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Abstract. This paper presents a recent formalization of a Henkin-style
completeness proof for the propositional modal logic S5 using the Lean
theorem prover. The proof formalized is close to that of Hughes and
Cresswell [8], but the system, based on a different choice of axioms, is
better described as a Mendelson system augmented with axiom schemes
for K, T, S4, and B, and the necessitation rule as a rule of inference.
The language has the false and implication as the only primitive logical
connectives and necessity as the only primitive modal operator. The full
source code is available online and has been typechecked with Lean 3.4.2.
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1 Introduction

A proof of the completeness theorem for a given logic conforms to the Henkin
style when it applies nonconstructive methods to build models out of maximal
consistent sets of formulas (possibly after a Henkin language extension) using the
deductive system itself. Henkin-style completeness proofs for modal logics have
been around for over five decades [9] but the formal verification of completeness
with respect to Kripke semantics is comparatively recent.

We present a formalization of a Henkin-style completeness proof for the
propositional modal logic S5 using the Lean theorem prover. Although the proof
is specific to S5, the same techniques can be applied to weaker normal modal
systems such as K, T, S4, and B, by forgetting the appropriate extra accessi-
bility conditions (as described in [8]). The formalization covers the syntax and
semantics of S5, the deduction theorem, structural rules (weakening, contrac-
tion, exchange), the recursive enumerability of the language, and the soundness
and completeness theorems. It has approximately 1,500 lines of code (but only
two thirds of the development is required for the completeness proof). The full
source code is available online. It has been typechecked with Lean 3.4.2.

The author thanks Jeremy Avigad, Mario Carneiro, Rajeev Goré, and Minchao Wu for
helpful suggestions. An early version of this work was presented at the Lean Together
2019, Amsterdam, January 7–11, 2019. The source code described in this paper is
publicly available online at: https://github.com/bbentzen/mpl/. An extended version
is available at https://arxiv.org/abs/1910.01697.
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1.1 Related Work

The use of proof assistants in the mechanization of completeness proofs in the
context of Kripke semantics has been recently studied in the literature for a vari-
ety of formal systems. Coquand [2] uses ALF to give a constructive formal proof
of soundness and completeness w.r.t. Kripke models for intuitionistic proposi-
tional logic with implication as the sole logical constant. Building on Coquand’s
work, a constructive completeness proof w.r.t Kripke semantics for intuitionistic
logic with implication and universal quantification has been verified with Coq
by Heberlin and Lee [7]. Also using Coq, Doczal and Smolka present a con-
structive formal proof of completeness w.r.t. Kripke semantics and decidability
of the forcing relation for an extension of modal logic K [4] and a variety of
temporal logic [5]. In his formal verification of cut elimination for coalgebraic
logics, Tews [13] provides a formalization of soundness and completeness proofs
covering many different logics, including modal logic K.

To the best of our knowledge, our formalization of a Henkin-style complete-
ness proof for propositional modal logic S5 is the first of its kind.1 Our proof
is close to that of Hughes and Cresswell [8], but given for a system based on a
different choice of axioms. In Hughes and Cresswell’s book, the basis of S5 is
that of T plus an additional axiom. Here S5 is built on axiom schemes for K,
T, S4 and B. This has the advantage that we can easily adapt the proof for dif-
ferent weaker systems. Another choice had to be made between using a deep or
a shallow embedding for the formalization. Because our aim is metatheoretical,
we use a deep embedding for the encoding of the syntax, as it allows us to prove
metatheorems by structural induction on formulas or derivations.

1.2 Lean

Lean is an interactive theorem prover developed principally by Leonardo de
Moura based on a version of dependent type theory known as the Calculus of
Inductive Constructions [3,11]. Theorem proving in Lean can be done by con-
structing proof terms directly, as in Agda [10], by using tactics, imperative com-
mands that describe how to construct a proof term, as in Coq [12], or by mixing
them together in the same environment. Lean also supports classical reasoning,
which is employed in the formalization along with the declaration of noncom-
putable constructions. The formalization also presupposes a few basic results on
data structures which are not in the standard library, so, our development makes
use of mathlib, the library of formalized mathematics for Lean [1].

In the remainder of this paper, Lean code will be used to illustrate design
choices and give an overview of the proof method, not to discuss the proof itself.
Interested readers are encouraged to consult completeness.lean, the main file
1 In independent work done roughly at the same time the author first completed this

formalization in 2018, Wu and Goré [14] have described a formalization in Lean of
modal tableaux for modal logics K, KT, and S4 with decision procedures with proofs
of soundness and completeness. Also in 2018, but unknown to the author, From [6]
formalized a Henkin-style completeness proof for system K in Isabelle.
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of the formalization where the crucial proof steps are given in detail. We shall also
give an informal proof sketch of the completeness theorem using mathematical
notation to convey the key ideas of the proof.

2 Modal Logic

2.1 The Language

For simplicity, we shall work with a language which has implication (⊃) and
the false (⊥) as the only primitive logical connectives, and necessity (�) as the
only primitive modal operator. This language can be conveniently defined using
inductive types in Lean:

inductive form {σ :nat} : Type

| atom : fin σ → form

| bot : form

| impl : form → form → form

| box : form → form

Using one of the four constructors displayed above (atom, bot, impl, box) is the
only way to construct a term of type form. The elimination rule of this type is
precisely the principle of induction on the structure of a formula.

While newly-defined terms are always exhibited in Polish notation by default,
Lean supports unicode characters and has an extensible parser which allows the
declaration of customized prefix or infix notations for terms and types.

prefix ‘#’ := form.atom

notation ‘⊥’ := form.bot _

infix ‘⊃’ := form.impl

notation ‘∼’:40 p := form.impl p (form.bot _)

prefix ‘�’:80 := form.box

prefix ‘♦’:80 := λ p, ∼(� (∼ p))

Contexts are just sets of formulas. In Lean, sets are functions of type A → Prop:

def ctx : Type := set (form σ)
notation ‘·’ := {}

notation Γ ‘̀ ’ p := set.insert p Γ

2.2 The Proof System

We define a Mendelson system augmented with axiom schemes for K, T, S4,
and B, and the necessitation rule as a rule of inference. The proof system is
implemented with a type of proofs, which is inductively defined as follows:

inductive prf : ctx σ → form σ → Prop

| ax {Γ} {p} (h :p∈ Γ): prf Γ p

| pl1 {Γ} {p q} : prf Γ (p ⊃ (q ⊃ p))

| pl2 {Γ} {p q r} : prf Γ ((p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ (

p ⊃ r)))
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| pl3 {Γ} {p q} : prf Γ (((∼p) ⊃ ∼q) ⊃ (((∼p) ⊃ q) ⊃
p)

| k {Γ} {p q} : prf Γ (�(p ⊃ q) ⊃ (�p ⊃ �q))

| t {Γ} {p} : prf Γ (�p ⊃ p)

| s4 {Γ} {p} : prf Γ (�p ⊃ ��p)

| b {Γ} {p} : prf Γ (p ⊃ �♦p)

| mp {Γ} {p q} (hpq: prf Γ (p ⊃ q)) (hp :prf Γ p) :prf Γ q

| nec {Γ} {p} (h :prf · p) : prf Γ (�p)

notation Γ ‘ �s5 ’ p := prf Γ p

notation Γ ‘ �s5 ’ p := prf Γ p → false

2.3 Semantics

Kripke Models. The semantics for S5 are given by Kripke semantics. A model
M is a triple 〈W,R, v〉 where

– W is a non-empty set of objects called possible worlds;
– R is a binary, equivalence relation on possible worlds;
– v specifies the truth value of a formula at a world.

It is useful to let the members of W (possible worlds) be sets of formulas:

def wrld (σ :nat) := set (form σ)

Kripke models can be implemented as structures (inductive types with only one
constructor). This can be done using the structure command in Lean. We define
a 6-tuple composed of a domain, an accessibility relation, a valuation function,
and reflexivity, symmetry and transitivity proofs for the given relation:

structure model :=

(wrlds : set (wrld σ))
(access : wrld σ → wrld σ → bool)

(val : fin σ → wrld σ → bool)

(refl : ∀ w ∈ wrlds , access w w = tt)

(symm : ∀ w ∈ wrlds , ∀ v ∈ wrlds , access w v = tt → access v

w = tt)

(trans : ∀ w ∈ wrlds , ∀ v ∈ wrlds , ∀ u ∈ wrlds ,

access w v = tt → access v u = tt → access w u = tt)

The Boolean type bool is used for truth values (i.e. either tt or ff).

Semantic Consequence. We have a forcing function which takes a model, a
formula, and a world as inputs and returns a boolean value. Non-modal connec-
tives are given truth-functionally and a formula �p is true at a world w iff if
R(w, v) then p is true at v, for all v ∈ W:

def forces_form (M : model) : form σ → wrld σ → bool

| (#p) := λ w, M.val p w

| (bot σ) := λ w, ff
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| (p ⊃ q) := λ w, (bnot (forces_form p w)) | | (forces_form q w)

| (�p) := λ w, if (∀ v ∈ M.wrlds , w ∈ M.wrlds →
M.access w v = tt → forces_form p v = tt) then tt else ff

This function can be extended to contexts in the obvious way:

def forces_ctx (M : model) (Γ :ctx σ) :wrld σ → bool :=

λ w, if (∀ p, p ∈ Γ → forces_form M p w = tt) then tt else ff

A formula p is a semantic consequence of a context Γ iff, for all M and
w ∈ W, Γ being true at w in M implies p being true at w in M.

inductive sem_csq (Γ :ctx σ) (p :form σ) :Prop

| is_true (m : ∀ (M : model) (w : wrld σ),
forces_ctx M Γ w = tt → forces_form M p w = tt) : sem_csq

notation Γ ‘�s5’ p := sem_csq Γ p

3 The Completeness Theorem

In this section we formalize a proof of completeness with respect to the proof
system and semantics developed in the previous sections.

Theorem 1 (Completeness). For every context Γ, any formula p that follows
semantically from Γ is also derivable from Γ in the modal logic S5. In symbols:

Γ �S5 p =⇒ Γ 	S5 p

That is, every semantic consequence is also a syntactic consequence in S5.

The proof requires a non-constructive use of contraposition. We assume that
both Γ �S5 p and Γ �S5 p hold, and then derive a contradiction using the syntax
to build a model M = 〈W,R, v〉 (the canonical model) where Γ is true but p is
false at a specific world in the domain.

We shall focus on sketching the formal argument for the following facts:

1. Γ ∪ {∼p} has a maximal consistent extension Δ =
⋃

n∈N
Δn, for

Δ0 :=Γ ∪ {∼p}

Δn+1 :=

{
Δn ∪ {ϕn+1} if Δn ∪ {ϕn+1} is consistent
Δn ∪ {∼ϕn+1} otherwise

2. There exists a canonical model where p is true at w iff p ∈ w;
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Maximal Consistent Sets. We say that a context is maximal consistent if it
is consistent and, moreover, for every formula expressible in the language, either
it or its negation is contained in that context.
def is_max (Γ :ctx σ) := is_consist Γ ∧ (∀ p, p ∈ Γ ∨ (∼p) ∈ Γ)

Our language is countable, so we can construct each Δn+1 using natural num-
bers to run through the set of all formulas, deciding whether or not a number’s
corresponding formula (when it exists) is consistent with Δn or not. The enumer-
ability of the language is expressed using encodable types, which are construc-
tively countable types in Lean. Essentially, a type α is encodable when it has an
injection encode :α → nat and a (partial) inverse decode :nat → option α .

def insert_form (Γ :ctx σ) (p :form σ) :ctx σ :=

if is_consist (Γ ` p) then ` p else ` ∼p

def insert_code (Γ :ctx σ) (n :nat) : ctx σ :=

match encodable.decode (form σ) n with

| none := Γ
| some p := insert_form p

end

def maxn (Γ :ctx σ) :nat → ctx σ
| 0 := Γ
| (n+1) := insert_code (maxn n) n

def max (Γ :ctx σ) :ctx σ :=
⋃

n, maxn Γ n

Before proceeding any further, we must show that Γ in contained in max Γ and
that max Γ is maximal and consistent. For each maxn Γ n of the family of sets,
we have Γ ⊆ maxn Γ n. So Γ must also be contained in their union, max Γ. This
proof argument produces a term of type:

lemma subset_max_self {Γ :ctx σ} :Γ ⊆ max Γ

Now, every formula must be in the enumeration somewhere, so suppose that the
formula p has index i. By the definition of maxn Γ i, either p or ∼p is a member
of maxn Γ i, so one of them is a member of max Γ. Thus, we have a term
theorem mem_or_mem_max {Γ :ctx σ} (p :form σ) :p ∈ max Γ ∨ (∼p)

∈ max Γ

Assume for the sake of contradiction that Γ is consistent but max Γ is not. By
structural induction on the proof tree, we prove that there exists an i such that
maxn Γ i is inconsistent. However, each maxn Γ i preserves consistency. This
gives a function

lemma is_consist_max {Γ :ctx σ} :is_consist Γ → is_consist (

max Γ)

The above proof sketches are implemented purely by unfolding definitions
and inductive reasoning. They consist of approximately 150 lines of code in
completeness.lean. There is even a one-line short case-reasoning proof that
maximal consistent sets are closed under derivability:
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lemma mem_max_of_prf {Γ :ctx σ} {p :form σ} (h1 :is_max Γ)
(h2 : Γ �S5 p) :p ∈ Γ :=

(h1.2 p).resolve_right (λ hn, h1.1 (prf.mp (prf.ax hn) h2))

The Canonical Model Construction. We build the model as follows:

– W is the set of all maximal consistent sets of formulas;
– R(w, v) iff �p ∈ w implies p ∈ v;
– v(w, p) = 1 if w ∈ W and p ∈ w, for a propositional letter p.

We have to show that R is an equivalence relation. Reflexivity translates as
follows: �p ∈ w implies p ∈ w for a given world w ∈ W. But this is easy because
w is closed under derivability (it is a maximal consistent set of formulas) and
our proof system has modus ponens and axiom schema (t).

Proving symmetry requires more work. Given any worlds w, v ∈ W, sup-
pose first that �ϕ ∈ w implies ϕ ∈ v for all formulas ϕ, and suppose that
�p ∈ v. We want to show that p ∈ w. Since ♦�p ⊃ p is a theorem of S5 (see
syntax/lemmas.lean) we just have to prove that ♦�p ∈ w, or, equivalently,
that �∼�p /∈ w. By contraposition on our initial hypothesis, it suffices to show
that ∼�p /∈ v. But �p ∈ v and v is consistent.

For transitivity, we must show that p ∈ u, on the assumptions that �p ∈ w,
that �ϕ ∈ w implies ϕ ∈ v, and that �ϕ ∈ v implies ϕ ∈ u, for any formula ϕ.
In other words, we want to show that ��p ∈ w. But this follows from modus
ponens and axiom scheme (s4).

This model construction is represented by the Lean code

def domain (σ :nat) : set (wrld σ) := {w | ctx.is_max w}

def unbox (w : wrld σ) :wrld σ := {p | (�p) ∈ w}

def access : wrld σ → wrld σ → bool :=

λ w v, if (unbox w ⊆ v) then tt else ff

def val : fin σ → wrld σ → bool :=

λ p w, if w ∈ domain σ ∧ (#p) ∈ w then tt else ff

lemma mem_unbox_iff_mem_box {p : form σ} {w :wrld σ} :

p ∈ unbox w ↔ (�p) ∈ w := 〈 id, id 〉
What is here called unbox is a set operation which takes a set of formulas w as
an input and returns the set of formulas p such that �p is a member of w.

A useful lemma about this operation is that if p is deducible from unbox w
then actually �p ∈ w. It can be proved by structural induction on the derivation
using the necessitation rule, giving us a term:

lemma mem_box_of_unbox_prf {p : form σ} {w :wrld σ}
(H : w ∈ domain σ) :(unbox w �s5 p) → (�p) ∈ w
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Truth and Membership. To prove completeness, we first show that a formula
is true at a world in the canonical model iff it is a member of that world:

lemma form_tt_iff_mem_wrld {p : form σ} :

∀ (w ∈ domain σ), (forces_form model w p) = tt ↔ p ∈ w

Here model is the canonical model defined in the previous section. To prove this,
we use induction on the structure of the formula p.

In the proof mechanization, we use the induction tactic in the tactic mode.
This tactic produces four goals, of which the fourth is the most relevant one. To
prove it, we begin by assuming the inductive hypothesis for p. If w is a world,
and, if it is a maximal consistent set of formulas, then, by unfolding the definition
of truth of a formula at a world in a model, the biconditional statement becomes

� (∀ (v :wrld σ),
v ∈ model.wrlds → w ∈ model.wrlds → model.access w v = tt →

forces_form model w p = tt) ↔ (�p) ∈ w)

In the forwards direction, we assume that �p is true at w in the canonical
model and that ∼�p ∈ w. But then, by lemma mem box of unbox prf, the
context unbox w∪{∼p} is consistent and can be extended to a maximal consistent
set (i.e. a world in the domain). It is accessible to w because unbox w ⊆ max
(unbox w ∪ {∼ p}), so p should be true at w. But p /∈ max (unbox w ∪ {∼ p})
because it is consistent.

For the backwards direction, assume that �p ∈ w. Given a maximal consis-
tent set of formulas v and assuming that �ϕ ∈ w then ϕ ∈ v for all ϕ, we have
to show that p is true at v in the model. By the inductive hypothesis, however,
it suffices to show that p ∈ v, but this follows from �p ∈ w.

The Completeness Proof. We now complete our proof by putting together all
the above pieces into 24 lines of code. Since we know by hypothesis that Γ �S5 p,
it follows that Γ ∪ {∼p} is consistent–otherwise, if the false were deducible from
it, we would have a contradiction by double negation elimination.

lemma consist_not_of_not_prf {Γ :form σ} {p :form σ} :

(Γ �s5 p) → is_consist (Γ ` ∼p) := λ hnp hc , hnp (mp dne (

deduction hc))

Now assuming that Γ �S5 p, the basic idea for deriving the contradiction is that,
as max Γ ∪ {∼p} is a world in the canonical model, and each formula ϕ ∈ Γ is
true at that world, Γ is true as well. Clearly, p is not consistent with Γ ∪ {∼p},
so p /∈ max Γ ∪ {∼p}, meaning that p must be false at that world.

This allows us to prove the desired theorem

theorem completenss {Γ :form σ} {p :form σ} :(Γ �s5 p) → Γ 	s5
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