertex set is stable if its elements are
pairwise nonadjacent, and nonstable otherwise. The clique number of G, denoted
by ω(G), is the size of a largest clique in G. Obviously, χ(G) ≥ ω(G) for any
graph G.

A graph family G is hereditary if G ∈ G implies that every induced subgraph
of G belongs to G. Obviously, G is hereditary if and only if G is the class of H-
free graphs for some H. A graph G is perfect if χ(H) = ω(H) for each induced
subgraph H of G, and imperfect otherwise. As a generalisation of perfect graphs,
Gyárfás [16] introduced the χ-bounded graph families. A hereditary graph family
G is χ-bounded if there is a function f such that χ(G) ≤ f(ω(G)) for every G ∈ G.
The function f is called a χ-binding function. Chudnovsky, Robertson, Seymour
and Thomas [8] characterized the family of perfect graphs by forbidden induced
subgraphs:

Theorem 1 ([8]). A graph is perfect if and only if it does not contain an odd
hole or an odd antihole as an induced subgraph.

In other words, the family of (odd hole, odd antihole)-free graphs is χ-
bounded, and its χ-binding function is the identity function. Based on this the-
orem, researchers studied various graph families with two forbidden induced
subgraphs and found several families that have a linear χ-binding function.
Note that every graph family mentioned in this paragraph forbids odd holes
and odd antiholes on 7 or more vertices. It then follows from Theorem 1 that
every graph in these graph families is either perfect or contains a C5. In par-
ticular, Gaspers and Huang [11] showed that χ(G) ≤ 3

2ω(G) for every (P6,
C4)-free graph G. Karthick and Maffray [18] improved the χ-binding function
of (P6, C4)-free graphs to 5

4ω(G). The graph P4 ∨ K1 is called a gem, and a
co-gem is the complement of a gem. Cameron, Huang and Merkel [4] showed
that χ(G) ≤ � 3

2ω(G)� for every (P5, gem)-free graph G. Chudnovsky, Karthick,
Maceli, and Maffray [7] improved the χ-binding function of (P5, gem)-free graphs
to � 5

4ω(G)	. Karthick and Maffray [17] showed that χ(G) ≤ � 5
4ω(G)	 for every
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(gem, co-gem)-free graph G, and in [19] they showed that every (P5, diamond)-
free graph G satisfies χ(G) ≤ ω(G) + 1. For the family of (P6, diamond)-free
graphs, Karthick and Mishra [20] showed that every (P6, diamond)-free graph G
satisfies χ(G) ≤ 2ω(G) + 5. In the same paper, they proved that every (P6, dia-
mond, K4)-free graph is 6-colourable. Finally, Cameron, Huang, and Merkel [5]
improved the χ-binding function of (P6, diamond)-free graphs to ω(G) + 3.

Our Contributions

In this paper, we prove that every (P6, diamond)-free graph G satisfies χ(G) ≤
max{6, ω(G)} (cf. Theorem 5 in Sect. 4). We do this by reducing the problem
to imperfect (P6, diamond)-free graphs via the Strong Perfect Graph Theorem,
dividing the imperfect graphs into several cases, and giving a proper colouring for
each case. Furthermore, we prove that the chromatic number of (P6, diamond)-
free graphs can be determined in polynomial time (cf. Theorem 7 in Sect. 5).
In particular, we show that there is exactly one 6-vertex-critical (P6, diamond,
K6)-free graph. Together with the Lovász theta function, this gives a polynomial
time algorithm to compute the chromatic number of (P6, diamond)-free graphs.
Note that Dabrowski, Dross and Paulusma [10] proved the following dichotomy
for computing the chromatic number of (diamond, H)-free graphs when H has
at most 5 vertices: they proved that this problem is NP-complete when H con-
tains a claw or a cycle, and polynomial time solvable otherwise. Our result thus
generalises the polynomial time solvability of computing the chromatic number
of (P5, diamond)-free graphs.

Our results are an improvement of the result of Cameron, Huang and
Merkel [5], answer an open question from [5], and are a natural next step of [10].
We believe that our proof technique for polynomial time solvability may also be
useful for other graph families (see Sect. 6).

The remainder of the paper is organised as follows. We present some prelimi-
naries in Sect. 2 and show some structural properties of imperfect (P6, diamond)-
free graphs in Sect. 3. We prove the χ-bound in Sect. 4 and prove that the chro-
matic number can be determined in polynomial time in Sect. 5. We end with
some open problems in Sect. 6.

Due to space constraints we had to omit several proofs. These proofs can be
found in the full version of this paper, of which a preprint is already available
on arXiv [13].

2 Preliminaries

Let G = (V,E) be a graph. A neighbour of a vertex v is a vertex adjacent to v.
The neighbourhood of a vertex v, denoted by NG(v), is the set of neighbours of
v. The degree of a vertex v, denoted by d(v), is the number of neighbours of v.
We denote the minimum degree of the vertices of G by δ(G). For X ⊆ V , let
NG(X) =

⋃
v∈X NG(v) \ X. For x ∈ V (or X ⊆ V ) and S ⊆ V , let NS(x) =

NG(x)∩S (or NS(X) = NG(X)∩S). For x ∈ V (or X ⊆ V ) and Y ⊆ V , we say
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that x (or X) is complete (resp. anti-complete) to Y if x (or every vertex in X) is
adjacent (resp. nonadjacent) to every vertex in Y . We denote the complement of
G by G. For S ⊆ V , let G[S] denote the subgraph of G induced by S. We often
write S for G[S] if the context is clear. We say that S induces an H if G[S] is
isomorphic to H. A clique K ⊆ V is a clique cutset if G−K has more components
than G. Two vertices u, v ∈ V are comparable if they are nonadjacent, and either
NG(u) ⊆ NG(v) or NG(v) ⊆ NG(u). A component of a graph is trivial if it has
only one vertex, and nontrivial otherwise. We say that the edges between two
vertex sets X and Y form a matching if every vertex in X has at most one
neighbour in Y , and every vertex in Y has at most one neighbour in X.

Grötschel, Lovász and Schrijver [15] showed that the chromatic number of a
perfect graph can be computed in polynomial time. In that paper, the authors
used the Lovász theta function:

ϑ(G) := max{
n∑

i,j=1

bij :

B = (bij) is positive semidefinite with trace at most 1, and bij = 0 if ij ∈ E}.

The Lovász theta function satisfies that ω(G) ≤ ϑ(G) ≤ χ(G) for any graph
G, and can be calculated in polynomial time [15].

A graph G is k-vertex-critical if χ(G) = k, and every proper induced sub-
graph of G has chromatic number smaller than k. The following properties of
k-vertex-critical graphs are well-known.

Lemma 1 ([1]). If G is a k-vertex-critical graph, then G is connected, has no
clique cutsets or comparable vertices, and δ(G) ≥ k − 1.

It is easy to see that G is not (k − 1)-colourable if and only if G contains
a k-vertex-critical graph. This simple observation has an important algorithmic
implication, the proof of which can be found in [3].

Theorem 2 (Folklore). If a hereditary graph family G has a finite number
of k-vertex-critical graphs, then the (k − 1)-colouring problem can be solved in
polynomial time for G by simply testing if the input graph contains any of these
k-vertex-critical graphs as induced subgraph.

The concept of k-vertex-critical graphs is also important in the context of
certifying algorithms [21]. An algorithm is certifying if, along with the answer
given by the algorithm, it also gives a certificate which allows to verify in poly-
nomial time that the output of the algorithm is indeed correct. In case of the
k-colouring problem, a canonical certificate for yes-instances would be a proper
k-colouring of the graph while a canonical certificate for no-instances would be
a (k + 1)-vertex-critical graph.

We will also use the following two theorems in our proof:

Theorem 3 ([9]). The 4-colouring problem can be solved in polynomial time for
the class of P6-free graphs.
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Theorem 4 ([22]). Let G be a (P6,K3)-free graph with no comparable vertices.
Then G is 4-colourable. Furthermore, G is not 3-colourable if and only if it
contains the Grötzsch graph as an induced subgraph and is an induced subgraph
of the 16-vertex Clebsch graph. (See Fig. 1 for drawings of the Clebsch graph and
the Grötzsch graph.)

0

1

2

34

5
6

7

8 9

10

11

12

13 14

15

Fig. 1. The Clebsch graph. The 11 vertices with indices 0, . . . , 10 induce the Grötzsch
graph.

3 The Structure of Imperfect (P6, diamond)-Free Graphs

In this section we study the structure of imperfect (P6, diamond)-free graphs.
By Theorem 1, every imperfect (P6, diamond)-free graph contains a C5. Let
G = (V,E) be an imperfect (P6, diamond)-free graph. We follow the notation
of [5] and partition V into the following subsets:

Let Q = {v1, v2, v3, v4, v5} induce a C5 in G with edges vivi+1 for i = 1, . . . , 5,
with all indices modulo 5.

Ai = {v ∈ V \Q : NQ(v) = {vi}},
Bi,i+1 = {v ∈ V \Q : NQ(v) = {vi, vi+1}},
Ci,i+2 = {v ∈ V \Q : NQ(v) = {vi, vi+2}},
Fi = {v ∈ V \Q : NQ(v) = {vi, vi−2, vi+2}},
Z = {v ∈ V \Q : NQ(v) = ∅}.

Let A =
⋃5

i=1 Ai, B =
⋃5

i=1 Bi,i+1, C =
⋃5

i=1 Ci,i+2, F =
⋃5

i=1 Fi. Since
G is diamond-free, any vertex in V \Q cannot be adjacent to three sequential
vertices vi, vi+1, vi+2 in Q, then V = Q ∪ A ∪ B ∪ C ∪ F ∪ Z.
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In [5] the following 21 properties of these subsets are proved:

(P1) Each component of Ai is a clique.
(P2) The sets Ai and Ai+1 are anti-complete.
(P3) The sets Ai and Ai+2 are complete.
(P4) Each Bi,i+1 is a clique.
(P5) The set B = Bi,i+1 ∪ Bi+2,i+3 for some i.
(P6) The set Bi,i+1 is anti-complete to Ai ∪ Ai+1.
(P7) The set Bi,i+1 is complete to Ai−1 ∪ Ai+2.
(P8) Each Ci,i+2 is a stable set.
(P9) Each vertex in Ci,i+2 is either complete or anti-complete to each compo-

nent of Ai and Ai+2.
(P10) Each vertex in Ci,i+2 has at most one neighbour in each component of

Ai+1, Ai+3 and Ai+4.
(P11) Each vertex in Ci,i+2 is anti-complete to each nontrivial component of

Ai+1.
(P12) The set Ci,i+2 is anti-complete to Bj,j+1 if j �= i+3. Moreover each vertex

in Ci,i+2 has at most one neighbour in Bi+3,i+4.
(P13) Each Fi has at most one vertex. Moreover, F is a stable set.
(P14) The set Fi is anti-complete to Ai+2 ∪ Ai+3.
(P15) Each vertex in Fi is either complete or anti-complete to each component

of Ai.
(P16) Each vertex in Fi has at most one neighbour in each component of Ai+1

and Ai+4.
(P17) The set Fi is anti-complete to Bj,j+1 if j �= i + 2 and complete to Bj,j+1

if j = i + 2.
(P18) The set Fi is anti-complete to Cj,j+2 if j �= i − 1.
(P19) If Ai is not stable, then Ai+2 = Ai+3 = Bi+1,i+2 = Bi−1,i−2 = ∅.
(P20) If Ai is not empty, then each of Bi+1,i+2 and Bi−1,i−2 contains at most

one vertex.
(P21) The set Z is anti-complete to A ∪ B.

Now we prove some new properties which we will use in our proofs in
Sect. 4 and Sect. 5:

(P22) If Ai, Bi+1,i+2 and Bi+3,i+4 are all nonempty, then Ci+1,i+3 (resp.
Ci+2,i+4) is anti-complete to Ai+2 (resp. Ai+3).

Proof. Suppose that a1 ∈ Ai, a2 ∈ Ai+2, b1 ∈ Bi+1,i+2, b2 ∈ Bi+3,i+4,
c ∈ Ci+1,i+3 such that a2c ∈ E. By (P3), a1a2 ∈ E. By (P6), b1a2 /∈
E. By (P7), a1b1, a1b2, a2b2 ∈ E. By (P12), b1c, b2c /∈ E. Then either
{a1, a2, b2, c} induces a diamond or {b1, a1, a2, c, vi+3, vi+4} induces a P6,
depending on whether a1 and c are adjacent. ��

(P23) Suppose that Bi,i+1 is nonempty. Then Ci,i+2 ∪ Ci−2,i (resp. Ci−1,i+1 ∪
Ci+1,i+3) is complete to Ai−1 (resp. Ai+2). Moreover if Ai−1 (resp. Ai+2)
is nonempty, then Ci,i+2 and Ci−2,i (resp. Ci−1,i+1 and Ci+1,i+3) are
anti-complete.
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Proof. Let a ∈ Ai−1, b ∈ Bi,i+1. Suppose there is a vertex c1 ∈ Ci,i+2 such
that ac1 /∈ E or c2 ∈ Ci−2,i such that ac2 /∈ E. By (P12), bc1, bc2 /∈ E.
Then {c1, vi+2, vi−2, vi−1, a, b} or {c2, vi−2, vi−1, a, b, vi+1} induces a P6.
This proves the first part of the claim. Suppose that c1 ∈ Ci,i+2 and
c2 ∈ Ci−2,i are adjacent, then {a, c1, c2, vi} induces a diamond. ��

(P24) Suppose that Ai ∪ Ai+1 is nonempty. Then Bi,i+1 is complete to Ai+3.
Moreover if Bi,i+1 contains two or more vertices, then Ai+3 is empty.

Proof. By symmetry suppose that a1 ∈ Ai, a2 ∈ Ai+3, b ∈ Bi,i+1

such that ba2 /∈ E. By (P3), a1a2 ∈ E. By (P6), ba1 /∈ E. Then
{b, vi, a1, a2, vi+3, vi+2} induces a P6. This proves the first part of the
claim. Suppose that b1, b2 ∈ Bi,i+1, a ∈ Ai+3. By (P4), b1b2 ∈ E. Then
{vi, b1, b2, a} induces a diamond. ��

(P25) If Bi,i+1 is nonempty, then Ci−2,i (resp. Ci+1,i+3) is anti-complete to Ai

(resp. Ai+1).

Proof. Suppose that a ∈ Ai, b ∈ Bi,i+1, c ∈ Ci−2,i such that ac ∈ E.
By (P6), ab /∈ E. By (P12), bc /∈ E. Then {a, c, vi−2, vi+2, vi+1, b} induces
a P6. ��

(P26) If Bi,i+1 is nonempty, then Z is anti-complete to Ci+1,i+3 ∪ Ci+3,i.

Proof. By symmetry suppose that b ∈ Bi,i+1, c ∈ Ci+1,i+3 and z ∈ Z
such that cz ∈ E. By (P12), bc /∈ E. By (P21), bz /∈ E. Then
{z, c, vi+3, vi+4, vi, b} induces a P6. ��

4 The χ-Bound of (P6, diamond)-Free Graphs

In this section, we prove the following theorem.

Theorem 5. Let G be a (P6, diamond)-free graph, then χ(G) ≤ max{6, ω(G)}.
This theorem is an improvement of the result of Cameron, Huang and

Merkel [5] that χ(G) ≤ ω(G) + 3 for a (P6, diamond)-free graph G. To prove
Theorem 5, we use Theorem 6 below.

Theorem 6. Let G be a connected imperfect (P6, diamond)-free graph with no
clique cutsets or comparable vertices. Then χ(G) ≤ max{6, ω(G)}.
Proof (Proof of Theorem 5). If G is perfect, then χ(G) = ω(G). If G is
disconnected and is the union of components {H1, . . . , Hn}, then χ(G) =
max{χ(H1), . . . , χ(Hn)} and ω(G) = max{ω(H1), . . . , ω(Hn)}. If G is con-
nected and contains a clique cutset S, G − S is the disjoint union of sub-
graphs {H1, . . . , Hn}, then χ(G) = max{χ(G[V (H1) ∪ S], . . . , χ(G[V (Hn) ∪ S]}
and ω(G) = max{ω(G[V (H1) ∪ S], . . . , ω(G[V (Hn) ∪ S]}. If u and v are non-
adjacent vertices in G such that N(u) ⊆ N(v), then χ(G) = χ(G − u) and
ω(G) = ω(G − u). Then the theorem follows from Theorem 6. ��

Due to page limits we omit the proof of Theorem 6.
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5 Computing the Chromatic Number of
(P6, diamond)-Free Graphs in Polynomial Time

In this section we prove the following Theorem 7:

Theorem 7. The chromatic number of (P6, diamond)-free graphs can be com-
puted in polynomial time.

This answers an open question from [5]. To prove Theorem 7, we use Theorem
8 below.

Theorem 8. The chromatic number of (P6, diamond, K6)-free graphs can be
computed in polynomial time.

To prove Theorem 8, we use the following three theorems.

Theorem 9. There is one 6-vertex-critical (P6, diamond)-free graph with clique
number 3.

Theorem 10. There are no 6-vertex-critical (P6, diamond)-free graphs with
clique number 4.

Theorem 11. There are no 6-vertex-critical (P6, diamond)-free graphs with
clique number 5.

y

x

Fig. 2. The complement of the 27-vertex Schläfli graph. The unique 6-vertex-critical
(P6, diamond)-free graph G with clique number 3 is obtained by removing the vertices
with labels x and y.
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Proof (Proof of Theorem 7). Let G be a (P6, diamond)-free graph. We can cal-
culate ϑ(G) in polynomial time [15]. When ϑ(G) > 5, since ω(G) ≤ ϑ(G) ≤
χ(G) [15] and χ(G) ≤ max{ω(G), 6} (i.e. Theorem 5), we have χ(G) = �ϑ(G)	.
Then we just have to deal with the case that ϑ(G) ≤ 5, which implies that
ω(G) ≤ 5. Then the theorem follows from Theorem 8. ��
Remark. As pointed out by one of the referees, we could also prove Theorem 7
using the fact that the clique number of a diamond-free graph can be computed
in polynomial time: if ω(G) ≥ 6, then χ(G) = ω(G); otherwise ω(G) ≤ 5 and
then we use Theorem 8. However, we chose to use the Lovász theta function,
since it is a more general strategy that could possibly also be useful for other
graph classes.

Proof (Proof of Theorem 8). By Theorem 5 and Theorem 3, we only need to
consider 5-colouring. By Theorem 2, we need to prove that there are a finite
number of 6-vertex-critical (P6, diamond, K6)-free graphs. By Theorem 4, every
6-vertex-critical (P6, diamond)-free graph has clique number at least 3. Then
the theorem follows from Theorem 9, Theorem 10, and Theorem 11. ��

The unique 6-vertex-critical (P6, diamond)-free graph G with clique number
3 from Theorem 9 has 25 vertices and can be obtained from the complement of
the Schläfli graph by deleting the vertices labelled x and y in Fig. 2. This graph
can also be inspected at the House of Graphs [2] at: https://hog.grinvin.org/
ViewGraphInfo.action?id=45613.

The proof of Theorem 9 uses computational methods. In the full version of
this paper (cf. [13] for a preprint) we give a computer-free proof of a weaker
version of Theorem 9: there we show that there are finitely many 6-vertex-
critical (P6, diamond)-free graphs with clique number 3. This weaker theorem
still suffices to give a complete computer-free proof of Theorem 7 and Theorem 8.

Proof (Proof of Theorem 9). We used the generation algorithm for k-critical
H-free graphs from [6,14] and extended it to generate 6-vertex-critical (P6, dia-
mond, K4)-free graphs. The algorithm terminated in less than 5 min and yielded
the graph G as the only 6-vertex-critical (P6, diamond, K4)-free graph. The
source code of the program can be downloaded from [12]. We refer to [6,14] for
more details on the algorithm and the proof of its correctness. ��

We need the following lemmas for our proofs of Theorem 10 and Theorem 11.

v1

v2

v3 v4

v5

B

Fig. 3. The graph series Sn. B is a clique of size n such that B is complete to {v2, v3}
and anti-complete to {v1, v4, v5}.

https://hog.grinvin.org/ViewGraphInfo.action?id=45613
https://hog.grinvin.org/ViewGraphInfo.action?id=45613
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Lemma 2. Every 6-vertex-critical (P6, diamond)-free graph with clique number
ω (ω = 4, 5) is Sω−2-free. (See Fig. 3 for Sn.)

Lemma 3. Every 6-vertex-critical (P6, diamond)-free graph with clique number
3 is D1-free. (See Fig. 4a for D1.)

v1

v2

v3 v4

v5

b1 b2

(a) The graph D1.

v1

v2

v3 v4

v5

b1 b2

(b) The graph D2.

Fig. 4. The graphs D1 and D2.

Lemma 4. Every 6-vertex-critical (P6, diamond)-free graph with clique number
3 is D2-free. (See Fig. 4b for D2.)

Lemma 5. Every 6-vertex-critical (P6, diamond)-free graph with clique number
3 is S1-free. (See Fig. 3 for S1.)

Lemma 6. Every 6-vertex-critical (P6, diamond)-free graph with clique number
ω (ω = 3, 4, 5) is (Kω + K1)-free.

Due to page limits we omit the proof of Lemmas 2–6, Theorem 10 and The-
orem 11.

6 Conclusion

In this paper, we improved the χ-bound of (P6, diamond)-free graphs from
χ(G) ≤ ω(G) + 3 [5] to χ(G) ≤ max{6, ω(G)}. Moreover, we proved that the
chromatic number of graphs in the class of (P6, diamond)-free graphs can be
calculated in polynomial time. We suspect that similar results can be obtained
for other hereditary graph families: if a hereditary graph family has a χ-bound
in the form of χ(G) ≤ ω(G) + C where C is a constant, then it may be
possible to improve the bound to max{C ′, ω(G)} where C ′ is a constant. If
that is the case, it may also be possible to compute the chromatic number in
polynomial time for this family of graphs. However, this is not always possible
since determining the chromatic number is NP-hard for the hereditary family of
line graphs, which has a χ-bound in the form of χ(G) ≤ ω(G) + C. So it would
be interesting to find other hereditary graph families for which the chromatic
number can be determined in polynomial time in this way.
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Abstract. A set of spanning trees T = {T1, T2, . . . , Tk} with k � 2 in
a graph G is called completely independent spanning trees (CISTs for
short) if the paths joining every pair of vertices x and y in any two trees
have neither vertex nor edge in common except for x and y. Particularly,
T is called a dual-CIST (resp. tri-CIST) provided k = 2 (resp. k =
3). Recently, the construction of a dual-CIST has been proposed in a
shuffle-cube SQn, which is an innovative hypercube-variant network that
possesses both short diameter and connectivity advantages. This paper
uses the CIST-partition technique to construct a tri-CIST of SQ6, and
shows that the diameters of three CISTs are 22, 22, and 13. Then, by
the hierarchical structure of SQn, we propose a recursive algorithm for
constructing a tri-CIST for high-dimensional shuffle-cubes. When n � 10,
the diameters of Ti, i = 1, 2, 3, we constructed for SQn are as follows:
2n + 11, 2n + 9, and 2n + 1.

Keywords: Shuffle-cubes · Completely independent spanning trees ·
Interconnection networks · Diameter

1 Introduction

Let k � 2 be an integer and T1, T2, . . . , Tk be spanning trees of a graph G =
(V,E). A vertex v is called an inner-vertex of Ti if it has at least two neighbors
in Ti, and a leaf otherwise. Two spanning trees Ti and Tj , 1 � i, j � k, are
edge-disjoint if they share no common edge, and are inner-vertex-disjoint if the
paths joining any two vertices u, v ∈ V in both trees have no vertex in common
except for u and v. The spanning trees T1, T2, . . . , Tk are completely independent
spanning trees (CISTs for short) if they are pairwise inner-vertex-disjoint (and
thus are edge-disjoint, see Theorem 1). Particularly, two CISTs and three CISTs
are call a dual-CIST and a tri-CIST, respectively, in this paper.

Hasunuma [7,8] first devoted to the theoretical study on CISTs and showed
that the problem of determining whether if a graph G admits k CISTs is NP-
complete, even for k = 2 (i.e., a dual-CIST). Moreover, Hasunuma [8] posted
a conjecture which says that there exist �k/2� CISTs in a k-connected graph.
c© Springer Nature Switzerland AG 2021
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However, this conjecture has been proved to fail by counterexamples [18]. With
the help of constructions, it has been confirmed that many classes of graphs
possess a dual-CIST, e.g., 4-connected maximal planar graphs [8], Cartesian
product of any 2-connected graphs [9], hypercube-variant networks [2,4,12,19],
subclasses of Cayley graphs [13], and DCell data center networks [20]. Also, it
was known that a few specific classes of graphs possess a tri-CIST, e.g., locally
twisted cubes and crossed cubes [16,17], Möbius cubes [14], and alternating
group graphs [15]. Moreover, researches on constructing multiple CISTs and
other issues related to CISTs can be found in [3,5,11,21]. The following two
characterizations are important for studying CISTs.

Theorem 1 (Hasunuma [7]). T1, T2, . . . , Tk are CISTs in a graph G if and
only if they are edge-disjoint and for any vertex v ∈ V (G), there is at most one
tree Ti for i ∈ {1, 2, . . . , k} such that v is an inner-vertex of Ti.

Theorem 2 (Araki [1]). A graph G = (V,E) admits k CISTs if and only if
there is a partition of V into V1, V2, . . . , Vk, which is called a k-CIST partition,
such that the following conditions hold:

(i) For i ∈ {1, 2, . . . , k}, the subgraph of G induced by Vi, denoted by G[Vi], is
connected;

(ii) For distinct i, j ∈ {1, 2, . . . , k}, the bipartite graph with bipartition Vi ∪ Vj

and edge set {(x, y) ∈ E(G) : x ∈ Vi, y ∈ Vj}, denoted by B(Vi, Vj , G), has
no tree component.

The n-dimensional shuffle-cube, denoted by SQn with n = 4k + 2, is an
interconnection network proposed by Li et al. [10], which is a variation of the
hypercube Qn obtained by changing some edges. Then, SQn still has connectivity
n, while its diameter becomes smaller and approximately n

4 . For the related
research of shuffle-cubes, the reader can refer to [6,10,19,22]. Recently, Qin and
Hao [19] provided a recursive algorithm to construct a dual-CIST of SQn for
n � 6.

In this paper, based on the major consideration of fault tolerance and con-
fidentiality, we would like to solve the problem of constructing a tri-CIST of
SQn with n = 4k + 2 and k � 1. The remaining part of this paper is orga-
nized as follows. Section 2 introduces the necessary definitions and properties
of SQn. Section 3 shows the constructing scheme of a tri-CIST in SQn and its
correctness. Section 4 makes our conclusions.

2 Preliminary

In this section, we introduce some terminologies, notions, and basic properties
of shuffle-cubes. For a simple undirected graph G, the vertex set and edge set
of G are denoted by V (G) and E(G), respectively. The diameter of G, denoted
by diam(G), is the greatest distance between any pair of vertices in G. A simple
path with length equal to the diameter is called a diametral path. For SQn, we
use n-bit binary strings to represent its vertices. For example, a vertex with label
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u is denoted by u = un−1un−2 · · ·u0, where ui ∈ {0, 1} for 0 � i � n − 1. The
complement of ui is denoted by ūi = 1 − ui. Thus, ū = ūn−1ūn−2 · · · ū0. For
two binary strings a and b, we write ab to mean the concatenation of a and b.
Let pj(u) denote the j-prefix of u, i.e., pj(u) = un−1un−2 · · ·un−j , and si(u) the
i-suffix of u, i.e., si(u) = ui−1ui−2 · · ·u1u0. Hence, we use SQ

pj(u)
n−j to indicate

the subcube obtained from SQn in which every vertex has pj(u) as its j-prefix.
To construct shuffle-cubes, four specific sets are defined below:

V00 = {1111, 0001, 0010, 0011}, V01 = {0100, 0101, 0110, 0111},
V10 = {1000, 1001, 1010, 1011}, V11 = {1100, 1101, 1110, 1111}.

Note that 1111 presents at two sets V00 and V11, and 0000 is absent in the above
four sets.

Definition 1 (Li et al. [10]). The n-dimensional shuffle-cube with n = 4k + 2
and k � 0, denoted by SQn, is recursively defined as follows: (i) for k = 0,
SQ2 is a 2-dimensional hypercube Q2; (ii) for k � 1, SQn consists of 16 disjoint
subcubes SQi1i2i3i4

n−4 , where ij ∈ {0, 1} for 1 � j � 4, and two vertices u =
un−1un−2 · · ·u0 and v = vn−1vn−2 · · · v0 in different (n−4)-dimensional subcubes
are adjacent in SQn if and only if sn−4(u) = sn−4(v) and p4(u)⊕p4(v) ∈ Vs2(u),
where ⊕ denotes the addition with modulo 2. In this case, (u, v) is called an
out-edge.

Figure 1 demonstrates a partial view of SQ6, where vertices in SQ6 are
labeled by binary strings and their decimals, and a binary string is divided into
two parts (i.e., 4-prefix and 2-suffix) such that vertices with the same 4-prefix
form a subcube SQ2. In this figure, we only draw the out-edges incident with
vertices in the subcube SQ0000

2 and omits others. For example, if we consider
u = 001100 (12), then p4(u) = 0011 and s2(u) = 00. We can easily check the
adjacency of u as follows:

0011 ⊕ 1100 = 1111 ∈ V00, 0011 ⊕ 0010 = 0001 ∈ V00,

0011 ⊕ 0001 = 0010 ∈ V00, 0011 ⊕ 0000 = 0011 ∈ V00.

Thus, u = 001100 is connected to vertices 110000 (48), 001000 (8), 000100 (4),
and 000000 (0) in SQ6 by out-edges.

From Definition 1, it is obvious that SQn is n-regular, and the numbers of
vertices and edges of SQn are the same as those of Qn. Qin and Hao [19] showed
that for two distinct subcubes SQi1i2i3i4

2 and SQj1j2j3j4
2 in SQ6, if j1j2j3j4 =

i1i2i3i4, then there exist two out-edges between them; otherwise, there is only
one out-edge between them. In general, Xu et al. [22] showed the existence of at
least 2n−6 out-edges between any two distinct subcubes SQt

n−4 and SQt′
n−4 for

n = 4k + 2 and k � 1, where t, t′ ∈ {0, 1, . . . , 15} are 4-bit binary strings with
t �= t′. Let Pij be the set of 4-bit binary strings with the 2-prefix ij, i.e.,

P00 = {0000, 0001, 0010, 0011}, P01 = {0100, 0101, 0110, 0111},
P10 = {1000, 1001, 1010, 1011}, P11 = {1100, 1101, 1110, 1111}.

For simplicity, we can also check an out-edge of SQn by using the following
property. Here we omit the proof because it is easy to obtain from Definition 1.
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001100 001101

30 31

28 29

011110 011111

011100 011101

46 47

44 45

101110 101111

101100 101101

62 63

60 61

111110 111111

111100 111101

10 11

8 9

001010 001011

001000 001001

26 27

24 25

011010 011011

011000 011001

42 43

40 41

101010 101011

101000 101001

58 59

56 57

111010 111011

111000 111001

6 7

4 5

000110 000111

000100 000101

22 23

20 21

010110 010111

010100 010101

38 39

36 37

100110 100111

100100 100101

54 55

52 53

110110 110111

110100 110101

2 3

0 1

000010 000011

000000 000001

18 19

16 17

010010 010011

010000 010001
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110010 110011

110000 110001

Fig. 1. The shuffle-cube SQ6.

Proposition 1. For every vertex u ∈ V (SQn) with n � 6, let ij = p2(u)⊕s2(u).
Then, the following conditions hold:

(i) If s2(u) = 00, there exists a vertex v ∈ {psn−4(u) : p ∈ (Pij \ {p4(u)}) ∪
{p4(u) ⊕ 1111}} such that (u, v) forms an out-edge.

(ii) Otherwise, there exists a vertex v ∈ {psn−4(u) : p ∈ Pij} such that (u, v)
forms an out-edge.

3 Constructing Tri-CISTs in Shuffle-Cubes

In this section, we first find a 3-CIST-partition of SQ6 by the tree searching algo-
rithm. From this partition, we can easily construct a tri-CIST of SQ6, which can
be viewed as the induction base in our construction. Hence, for high-dimensional
shuffle-cubes SQn with n = 4k + 2 and k � 1, we can construct a tri-CIST by
recursion.

3.1 A Tri-CIST of SQ6

In [16], Pai et al. developed a two stages tree searching algorithm called TS2

to find a 3-CIST-partition {V1, V2, V3} of a 6-regular graph G = (V,E) (or a
graph with the minimum degree at least 6) if it exists. Note that this algorithm
takes exponential complexity to find a nearly equalized 3-CIST-partition (i.e.,
|Vi| ≈ |V |/3 for i = 1, 2, 3) to fulfill the conditions of Theorem 2. Therefore, if the
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number of vertices of G is not too large, we have an opportunity to obtain the
required partition in a reasonable time. The first stage of the algorithm attempts
to find vertices of V1 such that G[V1] is a tree (i.e., a minimally connected
subgraph) in G, and the second stage then finds vertices of V2 such that G[V2]
also forms a tree. After the two candidate sets V1 and V2 being found out, the
remaining work needs to check the connectedness of G[V3] and non-existence of
a tree component in the bipartite graph B(Vi, Vj , G) for distinct i, j ∈ {1, 2, 3}.
In particular, TS2 uses the breadth-first search as the strategy in pursuit of
a shorter diameter of G[V1] and G[V2], respectively, and thus it needs more
searching time. To speeding up the search, Pai et al. [17] subsequently amended
the algorithm and instead adopted a depth-first search strategy at each stage,
which causes each of G[V1] and G[V2] to result in a simple path easily.

In this paper, we follow the use of the algorithm in [17] to produce a nearly
equalized 3-CIST-partition of SQ6. Since |V (SQ6)| = 64, we have |V1| = |V2| =
|V3|−1 = 21. The following is a feasible 3-CIST partition of V (SQ6) we obtained
by the searching algorithm:

V1 = {0, 1, 6, 11, 23, 26, 28, 29, 32, 38, 39, 41, 43, 44, 46, 48, 50, 54, 55, 56, 57}
V2 = {2, 5, 8, 10, 15, 20, 21, 25, 27, 30, 31, 33, 34, 40, 47, 52, 53, 58, 59, 61, 63}
V3 = {3, 4, 7, 9, 12, 13, 14, 16, 17, 18, 19, 22, 24, 35, 36, 37, 42, 45, 49, 51, 60, 62}
From the adjacency of SQ6 (see Fig. 1) and by a lengthy checking, we can

confirm that both SQ6[V1] and SQ6[V2] are paths, and SQ6[V3] is a unicyclic
graph (i.e., a connected graph with exactly one cycle), as shown in Fig. 2. This
shows that each SQ6[Vi] for i ∈ {1, 2, 3} is connected, which fulfills the condition
of Theorem 2(i).

0 1 29 28 32 44 46 6 38 39 23 43 41 57 56 48 50 26 54 55 11

8 25 5 2034 402 4710 27 21316153 3352 58 301563 59

1217 1324 16367 421437 351945 4604951 2262183 9

SQ6[V1]

SQ6[V2]

SQ6[V3]

Fig. 2. Three connected graphs SQ6[Vi] for i ∈ {1, 2, 3}.

To confirm that the above partition {V1, V2, V3} is indeed a 3-CIST-
partition of SQ6, by Theorem 2(ii), we need to verify that all bipartite graphs
B(Vi, Vj , SQ6) for i, j ∈ {1, 2, 3} with i �= j have no tree component. Figure 3
shows the three bipartite graphs, and we can check as follows:

– B(V1, V2, SQ6) has two components, each of which contains a cycle
(46, 2, 38, 10, 46) and (43, 27, 39, 31, 43), respectively.

– B(V1, V3, SQ6) has two components, each of which contains a cycle
(56, 60, 48, 12, 0, 4, 56) and (50, 22, 54, 18, 50), respectively.

– B(V2, V3, SQ6) has one component with three cycles (3, 63, 7, 59, 3),
(25, 13, 21, 9, 25), and (53, 37, 61, 45, 53).
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40 10 30 2 63 59 5 8 58 20 25 21 15 34 27 31 33 47 53 61 52

36 42 62 3 7 17 4 12 18 22 16 24 9 13 51 14 35 49 19 45 37 60

26 28 46 38 32 44 57 39 43 1 55 6 56 0 48 41 29 11 50 54 23

62 24 16 14 36 45 37 19 42 17 3 7 4 60 12 49 13 9 51 18 22 35

1 23 46 0 38 11 57 6 32 44 41 55 28 50 54 48 56 26 43 39 29

25 21 47 2 8 10 63 59 33 34 40 61 53 15 5220 30 58 27 31 5

B(V1, V2, SQ6)

B(V2, V3, SQ6)

B(V1, V3, SQ6)

Fig. 3. Bipartite graphs B(Vi, Vj , SQ6) for i, j ∈ {1, 2, 3} with i �= j. (Color figure
online)

Based on the above partition, we construct a tri-CIST of SQ6 as follows.
For each i ∈ {1, 2, 3}, the set of inner-vertices of Ti is composed by Vi, and
particularly, the edge (18, 19) is removed from SQ6[V3] (see the dashed line in
Fig. 2). For each vertex u ∈ Vi, if (u, v) is an edge of B(Vi, Vj , SQ6) such that
its color is the same as u’s color in Fig. 3, then we take v as a leaf to join u
in Ti. It is easy to examine that every vertex v ∈ Vj for j ∈ {1, 2, 3} \ {i} is
exactly joined to an inner-vertex of Ti, and thus Ti is a spanning tree of SQ6.
Since |E(SQ6)| = 192 and each spanning tree requires 63 edges, except the edge
(18, 19), another two unused edges are (0, 60), and (8, 9) (see the two dashed
lines in Fig. 3). Figure 4 shows the constructed tri-CIST of SQ6, where vertices
with a round-corner rectangle are called port vertices in this figure. For example,
T1 contains port vertices 38 and 39, T2 contains port vertices 58 and 59, and
T3 contains port vertices 16 and 18. Note that a port vertex can be used as a
connection for constructing CISTs in high-dimensional SQn in Sect. 3.2. Since
the diameters of the above-constructed CISTs are easy to determine from Fig. 4,
we deduce the following lemma.

8255 20 34 402 47 1027 213161 53 3352 5830 1563 59

01 29283244 46638 3923 4341 57 56 485026 545511

1217

13

24 16367 421437

35

1945 4604951 2262183 9

T1

T2

T3

8 25 5 2034 402 4710

27

21

31

6153 33

52

58

30

1563 59

0 1292832 4446638 39 23 43 4157 5648 50 2654 5511

12 1713 24 16 36742 143735 1945 46049 51 2262 183 9

0 1 29 28

32

44

46

6 38 39 23 43

41

57 56 48 50 26 54 55

11

8 25 5 20 34 40 2 47 10 27 21 31 61 53 33 52 58 30 15 63 59

12 17 13 24 16 36 7 42 14 37 35 19 45 4 60 49 51 22 62 18 3 9

Fig. 4. A tri-CIST of SQ6.
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Lemma 1. The shuffle-cubes SQ6 admits a tri-CIST {T1, T2, T3} with the diam-
eters 22, 22, and 13, respectively.

3.2 A Recursive Construction of a Tri-CIST in High-Dimensional
SQn

In what follows, by recursion, we will give an approach to construct a tri-CIST
in shuffle-cubes SQn for n = 4k + 2 with k � 2. Let G be a labeled graph,
and G0 and G1 denote the graph obtained from G by prefixing a symbol 0 and
1 in every vertex of G, respectively. The following property is widely used for
constructing CISTs in high-dimensional hypercube-variant networks.

Theorem 3 (Pai and Chang [12]). Let Gn−1 be the (n−1)-dimensional vari-
ant hypercube for n � 5 and suppose that {T̂1, T̂2} is a dual-CIST of Gn−1.
For i ∈ {1, 2}, let Ti be a spanning tree of Gn constructed from T̂ 0

i and T̂ 1
i by

adding an edge (ui, vi) ∈ E(Gn) to connect two inner-vertices ui ∈ V (T̂ 0
i ) and

vi ∈ V (T̂ 1
i ). Then, {T1, T2} is a dual-CIST of Gn.

In the above theorem, the two inner-vertices ui ∈ V (T̂ 0
i ) and vi ∈ V (T̂ 1

i )
for i ∈ {1, 2} are called port vertices of T̂ 0

i and T̂ 1
i , respectively. Also, the edge

(ui, vi) ∈ E(Gn) is called the bridge in the construction. Recall that we have
mentioned port vertices in the construction of a tri-CIST of SQ6 in the previous
subsection (see the description of Fig. 4). By Definition 1, the n-dimensional
shuffle-cube SQn with n = 4k+2 and k � 2 consists of sixteen (n−4)-dimensional
subcubes, denoted by SQi1i2i3i4

n−4 , where ij ∈ {0, 1} for 1 � j � 4. For convenience,
if H is a subgraph of SQn−4 and t ∈ {0, 1, . . . , 15} is an integer represented by
binary string, we denote by Ht the graph obtained from H by prefixing t. By
Theorem 1 and using the same proof technique as Theorem 3, we can quickly
obtain the following result for SQn.

Corollary 1. For n = 4k+2 and k � 2, let {T̂1, T̂2, T̂3} be a tri-CIST of SQn−4.
For i ∈ {1, 2, 3}, let Ti be a spanning tree of SQn constructed from T̂ t

i for all t ∈
{0, 1, . . . , 15} by adding fifteen bridges such that each bridge (ut

i, v
t′
i ) ∈ E(SQn)

connects two port vertices ut
i ∈ V (T̂ t

i ) and vt
′
i ∈ V (T̂ t′

i ) for t, t′ ∈ {0, 1, . . . , 15}
with t �= t′. Then, {T1, T2, T3} forms a tri-CIST of SQn.

A center in a graph is the set of vertices that minimize the maximal distance
from other vertices. Particularly, the cardinality of the center in a tree is at
most two. From the tri-CIST of SQ6 shown in Fig. 4, we can easily check that
010111 (23), 111011 (59), and {010000 (16), 011000 (24)} are centers of T1,
T2, and T3, respectively. To construct a tri-CIST in high-dimensional SQn by
recursion, we choose 100111 (39), 11011 (59), and 010000 (16) as the port vertices
of T̂1, T̂2, and T̂3, respectively. Note that the port vertex 39 is a neighbor of the
center 23 in T̂1.

We now show how to construct a tri-CIST in SQn for n = 4k+2 and k � 2 in
detail. Let {T̂ t

1 , T̂
t
2 , T̂

t
3} be a tri-CIST of SQt

n−4 for n � 10 and t ∈ {0, 1, . . . , 15}.
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According to Corollary 1, for i ∈ {1, 2, 3}, we need to connect all subtrees T̂ t
i

for t ∈ {0, 1, . . . , 15} by using fifteen bridges to produce Ti in SQn. Recall that
we have defined Pij as the set of 4-bit binary string with the 2-prefix ij. For
notational convenience, we write Pijs to mean all possible binary strings with
4-prefix in Pij and suffix s. Then the tri-CIST construction of SQn can be
described by Algorithm 1, where the constructing rules are depending on the
parity of k. In each way, we accurately represent fifteen bridges by their two
port vertices for every tree.

Algorithm 1: Constructing a Tri-CIST on Shuffle-Cubes
Input: An n-dimensional shuffle-cubes SQn, with n = 4k + 2 and k � 1, which

is composed of sixteen subcubes SQt
n−4 for t ∈ {0, 1, . . . , 15}

represented by binary strings.
Output: A tri-CIST {T1, T2, T3} of SQn.
if k = 1 then

return {T1, T2, T3} shown in Fig. 4;

for t ← 0 to 15 do

Let {T̂ t
1 , T̂

t
2 , T̂

t
3} be a tri-CIST of SQt

n−4 constructed by Algorithm 1;

if k is even then
E1 ← {(P00x11, 1111x11), (P11x11, 0011x11), (P01x11, 1011x11),

(P10x11, 0111x11), (1111x10, 0111x10) : x = 1n−101001};
E2 ← {(P00x11, 1111x11), (P11x11, 0011x11), (P01x11, 1011x11),

(P10x11, 0111x11), (1111x10, 0111x10) : x = 1n−101110};
E3 ← {(P00x00, 0000x00), (P11x00, 1111x00), (P01x00, 0100x00),

(P10x00, 1011x00), (0000x00, 1111x00), (0100x00, 1011x00),
(1111x10, 0100x10) : x = 1n−100100};

else // k is odd
E1 ← {(P00x10, 1011x10), (P11x10, 0111x10), (P01x10, 1111x10),

(P10x10, 0011x10), (1111x11, 0011x11) : x = 1n−101001};
E2 ← {(P00x10, 1011x10), (P11x10, 0111x10), (P01x10, 1111x10),

(P10x10, 0011x10), (1111x11, 0011x11) : x = 1n−101110};
E3 ← {(P00x10, 1011x10), (P11x10, 0100x10), (P01x10, 1111x10),

(P10x10, 0000x10), (1111x00, 0000x00) : x = 1n−100100};

for i ← 1 to 3 do

Construct Ti such that E(Ti) ← 15
t=0 E(T̂ t

i ) Ei;

return {T1, T2, T3}

For insight into Algorithm 1, we provide a schematic view to auxiliary illus-
trate (see Fig. 5). If k = 1 (i.e., n = 6), the algorithm output a tri-CIST pro-
duced in Sect. 3.1 (see Lines 1–2). Otherwise, the construction of CIST carries
out by a recursive fashion. We first consider the case of even k. For T1, we
have four bridges with each of the form (P00x11, 1111x11), (P11x11, 0011x11),
(P01x11, 1011x11), and (P10x11, 0111x11) in Lines 6–7. For the first form of
bridges, it means that there is a bridge that connects a port vertex in T̂ t

1 with
t ∈ P00 and a port vertex in T̂ 1111

1 . We check the existence of such a bridge by
Proposition 1. For instance, if we consider the port vertex u = 1111x11 in T̂ 1111

1 ,
we have s2(u) = 11 and p2(u) ⊕ s2(u) = 00, and thus by condition (ii), it fol-
lows that u connects to other port vertices P00sn−4(u) = P00x11 by bridges (see
Fig. 5(a)). Also, the other bridges of this form and bridges in other three forms
can easily be verified by a similar way. Note that there is a duplicate bridge in
the former two forms (resp. latter two forms). Except above, there is a remain-
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Fig. 5. The schematic concept of tree construction.

ing bridge with the form (1111x10, 0111x10) (see Line 7) that connects two
specific vertices called main port vertices. Hereafter, to make the constructed
tree with a short diameter, we always select a neighbor of the port vertex as
the main port vertex in a tree. Since s2(1111x10) = s2(0111x10) �= 00, we
have p2(1111x10) ⊕ s2(1111x10) = 01 and p2(0111x10) ⊕ s2(0111x10) = 11.
Again, by condition (ii) of Proposition 1, the bridge (1111x10, 0111x10) exists.
In Fig. 5, we draw a tree T̂ t

1 with t belonging to distinct Pij by a round-corner
rectangle with the different color and the label of 4-prefix t. Also, a port vertex
u connecting by a bridge is labeled by a binary string xs2(u) inside a circle,
where x is an (n−6)-bit string. In particular, a bridge connecting two main port
vertices is drawn by a bold line. For instance, if n = 10, we have x = 1001 for T1

(see Line 7). Let P = P00 ∪ P01 ∪ P10 ∪ P11, and let C and C ′ be the two main
port vertices. Since we have chosen 100111 (39) as the port vertex in T̂1 for SQ6

(see also T1 in Fig. 4), the set of port vertices in T̂ t
1 for t ∈ P can be represented

by P100111. In particular, two main port vertices are C = 1111100110 in T̂ 1111
1

and C ′ = 0111100110 in T̂ 0111
1 .

Similarly, for constructing T2 and T3 under k even, all bridges are described
in Lines 8–9 and Lines 10–11 of Algorithm 1, respectively, and the corresponding
schematics are shown in Fig. 5(a) and Fig. 5(b), respectively. Here, we only check
the existence of the bridge (0100x00, 1011x00) for T3 and omit others (because
they can be checked by a similar way). For instance, if we consider the port
vertex u = 0100x00 in T̂ 0100

3 , we have s2(u) = 00 and p2(u) ⊕ s2(u) = 01. By
condition (i) of Proposition 1, it follows that u connects to other port vertices
psn−4(u) = px00 for p ∈ P01 \ {0100} ∪ {1011} (see Fig. 5(b)). For instance, if
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n = 10, we have x = 1110 for T2 (see Line 9) and x = 0100 for T3 (see Line 11).
Since we have respectively chosen 111011 (59) and 010000 (16) as port vertices
in T̂2 and T̂3 for SQ6 (see also T2 and T3 in Fig. 4), the sets of port vertices in
T̂ t
2 and T̂ t

3 for t ∈ P can be represented by P111011 and P010011, respectively.
In particular, two main port vertices are C = 1111111010 in T̂ 1111

2 and C ′ =
0111111010 in T̂ 0111

2 for T2, and C = 1111010010 in T̂ 1111
3 and C ′ = 0100010010

in T̂ 0111
3 for T3.
For odd k, the bridges of Ti for i ∈ {1, 2, 3} are described in Lines 12–18 of

Algorithm 1, and the corresponding schematics are shown in Fig. 5(c) for T1 and
T2 and Fig. 5(d) for T3, respectively. We omit to check the existence of bridges
because it can be done similarly to the previous case. For example, if n = 14,
we have x = 1n−101001 for T1 (see Line 14), x = 1n−101110 for T2 (see Line 16),
and x = 1n−100100 for T3 (see Line 18). Thus, port vertices are P1n−10100110
for T1, P1n−10111010 for T2, and P1n−10010010 for T3. Also, two main port
vertices are C = 11111n−10100111 and C ′ = 00111n−10100111 for T1, C =
11111n−10111011 and C ′ = 00111n−10111011 for T2, and C = 11111n−10010000
and C ′ = 00111n−10010000 for T3.

We summarize the binary representations of port vertices and main port
vertices mentioned above, as shown in Table 1. Note that the guidance symbols
(i.e., arrows) appearing in the table mean that each port vertex of a tree T̂ t

i

in SQn come from the port vertex or the main port vertex C of the tree T̂i in
SQn−4 by adding a 4-prefix t ∈ P , where P = P00 ∪ P01 ∪ P10 ∪ P11.

Table 1. The binary strings of port vertices and main port vertices

n port vertices
main port vertices

C C

6 1001 11 - -
10 P 1001 11 1111 1001 10 0111 1001 10

T1 14 P 1n−10 1001 10 1111 1n−10 1001 11 0011 1n−10 1001 11
18 P 1n−10 1001 11 1111 1n−10 1001 10 0111 1n−10 1001 10
22 P 1n−10 1001 10 1111 1n−10 1001 11 0011 1n−10 1001 11

6 1110 11 - -
10 P 1110 11 1111 1110 10 0111 1110 10

T2 14 P 1n−10 1110 10 1111 1n−10 1110 11 0011 1n−10 1110 11
18 P 1n−10 1110 11 1111 1n−10 1110 10 0111 1n−10 1110 10
22 P 1n−10 1110 10 1111 1n−10 1110 11 0011 1n−10 1110 11

6 0100 00 - -
10 P 0100 00 1111 0100 10 0100 0100 10

T3 14 P 1n−10 0100 10 1111 1n−10 0100 00 0000 1n−10 0100 00
18 P 1n−10 0100 00 1111 1n−10 0100 10 0100 1n−10 0100 10
22 P 1n−10 0100 10 1111 1n−10 0100 00 0000 1n−10 0100 00

Lemma 2. For n = 4k + 2 and k � 2, Algorithm 1 produces three edge-disjoint
spanning trees of SQn. Moreover, every main port vertex chosen in the algorithm
is a center vertex in the corresponding tree.

Proof. Let {T1, T2, T3} be the constructed tri-CIST of SQn. For i ∈ {1, 2, 3}, we
have E(Ti) =

⋃15
t=0 E(T̂ t

i )
⋃

Ei (see Line 20 of Algorithm 1). By Lemma 1, SQ6
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offers three edge-disjoint spanning trees, which are the base of the construction.
Obviously, each tree Ti mainly collects its own edges from distinct T̂ t

i for all
t ∈ {0, 1, . . . , 15} by recursion, and then supplements fifteen bridges contained in
the set Ei according to Corollary 1. Since Ei ∩Ej = ∅ for distinct i, j ∈ {1, 2, 3},
this yields the desired three edge-disjoint spanning trees of SQn.

Next, we claim that both main port vertices C and C ′ are center vertices of
each tree Ti when n � 10. Recall that C and C ′ are neighbors of the port vertices
in the two specific subtrees, and each subtree T̂ t

i for t ∈ {0, 1, . . . , 15} preserves
the same structure of the tree T̂i produced in SQn−4. Hence, if the port vertex in
each subtree T̂ t

i is a center, the symmetric structure of Ti ensures that the claim
holds (see Fig. 5). From the recursive construction of CIST, each port vertex of
a tree T̂ t

i in SQn is obtained from the port vertex or the main port vertex C of
the tree T̂i in SQn−4 when n � 10. The result is clear for T2 and T3 because we
had initially chosen the centers 11011 (59) and 010000 (16), respectively, as the
corresponding port vertices when we dealt with SQ6. It remains to confirm the
case of T1. For SQ6, although the port vertex 100111 (39) of T1 is not a center
vertex (indeed, it is a neighbor of a center), the set of main port vertices {C,C ′}
will become the center in the newly constructed T1 when we dealt with SQ10.
Therefore, all succeeding main port vertices C and C ′ will continue to be the
center vertices during the recursive process. ��

From Algorithm 1, it is evident that all port vertices and the main port
vertices are inner-vertices in the corresponding trees. Thus, adding bridges in
the recursive construction does not change a leaf to an inner-vertex. Together
with Theorem 1 and Lemma 2, this result shows that the constructed trees form
a tri-CIST. Moreover, since Lemma 2 showing that every main port vertex is a
center and at most seven bridges are contained in the diametral path of Ti (see
Fig. 5), we can formulate the diameters of Ti for i ∈ {2, 3} as follows: for n � 10,

diam(Ti) = 2 · diam(T̂i)/2� + 7 for i ∈ {2, 3}. (1)

As for T1 of SQ6, since the port vertex is a center’s neighbor, we must increase
the diameter by a constant two after solving Eq. (1). By Lemma 1, we have a
tri-CIST {T1, T2, T3} in SQ6 with diameters 22, 22, and 13. Then solving Eq. (1),
we immediately obtain the following result.

Theorem 4. For n � 6, SQn admits a tri-CIST {T1, T2, T3}. Particularly, if
n = 6, the diameters of Ti for i = 1, 2, 3 are 22, 22, and 13, respectively. More-
over, for n � 10, the diameter can be described below:

diam(Ti) =

{
2n + 13 − 2i, for i ∈ {1, 2};
2n + 1, i = 3.

4 Concluding Remarks

This article shows the existence of a tri-CIST in shuffle-cubes SQn with n =
4k+2 and k � 1 by a recursive algorithm. Since a dual-CIST suffices to configure
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a protection routing with a single link or node failure, we intuitively think that a
route can tolerate more links or nodes failure if we could provide a configuration
using more CISTs. Moreover, by a secure-protection routing scheme [14,17], we
can configure a protection routing using a tri-CIST such that data transmitted
through the route are secure. Based on the consideration of the application in
data transmission, future research can focus on how to shorten the diameter of
CISTs.

Acknowledgments. This research was supported by the Ministry of Science and
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in Möbius cubes. J. Parallel Distrib. Comput. 140, 1–12 (2020)

15. Pai, K.-J., Chang, R.-S., Chang, J.-M.: A well-equalized 3-CIST partition of alter-
nating group graphs. Inf. Process. Lett. 155, 105874 (2020)

16. Pai, K.-J., Chang, R.-S., Wu, R.-Y., Chang, J.-M.: A two-stages tree-searching
algorithm for finding three completely independent spanning trees. Theor. Comput.
Sci. 784, 65–74 (2019)

https://doi.org/10.1007/3-540-36379-3_21
https://doi.org/10.1007/3-540-36379-3_21


342 Y.-H. Chen et al.

17. Pai, K.-J., Chang, R.-S., Wu, R.-Y., Chang, J.-M.: Three completely independent
spanning trees of crossed cubes with application to secure-protection routing. Inf.
Sci. 541, 516–530 (2020)
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Abstract. In this paper, we investigate the computational complexity
of subgraph reconfiguration problems in directed graphs. More specifi-
cally, we focus on the problem of reconfiguring directed trees in a digraph,
where a directed tree is a directed graph such that its underlying undi-
rected graph forms a tree and every vertex except for exactly one vertex
has in-degree 1. Given two directed trees in a digraph, the goal of the
problem is to determine whether there is a (reconfiguration) sequence of
directed trees between two given ones such that each tree in the sequence
can be obtained from the previous one by removing an arc and then
adding another arc. We show that this problem can be solved in polyno-
mial time, whereas the problem is PSPACE-complete when we restrict
directed trees in a reconfiguration sequence to form directed paths. We
also show that there is a polynomial-time algorithm for finding a shortest
reconfiguration sequence between two spanning directed trees.
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1 Introduction

Let Π be a graph structure property. For a graph G, we denote by SΠ(G) the set
of all subgraphs of G that satisfy Π. In this paper, we study the reachability of
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Fig. 1. There is no reconfiguration sequence between the black and gray directed trees.

other by swapping a pair of edges, that is, |E(H)\E(H ′)| = |E(H ′)\E(H)| = 1.
Our target is to decide whether there is a (reconfiguration) sequence of adjacent
subgraphs in SΠ(G) between two given subgraphs Hs and H t in S(G). To avoid
a confusion, we sometimes call the problem the reachability variant, because we
will study the shortest variant later.

The problem has been studied for several graph structure properties Π
(on undirected graphs), although most of the related results appear under the
name of the property Π under consideration. For example, Spanning Tree
Reconfiguration, which is solvable in polynomial time [5], can be seen as
the problem when the property Π is a spanning tree. Ito et al. [5] also showed
that the problem is solvable in polynomial time when Π is a matching, and
Mühlenthaler [6] extended the result to degree-constrained subgraphs. Hanaka
et al. [4] introduced the framework of subgraph reconfiguration problems, and
studied the problem for several properties Π, including trees and paths. In par-
ticular, they showed that when Π is a tree, every instance of the problem is a
yes-instance unless two input trees have different numbers of edges. Motivated
by applications in motion planning, Biasi and Ophelders [1], Demaine et al. [2],
and Gupta et al. [3] studied some variants of reconfiguring undirected paths.
These variants are shown to be PSPACE-complete in general, while they are
fixed-parameter tractable when parameterized by the length of input paths.

In contrast to various results for undirected graphs, the problem was not
studied well for directed graphs. In this paper, we investigate the complexity
of subgraph reconfiguration problems on directed graphs. We mainly study the
problem when the property Π is a directed tree, where a directed tree is a
directed graph such that its underlying undirected graph forms a tree and every
vertex except for exactly one vertex has in-degree 1. Note that two (directed)
subgraphs in SΠ(G) are adjacent if and only if they can be obtained from each
other by swapping a pair of arcs (instead of a pair of edges). We refer to this prob-
lem as Directed Tree Reconfiguration. (Formal definitions will be given
in Sect. 2.) Interestingly, Directed Tree Reconfiguration has no-instances
as shown in Fig. 1, in contrast to the fact that any two undirected trees are
reconfigurable as long as they have the same number of edges [4]. Nonetheless
we give the following theorem, as our main result.

Theorem 1. Let G = (V,A) be a directed graph. Directed Tree
Reconfiguration can be solved in time O(|V ||A|). Moreover, if the answer
is affirmative, we can construct a reconfiguration sequence between two given
directed trees of length O(|V |2) within the same running time bound.
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Table 1. Summary of our results.

Property Π Reachability variant Shortest variant

Directed tree P Open

r-directed tree Always yes Open

Spanning directed tree Always yes P

Spanning r-directed tree Always yes P

Directed path PSPACE-complete –

Directed acyclic graph PSPACE-complete –

We further investigate the problem for specific directed trees. By the defi-
nition, a directed tree has a unique vertex whose in-degree is 0. We call such a
vertex the root of the directed tree, and call the tree an r-directed tree. We will
show that any two r-directed trees are reconfigurable when the property Π is an
r-directed tree for a prescribed vertex r. This result gives an interesting contrast
to Directed Tree Reconfiguration (recall the no-instance in Fig. 1), and
will play an important role in our proof of Theorem 1. We also consider the
cases where the property Π is either a directed path or a directed acyclic graph
(DAG). Formal definitions will be given in Sect. 5. We will prove that these cases
are PSPACE-complete. Our results are summarized in Table 1.

In this paper, we also study the shortest variant, which computes the short-
est length of a reconfiguration sequence between two given subgraphs in SΠ(G).
In particular, Shortest Spanning Directed Tree Reconfiguration is the
shortest variant when Π is a spanning directed tree. We will prove the follow-
ing theorem, by constructing a reconfiguration sequence between two spanning
directed trees T s and T t of length |A(T s) \ A(T t)| = |A(T t) \ A(T s)|.

Theorem 2. Shortest Spanning Directed Tree Reconfiguration can
be solved in linear time.

When Π is a spanning directed trees, the reachability variant can be
seen as a special case of Matroid Intersection Reconfiguration for a
graphic matroid and (a truncation of) a partition matroid. Here, given two
matroids and their two common bases Bs and Bt, Matroid Intersection
Reconfiguration asks to determine if there is a reconfiguration sequence
of common bases between Bs and Bt; see [7] for matroids. It is shown in
[5] that Maximum Bipartite Matching Reconfiguration is solvable in
polynomial time. While this problem can be seen as Matroid Intersection
Reconfiguration for two (truncations of) partition matroids, the complex-
ity of Matroid Intersection Reconfiguration remains open. Theorem 2
provides a new tractable class of Matroid Intersection Reconfiguration,
particularly, its shortest version.

Due to the space limitation, several proofs (marked with �) are omitted from
this extended abstract.



346 T. Ito et al.

2 Preliminaries

Let G = (V,A) be a directed graph. We denote by V (G) and A(G) the vertex
and arc sets of G, respectively. We may abuse G to denote the arc set of G when
no confusions arise, and then we use |G|, called the size of G, to denote the
number of arcs in G. Let e = (u, v) be an arc of G. We say that e is directed
from u or directed to v. The vertex u (resp. v) is called the tail (resp. head)
of e. For each v ∈ V , we denote by N+

G (v) the set of out-neighbors of v in G,
i.e., N+

G (v) = {w ∈ V : (v, w) ∈ A}. The in-degree (resp. out-degree) of v is the
number of arcs directed to v (resp. directed from v) in G. For a subset X ⊆ V ,
the subgraph of G induced by X is denoted by G[X]. For an arc (u, v) ∈ G and
a subgraph H of G, we denote by H + (u, v) and H − (u, v) the directed graphs
obtained from H by adding (u, v) and by removing (u, v), respectively.

A directed tree T is a directed graph such that its underlying undirected
graph forms a tree and every vertex except for a vertex r ∈ V (T ) has in-degree
exactly 1. The unique vertex r of in-degree 0 is called the root of T , and T
is called an r-directed tree. A directed graph consisting of a disjoint union of
directed trees is called a directed forest or an R-directed forest, where R is the
set of roots of its (weakly) connected components. An arc in a directed tree T
is called a leaf arc if the out-degree of its head is 0 in T . A directed path is a
directed tree that has at most one leaf arc.

Let Π be a graph structure property. For a graph G, we denote by SΠ(G)
the set of all subgraphs of G that satisfy Π. Let H and H ′ be two subgraphs
in SΠ(G) that have the same size. A sequence 〈H0,H1, . . . , H�〉 of subgraphs
in SΠ(G) is called a reconfiguration sequence between H and H ′ if H0 = H,
H� = H ′, and |A(Hi) \ A(Hi+1)| = |A(Hi+1) \ A(Hi)| = 1 for all i, 0 ≤ i < �. In
other words, Hi+1 can be obtained by removing an arc from Hi and then adding
another arc to it for each i, 0 ≤ i < �. We call � the length of the reconfiguration
sequence. If there is a reconfiguration sequence between H and H ′, we say that H
is reconfigurable from H ′. Note that any reconfiguration sequence is reversible:
H ′ is reconfigurable from H if and only if H is reconfigurable from H ′. For
simplicity, we assume without loss of generality that all subgraphs in SΠ(G)
have the same size; otherwise they are not reconfigurable.

3 Always Reconfigurable Cases

In this section, we show that every instance of the reachability variant is a yes-
instance for some graph properties Π. Our proof indeed implies that the shortest
variant is solvable in linear time for the properties.

3.1 Directed Forests

Let S ⊆ 2U be a collection of subsets of a finite set U . Suppose that every
set in S has the same cardinality. We say that S satisfies the weak exchange
property if for S, S′ ∈ S with S �= S′, there exist e ∈ S \ S′ and e′ ∈ S′ \ S such
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that S \ {e} ∪ {e′} ∈ S. This property is closely related to the (simultaneous)
exchange property of bases of matroids: Recall that if B is the collection of bases
of a matroid, then for B,B′ ∈ B with B �= B′ and for e ∈ B \ B′, there is
e′ ∈ B′ \ B such that B \ {e} ∪ {e′} ∈ B. The weak exchange property is not
only a weaker version of the exchange property but also gives an important
consequence for reconfiguration problems.

In this subsection, we show that SΠ(G) satisfies the weak exchange prop-
erty for some graph structure properties Π. Observe that if SΠ(G) satisfies the
weak exchange property, then any two subgraphs H and H ′ in SΠ(G) admit
a reconfiguration sequence of length |A(H ′) \ A(H)| = |A(H) \ A(H ′)|. Such a
reconfiguration sequence is shortest, because we can exchange only one pair of
arcs at a time. Therefore, if SΠ(G) satisfies the weak exchange property, then
the shortest variant can be solved in linear time for the property Π.

Similar to the undirected case [5], we show that the weak exchange property
holds when Π is a spanning directed tree. Note that the following theorem proves
Theorem 2.

Theorem 3. SΠ(G) satisfies the weak exchange property when Π is a spanning
directed tree.

Proof. Let T and T ′ be arbitrary spanning directed trees in G with T �= T ′.
Suppose first that T and T ′ have a common root r. Let e′ = (u, v) be an arc in
T ′ \ T such that the path from r to u in T ′ is contained in T . Clearly, we have
v �= r. Let e be the unique arc directed to v in T . From the definition of e and e′,
we have e �= e′. Let R = T +e′ −e. Now in T +e′, the vertex v is the only vertex
that has two arcs (e and e′) directed to it. Thus, in R, no vertex has in-degree
2 or more. Moreover, all vertices in R are reachable from r: the paths in T that
use e are rerouted to use e′ in R, and all other paths in T still exist in R. Since
|T | = |R|, R is a spanning directed tree in G.

Suppose next that T and T ′ have different roots r and r′, respectively. Let
e′ be the unique arc in T ′ directed to r, that is, e′ = (u, r) for some u ∈ V . Let
P be the path from r to u in T . Since P + e′ is a directed cycle, there is an arc
e = (v, w) ∈ P that does not belong to T ′. Let R = T + e′ − e. Observe that
no vertex in R has in-degree 2 or more since it holds already in P + e′. Observe
also that all vertices in R are reachable from w: for the descendants of w in T ,
R contains the same path from w; and for the other vertices, we first follow the
path from w to u in T , use the arc e′ = (u, r), and then follow the path in T
from r. Since |T | = |R|, R is a spanning directed tree (rooted at w) in G. 	


From the proof of Theorem 3, we obtain the following corollary.

Corollary 1. SΠ(G) satisfies the weak exchange property when Π is a spanning
r-directed tree.

We then prove the following theorem, which implies that the shortest variant
is solvable in linear time when Π is a directed forest.
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Theorem 4. SΠ(G) satisfies the weak exchange property when Π is a directed
forest.

Proof. Let F and F ′ be distinct directed forests in G with |F | = |F ′|. We first
consider the case where there is some arc e′ ∈ F ′ \ F such that the endpoints of
e′ do not belong to the same (weakly) connected component of F , that is, either
e′ connects two connected components of F or at least one of the endpoints of
e′ does not belong to F . Now, we show that there is an arc e ∈ F \ F ′ such that
F + e′ − e is a directed forest of G. If F + e′ is a directed forest, then we can
select any arc in F \ F ′ as e. Assume that F + e′ is not a directed forest. By the
assumption in this case, the underlying undirected graph of F + e′ contains no
(undirected) cycle. Thus there is a vertex of in-degree at least 2 in F + e′. Since
F is a directed forest, only the head of e′, say v, can be such a vertex, and its
in-degree is exactly 2. As e, we select the other arc in F + e′ that has v as its
head. Since e′ ∈ F ′ \ F , this arc e does not belong to F ′. Since F + e′ − e does
not contain any cycle in the underlying graph nor any vertex of in-degree 2 or
more, it is a directed forest in G.

Next we consider the case where every arc e′ ∈ F ′ \ F has both endpoints
in the same connected component of F . Let F1, . . . , Fc ⊆ F be the connected
components of F , and let F ′

1, . . . , F
′
c ⊆ F ′ be the subsets of F ′ such that F ′

i =
{e′ ∈ F ′ | e′ has both endpoints in Fi}. We claim that |Fi| = |F ′

i |. To see this,
observe that if |Fi| < |F ′

i | for some i, then F ′
i is not a directed tree since V (F ′

i ) ⊆
V (Fi) and Fi is a spanning directed tree of the subgraph of G induced by V (Fi).
This proves the claim as |F | = |F ′|. Since both endpoints of every arc in F ′

i

belong to Fi, we also have V (Fi) = V (F ′
i ) for all 1 ≤ i ≤ c. As F �= Fi, there is

a connected component Fi in F with Fi �= F ′
i and by Theorem 3, the theorem

follows. 	


As mentioned in Introduction, when Π is a spanning directed tree (or a
directed forest), the reachability variant is a subclass of Matroid Intersection
Reconfiguration. Theorems 3 and 4 give a new insight on matroid intersection
in terms of the weak exchange property.

3.2 Directed Forests with Fixed Roots

In this subsection, we consider the case where the property Π is an r-directed
tree for a fixed vertex r. Then, every instance of the reachability variant is a yes-
instance, and admits a reconfiguration sequence of linear length. More precisely,
we prove the following theorem.

Theorem 5. For every pair of r-directed trees T and T ′ in G with |T | = |T ′| =
k, there is a reconfiguration sequence 〈T = T0, T1, . . . , T� = T ′〉 such that all
intermediate directed trees have the same root r. Moreover, the length � of the
reconfiguration sequence is at most k.

Proof. We say that an arc e in a directed tree T ′′ is fixed (with respect to T ′) if
the directed path from r to the head of e in T ′′ appears in T ′. An arc is unfixed
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if it is not fixed. Let h be the number of unfixed arcs in T . We prove that there
is a reconfiguration sequence between T and T ′ of length at most h by induction
on h. If h = 0, then we have T = T ′. In the following, we assume that h ≥ 1
and that for every r-directed tree T ′′ that has k arcs and contains fewer than h
unfixed arcs with respect to T ′, there is a reconfiguration sequence from T ′′ to
T ′ of length at most h − 1.

Let e = (u, v) be an arc in T ′ such that e is not included in T but all other
arcs in the path P from r to the tail of e in T ′ are included in T . Such an arc
exists since T �= T ′ and they share the root r. Note that all arcs in P are fixed.

Assume for now that there is an unfixed arc f in T such that T ′′:=T + e − f
is a directed tree in G. Note that T ′′ is still rooted at r since e is an arc of a
directed tree rooted at r. Observe that arc e is fixed in T ′′ as both T ′′ and T ′

contain the path P and that the fixed arcs of T remain fixed in T ′′ since we
only removed the unfixed arc f . Thus T ′′ has fewer than h unfixed arcs. By the
induction hypothesis, there is a reconfiguration sequence from T ′′ to T ′ of length
at most h − 1, and thus T ′ is reconfigurable from T as |T \ T ′′| = |T ′′ \ T | = 1.
Therefore, it suffices to find such an arc f .

If the head v of e is included in T , then we set f to the arc directed to v in
T . Then f is unfixed since T ′ cannot contain it and T + e − f is a directed tree
obtained from T by changing the parent of v to u. Otherwise, v is not included
in T , then we set f to an unfixed leaf arc of T , which exists since h ≥ 1. Since
T + e is a directed tree and f is a leaf arc of T + e as well, T + e− f is a directed
tree. 	


This result can be extended to R-directed forests.

Theorem 6 (�). For every pair of R-directed forests F and F ′ in G with
|F | = |F ′| = k, there is a reconfiguration sequence 〈F = F0, F1, . . . , F� = F ′〉
such that all intermediate forests are R-directed. Moreover, the length � of the
reconfiguration sequence is at most k.

4 Algorithm for Directed Tree Reconfiguration

This section is devoted to proving our main result, Theorem 1, which is a
polynomial-time algorithm for Directed Tree Reconfiguration. Recall that
there are no-instances for the problem, as shown in Fig. 1.

The idea of our algorithm is as follows. Let G = (V,A) be a directed graph,
and let k be a positive integer. For each v ∈ V , we denote by T (v) the collection of
all v-directed trees T in G with |T | = k. By Theorem 5, there is a reconfiguration
sequence between any pair of v-directed trees in T (v) such that all internal
directed trees in the sequence belong to T (v). This enables us to “compress”
all directed trees in T (v) into a single representative for each v ∈ V , and it
suffices to seek the reachability in the “compressed” solution space. In the rest
of this section, when we refer to reconfiguration sequences, every subgraph in
these sequences are directed trees with k arcs.

Let u and v be distinct vertices in G, and let T ∈ T (u) and T ′ ∈ T (v).
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Lemma 1. Suppose that G has an arc (u, v) or (v, u). Then, there is a recon-
figuration sequence between T and T ′.

Proof. Assume without loss of generality that G has an arc (u, v). Since v is the
root of T ′, we have (u, v) /∈ T ′. If u /∈ V (T ′), the subgraph T ′′ obtained from
T ′ + (u, v) by removing arbitrary one of the leaf arcs is a directed tree in T (u).
Thus, by Theorem 5, there is a reconfiguration sequence between T and T ′′ and
then we are done in this case. Otherwise, T + (u, v) has a directed cycle passing
through (u, v). Then, the graph obtained from T + (u, v) by removing the arc
directed to u in the cycle is a directed tree in T (u). Again, by Theorem 5, the
lemma follows. 	


By inductively applying Theorem 5 and this lemma, we have the following
corollary.

Corollary 2. Suppose that G has a directed path from u to v or from v to u.
Then, there is a reconfiguration sequence between T and T ′.

Lemma 2. If there is a vertex w ∈ N+
G (u) ∩ N+

G (v) such that G[V \ {u, v}] has
a w-directed tree of size k − 1, then there is a reconfiguration sequence between
T and T ′.

Proof. Let T ′′ be a directed tree in G[V \ {u, v}] that has k − 1 arcs and root
w ∈ N+

G (u) ∩ N+
G (v). Since T ′′ + (u,w) and T ′′ + (v, w) are directed trees that

belong to T (u) and T (v), respectively, by Theorem 5, there are reconfiguration
sequences between T and T ′′ + (u,w) and between T ′′ + (v, w) and T ′. As T ′′ +
(v, w) is reconfigurable from T ′′ + (u,w), concatenating these sequences yields a
reconfiguration sequence between T and T ′. 	


The above corollary and lemma give sufficient conditions for finding a recon-
figuration sequence between T and T ′. The following lemma ensures that these
conditions are also necessary conditions for a “single step”.

Lemma 3. Suppose that |T \ T ′| = |T ′ \ T | = 1. Then, at least one of the
following conditions hold: (1) G has a directed path from u to v or from v to u
or (2) there is w ∈ N+

G (u) ∩ N+
G (v) such that G[V \ {u, v}] has a w-directed tree

of size k − 1.

Proof. Suppose that v ∈ V (T ). Then, there is a directed path P from u to v in T
and hence we are done. Symmetrically, the lemma follows when u ∈ V (T ′). Thus,
we assume that v /∈ V (T ) and u /∈ V (T ′). This assumption implies that there is
a unique arc e directed from u in T as otherwise we have |T \T ′| ≥ 2. Also, there
is a unique arc e′ directed from v in T ′. By the fact that |T \ T ′| = |T ′ \ T | = 1,
T − e (= T ′ − e′) must be a directed tree with root w ∈ N+

G (u) ∩ N+
G (v) that

has k − 1 arcs in G[V \ {u, v}]. 	


To find a reconfiguration sequence between T s and T t, we construct an aux-
iliary graph G as follows. We assume that G is (weakly) connected. For each
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v ∈ V , G contains a vertex v if G has a v-directed tree of size k. For each
pair of distinct u and v in V (G), we add an (undirected) edge between them if
(1) G has a directed path from u to v or from v to u; or (2) there is a vertex
w ∈ N+

G (u) ∩ N+
G (v) such that G[V \ {u, v}] has a w-directed tree of size k − 1.

The graph G can be constructed in O(|V ||A|) time. Our algorithm simply finds
a path in G between the two roots of given directed trees T s and T t. The cor-
rectness of the algorithm immediately follows from the following lemma, which
also proves the first part of Theorem 1.

Lemma 4. Let T s and T t be directed trees in G with |T s| = |T t| = k whose
roots are rs and rt, respectively. Then, there is a path between rs and rt in G if
and only if there is a reconfiguration sequence between T s and T t.

Proof. We first show the forward implication. Suppose that there is a path P
between rs and rt in G. By Corollary 2 and Lemma 2 there is a reconfiguration
sequence between T s and T t that can be constructed along the path P.

For the converse implication, suppose that there is a reconfiguration sequence
between T s and T t. Let T and T ′ be two directed trees that appear consecutively
in the sequence. We claim that either T and T ′ have a common root or the
roots of T and T ′ are adjacent in G. If T and T ′ have a common root, the
claim obviously holds. Suppose otherwise. Let u and v be the roots of T and
T ′, respectively. By Lemma 3, at least one of the conditions (1) and (2) holds,
implying that u and v are adjacent in G. 	


It is easy to check that our algorithm turns into the one that finds an actual
reconfiguration sequence of length O(|V |2) if the answer is affirmative, and hence
Theorem 1 follows.

5 Intractable Cases

Directed Path Reconfiguration is a variant of Directed Tree
Reconfiguration, where the two input trees T s, T t and intermediate trees
are all directed paths in G. Here, we use 〈P0, P1, . . . , P�〉 with P0 = P s and
P� = P t to denote a reconfiguration sequence between two directed paths P s

and P t. Directed Path Sliding consists of the same instance of Directed
Path Reconfiguration and we are allowed the following adjacency relation
in a valid reconfiguration sequence: for every pair of consecutive directed paths
P = (v1, v2, . . . , vk) and P ′ = (v′

1, v
′
2, . . . , v

′
k), either vi = v′

i+1 holds for all
1 ≤ i < k or vi = v′

i−1 holds for all 1 < i ≤ k. Since P ′ is obtained by “slid-
ing” in a forward or backward direction, we call the problem Directed Path
Sliding. In this section, we show that Directed Path Reconfiguration and
Directed Path Sliding are both PSPACE-complete.

To this end, we first show that both problems are equivalent with respect
to polynomial-time many-one reductions. Let G be a directed graph and let
P = (v1, v2, . . . , vk) be a directed path in G with arc ei = (vi, vi+1) for 1 ≤ i < k.
We denote by t(P ) the tail v1 of P and by h(P ) the head vk of P . Observe that
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Fig. 2. An illustration of the three operations in Directed Path Reconfiguration.

for a directed path P ′ in G with |P \ P ′| = |P ′ \ P | = 1, at least one of the
following conditions hold:

– sliding: P ′ = (v2, v3, . . . vk, v) or P ′ = (v, v1, v2, . . . , vk−1) for some v ∈
V \ V (P );

– turning: P ′ = (v1, v2, . . . , vk−1, v) or P ′ = (v, v2, v3, . . . , vk) for some v ∈
V \ V (P );

– shifting: P ′ = (vi, vi+1, . . . , vk, v1, . . . , vi−1) for some 1 < i ≤ k. This can be
done when P + (vk, v1) forms a directed cycle.

See Fig. 2 for an illustration.
We can regard these conditions as operations to obtain P ′ from P . Since

shifting can be simulated by i−1 sliding operations along the directed cycle P+
(vk, v1), the essential difference between Directed Path Reconfiguration
and Directed Path Sliding is the turning operation in order to solve these
problems. Now, we perform polynomial-time reductions between these problems
in both directions.

Let (G = (V,A), P s, P t) be an instance of Directed Path
Reconfiguration. For each vertex v in G, we add two vertices vin, vout and
two arcs (vin, v), (v, vout). These two vertices are called pendant vertices. We let
G′ be the graph obtained in this way. Then, we show the following lemma.

Lemma 5. (G,P s, P t) is a yes-instance of Directed Path
Reconfiguration if and only if (G′, P s, P t) is a yes-instance of Directed
Path Sliding.

Proof. Let 〈P0, P1, . . . , P�〉 be a reconfiguration sequence between P s = P0 and
P t = P� of Directed Path Reconfiguration. By the above argument, we can
assume that Pi+1 is obtained from Pi by applying either sliding or turning. Let
Pi = (v1, v2, . . . , vk). We replace the subsequence 〈Pi, Pi+1〉 with 〈Pi, P

′, Pi+1〉,
where P ′ = (vin

1 , v1, v2, . . . , vk−1) if t(Pi) = t(Pi+1) and P ′ = (v2, v3, . . . , vk, vout
k )

otherwise. Clearly, P ′ and Pi+1 are obtained from Pi and P ′ by applying sliding
operations, respectively. By replacing each subsequence for 0 ≤ i < �, we have a
reconfiguration sequence of Directed Path Sliding in G′.

Conversely, let 〈P0, P1, . . . , P�〉 be a reconfiguration sequence P s = P0 and
P t = P� of Directed Path Sliding. Similarly to the other direction, we
construct a reconfiguration sequence of Directed Path Reconfiguration.
Assume that P s �= P t as otherwise we are done. Observe that each path
Pi = (v1, v2, . . . , vk) contains at most one pendant vertex. This follows from
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the fact that if Pi contains both vin and wout for some v, w ∈ V , then Pi cannot
move to a distinct position by sliding operations. Now, suppose Pi is a directed
path in G with Pi �= P t, that is, it has no pendant vertices. As P t has no pen-
dant vertices, we can find the smallest index j > i such that Pj has no pendant
vertices. Since Pj can be obtained from Pi by turning, we can construct a recon-
figuration sequence of Directed Path Reconfiguration by omitting paths
having pendant vertices. 	


For the converse direction, we let (G,P s, P t) be an instance of Directed
Path Sliding. Let G′ be the directed graph obtained from G by subdividing
each arc e = (u,w) with a new vertex ve, that is, we replace e with ve and add
two arcs (u, ve) and (ve, w). Let Qs and Qt be defined accordingly from P s and
P t, respectively. In G′, we say that a path P ′ is a standard path if h(P ) and t(P )
belong to V and it is a nonstandard path otherwise.

Lemma 6 (�). (G,P s, P t) is a yes-instance of Directed Path Sliding if and
only if (G′, Qs, Qt) is a yes-instance of Directed Path Reconfiguration.

Now, we show that the PSPACE-completeness of Directed Path Sliding.

Theorem 7 (�). Directed Path Sliding is PSPACE-complete.

By Lemma 6, we immediately have the following corollary.

Corollary 3. Directed Path Reconfiguration is PSPACE-complete.

Suppose that subgraphs in a reconfiguration sequence are relaxed to be
acyclic. Observe that the problem is equivalent to reconfiguring directed feed-
back arc sets in directed graphs. More specifically, given two directed acyclic sub-
graphs Hs and H t in a directed graph G = (V,A), the problem asks to determine
whether there is a reconfiguration sequence of directed acyclic subgraphs 〈Hs =
H0,H1, . . . , H� = H t〉 such that |A(Hi) \ A(Hi+1)| = |A(Hi+1) \ A(Hi)| = 1 for
all 0 ≤ i < �. Seeing this problem from the complement, the problem is equiva-
lent to finding a reconfiguration sequence 〈A1, A2, . . . , A�〉 of subsets of A such
that Hi = G − Ai is acyclic for all 0 ≤ i ≤ �. Since each Ai is a feedback arc set
of G, we call this problem Directed Feedback Arc Set Reconfiguration.
There is another variant of this problem, called Directed Feedback Vertex
Set Reconfiguration, in which we are asked to determine given two subsets
V s and V g of V , there is a sequence of vertex subsets 〈V s = V0, V1, . . . , V� = V g〉
of V such that G[V \Vi] is acyclic and |Vi\Vi+1| = |Vi+1\Vi| = 1 for all 0 ≤ i < �.

Theorem 8 (�). Directed Feedback Arc Set Reconfiguration and
Directed Feedback Vertex Set Reconfiguration are PSPACE-complete.

6 Concluding Remarks

There are several possible open questions related to our results. Shortest
Directed Tree Reconfiguration would be a notable open question arising
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in our work. Contrary to the cases of spanning directed trees and spanning r-
directed trees, the sets of directed trees and r-directed trees with k < |V |−1 arcs
do not satisfy the weak exchange property, which makes Shortest Directed
Tree Reconfiguration highly nontrivial. It would be also interesting to know
whether Directed Path Reconfiguration and Directed Path Sliding
are fixed-parameter tractable (FPT) when parameterized by the length of input
paths. Although the undirected counterparts are known to be FPT [2,3], it would
be difficult to apply their techniques directly to our cases.
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Abstract. Suppose that we are given a positive integer k, and a k-
(vertex-)coloring f0 of a given graph G. Then we are asked to find a col-
oring of G using the minimum number of colors among colorings that are
reachable from f0 by iteratively changing a color assignment of exactly
one vertex while maintaining the property of k-colorings. In this paper,
we give linear-time algorithms to solve the problem for graphs of degen-
eracy at most two and for the case where k ≤ 3. These results imply
linear-time algorithms for series-parallel graphs and grid graphs. In addi-
tion, we give linear-time algorithms for chordal graphs and cographs. On
the other hand, we show that, for any k ≥ 4, this problem remains NP-
hard for planar graphs with degeneracy three and maximum degree four.
Thus, we obtain a complexity dichotomy for this problem with respect
to degeneracy of a graph and the number k of colors.

1 Introduction

In combinatorial reconfiguration, we often consider the following problem: we
are given two feasible solutions of a combinatorial search problem, then we are
asked to determine whether one solution can be transformed into the other
in a step-by-step fashion, such that each intermediate solution is also feasible.
Such a problem is called reconfiguration problem. After Ito et al. proposed this
framework [15], the reconfiguration problem has been extensively studied in the
field of theoretical computer science. (See, e.g., the surveys of van den Heuvel [14]
and Nishimura [22].)

Combinatorial reconfiguration models “dynamic” transformations of sys-
tems, where we wish to transform the current configuration of a system into
a more desirable one by a step-by-step transformation. In the current framework
of combinatorial reconfiguration, we need to have in advance a target (a more
desirable) configuration. However, it is sometimes hard to decide a target con-
figuration, because there may exist exponentially many desirable configurations.
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Fig. 1. A reconfiguration sequence between two colorings f0 and fr. A bold number
implies a color that is changed from a previous one.

Based on this situation, Ito et al. introduced the new framework of reconfigura-
tion problems, called the optimization variant [16].

In this variant, we are given a single solution as a current configuration, and
asked for a more desirable solution reachable from the given one. This variant was
introduced very recently, and hence it has only been applied to Independent
Set Reconfiguration [16,17] and Dominating Set Reconfiguration [1]
to the best of our knowledge. Therefore, since Coloring Reconfiguration is
one of the most studied reconfiguration problems [2–6,8,11,13,18,24], we focus
on this problem and study it under this framework.

1.1 Our Problem

For an integer k ≥ 1, let C be a color set consisting of k colors 1, 2, . . . , k. Let
G be a graph with the vertex set V (G) and the edge set E(G). Recall that a
k-coloring f of G is a mapping f : V (G) → C such that f(v) �= f(w) holds for
each edge vw ∈ E(G).

In the (Vertex-)Coloring Reconfiguration problem, we are given two
k-colorings f0 and fr of the same graph G. Then we are asked to determine
whether there is a sequence 〈f0, f1, . . . , f�〉 of k-colorings of G such that f� = fr

and fi can be obtained from fi−1 by recoloring only a single vertex in G for
all i, 1 ≤ i ≤ �. Such a sequence is called reconfiguration sequence from f0
to fr. See Fig. 1 as an example of reconfiguration sequence. The Coloring
Reconfiguration is one of the most studied reconfiguration problems [2–6,8,
11,13,18,24]. See also the survey of Mynhardt and Nasserasr [21].

In this paper, we study the optimization variant of Coloring Reconfig-
uration. We denote this problem by Opt-Coloring Reconfiguration. In
Opt-Coloring Reconfiguration, we are given only one k-coloring f0 of the
given graph G. Then we are asked to find a k-coloring fsol of G such that there
exists a reconfiguration sequence of k-colorings from f0 to fsol, and fsol uses the
minimum number of colors over all colorings which can be transformed from f0
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Fig. 2. (a) An optimal coloring and (b) a 3-coloring f0 of a cycle of six vertices. When
we use only three colors, f0 cannot reach any optimal coloring of the graph.

through reconfiguration. We denote by (G, k, f0) an instance of Opt-Coloring
Reconfiguration. Note that fsol is not always a coloring of G using the min-
imum number of colors among all colorings of G. For example, the graph of
Fig. 2(a) has a 2-coloring, but the coloring f0 depicted in Fig. 2(b) cannot be
transformed into it when k = 3. Indeed, fsol = f0 holds for this example.

1.2 Related Results

As we have mentioned above, Coloring Reconfiguration has been studied
intensively.

For Coloring Reconfiguration, a sharp analysis under the number k
of colors has been obtained. It is known that Coloring Reconfiguration is
PSPACE-complete for any fixed k ≥ 4 [4]. On the other hand, it is known that
Coloring Reconfiguration is solvable in linear time for any k ≤ 3 [8,18].
In addition, given a yes-instance of Coloring Reconfiguration for any k ≤
3, a reconfiguration sequence with shortest length can be found in polynomial
time [8].

Coloring Reconfiguration has also been studied from the viewpoint
of graph classes. It is known that Coloring Reconfiguration is PSPACE-
complete for bipartite planar graphs [4]. Since every bipartite planar graph
is 3-degenerate, Coloring Reconfiguration is PSPACE-complete for 3-
degenerate graphs. Coloring Reconfiguration is known to be PSPACE-
complete also for graphs with bounded bandwidth [24] and chordal graphs [13].
On the other hand, Coloring Reconfiguration is solvable in polynomial time
for split, trivially perfect, 2-degenerate, and (k − 2)-connected chordal graphs
for any number k of colors [6,13].

The optimization variant of reconfiguration problems were recently pro-
posed by Ito et al. [16]. To the best of our knowledge, it has only been
applied to Independent Set Reconfiguration [16,17] and Dominating
Set Reconfiguration [1]. Therefore, in this paper, we apply this new frame-
work to one of the most studied reconfiguration problems, namely Coloring
Reconfiguration.
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Fig. 3. Our results for Opt-Coloring Reconfiguration with respect to graphs
classes. Each arrow represents the inclusion relationship between graph classes; A → B
means that the graph class B is a subclass of the graph class A.

Table 1. The complexity of Opt-Coloring Reconfiguration with respect to the
number k of colors and degeneracy d of a graph.

d\k 1 2 3 4 ≥5

1 P P P P P

2 P P P P P

3 P P P NP-hard NP-hard

4 P P P NP-hard NP-hard

≥5 P P P NP-hard NP-hard

1.3 Our Results

In this paper, we give linear-time algorithms to solve Opt-Coloring
Reconfiguration for graphs of degeneracy two, and for any graph when
k ≤ 3. These results imply linear-time algorithms for series-parallel graphs and
grid graphs. In addition, we give linear-time algorithms for chordal graphs and
cographs for any k. Since Coloring Reconfiguration is PSPACE-hard for
chordal graphs [13], we obtain a difference in complexity between Coloring
Reconfiguration and Opt-Coloring Reconfiguration, that is, some dif-
ficulties disappear for the optimization variant, in a sense. On the other hand,
we show that, for any k ≥ 4, this problem remains NP-hard for planar graphs
with degeneracy three and maximum degree four. Thus, we obtain a complexity
dichotomy for this problem with respect to the number of colors and degeneracy
of a graph. We summarize our results in Fig. 3 and Table 1.
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2 Preliminaries

Let G = (V,E) be a graph. We denote by V (G) and E(G) the vertex set and
the edge set of G, respectively. We assume that all graphs in the remainder of
this paper are simple, undirected, and have at least one edge. The degeneracy
d(G) of a graph G is the minimum integer d such that any subgraph H of G has
a vertex of degree at most d. For a positive integer k, a graph G is k-colorable
if G has a k-coloring. We say that a k-coloring f of G is optimal if G has no
(k − 1)-coloring. We denote by χ(G), called the chromatic number of G, the
integer k such that G has an optimal k-coloring.

A coloring f of a graph G is k-reachable from a coloring f0 of G if there is
a sequence 〈f0, f1, . . . , f�〉 of k-colorings of G such that f� = f and fi can be
obtained from fi−1 by recoloring only a single vertex of G for every i, 1 ≤ i ≤ �.
For a coloring f of G, let col(f) be the number of colors used in f . We define

χ(G, k, f0) = min{col(f) | f is a coloring of G and f is k-reachable from f0}
and χ(G, k, f0) = +∞ if k < col(f0). Note that χ(G, k, f0) is at least χ(G).
Opt-Coloring Reconfiguration is the problem of computing χ(G, k, f0) for
a given graph G, a positive integer k and a coloring f0 of G. We remark that,
with minor adjustments, all algorithms in this paper can actually find a coloring
fsol of G such that col(fsol) = χ(G, k, f0).

3 Linear-Time Algorithms

3.1 The Case Where the Number of Colors Is at Most Three

In this subsection, we show the following theorem:

Theorem 1. Let (G, k, f0) be an instance of Opt-Coloring Reconfigura-
tion. If k ≤ 3, the problem can be solved in linear time.

Proof. Recall that the input graph G has at least one edge. This implies that
χ(G) > 1 and thus χ(G, k, f0) > 1. If f0 is a 2-coloring of G, then we conclude
that χ(G, k, f0) = 2. In the remainder of this proof, we assume that k = 3 and
hence f0 is a 3-coloring of G.

We give an algorithm for an instance (G, 3, f0). Our algorithm contains the
following two steps. First, the algorithm checks in linear time whether G is 2-
colorable, that is, bipartite. Since f0 is a 3-coloring, χ(G) is two or three. If G
is not 2-colorable, we have χ(G) = 3. In this case, the algorithm concludes that
χ(G, k, f0) = 3, otherwise we go to the next step.

In the next step, the algorithm finds an arbitrary 2-coloring fr of G in linear
time, and then checks whether fr is 3-reachable from f0 or not. It is known
that Coloring Reconfiguration is solvable in linear time if k ≤ 3 [18]. If fr

is 3-reachable from f0, the algorithm concludes that χ(G, k, f0) = 2, otherwise
χ(G, k, f0) = 3. This step correctly outputs a solution because one can see that
any 2-coloring is 3-reachable from any other 2-coloring. The total running time
of our algorithm is linear, completing the proof. 
�
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3.2 The Graphs of Degeneracy at Most Two

In this subsection, we show the following theorem:

Theorem 2. Let (G, k, f0) be an instance of Opt-Coloring Reconfigura-
tion. If the degeneracy d(G) is at most two, then the problem can be solved in
linear time.

Proof. For the case where k ≤ 3, we use the algorithm given in Theorem 1.
Suppose that k ≥ 4. It is known that, if k ≥ d(G) + 2, then any two k-colorings
of G are k-reachable from each other [7]. Thus, for the case where d(G) ≤ 2
and k ≥ 4, we have χ(G, k, f0) = χ(G), and hence it suffices to compute χ(G).
One can easily check whether or not G is 2-colorable, that is, χ(G) = 2 in linear
time. If χ(G) �= 2, then χ(G) = 3 because d(G) ≤ 2 and χ(G) ≤ d(G)+1. Thus,
χ(G, k, f0) = χ(G) can be computed in linear time, completing the proof. 
�

Since both series-parallel and grid graphs have degeneracy at most two, we
obtain the following corollary by Theorem 2:

Corollary 1. Opt-Coloring Reconfiguration is solvable in linear time for
series-parallel graphs and grid graphs.

3.3 Chordal Graphs

In this subsection, we show the following theorem:

Theorem 3. Opt-Coloring Reconfiguration is solvable in linear time for
chordal graphs.

Proof. Let (G, k, f0) be an instance of Opt-Coloring Reconfiguration,
where G is a chordal graph. Suppose that k ≥ col(f0) holds. Our algorithm
computes χ(G) and concludes that χ(G, k, f0) = χ(G). Since we can compute
χ(G) in linear time for any chordal graph G [23], our algorithm takes linear time.

We give the correctness of the algorithm. Clearly, if χ(G) = k, then f0 itself
is an optimal coloring of G and hence χ(G, k, f0) = χ(G) holds. We show that
χ(G, k, f0) = χ(G) holds also for χ(G) < k. It suffices to prove that any optimal
coloring of G is k-reachable from f0 if χ(G) < k. For any chordal graph G,
χ(G) = d(G) + 1 holds [20]. Thus, we have k ≥ d(G) + 2. It is known that, if
k ≥ d(G) + 2, then any two k-colorings of G are k-reachable [7]. Therefore, any
optimal coloring of G is k-reachable from f0 if χ(G) < k, and hence χ(G, k, f0) =
χ(G), completing the proof. 
�

3.4 Cographs

In this subsection, we give a linear-time algorithm for cographs. In fact, the
algorithm is almost the same as the one for chordal graphs. For the correctness
of the algorithm, we use the Grundy number. A k-coloring fg of a graph G is
called a Grundy coloring if each vertex v ∈ V (G) such that fg(v) = i is adjacent
to at least one vertex with color j for each j < i. The Grundy number χg(G) of
G is the maximum integer k such that G has a Grundy coloring with k colors.
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Theorem 4. Opt-Coloring Reconfiguration is solvable in linear time for
cographs.

Proof. Let (G, k, f0) be an instance of Opt-Coloring Reconfiguration,
where G is a cograph. Suppose that k ≥ col(f0) holds. Our algorithm com-
putes χ(G) and concludes that χ(G, k, f0) = χ(G). Since we can compute χ(G)
in linear time for any cograph G [23], our algorithm takes linear time.

We give the correctness of the algorithm. As in the proof of Theorem 3,
we show that any optimal coloring of G is k-reachable from f0 if χ(G) < k.
For any cograph G, χ(G) = χg(G) holds [9]. Thus, we have k ≥ χg(G) + 1. It
is known that, any two k-colorings of G are k-reachable if k ≥ χg(G) + 1 [2].
Therefore, any optimal coloring of G is k-reachable from f0 if χ(G) < k, and
hence χ(G, k, f0) = χ(G), completing the proof. 
�

4 NP-Hardness

In this section, we show that Opt-Coloring Reconfiguration remains NP-
hard even for any k ≥ 4, planar graphs with degeneracy three and maximum
degree four. We assume that k = 4 because our proof can easily be applicable
to the case where k > 4. Our proof consists of the following three steps:

Step 1 construct an instance (Gφ, 4, fφ) of Opt-Coloring Reconfiguration
from an instance φ of 3-SAT so that Gφ has degeneracy three;

Step 2 transform (Gφ, 4, fφ) into (Gp, 4, fp) where Gp is a planar graph of
degeneracy three; and

Step 3 reduce the maximum degree of the graph Gp and construct an instance
(G, 4, f0).

In 3-SAT, we are given a CNF-formula φ with a collection {C1, C2, . . . , Cm}
of m clauses over n variables {x1, x2, . . . , xn}, and each clause contains exactly
three variables. Our task is to determine whether there exists a variable assign-
ment which satisfies a given CNF-formula or not. 3-SAT is a well-known NP-
complete problem [19].

In fact, our construction of G follows the existing reduction which proves
the NP-hardness of 3-Coloring problem for planar graphs with degeneracy
three and maximum degree four [10,12]. Before we explain the construction of
G and f0, we show that χ(G, 4, f0) ≥ 4 if φ has no feasible variable assignment.
In [10,12], the authors prove that G has a 3-coloring if and only if φ has a
feasible variable assignment. Therefore, if φ has no feasible variable assignment,
any coloring f0 cannot reach any 3-coloring of G, and hence χ(G, 4, f0) ≥ 4.
Thus, in the remainder of this section, it suffices to give a 4-coloring f0 of G so
that χ(G, 4, f0) ≤ 3 if φ has a feasible variable assignment.

4.1 Step 1: Constructing an Instance from a CNF-Formula

As the first step in our reduction, we explain how to construct an instance
(Gφ, 4, fφ) of Opt-Coloring Reconfiguration from an instance φ of 3-SAT,
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Fig. 4. (a) A variable gadget Xi and (b) a clause gadget Yj .

Fig. 5. An example of the construction of a graph Gφ and a 4-coloring fφ of Gφ, where
C2 = x3 ∨ x2 ∨ x1.

where Gφ has degeneracy three. In the construction, we use a variable gadget
and a clause gadget in Fig. 4, which appears in [10]. The variable gadget Xi,
1 ≤ i ≤ n, consists of two vertices vi and v̄i. The clause gadget Yj , 1 ≤ j ≤ m,
consists of five vertices wj,1, wj,2, wj,3, wj,4, wj,5.

For a given CNF-formula φ, we build a corresponding graph Gφ. First, for
each variable xi, 1 ≤ i ≤ n, and each clause Cj , 1 ≤ j ≤ m, of φ, we add one
variable gadget Xi and one clause gadget Yj , respectively. We also add a cycle of
three vertices vT , vF and vB. We connect vB to vi and v̄i in each variable gadget
Xi by edges, and connect vT to wj,3 and wj,5 in each clause gadget Yj by edges.
Then, if a variable xi (resp. x̄i) appears at the �-th position of a clause Cj of φ,
we connect vi (resp. v̄i) of the variable gadget Xi and wj,� of the clause gadget
Yj by an edge, as illustrated in Fig. 5. This completes the corresponding graph
Gφ. Clearly, Gφ is constructed in polynomial time. From the construction of Gφ,
it is not hard to see that Gφ has degeneracy three.
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Fig. 6. A replacement of a crossing point of Gφ by a cross gadget HC .

Next we explain the construction of fφ. Let {T, F,B,E} be a color set. The
vertices vT , vF and vB are colored by T, F and B, respectively. For each variable
gadget Xi, 1 ≤ i ≤ n, vi is colored by T and v̄i is colored by F . For each clause
gadget Yj , 1 ≤ j ≤ m, wj,1 is colored by E, wj,2 and wj,3 are colored by B, wj,4

is colored by T , and wj,5 is colored by F . Clearly, our construction of fφ is done
in polynomial time. Then, we have the following lemma.

Lemma 1. χ(Gφ, 4, fφ) ≤ 3 if φ has a feasible variable assignment.

4.2 Step 2: Making a Graph Planar

In the second step of our reduction, we construct an instance (Gp, 4, fp) of Opt-
Coloring Reconfiguration from the instance (Gφ, 4, fφ), where Gp is a pla-
nar graph of degeneracy three.

In the construction of Gp, we use a cross gadget HC illustrated in Fig. 6,
which appears in [12]. We assume that Gφ is embedded on a plane so that
at most two edges of Gφ share the same coordinates on the plane. We replace
crossing points as illustrated in Fig. 6. (For more details, refer to [12].) Repeating
the replacement for all crossing points results in a planar graph Gp. Since Gφ

and HC have degeneracy three, it is not hard to see that Gp also has degeneracy
three.

We now construct a 4-coloring fp of Gp from the 4-coloring fφ of Gφ by
giving a 3-coloring of HC . Figure 6 shows the 3-coloring of HC for the case
where fφ(v1) = T and fφ(v2) = F . We can give 3-colorings of HC for the other
cases and we have the following lemma, although the colorings of HC and the
proof of the lemma are omitted due to page limitation.

Lemma 2. χ(Gp, 4, fp) ≤ 3 if χ(Gφ, 4, fφ) ≤ 3.
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Fig. 7. An illustration of the reducing-degree gadget H3.

Fig. 8. A replacement of a vertex with degree five by the reducing-degree gadget H5,
where H5 is constructed by merging three H3’s.

4.3 Step 3: Reducing the Maximum Degree of a Graph

In the last step of our reduction, we construct an instance (G, 4, f0) of Opt-
Coloring Reconfiguration from (Gp, 4, fp), where G is a planar graph with
degeneracy three and maximum degree four.

In the construction, we use a reducing-degree gadget H3 illustrated in Fig. 7,
which appears in [12]. Suppose that Gp has a vertex v of degree δ ≥ 5. We make
a gadget Hδ by merging δ − 2 reducing-degree gadgets, and replace v with Hδ

as illustrated in Fig. 8. If v has a neighborhood {w1, w2, . . . , wδ}, we connect wi

to hi by an edge for each i, 1 ≤ i ≤ δ. By applying the above operation to all
vertices of degree at least five, the construction of G is completed. Since Hδ has
no vertex of degree more than four, the maximum degree of G is four. Since Hδ

is planar and hi in Hδ has degree three, it is not hard to see that G is planar
and has degeneracy three.

We now give the 3-coloring of Hδ as depicted in Fig. 8, and we have the
following lemma.



Decremental Optimization of Vertex-Coloring 365

Lemma 3. χ(G, 4, f0) ≤ 3 if χ(Gp, 4, fp) ≤ 3.

It follows from Lemmas 1, 2 and 3 that χ(G, 4, f) ≤ 3 if φ has a feasi-
ble variable assignment. This completes the proof of NP-hardness for Opt-
Coloring Reconfiguration on planar graphs with degeneracy three and
maximum degree four if k = 4. Obviously, the above proof can be applicable
to the case where k > 4, and hence we have the following theorem.

Theorem 5. For any k ≥ 4, Opt-Coloring Reconfiguration is NP-hard
even for planar graphs with degeneracy three and maximum degree four.

5 Conclusion

In this paper, we gave linear-time algorithms to solve the problem for graphs
of degeneracy at most two and for the case where k ≤ 3. These results imply
linear-time algorithms for series-parallel graphs and grid graphs. In addition, we
gave linear-time algorithms for chordal graphs and cographs. On the other hand,
we showed that, for any k ≥ 4, this problem remains NP-hard for planar graphs
with degeneracy three and maximum degree four. In particular, our theorems
give a sharp complexity dichotomies with respect to the degeneracy of the input
graph and the number k of colors.

It remains open to clarify the complexity status of perfect graphs, bipartite
graphs, or graphs of maximum degree three.
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Abstract. The n-dimensional locally twisted cube LTQn, a variation of the hyper-
cube Qn, has the same number of vertices and the same number of edges as Qn,
but it has only about half of the diameter of Qn. The existence of the Hamiltonian
cycle provides an advantage when implementing algorithms that require a ring
structure. In addition, k (≥ 2) edge-disjoint Hamiltonian cycles also provide the
edge-fault tolerant Hamiltonicity for the interconnection network. Hung [Theo-
retical Computer Science 412, 4747–4753, 2011] proved that LTQn with n � 4
contains two edge-disjoint Hamiltonian cycles, and posted an open problem what
is the maximum number of edge-disjoint Hamiltonian cycles in LTQn for n � 6?
In this paper, we show that there exist three edge-disjoint Hamiltonian cycles on
LTQn while n � 6.

Keywords: Edge-disjoint hamiltonian cycles · Locally twisted cubes ·
Interconnection networks

1 Introduction

The design of an interconnection network is one of the important issues for paral-
lel computing systems and data centers. An interconnected network is usually mod-
eled by a graph in which vertices representing processing units and edges representing
communication links. We will use graphs and networks interchangeably in this paper.

Hypercubes [16, 17] have become one of the most popular interconnection networks
due to their attractive features, including regularity, vertex symmetric, link symmetric,
small diameter, strong connectivity, recursive construction, partition capability, and small
link complexity. The locally twisted cube LTQn [20] (defined later in Sect. 2) is one of
the hypercube-variant networks. LTQn is similar to Qn in that the vertices can be one-
to-one labeled with 0–1 binary strings of length n, so the labels of any two adjacent
vertices are different at most in two consecutive bits. One advantage of LTQn is that the
diameter is only about one-half of the diameter of an n-dimensional hypercube. Some
properties of LTQn have been obtained, such as a connectivity of n [20], 4-pancyclic
[20], edge-pancyclic [12], and n edge-disjoint spanning trees [3]. For more study results
about the locally twisted cube, please refer to [10, 19].
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A Hamiltonian cycle in a graph is a cycle that visits through every vertex exactly
once. Many communication algorithms, such as all-to-all broadcasting algorithms, are
designed based on Hamilton cycles, and its benefits can be found in [11]. Hamiltonian
cycles in the graph are said to be edge-disjoint if they do not share any common edges.
Further, k (≥ 2) edge-disjoint Hamiltonian cycles also provide the edge-fault tolerant
hamiltonicity for the interconnection network. That is, when one edge in the Hamilto-
nian cycle fails, the other edge-disjoint Hamiltonian cycle can be used to replace it for
transmission.

Previous related works on edge-disjoint Hamiltonian are described below. Rowley
andBose [15] show that a slightlymodified degree 2r deBruijn graph can be decomposed
into r Hamiltonian cycles when r is a power of a prime. Barth and Raspaud [2] gave that
there are two edge-disjoint Hamiltonian cycles on the butterfly networks. Lee and Shin
[8] achieved reliable all-to-all broadcasting using edge-disjoint Hamiltonian cycles. Bae
et al. [1] studied edge-disjoint Hamiltonian cycles in k-ary n-cubes and hypercubes.
Petrovic and Thomassen [14] characterized the number of edge-disjoint Hamiltonian
cycles in hypertournaments. Hung et al. presented how to construct two edge-disjoint
Hamiltonian cycles in locally twisted cubes [4], crossed cubes [6], augmented cubes [5],
twisted cubes [7], transposition networks, and hypercube-like networks [6], respectively.
Wang et al. [18] showed that two edge-disjoint Hamiltonian cycles can be embedded into
parity cubes. Recently, Pai [13] presented a parallel algorithm for constructing two edge-
disjoint Hamiltonian cycles in crossed cubes. Li et al. [9] presented a parallel algorithm
for constructing two edge-disjoint Hamiltonian cycles in locally twisted cubes.

Hung [7] proved thatLTQnwith n� 4 contains two edge-disjointHamiltonian cycles,
and posted an open problem what is the maximum number of edge-disjoint Hamiltonian
cycles in LTQn for n � 6? Due to the constraint of edge-disjoint, the maximum number
is either 2 or 3 for LTQ6. In this paper, we show that there exist three edge-disjoint
Hamiltonian cycles on LTQn while n � 6.

The rest of the paper is organized as follows: In Sect. 2, the structure of locally
twisted cubes is introduced and some notations are given. Section 3 presented three
edge-disjoint Hamiltonian cycles in LTQ6. Based on this result, we further show how to
construct three edge-disjoint Hamiltonian cycles in LTQn while n ≥ 6. Finally, Sect. 4
is the concluding remarks of this paper.

2 Preliminaries

Interconnection networks are usually modeled as undirected simple graphs G = (V,
E), where the vertex set V (= V (G)) and the edge set E (= E(G)) represent the set of
processing units and the set of communication links between vertices, respectively. The
neighborhood of a vertex v in a graph G, denoted by N(v), is the set of vertices adjacent
to v in G. A cycle Cm of length m in G, denoted by v0 - v1 - v2 - … - vm–2 - vm-1 - v0, is
a sequence (v0, v1, v2, …, vm-1, v0) of vertices such that (vm-1, v0) ∈ E and (vi, vi+1) ∈
E for 0 ≤ i ≤ m –2. Now, we introduce locally twisted cubes as follows:

Definition 1: (Yang et al. [20]) The n-dimensional locally twisted cube LTQnis the
labeled graph with the following recursive fashion:
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(1) LTQ1 is the complete graph on two vertices labeled by 0 and 1. LTQ2 is a graph
consisting of four vertices with labels 00, 01, 10, 11 together with four edges (00,
01), (00, 10), (01, 11), and (10, 11).

(2) For n≥ 3, LTQn is composed of two subcubes LTQn–1, denoted as LTQ0
n and LTQ1

n,
such that each vertex x = 0xn−2xn−3…x0 ∈ V

(
LTQ0

n

)
is connected with the vertex

y = 1(xn−2 ⊕ x0) xn−3…x0 ∈ V (LTQ1
n) by an edge, where x and y are called the

(n − 1)-neighbors to each other.

For example, Fig. 1 shows locally twisted cubes LTQ3 and LTQ4. In this paper,
sometimes the labels of vertices are changed to their decimal.

(a) LTQ3 (b) LTQ4
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Fig. 1. Locally twisted cubes LTQ3 and LTQ4.

3 Main Results

In 2020, Li et al. [9] presented parallel algorithms for constructing two edge-disjoint
Hamiltonian cycles in LTQn. We will use the above result to expand to the main
contribution of this paper.

3.1 Three Edge-Disjoint Hamiltonian Cycles in LTQ6

According to [9], there exist two edge-disjoint Hamiltonian cycles in LTQ6. The first
cycle C64 is 0 - 1 - 13 - 15 - 9 - 11 - 7 - 6 - 38 - 39 - 43 - 41 - 47 - 45 - 33 - 32 - 36 -
37 - 35 - 34 - 42 - 40 - 44 - 46 - 62 - 60 - 56 - 58 - 50 - 51 - 53 - 52 - 48 - 49 - 61 - 63
- 57 - 59 - 55 - 54 - 22 - 23 - 27 - 25 - 31 - 29 - 17 - 16 - 20 - 21 - 19 - 18 - 26 - 24 -
28 - 30 - 14 - 12 - 8 - 10 - 2 - 3 - 5 - 4 - 0, and the second cycle C64 is 0 - 2 - 6 - 4 - 12
- 13 - 11 - 10 - 14 - 15 - 3 - 1 - 7 - 5 - 9 - 8 - 24 - 25 - 21 - 23 - 17 - 19 - 31 - 30 - 26 -
27 - 29 - 28 - 20 - 22 - 18 - 16 - 48 - 50 - 54 - 52 - 60 - 61 - 59 - 58 - 62 - 63 - 51 - 49 -
55 - 53 - 57 - 56 - 40 - 41 - 37 - 39 - 33 - 35 - 47 - 46 - 42 - 43 - 45 - 44 - 36 - 38 - 34
- 32 - 0. Due to the constraint of edge-disjoint, there are two C8s and twelve C4s after
LTQ6 removes all edges of two Hamiltonian cycles. Our idea is to remove an edge in
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Fig. 2. The third Hamiltonian cycle in LTQ6. The line with the red cross represents the removed
edge, and the thick red line represents the added edge. (Color figure online)

each cycle C8 and C4, and then connect these paths to form the third Hamiltonian cycle.
Figure 2 illustrates the construction of the third Hamiltonian cycle in LTQ6.

However, these added edges are taken from the second Hamiltonian cycle, which
causes it to be divided into several paths. Then, we connect these paths by adding the
previously removed edges to form the second newHamilton cycle. Figure 3 illustrates the
construction of the new second Hamiltonian cycle in LTQ6. Then, we have the following
lemma.
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Fig. 3. The new second Hamiltonian cycle in LTQ6. The line with the red cross represents the
removed edge, and the thick red line represents the added edge. (Color figure online)

Lemma 2. Let HC1 = 0 - 1 - 13 - 15 - 9 - 11 - 7 - 6 - 38 - 39 - 43 - 41 - 47 - 45 - 33 - 32
- 36 - 37 - 35 - 34 - 42 - 40 - 44 - 46 - 62 - 60 - 56 - 58 - 50 - 51 - 53 - 52 - 48 - 49 - 61 -
63 - 57 - 59 - 55 - 54 - 22 - 23 - 27 - 25 - 31 - 29 - 17 - 16 - 20 - 21 - 19 - 18 - 26 - 24 -
28 - 30 - 14 - 12 - 8 - 10 - 2 - 3 - 5 - 4 - 0, HC2 = 0 - 2 - 6 - 4 - 12 - 13 - 11 - 10 - 14 - 15
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- 3 - 1 - 7 - 5 - 9 - 8 - 24 - 16 - 48 - 50 - 18 - 22 - 20 - 28 - 29 - 45 - 43 - 27 - 26 - 30 - 62
- 63 - 51 - 49 - 55 - 53 - 57 - 56 - 40 - 41 - 25 - 21 - 37 - 39 - 23 - 17 - 33 - 35 - 19 - 31 -
47 - 46 - 42 - 58 - 59 - 61 - 60 - 44 - 36 - 52 - 54 - 38 - 34 - 32 - 0 and HC3 = 0 - 16 -
18 - 2 - 34 - 50 - 54 - 62 - 58 - 26 - 10 - 42 - 43 - 51 - 3 - 27 - 29 - 5 - 53 - 45 - 44 - 12 -
28 - 60 - 52 - 20 - 4 - 36 - 38 - 46 - 14 - 6 - 22 - 30 - 31 - 7 - 55 - 47 - 35 - 59 - 11 - 19 -
17 - 9 - 57 - 33 - 39 - 63 - 15 - 23 - 21 - 13 - 61 - 37 - 41 - 49 - 1 - 25 - 24 - 56 - 48 - 32 -
40 - 8 - 0. HC1, HC2 and HC3 form three edge-disjoint Hamiltonian cycles in LTQ6.

Proof. Since each of HC1, HC2 and HC3 is a C64 through LTQ6 that visits each vertex
exactly once, they are all Hamiltonian cycles. As for edge-disjoint, it can be checked by
Fig. 4. �

Fig. 4. Three edge-disjoint Hamiltonian cycles in LTQ6. Red thick lines indicate edges of HC1,
green dashed lines indicate edges ofHC2, and blue thin lines indicate edges ofHC3. (Color figure
online)
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3.2 Three Edge-Disjoint Hamiltonian Cycles in LTQn for N ≥ 7

Based on the previous results, we provide a recursive construction method of the
Hamiltonian cycle in LTQn for n ≥ 7.

Lemma 3. If there exists a Hamiltonian cycle with a pair of adjacent even vertices, i.e.
bit b0 = 0, in LTQn, then there exists a Hamiltonian cycle in LTQn+1.

Proof. By Definition 1, LTQn+1 is composed of two subcubes LTQn. We assume that
there exists a Hamiltonian cycle with a pair of adjacent even vertices, called u0 and v0, in
LTQn. We note that u and v represent the bit strings bn−1bn−2…b1 of these two vertices,
respectively. Since both LTQn+1

0 and LTQ1
n+1 are isomorphic with LTQn, we have the

Hamiltonian cycle HCA in LTQ0
n+1 and the Hamiltonian cycle HCB in LTQ1

n+1. Then,
we remove the edge (0u0, 0v0) in HCA and remove the edge (1u0, 1v0) in HCB. By
Definition 1, there exist edges (0u0, 1u0) and (0v0, 1v0), then we add these two edges
to form a Hamiltonian cycle in LTQn+1. �

Figure 5 illustrates the construction method of a Hamiltonian cycle in LTQn+1. In
this construction, we need to select a pair of adjacent even vertices. Why do we need the
condition “adjacent even vertices”? First, “adjacent” is to remove the edge of adjacent
vertices in the Hamiltonian cycle. Secondly, according to definition 1, only even vertices
can guarantee that vertex 0u0 is connected to vertex 1u0 and vertex 0v0 is connected to
vertex 1v0. Based on the results of Lemma 2 and 3, we choose the (0, 4) pair of HC1
to remove edges (0, 4) and (64, 68) and add edges (0, 64) and (4, 68) to form the first
Hamiltonian cycle in LTQ7. By the same way, choose the (2, 6) pair ofHC2 and the (16,
18) pair of HC3 to get another two Hamiltonian cycle in LTQ7. Obviously, the six edges
(0, 64), (4, 68), (2, 66), (6, 70), (16, 80) and (18, 82) are not common shared edges in
any two Hamiltonian cycles. We immediately have the following corollary.

Fig. 5. The construction of a Hamiltonian cycle in LTQn+1.

Corollary 4. There exist three edge-disjoint Hamiltonian cycles in LTQ7.

Based on the result of Lemma 2 and applying Lemma 3 recursively, we have the
following theorem.
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Theorem 5. There exist three edge-disjoint Hamiltonian cycles in LTQn for n ≥ 6.

4 Concluding Remarks

Hung [7] embedded two edge-disjoint Hamiltonian cycles into LTQn while n� 4. In this
paper, we show that LTQn with n � 6 contains three edge-disjoint Hamiltonian cycles.
It is interesting to see if there are four edge-disjoint Hamiltonian cycles in LTQn for n
≥ 8. So far, this is still an open problem.

Acknowledgments. This researchwas partially supported byMOSTgrants 107-2221-E-131-011
from the Ministry of Science and Technology, Taiwan.
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Abstract. Let C be a class of graphs. A graph G = (V, E) is C–probe
if V (G) can be partitioned into two sets: non-probes N and probes P,
where N is an independent set and new edges may be added between
some non-probe vertices such that the resulting graph is in the class C. In
this case, we say that (N ,P) is a C–probe partition of G. In the Unpar-
titioned Probe problem for a graph class C we are given a graph G and
asked whether G has a C–probe partition, i.e., such a problem consist of
recognizing the class of C-probe graphs. A graph G = (V, E) is an (r, �)-
graph when V can be partitioned into (S1, S2, . . . , Sr, K1, K2, . . . , K�)
such that S1, S2, . . . , Sr are independent sets, and K1, K2, . . . , K� are
cliques. A graph G is well-covered if every maximal independent set is
also maximum, and it is (r, �)-well-covered if it is well-covered as well as
an (r, �)-graph. In this paper, we study the complexity of the Unpar-
titioned Probe problem for the class of (r, �)-well-covered graphs. We
classify all but the (2, 0) and (1, 2) cases.

Keywords: Well-covered · (r, �)-graph · Probe · Recognition ·
Complexity

1 Introduction

Well-covered graphs were first introduced 50 years ago by Plummer [25] in
1970 as the class of graphs in which every maximal independent set has the
same cardinality. In other words, every maximal independent set is maximum.
The problem of recognizing a well-covered graph, which we denote by Well-
Coveredness, was proved to be coNP-complete by Chvátal and Slater [12]
and Sankaranarayana and Stewart [28]. In addition, fixed-parameter tractable
algorithms for Well-Coveredness were presented in [2,3]. The importance of
well-covered graphs is related to the fact that such a class is exactly the class
of graphs in which polynomial-time greedy algorithms for maximal indepen-
dent sets always returns maximum independent sets. Well-covered graphs were
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studied on bipartite graphs [27], bounded degree graphs [6], graphs without large
cycles [17], graphs with large girth [18], claw-free graphs [30], planar 3-connected,
simplicial, chordal, circular arc graphs [26], cographs, and P4-sparse graphs [22].

An (r, �)-partition of a graph G = (V,E) is a partition of V (G) into r inde-
pendent sets S1, . . . , Sr and � cliques K1, . . . , K�. A graph is (r, �) if it admits
an (r, �)-partition. For convenience, some of these sets are allowed to be empty.
A set containing a single vertex can be counted as either an independent set
or a clique. The P versus NP-complete dichotomy of recognizing (r, �)-graphs is
well-known [4]: the problem is in P if max{r, �} ≤ 2, and NP-complete other-
wise. Subclasses of (r, �)-graphs have been extensively studied in the literature.
For instance, the complexity of list partition problems on (r, �)-graphs was stud-
ied in [16], and polynomial-time algorithms to recognize cographs and chordal
graphs that are (r, �) were presented in [14,15].

Let r, � ≥ 0 be two fixed integers not simultaneously zero. A graph is (r, �)-
well-covered if it is both (r, �) and well-covered. Alves et al. [2] established the
complete classification of the complexity of recognizing (r, �)-well-covered graphs.

Let C be a class of graphs. A graph G = (V,E) is a C–probe graph if V (G)
can be partitioned into two sets: non-probes N and probes P, where N is an
independent set and new edges may be added between some non-probe vertices
such that the resulting graph is in the class C. Thus, the class of C–probe graphs
is the superclass of C where for each G in C–probe there is a graph G′ ∈ C such
that V (G) = V (G′) and the set of vertices incident to edges in E(G′) \ E(G)
is an independent set of G (denoted by N ). In this case, we say that (N ,P) is
a C–probe partition of G. Note that it is allowed N or P to be empty. In the
Unpartitioned Probe problem for a graph class C we are given a graph G
and asked whether G has a C–probe partition. In other words, Unpartitioned
Probe is the problem of recognizing the class of C–probe graphs. It is worth
mentioning that depending on the structural properties of C, C-probe can pre-
serve several interesting properties. For instance, when C is the class of chordal
graphs, C-probe graphs G have neither odd chordless cycles nor a complement of
a chordless cycle of length greater than 4 (see [20]), which implies, by the Strong
Perfect Graph Theorem [11], that Chordal probe graphs are perfect. Therefore,
studies regarding the recognition of C-probe graphs can help us identify super-
classes of C for which it may be possible to extend polynomial-time algorithms
primarily designed to solve problems on C, besides being a natural task for
polynomial-time recognizable graph classes C. In addition, in the Partitioned
Probe problem for a graph class C we are given a graph G and a partition
(N ,P) of V (G) and asked whether (N ,P) is a C–probe partition of G.

In 1994, Peisen Zhang et al. [32] defined the partitioned interval probe graphs.
One of the first papers to mention generalizing the concept of C-probe graphs
from interval to other graph classes is [21]. From then on, C-probe graphs have
been studied for several graph classes C such as interval [24], chain [21,23],
chordal [20], Ptolomaic [7], permutation [9], self-complementary classes of perfect
graphs [10], and cographs [8].
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In 1995, Golumbic, Kaplan, and Shamir [19] stated the Graph Sandwich
problem for property Π. The input of such a problem is a pair of graphs G1 =
(V,E1) and G2 = (V,E2) with E1 ⊆ E2, and the question is whether there is a
graph G = (V,E) with E1 ⊆ E ⊆ E2 such that G satisfies the property Π.

Graph Sandwich is a generalization of Partitioned Probe, since Parti-
tioned Probe instances (G = (V,E),N ,P) can be seen as Graph Sandwich
instances (G1, G2), where G1 = G, and E(G2) = E(G) ∪ {uv : u, v ∈ N}.
Hence, whenever Graph Sandwich is polynomial-time solvable for a property
Π, we have that Partitioned Probe is polynomial-time solvable for the class
of graphs satisfying the property Π, and whenever Partitioned Probe is hard
for a class of graphs satisfying a property Π, we have that Graph Sandwich is
hard for the property Π. On the other hand, nothing is known about the relation-
ship between the time complexities for Unpartitioned Probe, Partitioned
Probe, and Graph Sandwich.

Dantas et al. [13] established the P versus NP-complete dichotomy for
Unpartitioned Probe for (r, �)-graphs, showing that Unpartitioned Probe
for (r, �)-graphs is polynomial-time solvable if r + � ≤ 2, and NP-complete oth-
erwise. Recently, Alves et al. [1] studied the complexity of Graph Sandwich
for the property of being (r, �)-well-covered.

In this paper, we are interested in the time complexity of Unpartitioned
Probe for the property of being (r, �)-well-covered. We focus on the following
family of decision problems indexed with respect to the values of r and �:

We prove that Unpartitioned Probe for (k, �)-Well-Coveredness is
polynomial-time solvable when (r, �) = (0, 1), (1, 0), (1, 1) or (0, 2), the cases
(1, 2) and (2, 0) are left as open, and the other cases we classified as either NP-
hard or coNP-hard (see Table 1). Our polynomial-time algorithms generalize
previous studies on recognizing (r, �)-well-covered graphs. In the present paper,

Table 1. Complexity of Unpartitioned Probe for (k, �)-Well-Coveredness –
P stands for polynomial problem, coNPh stands for coNP-hard, NPc stands for NP-
complete, and NPh stands for NP-hard.
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we describe polynomial-time algorithms for Unpartitioned Probe for (0, 1),
(1, 0), (1, 1), and (0, 2)-well-covered graphs (Theorems 2, and 4, and Algorithms 1
and 2); and we prove that: Unpartitioned Probe for (0, �), � ≥ 3 (Theo-
rem 4), (3, 0) (Theorem 5), (2, 1) (Theorem 7), and (1, 3)-well-covered graphs
(Theorem 8) are (co)NP-hard problems. In addition, we use the monotonicity
(Theorem 6) in order to show that the other values are also (co)NP-hard.

Notation. This paper only deal with finite, simple and undirected graphs, for
short we say graphs. In this context, a graph G = (V,E) consist of a finite
nonempty set V of vertices, and a set E of unordered pairs of distinct vertices
of V , set of edges, with n = |V |, and m = |E|. An independent set S ⊆ V of a
graph G = (V,E) satisfies that if u, v ∈ S, then uv /∈ E. A clique Q ⊆ V of a
graph G = (V,E) satisfies that if u, v ∈ Q, then uv ∈ E. A set S is maximal
with respect to a property Π if S satisfies Π, and every set R containing and
not being S, does not satisfies Π. Let G = (V,E) be a graph and v ∈ V .
The open neighborhood N(v) of v, or neighborhood (for short) of v is the set
N(v) = {u : uv ∈ E}, and the degree d(v) of v in G is d(v) = |N(v)|. The
closed neighborhood, N [v] of v is the set N [v] = N(v) ∪ {v}. If B,S ⊂ V , the
neighborhood of B in S is NS(B) = {x ∈ S : ∃y ∈ B, x ∈ N(y)}, and the degree
dS(v) of v in S is dS(v) = |NS({v})|. We say that v is universal if N [v] = V ,
and isolated if N [v] = {v}. A graph G is a complete graph Kn if V is a clique,
and G is split if it is (1, 1). Finally, a graph G is a complete split graph if there
is a partition V = (S,Q), such that S is an independent set and Q is a clique
and for each vertex s ∈ S, it holds that N(s) = Q.

2 Polynomial-Time Solvability

Since (1, 0)-graphs have edge set empty, the following two propositions are clear.

Proposition 1 [2]. A graph is (1, 0)-well-covered if and only if it is (1, 0).

Note that when E(G) = ∅ the probe partition for (1, 0)-well-coveredness is
realized with (N ,P) = (∅, V ).

Proposition 2. There is a probe partition (N ,P) for an instance G = (V,E) of
Unpartitioned Probe for (1, 0)-well-coveredness if and only if E = ∅.

Next, we discuss the (0, 1) case. Recall that (0, 1)-graphs are complete graphs.

Proposition 3 [2]. A graph is (0, 1)-well-covered if and only if it is (0, 1).

Proposition 4. There is a probe partition (N ,P) for an instance G = (V,E)
of Unpartitioned Probe for (0, 1)-well-coveredness if and only if there
is an (1, 1)-partition (S,K) of V (G), where S is an independent set and K is a
clique, such that each vertex u of S is adjacent to each vertex v of K (G is a
complete split graph).
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Proof. Suppose that there is a probe partition (N ,P) for an instance G = (V,E)
of Unpartitioned Probe for (0, 1)-well-coveredness. Hence, H = (V,E∪
{uv : u, v ∈ N}) is a complete graph. Then, the induced subgraph G[P] of G
must be a clique, and for each pair u, v with u ∈ N and v ∈ P, uv ∈ E. Thus,
there is a partition (S,K) = (N ,P) of V , where S is an independent set and K
is a clique, such that each vertex u of S is adjacent to each vertex v of K. Now,
suppose that there is a partition (S,K) of V , where S is an independent set and
K is a clique, such that each vertex u of S is adjacent to each vertex v of K. We
can set N = S, P = K and H = (V,E ∪{uv : u, v ∈ N}) is a complete graph. �

Since the recognition of (complete) split graphs can be done in polynomial
time, the problem for (0, 1)-well-coveredness is in P. Alves et al. [2] showed the
following characterization for (1, 1)-well-coveredness.

Proposition 5 [2]. A graph G = (V,E) is (1, 1)-well-covered if and only if there
is a partition (called (1, 1)-well-covered partition) of V into (S,K) where S is a
independent set, K is a clique, and either dS(v) = 1 for each vertex v ∈ K, or
dS(v) = 0 for each vertex v ∈ K.

Lemma 1. Let G = (V,E) be an instance of Unpartitioned Probe for
(1, 1)-Well-Coveredness. There is a probe partition (N ,P) of G for which
there is a (1, 1)-well-covered graph H = (V,E ∪ E′) with E′ ⊆ {uv : u, v ∈ N}
and having a (1, 1)-well-covered partition V = (S,K) such that K ⊆ N , if and
only if each edge uv of G has a vertex v of degree d(v) = 1 in G.

Lemma 2. Let G = (V,E) be an instance of Unpartitioned Probe for
(1, 1)-Well-Coveredness. There is a probe partition (N ,P) of G for which
there is a (1, 1)-well-covered graph H = (V,E ∪ E′) with E′ ⊆ {uv : u, v ∈ N}
and having a (1, 1)-well-covered partition V = (S,K) such that K∩P �= ∅, if and
only if there is a partition (S1, S2, Q) of V , where S1 and S2 are independent
sets and Q is a non-empty clique, such that each vertex u of S2 is adjacent to
each vertex v of Q, and either dS1(v) = 1 for each vertex v ∈ (S2 ∪ Q), or
dS1(v) = 0 for each vertex v ∈ (S2 ∪ Q).

Our polynomial-time algorithm for Unpartitioned Probe for (1, 1)-
Well-Coveredness relies on the argument that a (2, 1)-partition of a graph
G, if any, can be found in polynomial time [4,5], and once a (2, 1)-partition
V = (S1, S2, Q) is given, where S1 and S2 are independent sets and Q is a
clique, one can enumerate in polynomial-time all sparse-dense partitions of G
into a clique Qi and a bipartite graph G[S1

i ∪ S2
i ] (see [16]).

Theorem 1. Algorithm 1 correctly asserts in polynomial time whether G has a
probe partition for (1, 1)-well-coveredness.

Algorithm 1. Unpartitioned probe for (1, 1)-well-coveredness algorithm
Output: A probe partition (N , P) of G = (V, E) and a set E′ ⊆ {uv : u, v ∈ N}, such that
H = (V, E ∪ E′) is (1, 1)-well-covered, or No when there is no such a partition.

1. If (G is (2, 0)) and (each edge uv of E has a vertex v of degree d(v) = 1) then
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N ← ∅;
For each edge e ∈ E do

N ← N ∪ {v}, where v is an endpoint of e and d(v) = 1;

Return
(
(N , P = V \ N ), E′ = {uv : u, v ∈ N}

)
;

2. If G is not a (2, 1)-graph then Return (No);
3. For each Qi in a sparse-dense partition of G in a clique Qi and a bipartite G[S1

i ∪ S2
i ] do

Let (A, B) be a partition for S1 ∪ S2, such that every vertex of A is completely
adjacent to any vertex of Qi, and A is maximal;

4. If (B is an independent set) and (G[A] has vertex cover number at most one) then
5. If (B is a set of isolated vertices in G) then

Let {a} be a non-empty vertex cover3 of G[A] and let b ∈ B;
E′ = {uv : u, v ∈ A \ {a}} ∪ {bx : x ∈ A \ N [a]};
Return

(
(N = (A \ {a}) ∪ {b}, P = V \ N ), E′

)
;

6. Else
If (A is an independent set) and (∃ uv ∈ E such that u ∈ Qi and v ∈ B) then
If (|NB(q)| = 1, ∀ q ∈ Qi) and (|NB(a)| ≤ 1, ∀ a ∈ A) then
If there is a vertex a ∈ A such that |NB(a)| = 0 then
If there is a vertex b ∈ B such that |NA(b)| = 0 then

N ← A ∪ {b};
E′ ← {uv : u, v ∈ A} ∪ {ba : a ∈ A and |NB(a)| = 0};
Return

(
(N , P = V \ N ), E′}

)
;

Else Return
(
(N = A, P = B ∪ Qi), {uv : u, v ∈ A}

)
;

7. Else If (N(B) ⊆ A) then
For each non-empty vertex cover1 {a} of G[A] do
If (B ∪ {a}) is an independent set) then
If (for every x ∈ A \ {a} it holds that |N(B∪{a})(x)| ≤ 1) then
If A is an independent set then

E′ ← {uv : u, v ∈ A \ {a}} ∪ {ax : x ∈ A \ (NA(B) ∪ {a})}
Return

(
(N = A, P = B ∪ Q), E′

)
;

Else
If there is a vertex x ∈ A \ {a} such that |NB∪{a}(x)| = 0 then
If there is a vertex b ∈ B such that |NA(b)| = 0 then

N ← (A \ {a}) ∪ {b};
E′ ← {uv : u, v ∈ (A \ {a})} ∪ {bx : x ∈ (A \ {a}), |NB∪{a}(x)| = 0};
Return

(
(N , P = V \ N ), E′}

)
;

Else
E′ ← {uv : u, v ∈ A \ {a}}
Return

(
(N = A \ {a}, P = B ∪ Q ∪ {a}), E′

)
;

8. Return
(
No

)
.

For the (0, 2) case we recall that (0, 2)-graphs are co-bipartite graphs.

Proposition 6 [2]. A graph G = (V,E) is (0, 2)-well-covered if and only if G is
(0, 2) and either G is a complete graph, or G has no universal vertex.

Lemma 3. Let G = (V,E) be an instance of Unpartitioned Probe for
(0, 2)-Well-Coveredness. There is a probe partition (N ,P) of V (G) for (0, 2)-
well-coveredness if and only if either G is a complete split graph, or G has no
universal vertex and there is a partition (S,Q1, Q2) of V , where S is an inde-
pendent set, and Q1 and Q2 are cliques, such that for each vertex u of S, either
u is adjacent to each vertex v of Q1, or u is adjacent to each vertex v of Q2.

Again, our polynomial-time algorithm for Unpartitioned Probe for
(0, 2)-Well-Coveredness is based on the fact that a (1, 2)-partition of a graph
G, if any, can be found in polynomial time [4,5], and once a (1, 2)-partition

1 When G[A] has no edges any vertex form a non-empty vertex cover.
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V = (S,Q1, Q2) is given, where S is an independent sets and Q1 and Q2 are
cliques, one can enumerate in polynomial-time all sparse-dense partitions of G
into an independent set Si and a co-bipartite graph (see [16]). Thus, we can
“guess” the independent set S of the partition (S,Q1, Q2), i.e., we enumerate
all the partitions and check each one. Finally, given a sparse-dense partition, we
use 2-SAT to decide which clique a vertex belongs to, i.e., whether from such a
partition there can arise a (0, 2)-well-covered partition.

Theorem 2. Algorithm 2 correctly asserts in polynomial time whether G has a
probe partition for (0, 2)-well-covered graphs.

Algorithm 2. Unpartitioned probe for (0, 2)-well-coveredness algorithm.
Output: A probe partition (N , P) of G = (V, E) and a set E′ ⊆ {uv : u, v ∈ N}, such that
H = (V, E ∪ E′) is a (0, 2)-well-covered graph; or No whether there is no such a partition.

1. If G = (V, E) is a complete split graph with partition (S, K) then

Return
(
(N = S, P = K), E′ = {uv : u, v ∈ N}

)
;

2. If (G has a universal vertex) or (G is not a (1, 2)-graph) then
Return (No);

3. For each S in a sparse-dense partition of G into an independent set S and a co-bipartite graph
G[Q1 ∪ Q2] do

N ← S;
P ← Q1 ∪ Q2;
(to guess a (0, 2)-well-covered partition as well as the edges to be added between
vertices of N we construct a 2-SAT instance, where ui = True means that
vertex u must belong to the clique Ki).

4. I = (U, C) ←
(

{p1, p2, n1, n2 : p ∈ P, n ∈ N},

{(p1 ∨ p2), (p1 ∨ p2), (n1 ∨ n2), (n1 ∨ n2) : p ∈ P, n ∈ N}
)
;

(the current clauses ensure that each vertex of G belong to either K1 or K2).
5. For each pair u, v such that u ∈ P and v ∈ V with u = v, and uv /∈ E do

C ← C ∪
{
(u1 ∨ v1), (u1 ∨ v1), {u2 ∨ v2), (u2 ∨ v2)

}
;

(pairs u, v of non-adjacent vertices with u ∈ P belong to distinct cliques).

6. Run a 2-Sat polynomial-time algorithm on I;
7. If I has a satisfying truth assignment η : V → {T, F} then

K1 ← K2 ← ∅;
For i ← 1 to n = |U | do

If η(v1) = T , then K1 ← K1 ∪ {v} else K2 ← K2 ∪ {v};
8. For each vertex v ∈ V do

If v ∈ K1 and v has edges for each vertex of K2 then
K1 ← K1 \ {v}; K2 ← K2 ∪ {v};

If v ∈ K2 and v has edges for each vertex of K1 then
K2 ← K2 \ {v}; K1 ← K1 ∪ {v};

9. Return
(

N , P, E′ = {uv : u, v ∈ (N ∩ Ki), i ∈ {1, 2}}
)
;

10. Return
(

No
)
.

3 Hardness Results

We use the NP-complete problem (0, �)-Well-Coveredness with � ≥ 3 in [2],
to prove that Unpartitioned Probe for (0, �)-Well-Coveredness, for each
� ≥ 3, is a NP-complete problem.

Theorem 3 [2]. If � ≥ 3 then (0, �)-Well-Coveredness is NP-complete.

Theorem 4. If � ≥ 3 then Unpartitioned Probe for (0, �)-Well-
Coveredness is NP-complete.
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Proof. A positive certificate C to a Yes-instance G = (V,E) of Unpartitioned
Probe for (0, �)-Well-Coveredness is a partition (K1,K2, . . . ,K�) of V
where K1,K2, . . . ,K� are cliques of G. Recall that � is fixed, so one can check
whether G is well-covered in O(n�) time. Therefore, the problem is in NP.

Now, let G be an instance of (0, �)-Well-Coveredness, � ≥ 3. In polyno-
mial time with respect to the size of G we construct an instance H of Unpar-
titioned Probe for (0, �)-Well-Coveredness, such that G is (0, �)-well-
covered if and only if H is a (0, �)-well-covered probe graph. The construction of
H is as follows: The vertex set of the graph H is V (H) = {v1, v2 : v ∈ V (G)},
and the edge set is E(H) = {u1v1, u2v2 : uv ∈ E(G)}∪ {u1v2 : u, v ∈ V (G)}.
Note that the graph H consists of the join of two copies G1, G2 of the graph G.
Notice that G is (0, �)-well-covered if and only if H is a (0, �)-well-covered probe
graph. Therefore, for each � ≥ 3, Unpartitioned Probe for (0, �)-Well-
Coveredness is NP-complete. �
Next, we prove that for each r ≥ 3 the Unpartitioned Probe for (r, 0)-
well-coveredness problem is NP-hard. We use the well-known result due to
Stockmeyer [29] that r-coloring for r ≥ 3 is NP-complete, together with the
following theorem.

Proposition 7 (Topp and Volkmann [31]). Let G = (V,E) be an n-vertex
graph, V = {v1, v2, v3, . . . , vn}, and let H be obtained from G such that V (H) =
V ∪ {u1, u2, u3, . . . , un} and E(H) = E ∪ {viui : i ∈ {1, 2, 3, . . . , n}}. Then H is
a well-covered graph where every maximal independent set has size n.

Observe that every maximal independent set I of H has a subset IG = I ∩V .
Let U ⊆ {1, 2, 3, . . . , n} be the set of indices i such that vi ∈ I. Since I is
maximal, the set {ui : i ∈ {1, 2, 3, . . . , n}\U} must be contained in I, so |I| = n.

Theorem 5. Unpartitioned Probe for (r, 0)-Well-Coveredness is NP-
hard, for each r ≥ 3.

Proof. Let G = (V,E) be an instance of r-coloring (r ≥ 3), and let H be the
graph obtained from G by the transformation described in Proposition 7. Notice
that H is well-covered. Since adding pendant vertices does not increase the
chromatic number of non-empty graphs, it holds that if G is r-colorable then H
is a (r, 0)-well-covered graphs. Hence it is enough to consider (N ,P) = (∅, V (H)).
Conversely, if G is not r-colorable then the chromatic number of G is at least
r + 1. Since the addition of vertices and edges does not decrease the chromatic
number, it holds that H is not a (r, 0)-well-covered probe graph. �
Theorem 6 (Monotonicity). If Unpartitioned Probe for (r, �)-Well-
Coveredness is (co)NP-hard, then Unpartitioned Probe for (r, � + 1)-
Well-Coveredness is (co)NP-hard.

To prove that Unpartitioned Probe for (2, 1)-well-coveredness is
coNP-hard we consider a special version of 3-Sat, where every satisfying truth
assignment has at least one true variable and at least one false variable. This
problem can be reduced from 3-Sat by adding the 3 new variables x, y, z and
the clauses (x, y, z), (x, y, z).
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Theorem 7. Unpartitioned Probe for (2, 1)-Well-Coveredness is
coNP-hard.

Proof. Let I = (U,C) be a 3-sat instance with n = |U | boolean variables and
m = |C| clauses over U .

In polynomial time with respect to the size of I, we construct an instance G
of Unpartitioned Probe for (2, 1)-well-coveredness, such that I is not
satisfiable if and only if G is a (2, 1)-well-covered probe graph. The construc-
tion of G is as follows: The vertex set of G is V (G) = A ∪ B ∪ U ∪ U ∪ C,
where U = {u1, u2, . . . , un}, U = {u1, u2, . . . , un}, C = {c1, c2, . . . , cm},
A = {a1, a2, . . . , an, an+1, an+2}, and B = {b1, b2, . . . , bn, bn+1, bn+2}. The G
edge set is E(G) =

{
aiuj : i ∈ {1, . . . , n + 2}, j ∈ {1, . . . n}} ∪{

biuj : i ∈
{1, . . . , n + 2}, j ∈ {1, . . . , n}}∪ {aicj , bicj : i ∈ {1, . . . , n + 2}, j ∈ {1, . . . m}}∪
{uiui : ui ∈ U}∪ {cicj : ci, cj ∈ C, i �= j}∪ {xc : x ∈ U ∪ U, c ∈ C and x occurs
in c}. We observe that I is not satisfiable if and only if G is a (2, 1)-well-covered
probe graph. This completes the proof of Theorem 7. �

To prove the NP-completeness of Unpartitioned Probe for (1, 3)-Well-
Coveredness, we present a reduction from (0, 3)-Well-Coveredness [2].
Also, we remark that (0, 3)-graphs have only independent sets of size at most
three. Thus, (0, 3)-well-covered graphs that are not complete are either 2-well-
covered or 3-well-covered (both are recognizable in polynomial time). In particu-
lar, in the NP-completeness proof of (0, 3)-Well-Coveredness, Alves et al. [2]
constructed instances that are 3-well-covered (every maximal independent set
has size three). Therefore, the problem of recognizing (0, 3)-well-covered graphs
still NP-complete even when it is known that the input graph is 3-well-covered.
We assume that this is the case.

Theorem 8. Unpartitioned Probe for (1, 3)-Well-Coveredness is NP-
hard.

Proof. Let G = (V,E) be an instance of (0, 3)-Well-Coveredness such that
every maximal independent set of G has size three (3-well-covered). Recall that
from [2] it holds that recognizing (0, 3)-well-covered graphs G is NP-complete
even when it is known that G is 3-well-covered. At this point, in polynomial
time with respect to the size of G, we construct an instance H of Unparti-
tioned Probe for (1, 3)-Well-Coveredness, such that G is a (0, 3)-well-
covered graph if and only if H is a (1, 3)-well-covered probe graph. The con-
struction is as follows: First, we define graphs A and B, which are used to
define H. A = (V (A), E(A)), where V (A) = ({a1, a2, a3, a4, a5, a6, a7}, E(A) =
{a1a2, a1a3, a2a3, a3a4, a2a4, a4a5, a5a6, a6a1}). and B = (V (B), E(B)),
where V (B) = {b1, b2, b3, b4}, E(B) = ∅. The vertex set of the graph H
is V (H) = V (G) ∪ V (A) ∪ V (B), and the edge set of H is the union of
the following sets: E(G), E(A), {aibj : i ∈ {1, 2, 3, 4, 5, 6, 7}, j ∈ {1, 2, 3, 4}},
{aiv : i ∈ {1, 2, 3, 4, 5, 6, 7}, v ∈ V (G)}, {biv : i ∈ {1, 2, 3, 4}, v ∈ V (G)}.

This completes the construction of H. For the sake of the reader, with The-
orem 8, we offer in Fig. 1, three examples: one positive and two negatives for
Unpartitioned Probe for (1, 3)-Well-Coveredness.
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Fig. 1. Three instances of Unpartitioned Probe for (1, 3)-Well-Coveredness
obtained, according to Theorem 8, from graphs G1, G2, and G3, respectively, depicted
in Fig. 1 (a), (b), and (c). Graph G1 = (V1, E1) is a positive instance, while graphs
G2 = (V2, E2) and G3 = (V3, E3) are negative instances of (0, 3)-Well-Coveredness.
We observe that graph G2 is not (0, 3)-well-covered because it is not well-covered, and
graph G3 is not (0, 3)-well-covered because it is not a (0, 3)-graph.

The key property of graphs A and B is that the minimum number of cliques
to cover the vertices of A or B is 4. In particular, A is a well-covered graph with
a maximum independent set of size three and clique cover number of size four.
In addition, among the graphs A, B, and G, the graph B is the unique one with
an independent set of size greater than three.

Now, suppose that G is a (0, 3)-well-covered graph. We define N = V (B),
and set E′ = {b1b2}. Let F = (V (H), E(H)∪E′). First, note that every maximal
independent set S of F is entirely contained in V (A), or in V (G), or in V (B),
since each vertex in one of these sets dominates all the vertices in the other sets.
In addition, it is easy to see that F [V (A)] and F [V (B)] are well-covered, and their
maximum independent sets have size three, and as G is 3-well-covered it holds
that F is well-covered. To see that F is a (1, 3)-graph, consider (Q1, Q2, Q3) as
a (0, 3)-partition of the graph G. Hence, (S,K1,K2,K3) where S = {a7}, K1 =
Q1 ∪ {a1, a2, a3} ∪ {b1, b2}, K2 = Q2 ∪ {a4, a5} ∪ {b3}, K3 = Q3 ∪ {a6} ∪ {b4}),
is a (1, 3)-partition of F .

Conversely, suppose that H is a (1, 3)-well-covered probe graph. Let (N ,P)
be a (1, 3)-well-covered probe partition of H. Let F be a (1, 3)-well-covered
graph, with (1, 3)-partition (S,K1,K2,K3) = V such that E(H) = E(G) ∪
E′, with E′ ⊆ {uv : u, v ∈ N}. By construction, each vertex in one of the
graphs A,B, or G dominates the vertices in the other two graphs. Therefore, the
independent set N as well as any other independent set of H must be entirely
contained in just one of these three subgraphs of H.

Since G and A are 3-well-covered then N ⊆ V (B) because B is an indepen-
dent set of size four. Now, since N ⊆ V (B), and the clique cover number of A is
4, we have that S ⊂ V (A). Hence, (K1 ∩ V,K2 ∩ V,K3 ∩ V ) is a (0, 3) partition
for G, and G is a (0, 3)-well-covered graph. �
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4. Brandstädt, A.: Partitions of graphs into one or two independent sets and
cliques. Discret. Math. 152(1–3), 47–54 (1996). https://doi.org/10.1016/0012-
365X(94)00296-U
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Abstract. Recognizing graphs with high level of symmetries is hard
in general, and usually requires additional structural understanding. In
this paper we study a particular graph parameter and motivate its usage
by devising efficient recognition algorithms for three highly symmetric
graph families: folded cubes, I-graphs and double generalized Petersen
graphs.

For integers �, λ, m a simple graph is [�, λ, m]-cycle regular if every
path of length � belongs to exactly λ different cycles of length m. We
identify all [1, λ, 8]-cycle regular I-graphs and all [1, λ, 8]-cycle regular
double generalized Petersen graphs. For n ≥ 7 we show that for a folded
cube FQn is [1, n − 1, 4], [1, 4n2 − 12n + 8, 6] and [2, 4n − 8, 6]-cycle
regular, and identify the corresponding exceptional values of cycle reg-
ularity for n < 7. As a consequence we describe linear recognition algo-
rithms for I-graphs and double generalized Petersen graphs, and an
O(|E| log |V |) recognition algorithm for the family of folded cubes.

We believe that the structural observations and methods used in the
paper are of independent interest and could be used for solving other
algorithmic problems.

Keywords: Recognition algorithm · Generalized Petersen graphs ·
Double generalized Petersen graph · Folded cubes

1 Introduction

Important graph classes such as bipartite graphs, (weakly) chordal graphs, per-
fect graphs and forests are defined or characterized by their cycle structure.
A particularly strong description of a cyclic structure is the notion of cycle-
regularity, introduced by Mollard [23]:

For integers l, λ,m a simple graph is [l, λ,m]-cycle regular if every path on
l + 1 vertices belongs to exactly λ different cycles of length m.

It is perhaps natural that cycle-regularity mostly appears in the literature in
the context of symmetric graph families such as hypercubes, Cayley graphs or
circulants. Indeed Mollard showed that certain extremal [3, 1, 6]-cycle regular
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graphs correspond exactly to the graphs induced by the two middle-layers of
odd-dimensional hypercubes. Also, for [2, 1, 4]-cycle regular graphs Mulder [24]
showed that their degree is minimized in the case of Hadamard graphs, or in
the case of hypercubes. In relation with other graph families, Fouquet and Hahn
[13] described the symmetric aspect of certain cycle-regular classes, while in
[19] authors describe all [1, λ, 8]-cycle regular members of generalized Petersen
graphs, and use this result to obtain linear recognition algorithm for generalized
Petersen graphs. Understanding the structure of subgraphs of hypercubes which
avoid all 4-cycles does not seem to be easy. Indeed, a question of Erdős regarding
how many edges can such a graph contain remains open after more than 30 years
[11].

In this paper we study cycle-regularity and more general cyclic aspects of
three graph families, namely I-graphs, double generalized Petersen graphs and
folded cubes, with the focus of devising efficient recognition algorithms. In all
three cases, if the input graph is a member of the observed family, we not only
provide its parameters but also give a certificate of correctness, i.e. we give an
exact isomorphism. In general the graph recognition problem can be difficult to
solve. For instance it is NP-hard to recognise unit disk graphs [5], coordinate
graphs [29], string graphs [18], clique graphs [1] etc.

Fig. 1. I-graph I(12, 2, 3), double generalized Petersen graph DP(10, 2), and folded
cube FQ4.

This paper is structured as follows. In Sect. 1.1 we provide basic definitions
and notations that are used throughout the paper, in Sect. 2 we present two
of above mentioned graph families, namely I-graphs and double generalized
Petersen graphs, observe their cyclic structure and provide their linear recog-
nition algorithm, in Sect. 3 we do the similar for the folded cubes. Due to the
space constraints, some proofs are deferred to the full version of this paper [17].

1.1 Preliminaries

Unless specified otherwise, all graphs in this paper are finite, simple, undirected
and connected. For a given graph G we use a standard notation for a set of
vertices V (G) and a set of edges E(G). A k-cycle C in G, on vertices v1, v2, . . . , vk
from V (G) using edges e1, e2, . . . , ek from E(G), will be denoted in two ways: as
(v1, . . . , vk), or as (e1, . . . , ek). For integers a and b we denote with gcd(a, b) the
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greatest common divisor of a and b respectively. For a binary value x we use x
to denote 1 − x.

Definition 1. Let l, λ,m be positive integers. A simple graph G is [l, λ,m]-cycle
regular if every path on l+1 vertices of G belongs to exactly λ different m-cycles
of G.

It is easy to see that [1, λ, 8]-cycle regular cubic graphs are also [0, 3λ/2, 8]-
cycle regular, but the converse does not hold (for example in a 5-prism every
vertex lies in four 8-cycles, whereas every edge lies in three or two different
8-cycles). Related to this we define a function σ : E(G) �→ N, where σ(e) corre-
sponds to the number of distinct 8-cycles an edge e belongs to. We call σ(e) an
octagon value of an edge e, and we say that a graph G has a constant octagon
value if σ is a constant function.

2 I-Graphs and Double Generalized Petersen Graphs

I-graphs were introduced in the Foster census [12], and are trivalent or cubic
graphs with edges connecting vertices of two star polygons. They form a natural
generalization of the well-known generalized Petersen graphs introduced in 1950
by Coxeter [8] and later named by Watkins in 1969 [32].

I-graphs are denoted by I(n, j, k) for integers n, j, k, where n ≥ 3 and n ≥ j, k ≥
1. The vertex set of I(n, j, k) is defined as {u0, u1, . . . , un−1, w0, w1, . . . , wn−1}
while the edge set consists of outer edges uiui+j , inner edges wiwi+k and spoke
edges uiwi, where the subscripts are taken modulo n.

Generalized Petersen graphs are denoted by G(n, k) and form a subclass of
I-graphs, where parameter j has value 1. In other words G(n, k) � I(n, 1, k)
(Fig. 2).

Fig. 2. Example of a G(11, 3), I(11, 2, 3) and DP(11, 3).

The family of I-graphs has been studied extensively with respect to their
automorphism group and isomorphisms [2,14,26], Hamiltonicity [4], spectrum
[25], and independence number [10,16].

Our first result identifies all [1, λ, 8]-cycle regular members and determines
the corresponding values of λ.
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Theorem 1. An arbitrary I-graph is never [1, λ, 8]-cycle regular, except when
isomorphic to I(n, j, k) where j = 1 and

(n, k) ∈ {(3, 1), (4, 1), (5, 2), (8, 3), (10, 2), (10, 3), (12, 5), (13, 5), (24, 5), (26, 5)}.

Double generalized Petersen graphs consist of two identical copies of gener-
alized Petersen graphs, where instead of connecting the vertices inside a star
polygon, we connect the vertices from two different star polygons accordingly.

Double generalized Petersen graphs are denoted by DP(n, k), where n ≥ 3
and k < n/2. The vertex set of DP(n, k) consists of {u0, u1, . . . , un−1, w0,
w1, . . . , wn−1, x0, x1, . . . , xn−1, y0, y1, . . . , yn−1}. The edge-set contains outer
edges uiui+1, xixi+1, inner edges wiyi+k, yiwi+k and spoke edges uiwi, xiyi,
where the subscripts are taken modulo n.

These graphs were first introduced in 2012 by Zhou and Feng [35] and have been
studied with respect to their Hamiltonicity [28], automorphisms [20], vertex-
transitivity [36], determining number [9] and canonical double covers [27].

Similarly as in the case of I-graphs we identify all [1, λ, 8]-cycle regular mem-
bers and determine corresponding values of λ.

Theorem 2. A double generalized Petersen graph is never [1, λ, 8]-cycle regular,
except when isomorphic to DP(n, k) where (n, k) ∈ {(5, 2), (10, 2)}.

Using the above mentioned structural properties we get the following result.

Theorem 3. I-graphs and double generalized Petersen graphs can be recognized
in linear time.

Let us now start with the proof of these structural results and the recognition
algorithm. We start with the study of I-graphs and their properties. For a slightly
changed definition of equivalent cycles the same approach can be used to obtain
the results for the family of double generalized Petersen graphs. Due to space
constraints we omit the details of those calculations and refer the reader to [17].

2.1 Equivalent 8-Cycles

In the case of I-graphs, without loss of generality, we always assume that
j, k < n/2. Since I(n, j, k) is isomorphic to I(n, k, j), we restrict ourselves
to cases when j ≤ k. It is well known [2] that an I-graph I(n, j, k) is dis-
connected whenever d = gcd(n, j, k) > 1. In this case it consists of d copies
of I(n/d, j/d, k/d). Therefore, throughout the paper we consider only graphs
I(n, j, k) where gcd(n, j, k) = 1. We also know [14] that two I-graphs I(n, j, k)
and I(n, j′, k′) are isomorphic if and only if there exists an integer a, which
is relatively prime to n, for which either {j′, k′} = {aj (mod n), ak (mod n)}
or {j′, k′} = {aj (mod n), −ak (mod n)}. Throughout the paper, whenever we
discuss I-graphs with certain parameters, we consider only the lexicographically
smallest possible parameters by which the graph is uniquely determined.
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Fig. 3. Examples of non-equivalent 8-cycles in I-graphs.

A particular member of automorphism group of every I-graph is a rotation
defined as: ρ(ui) = ui+1, ρ(wi) = wi+1. Clearly, applying n times the rotation
ρ yields an identity automorphism. When acting on I-graphs with ρ we get 3
edge orbits: orbit of outer edges EJ , orbit of spoke edges ES and orbit of inner
edges EI . Edges from the same orbit EJ , ES , or EI have the same octagon value,
which we denote by σJ , σS and σI , respectively. Therefore the octagon value of
an I-graph is said to be a triple (σJ , σS , σI).

We say that two 8-cycles of an I-graph are equivalent iff we can map one
into the other using rotation ρ. Let G � I(n, j, k) be an arbitrary I-graph and
let C be one of its 8-cycles. With γ(C) we denote the number of equivalent 8-
cycles to C in G. Each 8-cycle contributes to the octagon value of an I-graph.
We denote the contributed amount with τ(C), defined as the triple (δj , δs, δi),
where we calculate δj , δs, δi by counting the number of outer, spoke and inner
edges of a cycle and multiply these numbers with γ(C)/n. If a graph G admits
m non-equivalent 8-cycles C1, C2, . . . , Cm, one may calculate its octagon value
(σJ , σS , σI) as

∑m
i=1 τ(Ci).

The following claim serves also as an example of the above-mentioned defi-
nitions.

Claim. For I(n, j, k) where n > 3 and integers k, j < n/2 there always exists an
8-cycle.

Indeed, if k �= j it is of the form

C∗ = (w0, w±k, u±k, u±k±j , w±k±j , w±j , u±j , u0).

If k = j it is of the form

C7 = (u0, uk, u2k, u3k, w3k, w2k, wk, w0).



392 N. Klobas and M. Krnc

2.2 Characterization of Non-equivalent 8-Cycles

Our aim is to identify all possible 8-cycles that can appear in an arbitrary I-
graph and determine their contribution towards the octagon value of the graph.
It is easy to see that an arbitrary 8-cycle can have either 4, 0 or 2 spoke edges, so
we obtained this list by distinguishing 8-cycles by the number of spoke edges they
admit. In the case of the 8-cycle admitting 2 spoke edges, we further distinguish
cases by the number of outer and inner edges within a given 8-cycle.

We present the analysis of 8-cycles admitting 4 spoke edges only, as it is the
easiest case to deal with (for remaining cases see [17]). This analysis leads to
complete characterisation of 8-cycles for the family of I-graphs, presented in the
Table 1 and Fig. 3.

Table 1. All non-equivalent 8-cycles of I-graphs, their existence conditions, their con-
tribution towards the octagon value of an I-graph τ , number of their equivalent cycles
in an I-graph γ.

8-Cycles with 4 Spoke Edges. In addition to 4 spoke edges the 8-cycle must also
have two inner and two outer edges. When using the spoke edge there are two
options for choosing an inner (outer) edge. After considering all cases it is easy
to see that there can be just two such 8-cycles, C∗ (see Sect. 2.1), which exists
whenever j �= k, and C0, which is of the following form:

C0 = (w0, w±k, u±k, u±k±j , w±k±j , w±2k±j , u±2k±j , u±2k±2j).

Cycle C0 exists whenever 2k +2j = n. One can verify easily, that n applications
of the rotation ρ to C∗ and n/2 applications of the rotation ρ to cycle C0 maps
the cycle back to itself. Therefore there are n equivalent cycles to C∗ and n/2
equivalent cycles to C0 in an I-graph I(n, j, k) and they contribute (2, 4, 2) and
(1, 2, 1), respectively, to the graph octagon value.

2.3 Obtaining Constant Octagon Value

Every 8-cycle of an I-graph contributes to the octagon value of each edge parti-
tion. It turns out that if we can identify at least one edge partition of a graph,
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we can easily determine its parameters (see Algorithm 1). Therefore, we want to
find graphs with constant octagon value. These are graphs for which all edges
touch the same number of 8-cycles. They are called [1, λ, 8]-cycle regular graphs.
We consider all possible collections of 8-cycles and determine octagon values of
I-graphs admitting those 8-cycles. Since I-graphs are defined with 3 parameters
and all 8-cycles give constraints for these parameters, it is enough to consider
collections of at most 4 cycles, to uniquely determine all [1, λ, 8]-cycle regular
graphs. After a thorough analysis (see [17]) we obtain the result in Fig. 4. Sur-
prisingly, it turns out that all [1, λ, 8]-cycle regular I-graphs are in the family of
generalized Petersen graphs.

Fig. 4. All [1, λ, 8]-cycle regular I-graphs. That is, (a) the graph on no 8-cycles; (b)
the graph containing C0 and C7; (c) graphs containing C5, C6 and C∗; and (d) graphs
containing C3, C4 and C∗.

In the case of double generalized Petersen graphs, the list of [1, λ, 8]-cycle
regular graphs is even shorter; it consist of Dodecahedral graph, and of DP(10, 2).
These two graphs are depicted on Fig. 4c and Fig. 1. The above calculation proves
Theorems 1 and 2.

2.4 Recognition Algorithm

The recognition algorithm for both graph families (see Algorithm1) relies on the
fact that there is just a small number of I-graphs (ten) and double generalized
Petersen graphs (two) with the constant octagon value (see previous section). In
particular, whenever the input graph G of the Algorithm 1 is a member of one of
the observed graph families and is not [1, λ, 8]-cycle regular, we can immediately
identify one of its edge orbits (EI , EJ , or ES), of size |V (G)|/2. Since the octagon
value of each edge is computed in constant time and there is a finite number of
the [1, λ, 8]-cycle regular I-graphs and double generalized Petersen graphs, the
first part of Theorem 3 holds.
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Algorithm 1. Recognition procedure for I-graphs or for DP graphs, depending
on the subprocedure Extend(G,U).
Require: connected cubic graph G
1: P ← an empty dictionary
2: for e ∈ E(G) do
3: s = octagonValue(e) � calculate σ(e)
4: P[s].append(e)

5: U ← an item of P with minimum positive cardinality
6: if G[U ] is a 2-factor then � 2-factor is a 2-regular graph
7: U ← {e | e ∈ E(G), e is adjacent to an edge of U} � U is a perfect matching

in G
8: return Extend(G, U)

Correctness and Time Complexity of the Algorithm. We first note, that if G
is not cubic then it does not belong to observed graph families. Since checking
whether a graph is cubic takes linear time we simply assume that the input graph
is cubic. Furthermore, if G is not connected then it can only be a member of the
family of I-graphs whenever it consists of multiple copies of a smaller I-graph
G′. However, this case can easily be resolved by separately checking each part,
so we can assume that the input graph is connected. Algorithm1 consists of the
following 3 parts.

1. Partitioning the edges with respect to the octagon value
The algorithm determines the octagon value of each edge e ∈ E(G) and builds
a partition set P of graph edges (see lines 1–4). Since G is cubic and all 8-
cycles containing edge e consist of edges which are at distance at most 4 from
e, it is enough to check a subgraph H of G of order at most 62, to calculate
the octagon value of an edge e. Therefore, calculation of octagonValue(e)
takes O(1) time for each edge e and this whole part is performed in Θ(|E(G)|)
time.

2. Identifying the edge-orbit which corresponds to the set of spokes
Throughout lines 5–7 we determine the edge-orbit which corresponds to the
set of spokes. It is easy to see that this requires additional O(|E(G)|/3) time.

3. Using set U for determining parameters of a given graph
The algorithm uses computed set U to determine exact isomorphism between
G and an I-graph or a double generalized Petersen graph, if it exists. This
procedure differentiates regarding the graph family we are considering. The
related procedure Extend(G,U) is performed in Θ(|E(G)|) time (see [17] for
details).

3 Folded Cubes

Folded cubes were studied already by Brouwer in 1983 [6] and are formed by
identifying antipodal vertices of the hypercube graph.
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n-dimensional hypercubes are denoted by Qn for a positive integer n. A
graph Qn contains 2n vertices represented by binary strings (x1x2 . . . xn).
Two vertices of Qn are adjacent whenever they differ in exactly one bit.

Folded n-cubes are denoted by FQn for a positive integer n. A graph FQn is
a graph on 2n−1 vertices and is constructed from Qn, by identifying pairs of
antipodal vertices, these are vertices which are exactly n apart. Alternatively
it can be defined by adding complementary edges to the hypercube Qn−1, i.e.
edges between (x1x2 . . . xn−1) and (x1x2 . . . xn−1), for example see (Fig. 5).

Fig. 5. Example of a 4-dimensional hypercube and a folded cube FQ5.

Some known results of these graphs include characterizing their cyclic structure
[33], edge-fault-tolerant properties [34], their automorphism group [7,22, pg. 265]
and Hamiltonian-connectivity and strongly Hamiltonian-laceability [15]. They
were studied also in the context of efficient routing algorithms and were used in
many other applications, see [6,21,30,31].

Since folded cubes are distance-transitive (i.e. the distance between any pair
of vertices is the same), see for example [3], they are arc-transitive, so they are
[1, λ,m]-cycle regular for all m. For this family we fully determine the values of
cycle-regular parameters in the case of (	, λ,m) ∈ {(1, 0, 4), (1, 0, 6), (2, 9, 6)}.

Theorem 4. Folded cubes FQ1 and FQ2 are [1, 0, 4]-cycle regular. Folded cube
FQ4 is [1, 9, 4]-cycle regular. Any other folded cube FQn is [1, n − 1, 4]-cycle
regular.

Theorem 5. Folded cubes FQ1, FQ2 and FQ3 are [1, 0, 6]-cycle regular. Folded
cubes FQ4 and FQ6 are [1, 36, 6] and [1, 200, 6]-cycle regular. Any other folded
cube FQn is [1, 4(n − 2)(n − 1), 6]-cycle regular.

Theorem 6. Folded cubes FQ1,FQ2 and FQ3 are [2, 0, 6]-cycle regular. Folded
cubes FQ4 and FQ6 are [2, 12, 6] and [2, 40, 6]-cycle regular. Any other folded
cube FQn is [2, 4(n − 2), 6]-cycle regular.

Besides studying their cyclic structure we devise also the recognition algo-
rithm.

Theorem 7. Folded cubes can be recognized in O(N log N) time, for N =
|V (G)| + |E(G)|.
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As the proofs of the above results are a bit technical, we skip them and invite
the interested reader to check [17] for details.

4 Conclusion

It is easy to observe that the gap between linear lower bound and our upper
bound for recognizing folded cubes can be expressed in a sub-logarithmic multi-
plicative factor. It is hence natural to ask whether the recognition can be done
faster, i.e. in linear time. From the structural point of view, this paper focuses
on determining various cyclic parameters for some well-studied families. Namely,
for the folded cubes we describe the value of λ in the context of their [1, λ, 4],
[1, λ, 6] and [2, λ, 6]-cycle regularity.

The [1, λ, 8]-cycle regularity remains open. To this end, we note that folded
cubes FQ1,FQ2 and FQ3 are [1, 0, 8]-cycle regular, while folded cubes FQ4,FQ6

and FQ8 are [1, 36, 8], [1, 3580, 8] and [1, 10794, 8]-cycle regular. For n ∈ {5, 7, 9,
10, 11, 12, 13, 14} it holds that FQn is [1, 27n3 − 160n2 + 291n − 158, 8]-cycle
regular.1 Hence we ask the following:

Conjecture 1. For n ≥ 9, folded cube FQn is [1, 27n3 − 160n2 + 291n − 158, 8]-
cycle regular.

For the families of I-graphs and double generalized Petersen graphs, we also
settled [1, λ, 8]-cycle regularity. For the latter family we observe the following
isomorphism property:

Let n, k be positive integers, where n is even and k < n/2. Then the graph
DP(n, k) is isomorphic to DP(n, n/2 − k).

This observation is a step towards the characterization of isomorphisms of double
generalized Petersen graphs, which is an open question.

Studying the cyclic structure as described in this paper led to the construction
of fast recognition algorithms for three parametric families. To the best of our
knowledge, in addition to this work, such a procedure was so far only used in [19]
for the family of generalized Petersen graphs. We believe that a similar approach
should give interesting results for other parametric graph families of bounded
degree, such as Johnson graphs, rose window graphs, Tabačjn graphs, Y -graphs,
or H-graphs.
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Abstract. Let G be a graph with vertex set V (G) and edge set E(G).
A set D ⊆ V (G) is a dominating set of G if every vertex not in D is
adjacent to at least one vertex of D. A restrained dominating set of G is
a dominating set S such that every vertex not in S is adjacent to another
vertex in V (G) − S. An independent restrained dominating set of G is
a restrained dominating set such that it is also an independent set. The
domination (resp., restrained domination, and independent restrained
domination) number of G, denoted by γ(G) (resp., γr(G), and γir(G)) is
the minimum cardinality of a dominating (resp., a restrained dominat-
ing, and an independent restrained dominating) set of G. The domination
(resp., restrained domination, and independent restrained domination)
problem on a graph G is to compute a dominating (resp., a restrained
dominating, and an independent restrained dominating) set of G with
size γ(G) (resp., γr(G), and γir(G)). Extending supergrid graphs are a
natural extension of grid graphs. They are first appeared here and contain
grid, supergrid, triangular supergrid, and diagonal supergrid graphs as
subclasses. The domination problem on grid graphs was known to be NP-
complete, and hence it is NP-complete for extending supergrid graphs.
However, the complexities of the restrained and independent restrained
domination problems on (extending) supergrid graphs are still unknown.
In this paper, we will prove these two problems to be NP-complete for
diagonal supergrid graphs, and hence they are NP-complete for extend-
ing supergrid graphs. These results can be easily applied to supergrid
graphs. Then, we compute γr(Rm×n) and γir(Rm×n), and verify that
γr(Rm×n) = γir(Rm×n) = γ(Rm×n) for rectangular supergrid graph
Rm×n which form a subclass of diagonal supergrid graphs excluding
paths.
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1 Introduction

For two sets A and B, let A−B denote the set of elements in A that are not in B.
Let G be a graph. We will use V (G) and E(G) to denote the vertex set and edge
set of G, respectively. Let v ∈ V (G) and let S ⊆ V (G). The subgraph induced
by S is represented as G[S]. The open neighborhood of vertex v is denoted by
NG(v) = {u ∈ V (G)|(u, v) ∈ E(G)}, while its closed neighborhood is given by
NG[v] = NG(v) ∪ {v}. In general, let NG(S) and NG[S] denote ∪v∈SNG(v) and
∪v∈SNG[v], respectively. The degree of vertex v in G, denoted by degG(v), is the
number of vertices adjacent to v. A vertex v of G is called a leaf if degG(v) = 1.
A set S ⊆ V (G) is called an independent set if any two distinct vertices in
S are not adjacent. In addition, if two edges contain no common vertex, then
they are called independent edges. Let D ⊆ V (G). Set D dominates vertex v
if NG[v] ∩ D �= ∅. If D dominates all vertices of a subset S ⊆ V (G), then we
say that D dominates S. Set D is called a dominating set of G if and only if
D dominates V (G); that is, every vertex not in D is adjacent to one vertex in
D. The domination number γ(G) is the minimum cardinality of a dominating
set of G. A minimum dominating set of G is a dominating set with size γ(G).
The domination problem is to find a minimum dominating set of G, and it is
well-known to be NP-complete for general graphs [4].

Variations of the domination problem seek to find a minimum dominating set
with some additional properties, e.g., to be independent or to induce a connected
graph. These problems arise in a number of distributed network applications,
where the problem is to locate the smallest number of centers in networks such
that every vertex is nearby at least one center. The concepts of domination and
its variations have many applications and have been widely studied in literature
(see [7,8]); a rough estimate says that it occurs in more than 6000 papers to date.
In this paper, we will study two variants of the domination problem, namely
restrained domination and independent restrained domination problems.

A set S ⊆ V (G) is a restrained dominating set if every vertex in V (G)−S is
adjacent to a vertex in S and another vertex in V (G) − S, i.e., S is a dominat-
ing set and G[V (G) − S] contains no isolated vertex. The concept of restrained
domination was introduced by Telle and Proskurowski [17] in 1997. Note that
every graph has a restrained dominating set since S = V (G) is such a set. Let
γr(G) denote the size of a smallest restrained dominating set of G. A restrained
dominating set of G is called minimum if its size equals to γr(G). The restrained
domination problem is to compute a minimum restrained dominating set of a
graph. This problem was known to be NP-complete for bipartite graphs, chordal
graphs [3], and so on. In this paper, we will study the restrained domination prob-
lem and its one variant, namely independent restrained domination. The inde-
pendent restrained domination problem is initially studied in [16]. A restrained
dominating set of G is called independent if it is an independent set. The inde-
pendent restrained domination number of G, denoted by γir(G), is the minimum
cardinality of an independent restrained dominating set of G. The independent
restrained domination problem is to find an independent restrained dominating
set of a graph G with size γir(G).
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The concept of restrained domination can be applied to the prisoners and
guards system [17]. In this system, guards are to monitor the prisoners. Here,
every vertex in the restrained dominating set corresponds to a position of a
guard, and each vertex not in the restrained dominating set corresponds to a
position of a prisoner. Each prisoner is observed by a guard for security while
each prisoner is seen by at least one other prisoner for protecting the rights of
prisoners. To minimize the cost, it is desirable to place as few guards as possible.
Of course, it is possible to probe other applications of the restrained domination
concept on the other fields, such as the sensor network monitoring system. A
possible application for independent restrained dominating set S is the location
of product distribution centers or hospitals where a certain level of redundancy is
desired. In this case, vertices in S represent cities with a distribution center and
edges represent transportation routes between cities. Selecting the cities in which
to place centers using an independent restrained dominating set guarantees that
every city without a distribution center is at least next to a city with one. It also
guarantees that every city without a distribution center has a neighbor that also
lacks a distribution center. In case of shortages at one distribution center, every
city has access to a different center by going through one of its neighbors.

The two-dimensional integer grid G∞ is an infinite graph whose vertex set
consists of all points of the Euclidean plane with integer coordinates and in
which two vertices are adjacent if and only if the (Euclidean) distance between
them is equal to 1. A grid graph is a finite, vertex-induced subgraph of G∞.
For a node v in the plane with integer coordinates, let vx and vy represent the
x and y coordinates of node v, respectively, denoted by v = (vx, vy). If v is a
vertex in a grid graph, then its possible adjacent vertices include (vx, vy − 1),
(vx − 1, vy), (vx + 1, vy), and (vx, vy + 1). The two-dimensional integer supergrid
S∞ is an infinite graph whose vertex set consists of all points of the plane with
integer coordinates and in which two vertices are adjacent if and only if the
difference of their x or y coordinates is not larger than 1. A supergrid graph
is a finite, vertex-induced subgraph of S∞, and an extending supergrid graph
is a finite and connected subgraph of S∞. Notice that a supergrid graph is
also called original supergrid graph, and extending supergrid graphs, which are
first appeared here, are not necessary to be vertex-induced subgraphs of S∞.
Thus, supergrid graphs form a subclass of extending supergrid graphs, i.e., any
supergrid graph is an extending supergrid graph but the reverse is not true.
For a vertex v in (extending) supergrid graph Gs, NGs

(v) ⊆ {(vx, vy − 1), (vx −
1, vy), (vx+1, vy), (vx, vy+1), (vx−1, vy−1), (vx+1, vy+1), (vx+1, vy−1), (vx−
1, vy +1)} In the figures, we will assume that (1, 1) is the coordinates of the most
upper-left vertex of a grid or (extending) supergrid graph. Let (u, v) be an edge
of an extending supergrid graph with ux � vx. The edge (u, v) is called horizontal
(resp., vertical) if uy = vy (resp., ux = vx), and is said to be diagonal if it is
neither a horizontal nor a vertical edge. A diagonal edge (u, v) is called l-type
if ux = vx − 1 and uy = vy − 1, and is called r-type otherwise. A grid graph
is an extending supergrid graph without any diagonal edge. Thus, grid graphs
form a subclass of extending supergrid graphs. A diagonal supergrid graph is an



404 R.-W. Hung and M.-J. Chiu

Fig. 1. The containment relations among the classes of grid, diagonal supergrid, tri-
angular supergrid, and extending supergrid graphs, where C → C′ indicates C′ is a
subclass of C.

extending supergrid graph whose edge set contains at least one l-type and one r-
type diagonal edges, and a triangular supergrid graph is an extending supergrid
graph whose edge set contains at least one l-type diagonal edge and contains
no r-type diagonal edge. Let Cs be the class of extending supergrid graphs, Cg

be the class of grid graphs, Cd be the class of diagonal supergrid graphs, and
let Ct be the class of triangular supergrid graphs. Then, Cg ⊂ Cs, Cd ⊂ Cs,
Ct ⊂ Cs, and Cg ∩ Cd = Cg ∩ Ct = Cd ∩ Ct = ∅. Figure 1 shows the relationship
among these four graph classes. Obviously, all grid graphs are bipartite [15]
but (extending, diagonal, triangular) supergrid graphs may not be bipartite. In
general, a supergrid graph may not be a diagonal or triangular supergrid graph,
and the reverse is also true.

A rectangular grid (or called complete grid) graph Gm×n has mn nodes with
vertex u = (ux, uy) adjacent to v = (vx, vy) if and only if |ux−vx|+ |uy−vy| = 1.
A rectangular supergrid graph Rm×n is a special supergrid graph with vertex set
{v = (vx, vy)|1 � vx � n and 1 � vy � m} and edge set {(u, v)|0 � |ux − vx| � 1
and 0 � |uy − vy| � 1}. Thus, for μ ∈ V (Gm×n) and υ ∈ V (Rm×n), 1 �
degGm×n

(μ) � 4 and 1 � degRm×n
(υ) � 8.

Previous related works are summarized below. The domination problem on
grid graphs has been shown to be NP-complete [2]. Many authors studied the
domination numbers of rectangular grid graphs [1,5,6]. Gonçalves et al. com-
puted γ(Gm×n) = 	 (m+2)(n+2)

5 
 − 4 for n � m � 16 [5]. In [3], Domke et al.
computed γr(Pn) = n − 2 · 	n−1

3 
 and γr(Cn) = n − 2 · 	n
3 
, where Pn and

Cn are a path and a cycle with n vertices, respectively. Supergrid graphs were
first appeared in [9], in which the Hamiltonian problems on supergrid graphs
were proved to be NP-complete, and every rectangular supergrid graph contains
a Hamiltonian cycle. In [10], Hung proved that linear-convex supergrid graphs
always contain Hamiltonian cycles. In 2017, Hung et al. proved that rectangu-
lar supergrid graphs (with one trivial exception) are always Hamiltonian con-
nected [11]. Recently, we verified the Hamiltonicity and Hamiltonian connectivity
of some shaped supergrid graphs, including triangular, parallelogram, and trape-
zoid, and alphabet [12,13]. In [14], we proved the domination and independent
domination problems on supergrid graphs to be NP-complete. In this paper, we
will prove the restrained domination problem on diagonal supergrid graphs to be
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NP-complete. This result can be easily extended to the independent restrained
domination problem. Thus, these two problems on extending supergrid graphs
are also NP-complete. By a simple modification, these two problems can be easily
verified to be NP-complete for supergrid graphs. Then, we compute γr(Rm×n)
and γir(Rm×n) for rectangular supergrid graph Rm×n.

The paper is structured as follows. In Sect. 2, some notations and defini-
tions are introduced. In Sect. 3, we prove that the restrained domination and
independent restrained domination problems on diagonal supergrid graphs are
NP-complete, and hence they are NP-complete for extending supergrid graphs.
These NP-complete results can be easily applied to supergrid graphs. Section 4
computes γr(Rm×n) and γir(Rm×n). Finally, we make some concluding remarks
in Sect. 5.

2 Notations

In this section, we will introduce some notations used in this paper. A path
in a graph G is a sequence (v1, v2, . . . , vk−1, vk) of adjacent vertices starting
from v1 and ending at vk and is denoted by (v1, vk)-path, where all the vertices
v1, v2, . . . , vk are distinct except that possibly the path is a cycle when v1 = vk.
In general, a path with n vertices is denoted by Pn if no ambiguity appears.

The two-dimensional supergrid graph S∞ is the infinite graph whose vertex
set consists of all points of the plane with integer coordinates and in which two
vertices are adjacent if the difference of their x or y coordinates is not larger
than 1. A supergid graph is a finite, vertex-induced subgraph of S∞, and an
extending supergrid graph Gs is a finite and connected graph such that V (Gs) ⊂
V (S∞) and E(Gs) ⊂ E(S∞). For a vertex v ∈ V (Gs), it is represented as
(vx, vy), where vx and vy are the x and y coordinates of v respectively. Then, 1 �
degGs

(v) � 8. A diagonal supergrid graph is an extending supergrid graph such
that it contains at least one l-type and one r-type diagonal edges. Then, diagonal
supergrid graphs form a subcalss of extending supergrid graphs. However, a
diagonal supergrid graph is not necessary to be a supergrid graph, and the
reverse is also true.

Rectangular supergrid graphs first appeared in [9], in which the Hamiltonian
cycle problem is solved in linear time. A rectangular supergrid graph Rm×n

is a supergrid graph with vertex set V (Rm×n) = {v = (vx, vy)|1 � vx � n
and 1 � vy � m} and edge set E(Rm×n) = {(u, v)|0 � |ux − vx| � 1 and
0 � |uy − vy| � 1}. In this paper, without loss of generality we will assume
that m � n for Rm×n. Let v be a vertex in Rm×n with m � 2. The vertex v is
called a corner of Rm×n if degRm×n

(v) = 3. There are four corners of R(m,n)
including upper-left, upper-right, down-left, and down-right corners coordinated
as (1, 1), (n, 1), (1,m), and (n,m), respectively (see Fig. 2). Note that we will
assume that (1, 1) are coordinates of the upper-left corner of R(m,n), except
we explicitly change this assumption. For example, Fig. 2 shows a rectangular
supergrid graph R8×10 and it also indicates the types of edges and corners.
Note that a grid graph contains horizontal and vertical edges, but it contains
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Fig. 2. A rectangular supergrid graph R8×10, where bold dashed lines indicate vertical
and horizontal separations.

no diagonal edge. In addition, rectangular supergrid graphs form a subclass of
diagonal supergrid graphs except paths.

3 NP-Completeness Results

In this section, we will prove that the restrained and independent restrained
domination problems for diagonal supergrid graphs are NP-complete. In [14], the
domination and independent domination problems on (original) supergrid graphs
have been proved to be NP-complete. We will apply the similar concept to show
that the restrained domination problem is NP-complete for diagonal supergrid
graphs. By a simple extension, the independent restrained domination problem
on diagonal supergrid graphs can be easily verified to be NP-complete. Then,
these two problems are also NP-complete for extending supergrid graphs. To
prove it, we establish a polynomial-time reduction from the domination problem
on grid graphs. In [2], Clark et al. proved that the domination problem on grid
graphs is NP-complete.

Theorem 1 (See [2]). The domination problem on grid graphs is NP-complete.

Given a grid graph Gg, we will construct a diagonal supergrid graph Gd such
that Gg has a dominating set D with size |D| � k if and only if Gd contains a
restrained dominating set D′ with size |D′| � k + 2|E(Gg)|. The construction
of Gd from Gg is sketched as follows. First, we enlarge the input grid graph
Gg such that each edge of Gg is transformed into a path P8 with 7 edges; i.e.,
enlarge each edge of Gg by 7 times. Let the enlarged grid graph be G′

g. For
example, Fig. 3(b) shows grid graph G′

g enlarged from grid graph Gg in Fig. 3(a).
In the second step, each enlarged path of graph G′

g is replaced by a connected
component which is a small diagonal supergrid graph. The connected component
connecting u and v is called a triangle (u, v)-tentacle, denoted by T (u, v), where
u, v ∈ V (Gg) and are called connectors of T (u, v). Figure 3(c) depicts a triangle
(u, v)-tentacle. Then, for each leaf v of Gg we replace it with a triangle containing
v, as shown in Fig. 3(d), where degGg

(v) = 1. Finally, the constructed graph is
a diagonal supergrid graph Gd whose edge set contains at least one l-diagonal
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Fig. 3. (a) A grid graph Gg, (b) a grid graph G′
g by enlarging each edge of Gg 7 times,

(c) a triangle (u, v)-tentacle T (u, v) to replace the enlarged (u, v)-path of G′
g, and (d) a

constructed diagonal supergrid graph Gd obtained from G′
g by replacing each enlarged

path with the triangle tentacle, and by replacing each leaf with a triangle, where solid
lines indicate the edges of Gg and Gd, double circles represent the vertices of Gg, and
solid circles indicate the vertices in a dominating set (resp., restrained dominating set)
of Gg (resp., Gd).

and r-diagonal edges. For example, Fig. 3(d) shows a diagonal supergrid graph
Gd constructed from grid graph Gg in Fig. 3(a). The above construction is called
Algorithm Construct-DiSupergrid and can be easily done in polynomial time.

In [14], we have provided a rule to arrange these triangle tentacles of Gd such
that they are disjoint except their connectors. Due to space limitation, we omit
the arrangement of triangle tentacles. The arrangement rule is called Rule AT.
Clearly, Algorithm Construct-DiSupergrid, together with Rule AT, can be done
in polynomial time. Thus, the following lemma holds true.

Lemma 1. Given a grid graph Gg, Algorithm Construct-DiSupergrid constructs
a diagonal supergrid graph Gd in polynomial time.
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Fig. 4. The minimum restrained dominating set of a triangle (u, v)-tentacle T (u, v) for
(a) u, v ∈ D′, (b) u ∈ D′ and v �∈ D′, and (c)–(e) u, v �∈ D′, where D′ is a restrained
dominating set of Gd, solid circles or squares indicate the vertices in D′, and ⊗ indicates
the vertex not in D′ and is dominated by a vertex in D′ − T (u, v).

In the following, we will prove that grid graph Gg has a dominating set D
with size |D| � k if and only if diagonal supergrid graph Gd contains a restrained
dominating set D′ with size |D′| � k+2|E(Gg)|. We first observe some properties
of triangle tentacles. These properties will be used in proving the above sufficient
and necessary conditions. Let D′ be a restrained dominating set of Gd, and
let T (u, v) be a triangle tentacle with connectors u and v. We will denote the
restriction of D′ to H by D′

‖H for a subgraph H of Gd. Let ud ∈ NGd
(u) ∩ D′

if u �∈ D′, and vd ∈ NGd
(v) ∩ D′ if v �∈ D′. Then, ud and vd dominate u and

v, respectively, if u, v �∈ D′. Depending on whether u, v are in D′, we consider
three cases: (1) u, v ∈ D′, (2) u ∈ D′ and v �∈ D′, and (3) u, v �∈ D′. Suppose
that u, v ∈ D′. Since D′ is a restrained dominating set of Gd, Gd[T (u, v) − D′]
contains no isolated vertex. To dominate T (u, v) − (NGd

[u] ∪ NGd
[v]), it needs

at least two vertices. Thus, |D′
‖T (u,v)| � 4 (see Fig. 4(a)). Let W = {w1, w2}

in T (u, v) − {u, v}, as depicted in Fig. 4(a). Then, W ∪ {u, v} is a restrained
dominating set of T (u, v). Thus, |D′

‖T (u,v)−{u,v}| � 2. Due to space limitation,
we omit the proofs of the other cases and they can be observed in Figs. 4(b)–(e).
The following lemma summarizes these properties.

Lemma 2. Let D′ be a restrained dominating set of Gd, and let T (u, v) be a
triangle tentacle with connectors u and v. Then, the following statements hold
true:

(1) If u, v ∈ D′, then |D′
‖T (u,v)−{u,v}| � 2 (see Fig. 4(a)).

(2) If u ∈ D′ and v �∈ D′, then |D′
‖T (u,v)−{u}| � 2 and there exist vertices

vd ∈ D′ and v1 �∈ D′ such that vd dominates v and v is adjacent to v1 (see
Fig. 4(b)).

(3) If u, v �∈ D′, then
(3-1) if (NGd

(u) − T (u, v)) ∩ D′ �= ∅ and (NGd
(v) − T (u, v)) ∩ D′ �= ∅, then

|D′
‖T (u,v)| � 2 (see Fig. 4(c));
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(3-2) if (NGd
(u) − T (u, v)) ∩ D′ = ∅ or (NGd

(v) − T (u, v)) ∩ D′ = ∅, then
|D′

‖T (u,v)| � 3 (see Figs. 4(d)–(e)).

In the following, we will prove that grid graph Gg has a dominating set D
with size |D| � k if and only if diagonal supergrid graph Gd contains a restrained
dominating set D′ with size |D′| � k + 2|E(Gg)|. We first prove the only if part
in Lemma 3. Due to space limitation, we omit its proof.

Lemma 3. Assume that grid graph Gg has a dominating set D with size |D| �
k. Then, diagonal supergrid graph Gd contains a restrained dominating set D′

with size |D′| � k + 2|E(Gg)|.
In our proof of the above lemma, we will compute two vertices, not connec-

tors, of each triangle tentacle in Gd by using Lemma 2 (see Fig. 4) such that
they are in D′. For example, Fig. 3(a) shows a dominating set D of Gg with size
4. The constructed restrained dominating set D′ of Gd with size 4 + 2 × 11 = 26
is depicted in Fig. 3(d).

Next, we will prove the if part in Lemma 4. Due to space constraints, the
details of its proof are omitted.

Lemma 4. Assume that diagonal supergrid graph Gd has a restrained domi-
nating set D′ with size |D′| � k + 2|E(Gg)|. Then, grid graph Gg contains a
dominating set D with size |D| � k.

In our proof of the above lemma, we first construct a restrained dominating
set D̂ of Gd obtained from D′ to satisfy the following properties:

(p1) |D̂| � |D′|,
(p2) for each triangle (u, v)-tentacle T (u, v), |D̂ ∩ (T (u, v) − {u, v})| = 2,
(p3) for each triangle (u, v)-tentacle T (u, v) with u, v �∈ D̂, there exist z1 ∈

NGg
(u) and z2 ∈ NGg

(v) such that z1, z2 ∈ D̂ while degGg
(u) �= 1 and

degGg
(v) �= 1, and

(p4) for each triangle (u, v)-tentacle T (u, v) with degGg
(v) = 1 and v �∈ D̂,

u �∈ D̂.

A dominating set D of Gg is then constructed from D̂ as follows: (1) initially,
let D = D̂; (2) remove all vertices of D not in Dg from D; and (3) the resultant
set D will be a dominating set of Gg.

Since D̂ ∩ T (u, v) contains exactly two vertices not in Gg for each triangle
tentacle T (u, v), we get that |D| = |D̂|−2|E(Gg)|. Then, |D| = |D̂|−2|E(Gg)| �
|D′| − 2|E(Gg)| � (k + 2|E(Gg)|) − 2|E(Gg)| = k. Thus, we construct a domi-
nating set D of Gg with size |D| � k.

Combining Lemmas 3 and 4, we summarize the following lemma:

Lemma 5. Let Gg be a grid graph and let Gd be the diagonal supergrid graph
constructed from Gg by Algorithm Construct-DiSupergrid and Rule AT. Then,
Gg has a dominating set D with size |D| � k if and only if Gd contains a
restrained dominating set D′ with |D′| � k + 2|E(Gg)|.
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Obviously, the restrained domination problem for diagonal supergrid graphs
is in NP. By Theorem 1, Lemma 1, and Lemma 5, we conclude the following
theorem:

Theorem 2. The restrained domination problem on diagonal supergrid graphs
is NP-complete.

A restrained dominating set of the supergrid graphs constructed in the proofs
of Lemmas 3 and 4 is also an independent set (see Fig. 3(d) and Fig. 4). Thus,
the independent restrained domination problem on diagonal supergrid graphs is
also NP-complete and hence the following theorem holds.

Theorem 3. The independent restrained domination problem on diagonal
supergrid graphs is NP-complete.

By Fig. 1 and Theorems 2–3, the restrained domination and independent
restrained domination problems on extending supergrid graphs are NP-complete.
By a simple modification of triangle tentacle, we can obtain a vertex-induced
subgraph Gd of S∞. The related properties of the modified tentacle are the
same as those of original triangle tentacle (ref. Lemma 2). We then have the
following corollary:

Corollary 1. The restrained domination and independent restrained domina-
tion problems on (original) supergrid graphs are NP-complete.

4 The Restrained and Independent Restrained
Domination Number of Rectangular Supergrid Graphs

In this section, we will compute γr(Rm×n), the restrained domination number,
and γir(Rm×n), the independent restrained domination number, for rectangular
supergrid graph Rm×n. By symmetry, without loss of generality we will assume
that n � m for Rm×n. We first compute the restrained domination number
γr(Rm×n) of Rm×n. In [3], Domke et al. computed γr(R1×n) = γr(Pn), where
Pn is a path with n vertices, as follows.

Lemma 6 (see [3]). γr(R1×n) = γr(Pn) = n − 2 · 	n−1
3 
.

Next, we consider Rm×n with m � 2. Since a restrained dominating set of a
graph G is also a dominating set of G, γ(G) � γr(G) for any graph G. In [14], we
computed γ(Rm×n) = �m

3 ��n
3 �. Since γ(Rm×n) � γr(Rm×n), �m

3 ��n
3 � is a lower

bound of γr(Rm×n) for m � 2. That is, �m
3 ��n

3 � � γr(Rm×n) for n � m � 2.
The following lemma shows that γr(R2×n) = γr(R3×n) = �n

3 � by constructing
its upper bound. Due to space limitation, we omit its proof.

Lemma 7. γr(R2×n) = γr(R3×n) = �n
3 �.

Now, we consider Rm×n with n � m � 3 in the following lemma. Due to
space constraints, we omit its proof.
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Lemma 8. γr(Rm×n) = �m
3 ��n

3 � for n � m � 3.

It immediately follows from Lemmas 6–8 that the following theorem holds
true:

Theorem 4. Let Rm×n be a rectangular supergrid graph with n � m � 1. Then,

γr(Rm×n) =
{

n − 2 · 	n−1
3 
, if m = 1;

�m
3 � · �n

3 �, otherwise.

For the independent restrained domination number of R1×n, we can easily
see that γir(R1×n) may not exist. For example, there exists no independent
restrained dominating set in R1×5. Consider that Rm×n with n � m � 2. For
the restrained dominating set Dr of Rm×n constructed in our proofs, Dr is also
an independent set. Thus, Dr is also an independent restrained dominating set
of Rm×n. Then, γir(Rm×n) = �m

3 � · �n
3 �, and hence the following theorem holds.

Theorem 5. Let Rm×n be a rectangular supergrid graph with n � m � 2. Then,
γir(Rm×n) = �m

3 ��n
3 �.

Let γind(Rm×n) be the independent domination number of Rm×n, where an
independent dominating set of a graph G is a dominating set and an independent
set, and the size of a minimum independent dominating set of G is called the
independent domination number of G. In [14], we proved that γind(Rm×n) =
γ(Rm×n). Based on the result in [14], together with Theorems 4 and 5, we
conclude the following theorem:

Theorem 6. Let Rm×n be a rectangular supergrid graph with n � m � 2. Then,
γ(Rm×n) = γind(Rm×n) = γr(Rm×n) = γir(Rm×n) = �m

3 ��n
3 �.

5 Concluding Remarks

In this paper, we first prove that the restrained and independent restrained dom-
ination problems on diagonal supergrid graphs are NP-complete. These results
can be applied to supergrid graphs, and hence they are NP-complete for super-
grid graphs. Then, we solve these two problems on rectangular supergrid graphs
in linear time. The restrained step domination problem is a variant of restrained
domination problem. A restrained dominating set S of a graph G is called
restrained step dominating set of G if the induced subgraph by V (G) − S has a
perfect matching. The restrained step domination problem on G is to compute
a restrained step dominating set with minimum cardinality. For the restrained
step domination problem on (diagonal) supergrid graphs, we conjecture that it
is NP-complete. However, we can not verify it. We would like to post it as an
open problem to interested readers.
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Abstract. We pursue the analysis of the maximum degree in a dynamic
duplication-divergence graph model defined by Solé et al. in which a
new node arriving at time t first randomly selects an existing node and
connects to its neighbors with probability p, and then connects to the
other nodes with probability r/t. This model is often said to capture the
growth of some real-world processes e.g. biological or social networks.
However, there are only a handful of rigorous results concerning this
model. Here we study the distribution of the maximum degree of a vertex
in graphs generated by this model.

In this paper we prove that for 1
2
< p < 1 with high probability the

maximum degree is asymptotically quite surely concentrated around tp,
i.e. it deviates from this value by at most a polylogarithmic factor. Our
findings are a step towards a better understanding of the overall structure
of graphs generated by this model, especially the degree distribution,
compression, and symmetry.
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mathematics ever since the seminal work of Paul Erdős and Alfréd Rényi [8].
Recently attention has turned to dynamic graphs such as preferential attach-
ment (Barabási-Albert) graphs [1], Watts-Strogatz small world graphs [25] or
duplication-divergence graphs. Dynamic graphs, in which the edge- and/or
vertex-sets are functions of time, are ubiquitous in diverse application domains
ranging from biology to finance to social science. Deriving novel insights and
knowledge from dynamic structures is a key challenge and understanding the
structural properties of such dynamic graphs is critical for new characteriza-
tions and insights of the underlying dynamic processes.

Numerous networks in the real world change over time, in the sense that
nodes and edges enter and leave the networks. To explain their macroscopic
properties (e.g., subgraph frequencies, diameter, degree distribution, symmetry)
and to make predictions and other inferences (such as community detection,
graph compression, order of node arrivals), several generative models have been
proposed [19,24]. Typically, one tries to capture the behavior of well-known
graph parameters under probability distributions induced by the models, e.g.
the distribution of the number of vertices with a given degree, the number of
connected components, the existence of Hamiltonian paths or other parameters
like clique number and chromatic number (see [3,9,13] for overviews of the main
results in the area).

In this paper we make further progress on structural properties of the du-
plication-divergence graph models, in which vertices arrive one by one, select
an existing node as a parent, connect to the some neighbors of its parent and
other vertices according to some pre-defined rule. More precisely, a newly arriv-
ing node at time t first selects randomly an existing node and connects to its
neighbors with probability p; and then connects to other nodes with probability
r/t. The particular model which we bring under consideration is a duplication-
divergence model, first defined by Solé, Pastor-Satorras et al. [21]. It has been
a popular object of study because it has been shown empirically that its degree
distribution, small subgraph (graphlets) counts and number of symmetries fit
very well with the structure of some real-world biological and social networks,
e.g. protein-protein and citation networks [5,20,22]. This suggests a possible
real-world significance for the duplication-divergence model, which further moti-
vates the studies of its structural properties. However, it is also one of the least
understood models, much less so than the Erdős-Rényi or preferential attach-
ment models. At the moment there exist only a handful of results related to
the behavior of the degree distribution of the graphs generated by this model.
Unlike other dynamic graphs such as the preferential attachment model, the
graphs generated by the duplication-divergence model can be very symmetric or
quite asymmetric. In Fig. 1 from [22] it is shown that there exist certain ranges
of the model parameters p and r such that the graphs generated from the model
are highly symmetric, and certain ranges such that the graphs are asymmetric.
Here the symmetry is measured by the size of the automorphism group |Aut(G)|,
i.e. the number of distinct mapping of vertices onto themselves preserving the
adjacency matrix. Still the basic question about the conditions under which the
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Fig. 1. Symmetry of graphs (log |Aut(G)|) generated by the Solé-Pastor-Satorras
duplication-divergence model, based on simulations from [22].

generated graph is symmetric or not remains unanswered. We believe that prov-
ing results about the range of the maximum degree can be a stepping stone for
rigorous general results regarding symmetries and compression, just as it has
been in the case for other random graph models.

In particular, the parameters such as the maximum degree of a random graph
and the degree of a given vertex are parameters that are studied not only for
their own sake, but it turns out that their analysis opens the way to further
results. Let us recall here two examples of these insights related to the questions
of graph asymmetry and incompressibility.

First, �Luczak et al. [17] used the estimation of these parameters to prove that
the preferential attachment model with m ≥ 3 (where m is the number of edges
added when a new node arrives) generates asymmetric graphs (i.e. graphs with
only one automorphism) with high probability. This was achieved by proving two
properties: (A) for any pair of early vertices t1 and t2 the degrees of both nodes
t1 and t2 are distinct, and (B) for any pair of late vertices their corresponding
neighbors are not the same, in particular, they have different sets of early neigh-
bors (and therefore, a permutation of t1 and t2 does not produce symmetry).
We believe that this approach to asymmetry analysis can be extended to the
duplication-divergence model and it requires knowledge of the maximum degree
which is exactly the topic of this paper.

A second usage of these parameters was presented by Chierichetti et al. in [4].
For example, for the preferential attachment model they used an upper bound on
the maximum degree and the degree of a vertex arriving at time s to show that
the entropy over all graphs on t vertices generated by this model is bounded
by Ω(t log t). They also used their bound on vertex degrees to provide lower
bounds on graph entropy for several other random graph models known in the
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literature, e.g. the copying model or ACL model (see also [18] for the preferential
attachment graph compression algorithm).

Therefore, we turn our attention to the asymptotic behavior of the distri-
bution of degrees of vertices in random graphs generated by the duplication-
divergence model. Let us recall that, for example, for Erdős-Rényi model ER(t, p)
it is known that the degree distribution approximately follows the Poisson dis-
tribution with a tail decreasing exponentially [2]. Clearly, the degree of each
vertex is a random variable with the binomial distribution, so it is highly con-
centrated around its mean (t−1)p. Moreover, the maximum degree is also highly
concentrated around (t − 1)p +

√
2p(1 − p)(t − 1) log t [9, Theorem 3.5]. For the

preferential attachment model PA(t,m) it was proved that the degree distribu-
tion exhibits scale-free behaviour, i.e. the number of vertices with degree k is
proportional to k−3 [3]. In addition, if we consider a vertex arriving at time s, its
degree in graph on t vertices is proportional to

√
t/s on average and with high

probability it does not exceed
√

t/s log3 t [6]. In the next section we discuss in
some details recent results regarding the degree distribution of the duplication-
divergence graph model.

Here we provide analogous results for the duplication-divergence model. The
paper is organized as follows: in Sect. 2 we present a formal definition of the
duplication-divergence model, recall previous results related to the properties of
the degree distribution and introduce our main results. In Sect. 3.1 and Sect. 3.2
we prove upper bounds for the degrees for earlier and later vertices arriving in
the graph, respectively. Finally, in Sect. 3.3 we give a proof of the lower bound
for the maximum degree in the graph.

2 Model Definition and Main Results

We formally define the duplication-divergence model DD(t, p, r), introduced by
Solé et al. [21]. Then we summarize our main results about high-probability
bounds on the maximum degree.

Throughout the paper we use standard graph notation from [7], e.g. V (G)
denotes the vertex set of a graph G, degG(s) – the degree of node s in G and
Δ(G) – the maximum degree of a vertex in G. All graphs considered in the paper
are simple.

Gt denotes a graph on t vertices. Because in the paper we deal with graphs
that are dynamically generated, we assume that the vertices are identified with
the natural numbers according to their arrival time. We use the notation degt(s)
for the random variable denoting the degree of vertex s at time t i.e. after t
vertices have been added in total.

Let us now formally define the model DD(t, p, r) as follows: let GT be a fixed
graph on T ≤ t vertices, with vertices having distinct labels from 1 to T . Let
also 0 ≤ p ≤ 1 and 0 ≤ r ≤ T be the parameters of the model. Now, for every
n = T, T +1, . . . , t− 1 we create Gn+1 from Gn according to the following rules:

1. we add a new vertex with label n + 1 to the graph,
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2. we choose a vertex u from Gn uniformly at random – and we denote u as
parent(n + 1),

3. for every vertex v:
(a) if v is adjacent to u in Gn, then add an edge between v and n + 1 with

probability p,
(b) if v is not adjacent to u in Gn, then add an edge between v and n + 1

with probability r
n .

All edge additions are independent random Bernoulli variables.
We now review in some detail, recent results on the degree distribution. For

example, for p < 1 and r = 0, it is shown in [11] that even for large p the limiting
distribution of degree frequencies indicates that almost all vertices are isolated
as t → ∞. Moreover, from [16] we know that the number of vertices of degree
one is Ω(log t) but again the precise rate of growth of the number of vertices with
any fixed degree k > 0 is currently unknown. Recently, also for r = 0, in [12,14]
the authors showed that for 0 < p < e−1 the non-trivial connected component
has a degree distribution that has a power-law behavior with the exponent is
equal to γ satisfying 3 = γ + pγ−2.

Now let us turn to results directly related to the question of maximum degree.
For example, in [23] it was shown that for any fixed s asymptotically as t → ∞
it holds that

E[degt(s)] =

{
Θ(ln t) if p = 0 and r > 0,

Θ(tp) otherwise.

Note that by the close relation between parameters Δ(Gt) and degt(s) we can
establish easily that E[Δ(Gt)] = Ω(tp) when p > 0 or r = 0, and E[Δ(Gt)] =
Ω(ln t) otherwise.

It turns out that a lower bound on maximum degree is easily established
as a byproduct of existing results by Frieze et al. [10]: for 1

2 < p < 1 and
Gt ∼ DD(t, p, r) with p > 0 and s = O(1) it holds that

Pr
[
degt(s) ≤ C

A
tp log−3−ε(t)

]
= O(t−A)

for some fixed constant C > 0 and any A > 0. This lower bound holds for the
maximum degree because for any s it holds that degt(s) ≤ Δ(Gt). In the same
paper, Frieze et al. also proved that for 1

2 < p < 1, Gt ∼ DD(t, p, r) and s = O(1)
it holds that

Pr[degt(s) ≥ AC tp log2(t)] = O(t−A)

for some fixed constant C > 0 and any A > 0. They also left as an open problem
the question of the behavior of the right tail of the maximum degree distribution
or, equivalently, of the upper bound on degt(s) for larger s that holds with high
probability.

In this paper, we solve this problem. More precisely, we obtain two major
results: first, we provide a bound degt(s) ≤ tppolylog(t) which holds quite surely
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(i.e. at least 1 − O(t−A) for any given A > 0 [15]). We prove that this bound
is valid for all vertices in Gt, not only for s = O(1) as before, leading to the
estimate Δ(Gt) ≤ tppolylog(t) for any ε > 0 with high probability. Next, we
provide a precise lower bound and we show that there exists an early vertex s
such that degt(s) ≥ (1 − ε)tp for any ε > 0 quite surely. Putting everything
together we obtain the main result of this paper, that is:

Theorem 1. Let 1
2 < p < 1. Asymptotically for Gt ∼ DD(t, p, r)

Pr[(1 − ε)tp ≤ Δ(Gt) ≤ (1 + ε)tp log5−4p(t)] = O(t−A)

for any constants ε > 0 and A > 0,

In other words, we are now certain that the maximum degree of the graph is
concentrated in the sense that by moving only by some polylogarithmic factor
from the mean to both left and right we observe the tail decay which is greater
than any polynomial.

3 Analysis and Proofs

3.1 Upper Bound, Early Vertices

The main idea of the proof of the upper bound of the maximum degree is as
follows: we first find for small s (i.e. s ≤ t0) a Chernoff-type bound on the growth
of degτ (s) over an interval of certain length h.

Then, we introduce auxiliary deterministic sequences ti and Xti
such that

t0 < . . . < tk−1 < t ≤ tk. The definition of these sequences stems from the bound
mentioned above, in particular from the relation between h and the growth of
the degree, guaranteed with high probability. Ultimately, we prove degτ (s) ≤ Xτ

with high probability for all s ≤ t0.
Let us start with providing a Chernoff-type bound on the growth of the

degree of a given early vertex (with proof in the appendix):

Lemma 1. Let 1 ≤ s ≤ τ ≤ t. Let Xτ be any value such that degτ (s) ≤ Xτ .
Then for any h ≤ εXτ with ε ∈ (0, 1) it is true that

Pr
[
degτ+h(s) ≥ degτ (s) + (1 + 3ε) h(pXτ+r)

τ

]
≤ exp

(
−hε2(1+ε)(pXτ+r)

3τ

)
.

We can immediately deduce how large h has to be to get a polynomial tail:

Corollary 1. Let 1 ≤ s ≤ τ ≤ t. Let Xτ ≥ 0, ε ∈ (0, 1) be values such that
asymptotically for any A > 0, it holds that degτ (s) ≤ Xτ and 3Aτ log t ≤
ε3Xτ (pXτ + r). Then for any h ∈

[
3Aτ log t

ε2(pXτ+r) , εXτ

]
it is true that

Pr
[
degτ+h(s) > degτ (s) + (1 + 3ε) h(pXτ+r)

τ

]
= O(t−A).

Now we provide the definitions for two auxiliary sequences that we mentioned
earlier:
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Definition 1. Let 0 < p < 1 be fixed with certain α, βi and φ. We define the
increasing sequences (ti)k

i=0 and (Xti
)k
i=0 and an integer k in the following way:

t0 = φ, ti+1 = ti +
α ti log ti

Xti

, tk−1 < t ≤ tk,

Xt0 = t0, Xti+1 = Xti
+ βi log ti.

Note that α, βi and φ can be, and indeed we will specify them, as dependent on
t. However, for brevity, we assume the possible dependency on t as implicit.

Observe that inductively from the definition it follows that if α ≥ βi, then
Xti

≤ ti for all i = 0, 1, . . . , k.
Moreover, note that we do not specify the values of Xτ for τ other than

{t0, t1, . . . , tk, . . .}. In the rest of the paper we will be using precisely these values
in the proofs, so such a definition is sufficient for our purposes. For convenience,
we only assume that for any τ ∈ (tl, tl+1) for some l = 0, 1, . . . , k−1 the sequence
is completed in any way such that Xtl

≤ Xτ ≤ Xtl+1 .
Now we analyze the asymptotic properties of these sequences. We start with

a simple lower bound (see the respective appendix for proof):

Lemma 2. Assume that φ ≥ log2 t, α ≤ √
φ and βi ≥ α(p − δ) for some

δ ∈ [0, p). Asymptotically as t → ∞ for any i = 0, 1, . . . , k we have Xti
≥ tp−δ

i .

It enables us to we prove (in the appendix) the upper bound:

Lemma 3. Assume that φ ≥ log3 t, α(p − δ) ≤ βi ≤ αp + α
2 log ti

for some
δ ∈ [0, p). It holds asymptotically as t → ∞ that Xti

≤ φ1−ptpi log ti for all
i = 0, 1, . . . , k.

Corollary 2. If α ≤ φ, then for the value of k such that tk−1 < t ≤ tk it is true
that αk < t.

Proof. We know from the definition of ti and Lemma 3 that

t > tk−1 ≥ t0 +
k−2∑

i=0

αti log ti
φ1−ptpi log ti

≥ t0 +
k−2∑

i=0

α ≥ φ + (k − 1)α > α k

as needed.

Here let us note (and prove in one of the appendices) the relation between the
last elements of the sequences (ti)k

i=0, (Xti
)k
i=0 and the final values themselves:

Lemma 4. Let ε be any positive constant. Assume that φ ≥ log3 t, α ≤ √
φ,

α(p−δ) < βi ≤ αp+ α
2 log ti

for some δ ∈ [0, p). It holds asymptotically as t → ∞
that (1 − ε)tk ≤ t ≤ (1 + ε)tk−1 and (1 − ε)Xtk

≤ Xtk
≤ (1 + ε)Xtk−1 .

Observe that since we will use φ < t, it holds that k ≥ 1.
Let us denote by Ai(s) the event that degti

(s) ≤ Xti
for a fixed s ≤ ti. Now

we proceed with the main theorem:
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Theorem 2. For Gt ∼ DD(t, p, r) with 1
2 < p < 1 and s ∈ [1, 74529(A+1)2 log4 t]

it holds asymptotically that

Pr
[
degt(s) > (1 + ε)tp log5−4p t

]
= O(t−A)

for any constants ε > 0 and A > 0.

Proof. Throughout the proof we will use sequences (ti)k
i=0 and (Xti

)k
i=0 with

α = 273p3(A + 1) log2 t, βi = αp + α
2 log ti

and φ = 74529(A + 1)2 log4 t and
tk−1 < t ≤ tk.

Observe that all the assumptions of Lemma 2, Lemma 3 and Corollary 2 are
met so we know that max{74529(A + 1)2 log4 t, tpi } ≤ Xti

≤ tpi log5−4p t for all
i = 0, 1, . . . , k and also k < t

log2 t
. Moreover, if Ai(s) holds, then the assumptions

of Corollary 1 also are true for τ = ti and h = αti log ti

Xti
as ti → ∞ since for any

constant A > 0 and ε = 1
9p log ti

it holds that

3Ati log t

ε2(pXti
+ r)

< h =
αti log ti

Xti

< εXti
.

The left inequality is easy to verify as the left element is Θ
(

ti log
2 ti log t
Xti

)
and h

grows like Θ
(

ti log ti log
2 t

Xti

)
. The right inequality follows directly from Lemma 2,

provided we choose some δ ∈ [
0, p − 1

2

)
so that Xti

grows sufficiently fast.
Moreover, since βi > αp, we know that for ε = 1

9p log ti
asymptotically

Xti+1 − Xti
= βi log ti ≥ (1 + 3ε)

h(pXti
+ r)

ti
.

where h = 1
1+ 1

2p log ti

βiti log ti

pXti
≤ εXti

.

Therefore, Corollary 1 implies that for any constant A > 0 and ε = 1
9p log ti

it is true that Pr[¬Ai+1(s)|Ai(s)] = O(t−A).
Clearly, for any 1 ≤ s ≤ t0 we know that A0(s) always holds so Pr[¬A0(s)] =

0. Finally, we obtain using Lemma 4 and Corollary 1 that

Pr[degt(s) > Xtk
] ≤ Pr[degtk

(s) > Xtk
] = Pr[¬Ak(s)]

≤
k−1∑

i=0

Pr[¬Ai+1(s)|Ai(s)] + Pr[¬A0(s)] =
k−1∑

i=0

O(t−A) = O(t−A+1).

3.2 Upper Bound, Late Vertices

In the second part of the proof we also use the sequences (ti)k
i=0 and (Xti

)k
i=0 as

defined in Definition 1. Moreover, in their definition throughout this section we
use the same constants as in the proof of Theorem 2: α = 273p3(A + 1) log2 t,
βi = αp + α

2 log ti
and φ = 74529(A + 1)2 log4 t.
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The proof consists of showing that for s ∈ [ti, ti+1) for some i = 0, 1, . . . , k−1
the degree of the vertex when it appears in the graph (i.e. degs(s)) is with
high probability significantly smaller than its respective Xti+1 . Furthermore, we
show that the increase in the degree between degs(s) and degti+1

(s) with high
probability cannot compensate for this difference. Thus, Xt (or, to be more
precise, Xtk

) gives us a good upper bound on degt(s) for all s – and therefore
also we obtain an upper bound for Δ(Gt).

Let us introduce an auxiliary event Bl(s) =
⋃s

τ=1 Al(τ) = [degtl
(s) ≤ Xtl

for
any s and l such that s ≤ tl].

Lemma 5. Let s ∈ (tl, tl+1] for some l = 0, 1, . . . , k−1. Then, for any ε ∈ (0, 1)

Pr
[
degs(s) ≥ (1 + ε)(pXtl+1 + r)|Bl(tl) ∧ Bl+1(s − 1)

] ≤ exp
(

− ε2(pXtl+1+r)

3

)
.

Proof. First, we notice the fact that max{degtl+1
(τ) : 1 ≤ τ ≤ s − 1} ≤ Xtl+1

guarantees that max{degs(τ) : 1 ≤ τ ≤ s − 1} ≤ Xtl+1 . Therefore, degs(s) is

stochastically dominated by As ∼ Bin
(
s,

pXtl+1+r

s

)
so for any ε ∈ (0, 1) we

obtain the result directly using the Chernoff bound with E[As] = pXtl+1 + r.

Note that the result implies that with high probability at most slightly more
than a p fraction of the maximum allowed degree is already used at time s.
Therefore, we are interested in bounding the remaining part of the degree, i.e.
degtl+1

(s) − degs(s), by something smaller than the remaining (1 − p) fraction
of the maximum allowed degree.

Lemma 6. Let 1
2 < p < 1 and s ∈ (tl, tl+1] for some l = 0, 1, . . . , k − 1. Then

asymptotically as t → ∞, for any constant A > 0 it holds that

Pr
[
degtl+1

(s) ≥ Xtl+1 |Bl(tl) ∧ Bl+1(s)
]

= O(t−A).

Lemma 7. Let 1
2 < p < 1 and s ∈ (tl, tl+1] for some l = 0, 1, . . . , k − 1. Then

asymptotically as t → ∞, for any constant A > 0 it holds that

Pr [¬Bl+1(tl+1)|Bl(tl)] = O(t−A).

The proofs of both lemmas above are presented in the respective appendices.

Theorem 3. Let 1
2 < p < 1. Then asymptotically as t → ∞, for any constant

A > 0 it holds that

Pr
[
Δ(Gt) ≥ (1 + ε)tp log5−4p t

]
= O(t−A).

Proof. From Lemma 3 we know that Xtk
≤ (1+ε)tp log5−4p t holds quite surely.

It follows that

Pr
[
Δ(Gt) ≥ (1 + ε)tp log5−4p t

] ≤ Pr [Δ(Gt) ≥ Xtk
] ≤ Pr [¬Bk(tk)]

≤
k−1∑

l=0

Pr [¬Bl+1(tl+1)|Bl(tl)] + Pr [¬B0(t0)] .
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Now, from Theorem 2 and Lemma 7 we know that both Pr [¬B0(t0)] =
O(t−A) and Pr[¬Bl+1(tl)|Bl(tl)] = O(t−A) for any A > 0, respectively. Putting
this all together with Lemma 4 we obtain the result.

3.3 Lower Bound

Here we proceed analogously to the case of the upper bound for early vertices.
First, we provide an appropriate Chernoff-type bound for the degree of a given
vertex with respect to some deterministic sequence. Then we again use a special
sequence, which has the desired rate of growth and serves as a lower bound on
degt(s). Note that we don’t need to extend our analysis for the late vertices since
a lower bound for the degree of any vertex s at time t is also a lower bound for
the minimum degree of Gt.

First, we note that if we start the whole process from a non-empty graph,
then there exists s ∈ [1, t0] such that degt0(s) ≥ 1. Moreover, even if the starting
graph is empty, but r > 0, then with high probability there exists a vertex
with positive degree, as the probability of adding another isolated vertex to an
empty graph on t vertices is at most (1 − r

t )
t ≤ exp(−r), so within first A

r log t
vertices for any A > 0 we have a non-isolated vertex with probability at least
1 − O(t−A). Of course, if we start from an empty graph and r = 0, then for any
p there cannot arise any edge in the duplication process. However, in this case
it trivially follows that Δ(Gt) = 0, so we omit this case in further analysis.

Let us now return to the aforementioned Chernoff-type lower bound:

Lemma 8. Let 1 ≤ s ≤ τ ≤ t. Let Xτ be any value such that degτ (s) ≥ Xτ .
Then for any h ≤ ετ with ε ∈ (

0, 1
3

)
it is true that

Pr
[
degτ+h(s) ≤ degτ (s) + (1 − 2ε)

hpXτ

τ

]
≤ exp

(
−hε2pXτ

3τ

)
.

Corollary 3. Let 1 ≤ s ≤ τ ≤ t. Let Xτ ≥ 0, A > 0, ε ∈ (
0, 1

3

)
be values such

that degτ (s) ≤ τ and 3A log t ≤ ε3pXτ . Then for any h ∈
[
3A log t
ε2pXτ

, ετ
]
it is true

that

Pr
[
degτ+h(s) ≤ degτ (s) + (1 − 2ε)

hpXτ

τ

]
= O(t−A).

In the following, we again use sequences (ti)k
i=1 and (Xti

)k
i=1 from Definition

1. Let us also define Ci(s) as the event that degti
(s) ≥ Xti

− φ + 1 for a fixed
s ≤ ti. This allows us to proceed with the main theorem of this section:

Theorem 4. For Gt ∼ DD(t, p, r) with 1
2 < p < 1 there exists s such that for

any constants ε > 0 and A > 0 it holds asymptotically that

Pr [degt(s) < (1 − ε)tp] = O(t−A).
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Proof. Again let us use sequences (ti)k
i=0 and (Xti

)k
i=0 with α = 12p3(A +

1) log2 t, βi = α p − α
log ti

and φ = 144(A + 1)2 log4 t. These parameters sat-
isfy the assumptions of Lemma 3 and Corollary 2.

Moreover, if Ci(s) holds, then the assumptions of Corollary 3 are also true for
τ = ti and h = αti log ti

Xti
as ti → ∞, since for any constant A > 0 and ε = 1

2p log ti

3Aτ log t

ε2pXti

< h =
αti log ti

Xti

< εti.

The left inequality is easy to verify as the left hand side is Θ
(

ti log
2 ti log t
Xti

)
and

h grows like Θ
(

ti log ti log
2 t

Xti

)
. The right inequality follows directly from Lemma

2.
Next, Xti+1 − Xti

= βi log ti = (1 − 2ε)hpXti

ti
, where h = 1

1− 1
p log ti

βiti log ti

pXti
.

Therefore, Corollary 3 implies that for any constant A > 0 and ε = 1
2p log ti

it is
true that Pr[¬Ci+1(s)|Ci(s)] = O(t−A). Note that we apply this with a sequence
Xti

− φ + 1, not with Xti
itself this time. This is so because to use Corollary 3

we need degt0(s) ≥ Xt0 − φ + 1 = 1, which holds with high probability – as e.g.
degt0(s) ≥ Xt0 is false with high probability.

Since Xt0 = 144(A+1)2 log4 t we know that C0(s) holds with high probability:
either the starting graph is nonempty, or r > 0 and some edges appear before
t0. Using Lemma 4 and Corollary 3 for any ε > 0 and A > 0 we get

Pr[degt(s) <(1 − ε)tp] ≤ Pr[degt(s) < Xtk−1 − φ + 1] ≤ Pr[¬Ck−1(s)]

≤
k−2∑

i=0

Pr[¬Ci+1(s)|Ci(s)] + Pr[¬C0(s)] =
k−1∑

i=0

O(t−A) = O(t−A+1).

We conclude our analysis with the following corollary.

Corollary 4. For Gt ∼ DD(t, p, r) with 1
2 < p < 1 for any constants ε > 0 and

A > 0 it holds asymptotically that

Pr [Δ(Gt) ≤ (1 − ε)tp] = O(t−A).
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Abstract. The conditional fractional strong matching preclusion num-
ber of a graph G is the minimum size of F such that F ⊂ V (G) ∪ E(G)
and G−F has neither a fractional perfect matching nor an isolated ver-
tex. In this paper, we obtain the conditional fractional strong matching
preclusion number for burnt pancake graphs and a subset of the class of
pancake-like graphs.
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1 Introduction

Parallel computing is an important area of computer science and engineering.
The underlying topology of such a parallel machine or a computer network is the
interconnection network. Computing nodes are processors where the resulting
system is a multiprocessor supercomputer, or they can be computers in which
the resulting system is a computer network. It is unclear where the computing
future is headed. It may lead to more research in multiprocessor supercomputers,
physical networks or networks in the cloud. Nevertheless, the analysis of such
networks will always be important. One important aspect of network analysis
is fault analysis, that is, the study of how faulty processors/links will affect
the structural properties of the underlying interconnection networks, or simply
graphs.

All graphs considered in this paper are undirected, finite and simple. We refer
to the book [3] for graph theoretical notation and terminology not described here.
For a graph G, let V (G), E(G), and (u, v) (uv for short) denote the set of vertices,
the set of edges, and the edge whose end vertices are u and v, respectively. For
any subset X of V (G) or E(G), let G[X] denote the subgraph induced by X.
We use G−F to denote the subgraph of G obtained by removing all the vertices
and (or) the edges of F . Some portions of this paper containing definitions are
reused unchanged from [19].
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1.1 Matchings

A perfect matching in a graph is a set of edges such that each vertex is incident
to exactly one of them, and an almost perfect matching is a set of edges such
that each vertex but one is incident to exactly one edge in the set, and the
remaining vertex is incident to none. We can define a perfect matching as an
indicator function as follows: let S be a set of edges in G. Then fS is the indicator
function of S, with fS : E(G) → {0, 1} such that fS(e) = 1 iff e ∈ S. Let δ′(v)
be the set of edges for which one end is v. Then M is a perfect matching of G if∑

e∈δ′(v) fM (e) = 1 for each vertex v ∈ G
A standard relaxation from an integer setting to a continuous setting is

to extend the codomain of the indicator function from {0, 1} to [0, 1]. Let
f : E(G) → [0, 1]. Then f is a fractional perfect matching if

∑
e∈δ′(v) f(e) = 1

for each vertex v ∈ G. We note that the specification that such a matching be
“perfect” is somewhat redundant, as unlike a perfect matching, a fractional per-
fect matching can exist on odd graphs; the concept of fractional almost perfect
matchings is not really necessary to consider or study.

Proposition 1. [23] The graph G has a fractional perfect matching if and only
if there is a partition {V1, V2, . . . , Vn} of the vertex set of V (G) such that, for
each i, the graph G[Vi] is either K2 or a Hamiltonian graph on odd number of
vertices.

Any graph with such a decomposition can be trivially assigned a fractional
perfect matching by assigning each K2 of the decomposition a weight of 1 and
each edge in an odd cycle a weight of 1

2 , then replacing all removed edges. We call
such a fractional perfect matching nice. For notational convenience, we assume
that if a graph G has a fractional perfect matching f , then f is nice. Furthermore,
if a nice fractional perfect matching contains an edge with weight 1, we refer to
it as a complete edge, and if it contains an edge with weight 1

2 , we refer to it as
a half edge. Finally, if we claim that any vertex u or edge vw is in an odd cycle
in a fractional perfect matching, then we mean u is in a half edge with each of
two other vertices, and that vw is a half edge.

1.2 Matching Preclusion

In [1], Brigham et al. first introduced the concept of matching preclusion. A set
of edges F of G is called a matching preclusion set if G − F has neither perfect
matchings nor almost-perfect matchings, and it is called an optimal matching
preclusion set if |F | is minimal. Then if F1 is an optimal matching preclusion set,
any set F2 for which |F2| < |F1| is not a matching preclusion set. The matching
preclusion number of G, denoted by mp(G), is the cardinality of an optimal
matching preclusion set. A set F of edges and vertices of G is a strong matching
preclusion set (SMP set for short) if G − F has neither perfect matchings nor
almost-perfect matchings, and it is called an optimal strong matching preclusion
set if F is one with the smallest size. The strong matching preclusion number
(SMP number for short) of G, denoted by smp(G), is the cardinality of an
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optimal SMP set. An optimal SMP set is trivial if G − F is even and there is a
vertex v such that every vertex in F is a neighbour of v and every edge in F is
incident to v. The concept of strong matching preclusion was proposed by Park
and Ihm in 2011. We refer the readers to [4,7–9,16,20,22] for further details and
additional references.

Recently, Liu and Liu in [18] introduced generalizations of the above concepts.
An edge subset F of G is a fractional matching preclusion set (FMP set for short)
if G−F has no fractional perfect matchings. The fractional matching preclusion
number (FMP number for short) of G, denoted by fmp(G), is the minimum
size of FMP sets of G, that is, fmp(G) = min{|F | : F is an FMP set}. A
set F of edges and vertices of G is a fractional strong matching preclusion set
(FSMP set for short) if G−F has no fractional perfect matchings. The fractional
strong matching preclusion number (FSMP number for short) of G, denoted by
fsmp(G), is the minimum size of FSMP sets of G, that is, fsmp(G) = min{|F | :
F is an FSMP set}. A FMP (FSMP) set of minimal cardinality is called optimal,
and an optimal FMP (FSMP) set F is trivial if G−F contains an isolated vertex
v (δ(v) = 0). If F is a trivial FMP (FSMP) set, every element in F is adjacent
or incident to some v which is isolated in G−F . A graph G is fractional strongly
super matched if every optimal FSMP set is trivial.

We can further constrain the conditions for FSMP by requiring that G−F has
no isolated vertices. An edge and vertex subset F of G is a conditional fractional
strong matching preclusion set (CFSMP set for short) if G−F has neither a frac-
tional perfect matching, nor an isolated vertex. The conditional fractional strong
matching preclusion number (CFSMP number for short) of G is the minimum
size of a CFSMP set of G, that is, cfsmp(G) = min {|F | : F is a CFSMP set}. A
CFSMP set of minimal cardinality is called optimal, and a CFSMP set F is triv-
ial if the graph G−F contains some vertices u, v, w for which δ(u) = 1, δ(v) = 1,
and uw, vw ∈ E(G − F ). A graph G is conditionally fractional strongly super
matched if every optimal CFSMP set is trivial.

The pancake graphs and burnt pancake graphs, introduced in [11], are two
well-studied interconnection networks. Although these graphs have nice struc-
tures, it seems that some problems in them are difficult and are still open, such
as optimal routing problem. However, researchers have found that they are excel-
lent candidates as interconnection networks. Some papers on the pancake graphs
include [2,6,10,14,17,21,24] and papers on the burnt pancake graphs include [5],
[6,12,13,15]. In particular, in [12], the burnt pancake graphs are used for genome
analysis. In [19], the FSMP number of general pancake and burnt pancake graphs
was found (using the same inductive proof strategy we use here).

The pancake-like graphs are a broad class of graphs which contain the pan-
cake graphs and burnt pancake graphs. Although the main result of this paper
applies to burnt pancake graphs, the result also extends to a subset of pancake-
like graphs.

In this paper, we study the conditional fractional strong matching preclusion
problems for the pancake graphs and obtain the following main result.
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Theorem 1. Let n ≥ 3 be an integer, and let Bn be the burnt pancake graph
of dimension n. Then cfsmp(Bn) = 2n − 2, and Bn is conditionally fractional
strongly super matched.

Theorem 2. Let L be an arbitrary pancake-like graph composed of n ≥ 3 sub-
graphs, such that every subgraph is k−1-regular with k ≥ 4 and has girth at least
5. If every subgraph is fractional strongly super matched and conditionally frac-
tional strongly super matched, then L must be fractional strongly super matched
and conditionally fractional strongly super matched.

The rest of this paper is organized as follows. In Sect. 2, we provide some
definitions and known results regarding the pancake graphs and burnt pancake
graphs, followed by the pancake-like graph class. In Sect. 3, we note the condi-
tional fractional strong matching preclusion of B3, to serve as a base case. In
Sect. 4, we discuss the proof technique.

2 Preliminaries

We first review the construction of pancake and burnt pancake graphs, as stated
in [19], and present some related results.

The pancake graph of dimension n, denoted by Pn, has as its vertex set the
set of all n! permutations on {1, 2, 3, . . . , n}. Two vertices [a1, a2, a3, . . . , an] and
[b1, b2, b3, . . . , bn] are adjacent if there exists an integer k with 2 ≤ k ≤ n such
that ai = bk+1−i for every i with 1 ≤ i ≤ n, and ai = bi for k + 1 ≤ i ≤ n;
in other words, we take the “substring” a1, a2, a3, . . . , an and reverse the order.
The edge generated by such an adjacency is called a k-edge. It follows directly
from the definition that Pn is (n−1)-regular. Although Pn is vertex-transitive, it
is not edge-transitive except for n = 3. (However, it is not difficult to determine
the edge-transitive classes.) Indeed, let Hi be the subgraph of Pn induced by
the vertices with i in the nth position, which is isomorphic to Pn−1. We call Hi

to be a copy of Pn. We remark that Pn can be decomposed into n copies, i.e.,
P 1

n−1, P
2
n−1, . . . , P

n
n−1. We note that P2 is a complete graph with two vertices,

P3 is the cycle with six vertices and P4 is given in Fig. 1. The edges between
different copies are n-edges, which form a perfect matching in Pn. To highlight
this property, we will refer to these edges as cross edges, and if uv is a cross
edge, we call it the cross edge of u, and call v the cross neighbour of u. It is
easy to see from the definition that if u is a vertex in Hi, then it has n − 2
neighbours in Hi (the set of these neighbours is denoted by NHi

(u)), and the
n − 1 cross neighbours of the vertices in {u} ∪ NHi

(u) are in different Hj ’s (one
in each). It is also easy to see that there are exactly (n − 2)! independent cross
edges between two different Hi’s. Hence by an inductive argument we get that
for each k, the set of k-edges forms a perfect matching in Pn. So the edges of Pn

can be partitioned into n − 1 edge-disjoint perfect matchings. See Fig. 1 for P4,
the pancake graph of dimension 4.

The definition of the burnt pancake graphs is related to the definition of the
pancake graphs. Let n ≥ 3. The burnt pancake graph of dimension n, denoted
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by Bn, is defined similarly to the pancake graphs. We say the list [a1, a2, . . . , an]
is a signed permutation on {1, 2, 3, . . . , n} if [|a1|, |a2|, . . . , |an|] is a permutation
on {1, 2, 3, . . . , n}. For notational simplicity, which is customary for this class
of graphs, we use the notation ā instead of −a. The burnt pancake graph Bn

has the set of signed permutations on {1, 2, 3, . . . , n} as its vertex set. Two
vertices [a1, a2, . . . , an] and [b1, b2, . . . , bn] are adjacent if there exists a k with
1 ≤ k ≤ n such that ai = bk+1−i for every i with 1 ≤ i ≤ k, and ai = bi for
k+1 ≤ i ≤ n. The edge generated by such an adjacency is again called a k-edge.
It follows directly from the definition that Bn is n-regular with n!2n vertices.
We remark that Bn is vertex transitive but not edge transitive. Indeed, let Ha

be the subgraph of Bn induced by the vertices with a in the nth position where
a ∈ {1, 2, 3, . . . , n}∪ {1̄, 2̄, 3̄, . . . , n̄}, which is isomorphic to Bn−1. We call Ha to
be a copy of Bn. Like Pn, Bn is recursive in structure and can be decomposed into
2n copies, i.e., B1

n−1, B
2
n−1, . . . , B

n
n−1, B

1̄
n−1, B

2̄
n−1, . . . , B

n̄
n−1 We note that B1 is

a complete graph with two vertices, B2 is the cycle with eight vertices and B3 is
given in Fig. 2. The n-edges are the edges between different Ha’s, and they form
a perfect matching in Bn. Again we will refer to the n-edges as cross edges, and
if uv is a cross edge, we call it the cross edge of u, and call v the cross neighbour
of u. It is easy to see from the definition that if u = [a1, a2, . . . , an] is a vertex in
Han

, then it has n−1 neighbours in Han
, and the cross neighbours of the vertices

in {u}∪Nan
(u) are in different Hj ’s. Indeed, the cross neighbour of u is in Ha1 ,

and the cross neighbours of the neighbours of u are in Ha1 ,Ha2 , . . . , Han−1 . It is
easy to see that there are exactly (n − 2)!2n−2 independent cross edges between
Ha and Hb if a = b, and there are no edges between Ha and Hā. We note that
for each k, the set of k- edges forms a perfect matching in Bn. So the edges of
Bn can be partitioned into n-edge-disjoint perfect matchings. See Fig. 2 for B3,
the burnt pancake graph of dimension 3.

From the definition of Pn and Bn, the following observations are immediate.

Proposition 2. For n ≥ 4, the cross neighbours of two adjacent vertices in a
copy of Pn are in different copies.

Proposition 3. For n ≥ 3, the cross neighbours of two adjacent vertices in a
copy of Bn are in different copies.

From [19], we have the following results on the FSMP numbers of pancake
and burnt pancake graphs:

Theorem 3. [19] Let n ≥ 4 be an integer, and let Pn be the pancake graph of
dimension n. Then fsmp(Pn) = n − 1, and every optimal FSMP set of Pn is
trivial when n ≥ 5.

Directly, for integer n ≥ 5, Pn is fractional strongly super matched.

Theorem 4. [19] Let n ≥ 3 be an integer, and let Bn be the burnt pancake
graph of dimension n. Then fsmp(Bn) = n, and every optimal FSMP set of Bn

is trivial.
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Fig. 1. The pancake graph of dimension 4.

Fig. 2. The burnt pancake graph of dimension 3.
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Directly, for integer n ≥ 3, Bn is fractional strongly super matched.
A pancake-like graph is any graph G which exhibits the property that it has

a partition {V1, V2, . . . , Vn} of the vertex set of V (G) such that, for each i, the
graph G[Vi] satisfies the following two properties: (i) each vertex is incident to
exactly one cross edge, and (ii) the cross neighbours of two adjacent vertices are
not in the same vertex subset in the partition, where a cross edge is any edge in
the set E(G) − E(G[V1]) − E(G[V2]) − . . . − E(G[Vn]) and cross neighbors are
any two vertices a, b for which ab is a cross edge. We further define each G[Vi] as
a subgraph of G. Clearly, this definition aims to replicate the top-level structure
of pancake and burnt pancake graphs.

3 Results for B3

The following results are important in our analysis.

Lemma 1. [19] Let G be a fractional strongly super matched graph with δ(G) ≥
2. If F is a trivial FSMP set of G and G − F has an isolated vertex v, then
G − F − v has a fractional perfect matching.

We also prove an analogous result for conditionally fractional strongly super
matched graphs.

Lemma 2. Let a conditionally fractional strongly super matched and fractional
strongly super matched graph G with girth at least 5 and δ(G) = k have a trivial
CFSMP set F such that G − F contains some vertices u, v, w for which δ(u) =
1, δ(v) = 1, and uw, vw ∈ E(G − F ). Then G − F − u and G − F − v have
fractional perfect matchings.

Proof. Since u and v are transitive, we prove for G − F − u. Let F contain at
least one vertex x adjacent to u. The graph G − (F − x) must either contain an
isolated vertex or contain a fractional perfect matching. If G − (F − x) contains
an isolated vertex, since G − F does not contain an isolated vertex, the isolated
vertex must be x, which is adjacent to u. Then G − (F − x) must contain a
fractional perfect matching f . Since δ(v) = 1, then f(vw) = 1, so f(ux) = 1.
Then G − (F − x) − u − x = G − F − u has a fractional perfect matching.

If F does not contain at least one vertex adjacent to u, then we let Fu be
the set of edges in F adjacent to u. Then G − Fu − u = G − u which must
have a fractional perfect matching, so we consider G − u − (F − Fu). Because
|u∪(F −Fu)| = k−1, we have that G−u−(F −Fu) must have either a fractional
perfect matching or an isolated vertex, but since v is adjacent to w, there are
no isolated vertices. Then G − u − (F − Fu) = G − F − u must have a fractional
perfect matching.

We use the following result to find that fractionally strongly conditionally
super matched graphs with isolated vertices removed must have a fractional
perfect matching.
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Lemma 3. Let a fractionally strongly conditionally super matched graph G of
degree k ≥ 3 have a fault set F ⊂ V (G)∪E(G) with |F | ≤ 2k − 2. If G−F does
not have an isolated vertex or three vertices u, v, w for which δ(u) = 1, δ(v) = 1,
and uw, vw ∈ E(G − F ), then it must have a fractional perfect matching.

Proof. The proof follows from the definition of fractionally strongly conditionally
super matched. For such a graph, every optimal CFSMP set of size 2k − 2 must
be trivial, so the set F must either be a trivial CFSMP set, a non-CFSMP set
which fails to be a CFSMP set by isolating a vertex, or a non-CFSMP set which
fails to be a CFSMP set by leaving a fractional perfect matching.

We use the next result to show that graphs must effectively “concentrate”
faults towards one of two categories in order to preclude a fractional perfect
matching; if faults are allocated towards isolating a vertex, there are not enough
faults left over to create the 3-vertex precluding structure.

Lemma 4. Let a conditionally fractional strongly super matched k-regular graph
G of girth at least 5 have a fault set F ⊆ V (G) ∪ E(G) with |F | = 2k − 2. Then
if G − F contains an isolated vertex e, the graph G − (F − {e}) must contain a
fractional perfect matching.

Proof. There are two cases.
Case 1. G−F contains two isolated vertices, e and g. Then e and g are either

adjacent or they share at most one common neighbor. If they are adjacent, then
there are k faults adjacent or incident to each of e and g with at most one of
those faults shared (the edge eg). Since 2k − 1 > 2k − 2, this can not occur. If
they share a common neighbor, the minimum fault set size required is the same.
If they do not share a common neighbor, then |F | ≥ 2k. Thus G − F contains
at most one isolated vertex.

Case 2. G−F −{e} contains three vertices u, v, w for which δ(u) = 1, δ(v) =
1, and uw, vw ∈ E(G−F −{e}). There are k−1 faults adjacent to u and another
disjoint k − 1 faults adjacent to v in G. The vertex e can be adjacent or incident
to at most two of the faults adjacent or incident to either u or v, so an additional
k −2 faults are adjacent or incident to e. Then |F | ≥ 3k −4, and 3k −4 > 2k −2
for k ≥ 3, so this construction can not be made.

Finally, we prove the base case result on B3 using a computer check.

Lemma 5. cfsmp(B3) = 4. Moreover, every optimal CFSMP set of B3 is triv-
ial, that is, B3 is fractional strongly super matched.

Proof. This was verified by computer check. Due to the relatively small size of
the minimum CFSMP set and the graph B3, this was checked in about 1 day
on a conventional computer. The program was written in Python and used the
NetworkX package for graph analysis and the SciPy package for a linear program
solver to check for fractional perfect matchings. The verification was completed
by looping through all possible fault sets on B3 of size 4. After optimizing for
vertex transitivity, there are 1, 302, 609 such fault sets.
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We remark that a similar result for P5 likely exists; however, due to the size
of the graph, the linear optimization problem requires much longer to compute
for each fault set case, and there are more cases for fault sets. This may be
feasible by using a computer cluster.

4 The Main Results

First we note the following result.

Theorem 5. [19] Let H be a (k − 1)-regular graph with k ≥ 4. Let G be
a k-regular graph constructed from at least three copies of H by adding edges
between the copies, such that G satisfies the following properties: (i) each vertex
is incident to exactly one cross edge, and (ii) the cross neighbours of two adjacent
vertices in a copy of H are in different copies. Then if H is fractional strongly
super matched, G is fractional strongly super matched.

Although this theorem states that G must be composed of copies of H, the
proof of this theorem does not actually require every subgraph to be isomorphic.
Thus, we restate the theorem as follows.

Theorem 6. Let H1,H2, . . . , Hn be a set of (k − 1)-regular graphs with k ≥ 4
and n ≥ 3. Let G be a k-regular graph constructed from all Hi with 1 ≤ i ≤
n by adding edges between the subgraphs, such that G satisfies the following
properties: (i) each vertex is incident to exactly one cross edge, and (ii) the
cross neighbours of two adjacent vertices in any Hi are in different copies for
1 ≤ i ≤ n. Then if every H1,H2, . . . , Hn is fractional strongly super matched, G
is fractional strongly super matched.

This modified theorem allows us to extend our main result from burnt pan-
cake graphs to pancake-like graphs.

In this section, we use the same notation as in the previous sections, but in
a more general context. Suppose G is a graph constructed from disjoint copies
of a graph H by adding edges between the copies. If uv is an edge joining two
vertices from different copies of H, we call it a cross edge, and say u and v are
cross neighbours.

Theorem 7. Let H1,H2, . . . , Hn be a set of (k − 1)-regular graphs with k ≥ 4
and n ≥ 3, and girth at least 5. Let G be a k-regular graph constructed from all
Hi with 1 ≤ i ≤ n by adding edges between the subgraphs, such that G satisfies
the following properties: (i) each vertex is incident to exactly one cross edge, and
(ii) the cross neighbours of two adjacent vertices in a copy of H are in different
copies. Then if every H1,H2, . . . , Hn is fractional strongly super matched and
conditionally fractional strongly super matched, G is fractional strongly super
matched and conditionally fractional strongly super matched.

We omit the proof in this extended abstract due to a space constraint. The
proof is long and technical, involving a careful case analysis based on the distri-
bution of faults in the substructures based on the recursive properties and other
properties that we have developed here.
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5 Conclusion

We apply Theorem 7 inductively to Bn, given Proposition 3 and Theorem 4 along
with the base case Lemma 5 to complete the proof of Theorem 1.

We also note that Theorem 2 is a direct restatement of Theorem 7, and is
thus proven.

Because the conditional fractional matching preclusion number must be
greater than or equal to the conditional fractional strong matching preclusion
number, it is not necessary to separately consider this problem for the burnt
pancake graph or the subset of pancake-like graphs we described.
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Abstract. In a graph G = (V, E), the edge set E be partitioned into k dimensions
E1, E2, …, Ek for a positive integer k. For any cycle C on G, the set of all i-
dimensional edge of C, a subset of E(C), is denoted as Ei(C) for 1 ≤ i ≤ k. If
||Ei(C)| − |Ej(C)|| ≤ 1 for 1 ≤ i < j ≤ k, C is called a dimension-balanced cycle
(DBC for short). If G contains a DBC of every (even, resp.) length between 3 (4,
resp.) to |V (G)|,G is called DBP (DBBP, resp.). Furthermore, if ||Ei(C)|− |Ej(C)||
≤ 3 for 1 ≤ i < j ≤ k, C is called a weakly dimension-balanced cycle (WDBC for
short). If G contains a WDBC of every (even, resp.) length between 3 (4, resp.)
to |V (G)|, G is called WDBP (WDBBP, resp.). The weakly dimension-balanced
pancyclicity on graph G is to study whether G is WDBP or WDBBP. For the
toroidal mesh graph Tm,n, the weakly dimension-balanced pancyclicity has been
discussed in 2019 when at least one of m, n is even; 2021 when both m and n
are odd. In this paper, we discuss the weakly dimension-balanced pancyclicity on
Tm,n when both m and n are odd.

Keywords: Toroidal mesh graph · Hamiltonian cycle · Weakly
dimension-balanced cycle · Pancyclicity · Bipancyclicity

1 Introduction

Interconnection network is a popular issue in recent years. A topological structure of
an interconnection network is usually modeled by a graph whose vertices represent
processors/cores and edges represent communication links between processors. By this
transformation, an interconnection network can be transformed to a graph. For a graph
G = (V, E), where V (G) is the vertex set and E(G) is the edge set, |V (G)| denotes the
number of vertices and |E(G)| denotes the number of edges. AHamiltonian cycle ofG is
a cycle that contains every vertex ofG.We say a graphG is pancyclic (p-pancyclic, resp.)
if it embeds cycles of every length ranging from 3 to |V (G)| (p to |V (G)|, resp.). Since
there exist no odd cycles in bipartite graph, a bipartite graph G is called bipancyclic
(p-bipancyclic, resp.) ifG contains cycles of every even length between 4 to |V (G)| (p to
|V (G)|, resp.). Note that the definition of bipancyclicity is intended for bipartite graphs,
but can be applied to any graph. In interconnection graph, Hamiltonicity and pancyclicity
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are two important properties to design the graph and have been widely discussed in the
previous literature (see [1, 3–5, 7, 13, 17, 18, 25]).

In the 3D stereogram reconstruction problem, the research of optimal encode will
use gray-code encode to signify the information of n-bits, which has been mentioned
in the references [2, 16, 20]. The utility of gray-code will decrease the consumption
of resource and increase the precision. However, there will be some problems when
deal with too many data transformation between 1 and 0 of the same dimension, such
as it will cost more or produce poor results. How to reduce the cost of dealing with
such problems is very important. Hence, Wang [19] discusses a problem to decrease
the efficiency of the information transmission on hypercube. It is called the dimension-
balanced Hamiltonicity on hypercube. The design for network-on-chip (NoC) problem
is an important issue recently. When congestion occurs, the NoC network performance
will descend. Thus, how to select efficiently path and provide a strategy to solve this
problem are critical factors for the performance of NoC. It also received a great attention
in recent years [10–12]. One popular structure in NoC can be transformed into a toroidal
mesh graph. We believe that a DBC of given length is helpful for designing simple
algorithms with low communication cost and avoid congestion.

Given a graph G = (V, E), the edge set E be partitioned into k dimensions E1, E2,
…, Ek for a positive integer k. For any cycle C on G, the set of all i-dimensional edge of
C, which is a subset of E(C), is denoted as Ei(C) = E(C) ∩ Ei. If ||Ei(C)| – |Ej(C)|| ≤
1 for any 1 ≤ i < j ≤ k, C is called a dimension-balanced cycle (DBC, for short). If the
length ofC is p, we callC is a p-DBC. Combining the concept of DBC, and Hamiltonian
cycle, pancyclic, p-pancyclic, bipancyclic and p-bipancyclic, the following definitions
are given. Let C be a DBC on G, if C is also a Hamiltonian cycle on G, C is called a
DBH and G is called DB-Hamiltonian. If G contains a DBC of every length between 3
to |V (G)|, G is called DBP. Similarly, if G contains a DBC of every length between p to
|V (G)|, G is called p-DBP. Besides, if G is called DBBP, G may embed a DBC of every
even length between 4 to |V (G)|. Also, if G is called p-DBBP, G may embed a DBC of
every even length between p to |V (G)|.

The dimension-balanced cycle problem is a quite new topic of graph theory. The first
research about dimension-balanced cycle has been proposed by the ref. [19]. In 2011,
Wang presented that G contains a DBH when G is the hypercube Qk for k = 2, 3 and
4; Tn,n, Cn × Km,n, C3 × Km and C4 × Cm for m, n ≥ 3 [19]. In 2012, Peng and Juan
proposed a method for finding a DBH on Tm,n if it exist, where m, n ≥ 3 [14]. They
proved that, there is no DBH on Tm,n for mn mod 4 = 2. [15, 9], and [6] discussed
the dimension-balanced pancyclicity on Tm,n in 2014, 2017, and 2021, respectively.
But in practical, although an interconnection network contain no DBC for some special
length, it still need a suitable routing cycle for those interconnection network, to give
some specific methods for solving the original problem. Hence, the weakly dimension-
balanced cycle had been discussed. [23] defined a weaker version of DBC as follows.
Given a graphG = (V, E), and {E1, E2, …, Ek} is a partition of E with dimension k. Let
C is a cycle on G and Ei(C) = E(C) ∩ Ei. If ||Ei(C)| − |Ej(C)|| ≤ 3 for all 1 ≤ i < j ≤ k,
C is called a weakly dimension-balanced cycle (WDBC, for short). If the length of C is
p, we call C is a p-WDBC. If C is also a Hamiltonian cycle on G, C is called aWDBH.
[8] defined some similar definitions for pancyclicity and bipancyclicity as follows. For
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some integer p ≥ 3, if G contains a WDBC of every length from 3 (p, resp.) to |V (G)|,
G is called WDBP (p-WDBP, resp.). If G contains a WDBC of every even length from
4 (p, resp.) to |V (G)|, G is called WDBBP (p-WDBBP, resp.).

Tm,n is called the toroidal mesh graph whose vertex set V (Tm,n) = {(x, y)|0 ≤ x ≤
m − 1, 0 ≤ y ≤ n − 1}, and edge set E(Tm,n) = {(x1, y1) (x2, y2)| x1 = x2 and y1 − y2
≡ ± 1 (mod n), or y1 = y2 and x1 − x2 ≡ ± 1 (mod m)}. Figure 1 shows an example of
T4, 3. For convenience, we define the set cross1 = {(0, i)(m – 1, i) | 0 ≤ i ≤ n – 1} and
the set cross2 = {(j, 0)(j, n – 1) | 0 ≤ j ≤ m – 1}. The toroidal mesh graph is a famous
interconnection network which have been pay more attention recently [6, 8, 9, 14, 15,
21–24]. For the toroidal mesh graph Tm,n, we set E1 = {(x1, y1) (x2, y2)| y1 = y2 and
x1 − x2 ≡ ± 1 (mod m)}, and E2 = {(x1, y1) (x2, y2)| x1 = x2 and y1 − y2 ≡ ± 1 (mod
n)} intuitively.

Fig. 1. The structure of T4, 3.

For toroidal mesh graph Tm,n, the dimension-balanced Hamiltonicity had been dis-
cussed in 2012 [14], and the Tm,n contains a WDBC for any m, n ≥ 3 are proved in
2018 [23]. The dimension-balanced pancyclicity on Tm,n had been discussed separately
in 2014 [15] (for both m and n are even), 2017 [9] (for one of m and n is even, the other
is odd), and 2021 [6] (for both m and n are odd). Furthermore, the weakly dimension-
balanced pancyclicity already been further discussed in 2019 [8] (for both m and n
are even), [24] (for one of m and n is even, the other is odd). Therefore, the weakly
dimension-balanced pancyclicity on Tm,n for both m and n are odd discussed in this
paper is a natural continuation of research, which will give a complete conclusion to the
weakly dimension-balanced pancyclicity on Tm,n.

The remainder of this paper is organized as follows: Some related work and prelim-
inary are presented in Sect. 2. Section 3 presents the main result. Finally, the conclusion
and discussion are presented in Sect. 4.

2 Preliminary

By definition, a DBC is also a WDBC. The dimension-balanced Hamiltonicity and the
weakly dimension-balanced Hamiltonicity on a toroidal mesh graph Tm,n are concluded
in the following two theorems.

Theorem 1. [14] For m, n ≥ 3 and mn mod 4 �= 2, there is a DBH on Tm,n.

Theorem 2. [23] For m, n ≥ 3 and mn mod 4 = 2, there is a WDBH on Tm,n.
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So, there is aWDBH on Tm,n for any integersm, n≥ 3. That is, there is amn-WDBC
on Tm,n for any integers m, n ≥ 3. When we consider the weakly dimension-balanced
pancyclicity on a toroidal mesh graph Tm,n, we only need to study whether there is a
l-WDBC on Tm,n for 3 ≤ l < mn. Table 1 and 2 summarized the current known results
of the weakly dimension-balanced pancyclicity on a toroidal mesh graph Tm,n.

Table 1. The existence of WDBP on Tm,n for both m and n are even [8].

Tm, n exist WDBC or not for even m, n ≥ 4

4k-WDBC (4k + 2)-WDBC (2k + 1)-WDBC

Yes,
1 ≤ k ≤ mn / 4

Yes,
1 ≤ k ≤ mn / 4 − 1

No

Table 2. The existence of WDBP on Tm,n for one of m and n is even, the other is odd [24].

Tm, n exist WDBC or not for one of m and n is even, the other is odd

4k-WDBC (4k + 2)-WDBC (2k + 1)-WDBC

m ≥ 4 is even,
n ≥ 4 is odd

Yes,
1 ≤ k ≤ ⎣mn/4⎦

Yes,
1 ≤ k ≤ ⎣(mn – 2)/4⎦

Yes,
n – 2 ≤ k ≤ mn/2 – 1

No,

1 < k < n – 2

m ≥ 4 is even,
n = 3

Yes,
k = 1, 2, 3, or

m/2 ≤ k ≤ ⎣mn/4⎦;

No,

3 < k < m/2

Yes,
k = 1, 2, 3, 4 or

m/2 – 1 ≤ k ≤ ⎣(3m
– 2)/4⎦;

No,

4 < k < m/2 – 1

Yes,
k = 1 ~ 8, 10 or

m – 2 ≤ k ≤ mn/2 – 1

No,

k = 9, or

10 < k < m – 2

For both m (≥ 3) and n (≥ 3) are odd, Juan et al. studied the dimension-balanced
pancyclicity on Tm,n in 2021 [6]. The results of [6] shows in Table 3.

In next section, we will consider the “No” parts of Table 3 step by step, and try to
find whether there exist l-WDBC for any 3 ≤ l ≤ mn in Tm,n for both m, n are odd. The
following two properties stated in [6] are still useful in this article.

Property 1. [6] Let C be a cycle on Tm,n. If m (n, resp.) is even, then |E1(C)| (|E2(C)|,
resp.) is even.

Property 2. [6] If m (n, resp.) is odd and there exist a cycle C on Tm,n such that |E1(C)|
(|E2(C)|, resp.) is odd, then |E1(C)| ≥ m (|E2(C)| ≥ n, resp.) and with odd number of
edges in cross1 (cross2, resp.).
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Table 3. Summary of ref. [6]: Tm,n has DBC or not for both m, n are odd.

Tm, n exist DBC or not for odd m, n ≥ 3

4k-DBC (4k + 2)-DBC (2k + 1)-DBC

m ≥ n ≥ 5 Yes,
1 ≤ k ≤ ⎣(mn − 3) / 4⎦

Yes,
(m – 1) / 2 ≤ k ≤

(mn − 3) / 4

No,

1 ≤ k < (m – 1) / 2

Yes,
n − 1≤ k ≤ (mn − 1) / 2

No, 1 ≤ k < n – 1

n = 3. Yes,
k = 1, 2 or 3;

No,

3 < k ≤ ⎣3m / 4⎦

Yes,
k = 2, 3, 4, 5, 7, or

m − 1 ≤ k ≤ (3m − 1) / 2

No,

k = 1, 6 or 7 < k < m − 1

For convenience, we give the following definitions on Tm,n: for any 0 ≤ y ≤ n − 1,
a cycle R1,y is an induced subgraph of Tm,n by the vertex set V (R1,y) = {(i, y)|0 ≤ i ≤ m
− 1}. Similarly, for any 0 ≤ x ≤ m − 1, a cycle R2,x is an induced subgraph of Tm,n by
the vertex set V (R2,x) = {(x, j)|0 ≤ j ≤ n − 1}. Let R1,y,+

i,j = 〈(i, y), (i + 1, y),…, (j, y)〉
be a path for any 0 ≤ i ≤ j < m; R2,x,+

i,j = 〈(x, i), (x, i + 1),…, (x, j)〉 be a path for any 0
≤ i ≤ j < n. R1,y,−

j,i = 〈(j, y), (j – 1, y),…, (i, y)〉 be a path for any 0 ≤ i ≤ j < m; R2,x,−
j,i= 〈(x, j), (x, j – 1), … , (x, i)〉 be a path for any 0 ≤ i ≤ j < n.

3 The Main Discussion

In this section, the following lemma, theorem and corollary are the study result of the
weakly dimension-balanced pancyclicity on toroidal mesh graph Tm,n for both m and n
are odd. According to Table 3, there are four “NO”s in three cases. Hence, we divide
this section into three subsections based on the length of the WDBC we seek.

3.1 4k-WDBC

In this subsection, we prove that when k is small (3 < k < (m – 1)/2), there is no 4k-
WDBC on Tm,3; otherwise, there exist a 4k-WDBC on Tm,3. For example, there is no
16-WDBC on T11,3, and there is a 20-WDBC on T11,3.

Lemma 1. For m is odd, Tm,3 does not contain every 4k-WDBC for 3 < k < (m – 1)/2.

Proof. Assume that C is a 4k-WDBC on Tm,3. By Properties 1 and 2, we know that
|E1(C)| is odd and C has odd number of edges in cross1. So, |E1(C)| ≥ m and |E2(C)| =
4k − |E1(C)| ≤ 4k − m ≤ 4((m − 1) / 2 − 1) − m = m − 6, and ||E1(C)| − |E2(C)|| ≥ 6
> 3 is a contradiction. Therefore, Tm,3 does not have 4k-WDBC where 3 < k < (m – 1)
/ 2. �

Theorem 3. Ifm ≥ 5 is odd, Tm,3 contains 4k-WDBC for 3< (m − 1)/2≤ k < 	3m/4
.
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Proof. Because (m – 1)/2> 3 andm is odd, that meansm≥ 9. Since there is no 4k-DBC
in this case, we know that {|E1(C)|, |E2(C)|} = {2k + 1, 2k − 1} if C is a 4k-WDBC
on Tm,3. In the following, we will construct a WDBC C on Tm,3 with |E1(C)| = 2k + 1
and |E2(C)| = 2k − 1. Let ρ = (2k + 1 – m)/2. If ρ is even, let β1 = (2k – 1 − 3) mod
(m − ρ − 1) and n1 = (2k – 1 – 3 − β1)/(m – ρ – 1) = 	(2k − 1 − 3)/(m − ρ − 1)
;
if ρ is odd, let β2 = (2k – 1 − 3) mod (m − ρ − 2) and n2 = (2k – 1 – 3 − β2)/(m – ρ

– 2) = 	(2k − 1 − 3)/(m − ρ − 2)
 .
When ρ is even, we construct a 4k-cycle C1 = 〈(0, 0), (m − 1, 0), R1,0,−

m−1,m−ρ−1, (m

− ρ − 1, 0), (m − ρ − 1, 1), R1,1,+
m−ρ−1,m−1, (m − 1, 1), (m − 1, 2), R1,2,−

m−1,m−ρ−2, (m − ρ

− 2, 2), R2,m−ρ−2,−
2,1−n1

, (m − ρ − 2, 1 − n1), (m − ρ − 3, 1 − n1), R
2,m−ρ−3,+
1−n1,2

, (m − ρ

− 3, 2),…, (m − ρ − β1 − 1, 2), (m − ρ − β1 − 2, 2), (m − ρ − β1 − 2, 2 − n1), (m
− ρ − β1 − 3, 2 − n1), (m − ρ − β1 − 3, 2),…, (0, 2), (0, 0)〉 .

The structure of C1 is shown in Fig. 2. Obviously, |E1(C1)| = m + 2ρ = 2k + 1 and
|E2(C1)| = 1 + (2 – (2 – n1))(m − ρ − β1 − 1) + (2 – (1 – n1))((m − ρ – 2) – (m − ρ

− β1 − 1) + 1) + 2 = 3 + n1(m − ρ − 1) + β1 = 2k − 1. So C1 is a 4k-WDBC.

Fig. 2. The constructed WDBC C1 on Tm,3 when ρ is even of Theorem 3.

Note that 1. Since k ≤ 	3m/4
 ≤ 3m/4, so m − ρ − 1 = m – (2k + 1 – m)/2 − 1 =
3m/2 − k − 3/2 ≥ (3m – 3)/2 − 3m/4 = 3m/4 – 3/2 ≥ 0 when m ≥ 2. And 2. k ≥ (m
– 1)/2 and m ≥ 9 is odd, so 2k − 1 − 3 ≥ 2(m − 1)/2 − 1 − 3 = m − 5 ≥ 0, then n1 =
	(2k − 1 − 3)/(m − ρ − 1)
 ≥ 0. In the other hand, n1 = 	(2k − 1 − 3)/(m − ρ − 1)

≤ (2k – 4)/(m – ρ – 1) ≤ (2(3m)/4 – 4)/(m – ρ – 1) = (3m – 8)/(3m – 2k – 3) ≤ (3m
– 8)/(3m − 2(3m)/4 – 3) = (6m – 16)/(3m – 6) < 2. Since m − ρ − β1 − 1 > m −
ρ − (m − ρ − 1) − 1 = 0, so 0 ≤ n1 ≤ 1 and m − ρ – β1 − 1 > 0. That is, C1 is a
well-defined cycle.

When ρ is odd and n2 < 2, we construct a 4k-cycle C2 = 〈(0, 0), C1((0,0), (m −
ρ − 2, 2)), (m − ρ − 2, 2), R2,m−ρ−2,−

2,1−n2
, (m − ρ − 2, 1 − n2), (m − ρ − 3, 1 −

n2), R
2,m−ρ−3,+
1−n2,2

, (m − ρ − 3, 2),…, (m − ρ − β2 − 1, 2), (m − ρ − β2 − 2, 2), (m −
ρ − β2 − 2, 2 − n2), (m − ρ − β2 − 3, 2 − n2), (m − ρ − β2 − 3, 2),…, (1, 2), (0, 2),
(0, 0)〉.

According to Fig. 3, we know that |E1(C2)| = m + 2ρ = 2k + 1 and |E2(C2)| = 1
+ (2 – (2 – n1))(m − ρ − β2 − 2) + (2 – (1 – n1))((m − ρ – 2) – (m − ρ – β2 − 1) +
1) + 2 = 3 + n2(m − ρ − 2) + β2 = 2k − 1. Hence C2 is a 4k-WDBC.

Also note that 1. Since k ≤	3m/4
 ≤ 3m/4, so m − ρ – 2 = m – (2k + 1 – m)/2 −
2 = 3m/2 − k − 5/2 ≥ 3m/2 − 3m/4 − 5/2 = 3m/4 – 5/2 ≥ 0 when m ≥ 4. And 2. k
≥ (m – 1)/2 and m ≥ 9, hence 2k − 1 − 3 ≥ 2(m − 1)/2 − 1 − 3 ≥ m − 5 ≥ 0, n2 =
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Fig. 3. The constructed WDBC C2 on Tm,3 when ρ is odd of Theorem 3.

	(2k − 1 − 3)/(m − ρ − 2)
 ≥ 0. Besides, m − ρ − β2 − 1 > m − ρ − (m − ρ − 2)
− 1 = 1 > 0. That is, m − ρ − β2 − 1 ≥ 2. Since n2 = 	(2k − 1 − 3)/(m − ρ − 2)

≤ (2k – 4)/(m – ρ – 2) ≤ (2(3m)/4 – 4)/(m – ρ – 2) = (3m – 8)/(3m − 2k – 5) ≤ (3m
– 8)/(3m − 2(3m/4) – 5)= (6m – 16)/(3m – 10). Sincem ≥ 9> 14/3, 14< 3m and 6m −
16 < 9m − 30, so (6m – 16)/(3m – 10) < 3. That is, 0 ≤ n2 ≤ 2. When n2 = 2, this only
occur in k = (3m – 1) / 4, because if k < (3m – 1) / 4, n2 =	(2k − 1 − 3)/(m − ρ − 2)

≤ (2k – 4)/(m – ρ – 2) < (2(3m − 1)/4 – 4)/(m – ρ – 2) = (3m – 9)/(3m − 2k – 5) <

(3m – 9)/(3m − 2(3m − 1)/4 – 5) = (6m – 18)/(3m – 9) = 2, n2 < 2. So we construct a
cycle C3 for k = (3m – 1)/4. Let C3 = 〈(0, 0), C1((0, 0), (m − ρ − 2, 2)), (m − ρ − 2,
2), R2,m−ρ−2,−

2,0 , (m − ρ − 2, 0), (m − ρ − 3, 0), R2,m−ρ−3,+
0,2 , (m − ρ − 3, 2),…, (1, 2),

(0, 2), (0, 0)〉. Figure 4 shows the structure of C3. Then we have |E1(C3)| = m + 2ρ =
2k + 1 and |E2(C3)| = 1 + 2(m − ρ − 2) + 2 = 3m − 1 − 2k − 1 = 2k − 1. Hence C2
and C3 are well-defined. �

Fig. 4. The constructed WDBC C3 on Tm,3 when ρ is odd and n2 = 2 of Theorem 3.

3.2 (4k + 2)-WDBC

In this subsection, we prove that when k is small (1, 2, 3 or 4), there is a (4k + 2)-WDBC
on Tm,n for any odd m, n ≥ 3; when k is larger (4 < k < (m − 1)/2), although there is
still no (4k + 2)-WDBC on Tm,3, we can find a (4k + 2)-WDBC on Tm,n if m ≥ n ≥ 5.

Lemma 2. If m is odd, Tm,3 contains no (4k + 2)-WDBC for any 4 < k < (m − 1)/2.

Proof. Assume that C is a (4k + 2)-WDBC on Tm,3. Since there is no (4k + 2)-DBC
for 1≤ k < (m – 1)/2, the only possible situation are |E1(C)|= 2k + 2 (<m) and |E2(C)|
= 2k (|E1(C)| = 2k (< m) and |E2(C)| = 2k + 2, resp.). Therefore, |E2(C)| is even and
C has even number of edges in cross2. Without loss of generality, say no edge in cross1
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be used in C. Let x ∈ V (C) and dC(x) denote the degree of x in C, be the number of
edges incident with x in C. Then let Zm = {0,1,…, m − 1} and Ei

1(C) = {(i, y)(x, y) ∈
E(C)|x = (i + 1) mod m, 0 ≤ y ≤ 2}, Ei

2(C) = {(i, y1)(i, y2) ∈ E(C)|0 ≤ y1 ≤ 2 and y2
= y1 + 1 mod 3} for i ∈ Zm. According to the structure of C, |Ei

1(C)| = 0 or 2 for every
i ∈ Zm. That is, |{i ∈ Zm||Ei

1(C)| = 2}| = k + 1 (k, resp.) and those integers in the set {i
∈ Zm||Ei

1(C)| = 0} must be consecutive. Without loss of generality, let |Ei
1(C)| = 2 for

0 ≤ i ≤ k (k − 1, resp.) and |Ej
1(C))| = 0 for k + 1 (k, resp.) ≤ j ≤ m − 1. Since cycle

is a 2-regular graph, we know that for i ∈ Zm and j = (i + 1) mod m, 6 ≥ dC((j, 0)) +
dC((j, 1)) + dC((j, 2)) = |Ei

1(C)| + |Ej
1(C)| + 2|Ej

2(C)| is even. If |E
i
1(C)| + |Ej

1(C)| = 2

then |Ej
2(C)| ≤ 2, this case only occur when i = m − 1 or i = k (k − 1, resp.). If |Ei

1(C)|

+ |Ej
1(C)| = 4 then |Ej

2(C)| ≤ 1, this case only occur when 0 ≤ i ≤ k − 1 (k − 2, resp.).
Thus |E2(C)| ≤ 4 + k < 2k (|E2(C)| ≤ 4 + k − 1 < 2k + 2, resp.) when k > 4. That is
a contradiction. Therefore, Tm,3 does not have every (4k + 2)-WDBC for 4 < k < (m
– 1)/2. �

When k = 1, 2, 3 or 4, we find a (4k + 2)-WDBC on Tm,3 for m is odd as Fig. 5
shows.

Fig. 5. When m is odd, Tm,3 have a (4k + 2)-WDBC for k = (a) 1, (b) 2, (c) 3, (d) 4.

Theorem 4. For m, n ≥ 5 are odd integers, Tm,n contains every (4k + 2)-WDBC for 1
≤ k < (max{m, n} − 1)/2.

Proof. Without loss of generality, say m ≥ n. According to the range of k, we divided
this proof into two cases.

Case 1: 1 ≤ k ≤ n − 2.

Construct a (4k + 2)-cycle C1 = 〈(0,0), R2,0,+
0,k , (0, k), R1,k,+

0,k+1, (k + 1, k), R2,k+1,−
k,0 , (k +

1,0),R1,0,−
k+1,0, (0, 0)〉. Since k + 1≤ n− 1≤m− 1,C1 is a well-defined cycle. Obviously,

|E1(C1)| = 2k + 2 and |E2(C1)| = k + k = 2k. Hence C1 is a (4k + 2)-WDBC.

Case 2: n − 1 ≤ k < (m – 1)/2.

Let β1 = ((2k + 2 − 2(n − 1)) mod 2(n − 2))/2 = (k – n + 2) mod (n − 2) = k mod (n
− 2) and n1 = ((2k + 2) − (2n − 2) − 2β1)/2(n − 2) = 	(k − n + 2)/(n − 2)
. Then
construct a (4k + 2)-cycle C2 = 〈(0, 0), (1, 0), R2,1,+

0,n−2, (1, n − 2), (2, n − 2), R2,2,−
n−2,0,

(2, 0), (3, 0), R2,3,+
0,n−2, (3, n − 2), (4, n − 2),…, (2n1, 0), (2n1 + 1, 0), R2,2n1+1,+

0,β1
, (2n1

+ 1, β1), (2n1 + 2, β1), R
2,2n1+2,−
β1,0

, (2n1 + 2, 0), R1,0,+
2n1+2,k , (k, 0), R

2,k,+
0,n−1, (k, n − 1),

R1,n−1,−
k,0 , (0, n − 1), R2,0,−

n−1,0, (0, 0)〉.
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Figure 6 shows the structure of C2. Note that because m ≥ n ≥ 5 are odd integers,
2n1 = 2	(k − n + 2)/(n − 2)
 ≤ 2(k/(n – 2) − 1) ≤ 2(k/3 − 1) < k − 3 since k ≥ n −
1 ≥ 4, the structure of C2 is well-defined. Besides, |E1(C2)| = k + k = 2k and |E2(C2)|
2n − 2 + 2n1(n − 2) + 2β1 + 2k + 2. That is, C2 is a (4k + 2)-WDBC.�

Fig. 6. The constructed WDBC C2 on Tm,n of Theorem 4.

3.3 (2k + 1)-WDBC

In this subsection, we discuss whether there is a (2k + 1)-WDBC on Tm,n for some m,
n, and k while there is no (2k + 1)-DBC on Tm,n. For n = 3, we prove that there is a
(2k + 1)-WDBC on Tm,3 for some k, but it still have no (2k + 1)-WDBC on Tm,3 for
most cases of k. For m, n ≥ 5, we prove that only for k = min{m, n} – 2, there is a (2k
+ 1)-WDBC on Tm,n; for any other k, there is still no (2k + 1)-WDBC on Tm,n.

Lemma 3. If m is odd, Tm,3 contains no (2k + 1)-WDBC for k = 9 or 10 < k < m – 2.

Proof. Since we already know Tm,3 does not have any (2k + 1)-DBC for k = 6 or 7 <

k < m − 1 by [6]. Assume that C is a (2k + 1)-WDBC on Tm,3. Let k1 + k2 = 2k +
1, k1 be even, k2 be odd and |k1 − k2| = 3. If |E1(C)| = k2 is odd number, |E1(C)| =
k2 ≥ m by Property 2. Since k < m − 2, k2 ≤ k + 2 < m, a contradiction. Therefore,
|E1(C)| = k1 is even and |E2(C)| = k2 is odd. Again, since k < m − 2, k1 ≤ k + 2 < m,
so we can say there is no edge of C in cross1 without loss of generality. Let x ∈ V (C)
and dC(x) denote the degree of x on C, be the number of edges incident with x in C.
Then let Zm = {0, 1,…, m − 1} and Ei

1(C) = {(i, y)(x, y) ∈ E(C)|x = (i + 1) mod m,
0 ≤ y ≤ 2}, Ei

2(C) = {(i, y1)(i, y2) ∈ E(C)|0 ≤ y1 ≤ 2 and y2 = y1 + 1 mod 3} for i
∈ Zm. According to the structure of C, |Ei

1(C)| = 0 or 2 for every i ∈ Zm. That is, |{i
∈ Zm||Ei

1(C)| = 2}| = k1/2 and those integers in the set {i ∈ Zm||Ei
1(C)| = 0} must be

consecutive. Without loss of generality, let |Ei
1(C)| = 2 for 0 ≤ i ≤ k1/2 − 1 and |Ej

1(C)|= 0 for k1/2 ≤ j ≤ m − 1. Since cycle is a 2-regular graph, we know that for i ∈ Zm and
j = (i + 1) mod m, 6 ≥ dC((j, 0)) + dC((j, 1)) + dC((j, 2)) = |Ei

1(C)|+|E
j
1(C)|+2|E

j
2(C)|

is even. If |Ei
1(C)|+|E

j
1(C)| = 2 then |Ej

2(C)| ≤ 2, this case only occur when i = m − 1 or

i = k1/2 − 1. If |Ei
1(C)|+|E

j
1(C)| = 4 then |Ej

2(C)| ≤ 1, this case only occur when 0 ≤ i
≤ k1 / 2 − 2. Thus k2 = |E2(C)| ≤ 4 + k1 / 2 − 1. Note that k1 + k2 = 2k + 1, k1 be
even, k2 be odd and |k1 − k2| = 3. If k1 = k2 + 3, then k2 ≤ 9 and k1 ≤ 12. If k1 = k2
− 3, then k2 ≤ 3 and k1 ≤ 0.
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When k = 9, 2k + 1 = 19, so that k1 = 8 and k2 = 11, is a contradiction. When 10
< k < m − 2, 21 < 2k + 1 = k1 + k2 ≤ 21, is a contradiction, too. Therefore, Tm,3 does
not have every (2k + 1)-WDBC for k = 9 or 10 < k < m − 2. �

Note that a DBC is a WDBC by the definition. According to Lemma 3 and Table 3,
we still need to discuss when k = 1, 6, 8, 10 orm− 2, whether there is a (2k + 1)-WDBC
on Tm,3 for m is odd or not. Figure 7 give the answer, which shows the structure of (2k
+ 1)-WDBC on Tm,3 for k = 1, 6, 8, 10, respectively. And next lemma will give a (2k
+ 1)-WDBC on Tm,3 for k = m − 2.

Fig. 7. For odd m, Tm,3 have a (2k + 1)-WDBC for k = (a) 1, (b) 6, (c) 8, (d) 10.

Lemma 4. If m is odd, Tm,3 contains (2k + 1)-WDBC for k = m – 2.

Proof. Note that we only need to consider k ≥ 11 according to Table 3 and Fig. 7. For
k = m − 2, let |E1(C)| = m = k + 2, |E2(C)| = m − 3 = k − 1 and β1 = (k − 1) − 4
= k − 5 = m − 7 > 0. We can construct a (2k + 1)-cycle C = 〈(0, 0), (0, 1), (0, 2), (1,
2), (1, 1), (2, 1), (2, 2),…, (β1, 2), R

1,2,+
β1,m−1, (m − 1, 2), (m − 1, 1), (m − 1, 0), (0, 0)〉.

Figure 8 shows the structure of C. We have |E1(C)| = m = k + 2 and |E2(C)| = 4 + β1
= k − 1. Then ||E1(C)| − |E2(C)|| = 3. That is, C is a (2k + 1)-WDBC for k = m −
2. �

Fig. 8. The constructed WDBC C on Tm,3 of Lemma 4.

Lemma 5. For both m, n ≥ 5 are odd, Tm,n have a (2k + 1)-WDBC where k = min{m,
n} – 2.

Proof. Without loss of generality, say m ≥ n. So k = n − 2 and 2k + 1 = 2(n − 2) + 1
= 2n − 3. Let γ 1 = (k – 1) / 2, we construct a (2k + 1)-cycle C = 〈(0, 0), (0, n − 1),
R1,n−1,+
0,γ1

, (γ 1, n − 1), R2,γ1,−
n−1,0 , (γ 1, 0), R

1,0,−
γ1,0

, (0, 0)〉 shows in Fig. 9. In C, |E1(C)| =
2γ 1 = k − 1 and |E2(C)| = n = k + 2. Then ||E1(C)|−|E2(C)|| = 3. That is, C is a (2k
+ 1)-WDBC �
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Fig. 9. The constructed WDBC C on Tm,n of Lemma 5.

Lemma 6. For both m, n ≥ 5 are odd, Tm,n does not have (2k + 1)-WDBC for any 1 ≤
k < min{m, n} – 2.

Proof. Assume C is a (2k + 1)-WDBC on Tm,n. Let k1 + k2 = 2k + 1, k1 be even,
k2 be odd and |k1 − k2| = 3. Without loss of generality, let |E1(C)| = k1 and |E2(C)| =
k2. By Property 2, we know that |E2(C)| ≥ n and C has odd number of edges in cross2.
Then |E1(C)| = 2k + 1 − |E2(C)| ≤ 2k + 1 − n < 2(min{m, n} − 2) + 1 − n ≤ 2(n
− 2) + 1 − n = n − 3, and ||E1(C)| − |E2(C)|| > 3 is a contradiction. Therefore, Tm,n
does not have (2k + 1)-WDBC where 1 ≤ k < min{m, n} − 2. �

4 Conclusion

In this paper, we study the weakly dimension-balanced pancyclicity on the toroidal mesh
graph Tm,n for bothm and n are odd. Referring to previous researchwork, Table 4 lists the
summary of this article. As a conclusion, according to [6], Lemmas 1, 2, 3, 4, Theorem 3,
we get Corollary 1.

Corollary 1. For odd integer m, Tm,3 are (2m – 3)-WDBP.

For the case of both m, n ≥ 5, since there is an unresolved case in [6] (as Conjecture
1), combining Lemmas 5, 6 and Theorem 4, we give Conjecture 2 as follows.

Conjecture 1. [6] Ifm, n ≥ 5 both are odd, Tm,n embeds a 4k-DBC for k = (mn−1)/4.

Conjecture 2. For any integers m, n ≥ 5, Tm,n are

(a) WDBBP when both m, n are odd and;
(b) (2n – 3)-WDBP when m ≥ n; (2m – 3)-WDBP when m ≤ n.
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Table 4: The existence of WDBP on Tm,n for both m and n are odd.

Tm, n exist WDBC or not for odd m, n ≥ 3
4k-WDBC (4k + 2)-WDBC (2k + 1)-WDBC

m ≥ n ≥ 5
Yes,

1 ≤ k ≤ ⎣(mn − 3) / 4⎦
[6]

Yes,
1 ≤ k ≤ (mn − 3) / 4

[6], Thm. 4

Yes,
n − 2 ≤ k ≤ (mn − 1) / 2

[6], Lemma 5;
No,

1 ≤ k < n – 2
Lemma 6

n = 3.

Yes,
k = 1, 2, 3 or (m − 1)

/ 2 ≤ k < ⎣3m / 4⎦
Thm. 3;
No,

3 < k < (m − 1) / 2
Lemma 1

Yes,
k = 1, 2, 3, 4 and
(m − 1) / 2 ≤ k ≤

⎣(3m – 2)/4⎦
[6], Fig. 5;

No,
4 < k < (m − 1) / 2

Lemma 2

Yes,
k = 1 ~ 8, 10 or

m – 2 ≤ k ≤ (mn − 1) / 2
[6], Fig. 7, Lemma 4;

No,
k = 9, or 10 < k < m – 2

Lemma 3
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Hypercontractivity via Tensor Calculus

Maciej Skorski(B)

University of Luxembourg, Luxembourg, Luxembourg

Abstract. This work improves best known numeric constants in the
seminal hypercontractive inequality of Bonami, specialized to boolean
polynomials of degree two. The novel approach builds on tensor calculus
and a new tensor contraction inequality which is of independent interest.
As an interesting byproduct, a closed-form formula for the number of
perfect matchings in the cocktail-party graph is obtained.

Keywords: Hypercontractive inequality · Moment inequalities ·
Boolean polynomials · Rademacher chaos · Tensor calculus

1 Introduction

1.1 Motivation and Background

The seminal hypercontractive inequality, discovered independently first by Aline
Bonami [8,9] and later by Leonard Gross [16], estimates the moments of sums
known as Rademacher chaoses or boolean polynomials. Of particular importance
are quadratic chaoses, which appear in high-dimensional statistics when studying
the quality of random projections [1,22] or matrix trace estimators [5,28,31]. A
quadratic chaos is formally defined as an expression of the form

F = XT AX, X ∼ {−1, 1}n

where A is an n×n off-diagonal matrix and the vector of random ±1 numbers X
is referred to as a Rademacher vector. The precise statement of the hypercontrac-
tive inequality relates the q-th central moment of F (usually hard to determine
exactly) to the variance (easy to compute explicitly). Namely, for every q � 2
and some constant C(q) we have the following bound:

E [F q] � C(q) · Var[F ]q/2.

This goal of this work is to improve upon the best known constant C(q).
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1.2 Related Work

Probably the earliest proof of the hypercontractive inequality appears in Paley’s
work [27], albeit with no clear constant. Explicit, and best up to date, are com-
binatorial bounds given by Bonami [8,9]; another combinatorial albeit weaker
bounds were given in parallel by Kiener [21]. In his monograph [25] O’Donnel
gives a modernized and cleaned combinatorial argument to reproduce the best
known bound. The hypercontractive inequality is so popular that alternative
proofs, quantitatively weaker but conceptually simpler, were proposed; see for
example [7,14] for an approach using entropy, [24] for a relatively short induc-
tive argument and [6] for “sum-of-squares” proofs. Also survey articles often
refer only simpler bounds, ignoring refined but more complicated versions [11].

In the modern literature, the general hypercontractive inequality has sur-
prisingly many applications; these include information theory [3,23], analysis of
Boolean functions [19], learning and approximations [12,20,26], SAT problems
[13] and others. There are also extensions beyond the real domain, for example
to complex numbers [18] and general Banach spaces [29].

1.3 Contribution

This work improves upon the best known constant C(q) when q is an even integer
(improvements for other values will follow by a standard application of Riesz-
Thorin interpolation). By doing so, it offers a novel perspective: the argument
is built on tensor calculus and a novel contraction inequality, of independent
interest, is obtained. In addition, a connection and application to the problem
of counting perfect matching on certain graphs is discussed. The improvement
is also demonstrated numerically, with the code available at GitHub [30].

1.4 Organization

The concepts and notation used throughout the paper are clarified in Sect. 2. Our
results are stated precisely in Sect. 3, along with a comparison to prior work, and
followed by the proofs in Sect. 4. The work is concluded in Sect. 5. The Python
code for the empirical evaluation is published on GitHub [30].

2 Preliminaries

2.1 Basics

Notation. We adopt the standard notation [n] = {1 . . . n} and (x)n =
∏n−1

k=0(x−
k) (the falling factorial). The double-factorial is n!! = n(n − 2)(n − 4) · · · 1 for
odd n and n!! = n(n− 2)(n− 4) · · · 2 for even n. The gamma function Γ extends
the factorial to the complex domain via Γ (z) = (z − 1)! when z is an integer.

Partitions. A partition Π of a set V is a family of disjoint subsets whose union
is V . For convenience, we will refer to k-element subsets as simply k-subsets.
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Perfect Matchings. For a graph with nodes V and edges E we define the subset
M of edges to be a perfect match if the edges in M are non-overlapping (do not
share a node) and cover all the nodes (the union of M equals V ).

2.2 Matrices

Trace as Inner Product. Recall (cf. [2,10]) that the mapping

〈A,B〉 � tr
(
ABT

)
=

∑

i,j

Ai,jBi,j

defines the inner product on the space of real matrices A,B of same fixed shape.

Frobenius Norm. The trace inner product induces the Frobenius norm:

‖A‖2F = 〈A,A〉 =
∑

i,j

A2
i,j

Furthermore, this norm is sub-multiplicative (although not induced!) [17]:

‖AB‖F � ‖A‖F ‖B‖F

2.3 Tensor Calculus

Tensors. For the purpose of this discussion, we define a tensor of rank d as a
d-dimensional array u [k1, . . . , kd] where dimension indices k1, . . . , kd take their
values in, possibly different, discrete sets.

Kroenecker Product. Given two tensors u [i1, . . . , ip] and v [j1, . . . , jq] of rank p
and q respectively, we define the Kronecker Product of u and v to be

(u ⊗ v) [i1, . . . , ip, j1, . . . , jq] = u [i1, . . . , ip] · v [j1, . . . , jq]

In other words, this is the tensor of rank p+q storing all possible cross-products.

Tensor Contraction. For a tensor u [k1, k2, . . . , kd] and a set I of non-overlapping
pairs formed from {1, . . . , d} we define the contraction of u on pairing I as

contr(u; I) =
∑

k1,...,kd

∏

{i,j}∈I
δki=kj

· u [k1, . . . , kd]

In other words, we sum over all the tensor entries, with the restriction that the
pair of indices that are found in the paired axes set I are set equal.
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Examples. We can think of a square matrix as a tensor A[i, j] of rank 2. Then
we can represent the matrix trace as the contraction

tr(A) =
∑

i=j

A[i, j] = contr(A; {{1, 2}})

that is the axes paired are {1, 2}. In turn, the multiplication of matrices A[i, j]
and B[j, k] can be represented as the contraction of their Kronecker product

A · B = contr(A⊗; {{2, 3}})

on axes 2 and 3 in A ⊗ B, which correspond to the index j.

2.4 Hypergeometric Functions

Recall that the hypergeometric function is defined as (cf. [15]):

pFq

(
a1, · · · , ap

b1, · · · , bq
| z

)

=
∞∑

n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

zn

n!

where the case p = q = 1 is referred to as confluential hypergeometric function.

3 Results

3.1 Product-Contraction Tensor Inequality

The main technical ingredient of our approach is the following inequality for
contractions of the folded Kronecker product.

Theorem 1. Let a be a tensor of rank 2 and let II be a partition of [2q] into
2-subsets different from {1, 2}, . . . , {2q − 1, 2q}. Then we have:

contr(a ⊗ · · · ⊗ a
︸ ︷︷ ︸

4

π) � ‖a‖q
P .

3.2 Improved Hypercontractivity

The main technical contribution of this work is stated below. It improves the
hypercontractive inequality in the regime of even moments.

Theorem 2. Let X ∼ {−1, 1}n be the Rademacher vector. Then for any off.
diagonal matrix A ∈ R

n×n and F = XT AX the following holds for even q > 0

E [F q| � C(q) · Var |F ]q/2

where the constant C(q) is given by

C(q) = 2−q/2

q∑

k=0

(−1)k

(
q
k

)

(2q − 2k − 1)!
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Table 1. Best constants in the hypercontractive inequality (polynomials of degree 2).

C(q) Reference Technique

(q − 1)q Most popular version
[11]

Noise operator,
induction, others

2−q/2q!/(q/2)q · (q − 1)q Bonami and O’Donnel
[8,25]

Combinatorics, graph
enumerating

2−q/2 ∑q
k=0(−1)k

(
q

k

)

(2q −
2k − 1)!!

This work Tensor calculus

Remark 1. It is possible to derive a closed-form expression for the constant C(q),
with the help of hypergeometric summation techniques.

In order to accurately compare our bound with the results form prior works, we
precisely state the relevant constants and highlight proof techniques in Table 1.

Consequently, Fig. 1 illustrates the gain of Theorem 2 with respect to prior
works. For details on numerical experiments, we refer to the code repository [30].

Fig. 1. The constant C(q) in the hypercontractive inequality E[F q] � C(q)Var[F ]q/2

for F of degree 2. Theorem 2 is compared with prior works (note the logarithmic scale).

3.3 Application: Counting Perfect Matchings

The cocktail-party graph Kq×2 is the complete q-partite graph, where nodes
are partitioned in 2-subsets V1, . . . , Vq and edges appear only if nodes does not
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Fig. 2. The cocktail-party graph K3×2 and its perfect matching (bold edges).

belong to the same component Vk (intuitively: node subsets represent couples at
the party and edges represent handshakes to be done - excluding those between
partners); see Fig. 2 below for an illustrative example.

Looking into the task of enumerating tensor contractions in Theorem 1, we
observe that contractions of interest correspond exactly to perfect matchings on
the q-partite graph with nodes partitioned into {1, 2}, {3, 4}, . . . , {2q − 1, 2q}.
Leveraging the machinery of hypergeometric summation, we are able to replace
the recursive summation with the following closed-form formula:

Corollary 1. The total number of perfect matchings in Kq×2 equals

M (Kq×2) = 2qΓ (1/2 + q)1F1

( −q
1
2 − q

| −1
2

)

/
√

π

where Γ is the gamma function and 1F1 is the confluent hypergeometric function.

This formula has numerical advantages over the recursion and scales better with
large q. The result seems to be novel, as in the literature only approximations
for this problem (in form of one-sided bounds) appear [25].

4 Proofs

4.1 Proof of Theorem 1

Proof. Define Vi = {2i−1, 2i} for i = 1 . . . q. Draw an edge (multi-edges allowed)
between Vi and Vj when there exists e ∈ Π such that Vi ∩ e and Vj ∩ e are both
non-empty; this essentially means that the contraction pairs the i-th and j-th
copy of the tensor a in the q-fold product, on the dimensions explicitly indicated
by e. By the properties of Π, every node is of degree 2 and thus connected
components must be cycles. Thus, the graph can be seen as a union of disjoint
cycles of length m1, . . . ,ms. Then, by the definition of the tensor product and
contraction, we can write:

contr
(
a⊗q;Π

)
=

∏

s

∑

i1,i2,ims ,ims+1=i1

ms∏

k=1

as,k [ik, ik+1]
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where for each s, k either as,k = a or ak,s = aT ; we transpose accordingly so
that the outer dimension of the left tensor same as the inner dimension of the
right tensor. Now by the definition of the matrix trace we obtain:

∑

i1,i2,imx ,im∗+1=i1

m∗∏

k=1

as,k [ik, ik+1] = tr

(
ms∏

k=1

as,k

)

where the product on the right is the standard matrix dot product. We
now invoke the inner-product properties of the matrix trace and the sub-
multiplicativity of the Frobenius norm. Along with the symmetry

∥
∥AT

∥
∥

F
=

‖A‖F this gives:
∣
∣
∣
∣
∣
tr

(
ms∏

k=1

as,k

)∣
∣
∣
∣
∣
�

∥
∥as,1

∥
∥

F
·
∥
∥
∥
∥
∥

ms∏

k=2

as,k

∥
∥
∥
∥
∥

F

�
m∗∏

k=2

∥
∥as,k

∥
∥

F

= ‖a‖ms

F .

Using this estimate we finally obtain the inequality

contr
(
a⊗q;Π

)
�

∏

s

‖a‖ms

F = ‖a‖q
F ,

which completes the proof.

4.2 Proof of Theorem 2

Step 1: Expanding Product. Recall that A is off-diagonal. We have

E
[(

XT AX
)q

]
=

∑

i1,j1,i2,j2,...,iq,jq

E

[
q∏

k=1

aik,jkXikXjk

]

.

The expectation of each product is non-zero only when in the sequence of indices
i1, j1, i2, j2, . . . , iq, jq every value occurs an even number of times, and when
ik 
= jk for k = 1 . . . q. For convenience, we will call such a sequence valid.

Step 2: Partition-Labeling Encoding. Observe that valid indices k1, k2, . . . , k2q

are generated using labeled partitions of [2q] into 2-subsets, as shown by Algo-
rithm 1.

To prove this claim, consider the following Algorithm 2.
Observe that in each encoder’s round one can find a novel pair i 
= j such

that ki = kj ; this follows by the fact that each value appears in the sequence
(ki) with even multiplicity. Thus, in the end we obtain a correct partition Π; the
fact that Π does not contain a set of form {2k−1, 2k} follows by the assumption
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Algorithm 1: Decoder
Input:

– partition Π of [2q] into 2 -subsets different from {1, 2}, . . . , {2q − 1, 2q}
– labeling � : Π → [n]

Output: sequence of valid indices k1, . . . , k2q ∈ [n]2q

1 for {i, j} ∈ Π do

2 ki, kj � �({i, j})

Algorithm 2: Encoder
Input:

– sequence of valid indices k1, . . . , k2q ∈ [n]2q

Output:

– partition Π of [2q] into 2 -subsets different from {1, 2}, . . . , {2q − 1, 2q}
– labeling � : Π → [n]

1 Π ← ∅
2 while #Π < q do
3 find i �= j s.t. ki = kj and {i, j} ∈ Π

4 �(i), �(j) � ki

5 Π ← Π ∪ {i, j}

that k2i−1 
= k2i. Thus, the decoder works as claimed. Furthermore, for every
valid sequence k1, . . . , k2q we have that

Decoder (Encoder (k1, . . . , k2q)) = k1, . . . , k2q

which shows that the decoder is an “onto” mapping, and proves the claim. From
this discussion it follows that the following inequality holds:

E
[(

XT AX
)q

]
�

∑

II,�,(i1,j1,...,iq,jq)=Decoder(Π,�)

q∏

k=1

|aik,jk | ,

where the sum is over all valid inputs Π, � to the decoder, and i1, j1, . . . , iq, jq

denotes the decoded sequence.

Step 3: Tensor Calculus. Grouping the terms produced from the fixed partition
and recalling the definition of tensor contraction we obtain the identity

∑

i1,j1,...,iq,jq=Decoder(Π,�)

q∏

k=1

|aik,jk | =
∑

Π

contr(|a| ⊗ · · · ⊗ |a|;Π),
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where the tensor |a| is understood as |a|[i, j] � |ai,j | and Π runs over all parti-
tions that can be inputs to the decoder. Therefore:

E
[(

XT AX
)q

]
�

∑

Π

contr(|a| ⊗ · · · ⊗ |a|;Π).

By Theorem 1 we obtain now the following estimate

E
[(

XT AX
)q

]
� #{Π : as in Algorithm 1} · ‖a‖q

F .

Step 4: Counting Partitions. How many partitions are valid for Algorithm 1? To
this end, we will use the inclusion-exclusion principle. The number of partitions
[2q] into 2 -subsets for which k given parts are on the list {1, 2}, . . . , {2q− 1, 2q}
equals the number of partitions of [2q − 2k] into 2 -subsets. This number equals
(2q − 2k − 1)!!. Thus, the total number of partitions equals

#{Π : as in Algorithm 1 } =
q∑

k=0

(−1)k

(
q
k

)

(2q − 2k − 1)!!.

Define the constant

C(q) �
q∑

k=0

(−1)k

(
q
k

)

(2q − 2k − 1)!!/2q/2.

Since Var
[
XT AX

]
= 2‖a‖2F (mind the coefficient 2!), we finally obtain

E
[(

XT AX
)q

]
� C(q) · Var

[
XT AX

]q/2
,

which finishes the proof.

4.3 Proof of Corollary 1

We first note that the every partition Π of the set {Π : as in Algorithm 1} is a
perfect matching on the graph Kq×2, with node subsets {1, 2}, . . . , {2q − 1, 2q}.
Thus, the following enumeration formula is valid:

M (Kq×2) =
q∑

k=0

(−1)k

(
q
k

)

(2q − 2k − 1)!!.

With the help of falling factorial notation we can write

(2q − 2k − 1)!! =
(2q − 1)!!

(−2)k(1/2 − q)k
,

and also (
q
k

)

=
(−1)k(−q)k

k!
.
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Thus, invoking the definition of the hypergeometric series, we finally get

M (Kq×2) = (2q − 1)!! ·
q∑

k=0

(−q)k

(1/2 − q)k
· (−1/2)k

k!
.

Since the summation can be extended to k > q without changing the value
(yielding zero terms), we obtain

M (Kq×2) = 1F1

( −q
1
2 − q

| −1
2

)

.

Since (2q − 1)!! = 2qΓ (1/2 + q)/
√

π (see [4]), the result follows.

5 Conclusion

Although hypercontractivity is a well-researched topic, this work managed to
improve upon the best numeric results in the interesting case of quadratic poly-
nomials. The novel method which reduces the problem to tensor inequalities is
of independent interest. The result is applicable, in particular, to determining
the quality of random projections and probabilistic trace estimators.
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Abstract. With growing emphasis on e-commerce marketplace plat-
forms where we have a central platform mediating between the seller
and the buyer, it becomes important to keep a check on the availability
and profitability of the central store. A store serving too less clients can
be non-profitable and a store getting too many orders can lead to bad
service to the customers which can be detrimental for the business. In
this paper, we study the facility location problem (FL) with upper and
lower bounds on the number of clients an open facility serves. Constant
factor approximations are known for the restricted variants of the prob-
lem with only the upper bounds or only the lower bounds. The only
work that deals with bounds on both sides violates both the bounds [7].
In this paper, we present the first (constant factor) approximation for
the problem violating the upper bound by a factor of (5/2) without vio-
lating the lower bounds when both the lower and the upper bounds are
uniform. We first give a tri-criteria (constant factor) approximation vio-
lating both the upper and the lower bounds and then get rid of violation
in lower bounds by transforming the problem instance to an instance of
capacitated facility location problem.

Keywords: Facility location · Lower bounds · Upper bounds ·
Approximation

1 Introduction

Facility location problem (FL) is a well motivated and extensively studied prob-
lem. Given a set of facilities with facility opening costs and a set of clients with
a metric specifying the connection costs between facilities and clients, the goal
is to select a subset of facilities such that the total cost of opening the selected
facilities and connecting clients to the opened facilities is minimized.

With growing emphasis on e-commerce marketplace platforms where we have
a central platform mediating between the seller and the buyer, it becomes impor-
tant to keep a check on the availability and profitability of the central store. A
store serving too less clients can be non-profitable and a store getting too many
orders can lead to bad service to the customers. This scenario leads to what
c© Springer Nature Switzerland AG 2021
C.-Y. Chen et al. (Eds.): COCOON 2021, LNCS 13025, pp. 463–475, 2021.
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we call the lower- and upper- bounded facility location (LBUBFL) problem.
Another application of the problem is a real world transportation problem pre-
sented by Lim et al. [15] where-in customers wish to ship a certain number of
cargoes through some carriers at minimum transportation cost. Each carrier has
a minimum (to ensure profit) and a maximum number of cargoes it can carry.

In this paper, we study the facility location problem with lower and upper
bounds. We are given a set C of clients and a set F of facilities with lower bounds
Li and upper bounds Ui on the minimum and the maximum number of clients
a facility i can serve, respectively. Setting up a facility at location i incurs cost
fi(called the facility opening cost) and servicing a client j by a facility i incurs
cost c(i, j) (called the service cost). We assume that the costs are metric, i.e.,
they satisfy the triangle inequality. Our goal is to open a subset F ′ ⊆ F and
compute an assignment function σ : C → F ′ (where σ(j) denotes the facility that
serves j in the solution) such that Li ≤ |σ−1(i)| ≤ Ui ∀i ∈ F ′ and, the total cost
of setting up the facilities and servicing the clients is minimised. The problem
is known to be NP-Hard. We present the first (constant factor) approximation
for the problem with uniform lower and uniform upper bounds, i.e., Li = L and
Ui = U ∀i ∈ F without violating the lower bounds, as stated in Theorem 1.

Definition 1. A tri-criteria (α, β, γ)- approximation for LBUBFL problem is a
solution S = (F ′, σ) satisfying αL ≤ |σ−1(i)| ≤ βU ∀i ∈ F ′, α ≤ 1, β ≥ 1, with
cost no more than γOPT , where OPT denotes the cost of an optimal solution
of the problem.

Theorem 1. A (1, 5/2, O(1))- approximation can be obtained for LBUBFL in
polynomial time.

Constant factor approximations are known for the problem with upper
bounds only (popularly known as Capacitated Facility Location (CFL)) with [5,
9,18] and without [1,3,4,6,13,16,17,20] violating the capacities using local
search/LP rounding techniques. Constant factor approximations are also known
for the problem with lower bounds only with [10–12] and without [2,14,19] vio-
lating the lower bounds. The only work that deals with the bounds on both
the sides is due to Friggstad et al. [7], which deals with the problem with non-
uniform lower bounds and uniform upper bounds. They gave a constant factor
approximation for the problem using LP-rounding, violating both the upper and
the lower bounds by a constant factor. The technique cannot be used to get rid of
the violation in the lower bounds even if they are uniform as the authors show an
unbounded integrality gap for the problem. Thus, our result is an improvement
over them when the lower bounds are uniform in the sense that they violate both
the bounds whereas we do not violate the lower bounds.

1.1 Related Work

For capacitated facility location with uniform capacities, Shmoys et al. [18] gave
the first constant factor(7) algorithm with a capacity blow-up of 7/2 using LP
rounding techniques. An O(1/ε2) factor approximation, with (2 + ε) violation
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in capacities, follows as a special case of CkFLP by Byrka et al. [5]. Grover et
al. [9] reduced the capacity violation to (1 + ε). For non-uniform capacities, An
et al. [3] gave the first LP-based constant factor approximation by strengthening
the natural LP. The local search technique has been particularly useful to deal
with capacities, with the current best being 3 by Aggarwal et al. [1] for uniform
capacities and (5 + ε) due to Bansal et al. [4] for non-uniform capacities.

Lower-Bounded Facility Location (LBFL) problem was introduced by Karger
and Minkoff [12] and Guha et al. [10] independently in 2000. Both the works
violate the lower bounds. Zoya Svitkina [19] presented the first true constant
factor(448) approximation for uniform lower bounds by reducing the problem to
CFL. This was later improved to 82.6 by Ahmadian and Swamy [2] using reduc-
tion to a special case of CFL called Capacitated Discounted Facility Location.
Later, Shi Li [14] gave the first true constant (4000) factor approximation for
the problem with non uniform lower bounds. Li obtained the result by reduc-
ing the problem to CFL via two intermediate problems called, LBFL-P(Lower
bounded facility location with penalties) and TCSD(Transportation with con-
figurable supplies and demands). As a particular case of lower bounded k-FL
problem, Han et al. [11] gave a bi-criteria solution for the non-uniform version of
the problem violating the lower bounds by a constant factor.

Friggstad et al. [7] is the only work that deals with the problem with bounds
on both sides. They considered non-uniform lower bounds and uniform upper
bounds and, gave a constant factor approximation violating both the bounds.

1.2 High Level Idea

Let I be an input instance of the LBUBFL problem. We first present a tri-criteria
solution (> 1/2, 3/2, O(1)) violating both the lower as well as the upper bound
and then get rid of the violation in the lower bound by reducing the problem
instance I to an instance Icap of CFL via a series of reductions (I → I1 →
I2 → Icap). We will see that maintaining α > 1/2 is crucial in getting rid of the
violation in the lower bound. Thus, the tri-criteria solution of Friggstad et al. [7]
cannot be used here as it has α < 1/2. Also, when the lower bounds are uniform,
our approach is comparatively simpler and straightforward. This is one of the
major contributions of our work and it might also be of independent interest for
its simplicity.

Using the tri-criteria solution St = (F t, σt), instance I1 of LBUBFL is
obtained by moving the clients assigned to a facility i by σt to i and making
the facilities opened by St free. An instance I2 of LBFL is obtained from I1 by
ignoring the upper bounds and removing the facilities not opened by St. Finally,
I2 is transformed into an instance Icap of CFL. The key idea in the reduction is:
let ni be the number of clients assigned to a facility i in F t. If i violates the lower
bound in St, we create a demand of L − ni at i in the CFL instance otherwise
we create a supply of ni − L at i.

An approximate solution [4] to the CFL instance is computed and used to
obtain an approximate solution to I1 getting rid of the violation in the lower
bound, by increasing the assignments at some of the violating facilities to respect
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the lower bound and deciding to shut others. Facility trees are constructed and
processed bottom-up for the purpose. The clients of a facility are either moved
up in the tree to the parent or to a sibling (shutting down the facility) until
we collect at least L clients at a facility. Whenever L clients are assigned to a
facility, it is opened and the subtree rooted at it is chopped off the tree and the
process is repeated with the remaining tree. The process results in an increased
violation in the upper bounds by plus 1. This step is the main contribution of
our work. Finally, an approximate solution to I is obtained by moving the clients
back to their original location.

1.3 Organisation of the Paper

In Sect. 2, we present a tri-criteria algorithm for LBUBFL using LP rounding
techniques. We reduce instance I to Icap via instances I1 and I2 in Sect. 3. Finally,
an approximate solution to I1, that does not violate the lower bounds, is pre-
sented in Sect. 4. The full version of the paper, with detailed proofs, is presented
in [8].

2 Computing the Tri-Criteria Solution

In this section, we first give a tri-criteria solution that violates the lower bound
by a factor of α = (1 − 1/�) and the upper bound by a factor of β = (2 − 1/�),
where � ≥ 2 is a tunable parameter. We also give a slight modification to the
solution to obtain α > 1/2 and β = 3/2.1 This section is one of the two major
contributions of our work. Instance I of LBUBFL can be formulated as the
following integer program (IP):

Minimize CostLBUBFL(x, y) =
∑

j∈C

∑
i∈F c(i, j)xij +

∑
i∈F fiyi

subject to
∑

i∈F xij ≥ 1 ∀j ∈ C (1)
Uyi ≥

∑
j∈C xij ≥ Lyi ∀i ∈ F (2)

xij ≤ yi ∀i ∈ F , j ∈ C (3)
yi, xij ∈ {0, 1} (4)

where yi is an indicator variable which is equal to 1 if facility i is open and 0
otherwise. xij is an indicator variable which is equal to 1 if client j is served
by facility i and 0 otherwise. Constraints 1 ensure that every client is served.
Constraints 2 make sure that the total demand assigned to an open facility is at
least L and at most U . Constraints 3 ensure that a client is assigned to an open
facility. LP-relaxation is obtained by allowing the variables to be non-integral.
Let ζ∗ = <x∗, y∗> be an optimal solution to the LP and LPopt be its cost.

1 This doesn’t follow from the general values for any value of �.
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Fig. 1. c(i, j′) ≤ c(i, j) + 2�Ĉj

We start by sparsifying the problem instance by removing some clients. For
j ∈ C, let Ĉj =

∑
i∈F x∗

ijc(i, j) denote the average connection cost paid by j in
ζ∗. Further, let � ≥ 2 be a tunable parameter, B(j) be the ball of facilities within
a radius of �Ĉj of j and Y ∗(B(j)) be the total extent up to which facilities are
opened in B(j) under solution ζ∗, i.e., Y ∗(B(j)) =

∑
i∈B(j) y∗

i . Then, Y ∗(B(j)) ≥
(1 − 1/�) ≥ 1/2. The clients are processed in the non-decreasing order of the
radii of their balls, removing the close-by clients with balls of larger radii and
dissolving their balls: let C̄ = C and C′ denote the sparsified set of clients. Initially
C′ = φ. Let j′ be a client in C̄ with a ball of the smallest radius (breaking the
ties arbitrarily). Remove j′ from C̄ and add it to C′. For all j(�= j′) ∈ C̄ with
c(j′, j) ≤ 2�Ĉj , remove j from C̄. Repeat the process until C̄ = φ. Cluster of
facilities are formed around the clients in C′ by assigning a facility to the cluster
of j′ ∈ C′ if and only if j′ is nearest to the facility amongst all k′ ∈ C′, i.e., if
Nj′ denotes the cluster centered at j′ then, i ∈ Nj′ iff c(i, j′) < c(i, k′) for all
k′(�= j′) ∈ C′ (assuming that the distances are distinct). The clients in C ′ are then
called the cluster centers. Separation property: c(j′, k′) > 2� max{Ĉj′ , Ĉk′}
for all j′ �= k′ in C ′.

Lemma 1. Let j′ ∈ C′, i ∈ Nj′ , j ∈ C. Then, 1. c(i, j′) ≤ c(i, j) + 2�Ĉj,
2. c(j, j′) ≤ 2c(i, j) + 2�Ĉj and, 3. If c(j, j′) ≤ �Ĉj′ , then Ĉj′ ≤ 2Ĉj.

Proof. Let j′ ∈ C′, i ∈ Nj′ , j ∈ C. 1. Note that, c(j, k′) ≤ 2�Ĉj for some k′ ∈ C′.
Then we have c(i, j′) ≤ c(i, k′) ≤ c(i, j) + c(j, k′) ≤ c(i, j) + 2�Ĉj , where the
first inequality follows because i ∈ Nj′ and not Nk′ whenever k′ �= j′. See Fig. 1.
2. Using triangle inequality, we have c(j, j′) ≤ c(i, j)+c(i, j′) ≤ 2c(i, j)+2�Ĉj .
3. Let j �= j′. Note that c(j, j′) ≤ �Ĉj′ ⇒ j /∈ C′. Suppose if possible, Ĉj′ > 2Ĉj .
Since j /∈ C′,∃ some k′ ∈ C′ : c(j, k′) ≤ 2�Ĉj . Then, c(k′, j′) ≤ c(k′, j)+c(j, j′)
≤ 2�Ĉj + �Ĉj′ < 2�Ĉj′ . Thus, we arrive at a contradiction to the separation
property. Hence, Ĉj′ ≤ 2Ĉj .

For j′ ∈ C′, j ∈ C, let φ(j, j′) be the extent up to which j is served by the
facilities in the cluster of j′ under solution ζ∗: φ(j, j′) =

∑
i∈Nj′ x∗

ij and dj′ =∑
j∈C φ(j, j′). We call a cluster to be sparse if dj′ ≤ U and dense otherwise. Let

CS and CD be the set of cluster centers of sparse and dense clusters respectively.
Let j′ ∈ CS and i(j′) be the cheapest (lowest facility opening cost) facility

in B(j′). We open i(j′) and transfer all the assignments coming into the cluster
onto it. Since Y ∗(B(j′)) ≥ (1−1/�), we have

∑
j∈C x̂i(j′)j = dj′ ≥ (1− 1

� )L. Thus,
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the lower bound is violated at most by (1− 1/�) and the facility cost is bounded
by �/(� − 1)

∑
i∈Nj′ fiy

∗
i . Since dj′ ≤ U , there is no violation in upper bounds.

To bound the service cost, it can be shown that
∑

j∈C φ(j, j′)c(i(j′), j) ≤
4
∑

i∈Nj′

∑
j∈C x∗

ij(c(i, j) + �Ĉj): since i(j′) ∈ B(j′), we have c(i(j′), j′) ≤ �Ĉj′ .

Thus, for j ∈ C, we have c(i(j′), j) ≤ c(j′, j) + c(i(j′), j′) ≤ c(j′, j) + �Ĉj′ .
If �Ĉj′ ≤ c(j′, j) then c(i(j′), j) ≤ 2c(j′, j) ≤ 4(c(i, j) + �Ĉj) (∀i ∈ Nj′ by
Lemma 1), else c(i(j′), j) ≤ 2�Ĉj′ ≤ 4�Ĉj , where the second inequality in the
else part follows by Lemma 1, Thus, in either case c(i(j′), j) ≤ 4(c(i, j) + �Ĉj)
for all i ∈ Nj′ . Substituting φ(j, j′) =

∑
i∈Nj′ x∗

ij and summing over all j ∈ C
we get the desired bound.

Next, let j′ ∈ CD. To open the facilities integrally in Nj′ , we consider
the following LP (LP1): Min.

∑
i∈Nj′ (fi + Uc(i, j′))zi s.t. U

∑
i∈Nj′ zi ≥ dj′ ,

L
∑

i∈Nj′ zi ≤ dj′ and 0 ≤ zi ≤ 1 . Note that zi =
∑

j∈C x∗
ij/U is a feasible solu-

tion with the cost at most
∑

i∈Nj′ (fiy
∗
i +

∑
j∈C x∗

ij(c(i, j)+2�Ĉj)) by Lemma 1.
We say that a solution to LP1 is almost integral if it has at most one fraction-

ally opened facility in Nj′ . We obtain an almost integral solution z′ by arranging
the facilities opened in z, in non-decreasing order of fi + c(i, j′)U and greed-
ily transferring the openings z onto them. Note that

∑
i∈Nj′ z′

i =
∑

i∈Nj′ zi and
hence z′

i is a feasible solution to LP1. Also, the cost of solution z′ is no more than
that of solution z. We next convert z′ to an integral solution ẑ. Let ẑ = z′ initially.
Let i′ be the fractionally opened facility, if any, in Nj′ . If z′

i′ ≤ 1−1/�: close i′ in
ẑ. There must be at least one integrally opened facility, say i(�= i′) ∈ Nj′ in z′,
as dj′ ≥ U . Then, dj′ ≤ (2− 1/�)U

∑
k∈Nj′ ẑk. There is no increase in cost as we

have only (possibly) shut down one of the facilities. Else (i.e., z′
i′ > 1−1/�): open

i′ integrally at a loss of factor �/(� − 1) in cost and dj′ ≥ L(� − 1)/�
∑

k∈Nj′ ẑk.
Next, we define our assignments, possibly fractional, in the dense clusters.

For j′ ∈ CD, we distribute dj′ equally to the facilities opened in ẑ. Let li be the
amount assigned to facility i under this distribution, i.e., li = dj′ ẑi/

∑
i∈Nj′ ẑi.

Then, ((� − 1)/�)Lẑi ≤ li ≤ (2 − 1/�)U ẑi. A min-cost flow problem with relaxed
lower and upper bounds is solved to obtain the integral assignments.

For � = 2.01, we get α > 1/2, β slightly more than 3/2 and the approximation
ratio slightly more than 24. β can be reduced to 3/2 by a slight modification
in obtaining the integral solution ẑ: instead of comparing z′

i′ with (1 − 1/�), we
compare it with 1/2.

3 Instance Icap of Capacitated Facility Location Problem

In this section, we create an instance Icap of capacitated facility location problem
via a series of transformations: instance I1 of LBUBFL is obtained by moving
the clients assigned to a facility i in the tri-criteria solution St = (F t, σt) to
i. Facilities opened by St are free. Let O be the optimal solution to I and
σ∗(j) denote the facility serving j in O. A solution to I1 can be obtained by
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Table 1. Instance Icap: di, ui, f
t
i are demands, capacities and facility costs resp.

Type ni ui di f t
i

small ni ≤ L L L − ni δnil(i)

big ni > L (i1)L 0 δLl(i)

(i2) ni − L 0 0

assigning a client j to a facility i if it was assigned to i in O. The connection
cost is bounded by the sum of costs j pays in St and in O: (c(σt(j), σ∗(j))) ≤
c(j, σt(j))+c(j, σ∗(j))). I2, an instance of LBFL, is obtained from I1 by ignoring
the upper bounds and removing the facilities not opened in St. Let O1 be the
optimal solution to I1 and σ1(j) denote the facility serving j in O1. If a client
j is assigned, by the optimal solution O1, to a facility i not in F t then it is
assigned to the facility i′ ∈ F t nearest to i and we open i′. The connection
cost is bounded by twice the cost j pays in O1 by a simple triangle inequality:
(c(σt(j), i′) ≤ c(σt(j), σ1(j))+c(σ1(j), i′) ≤ 2c(σt(j), σ1(j)) (since i′ is closest
in F t to i = σ1(j)).

Finally, we transform I2 to Icap. Let ni be the number of clients co-located
at facility i. The main idea is to create a demand of L − ni units at locations
where the number of clients served by the facility is less than L and a supply
of ni − L units at locations with surplus clients. For each facility i ∈ F t, let
l(i) be the distance of i from the nearest facility i′ ∈ F t, i′ �= i and let δ be a
constant to be chosen appropriately. A facility i is called small if 0 < ni ≤ L and
big otherwise. A big facility i is split into two co-located facilities i1 and i2. We
also split the set of clients at i into two sets: arbitrarily, L of these clients are
placed at i1 and the remaining ni − L clients at i2. Instance Icap is then defined
as follows: A demand of L − ni is created at a small facility i. A facility with
capacity L and facility opening cost δnil(i) is also created at i. For a big facility i,
correspondingly two co-located facilities i1 and i2 are created with capacities L
and ni −L respectively. The facility opening cost of i1 is δLl(i) whereas i2 is free.
The second type of big facilities are called free. Let F̄ t be the set of locations so
obtained. We also use i ∈ F̄ t to refer to both the client (with demand) as well
as the facility located at i. Table 1 summarizes the instance.

We will construct a feasible solution Scap to Icap of bounded cost from O2,
where O2 is an optimal solution to I2. As O2 satisfies the lower bound, we can
assume wlog that if i is opened in O2 then it serves all of its clients if ni ≤ L
(before taking more clients from outside) and it serves at least L of its clients
before sending out its clients to other (small) facilities otherwise. Also, if two
big facilities are opened in O2, one does not serve the clients of the other. Let
ρ2(ji, i

′) denote the number of clients co-located at i and assigned to i′ in O2

and ρc(ji′ , i) denotes the amount of demand of i′ assigned to i in Scap.

1. If i is closed in O2 then open i if i is small and open (i1&i2) if it is big.
Assignments are defined as follows:
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(a) If i is small: Let i serve its own demand. In addition, assign ρ2(ji, i
′)

demand of i′ to i in our solution for small i′ �= i. Note that the same cannot
be done when i′ is big as there is no demand at i′1 and i′2. Thus, ρc(ji′ , i) =
ρ2(ji, i

′), for small i′ �= i and ρc(ji, i) = di. Also,
∑

small i′ �=i ρc(ji′ , i) =∑
small i′ �=i ρ2(ji, i

′) ≤ ni. Hence,
∑

i′ ρc(ji′ , i) ≤ ni + di = L = ui.
(b) If i is big: assign ρ2(ji1 , i

′) (/ρ2(ji2 , i
′)) demand of i′ to i1(/i2)

in our solution for small i′ �= i. Thus,
∑

small i′ �=i ρc(ji′ , i1) =∑
small i′ �=i ρ2(ji1 , i

′) ≤ L = ui1 . Also,
∑

small i′ �=i ρc(ji′ , i2) =∑
small i′ �=i ρ2(ji2 , i

′) ≤ ni − L = ui2 .
2. If i is opened in O2 and is big, open the free facility i2: assign ρ2(ji, i

′)
demand of i′ to i2 in our solution for small i′ �= i. Thus,

∑
i′ �=i ρc(ji′ , i2) =∑

i′ �=i ρ2(ji, i
′) ≤ ni − L (the inequality holds by assumption on O2) = ui2 .

Next, we show that all the demands are satisfied. If a facility is opened
in Scap, it satisfies its own demand. Let i be closed in Scap. If i is big,
we need not worry as i1 and i2 have no demand. So, let i be small. Then,
it must be opened in O2. Then,

∑
i′ �=i ρc(ji, i

′) =
∑

small i′ �=i, ρ
c(ji, i

′) +∑
i′
1:i

′ is big ρc(ji, i
′
1)+

∑
i′
2:i

′ is big ρc(ji, i
′
2) =

∑
small i′ �=i, ρ

2(ji′ , i)+
∑

i′
1:i

′ is big

ρ2(ji′
1
, i) +

∑
i′
2:i

′ is big ρ2(ji′
2
, i) =

∑
small i′ �=i, ρ

2(ji′ , i) +
∑

i′ is big ρ2(ji′ , i) =∑
i′ �=i ρ2(ji′ , i) ≥ L − ni (since O2 is a feasible solution of I2) = di.
Next, we bound the cost of the solution. The connection cost is at most that

of O2. For facility costs, consider a facility i that is opened in our solution and
closed in O2. Such a facility must have paid a cost of at least nil(i) to get its
clients served by other (opened) facilities in O2. The facility cost paid by our
solution is δmin{ni,L}l(i) ≤ δnil(i). If i is opened in O2, then it must be serving
at least L clients and hence paying a cost of at least Ll(i) in O2. In this case
also, the facility cost paid by our solution is δmin{ni,L}l(i) ≤ δLl(i). Summing
over all i’s, we get that the facility cost is bounded by 2δCostI2(O2) and the
total cost is bounded by (1 + 2δ)CostI2(O2). Factor 2 comes because we may
have counted an edge (i, i′) twice, once as a client when i was closed and once
as a facility when i′ was opened in O2.

4 Approximate Solution AS1 to I1

In this section, we obtain an approximate solution AS1 to I1 that violates the
upper bounds by a factor of (β + 1) without violating the lower bounds. This
is the main contribution of our work. We first obtain a (5 + ε)-approximate
solution AScap to Icap using approximation algorithm of Bansal et al. [4]. AScap

is then used to construct AS1. Wlog assume that if a facility i is opened in
AScap then it serves all its demand. (This is always feasible as di ≤ ui.) If this
is not true, we can modify AScap and obtain another solution, that satisfies
the condition, of cost no more than that of AScap. AS1 is obtained from AScap

by first defining the assignment of the clients and then opening the facilities
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Fig. 2. (a) L = 5, t1, t2, t3 have demands 1, 2 and 1 unit each respectively. In AScap,
1 unit of demand of t1 and 2 units of demand of t2 are assigned to t3. (b) Solution S1:
ni clients are initially assigned to facility i. (c) Type-1 reassignments: 1 and 2 clients
of t3 reassigned to t1 and t2 respectively. After this reassignment, t3 has only 1 client.

that get at least L clients. Let ρ̄c(ji′ , i) denotes the amount of demand of i′

assigned to i in AScap and ρ̄1(ji, i
′) denotes the number of clients co-located

at i and assigned to i′ in AS1. Clients are assigned in three steps. In the first
step, assign the clients co-located at a facility to itself. For small i′, additionally,
we do the following (type-1) re-assignments (see Fig. 2): (i) For small i �= i′,
assign ρ̄c(ji′ , i) clients co-located at i to i′. Thus, ρ̄1(ji, i

′) = ρ̄c(ji′ , i) for small
i. (ii) For big i, assign ρ̄c(ji′ , i1) + ρ̄c(ji′ , i2) clients co-located at i to i′. Thus,
ρ̄1(ji, i

′) = ρ̄c(ji′ , i1) + ρ̄c(ji′ , i2) for big i. The assignments are feasible i.e.,∑
i′ �=i ρ̄1(ji, i

′) ≤ ni, ∀ i ∈ F̄ t: since ρ̄c(ji, i) = di therefore
∑

i′ �=i ρ̄1(ji, i
′) =∑

i′ �=i ρ̄c(ji′ , i) ≤ ui − di ≤ ni in all the cases. Also, upper bounds are violated
only upto the extent to which they were violated in the tri-criteria solution St

i.e.,
∑

i ρ̄1(ji, i
′) ≤ max{L, ni′} ≤ βU , ∀ i′ ∈ F̄ t: ρ̄1(ji′ , i′) = ni′ . For i �= i′,

ρ̄1(ji, i
′) = ρ̄c(ji′ , i). Thus,

∑
i ρ̄1(ji, i

′) = ni′ +
∑

i�=i′ ρ̄c(ji′ , i) ≤ ni′ + di′ ≤
max{L, ni′} ≤ βU .

Note that AS1 so obtained may still not satisfy the lower bound requirement.
In fact, although each facility was assigned ni ≥ αL clients initially, they may
be serving less clients now after type-1 re-assignments. For example, in Fig. 2
t3 had 4 clients initially which was reduced to 1 after type-1 reassignments. Let
P ⊆ F t be the set of facilities each of which is serving at least L clients after
type-1 reassignments, and P̄ = F t \P be the set of remaining facilities. We open
all the facilities in P and let them serve the clients assigned to them after type-1
reassignments.

We observe that a small facility is in P̄ only if it was open in AScap
2 and a

big facility i is in P̄ only if i1 was open in AScap. We now group these facilities
so that each group serves at least L clients and open one facility in each group
that serves all the clients in the group. For this we construct what we call the
facility trees. We construct a graph G with nodes corresponding to the facilities
in P ∪ P̄ . For i ∈ P̄ , let η(i) be the nearest other facility to i in F t. Then, G
consists of edges (i, η(i)) with edge costs l(i) = c(i, η(i)). Each component of
G is a tree except possibly a double-edge cycle at the root. In this case, we say

2 If a small facility i′ was closed in AScap then ρ̄1(ji′ , i
′) +

∑
i�=i′ ρ̄1(ji, i

′) = ni′ +∑
i�=i′ ρ̄c(ji′ , i) = ni′ + di′ ≥ L.
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that we have a root, called root-pair < r1, r2 > consisting of a pair of facilities r1
and r2. Also, a facility i from P , if present, must be at the root of a tree. Clearly,
edge costs are decreasing as we go up the tree.

Now we are ready to define our second type of re-assignments. Let children(x)
denote the set of children of node x in T . For the purpose of this part, we treat
the root-pair, if present, as a node of the tree. If x is a root-pair < r1, r2 >,
then children(x) = children(r1) ∪ children(r2). Process the tree bottom-up
(level by level). While processing a node x as explained in Algorithm 1, all its
children with at least L clients are opened and removed along with the subtrees
rooted at them; update children(x); remaining children of x are arranged and
considered (left to right) in decreasing order of distance from x. For any child
y ∈ children(x), let right − sibling(y) denote the adjacent right sibling of y in
the arrangement. If y has at least L clients, it is opened else it sends its clients
to its adjacent right sibling, if it has one, or to its parent (x) otherwise. The
subtree rooted at y is removed.

Algorithm 1: Process(x)
Input : x(x can be a root-pair node)

1 for y ∈ children(x) do
2 if ny ≥ L then
3 Open facility y
4 Remove edge (y, η(y)) // Remove the connection of y from its parent
5 Delete y from children(x);

6 end

7 end
8 if children(x) = φ then
9 return;

10 end
11 Arrange children(x) in the sequence < y1, . . . yk > such that

c(yi, η(yi)) ≥ c(yi+1, η(yi+1)) ∀ i = 1 . . . k − 1
12 for i = 1 to k − 1 do
13 if nyi

≥ L then
14 Open facility yi

15 else
16 nyi+1 = nyi+1 + nyi

// Send the clients of yi to yi+1

17 end
18 Remove edge (yi, η(yi)) // Remove the connection of yi from its parent
19 Delete yi from children(x)

20 end
21 if nyk

≥ L then
22 Open facility yk

23 Delete yk from children(x)

24 else
25 nη(yk) = nη(yk) + nyk

// Send the clients of yk to η(yk)

26 Delete yk from children(x)

27 end

There are two possibilities at the root: either we have a facility i from P
or we have a root-pair < r1, r2 >. In the first case, we are done as i is already
open and has at least L clients. To handle the second case, we need to do a
little more work. So, we define our assignments of third type as follows: (i) If
the total number of clients collected at the root-pair node is at least L and at
most 2L then open any one of the two facilities in the root-pair and assign all
the clients to it. (ii) If the total number of clients collected at the root-pair node
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is more than 2L then open both the facilities at the root node and distribute the
clients so that each one of them gets at least L clients. (iii) If the total number
of clients collected at the root-pair node is less than L, then let i be the node
in P nearest to the root-pair i.e. i = argmini′∈P min{c(i′, r1), c(i′, r2)}, then
i is already open and has at least L clients. Send the clients collected at the
root-pair to i. Clearly, the opened facilities satisfy the lower bounds.

Next, we bound the violation in the upper bound. It is easy to see that the
number of clients collected in the second type of re-assignments, at any non-root
node is at most 2L. Next, let r be a root/root-pair node and ic be the child
of r, if any, that sends its clients to r. Let i be the parent of ic (i is either r
and is in P or it is one of r1 and r2 in case r = <r1, r2> is a root-pair). Let πi

be the number of clients assigned to facility i after type-1 re-assignments. Then
πi ≤ βU . We have the following cases: (i) the root node i is in P and it gets
additional < L clients from ic (in second type of reassignment) making a total of
at most πi + L ≤ βU + L ≤ (β + 1)U clients at i. (ii) the total number of clients
collected at the root-pair node (nic

+ nr1 + nr2) is at least L and at most 2L.
The number of clients the opened facility gets is at most 2L ≤ 2U ≤ (β + 1)U .
(iii) the total number of clients collected at the root-pair node is more than 2L.
Note that the total number of clients collected at these facilities is at most 3L
and hence ensuring that each of them gets at least L clients also ensures that
none of them gets more than 2L clients. Thus, none of them gets more than
2U ≤ (β + 1)U clients. (iv) the total number of clients collected at the root-pair
node is less than L. Thus, the number of clients the opened facility in P gets is
at most βU + L ≤ (β + 1)U . Note that if L ≤ τU for a τ < 1, the violation in
upper bound is smaller; in particular, it is bounded by (β + τ).

We next bound the connection cost. The cost of first type of re-assignments
is at most the connection cost of AScap. To bound the connection cost of second
type, observe that we never send more than L clients on any edge. Thus, a facility
i that sends its (at most L) clients to its parent or to its right sibling incurs a cost
of at most 3Ll(i) (it is easy to show that c(i, right − sibling(i)) ≤ 3c(i, η(i)) =
3l(i): 3 factor loss can happen when η(y) �= η(right − sibling(y)) (which can
be the case when root is a root-pair. In that case, c(y, right − sibling(y)) ≤
c(y, η(y)) + c(η(y), η(right − sibling(y))) + c(η(right − sibling(y)), right −
sibling(y)) ≤ 3c(y, η(y)).) Since the facility i was opened in AScap, it pays
facility opening cost of δl(i)min{ni,L} ≥ δl(i)αL in AScap.

For the third type of re-assignments, we bound the cost as follows: note that
the total number of clients, initially at r1 and r2 was ≥ 2αL. However, during
type-1 re-assignments, some of them got reassigned to other facilities. Note that
these (other) facilities must have been closed in AScap and thus do not belong
to P̄ . Hence, each of these reassignments correspond to an assignment in AScap

whose cost was ≥ l(i) and a total of ≥ (2α − 1)Ll(i). Thus, the cost of type-3
re-assignments is bounded by 3/(2α − 1) times the connection cost of AScap.
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5 Conclusion and Future Work

In this paper, we presented the first (constant factor) approximation algorithm
for facility location problem with uniform lower and upper bounds without vio-
lating the lower bounds. Upper bounds are violated by (5/2)-factor. In the future,
if one can obtain a tri-criteria solution (with α > 1/2) with uniform lower bounds
and non-uniform upper bounds, then it can be simply plugged into our technique
to obtain a similar result for the problem. It will be interesting to see if the tech-
nique can be modified to obtain a solution with non-uniform lower bounds and
uniform upper bounds without violating the lower bounds.
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Finding Cheapest Deadline Paths
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Abstract. This paper considers a novel quality-of-service (QoS) routing
problem from a source to a destination, named the Cheapest Deadline
Path Problem (CDPP), which arises from the real-world scenario. Let
D = (V, A, c, d, s, t) be a double-weighted strongly connected digraph,
where each arc a ∈ A is associated with a cost, c(a) ∈ Z+, and a delay,
d(a) ∈ Z+, and s and t are the indices of the designated source and
destination, respectively, and let B = {B1,B2, . . . ,Bn} be a set of positive
constants, where Bi, 1 ≤ i ≤ n represents the upper bound on delay
at vi ∈ V . The objective of CDPP is to find a vs-to-vt path of the
minimum cost in D such that the vs-to-vk delay along the path is at
most Bk, for each vertex, vk, appearing in the path. This paper presents
a fully polynomial time approximation scheme (FPTAS) for CDPP in
D = (V, A, c, d, s, t) using a graph traverse based dynamic programming
algorithm as a sub-procedure.

Keywords: Deadline path · Graph traverse · FPTAS

1 Introduction

The Restricted Shortest Path Problem (RSPP), also called the Con-
strained Shortest Path Problem (CSPP), asks for a cheapest source-to-
destination path in the given graph such that the delay of it is bounded by
a constant. This problem is one of the well-known combinatorial optimization
problems and known to be NP-hard [7]. In past decades, it has been widely
studied [1,4,8–10,14–17,19–22].

1.1 Overview of Related Works

There have been many FPTAS’s and related algorithms for RSPP. In [19],
Warburton gave the first FPTAS for acyclic digraphs, with a time cost of
O(n3 log n

ε · log2 UB), where n is the number of vertices, UB is an upper bound
of the optimal value and ε is a given positive constant. In [10], Hassin pre-
sented a significantly improved FPTAS for acyclic digraphs, with a time cost of
O(mn

ε · log2 log2 UB
LB ), where m is the number of edges and LB is a lower bound

of the optimal value. Hassin’s FPTAS can be extended to general digraphs. The
above two FPTAS’s are both not strongly polynomial since their running times
c© Springer Nature Switzerland AG 2021
C.-Y. Chen et al. (Eds.): COCOON 2021, LNCS 13025, pp. 476–486, 2021.
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depend on the arc costs of the given digraph. Later, a few strongly polynomial
time algorithms were obtained. In [14], Lorenz and Raz obtained the best known
algorithm for general digraphs, an FPTAS with a time cost of O(mn(1ε +log n)).
In [4], Ergun et al. obtained a slightly faster FPTAS with a time cost of O(mn

ε ),
but it is only applicable to acyclic digraphs. In [8], Goel et al. obtained an asymp-
totically faster algorithm with a time cost of O((m+n log n)H

ε ), where H is the
hop number of the longest path found by their algorithm. This algorithm can
find a path of cost at most the optimal solution and of delay at most (1+ε) times
the upper bound on delay. In [1], Bernstein obtained a so-called near linear time
algorithm for undirected graphs, with a time cost of ˜O(m(2ε )

O(
√
log n·log log n)),

which can find (1 + ε)-approximation of delay at most (1 + ε) times the upper
bound.

Also, there have been a variety of heuristics for RSPP. In [9], Handler and
Zang designed a dual algorithm, which established the basis of the Lagrangian
relaxation based algorithms for RSPP. In [17], Siachalou and Georgiadis obtained
two pseudopolynomial time exact algorithms. In [16], Orda and Sprintson used
the precomputation methods to reduce the computational complexity. In [22],
Xue considered a bicriteria QoS routing and designed a primal-dual heuristic to
find a path to balance the cost and delay of path. In [21], Xiao et al. used the
primal simplex method of linear programming to design two pseudopolynomial
time algorithms.

The other similar QoS routing problems were also studied. In [15], Misra et al.
studied the problem of finding a set of source-to-destination paths to minimize
the delay of the longest path and meanwhile to make the aggregated bandwidth
of the set of paths at least a given lower bound, and designed an FPTAS. In
[20], Xiao et al. studied the problem of computing a most probable path with a
delay mean at most the given upper bound of delay, and designed an FPTAS.
Moreover, the extended version of RSPP, i.e., the problem of finding a path (or
multiple paths) of minimum cost subject to multiple constraints, has been widely
studied, see [5,6,11–13,23,24,26–28].

1.2 Motivation

In this paper, we consider such a real-world scenario where each vertex of the
given digraph might be blocked (or polluted). It is of great value to study
the source-to-destination routing problems in such a scenario (e.g., in a delay-
sensitive network). Obviously, all the source-to-destination successful paths sat-
isfy a common property that the arriving time at each vertex appearing in the
path must be earlier than the time of the vertex to be blocked. A path satisfying
this property is called a deadline path. This paper deals with the offline model
where the time of each vertex in the digraph to be blocked is known.

In fact, a source-to-destination deadline path can be stated as a path satis-
fying that the delay from the source to each vertex appearing in the path is at
most the upper bound on the delay at this vertex. When each arc of the digraph
has another weight representing the cost of it, we have a big concern with the
cost of deadline path and aim to find a cheapest deadline path.
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1.3 Our Contribution

This paper proposes the Cheapest Deadline Path Problem (CDPP). Let
D = (V,A, c, d, s, t) be a double-weighted strongly connected digraph, where each
a ∈ A has a cost, c(a) ∈ Z+, and a delay, d(a) ∈ Z+, and s and t are the indices of
the designated source and destination, respectively, and let B = {B1,B2, . . . ,Bn}
be a set of positive constants, where Bi, 1 ≤ i ≤ n represents the upper bound
on delay at vi ∈ V . The objective of CDPP is to compute a vs-to-vt path of
minimum cost in D = (V,A, c, d, s, t) such that the vs-to-vk delay along the path
is at most Bk, for each vertex, vk, appearing in the path. The classic RSPP is
the special case of CDPP with Bt < ∞ and Bk = ∞, k �= t.

First, we design an FPTAS for CDPP with a time cost of O(mn·UB
ε·LB ), using

a graph traverse based dynamic programming algorithm as a sub-procedure,
where LB and UB are two given positive constants and ε is an arbitrarily small
positive real number. Next, we develop a faster FPTAS with a time cost of
O(mn

ε · log2 log2 UB
LB ), using a binary search technique. Our FPTAS’s are both

applicable to RSPP. Surprisingly, our FPTAS has the same time cost as the
well-known Hassin’s algorithm [10] although CDPP is a more general problem
than RSPP, and even close to the best known algorithm by Lorenz and Raz [14].

2 Preliminaries

2.1 Notations

Let D = (V,A, c, d, s, t) be a strongly connected digraph, where each arc a ∈ A
has a cost, c(a) ∈ Z+, and a delay, d(a) ∈ Z+, and s and t are the indices of
the designated source and destination, respectively. Here, |V | = n and |A| = m.
All the vertices are numbered by 1, 2, . . . , n in turn, and so vi denotes the vertex
with number i, for 1 ≤ i ≤ n. We use 〈vi, vj〉 ∈ V 2 to denote a vertex pair,
for 1 ≤ i, j ≤ n. Note that 〈vi, vj〉 can be abbreviated as 〈i, j〉. For any a =
(vi, vj) ∈ A, we also use d(i, j) and c(i, j) to denote the delay and cost of (vi, vi),
respectively, i.e., d(a) = d(i, j) and c(a) = c(i, j). In general, d(i, j) �= d(j, i) and
c(i, j) �= c(j, i).

For vi, 1 ≤ i ≤ n, we let Bi > 0 be the deadline at vi, representing the upper
bound on delay at vi. For 〈i, j〉 ∈ V 2, a vi-to-vj simple (acyclic) path is called
a vi-to-vj deadline path, denoted by πij , if it satisfies that the vi-to-vk delay
on the path is at most Bk, for each vk appearing in the path. We use d(πij) to
denote the delay of πij , which is defined as d(πij) =

∑

a∈πij
d(a), and use V (πij)

to denote the vertex set of πij . For vk ∈ V (πij), we use dπij
(i, k) to denote the

vi-to-vk delay on πij , i.e., the delay of subpath πik ⊆ πij . So, dπij
(i, k) ≤ Bk and

dπij
(i, k) =

∑

a∈πik⊆πij

d(a), ∀vk ∈ V (πij). (1)

We use c(πij) to denote the cost of πij , defined as c(πij) =
∑

a∈πij
c(a). A vi-to-

vj deadline path of the minimum cost is named a vi-to-vj cheapest deadline path
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(CDP) and denoted by π∗
ij . This minimum cost is named the vi-to-vj cheapest

deadline path cost (CDPC) and denoted by ci(j).
For (vi, vj) ∈ A, we call vi the tail of (vi, vj) and vj the head of it, and call

(vi, vj) an outgoing arc from vi and an incoming arc to vj . Let Ok be the head
set of all outgoing arcs from vk, i.e. Ok = {k′|(vk, vk′) ∈ A}, and Ik be the
tail set of all incoming arcs to vk, i.e., Ik = {k′|(vk′ , vk) ∈ A}. For a directed
path, π = vi1vi2 . . . vir

, r ≥ 2, we call vij
the precedent vertex of vij+1 in π, for

1 ≤ j ≤ r − 1.

2.2 Problem Statement

Let B = {B1,B2, . . . ,Bn} be a set of given positive constants (deadlines), called
a deadline set. Below is the problem we focus on in this paper.

Definition 1. Given D = (V,A, c, d, s, t) and B = {B1,B2, . . . ,Bn}, the
Cheapest Deadline Path Problem (CDPP) asks for a vs-to-vt deadline
path, π∗

st, of minimum cost satisfying that dπ∗
st
(s, k) ≤ Bk, for any k ∈ V (π∗

st).

The classic RSPP is the special case of CDPP with Bt < ∞ and Bk = ∞, k �=
t. Below is the decision version of CDPP.

Definition 2. Given D = (V,A, c, d, s, t), B = {B1,B2, . . . ,Bn} and a constant
C0 > 0, does there exist a vs-to-vt deadline path, πst, such that dπst

(s, k) ≤ Bk,
for any k ∈ V (πst), and c(πst) ≤ C0.

Lemma 1. CDPP is NP-hard.

3 Approximation for CDPP

In this section, we will present FPTAS’s for CDPP in D = (V,A, c, d, s, t). First,
we define another problem that is closely related to CDPP. A vi-to-vj deadline
path of the shortest delay is named a vi-to-vj quickest deadline path (QDP).

Definition 3. Given D = (V,A, c, d, s, t), B = {B1,B2, . . . ,Bn}, and a con-
stant C > 0, the Cost-Constrained Quickest Deadline Path Problem
(CCQDPP) asks for a vs-to-vt deadline path, π�

st, of shortest delay satisfying
that dπ�

st
(s, k) ≤ Bk, for any k ∈ V (π�

st), and c(π�
st) ≤ C.

3.1 An Exact Algorithm for CCQDPP

For any 〈i, j〉 ∈ V 2 and C ≥ 0, we let π�
ij(C) denote a vi-to-vj quickest deadline

path with cost at most C, abbreviated as a vi-to-vj C-constrained QDP. The
delay of π�

ij(C) is named the vi-to-vj C-constrained QDP delay (QDPD), denoted
by δi(j;C). As c(a) ∈ Z+,∀a ∈ A, we let

δi(j;C) = ∞, ∀C < 0. (2)

Below are several useful lemmas, which inspire us to design a graph traverse
based dynamic programming algorithm for CCQDPP.
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Lemma 2. Given D = (V,A, c, d, s, t) and 1 ≤ i ≤ n, i �= s, we have

δs(i;C) ≤ δs(i;C ′), ∀C ′ ≤ C. (3)

Lemma 3. For 1 ≤ i ≤ n, i �= s and C ≥ 1, let π�
si(C) = vs · · · vrvi be a vs-to-vi

C-constrained QDP in D = (V,A, c, d, s, t). Then, the subpath π′ = vs · · · vr of
π�

si(C) must be a vs-to-vr C ′-constrained QDP satisfying that d(π′)+d(r, i) ≤ Bi,
where C ′ = C − c(r, i).

Next, we consider the special vs-to-vi deadline path of passing through vk,
for each k ∈ Ii. Let π�

si(k;C) and δs(k, i;C) denote the vs-to-vi C-constrained
QDP and QDPD through vk, respectively. Let

δs(k, i;C) = ∞, ∀C < 0. (4)

Lemma 4. Given D = (V,A, c, d, s, t) and 1 ≤ i ≤ n, i �= s, and for any k ∈ Ii

and integer C ≥ 1, we can compute δs(k, i;C) by

δs(k, i;C) = δs(k;C − c(k, i)) + d(k, i). (5)

Proof. By Lemma 3, it follows that each vs-to-vi C-constrained QDP through
vk must be the combination of a vs-to-vk (C − c(k, i))-constrained QDP and arc
(vk, vi), for each vk, k ∈ Ii. ��
Lemma 5. Given D = (V,A, c, d, s, t) and 1 ≤ i ≤ n, i �= s, and for any positive
integer C ≥ 1, we can compute δs(i;C) by

δs(i;C) = min
k∈Ii

δs(k, i;C). (6)

Proof. Each vs-to-vi C-constrained QDP must reach vi via some vertex in Ii.
For each k ∈ Ii, we only consider the vs-to-vi C-constrained QDP through vk.
So, the vs-to-vi C-constrained QDPD is equal to the minimum of all the vs-to-vi

C-constrained QDPD’s through a vertex in Ii. ��
For any 1 ≤ i ≤ n, i �= s and integer C ≥ 1, Eq. (6) implies that we need

to obtain all δs(k, i;C),∀k ∈ Ii in advance so as to compute δs(i;C), and Eq.
(5) implies that we need to obtain δs(k;C − c(k, i)) in advance so as to compute
δs(k, i;C), for each k ∈ Ii. Therefore, we can compute {δs(i; ̂C) : 1 ≤ i ≤
n}, ̂C = 1, 2, . . . , C, in turn.

For each vi ∈ V (π�
st(C)), we let fst(i;C) be the precedent vertex of vi in

π�
st(C). All such precedent vertices in π�

st(C) form a set, denoted by Fst(C). In
other words, Fst(C) stores an optimum to CCQDPP with cost at most C. We
have

Fst(C) = {fst(i;C) : vi ∈ V (π�
st(C))}. (7)

As for CCQDPP with cost at most ζ ≥ 1, we let ζ◦ be the minimum in
C = 1, 2, . . . , ζ such that δs(t;C) does not exceed Bt. If all δs(t;C), 1 ≤ C ≤ ζ
exceed Bt, then ζ◦ = null. If such ζ◦ exists, then π�

st(ζ
◦) is just the corresponding
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ALG(D, B, ζ): PPT Algorithm for CCQDPP.

Input: D = (V, A, c, d, s, t), B = {B1,B2, . . . ,Bn}, and ζ ∈ Z+;
Output: YES with ζ◦ and π�

st(ζ
◦), or NO with ζ◦ = null.

δs(s; 0) ← 0; δs(i; 0) ← ∞, ∀1 ≤ i ≤ n, i �= s; fst(i; 0) ← null, ∀1 ≤ i ≤ n;
for C := 1, 2, . . . , ζ do

δs(i; C) ← δs(i; C − 1), fst(i; C) ← fst(i; C − 1), ∀1 ≤ i ≤ n;
Use BFS to traverse D with vs as the origin; Let v

˜k be the
current vertex; When v

˜k is visited, the steps below are done:
for each j ∈ O

˜k do

δs(˜k, j; C) ← δs(˜k; C − c(˜k, j)) + d(˜k, j);

if δs(˜k, j; C) ≤ Bj then

if δs(˜k, j; C) < δs(j; C) then

δs(j; C) ← δs(˜k, j; C); fst(j; C) ← ˜k;
endif

endif
endfor
if δs(t; C) ≤ Bt then

ζ◦ ← C; Call SOLT(s, t, ζ◦) to compute π�
st(ζ

◦);
Return YES with ζ◦ and π�

st(ζ
◦);

endif
endfor
Return NO with ζ◦ = null;

vs-to-vt CDP, π�
st, with cost equal to ζ◦. This leads to our algorithm ALG for

CCQDPP, which is a graph traverse based dynamic programming algorithm.
Theorem 1 shows that ALG runs in a pseudo polynomial time. The framework
of ALG is described as follows.

First of all, we do initialization: δs(s; 0) = 0 and δs(i; 0) = ∞, for 1 ≤ i ≤
n, i �= s, and fst(i; 0) = null, for 1 ≤ i ≤ n.

Next, for each C = 1, 2, . . . , ζ, we compute δs(i;C) and record fst(i;C).
Initially, by Eq. (3), we let

δs(i;C) = δs(i;C − 1), fst(i;C) = fst(i;C − 1).

Note that all δs(i; ̂C) and fst(i; ̂C),∀ ̂C = 1, 2, . . . , C − 1 have been obtained.
Then, we use the breadth-first search (BFS) to traverse D with vs as the origin.
When the current vertex, v

˜k, is visited, the following steps are done. For each
j ∈ O

˜k, we compute δs(˜k, j;C) by Eq. (5). If δs(˜k, j;C) is at most Bj and strictly
smaller than the current value of δs(j;C), then this current value is updated as
δs(˜k, j;C) and fst(j;C) is updated as ˜k. When BFS ends, all δs(k, j;C), k ∈ Ij

are obtained and then δs(j;C) can be obtained by Eq. (6). Consequently, we
obtain δs(1;C), δs(2;C), . . . , δs(n;C). If δs(t;C) ≤ Bt then we determine ζ◦ = C
and use a sub-procedure SOLT to compute π�

st(ζ
◦), and return YES with ζ◦ and

π�
st(ζ

◦). If δs(t;C) > Bt, for all 1 ≤ C ≤ ζ, then NO and ζ◦ = null are returned.
The main idea of SOLT is to trace out π�

st(ζ) with vt as the starting point and
vs as the ending point, according to Eq. (7). Let vα be the current vertex and C0
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be the current cost bound of vs-to-vα subpath of π�
st(ζ). Initially, α = t, C0 = ζ

and Fst(ζ) = {t}. The precedent vertex, fst(α;C0), of vα in π�
st(ζ) is selected

into Fst(ζ), and the cost bound of subpath is updated as C0 − c(fst(α;C0), α)
and the current vertex is updated as fst(α;C0). When α = s, SOLT ends and
returns Fst(ζ).

SOLT(s, t, ζ):

Fst(ζ) ← {t}; α ← t, C0 ← ζ;
while α �= s do

Fst(ζ) ← Fst(ζ) ∪ {fst(α; C0)};
C0 ← C0 − c(fst(α; C0), α);
α ← fst(α; C0);

endwhile

Theorem 1. Given D = (V,A, c, d, s, t) with |V | = n and |A| = m, a deadline
set, B = {B1,B2, . . . ,Bn}, and a constant ζ > 0, the worst-case time cost of
ALG(D,B, ζ) is O(mζ). Furthermore, we claim that cs(t) ≤ ζ if the output is
YES and cs(t) > ζ if the output is NO.

3.2 Test Procedure

Given a real number C > 0, it is NP-hard to decide whether cs(t) > C or
cs(t) < C for CDPP in D = (V,A, c, d, s, t). However, by using the standard
technique of scaling and rounding [3,10,15,19,20,24,25], we can decide whether
cs(t) > C or cs(t) < (1+ ε) ·C in a fully polynomial time, for any given constant
ε > 0. The above decision process can be described as an approximate testing
procedure, named TEST. First of all, we need to introduce two auxiliary graphs
and the related definitions.

TEST(D, B, C, ε): Approximate Test Procedure.

Input: D = (V, A, c, d, s, t), B = {B1,B2, . . . ,Bn}, C ∈ Z+,
and ε ∈ (0, 2(n − 1)].
Output: YES or NO.

θ ← 2(n−1)
C·ε ; c�θ�(a) ← 	c(a) · θ
, ∀a ∈ A; ζ ← 	C · θ
;

Use ALG(D�θ�, B, ζ) to obtain ζ�θ�;
if ζ�θ� ≤ ζ then Return YES;
else Return NO; endif

Let cθ(·) be such a scaling-arc-cost function, where cθ(a) = c(a) · θ, for each
a ∈ A. An auxiliary graph, Dθ = (V,A, cθ, d, s, t), can be obtained by replacing
c(·) with cθ(·) in D = (V,A, c, d, s, t). Furthermore, we let c	θ
(·) be such a
scaling-rounding-arc-cost function, where c	θ
(a) = c(a) · θ�, for each a ∈ A.
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Another auxiliary graph, D	θ
 = (V,A, c	θ
, d, s, t), can be obtained by replacing
c(·) with c	θ
(·). Accordingly, we let πθ

st and π
	θ

st denote a vs-to-vt CDP in Dθ

and D	θ
, respectively.

Theorem 2. Given D = (V,A, c, d, s, t) with |V | = n and |A| = m, a deadline
set, B = {B1,B2, . . . ,Bn}, and two constants, C ∈ Z+ and 0 < ε ≤ 2(n − 1), the
worst-case time cost of TEST(D,B, C, ε) is O(mn

ε ). Furthermore, we claim that
cs(t) < (1 + ε) · C if the output is YES and cs(t) > C if the output is NO.

Proof. From θ = 2(n−1)
C·ε , it follows that ζ = C · θ� = C · 2(n−1)

C·ε � =  2(n−1)
ε �.

By ε ≤ 2(n − 1), we have ζ ≥ 1. The time cost of TEST(D,B, C, ε) is dominated
by that of ALG(D	θ
,B, ζ). By substituting ζ =  2(n−1)

ε � into the latter, see
Theorem 1, we obtain that the time complexity of TEST(D,B, C, ε) is O(mn

ε ).
First, if the output is YES, then c	θ
(π	θ


st ) = ζ	θ
 ≤ ζ = C ·θ� ≤ C ·θ. From
c	θ
(a) = c(a) · θ� > c(a) · θ − 1, it follows that c(a) < c�θ�(a)

θ + 1
θ . Since π

	θ

st

has at most n − 1 arcs, we conclude that

cs(t) =
∑

a∈π∗
st

c(a) <
∑

a∈π∗
st

(
c	θ
(a)

θ
+

1
θ
) ≤ c	θ
(π∗

st)
θ

+
n − 1

θ
. (8)

From c	θ
(a) ≤ cθ(a) < c	θ
(a) + 1, we conclude that c	θ
(π∗
st) ≤ cθ(π∗

st) and
cθ(π	θ


st ) < c	θ
(π	θ

st ) + (n − 1). By the fact that πθ

st is a vs-to-vt CDP in Dθ, we
obtain cθ(πθ

st) ≤ cθ(π	θ

st ). By the fact that a vs-to-vt CDP in Dθ is equal to a

vs-to-vt CDP in D, we obtain cθ(π∗
st) = cθ(πθ

st). So,

c	θ
(π∗
st) ≤ cθ(π∗

st) = cθ(πθ
st) ≤ cθ(π	θ


st ) < c	θ
(π	θ

st ) + (n − 1). (9)

The combination of (8) and (9) yields that

cs(t) <
c	θ
(π	θ


st ) + (n − 1)
θ

+
n − 1

θ
≤ C · θ

θ
+

2(n − 1)
2(n−1)

C·ε
= (1 + ε) · C.

Next, if the output is NO, then c	θ
(π	θ

st ) = ζ	θ
 ≥ ζ+1 = C ·θ�+1 > C ·θ.

From c	θ
(a) = c(a) · θ� ≤ c(a) · θ, it follows that c(a) ≥ c�θ�(a)
θ . Since π

	θ

st is a

vs-to-vt CDP in D	θ
, we have c	θ
(π∗
st) ≥ c	θ
(π	θ


st ). So,

cs(t) =
∑

a∈π∗
st

c(a) ≥
∑

a∈π∗
st

c	θ
(a)
θ

=
c	θ
(π∗

st)
θ

≥ c	θ
(π	θ

st )

θ
>

C · θ

θ
= C.

��
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3.3 FPTAS

First, we design FPTAS1 for CDPP in D = (V,A, c, d, s, t) using ALG as a sub-
procedure. The output solution of FPTAS1 is denoted as πF1

st , and its time cost
is shown in Theorem 3. Let LB and UB be known lower and upper bounds on
the optimal value, c(π∗

st), of CDPP.

FPTAS1(D, B, ε, LB, UB): FPTAS for CDPP.

Input: D = (V, A, c, d, s, t), B = {B1,B2, . . . ,Bn}, LB, UB > 0,

and ε ∈ (0, UB·(n−1)
LB

];

Output: πF1
st .

θ ← n−1
LB·ε ; c�θ�(a) ← 	c(a) · θ
, ∀a ∈ A; ζ ← 	UB · θ
;

Use ALG(D�θ�, B, ζ) to obtain ζ�θ� and π
�θ�
st ;

πF1
st ← π

�θ�
st ; Return πF1

st ;

Theorem 3. Given D = (V,A, c, d, s, t) with |V | = n and |A| = m, a dead-
line set, B = {B1,B2, . . . ,Bn}, and three constants, LB,UB > 0 and 0 < ε ≤
UB·(n−1)

LB , FPTAS1(D,B, ε,LB,UB) can find a (1+ ε)-approximate vs-to-vt CDP
in O(mn·UB

ε·LB ) time.

Theorem 3 shows that the time cost of FPTAS1 is closely related with UB
LB .

So, we can reduce its time cost by reducing UB
LB . The common way is to first

initialize LB and UB as easily computable values and then use the binary method
with TEST as a sub-procedure to reduce UB

LB , see [3,10,15,19,20,24,25]. Here,
LB is initialized as the vs-to-vt cheapest path cost, denoted by c(s, t), in ˜D =
(V,A, c, s, t) obtained by ignoring the delays on edges of D, and UB is initialized
as (n − 1) · maxa∈A c(a).

Next, we use binary method to drive UB
LB down to some number below 2(1 +

ε), for any given ε > 0. When UB
LB > 2(1 + ε), the values of LB and UB are

updated in the following way. Let C =
√

UB·LB
1+ε . If TEST(D,B, C, ε) = YES,

then (1 + ε) · C becomes a new upper bound and LB is still the lower bound.
If TEST(D,B, C, ε) = NO, then C becomes a new lower bound and UB is still
the upper bound. Such a process is called an iteration, and each iteration can be
completed in a fully polynomial time of O(mn

ε ), due to Theorem 2. Incorporating
the above iterations into FPTAS1 results in a faster FPTAS, named FPTAS2. The
output solution of FPTAS2 is denoted as πF2

st and the time cost of it is given in
Theorem 4.
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FPTAS2(D, B, ε): Faster FPTAS for CDPP.

Input: D = (V, A, c, d, s, t), B = {B1,B2, . . . ,Bn}, ε > 0.

Output: πF2
st .

Use Dijkstra’s algorithm [2] to compute c(s, t);
LB ← c(s, t), UB ← (n − 1) · maxa∈A c(a);
if UB

LB
≤ 2(1 + ε) then

goto Step 3;
else

C ←
√

LB·UB
1+ε

;

if TEST(D, B, C, ε) = YES then UB ← (1 + ε) · C;
if TEST(D, B, C, ε) = NO then LB ← C; endif
goto Step 2;

endif

θ ← n−1
LB·ε ; c�θ�(a) ← 	c(a) · θ
, ∀a ∈ A; ζ ← 	UB · θ
;

Use ALG(D�θ�, B, ζ) to obtain ζ�θ� and π
�θ�
st ;

πF2
st ← π

�θ�
st ; Return πF2

st ;

Theorem 4. Given D = (V,A, c, d, s, t) with |V | = n and |A| = m, a deadline
set, B = {B1,B2, . . . ,Bn}, and a constant, ε > 0, FPTAS2(D,B, ε) can find a
(1 + ε)-approximate vs-to-vt CDP in O(mn

ε · log2 S) time, where S is the input
size of the given instance.
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Abstract. This paper studies the lower-bounded connected facility loca-
tion (LB ConFL) problem, which extends the well-known connected facil-
ity location (ConFL) and lower-bounded facility location (LBFL) prob-
lems. In the LB ConFL, we are given a graph G = (V, E), where V and
E are all the vertices and edges, respectively. A facility set F ⊆ V , a
client set D ⊆ V , a parameter M ≥ 1, and an integer lower bound L
are also given. Each facility has an opening cost fi, and each edge e ∈ E
has a connection cost ce. Denote by cuv the shortest path with respect
to the connection costs from vertex u to v. Opening a facility i incurs its
opening cost. Assigning a client j to some facility i incurs a connection
cost cij . Connecting a facility subset S ⊆ F by a Steiner tree T incurs a
cost of M

∑
e∈T ce called Steiner cost. The goal is to open some facilities

S ⊆ F , assign each client j to some opened facility in S and connect all
the opened facilities S by a Steiner tree, such that the number of clients
connected to any opened facility is at least L, and the total incurred cost
(i.e., the total opening, connection, and Steiner cost) is minimized.

As our main contribution, we propose two approximation algorithms
for the LB ConFL with ratios of 696 and 169. The first algorithm is
based on an intuitive idea that finding a suitable Steiner tree before
considering the lower bound constraints may give a good solution. The
second algorithm effectively avoids the shortcoming of the first one and
successfully improves the approximation ratio. Moreover, we consider the
general LB ConFL (GLB ConFL) problem, in which each facility i has a
non-uniform lower bound Li. We give an approximation algorithm with
a ratio related to the parameter M for the GLB ConFL.
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1 Introduction

The uncapacitated facility location (UFL) problem is famous in operations
research for its wide range of applications. In a UFL instance, a set of facili-
ties and a set of clients are given. Opening each facility incurs its own opening
cost, and assigning a client to some facility incurs a connection cost. The aim is
to open some facilities and assign each client to some opened facility, such that
the total opening and connection cost is minimized. Usually assume that the
connection costs in the UFL problem and its generalizations are non-negative,
symmetric, and satisfy the triangle inequality. The UFL problem is NP-hard,
and many approximation algorithms had been designed for it and its mean-
ingful generalizations [2,7,9,10,14–16,19,20]. The currently best approximation
ratio of 1.488 for the UFL problem is given by Li [14].

In reality, the opened facilities may want to have communications among
them. This requirement in real-world scenarios can be captured as the generaliza-
tion of the UFL called the connected facility location (ConFL) problem, which
requires all the opened facilities must be connected by a Steiner tree. Karger
and Minkoff [12] provide the first constant-factor approximation algorithm for
the ConFL problem. Later, Gupta et al. [6] give an LP-rounding algorithm with
a ratio of 10.66. Based on the technique of primal-dual, Swamy and Kumar [18]
propose an 8.55-approximation algorithm. Hasan et al. [8] further improve the
ratio to 8.29 via an LP-rounding algorithm. June et al. [11] offer a primal-dual
6.55-approximation algorithm. Eisenbrand et al. [3] give a 4-approximation algo-
rithm by using the approximation algorithm for the UFL as a subroutine and
randomly sampling the client to open the suitable facilities. Based on another
random sampling, Grandoni and Rothvoß [4] present the currently best 3.19-
approximation algorithm.

In a real situation, each facility wants to be connected by a certain number of
clients for the sake of profit. This scenario can be captured as the lower-bounded
facility location (LBFL) problem, in which an additional input of lower bound L
is given, and each opened facility is required to satisfy connecting by at least L
clients (i.e., the lower bound constraints). Guha et al. [5] and Karger and Minkoff
[12] simultaneously give constant-factor bi-criteria approximation algorithms for
the LBFL problem. These two algorithms approximately respect the lower bound
constraints. Svitkina [17] reduces the LBFL problem to the capacitated facility
location problem (CFL) and gives an approximation algorithm with a ratio of
488. Based on a more careful reduction, Ahmadian and Swamy [1] propose the
currently best 82.6-approximation algorithm. For the general LBFL (GLBFL)
problem, in which each facility i has a non-uniform lower bound Li, Li [13] also
constructs a reduction to give its first and currently best 3926-approximation
algorithm.

In this paper, we propose and study the lower-bounded connected facility
location (LB ConFL) problem, generalizing both the ConFL and LBFL. In the
LB ConFL problem, we require that all the opened facilities be connected by
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a Steiner tree, and each opened one should connect a certain uniform number
of clients. When each facility is required to connect a non-uniform number of
clients, the problem is called the general LB ConFL (GLB ConFL) problem. The
following are our main contributions.

– Contribution 1: We propose the first constant-factor 696-approximation algo-
rithm for the LB ConFL. The algorithm is based on an intuition that is con-
centrating on the requirement of connecting all the opened facility by a Steiner
tree before thinking about the lower bound constraints may adequately work.
To be specific, our first algorithm constructs and solves a ConFL instance
then a LBFL instance.

– Contribution 2: Unfortunately, the ratio of the first algorithm is inevitably
large. We then propose the currently best 169-approximation algorithm for
the LB ConFL, which significantly improves the previous ratio. This algo-
rithm avoids the weakness of the first algorithm by solving a constructed
ConFL instance and a constructed LBFL instance simultaneously.

– Contribution 3: We study the GLB ConFL and given an M -related approxi-
mation algorithm, where M is a given parameter. The idea of this algorithm
is similar to the second algorithm for the LB ConFL. It uses the solutions of
simultaneously constructed ConFL and GLBFL instances to construct a solu-
tion for the GLB ConFL instance. However, with non-uniform lower bounds,
the construction process is a bit more complicated.

The remainder of the paper is structured as follows. Section 2 presents the
algorithms for the LB ConFL, and Sect. 3 provides an algorithm for the GLB
ConFL. Discussions are given in Sect. 4. Due to space constraints, all proofs are
removed but will appear in a full version of this paper.

2 Dealing with Uniform Lower Bounds

In this section, we first give formal descriptions of the LB ConFL, ConFL, and
LBFL. Then, we show how to use the approximation algorithms for the ConFL
and LBFL as subroutines to solve the LB ConFL.

2.1 Problem Descriptions Related to the LB ConFL

In a LB ConFL instance ILBCo, a graph G = (V,E) is given, where V and E
are all the vertices and edges, respectively. A facility set F ⊆ V , a client set
D ⊆ V , a parameter M ≥ 1, and an integer lower bound L are also given. Each
facility i ∈ F has a non-negative opening cost fi. Each edge e ∈ E has a non-
negative connection cost ce. Denote by cuv the shortest path with respect to the
connection costs from vertex u to v. Opening a facility i incurs its opening cost.
Assigning a client j to some facility i incurs a connection cost cij . Connecting
a facility subset S ⊆ F by a Steiner tree T incurs a cost of M

∑
e∈T ce called

Steiner cost. The goal is to open some facilities S ⊆ F , assign each client j to
some opened facility σ(j) ∈ S and connect all the opened facilities S by a Steiner



490 L. Han et al.

tree T , such that the number of clients connected to any opened facility is at
least L, and the total incurred cost of

∑
i∈S fi +

∑
j∈D cσ(j)j + M

∑
e∈T ce (i.e.,

the total opening, connection, and Steiner cost) is minimized.
The LB ConFL instance becomes a ConFL instance if we get rid of the lower

bound constraints (i.e., set L = 0 in a LB ConFL instance). Specifically, in a
ConFL instance ICo, a graph G = (V,E), a facility set F ⊆ V , a client set
D ⊆ V , and a parameter M ≥ 1 are given. Each facility i has a non-negative
opening cost fi. Each edge e ∈ E has a non-negative connection cost ce, and the
connection cost between a facility i and a client j is cij , which is the shortest
path with respect to the connection costs from i to j. The aim is to open some
facilities S ⊆ F , assign each client j to some opened facility σ(j) ∈ S and connect
all the opened facilities S by a Steiner tree T , such that the total incurred cost of∑

i∈S fi +
∑

j∈D cσ(j)j + M
∑

e∈T ce (i.e., total opening, connection and Steiner
cost) is minimized.

We use (S, σ, T ) to present a solution of a LB ConFL or ConFL instance.
Here S ⊆ F is the set of open facilities, σ : D → S is an assignment that maps
each client j to some opened facility in S, and T is a tree. A solution (S, σ, T )
is feasible for the LB ConFL instance if |{j ∈ D : σ(j) = i}| ≥ L for each
i ∈ S, and the tree T is a Steiner tree that spans all the vertices in S. A solution
(S, σ, T ) is feasible for the ConFL instance if the tree is a Steiner tree that spans
all the vertices in S. For the solution (S, σ, T ), denote by costO(S, σ, T ) its total
opening cost, i.e.,

costO(S, σ, T ) =
∑

i∈S

fi;

denote by costC(S, σ, T ) its total connection cost, i.e.,

costC(S, σ, T ) =
∑

j∈D
cσ(j)j ;

and denote by costS(S, σ, T ) its Steiner cost, i.e.,

costSt(S, σ, T ) = M
∑

e∈T

ce.

Let cost(S, σ, T ) be the total incurred cost of the solution (S, σ, T ). Therefore,

cost(S, σ, T ) = costO(S, σ, T ) + costC(S, σ, T ) + costSt(S, σ, T )

=
∑

i∈S

fi +
∑

j∈D
cσ(j)j + M

∑

e∈T

ce.

The LB ConFL instance becomes a LBFL instance if we remove the require-
ment that all the opened facilities be connected by a Steiner tree. Specifically,
in a LBFL instance ILB, a facility set F , a client set D, and an integer lower
bound L are given. Each facility i has a non-negative opening cost fi. Each
facility-client pair has a non-negative connection cost cij . The objective is to
open some facilities S ⊆ F , assign each client j to some opened facility σ(j) ∈ S,
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such that the number of clients connected to any opened facility is at least L
(i.e., |{j ∈ D : σ(j) = i}| ≥ L for each i ∈ S), and the total incurred cost of∑

i∈S fi +
∑

j∈D cσ(j)j (i.e., the total opening and connection cost) is minimized.
We use (S, σ) to denote a solution of a LBFL instance. Here S ⊆ F is the

set of open facilities and σ : D → S is an assignment which maps each client j
to some opened facility in S. A solution (S, σ) is feasible for the LBFL instance
if |{j ∈ D : σ(j) = i}| ≥ L for each i ∈ S. For the solution (S, σ), denote by
costO(S, σ) its total opening cost, i.e.,

costO(S, σ) =
∑

i∈S

fi;

denote by costC(S, σ) its total connection cost, i.e.,

costC(S, σ) =
∑

j∈D
cσ(j)j .

Let cost(S, σ) be the total incurred cost of the solution (S, σ). Therefore,

cost(S, σ) = costO(S, σ) + costC(S, σ)

=
∑

i∈S

fi +
∑

j∈D
cσ(j)j .

2.2 A Simple Algorithm for the LB ConFL

Our first approximation algorithm for the LB ConFL is based on a simple idea
that finding a Steiner tree connecting all the possibly opened facilities before
considering the lower bound constraints may give a good solution.

Here is a description of our simple algorithm. At the beginning of the algo-
rithm, our primary concern is to find a suitable tree, and we pay no attention to
the lower bound constraints. So for any LB ConFL instance ILBCo, we first get
rid of the lower bound L to yield a ConFL instance ICo. Use the currently best
α-approximation algorithm for the ConFL to solve ICo and obtain a solution
(SCo, σCo, TCo), where α = 3.19. We view the tree TCo as our suitable tree. Then,
we put our focus on satisfying the lower bound constraints. Since it is known
that the facilities in SCo are already connected by the tree TCo, it is advisable
to open some facilities in SCo while considering the lower bound constraints.
So we construct a LBFL instance as ILB = (SCo,D, L, {fi}i∈SCo , {cij}i∈SCo,j∈D)
and use the currently best β-approximation algorithm for the LBFL problem to
solve it in order to obtain a solution (SLB, σLB), where β = 82.6. Last, we output
(SLB, σLB, TCo) as our final solution. The simple algorithm is formally presented
as Algorithm 1.
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Algorithm 1 : A Simple Approximation Algorithm for the LB ConFL.
Input: A LB ConFL instance ILBCo = (V, E, F , D, M, L, {fi}i∈F , {ce}e∈E , {cij}i∈F,j∈D).
Output: A feasible solution (S, σ, T ) for instance ILBCo.

Step 1 Construct and solve a ConFL instance ICo.
For the LB ConFL instance ILBCo, get rid of the lower bound L to yield a ConFL
instance ICo = (V, E, F , D, M, {fi}i∈F , {ce}e∈E , {cij}i∈F,j∈D). Use the currently
best α-approximation algorithm for the ConFL to solve ICo and obtain a solution
(SCo, σCo, TCo), where α = 3.19.

Step 2 Construct and solve a LBFL instance ILB.
Based on the opened facilities SCo in the solution (SCo, σCo, TCo), construct a LBFL
instance as ILB = (SCo, D, L, {fi}i∈SCo , {cij}i∈SCo,j∈D). Use the currently best β-
approximation algorithm for the LBFL to solve ILB and obtain a solution (SLB, σLB),
where β = 82.6.

Step 3 Construct a solution for the LB ConFL instance.
Set S := SLB, σ := σLB, and T := TCo. Output (S, σ, T ) as the solution for the LB
ConFL instance ILBCo.

Step 2 of Algorithm 1 ensures that the solution (S, σ, T ), where S = SLB,
σ = σLB, satisfies the lower bound constraints, and implies that SLB ⊆ SCo.
Note that all the vertices in SLB are connected by the tree TCo, since tree TCo

spans all the vertices in SCo. Therefore, the solution (S, σ, T ) is a feasible solution
for the LB ConFL instance ILBCo.

For any LB ConFL instance ILBCo and the corresponding ConFL instance
ICo constructed from Step 1 in Algorithm 1, let (S∗

LBCo, σ
∗
LBCo, T

∗
LBCo) and

(S∗
Co, σ

∗
Co, T

∗
Co) be the optimal solutions of them, and OPTLBCo and OPTCo

be the total incurred cost of their optimal solutions.

Lemma 1. OPTCo ≤ OPTLBCo.

Lemma 2. costO(S, σ, T ) ≤ costO(SCo, σCo, TCo).

Lemma 3. costSt(S, σ, T ) = costSt(SCo, σCo, TCo).

Lemma 4. costC(S, σ, T ) ≤ β · costO(SCo, σCo, TCo) + β · (2 + α) · OPTLBCo.

Combining Lemmas 1–4, we obtain the main result of Algorithm 1.

Theorem 1. Algorithm 1 is a 696-approximation algorithm for the LB ConFL
problem.

2.3 An Improved Algorithm for the LB ConFL

The improved algorithm proposed in this subsection comes from a careful intro-
spection of Algorithm 1 for the LB ConFL problem. Recall that Algorithm 1 first
solves a ConFL instance and then deals with a LBFL instance. One can imagine
that this sequential and rough idea will cause the approximation ratio at least at
a scale of O(α) times O(β), where α and β are the currently best approximation
ratios for the ConFL and LBFL. Now, we consider an improved idea which is
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construct and solve a ConFL instance and a LBFL instance simultaneously, and
then use their solutions to construct a solution for the LB ConFL. It seems likely
that this idea may lead to an approximation algorithm with a ratio at a scale of
O(α) plus O(β) and could significantly improve the previous ratio.

Here is a description of our improved algorithm. At the beginning of the
algorithm, we focus on both finding a suitable tree and satisfying the lower
bound constraints. For any LB ConFL instance ILBCo, get rid of the lower bound
L to yield a ConFL instance ICo; and get rid of the requirement that all the
opened facilities must be connected by a Steiner tree to yield a LBFL instance
ILB. Use the currently best α-approximation algorithm for the ConFL problem
to solve ICo and obtain a solution (SCo, σCo, TCo). We look upon the tree TCo as
a suitable tree. Use the currently best β-approximation algorithm for the LBFL
problem to solve ILB and obtain a solution (SLB, σLB). Although the solution
(SLB, σLB) satisfies the lower bound constraints, the facilities in SLB may not
be connected by the tree TCo. Thus, we find the closest facility ic ∈ SCo for
each facility i ∈ SLB, and then reconnect all the clients assigned to i under the
assignment of σLB to the facility ic. Denote by all the closest facilities in SCo as
S. Denote by all the new assignments as σ. Therefore, it is not hard to see that
(S, σ, TCo) is a feasible solution for the LB ConFL instance ILBCo. The improved
algorithm is formally shown as Algorithm 2.

Algorithm 2 : An Improved Approximation Algorithm for the LB ConFL.
Input: A LB ConFL instance ILBCo = (V, E, F , D, M, L, {fi}i∈F , {ce}e∈E , {cij}i∈F,j∈D).
Output: A feasible solution (S, σ, T ) for instance ILBCo.

Step 1 Construct and solve a ConFL instance ICo.
It same as Step 1 in Algorithm. At the end of this step, we obtain a solution
(SCo, σCo, TCo).

Step 2 Construct and solve a LBFL instance ILB.
For the LB ConFL instance ILBCo, get rid of the requirement, that all the opened
facilities must be connected by a Steiner tree, to yield a LBFL instance ILB =
(F , D, L, {fi}i∈F , {cij}i∈F,j∈D). Use the currently best β-approximation algorithm
for the LBFL to solve ILB and obtain a solution (SLB, σLB), where β = 82.6.

Step 3 Construct a solution for the LB ConFL instance.
Initially, set S := ∅, σ(j) := σLB(j) for any j ∈ D.
While SLB �= ∅ do

Arbitrarily choose a facility i ∈ SLB and find the facility

ic := arg min
i′∈SCo

cii′ .

Update SLB = SLB \ {i}, S := S ∪ {ic} and σ(j) := ic for any client j with
σ(j) = i.

Set T := TCo. Output (S, σ, T ) as the solution for the LB ConFL instance ILBCo.

Recall that for any LB ConFL instance ILBCo, denote by (S∗
LBCo, σ

∗
LBCo,

T ∗
LBCo) its optimal solutions and OPTLBCo the total incurred cost of the solution.

For any corresponding LBFL instance ILB constructed from Step 2 in Algorithm
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2, let (S∗
LB, σ∗

LB) be the optimal solution, and OPTLB be the total incurred cost
of its optimal solution.

Lemma 5. OPTLB ≤ OPTLBCo.

Lemma 6. costO(S, σ, T ) ≤ costO(SCo, σCo, TCo).

Lemma 7. costSt(S, σ, T ) = costSt(SCo, σCo, TCo).

Lemma 8. costC(S, σ, T ) ≤ costC(SCo, σCo, TCo) + 2 · costC(SLB, σLB).

Combining Lemmas 5–8, we obtain the main result of Algorithm 2.

Theorem 2. Algorithm 2 is a 169-approximation algorithm for the LB ConFL
problem.

3 Dealing with Non-uniform Lower Bounds

In this section, we first describe the GLB ConFL and GLBFL. Then, we show
that the approximation algorithms for the ConFL and GLBFL enable us to
propose an approximation algorithm for the GLB ConFL.

3.1 Problem Descriptions Related to the GLB ConFL

In a GLB ConFL instance, each facility i has its own non-uniform lower bound
Li. The goal is to open some facilities, assign each client to some opened facility
and connect all the opened facilities by a Steiner tree, such that the number of
clients connected to any opened facility i is at least Li, and the total incurred
cost (i.e., the total opening, connection, and Steiner cost) is minimized.

Same as the LB ConFL, the GLB ConFL instance becomes a ConFL instance
if we get rid of the lower bound constraints. We still use (S, σ, T ) to present a
solution of a GLB ConFL instance. A solution (S, σ, T ) is feasible for the GLB
ConFL instance if |{j ∈ D : σ(j) = i}| ≥ Li for each i ∈ S, and the tree T
is a Steiner tree that spans all the vertices in S. For the solution (S, σ, T ), still
use the symbols of costO(S, σ, T ), costC(S, σ, T ), costSt(S, σ, T ) and cost(S, σ, T )
to denote the total opening, total connection, Steiner, and total incurred cost,
respectively.

The GLB ConFL instance becomes a GLBFL instance if we remove the
requirement that all the opened facilities must be connected by a Steiner tree.
We still use (S, σ) to denote a solution of a GLBFL instance. A solution (S, σ) is
feasible for the GLBFL instance if |{j ∈ D : σ(j) = i}| ≥ Li for each i ∈ S. For
the solution (S, σ), still use the symbols of costO(S, σ), costC(S, σ) and cost(S, σ)
to denote the total opening, connection and incurred cost, respectively.
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3.2 An Algorithm for the GLB ConFL

The idea of the algorithm proposed for the GLB ConFL problem is similar
to Algorithm 2. We consider constructing and solving a ConFl instance and a
GLBFL instance at the same time, and then use their solutions to construct a
solution for the GLB ConFL. Since the lower bounds for the facilities could be
different in the GLB ConFL problem, the step of constructing its solution is a
bit more complicated than the one (i.e., Step 3) in Algorithm 2.

Here is a description of the algorithm for the GLB ConFL problem. The
first two steps are similar to the ones in Algorithm 2. For any GLB ConFL
instance IGLBCo, get rid of the lower bounds {Li}i∈F to yield a ConFL instance
ICo, and get rid of the requirement that all the opened facilities must be con-
nected by a Steiner tree to yield a GLBFL instance IGLB. Use the currently best
α-approximation algorithm for the ConFL problem to solve ICo and obtain a
solution (SCo, σCo, TCo). We look upon the tree TCo as a suitable tree for aug-
menting. Use the currently best η-approximation algorithm for the GLBFL prob-
lem to solve IGLB and obtain a solution (SGLB, σGLB). Even though the solution
(SGLB, σGLB) satisfies the lower bound constraints, the facilities in SGLB may
not be connected by the tree TCo. Thus, we find the closest facility ic ∈ SCo

for each facility i ∈ SGLB, and then reconnect all the clients assigned to i under
the assignment of σGLB to the facility ic. We call the closest facility ic ∈ SCo

to a facility i ∈ SGLB its head, and call i the tail of ic. Denote by all the head
facilities as Sc. Since the lower bounds are non-uniform, the new assignments
cannot make sure that all the lower bound constraints of the heads are satisfied.
Therefore, for each facility ic ∈ Sc find its closest tail facility icc ∈ SGLB and
reconnect all the clients assigned to ic to the facility icc. Denote by all the closest
tail facilities as S. Denote by all the latest assignments as σ. Let T be the tree
obtained from augmenting the tree TCo by adding the shortest connection path
from each head facility to its closest tail facility. Therefore, it is not hard to see
that (S, σ, T ) is a feasible solution for the GLB ConFL instance IGLBCo, since
the lower bound constraint for each tail facility must be satisfied. The algorithm
is formally proposed as Algorithm 3.
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Algorithm 3 : An Approximation Algorithm for the GLB ConFL.
Input: An instance IGLBCo = (V, E, F , D, M, {Li}i∈F , {fi}i∈F , {ce}e∈E , {cij}i∈F,j∈D).
Output: A feasible solution (S, σ, T ) for instance IGLBCo.

Step 1 Construct and solve a ConFL instance ICo.
For the GLB ConFL instance IGLBCo, get rid of the lower bounds {Li}ı∈F to yield
a ConFL instance ICo = (V, E, F , D, M, {fi}i∈F , {ce}e∈E , {cij}i∈F,j∈D). Use the
currently best α-approximation algorithm for the ConFL problem to solve ICo and
obtain a solution (SCo, σCo, TCo), where α = 3.19.

Step 2 Construct and solve a GLBFL instance IGLB.
For the GLB ConFL instance IGLBCo, get rid of the requirement, that all the opened
facilities must be connected by a Steiner tree, to yield a GLBFL instance IGLB =
(F , D, {Li}i∈F , {fi}i∈F , {cij}i∈F,j∈D). Use the currently best η-approximation algo-
rithm for the GLBFL problem to solve IGLB and obtain a solution (SGLB, σGLB),
where η = 3926.

Step 3 Construct a solution for the GLB ConFL instance.

Step 3.1 Initially, set S := ∅, σ(j) := σGLB(j) for any j ∈ D. Set S1 := SGLB, Sc := ∅.
Step 3.2 While S1 �= ∅ do

Arbitrarily choose a facility i ∈ S1 and find the facility

ic := arg min
i′∈SCo

cii′ .

Define σc(i) := ic for the facility i. Update S1 = S1 \ {i}, Sc := Sc ∪ {ic} and
σ(j) := ic for any client j with σ(j) = i.

Step 3.3 While Sc �= ∅ do
Arbitrarily choose a facility ic ∈ Sc and find the facility

icc := arg min
i∈SGLB:σc(i)=ic

ciic .

Update Sc = Sc \ {ic}, S := S ∪ {icc} and σ(j) := icc for any client j with σ(j) = ic.
Step 3.4 Let T be the tree obtained from augmenting the tree TCo by adding the shortest

connection path from each facility ic ∈ Sc to its icc ∈ SGLB. Output (S, σ, T ) as the
solution for the GLB ConFL instance IGLBCo.

For any GLB ConFL instance IGLBCo, denote by (S∗
GLBCo, σ

∗
GLBCo, T

∗
GLBCo)

its optimal solutions and OPTGLBCo the total incurred cost of the solution. For
any corresponding ConFL instance ICo constructed from Step 1 in Algorithm
3, still let (S∗

Co, σ
∗
Co, T

∗
Co) be the optimal solution of it, and OPTCo be the total

incurred cost of its optimal solution. For any corresponding GLBFL instance
IGLB constructed from Step 2 in Algorithm 3, let (S∗

GLB, σ∗
GLB) be the optimal

solutions of it, and OPTGLB be the total incurred cost of its optimal solution.

Lemma 9. OPTCo ≤ OPTGLBCo.

Lemma 10. OPTGLB ≤ OPTGLBCo.

Lemma 11. costO(S, σ, T ) ≤ costO(SGLB, σGLB).

Let costGLB
C and costCo

c be costC(SGLB, σGLB) and costC(SCo, σCo, TCo) for
short.
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Lemma 12. costSt(S, σ, T ) ≤ M · costGLB
C +M · costCo

C + costSt(SCo, σCo, TCo).

Lemma 13. costC(S, σ, T ) ≤ 2costC(SCo, σCo, TCo) + 3 · costC(SGLB, σGLB).

Combining Lemmas 9–13, we obtain the main result of Algorithm 3.

Theorem 3. Algorithm 3 is an (max{(M + 2) · α, (M + 3) · η})-approximation
algorithm for the LB ConFL problem, where α = 3.19 and η = 3926.

4 Discussions

We propose the first and currently best approximation algorithms for the LB
ConFL in this paper. For the GLB ConFL, we give an M -related approximation
algorithm. The reason for obtaining an unsatisfactory approximation ratio for
the GLB ConFL is that the finally found tree in our algorithm is not good
enough, since the augment process makes too much loss of the ratio. We do
believe that by finding a better Steiner tree, the approximation ratio could be
remarkably improved.
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15. Shmoys, D.B., Tardos, É., Aardal, K.I.: Approximation algorithms for facility loca-
tion problems. In: Proceedings of the 29th Annual ACM symposium on Theory of
Computing, pp. 265–274 (1997)

16. Sviridenko, M.: An improved approximation algorithm for the metric uncapaci-
tated facility location problem. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002.
LNCS, vol. 2337, pp. 240–257. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-47867-1 18

17. Svitkina, Z.: Lower-bounded facility location. ACM Trans. Algorithms 6, 1–16
(2010)

18. Swamy, C., Kumar, A.: Primal-dual algorithms for connected facility location prob-
lems. Algorithmica 40, 245–269 (2004)

19. Xu, Y., Xu, D., Du, D., Wu, C.: Improved approximation algorithm for universal
facility location problem with linear penalties. Theoret. Comput. Sci. 774, 143–151
(2019)

20. Xu, Y., Xu, D., Zhang, Y., Zou, J.: MpUFLP: universal facility location problem
in the p-th power of metric space. Theoret. Comput. Sci. 838, 58–67 (2020)

https://doi.org/10.1007/s10878-020-00631-y
https://doi.org/10.1007/s10878-020-00631-y
https://doi.org/10.1007/3-540-47867-1_18
https://doi.org/10.1007/3-540-47867-1_18


Mechanism Design for Facility
Location with Fractional Preferences

and Minimum Distance

Longteng Duan1, Zifan Gong1, Minming Li1, Chenhao Wang2(B),
and Xiaoying Wu3

1 City University of Hong Kong, Kowloon Tong, Hong Kong
{longtduan2-c,zifangong2-c}@my.cityu.edu.hk,

minming.li@cityu.edu.hk
2 Kyushu University, Fukuoka, Japan

wangch@inf.kyushu-u.ac.jp
3 AMSS, Chinese Academy of Sciences, Beijing, China

xywu@amss.ac.cn

Abstract. In this paper, we study the mechanism design for two-
facility-location games with the fractional preferences of agents, in which
each agent has private information including her location in an interval
[0, 1] and her fractional preference to indicate how much she prefers the
two facilities. The decision maker needs to locate the two facilities to
serve the agents, who has a utility equal to the interval length 1 minus
the sum of weighted distances to both facilities. The facility locations
are required to satisfy a minimum distance constraint, i.e., the distance
of the two facilities must exceed a given number d ∈ [0, 1]. The goal is to
design strategy-proof mechanisms to maximize the social/minimum util-
ity among the agents. We propose a randomized strategy-proof mecha-
nism, which is 2-approximation for both objectives of maximizing the
social utility and minimum utility. We also propose a deterministic
strategy-proof mechanism which has an approximation ratio of 4

2−d
and

4 for the two objectives, respectively. Furthermore, we derive corre-
sponding lower bounds on the approximation ratios of strategy-proof
mechanisms.

Keywords: Facility location · Mechanism design · Approximation

1 Introduction

The facility location problem is a classic combinatorial optimization problem
extensively studied in the communities of computer science, operations research,
and economics, which aims at computing the optimal locations of facilities to
minimize transportation costs for servicing customers.

More than one decade ago, Procaccia and Tennenholtz [14] propose a new
perspective of approximate mechanism design for facility location problems,
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using the most basic setting of locating facilities in a real line, which advocates
the study of strategy-proof mechanisms through the lens of the approximation
ratio, a celebrated notion in the field of theoretical computer science and approxi-
mation algorithms. In the setting studied by Procaccia and Tennenholtz [14], the
agents/customers have private locations in a real line and need to report their
locations to a mechanism; then the mechanism decides the locations of facilities
to be built, under the objective of minimizing the total/maximum distance from
the agents to the facilities. Each agent has a cost equal to her distance from the
closest facility, and a mechanism is called strategy-proof if no agent can decrease
her cost by misreporting. Later, lots of works [2,4,13,15] on mechanism design
for facility location extend the classic setting in [14].

In this paper, we study the mechanism design for the two-facility-location
model with fractional preferences, where each agent has a preference (weight) in
the range [0, 1] for each facility, to indicate how well she prefer this facility. The
sum of an agent’s preference for two facilities is equal to 1. The preferences are
private information of agents, who can strategically report their preferences as
well as locations to a mechanism. This fractional-preference model is proposed
by Fong et al. [8], which models the scenario where the facilities are different
but serve a similar purpose, such as the supermarket along with the convenience
store, the hospital along with the clinic.

In addition, we study the minimum distance constraint between the facilities,
which requires that the distance of the two facility locations should be at least a
given value d ∈ [0, 1], that is, the two facilities cannot be too close. The minimum
distance constraint is first proposed by Duan et al. [5]. For the motivation,
consider the first scenario that the social planner plans to deploy an Internet
café and a primary school in a street, where all agents prefer living close for easy
access to both internet surfing and education resource. In the worry that some
pupils in the primary school may develop addiction to computer games after
class, the two facilities should keep some distance away from each other.

1.1 Our Results

In this paper, we study the two-facility-location model with the fractional pref-
erences of n agents and the minimum distance constraint d. Suppose the under-
lying line segment is an interval [0, 1]. We derive upper and lower bounds on the
approximation ratios of strategy-proof mechanisms under different objectives.

First, we note that there is no good approximation for the objective of mini-
mizing the total cost, where the cost of each agent is the weighted total distance
from the two facilities. Formally, every strategy-proof mechanism has an approxi-
mation ratio Ω(n

1
3 ). Therefore, we turn to consider the utilities, where the utility

of each agent is the interval length 1 minus her cost.
In Sect. 3, we study the objective of maximizing the social utility (total util-

ity of all agents). After showing how to compute an optimal solution regardless
of the strategy-proofness, we propose a simple randomized strategy-proof mech-
anism (Mechanism 1) with a proven approximation ratio 2, and a deterministic
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strategy-proof mechanism (Mechanism 2) with an approximation ratio 4
2−d . Fur-

ther, we derive a lower bound 2 for deterministic mechanisms, and a lower bound
1.06 for randomized mechanisms follows from the model with fractional prefer-
ences in [8].

In Sect. 4, we study the objective of maximizing the minimum utility.
We prove that Mechanism 1 is 2-approximation, and Mechanism 2 is 4-
approximation. Furthermore, we derive a lower bound 2 for all strategy-proof
mechanisms.

Our results are summarized in the following Table 1, where UB and LB indi-
cate upper bound and lower bound, respectively.

Table 1. A summary of our results.

Objective Deterministic Randomized

Social utility UB: 4
2−d

(Theorem 2) UB: 2 (Theorem 1)

LB: 2 (Theorem 3) LB: 1.06 [8]

Minimum utility UB: 4 (Theorem 5) UB: 2 (Proposition 3)

LB: 2 (Theorem 6) LB: 2 (Theorem 6)

We compare our results with those for the problem with fractional preferences
but without any distance constraint (i.e. d = 0). Regarding the social utility, for
deterministic mechanisms, there is a 4-approximation for the case d = 0 [8], while
we derive an improved upper bound 4

2−d even for our general problem. Regarding
the minimum utility, for deterministic mechanisms, there is 2-approximation for
the case d = 0 [8], while we can only have a 4-approximation for our problem.

1.2 Related Work

Procaccia and Tennenholtz [14] initiate the study of approximate mechanism
design for facility location problems. For the setting of locating a single facility
on a real line, they show that locating the facility at the median location of
agents is strategy-proof and optimal for the objective of minimizing the social
cost, and is 2-approximation for minimizing the maximum cost. For the two-
facility setting, they show that the mechanism that places two facilities at the
two extreme locations of agents is strategy-proof and (n − 2)-approximation for
the social cost. Later, Lu et al. [12,13] derive lower bounds for strategy-proof
mechanisms, and Fotakis and Tzamos [9] prove a tight lower bound n−2. Besides
the classic setting, there are lots of variants, e.g., obnoxious facilities [4,19],
multiple locations of agents [11], false-name manipulations [18], and different
cost functions and spaces [7,10,16]. See an overview in [1].

Preference Models. A follow-up line of work considers the preference models,
where the facilities are heterogeneous and agents may have different preferences
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or feelings to these facilities. Fong et al. [8] propose the fractional preference
model, where each agent has a number between 0 and 1 for each facility to
indicate how she likes this facility. This model can be regarded as a special case
of our model by setting d = 0 (i.e., without the minimum distance constraint).
The dual preference model is proposed independently by Zou and Li [21] and
Feigenbaum and Sethuraman [6], in which each agent finds some facility either
desirable or undesirable. A somewhat different model is the optional preferences
[15,20], in which each agent is “interested” in either facility or both.

Distance Constraints. Zou and Li [21] initiate the study of distance constraint
with two facilities. They consider the maximum distance requirement, namely
that the distance between the two facilities cannot exceed a certain threshold.
Later, Chen et al. [3,17] relaxed the maximum distance constraint by instead
imposing a penalty. Analogously, Duan et al. [5] study the minimum distance
requirement for heterogeneous two-facility locations, where the cost of an agent is
the sum of her distances to the two facilities. The model in [5] can be regarded as
a special case of our model by setting agents’ preferences equally for all facilities.

2 Model

Let N = {1, 2, · · · , n} be the set of agents located on a line interval [0, 1].
We want to locate two facilities F1, F2 on this interval. Each agent i has a
profile ci = (xi, pi), where xi ∈ [0, 1] is her location, and pi = (pi,1, pi,2) with
0 ≤ pi,1, pi,2 ≤ 1 and pi,1 + pi,2 = 1 is her preference on facilities F1, F2. Let
x = (x1, . . . , xn) be the location profile of agents, and p = (p1, . . . , pn) be the
preference profile. We denote an instance by c = (x,p) = (c1, . . . , cn).

A deterministic mechanism f is a function which maps an instance c to two
facility locations f(c) = (y1, y2) ∈ [0, 1]2, where yj (j = 1, 2) is the location of
facility Fj . A randomized mechanism f is a function which maps an instance
c to a probability distribution over [0, 1]2. We consider the minimum distance
constraint with respect to the two facilities. That is, given a constant d ∈ [0, 1],
the facility locations (y1, y2) must satisfy |y2 − y1| ≥ d.

Given a deterministic outcome f(c) = (y1, y2), the cost of agent i is

cost(f(c), ci) = |xi − y1| · pi,1 + |xi − y2| · pi,2,

that is, the weighted total distance from the two facilities. If f(c) is a distribution
returned by a randomized mechanism f , then the cost is defined as the weighted
total distance in expectation:

cost(f(c), ci) = E(y1,y2)∼f(c) [|xi − y1| · pi,1 + |xi − y2| · pi,2] .

The social cost of a mechanism f on an instance c is defined as the total cost of
all n agents:

SC(f(c), c) =
∑

i∈N

cost(f(c), ci).

Now, we give the formal definition of strategy-proofness.
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Definition 1. A mechanism f is strategy-proof if no agent can benefit from
misreporting her profile ci. Formally, for any agent i ∈ N , profile c = (ci, c−i)
where c−i is a collection of profile of the n agents except agent i, and any mis-
reported profile c′

i, it holds that

cost(f(c), ci) ≤ cost(f(c′
i, c−i), ci).

For the objective of minimizing the social cost, we say a mechanism f has
an approximation ratio α (α ≥ 1) or is α-approximation, if for all instance c,
we have SC(f(c),c)

OPTSC(c) ≤ α, where OPTSC(c) = min(y1,y2)∈[0,1]2 SC((y1, y2), c) is
the optimal social cost. However, a special instance given in [8] shows that no
mechanism can have a good approximation ratio.

Proposition 1 (Theorem 1 of [8]). For the objective of minimizing social
cost, if the agents can misreport preferences, the approximation ratio for any
strategy-proof mechanism is Ω(n

1
3 ).

Therefore, we turn to consider the utility of agents instead of the cost. Given
a deterministic outcome f(c) = (y1, y2), the utility of agent i is defined as

u(f(c), ci) = 1 − |xi − y1| · pi,1 − |xi − y2| · pi,2.

If f is randomized then the utility is defined as the expectation. We consider two
objectives: maximizing the social utility, and maximizing the minimum utility,
where the social utility is SU(f(c), c) =

∑
i∈N u(f(c), ci), and the minimum

utility is MU(f(c), c) = mini∈N u(f(c), ci).
For the SU objective, we say a mechanism f has an approximation ratio α,

if for any instance c, we have OPTSU (c)
SU(f(c),c) ≤ α, where OPTSU (c) is the optimal

social utility. For the MU objective, the approximation ratio of a mechanism is
defined similarly.

3 Maximizing the Social Utility

In this section, we study the objective of maximizing the social utility. We first
show how to compute the optimal solution in the following, and then provide
upper bounds and lower bounds on the approximation ratio of strategy-proof
mechanisms.

3.1 Optimal Solution

We first study the optimization problem of maximizing the social utility, regard-
less of the strategy-proofness. Given instance c, note that an optimal solution
maximizes the social utility and minimizes the social cost simultaneously. So the
optimal solution can be obtained by solving the following linear program:

min
y1,y2

SC((y1, y2), c)

s.t. (y1, y2) ∈ D := {(y1, y2) ∈ [0, 1]2 | d ≤ |y2 − y1|}.
(1)
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For j = 1, 2, we define wj =
∑n

i=1 pi,j , and ỹj = arg minxk:k∈N{∑k
i=1 pi,j ≥

wj

2 }. When the minimum distance constraint |ỹ1 − ỹ2| ≥ d is satisfied, (ỹ1, ỹ2)
is optimal for LP (1), because the point ỹj , as a median, minimizes the total
weighted distance from agents to Fj .

If |ỹ1− ỹ2| < d, it is easy to see that the optimal social cost could be obtained
within the boundary ∂D = {(y1, y2) ∈ [0, 1]2 | |y2 − y1| = d}. Therefore, it is
equivalent to the following linear optimization problem:

min
y1,y2

SC((y1, y2), c)

s.t. (y1, y2) ∈ ∂D.
(2)

For any optimal solution (y1, y2) ∈ ∂D, there are two cases y2 = y1 + d and
y1 = y2 + d. We discuss them respectively.

Case 1. y2 = y1 + d. It is equivalent to solve

min
y1∈[0,1−d]

n∑

i=1

(pi,1|y1 − xi| + pi,2|y1 + d − xi|). (3)

Consider the profile

L = ((p1,2, x1 − d), (p2,2, x2 − d), . . . , (pn,2, xn − d), (p1,1, x1), (p2,1, x2),
. . . , (pn,1, xn)).

We rearrange the 2n elements in profile L as L̃ = ((p̃1, x̃1), (p̃2, x̃2), . . . ,
(p̃2n, x̃2n)), such that x̃1 ≤ x̃2 ≤ · · · ≤ x̃2n. Note that

∑2n
i=1 p̃i =

∑
i∈N (pi,1 +

pi2) = n. Let k1 = arg mink=1,...,2n

∑k
i=1 p̃i ≥ n

2 . We define y∗
1 as follows: y∗

1 = k1
if k1 ∈ [0, 1 − d], y∗

1 = 0 if k1 < 0, and y∗
1 = 1 − d if k1 > 1 − d. Then it is not

hard to see that y∗
1 solves (3). Therefore, in this case, (y∗

1 , y
∗
1 + d) is optimal.

Case 2. y1 = y2 + d. It is equivalent to solve

min
y2∈[d,1]

n∑

i=1

(pi,1|y2 + d − xi| + pi,2|y2 − xi|). (4)

Using a symmetric analysis, we can define y∗
2 that solves (4), and thus (y∗

2+d, y∗
2)

is an optimal solution in this case.
Now we can have the following proposition.

Proposition 2. For maximizing the social utility, if |ỹ1−ỹ2| ≥ d, then (ỹ1, ỹ2) is
an optimal solution. Otherwise, the better one between (y∗

1 , y
∗
1+d) and (y∗

2+d, y∗
2)

is optimal.

3.2 Strategy-Proof Mechanisms

We first propose a simple randomized strategy-proof mechanism, and then deran-
domize it.
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Mechanism 1. Return ( 1−d
2 , 1+d

2 ) and ( 1+d
2 , 1−d

2 ) with half probability.

Theorem 1. Mechanism 1 is randomized and strategy-proof, and has an approx-
imation ratio 2 for maximizing the social utility.

Proof. The mechanism is trivially strategy-proof, because it does not take the
agents’ reports into consideration. The utility for each agent i ∈ N is

u(f(c), ci) = 1 − 1
2
(|xi − 1 − d

2
| · pi,1 + |xi − 1 + d

2
| · pi,2)

− 1
2
(|xi − 1 + d

2
| · pi,1 + |xi − 1 − d

2
| · pi,2)

= 1 − 1
2

· |xi − 1 − d

2
| − 1

2
· |xi − 1 + d

2
|

≥ 1
2

Note that the utility of each agent is at most 1. We have

OPTSU (c)
SU(f(c), c)

≤ n

n · 1
2

= 2,

indicating an approximation ratio of 2. ��
Since Mechanism 1 outputs (1−d

2 , 1+d
2 ) and (1+d

2 , 1−d
2 ) randomly, an imme-

diate idea is to output these two solutions based on the information of agents’
locations and preferences. In the following we present such a deterministic mech-
anism. First we partition the agents into three types: we call agent i ∈ N is type-1
if pi,1 > 0.5, is type-2 if pi,2 > 0.5, and is type-3 if pi,1 = pi,2 = 0.5.

Define L ⊆ N to be the set of those type-1 agents located in [0, 1
2 ], and those

type-2 agents located in (12 , 1]. Define R ⊆ N to be the set of those type-2 agents
located in [0, 1

2 ], and those type-1 agents located in (12 , 1].

Mechanism 2. If |L| ≥ |R|, output (1−d
2 , 1+d

2 ), otherwise, output ( 1+d
2 , 1−d

2 ).

Lemma 1. Mechanism 2 is strategy-proof.

Proof. Given instance c, assume w.l.o.g. that |L| ≥ |R|, and the output is
( 1−d

2 , 1+d
2 ). First, all type-3 agents have no incentive to lie, because their utili-

ties are invariant under these two outcomes. Second, for any agent in L, clearly
solution (1−d

2 , 1+d
2 ) gives a larger utility than (1+d

2 , 1−d
2 ), implying that i has

no incentive to misreport. Finally, any agent in R has no way to change the
solution. Therefore, Mechanism 2 is strategy-proof. ��
Theorem 2. Mechanism 2 is a deterministic strategy-proof mechanism with an
approximation ratio of 4

2−d for maximizing the social utility.
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Proof. The strategy-proofness is given by Lemma 1. For the approximation ratio,
we first note that the optimal social utility is at most n, and it suffices to prove
that the social utility of the mechanism for any instance c is at least n

2 − nd
4 .

Assume w.l.o.g. that |L| ≥ |R|, and the output is s = (1−d
2 , 1+d

2 ). For any type-1
agent i ∈ L (i.e., pi,1 > pi,2 and xi ∈ [0, 1

2 ]), the utility is

u(s, ci) = 1 − pi,1|xi − 1 − d

2
| − pi,2|xi − 1 + d

2
|

≥ 1 − max{pi,1|0 − 1 − d

2
| + pi,2|0 − 1 + d

2
|, pi,1|12 − 1 − d

2
| + pi,2|12 − 1 + d

2
|}

= 1 − max{1
2

− d

2
(pi,1 − pi,2),

d

2
}

≥ 1
2
.

Similarly, any type-2 agent i ∈ L (i.e., pi,1 < pi,2 and xi ∈ ( 12 , 1]) has a utility

u(s, ci) = 1 − pi,1|xi − 1 − d

2
| − pi,2|xi − 1 + d

2
|

≥ 1 − max{pi,1|1 − 1 − d

2
| + pi,2|1 − 1 + d

2
|, pi,1|12 − 1 − d

2
| + pi,2|12 − 1 + d

2
|}

= 1 − max{1
2

+
d

2
(pi,1 − pi,2),

d

2
}

≥ 1
2
.

Note that the utility of any type-3 agent is at least 1
2 , and the number of agents

in N\R is at least n
2 . So the total utility of agents in N\R is at least 1

2 · n
2 = n

4 . It
remains to consider the agents in R. For any type-1 agent i ∈ R (i.e., pi,1 > pi,2

and xi ∈ ( 12 , 1]), the utility is

u(s, ci) = 1 − pi,1|xi − 1 − d

2
| − pi,2|xi − 1 + d

2
|

≥ 1 − max{1
2

+
d

2
(pi,1 − pi,2),

d

2
}

≥ 1 − d

2
.

Similarly, for any type-2 agent i ∈ R (i.e., pi,1 < pi,2, xi ∈ [0, 1
2 ]), the utility is

u(s, ci) = 1 − pi,1|xi − 1 − d

2
| − pi,2|xi − 1 + d

2
|

≥ 1 − max{1
2

− d

2
(pi,1 − pi,2),

d

2
}

≥ 1 − d

2
.
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Therefore, the social utility of the mechanism is at least

|n − R| · 1
2

+ |R| · 1 − d

2
≥ n

2
· 1
2

+
n

2
· 1 − d

2

=
n

2
− nd

4
,

which completes the proof. ��
We remark that the analysis in the proof of Theorem 2 is not necessarily

tight, and Mechanism 2 may have a better approximation ratio than 4
2−d .

Next, we provide a lower bound on the approximation ratio, and show the
tightness of our mechanisms. Recall that in Definition 1 we say a mechanism is
strategy-proof if no agent can gain by misreporting her location or preference.
We can consider weaker definitions in which the agents are only allowed to
misreport their preferences (i.e., locations are publicly known), or only allowed
to misreport their locations (i.e., preferences are publicly known).

Theorem 3. No deterministic strategy-proof mechanism has an approximation
ratio less than 2 for maximizing the social utility, even if the agents can only
misreport preferences.

Proof. Suppose that f is a deterministic strategy-proof mechanism with approx-
imation ratio 2 − δ for some δ > 0. Consider an instance where n

3 agents are
located at 0, and 2n

3 agents are located at 1. The preference of each agent
located at 0 is pi1 = 1, pi2 = 0, and the preference of each agent located at
1 is pi1 = 1

2 + ε, pi2 = 1
2 − ε, where ε > 0 is a sufficiently small number. The

minimum distance constraint is d = 1, and thus the only two possible solutions
are (0, 1) and (1, 0). The optimal solution is (0, 1), and the optimal social utility
is OPT = n

3 + 2n
3 · ( 12 − ε). On the other hand, the social utility of solution (1, 0)

is 2n
3 · ( 12 + ε) < OPT

2−δ , since ε is sufficiently small. By the approximation ratio,
f must output (0, 1), and the utility of those agents located at 1 is 1

2 − ε.
By [12], a strategy-proof mechanism must be partial group strategy-proof,

which means that a group of agents with the same type (i.e., location and
preference) cannot benefit even if they misreport type simultaneously. Next we
consider the instance where the n

3 agents located as 0 still have a preference
pi1 = 1, pi2 = 0, while the 2n

3 agents located at 1 misreporting their preference
to pi1 = 1, pi2 = 0. For this new instance, the optimal solution is (1, 0), and
the optimal social utility is OPT ′ = 2n

3 . On the other hand, the social util-
ity of solution (0, 1) is n

3 < OPT ′
2−δ . By the approximation ratio, f must output

(1, 0). Therefore, by misreporting their preferences, the agents located at 1 can
increase the utility from 1

2 − ε to 1
2 + ε, which contradicts the partial group

strategy-proofness, and thus contradicts the strategy-proofness, ��
Theorem 4. No deterministic strategy-proof mechanism has an approximation
ratio less than 2 for maximizing the social utility, even if the agents can only
misreport locations.
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Proof. Suppose that f is a deterministic strategy-proof mechanism with approxi-
mation ratio 2−δ for some δ > 0 Consider an instance where n

3 agents are located
at 0, and 2n

3 agents are located at 1
2 − ε for some sufficiently small ε < δ

n2 . The
preference of each agent located at 0 is pi1 = 1, pi2 = 0, and the preference of
each agent located at 1

2 − ε is pi1 = 0, pi2 = 1. The minimum distance constraint
is d = 1, and thus the only two possible solutions are (0, 1) and (1, 0). The opti-
mal solution is (0, 1), and the optimal social utility is OPT = n

3 + 2n
3 · ( 12 − ε).

On the other hand, the social utility of solution (1, 0) is 2n
3 · ( 12 + ε) < OPT

2−δ .
By the approximation ratio, mechanism f must output (0, 1), and the utility of
those agents located at 1

2 − ε is 1
2 − ε.

Recall that a strategy-proof mechanism must be partial group strategy-proof.
Next we consider the instance where the 2n

3 agents located at 1
2 − ε misreport

their locations as 0. For this new instance, the optimal solution is (1, 0), and
the optimal social utility is OPT ′ = 2n

3 . On the other hand, the social utility
of solution (0, 1) is n

3 < OPT ′
2−δ . By the approximation ratio, mechanism f must

output (1, 0). Therefore, by misreporting their locations as 0, the agents located
at 1

2 − ε can increase the utility from 1
2 − ε to 1

2 + ε, which contradicts the partial
group strategy-proofness, and thus contradicts the strategy-proofness. ��

For the lower bound of randomized strategy-proof mechanisms, we note that
Theorem 9 of [8] provides a lower bound 1.06, in the case when all agents have the
same preference (0.5, 0.5) and the agents are only allowed to misreport locations.
Because it is a special case of our model, this lower bound still holds for our
model. Formally, no randomized strategy-proof mechanism has an approximation
ratio less than 1.06, even if the agents can only misreport locations.

4 Maximizing the Minimum Utility

In this section, we study the objective of maximizing the minimum utility. We
first consider Mechanism 1, which is randomized and strategy-proof. Recall from
the proof of Theorem 1 that, for any instance c, the utility of each agent i ∈ N
is at least 1

2 . Hence we have the following.

Proposition 3. Mechanism 1 is a randomized strategy-proof mechanism with
an approximation ratio of 2 for the minimum utility objective.

Next, we consider Mechanism 2, which deterministically returns (1−d
2 , 1+d

2 )
if |L| ≥ |R|, and (1+d

2 , 1−d
2 ) otherwise.

Theorem 5. Mechanism 2 is a deterministic strategy-proof mechanism with an
approximation ratio of 4 for the minimum utility objective.

Proof. We prove the approximation ratio by constructing the worst-case instance
for which the mechanism achieves the worst performance guarantee. Without
loss of generality, assume that |L| ≥ |R| in the worst-case instance and the
mechanism returns ( 1−d

2 , 1+d
2 ). Let ε > 0 be a sufficiently small number. To

construct the worst-case instance, noting that the solution is unfriendly for the
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agents in R, we want to ensure that an agent in R achieves the minimum utility
in the constructed instance. If d < 1

2 , the worst case is when n−1 agents located
at 1

2 + ε have preference (0, 1), and one agent (say j) located at 1 has preference
(1, 0). Clearly j ∈ R and |L| ≥ |R|. The utility of agent j is 1−d

2 . The optimal
solution is (1, 1

2 + ε), and the optimal minimum utility is 1. Thus the ratio is
1

(1−d)/2 = 2
1−d < 4.

If d ≥ 1
2 , the above instance is still the worst case. The utility of agent j is

still 1−d
2 . However, the optimal solution is (1, 1 − d), and the optimal minimum

utility is 1 − [12 + ε − (1 − d)] = 2 − d − 1
2 − ε. Thus the ratio is 2−d−1/2−ε

(1−d)/2 ≤
1

(1−d)/2 = 2
1−d < 4. ��

We end this section by providing a lower bound 2 for randomized mechanisms,
which implies the upper bound in Proposition 3 is tight, and thus Mechanism 1
is the best possible for the minimum utility objective. We also remark that this
bound improves the lower bound 1.5 in [8] for the facility location problem with
fractional preferences but without the minimum distance constraint.

Theorem 6. No randomized strategy-proof mechanism has an approximation
ratio less than 2 for maximizing the minimum utility, even if the agents can only
misreport locations.

Proof. Let f be a randomized strategy-proof mechanism, and d = 0. We first
consider an instance c = (x,p), where the location profile of agents is x =
(0, 1

2 , 1), and the preference profile is p = ((1, 0), (1, 0), (0, 1)). That is, two agents
located at 0 and 1

2 completely prefer F1, and one agent located at 1 completely
prefers F2. Let f(c) = (y1, y2) and y1 follows a probability distribution P over
[0, 1]. It is easy to see that there exists xi for i = 1, 2 (without loss of generality
suppose it is x2), such that Ey1∼P [|xi − y1|] ≥ 1

4 .
Now, consider the instance c′ = (x′,p), where the location profile is

x′ = (0, 1, 1). Let f(c′) = (y′
1, y

′
2) be the output. By the strategy-proofness,

the expected distance from 1
2 to y′

1 must be at least 1
4 , otherwise in instance c

agent 2 can gain by deviating from x2 = 1
2 to x′

2 = 1. Therefore, the expected
minimum utility between agents 1 and 2 is at most 1− 3

4 = 1
4 , while the optimal

minimum utility is 1
2 , obtained by solution (12 , 1). It follows that the approxima-

tion ratio of f is at least 2. ��

5 Conclusion

In this paper, we studied the mechanism design for two-facility-location prob-
lem with fractional preferences and minimum distance constraint. For two objec-
tives of maximizing the social utility and maximizing the minimum utility, we
designed deterministic and randomized strategy-proof mechanisms with proven
approximation ratios, and derived lower bounds on the approximation ratio of
all strategy-proof mechanisms.

As extensions, we can study the problem of locating two obnoxious facilities,
where each agent wants to stay as far away as possible, and has a utility equal to
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her total weighted distance from the two facilities. We note that the mechanism
that returns (0, 1) and (1, 0) with equal probability is 2-approximation for the
social utility, and there exists an 8-approximation in a deterministic way.

There are many other interesting future directions. For example, while we
consider the minimum distance constraint, one can study the maximum distance
constraint, where the two facilities cannot be located too far away. While this
work is devoted to the fractional preferences, other types of preference model
are worth studying, e.g., optional preferences and dual preferences.

Acknowledgement. Minming Li was partially supported by NSFC under Grant
No. 11771365, and by Project No. CityU 11200518 from Research Grants Council
of HKSAR.
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Abstract. Recently, Abebe et al. (KDD 2018) and Chan et al. (WWW
2019) have considered an opinion dynamics optimization problem that
is based on a popular model for social opinion dynamics, in which each
agent has some fixed innate opinion, and a resistance that measures the
importance it places on its innate opinion; moreover, the agents influ-
ence one another’s opinions through an iterative process. Under certain
conditions, this iterative process converges to some equilibrium opinion
vector. Previous works gave an efficient local search algorithm to solve
the unbudgeted variant of the problem, for which the goal is to modify
the resistance of any number of agents (within some given range) such
that the sum of the equilibrium opinions is minimized. On the other
hand, it was proved that the L0-budgeted variant is NP-hard, where the
L0-budget is a restriction given upfront on the number of agents whose
resistance may be modified.

Inspired by practical situations in which the effort to modify an agent’s
resistance increases with the magnitude of the change, we propose the
L1-budgeted variant, in which the L1-budget is a restriction on the sum
of the magnitudes of the changes over all agents’ resistance parameters.
In this work, we show that the L1-budgeted variant is NP-hard via a
reduction from the vertex cover problem. However, contrary to the L0-
budgeted variant, a very technical argument is needed to show that the
optimal solution can be achieved by focusing the given L1-budget on as
small a number of agents as possible, as opposed to spreading the budget
over a large number of agents.

1 Introduction

The process of social influence is a significant basis for opinion formation, deci-
sion making and the shaping of an individual’s identity. It drives many social
phenomenon ranging from the emergence of trends, diffusion of rumor, and the
shaping of public views about social issues. An opinion formation model was
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introduced by the works of DeGroot [5] and Friedkin and Johnsen [7], which
considered how agents’ influence one another’s opinions in discrete time steps.
In this model, each agent i has some innate opinion si in [0, 1], which reflects
the intrinsic position of the agent on a certain topic. The expressed opinion of
an agent is updated in each iteration according to the weighted average of other
agents’ opinions (according to the interaction matrix ) and its innate opinion.
The weight that an agent assigns to its own innate opinion is captured by a
resistance parameter αi ∈ [0, 1], where a higher value for the resistance parame-
ter means that the agent is less susceptible to persuasion by the opinions of other
agents. Under very mild conditions, the expressed opinions of the agents con-
verge to an equilibrium, which is a vector-valued function of the innate opinions,
the interaction matrix between the agents and the agents’ resistance parameters.

Recent works by Abebe et al. [1] and Chan et al. [4] have considered the
opinion dynamics optimization problem, in which the innate opinions and the
interaction matrix between agents are given as the input, and the goal is to min-
imize the average equilibrium opinion by varying the agents’ resistance param-
eters. As mentioned in their works, the motivation of the problem has been
inspired by empirical works in social psychology that studied people’s suscepti-
bility to persuasion, and more references to related work and applications are
given in [1,4].

Restrictions on how the agents’ resistance parameters may be modified lead
to different variants of the problem with different hardness. At the trivial end
of the spectrum, if one can choose any αi ∈ [0, 1] for every agent i, then the
trivial solution to minimize the average equilibrium is to set αi = 1 for the agent
with the minimum innate opinion and set the resistance of all other agents to
0, provided that the interaction matrix among the agents is irreducible, in the
sense that every agent has some direct or indirect influence over every other
agent. If the resistance of each agent i must be chosen from some restricted
interval [li, ui] ⊆ [0, 1], then an efficient local search method is given in [4] such
that the minimum average equilibrium can be achieved by setting each agent’s
resistance parameter to either its lower li or upper ui bound. In addition to the
restriction intervals, the problem gets harder if one places further restrictions
on the number of agents whose resistance parameters may be modified. The
L0-budgeted variant has some initial resistance vector α̂ for all agents and some
budget k, and the algorithm is allowed to change the resistance parameters of at
most k agents. Indeed, it is shown in [1] that the L0-budgeted variant is NP-hard
via a reduction from the vertex cover problem.

Intuitively, in the reduction construction for proving the NP-hardness of the
L0-budgeted variant, the set of agents whose resistance parameters are modified
corresponds to a set of vertices to be considered as a candidate as a vertex cover
in some graph. Hence, it seems that the binary nature of the choice for each
agent contributes to the hardness of the problem. A natural question is whether
the problem becomes easier if one is allowed to make a “fractional” decision
for each agent. From a practical point of view, the L0-budget uses the implicit
assumption that modifying the resistance parameter of an agent a little takes
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the same effort as modifying it a lot. However, it is reasonable to assume that
the effort it takes to modify an agent’s resistance should be proportional to the
magnitude of the change.

With such motivations in mind, we propose the L1-budgeted variant in this
work. Similar to the L0-budgeted variant in which an initial resistance vector α̂
and a budget k is given, the goal is to minimize the average equilibrium opinion
by choosing a vector α (satisfying any restriction interval placed on each agent)
such that ‖α − α̂‖1 ≤ k.

1.1 Our Contributions

At first sight, the efficient local search techniques in [4] and the fractional nature
of the L1-budget suggest that the problem might be solved optimally by some
gradient method or mathematical program. Indeed, there are examples in which
the optimal solution is achieved by assigning the budget to modify the agents’
resistance partially, i.e., the resistance parameter of an agent does not reach its
specified lower or upper bound. However, it turns out that this variant is also
NP-hard.

Theorem 1. The L1-budgeted variant of the opinion dynamics optimization
problem is NP-hard.

Hardness Intuition. Given an L1-budget, whether one should spread the budget
among many agents or focus it on a small number of agents depends on the inter-
action matrix among the agents. When we tried to understand the structure of
the problem by studying various examples, we discovered that if two agents have
little direct or indirect influence on each other, then the L1-budget should be
shared among them. However, if all agents are well-connected such as in the case
of a clique, then the budget should be as focused as possible on a small num-
ber of agents. Hence, intuitively, the problem should be hard if the underlying
interaction matrix among the agents resembles a well-connected graph.

The difficulty here is that we do not yet know how to quantify the well-
connectedness of the interaction matrix in relation to this budget-focus effect.
Furthermore, the hardness still relies on the reduction from the vertex cover
problem, whose hardness has not been extensively studied for graphs with dif-
ferent connectivity. Our solution to the reduction construction is to consider an
interaction matrix that is a convex combination of a clique and some given graph
G that is supposed to be an instance of the vertex cover problem.

The high-level argument is that as long as the weight of the clique is large
enough, the aforementioned budget-focus effect should be in place. However, as
long as there is a non-zero weight of the graph G on the interaction matrix, the
existence of a vertex cover for G of a certain size will have a quantifiable effect on
the optimal average equilibrium opinion given a certain L1-budget. Even though
the general approach is not too complicated, combining these ideas requires quite
technical calculations.
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Outline. In Sect. 2, we will introduce the notation and formally recall various
variants of the problem. In Sect. 3, we will give our reduction construction and
explain the intuition behind the proofs. In Sect. 4, we give an outline of our tech-
nical proofs, while the most technical details are deferred to the full version [3].

2 Preliminaries

We recall the problem setting as described in [1,4]. Consider a set N of agents,
where each agent i ∈ N is associated with an innate opinion si ∈ [0, 1] (where
higher values correspond to more favorable opinions towards a given topic) and
a parameter measuring an agent’s susceptibility to persuasion αi ∈ [0, 1] (where
higher values signify agents who are less susceptible to changing their opinions).
We call αi the resistance parameter.

The agents interact with one another in discrete time steps. The interaction
matrix captures the relationship between agents and is simply a row stochastic
matrix1 P ∈ [0, 1]N×N (i.e., each entry of P is non-negative and every row
sums to 1, but P needs not be symmetric). We denote A = Diag(α) as the
diagonal matrix with Aii = αi, and I as the identity matrix. Starting from some
arbitrary initial expressed opinion vector z(0) ∈ [0, 1]N , the expressed opinion
vector is updated in each time step according to the following equation:

z(t+1) := As + (I − A)Pz(t). (1)

Equating z(t) with z(t+1), one can see that the equilibrium opinion vector is
given by z = [I − (I − A)P ]−1As, which exists under very mild conditions such
as the following.

Fact 1 (Convergence Assumption). Suppose P is irreducible and at least
one i ∈ N has αi > 0. Then, Eq. (1) converges to a unique equilibrium
limt→∞ z(t).

The opinion susceptibility problem is defined below. Intuitively, the objective
is to choose a resistance vector α to minimize the sum of equilibrium opinions
〈1, z〉 = 1�z, i.e., the goal is to drive the average opinion towards 0. Observe
that one can also consider maximizing the sum of equilibrium opinions. To see
that the minimization and maximization problems are equivalent, consider the
transformation x �→ 1−x on the opinion space [0, 1] that is applied to the innate
opinions and expressed opinions in every time step. In this paper, we will focus
on the minimization problem as follows.

1 Given sets U and W , we use the notation UW to denote the collection of all functions
from W to U . Each such function can also be interpreted as a vector (or a matrix if
W itself is a Cartesian product), where each coordinate is labeled by an element in
W and takes a value in U . As an example, a member of [0, 1]N×N is a matrix whose
rows and columns are labeled by elements of N . The alternative notation [0, 1]n×n

implicitly assumes a linear ordering on N , which does not have any importance in
our case and would simply be an artefact of the notation.



On the Hardness of Opinion Dynamics Optimization 519

Definition 1 (Opinion Susceptibility Problem (Unbudgeted Variant)).
Given a set N of agents with innate opinions s ∈ [0, 1]N and interaction matrix
P ∈ [0, 1]N×N , suppose for each i ∈ N , its resistance is restricted to some
interval Ii := [li, ui] ⊆ [0, 1] where we assume2 that 0 ≤ li ≤ ui ≤ 1.

The objective is to choose α ∈ IN := ×i∈NIi ⊆ [0, 1]N such that the objective
function, f(α) := 1�[I − (I − A)P ]−1As, where A = Diag(α) is the diagonal
matrix with Aii = αi, is minimized. Observe that the assumption in Fact 1
ensures that the above inverse exists.

Budgeted Variants. To describe different types of budgets, we use the following
norms. Given x ∈ R

N , we denote its L0-norm ‖x‖0 := |{i ∈ N : xi 
= 0}| and
its L1-norm ‖x‖1 :=

∑

i∈N |xi|. For b ∈ {0, 1}, the Lb-budgeted variant of the
problem also has some initial resistance vector α̂ ∈ IN and a given budget k > 0.
The goal is to find α ∈ IN to minimize f(α) subject to ‖α − α̂‖b ≤ k.

Hardness of the Various Variants. A polynomial-time algorithm is given for the
unbudgeted variant in [4], while the L0-budgeted variant is shown to be NP-hard
in [1] via a reduction from the vertex cover problem. The main result of this work
is to show that the L1-budgeted variant is also NP-hard.

3 Hardness of L1-Budgeted Variant

As in [1], we shall prove the NP-hardness of the L1-budgeted variant via reduc-
tion from the vertex cover problem on regular graphs [6], where a graph is
d-regular if every vertex has degree d.

Fact 2 (Vertex Cover on Regular Graphs). Given a d-regular undirected
graph G = (V,E) and some k > 0, it is NP-hard (even for d = 3) to decide if
G has a vertex cover T of size k, where T ⊆ V is a vertex cover for G if every
edge in E has at least one end-point in T .

3.1 Warmup: Reduction for L0-Budget

Before we give our final reduction construction for L1-budget, we give a simplified
reduction for L0-budget, which will offer some intuition on why the L1-budget
reduction is more complicated. The reduction here for L0-budget is similar to
the one given in [1], but is even simpler because we allow different agents i to
have different ranges [li, ui] for their resistance parameters.

Recall that an instance of the vertex cover problem consists of a d-regular
graph G = (V,E) with n = |V | and some target vertex cover size k.

Reduction Construction. In addition to the original vertices in V , we create one
extra agent 0 to form N := V ∪ {0}. For the innate opinions, s0 = 1 and si = 0
for i 
= 0; for the initial resistances, α̂0 = 1 and α̂i = 0 for i 
= 0. For the

2 In view of Fact 1, we assume that for at least one i, li > 0.
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range of resistance parameter, we restrict3 I0 = {1} and Ii = [0, 1] for i 
= 0;
in other words, agent 0 will always remain the most stubborn, while agents in
V have 0 resistance initially, but their resistance parameters could be increased
to 1 subject to the budget constraint. The L0-budget is k, which is the same as
the target cover size. Our final construction for the L1-budget will also share the
above parameter settings.

Interaction Matrix for L0-Budget Reduction. We next describe the interaction
matrix P . For agent 0, we will always have resistance α0 = 1, and so the cor-
responding row in P is irrelevant, but we could set P0i = 1

n for i ∈ V to be
concrete. For i 
= 0, let Pij = 1

d+1 if j = 0 or {i, j} ∈ E is an edge in G, recall-
ing that each node i ∈ V has degree d in G. As we shall see, the reduction for
L1-budget will have a different interaction matrix.

Intuition. For the L0-budgeted variant, if we wish to change the resistance
parameter of an agent i ∈ V (who has innate opinion si = 0), we might as
well set it to αi = 1, because the goal is to minimize the expressed opinion. To
complete the reduction proof, it suffices to give a threshold ϑ for the objective
function f that can distinguish between the YES and NO instances of the vertex
cover problem. The following two lemmas complete the reduction argument.

Lemma 1 (YES Instance). Let ϑ := 1 + n−k
d+1 . Suppose G = (V,E) has a

vertex cover T of size k. Then, by changing the resistance parameters to αi = 1
for all i ∈ T (while those for other agents are not changed), we can achieve
f(α) = ϑ.

Proof. We compute the equilibrium expressed opinion of each agent. For agent 0,
we have z0 = 1; for i ∈ T in the vertex cover, we have zi = 0.

For i ∈ V \T , we still have αi = 0. Since all its neighbors in V are in T and i
is influenced by agent 0, we have zi = 1

d+1 .
Therefore, f(α) =

∑

i∈N zi = 1 + |T | · 0 + |V \T | · 1
d+1 = ϑ, as required.

Lemma 2 (NO Instance). Suppose G = (V,E) has no vertex cover of size k.
Then, for any α ∈ IN such that ‖α − α̂‖0 ≤ k, f(α) ≥ ϑ + 2

d(d+1) .

Proof. Since the goal is to minimize f , the minimum can be achieved by using
all of the L0-budget k. Moreover, as each i ∈ V has innate opinion si = 0, if
we change its resistance parameter, we should set it to αi = 1. Hence, we can
assume that there is some T ⊆ V of size |T | = k such that αi = 1 for i ∈ T
and αi = 0 for i ∈ V \T . We remark that to reach the same conclusion for the
L1-budget reduction later will require a lot more technical details.

3 Observe that we could make every agent have the same range of resistance param-
eter. For instance, we can replace agent 0 with a large enough clique of initially
stubborn agents with innate opinions 1. However, this will make the presentation
and calculation more cumbersome, and it is quite obvious that the hardness of the
problem is not due to difference in the range of resistance parameters among different
agents.
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As in Lemma 1, we can conclude z0 = 1 and zi = 0 for i ∈ T .
For i ∈ V \T , we now only have the inequality zi ≥ 1

d+1 . However, we can
achieve a stronger lower bound because T is not a vertex cover for G.

Let γ be the minimum over all zi such that i is incident on an edge in E
that is not covered by T . Suppose i ∈ V \T is a vertex that attains γ and
the edge {i, j} is not covered by T . Then, we have zj ≥ γ. Hence, we have
γ = zi ≥ z0+zj

d+1 ≥ 1+γ
d+1 , which implies that γ ≥ 1

d = 1
d+1 + 1

d(d+1) .
Since there is at least one edge in E that is not covered by T , we have

f(α) ≥ ϑ + 2
d(d+1) , as required.

3.2 Reduction for L1-Budget

We first describe the main challenge for adapting the reduction proof for L0-
budget to L1-budget. The issue is that to adapt Lemma 2 for the NO instances
of the vertex cover problem, we need a desirable structural property on an opti-
mal solution for the L1-budgeted variant of the opinion optimization problem.
Specifically, we would like to argue that to minimize the objective function f
with an integral budget k, one should pick a subset T ⊆ V of exactly k agents on
whom to use the budget, as opposed to spreading the budget fractionally over
more than k agents.

Unfortunately, this is not true for the reduction construction given in
Sect. 3.1. Indeed, we have discovered that for two agents i and j that are some-
how not “well-connected” in G, if some fixed L1-budget of less than 2 is assigned
to them, spreading the budget fractionally among the two agents would yield a
lower objective value than biasing the budget towards one agent. On the other
hand, we discovered that the desirable structural property holds in some cases
where all the vertices in G are “well-connected”, for instance, if G is a clique on
the n vertices. However, since there is no connectivity assumption on the given
instance G of vertex cover, we consider the following interaction matrix.

Interaction Matrix for L1-Budget Reduction. Recall that we are given a d-regular
graph G = (V,E) with n = |V |, and N = V ∪ {0}. Let C ∈ [0, 1]N×N be a row-
stochastic matrix such that for i 
= j, Cij = 1

n , recalling that |N | = n + 1; in
other words, C behaves like a clique on N . Let R ∈ [0, 1]N×N be a row-stochastic
matrix such that R00 = 1, and Rij = 1

d iff {i, j} ∈ E, where all other entries
of R are 0; in other words, R is the normalized adjacency matrix of G with an
additional isolated vertex 0. For some appropriate δ ∈ (0, 1) (that depends only
on d and n), we consider the following interaction matrix P (δ) := (1− δ)C + δR.

Recall that the innate opinions and initial resistance parameters are the same
as in Sect. 3.1, i.e., s0 = α̂0 = 1 and si = α̂i = 0 for i ∈ V . Moreover, the L1-
budget can be used to change the resistance parameters of only the agents in V ,
i.e., α0 = 1 must remain.

The lemma for YES instance is similar to that in Sect. 3.1. We define the
threshold ϑ := 1 + (1−δ)(n−k)

n−(1−δ)(n−k−1) .
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Lemma 3 (YES Instance). Suppose G = (V,E) has a vertex cover T of
size k. Then, by changing the resistance parameters to αi = 1 for all i ∈ T
(while those for other agents are not changed), we can achieve f(α) = ϑ.

Proof. As in Lemma 1, the equilibrium expressed opinions are z0 = 1 and zi = 0
for i ∈ T .

For j ∈ V \T , recall that αj = 0 and we exploit the symmetry in P (δ) =
(1 − δ)C + δR to analyze the value of zj . Note that with respect to C, agent j
observes that agent 0 has z0 = 1 and the k agents i ∈ T have zi = 0, and there
are n − k − 1 other agents like itself; with respect to R, agent j observes that all
its d neighbors in G are in T , and so has zi = 0.

Therefore, every agent j ∈ V \T has this same observation, and we can con-
clude that zj ’s have some common value γ for all j ∈ V \T satisfying:

γ = (1 − δ) · 1
n

· (1 + k · 0 + (n − k − 1) · γ).

This gives γ = 1−δ
n−(1−δ)(n−k−1) , and so f(α) = 1 + k · 0 + (n − k) · γ = ϑ.

The following structural property is needed for the analysis of NO instances.
Its proof is technical and is deferred to full version [3].

Lemma 4 (Structural Property of Optimal Solution). Suppose we set
δ := d3(2d−1)3n−3

(n+1)6(2d+1)3n to define the interaction matrix P (δ) above, and an L1-
budget of k is given to change the resistance parameters of agents in V . Then,
the objective function f can be minimized by picking some T ⊆ V of size k, and
setting αi = 1 for i ∈ T .

Lemma 5 (NO Instance). Suppose G = (V,E) has no vertex cover of size k,
and δ ∈ (0, 1) is chosen to satisfy Lemma 4. Then, for any α ∈ IN such that
‖α − α̂‖1 ≤ k, f(α) ≥ ϑ + δ

dn .

Proof. Because of Lemma 4, we can assume that the minimum f(α) is achieved
by picking some T ⊆ V of size k and set αi = 1 for i ∈ T and αj = 0 remains
for j ∈ V \T .

Again, the equilibrium expressed opinions satisfy z0 = 1 and zi = 0 for i ∈ T .
Let γ := minj∈V \T zj . Then, a similar argument as in Lemma 3 gives the

inequality γ ≥ γ0 := 1−δ
n−(1−δ)(n−k−1) .

We can get a stronger lower bound because T is not a vertex cover for G =
(V,E). Let γ̂ be the minimum zj among j ∈ V \T such that j is an end-point of
an edge not covered by T .

Then, we have the inequality γ̂ ≥ (1−δ) · 1
n ·(1+k ·0+(n−k−1) ·γ0)+δ · γ̂

d =
γ0 + γ̂ · δ

d .
Hence, we have γ̂ ≥ (1 − δ

d )−1 · γ0 ≥ γ0 + δγ0
d .

Since there is at least one edge in E that is not covered by T (and such an
edge has two end-points), we have f(α) ≥ ϑ + 2δγ0

d ≥ ϑ + δ
dn , as required.
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Corollary 1. It is NP-hard to solve the L1-budgeted variant with additive error
at most δ

dn on the objective function f .

Proof. Observe that from Lemmas 3 and 5, it suffices to use a precision of Θ( δ
dn )

on the objective function, which can be achieved using O(log dn
δ ) = poly(n)

number of bits.

4 Technical Proofs for Well-Connected Interaction
Matrices

To complete our hardness proof in Sect. 3.2, it suffices to prove Lemma 4. Recall
that the goal is to pick some δ ∈ (0, 1) to define the interaction matrix P (δ) =
(1 − δ)C + δR such that given an L1-budget k ∈ Z, the objective function f(α)
can be minimized by allocating the budget to exactly k agents in V . One way
to achieve this is to pick two arbitrary agents i, j ∈ V and show that if some
fixed L1-budget b < 2 is assigned for i and j (while the other agents are not
modified), then the objective function f(α) can be minimized by prioritizing the
budget to either i or j as much as possible. Denoting ei ∈ [0, 1]N as the unit
vector with i ∈ N as the only non-zero coordinate, we shall prove the following.

Formal Goal. By setting δ = d3(2d−1)3n−3

(n+1)6(2d+1)3n , we will show that if i, j ∈ V such
that 0 ≤ αi, αj < 1, then the second derivative of f in the direction ei − ej

satisfies:

(ei − ej)�∇f(α) = 0 =⇒ (ei − ej)�∇2f(α)(ei − ej) < 0. (2)

Statement (2) implies that if two agents in V both receive non-zero frac-
tional budget to change their resistance parameters, then it will not increase the
objective function f by biasing the budget towards one of them.

We will outline the proof ideas to achieve the above formal goal. The complete
technical proofs are given in the full version [3].

Notation Recap. Recall that given α ∈ [0, 1]N , we write A := Diag(α). More-
over, we denote X = X(α) := I − (I − A)P (δ). Under conditions such as Fact 1,
we write M = M(α) := X−1 and the equilibrium vector z = z(α) := MAs,
where s ∈ [0, 1]N is the innate opinion vector from Sect. 3.2 such that s0 = 1
and si = 0 for i ∈ V . Finally, the objective function is f(α) := 1�z(α). Note
that the quantities have a dependence on δ, and we will use a superscript such
as f (δ) when we wish to emphasize this dependence.

Fact 3 (Technical Calculations [4]). Whenever the above quantities are well-
defined, we have

– M ≥ 0 and Mii ≥ 1 for all i ∈ N .
– If αi 
= 1, (PM)ii = Mii−1

1−αi
and (PM)ij = Mij

1−αi
for j 
= i.

– For i, j ∈ N , ∂zi(α)
∂αj

= sj−zj(α)
1−αj

·Mij and e�
i ∇f(α) = ∂f

∂αi
= si−zi(α)

1−αi
·1�Mei.
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Statement (2) inspires us to analyze the following quantities.

Lemma 6. Suppose i, j ∈ V such that 0 ≤ αi, αj < 1 and (ei − ej)�∇f(α) = 0.
Then, we have:

(ei − ej)�∇2f(α)(ei − ej) =
2

(1 − αi)(1 − αj)
· {zi(α)yij(α) + zj(α)yji(α)} ,

where yij(α) := 1�Mei · (Mjj − 1) − 1�Mej · Mji.

In view of Lemma 6, it suffices to analyze the quantity yij . Since every i ∈ V
with αi < 1 is influenced by agent 0 (with z0 = 1) in P (δ), we have zi(α) > 0 for
all i ∈ V . Hence, to show statement (2), it remains to show that yij(α) < 0. We
next analyze yij as functions of αj and P respectively in the next two lemmas.

Lemma 7 (Monotonicity). Given α ∈ [0, 1]n, let A := Diag(α) and P be a
row-stochastic matrix such that M := [I − (I −A)P ]−1 exists. For i 
= j ∈ V , we
fix αk for every k 
= j and all entries of P and consider the following quantity
as a function of αj:

yij(αj) := 1�Mei · (Mjj − 1) − 1�Mej · Mji.

Then, yij(αj) is a strictly monotone or constant function of αj on [0, 1], i.e., it is
either strictly increasing, strictly decreasing, or constant. In addition, yij(1) = 0.

Proof. When αj = 1, note that the j-th row of the matrix I − (I − A)P is equal
to e�

j . By considering the j-th row of the equation [I − (I − A)P ]M = I, we
have Mjj = 1 and Mjk = 0 for any k 
= j. Hence, Mjj − 1 = Mji = 0 and so
yij(1) = 0.

We will now show that yij(αj) is a strictly monotone function of αj . Notice
that yij is a continuous function of αj since yij is a continuous function of M ,
M is a continuous function of αj (because of the continuity of matrix inversion),
and a composition of continuous functions is continuous. In addition, we know
that ∂B−1

∂t = −B−1 ∂B
∂t B−1 for any invertible matrix B. Applying the above

result with B = I − (I − A)P and t = αj , we get ∂M
∂αj

= −Meje
�
j PM .
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Hence, when αj 
= 1, the partial derivative of yij with respect to αj is

∂yij

∂αj
=

∂

∂αj

[

1�Mei · (e�
j Mej − 1) − 1�Mej · e�

j Mei

]

= 1� ∂M

∂αj
ei · (e�

j Mej − 1) + 1�Mei · e�
j

∂M

∂αj
ej −

1� ∂M

∂αj
ej · e�

j Mei − 1�Mej · e�
j

∂M

∂αj
ei

= −1�Meje
�
j PMei · (e�

j Mej − 1) − 1�Mei · e�
j Meje

�
j PMej +

1�Meje
�
j PMej · e�

j Mei + 1�Mej · e�
j Meje

�
j PMei

= −1�Mej · Mji

1 − αj
· (Mjj − 1) − 1�Mei · Mjj · Mjj − 1

1 − αj
+

1�Mej · Mjj − 1
1 − αj

· Mji + 1�Mej · Mjj · Mji

1 − αj
(Fact 3)

= 1�Mej · Mjj · Mji

1 − αj
− 1�Mei · Mjj · Mjj − 1

1 − αj

= − Mjj

1 − αj
[1�Mei · (Mjj − 1) − 1�Mej · Mji]

= − Mjj

1 − αj
yij ,

where Mjj ≥ 1 > 0 by Fact 3. Observe that Mjj is a function of αj , and we
denote this by M(·).

Rewriting g(t) = −yij(1 − t), we have an alternative form dg
dt = M(1−t)·g

t ,
where M(·) ≥ 1 and g(0) = −yij(1) = 0. It follows that if g is a continuous
function, then either g stays 0 in [0,1] or g is strictly monotone.

Recall that our goal is to choose some δ > 0 to define the interaction matrix
P (δ) := (1 − δ)C + δR such that we can prove that the quantity y

(δ)
ij < 0. The

next lemma shows that for the special case δ = 0, we can argue that y
(0)
ij < 0 for

αj < 1.

Lemma 8. For δ = 0, consider P = P (0) = C, whose diagonal entries are 0
and every other entry is 1

n . For α ∈ [0, 1]N (with α0 = 1), we have A := Diag(α)
and M = [I − (I − A)C]−1. Fix some i 
= j ∈ V , and consider

yij(αj) := 1�Mei · (Mjj − 1) − 1�Mej · Mji.

as a function of αj; when αj = 0, yij(0) ≤ − 1
n+1 . Moreover, 1�M1 ≤ n.

Lemma 8 says that y
(0)
ij |αj=0 ≤ − 1

n+1 . The hope is that if δ > 0 is small

enough, then P (δ) would still be close to P (0) = C, and so y
(δ)
ij |αj=0 will stay

negative. Hence, we next analyze the quantity yij as a function of the interaction
matrix P .
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Lemma 9. Fixing some α ∈ [0, 1]N , let A := Diag(α) and let P be a row-
stochastic matrix such that M = M(P ) := [I − (I − A)P ]−1 exists. For any
distinct i, j ∈ V , denote

yij(P ) := 1�Mei · (Mjj − 1) − 1�Mej · Mji

as a function of P . Then,
∑

k,l∈N

∣

∣

∣

∣

∂yij

∂Pkl

∣

∣

∣

∣

≤ 4(1�M1)3.

In view of Lemma 9, we wish to bound the entries of M (δ) for small δ > 0. The
next fact was given in Alfa et al. [2] that gives two-sided bounds to the inverse
of a perturbed nonsingular diagonally dominant matrix. We use the operator | · |
on a matrix to denote the matrix with the same dimension by taking absolute
values entrywise.

Fact 4 (Entrywise Bounds for Diagonally Dominant Matrix Inverse
[2]). Suppose X and ˜X are nonsingular matrices of the form I −B, where B ≥ 0
and has spectral norm strictly less than 1, and each row of B sums to at most 1.

Let 0 ≤ ε < 1 such that |Xij−X̃ij | ≤ ε|Xij | for i 
= j and |X1−X̃1| ≤ ε|X1|.
Then,

(1 − ε)n

(1 + ε)n−1
X−1 ≤ X̃−1 ≤ (1 + ε)n

(1 − ε)n−1
X−1.

Recall that R is a row-stochastic matrix that represents a normalized adja-
cency matrix of a d-regular graph G = (V,E) with the insertion of an isolated
vertex 0; also, recall that C = 1

n (J − I) represents a clique on N .

Lemma 10. Let α ∈ [0, 1]N such that α0 = 1, and A := Diag(α). For 0 ≤ δ <
d
n , define P (δ) := (1 − δ)C + δR and M (δ) := [I − (I − A)P (δ)]−1. Then,

1�M (δ)1 ≤ n(1 + ε)n

(1 − ε)n−1
where ε =

δn

d
.

With the previous preparation, the next lemma proposes an exact universal
perturbation parameter δ that guarantees the negativity of yij when αj ∈ [0, 1),
for any distinct i, j ∈ V .

Lemma 11. Let α ∈ [0, 1]N and M (t) := [I − (I − A)P (t)]−1 for 0 ≤ t <
d

n
be

as defined in Lemma 10. For any distinct i, j ∈ V , define:

y
(t)
ij := 1�M (t)ei · (M (t)

jj − 1) − 1�M (t)ej · M
(t)
ji .

Let δ = d3(2d−1)3n−3

(n+1)6(2d+1)3n . If αj ∈ [0, 1), then y
(δ)
ij < 0.

Finally, we are ready to prove the main result of this section.

Proof of Lemma 4
As mentioned before, the formal goal is to show statement (2). Lemma 6 says

that it suffices to show that yij(α) < 0 when αj < 1. Finally, Lemma 11 says
that by choosing δ = d3(2d−1)3n−3

(n+1)6(2d+1)3n to define P (δ) = (1 − δ)C + δR, we have

y
(δ)
ij (α) < 0 for αj < 1, as required. ��
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Abstract. The sliding window model generalizes the standard stream-
ing model and often performs better in applications where recent data
is more important or more accurate than data that arrived prior to a
certain time. We study the problem of approximating symmetric norms
(a norm on R

n that is invariant under sign-flips and coordinate-wise per-
mutations) in the sliding window model, where only the W most recent
updates define the underlying frequency vector. Whereas standard norm
estimation algorithms for sliding windows rely on the smooth histogram
framework of Braverman and Ostrovsky (FOCS 2007), analyzing the
smoothness of general symmetric norms seems to be a challenging obsta-
cle. Instead, we observe that the symmetric norm streaming algorithm of
Braverman et al. (STOC 2017) can be reduced to identifying and approx-
imating the frequency of heavy-hitters in a number of substreams. We
introduce a heavy-hitter algorithm that gives a (1 + ε)-approximation
to each of the reported frequencies in the sliding window model, thus
obtaining the first algorithm for general symmetric norm estimation in
the sliding window model. Our algorithm is a universal sketch that simul-
taneously approximates all symmetric norms in a parametrizable class
and also improves upon the smooth histogram framework for estimat-
ing Lp norms, for a range of large p. Finally, we consider the problem
of overconstrained linear regression problem in the case that loss func-
tion that is an Orlicz norm, a symmetric norm that can be interpreted
as a scale-invariant version of M -estimators. We give the first sublinear
space algorithms that produce (1+ε)-approximate solutions to the linear
regression problem for loss functions that are Orlicz norms in both the
streaming and sliding window models.

Keywords: Streaming algorithms · Symmetric norms · Sliding
window model · Linear regression

1 Introduction

The efficient estimation of norms is a fundamental problem in the streaming
model, which implicitly defines an underlying frequency vector through a series
of sequential updates to coordinates of the vector, but each update may only be
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observed once. For example, the L2 and entropy norms are frequently used to
detect network anomalies [16,28,34], while the L1 norm is used to monitor net-
work traffic [23] and perform low-rank approximation and linear regression [24],
and the top-k and Ky Fan norms are commonly used in matrix optimization
problems [39]. These norms all have the property that they are invariant to
permutations and sign flips of the coordinates of the underlying vectors:

Definition 1 (Symmetric norm). A norm � : Rn → R is a symmetric norm
if for all x ∈ R

n and any n × n permutation matrix P , we have �(x) = �(Px)
and �(x) = �(|x|), where |x| is the coordinate-wise absolute value of x.

Symmetric norms include the Lp, entropy, top-k, k-support, and box norms, and
many other examples that we detail in Sect. 3.1. Braverman et al. [5] show that
a symmetric norm � can be approximated using space roughly mmc(�)2, where
mmc is the maximum modulus of concentration of the norm �, whose formal
definition we will defer to Sect. 3.1. Informally, mmc(�) is roughly the ratio of
the maximum value � achieves on a unit ball compared to the meidan value of �
on the unit ball.

Sliding Window Model. Unfortunately, the streaming model does not priori-
tize recent data that is considered more accurate and important than data that
arrived prior to a certain time. Thus for a number of time-sensitive applica-
tions [4,29,32,35], the streaming model has inferior performance compared to
the sliding window model, in which the underlying dataset consists of only the
W most recent updates in the stream. The fixed parameter W > 0 represents
the window size for the active data and the goal is to process information about
the dataset using space sublinear in W . Note that the sliding window model
is a generalization of the streaming model, e.g., when the stream length m is
at most W . The sliding window model is especially relevant in time-dependent
settings such as network monitoring [18–20], event detection in social media [31],
data summarization [17,22], and has been also studied in a number of additional
settings [6–8,10–13,15,21,26,37].

Problem Statement. Formally, the model is as follows. Given a symmetric norm
� : Rn → R, we receive updates u1, . . . , um to the coordinates of an underlying
frequency vector f . Each update with i ∈ [m] satisfies ui ∈ [n] so that the i-th
update effectively increments the ui-th coordinate of f . However, in the sliding
window model, only the last W updates define f so that for each j ∈ [n], we
have fj = |{i : ui = j, i ≥ m − W + 1}|. The goal is to approximate �(f) at the
end of the stream, but m is not given in advance so we cannot simply maintain
a sketch of the last W elements because we do not know the value of m−W +1
a priori.

The main challenge of the sliding window model is that updates to f expire
implicitly. Thus we cannot apply linear sketching techniques, which forms the
backbone of many streaming algorithms. For example, we do not know that the
update um−W does not affect the value of f until the very last update. Thus
if we maintain a sketch of the updates that includes um−W , we must “undo”
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the inclusion of um−W at time m; however at that time, it may be too late to
remember the value of um−W .

1.1 Our Results

In this paper, we give the first generic framework that can approximate any
symmetric norm of an underlying frequency vector in the sliding window model.

Theorem 1. Given an accuracy parameter ε > 0 and a symmetric norm �,
there exists a sliding window algorithm that outputs a (1 + ε)-approximation to
the �-norm of the underlying frequency vector with probability 2

3 and uses space
mmc(�)2 · poly

(
1
ε , log n

)
.

Our framework has specific implications to the well-studied Lp norms and the
top-k norm that is used in matrix optimization, as well as the k-support, box,
and more generally, Q′-norms that are frequently used to regularize sparse
recovery problems in machine learning. We summarize these applications in
Fig. 1 and provide additional detail on these norms in Sect. 3.1. In particular
for sufficiently large p > 2, our Lp norm sliding window algorithm improves
upon the Õ

(
1

εp+2 n1−2/p
)

space algorithm by [13]. Our framework not only uses
near-optimal space complexity for these applications, but is also a universal
sketch that suffices to simultaneously approximate all symmetric norms in a
wide parametrizable class.

Theorem 2. Given an accuracy parameter ε > 0 and a space parameter S,
there exists a sliding window algorithm that uses space S · poly

(
1
ε , log n

)
and

outputs a (1 + ε)-approximation to any symmetric norm � with mmc(�) ≤
√

S,
with probability 2

3 .

Fig. 1. Summary of our sliding window algorithms



Symmetric Norm Estimation and Regression on Sliding Windows 531

The general approach to sliding window algorithms is to use the smooth
histogram framework by Braverman and Ostrovsky [13]. The smooth histogram
framework requires the desired objective to be smooth, where given adjacent
substreams A, B, and C, a smooth function states that (1 − η)f(A ∪ B) ≤ f(B)
implies (1 − ε)f(A ∪ B ∪ C) ≤ f(B ∪ C) for some constants 0 < η ≤ ε < 1.
Intuitively, once a suffix of a data stream becomes a (1 ± η)-approximation
for a smooth function, then it is always a (1 ± ε)-approximation, regardless
of the subsequent updates that arrive in the stream. Since the resulting space
complexity depends on η, this approach requires analyzing the smoothness of
each symmetric norm and it is not clear how these parameters relate to mmc(�)
or whether there is a general parametrization for each norm.

Instead, we observe that [5] effectively reduces the problem to computing a
(1 + ν)-approximation to the frequency of all η-heavy hitters for a number of
various substreams.

Definition 2 (ν-approximate η-heavy hitters). Given any accuracy param-
eter ν, a threshold parameter η, and a frequency vector f , an algorithm A is said
to solve the ν-approximate η-heavy hitters problem if it outputs a set H and a
set of approximations f̂i for all i ∈ H such that:

(1) If fi ≥ η ‖f‖2 for any i ∈ [n], then i ∈ H. That is, H contains all η-heavy
hitters of f .

(2) There exists an absolute constant C > 0 so that if fi ≤ Cη
2 ‖f‖2 for any

i ∈ [n], then i /∈ H. That is, H does not contain any item that is not an
Cη
2 -heavy hitter of f .

(3) If i ∈ H, then A reports a value f̂i such that (1−ν)fi ≤ f̂i ≤ (1+ν)fi. That
is, A outputs a (1 ± ν)-approximation to the frequency fi, for all i ∈ H.

Thus to approximate a symmetric norm on the active elements, it suffices
to find ν-approximate η-heavy hitters for a number of substreams. Whereas the
sliding window heavy-hitter algorithms [9,10] optimize for space complexity and
only output constant factor approximations to the frequencies of the reported
elements, we give a simple modification to their ideas to output ν-approximate
η-heavy hitters.

Theorem 3. Let f be a frequency vector on [n] induced by the active window
of an insertion-only data stream. For any accuracy parameter ν ∈

(
0, 1

4

)
and

threshold η ∈ (0, 1), there exists a one-pass streaming algorithm that outputs a
list that includes all η-heavy hitters and no element that is not a η

8 -heavy hitter.
Moreover, the algorithm reports a (1+ν)-approximation to the frequency fi of all
reported items i. The algorithm uses O

(
1

ν3η2 log3 n
)
bits of space and succeeds

with high probability.

In summary, our main conceptual contribution is the existence of a (1 + ε)-
approximation algorithm for general symmetric norms in the sliding window
model. Our technical contributions include an overall framework that incorpo-
rates any symmetric norm in a plug-and-play manner as well as a heavy-hitter
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subroutine that may be of independent interest. Finally, we perform a num-
ber of empirical evaluations comparing our algorithms to uniform sampling on
large-scale real-world datasets.

Subsequent Related Work. Subsequent to our work, [27] has given a framework
for subadditive functions that extends beyond the smooth histogram approach of
[13]. In particular, their framework gives a (2 + ε)-approximation for symmetric
norms in the sliding window model. By comparison, our algorithm achieves a
(1+ε)-approximation for symmetric norms on sliding windows. Their techniques
are based on black-boxing the streaming algorithm of [5] that approximates the
symmetric norm and initializing various instances of the algorithm as the stream
progresses. We open up the black box by instead introducing a new heavy-hitter
algorithm in the sliding window model and using properties of heavy-hitters
and level sets to enable a finer approximation to the symmetric norm, e.g.,
[14,25,36,38].

Symmetric Norm Regression. As a further application of our work, we consider
the fundamental overconstrained linear regression problem in the case that loss
function that is a symmetric norm, which includes many standard loss functions
such as Lp norms, top-k norms, and Q′-norms. Specifically, given a data matrix
A ∈ R

n×d and a response vector b ∈ R
n with n 	 d, we aim to minimize

the optimization problem minx∈Rd L(Ax − b), where L : R
n → R is a loss

function. When L is a symmetric norm, then the loss function places emphasis
on the magnitude of the incorrect coordinates rather than their specific indices.
In particular, we consider the general case where L is an Orlicz norm, which
can be interpreted as a scale-invariant version of M -estimators. Embeddings for
(1 + ε)-approximate solutions to the linear regression problem for loss functions
that are Orlicz norms in the central model, where complete access to A is given,
was recently studied by [2,33]. We give the first algorithms that produce (1+ ε)-
approximate solutions to the linear regression problem for loss functions that are
Orlicz norms in both the streaming and sliding window models. Our algorithms
are parametrized by a constant Δ, which represents the aspect ratio of the
dataset under the norm. We defer the following result to the full version of the
paper.

Theorem 4. Given an accuracy ε > 0 and a matrix A ∈ R
W×d whose rows

a1, . . . ,aW arrive sequentially in a stream r1, . . . , rn with condition number at
most κ, there exists both a streaming algorithm and a sliding window algorithm
that outputs a (1 + ε) embedding for an Orlicz norm with high probability. The
algorithms sample d2Δ

ε2 log κpolylogn rows, with high probability.

2 Approximate Heavy-Hitters in the Sliding Window
Model

In this section, we describe our ν-approximate η-heavy hitters algorithm that
appears in Algorithm 1, slightly perturbing constants for the ease of discus-
sion. Our starting point is the L2 norm estimation algorithm FreqEst in [13].
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FreqEst maintains a number of timestamps {ti} throughout the data stream,
along with a separate streaming algorithm for each ti that stores a sketch of
the L2 norm of the elements in the stream after ti. [13] observes that it suffices
for {ti} to maintain the invariant that the sketches of at most two timestamps
produce values that are within 2 of each other, since it can be shown that they
would always output values that are within 2 afterwards. Hence, if the length
of the stream m is polynomially bounded in n, then the number of total times-
tamps is O (log n). Moreover, two of these timestamps will sandwich the starting
point of the sliding window and provide a 2-approximation to the L2 norm of
the active elements and more generally, there exists an algorithm FreqEst that
outputs a 2-approximation to any suffix of the stream.

To transition from L2 norm estimation to η-heavy hitters, [9,10] simulta-
neously run instances of the CountSketch heavy-hitter algorithm starting at
each of the timestamps ti. Any η-heavy hitter of the active elements must be
a η

2 -heavy hitter of the stream starting at some timestamp, since one of these
timestamps ti contains the active elements but has L2 norm at most 2 times
the L2 norm of the active elements. Hence, all η-heavy hitters will be reported
by the corresponding CountSketch starting at ti. However, it can also report
elements that do not appear in the window at all, e.g., the elements after ti but
before m−W +1. Thus, [9,10] also maintains a constant factor approximation to
the frequency of each item reported by CountSketch as a final check, through
comparison with the estimated L2 norm from FreqEst. These parameters are
insufficient to obtain ν-approximate η-heavy hitters, since 1) a constant factor
approximation to each frequency cannot give a (1 + ν)-approximation and 2) if
CountSketch only reports elements once they are η-heavy, then it is possi-
ble that a constant fraction of the frequency is missed, e.g., if the frequency is
2η · ‖f‖2. To address these issues, we apply two simple fixes in Fig. 2.

(1) Find a superset of the possible heavy-hitters of the active window by
taking heavy-hitters of a superset of the active window, but with a lower
threshold, i.e. O (νη) rather than η.

(2) For each possible heavy-hitter, maintain a (1+O (ν))-approximation to
its frequency.

(3) Report the items with sufficiently high estimated frequency.

Fig. 2. Crude outline of ν-approximate η-heavy hitter sliding window algorithm.

First, we maintain a (1+O (ν))-approximation to the frequency of each item
reported by CountSketch. However, we note that we only track the frequency
of an item once it is reported by CountSketch and thus the second issue still
prevents our algorithm from reporting a (1 + ν)-approximation for sufficiently
small ν because a constant fraction of the frequency can still be missed before
being reported by CountSketch. Thus the second idea is to report items once
they are νη

32 -heavy hitters, so that only a O (ν) fraction of the frequency can
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be missed before each heavy-hitter is tracked. We give a crude outline of our
approach in Fig. 2 and the algorithm in full in Algorithm 1.

Algorithm 1 . Algorithm for η-heavy hitters in sliding window model, with
(1 + ν)-approximation to frequency of reported items.
Input: A stream of elements u1, . . . , um ∈ [n], a window parameter W > 0,

threshold η ∈ (0, 1), accuracy parameter ν ∈
(
0, 1

4

)

Output: A list that contains all η-heavy hitters and no element that is not a
η
2 -heavy hitters, along with a (1 + ν) to the frequency of all items.

1: Run an instance of FreqEst on the stream.
2: T ← ∅
3: for each update ut ∈ [n] with t ∈ [m] do
4: T ← T ∪ {t}
5: Initialize CountSketcht with threshold νη

32 . �Identify a superset of the
heavy-hitters

6: Xa ← estimated L2 norm of the frequency vector from time a ∈ T to t
by FreqEst.

7: while exist b < c ∈ T with c < t − W + 1 or a < b < c ∈ T with
Xa ≤ 17

16Xc do
8: Delete b from T and CountSketchb.
9: Ha ← heavy-hitters reported by CountSketcha from time a ∈ T to t.

10: F ← estimated L2 norm of the frequency vector from time min(1, t −
W + 1) to t by FreqEst.

11: for all a ∈ T and i ∈ Ha do
12: Use Counter for i, starting at time a. �

(
1 + ν

4

)
-accuracy

13: f̂i ← any underestimate to the frequency of i in the last W updates
by Counter.

14: if f̂i ≥ η
2 · F then

15: Report i, with estimated frequency f̂i

We first show that Algorithm 1 does not output any items with sufficiently
low frequency.

Lemma 1 (Low frequency items are not reported). Let f be the frequency
vector induced by the active window. For each i ∈ [n], if fi ≤ η

8 ‖f‖2, then
Algorithm 1 does not report i.

Next we show that not only are the heavy-hitters reported, but the estimated
frequency for each reported item is also a (1 + ν) approximation to the true
frequency.

Lemma 2 (Heavy-hitters are reported accurately). Let f be the fre-
quency vector induced by the active window. For each i ∈ [n], if fi ≥ η · ‖f‖2,
then Algorithm 1 reports i. Moreover, f̂i ≤ fi ≤ (1+ν)f̂i for any item i reported
by Algorithm 1.
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Theorem 3 then follows from Lemma 1 and Lemma 2 and an analysis of the
space complexity.

3 Symmetric Norms

In this section, we formalize our symmetric norm sliding window algorithm and
give a number of applications. We first require the following preliminary defini-
tions that quantify specific properties of symmetric norms.

Definition 3 (Modulus of concentration). Let X ∈ R
n be a random vari-

able uniformly distributed on the L2-unit sphere Sn−1. The median of a sym-
metric norm � is the unique value M� such that Pr [�(X) ≥ M�] ≥ 1

2 and
Pr [�(X) ≤ M�] ≥ 1

2 . Then if b� denotes the maximum value of �(x) over
x ∈ Sn−1, then the ratio mc(�) := b�

M�
is called the modulus of concentration of

the norm �.

The modulus of concentration characterizes the average behavior of the norm
� on R

n. However, even if � is well-behaved on average, more difficult norms
can be embedded and hidden in a lower-dimensional subspace. For example, [5]
observes that mc(�) = O (1) for the L1 norm �, but when x has fewer than

√
n

nonzero coordinates, the norm �(x) = max(L∞(x), L1(x)/
√

n) on the unit ball
becomes identically L∞(x), which requires Ω(

√
n) space [1]. Thus, we instead

consider the modulus of concentration over all lower dimensions.

Definition 4 (Maximum modulus of concentration). For every k ≤ n,
the norm � : R

n → R induces a norm on R
k by setting �(k)((x1, . . . , xk)) =

�((x1, . . . , xk, 0, . . . , 0)). The maximum modulus of concentration of the norm �

is defined as mmc(�) := max
k≤n

mc(�(k)) = max
k≤n

b
�(k)

M
�(k)

.

We now reduce the problem of approximating a symmetric norm � to the ν-
approximate η-heavy hitters problem.

Lemma 3 (Symmetric norm approximation through heavy-hitters).

[5] Let � be any symmetric norm, ε > 0 and ν := O
(

ε2

log n

)
be fixed accuracy

parameters, and η := O
(

ε5/2

mmc(�) log5/2 n

)
be a fixed threshold. Let R = Θ

(
log10 n

ε5

)

and for each i ∈ [log n] and r ∈ [R], let j ∈ [n] be sampled into Si,r with
probability 1

2i . Let f be a frequency vector (possibly implicitly) defined on [n]
and for each i ∈ [log n], let gi,r be the frequency vector induced by setting all
coordinates j ∈ [n] of f with j /∈ Si.

Suppose there exists an algorithm that outputs ν-approximate η-heavy hitters
Hi,r for each gi,r. There exists a recovery function Estimate that recovers a
(1 + ε)-approximation to �(f) using {Hi,r}. The running time of Estimate is
polynomial in 1

ε and n and the working space of Estimate is the space used to
store {Hi}.
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Informally, Lemma 3 states that to obtain a (1 + ε)-approximation to any
symmetric norm � of an underlying frequency vector, it suffices to use a ν-
approximate η heavy-hitter algorithm. Here, η and ν are parameters dependent
on the norm �. We give additional intuition into Lemma 3 and its proof by [5]
in the full version of the paper.

3.1 Applications

In this section, we demonstrate the application of Theorem 1 and Theorem 2 to
a number of symmetric norms. We summarize our results in Fig. 1.

Q’-Norms. We first that a (1+ ε)-approximation of any Q′-norm, i.e., quadratic
norm, in the sliding window model only requires polylogarithmic space, using
the maximum modulus of concentration characterization of Q-norms by [5].

Definition 5 (Q-norm and Q′-norm). A norm � : Rn → R is a Q-norm if
there exists a symmetric norm L : Rn → R such that for all x ∈ R

n, we have
�(x) = L(x2)1/2, where x2 denotes the coordinate-wise square power of x. Then
a norm �′ : Rn → R is a Q′-norm if its dual norm is a Q-norm.

Q′-norms includes the Lp norms for 1 ≤ p ≤ 2. [5] also notes that multiple
Q′-norms have been proposed to regularize sparse recovery problems in machine
learning. For example, [3] shows that the k-support norm, whose unit ball is the
convex hull of the set {x ∈ R

n : ‖x‖0 ≤ k and �2(x) ≤ 1}, is a Q′-norm that has
a tighter relaxation than elastic nets and can thus be more effective for sparse
prediction. The box norm [30], defined for Θ = {θ ∈ [a, b]n : �1(x) ≤ c}, given
parameters 0 < a < b ≤ c, as �Θ(x) = minθ∈Θ

(∑n
i=1 x2

i /θi

)1/2, is a Q′-norm
that is also a generalization of the k-support norm. The box norm has been used
to further optimize algorithms for the sparse prediction problem specifically in
the context of multitask clustering [30].

Corollary 1. Given ε > 0, there exists a sliding window algorithm that uses
poly

(
1
ε , log n

)
bits of space and outputs a (1 + ε)-approximation to the Q′-norm.

Lp norms. Since Q′-norms include Lp norms for p ∈ [1, 2], we now consider the
approximation of Lp norms for p > 2.

Corollary 2. Given ε > 0 and p > 2, there exists a sliding window algorithm
that uses poly

(
1
ε , log n

)
·n1−2/p bits of space and outputs a (1+ε)-approximation

to the Lp-norm.

In particular, since the exponents of ε and log n are fixed, then for sufficiently
large p, Corollary 2 improves on the results of [13], who give an algorithm using
space 1

εp+2 polylogn · n1−2/p.
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Top-k Norms. We now show that a (1 + ε)-approximation of any top-k norm in
the sliding window model only requires sublinear space, for sufficiently large k.

Definition 6 (Top-k norm). The top-k norm for a vector x ∈ R
n is the sum

of the largest k coordinates of |x|.

The top-k norm is a special case of the Ky Fan k-norm [39] when the vector
x represents the entries in a diagonal matrix. Thus the top-k norm is often
used to understand the Ky Fan k-norm, which is used to regularize optimization
problems in numerical linear algebra.

Corollary 3. Given ε > 0, there exists a sliding window algorithm that uses
n
k · poly

(
1
ε , log n

)
bits of space and outputs a (1 + ε)-approximation to the top-k

norm.
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to Partition Graphs into Few Forests
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Abstract. We devise a single-pass O(n)-space deterministic stream-
ing algorithm to partition any n-node undirected simple graph G into
O(α log n) forests where α is the minimum number of forests which G
can be partitioned into. We then apply this result to obtain single-pass
streaming algorithms for other graph problems, including low outdegree
orientation, partitioning graphs into few planar subgraphs, and finding
small dominating sets.

Keywords: Greedy · Arboricity · Orientation · Thickness ·
Dominating set

1 Introduction

The arboricity a(G) of an undirected simple graph G = (V,E) is defined to be
the minimum number of forests into which the edge set E can be partitioned.
On a RAM, the arboricity can be computed exactly in O(n3 log n) time [12], and
(1 + ε)-approximated in O(ε−1m log n) time for any ε > 0 [4], where n = |V |
denotes the number of nodes and m = |E| denotes the number of edges. In the
model of streaming, property testing, and distributed computation, the exact
value of a(G) may be impossible to obtain, and only algorithms that approximate
a(G) are known [7,9,14]. Instead of computing the exact or an approximate
value of a(G), we consider the problem of partitioning E into t forests so that
the approximation ratio t/a(G) is small.

Our model of computation is the semi-streaming model [19,21], which is
a variant of the streaming model frequently used for the computation of graph
problems [2,3,6,13,16,20]. It allows the edges of an n-node input graph to be
read sequentially in p passes using O(npolylog n) space. Some multi-pass stream-
ing algorithms are known to partition graphs into few forests [9,10], but it is
still unknown whether this problem can be approximated well by single-pass
algorithms. We show that there exists a single-pass O(n)-space deterministic
streaming algorithm that can partition a given n-node undirected simple graph
G into O(a(G) · min{log n, a(G) + 2}) forests, formally stated in Theorem 1. We
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show also that the space usage can be further reduced to s for any s = o(n), at
the cost of increasing the approximation factor to O(n/

√
s).

Theorem 1. Let e1, e2, . . . , em be the edges of a given n-node undirected simple
graph G in an arbitrary order. There exists a single-pass deterministic stream-
ing algorithm that runs in O(m log n) time and uses O(n) space to output a
sequence of tuples (e′

1, c1), (e′
2, c2), . . . , (e′

m, cm) so that the following three con-
ditions simultaneously hold.

(a) e′
1, e

′
2, . . . , e

′
m is a permutation of e1, e2, . . . , em.

(b) There exists an integer t = O(a(G) ·min{log n, a(G)+2}) so that 1 ≤ ci ≤ t
for every i ∈ {1, 2, . . . ,m}.

(c) For every i ∈ {1, 2, . . . , t}, {ej : 1 ≤ j ≤ m, cj = i} is a forest of G.

In addition to the algorithmic results, we prove some lower bounds on the
space usage for any streaming algorithm that solves this problem. We get:

Theorem 2. For any p-pass randomized streaming algorithm A that partitions
a given n-node undirected simple graph G into at most t forests with success
probability at least 2/3,

– if p = 1, t = a(G), the space usage of A is at least Ω(n2) bits;
– if p = O(1), t < 2a(G), the space usage of A is at least Ω(n) bits.

Applications. Partitioning the edges of a given graph into few forests has sev-
eral known applications to other graph problems [11,17,18]. In Sect. 4, we will
show how to apply Theorem 1 to devise a single-pass streaming algorithm to
obtain O(log2 n)-approximation for the lowest outdegree orientation, O(log n)-
approximation for partitioning graphs into the minimum number of planar sub-
graphs, and O(a2(G) log2 n)-approximation for the minimum dominating set.
For the minimum dominating set problem, we need to assume that the input
stream are organized in the vertex-arrival order; that is, the input stream is a
concatenation of adjacency lists of the input graph.

Notation. The input graph G = (V,E) is an n-node m-edge undirected simple
graph whose arboricity is a(G). We use α as an abbreviation of a(G) when the
context is clear. By {u, v} we denote an undirected edge incident to nodes u
and v, and by (u, v) we denote a directed edge from node u to node v. We
define [n] := {1, 2, . . . , n} and [a, b] := {a, a + 1, . . . , b}. For any two graphs
G = (V,E) and H = (V, F ) that share the same node set, G ∪ H = (V,E ∪ F )
and G\H = (V,E\F ). A maximal forest F of G is a forest that has the same
number of connected components as G. When we say O(s) space, we mean the
space that can store O(s) edges, i.e. O(s log n) bits.

Organization. In Sect. 2, we devise single-pass streaming algorithms that par-
tition a given graph into few forests. Then, we prove lower bounds on the space
usage of any streaming algorithm that solves this problem in Sect. 3. Finally, in
Sect. 4, we apply our algorithmic results to devise single-pass streaming algo-
rithms for some applications.
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2 Streaming Algorithms

In this section, we devise two single-pass streaming algorithms to partition a
given n-node undirected simple graph into few forests. One algorithm uses space
linear in n, and the other uses space sublinear in n.

2.1 A Linear-Space Algorithm

A key observation for our linear-space algorithm is that, for any maximal forest F
of an undirected graph G, F contains a large fraction of edges in G. The formal
statement is given in Lemma 3. Hence, if one iteratively removes a maximal
forest from G, then the number of iterations can not be very large, compared to
the arboricity α of G.

Lemma 3. For any undirected graph G whose arboricity is α, if F is a maximal
forest of an m′-edge subgraph H of G, i.e. adding any edge in H\F to F makes
the resulting F cyclic, then F has at least �m′/α� edges.

Proof. Since H is a subgraph of G, the m′ edges in H can be partitioned into
α forests. By an average argument, we get that some forest Favg of H contains
at least �m′/α� edges. Observe that Favg cannot have more edges than F . Here
is why. Suppose for the contradiction that Favg has more edges than F , then
it contains fewer connected components than F . By the pigeonhole principle,
there exist two nodes x, y ∈ H so that x, y are contained in different connected
components in F but in the same connected component in Favg. Thus, Favg

contains a path P from x and y. Not every edge on P connects two nodes in the
same connected component in F ; otherwise, x and y are connected in F . Hence,
some edge on P can be added to F while retaining F acyclic, contradicting with
the maximality of F . �	

Our algorithm works as follows. Let G0 = G. For every i ≥ 1, let Fi be some
maximal forest of Gi−1 to be determined later and Gi be the subgraph of Gi−1

obtained from the removal of edges in Fi. Let G be an n-node m-edge undirected
simple graph with arboricity α. By Lemma 3, the number of edges in F1 is at
least m/α, so the number of edges in G1 is at most m(1 − 1/α). Extend this
argument for every i > 1, we have that the number of edges in Gi is at most

m

(
1 − 1

α

)i

≤ me−i/α.

Hence, let t = α�log m�+1, Gt has no edge. In other words, this greedy approach
yields a partition of G into F1, F2, . . . , Ft so that Fi for every i ∈ [t] is a forest.
Since G has arboricity α, we have:

The greedy procedure is an O(log n)-approximation algorithm for partition-
ing an n-node undirected simple graph into forests.
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Algorithm 1: A streaming implementation of the greedy procedure.
1 Ai ← ∅ for every i ≥ 1;
2 foreach incoming edge e do
3 k ← 1;
4 while Ak ∪ {e} contains a cycle do
5 k ← k + 1;
6 end
7 Ak ← Ak ∪ {e};
8 output (e, k);

9 end

The above greedy procedure can be implemented in the semi-streaming
model, as shown in Algorithm 1, if the space usage of A1, A2, . . . , At can be
bounded in O(npolylog n). For each incoming edge e ∈ G0, Algorithm 1 attempts
to add e to the latest A1 (i.e. the A1 at the moment when Algorithm 1 pro-
cesses all the edges preceding e in the arrival order but not yet processes e). If
the union of the latest A1 and {e} does not contain a cycle, then e is added to
the latest A1. Note that if e cannot be added to the latest A1, then it cannot be
added to any super set of the latest A1, in particular the final A1, i.e. the A1

at the moment when Algorithm 1 is completely executed. Hence, the final A1 is
a maximal forest of G0. So we can define F1 to be the final A1 without violating
the requirements. The edges that Algorithm 1 attempts to add to A2 are those in
G0 but not in the final A1, or equivalently G1. By a similar argument, the final
A2 is a maximal forest of G1, so we can define F2 to be the final A2. Repeating
this argument for every Ai (i > 2), we get:

After Algorithm 1 is completely executed, Ai is a maximal forest of Gi−1 for
every i ∈ [t]. Hence, we can define Fi to be the final Ai for every i ∈ [t] without
violating the requirements.

It is impossible to store A1, A2, . . . , At entirely using O(npolylog n) space.
Hence, we output the edges in Ai for i ∈ [t] on the fly without keeping them in
memory (Line 8 in Algorithm 1). To execute Algorithm 1 without accessing the
entire A1, A2, . . . , At, we maintain an O(n log n)-bit data structure that supports
the following two operations. Unlike the data structure that organizes edges for
low-arboricity graphs due to Brodal and Fagerberg [5], our data structure cannot
support membership queries, so its space usage can be sublinear in m.

1. Acyclic(i, e): a query operation that returns True if the union of the latest
Ai and edge e does not contain a cycle, or False otherwise. This operation
implements Line 4 in Algorithm 1.

2. Insert(i, e): an update operation that inserts edge e to the latest Ai. This
operation implements Line 7 in Algorithm 1.
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Let e1, e2, . . . , em be the arrival order of edges in G. For every s ≥ 1, define
As,i to be the Ai at the moment when Algorithm 1 processes all the edges
preceding es but not yet processes es. Let Ms be a maximum-weight spanning
forest of the union Us of As,1, As,2, . . . , As,t whose edge weights ω(e) for every
edge e in Us is set as i if e ∈ As,i. Hence, Ms contains at most n−1 edges. Every
edge uses O(log n) bits to store the indices of its end-nodes and O(log m) bits
to store its weight. In total, the space usage of Ms is O(n log n) bits for every
s ≥ 1. By Lemma 4, one can utilize Ms to implement Acyclic(i, e). By Lemma
5, for every i, s ≥ 1, Insert(i, es) can be performed given access to Ms. Thus,
we get:

The space usage of Algorithm 1 can be bounded by O(n log n) bits.

Lemma 4. For every s ≥ 1, i ∈ [t], let Ms,i = {e′ ∈ Ms : ω(e′) ≥ i},

As,i ∪ {es} contains a cycle iff Ms,i ∪ {es} contains a cycle.

Proof. (⇒) Let the end-nodes of es be x and y. Since As,i∪{es} contains a cycle,
there is a path P in As,i from x to y. We claim that, for every edge {u, v} in P ,
nodes u, v are connected in Ms,i. Suppose that u, v are not connected in Ms,i,
since Ms,i is a maximal forest of

⋃
j≥i As,j , Ms,i contains {u, v}, a contradiction.

Thus, there is a path Q from x to y in Ms,i. Q ∪ {es} gives a cycle in Ms,i.
(⇐) Let the end-nodes of es be x and y. Since Ms,i ∪ {es} contains a cycle,

there is a path P in Ms,i from x to y. We claim that, for every edge {u, v} in
P , nodes u, v are connected in As,i. Suppose that u, v are not connected in As,i,
then {u, v} is added to As,j for some j > i. This contradicts with that As,i is a
maximal forest of

⋃
j≥i As,j . Thus, there is a path Q in As,i from x to y. Q∪{es}

forms a cycle in As,i, as desired. �	
Lemma 5. For every s ≥ 1, i ∈ [t], a maximum-weight spanning forest of Ms ∪
{es} is also a maximum-weight spanning forest of {es}∪⋃

j∈[t] As,j where ω(es)
is set as i.

Proof. This lemma is a special case of Lemma 4.1 in [8]. �	
Simple implementations of Acyclic(i, e) and Insert(i, e) take O(n) time

for each invocation. By Lemma 4, for every s ≥ 1 finding the least index ks so
that As,ks

∪ {es} is acyclic can be reduced to finding the edge �s with the least
weight on the cycle in Ms ∪ {es} and letting ks = ω(�s) + 1. If such a cycle
does not exist, we define ks as 1. By Lemma 5, the operation Insert(ks, es) is
equivalent to replacing �s in Ms with es. These operations can be realized in
O(log n) time per edge by the dynamic tree due to Sleator and Tarjan [23]. We
remark that:
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In total, the running time of Algorithm 1 can be bounded by O(m log n).

Our Analysis of the Approximation Factor is Tight. We prove this state-
ment by constructing an n-node graph Γn for every n ≥ 1 whose arboricity ≤ 2
but the greedy procedure partitions it into Ω(log n) forests. A small example Γ9

is depicted in Fig. 1.
For general n, construct Γn as follows. Let the nodes be v1, v2, . . . , vn. Con-

nect nodes vx and vy with an edge if x − y = 1. Let B0 (resp. R0) be the set of
the edges added by this rule whose x is even (resp. odd). For each integer k ≥ 1,
connect nodes vx and vy with an edge if x−y = 2k and x ≡ y ≡ 1 (mod 2k) and
let Bk (Rk) be the set of the edges added by this rule whose y ≡ 1 (mod 2k+1)
(resp. x ≡ 1 (mod 2k+1)).

The greedy procedure may output B1 ∪ R1, B2 ∪ R2, . . . , Blog n ∪ Rlog n as
the forests because, for every i ≥ 1, Bi ∪Ri is a maximal forest in

⋃
j≥i Bj ∪Rj .

The remaining to show is that
⋃

i≥0 Bi is a forest and
⋃

i≥0 Ri is another, so Γn

has arboricity ≤ 2. Suppose for contradiction that
⋃

i≥0 Bi contains a cycle C.
C ∩ B0 = ∅ because all edges in B0 have an end-node whose degree in

⋃
i≥0 Bi

is 1. By the same argument, we get C ∩ Bi = ∅ for every i ≥ 1, a contradiction.
Similarly,

⋃
i≥0 Ri does not contain a cycle.

v1 v2 v3 v4 v5 v6 v7 v8 v9

Fig. 1. A graph with arboricity 2, in which the set of edges with any one color forms a
forest. The greedy procedure may partition this graph into 4 forests because the edges
in every row is a maximal forest when the edges in the previous rows are removed.

Bounding the Approximation Factor by α + 1. We show that the approx-
imation factor can be bounded by α + 1 if the greedy procedure is slightly
modified, as below. For O(1)-arboricity graphs, the modified algorithm yields an
O(1)-approximation using O(n) space. This complements the hardness result,
Lemma 9, stating that any single-pass r-approximation for r < 2 streaming
algorithm requires Ω(n)-bit space.

We claim that there exists an index Δ that simultaneously satisfies the fol-
lowing two conditions.

1. For every i ≤ Δ, the number of edges in the forest Fi is at least n/α.
2. The total number of edges in Fi for all i > Δ is at most n.
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Here is why. Since Fi is a maximal forest of
⋃

j≥i Fj , the number of edges in
Fi is no less than that in Fj for any j > i. The first condition holds. By Lemma
3, if the total number of edges in Fi for i ∈ [r, t] exceeds n, then Fr contains at
least �n/α� edges. The second condition holds.

If we output F1, F2, . . . , FΔ followed by an optimal partition of
⋃

i>Δ Fi into
forests, then this yields an (α + 1)-approximation. To see why, observe that
Δ ≤ α2 because G contains at most α(n − 1) edges, and that any subgraph of
G can be partitioned into α forests. Consequently, the approximation factor is
(α2 + α)/α = α + 1. This modification can be realized in the streaming model
by buffering the output of the edges in

⋃
i>Δ Fi (Line 8 in Algorithm 1) and

computing an optimal partition for them in memory. It worth noting that this
modification can be made without knowing Δ in advance. One can underestimate
Δ at the beginning of the execution of Algorithm 1 and increase Δ by 1 every
time the O(n)-space buffer gets full. To bound the running time in O(m log n),
we use the (1+ε)-approximation algorithm [4] to partition

⋃
j>Δ Fj into (1+ε)α

forests. Thus, we get:

A modification of Algorithm 1 partitions α-arboricity graphs into (α + 1 + ε)α
forests for any constant ε > 0 in O(m log n) time using O(n) space.

The highlighted statements in this section together give a proof of Theorem 1.

2.2 A Sublinear-Space Algorithm

In this subsection, we will present a streaming algorithm that uses space s =
o(n) to partition an n-node undirected simple graph into few forests. A key
observation for our sublinear-space algorithm is Lemma 6.

Lemma 6. Every n-node m-edge undirected simple graph G contains a forest
of at least �√m� edges.

Proof. Let C1, C2, . . . , Ct be the connected components in G. Let ni ≥ 1 denote
the number of nodes in Ci for every i ∈ [t]. Because Ci consists of ni nodes and
no more than

(
ni

2

)
edges for every i ∈ [t], we have:

∑
i∈[t]

ni = n and
∑
i∈[t]

n2
i − ni

2
≥ m. (1)

Our goal is to prove that G has a forest F of many edges. Since Ci for
each i ∈ [t] can contribute ni − 1 edges to F , it is equivalent to minimize
μ :=

∑
i∈[t] ni − 1 subject to (1).

μ2 ≥
∑
i∈[t]

(ni − 1)2 =

⎛
⎝∑

i∈[t]

n2
i − ni

⎞
⎠ −

⎛
⎝∑

i∈[t]

ni − 1

⎞
⎠ ≥ 2m − μ
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Since μ is a non-negative integer, 2μ2 ≥ μ2 + μ ≥ 2m. As a result μ ≥ √
m. In

every case, the number of edges in F is no less than the minimum possible
√

m.
�	

For every integer s ∈ [n], we present a streaming algorithm to partition a
given graph into forests using O(s) space as follows. Initialize a counter c as 1.
The counter c will not exceed m and m ≤ n(n−1) for any n-node simple graph,
so c occupies O(1) space. Fill the memory space with the first s edges in the
input stream. By Lemma 6, some of the s edges form a forest F of at least �√s�
edges. For each edge e in F , output (e, c). Free the space occupied by the edges
in F . Increase the counter c by 1. Refill the memory space with the subsequent
edges in the input stream. This algorithm partitions the input graph into at
most �m/

√
s� + α forests. Since any partition of G consists of at least �m/n�

forests, we get an O(n/
√

s)-approximation.

3 Space Lower Bounds

In this section, we prove two space lower bounds. One is for any single-pass
streaming algorithm that partitions n-node undirected simple graphs into the
minimum number of forests, and the other is for any p-pass streaming algorithm
that yields a 2-approximation. Both lower bounds are proven by a reduction from
some 2-player communication game to the targeted problem. They together gives
a proof of Theorem 2.

Lemma 7. Any single-pass streaming algorithm that partitions an n-node graph
G into k forests so that k equals the minimum possible (i.e. the arboricity of G)
requires Ω(n2)-bit space.

Proof. Our proof is a reduction from the Index problem, defined below, to
partitioning a graph into the minimum number of forests in the streaming model.
We assume w.l.o.g. that n is a multiple of 8.

– Input: Alice has a private subset A of [U ], and Bob has a private integer k in
[U ] where U is set as

(
n/4
2

)
in this proof.

– Goal: Determine whether k ∈ A.

Ablayev shows in [1] that:

Theorem 8. (Ablayev [1]). For any 1-way, randomized protocol from Alice to
Bob that solves Index with success probability at least 2/3, Alice has to send
Ω(U) bits to Bob.

Here is our reduction. Given A, construct an n/4-node graph GA so that
GA contains edge e if and only if f(e) ∈ A where f is any one-to-one mapping
from the

(
n/4
2

)
distinct edges of GA to [

(
n/4
2

)
]. Given k, construct GB as a 3n/4-

node graph whose arboricity is n/4 + 1, and that adding any other edge to GB

increases the arboricity by 1. Such a GB exists because an 3n/4-node empty
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graph has arboricity 0, a 3n/4-node complete graph has arboricity 3n/8 (due to
the Nash-Williams Theorem [22]), and adding an edge to a graph increases its
arboricity by at most 1. Let x, y be the end-nodes of f−1(k), and GA, GB have
only these two nodes in common. We claim that GA contains the edge f−1(k)
if and only if GA ∪ GB has arboricity ≥ n/4 + 2. By the definition of GB , one
direction (⇒) clearly holds. In what follows, we prove the other direction (⇐).
We partition GA into A1, A2, . . . , An/4+1 so that:

– A1 contains all the edges in GA incident to node y.
– A2, A3, . . . , An/4+1 is any partition of the remaining edges into forests. Such a

partition exists because GA has arboricity at most n/8 by the Nash-Williams
Theorem.

Then, we partition all edges in GB into forests B1, B2, . . . , Bn/4+1. For every
i ∈ [n/4 + 1], Ai, Bi are acyclic. If Ai ∪ Bi contains a cycle, the cycle contains
both x and y. If the cycle contains y, then it has a node of degree ≤ 1 because
edge {x, y} does not exist. Hence, GA ∪ GB has arboricity at most n/4 + 1.

To complete the reduction, we place the edges of GA in the first half of
the input stream and the edges of GB in the second half. Let A be any single-
pass streaming algorithm that uses s-bit space. When A transits between the
two halves while scanning over the input stream, at most s-bit information is
communicated. If A can partition GA ∪GB into the minimum number of forests,
then it determines whether k ∈ A, so by Theorem 8 s = Ω(n2). �	
Lemma 9. Any p-pass streaming algorithm that partitions an n-node graph G
into k forests so that k approximates the minimum possible to within a factor
< 2 (i.e. k is less than twice the arboricity of G) requires Ω(n/p) bits.

Proof. Our proof is a reduction from the SetDisjontness problem to parti-
tioning a graph into few forests in the streaming model. The SetDisjontness
problem is a two-player communication game, defined as follows. We assume
w.l.o.g. that n is a multiple of 3.

– Input: Alice has a private (αU)-size subset A of [U ], and Bob has another
private (αU)-size subset of [U ] where α is some positive constant < 1/2 and
U = n/3 in this proof.

– Goal: Determine whether the intersection A ∩ B is an empty set.

Kalyanasundaram and Schnitger in [15] show that:

Theorem 10. No matter which 2-way, multi-round protocol Alice and Bob use
to solve the disjointness problem, they have to communicate at least Ω(U) bits
to succeed with probability greater than 2/3.

Let H = (X ∪ Y ∪ Z,EA ∪ EB) be a tripartite graph so that X,Y,Z are
disjoint node subsets and each contains n/3 nodes. Let X = {x1, x2, . . . , xn/3},
Y = {y1, y2, . . . , yn/3}, and Z = {z1, z2, . . . , zn/3}. Initially, EA = EB = ∅. For
every i ∈ A, add two edges {xi, yi}, {yi, zi} to EA. For every i ∈ B, add an
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edge {xi, zi} to EB . If A ∩ B = ∅, then H is a union of disjoint paths, so H
has arboricity 1. Otherwise A ∩ B �= ∅, then H contains some triangle, so H has
arboricity 2. Hence, any protocol that approximates the arboricity to within a
factor of smaller than 2 answers the SetDisjontess problem. By Theorem 10,
we are done. �	

4 Applications

In this section, we show how to apply Theorem 1 to devise single-pass streaming
algorithms for some applications of partitioning graphs into few forests.

4.1 Low Outdegree Orientation

In [17], Kowalik devises (1 + ε)-approximation algorithms for any ε > 0 for the
lowest outdegree orientation problem for any given n-node undirected graph G;
that is, assign a direction to each edge in G so as to minimize the maximum out-
degree in the resulting directed graph. By using Algorithm 1 as a building block,
we show that the lowest outdegree orientation problem can be approximated to
within a factor of O(log2 n). Formally, our result is:

Corollary 11. Let e1, e2, . . . , em be the edges of a given n-node m-edge undi-
rected graph G in an arbitrary order. There exists a single-pass determinis-
tic algorithm that runs in O(m log n) time and uses O(n) space to output the
assigned directions to the m edges so that the maximum outdegree of the directed
graph comprised of these directed edges is at most O(log2 n) times the minimum
possible.

Proof. Algorithm 1 is a single-pass O(n)-space deterministic streaming algo-
rithm to partition the edges of G into t forests F1, F2, . . . , Ft so that t is at most
O(log n) times the minimum possible. For every i ∈ [t], if we root Fi and ori-
ent the edges from descendants to ancestors, then for each node x at most one
edge in Fi leaves x in the orientation. By [17], this approach gives an O(log n)-
approximation for the lowest outdegree orientation problem. However, it cannot
be directly implemented in the streaming model. The reason is that edges of Fi

for each i ∈ [t] are outputted on the fly, so Algorithm 1 does not have access to
all edges of Fi for each i ∈ [t]. Instead, Algorithm 1 has access to Ms. To remedy,
we assign the directions to the edges as follows. For every s ≥ 1, for some i ∈ [t],
let es = {u, v} and Cu,i (resp. Cv,i) be the connected components in Ms,i that
contains node u (resp. v). When e is added to Ms to join the connected com-
ponents Cu,i, Cv,i, we assign es a direction from u to v iff Cu,i has fewer nodes
than Cv,i. In this way, every time an edge in Fi is assigned to a direction that
leaves node x, the connected component in Ms,i that contains x doubles its size.
Thus, for any node x, for any i ∈ [t], the orientation in Fi contributes at most
O(log n) out-going edges to x. This gives an O(log2 n)-approximation as desired.

�	
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4.2 Partitioning Graphs into Few Planar Subgraphs

The key observation for partitioning graphs into few forests (i.e. Lemma 3) can
be extended to other kinds of subgraphs, such as planar subgraphs, bipartite
subgraphs, etc. For the subgraphs other than forests, the O(n)-space data struc-
ture Ms, which we use to decide the maximal forest that edge es belongs to, may
not have a replacement. However, by Algorithm 1 we can still get an analogous
result for planar subgraphs:

Corollary 12. Let e1, e2, . . . , em be the edges of a given n-node undirected sim-
ple graph G in an arbitrary order. There exists a single-pass deterministic stream-
ing algorithm that runs in O(m log n) time and uses O(n)-space to output a
sequence of tuples (e′

1, c1), (e′
2, c2), . . . , (e′

m, cm) so that the following three con-
ditions simultaneously hold.

(a) e′
1, e

′
2, . . . , e

′
m is a permutation of e1, e2, . . . , em.

(b) There exists an integer t = O(θ log n), for every i ∈ [m], ci is an integer in
[t], where θ denotes the thickness of G.

(c) For every i ∈ [t], {ej : j ∈ [m], cj = i} is a planar subgraph of G.

Proof. Every forest is a planar graph, so the output of Algorithm 1 is a feasible
solution for partitioning graphs into planar subgraphs. Because every planar
graph has arboricity at most 3 [11], we know α ≤ 3θ. Hence, a partition of a
graph into O(α log n) forests is a partition of the graph into O(θ log n) planar
subgraphs. �	

4.3 Finding Small Dominating Sets

In [18], Lenzen and Wattenhofer devise an O(a2(G))-approximation algorithm
for the minimum dominating set problem. By using Algorithm 1 as a building
block, we show that the minimum dominating set can be approximated to within
a factor of O(a2(G) log2 n). We have:

Corollary 13. Let e1, e2, . . . , em be the edges of a given n-node undirected sim-
ple graph G in the vertex-arrival order. There exists a single-pass determin-
istic streaming algorithm that runs in O(m log n) time and uses O(n)-space to
output a dominating set of size O(a(G)2 log2 n) times the minimum possible.

Proof. As the algorithm in the proof of Corollary 11, one can assign a direc-
tion to each edge so that the maximum outdegree in the orientation is at most
O(a(G) log n). Since the edges arrive in the vertex-arrival order, for each incom-
ing adjacency list, say of node x, if x is not yet dominated, we are able to add
every node y that has a directed edge from x to y in the orientation to the
dominating set. If no such a node exists, add x to the dominating set. By [18],
this yields an O(a2(G) log2 n)-approximation. �	
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vol. 9644, pp. 429–440. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49529-2 32

11. Chartrand, G., Kronk, H.V., Wall, C.E.: The point-arboricity of a graph. Israel J.
Math. 6, 169–175 (1968)

12. Gabow, H.N., Westermann, H.H.: Forests, frames, and games: algorithms for
matroid sums and applications. Algorithmica 7(5 & 6), 465–497 (1992)

13. Guha, S., McGregor, A., Tench, D.: Vertex and hyperedge connectivity in dynamic
graph streams. In: PODS, pp. 241–247 (2015)

14. Harris, D.G., Su, H., Vu, H.T.: On the locality of Nash-Williams forest decompo-
sition and star-forest decomposition. CoRR abs/2009.10761 (2020)

15. Kalyanasundaram, B., Schnitger, G.: The probabilistic communication complexity
of set intersection. SIAM J. Discret. Math. 5(4), 545–557 (1992)

16. Kapralov, M., Lee, Y.T., Musco, C., Musco, C., Sidford, A.: Single pass spectral
sparsification in dynamic streams. SIAM J. Comput. 46(1), 456–477 (2017)

17. Kowalik, �L: Approximation scheme for lowest outdegree orientation and graph
density measures. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 557–566.
Springer, Heidelberg (2006). https://doi.org/10.1007/11940128 56

18. Lenzen, C., Wattenhofer, R.: Minimum dominating set approximation in graphs of
bounded arboricity. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS,
vol. 6343, pp. 510–524. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15763-9 48

19. McGregor, A.: Graph stream algorithms: a survey. SIGMOD Rec. 43(1), 9–20
(2014)

https://doi.org/10.1007/978-3-030-38919-2_5
https://doi.org/10.1007/3-540-48447-7_34
https://doi.org/10.1007/978-3-642-54423-1_22
https://doi.org/10.1007/978-3-662-49529-2_32
https://doi.org/10.1007/978-3-662-49529-2_32
https://doi.org/10.1007/11940128_56
https://doi.org/10.1007/978-3-642-15763-9_48
https://doi.org/10.1007/978-3-642-15763-9_48


552 C.-H. Chiang and M.-T. Tsai

20. McGregor, A., Tench, D., Vorotnikova, S., Vu, H.T.: Densest subgraph in dynamic
graph streams. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015.
LNCS, vol. 9235, pp. 472–482. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48054-0 39

21. Muthukrishnan, S.: Data streams: algorithms and applications. Found. Trends
Theor. Comput. Sci. 1(2), 117–236 (2005)

22. Nash-Williams, C.S.J.A.: Decomposition of finite graphs into forests. J. Lond.
Math. Soc. 39(1), 12 (1964)

23. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst.
Sci. 26(3), 362–391 (1983)

https://doi.org/10.1007/978-3-662-48054-0_39
https://doi.org/10.1007/978-3-662-48054-0_39


The Secretary Problem
with Reservation Costs

Elisabet Burjons , Matthias Gehnen(B) , Henri Lotze , Daniel Mock ,
and Peter Rossmanith

RWTH Aachen University, Aachen, Germany
{burjons,gehnen,lotze,mock,rossmani}@cs.rwth-aachen.de

Abstract. We introduce two variants of the secretary problem, where a
reservation fee can be paid to keep candidates on a short-list instead of
rejecting them on the spot. In the first model, the fee has to be paid only
once and keeps the reservation forever. In the second model, the fee has
to be paid in every round as long as the reservation is kept. We analyze
the competitive ratio for both variants and present optimal, relatively
simple strategies.

1 Introduction

The secretary problem has been extensively researched in the areas of online
algorithms and stopping theory. One way to state the problem is the following:
You are presented with n numbers in a random order and have to choose one.
What is the best strategy to choose the highest number among them? It is
important to know that you have to decide whether to choose a number as soon
as it arrives without seeing the following numbers and that you cannot take
back your decision. This classic problem was first solved by Lindley [23] and
Dynkin [20]. The solution basically is as follows: Look at the first n/e numbers
and after that choose the first number that is the biggest one of all numbers seen
so far. Then the probability of getting the highest number is asymptotically 1/e,
which is the best possible. Online algorithms are usually analyzed in terms of the
competitive ratio, which is the worst case factor between the gain of the optimal
solution and the gain of the algorithm over all instances [24], see also [15]. In the
secretary problem the gain is either 1 or 0, depending on whether the algorithm
has chosen the highest number or not.

1.1 Related Work

Today the secretary problem is very well-known and many variants have been
considered. For example, instead of hiring just one person we might be looking for
k persons. Ideally, the highest numbers will be chosen, but the gain is defined
as the number of persons chosen that are among the best k ones. Here—not
surprisingly—the competitive ratio will get better and better as k grows. This
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so-called k-secretary problem was introduced by Kleinberg [21] and has seen a
lot of attention, too [1–3,16,18].

While the competitive ratio is the predominant way to analyze online com-
putations, there are also alternative ways to judge such an algorithm. Regret
minimization [17,19] was arguably motivated by the fact that the competitive
ratio had been criticized for being too pessimistic: Here we minimize the differ-
ence between the optimal reward and the actual reward. Another alternative is
advice complexity of online algorithms, where we analyze how much information
of the future is needed to compensate for the online setting or to achieve a given
competitive ratio [4,5,7–14,22]. Another idea to address the problem that an
online setting is usually too unrealistic is to change the model. For example,
in real life we can often guard ourselves against the unknowns of the future by,
e.g., hedging, insurances, or reservations. If we reserve an item for a fee we might
not need it after all and forfeit the reservation fee, but it cannot happen any-
more that the item is not available because some competitor took it before us.
This model has been used, for example, for the online knapsack problem, where
items of different sizes have to packed into an knapsack of limited capacity in
an online fashion. While the classical knapsack problem is not competitive as an
online problem, introducing the possibility of reserving items for a fee makes a
big difference even if the reservation fee is relatively high [6].

1.2 Our Results

In this paper we are applying the reservation model to the secretary problem.
Instead of being forced to hire a person on the spot we have the alternative
to ask for a call-back, but we have to pay a fee for this privilege that will be
deducted from the gain.

We distinguish two natural variants: In the reservation per item-model we
assume that a fee reserves an item forever. In the reservation per step-model a
fee has to be paid to reserve an item for each step in which we like to keep the
reservation alive. We analyze both models precisely and prove matching upper
and lower bounds for the best possible competitive ratio. Let us say that the
reservation cost is c = α/n per item. It turns out that in the reservation per
item-model, the competitive ratio is basically the same as without reservation
if c is asymptotically bigger than 1/e. Otherwise the competitive ratio beats
1/e and gets smaller and smaller with diminishing reservation costs. Theorems 1
and 2 contain the detailed results and Fig. 1 shows a plot. An optimal algorithm
is relatively simple and works in three phases: In the first phase it just watches
the first �α� items.

In the second phase, which takes a certain number of steps, it reserves every
item that is the biggest seen so far. Finally, in the third phase, the algorithm
looks at the remaining items. As soon as one arrives that is at least as big as
the biggest seen so far it chooses that item immediately and stops. Otherwise,
at the end of the sequence, the largest reserved item is chosen.

The reservation per step-model is different. Here a reservation fee has to be
paid for every step in which an item is reserved. A reservation can be dropped
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Fig. 1. Left: competitive ratio for n = 1000 in the reservation per item model. The
x-axis contains the cost per reservation and the y-axis the resulting best possible com-
petitive ratio. Right: the same for the reservation per step model.

anytime and no costs occur from this point onward. Let us call the reservation
cost per step c. It turns out that for c > 1/n again the classical algorithm
without reservations is optimal. Otherwise, an optimal strategy is to ignore a
certain number of items (depending on c) and then reserving all items that are
the best up to this point in time until the last item arrives. Of course, only one
reservation is kept at any time. The last item is chosen, if it is the best, and
otherwise the reserved item, if it exists. Theorems 4 and 5 contain the details
and Fig. 1 an example.

1.3 Preliminaries

An instance I of size n for the secretary problem consists of n items (x1, . . . , xn)
defined by real numbers, such that item xi is larger than item xj if xi > xj .
An online algorithm solving the secretary problem wants to choose the maximal
item of an instance. The gain of an algorithm A on instance I is gainA(I) = 1 if
the item selected by A is maximal and 0 otherwise.

A general instance I for the secretary problem consists of n items I =
{x1, . . . , xn}, which are then presented to the algorithm in a random order.
We can think of I as the set of all instances containing the same n items. The
gain of an algorithm A on instance I is the expected gain over all instances in
I that are one possible ordering of the items in I. Formally,

gainA(I) =
1
n!

∑

π∈Sn

gainA(xπ(1), . . . , xπ(n)),

where Sn is the set of all permutations of the set {1, . . . , n}.
In the reservation per item model, we consider the reservation cost c = α/n

to be paid per reserved item, if an algorithm A reserves r items on an instance I,
the reservation costs of A on I are rA(I) = r · α/n and the gain is defined as
gainA(I) = 1−rA(I) if the item selected by A is maximal and −rA(I) otherwise.
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Observe that this modified definition will affect the expected gain on general
instances as well.

In the reservation per step model the reservation cost c = α/n has to be paid
per step, which means that if an algorithm A reserves an item for t time steps
in total for a fixed instance I, the reservation costs of A on I are rA(I) = t ·α/n,
and we adapt the definition of gain analogously to the reservation per item
model.

When we talk about items in fixed instances, the following notions are impor-
tant. On an instance I = (x1, . . . , xn), we say that the item xi is the locally best
item if xi ≥ xj for every j < i, that is, if xi is the largest item at the moment
when it is presented. Analogously, we say that an item xi is the globally best
item (gbi) if xi ≥ xj for every 1 ≤ j ≤ n. Finally, we say that an item xi is
the locally best item after xk if xi ≥ xj for every j ≤ i and i > k. If an item is
the first locally best item after xk, it additionally means that there is an item xl

with l ≤ k, such that xl ≥ xj for every k < j < i.

2 Reservation per Item

First, we make two key observations that are well known. They can be found for
example in the first introduction of the marriage problem [23].

After that we will define an algorithm A and then prove that A is optimal
for the reservation per item model.

Lemma 1. Let I = {x1, . . . , xn} be an instance for the online secretary problem
with n items ordered at random. An algorithm that accepts the first occurring
locally best item after the k-th request will accept the globally best item with a
probability of

F (k) :=
k

n

n−1∑

i=k

1
i

=
k

n
ln

(n

k

)
+ O(1/n).

Lemma 2. The probability F (k) = k
n

∑n−1
i=k

1
i is maximal if k is the biggest

integer for which
∑n−1

i=k
1
i > 1. Let m be the integer for which F (m) is maximized,

then F (m) ≥ m
n , F (m) = m

n + O(1/n), and m = n/e + O(1).

Now we are able to present four necessary conditions that an optimal algo-
rithm must fulfill. Note that every item must be accepted or reserved or neither
of them. In the latter case we will also write that an item is ignored. In any case,
the algorithm remembers the value of the item.

Lemma 3 (Condition 1). An optimal algorithm must ignore an item if it is
neither a locally best item nor the last item.

Proof. Assume that an algorithm A reserves items that are not locally best items
on some instance I. We can define an algorithm A′ with a better expected gain
as follows. A′ simulates A but does not reserve or accept any item if a better
item has been presented, unless the item presented is the last one. Let us look at
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the gain function. Because A′ follows the same strategy as A, it accepts exactly
the same item, or the last item if the item accepted by A was not optimal, thus
if we ignore the reservation costs r(A) and r(A′),

gainA(I) + r(A) = gainA′(I) + r(A′) ,

but by definition of A′, r(A′) < r(A), as it reserves fewer items. Thus, gainA(I) <
gainA′(I) on any instance I, and A is not optimal. ��
Lemma 4 (Condition 2). An optimal algorithm must ignore a locally best
item xk, if k < α and k < m, where m is the integer for which F (m) is maxi-
mized.

Proof. Assume that an algorithm A reserves an item xk with k < α and k < m.
The probability that k is the globally best one is k/n, which is less than the
reservation cost α/n. Therefore, the expected gain of reserving this particular
item is k/n − α/n < 0.

We define algorithm A′ that just differs from A by ignoring any reservations
for element xk, when we look at the overall gain, if we take into account the
linearity of expectations,

gainA′(I) = gainA(I) − k

n
+

α

n
> gainA(I) .

Thus, algorithm A is not optimal.
If A takes item xk instead, the expected gain is still k/n which is lower than

an algorithm that took the locally best item after m with expected gain F (m) >
m/n by Lemma 2. Thus the optimal online algorithm for the secretary problem
without reservation has a better gain, which means that A is not optimal. ��

Let r denote the biggest integer such that F (r) > c. Note that r is only well
defined if there is such an r, which is not always the case. Asymptotically, if c is
smaller than n/e then r exists, and otherwise it does not.

Lemma 5 (Condition 3). An optimal algorithm must accept a locally best
item xk, if k > r and k > m, or, if r is not well defined, if k > m.

Proof. This can be proven by induction on the placement of item xk with the
second to last item being the base case. Assume that xn−1 is a locally best item,
and r < n−1, which means that c < F (n−1) = 1/n. The probability that xn−1

is also the gbi is n − 1/n.
An algorithm A accepting xn−1 given that it is the locally best item on

instance I, would have an expected gain

gainA(I) =
n − 1

n
− rA(I).

An algorithm A′ behaving identically as A but reserving xn−1 would have an
expected gain

gainA′(I) = 1 − rA(I) − c.
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Observe that n−1
n > 1 − c when c > 1

n , thus A is a better algorithm.
An algorithm A′′ behaving identically as A but rejecting xn−1 would have

an expected gain

gainA′′(I) =
1
n

− rA(I).

Here it is clear that n−1
n > 1

n , thus A is a better algorithm.
Assume that an item xk with k < n − 1 is a locally best item and either

k > r or, r is not defined but k > m. As an induction hypothesis assume that
an optimal algorithm must accept any locally best item xk′ with k′ > k.

The probability that item xk is the gbi given that it is a locally best item is
k/n. If an algorithm A accepts xk, its gain is

gainA(I) =
k

n
− rA(I).

An algorithm A′ behaving identically as A but reserving xk would need to take
the locally best item after xk to be optimal, but the probability that the best
item is the locally best item arriving after k is F (k). Hence, A′ would have an
expected gain

gainA′(I) =
k

n
+ F (k) − rA(I) − c.

Observe that F (k) < c because k < r and k < m and thus A is a better
algorithm.

An algorithm A′′ behaving identically as A but rejecting xk would still have
to accept the next locally best item by induction hypothesis, thus it would have
an expected gain

gainA′′(I) = F (k) − rA(I).

Here it is clear that F (k) < k
n , as k > m, thus A is, yet again, a better algorithm.

So the best an algorithm can do is to accept the current item. ��
Lemma 6 (Condition 4). If r exists, an optimal algorithm must reserve an
item xk if it is a locally best item and k > α or if k > m and k ≤ r.

Proof. First, we take a look on the case that α < k < m.
Let xk be a locally best item with α < k < m. Let us consider an algorithm A

that ignores xk and has a gain of gainA(I). An algorithm A′ that proceeds
identically but reserves xk will have a gain of gainA′(I) = gainA(I) + k

n − c, as
the probability of the globally best item being xk—given that it is the locally
best item—is k/n. Thus A is not optimal

Consider now an algorithm A that accepts xk. Its gain is gainA(I) = k/n −
rA(I). We know that the optimal online algorithm for the secretary problem
achieves an expected gain of F (m) > m/n by Lemma 2. Thus, A is not optimal.

Now consider the case m ≤ k ≤ r and that xk is a locally best item.
An algorithm A that accepts xk has a gain of gainA(I) = k/n − rA(I). An

algorithm A′ reserving the item and accepting the next locally best item will have
a gain of gainA′(I) = k/n + F (k) − c − rA(I). But by construction F (k) ≥ c,
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thus A′ performs better than A. Lastly, an algorithm A′′ that proceeds exactly
as A′ but ignores xk has a gain of gainA′′(I) = F (k) − c − rA(I). Trivially A′ is
a better algorithm. ��
Theorem 1 (Optimal strategy). If c > F (m), then the classic strategy with-
out reservation is optimal.

If c ≤ F (m), then the following strategy is optimal:

– If an item xk is either at a position k < α or not a locally best item, it will
be ignored.

– If an item xk is a locally best item and α ≤ k ≤ r, it will be reserved.
– If an item is at a position k > r and a locally best item, it will be accepted.

If no item was accepted, the strategy either accepts the best reserved item (if
there is one) or otherwise the last item.

Proof. Observe that if c > F (m), r is not defined. Thus Conditions 1 to 3
describe exactly the classic online strategy. If c ≤ F (m) then r is defined, and
the second algorithm follows Conditions 1 to 4. Moreover, the conditions describe
strict boundaries for a strategy. If an algorithm proceeds differently it will break
one of the conditions. ��
Theorem 2 (Expected gain). Given a size n and reservation costs c = α/n,
an optimal algorithm has the following properties:

– If c > F (m), then the expected gain is F (m).

– If c ≤ F (m), then the expected gain is
r − �α	 + 1

n
−

r∑

i=�α�

c

i
+ F (r).

Proof. The expected gain for the optimal strategy is the following:
If c > F (m), we are in the classical online case, the algorithm will pick the

locally best item after item m, thus the expected gain is F (m).
If c ≤ F (m), then the strategy will reserve items. The expected gain can be

divided in three parts: If the globally best item is xk then, if k < α the gain is 0,
if α ≤ k ≤ r the gain is 1, and this happens with probability (r−�α	+1)/n and
with an expected reservation cost of c · ∑r−1

i=�α�
1
i . Finally, if k > r the expected

gain is F (r). Thus, the total expected gain is

gainA(I) = 0 +
r − �α	 + 1

n
− c ·

r−1∑

i=�α�

1
i

+ F (r). (1)

��
Theorem 2 expresses the expected gain as an exact, but complicated and not

closed formula. If the reservation costs are small enough, the following theorem
provides a much nicer estimate.
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Theorem 3. The expected gain for a given c ≤ F (m) is

e−c + c ln(c) + O(1/n) + O(c2).

In particular, for c = 1/n the gain is 1 − ln(n)/n + O(1/n).

Proof. The only complicated term in the sum presented in Theorem 2 is r. It is
defined via

c =
r

n
(Hn − Hr) =

r

n
(ln(n) − ln(r) + O(1/r)) =

r

n
ln

(n

r

)
+ O(1/n).

With the Lambert W function we can solve this equation for r/n:

r

n
= eW (−c+O(1/n)) = e−c+O(c2)+O(1/n) = e−c(1 + O(c2) + O(1/n))

We get rid of the W -function by a Taylor approximation with W ′(0) = 1.
Our goal is to approximate the gain found in (1) with an additive error term
of O(1/n). In addition to that we have �α	/n = c + O(1/n), the sum is
ln(r) − ln(a) and ln(r) = −c + ln(n) + O(1/n), and finally F (r) = c + O(1/n).
Note that ln(n) − ln(α) = ln(c). Altogether this yields the bound stated in the
theorem. ��

3 Reserving Cost for Every Step

Here we have the possibility to reserve an item for one step from the position
k to k + 1. In every step, we can decide if we want to reserve the item for one
more step. The reservation costs are c for every reservation.

Again, the optimal strategy can be given by showing that every deviation
cannot be optimal:

Lemma 7 (Condition 1). An optimal algorithm must ignore an item, if it is
neither a locally best item nor the last item.

Proof. Analogous to Lemma 3. ��
Lemma 8 (Condition 2). If c > 1/n, then no optimal algorithm reserves
any item. Therefore, the optimal strategy is the same as in the basic secretary
problem without reservation costs.

Proof. We prove this by induction over the items in descending order as in
Lemma 5.

If xn is the globally best item, it is clear that only accepting the current or
reserved item is optimal.

For the induction step, consider a locally best item xk. An algorithm A
accepting xk gets the globally best item with probability k

n , thus it has a gain of
gainA(I) = k

n . An alternative algorithm A′ reserving it would cause additional
costs of c. From the induction hypothesis we know that in the next step the item
will be accepted. Hence, gainA′(I) = k+1

n − c and A′ is not optimal. ��
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Lemma 9 (Condition 3). If c < 1/n, an optimal algorithm does not accept
an item before the last one.

Proof. An algorithm A accepting a locally best item at position k has gainA(I) =
k
n − rA(I). An algorithm A′ reserving this item and accepting in the next step
has gainA′(I) = k+1

n − c − rA(I) > k
n − rA(I). ��

Lemma 10 (Condition 4). An optimal algorithm with c ≤ 1/n reserves the
current locally best item from a point k̂(c, n) until the last step.

Proof. There are only three strategies that optimal algorithms can follow at this
point. An algorithm A can reserve the current locally best item from a specific
point k until the end. Alternatively, an algorithm A′ will reserve from point k1
until point k2 and then reject the reserved item and then perhaps at a future
point k3 reserve the next locally best item until the end. Finally, an algorithm
A′′ may refuse to reserve items.

Algorithm A′′ cannot be optimal because, by Lemma 9, A′′ cannot accept
any item before the last step. Thus, gainA′′(I) = 1/n, which is not optimal.

Algorithm A′ on the other hand, cannot be optimal because an equivalent
algorithm that only reserves items from k3 on will have the exact same success
chance and lower reservation costs.

Thus, we are left to analyze the gain of algorithm A. The probability that
the globally best item occurs after step k is (n − k)/n and the expected cost of
reserving the next locally best item until the end is

c ·
n∑

i=k+1

Pr(i is first lbi after k) · (n − i) = c ·
n∑

i=k+1

n − i

i

k

i − 1

= c

(
n − k − k ln

(n

k

)
+ O(1/k)

)
. (2)

This means that A would have an expected gain of

gainA(I) =
n − k

n
− c ·

n∑

i=k+1

n − i

i

k

i − 1
. (3)

This expression is maximized for one value k (with a given n and c), since n−k
n

decreases linearly with growing k, while the sum increases with growing k.
We can define k̂(n, c) to be the integer k that maximizes gainA(I). Because

all other strategies are worse, this algorithm must be the optimal one. ��
From these four conditions, we get an optimal online algorithm for the sec-

retary problem in the reservation per step model.

Theorem 4 (Optimal strategy for reservation per step). If c > 1/n
then the strategy for the basic secretary problem without reservation is optimal.
If c ≤ 1/n there exists a k̂(c, n) such that the optimal strategy is to keep the
locally best item after xk̂(c,n) reserved and accept only after the last step.
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Proof. In case of c > 1/n, an optimal strategy cannot reserve items (Condition
2). Therefore the best strategy without a reservation is optimal here.

If c ≤ 1/n, an optimal strategy will start to reserve items at some point and
will not accept an item until the end (Condition 3 and 4). The optimal point for
reserving items is k̂ (Condition 4). Every item that is not a locally optimal item
will be ignored (Condition 1). ��
Theorem 5 (Expected gain). If c > 1/n, the expected gain is F (m) =
1/e + O(1/n). If c ≤ 1/n, the expected gain is

n − k̂

n
− c ·

n∑

i=k̂+1

n − i

i

k̂

i − 1

where k̂ is chosen such that the expression gets maximal.

Proof. If c > 1/n, the optimal algorithm does not reserve any item. So the strat-
egy and the expected gain is the same as in the case in Sect. 2 where reserving
items was not optimal.

If c ≤ 1/n, then the expected gain is calculated as in Condition 4. ��
Theorem 6. The expected gain for a given c ≤ 1

n is

1 − cn(1 − e−1/cn) + O(1/n).

In particular, for c = 1/n the gain becomes 1/e + O(1/n).

Proof. Using methods from calculus we find that the optimal k̂ is k̂ =
ne−1/cn(1 + O(1/k̂)). As e−1/cn is between 1/e and 1, we know that k̂ = Θ(n)
and therefore k̂ = ne−1/cn(1+O(1/n)). Inserting this k̂ into the estimate for the
gain using a combination of (2) and (3) yields the result.

4 Conclusion

We found two optimal online algorithms for the basic secretary model with
reservations. It seems that the reservation model might also make sense for other
variations of the secretary problem. You might, for example, want to look at the
variant where you also get more than zero gain if you pick the second or third
best candidate.

Acknowledgement. We like to thank our anonymous referees for their useful com-
ments that helped to improve the exposition of the paper.
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Abstract. The unmanned aerial vehicle (UAV) has emerged as a
promising solution to provide delivery and other mobile services to cus-
tomers rapidly, yet it drains its stored energy quickly when travelling on
the way and (even if solar-powered) it takes time for charging power on
the way before reaching the destination. To address this issue, existing
works focus more on UAV’s path planning with designated system vehi-
cles providing charging service. However, in some emergency cases and
rural areas where system vehicles are not available, public trucks can
provide more feasible and cost-saving services and hence a silver lining.
In this paper, we explore how a single UAV can save flying distance by
exploiting public trucks, to minimize the travel time of the UAV. We
give the first theoretical work studying online algorithms for the prob-
lem, which guarantees a worst-case performance. We first consider the
offline problem knowing future truck trip information far ahead of time.
By delicately transforming the problem into a graph satisfying both time
and power constraints, we present a shortest-path algorithm that outputs
the optimal solution of the problem. Then, we proceed to the online set-
ting where trucks appear in real-time and only inform the UAV of their
trip information some certain time Δt beforehand. As a benchmark, we
propose a well-constructed lower bound that an online algorithm could
achieve. We propose an online algorithm MyopicHitching that greedily
takes truck trips and an improved algorithm Δt-Adaptive that further
tolerates a waiting time in taking a ride. Our theoretical analysis shows
that Δt-Adaptive is asymptotically optimal in the sense that its ratio
approaches the proposed lower bounds as Δt increases.

Keywords: Ride-hitching · Energy efficiency · Online algorithm

1 Introduction

As technologies in navigation and control progress, the application of unmanned
aerial vehicle (UAV) in package delivery is proved to be a promising approach.
For example, the e-commerce giant Amazon has been pushing to deliver pack-
ages to its millions of customers by drones. DHL applies drones to provide fully
c© Springer Nature Switzerland AG 2021
C.-Y. Chen et al. (Eds.): COCOON 2021, LNCS 13025, pp. 565–576, 2021.
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autonomous loading and offloading in the last-mile delivery [8], which provides
a silver lining in special situations (e.g., the COVID-19 pandemic) with social-
distancing. However, due to the nature of the UAV/drone in both the low energy
storage and high-rate flying consumption, it quickly drains its stored energy,
which limits the delivery range and affects the service effectiveness remarkably.
Although the UAV can be solar-powered by utilizing solar radiation as energy
[1], this is not sufficient since the charging-rate is not high enough. Fortunately,
the UAV is able to dock with road vehicles automatically [16], which makes it
possible for UAV to team up with trucks spontaneously and instantaneously for
reducing the transportation cost. This is inspired by ride-sharing platforms, for
example, GrabHitch allows passengers to hitch rides on the way. However, it is
still not clear what ramifications of online ride-hitching are on UAV’s energy sav-
ing. This paper aims to provide theoretical foundations for online ride-hitching
in UAV travelling. We note that the UAV may not catch a truck which is far
away from its current location (spatial issue), nor wait for a truck for too long
(temporal issue) as time efficiency is critical in UAV’s delivery service.

Related Works. We survey relevant researches along two threads. The first
thread studies UAV’s energy-efficiency problem with either routing or speed
scheduling optimization. For example, [4] proposed the looking before crossing
algorithm, which is proved to be optimal for the offline speed scheduling prob-
lem under a practical flight energy model. [5] considers an energy-aware path
planning algorithm that minimizes energy consumption while satisfying coverage
and resolution constraints. Please refer to [2] for a survey work. In contrast, we
focus on theoretical issues of the problem especially when truck trips are released
in an online fashion. We aim to unveil the adaptability of the “ride-sharing” in
UAV travelling in the worst-case scenario, which is usually measured by online
algorithms and competitive ratio [7]. The second thread focuses on classical com-
binatorial optimization problems. The k-server problem aims to efficiently move
k servers to serve a batch of online requests of the metric space [10] such that
the total moving distance of all servers is minimized. The famous work function
algorithm achieves a competitive ratio of 2k − 1 on general metrics and hence is
optimal for 1-server problem on the line [11]. When the server moves in constant
velocity, the work function algorithm is optimal in achieving minimum comple-
tion time of serving all the online requests. A variant of the 1-server problem is
the online repairman problem [9] which asks for a tour that visits a set of online
cities in the metric space such that the weighted sum of completion times of the
cities is minimized. [9] proposes a (1+

√
2)2-competitive deterministic online algo-

rithm for the general metric spaces and [12] gave an improved 5.429-competitive
algorithm for line metrics. A generalized version of the k-server problem is the
k-taxi problem in which each request is represented by a pair (s, t) of two points
(including the start point s and end point t) instead [13]. In the gas station prob-
lem [3], a vehicle with a given tank capacity U and an initial amount μs of gas,
can purchase gas at each vertex of a complete graph at a certain price. And the
objective of [3] is to find the cheapest way from a given start node s to a given
target node t of the graph. Note that the gas station problem involves neither the
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time constraint on vertices nor restrictions in the set of visited vertices. Another
related problem is the online maximum k-interval coverage problem which aims
to select k online sub-intervals (i.e., truck trips) such that the total covered
length of a target interval (i.e., the UAV’s path) is maximized [14]. In contrast,
the problem studied in this paper is more complicated since one has to face both
the spatial and the temporal issues simultaneously and the power constraint of
UAV travelling is further involved.

Main contributions of this paper are summarized below.

– We are the first to study UAV’s traveling problem by hitching truck rides
in an online setting, for the purpose of minimizing the UAV’s travel time.
Comprehensively, we investigate different cases according to how early (i.e.,
Δt) a truck should inform the UAV of its trip before the departure.

– For the offline version of the problem, we give a graph-based optimal solution.
Since it is intricate to capture both power and time constraints in mapping
truck trips to nodes of a graph, we delicately construct the graph by screening
unnecessary trucks iteratively, which is on top of some characteristics of the
problem. Based on this, we find an optimal solution in O(n2) time.

– As a benchmark, we construct lower bounds on the competitive ratio for any
online algorithms, by considering different time gap Δt between the start time
and release time.

– We show that a simple myopic algorithm (where the UAV flies forward con-
stantly by default until using up its stored energy, and myopically accepts as
many rides as possible halfway) has a defect, which can be easily exploited by
the adversary, leading to negligible energy saved from taking rides. To fix this
defect, we propose a Δt-Adaptive algorithm by tolerating a waiting time at
most Δt

2 in taking each ride, which achieves a provable competitive ratio very
close to the lower bound.

Due to space constraints, some results and proofs are deferred to the full version
[15].

2 Problem Formulation

We consider the following problem: the UAV, which is at its origin O, is supposed
to move to its destination A as early as possible, in which the path length
|OA| = a. The UAV has a low charging rate α per unit time and a high power-
consuming rate β (> α) per unit time. Initially at time 0, the UAV stores
an amount P0 of energy (which is small and could be zero) and it flies at its
maximum velocity1 v0. To avoid the trivial case that the UAV directly flies to
the destination by charging on the way, we assume the UAV has insufficient
energy P0 (< (β−α)a

v0
). That is, the UAV needs to hitch truck rides to save flying

distance or charge for sufficiently large amount of time to fly to the destination.

1 Considering the dominant travel time, we assume the flying velocity as a constant
as in [5,6].
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Along the path OA of the UAV, a sequence V = {V1, V2, ..., Vn} of n ∈ N
+

trucks will be released one by one to potentially offer rides to the UAV. Each
truck Vi = (ri, ti, oi, di, vi) ∈ V releases its trip information to the UAV at time
ri and departs from its origin oi at time ti (≥ ri) with a constant velocity vi

to its destination di. Further, we denote Δti = ti − ri as the time gap between
the start time ti and the release time ri of a truck ride Vi. The UAV is not
informed of each ride Vi ∈ V until its release time ri (when the truck’s schedule
is determined) and needs to determine whether to accept/catch or reject Vi

irrevocably at ri. The objective is to minimize the UAV’s travel time to the
destination A (or equivalent, the arrival time at A) by using online truck rides
to save energy halfway. Key notations of this paper are given below in Table 1.

Table 1. Notations in this paper.

Notations Physical meanings

[0, a] The line segment representing the UAV’s route

Vi = {V1, V2, ..., Vi} The sequence of the first i rides released, particularly,
Vn = V

Vi = (ri, ti, oi, di, vi) The ith released ride, with its release time ri, departure time
ti, start location oi, end location di and flying velocity vi

Δti = ti − ri The time gap between the start time ti and the release time
ri of a ride Vi

v = min
Vi∈V

vi The smallest possible velocity of a truck/ride

P0 The initial power that the UAV contains at time t0 = 0

Pi The power that the UAV contains at the start time of the
ith ride taken by the UAV

β The UAV’s power-consumption-rate for flying

α The UAV’s recharging-rate, which satisfies α < β;

ξ(U) and ξ(V|U|) The arrival time (or the overall travel time) of the UAV to
the target A, given the set U of rides taken by the UAV and
the last ride V|U| taken by the UAV, respectively, as formally
defined later in (9) and (10)

Suppose that U = (V1, · · · , V|U |) is the sequence of rides to be taken by the
UAV. Denote Pi as the power that the UAV contains at the start time ti of
the ith taken ride Vi. Now, we formally formulate our model as the following
mathematical problem (2)–(8). where the objective (2) is to minimize the UAV’s
travel time from O to A, which is according to the following Proposition 1 where
we discuss the physical meaning of the two terms of (2) and why we take the
maximizing operation between the two. Constraints (3)–(4) indicate the power
Pi+1 that the UAV contains at the start time ti+1 of Vi+1 by transferring from
Vi, which can be calculated by the following power transfer function in (1).

PTF(Pi, Vi, Vi+1) = Pi + (ti+1 − ti) · α − |oi+1 − di|β
v0

(1)
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After leaving each truck Vi, for i ∈ {1, · · · , |U | − 1}, note that the UAV needs
to have enough energy to fly to the following truck Vi+1’s start location, which
leads to the power compatibility constraint (5) as PTF(Pi, Vi, Vi+1) ≥ 0; and it
also needs to catch Vi+1’s start time, which is reflected by the time compatibility
constraints (6)–(7). When the inequality in constraint (7) holds strictly, the
UAV needs to stop at the roadside to wait for Vi+1’s departure2 after leaving Vi.
Constraint (8) indicates the total flying distance of the UAV.

min
U⊆V

max{λ
β

αv0
− P0

α
, t|U | +

d|U | − o|U |
v|U |

+
a − d|U |

v0
} (2)

s.t. P1 = P0 + t1 · α − o1
v0

β (3)

Pi+1 = PTF(Pi, Vi, Vi+1) (4)
PTF(Pi, Vi, Vi+1) ≥ 0 (5)

t1 ≥ o1
v0

(6)

ti+1 ≥ ti +
di − oi

vi
+

|oi+1 − di|
v0

(7)

λ = (o1 +
|U |−1∑

i=1

|oi+1 − di| + a − d|U |) (8)

For analytical tractability, the overall travel time of the UAV in objective (2)
is converted to (9) in the following Proposition 1. Intuitively, when the UAV
contains enough power to fly constantly to A after completing the last-taken
ride V|U |, UAV’s arrival time only corresponds to V|U |; otherwise, UAV’s arrival
time to A only corresponds to the UAV’s overall flying distance. Thus, we have

Proposition 1. Given the sequence U = (V1, · · · , V|U |) of rides taken by the
UAV, the UAV’s arrival time ξ(U) at the target A is given by

ξ(U) = max{(o1 +

|U|−1∑

i=1

|oi+1 − di| + a − d|U|)

︸ ︷︷ ︸
i.e., UAV′s overall flying distance

β

αv0
− P0

α
, t|U| +

d|U| − o|U|
v|U|

+
a − d|U|

v0
}

(9)

Competitive Ratio. Online algorithms are typically measured by the competi-
tive ratio [7]. Given a sequence V of online trucks that can offer rides to the UAV,
denote by ξALG(V) and ξOPT(V) the UAV’s arrival time to the destination by an
online algorithm (ALG) and the optimal offline solution (OPT) where complete
information of V is given beforehand, respectively. Then, the competitive ratio
ρ of the problem is defined as ρ = max

V

ξALG(V)
ξOPT(V) . When a number θ ≥ 1 satisfies

θ ≤ ρ for all deterministic online algorithms, we say θ is a lower bound on the
competitive ratio of the problem.
2 We use stop-and-recharge time and waiting time interchangeably in this paper, to

refer to the time that the UAV stops at roadside.
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3 Offline Problem and Algorithm Design

We present an optimal solution, named OptimalHitching, for the offline prob-
lem in this section, in which the idea behind is to map the offline rides to nodes in
a graph, and further the taking sequence in achieving the earliest arrival time is
converted to a minimum-weight path in the constructed graph. In a graph-based
solution, we find it is difficult to map the UAV’s arrival time to edge weight in
the graph directly by using ξ(U). This is because the arrival time ξ(U) corre-
sponds to multi nodes/rides in the set U . Hence, we transform the objective (9)
to the following (10), which only corresponds to the last ride V|U | taken by the
UAV and the power P|U | that the UAV contains at the start time t|U | of V|U |.

ξ(V|U|) = t|U| +
d|U| − o|U|

v|U|
+

a − d|U|
v0

+
max{a−d|U|

v0
(β − α) − (P|U| +

d|U|−o|U|
v|U|

), 0}
α︸ ︷︷ ︸

the possible stop−and−recharge time of the UAV

(10)
Before going into the details of our offline algorithm, we first give the following
definitions together with some preliminary results.

Definition 1 (Adjacent). Given the set U ⊂ V of rides accepted by the
UAV, two trips Vi and Vj in U are called adjacent rides if and only if Vj ∈
{arg min

Vx∈U,ox>oi

{ox − oi}, arg max
Vx∈U,ox<oi

{ox − oi}}. Specifically, Vj is regarded as the prior

one (resp. the following one) of the two if oj < oi (resp. oj > oi).

Definition 2 (Sequentially-taken). Given the set U ⊂ V of rides taken by
the UAV, we say Vi and Vj in U are sequentially-taken if they are neighbors in
the taking sequence U of rides. For example, when the UAV transfers from Vi to
Vj in the sequence, we call Vi and Vj the prior and the following ride of the two
sequentially-taken rides respectively.

To verify whether two rides can be taken together by the UAV or not, we have
Proposition 2, which is summarized from (2)–(8) and helps to determine whether
two nodes/rides should be connected/compatible in the constructed graph.

Proposition 2 (Compatible condition). Given two rides Vj and Vi with
oj < oi and the power Pj of the UAV at time tj, we say they are compatible
only when the UAV is able to take both rides by transferring from Vj to Vi.
Specifically, they satisfy the following compatible condition (11).

a) [time compatibility] ti ≥ tj +
dj − oj

vj
+

|oi − dj |
v0

b) [power compatibility] PTF(Pj , Vj , Vi) ≥ 0
(11)

The moment while the UAV is either landing-on or flying-off a truck, note that
the time and space dimensions keep in consistency between the UAV and the
truck. Given two sequentially-taken rides Vi (the prior one) and Vj , the UAV is
supposed to land on Vj right at time tj to catch the start of Vj without reducing
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its remaining power at time tj . This is because the power transfer function in (1)
is independent from when the UAV departs in transferring between Vi and Vj .
Or, the UAV can stop-and-recharge at the end location di of Vi until it can fly
constantly to the start oj of Vj (right at tj). This helps us to better understand
the location of the UAV while transferring between two rides. Theorem 1 shows
the taking sequence of the UAV in a given set of accepted rides.

Theorem 1. Given the set U = {V1, · · · , V|U |} of rides that are accepted by the
optimal solution (OPT), OPT takes all rides in U following the increasing order
of the rides’ start locations, i.e. the smaller oi is, the earlier Vi ∈ U is taken.

Offline Algorithm. At the high level, OptimalHitching first constructs a
graph by screening unnecessary truck rides iteratively, which is on top of some
characteristics of the problem. Afterwards, the optimal solution of the offline
problem in this paper is converted to a minimum-weight shortest path of the
graph. In the constructed graph, two virtual nodes V0 and Vn+1 are introduced
to represent the origin O and the destination A respectively, while the other
nodes in {V1, · · · , Vn} are constructed to represent the taking sequence of rides
in V respectively due to Theorem 1. Each node of {V1, · · · , Vn} maintains a
weight of the maximum power that the UAV could remain at the moment trans-
ferring to this node/ride, and connects to the previously constructed node from
which the UAV transfers to the new node and remains that maximum power.
In other words, node weights in the graph are only used for checking the power
compatibility of rides taken by the UAV. Due to (10), all edges of the graph are
set as zero weight except for those connecting to Vn+1. In this way, the weight
of a path connecting V0/O and Vn+1/A indicates the arrival time of the UAV at
A taking those rides on the path. Below gives details of OptimalHitching.

1. First, sort offline rides in Vn, by increasing order of their start locations as
(V1, V2, · · · , Vn); create virtual nodes V0 = (0, 0, 0, 0, 0) and Vn+1 representing
the origin O and the destination A respectively.

2. Then, construct a graph G = (N,E,w) with the weight function w applying
to both nodes in N and edges in E, in an iterative way:
(a) Include V0 in N . Check in sequence (V1, V2, · · · , Vn) the rides one by one.

When Vi ∈ (V1, V2, · · · , Vn) is compatible with at least one ride in N by
(11), denote Φ(Vi) as the set of rides in N that are compatible with Vi:
i. find in Φ(Vi) the node/ride, denoted by V∗(i), to which the most power

remains to the UAV on arrival at the start of Vi by transferring from
a ride in Φ(Vi);

ii. include Vi in N and set weight w(Vi) = PTF(w(V∗(i)), V∗(i), Vi);
include (V∗(i),Vi) in E and set edge weight w(V∗(i), Vi) = 0;

(b) Include Vn+1 in N . For each Vj ∈ N , add (Vj , Vn+1) to E with weight
w(Vj , Vn+1) = ξ(Vj) that representing the UAV’s arrival time to A with
taking Vj as the last ride.

3. Finally, find in N the node V = arg min
V ∈N−{Vn+1}

w(V, Vn+1) that has the

minimum-weight edge connecting with Vn+1, and further find backwards
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(from those nodes joining in N earlier than V ) the node that connects with
V .3 Repeat this step backwards until node V0 is reached. Output those nodes
found by OptimalHitching in the sequence of their joining time in N .

Note that the running time of OptimalHitching is dominated by graph con-
struction steps, which is in O(n2). We have the following Theorem 2.

Theorem 2. OptimalHitching runs in O(n2)-time and outputs the sequence
of rides that are taken by an optimal offline solution.

4 Lower Bounds

Table 2. Derived notations for bound analysis

Derived notations Physical meanings

Tru := β−α
α·v0

The time duration for recharging the
amount of power to fly a unit distance
constantly

Tmu := β
α·v0

The time duration for moving a unit
distance in the case that the UAV
contains no power at the beginning

Tf0 := P0
β−α

The time duration that the UAV flies
constantly from time t0 on

lf := P0v0
β−α

The furthest location to which the UAV
can reach by flying constantly from time
t0 on, note that lf = Tf0 · v0

ξ(∅) := β
α

a
v0

− P0
α

The earliest arrival time of the UAV to A
when no ride is taken, by (10) with
V|U| = (0, 0, 0, 0, v) and P|U| = P0

Tra := β−α
α

a
v0

− P0
α

The least time duration of the UAV to
stop-and-recharge, to reach the target A
without taking rides, Tra = ξ(∅) − a

v0

Lmin := (aβ−aα−P0v0)v
v0α−vα+vβ

The minimum length to be saved by rides
(with velocity v) to reach the target A
without stop-and-recharge, by Lemma 1

Len(T ) := max{ (aβ−aα−P0v0−v0Tα)v
v0α−vα+vβ

, 0} The least amount of length that the UAV
needs to save for avoiding more time in
stop-and-recharge afterwards, given that
the UAV already stop-and-recharges for a
total amount T of time

We present the lower bounds of the UAV’s travel time by first releasing a hook
ride, and then releasing rides that are not compatible to ALG by either power or
3 Step 2.b.i ensures only one node joining in N earlier than V that connects with V .
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time constraint if ALG rejects/accepts the hook ride, since taking a ride helps to
save more energy in an early stage but moves more slowly. For bound analysis,
we further derive some notations as summarized in Table 2.

Notice that the UAV does not need a ride Vi with Δti ≥ Tra + Tf0. This is
because the moment when Vi starts, the UAV already contains at least (Δti −
Tf0)α of power by stop-and-recharging, which enables the UAV to fly constantly
to A. Thus, we have the following Proposition 3. Then, Lemma 1 is given to
better figure out the minimum travel time that an OPT could achieve, based
on which a lower bound is presented in Theorem 3 as a benchmark for further
online algorithm design.

Proposition 3. Δti = ti − ri of each ride Vi ∈ V ranges in [0, Tra + Tf0].

Lemma 1. The UAV needs to save an overall distance of at least Lmin =
(aβ−aα−P0v0)v

v0α−vα+vβ by taking rides, in order to avoid stop-and-recharge halfway.

Theorem 3. For the problem with flexible Δti ∈ [0, Tra +Tf0], no online deter-
ministic algorithm can achieve a competitive ratio better than

ξ(∅) − Tmu

�Lmin�
v + a+1−�Lmin�

v0

(12)

5 Online Algorithms with Competitive Analysis

We propose a myopic algorithm MyopicHitching and a near-optimal algorithm
Δt-Adaptive respectively, both of which inherit notations from Table 2.

5.1 MYOPICHITCHING Algorithm

We first present the MyopicHitching algorithm under fixed Δt. By some small
changes in the following accepting conditions (i-ii), one can easily extend it to
the flexible Δt. MyopicHitching follows the route by default to fly forward
constantly until the first time it runs out of power. Afterwards, the UAV stops-
and-recharge until containing enough power to fly constantly to the target A. The
by-default action possibly changes only when a ride is accepted. Denote P (V )
as the power that the UAV remains at the start time of an accepted ride V in
the current solution, and U as the set of rides accepted by MyopicHitching.
A new ride Vi ∈ V is accepted only when Vi meets the following two conditions
together, i.e., lrc · laa = 1. Accordingly, update both P (Vi) and power attributes
of those rides in U that depart after Vi by the power-transfer-function in (1).

i) ride-compatible4: the new ride should meet (11) with Vleft = arg min
{Vj∈U |oj<oi}

{oi −
oj} which is the only ride in U that is sequentially-taken with Vi, i.e., the
following indicator should be equal to 1.

4 Under fixed Δt, online algorithm must accept rides departing after previously
accepted rides due to Observation 1. But this is not the case under flexible Δt,
a newly accepted ride can depart between two rides in U , and the potential
Vright = arg min

{Vj∈U|oj>oi}
oj − oi should also be compatible with Vi.
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1rc =

⎧
⎨

⎩
1,

ti ≥ tleft + dleft−oleft
vleft

+ |oi−dleft|
v0

and PTF(Pleft, Vleft, Vi) ≥ 0
0, otherwise

Observation 1. For the problem with fixed Δt, the earlier a ride is released,
the earlier the ride departs.

ii) arrival-ahead : the UAV will reduce its overall travel time when taking the
new ride, i.e., the following indicator 1aa (9) should be equal to 1.

1aa =
{

1, ξ(U ∪ {Vi}) ≤ ξ(U)
0, otherwise

To take each accepted ride in U , MyopicHitching guides the UAV to reach
the origin of the ride right at its start time. Whenever the UAV contains enough
power to fly constantly towards the target A, i.e., (13) is satisfied, it stops accept-
ing new ride and flies directly to A after taking the last-accepted ride.

⎧
⎪⎪⎨

⎪⎪⎩

utime ≥ max{(β
α − 1)a−d|U|

v0
− ˜P (V|U|)

α , t|U | + d|U|−o|U|
v|U|

} or

P̃ (V|U |) ≥ a−d|U|
v0

(β − α) & utime < t|U | + d|U|−o|U|
v|U|

or
U = ∅ & utime = Tra

(13)

in which P̃ (V|U |) = P (V|U |) + α(d|U|−o|U|)
v|U|

indicates the power remaining to the
UAV on completing V|U |, while utime indicates the real time in the execution.

Lemma 2. For the problem with fixed Δt, MyopicHitching always takes rides
in increasing order of their start locations.

Notice in the following example that MyopicHitching has a defect which can
be exploited by an adversary leading to a very bad competitive ratio: suppose
V1 = ( 1

2v0
, 1
2v0

+ Δt, ε, 1 + ε, v) is the first released ride with a small Δt. At the
release time 1

2v0
of V1, the UAV is at location 1

2 and contains power P = P0+(α−
β) 1

2v0
. We note that the arrival-ahead condition (ii) implies a ride released at an

early stage could be accepted when the ride could help the UAV to save more
energy. Since the UAV can save a small amount 2ε

v0
β of power by taking V1, V1 is

accepted by accepting conditions (i)–(ii). Notice that MyopicHitching actually

costs twait = Δt + 1
v1

+
1

v0
−1−2ε

v0
of waiting time. The defect appears when Δt <

twait since the adversary could further releases rides making MyopicHitching
violate constraints in (11). When ε → 0, we get the following Theorem 4.

Theorem 4. For the problem with fixed Δt, MyopicHitching achieves a com-
petitive ratio no worse than

ξ(∅)
(a − 	Lmin
)Tmu − P0

α

(14)

Particularly, in the scenario where the UAV already exhausts its power (i.e.,
P0 = 0) at the very beginning, MyopicHitching achieves a competitive ratio
no worse than a

a−�Lmin� .
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5.2 Δt-ADAPTIVE Algorithm

We fix the defect of MyopicHitching by leveraging adaptability of Δt in
MyopicHitching and present the Δt-Adaptive algorithm by including the
following conditional-start condition (i.e., 1cs = 1) in the accepting conditions.
Specifically, Δt-Adaptive only replaces the accepting conditions 1rc · 1aa == 1
in MyopicHitching by 1rc · 1aa · 1cs == 1, but keeps the remaining the same.

iii) conditional-start condition: the following indicator 1cs should be one.

1cs =

⎧
⎪⎨

⎪⎩
1,

oi ≥ Δtv0
2 + l(utime) for utime ∈ [0,

lf
v0

],
or, oi ≥ lf + Δtv0

2 for utime ∈ ( lf
v0

, ξ(∅)]
0, otherwise

Theorem 5. For the problem with fixed Δt, Δt-Adaptive algorithm achieves
a competitive ratio no worse than

ξ(∅)
Δt
2 + a−Len(Δt

2 )

v0
+ Len(Δt

2 )

v

(15)

Recall that rides with Δt ≥ Tra + Tf0 are not worth taking (see Lemma 3).
By Theorem 5, we know Δt-Adaptive prefers larger Δt since its competitive
ratio decreases as Δt increases. Comparing (15) and (14), we find that Δt-
Adaptive algorithm outperforms MyopicHitching especially when Δt is large,
this is because Δt-Adaptive guarantees that OPT has to cost some waiting
time of at least Δt

2 in the case when all released truck rides are not compatible
to Δt-Adaptive. What’s more, Δt-Adaptive algorithm actually achieves near-
optimal performance compared to the best possible online algorithm since the
latter can save at most one ride while the OPT has to pay a waiting time of Δt.

6 Concluding Remarks

In this paper, we give the first theoretical work on the problem of online ride-
hitching in UAV travelling. By mapping truck trips to nodes in a graph in an
iterative way, we give a shortest-path-like solution for the offline version of this
problem where truck trips are all known in advance. As a benchmark, we present
lower bounds on the competitive ratio of the problem, respectively, for different
settings. Then, we show that a greedy algorithm which accepts as many rides as
possible has a defect. To fix the defect, we propose the Δt-Adaptive algorithm,
achieving near-optimal performance in terms of the competitive ratio.
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Abstract. In 2005, Goddard, Hedetniemi, Hedetniemi and Laskar [Gen-
eralized subgraph-restricted matchings in graphs, Discrete Mathematics,
293 (2005) 129 – 138] asked the computational complexity of determin-
ing the maximum cardinality of a matching whose vertex set induces a
disconnected graph. In this paper we answer this question. In fact, we
consider the generalized problem of finding c-disconnected matchings;
such matchings are ones whose vertex sets induce subgraphs with at
least c connected components. We show that, for every fixed c ≥ 2, this
problem is NP-complete even if we restrict the input to bounded diam-
eter bipartite graphs. For the case when c is part of the input, we show
that the problem is NP-complete for chordal graphs while being solv-
able in polynomial time for interval graphs, FPT when parameterized
by treewidth, and XP for graphs with a polynomial number of minimal
separators, when parameterized by c.

Keywords: Algorithms · Complexity · Induced subgraphs · Matchings

1 Introduction

Matchings are a widely studied subject both in structural and algorithmic graph
theory [10,15–20]. A matching is a subset M ⊆ E of edges of a graph G = (V,E)
that do not share any endpoint. A P-matching is a matching such that G[M ], the
subgraph of G induced by the endpoints of edges of M , satisfies property P. The
complexity of deciding whether or not a graph admits a P-matching has been
investigated for many different properties P over the years. One of the most well
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known examples is the NP-completeness of the Induced Matching problem [5],
where P is the property of being a 1-regular graph. Other NP-hard problems
include Acyclic Matching [13], k-Degenerate Matching [2], deciding if
the subgraph induced by a matching contains a unique maximum matching [14],
and Line-Complete Matching1 [6]; the latter was originally named Con-
nected Matching, but we adopt the more recent meaning of Connected
Matching given by Goddard et al. [13], where we want the subgraph induced
by the matching to be connected. We summarize the above results in Table 1.

Table 1. P-matchings and some of its complexity results. Entries marked with a †
are presented in this paper.

P-matching Property P Complexity

Induced Matching 1-regular NP-complete [5]

Acyclic Matching acyclic NP-complete [13]

k-Degenerate
Matching

k-degenerate NP-complete [2]

Uniquely Restricted
Matching

has a unique maximum
matching

NP-complete [14]

Connected Matching connected Polynomial [13] Same as
Maximum Matching†

c-Disconnected
Matching, for each c ≥ 2

has c connected
components

NP-complete for bipartite
graphs†

Disconnected
Matching, with c as part
of the input

has c connected
components

NP-complete for chordal
graphs†

Motivated by a question posed by Goddard et al. [13] about the complexity
of finding a matching that induces a disconnected graph, in this paper we study
the Disconnected Matching problem, which we define as follows:

Disconnected Matching
Instance: A graph G and two integers k and c.
Question: Is there a matching M with at least k edges such that G[M ] has
at least c connected components?

Our first result is an alternative proof for the polynomial time solvability of
Connected Matching. We then answer Goddard et al.’s question by showing
that Disconnected Matching is NP-complete for c = 2. Indeed, we show that
the problem remains NP-complete even on bipartite graphs of diameter three,
1 A line-complete matching M is a matching such that every pair of edges of M has

a common adjacent edge.
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for every fixed c ≥ 2; we denote this version of the problem by c-Disconnected
Matching. Note that, while Induced Matching is the particular case of Dis-
connected Matching when c = k, our result is much more general since we
decouple these two parameters. Then, we turn our attention to the complexity
of this problem on graph classes and parameterized complexity. We begin by
showing that, unlike Induced Matching, Disconnected Matching remains
NP-complete even when restricted to chordal graphs of diameter 3; in this case,
however, c is part of the input, and we also prove that, for every fixed c, we can
solve the problem in XP time. Afterwards, we present a polynomial time dynamic
programming algorithm for interval graphs and an FPT algorithm parameterized
by treewidth. We summarize our results in Table 2.

Table 2. Complexity results for Disconnected Matching restricted to some input
scopes. We denote by ηi the i-th Bell number, which corresponds to the number of
distinct partitions of a set of i elements.

Graph class c Complexity Proof

General c = 1 Same as Maximum Matching Theorem 2

Bipartite Fixed c ≥ 2 NP-complete Theorem 4

Chordal Input XP and NP-complete Theorems 6 and 7

Interval Input O
(
|V |2c max{|V |c, |E|√|V |}

)
Theorem 8

Treewidth t Input O(
8tη3

t+1|V |2) Theorem 9

Preliminaries. For an integer k, we define [k] = {1, . . . , k}. For a set S, we say
that A,B ⊆ S partition S if A ∩ B = ∅ and A ∪ B = S; we denote a partition
of S in A and B by A∪̇B = S. A parameterized problem (Π, k) is said to be XP
when parameterized by k if it admits an algorithm running in f(k)ng(k) time
for computable functions f, g; it is said to be FPT when parameterized by k if
g ∈ O(1). For more on parameterized complexity, we refer to [8]. We use standard
graph theory notation and nomenclature as in [3,4]. Let G = (V,E) be a graph,
W ⊆ V (G), M ⊆ E(G), and V (M) to be the set of endpoints of edges of M ,
which are also called M -saturated vertices. We denote by G[W ] the subgraph
of G induced by W ; in an abuse of notation, we define G[M ] = G[V (M)]. A
matching is said to be maximum if no other matching of G has more edges than
M , and perfect if V (M) = V (G). Also, M is said to be connected if G[M ] is
connected and c-disconnected if G[M ] has at least c connected components. A
graph G is H-free if G has no copy of H as an induced subgraph; G is chordal
if it has no induced cycle with more than three edges. A graph is an interval
graph if it is the intersection graph of intervals on a line. In G, we denote by
β(G) the number of edges in a maximum matching, by βc(G) the cardinality
of a maximum connected matching, by β∗(G) the size of a maximum induced
matching, and by βd,i(G) the size of a maximum i-disconnected matching. If G
is connected, note that:
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1. Every maximum induced matching M∗ is a β∗(G)-disconnected matching,
since each connected component of G[M∗] is an edge.

2. Since β∗(G) is the maximum number of components that G[M ] can have with
any matching M , there exists no c-disconnected matching for c > β∗(G).

3. Every matching is a 1-disconnected matching.
4. As shown in [13], β(G) = βc(G).

Consequently, we have that both Theorem 1 and the following bounds hold:

β = βc = βd,1 ≥ βd,2 ≥ βd,3 ≥ . . . ≥ βd,β∗ ≥ β∗

Theorem 1. Disconnected Matching is NP-complete for every graph class
for which the Induced Matching is NP-complete.

This paper is organized as follows. In Sect. 2, we give an alternative proof
to the fact that Connected Matching is in P and present an algorithm
for Maximum Connected Matching, then present a construction used to
show that c-Disconnected Matching is NP-complete for every fixed c ≥ 2
on bipartite graphs of diameter three. In Sect. 3, we prove our final negative
result, that Disconnected Matching is NP-complete on chordal graphs. We
show, in Sect. 4.1, that the previous proof cannot be strengthened to fixed c by
giving an XP algorithm for Disconnected Matching parameterized by c on
graphs with a polynomial number of minimal separators. Finally, in Sects. 4.2
and 4.3, we present polynomial time algorithms for Disconnected Matching
in interval and bounded treewidth graphs. We present our concluding remarks
and directions for future work in Sect. 5.

2 Complexity of c-DISCONNECTED MATCHING

2.1 1-disconnected and Connected Matchings

We consider that the input graph has at least one edge and is connected. Other-
wise, the solution is trivial or we can solve the problem independently for each
connected component. Recall that 1-Disconnected Matching allows its solu-
tion to have any number of connected components. Consequently, any matching
with at least k edges is a valid solution to an instance (G, k, 1), which leads to
Theorem 2.

Theorem 2. 1-Disconnected Matching is in P.

Note that if M is a solution to an instance (G, k) of Connected Match-
ing, then it is also a solution to the instance (G, k, 1) of 1-Disconnected
Matching. Our next Theorem shows that the converse is also true and, using
the former theorem, that Maximum Matching and Connected Matching
are also related. The algorithm is based on the proof of Goddard et al. [13] that
β(G) = βc(G), and can be implemented in linear time.
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Theorem 3. Given a maximum matching, a maximum connected matching can
be found in linear time.

Corollary 1. Maximum Connected Matching has the same time complex-
ity of Maximum matching.

2.2 2-disconnected Matchings

Next, we show that 2-Disconnected Matching is NP-complete for bipartite
graphs with bounded diameter. Our reduction is from the NP-hard problem 1-
in-3 3SAT [11]; in this problem, we are given a set of m clauses I with exactly
three literals in each clause, and asked if there is a truth assignment of the
variables such that only one literal of each clause resolves to true. We consider
that each variable must be present in at least one clause and that a variable is
not repeated in the same clause. This follows from the original NP-completeness
reduction [22].

Input transformation in 1-in-3 3SAT. We use k = 12m and build a bipartite
graph G = (V1∪̇V2, E) from a set of clauses I as follows.

(I) For each clause ci, generate a subgraph Bi as described below.
– V (Bi) = {lij , rij | j ∈ {1, . . . , 9}}
– E(Bi) is as shown in Fig. 1.

(II) For each variable x present in two clauses ci and cj , being the q-th literal
of ci and the t-th literal of cj , add two edges. If x is negated in exactly one
of the clauses, add the set of edges {riqljt, li(q+3)rj(t+3)}. Otherwise, add
{li(q+3)rjt, riqlj(t+3)}.

(III) Generate two complete bipartite subgraphs H1 and H2, both isomorphic
to K3m,3m, V (H1) = V (U1)∪̇V (U2) and V (H2) = V (U3)∪̇V (U4).

(IV) For each u2 ∈ V (U2) and clause ci, add the edge {u2lij | j ∈ {1, . . . , 6}}.
(V) For each u3 ∈ V (U3) and clause ci, add the edge {u3rij | j ∈ {1, . . . , 6}}.

Besides G being bipartite, it is possible to observe that its diameter is 5,
regardless of the set of clauses and its cardinality. This holds due to the distance
between, for example, u1 and u4, u1 ∈ V (U1), u4 ∈ V (U4), as well as li7 and rj7,
i, j ∈ [m], distinct, such that the clauses i and j do not have literals related to
the same variable. Also, consider G+

i = G[V (Bi) ∪ V (H1) ∪ V (H2)]. Note that
|V (G)| = O(m).

Properties of Disconnected Matchings in the Generated Graphs. We
now prove some properties of the disconnected matching with cardinality at least
k in a graph G generated by the transformation described.

Initially, we show, from Lemmas 1 and 2, that a subgraph induced by the
saturated vertices of such matching has exactly two connected components, one
containing vertices of H1 and the other, vertices of H2. Afterwards, Lemma 3
shows the possible sets of edges contained in the matching.



584 G. C. M. Gomes et al.

Fig. 1. The subgraph G[V (Bi)∪{u1, u2, u3, u4}], u1 ∈ V (U1), u2 ∈ V (U2), u3 ∈ V (U3)
and u4 ∈ V (U4). The solid edges are the edges of E(Bi) and the bold vertices represent
a bipartition of G.

Lemma 1. If M is a disconnected matching with cardinality k ≥ 12m, then
there exists two saturated vertices h1 ∈ V (H1) and h2 ∈ V (H2).

Lemma 2. If M is a disconnected matching with cardinality k ≥ 12m, then
G[M ] has exactly two connected components.

Lemma 3. Let M be a disconnected matching with cardinality k ≥ 12m and Bi

be a clause subgraph. There are exactly 6 edges saturated by M in G[V (Bi)] and,
moreover, there are exactly 3 sets of edges that satisfy this constraint.

Transforming a Disconnected Matching into a Variable Assignment.
First, we define, starting from a 2-disconnected matching M , |M | = 12m, a
variable assignment R and, in sequence, we present Lemma 4, proving that R is
a 1-in-3 3SAT solution.

(I) For each clause ci, where xij corresponds to the j-th literal of ci, generate
the following assignments.
– If lij is M -saturated, then assign xij = T .
– Else, assign xij = F .

Note that, analyzing the generated graph, the pair of saturated vertices lij
and rij , j ∈ {1, 2, 3} define that the j-th literal is the true of the clause ci.
Similarly, each pair of saturated vertices liq and riq, q ∈ {4, 5, 6}, q �= j + 3,
defines that the (q − 3)-th literal is false.

Lemma 4. Let M be a 2-disconnected matching with cardinality k = 12m in
a graph generated from a input I of 1-in-3 3SAT. It is possible to generate in
polynomial time an assignment to variables in I that solves 1-in-3 3SAT.
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Transforming a Variable Assignment into a Disconnected Matching.
Finally, we define a 2-disconnected matching M , obtained from a solution of
1-in-3 3SAT. Then, Lemma 5 proves that M is a 2-disconnected matching with
the desired cardinality 12m.

(I) For each clause ci, whose true literal is the j-th, add to M the edge set
defined as {lij li7, rijri7, liqli8, riqri8, ritli9, ritri9 | q ∈ {4, 5}, t ∈ {5, 6}, q �=
j + 3 �= t �= q}.

(II) For H1, add to the matching M any 3m disjoint edges. Repeat the process
for H2.

Lemma 5. Let R be a variable assignment of an input I from 1-in-3 3SAT. It is
possible, in polynomial time, to generate a disconnected matching with cardinality
k = 12m from I in a graph generated by the transformation described below.

Note that for any graph with diameter d ≤ 1 the answer to Disconnected
Matching is always NO. We may assume that there are no isolated vertices
as their removal does not change the solution. If the graph is disconnected, the
problem can be solved in polynomial time by finding a maximum matching M
and checking if |M | ≥ k. These statements are used in the proof of Theorem
4, which has a slight modification of the above construction, but allows us to
reduce the diameter of the graph to 3.

Lemma 6. Let G = (V1∪̇V2, E) be the bipartite graph from the transformation
mentioned and G′ = (V ′

1 ∪̇V ′
2 , E

′) so that V (G′) = V (G)∪{w1, w2} and E(G′) =
E(G)∪{w1w2}∪{vw1 | v ∈ V (V1)}∪{vw2 | v ∈ V (V2)}. If M is a 2-disconnected
matching in G′, |M | ≥ k, so M is also a 2-disconnected matching in G.

Combining the previous results, we obtain Theorem 4.

Theorem 4. 2-Disconnected Matching is NP-complete even if the input is
restricted to bipartite graphs with diameter 3.

These results imply the following dichotomies, in terms of diameter.

Corollary 2. For bipartite graphs with diameter ≤ d, Disconnected Match-
ing is NP-complete if d is at least 3 and belongs to P otherwise.

Corollary 3. For graphs with diameter ≤ d, Disconnected Matching is
NP-complete if d is at least 2 and belongs to P otherwise.

2.3 NP-completeness for Any Fixed c

We now generalize our hardness proof to c-Disconnected Matching for every
fixed c > 2. We begin by setting the number of edges in the matching k =
12m + c − 2, defining G′ to be the graph obtained in our hardness proof for
2-Disconnected Matching, and H to be the graph with c − 2 isolated edges
{vi1vi2 | i ∈ [c−2]}. To obtain our input graph to c-Disconnected Matching,
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we make w1 ∈ V (G′) adjacent to vi1 and w2 ∈ V (G′) adjacent vi2, for every
i ∈ [c − 2], where w1 and w2 are as defined in Lemma 6. This proves that
the problem is NP-complete on bipartite graphs of diameter three. Note that,
if we identify w1 and w2, we may reason as before, but now conclude that c-
Disconnected Matching is NP-complete on general graphs of diameter 2. We
summarize this discussion as Theorem 5.

Theorem 5. Let c ≥ 1. The c-Disconnected Matching problem belongs to
P if c = 1. Otherwise, it is NP-complete even for bipartite graphs of diameter 3
or for general graphs of diameter 2.

3 NP-completeness for Chordal Graphs

In this section, we prove that Disconnected Matching is NP-complete even
for chordal graphs with diameter 3. In order to prove it, we describe a reduction
from the NP-complete problem Exact Cover By 3-Sets [11]. This problem
consists in, given two sets X, |X| = 3q, and C, |C| = m of 3-element subsets of
X, decide if there exists a subset C ′ ⊆ C such that every element of X occurs
in exactly one member of C ′.

For the reduction, we define c = m− q +1, k = m+3q and build the chordal
graph G = (V,E) from the sets C and X as follows.

(I) For each 3-element set ci = (x, y, z), ci ∈ C, generate a complete subgraph
Hi isomorphic to K5 and label its vertices as Wi = {wix, wiy, wiz, w

+
i , w−

i }.
(II) For each pair of 3-element sets ci = (x, y, z) and cj = (a, b, c) such

that ci, cj ∈ C, add all edges between vertices of {wix, wiy, wiz} and
{wja, wjb, wjc}.

(III) For each element x ∈ X, generate a vertex vx and the edges vxwix for
every i such that ci contains the element x.

An example of the reduction and its corresponding c-disconnected match-
ing is presented in Fig. 2. For easier visualization, the edges from rule (II) are
omitted.

In Lemmas 7 and 8, we define the polynomial transformation between a
(m − q + 1)-disconnected matching M , |M | ≥ m + 3q, and a subset C ′ that
solves the Exact Cover By 3-sets. Then, Theorem 6 concludes the NP-
completeness for chordal graphs.

Lemma 7. Let (C,X) be an input of Exact Cover by 3-Sets with |C| = m,
|X| = 3q and a solution C ′. A (m − q + 1)-disconnected matching M , |M | =
m + 3q, can be built in the transformation graph G in polynomial time.

Lemma 8. Let (C,X) be an input of Exact Cover by 3-Sets with |C| = m,
|X| = 3q. Given a (m − q + 1)-disconnected matching M , |M | = m + 3q, in the
transformation graph G described, a solution C ′ to Exact Cover by 3-Sets
can be built in polynomial time.

Theorem 6. Disconnected Matching is NP-complete even for chordal
graphs with diameter 3.
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Fig. 2. An example of reduction for the input X = {1, 2, 3, 4, 5, 6} and C =
{{2, 3, 4}, {1, 2, 5}, {2, 5, 6}, {1, 5, 6}}. The subgraph induced by the vertices inside
the dotted rectangle is complete and the matching in bold corresponds the solution
C′ = {{2, 3, 4}, {1, 5, 6}}.

4 Polynomial Time Algorithms

For our final contributions, we turn our attention to positive results, showing
that the problem is efficiently solvable in some graph classes.

4.1 Minimal Separators and Disconnected Matchings

It is not surprising that minimal separators play a role when looking for c-
disconnected matchings. In fact, for c = 2, Goddard et al. [13] showed how to
find 2-disconnected matchings in graphs with a polynomial number of minimal
separators. We generalize their result by showing that Disconnected Match-
ing parameterized by the number c of connected components is in XP; note that
we do not need to assume that the family of minimal separators is part of the
input, as it was shown in [23] it can be constructed in polynomial time.

Theorem 7. Disconnected Matching parameterized by the number of con-
nected components is in XP for graphs with a polynomial number of minimal
separators.

Proof. Note that if a matching M is a maximum c-disconnected matching of
G = (V,E), then there is a family S of at most c − 1 minimal separators such
that V (G) − V (M) contains

⋃
S∈S S. Therefore, if we find such S that maxi-

mizes a maximum matching M in G[V − (
⋃

S∈S S)] and M is c-disconnected,
then M is a maximum c-disconnected matching. Considering that G has |V |O(1)

many minimal separators, the number of possible candidates for S is bounded by
|V |O(c). Computing a maximum matching can be done in polynomial time and
checking whether G[M ] has c components can be done in linear time. Therefore,
the whole procedure takes |V |O(c) time and finds a maximum c-disconnected
matching.
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In particular, this result implies that c-Disconnected Matching is solv-
able in polynomial time for chordal graphs [7], circular-arc graphs [9], graphs that
do not contain thetas, pyramids, prisms, or turtles as induced subgraphs [1]. We
leave as an open question to decide if Disconnected Matching parameterized
by c is in FPT for any of these classes.

4.2 Interval Graphs

In this section, we show that Disconnected Matching for interval graphs
can be solved in polynomial time. To obtain our dynamic programming algo-
rithm, we rely on the ordering property of interval graphs [12]; that is, there
is an ordering Q = 〈Q1, . . . Qp〉 of the p maximal cliques of G such that each
vertex of G occurs in consecutive elements of Q and, moreover the intersec-
tion Si = Qi ∩ Qi−1 between two consecutive cliques is a minimal separa-
tor of G. Our algorithm builds a table f(i, j, c′), where i, j ∈ {1, . . . , p} and
c′ ∈ {1, . . . , c}, and is equal to q if and only if the largest c′-disconnected match-
ing of G

[⋃
i≤�≤j Qi \ (Si ∪ Sj+1)

]
has q edges; that is, (G, k, c) is a positive

instance if and only if f(1, p, c) ≥ k.

Theorem 8. Disconnected Matching can be solved in polynomial time on
interval graphs.

4.3 Treewidth

A tree decomposition of a graph G is a pair T = (T,B = {Bj | j ∈ V (T )}), where
T is a tree and B ⊆ 2V (G) is a family where:

⋃
Bj∈B Bj = V (G); for every edge

uv ∈ E(G) there is some Bj such that {u, v} ⊆ Bj ; for every i, j, q ∈ V (T ), if q
is in the path between i and j in T , then Bi ∩ Bj ⊆ Bq. Each Bj ∈ B is called
a bag of the tree decomposition. G has treewidth has most t if it admits a tree
decomposition such that no bag has more than t vertices. For further properties
of treewidth, we refer to [21]. After rooting T , Gx denotes the subgraph of G
induced by the vertices contained in any bag that belongs to the subtree of T
rooted at node x. Our final result is a standard dynamic programming algorithm
on tree decompositions; we omit the proof and further discussions on how to
construct the dynamic programming table for brevity.

Theorem 9. Disconnected Matching can be solved in FPT time when
parameterized by treewidth.

5 Conclusions and Future Works

We have presented c-disconnected matchings and the corresponding decision
problem, which we named Disconnected Matching. They generalize the well
studied induced matchings and the problem of recognizing graphs that admit
a sufficiently large induced matching. Our results show that, when the number
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of connected components c is fixed, c-Disconnected Matching is solvable in
polynomial time if c = 1 but NP-complete even on bipartite graphs if c ≥ 2.
We also proved that, unlike Induced Matching, Disconnected Matching
remains NP-complete on chordal graphs. On the positive side, we show that the
problem can be solved in polynomial time for interval graphs, in XP time for
graphs with a polynomial number of minimal separators when parameterized by
the number of connected components c, and in FPT time when parameterized
by treewidth.

Possible directions for future work include determining the complexity of
the problem on different graph classes. In particular, we would like to know
the complexity of Disconnected Matching for strongly chordal graphs; we
note that the reduction presented in Sect. 3 has many induced subgraphs iso-
morphic to a sun graph. We are also interested in the parameterized complexity
of the problem. Our results show that, when parameterized by c, the problem
is paraNP-hard; on the other hand, it is W[1]-hard parameterized by the num-
ber of edges in the matching since Induced Matching is W[1]-hard under
this parameterization [19]. A first question of interest is whether chordal graphs
admit an FPT algorithm when parameterized by c; while the algorithm pre-
sented in Sect. 4.1 works for all classes with a polynomial number of minimal
separators, chordal graphs offer additional properties that may aid in the proof
of an FPT algorithm. Another research direction would be the investigation of
other structural parameterizations, such as vertex cover and cliquewidth; while
the former yields a fixed-parameter tractable algorithm due to Theorem 9, we
would like to know if we can find a single exponential time algorithm under this
weaker parameterization. On the other hand, cliquewidth is a natural next step,
as graphs of bounded treewidth have bounded cliquewidth, but the converse does
not hold. Finally, we would like to study Disconnected Matching from the
kernelization point of view and settle for which parameterizations we can obtain
polynomial kernels and for which no such kernels exist, unless NP ⊆ coNP/poly.
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Abstract. For an integer d ≥ 1, let d-claw stand for K1,d, the com-
plete bipartite graph with 1 and d vertices on each part. The d-claw
vertex deletion problem, d-claw-vd, asks for a given graph G and an
integer k whether one can delete at most k vertices from G such that the
resulting graph has no d-claw as an induced subgraph. Thus, 1-claw-vd
and 2-claw-vd are just the famous vertex cover problem and the
cluster-vd problem, respectively.

In this paper, we show that cluster-vd remains NP-complete when
restricted to bipartite graphs of maximum degree 3. Moreover, for every
d ≥ 3, we show that d-claw-vd is NP-complete even when restricted to
bipartite graphs of maximum degree d. These hardness results are opti-
mal with respect to degree constraint. We also show that, for every d ≥ 3,
d-claw-vd is NP-complete when restricted to split graphs without d+1-
claws. On the positive side, we prove that d-claw-vd is polynomially
solvable on what we call d-block graphs, a class that properly contains
all block graphs.

1 Introduction

Graph modification problems are a very extensively studied topic in graph algo-
rithm. One important class of graph modification problems is the following. Let
H be a fixed graph. The H vertex deletion (H-vd) problem takes as input
a graph G and an integer k. The question is whether it is possible to delete a
vertex set S of most k vertices from G such that the resulting graph is H-free,
i.e., G − S contains no induced subgraphs isomorphic to H. The optimization
version asks for such a vertex set S of minimum size, and is denoted by min H
vertex deletion (min H-vd).

The case H is the 2-vertex path is the famous vertex cover problem,
one of the basic NP-complete problems. The case H is 3-vertex path is well
known under the name cluster vertex deletion (cluster-vd for short).
Very recently, the COCOON 2020 paper [1] addresses the case H is the claw

c© Springer Nature Switzerland AG 2021
C.-Y. Chen et al. (Eds.): COCOON 2021, LNCS 13025, pp. 591–603, 2021.
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K1,3, the complete bipartite graph with 1 and 3 vertices in each part, thus the
claw-vd problem.

For any integer d > 0, let d-claw stand for K1,d, the complete bipartite graph
with 1 and d vertices on each part. In this paper, we go on with the claw-vd
problem by considering the d-claw-vd problem for any given integer d > 0:

d-claw-vd
Instance: A graph G = (V,E) and an integer k < |V |.
Question: Is there a subset S ⊂ V of size at most k such that G − S is d-claw free ?

Thus, 1-claw-vd and 2-claw-vd are just the well known NP-complete problems
vertex cover and cluster-vd, respectively, and 3-claw-vd is the claw-vd
problem addressed in the recent paper [1] mentioned above.

While 1-claw-vd is polynomially solvable when restricted to perfect graphs
(including chordal and bipartite graphs) [6], d-claw-vd is NP-complete for any
d ≥ 2 even when restricted to bipartite graphs [11,17]. When restricted to chordal
graphs, it is shown in [1] that 3-claw-vd remains NP-complete even on split
graphs. The computational complexity of 2-claw-vd on chordal graphs is still
unknown [2,3]. Both 2-claw-vd and 3-claw-vd can be solved in polynomial
time on block graphs [1,3], a proper subclass of chordal graphs containing all
trees.

It is well known that the classical NP-complete problem vertex cover
remains hard when restricted to planar graphs of maximum degree 3 and arbi-
trary large girth. It is also known that, assuming ETH, vertex cover admits
no subexponential-time algorithm in the vertex number [12] and, assuming UGC,
min vertex cover cannot be approximated within to a factor better then 2 [9].

By the standard bounded search tree technique, d-claw-vd admits a param-
eterized algorithm running in O∗((d+1)k) time.1 The current fastest parameter-
ized algorithm for vertex cover and cluster-vd has runtime O∗(1.2738k) [5]
and O∗(1.811k) [16], respectively. By the greedy algorithm, d-claw-vd can be
approximated within a factor d + 1 but there is no polynomial-time approxi-
mation scheme [13]. From the results in [10] it is known that, for any d ≥ 2,
mind-claw-vd admits a d-approximation algorithm on bipartite graphs. This
result was improved later by a result in [7], where the related problem d-claw-
transversal was considered. Given a graph G, this problem asks to find a
smallest vertex set S ⊆ V (G) such that G − S does not contain a d-claw as
a (not necessarily induced) subgraph. In [7], it was shown that, in contrast to
our mind-claw-vd problem, d-claw-transversal can be approximated within
a factor of O(log(d + 1)). Since d-claw-vd and d-claw-transversal coin-
cide when restricted to bipartite graphs, d-claw-vd admits an O(log(d + 1))-
approximation on bipartite graphs. The case 2-claw-transversal is known
under the name P3 vertex cover; see, e.g., [4,15].

In this paper, we first derive some hardness results by a simple reduction
from vertex cover to d-claw-vd, stating that d-claw-vd does not admit

1 The O∗ notation hides polynomial factors.
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a subexponential-time algorithm in the vertex number unless the Exponential-
Time Hypothesis (ETH) fails, and that d-claw-vd remains NP-complete when
restricted to planar graphs of maximum degree d + 1 and arbitrary large girth.

We then revisit the case of bipartite input graphs by showing that cluster-
vd remains NP-complete on bipartite graphs of maximum degree 3, and for d ≥
3, d-claw-vd remains NP-complete on bipartite graphs of maximum degree d
and on bipartite graphs of diameter 3. These hardness results for d-claw-vd
are optimal with respect to degree and diameter constraints, and improve the
corresponding hardness results for d-claw-vd, d ≥ 2, on bipartite graphs in [17].

Further, we extend the hardness results in [1] for claw-vd to d-claw-vd
for every d ≥ 3. We show that d-claw-vd is NP-complete even when restricted
to split graphs without d+1-claws and, assuming the Unique Game Conjecture
(UGC), it is hard to approximate mind-claw-vd to within a factor better than
d − 1.

We complement the negative results by showing that d-claw-vd is
polynomial-time solvable on what we call d-block graphs, a class that contains all
block graphs. As block graphs are 2-block graphs, and d-block graphs are d+1-
block graphs but not the converse, our positive result extends the polynomial-
time algorithm for 2-claw-vd on block graphs in [3] to d-claw-vd for all d ≥ 2,
and for 3-claw-vd on block graphs in [1] to 3-block graphs.

2 Preliminaries

Let G = (V,E) be a graph with vertex set V (G) := V and edge set E(G) := E.
The neighborhood of a vertex v in G, denoted by NG(v), is the set of all vertices
in G adjacent to v; if the context is clear, we simply write N(v). Set deg(v) :=
|N(v)|, the degree of the vertex v. We call a vertex universal if it is adjacent to
all other vertices. Vertices of degree 1 are called leaves. The distance between
two vertices in G is the length of a shortest path connecting the two vertices,
the diameter is the maximal distance between any two vertices, the girth is the
length of a shortest cycle in G (if any).

A center vertex of a d-claw H is a universal vertex of H; if d ≥ 2, the center
of d-claws are unique. We say that a d-claw is centered at vertex v if v is a center
vertex of that d-claw.

An independent set (a clique) in a graph G = (V,E) is a set of pairwise
non-adjacent (adjacent) vertices. G is a split graph if its vertex set V can be
partitioned into an independent set and a clique.

For a subset S ⊆ V , G[S] is the subgraph of G induced by S, and G − S
stands for G[V \ S]. Let H be a fixed graph. An H-deletion set is a vertex set
S ⊆ V (G) such that G−S is H-free. A K1,1-deletion set and a K1,2-deletion set
are known as vertex cover and cluster deletion set, respectively.

A hypergraph G = (V,E) consists of a vertex set V and an edge set E where
each edge e ∈ E is a subset of V . Let r ≥ 2 be an integer. A hypergraph is
r-uniform if each of its edges is an r-element set. (Thus, a 2-uniform hypergraph
is a graph in usual sense.) A vertex cover in a hypergraph G = (V,E) is a
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vertex set S ⊆ V such that S ∩ e �= ∅ for any edge e ∈ E. The r-hypergraph
vertex cover (r-hvc for short) problem asks, for a given r-uniform hypergraph
G = (V,E) and an integer k < |V |, whether G has a vertex cover S of size at
most k. The optimization version asks for such a vertex set S of minimum size
and is denoted by minr-hvc. Note that 2-hvc and min2-hvc are the famous
vertex cover problem and min vertex cover problem, respectively. It is
known that r-hvc is NP-complete and minr-hvc is UGC-hard to approximate
within a factor better than r [9].

3 Hardness Results

We begin with two simple observations.

Observation 1. d-claw-vd remains NP-complete on graphs of diameter 2.

Proof. Given an instance (G, k) for d-claw-vd, let G′ be obtained from G by
adding a d-claw with center vertex v and joining v to all vertices in G. Then
v is a universal vertex in G′ and hence G′ has diameter 2. Moreover, (G, k) ∈
d-claw-vd if and only if (G′, k + 1) ∈ d-claw-vd. �	

We remark that the graph G′ in the proof above is a split graph whenever
G is a split graph, and G′ has only one vertex of unbounded degree whenever G
has bounded maximum degree. The bipartite version of Observation 1 is:

Observation 2. For any d ≥ 2, d-claw-vd remains NP-complete on bipartite
graphs of diameter 3.

Proof. Let (G, k) be an instance for d-claw-vd, where G = (X,Y,E) is a bipar-
tite graph. Let G′ be the bipartite graph obtained from G by adding two d-
claws with center vertices x and y, respectively, and joining x to all vertices in
Y ∪ {y} and y to all vertices in X ∪ {x}. Then G′ has diameter 3. Moreover,
(G, k) ∈ d-claw-vd if and only if (G′, k + 2) ∈ d-claw-vd. �	
We remark that in the bipartite graph G′ in the proof above has only two vertices
of unbounded degree whenever G has bounded maximum degree.

We now describe a simple reduction from vertex cover to d-claw-vd and
some implications for the hardness of d-claw-vd. Let d ≥ 2. Given a graph
G = (V,E), construct a graph G′ = (V ′, E′) as follows.

– for each v ∈ V let I(v) be an independent set of d − 1 new vertices;
– V ′ = V ∪ ⋃

v∈V I(v);
– E′ = E ∪ ⋃

v∈V {vx | x ∈ I(v)}.
Thus, G′ is obtained from G by attaching to each vertex v a set I(v) of d − 1
leaves.

Fact 1. If S is a vertex cover in G, then S is a d-claw-deletion set in G′.
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Proof. This follows immediately from the construction of G′. Indeed, since G−S
is edgeless, every connected component of G′ − S is a single vertex (from I(v)
for some v ∈ S) or a (d − 1)-claw (induced by v and I(v) for some v �∈ S). Thus,
S is a d-claw-deletion set in G′. �	
Fact 2. If S′ is a d-claw-deletion set in G′, then G has a vertex cover S with
|S| ≤ |S′|.
Proof. Let S′ be a d-claw-deletion set in G′. We may assume that, for every
v ∈ V (G), S′ contains no vertex in I(v). Otherwise (S′ \ I(v)) ∪ {v} is also a
d-claw-deletion set in G′ of size at most |S′|. Thus S′ ⊆ V (G) and S = S′ is a
vertex cover in G. For, if uv is an edge in G − S, then v and {u} ∪ I(v) induced
a d-claw in G′ − S = G′ − S′, a contradiction. �	

We now derive hardness results for d-claw-vd from the above reduction.
Theorem 1. Assuming ETH, there is no O∗(2o(n)) time algorithm for
d-claw-vd on n-vertex graphs, even on graphs of diameter 2.

Proof. By Facts 1 and 2, and the known fact that, assuming ETH, there is no
O∗(2o(n)) time algorithm for vertex cover on n-vertex graphs [12]. Since the
graph G′ in the construction has |V ′| = |V | + (d − 1)|V | = O(|V |) vertices, we
obtain that there is no O∗(2o(n)) time algorithm for d-claw-vd, too. By (the
proof of) Observation 1, the statement also holds for graphs of diameter 2. �	
Theorem 2. Let d ≥ 2 be a fixed integer.

(i) d-claw-vd is NP-complete, even when restricted to planar graphs of maxi-
mum degree d + 1 and arbitrary large girth.

(ii) d-claw-vd is NP-complete, even when restricted to diameter-2 graphs with
only one vertex of unbounded degree.

Proof. It is known (and it can be derived, e.g., from [8,14]) that vertex cover
remains NP-complete on planar graphs G of maximum degree 3 and arbitrary
large girth, and in which the neighbors of any vertex of degree 3 in G have
degree 2.

Given such a graph G, let G′ be obtained from G by attaching, for every
vertex v of degree 2, d − 1 leaves to v. Then G′ is planar, has maximum degree
d + 1 and arbitrary large girth. Moreover, similarly to Facts 1 and 2, it can be
seen that G has a vertex cover of size at most k if and only if G′ has a d-claw
deletion set of size at most k. This proves (i). Part (ii) follows from (i) and the
reduction in the proof of Observation 1. �	
We remark that the hardness result stated in Theorem 2 (ii) is optimal in the
sense that graphs of bounded diameter and bounded vertex degree have bounded
size, hence d-claw-vd is trivial when restricted to such graphs.

Note that d-claw-vd is trivial on graph of maximum degree less than d
(because such graphs contain no d-claws). Moreover, cluster-vd is easily solv-
able on graphs of maximum degree 2. Thus, with Theorem 2 (i), the computa-
tional complexity of d-claw-vd, d ≥ 3, on graphs of maximum degree d remains
to discuss. We will show in the next subsection that the problem is still hard
even on bipartite graphs of maximum degree d.
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3.1 Bipartite Graphs of Bounded Degree

Recall that vertex cover is polynomially solvable on bipartite graphs, hence
previous results reported above cannot be stated for bipartite graphs. In this
subsection, we first give a polynomial reduction from positive 1-in-3 3-sat to
cluster-vd showing that cluster-vd is NP-complete even when restricted to
bipartite graphs of degree 3.

Then, we will modify this reduction to obtain a reduction from positive
1-in-3 3-sat to d-claw-vd showing that, for any d ≥ 3, d-claw-vd is NP-
complete even when restricted to bipartite graphs of maximum degree d. Thus,
we obtain an interesting dichotomy for all d ≥ 3: d-claw-vd is polynomial-time
solvable on graphs of maximum degree less than d and NP-complete otherwise.

Recall that an instance for positive 1-in-3 3-sat is a 3-cnf formula F =
C1∧C2∧· · ·∧Cm over n variables x1, x2, . . . , xn, in which each clause Cj consists
of three distinct variables. The problem asks whether there is a truth assignment
of the variables such that every clause in F has exactly one true variable. Such
an assignment is called 1-in-3 assignment. It is well known that positive 1-in-3
3-sat is NP-complete.

Our reduction is inspired by a reduction from nae 3-sat to cluster-vd on
bipartite graphs in [17].

Let F = C1 ∧ C2 ∧ · · · ∧ Cm over n variables x1, x2, . . . , xn, in which each
clause Cj consists of three distinct variables. We may assume that m is even.
We construct an instance (G, k) for cluster-vd as follows.

Variable Gadget. For each variable xi we introduce m variable vertices xij

one for each clause Cj , 1 ≤ j ≤ m, as follows. First, take a cycle with m
vertices xi1, xi2, . . . , xim and edges xi1xi2, xi2xi3, . . . , xi(m−1)xim and xi1xim.
Then subdivide every edge with 2 new vertices to obtain a cycle on 3m vertices.
Finally, attach to every vertex d−2 leaves, and, in case d > 2, label an arbitrary
leaf of each variable vertex xj

i by x′
ij . The obtained graph is denoted by G(xi).

The following property of G(xi) can be verified immediately:

Fact 3. Any d-claw deletion set for G(xi) contains at least m vertices, and
every independent set of m non-leaf vertices, two of which have no common
neighbors, is a d-claw deletion set. Moreover, the set of all variable vertices
{xi1, xj2, . . . , xjm} is a d-claw deletion set, and any d-claw deletion set of size
m contains all or none variable vertices.

Clause Gadget. First, take a triangle with clause vertices cj1, cj2 and cj3. Then
subdivide every edge with one new vertex to obtain a 6-cycle. Finally, attach
to every vertex d − 2 leaves, and, in case d > 2, label an arbitrary leaf of each
clause vertex cjk by c′

jk. The obtained graph is denoted by G(Cj).
The following property of G(Cj) can be verified immediately:

Fact 4. Any d-claw deletion set for G(Cj) contains at least 2 vertices, and two
non-leaf vertices at distance three form a d-claw deletion set. In particular, every
2-element d-claw deletion set for G(Cj) contains exactly one of the clause vertices
cj1, cj2 and cj3.
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Finally, the graph G is obtained by connecting the variable and clause gadgets
as follows.

Case d = 2: connect the variable vertex xij in G(xi) to a clause vertex in
G(Cj) by an edge whenever xi appears in clause Cj , i.e., xi = cjk for some
k ∈ {1, 2, 3}.

Case d ≥ 3: connect the leaf x′
ij of the variable vertex xij in G(xi) to the labeled

leaf of a clause vertex in G(Cj) by an edge whenever xi appears in clause Cj ,
i.e., if xi = cjk for some k ∈ {1, 2, 3}, then the there is an edge between x′

ij

and c′
jk.

It follows from construction, that G has maximum degree 3 and is bipartite.
Set k = nm + 2m. We now show that F ∈ positive1 − in − 33 − sat if and

only if (G, k) ∈ d-claw-vd. First, assume that there is a 1-in-3 assignment for F .
Then a d-claw deletion set S of size k = nm + 2m for G is as follows, according
to Facts 3 and 4.

Case d = 2:
– in each G(Cj), put the true clause vertex cjk and the vertex at distance

three to cjk into S,
– in each G(xi), if xi is false then put all m variable vertices xij , 1 ≤ j ≤ m,

into S. Otherwise, if xi is true then put other m vertices, which form a
cluster deletion set in G(xi) and none of them is a variable vertex, into
S.

Case d ≥ 3:
– in each G(Cj), put the true clause vertex cjk and the non-leaf vertex at

distance three to cjk into S,
– in each G(xi), if xi is true then put all m variable vertices xij , 1 ≤ j ≤ m,

into S. Otherwise, if xi is true then put other m non-leaf vertices, which
form a d-claw deletion set in G(xi) and none of them is a variable vertex,
into S.

Second, if S is a d-claw deletion set of G with |S| ≤ mn+2m then S contains
exactly 2 vertices from each G(Cj). Hence, by Fact 4, |S ∩ {cj1, cj2, cj3}| = 1
for each 1 ≤ j ≤ m. Thus, by Fact 3, defining xi = cjk be true if cjk ∈ S and
false if cjk �∈ S we obtain a 1-in-3 assignment for F .

Since G is bipartite and has maximum degree d, we obtain:

Theorem 3. cluster-vd is NP-complete even when restricted to bipartite
graphs of maximum degree 3. For any d ≥ 3, d-claw-vd is NP-complete even
when restricted to bipartite graphs of maximum degree d.

From Theorems 3 and (the proof of) Observation 2 we conclude:

Theorem 4. For any d ≥ 2, d-claw-vd is NP-complete even when restricted
to bipartite graphs of diameter 3 with only two unbounded vertices.
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We remark that mind-claw-vd is polynomially solvable on bipartite graphs
of diameter at most two. This can be seen as follows. Let G = (X,Y,E) be a
bipartite of diameter ≤ 2; such a bipartite graph is complete bipartite. Note first
that X and Y are d-claw deletion sets for G. We will see that any optimal d-claw
deletion set is X or Y or is of the form (X \X ′)∪ (Y \Y ′) for some d−1-element
sets X ′ ⊆ X and Y ′ ⊆ Y . (In particular, all optimal d-claw deletion sets can
be found in O(nd−1) time.) Indeed, let S be an optimal d-claw deletion set. If
X ⊆ S, then by the optimality of S, S = X. Similarly, if Y ⊆ S, then S = Y .
So, let X ′ = X \S �= ∅ and Y ′ = Y \S �= ∅. Then |X ′| ≤ d−1 and |Y ′| ≤ d−1: if
|X ′| ≥ d, say, then any vertex in Y ′ and d vertices in X ′ together would induce
a d-claw in G − S. Thus, by the optimality of S, |X ′| = |Y ′| = d − 1.

Unfortunately, we have to leave open the complexity of d-claw-vd on bipar-
tite graphs of diameter 3 with only one vertex of unbounded degree.

3.2 Split Graphs

In this subsection, we show that, for any d ≥ 3, d-claw-vd is NP-hard even
when restricted to split graphs. Note that split graphs have diameter 3. By
Observation 1, however, d-claw-vd is hard even on split graphs of diameter 2.
Recall that 1-claw-vd and 2-claw-vd are solvable in polynomial time on split
graphs.

Let d ≥ 3 be a fixed integer. We reduce (d − 1)-hvc to d-claw-vd. Our
reduction is inspired by the reduction from vertex cover to 3-claw-vd in [1].
Let G = (V,E) be a (d − 1)-uniform hypergraph with n = |V | vertices and
m = |E| edges. We may assume that for any hyperedge e ∈ E there is another
hyperedge f ∈ E such that e∩ f = ∅. For otherwise, G has a vertex cover of size
≤ |e| = d−1 and therefore d − 1-hvc is polynomially solvable on such inputs G.
We construct a split graph G′ = (V ′, E′) with V ′ = Q ∪ I, where Q is a clique
and I is an independent set, as follows.

– I = {v′ | v ∈ V };
– for each edge e ∈ E, let Q(e) be a clique of size n;
– all sets I and Q(e), e ∈ E, are pairwise disjoint;
– make

⋃
e∈E Q(e) to clique Q;

– for each v′ ∈ I and e ∈ E, connect v′ to all vertices in Q(e) if and only if
v ∈ e.

The description of the split graph G′ is complete. Note that G′ has nm + n
vertices and O(n2m2) edges and can be constructed in O(n2m2) time.

For each e ∈ E, write e′ = {v′ ∈ I | v ∈ e}. By construction, every vertex
in Q(e) has exactly d − 1 neighbors in I, namely the vertices in e′. Hence, every
induced d-claw in G′ is formed by a center vertex x ∈ Q(e) for some e ∈ E and
e′ ∪ {y}, where y is any vertex in Q(f), f ∈ E, such that f ∩ e = ∅. It follows
that G′ contains no induced (d + 1)-claws.

Fact 5. If S is a vertex cover in the hypergraph G, then S′ = {v′ | v ∈ S} is a
d-claw-deletion set in the split graph G′.
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Proof. If C is a d-claw in G′ with center vertex x ∈ Q(e) for some e ∈ E such
that C ∩ S′ = ∅, then e′ ∩ S′ = ∅. This means e ∩ S = ∅, contradicting the fact
that S is a vertex cover of the hypergraph G. �	
Fact 6. If S′ is a d-claw-deletion set in the split graph G′ of size < n, then
S = {v | v′ ∈ S′} is a vertex cover in the hypergraph G.

Proof. First, for each e ∈ E, S′ ∩ e′ �= ∅. For otherwise let S′ ∩ e′ = ∅ for some
e ∈ E. Since |S′| < n, there is a vertex x ∈ Q(e) \ S′ and a vertex y ∈ Q(f) \ S′

with f ∩ e = ∅. Then x, y and e′ induce a d-claw in G′ − S′, a contradiction. We
have seen that, for each e ∈ E, S′ ∩ e′ �= ∅. Then, with S = {v | v′ ∈ S′}, we
have S ∩ e �= ∅ for all e ∈ E. That is, S is a vertex cover of the hypergraph G. �	
Fact 7. The size of a smallest vertex cover of G, optvc(G), and the size of a
smallest d-claw-deletion set in G′, optd-claw-vd(G′), are equal.

Proof. By Fact 5, optd-claw-vd(G) ≤ optvc(G′). Let S′ be a smallest d-claw-
deletion set in G′. Then |S′| < n because I minus an arbitrary vertex is a
d-claw-deletion set in G′ with n− 1 vertices. Hence, by Fact 6, S = {v | v′ ∈ S′}
is a vertex cover in the hypergraph G with |S| ≤ |S′|. Thus, optvc(G′) ≤
optd-claw-vd(G). �	

We now derive hardness results for d-claw-vd and mind-claw-vd from the
above reduction.

Theorem 5. For any fixed d ≥ 3, d-claw-vd is NP-complete, even when
restricted to

(i) split graphs without induced (d + 1)-claws, and
(ii) split graphs of diameter 2.

Proof. Part (i) follows from Facts 5 and 6, and the fact that the split graph G′

contains no induced (d + 1)-claws. Part (ii) follows from (i) and Observation 1.
�	

We remark that both hardness results in Theorem 5 are optimal in the sense that
d-claw-vd is trivial for graphs without induced d-claws, in particular for graphs
of diameter 1, i.e., complete graphs. We also remark that Theorem 5 implies,
in particular, that d-claw-vd is NP-complete on chordal graphs for any d ≥ 3,
while the complexity of 2-claw-vd on chordal graphs is still open (cf. [2,3]).

Since it is UGC-hard to approximate min(d − 1)-hvc to within a factor (d−
1) − ε for any ε > 0 [9], Fact 7 implies:

Theorem 6. Let d ≥ 3 be a fixed integer. Assuming the UGC, there is no
approximation algorithm for mind-claw-vd within a factor better than d − 1,
even when restricted to split graphs without induced (d + 1)-claws.

We remark that for triangle-free graphs, in particular bipartite graphs,
mind-claw-vd and d-claw-transversal coincide, hence a result in [7] implies
that mind-claw-vd admit an O(log(d + 1))-approximation when restricted to
bipartite graphs.
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Fig. 1. A 3-block graph.

4 A Polynomially Solvabe Case

In this section, we will show a polynomial-time algorithm solving mind-claw-vd
for what we call d-block graphs. As d-block graphs generalize block graphs, this
result extends the polynomial-time algorithm for 2-claw-vd on block graphs
given in [3] to d-claw-vd for all d ≥ 2 on block graphs, and improves the
polynomial-time algorithm for min3-claw-vd given in [1] on block graphs to
3-block graphs.

Recall that a block in a graph is a maximal biconnected subgraph. Block
graphs are those in which every block is a clique. For each integer d ≥ 2, the
d-block graphs defined below generalize block graphs.

Definition 1. Let d ≥ 2 be an integer. A graph G is d-block graph if, for every
block B of G,

– B is d-claw free,
– for every cut vertex v of G, N(v) ∩ B is a clique, and
– the cut vertices of G in B induce a clique.

Note that block graphs are exactly the 2-block graphs and d-block graphs
are (d+1)-block graphs, but not the converse. Note also that, for d ≥ 3, d-block
graphs need not be chordal; they may contain arbitrary long induced cycles. An
example of a 3-block graph is shown in Fig. 1.

Let d ≥ 2 and let G be a d-block graph. Recall that a block in G is an
endblock if it contains at most one cut vertex. Vertices that are not cut vertices
are called endvertices. Thus, if u is an endvertex then the block containing u
(which may or may not be an endblock) is unique. We call a vertex u a pseudo-
endvertex if u is an endvertex or u belongs to at most d − 2 endblocks and
exactly one non-endblock. Thus, for a pseudo-endvertex u, we say that B is the
unique block containing u, meaning that in case u is a cut vertex, B is the unique
non-endblock that contains u.

In computing an optimal d-claw deletion set for G, we will use the following
facts.

Fact 8. Let u be a pseudo-endvertex. Then any d-claw C containing u, if any,
is centered at a cut vertex v �= u. Moreover,
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– if B is the unique block containing u, then C ∩ B = {u, v};
– if u is a cut vertex and B′ is an endblock containing u, then C ∩ B′ = {u}.
Proof. This is because every block is d-claw-free and the neighbors of any cut
vertex in any block induce a clique. �	

An optimal d-claw deletion set for G is also called solution.

Fact 9. There is a solution that contains no pseudo-endvertices.

Proof. Let S be a solution for G and assume that S contains a pseudo-
endvertex u. Let B be the unique block of G containing u. Since S − u is not a
d-claw deletion set, there is some d-claw C of G outside S \{u}. Then, of course,

C ∩ S = {u}. (1)

By Fact 8, the center v of C is a cut vertex of G in B, and C ∩B = {u, v}. Thus,
for every w ∈ N(v) ∩ B, C − u + w is a d-claw, and by (1), w ∈ S. Hence

N(v) ∩ B ⊆ S. (2)

We now claim that S′ = S − u + v is a d-claw deletion set (and thus S′ is
a solution). Indeed, let C ′ be an arbitrary d-claw. If u �∈ C ′ or v ∈ C ′ then
C ′ ∩ S′ �= ∅. So let us consider the case in which u ∈ C ′ and v �∈ C ′. Then, by
Fact 8, the center v′ of C ′ is a cut vertex of G in B. Hence v′ and v are adjacent,
and by (2), v′ ∈ S′. �	

We remark that Fact 9 is best possible in the sense that a cut vertex u
belonging to exactly two non-endblocks may be contained in any solution; take
the d-block graph that consists of two d-claws with exactly one common leaf u.

Fact 10. Let v be a cut vertex and let B be a block containing v. If every vertex
in N(v) ∩ B is a cut vertex, then B = N [v] ∩ B. In particular, B is a clique.

Proof. Suppose the contrary that B \ N [v] �= ∅. Then, as B − v is connected,
there is an edge connecting a vertex w ∈ N(v) ∩ B and a vertex w′ ∈ B \ N [v].
Now, as w is a cut vertex, N(w) ∩ B is a clique, implying vw′ is an edge. This
is a contradiction, hence B = N [v] ∩ B. �	
Lemma 1. If G has at most one block that is not an endblock, then a solution
for G can be computed in polynomial time.

Theorem 7. mind-claw-vd is polynomially solvable on d-block graphs.

Proof. Let T be the block-cut vertex tree of G. Nodes in T corresponding to
blocks in G are block nodes; for a block node u we use B(u) to denote the
corresponding block in G. Nodes in T corresponding to cut vertices in G are cut
nodes and are denoted by the same labels.
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Choose a node r of T and root T at r. For a node x �= r of T , let p(x) denote
the parent of x in T . Note that all leaves of T are block nodes, the parent of a
block node is a cut node and the parent of a cut node is a block node.

Let u be a leaf of T on the lowest level and let v = p(u) be the parent of u.
Note that all children of v correspond to endblocks in G, and if r = p(v), then
Lemma 1 is applicable. So, assume r �= p(u) and write u′ = p(v), v′ = p(u′).
Note that by the choice of u, B′ = B(u′) is the unqiue non-endblock containing
vertices in B′ − v′.

If v has at most d−2 children, then v is a pseudo-endvertex in G. By Fact 9,
we remove v and all children of v from T .

If v has at least d children, or v has exactly d − 1 children and some vertex
in NG(v)∩ B′ is a pseudo-endvertex, then put v into the solution S and remove
v and all children of v from T . Correctness follows again from Fact 9.

It remains the case that v have exactly d − 1 children and no vertex in
NG(v)∩B′ is a pseudo-endvertex. In particular, every vertex in NG(v)∩B′ is a cut
vertex, hence B′ is a clique by Fact 10. Moreover, every vertex in NG(v)∩(B′−v′)
belongs to at least d−1 endblocks. Now, that all d-claws in G containing v contain
a vertex in B′ − v, and every solution for G not containing pseudo-endvertices
must contain at least |B′|−1 vertices in B′. Thus, we put B′ − v into solution S
and remove the subtree rooted at v′ from T , and for each other child ui �= u of v′,
we solve the problem on the subgraph induced by B(ui) and its children. Note
that, by the choice of u, all these subgraphs satisfy the condition of Lemma 1. �	

5 Conclusion

This paper considers the d-claw vertex deletion problem, d-claw-vd, which
generalizes the famous vertex cover (that is 1-claw-vd) and the cluster-
vd (that is 2-claw-vd) problems and goes on with the recent study [1] on
claw vertex deletion problem, 3-claw-vd. It is shown that cluster-vd remains
NP-complete on bipartite graphs of maximum degree 3 and, for each d ≥ 3,
d-claw-vd remains NP-complete on bipartite graphs of degree d, and thus a
complexity dichotomy with respect to degree constraint. It is also shown that
d-claw-vd remains NP-complete when restricted to split graphs of diameter 2
and to bipartite graphs of diameter 3 (with only two vertices of unbounded
degree) and polynomially solvable on bipartite graphs of diameter 2, and thus
another dichotomy with respect to diameter. We show that d-claw-vd is solvable
in polynomial time on d-block graphs, a class that contains all block graphs,
extending the algorithm for cluster-vd on block graphs in [3] to d-claw-vd,
and improving the algorithm for (unweighted) 3-claw-vd on block graphs in [1]
to 3-block graphs.
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Abstract. We study a constrained version of the Geometric Hitting Set
problem where we are given a set of points, partitioned into disjoint
subsets, and a set of intervals. The objective is to hit all the intervals
with a minimum number of points such that if we select a point from a
subset then we must select all the points from that subset. In general,
when the intervals are disjoint, we prove that the problem is in FPT,
when parameterized by the size of the solution. We also complement
this result by giving a lower bound in the size of the kernel for disjoint
intervals, and we also provide a polynomial kernel when the size of all
subsets is bounded by a constant.

Next, we consider two special cases of the problem where each subset
can have at most 2 and 3 points. If each subset contains at most 2
points and the intervals are disjoint, we show that the problem admits a
polynomial-time algorithm. However, when each subset contains at most
3 points and intervals are disjoint, we prove that the problem is NP-Hard
and we provide two constant factor approximations for the problem.

1 Introduction

The Hitting Set problem is a well-studied problem in theoretical computer sci-
ence, especially in combinatorics, computational geometry, operation research,
complexity theory, etc. In the classical setup of the Hitting Set problem, a uni-
verse of elements U and a collection F ⊆ 2U are given. The goal is to find the
smallest subset S ⊆ U that intersects every set in F . The decision version of
the Hitting Set problem is known to be NP-Complete, whereas the optimization
version of the problem is NP-Hard [16]. Significant attention is also given to the
geometric version of the Hitting Set problem due to its practical importance. In
this version, U is considered to be a set of points and F is a set of geometric
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objects (such as intervals, disks, boxes, etc.). Due to the underlying geometric
structure of these objects, different Geometric Hitting Set problems are shown to
be polynomial-time solvable, however many problems remain NP-Hard [15,16].

We study a constrained variation of the Geometric Hitting Set problem, the
Constrained Hitting Set problem with intervals, defined as follows:

Constrained Hitting Set with Intervals (CHSI ): We are given a set of
closed intervals, I and a set P of n points in R partitioned into d nonempty

subsets P1, P2, . . . , Pd, such that
d⋃

i=1

Pi = P and Pi ∩ Pj = ∅ for all i �= j,

i, j ∈ {1, 2, . . . , d}. The objective is to find a subset P ′ ⊆ P of minimum
number of points such that each interval in I is hita and for each p ∈ P ′, if
p ∈ Pi for some i ∈ {1, . . . , d} then Pi ⊆ P ′.

aAn interval I is said to be hit by a point p if and only if p ∈ I.

To be precise, we are interested in the following variations of the CHSI prob-
lem based on the size (number of points) of the subsets and the underlying
structure of the intervals. We define the CHSI-tD (resp. CHSI-tO) problem
as the CHSI problem with intervals where each subset Pi is of size at most t
and the given intervals are disjoint (resp. overlapping). Note that for t = 1, the
CHSI-tO problem is the standard Hitting Set problem with intervals on the real
line and can be solved in O(n log n) time [20]. When the size of the subsets is
not bounded by any fixed number, then we call this variant as CHSI-D prob-
lem. We also consider a variation where we minimize the number of subsets of
points, instead of the total number of points. We call such a variation as Weak
Constrained Hitting Set with intervals (WCHSI-D problem).

We denote the decision version of the CHSI-D problem as the DCHSI-D prob-
lem where one additional parameter k is given as part of the input with usual
input of the CHSI-D problem and the objective is to decide whether there is
a set of at most k points that satisfy the constraints and hit all the intervals.
The total number of points in the solution is at most k. Similarly, we denote
the decision versions of the variations CHSI-tD, CHSI-tO as DCHSI-tD,
DCHSI-tO problems. Further, we denote the decision version of the WCHSI-
D problem as the DWCHSI-D problem.

A possible application of the CHSI problem is to provide efficient project
management system. To satisfy the requirement of a project with a set of skills
like developing, programming, visualizing, etc., the workload needs to be divided
among the employees with proficiency in programming, data analysis, design, etc.
The requirements of the project can be modeled as intervals and the expertise
of employees as the set of points. To manage all the requirements of the project,
we need all the employees to have the required expertise. Then the objective
is to assign each of the projects to a set of employees satisfying the project
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requirements, and identify a number of smallest possible resources to complete
it. Another possible application of a special case of the CHSI problem where the
intervals are disjoint is as follows. Suppose that there is a number of working
sites where a number of workers work. These sites need to be supervised by a
collection of supervisors during the working hours of a day. The total working
hour is divided into small chunks of time windows. A supervisor needs to visit
many sites as assigned to him/her during the start of a day. Now for a particular
site a number of supervisors visit in different time windows. During each time
window a supervisor needs to be present. This problem can be modelled as
the CHSI-D problem, where time windows are represented as intervals, visiting
a particular site in a time window by a supervisor represents a point in that
time window, and visiting the site by a supervisor in different time windows
represents a subset of points hitting a collection of intervals (corresponds to the
time windows). Now minimizing the number of supervisors visiting a particular
site is same as minimizing the number of subsets that hit all the disjoint intervals.

1.1 Related Work

A rich body of work has been done for the classical version of the Hitting Set
problem that is equivalent to the classical Set Cover problem [5]. There is a
well-known greedy algorithm for the Hitting Set problem that gives an O(log n)-
factor approximation [16,17] and we can not get an o(log n)-factor approximation
unless P=NP [13]. However, exploiting the underlying geometry, theHitting Set
problem on some geometric objects can be solved in polynomial-time or some
NP-Hard problems have better approximation factors [4,6,7,22]. More specifi-
cally, both Set Cover and Hitting Set problems with intervals on the real line
can be solved in polynomial time using greedy algorithms [20]. In one dimension,
the Geometric Hitting Set (also Set Cover) problem on different objects remains
NP-Complete [3], however, for a restricted class of objects they can be solved
efficiently [16]. The Constrained Hitting Set problem was introduced by Cornet
and Lafornet [9] on general graphs. They provided various computational hard-
ness status and approximation algorithms for different problems, such as Vertex
Cover, Connected Vertex Cover, Dominating Set, Total Dominating Set, Inde-
pendent Dominating Set, Spanning Tree, Connected Minimum Weighted Span-
ning Graph, Matching, and Hamiltonian Path problems. These vertex deletion
problems on graphs with obligation can be interpreted as variants of the Con-
strained Implicit Hitting Set problems on graphs. On the contrary, the conflict-
free versions of Implicit Hitting Set problems on graphs have also been studied
[2,8,19,28]. In the conflict-free version, a different conflict graph with the same
input vertex set is provided as part of the input. The goal is to find a set of size
at most k that forms a corresponding implicit hitting set in the original input
graph, but an independent set in the conflict graph.

From the perspective of parameterized complexity, Hitting Set and the Set
Cover problems are W[2]-hard [11] parameterized by solution size. However,
when all sets in the input have at most d (for some constant d), elements, the
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d-Hitting Set problem admits a polynomial kernel [1] parameterized by solution
size. Computing a kernel of smaller size is also studied in [24]. Also, polynomial-
sized kernels for hitting set for a fixed d have already been presented in [14].
On the other hand, if the Set Cover problem is parameterized by the number
of elements in the universe, then it is FPT and does not admit a polynomial
kernel unless NP ⊆ coNP/poly [10]. Jacob et al. [18] studied the conflict-free ver-
sion of the Set Cover problem with parameterized complexity and kernelization
perspective. Related problems of [18] are also studied in [26]. See also [25] and
the references therein.

1.2 Our Contribution

➢ We show that the DCHSI-D problem admits an algorithm taking O∗(2k)-
time, where k is the total number of points in the solution. We also prove that
the DCHSI-tD problem admits a kernel with k intervals and O(t2kt) points.
➢ We prove that the DWCHSI-D problem parameterized by the number of
intervals does not admit a polynomial kernel unless NP ⊆ coNP/poly. We also
give an algorithmic lower bound of the DWCHSI-D problem based on the Set
Cover Conjecture.
➢ The CHSI-2D problem admits a polynomial-time algorithm.
➢ The CHSI-3D problem is NP-Hard. We present two constant factor approx-
imations for this problem.

Due to lack of space, some proofs are omitted; they will be provided in the
full version of the paper.

2 Parameterized Complexity for Disjoint Intervals

2.1 Preliminaries

A parameterized problem is Π ⊆ Σ∗ ×N for some finite alphabet Σ. An instance
of a parameterized problem is (x, k) ∈ Σ∗×N where k is called the parameter and
x is the input. We assume that k is given in unary and without loss of generality
k ≤ |x|, and |x| is the input length. A parameterized problem Π ⊆ Σ ×N is said
to be fixed-parameter tractable (or FPT) if there exists an algorithm that runs
in f(k)|x|c time where f : N → N is a computable function and c is a constant.

Kernelization in parameterized complexity is a polynomial-time preprocess-
ing algorithm. Formally, given an instance (x, k) of a parameterized problem
Π ⊆ Σ∗ × N, kernelization is a polynomial-time algorithm that transforms the
input instance (x, k) to (x′, k′) such that (i) (x, k) ∈ Π if and only if (x′, k′) ∈ Π,
and (ii) |x′| + k′ ≤ f(k) for some function f : N → N depending only on k. If
f(k) is kO(1), then we say that Π has a polynomial kernel. Informally speaking,
kernelization is a collection of reduction rules that have to be applied in sequence
to reduce the original instance into an equivalent instance. A reduction rule that
replaces input instance (x, k) by (x′, k′) is safe if (x, k) is a yes-instance if and
only if (x′, k′) is a yes-instance. It is well-known that, a parameterized problem
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is FPT if and only if it admits a kernelization [11]. Another type of polynomial-
time preprocessing in parameterized complexity is called a “compression”. For-
mally, given an instance (x, k) of parameterized problem Π ⊆ Σ∗ ×N, compres-
sion transforms (x, k) to an equivalent instance x′ ∈ Σ∗ of an unparameterized
problem L ⊆ Σ∗ in polynomial-time such that x′ can be represented by f(k)
bits. If f(k) is in kO(1), then we say that Π admits a polynomial compression.
Informally speaking, polynomial compression is a polynomial-time preprocess-
ing algorithm that transforms the input instance of a parameterized problem
to an input instance of a possibly different unparameterized problem with a
polynomial number of bits.

Let Π1 and Π2 be two parameterized problems. If there exists a polynomial-
time reduction that given an instance (x, k) of Π1, constructs an instance (x′, k′)
such that k′ = O(kO(1)), then we say that there exists a polynomial parameter
transformation (PPT) from Π1 to Π2.

2.2 Fixed-Parameter Tractability for Disjoint Intervals

We show that the DCHSI-D problem with disjoint intervals is fixed parameter
tractable parameterized by the size of the solution. DCHSI-D is NP-Hard when
there are subsets of points that are of size at least 3 (see Sect. 4). Our kernel
lower bound results also prove that the DWCHSI-D problem is NP-Hard.

We apply the following reduction rules in sequence.

Reduction Rule 1. If the number of intervals is more than k, then the given
instance is a “NO” instance.

Reduction Rule 2. If there are two subsets Pi, Pj in P such that |Pi| = |Pj |
and both of them hit the same set of intervals, then we remove Pi from the input.

Reduction Rule 3. If there exists a subset Pi that does not hit any interval,
i.e. Pi ∩ I = ∅, then we simply remove that subset Pi from the input.

Reduction Rule 4. If any subset Pi contains more than k points, we can remove
Pi from the input. Such a subset only makes the size of the solution more than
k. Thus we have the following lemma.

Lemma 1. Reduction Rules 1, 2, 3, and 4 are safe, and can be implemented
in polynomial-time. Thus the DCHSI-D problem admits a kernel of size O(2kk)
and an FPT algorithm with O∗(2k2

) running time.

Dynamic Programming: Now, we describe an improved O∗(2k) time algo-
rithm by using dynamic programming over subsets of intervals (I) where the set
of points are P = P1 ∪ P2 ∪ . . . ∪ Pd, and Pi ∩ Pj = ∅ for all i �= j. For every
Pi, we denote w(Pi) = |Pi| (number of points in Pi). Since Reduction Rule 1 is
not applicable, |I| ≤ k. We fix an arbitrary ordering P1, P2, . . . , Pd. For every
i ∈ [d], we use c(Pi) to denote the set of intervals hit by the points in Pi.

For every subsets of intervals X ⊆ I, for every i ∈ {1, . . . , d}, we define
B[X , i], the weight of a smallest subset P ⊆ {P1, . . . , Pi} such that X ⊆
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⋃
P∈P c(P ). Informally speaking, in the table entry B[X , i], we store the weight of

a smallest subset P ⊆ {P1, . . . , Pi} that hits all intervals in X . Since no point is
required to hit ∅ ⊆ I, for all i ∈ {1, 2, . . . , d}, we initialize B[∅, i] = 0. For X �= ∅,
if X ⊆ c(P1), then B[X , 1] = |P1| = w(P1). Otherwise, when X �⊂ c(P1), we
denote B[X , 1] = ∞. For all other X ⊆ I, and for all i ∈ [d], we initialize B[X , i] =
∞. We use the following recurrence relation. For every X ⊆ I such that X �= ∅,
and for every i ≥ 2, we denote B[X , i] = min{|Pi|+B[X \c(Pi), i−1],B[X , i−1]]}.
Thus we have the following.

Theorem 1. The DCHSI-D problem can be solved in O∗(2k) time.

2.3 Kernelization and FPT Lower Bound for Disjoint Intervals:

We prove that the DWCHSI-D problem admits no polynomial compression
unless NP ⊆ coNP/poly. In this variant, we aim to minimize the number of dis-
tinct subsets of points rather than the total number of points in the solution. We
also prove a lower bound based on Set Cover Conjecture for the same problem.

We give a reduction from the Set Cover as follows. The input to a Set Cover
is a universe U = {1, 2, . . . , n} = [n], and a family F ⊆ 2U , and an integer k. The
objective is to find a subfamily F ′ ⊆ F such that |F ′| ≤ k and U =

⋃
A∈F ′ A.

Lemma 2 ([12]). The Set Cover problem parameterized by |U | admits no poly-
nomial compression unless NP ⊆ coNP/poly.

Conjecture 1 (Set Cover Conjecture [10]). The Set Cover problem cannot
be solved in O∗((2 − ε)|U |) time.

Lemma 3 ([11]). Let Π1,Π2 be two parameterized problems and suppose that
there exists a polynomial parameter transformation from Π1 to Π2. Then, if Π1

does not admits a polynomial compression, neither does Π2.

Reduction: Let (U,F , k) be an instance of the Set Cover problem such that
U = {x1, x2, . . . , xn} and F = {S1, . . . , Sm}. For every i ∈ [n], let us denote
oc(xi) = {j ∈ [m]|xi ∈ Sj} and let δ = max{|oc(xi)| : i ∈ [n]}. Informally
speaking, δ is the maximum number of sets at which an element of the universe
can occur. For every xi ∈ U , we arrange the indices of oc(xi) in increasing order.
(i) We construct the set of intervals I = {[(i−1)δ+1, iδ] : i ∈ {1, 2, . . . , n}}, (ii)
we construct the point set P and its partition into m nonempty sets P1, . . . , Pm

as follows, Observe that for every xi ∈ U , the set oc(xi) denotes the increasing
order at which xi occurs across several sets in F . For every j ∈ [m], we create
Pj as follows. Consider an arbitrary xi ∈ Sj . If j is the r’th occurrence of xi

in oc(xi), then we add the point (i − 1)δ + r into Pj . In other words, every
occurrence of an element is represented by a unique point in a specific subset of
points, (iii) finally, we denote P = P1 ∪ . . . ∪ Pm.

Observe that by construction, every element in U has its corresponding inter-
val in I. Also observe that the point (i − 1)δ + r (corresponding to xi ∈ U) hits
the interval [(i − 1)δ, iδ] since r ≤ δ. Hence, the sets Pj ’s are pairwise disjoint.
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Because the occurrence of an element xi across distinct sets in the family is
represented by various points in the same interval [(i−1)δ, iδ]. Also observe that
for all xi ∈ U , oc(xi) �= ∅.

Next consider F ′ = {Sj1 , . . . , Sjk} be a subfamily of size at most k that
covers U . Then, P ′ = Pj1 ∪ . . .∪Pjk is the solution to DWCHSI-D instance. The
idea is that the corresponding interval [(i−1)δ +1, iδ] will be hit by r’th (r ≤ δ)
occurrence of xi in Pjr . Therefore, there are k subsets points Pj1∪. . .∪Pjk that hit
all intervals and satisfy the constraints. On the other hand, let P ′ = Pj1∪. . .∪Pjk

be k subsets of points that hit all the intervals. If interval [(i − 1)δ + 1, iδ] is hit
by a point in Pjr , then, the element xi has t’th occurrence (t ≤ δ) in Sjr . Hence,
F ′ = {Sj1 , . . . , Sjk} covers U . This leads to the following lemma.

Lemma 4. For a Set Cover instance (U,F , k), the instance (U,F , k) has a fea-
sible solution of size at most k if and only if there are k subsets of points that
hit all intervals in DWCHSI-D instance we created by the reduction.

Lemmas 2, 4, and Conjecture 1 lead the following theorem.

Theorem 2. The DWCHSI-D problem parameterized by |I| admits no polyno-
mial compression unless NP ⊆ coNP/poly. Moreover, unless Conjecture 1 fails,
the DWCHSI-D problem cannot be solved in O∗((2 − ε)|I|) time.

2.4 Polynomial Kernel for Subsets of Size at Most t for Fixed t

We provide a polynomial kernel for the DCHSI-tD problem parameterized by
solution size (k). Recall that all subsets of points in the input instance has size
at most t. Thus we have the following:

Theorem 3. When Reduction Rules 1, 2, 3, and 4 are not applicable, then an
instance of the DCHSI-tD problem has k intervals and at most O(t2kt) points.
Hence, the DCHSI-tD problem parameterized by solution size (k) admits a
kernel with k intervals and O(t2kt) points.

3 Subset Size at Most 2, Disjoint Intervals

In this section, we show that the CHSI-2D problem can be solved in polynomial-
time. We first convert the CHSI-2D problem to an equivalent problem, where
the size of each subset is exactly 2. We call it as CHSI-2D-exact problem. Next,
we reduce the CHSI-2D-exact problem to the edge cover problem1 in a graph.
CHSI-2D-exact problem instance construction:

Let I = {i1, i2, . . . , iγ} be a set of pairwise disjoint intervals and P be a set
of points partitioned into subsets {P1, P2, . . . , Pd}, where 2d ≥ γ. Note that, in
the given instance each Pi, 1 ≤ i ≤ d, contains at most 2 points. Without loss
of generality, we assume that each point hits at least one interval in the set I,
1 The edge cover problem defined on a graph finds the set of edges of a minimum size
such that every vertex of the graph is incident to at least one edge of the set.
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Fig. 1. (a) From the CHSI-2D problem to the CHSI-2D-exact problem: p2
� is a

dummy point for the single point p1
� , p̃ 1

� and p̃ 2
� are the dummy points for the dummy

intervals i′� and i′′� . (b) converting into an equivalent graph Gτ (c) removing self-loops
and parallel edges (d) corresponding edge-cover of Gτ (for interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version).

otherwise, we can do the following. If any set (having one or two points) does
not hit any interval then we delete that set from P . If only point α of a set hits
an interval ĩ (the other point does not) then the following cases can happen:

(i) ĩ is only hit by α, then we include the set containing α into our solution and
delete the interval from set I,

(ii) ĩ is hit by other points also apart from α, then remove the set containing
α from our consideration. Next, for each subset of P� ∈ P that contains
exactly one point, say p1� , we do the following, as illustrated in Fig. 1(a) :

Take one extra (dummy) point p2� ∈ P�, take two extra (dummy) points p̃1� and
p̃2� that belongs to a single new set, say P̃�, and take two additional (dummy)
disjoint intervals i′� and i′′� . We place the intervals i′� and i′′� to the extreme right
of the current configuration such that these two intervals do not overlap with
the existing configuration. The points p2� and p̃1� hit the interval i′� and the point
p̃2� hit the interval i′′� .

Let τ be an original instance of the CHSI-2D problem with exactly one set
P� that contains exactly one point and τ∗ be the instance constructed above.
We have the following lemma.

Lemma 5. The instance τ has a solution of size s if and only if either (i) τ∗

has a solution of size s + 3 if P� is in the solution of τ or (ii) τ∗ has a solution
of size s + 2 if P� is not in the solution of τ .

We repeat the above procedure for each subset of P one by one that contains
exactly 1 point. Therefore, in the final instance, say τ ′ all the subsets contain
exactly 2 points. By repeated application of Lemma 5 we ensure that finding
a solution of the CHSI-2D problem is equivalent to finding a solution to the
CHSI-2D-exact problem. Observe that τ ′ can contain at most 3γ number of
intervals and at most 4d number of points partitioned into at most 2d subsets.
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The instance τ ′ can be constructed in linear time with respect to the number of
intervals, points, and subsets. Hence, in polynomial-time, we can get a solution
of the CHSI-2D problem from the CHSI-2D-exact problem.

Edge Cover Instance Construction: Let us consider the modified instance
τ ′ of the CHSI-2D-exact problem contains a set I ′ = {i1, i2, . . . , iγ′}, γ′ ≤ 3γ,
of pairwise disjoint intervals and a set of points P = {P1, P2, . . . , Pd′} where
each Pi, 1 ≤ i ≤ d′, d′ ≤ 2d, contains exactly 2 points. We construct a graph
Gτ ′ = (V,E) as follows:

Construction: For each interval il ∈ I ′, take a vertex vl ∈ V and for each
subset Pj containing points p1j and p2j , we take an edge ej ∈ E. The edge ej

connects the vertices vl′ and vl′′ if and only if the interval il′ corresponding to
vl′ contains the point p1j and the interval il′′ corresponding to vl′′ contains the
point p2j . Note that, if a single interval il contains both the points p1j and p2j then
the edge ej is a self loop on the vertex vl. If both intervals il′ and il′′ are hit by
the two points of the subset Pj′ as well as by the two points of the subset Pj′′ ,
then there are parallel edges between vl′ and vl′′ .

We now process (removing redundant and trivial edges) the graph Gτ ′ with-
out affecting the size of the solution. If there are parallel edges between two
vertices of Gτ ′ , then we keep exactly one edge between them and remove the
remaining edges. Note that this modification does not affect the size of the opti-
mal solution, since the subsets corresponding to the parallel edges hit the same
set of intervals, and hence only one of them can be selected in the optimal solu-
tion. Let the resultant graph be G̃τ . Next, we remove all the self-loops from G̃τ .
Let the resultant graph be G̃′ (Fig. 1(c)). Let v be a vertex in G̃′. Here two cases
may arise based on the number of the loops and edges incident on v; Case (i)
only loops (≥ 1) are incident on v and Case (ii) loops as well as some other
edges are incident on v. In Case (i), the interval corresponding to v covers the
subsets (both points) corresponding to the loops. We arbitrarily choose one loop
and insert the corresponding subset into our solution P ′ and remove v from the
graph G̃τ . However, in Case (ii), the interval corresponding to v covers the sub-
sets (both points) corresponding to the loops and at least one subset that has
exactly one point hit the interval. In this case, we delete the self-loops incident
on v, because choosing an edge as opposed to choosing a self-loop incident on v
does not worsen the size of the solution. After processing the parallel edges and
self-loops let the resultant graph is G′ = (V ′, E′).

Next, we find an edge cover (see Fig. 1(d)) in the graph G′ using the maximum
matching algorithm and then greedily add a minimum number of edges such that
all the vertices are covered. We add all the points corresponding to those edges
to our solution P ′. Given a graph G′ of n vertices and m edges then we can find
its edge cover in O(mn)-time [16,21]. Thus we have the following:

Theorem 4. The CHSI-2D-exact problem (hence the CHSI-2D problem) can
be solved in O(n log n + γn) time, where γ denotes the number of intervals in I.
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Fig. 2. Overall structure

Fig. 3. A variable gadget. Fig. 4. A clause gadget.

4 Subset Size at Most 3, Disjoint Intervals

We now prove that the CHSI-3D problem is NP-hard. We give a reduction from
the Positive-1-in-3-SAT problem that is known to be NP-complete [16,23].

Positive-1-in-3-SAT [16,23]: We are given a 3-SAT formula φ with m clauses
and n variables such that each clause contains exactly three positive literals, the
objective is to decide whether there exists an assignment of truth values to the
variables of φ such that exactly one literal is true in each clause of φ.

Reduction: We create an instance Iφ of the DCHSI-3D problem from an
instance φ of the Positive-1-in-3-SAT problem as follows.

Overall Structure: We place the variable and clause gadgets one by one from
left to right on a line L (see Fig. 2 for a schematic diagram). To the left, place
the variable gadgets, and after that place the clause gadgets one after another.

Variable Gadget: For each variable, we take 2m subsets of points and each
subset Pi contains two points p1i and p2i , for 1 ≤ i ≤ 2m. The points are ordered
left-to-right on a real line L as p11, p

1
2, p

2
2, . . . , p

1
2m, p22m, p21. We also take 2m unit

intervals {i1, i2, . . . , i2m} such that interval i1 is hit by points p11 and p12, i2m is
hit by points p22m and p21, and for 2 ≤ j ≤ 2m − 1, interval ij is hit by points
p2j and p1j+1. See the construction in Fig. 3. Observe that there are exactly two
optimal solutions that hit the intervals: either G1 = {P1, P3, . . . , P2m−1} or
G2 = {P2, P4, . . . , P2m}, each solution contains 2m points (Fig. 4).

Clause Gadget: Let C be a clause that contains the three positive literals xi,
xj , and xk. Also let xi is the l1-th, xj is the l2-th, and xk is the l3-th occurrences
in the formula φ. For C, the gadget consists of three points p3l1 , p3l2 , and p3l3 and
one interval iC that is hit by these three points. The point p3l1 is in the subset
Pl1 of the gadget of xi. Similarly, the points p3l2 and p3l3 is in the subsets Pl2 and
Pl3 of the gadget of xj and xk respectively.

This completes the construction that can be done in polynomial-time with
respect to the number of variables and clauses in φ. We have the following lemma.

Lemma 6. Exactly one literal is true in every clause of φ if and only if the
intervals in Iφ are hit by 2mn + m points.
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Theorem 5. The DCHSI-3D (hence the CHSI-3D) problem is NP-hard.

4.1 Approximation Algorithms

The CHSI-kD problem can be reduced to the standard weighted set cover
problem where the size of each set is bounded by k. Thus, we can obtain a
Hk factor approximation [27] for the problem. In particular, when k = 3 (the
CHSI-3D problem), we get a 11

6 approximation.

Lemma 7. The CHSI-3D problem can be approximated by a H3 = 11
6 -factor.

A 5
3
-factor approximation algorithm: We now propose an improved 5

3 factor
approximation algorithm for the CHSI-3D problem in Algorithm 1.

For each subset Pi we define its ρ value as[
number of intervals hit by the points in Pi

number of points in Pi

]
.

Algorithm 1. 5
3
-factor approximation algorithm

Input: I: set of intervals, P = {P1∪. . .∪Pd}: set of points where |Pi| ≤ 3,
Pi ∩ Pj = ∅.

Output: A subset P ′ of P that hits all the intervals of I.
1: P ′ ← ∅;
2: while all the intervals are not “hit” do
3: Sort the ρ values of the subsets;
4: P ′ ← P ′∪ set having largest ρ;
5: Remove that subset and the intervals those are “hit”;
6: update the corresponding ρ values of remaining subsets;
7: return P ′;

Algorithm 1 picks a subset with the highest ρ value in each iteration to P ′

and also updates the ρ values of the subsets in P \P ′ after removing the intervals
those are hit by P ′. As we have disjoint intervals and each subset contains at
most 3 points, the possible ρ values are 1, 2

3 , 1
2 , 1

3 . We select the subsets with
respect to the non-decreasing order of their ρ values. It can be justified that
Algorithm 1 returns a 5

3 -approximate solution, by ensuring that at each iteration,
our algorithm chooses at most 5

3 points compared to the optimum solution for
those set of intervals hit till that step. Thus, we conclude the following theorem.

Theorem 6. The CHSI-3D problem can be approximated within a factor of 5
3

in O(n log n) time.

5 Conclusion

We study a constrained version of the Geometric Hitting Set problem where the
intervals are either disjoint (CHSI-tD problem) or overlapping (CHSI-tO prob-
lem). We show that the DCHSI-D problem is in FPT. We also prove that
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the CHSI-tD problem is NP-Hard for t = 3 while the CHSI-tD problem is
polynomial-time solvable for t = 2 and gave a 5

3 -factor approximation algo-
rithm for CHSI-3D. It would be interesting to investigate whether the approx-
imation can be generalized for any t. The computational complexity of the
CHSI-tO problem for t = 2, the parameterized complexity and approxima-
tion algorithm for the CHSI-tO problem, for any t ≥ 2 also remains interesting
open questions.
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Abstract. The maximum independent set problem is one of the most
important problems in graph algorithms and has been extensively stud-
ied in the line of research on the worst-case analysis of exact algorithms
for NP-hard problems. In the weighted version, each vertex in the graph
is associated with a weight and we are going to find an independent set
of maximum total vertex weight. In this paper, we design several reduc-
tion rules and a fast exact algorithm for the maximum weighted indepen-
dent set problem, and use the measure-and-conquer technique to analyze
the running time bound of the algorithm. Our algorithm works on gen-
eral weighted graphs and it has a good running time bound on sparse
graphs. If the graph has an average degree at most 3, our algorithm runs
in O∗(1.1443n) time and polynomial space, improving previous running
time bounds for the problem in cubic graphs using polynomial space.

Keywords: Maximum weighted independent set · Exact algorithms ·
Measure-and-Conquer · Graph algorithms · Reduction rules

1 Introduction

The Maximum Independent Set problem on unweighted graphs belongs to
the first batch of 21 NP-hard problems proved by Karp [12]. In the line of
research on the worst-case analysis of exact algorithms for NP-hard problems,
Maximum Independent Set, as one of the most fundamental problems, is
used to test the efficiency of new techniques of exact algorithms. There is a long
list of contributions to exact algorithms for Maximum Independent Set in
unweighted graphs [2,8,11,13,16,17]. Now it can be solved in O∗(1.1996n) time
and polynomial space [21]. If the maximum degree of the graph is 3, the running
time bound can be improved to O∗(1.0836n) [20].

In this paper, we will consider the weighted version of Maximum Indepen-
dent Set, called Maximum Weighted Independent Set, where each vertex
in the graph has a nonnegative weight and we are asked to find an independent
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set with the maximum total vertex weight. It has many applications in vari-
ous real-world problems. For example, the dynamic map labeling problem [1,15]
can be naturally encoded as Maximum Weighted Independent Set. Some
experimental algorithms, such as the algorithms in [14,19] have been developed
to solve instances from real world and known benchmarks. These algorithms
run fast even on large scale sparse instances but lack running time analysis.
For running time bounds, most known results were obtained via two counting
problems: Counting Maximum Weighted Independent Set and Count-
ing Weighted 2-SAT. Most of these counting algorithms can also list out
all independent sets and then we can find a maximum one by increasing only a
polynomial factor. Dahllöf et al. [4] presented an O∗(1.3247n)-time algorithm for
Counting Maximum Weighted Independent Set. Later, the running time
bound was improved to O∗(1.2431n) by Fomin et al. [6]. Counting Maximum
Weighted Independent Set can also be reduced to Counting Weighted
2-SAT, preserving the exponential part of the running time. For Counting
Weighted 2-SAT, the running time bound was improved from O∗(1.2561n) [5]
to O∗(1.2461n) [9] and then to O∗(1.2377n) [18]. Wahlström [18] also showed
that the running time bound could be further improved to O∗(1.1499n) and
O∗(1.2117n) if the maximum degree of the variables or the vertices in the graph
is bounded by 3 and 4, respectively. Most of the above algorithms use only poly-
nomial space. If exponential space is allowed, dynamic programming algorithms
based on tree decompositions, by using the treewidth bound on degree-3 graphs
in [7], may achieve a better running time bound O∗(1.1225n).

In this paper, we will focus on exact algorithms specifying for Maximum
Weighted Independent Set. We develop structural properties and design
reduction rules for the problem, and then design a fast exact algorithm based
on them. By using the measure-and-conquer technique, we can prove that the
algorithm runs in O∗(1.1443(0.624x−0.872)n) time and polynomial space, where
x is the average degree of the graph. For some sparse graphs, our result beats
the known bounds. For example, the running time bound of our algorithm in
graphs with the average degree at most three is O∗(1.1443n), which improves the
previously known bound of O∗(1.1499n) using polynomial space [18]. For graphs
with the average degree at most 3.68, the running time of our algorithm is strictly
better than the running time bound O∗(1.2117n) for Maximum Weighted
Independent Set in degree-4 graphs [18].

Due to the limited space, the proofs of lemmas marked with (*) were omitted,
which can be found in the full version of this paper [10].

2 Preliminaries

Let G = (V,E,w) denote an undirected vertex-weighted graph with |V | = n
vertices and |E| = m edges, where each vertex v ∈ V is associated with a
positive weight w(v). Although our graphs are undirected, we may use an arc to
denote the relation of the weights of the two endpoints of an edge. An arc −→uv
from vertex u to vertex v means that there is an edge between u and v and it
holds that w(u) ≥ w(v).
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Let V ′ ⊆ V be a vertex subset. We let w(V ′) =
∑

v∈V ′ w(v), and N(V ′)
denote the set of vertices not in V ′ but adjacent to at least one vertex in V ′. We
also denote d(V ′) = |N(V ′)| and N [V ′] = N(V ′) ∪ V ′. We use G[V ′] to denote
the subgraph of G induced by V ′ and use G−V ′ to denote G[V \V ′]. For a graph
G′, we use C(G′) to denote the set of connected components of G′. A chain is
an induced path such that the degree of each vertex except the two endpoints
of the path is exactly 2. One vertex is a chain-neighbor of another vertex if they
are connected by a chain. For a vertex-weighted graph, a maximum weighted
independent set is an independent set S such that w(S) is maximized among
all independent sets in the graph. We use S(G) to denote a maximum weighted
independent set in graph G and α(G) to denote the total vertex weight of S(G).
Our problem is defined below.

Maximum Weighted Independent Set (MWIS)
Input: An undirected vertex-weighted graph G = (V,E,w).
Output: the weight of a maximum weighted independent set in G., i.e., α(G).

2.1 Measure-and-Conquer

Our algorithm is a branch-and-search algorithm. We will use a measure to eval-
uate the time complexity. For a branching operation, if the measure decreases by
at least ai in the i-th substance, then we say the branching vector of the opera-
tion is [a1, a2, . . . , al]. The largest root of the function f(x) = 1 − ∑l

i=1 x−ai is
called the branching factor of the recurrence.

The measure-and-conquer technique, introduced in [8], is a powerful tool to
analyze branch-and-search algorithms. The main idea is to use a non-traditional
measure to evaluate the running time. Let ni denote the number of vertices of
degree i in the graph. We associate a cost δi ≥ 0 for each degree-i vertex in the
graph. Our measure p is defined as follows:

p :=
n∑

i=0

niδi. (1)

The cost δi in this paper is given by

δi=

⎧
⎪⎪⎨

⎪⎪⎩

0 if i ≤ 1
0.376 if i = 2
1 if i = 3
1 + 0.624(i − 3) if i ≥ 4.

(2)

We also define δ<−k>
i := δi − δi−k for each integer k ≥ 0. In our analysis,

we may use the following inequalities and equalities to simplify some arguments:
δ<−1>
i = δ<−1>

3 for i ≥ 4; δ3 ≥ 2.5δ2; 3δ2 ≥ δ3.
With the above setting, we know that when p ≤ 0, the instance contains

only degree-0 and degree-1 vertices and can be solved directly. We will design
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an algorithm with running time bound O∗(cp) for some constant c. If the initial
graph has degree at most 3, then we have that p ≤ n and then the running
time bound of the algorithm is O∗(cn). In general, if we have p ≤ f(n) for some
function f on n, then we can get a running time bound of O∗(cf(n)). We have
the following lemma for the relation between p and n.

Lemma 1. (*) For a graph of n vertices, if the average degree of the graph is
at most x, then the measure p of the graph is at most (0.624x − 0.872)n.

3 Reduction Rules

We first introduce reduction rules that will be applied to reduce the instance
directly by eliminating some local structures of the graph. Some reduction rules
may include a set S of vertices in the solution set directly. We use Mc to store
the weight of the vertices that have been included in the solution set. When a
set S of vertices is included in the solution set, we will remove N [S] from the
graph and update Mc by adding w(S).

3.1 General Reductions for Some Special Structures

We use several reduction rules based on unconfined vertices, twins, vertices with
a clique neighborhood, and heavy vertices. Some of these reduction rules were
introduced in [14] and [19].

Unconfined Vertices. A vertex v in G is called removable if α(G) = α(G− v),
i.e., there is a maximum weighted independent set in G that does not contain v.
We can say that a vertex v is removable if a contradiction is obtained from the
assumption that every maximum weighted independent set in G contains v. A
sufficient condition for a vertex to be removable in unweighted graphs has been
studied in [20]. We extend this concept to weighted graphs.

For an independent set S of G, a vertex u ∈ N(S) is called a child of S
if w(u) ≥ w(S ∩ N(u)). A child u is called an extending child if it holds that
|N(u) \ N [S]| = 1, and the only vertex v ∈ N(u) \ N [S] is called a satellite of S.

Lemma 2. (*) Let S be an independent set that is contained in any maximum
weighted independent set in G. Then every maximum weighted independent set
contains at least one vertex in N(u) \ N [S] for each child u of S.

We introduce a method based on Lemma 2 to find possible removable vertices.
Let v be an arbitrary vertex in the graph. After starting with S := {v}, we repeat
(1) until (2) or (3) holds:

(1) If S has some extending child in N(S), then let S′ be the set of satellites.
Update S by letting S := S ∪ S′.

(2) If S is not an independent set or there is a child u such that N(u)\N [S] = ∅,
then halt and conclude that v is unconfined.

(3) If |N(u) \ N [S]| ≥ 2 for all children u ∈ N(S), then halt and return Sv = S.
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Obviously, the procedure can be executed in polynomial time for any starting
set S of a vertex. If the procedure halts in (2), we say vertex v unconfined. If
the procedure halts in (3), then we say that the set Sv returned in (3) confines
vertex v and vertex v is also called confined. Note that the set Sv confining v is
uniquely determined by the procedure with starting set S := {v}. It is easy to
observe the following lemma.

Lemma 3. (*) Any unconfined vertex is removable.

Reduction Rule 1 (R1). If a vertex v is unconfined, remove v from G.

Twins. A set A = {u, v} of two non-adjacent vertices is called a twin if they
have the same neighbor set, i.e., N(u) = N(v).

Reduction Rule 2 (R2) [14]. If there is a twin A = {u, v}, delete v and
update the weight of u by letting w(u) := w(u) + w(v).

Clique Neighborhood. A vertex v has a clique neighborhood if the graph
G[N(v)] induced by the open neighbor set of v is a clique, which was introduced
as isolated vertices in [14].

Reduction Rule 3 (R3) [14]. If there is a vertex v having a clique neighbor-
hood and w(v) < w(u) holds for all u ∈ N(v), then remove v from the graph,
update the weight w(u) := w(u) − w(v) for all u ∈ NG(v), and add w(v) to Mc.

Heavy Vertices. A vertex v is called a heavy vertex if its weight is not less the
weight of the maximum weighted independent set in subgraph induced by the
open neighborhood of it, i.e., w(v) ≥ α(G[N(v)]).

Reduction Rule 4 (R4). If there is a heavy vertex v of degree at most 5, then
delete N [v] from the graph and add w(v) to Mc.

It is an effective rule that has been used in some experimental algorithms [14,
19]. In this paper, we will only check heavy vertices of degree bounded by 5 and
then it can be done in polynomial time. Note that degree-0 vertices will be
reduced as heavy vertices in this step.

3.2 Reductions Based on Degree-2 Vertices

For unweighted graphs, we have good reduction rules to deal with all degree-2
vertices (see the reduction rule in [3]). However, for weighted graphs, it becomes
much more complicated. The following R5 is generalized from the concept of
folding degree-2 vertices in unweighted graphs in [3], which has been also used
in some experimental algorithms [14,19]. We also consider more reduction rules
for degree-2 vertices in some complicated structures.
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Reduction Rule 5 (R5). If there is a degree-2 vertex v with two neigh-
bors {u1, u2} such that w(u1) + w(u2) > w(v) ≥ max{w(u1), w(u2)}, then
delete {v, u1, u2} from the graph G, introduce a new vertex v′ adjacent to
NG({v, u1, u2}) with weight w(v′) := w(u1) + w(u2) − w(v), and add w(v) to
Mc.

Reduction Rule 6 (R6) ([19]). If there is a path v1v2v3v4 such that dG(v2) =
dG(v3) = 2 and w(v1) ≥ w(v2) ≥ w(v3) ≥ w(v4), then remove v2 and v3 from
the graph, add an edge v1v4 if it does not exist, update the weight of v1 by letting
w(v1) := w(v1) + w(v3) − w(v2), and add w(v2) to Mc.

Reduction Rule 7 (R7) ([19]). If there is a 4-cycle v1v2v3v4 such that
dG(v2) = dG(v3) = 2 and w(v1) ≥ w(v2) ≥ w(v3), then remove v2 and v3,
update the weight of v1 by letting w(v1) := w(v1)+w(v3)−w(v2), and add w(v2)
to Mc.

Reduction Rule 8 (R8). If there is a 4-path v1v2v3v4v5 such that dG(v2) =
dG(v3) = dG(v4) = 2 and w(v1) ≥ w(v2) ≥ w(v3) ≤ w(v4) ≤ w(v5), then
remove v2 and v4, add edges v1v3 and v3v5, update the weight of v1 by letting
w(v1) := w(v1)+w(v3)−w(v2) and the weight of v5 by letting w(v5) := w(v5)+
w(v3) − w(v4), and add w(v2) + w(v4) − w(v3) to Mc.

Reduction Rule 9 (R9). For a 5-cycle v1v2v3v4v5 such that dG(v2) =
dG(v3) = dG(v5) = 2, min{d(v1), d(v4)} ≥ 3, and w(v1) ≥ w(v2) ≥ w(v3) ≤
w(v4),

(1) if w(v3) > w(v5), then remove v5, update the weight of vi by letting w(vi) :=
w(vi) − w(v5) for i = 1, 2, 3, 4, and add 2w(v5) to Mc.

(2) if w(v3) ≤ w(v5), then remove v2 and v3, update the weight of v1 by letting
w(v1) := w(v1) − w(v2), the weight of v4 by letting w(v4) := w(v4) − w(v3)
and the weight of v5 by letting w(v5) := w(v5)−w(v3), and add w(v2)+w(v3)
to Mc.

Reduction Rule 10 (R10). For a 6-cycle v1v2v3v4v5v6 such that dG(v2) =
dG(v3) = dG(v5) = dG(v6) = 2, w(v1) ≥ max{w(v2), w(v6)}, w(v4) ≥
max{w(v3), w(v5)}, and w(v6) ≥ w(v5),

(1) if w(v2) ≥ w(v3), then remove v5 and v6, and update the weight of v2 by
letting w(v2) := w(v2) + w(v6) and the weight of v3 by letting w(v3) :=
w(v3) + w(v5);

(2) if w(v2) < w(v3), then remove v6, add edge v1v5, and update the weight of
v2 by letting w(v2) := w(v2) + w(v6), the weight of v3 by letting w(v3) :=
w(v3) + w(v5), and the weight of v5 by letting w(v5) := w(v6) + w(v3) −
max{w(v2) + w(v6), w(v3) + w(v5)}.

3.3 Reductions Based on Small Cuts

We also have some reduction rules to deal with vertex-cuts of size one or two,
which can even be used to design a polynomial-time divide-and-conquer algo-
rithm. However, a graph may not always have vertex-cuts of small size.
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Reduction Rule 11 (R11). For a vertex-cut {u} with a connected component
G∗ in G − u such that 2δ3 − δ2 ≤ ∑

v∈G∗ δdG(v) ≤ 10,

(1) if w(u) + α(G∗ − N [u]) ≤ α(G∗), then remove G∗ and {u} from G and add
α(G∗) to Mc;

(2) if w(u)+α(G∗ −N [u]) > α(G∗), then remove G∗ from G, update the weight
of u by letting w(u) := w(u)+α(G∗ −N [u])−α(G∗), and add α(G∗) to Mc.

Lemma 4. (*) Let {u, u′} be a vertex-cut of size two in G and G∗ be a connected
component in G−{u, u′}, where we assume w.l.o.g. that α(G∗ −N [u]) ≥ α(G∗ −
N [u′]). We construct a new graph G′ from G as follows: remove G∗; add three
new vertices {v1, v2, v3} with weight w(v1) = α(G∗ −N [u′])−α(G∗ −N [{u, u′}]),
w(v2) = α(G∗ −N [u])−α(G∗ −N [{u, u′}]) and w(v3) = α(G∗)−α(G∗ −N [u]),
and add five new edges uv1, v1v2, v2u

′, uv3 and u′v3. It holds that

α(G) = α(G′) + α(G∗ − N [{u, u′}]).

Reduction Rule 12 (R12). For a vertex-cut {u, u′} of size two with a con-
nected component G∗ in G − {u, u′} such that 2δ3 + δ2 ≤ ∑

v∈G∗ δdG(v) ≤ 10,
we construct the graph G′ in Lemma 4, replace G with G′, and add α(G∗ −
N [{u, u′}]) to Mc.

3.4 Analyzing Reduction Rules

It is easy to see that each application of our reduction rules can be executed in
polynomial time. We also show that

Lemma 5. The measure p will not increase after applying any reduction rule.

Definition 1. An instance is reduced, if no reduction rule can be applied.

Lemma 6. (*) In a reduced instance, any two degree-2 vertices in different
chains have at most one common chain-neighbor of degree at least 3, and each
cycle contains at least three vertices of degree ≥ 3.

Lemma 7. (*) For a triangle C in a reduced instance, each vertex in C is a
vertex of degree ≥ 3 and it has a chain-neighbor of degree at least 3 not in C.

4 Branching Rules

4.1 Two Branching Rules

We have two branching rules. The first branching rule is to branch on a vertex
v by considering two cases: (i) there is a maximum weighted independent set in
G which does not contain v; (ii) every maximum weighted independent set in
G contains v. For the former case, we simply delete v from the graph. For the
latter case, by Lemma 2 we know that we can include the set Sv confining v in
the independent set. So we delete N [Sv] from the graph.
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Branching Rule 1 (Branching on a vertex). Branch on a vertex v to gen-
erate two sub instances by either deleting v from the graph or deleting N [Sv]
from the graph and adding w(Sv) to Mc.

Since each independent set contains at most two vertices in each 4-cycle, we
have the second rule.

Branching Rule 2 (Branching on a 4-cycle). Branch on a 4-cycle v1v2v3v4
to generate two sub instances by deleting either {v1, v3} or {v2, v4} from G.

4.2 The Analysis and Some Properties

The hardest part is to analyze how much we can decrease the measure in each
sub-branch of a branching operation. Usually, we need to deeply analyze the local
graph structure and use case-analysis. Here we try to summarize some common
properties. The following notations will be frequently used in the whole paper.

Let S be a vertex subset in a reduced graph G. We use G−S to denote the
graph after deleting S from G and iteratively applying R1 to R4 until none of
them can be applied. We use RS to denote the set of deleted vertices during
applying R1 to R4 on G − S. Then G−S = G − (S ∪ RS). We also use eS to
denote the number of edges between S ∪ RS and V \ (S ∪ RS) in G. We have
the following lemmas for some bounds on p(G) − p(G−S). Note that G−S may
not be a reduced graph because of reduction rules from R5 to R12 and we may
further apply reduction rules to further decrease the measure p.

Lemma 8. (*) It holds that

p(G) − p(G−S) ≥
∑

u∈S∪RS

δdG(u) + eSδ<−1>
3 . (3)

In some cases, we can not use the bound in (3) directly, since we may not know
the vertex set RS . So we also consider some special cases and relaxed bounds.

Lemma 9. (*) Let S = {v} be a set of a vertex of degree ≥ 3. We have that

p(G) − p(G−S) ≥ δd(v) +
∑

u∈N(v)

δ<−1>
d(u) + q2δ

<−1>
3 ,

where q2 is the number of degree-2 vertices in N(v).

Lemma 10. (*) If S ∪ RS contains N [v] for some vertex v of degree ≥ 3, then
we have that

p(G) − p(G−S) ≥
∑

u∈N [v]

δd(u) + q2δ
<−1>
3 ,

where q2 is the number of degree-2 vertices in N(v).

Recall that we use C(G′) to denote the set of connected components of the
graph G′. We can easily observe the following lemma, which will be used to prove
several bounds on p(G) − p(G−S).
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Lemma 11. Let S be a vertex subset. Let S′ be a subset of S ∪ RS and R′ =
S ∪RS \S′. The number of edges between S ∪RS and V \ (S ∪RS) is eS, and the
number of edges between S′ and V \ S′ is k. For any component H ∈ C(G[R′]),
the number of edges between S′ and H is lH and the number of edges between H
and N(S ∪ RS) is rH . We have that

k − eS =
∑

H∈C(G[R′])

(lH − rH).

Furthermore, for any component H ∈ C(G[R′]) containing only degree-2 vertices,
it holds that lH − rH = 0 or 2.

Lemma 12. (*) For any subset S′ ⊆ S∪RS with k edges between S′ and V \S′,
it holds that

p(G) − p(G−S) ≥
∑

u∈S′
δdG(u) + eSδ<−1>

3 +

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, k − eS ≤ 0
δ3, k − eS = 1
δ2, k − eS = 2
δ3, k − eS = 3
2δ2, k − eS > 3.

Lemma 13. (*) Assume that a reduced graph G has a maximum degree 3 and
has no 3 or 4-cycles. For any subset S′ ⊆ S ∪ RS with k edges between S′ and
V \ S′, if the diameter of the induced graph G[S′] is 2, then it holds that either
p(G) − p(G−S) > 10 or

p(G) − p(G−S) ≥
∑

u∈S′
δdG(u) + 3δ<−1>

3 +

⎧
⎪⎪⎨

⎪⎪⎩

0, k ≤ 3
δ<−1>
3 , k = 4

2δ2, k = 5
δ2 + δ3, k = 6.

Lemma 14. (*) Assume that a reduced graph G has a maximum degree 3, and
each cycle C in it contains at least five vertices, where at least four vertices are
degree-3 vertices. For any subset S′ ⊆ S∪RS with k edges between S′ and V \S′,
if each path P in the induced graph G[S′] contains either at most three vertices
or at most two degree-3 vertices, then it holds either p(G) − p(G−S) > 10 or

p(G) − p(G−S) ≥
∑

u∈S′
δdG(u) +

{
kδ<−1>

3 , k ≤ 5
δ3 + 2δ2 + 3δ<−1>

3 , k = 6.

5 The Algorithm

Now we describe the main steps of the algorithm. When the algorithm executes
one step, we assume that all previous steps can not be applied.

Step 1 (Applying Reductions). If the instance is not reduced, iteratively
apply reduction rules in order, i.e., when one reduction rule is applied, no reduc-
tion rule with a smaller index can be applied on the graph.
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Step 2 (Solving Small Components). If there is a connected component
G∗ of G such that p(G∗) ≤ 10, solve the component G∗ directly and return
α(G − G∗) + α(G∗).

Step 3 (Branching on Vertices of Degree ≥ 5). If there is a vertex v with
degree d(v) ≥ 5, then branch on v with Branching Rule 1 by either excluding v
from the independent set or including Sv in the independent set.

Lemma 15. (*) Step 3 followed by applications of reduction rules creates a
branching vector covered by [5.368, 7.248].

Step 4 (Branching on 4-Cycles with Chords). If there is a 4-cycle C =
v1v2v3v4 with a chord v1v3 ∈ E, then branch on the 4-cycle with Branching
Rule 2 by excluding either {v1, v3} or {v2, v4} from the independent set.

Lemma 16. (*) Step 4 followed by applications of reduction rules cre-
ates a branching vector covered by one of [3δ4 + δ<−1>

3 , 4δ4 + 2δ<−1>
3 ] =

[5.496, 7.744] and [4δ4, 2δ4 + 2δ3 + 2δ2] = [6.496, 6].

Step 5 (Branching on Degree-4 Vertices). If there is a degree-4 vertex v,
then branch on it with Branching Rule 1 by either excluding v from the indepen-
dent set or including Sv in the independent set.

Lemma 17. (*) Step 5 followed by applications of reduction rules creates
a branching vector covered by one of [5.624, 5.624], [5.248, 6], [4.872, 6.624],
[4.496, 7.248], and [4.12, 7.872].

Step 6 (Branching on Other 4-Cycles). If there is a 4-cycle C = v1v2v3v4,
then branch on the 4-cycle with Branching Rule 2 by excluding either {v1, v3} or
{v2, v4} from the independent set.

Lemma 18. (*) Step 6 followed by applications of reduction rules creates a
branching vector covered by [6δ3 − 2δ2, 6δ3 − 2δ2] = [5.248, 5.248].

Step 7 (Branching on Triangles). If there is a triangle C = v1v2v3, where
we assume without loss of generality that w(v1) ≥ max{w(v2), w(v3)} and v1 is
chain-adjacent to a degree-3 vertex u 
= v2, v3, then branch on u with Branching
Rule 1.

Lemma 19. (*) Step 7 followed by applications of reduction rules creates a
branching vector covered by one of [6δ3 − 3δ2, 7δ3 + δ2] = [4.872, 7.376] and
[6δ3 − 2δ2, 5δ3 + 2δ2] = [5.248, 5.752].

Step 8 (Branching on Cycles Containing Three Degree-3 Vertices). If
there is a cycle C containing exactly three degree-3 vertices {v1, v2, v3}, where we
assume without loss of generality that v1 is chain-adjacent to a degree-3 vertex
u 
= v2, v3, then branch on u with Branching Rule 1.

Lemma 20. (*) Step 8 followed by applications of reduction rules can create a
branching vector covered by one of [6δ3 − 4δ2, 8δ3 − 2δ2] = [4.496, 7.248], [6δ3 −
3δ2, 6δ3 − δ2] = [4.872, 5.624], and [6δ3 − 2δ2, 6δ3 − 2δ2] = [5.248, 5.248].
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Step 9 (Branching on Degree-3 Vertices with Two Degree-2 Neigh-
bors). If there is degree-3 vertex u having two degree-2 neighbors and one degree-
3 neighbor v, then branch on v with Branching Rule 1.

Lemma 21. (*) Step 9 followed by applications of reduction rules creates a
branching vector covered by one of [4δ3 −δ2, 8δ3 −δ2] = [3.624, 7.624], [4δ3, 8δ3 −
4δ2] = [4, 6.496], and [4δ3 + δ2, 6δ3] = [4.376, 6].

Step 10 (Branching on Degree-3 Vertices of a Mixed Case). If a degree-
3 vertex u without degree-3 neighbors is chain-adjacent to a degree-3 vertex v with
exactly two degree-3 neighbors, then branch on v with Branching Rule 1.

Lemma 22. (*) Step 10 followed by applications of reduction rules creates a
branching vector covered by [4δ3, 8δ3 − 2δ2] = [4, 7.248].

Step 11 (Branching on Degree-3 Vertices With At Least Two Degree-
3 Neighbors). If there is a connected component H containing a degree-3 vertex
with at least two degree-3 neighbors, we let u be the vertex of the maximum weight
in H and let v be a degree-3 neighbor of u, and branch on v with Branching Rule
1.

Lemma 23. (*) Step 11 followed by applications of reduction rules creates a
branching vector covered by one of [4δ3 − δ2, 8δ3 − δ2] = [3.624, 7.624], and
[4δ3, 8δ3 − 4δ2] = [4, 6.496].

Step 12 (Branching on Other Degree-3 Vertices). Pick up an arbitrary
degree-3 vertex v and branch on it with Branching Rule 1.

Lemma 24. (*) Step 12 followed by applications of reduction rules creates a
branching vector covered by [4δ3 + 6δ2, 4δ3 + 6δ2] = [6.256, 6.256].

It is easy to see that above steps cover all the cases. Among all the branching
vectors, the bottleneck ones are [4δ3, 8δ3 − 4δ2] = [4, 6.496] in Lemma 21, [4δ3 +
δ2, 6δ3] = [4.376, 6] in Lemma 21, and [4δ3, 8δ3 − 4δ2] = [4, 6.496] in Lemma 23.
All of them have a branching factor of 1.14427. So we get that

Theorem 1. Maximum Weighted Independent Set can be solved in
O∗(1.1443p) time and polynomial space.

By Lemma 1 and Theorem 1, we get that

Corollary 1. Maximum Weighted Independent Set in graphs with average
degree x can be solved in O∗(1.1443(0.624x−0.872)n) time and polynomial space.

Let x = 3 in Lemma 1, we get that p ≤ n and the following result.

Theorem 2. Maximum Weighted Independent Set in graphs with the
average degree at most 3 can be solved in O∗(1.1443n) time and polynomial
space.
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Two Standard Decks of Playing Cards
Are Sufficient for a ZKP for Sudoku

Suthee Ruangwises(B)

Department of Mathematical and Computing Science,
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Abstract. Sudoku is a logic puzzle with an objective to fill a number
between 1 and 9 into each empty cell of a 9×9 grid such that every num-
ber appears exactly once in each row, each column, and each 3×3 block.
In 2020, Sasaki et al. proposed a physical zero-knowledge proof (ZKP)
protocol for Sudoku using 90 cards, which allows a prover to physically
show that he/she knows a solution without revealing it. However, their
protocol requires nine identical copies of some cards, which cannot be
found in a standard deck of playing cards (with 52 different cards and
two jokers). Therefore, nine identical decks are actually required in order
to perform that protocol. In this paper, we propose a new ZKP proto-
col for Sudoku that can be performed using only two standard decks of
playing cards. In general, we develop the first ZKP protocol for an n×n
Sudoku that can be performed using a deck of all different cards.

Keywords: Zero-knowledge proof · Card-based cryptography ·
Sudoku · Puzzle

1 Introduction

Sudoku is one of the world’s most popular logic puzzles. A Sudoku puzzle consists
of a 9× 9 grid divided into nine blocks of size 3× 3. Some of the cells in the grid
are already filled with numbers between 1 and 9. The player has to fill a number
into each empty cell such that every number from 1 to 9 appears exactly once
in each row, each column, and each 3 × 3 block [18] (see Fig. 1). There is also a
generalized version of Sudoku where the grid has size n × n and is divided into
n blocks of size

√
n × √

n, where n is a perfect square. The generalized Sudoku
is known to be NP-complete [25].

1.1 Zero-Knowledge Proof

We want to construct a zero-knowledge proof (ZKP) for Sudoku, which allows
a prover P to convince a verifier V that he/she knows a solution of the puzzle
without revealing any information about it. Formally, a ZKP is an interactive

A full version of this paper is available at https://arxiv.org/abs/2106.13646.
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Fig. 1. An example of a 9 × 9 Sudoku puzzle (left) and its solution (right)

proof between P and V where both of them are given a computational problem
x, but only P knows a solution w. A ZKP with perfect completeness and perfect
soundness must satisfy the following properties.

1. Perfect Completeness: If P knows w, then V always accepts.
2. Perfect Soundness: If P does not know w, then V always rejects.
3. Zero-knowledge: V does not obtain any information about w. Formally,

there exists a probabilistic polynomial time algorithm S (called a simulator)
that does not know w, and the outputs of S follow the same probability
distribution as the outputs of the actual protocol.

The concept of a ZKP was first introduced by Goldwasser et al. [5]. Recently,
many results have been focusing on constructing physical ZKPs using objects
found in everyday life such as a deck of cards. These protocols have a benefit
that they do not require electronic devices, and also have didactic values since
they are easy to understand and verify the correctness, even for non-experts in
cryptography.

2 Previous Protocols

The first ZKP protocols for Sudoku were developed by Gradwohl et al. [6] in
2009. However, each of their six proposed protocols either has a nonzero sound-
ness error or requires special tools such as scratch-off cards. In 2020, Sasaki
et al. [24] proposed the improved ZKP protocols for Sudoku that have perfect
soundness without using special tools.

2.1 Uniqueness Verification Protocol

Before showing the protocol of Sasaki et al., we first explain the following subpro-
tocol, which was also developed by the same authors [24]. This protocol allows
the prover P to convince the verifier V that a sequence σ of n face-down cards
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is a permutation of different cards a1, a2, ..., an in some order, without revealing
their orders. It also preserves the orders of the cards in σ (so that the sequence
can be later used in other protocols).

Let x1, x2, ..., xn be another set of n different cards. P performs the following
steps.

Fig. 2. A 2 × n matrix constructed in Step 1

1. Publicly place face-down cards x1, x2, ..., xn below the face-down sequence σ
in this order from left to right to form a 2 × n matrix of cards (see Fig. 2).

2. Rearrange all columns of the matrix by a uniformly random permutation.
This can be performed in real world by putting both cards in each column
into an envelope and scrambling all envelopes together.

3. Turn over all cards in the top row. V verifies that the sequence is a permu-
tation of a1, a2, ..., an. Otherwise, V rejects.

4. Turn over all face-up cards. Rearrange all columns of the matrix by a uni-
formly random permutation.

5. Turn over all cards in the bottom row. Rearrange the columns such that the
cards in the bottom rows are x1, x2, ..., xn in this order from left to right. The
sequence in the top row now returns to its original state.

2.2 Protocol of Sasaki et al.

Sasaki et al. [24] proposed three protocols to verify a solution of an n×n Sudoku
puzzle. Here we will show only the first protocol, which is the one using the least
number of cards.

Each card used in this protocol has a positive number on the front side 1 , 2 ,
...; all cards have identical back sides ? . On each cell already having a number
j, P publicly places a face-down j . On each empty cell having a number j is
P ’s solution, P secretly places a face-down j .

P then applies the uniqueness verification protocol to verify that every row,
column, and block contains a permutation of 1 , 2 , ..., n .

In total, this protocol uses n2+n cards: n identical copies of 1 , 2 , ..., n (to
encode the numbers in the grid), and another set of n different cards (to use in
the uniqueness verification protocol). For a standard 9 × 9 puzzle, the protocol
uses 90 cards, which is less than the number of cards in two standard decks;
however, it requires nine identical copies of 1 , 2 , ..., 9 . As a standard deck
consists of 54 different cards (including two different jokers), nine identical decks
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are actually required in order to perform this protocol, which are too many to be
practical. Another choice is to use a different kind of deck (e.g. cards from board
games) that includes several identical copies of some cards, but these decks are
more difficult to find in everyday life.

Considering a drawback of this protocol, we aim to develop a more practical
ZKP protocol for a 9×9 Sudoku that can be performed using only two standard
decks of playing cards.

2.3 Related Work

After the discovery of the physical ZKP protocols for Sudoku, physical ZKP
protocols for other popular logic puzzles have been proposed as well, including
Nonogram [3], Akari [1], Takuzu [1,14], Kakuro [1,15], KenKen [1], Makaro [2],
Norinori [4], Slitherlink [12], Juosan [14], Numberlink [21], Suguru [20], Ripple
Effect [22], Nurikabe [19], Hitori [19], and Bridges [23].

Besides verifying solutions of logic puzzles, card-based protocols have also
been extensively studied in secure multi-party computation, a setting where
multiple parties want to jointly compute a function of their secret inputs without
revealing the input of any party. The vast majority of work in this area, however,
also uses identical copies of ♣ and ♥ in the protocols. The only exceptions are
[9,11,16,17] which introduced AND, XOR, and copy protocols using a standard
deck, and [13] which introduced a Yao’s millionaire protocol using a standard
deck. In [11], the authors also posed an open problem to develop ZKP protocols
for logic puzzles using a standard deck.

Pratically, a standard deck of playing cards consists of 54 different cards
(including two different jokers). Theoretically, it is also a challenging problem
to develop a protocol that uses a deck of all different cards, so we also study
the setting where the deck consists of 1 , 2 , ... where each card can have an
arbitrarily large number on it.

3 Our Contribution

In this paper, we propose a new ZKP protocol for a generalized n × n Sudoku
puzzle with perfect completeness and soundness using a set of all different cards.

There are two slightly different methods to implement our protocol. The
first one uses n2 + n

√
n + n +

√
n cards and 4n

√
n shuffles. The second one uses

n2 + 2n + 3
√

n cards and at most 2n2(
√

n − 1) + 2 shuffles (see Table 1).
In particular, for a standard 9 × 9 Sudoku puzzle, our protocol (with the

second method of implementation) uses 108 cards and can be performed using
two standard decks of playing cards, regardless of whether the two decks are the
same or different types (see Table 2).

Theoretically, this work is an important step in card-based cryptography as
it is the first ZKP protocol for any logic puzzle that can be performed using a
deck of all different cards, an open problem posed in [11].
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Table 1. The number of required cards and shuffles for an n× n Sudoku

Protocol Standard Deck? #Cards #Shuffles

Sasaki et al. [24] No n2 + n 5n

Ours (Sect. 5.1) Yes n2 + n
√

n + n +
√

n 4n
√

n

Ours (Sect. 5.2) Yes n2 + 2n + 3
√

n 2n2(
√

n − 1) for even n

2n2(
√

n − 1) + 2 for odd n > 9

Table 2. The number of required cards and shuffles for a 9 × 9 Sudoku

Protocol Standard Deck? #Cards #Shuffles

Sasaki et al. [24] No 90 45

Ours (Sect. 5.1) Yes 120 108

Ours (Sect. 5.2) Yes 108 322

4 Preliminaries

At first, we assume that all cards used in our protocols have different front sides
and identical back sides (although we will later show that some pairs of cards
can have identical front sides or different back sides, and our protocol still works
correctly).

4.1 Marked Matrix

Suppose we have a k × � matrix of face-down cards (we call these cards encoding
cards). Let Row i denote an i-th topmost row and let Column j denote a j-
th leftmost column. To the left of Column 1, publicly place face-down cards
p1, p2, ..., pk in this order from top to bottom; this new column is called Column
0. Analogously, above Row 1, publicly place face-down cards q1, q2, ..., q� in this
order from left to right; this new row is called Row 0.

We call this structure a k × � marked matrix (see Fig. 3), and we call the
cards in Row 0 and Column 0 marking cards.

4.2 Shuffle Operations

Suppose we have a k × � marked matrix. For a set S ⊆ {1, 2, ..., k}, an operation
row shuf(S) rearranges the rows in S (including marking cards in Column 0) by
a uniformly random permutation. For example, row shuf({1, 3, 4}) rearranges
Row 1, Row 3, and Row 4 of the matrix by a uniformly random permutation.
This can be performed in real world by putting all cards in each row in S into
an envelope and scrambling all envelopes together.

Analogously, for a set S ⊆ {1, 2, ..., �}, an operation col shuf(S) rearranges
the columns in S (including marking cards in Row 0) by a uniformly random
permutation.
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Fig. 3. An example of a 4 × 5 marked matrix

4.3 Rearrangement Protocol

After applying some shuffle operations to a marked matrix, a rearrangement
protocol reverts the matrix back to its original state. Slightly different variants of
this protocol with the same idea has been used in previous work [2,7,8,21,22,24].

Suppose we have a k × � marked matrix M with marking cards p1, p2, ..., pk

in Column 0 and q1, q2, ..., q� in Row 0. We perform the following steps.

1. Apply row shuffle({1, 2, ..., k}) and col shuffle({1, 2, ..., �}) to M .
2. Turn over all marking cards in Column 0 and Row 0. Rearrange the rows of

M such that the marking cards in Column 0 are p1, p2, ..., pk in this order
from top to bottom. Rearrange the columns of M such that the marking cards
in Row 0 are q1, q2, ..., q� in this order from left to right.

4.4 Standard Deck Chosen Cut Protocol

Given a k × � marked matrix M , this protocol allows the prover P to choose a
card located at Row i and Column j of M he/she wants without revealing i or
j. It was modified from an original chosen cut protocol of Koch and Walzer [10]
(which uses identical copies of ♣ and ♥ ) so that it can be performed using a
standard deck. P performs the following steps.

1. Secretly stack a face-down card x1 on a card located at Row i and Column j.
2. On each of the remaining k� − 1 cards in the matrix, secretly stack each

of face-down cards x2, x3, ..., xk� in a uniformly random order. The cards
x1, x2, ..., xk� are called helper cards.

3. Apply row shuffle({1, 2, ..., k}) and col shuffle({1, 2, ..., �}) to M .
4. Turn over all helper cards. Locate the position of x1. The encoding card in

that stack is the one originally located at Row i and Column j as desired.
5. Remove all helper cards. Apply the rearrangement protocol to revert M to

its original state.

This protocol will be implicitly used in our main protocol, with Step 3 being
replaced by equivalent operations.
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5 Main Protocol

For simplicity, we will show a protocol for a standard 9 × 9 Sudoku puzzle. Our
protocol can be straightforwardly generalized to an n × n puzzle.

We use the following cards in our protocol.

– encoding cards aj , bj , cj , dj , ej , fj , gj , hj , ij (j = 1, 2, ..., 9)
– marking cards pj (j = 1, 2, 3) and qj (j = 1, 2, ..., 9)
– helper cards xj , yj , zj (j = 1, 2, ..., 9)

Suppose the grid is divided into blocks A,B, ..., I (see Fig. 4). We use a card
aj (j = 1, 2, ..., 9) to encode a number j in Block A. Analogously, we use cards
bj , cj , ..., ij (j = 1, 2, ..., 9) to encode numbers j in blocks B,C, ..., I, respectively.

Fig. 4. Blocks A,B,C,D,E, F,G,H, and I in the grid

On each cell already having a number, P publicly places a face-down corre-
sponding card (e.g. places a card b3 on a cell with a number 3 in Block B). On
each empty cell, P secretly places a face-down corresponding card according to
his/her solution.

Apply the uniqueness verification protocol in Sect. 2.1 to verify that Block A
consists of cards a1, a2, ..., a9 in some order. Do the same for Blocks B,C, ..., I.
Now V is convinced that every number from 1 to 9 appears exactly once in each
block.

Next, we will show two methods to verify that every number from 1 to 9
appears exactly once in each row and column.

5.1 Method A

First, P performs the following steps to verify that a number 1 appears exactly
once in each of the three topmost rows.

1. Take the cards from the three topmost rows to form a 3 × 9 matrix and
publicly place marking cards p1, p2, p3 in Column 0 and q1, q2, ..., q9 in Row
0 to create a marked matrix M .
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2. Secretly stack face-down cards x1, y1, and z1 on a1, b1, and c1, respectively.
3. On each of the remaining 8 cards in Block A, secretly stack each of face-

down cards x2, x3, ..., x9 in a uniformly random order. Do the same for cards
y2, y3, ..., y9 in Block B and z2, z3, ..., z9 in Block C.

4. Apply row shuffle({1, 2, 3}), col shuffle({1, 2, 3}), col shuffle({4, 5, 6}),
and col shuffle({7, 8, 9}) to M .

5. Turn over all helper cards. Locate the positions of x1, y1, and z1. Turn over
the encoding cards in these three stacks to show that they are a1, b1, and
c1, respectively, and that they are all located at different rows. Otherwise, V
rejects.

6. Remove all helper cards and turn all encoding cards face-down. Apply the
rearrangement protocol in Sect. 4.3 to revert M to its original state.

Note that Steps 2 to 6 are equivalent to applying the standard deck chosen
cut protocol in Sect. 4.4 to Blocks A, B, and C, simultaneously. These steps
ensure that the three 1s in Blocks A, B, and C are all located at different rows.
Since it has already been shown that each block contains exactly one 1, this
implies there is exactly one 1 in each of the three topmost rows.

P performs these steps analogously for numbers 2, 3, ..., 9. Now V is convinced
that every number appears exactly once in each of the three topmost rows.

P then does the same for Blocks D, E, and F and for Blocks G, H, and I
to verify the rest of the rows. The verification for columns works analogously (P
takes the cards from Blocks A, D, and G, from Blocks B, E, and H, and from
Blocks C, F , and I, and just transposes the matrix).

This method uses 81 encoding cards, 12 marking cards, and 27 helper cards,
resulting in the total of 120 cards, slightly more than the number of cards in two
standard decks, and uses 342 shuffles.1 We aim to further reduce the number of
required cards as a trade-off between the numbers of cards and shuffles.

5.2 Method B

In Method A, we verify that the three 1s in Blocks A, B, and C are all located
at different rows by verifying these three blocks at the same time, which requires
a lot of marking and helper cards. Instead, we can first verify that the two 1s in
Blocks A and B are located at different rows, then do the same for Blocks A and
C, and for Blocks B and C. This leads to the same conclusion that the three
1s in Blocks A, B, and C are all located at different rows. The formal steps for
verifying Blocks A and B are shown below.

1. Take the cards from blocks A and B to form a 3×6 matrix and publicly place
marking cards p1, p2, p3 in Column 0 and q1, q2, ..., q6 in Row 0 to create a
marked matrix M .

2. Secretly stack face-down cards x1 and y1 on a1 and b1, respectively.

1 The number of shuffles can be reduced to 108 after optimization. See the full version.
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3. On each of the remaining 8 cards in Block A, secretly stack each of face-
down cards x2, x3, ..., x9 in a uniformly random order. Do the same for cards
y2, y3, ..., y9 in Block B.

4. Apply row shuffle({1, 2, 3}), col shuffle({1, 2, 3}), and col shuffle
({4, 5, 6}) to M .

5. Turn over all helper cards. Locate the positions of x1 and y1. Turn over the
encoding cards in both stacks to show that they are a1 and b1, respectively,
and that they are located at different rows. Otherwise, V rejects.

6. Remove all helper cards and turn all encoding cards face-down. Apply the
rearrangement protocol in Sect. 4.3 to revert M to its original state.

We say that two cards are from the same set if they are denoted by the same
letter with different indices (e.g. d2 and d5 are from the same set). Notice that
in both methods, cards from different sets never get mixed together. Therefore,
cards from different sets can have identical front sides or different back sides (or
even different sizes) and our protocol still works correctly. The only requirement
is that all cards from the same set must have different front sides and identical
back sides.

This method uses 81 encoding cards, nine marking cards, and 18 helper
cards, resulting in the total of 108 cards, which is exactly the number of cards
from two standard decks (including jokers), and uses 828 shuffles.2 We can, for
example, use 54 cards from the first deck in the sets aj , bj , ..., fj and 54 cards from
the second deck in the remaining sets. The protocol works correctly regardless
of whether the two decks are identical or different, since it allows cards from
different sets to have identical front sides (in case of identical decks) or different
back sides or sizes (in case of different decks). Note that in some decks, the two
jokers are identical; in that case, we just need to make sure that the two jokers
are in different sets.

5.3 Generalization

Our protocol can be straightforwardly generalized to an n × n puzzle.
Method A uses n2 encoding cards, n +

√
n marking cards, and n

√
n helper

cards, resulting in the total of n2 + n
√

n + n +
√

n cards. It uses 4n
√

n shuffles
(after the optimization).

Method B uses n2 encoding cards, 3
√

n marking cards, and 2n helper cards,
resulting in the total of n2 + 2n + 3

√
n cards. It uses at most 2n2(

√
n − 1) + 2

shuffles (after the optimization).

6 Proof of Correctness and Security

We will prove the perfect completeness, perfect soundness, and zero-knowledge
properties of our protocol.

2 The number of shuffles can be reduced to 322 after optimization. See the full version.
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Lemma 1 (Perfect Completeness). If P knows a solution of the Sudoku
puzzle, then V always accepts.

Proof. Suppose P knows a solution and places cards on the grid accordingly.
Every number from 1 to 9 will appear exactly once in each row, each column, and
each block. Hence, the uniqueness verification protocol will pass for every block.
Also, the same numbers from different blocks are always located at different rows
and columns, so both Methods A and B will pass. Therefore, V always accepts.

��
Lemma 2 (Perfect Soundness). If P does not know a solution of the Sudoku
puzzle, then V always rejects.

Proof. Suppose P does not know a solution. There will be a number that appears
at least twice in the same row, column, or block. If it appears twice in a block,
the uniqueness verification protocol for that block will fail. If it appears twice in
different blocks in the same row (resp. column), Method A will fail when verifying
the three blocks containing that row (resp. column); also, method B will fail when
verifying the two blocks where these two numbers appear. Therefore, V always
rejects. ��
Lemma 3 (Zero-Knowledge). During the verification, V learns nothing
about P ’s solution.

Proof. It is sufficient to show that all distributions of cards that are turned
face-up can be simulated by a simulator S that does not know P ’s solution.

– In Steps 3 and 5 of the uniqueness verification protocol in Sect. 2.1, the orders
of the n cards are uniformly distributed among all n! permutations. Hence,
it can be simulated by S.

– In Step 2 of the rearrangement protocol in Sect. 4.3, the orders of p1, p2, ..., pk

and q1, q2, ..., q� are uniformly distributed among all k! permutations and �!
permutations, respectively. Hence, it can be simulated by S.

– In Step 5 of Method A in Sect. 5.1, the rows where x1, y1, and z1 are located
are uniformly distributed among all 3! = 6 permutations of the first three
rows; the columns where they are located are uniformly distributed among
all 33 = 27 combinations of three columns from Blocks A, B, and C. Also, the
orders of x2, x3, ..., x9 are uniformly distributed among all 8! permutations of
the remaining cards in Block A; the same goes for y2, y3, ..., y9 in Block B
and z2, z3, ..., z9 in Block C. Hence, it can be simulated by S.

– In Step 5 of Method B in Sect. 5.2, the rows where x1 and y1 are located
are uniformly distributed among all 3!

1! = 6 2-permutations of the first three
rows; the columns where they are located are uniformly distributed among
all 32 = 9 combinations of two columns from Blocks A and B. Also, the
orders of x2, x3, ..., x9 are uniformly distributed among all 8! permutations of
the remaining cards in Block A; the same goes for y2, y3, ..., y9 in Block B.
Hence, it can be simulated by S. ��
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7 Future Work

We developed the first ZKP protocol for Sudoku, and also the first one for any
logic puzzle, that uses a deck of all different cards. Our protocol for a standard
9× 9 Sudoku can be performed using two standard decks of playing cards. How-
ever, the drawback of our protocol is that it uses a large number of shuffles,
which makes it impractical. A possible future work is to develop an equivalent
protocol for Sudoku that uses asymptotically less number of shuffles. Other chal-
lenging future work includes developing ZKP protocols for other logic puzzles
(e.g. Kakuro, Numberlink) that uses a deck of all different cards.
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Abstract. We investigate a new variation of a token reconfiguration
problem on graphs using the cyclic shift operation. A colored or labeled
token is placed on each vertex of a given graph, and a “move” consists in
choosing a cycle in the graph and shifting tokens by one position along
its edges. Given a target arrangement of tokens on the graph, our goal
is to find a shortest sequence of moves that will re-arrange the tokens as
in the target arrangement. The novelty of our model is that tokens are
allowed to shift along any cycle in the graph, as opposed to a given sub-
set of its cycles. We first discuss the problem on special graph classes:
we give efficient algorithms for optimally solving the 2-Colored Token
Shifting Problem on complete graphs and block graphs, as well as the
Labeled Token Shifting Problem on complete graphs and variants of bar-
bell graphs. We then show that, in the 2-Colored Token Shifting Problem,
the shortest sequence of moves is NP-hard to approximate within a factor
of 2 − ε, even for grid graphs. The latter result settles an open problem
posed by Sai et al.

Keywords: Reconfiguration problem · Cyclic shift · Barbell graph ·
Block graph · NP-hard

1 Introduction

Reconfiguration arises in countless problems that involve movement and change,
including problems in computational geometry such as morphing graph draw-
ings and polygons, and problems relating to games and puzzles, such as the
15-puzzle, a topic of research since 1879 [5]. The general questions that are con-
sidered in reconfiguration problems are: can any arrangement be reconfigured
to any other; what is the worst-case number of steps required; and what is the
complexity of computing the minimum number of steps required to get from
one given configuration to another given configuration [5]. These questions can
be rephrased in terms of the configuration graph, which is the graph whose ver-
tices are all possible configurations, and whose edges represent feasible moves:
is the configuration graph connected; what is its diameter; how efficiently can
one compute distances between vertices in this graph? Previously studied token
reconfiguration problems include the Token Swapping Problem, where pairs of
tokens can be swapped along the edges of a graph. The Token Swapping Problem
c© Springer Nature Switzerland AG 2021
C.-Y. Chen et al. (Eds.): COCOON 2021, LNCS 13025, pp. 643–654, 2021.
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is proved to be NP-complete, and there are many special classes of graphs on
which the Token Swapping Problem can be solved exactly by polynomial-time
algorithms, including complete graphs, paths, cycles, stars, brooms, complete
bipartite graphs, and complete split graphs (see, e.g., [2] for comprehensive sur-
veys).

Recently, the Token Shifting Problem was introduced by Sai et al. in [6],
inspired by puzzles based on cyclic shift operations. The input of the problem is
a graph with a distinguished set of cycles C, and an initial and a final arrangement
of colored tokens on the vertices of the graph. The basic operation is called “shift”
along a cycle C ∈ C, and it moves each token located on a vertex of C into the
next vertex along C. The problem asks for a sequence of shift operations that
transforms the initial configuration into the final configuration. We can further
distinguish between the Labeled Token Shifting Problem, where all tokens are
distinct, and the k-Colored Token Shifting Problem, where tokens come in k
different colors, and same-colored tokens are indistinguishable.

It was shown in [6] that the Labeled Token Shifting Problem is solvable in
polynomial time on a large class of graphs, while solving the k-Colored Token
Shifting Problem in the minimum number of moves is NP-hard, even for k = 2.

In this paper, we study a variation of the Token Shifting Problem where the
set of cycles C consists of all cycles in the graph (as opposed to a subset of them).
On one hand, our choice makes the problem’s description more natural and
compact; on the other hand, proving hardness results is now more challenging.
Indeed, previous NP-hardess proofs for variations of the Token Shifting Problem
crucially relied on the fact that only shifts along certain cycles were allowed.

In Sect. 3, we give linear-time algorithms for the shortest shift sequence for
both the 2-Colored and the Labeled Token Shifting Problem for complete graphs.
In Sect. 4, we discuss the shortest shift sequence for the Labeled Token Shifting
Problem on standard barbell graphs, and then on generalized barbell graphs
with more than one connecting edge. In Sect. 5, we study the 2-Colored Token
Shifting Problem for block graphs. Finally, in Sect. 6 we prove that, in the 2-
Colored Token Shifting Problem, the shortest sequence of moves is NP-hard to
approximate within a factor of 2 − ε, even for planar graphs with a maximum
degree of 4.

Notably, our NP-hardness result settles a problem left open in [6], which asked
whether the Token Shifting Problem remains NP-hard when restricted to planar
graphs or graphs of constant maximum degree. We remark that in [1], Amano
et al. proved that a 2-Colored Token Shifting Problem called Torus Puzzle is
NP-hard to solve in the minimum number of shifts. This puzzle consists of two
arrays of horizontal and vertical cycles arranged in a grid, which yields a planar
graph of maximum degree 4. However, in this puzzle the number of moves is
measured in a different way: any number k > 0 of consecutive shifts along the
same cycle is counted as only one move, while in our model (as well as in [6])
we count them as k moves. Because of this, the NP-hardness reduction in [1]
does not work in our model. In addition, the majority of cycles in the graph of
the Torus Puzzle are forbidden from shifting (such is, for example, the 4-cycle
determined by any cell in the grid). However, as already remarked, in our model
we insist on allowing shifts along any cycle.
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2 Preliminaries

Let G = (V,E) be an undirected connected graph, where V is the vertex set and
E is the edge set, and let Col = {1, 2, . . . , c} be the color set for tokens, where c
is constant. A token arrangement (or configuration) is a function f : V → Col,
where f(v) represents the color of the token located on the vertex v ∈ V .

The token shift operation can be defined as follows. Let C = (v1, v2, . . . , vk)
be a cycle of k > 1 distinct vertices of G = (V,E), where {vi, vi+1} ∈ E for all
1 ≤ i < k and {vk, v1} ∈ E. Then, a token shift along C will transform any
arrangement f into the arrangement f ′, which coincides with f on all vertices
except the ones in C. Specifically, for vi ∈ {v1, v2, . . . , vk−1}, we have f ′(vi+1) =
f(vi), and f ′(v1) = f(vk). All cycles in G are eligible for token shift, and the
length of the cycle can range from 2 to |V |. Note that we consider each edge of
G as a cycle of length 2; in this case, the result of the shift operation will be
equivalent to a token swap along that edge.

The Token Shifting Problem takes as input a connected graph G = (V,E), a
color set Col, an initial arrangement f0, and a final arrangement ft. The problem
asks to determine a shortest sequence of shift operations OPT that transforms
f0 into ft, assuming that such a sequence exists.

Note that, since swaps along edges are allowed, it is possible to transform f0

into ft if and only if they have the same number of tokens of each color, which is
checkable in linear time given f0 and ft. Thus, without loss of generality, we may
assume that there is always a sequence of shift operations that transforms f0

into ft, and our goal is to find the shortest one. Furthermore, it is easy to prove
that |OPT| ≤ |V |(|V | − 1)/2 (this bound is obtained by using swap operations
only; cf. [7, Theorem 1]). Since we have a polynomial upper bound of the number
of shift operations, the Token Shifting Problem is in NP.

We distinguish between the k-Colored Token Shifting Problem, where the
size of Col is a fixed constant k, and the Labeled Token Shifting Problem, where
Col = V , and f0 and ft are permutations of V (that is, all tokens have distinct
labels). In this paper, we will mostly focus on the 2-Colored Token Shifting
Problem (i.e., where Col = {c1, c2}) and the Labeled Token Shifting Problem.

3 Token Shifting on Complete Graphs

3.1 2-Colored Token Shifting on Complete Graphs

In this section, we show that for the 2-Colored Token Shifting Problem on com-
plete graphs, an optimal shift sequence can be constructed in linear time.

Theorem 1. The 2-Colored Token Shifting Problem on a complete graph G =
(V,E) can be solved in linear time by a single shift operation.

Proof. Let Col = {c1, c2} be the color set and let f0 and ft be the initial and
target token arrangements, respectively. We can construct two sets V1 and V2 of
vertices as follows:

V1 = {v ∈ V | f0(v) = c1 and ft(v) = c2} and
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Fig. 1. 2-colored token shifting on a complete graph: (a) an initial token arrangement
f0, (b) a target token arrangement ft, and (c) an optimal shift cycle

V2 = {v ∈ V | f0(v) = c2 and ft(v) = c1}.

Given that f0 is re-configurable to ft, |V1| = |V2| = m for a complete graph
with 2m misplaced tokens. Thus, we can construct a cycle of length 2m that
visits each vertex in V1 and V2 alternately. For V1 = {x1, x2, . . . , xm} and V2 =
{y1, y2, . . . , ym}, the shift (x1, y1, x2, y2, . . . , xm, ym) transforms f0 into ft. ��

For example, in Fig. 1, V1 = {v5, v8} and V2 = {v2, v4}. From V1 and V2 the
shift cycle (v2, v5, v4, v8) can be constructed, which transforms f0 into ft.

3.2 Labeled Token Shifting on Complete Graphs

In this section, we show that the Labeled Token Shifting Problem on a complete
graph can be solved by at most two shift operations.

Theorem 2. The Labeled Token Shifting Problem on a complete graph G =
(V,E) can be solved with a minimum shift sequence |OPT| ≤ 2 in linear time.

Proof. Let f0 and ft be the initial and target token arrangements, respectively.
We define the conflict graph D(fa, fb) = (V ′, E′) for two arrangements fa and
fb as follows [7]:

V ′ = {v ∈ V | fa(v) �= fb(v)} and

E′ = {e = (vi, vj)| fa(vi) = fb(vj) and vi, vj ∈ V ′}.

D(f0, ft) is a digraph that includes vertices that hold different tokens in the
initial and target token arrangements and there is an arc from vi to vj if the
token on vi needs to be moved to vj . A simple example is given in Fig. 2. One way
to transform f0 to ft would be to perform a token shift along each directed cycle
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Fig. 2. (a) An initial token arrangement f0, (b) the conflict graphs DA(f0, ft) and
DB(f0, ft)

in D(f0, ft); if there are only 1 or 2 cycles, this strategy is optimal. However, it
is not optimal when the number of cycles is greater than 2.

We consider the disjoint cycles in D(f0, ft) as permutation cycles. For exam-
ple, in Fig. 2(c) we have the three disjoint cycles (v1, v4), (v2, v6, v3, v7), and
(v5, v8), which collectively correspond to the permutation (14)(2637)(58).

We will use the following general fact: let us be given m disjoint cyclic per-
mutations involving n elements in total; the product of these m disjoint cycles
and a length-m cycle consisting of one element from each disjoint cycle is a single
length-n cycle that includes all n elements. For example, (14)(2637)(58)(521) =
(18563724). Equivalently, (14)(2637)(58) = (18563724)(125). In other words, we
can express the product of any set of m > 2 disjoint cyclic permutations as the
product of only two cycles.

Therefore, we construct a first cycle including one vertex from each cycle in
D(f0, ft), and we shift along this cycle once. This will result in an arrangement f1

whose conflict graph D(f1, ft) consists of a single directed cycle (see Fig. 2(d)).
We can then perform a single shift along this cycle to obtain the target token
arrangement ft. ��

Corollary 1. For the k-Colored Token Shifting Problem on a complete graph
G = (V,E), we have |OPT| ≤ 2.

Proof. Let f0 and ft be the initial and final arrangements, respectively. Let
Col′ = V , and let us define f ′

0 as an arbitrary bijection f ′
0 : V → Col′. We then

define f ′
t : V → Col′ as a bijection that, for all vi, vj ∈ V , satisfies f ′

0(vi) =
f ′
t(vj) =⇒ f0(vi) = ft(vj). Essentially, we assign unique labels to tokens in
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a way that is consistent with their colors. Thus, we obtain an instance of the
Labeled Token Shifting Problem, which we can solve by Theorem 2. The same
sequence of moves also solves the original instance, by construction. ��
Note that, for the k-Colored Token Shifting Problem with k > 2, we do not have
an efficient algorithm to determine when |OPT| = 1 and when |OPT| = 2. We
leave this as an open problem.

4 Token Shifting on Barbell Graphs and Their
Generalizations

In this section, we consider the Labeled Token Shifting Problem on barbell
graphs and their generalization. A barbell graph is a simple graph obtained by
connecting two complete graphs by an edge, which is called its bar. Our goal is
to find the minimum shift sequence between initial and final token arrangements
f0 and ft on a barbell graph. Then we extend our result to generalized barbell
graphs that have two or more bars.

4.1 Token Shifting on Barbell Graphs

We first show that we can find the minimum shift sequence on a barbell graph
in linear time. Let G be a barbell graph composed of two cliques A and B, each
of size n, connected by a single edge: the bar.

The two cliques A and B contain n vertices each, from v1 to vn and from
vn+1 to v2n, respectively. The two vertices joined by the bar will be referred
as gate vertices. Furthermore, we subdivide the tokens into two types, based
on their matching vertices in the target arrangement: local tokens and foreign
tokens, as follows. Tokens on vertices in a clique whose target vertices are in
the other clique are referred to as foreign tokens. Let foreign(A) be the set of
foreign tokens in A in f0 and foreign(B) be the set of foreign tokens in B in f0,
as follows:

foreign(A) = {vi ∈ V | f0(vi) = ft(vj) where vi ∈ A and vj ∈ B},

foreign(B) = {vi ∈ V | f0(vi) = ft(vj) where vi ∈ B and vj ∈ A}.

Let F = |foreign(A)| = |foreign(B)|. In the following, we will prove that
3F − 2 ≤ |OPT| ≤ 3F + 4. Note that |foreign(A)| = |foreign(B)| = F must
hold in order for f0 to be re-configurable to ft. Let SF be a shortest sequence
of shifts that moves all 2F foreign tokens to their matching vertices. Note that
this may still leave some non-foreign tokens on incorrect vertices; we will deal
with re-configuring these tokens later.

Lemma 1. In the Labeled Token Shifting Problem on a barbell graph, we have
3F − 2 ≤ |SF | ≤ 3F + 2.
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Proof. To transform f0 to ft, it is required for every foreign token on A and
B to cross the bar at least once. Note that we can move two foreign tokens by
performing a token exchange across the bar. In the worst case, a foreign token
needs to be moved three times: from the current vertex to the nearest gate vertex,
then across the bar to the gate vertex of the target clique, and then to the target
vertex. Firstly, a foreign token on each clique must be moved to the gate vertex
of that clique, which takes 2 shifts in total. Then, the actual exchange of tokens
on gate vertices in a shift cycle (vn, vn+1) of length 2 occurs. Next, in each clique,
the token on the gate vertex, say vn, is moved to its target vertex vi, while a
new foreign token is moved from vj to the gate. This is done with the single
cycle (vn, vi, vj). After the F th exchange, we need one more shift in each clique
to move the token from the gate vertex to its target vertex. Therefore, in the
worst case we do F exchanging shifts and 2F + 2 local shifts, which is 3F + 2
shifts in total. However, we also need to consider the following special cases.

Condition 1. A gate vertex already holds a foreign token in the initial arrange-
ment f0.

If a gate vertex already holds a foreign token in the initial arrangement, then
the initial shift for moving a foreign token to that gate vertex is not necessary.
Hence, in the cases where A or B (or both) satisfy Condition 1, we need one (or
two) fewer shift than 2F + 2.

Condition 2. The target token of a gate vertex (i.e., the token that is on a gate
vertex in ft) is in the opposite clique in f0.

If this condition is satisfied, we can move that gate’s final token across the
bar in the F th exchange. This way it is already in place when it enters the
clique, and we can spare the final shift in that clique. Thus, in the extreme case
where both gate vertices satisfy Conditions 1 and 2, and only 3F − 2 shifts are
necessary. ��
As for the local tokens, their target vertices are within the same clique. Hence,
by Theorem 2, at most 2 shifts are necessary to solve the problem in each clique.
We can now present this section’s main result

Theorem 3. The Labeled Token Shifting Problem on a barbell graph G = (V,E)
can be solved with an optimal shift sequence in linear time, satisfying 3F − 2 ≤
|OPT| ≤ 3F + 4. ��

4.2 Token Shifting on Generalized Barbell Graphs with Two Bars

In this section, we extend our previous result to generalized barbell graphs. That
is, we join two cliques by two bars instead of one, and this allows us to more
effectively exploit the cyclic shift operation.

Let G be a generalized barbell graph with 2n vertices, with cliques A and
B consisting of vertices from v1 to vn and vn+1 to v2n, respectively. Two bars
e1 and e2 connect A and B such that e1 is incident to vn and vn+1 and e2 is
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Fig. 3. Representation of token shifting on (a) a barbell graph, (b) a generalized barbell
graph with 2 bars, and (c) a generalized barbell graph with k > 2 bars

incident to vn−1 and vn+2. Let F = |foreign(A)| = |foreign(B)|, defined as in the
previous section. We can combine the two steps into one by exchanging foreign
tokens and bringing the foreign tokens to the gate vertices for the next exchange
in a single shift.

Theorem 4. The Labeled Token Shifting Problem on a generalized barbell graph
G = (V,E) with 2 bars can be solved with an optimal shift sequence in linear
time, satisfying F ≤ |OPT| ≤ F + 4. ��

4.3 Token Shifting on Generalized Barbell Graphs with k ≥ 2 Bars

For the next step, we discuss the Labeled Token Shifting Problem on generalized
barbell graphs with k > 2 bars. Here, G is a graph consisting of two equal cliques
A and B connected by k edges, called bars, such that no two bars are incident
to the same vertex. Let F = foreign(A) = foreign(B), defined as usual.

Theorem 5. The Labeled Token Shifting Problem on a generalized barbell graph
G = (V,E) with k ≥ 2 bars can be solved with an optimal shift sequence that
satisfies F/
k/2� ≤ |OPT| ≤ F/
k/2� + 4.

Proof. In the previous section, we proved that token shifting on a barbell graph
with 2 connecting edges for 2F foreign tokens uses F + 4 shifts: 2 local shifts
for moving foreign tokens on gate vertices at the start, F shifts for exchanging
foreign tokens between cliques, and 2 local shifts to rearrange tokens within
cliques. Now, while the number of local shifts remains the same, the number of
exchanging shifts decreases as k increases.
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Half of the k edges can be used to move the foreign tokens from A to B and
another half of the k edges can be used to move foreign tokens from B to A. In
one shift, we can exchange k tokens for even k and k − 1 tokens for odd k (see
Fig. 3(c)). Thus, for F tokens, we only need F/
k/2� shifts. ��

5 2-Colored Token Shifting on Block Graphs

In this section, we discuss the 2-Colored Token Shifting Problem on block graphs.
A block graph (or a clique tree) is a graph in which every bi-connected component
(block) is a clique (see Fig. 4).

Definitions. In order to state this section’s result, we need some definitions.
Given a block graph G = (V,E), where a block is a maximal clique, an articu-
lation point is a vertex that belongs to more than one block. Let P ⊆ V be the
set of articulation points of G, and let K be the set of blocks of G. We define
the tree representation of G (see [3]) as the undirected graph T (G) = (V ′, E′),
where V ′ = P ∪ K and

E′ = {{k, p}| the articulation point p ∈ P lies in the block k ∈ K}.

When referring to T (G), the nodes in P are called articulation nodes, and the
nodes in K are called clique nodes. Figure 4(c) shows an example of a tree rep-
resentation. For a clique node k ∈ K, we write I(k) to indicate the vertices of G
that are in the block k but are not articulation points, i.e., I(k) = k \ P . Note
that I(k) induces a (possibly empty) clique in G.

Now, let G = (V,E) be a block graph with n vertices, let Col = {c1, c2} be
the color set, and let f0 and ft be the initial and target token arrangements on
G. We say that an articulation node p ∈ P holds color c ∈ Col if f0(p) = c.
Also, if f is an arbitrary arrangement, we write nc(f(p)) = 1 if f(p) = c, and
nc(f(p)) = 0 otherwise. Similarly, for a clique node k ∈ K, let nc(f(k)) be the
number of c-colored tokens in I(k) ⊆ V in the arrangement f . Then, we say that
a clique node k of T (G) holds color c if nc(f0(k)) > nc(ft(k)).

For each node x in T (G), x has a value of nc1(f0(x)) − nc1(ft(x)). For each
edge e in E′ connecting two nodes k ∈ K and p ∈ P , we define the number diff(e)
as follows (cf. [8]). Let Tk be the subtree including node k resulted by the removal
of e from T (G). nc1(f(T ′)) is the number of c1 tokens on the set of vertices of G
represented by T ′ in arrangement f . Then, diff(e) = nc1(ft(Tk)) − nc1(f0(Tk)),
i.e., the difference in number of c1 tokens on T ′ between f0 and ft. For simplicity,
diff(e) can be defined as the number of c1 tokens (and, symmetrically, also c2

tokens) that we must move along e to transform f0 into ft. If diff(e) = d > 0, it
means we need to move d tokens of color c1 to k. If diff(e) = −d < 0, it means
we need to move d tokens of color c2 to k.

Finally, we define E′
k ⊆ E′ to be the set of edge of T (G) that are incident to

the clique node k.
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Theorem 6. For the 2-Colored Token Shifting Problem on a block graph G =
(V,E), we have

∑

k∈K

max
e∈E′

k

{|diff(e)|} ≤ |OPT| ≤
∑

k∈K

max

⎧
⎪⎪⎨

⎪⎪⎩

∑

e∈E′
k

diff(e)>0

diff(e),
∑

e∈E′
k

diff(e)<0

|diff(e)|, 1

⎫
⎪⎪⎬

⎪⎪⎭
,

and a shift sequence within these bounds can be computed in O(n2) time.

Proof. For the upper bound, we will give a procedure for finding a shift sequence.
We first construct the tree representation T (G) in O(n2) time. From T (G), we
determine the sequence of shifts by deciding on which clique the shift must be
performed in each step (note that, in a block graph, every cycle is included in a
single clique).

For a clique k with an excess of c1 tokens connected to an articulation vertex
p, some c1 tokens in k must be moved out and some c2 tokens must be moved
in through p. We need to perform a shift that moves the extra c1 token in k to
the articulation vertex p and the c2 tokens on p to the target vertex in k. On
T (G), it will be a token exchange between a clique node k that holds color c1

and the articulation node p that holds color c2 along the edge e = {k, p} ∈ E′.
This exchange will decrease |diff(e)| and change the color of p to c1. However,
in the case where the p holds the same color c1 as k, it is pointless to perform
a shift between them. The same goes for a clique with nc2(f0(k)) > nc2(ft(k)).
If diff(e) = 0, no token needs to be moved across e, and e can be removed from
T (G). For G to achieve the target arrangement ft, all the edges in T (G) must
be removed. Thus, we can construct the shift sequence for G from T (G) by
determining the clique nodes for an exchange in each step.

We now discuss how to choose a feasible clique node for token exchange.
There are three types of clique nodes in T (G).

A leaf node is a clique node with an articulation node, the removal of which
will disconnect the clique node from the other clique nodes in T (G). When we
look for a clique for token exchange, we start with the leaf nodes and go up
the tree T (G). A leaf node k connected to node p by edge e is feasible for an
exchange if k and p hold different colors and |diff(e)| > 0.

Non-leaf nodes are those with multiple articulation nodes connecting them to
other clique nodes in T (G). In non-leaf nodes, we can exchange one or more pairs
of different color tokens in one shift. For a non-leaf node k with m articulation
nodes p1, p2, . . . , pm, k is feasible for an exchange (1) if there are one or more
edges e = (k, p) with |diff(e)| > 0, and k and p hold different colors, where
p ∈ {p1, p2, . . . , pm} and k has non-zero value or (2) if k is connected to one or
more pairs of articulation nodes pi and pj ∈ {p1, p2, . . . , pm} where pi and pj
hold different colors, and diff(ei = {k, pi}) and diff(ej = {k, pj}) have opposite
sign (one positive, one negative).

An isolated node is already disconnected from other clique nodes in T (G)
and the amount of both c1 and c2 tokens in it is the same for f0 and ft. For each
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Fig. 4. (a) Initial arrangement f0, (b) target arrangement ft, and (c) tree representa-
tion T (G) of block graph G with positive values over nodes that need black tokens,
negative values over nodes that need white tokens, diff(e) values over each edge e, and
dotted lines for removed edges

isolated node k with no edge in T (G), if f0(k) �= ft(k), then one shift suffices to
reach the target arrangement as nc(f0(k)) = nc(ft(k)), c ∈ {c1, c2}.

As for the lower bound, we observe that, for each clique node k, we can
only move one token to or from each articulation point in a shift and decrease
the |diff(e)| of each edge by one. Therefore, if k is incident to an edge e with
|diff(e)| = d, then at least d shifts must be performed in the clique corresponding
to k. Thus, to remove all the edges incident to a clique node k in T (G), at least
maxe∈E′

k
{|diff(e)|} shifts are necessary. ��

6 Hardness of 2-Colored Token Shifting

In this section, we show that a shortest shift sequence for the 2-Colored Token
Shifting Problem is not only NP-hard to compute, but also NP-hard to approx-
imate within a factor of 2 − ε, for any ε > 0. This is true even if the graph
G is a grid graph, hence planar and with maximum degree 4. We will prove it
by a reduction from the NP-complete problem of deciding if a grid graph has a
Hamiltonian cycle, i.e., a cycle involving all vertices [4].

Theorem 7. The optimal shifting sequence for the 2-Colored Token Shifting
Problem is NP-hard to approximate within a factor of 2 − ε, for any ε > 0, even
for grid graphs.

Proof. Let G = (V,E) be a connected grid graph (i.e., a vertex-induced finite
subgraph of the infinite grid), and let a checkered arrangement be an arrange-
ment of two-colored tokens on G such that tokens on any two adjacent vertices
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Fig. 5. (a) Initial arrangement f0 and (b) target arrangement ft

have different colors. Note that, for any given G, there are exactly two different
checkerboard arrangements.

Our reduction maps the grid graph G to the 2-Colored Token Shifting Prob-
lem on the same graph G, where the initial arrangement f0 and the target
arrangement ft are the two distinct checkerboard arrangements (see Fig. 5).

Observe that f0(v) �= ft(v) for all v ∈ V , and thus a sequence of shift
operations that transforms f0 into ft must move every token at least once. More
precisely, ft is reached if and only if every token takes part in an odd number
of shift operations. If G has a Hamiltonian cycle C, then the shift operation
along C immediately transforms f0 into ft, and hence |OPT| = 1. Conversely,
if |OPT| = 1, the single shift operation that transforms f0 into ft must involve
every vertex, and thus it must be a Hamiltonian cycle.

We have proved that, if G has a Hamiltonian cycle, then |OPT| = 1, and
that if G does not have a Hamiltonian cycle, then |OPT| ≥ 2. Thus, if we could
compute an approximation of |OPT| within a factor of 2− ε in polynomial time,
we would also be able to decide if G has a Hamiltonian cycle. Since the latter
problem is NP-hard [4], then so is the former problem. ��
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Abstract. In combinatorial reconfiguration, the reconfiguration prob-
lems on a vertex subset (e.g., an independent set) are well investigated.
In these problems, some tokens are placed on a subset of vertices of the
graph, and there are three natural reconfiguration rules called “token
sliding,” “token jumping,” and “token addition and removal”. In the
context of computational complexity of puzzles, the sliding block puz-
zles play an important role. Depending on the rules and set of pieces, the
sliding block puzzles characterize the computational complexity classes
including P, NP, and PSPACE. The sliding block puzzles correspond to
the token sliding model in the context of combinatorial reconfiguration.
On the other hand, a relatively new notion of jumping block puzzles is
proposed in puzzle society. This is the counterpart to the token jumping
model of the combinatorial reconfiguration problems in the context of
block puzzles. We investigate several variants of jumping block puzzles
and determine their computational complexities.

Keywords: Combinatorial reconfiguration · Computational
complexity · Jumping block puzzle · Sliding block puzzle · Token
jumping

1 Introduction

Recently, the reconfiguration problems attracted the attention in theoretical com-
puter science. These problems arise when we need to find a step-by-step trans-
formation between two feasible solutions of a problem such that all intermediate
results are also feasible and each step abides by a fixed reconfiguration rule, that
is, an adjacency relation defined on feasible solutions of the original problem.
The reconfiguration problems have been studied extensively for several well-
known problems, including independent set [12,14], satisfiability [8,16],
set cover, clique, matching [12], vertex coloring [2–4], and shortest
path [13].

c© Springer Nature Switzerland AG 2021
C.-Y. Chen et al. (Eds.): COCOON 2021, LNCS 13025, pp. 655–667, 2021.
https://doi.org/10.1007/978-3-030-89543-3_54

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89543-3_54&domain=pdf
http://orcid.org/0000-0002-0087-853X
http://orcid.org/0000-0003-0895-3765
https://doi.org/10.1007/978-3-030-89543-3_54


656 M. Kanzaki et al.

In the reconfiguration problems that consist in transforming a vertex subset
(e.g., an independent set), there are three natural reconfiguration rules called
“token sliding,” “token jumping,” and “token addition and removal” [14]. In
these rules, a vertex subset is represented by the set of tokens placed on each
of the vertices in the set. In the token sliding model, we can slide a token on
a vertex to another along an edge joining these vertices. On the other hand, a
token can jump to any other vertex in the token jumping model.

In the puzzle society, tons of puzzles have been invented which can be seen as
realizations of some reconfiguration problems. Among them, the family of sliding
block puzzles has been playing an important role bridging recreational mathemat-
ics and theoretical computer science. A classic puzzle is called the Dad puzzle;
it consists of rectangle pieces in a rectangle frame, and the goal is to slide a
specific piece (e.g., the largest one) to the goal position. The Dad puzzle was
invented in 1909 and the computational complexity of this puzzle was open since
Martin Gardner mentioned it. After almost four decades, Hearn and Demaine
proved that the puzzle is PSPACE-complete in general (a comprehensive survey
can be found in [9]). When all pieces are unit squares, we obtain another famous
puzzle called the 15-puzzle; in this puzzle, we slide each unit square using an
empty area and arrange the pieces in order. From the viewpoint of combinato-
rial reconfiguration, this puzzle has remarkable properties in the general form
of the (n2 − 1)-puzzle. For given initial and final arrangements of pieces, the
decision problem asks if we can transform from the initial arrangement to the
final arrangement. Then the decision problem can be solved in linear time, and
for a yes-instance, while a feasible solution can be found in O(n3) time, finding
a shortest solution is NP-complete (see [5,18]).

To see how the computational complexity of a reconfiguration problem
depends on its reconfiguration rule, it is natural to consider the “jumping block”
variant as a counterpart of sliding block puzzles. In fact, in the puzzle society,
some realizations of jumping block puzzles have been invented. As far as the
authors know, “Flying Block” was the first jumping block puzzle, which was
designed by Dries de Clercq and popularized at International Puzzle Party by
Dirk Weber in 2008.1 The Flying Block consists of four polyominoes (see [7] for
the notion of polyominoes) within a rectangle frame. The goal is similar to the
Dad puzzle; moving a specific piece to the goal position. In one move, we first
pick up a piece, rotate it if necessary, and then put it back into the frame. A key
feature is that each piece has a small tab for picking up. Because of this feature,
flipping a piece is inhibited when we put it into the frame. In this framework,
several puzzles were designed by Hideyuki Ueyama, and some of them can be
found in [1] (see Concluding Remarks for further details).

Later, Fujio Adachi invented another jumping block puzzle which is called
Flip Over (or Turn Over). It was invented in 2016 and popularized at Inter-

1 You can find “Flying Block”, “Flying Block II”, and “Flying Block III” at http://
www.robspuzzlepage.com/sliding.htm (accessed in June 2021).

http://www.robspuzzlepage.com/sliding.htm
http://www.robspuzzlepage.com/sliding.htm
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Fig. 1. An example of the flip over puzzle. Each piece has its front side and back side,
and the goal is to make them back-side up.

national Puzzle Party by Naoyuki Iwase in 2019.2 This puzzle consists of four
polyominoes in an orthogonal frame, which is not a rectangle. The operation
is a bit different from Flying Block; you can flip the piece in addition to the
rotation if you like. Each piece has its front side and back side (distinguished by
their colors). The goal of this puzzle is to make all pieces back-side up. A simple
example is given in Fig. 1.

As far as the authors know, the jumping block puzzles have never been inves-
tigated in the context of the reconfiguration problems. In this paper, we first
investigate the jumping block puzzle under the model of Flip Over. That is, the
flip over puzzle problem is formalized as follows:

Flip over puzzle
Input: A set of polyominoes in an orthogonal frame.
Operation: Pick up a piece, rotate and flip it if desired, and put it back into

the frame.
Goal: To make every piece back-side up in the frame.

We first observe that each piece can be flipped in-place if it is line symmet-
ric. That is, when all polyominoes are line symmetric, it is a yes-instance and
all pieces can be flipped in a trivial (shortest) way. In contrast with that, the
existence of one asymmetric piece changes the computational complexity of this
puzzle. The first result in this paper is the following theorem:

Theorem 1. The flip over puzzle is PSPACE-complete even with all the follow-
ing conditions: (1) the frame is a rectangle without holes, (2) every line sym-
metric piece is a rectangle of size 1 × k with 1 ≤ k ≤ 3, (3) there is only one
asymmetric piece of size 4, and (4) there is only one vacant unit square.

We note that all polyominoes of size at most 3 are line symmetric (i.e.,
monomino, domino, I-tromino, and L-tromino in terms of polyomino). There-
fore, Theorem 1 is tight since it contains only one minimum asymmetric piece.

We show Theorem 1 by a reduction from the Nondeterministic Constraint
Logic (NCL). It is known that the NCL is PSPACE-complete even if the given
input NCL graph has constant bandwidth [20]. Using the result in [20], we will
have the claim in Theorem 1 even if the frame is a rectangle of constant width.
On the other hand, if the frame is a rectangle of size 1 × m, the problem is
trivial: each piece should be a rectangle of width 1 and hence it can be flipped
to back side in-place in one step. Interestingly, the problem is intractable when
the frame has width 2.
2 Some commercial products can be found at http://www.puzzlein.com/ (in Japanese;
accessed in June 2021).

http://www.puzzlein.com/
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Theorem 2. The flip over puzzle is NP-hard even with all the following con-
ditions: (1) the frame is a rectangle of width 2 without holes, (2) every line
symmetric piece is a rectangle of width 1, and (3) there is only one asymmetric
piece.

In our reduction for proving Theorem 2, the constructed instances admit a
sequence of flips, if any exists, of length polynomial in n. However, we do not
know whether the flip over puzzle on a frame of width w is in NP or not for
some small constant w ≥ 2. On the other hand, when the number of flips of each
piece is bounded above by a constant, we can observe that this problem is in
NP. Under this assumption, we show that the flip over puzzle is NP-complete
even if we have some combination of natural conditions.

Next we turn to the flying block puzzle problem, which is formalized as fol-
lows:

Flying block puzzle
Input: A set of polyominoes in an orthogonal frame, a specific piece P in the

set, and a goal position of P in the frame.
Operation: Pick up a piece, rotate it if desired, and put it back into the

frame.
Goal: To move P to the goal position.

In our results of the flip over puzzle, the unique asymmetric piece plays an
important role and flips of rectangles are not essential. In some cases, we can
show corresponding results for the flying block puzzle by modifying the unique
asymmetric piece in the flip over puzzle. Using the idea, we first show natural
counterparts of Theorems 1 and 2. However, while the goal of the flip over puzzle
is to flip all pieces, the goal of the flying block puzzle is to arrange the specific
piece to the goal position. This difference requires different techniques, and some
counterparts of the NP-completeness results of the flip over puzzle remain open.
Intuitively, throughout these counterparts, the flying block puzzle seems to be
more difficult than the flip over puzzle since the hardness results hold under
stronger restrictions. In fact, the computational complexity of the flying block
puzzle is not trivial even if the frame is a rectangle of width 1, while it is trivial
in the flip over puzzle since all pieces are rectangles of width 1. We show weakly
NP-completeness of the flying block puzzle even if the frame is of width 1 and
each piece can be moved at most once. On the other hand, we show a nontrivial
polynomial time algorithm when we can move each piece any number of times
in the frame of width 1.

2 Preliminaries

A polyomino is a polygon formed by joining one or more unit squares edge to
edge. A polyomino is also called a k-omino if it consists of k unit squares. When
k = 1, 2, 3, 4, we sometimes call it monomino, domino, tromino, and tetromino,
respectively. An instance of the jumping block puzzle consists of a set P of poly-
ominoes P1, P2, . . . , Pn and a polyomino F . Each polyomino Pi ∈ P is called a
piece, and F is called a frame. Each piece Pi has its front side and back side (in
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the figures in this paper, a bright color and a dark color indicate front side and
back side, respectively).

A feasible packing of P to F is an arrangement of all pieces of P into F such
that each piece is placed in F , no pair of pieces overlaps (except at edges and
vertices), every vertex of pieces of P is placed on a grid point in F , and each
edge of pieces of P is parallel or perpendicular to the edges of F .

For a feasible packing of P to F , a flip of Pi is an operation that consists
of the following steps: (1) pick up Pi from F , (2) translate, rotate, and flip Pi

if necessary, and (3) put Pi back into F so that the resulting arrangement is
a feasible packing. On the other hand, a fly of Pi is an operation that consists
of the following steps: (1) pick up Pi from F , (2) translate and rotate Pi if
necessary, and (3) put Pi back into F so that the resulting arrangement is a
feasible packing.

For a given feasible packing X of P to F , the flip over puzzle asks whether
X can be reconfigured by a sequence of flips to a feasible packing in which all
pieces are back-side up in F . In contrast, in the flying block puzzle, the input
consists of three tuples; a feasible packing of P to F , a specific piece, say Pn,
and the goal position of Pn in F . That is, the flying block puzzle asks if we can
move the specific piece Pn to the goal position starting from the feasible packing
by a sequence of flies.

In order to determine the computational complexities of the jumping block
puzzles, we use the notion of the constraint logic which was introduced by Hearn
and Demaine [10] (see also [9]). A constraint graph G = (V,E,w) is an edge-
weighted undirected 3-regular graph such that (1) each edge e ∈ E is weighted
1 or 2, (we sometimes describe the values 1 by red and 2 by blue, respectively)
and (2) each vertex is either an AND vertex or an OR vertex such that (2a) an
AND vertex is incident to two red edges and one blue edge, and (2b) an OR
vertex is incident to three blue edges. A configuration of a constraint graph is
an orientation of the edges in the graph. A configuration is legal if the total
weight of the edges pointing to each vertex is at least 2. The problem NCL on
the constraint logic is defined as follows.

Input: A constraint graph G = (V,E,w), a legal configuration C0 for G, and
an edge et ∈ E.

Question: Is there a sequence of legal configurations (C0, C1, . . .) such that
(1) Ci is obtained by reversing the direction of a single edge in Ci−1 with
i ≥ 1, and (2) the last configuration is obtained by reversing the direction
of et?

The Bounded NCL is a variant of the NCL that requires one additional restriction
that every edge can be reversed at most once. For these two problems, the
following theorem is known:

Theorem 3 ([9]). (1) NCL is PSPACE-complete even on planar graphs and
(2) Bounded NCL is NP-complete even on planar graphs.
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Fig. 2. The cell border,
which is a framework of
embedding gadgets.

Fig. 3. A grid drawing of the graph in Step (1). Two
red edges incident to an AND vertex are collinear.

Fig. 4. Gadgets of size 13 × 13 for an AND vertex, an
OR vertex, a wire, a corner, and an empty cell.

Fig. 5. Two edge gadgets
for et for embedding the
L-tetromino.

3 Flip over Puzzles

In this section, we focus on the flip over puzzles. We first show that this puzzle
is PSPACE-complete even on quite restricted input. Next, we show that it is
NP-hard even if the frame F is a rectangle of width 2. Lastly, we show that it is
NP-complete if the number of flips of each piece is O(1).

3.1 PSPACE-completeness in General

In this section, we give the outline of the proof of Theorem 1. We give a
polynomial-time reduction from the NCL problem to the flip over puzzle. Let
G = (V,E,w), et, and C0 be the input of the NCL problem. That is, G is an
edge-weighted planar graph and C0 is a legal configuration of G and et is an
edge in E. The framework of the reduction is similar to the reduction of the
NCL problem to the sliding block puzzle shown in [9, Sec. 9.3]: The frame F
is a big rectangle, and it is filled with a regular grid of gate gadgets, within a
“cell border” construction. The internal construction of the gates is such that
none of the cell-border blocks may move, thus providing overall integrity to the
configuration. In our reduction, the cell border has width 2 (Fig. 2), and each
gadget in a cell will be designed of size 13 × 13. We construct an instance of the
flip over puzzle as follows.

We first compute a rectilinear embedding of G (see [15] for the definition).
To simplify the construction, we bend some edges (by refining the grid) to make
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two red edges incident to an AND vertex collinear (Fig. 3). We then define the
frame F so that each cell of size 13 × 13 contains one of an AND vertex, an OR
vertex, a unit straight segment of an edge (wire), and a unit turning segment
of an edge (corner). The vertices, unit segments of edges, and empty cells are
replaced by the gadgets shown in Fig. 4.

Pick up any unit segment of the edge et, and embed the left gadget in Fig. 5
if it is a straight, and the right gadget in Fig. 5 if it is a turn. We note that each
of them contains the unique asymmetric polyomino of size 4 in L-shape (which is
called the L-tetromino), and this L-tetromino can be flipped when the leftmost
I-tromino moves to left. Then we put polyominoes of unit size (which are called
monominoes) to fill all vacant unit squares except one. (This one vacant unit
square can be arbitrary.) This is the end of our reduction.

It is clear that this reduction can be done in polynomial time, the flip over
puzzle constructed from G satisfies the conditions (1) to (4) in Theorem 1, and
the flip over puzzle is in PSPACE. We show that G is a yes instance of NCL
if and only if the instance of the flip over puzzle constructed from G is a yes
instance. The basic idea is the same as one used in [9, Sec. 9.3]; when an edge
e changes the direction and points to a vertex v, the corresponding I-tromino
(of size 1 × 3 and in green in the figure) moves out one unit. Using the same
arguments in [9, Sec. 9.3], we can show that the flip over puzzle simulates the
movements of the NCL and vice versa.

We note that the instance of the flip over puzzle constructed here has only one
vacant unit square. However, by jumping monominoes, we can move the vacant
unit square to anywhere we need as long as it is occupied by a monomino. Thus,
if we can eventually reverse et, we can make a vacant unit square next to the
L-tetromino, and then we can make it back-side up. This is the outline of the
proof of Theorem 1.

It is known that NCL is still PSPACE-complete even if the input NCL graph
is planar and have constant bandwidth and it is given with a rectilinear embed-
ding of constant height (see [20, Thm. 11] for the details). Thus we have the
following corollary.

Corollary 1. The flip over puzzle is PSPACE-complete even with the conditions
in Theorem 1, and the frame is of constant width.

3.2 NP-hardness on a Frame of Width 2

In this section, we give a proof of Theorem 2. We reduce the following 3-
Partition problem to our problem.

Input: Positive integers a1, a2, a3, . . . , a3m such that
∑3m

i=1 ai = mB for some
positive integer B and B/4 < ai < B/2 for 1 ≤ i ≤ 3m.

Output: Determine whether we can partition {1, 2, . . . , 3m} into m subsets
A1, A2, . . . , Am so that

∑
i∈Aj

ai = B for 1 ≤ j ≤ m.
It is well known that the 3-Partition problem is strongly NP-complete [6].

Without loss of generality, we assume that m < B/2 (otherwise, we multiply
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Fig. 6. Reduction for NP-hardness.

each ai by m′ for some m′ > m). For a given instance 〈a1, a2, . . . , a3m〉 of 3-
Partition, we construct an instance of the jumping block puzzle as follows. It
consists of a frame F and a set of pieces P = {P1, P2, . . . , P4m+1}. The frame
F is a 2 × (2m(B + 1)) rectangle. For 1 ≤ i ≤ 3m, the piece Pi is a 1 × ai
rectangle. The pieces P3m+1, P3m+2, . . . P4m are 1 × B rectangles. The unique
asymmetric piece P4m+1 is drawn in Fig. 6. It almost covers the whole frame F
except (1) one rectangle of size 1 × maxi ai, (2) m rectangles of size 1 × B in
the left side, and (3) one rectangle of size 1 × m(B + 1) in the right side. The
initial feasible packing of P to F is also described in Fig. 6. All pieces are placed
front-side up. The asymmetric piece P4m+1 is placed in F as shown in Fig. 6,
and m rectangles of size 1 ×B are occupied by m pieces P3m+1, P3m+2, . . . , P4m

of size 1×B. The other 3m polyominoes P1, P2, . . . , P3m are put in the rectangle
of size 1 × m(B + 1) in the right side of P4m+1 in arbitrary order. We assume
that the piece P3m+i occupies the i-th vacant space of size 1×B from the center
of P4m+1.

Then we can show that all pieces in P can be flipped back-side up if and only
if the original instance of 3-Partition is a yes instance.

3.3 NP-completeness with Constant Flips

In the proof of Theorem 2, we reduced the 3-Partition problem to the flip
over puzzle. We saw that the instances constructed there had polynomial-length
yes-witnesses, however, we do not know whether the flip over puzzle on a frame
of width 2 is in NP or not. In this section, we focus on the flip over puzzle with
constant flips. In this model, we restrict ourselves that the number of flips for
each piece is bounded above by a constant. We assume that each piece can be
moved at most c times for some constant c. Then, if an instance of the puzzle
has a solution, the solution can be represented by a sequence of moves, and
the number of moves is bounded above by cn, where n is the number of pieces.
Therefore, each yes-instance has a witness of polynomial length, which implies
that the puzzle with the restriction is in NP. In this section, we show that the
flip over puzzle is still NP-complete even if each piece can be flipped at most
once with some additional restrictions.

Theorem 4. The flip over puzzle with constant flips is NP-complete even if it
satisfies all the following conditions (0), (1), (2), and (3). (0) Each piece can
be moved at most once, (1) the frame is a rectangle without holes, (2) every line
symmetric piece is a rectangle of size 1× k with 1 ≤ k ≤ 3, and (3) there is only
one asymmetric piece of size 4.
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Proof. (Outline) The claim can be proved by following the same strategy of the
proof of Theorem 1 in Sect. 3.1. ��
Theorem 5. The flip over puzzle with constant flips is NP-complete even if it
satisfies all the following conditions (0), (1), (2), (3), and (4). (0) Each piece can
be moved at most once, (1) the frame is a rectangle without holes, (2) every line
symmetric piece is a rectangle of size 1 × k with 1 ≤ k ≤ 3, (3) all asymmetric
pieces are of size 4, and (4) there is only one vacant unit square.

Proof. (Outline) In order to prove NP-hardness, we give a polynomial-time
reduction from the Hamiltonian cycle problem on 3-regular planar digraphs
where each vertex has indegree 1 or 2 which is a classic well-known NP-complete
problem [17]. We use an idea similar to the one in [19]: For a given 3-regular pla-
nar digraph G, we replace the two types of vertices by the two types of gadgets,
respectively, and join them by the same wire gadget in Sect. 3.1. ��
Theorem 6. The flip over puzzle with constant flips is NP-complete even with
all the following conditions: (0) Each piece can be moved at most once, (1) the
frame is a rectangle of width 2 without holes, (2) all pieces are rectangles of width
1 except 2, and (3) there is only one asymmetric piece.

Proof. (Outline) The basic idea is similar to the proof of Theorem 2. We reduce
the 3-Partition problem to our problem. ��

4 Flying Block Puzzles

In this section, we turn to the flying block puzzles. In flying block puzzles, we
can translate and rotate pieces but cannot flip them. In the flip over puzzle in
Sect. 3, almost all pieces are rectangles except a few asymmetric pieces. Since a
rectangle does not change by a flip, we can inherit most of the results for flip
over puzzles in Sect. 3 to ones for flying block puzzles by changing some special
pieces. However, while the goal of the flip over puzzle is to flip all pieces, the
goal of the flying block puzzle is to arrange a specific piece to the goal position.
This difference requires different techniques.

The counterpart of Theorem 1 is as follows:

Theorem 7. The flying block puzzle is PSPACE-complete even with all the fol-
lowing conditions: (1) the frame is a rectangle without holes, (2) every piece is
a rectangle of size 1 × k with 1 ≤ k ≤ 3, and (3) there is only one vacant unit
square.

Proof. (Outline) In the proof of Theorem 1, we use an L-tetromino as the unique
asymmetric piece. In the flying block puzzle, we do not need to use this trick.
Instead of that, the goal of the resulting flying block puzzle is just to move any
specific I-tromino in the wire or corner gadget in Fig. 4 corresponding to et, which
plays the same role of the flip of the L-tetromino in the proof of Theorem 1. ��

The counterpart of Theorems 2 and 6 is as follows:
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Theorem 8. The flying block puzzle is NP-complete even with all the following
conditions: (1) the frame is a rectangle of width 2 without holes, (2) every line
symmetric piece is a rectangle of width 1, and (3) there is only one non-rectangle
piece, which is line symmetric.

Proof. (Outline) The basic idea is the same as the proof of Theorem 2: We reduce
from the 3-Partition problem. ��

We note that the claim in the proof of Theorem 8 still holds even if each
piece can be moved at most once. In this sense, Theorem 8 is the counterpart of
both Theorems 2 and 6.

The counterpart of Theorem 4 is as follows:

Theorem 9. The flying block puzzle with constant flies is NP-complete even if
it satisfies the following conditions (0), (1), (2), and (3). (0) Each piece can be
moved at most once, (1) the frame is a rectangle without holes, and (2) every
piece is a rectangle of size 1 × k with 1 ≤ k ≤ 3.

Proof. (Outline) We apply the same technique of the proof of Theorem 7 to
Theorem 4. ��

Interestingly, the reduction of the proof of Theorem 5 from the Hamiltonian
cycle cannot be extended to the flying block puzzle since we do not need to
“visit” every piece to flip. Therefore, the computational complexity of the flying
block puzzle with the conditions in Theorem 5 is open. We now turn to the flying
block puzzles with the frame of width 1. While this case is trivially “yes” in any
instance of the flip over puzzle since every piece is a rectangle of width 1, we
show weak NP-hardness of the flying block puzzle if the frame is of width 1 and
each piece can be moved at most once. On the other hand, when we can move
the pieces any number of times, we have nontrivial polynomial time algorithm
to solve it.

Fig. 7. The reduction from Partition.

Theorem 10. The flying block puzzle with constant flies is weakly NP-complete
even if each piece can be moved at most once and the frame is a rectangle of
width 1.

Proof. (Outline) We present a polynomial-time reduction from Partition [6],
which asks, given n positive integers a1, . . . , an with

∑n
i=1 ai = 2B, whether

there exists a partition of {1, . . . , n} into two sets A and A′ such that
∑

i∈A ai =∑
i∈A′ ai = B. This problem is weakly NP-complete. For a given instance
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Fig. 8. A “simple” example of the flying block puzzle designed by Hideyuki Ueyama
in [1] (with permission): It requires 256 steps to exchange A and B.

〈a1, a2, . . . , an〉 of Partition, we construct an instance of the flying block puzzle
by a set of pieces P = {P1, P2, . . . , Pn+1}, where the piece Pi is a 1×ai rectangle
for 1 ≤ i ≤ n, and the frame F which is a 1 × (4B) rectangle. The special piece
Pn+1 is a 1×B rectangle. The initial feasible packing of P to F is given in Fig. 7.
The goal is to move Pn+1 to the right end of F . The further details are omitted.

��
Theorem 11. The flying block puzzle can be solved in polynomial time when
the frame is a rectangle of width 1.

Proof. Omitted. ��

5 Concluding Remarks

In this paper, we investigate the computational complexities of the jumping block
puzzles which form the token-jumping counterpart of the sliding block puzzles
in the context of reconfiguration problems. The other well-studied model in the
field of combinatorial reconfiguration would allow “removals and additions” of
blocks, which would be future work. Even in the jumping block puzzles, we still
have many variants.

One natural variant in the context of the combinatorial reconfiguration is
that the input consists of the initial feasible packing and the target feasible
packing. In this reconfiguration problem, we have two observations (proofs are
omitted):

Observation 12. The reconfiguration problem of the jumping block puzzle is
tractable if the frame F is of width 1.

Observation 13. The reconfiguration problem of the jumping block puzzle is
tractable if all pieces are rectangles of size 1 × 2.

Extension of them to general cases, e.g., blocks of size 1 × 3, seems to be inter-
esting (cf. [11]).

We may allow the frame to have holes (or fixed obstacles). Moreover, we may
distinguish congruent pieces. One interesting example can be found in [1]: the
puzzle in Fig. 8 was designed by Hideyuki Ueyama. It consists of 12 rectangle
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pieces and one L-tromino. There are two vacant unit squares. The goal of this
puzzle is to exchange two I-trominoes with labels A and B. At a glance, it
seems to be impossible. However, they can be exchanged in 256 steps. In such
a case, it seems that it requires exponential steps if we have a few vacant unit
squares. Intuitively, the puzzle is likely to become easier if we have many vacant
unit squares. (In fact, some concrete examples can be found in [1].) It would
be interesting to ask whether there is an algorithm that runs faster when k is
larger, where k is the number of vacant unit squares.

References

1. Akiyama, H.: Board Puzzle Reader (2009). (in Japanese). Shin Kigen Sha
2. Bonamy, M., Johnson, M., Lignos, I., Patel, V., Paulusma, D.: On the diameter

of reconfiguration graphs for vertex colourings. Electron. Notes Discret. Math. 38,
161–166 (2011)

3. Bonsma, P., Cereceda, L.: Finding Paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theor. Comput. Sci. 410(50), 5215–
5226 (2009). http://dx.doi.org/10.1016/j.tcs.2009.08.023

4. Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colourings.
J. Graph Theory 67, 69–82 (2011)

5. Demaine, E.D., Rudoy, M.: A simple proof that the (n2−1)-puzzle is hard. Theor.
Comput. Sci. 732, 80–84 (2018)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability – A Guide to the Theory
of NP-Completeness. Freeman (1979)

7. Golomb, S.W.: Polyominoes. Princeton University Press, Princeton (1994)
8. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectiv-

ity of Boolean satisfiability: computational and structural dichotomies. SIAM J.
Comput. 38, 2330–2355 (2009)

9. Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. A K Peters Ltd.
(2009)

10. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constant logic model of computation.
Theor. Comput. Sci. 343(1–2), 72–96 (2005)

11. Horiyama, T., Ito, T., Nakatsuka, K., Suzuki, A., Uehara, R.: Packing trominoes
is np-complete, #P-hard and ASP-complete. In: The 24th Canadian Conference
on Computational Geometry (CCCG 2012), pp. 219–224 (2012)

12. Ito, T., et al.: On the complexity of reconfiguration problems. Theor. Comput. Sci.
412, 1054–1065 (2011)
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Abstract. Card-based cryptography typically uses a physical deck com-
prising black and red cards to perform secure computations, where a
one-bit value is encoded using a pair of cards with different colors such
that the order of black to red represents 0 and red to black represents 1.
One of the most fundamental classes of card-based protocols is the class
of “card-minimal” n-input AND protocols, which require 2n face-down
cards as input to securely evaluate the AND value after applying a num-
ber of shuffles; here, the 2n cards are minimally required to describe an
n-bit input. The best n-input AND protocols currently known use two
shuffles for n = 2, five shuffles for n = 3, and n + 1 shuffles for n > 3.
These upper bounds on the numbers of shuffles have not been improved
for several years. In this work, we present a better upper bound for the
n = 3 case by designing a new card-minimal three-input AND proto-
col using only two shuffles. Therefore, our proposed protocol reduces the
number of required shuffles from five to two; we believe that this is a
significant improvement.

1 Introduction

Many card-based protocols have been designed in the history of card-based cryp-
tography to perform secure computations using a deck of physical cards. Typi-
cally, card-based protocols work on two-colored decks comprising black ♣ and
red ♥ cards whose backs are denoted by ? and indistinguishable. These cards
are used to represent Boolean values as follows:

♣ ♥ = 0, ♥ ♣ = 1. (1)

When two face-down cards represent a bit x ∈ {0, 1} according to the above
encoding rule (1), we call them a commitment to x, denoted as

? ?
︸ ︷︷ ︸

x

.
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1.1 Card-Minimal AND Protocols

In 1989, Den Boer [2] designed the first card-based protocol, called the “five-
card trick,” which takes two commitments to x1, x2 ∈ {0, 1} and a helping card
♥ as input to securely evaluate the AND value x1 ∧ x2 (without revealing any
information about x1, x2 more than necessary) through a series of actions, such
as shuffling and turning over cards:

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

x2

♥ → · · · → x1 ∧ x2.

Thus, this is a two-input AND protocol using one helping card.
Since then, a challenging open problem had been to construct a two-input

AND protocol without any helping card. More generally, could we construct an
n-input AND protocol using only 2n cards?

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

x2

· · · ? ?
︸ ︷︷ ︸

xn

→ · · · → x1 ∧ x2 ∧ · · · ∧ xn.

Because 2n cards are necessary for arranging the n input commitments to the
values x1, x2, . . . , xn ∈ {0, 1} (as long as we obey the encoding rule (1)), this
type of AND protocol (using exactly 2n cards) is said to be card-minimal. This
study addresses the class of card-minimal AND protocols.

1.2 Known Results

The first card-minimal AND protocol was proposed by Kumamoto et al. in
2012 [12]:

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

x2

2 RBCs→ · · · →

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

x1 ∧ x2 = 0 if ? ♣ ? ♥
x1 ∧ x2 = 0 if ♣ ♥ ? ?
x1 ∧ x2 = 1 if ? ♣ ? ♣
x1 ∧ x2 = 1 if ♥ ♥ ? ? .

That is, using only four cards, a two-input AND protocol was constructed. This
protocol uses two shuffles; more precisely, it applies a “random bisection cut
(RBC)” twice, which is a kind of shuffling operation (explained later in Sect. 2.3).
See the first protocol listed in Table 1.

How about n-input AND protocols for n ≥ 3? This open problem was solved
in 2016 [11]. Specifically, for the case of n = 3, a card-minimal three-input AND
protocol was proposed by Mizuki [11]:

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

x2

? ?
︸ ︷︷ ︸

x3

3 RBCs & 2 RCs→ · · · →

⎧

⎪
⎨

⎪
⎩

x1 ∧ x2 ∧ x3 = 1 if ♣ ♣ ♣ · · ·
x1 ∧ x2 ∧ x3 = 1 if ♥ ♥ ♥ · · ·
x1 ∧ x2 ∧ x3 = 0 otherwise.
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Table 1. Existing card-minimal AND protocols and our proposed protocol (using
random cuts and/or random bisection cuts)

#Inputs #Cards #Shuffles

Kumamoto et al. [12] 2 4 2

Mizuki [11] 3 6 5

Mizuki [11] n (≥ 4) 2n n+1

This paper 3 6 2

Thus, this six-card protocol uses three random bisection cuts along with two
“random cuts (RCs),” for a total of five shuffles; the random cut is another
common type of shuffling operation, which will be explained in Sect. 2.2. See the
second protocol listed in Table 1.

For the case of n ≥ 4, Mizuki [11] also proposed a card-minimal n-input AND
protocol:

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

x2

? ?
︸ ︷︷ ︸

x3

? ?
︸ ︷︷ ︸

x4

· · · ? ?
︸ ︷︷ ︸

xn

n+1 RBCs→ · · · →
{

x1 ∧ x2 ∧ · · · ∧ xn = 0 if ♣ · · ·
x1 ∧ x2 ∧ · · · ∧ xn = 1 if ♥ · · · .

This protocol takes n input commitments (such that n ≥ 4) and uses n + 1 ran-
dom bisection cuts to securely evaluate their AND value. See the third protocol
shown in Table 1.

1.3 Contribution

In this work, we focus on the number of required shuffles: From Table 1, it is
observed that the number of shuffles used in the second protocol, i.e., 5 in the
three-input AND protocol [11], is somewhat large. Actually, the three-input pro-
tocol [11] is elaborate but rather complicated, and it seems difficult for lay-people
to execute practically. Therefore, our goal is to improve this existing three-input
AND protocol [11].

Specifically, we will construct a new card-minimal three-input AND protocol
using only two shuffles, namely one random bisection cut and one random cut:

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

x2

? ?
︸ ︷︷ ︸

x3

1 RBC & 1 RC→ · · · →

⎧

⎪
⎨

⎪
⎩

x1 ∧ x2 ∧ x3 = 1 if ♣ ♣ ♣ · · ·
x1 ∧ x2 ∧ x3 = 1 if ♥ ♥ ♥ · · ·
x1 ∧ x2 ∧ x3 = 0 otherwise.

The performance of this approach is shown in Table 1 in the last row.
Figure 1 shows the numbers of required shuffles for all the protocols listed in

Table 1. As seen from this figure, the previous three-input protocol [11] requires
five shuffles while our proposed three-input protocol uses only two shuffles,
thereby successfully reducing the number of required shuffles significantly from
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Fig. 1. Numbers of shuffles used in the existing card-minimal n-input AND protocols
(for all n ≥ 2) and our proposed protocol

five to two. As shown later in Sect. 3, our designed protocol is simple enough for
lay-people to execute practically. Therefore, we believe that our new protocol is
important from both theoretical and practical points of view.

1.4 Related Work

All the protocols mentioned thus far are not committed-format AND protocols
because their AND values are not obtained as commitments. Contrarily, there
are committed-format protocols, such as committed-format two-input AND pro-
tocols, which produce commitments to the AND values:

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

x2

→ · · · → ? ?
︸ ︷︷ ︸

x1∧x2

.

Since this output is a (hidden) commitment, it can be used as input to another
computation; thus, by repeatedly executing a committed-format AND proto-
col n − 1 times, we can perform an n-input AND computation. Therefore,
card-minimal committed-format two-input AND protocols are considered useful.
Unfortunately however, such known AND protocols [4,8,23] require nonuniform
or nonclosed shuffles, which are difficult to implement manually (cf. [17,18,25]);
furthermore, Kastner et al. [3] proved that there exist no card-minimal two-
input AND protocols that use only uniform closed shuffles. It should be noted
that both random cuts and random bisection cuts (which all the protocols listed
in Table 1 rely on) are uniform closed shuffles, which are easy to implement (as
shown in Sects. 2.2 and 2.3).

If we allow the use of helping cards, we have a six-card committed-format
AND protocol [15] and a five-card committed-format AND protocol [1] that rely
only on random cuts and/or random bisection cuts; however, of course, they are
not card-minimal.

Apart from the AND computation, because there is a card-minimal
committed-format two-input XOR protocol [15], we can construct a card-
minimal n-input XOR protocol for any n ≥ 2. Recently, Ruangwises and Itoh [24]
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constructed a general way of designing card-minimal protocols that securely com-
pute any doubly symmetric functions.

In stead of using shuffling operations, there is an alternative approach that
relies on private operations (e.g., [16,19–21,28]); under this somewhat strong
assumption, Manabe and Ono [9,22] showed that card-minimal protocols can be
constructed for many kinds of Boolean functions, such as the AND, half-adder,
full-adder, and symmetric functions.

2 Preliminaries

In this section, we first present a formal treatment of the actions used in card-
based protocols (which has been developed in [3,5,13,14]). Then, we formally
introduce two shuffling operations, namely a random cut and a random bisection
cut.

2.1 Actions in Card-Based Protocols

In card-based protocols, the following three main actions are applied to a
sequence of cards; below, we assume a sequence of m cards.

Permute. This is denoted by (perm, π), where π is a permutation applied to
the sequence of cards as follows:

1

?
2

? · · ·
m

?
(perm,π)−−−−−→

π−1(1)

?
π−1(2)

? · · ·
π−1(m)

? .

Turn. This is denoted by (turn, T ), where T is a set of indexes, indicating that
for every t ∈ T , the t-th card is turned over as follows:

1

?
2

? · · ·
t∈T

? · · ·
m

?
(turn,T )−−−−−→

1

?
2

? · · ·
t∈T

♣ · · ·
m

? .

Shuffle. This is denoted by (shuf,Π, F), where Π is a permutation set and F
is a probability distribution on Π, indicating that π ∈ Π is drawn according
to F and applied to the sequence of cards as follows:

1

?
2

? · · ·
m

?
(shuf,Π, F)−−−−−−−→

π−1(1)

?
π−1(2)

? · · ·
π−1(m)

? .

Here, the permutation in Π that is applied remains unknown. If the distri-
bution F is uniform, then its description can be omitted.

2.2 Random Cut

A random cut (RC) is the simplest and most easy-to-implement shuffle in card-
based cryptography, denoted by 〈·〉, which shifts a sequence of cards cyclically
and randomly. If a random cut is applied to a sequence of m cards, then the
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resulting sequence becomes one of the following n sequences, each of which occurs
with a probability of 1/m:

〈

1

?
2

?
3

? · · ·
m−1

?
m

?

〉

−→

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

1

?
2

?
3

? · · ·
m−1

?
m

? ,
2

?
3

?
4

? · · ·
m

?
1

? ,
...

m−1

?
m

?
1

? · · ·
m−3
?

m−2
? ,

m

?
1

?
2

? · · ·
m−2
?

m−1
? .

This random cut is formally described as

(shuf, {id, π, π2 , . . . , πm−1})

for a cyclic permutation π = (1 2 3 · · · m), where id denotes the identity permu-
tation.

Hereinafter, we use RC1,2,...,m to represent {id, π, π2 , . . . , πm−1}. For exam-
ple, (shuf,RC1,2,3,4,5,6) is a random cut to a sequence of six face-down cards:

〈

? ? ? ? ? ?

〉

.

A random cut can be easily performed manually; a secure implementation
called the Hindu cut is a well-known instance [27].

2.3 Random Bisection Cut

A random bisection cut (RBC) is another major shuffle action, which was
invented in 2009 [15]. This shuffle, denoted by [ · | · ], bisects a sequence of 2m
cards and randomly swaps the two halves; the resulting sequence becomes one
of the following two sequences, with a probability of 1/2:

[ 1

? · · ·
m

?
∣

∣

∣

m+1

? · · ·
2m

?
]

→
⎧

⎨

⎩

1

? · · ·
m

?
m+1

? · · ·
2m

? ,
m+1

? · · ·
2m

?
1

? · · ·
m

? .

That is, the resulting sequence either remains unchanged compared with the
original or is obtained such that the two halves are swapped, with a probability
of 1/2. The random bisection cut can be expressed as follows:

(shuf, {id, (1 m+1)(2 m+2) · · · (m 2m)}).

Secure implementations of a random bisection cut were shown in [26].
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3 Our Proposed Protocol

In this section, we present the new card-minimal three-input AND protocol:

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

x2

? ?
︸ ︷︷ ︸

x3

1 RBC & 1 RC→ · · · →

⎧

⎪
⎨

⎪
⎩

x1 ∧ x2 ∧ x3 = 1 if ♣ ♣ ♣ · · ·
x1 ∧ x2 ∧ x3 = 1 if ♥ ♥ ♥ · · ·
x1 ∧ x2 ∧ x3 = 0 otherwise.

This protocol uses one random bisection cut and one random cut.
We present the description of our protocol in Sect. 3.1 as well as its pseu-

docode in Sect. 3.2. We also present an intuitive explanation in Sect. 3.3 as to
why the proposed protocol works correctly. Formal proofs of the correctness and
security of our proposed protocol (based on the so-called KWH-tree [8]) are
omitted owing to length limitations.

3.1 Description

Our card-minimal three-input AND protocol proceeds, as follows.

1. Apply (shuf, {id, (1 2)(3 6)}) by performing operations (a)–(c) noted below.
(a) Swap the second and third cards as well as the fourth and sixth cards:

1

?
2

?
3

?
4

?
5

?
6

? →
1

?
3

?
2

?
6

?
5

?
4

? .

(b) Apply a random bisection cut to the four cards on the extreme left:
[

? ?
∣

∣

∣ ? ?
]

? ? → ? ? ? ? ? ? .

(c) Swap the second and third cards as well as the fourth and sixth cards
again:

1

?
2

?
3

?
4

?
5

?
6

? →
1

?
3

?
2

?
6

?
5

?
4

? .

2. Turn over the first card to check its color. If the card is ♣ , swap the first
and second cards as well as the third and sixth cards:

1

♣
2

?
3

?
4

?
5

?
6

? →
2

?
1

♣
6

?
4

?
5

?
3

? .

If the card color is ♥ , proceed to Step 3 directly.
3. After turning over the revealed card in a face-down manner, apply a random

cut to the entire sequence:
〈

? ? ? ? ? ?
〉

→ ? ? ? ? ? ? .
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4. Turn over the first, third, and fifth cards. If these are ♥ ♣ ♥ or ♣ ♥ ♣
(apart from cyclic rotation), then x1 ∧ x2 ∧ x3 = 0; if the cards are ♥ ♥ ♥
or ♣ ♣ ♣ , then x1 ∧ x2 ∧ x3 = 1:

♥ ? ♣ ? ♥ ? ♣ ? ♥ ? ♣ ?
♥ ? ♥ ? ♣ ? ♣ ? ♣ ? ♥ ?
♣ ? ♥ ? ♥ ? ♥ ? ♣ ? ♣ ?

x1 ∧ x2 ∧ x3 = 0,

♥ ? ♥ ? ♥ ? ♣ ? ♣ ? ♣ ?
x1 ∧ x2 ∧ x3 = 1.

3.2 Pseudocode

The pseudocode for our protocol is depicted in Algorithm 1, where (result, i, j, k)
specifies the output positions.

Algorithm 1. Our proposed protocol
input set:

{( ?

♣ ,
?

♥ ,
?

♣ ,
?

♥ ,
?

♣ ,
?

♥
)

,
( ?

♣ ,
?

♥ ,
?

♣ ,
?

♥ ,
?

♥ ,
?

♣
)

,
( ?

♣ ,
?

♥ ,
?

♥ ,
?

♣ ,
?

♣ ,
?

♥
)

,

( ?

♣ ,
?

♥ ,
?

♥ ,
?

♣ ,
?

♥ ,
?

♣
)

,
( ?

♥ ,
?

♣ ,
?

♣ ,
?

♥ ,
?

♣ ,
?

♥
)

,
( ?

♥ ,
?

♣ ,
?

♣ ,
?

♥ ,
?

♥ ,
?

♣
)

,

( ?

♥ ,
?

♣ ,
?

♥ ,
?

♣ ,
?

♣ ,
?

♥
)

,
( ?

♥ ,
?

♣ ,
?

♥ ,
?

♣ ,
?

♥ ,
?

♣
)}

1. (shuf, {id, (1 2)(3 6)})
2. (turn, {1})
3. if visible sequence = (♣, ?, ?, ?, ?, ?) then
4. (perm, (1 2)(3 6))
5. (turn, {2})
6. else if visible sequence = (♥, ?, ?, ?, ?, ?) then
7. (turn, {1})
8. (shuf,RC1,2,3,4,5,6)
9. (result, 1, 3, 5)

3.3 Why Our Protocol Works Correctly

Herein, we intuitively explain why our proposed protocol works correctly. Note
that the input sequence has eight possibilities depending on the input values
(x1, x2, x3) ∈ {0, 1}3, as shown in the second column of Table 2. The idea behind
our protocol is to assign each possible input to one of two sequence patterns
without leaking the input value. One of the two patterns is an alternating pattern
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Table 2. Resulting sequences after applying (perm,(1 2)(3 6)) and Step 2

Input Input Sequence Apply (perm,(1 2)(3 6)) After Step 2

(0,0,0) ♣ ♥ ♣ ♥ ♣ ♥ ♥ ♣ ♥ ♥ ♣ ♣ ♥ ♣ ♥ ♥ ♣ ♣
(0,0,1) ♣ ♥ ♣ ♥ ♥ ♣ ♥ ♣ ♣ ♥ ♥ ♣ ♥ ♣ ♣ ♥ ♥ ♣
(0,1,0) ♣ ♥ ♥ ♣ ♣ ♥ ♥ ♣ ♥ ♣ ♣ ♥ ♥ ♣ ♥ ♣ ♣ ♥
(0,1,1) ♣ ♥ ♥ ♣ ♥ ♣ ♥ ♣ ♣ ♣ ♥ ♥ ♥ ♣ ♣ ♣ ♥ ♥
(1,0,0) ♥ ♣ ♣ ♥ ♣ ♥ ♣ ♥ ♥ ♥ ♣ ♣ ♥ ♣ ♣ ♥ ♣ ♥
(1,0,1) ♥ ♣ ♣ ♥ ♥ ♣ ♣ ♥ ♣ ♥ ♥ ♣ ♥ ♣ ♣ ♥ ♥ ♣
(1,1,0) ♥ ♣ ♥ ♣ ♣ ♥ ♣ ♥ ♥ ♣ ♣ ♥ ♥ ♣ ♥ ♣ ♣ ♥
(1,1,1) ♥ ♣ ♥ ♣ ♥ ♣ ♣ ♥ ♣ ♣ ♥ ♥ ♥ ♣ ♥ ♣ ♥ ♣

of ♣ and ♥ , i.e., either ♣ ♥ ♣ ♥ ♣ ♥ or ♥ ♣ ♥ ♣ ♥ ♣ , which is a possible
input sequence when (x1, x2, x3) = (0, 0, 0), (1, 1, 1); we call this an alternating
sequence. The other pattern corresponds to the remaining sequences, which we
call non-alternating sequences.

Suppose that we apply the permutation (1 2)(3 6) to the input sequence; this
appears in the shuffle applied in Step 1 and permutation in Step 2. The resulting
sequence is the one shown in the third column of Table 2. Note that the second
column (i.e., input sequence) and third column of Table 2 are equivalent to the
transition possibilities after applying (shuf, {id, (1 2)(3 6)}) to the input sequence
in Step 1. In the third column of Table 2, among the four sequences from the
top (which are obtained when x1 = 0), the sequences corresponding to (0, 0, 1),
(0, 1, 0), and (0, 1, 1) are still non-alternating, and the sequence corresponding
to (0, 0, 0) is converted to a non-alternating sequence. If we combine the four
sequences from the top in the third column with the four sequences from the
bottom in the second column, we obtain the eight sequences shown in the fourth
column of Table 2, where only the sequence corresponding to (1, 1, 1) is alter-
nating. To achieve this, we apply the permutation (1 2)(3 6) when the first cards
in the sequences in the second and third columns of Table 2 are ♣ . This is the
reason behind performing (shuf, {id, (1 2)(3 6)}) in Step 1 and (perm, (1 2)(3 6))
in Step 2 if the first card revealed is ♣ .

By applying a random cut to the sequence of cards in Step 3, the resulting
sequence is one among the following four sequences (up to cyclic rotation):

(a) ♥ ♥ ♣ ♣ ♥ ♣ , if (0, 0, 0) or (1, 0, 0) ;
(b) ♣ ♣ ♥ ♥ ♣ ♥ , if (0, 0, 1), (0, 1, 0), (1, 0, 1), or (1, 1, 0) ;
(c) ♥ ♥ ♥ ♣ ♣ ♣ , if (0, 1, 1) ;
(d) ♥ ♣ ♥ ♣ ♥ ♣ , if (1, 1, 1).
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Here, when the input is either (0, 0, 0) or (1, 0, 0), the resulting sequence is
equal to that in (a); when the input is (0, 0, 1), (0, 1, 0), (1, 0, 1), or (1, 1, 0),
the sequence is equal to that in (b); when the input is (0, 1, 1), the sequence is
equal to that in (c); when the input is (1, 1, 1), the sequence is equal to that
in (d). Now, if we revealed all the cards in the sequence, then we could obtain
the value of x1 ∧ x2 ∧ x3; however, information about the input would be leaked
because the revealed sequence depends on the input values. Therefore, we need
an alternative approach to obtain the output value.

Let us focus on the cards at the odd-numbered positions. If we reveal only
these cards, then the revealed cards in every sequence of (a), (b), and (c) will
have the same pattern, i.e., either ♥ ♣ ♥ or ♣ ♥ ♣ up to cyclic rotation. By
contrast, if (d) occurs, then the revealed cards will be either ♥ ♥ ♥ or ♣ ♣ ♣ .
Hence, the sequences of (a), (b), and (c) become indistinguishable, and we can
obtain only the value of x1 ∧ x2 ∧ x3.

4 Conclusion

In this work, we proposed a card-minimal three-input AND protocol using only
two shuffles. The minimality means that the protocol uses exactly six cards. The
shuffles used in our protocol are one random cut and one random bisection cut.
Since the existing three-input protocol [11] requires five shuffles, our proposed
protocol successfully reduces the number of required shuffles from five to two.
We believe that this is a significant improvement and that our protocol is simple
enough for easy execution by lay-people.

An interesting open problem is improving the numbers of shuffles for card-
minimal n-input AND computations for n ≥ 4. It is also an intriguing problem
to seek lower bounds on the numbers of shuffles using the “formal method app-
roach” recently developed by Koch, Schrempp, and Kirsten [6,7].

This work considers the number of shuffles as the quality metric for evaluating
a protocol because the shuffle action is the most time-consuming step (cf. [10]).
However, considering the other actions for a more fine-grained analysis would be
an interesting line of investigation in the future.
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M.-S. (eds.) TPNC 2020. LNCS, vol. 12494, pp. 107–118. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-63000-3 9

26. Ueda, I., Miyahara, D., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: Secure
implementations of a random bisection cut. Int. J. Inf. Secur. 19(4), 445–452
(2020). https://doi.org/10.1007/s10207-019-00463-w

27. Ueda, I., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: How to implement
a random bisection cut. In: Mart́ın-Vide, C., Mizuki, T., Vega-Rodŕıguez, M.A.
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Abstract. In the (s, d)-spy game over a graph G, k guards and one
spy occupy some vertices of G and, at each turn, the spy may move with
speed s (along at most s edges) and each guard may move along one edge.
The spy and the guards may occupy the same vertices. The spy wins if
she reaches a vertex at distance more than the surveilling distance d from
every guard. This game was introduced by Cohen et al. in 2016 and is
related to two well-studied games: Cops and robber game and Eternal
Dominating game. The guard number gns,d(G) is the minimum number
of guards such that the guards have a winning strategy (of controlling
the spy) in the graph G. In 2018, it was proved that deciding if the spy
has a winning strategy is NP-hard for every speed s ≥ 2 and distance
d ≥ 0. In this paper, we initiate the investigation of the guard number
in grids and in graph products. We obtain a strict upper bound on the
strong product of two general graphs and obtain examples with King
grids that match this bound and other examples for which the guard
number is smaller. We also obtain the exact value of the guard number
in the lexicographical product of two general graphs for any distance
d ≥ 2. From the algorithmic point of view, we prove a positive result: if
the number k of guards is fixed, the spy game is solvable in polynomial
XP time O(n3k+2) for every speed s ≥ 2 and distance d ≥ 0. This XP
algorithm is used to obtain an FPT algorithm on the P4-fewness of the
graph. As a negative result, we prove that the spy game is W[2]-hard
even in bipartite graphs when parameterized by the number of guards,
for every speed s ≥ 2 and distance d ≥ 0, extending the hardness result
of Cohen et al. in 2016.

Keywords: Games on graphs · Spy game · Graph products · XP
algorithm · Parameterized complexity

1 Introduction

Given a graph G = (V,E) and v ∈ V , let N(v) = {w | vw ∈ E} denote the set
of neighbors of v and let N [v] = N(v) ∪ {v}.
c© Springer Nature Switzerland AG 2021
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Given integers s ≥ 2, d ≥ 0 and k ≥ 1 (respectively the spy speed, the
surveillance distance and the number of guards), the (s, d)-spy game is a two-
player game on a finite graph G with k guards and one spy occupying vertices
of G. The guards and even the spy may occupy the same vertex. One player
controls the guards and the other player controls the spy. It is a full information
game: any player has full knowledge of the positions of the other player. Initially,
the spy is placed at some vertex of G and then the k guards are placed at some
vertices of G. The game proceeds turn-by-turn: first the spy may move along
at most s edges and then each guard may move along one edge. The spy wins
if, after a finite number of turns (after the guards’ move), she reaches a vertex
at distance greater than d from every guard. Otherwise, the guards win the
game: there is always at least one guard at distance at most d from the spy.
From the classical Zermelo-von Neumann theorem [28], one of the two players
has a winning strategy, since it is a perfect information finite game without
draw. Here we can consider the spy game as a finite game since the number of
possible configurations of the spy and the guards is finite in a finite graph G.
For example, we may consider that the guards win the game if the spy repeats
a game configuration (after her move).

The guard-number gns,d(G) is the minimum number of guards such that the
guards have a winning strategy in the (s, d)-spy game. From the definition, only
one guard is always sufficient if the spy speed s = 1. For this reason, we consider
s ≥ 2.

The spy game was introduced by Cohen et al. in 2016 [13] and is closely
related to the well known Cops and robber game [7,26]. In this game, first k
cops occupy some vertices of the graph and then one robber occupies a vertex.
Turn-by-turn, each player may move (the cops first and then the robber) along
one edge. The cops win if one cop occupies the same vertex of the robber after
a finite number of turns. The cop-number cn(G) of a graph G is the minimum
number of cops required to win in G [1].

There are many generalizations of the Cops and robber game [2,6,12,18,19].
For example, allowing a faster robber with speed s ≥ 2. In this variant, the exact
number of cops with speed one required to capture a robber with speed two is
unknown even in 2-dimensional grids [5,17]. In 2010, Bonato et al. [6] introduced
other variant of the cops and robbers in which the game is over if a cop occupies
a vertex at distance at most a given integer d from the robber. This is equivalent
to the spy game with speed s = 1 when the spy is placed after the guards. For
speed s > 1, the equivalence is not true and the games are significantly different.
Therefore, we only consider the speed s ≥ 2 for the spy in the spy game.

Other related well know game is the eternal domination game [20,21,23,24].
A set of k defenders occupy some vertices of a graph G. At each turn, an attacker
chooses a vertex v ∈ V and the defenders may move along an edge in such a way
that at least one defender is at distance at most a given integer d from v. There
are some variants of the eternal domination game allowing more defenders to
move at each turn and to occupy the same vertex [21,23,24], which is equivalent
to the spy game when the spy speed is at least the diameter of the graph.
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Regarding results in the spy game, Cohen et al. [14] proved in 2018 that the
guard number is NP-hard in general graphs and a directed version is PSPACE-
hard even in DAGs. The authors left open the question of the PSPACE-hardness
on the undirected case and the question of the spy game on grids: “Many open
questions remain such as the characterization of the guard-number in other graph
classes, e.g., in grids”. Moreover, in 2020, it was proved [15] that the guard
number is computable in polynomial time for trees by using Linear Programming
and a fractional relaxation of the game. The authors also obtained an upper
bound for the fractional guard number on the square grid Gn×n, a parameter
different from the guard number, which was proved to be equal in trees.

1.1 Our Contribution

In this paper, we initiate the investigation of the spy game guard number in grids.
Specifically, we study the King grid (the strong product of two path graphs) and,
more generally, we obtain a strict upper bound on the strong product G1 � G2 of
general graphs G1 and G2. We prove that gns,d(G1 � G2) ≤ gnsd(G1)×gns,d(G2)
and obtain examples that match this upper bound and other examples for which
the guard number is smaller. We also show that this upper bound of the strong
product does not work in the cartesian product nor the lexicographical product
of two graphs. Regarding the lexicographical product, we obtain the exact value
of the guard number for any distance d ≥ 2.

Regarding algorithmic results, we obtain positive and negative results in the
spy game decision problem (the problem of deciding if the spy has a winning
strategy in the (s, d)-spy game with k guards in a finite graph G). We prove that,
if the number k of guards is fixed, the spy game decision problem is O(n3k+2)-
time solvable for every speed s ≥ 2 and distance d ≥ 0. In other words, the spy
game decision problem is XP when parameterized by the number k of guards.
This XP algorithm is very important in order to obtain an FPT algorithm for
the spy game on the P4-fewness of the graph, which, in our opinion, is one of our
most important results, since it solves a game on graphs for many graph classes.

As a negative result, we prove that the spy game decision problem is W[2]-
hard even in bipartite graphs when parameterized by the number k of guards,
for every speed s ≥ 2 and distance d ≥ 0. This hardness result is a generalization
of the W[2]-hardness result of the spy game in general graphs [14] and follows
a similar (but significantly different) structure of the reduction from Set Cover
in [14]. However, the extension to bipartite graphs brings much more technical
difficulties to the reduction, making this extension a relevant and non-trivial
result.

2 Spy Game on King Grids and Graph Products

Given graphs G1 and G2, the strong product G1�G2 is the graph with vertex set
V (G1 � G2) = V (G1) × V (G2) (cartesian product) such that distinct vertices
(u1, u2) and (v1, v2) are adjacent in G1 � G2 if and only if (a) u1 = v1 and
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u2v2 ∈ E(G2), or (b) u2 = v2 and u1v1 ∈ E(G1), or (c) u1v1 ∈ E(G1) and
u2v2 ∈ E(G2). We say that a graph G is a King grid if it is the strong product
of two path graphs G = Pn � Pm. Figure 1 shows the King grids P3 � P3 and
P5 �P5. The name of the King grid is due to the king’s moves in the chess game
(for example, in the chess board P8 � P8). There are many papers investigating
King grids in several different problems (for example, [8,16,27]).

Our first result is a general upper bound on the guard number gns,d(G1�G2)
for any two graphs G1 and G2 and any speed s ≥ 2 and surveillance distance
d ≥ 0.

Theorem 1. Let s ≥ 2 and d ≥ 0. Given two graphs G1 and G2, the guard
number of the strong product of G1 and G2 satisfies the following inequality.
Moreover, the equality holds if gns,d(G1) = 1 or gns,d(G2) = 1.

gns,d(G1 � G2) ≤ gns,d(G1) × gns,d(G2).

From this upper bound on the guard number on the strong product of two
general graphs, the natural question about the equality or the looseness of the
bound arises when the guard numbers of both graphs are at least 2. In the
following, we present two lemmas with general examples in King grids when the
guard numbers of both graphs are exactly 2: the first with the strict inequality
gns,d(P2d+3 � P2d+3) ≤ 2 < 4 = gns,d(P2d+3)2 and the second with the equality
gns,d(P2d+4 � P2d+4) = 4 = gns,d(P2d+4)2.

First we show that gns,d(P2d+3 �P2d+3) ≤ 2 for any d ≥ 0 and s ≥ 2. Notice
that gns,d(P2d+3) = 2 for any d ≥ 0 and s ≥ 2d + 2, since a spy in the first
vertex v0 of the path P2d+3 can go to the last vertex v2d+2 of the path, but a
guard surveilling the spy in the vertex vd of the path P2d+3 cannot jump to the
vertex vd+2 to keep surveilling the spy. Moreover, two guards in the vertices vd
and vd+2 are sufficient to surveil the spy. That is, gns,d(P2d+3)2 = 4.

Lemma 1. Let d ≥ 0 and s ≥ 2 be fixed. Then gns,d(P2d+3 � P2d+3) ≤ 2.

Proof (Sketch of the proof). See Fig. 1. ��
Next we show that gns,d(P2d+4 � P2d+4) = 4 for any d ≥ 0 and s ≥ d + 2.

Notice that gns,d(P2d+4) = 2 for any d ≥ 0 and s ≥ d + 2, since a spy in the
first vertex v0 of the path P2d+4 can go in two time steps to the last vertex
v2d+3 of the path, but a guard surveilling the spy in the vertex vd of the path
P2d+3 cannot go to the vertex vd+3 in two time steps to keep surveilling the spy.
Moreover, two guards in the vertices vd and vd+3 are sufficient to surveil the spy.
That is, gns,d(P2d+4)2 = 4.

Lemma 2. Let d ≥ 0 be a fixed integer and let s ≥ d + 2. Then gns,d(P2d+4 �
P2d+4) = 4.

Proof (Sketch of the proof). See Fig. 2. ��
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Fig. 1. Guards winning strategies with 2 guards in the King grids P3 �P3 and P5 �P5

with (s, d) = (2, 0) and (s, d) = (4, 1), respectively. The spy is represented by s and the
guards by 1 and 2.

Fig. 2. Spy winning strategies with 3 guards in the King grids P4 � P4 and P6 � P6

with (s, d) = (2, 0) and (s, d) = (3, 1), respectively. The spy is represented by s and the
guards by 1, 2 and 3.

The previous lemmas showed examples with few guards. We show that
gns,d(Pn � Pn) can be very close to gns,d(Pn)2, when many guards are nec-
essary. More specifically, we show that gns,d(Pn � Pn) ≥ (gns,d(Pn) − 1)2 in
many cases where gns,d(Pn) can be any positive integer.

Lemma 3. Let d ≥ 0 and 2 ≤ k ≤ 2d + 2 be fixed integers and let s ≥ (k − 1)
(2d + 3). Then gns,d(Pk(2d+3)) = k + 1 and k2 ≤ gns,d(Pk(2d+3) � Pk(2d+3)) ≤
(k + 1)2.
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There are other well studied graph products on the vertex set V (G1) × V (G2),
such as the cartesian product G1 �G2 and the lexicographical products G1 · G2

and G2 · G1 (see [22] for a reference). In the cartesian product G1 �G2, (u1, u2)
and (v1, v2) are adjacent if and only if (a) u1 = v1 and u2v2 ∈ E(G2) or (b)
u2 = v2 and u1v1 ∈ E(G1). In the lexicographical product G1 · G2, (u1, u2)
and (v1, v2) are adjacent if and only if (a) u1 = v1 and u2v2 ∈ E(G2) or (b)
u1v1 ∈ E(G1).

It is easy to see, from the definitions, that the cartesian product G1 �G2

is a subgraph of the strong product G1 � G2, which is a subgraph of the lexi-
cographical products G1 · G2 and G2 · G1. It is also easy to find examples in
which the upper bound of Theorem 1 fails in the cartesian product. For example,
gn2,0(P2 �P2) = gn2,0(C4) = 2 > 1 = gn2,0(P2)2. Regarding the lexicographical
product, failing examples are not so easy to find. The next lemma presents an
example in which the upper bound of Theorem 1 fails in both cartesian product
and lexicographical product.

Lemma 4. gn2,1(P5 �P5) > gn2,1(P5)2 and gn2,1(P5 · P5) > gn2,1(P5)2.

Proof (Sketch of the proof). See Fig. 3. ��

Fig. 3. The cartesian product P5 �P5 and the lexicographical product P5 · P5 with a
spy winning strategy with 1 guard and (s, d) = (2, 1). The spy is represented by s and
the guard by 1.

Nevertheless, regarding the lexicographical product, it is possible to prove a
better general upper bound if the surveilling distance d ≥ 2. In fact, we obtain
the following stronger result.

Theorem 2. Let s ≥ 2, d ≥ 2 and let G1 and G2 be two graphs. If G1 has no
isolated vertex, then the guard number of the lexicographical product of G1 and
G2 with surveilling distance d ≥ 2 is the guard number of G1:

gns,d(G1 · G2) = gns,d(G1).

Otherwise, it is the maximum among the guard numbers of G1 and G2:

gns,d(G1 · G2) = max { gns,d(G1), gns,d(G2) }.

There are still some open questions related to graph products. For example,
determine the exact value of the guard number in the lexicographical product
for d ∈ {0, 1} and in the strong product and the cartesian product of two general
graphs.
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3 Spy Game Is XP Parameterized by the Number of
Guards

In this section, we prove that, if the number k of guards is fixed, the spy game
is solvable in polynomial time O(n3k+2) for any speed s ≥ 2 and distance d ≥ 0.
For this, we first define spy and guard configurations.

Definition 1. Given k ≥ 1, s ≥ 2, d ≥ 0 and a graph G, let a configuration in
G be a possible scenario of the spy game, with all k guards and the spy occupying
vertices. We define two types of configurations: a spy configuration (before the
spy’s move) and a guard configuration (before the guards’ move). A spy config-
uration may be identical to a guard configuration (the only difference is that the
spy is the next to move). It is easy to see that there are exactly 2nk+1 configu-
rations (2 possibilities for the next to move, n possible vertices for the spy and
all k guards). We say that a spy configuration C1 leads to a guard configuration
C2 if C2 can be obtained from C1 by moving the spy along at most s edges. We
say that a guard configuration C1 leads to a spy configuration C2 if C2 can be
obtained from C1 by moving the guards along at most one edge each. Let the
digraph D∗ defined as follows: for every spy or guard configuration C, create an
associated vertex vC in D∗. If a configuration C1 leads to a configuration C2,
we add in D∗ the directed edge from vC1 to vC2 . Clearly, D∗ has exactly 2nk+1

vertices.

Theorem 3. Let G be a graph with n vertices. Given k ≥ 1, s ≥ 2 and d ≥ 0,
it is possible to decide in XP time O(n3k+2) if the spy has a winning strategy
against k guards in the (s, d)-spy game.

Proof (Sketch of the Proof). First consider the original (s, d)-spy game. The
algorithm is as follows. First, we define a spy winning configuration as a spy
configuration such that the spy is at distance more than d from every guard.
Mark all vertices of D∗ associated to spy winning configurations. Next, repeat the
following until no more vertices of D∗ are marked. For every guard configuration
C, mark the vertex vC in D∗ if all out-neighbors of vC are marked (in words, any
guards’ move will lead to a spy winning configuration). Moreover, for every spy
configuration C, mark the vertex vC in D∗ if there exists at least one marked
out-neighbor of vC (in words, there is a spy’s move which leads to a spy winning
configuration). Finally, at the end, if there exists a vertex u of G such that, for
every spy configuration C with the spy occupying u, vC is marked in D∗, then
the spy has a winning strategy (by occupying vertex u first). Otherwise, the
guards have a winning strategy. By applying breadth-first searchs in each vertex
of G as a preprocessing to check distances, we can obtain all out-neighbors of a
vertex vC in D∗ in time O(n3) and consequently D∗ can be constructed in time
O(nk+4). The algorithm will make at most 2nk+1 iterations, since at least one
vertex will be marked in each iteration. Moreover, since each spy configuration
leads to at most n guard configurations and each guard configuration leads to
at most nk spy configurations, every iteration takes time O(nk+1nk). Thus the
whole algorithm takes time O(n3k+2). ��
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A graph G is a (q, q − 4)-graph for some integer q ≥ 4 if every subset of
at most q vertices induces at most q − 4 distinct P4’s. For instance, cographs
and P4-sparse graphs are exactly the (q, q − 4)-graphs for q = 4 and q = 5,
respectively. The P4-fewness q(G) of a graph G is the minimum q ≥ 4 such that
G is a (q, q − 4)-graph [9–11,25]. These graphs have received a lot of attention
in the literature (under the expression “graphs with few P4’s”) and have a nice
recursive decomposition based on unions, joins, spiders and small separable p-
components [4].

Theorem 4. The spy game decision problem is FPT on the P4-fewness q(G) of
the graph G, with time O(m + q3q+3 · n), where q = q(G) and m and n are the
number of edges and vertices of G, respectively.

Proof (Sketch of the Proof). From the primeval decomposition of (q, q−4)-graphs
and the XP algorithm of Theorem 3. ��

However, despite these positive results, it was proved in [14] that the spy
game decision problem is W[2]-hard in general graphs when parameterized by
the number k of guards. In the next section, we extend this hardness result to
bipartite graphs for any speed s ≥ 2 and surveilling distance d ≥ 0.

4 Spy Game Is W[2]-Hard in Bipartite Graphs

In this section, we prove that the spy game decision problem with speed s and
distance d is W[2]-hard for any s ≥ 2 and d ≥ 0 even in bipartite graphs.

As mentioned in the introduction, we obtain an FPT-reduction from the Set
Cover problem (parameterized by the size of the solution) structurally similar to
the reduction of [14] for general graphs. However, it turns out that the extension
to bipartite graphs brings much more technical difficulties to the reduction and
the constructed bipartite graph is significantly different from the one of [14]. In
the reduction of [14], the constructed graph is highly non-bipartite: there is a
very large clique (representing the sets in the Set Cover problem), which is the
main place for the guards. With this, in one time step, any guard can replace
the main position of the guard who is surveilling the spy. This is an important
recurrent argument in the proof of [14], since a fast spy could force some guard
to abandon his main position and later run to a vertex that should be surveilled
by this guard. By removing the edges of this main clique in the reduction of [14],
we obtain a bipartite graph. However, with this, a guard may help other guard
in two time steps only, favoring the spy. Also increasing the number of guards
favors the guards in some cases and the balance is not always easy to maintain.
This brings some tricky timing problems, which are solved in the following by
changing significant parts of the reduction of [14].

Theorem 5. Let s ≥ 2, d ≥ 0 and k ≥ 1 be fixed. The (s, d)-spy game decision
problem with k guards is NP-hard and W[2]-hard (parameterized by the number
of guards). Morever, the (s, d)-spy game problem of minimizing the number of
guards is Log-APX-hard and (1 − ε) ln n-inapproximable in polynomial time for
any constant 0 < ε < 1, unless P = NP.
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The reduction is from the Set Cover Problem and is divided in three cases:
(i) s ≥ 2d + 2, (ii) d + 1 < s < 2d + 2 and (iii) s ≤ d + 1. Proofs are omitted due
to space restrictions.

An instance of the Set Cover Problem is a family S = {S1, . . . , Sm} of
sets and an integer c, and the objective is to decide if there exists a subfamily
C = {Si1 , . . . , Sic} ⊆ S such that |C| ≤ c and Si1 ∪ . . . ∪ Sic = U , where
U = S1 ∪ . . .∪Sm (we say that C is a set cover of U). Given an instance (S, c) of
Set Cover, we construct a graph G = Gs,d(S, c) and an integer K = Ks,d(S, c)
such that there exists a cover C ⊆ S of U with size at most c if and only
if gs,d(G) ≤ K. Note that the reductions presented below are actually FPT-
reductions and preserve approximation ratio. Therefore, since the Set Cover
Problem is W[2]-hard (when parameterized by the size c of the set cover) and
has no α ln(n) approximation algorithm for some constant 0 < α < 1 (unless P =
NP) [3], we not only prove the NP-hardness but also the fact that the problem
is W[2]-hard (when parameterized by the number of guards) and cannot be
approximated in polynomial time up to some logarithmic ratio (unless P = NP ).

Definition 2. Given s ≥ 2 and d ≥ 0, let p = p(s, d) = d +
⌈
d+1
s−1

⌉
and q =

q(s, d) be 0 (if d + 1 < s < 2d + 2), or d + 1 +
⌈

d
s−1

⌉
(if s ≤ d + 1), or d+1,

otherwise. Let (S, c) an instance of Set Cover, where S = {S1, . . . , Sm}, and let
U = S1 ∪ . . . ∪ Sm = {u1, . . . , un}. Let the number K = Ks,d(S, c) of guards be
c (if d + 1 < s < 2d + 2), or c + 2, otherwise. Let G = Gs,d(S, c) be defined as
follows: for every set Sj ∈ S, create a new vertex Sj in G and, for every element
ui ∈ U , create a path Ui with p vertices ui,1, . . . , ui,p. If ui ∈ Sj, add the edge
ui,1Sj in G. Create a new vertex z0 and add all possible edges between z0 and
{S1, . . . , Sm} in G. Finally, if q > 0, create a path Z with q vertices z1, . . . , zq,
and add the edge z0z1. Moreover, if s ≤ d + 1 or s ≥ 2d + 2, then create a path
Z ′ with q vertices z′

1, . . . , z
′
q and add the edge z0z

′
1.

See Fig. 4, 5 and 6 for examples.

Fig. 4. Reduction from Set Cover instance (S, c), where c = 3, S = {S1, S2, S3, S4, S5},
S1 = {1, 2, 3}, S2 = {2, 6, 7}, S3 = {4, 5, 6}, S4 = {3, 5, 7}, S5 = {7, 8, 9} and U =
{1, 2, 3, 4, 5, 6, 7, 8, 9}. Cases for speed s = 5 and distance d = 2, 3. Illustration of the
proof of Lemma 5.
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Lemma 5. Given a graph G and an integer K > 0, deciding if gs,d(G) ≤ K is
NP-hard for every s, d ≥ 0 such that d + 1 < s < 2d + 2.

Fig. 5. Reduction from Set Cover instance (S, c), where c = 3, S = {S1, S2, S3, S4, S5},
S1 = {1, 2, 3}, S2 = {2, 6, 7}, S3 = {4, 5, 6}, S4 = {3, 5, 7}, S5 = {7, 8, 9} and U =
{1, 2, 3, 4, 5, 6, 7, 8, 9}. Cases for speed s = 5 and distance d ∈ {0, 1}. Illustration of the
proof of Lemma 6.

Lemma 6. Given a graph G and an integer K, deciding if gs,d(G) ≤ K is
NP-hard for every s, d ≥ 0 such that s ≥ 2d + 2.

Lemma 7. Given a graph G and an integer K, deciding if gs,d(G) ≤ K is
NP-hard for every d > 0 and 2 ≤ s ≤ d + 1.

Fig. 6. Reduction from Set Cover instance (S, c), where c = 3, S = {S1, S2, S3, S4, S5},
S1 = {1, 2, 3}, S2 = {2, 6, 7}, S3 = {4, 5, 6}, S4 = {3, 5, 7}, S5 = {7, 8, 9} and U =
{1, 2, 3, 4, 5, 6, 7, 8, 9}. Cases for speed s = 5 and distance d ∈ {4, 5}. Illustration of the
proof of Lemma 7.
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