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Abstract. Choosing the right instance on a public cloud for model training is not
an easy task. There are hundreds of different virtual machines available with a
wide variety of CPU core counts (i.e., how many tasks can be performed in paral-
lel), memory, disk type, network speed, and of course graphics card (GPU). The
latter has often become a differentiating factor for choosing one virtual machine
(VM) over another. On top of that, containerization technology has greatly simpli-
fied GPU computations for machine learning, wrapping the software stack above
the Kernel level in containers and allowing to juggle with different combina-
tions of frameworks, lower lever libraries, and hardware drivers. Technologies
like Nvidia-docker has even unlocked new stack combinations (driver plus low
lever Compute Unified Device Architecture libraries, most of the time referred as
CUDA) that were not feasible before. This, however, adds another dimension to
the performance optimization problem, and now you not only need to choose an
optimal hardware for your machine learning task, but also a variate driver-CUDA
combination to fine-tune the performance further.

The goal of thiswork is to scrutinize howneural network architecture, different
versions of NVIDIA drivers, and CUDA libraries will influence training perfor-
mance and cost on different cloud VMs. We compared BERT, Mask R-CNN,
and DLRM architectures using instances available on Amazon Cloud Services
via Elastic Compute service (AWS EC2 for short) and showed that architecture,
model implementation, and software stack can cause significant variation in train-
ing time and cost with a different optimal configuration for different architectures
and software stacks.
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1 Introduction

This chapter is the first step in our research program aimed at scrutinizing how differ-
ent components of server hardware and software stacks affect a deep learning model’s
training time and cost. Our hypothesis is that even in a very simple setup where we
need to choose a cloud VM with a single GPU secondary parameter (like RAM, CPU
performance, disks, etc.) might have a significant impact on the cost and duration of the
training, and this impact will vary from one network architecture to another.
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Another hypothesis that we are testing here is that different combinations of GPU
drivers and low-level libraries providing GPU acceleration for ML frameworks like
PyTorch will cause significant deviations in training cost and time. There is anecdo-
tal evidence that drivers might cause a performance degradation of the GPU from the
consumer market, however, we have not seen papers investigating whether there is any
performance implication for ML workloads on professional GPUs.

2 Set-Up

2.1 Benchmarks

As a base for testing machine-learning workloads, we chose the latest set of reference
implementations for MLPerf training benchmarks [1]. Out of eight different neural
network implementations available, we picked up one model for each domain that is
widely relevant for the industry. The resulting reference model set is:

1. For image processing – an object detection Mask R-CNN model trained on COCO
data set [2].

2. For natural language processing – a BERT model trained on a Wikipedia dump [3].
3. For recommendations – a DLRM model trained on a 1Tb Kaggle AdDisplay

Challenge dataset [4].

2.2 Changes to the Reference Implementations

Our motivation to make changes to the reference implementations was driven by the
following:

• The Take into account outdated hardware still available in the cloud. Users still can
find cloud instances with GPUs as old as the Kepler-family Nvidia accelerators. The
reference implementation of MLPerf benchmarks, tuned towards measuring the per-
formance of current and future generations of a GPU, is not only time-consuming
and costly on older generations, but sometimes even that cannot be performed due to
insufficient GPU memory or other reasons.

• The Speed up the testing process. This chapter is the first step in the lengthy program
developed to research how different elements in the technology stack influence per-
formance and cost of deep learning model training. Having this in mind, building a
representative set of fast and cost-efficient benchmarks is particularly important.

• The Ease of reproducibility of these results. Speed and cost-efficiency of the bench-
marks provide more reliability of the result, as any test can be reproduced by any
member of the community, and all results can be verified.
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The resulting changes to the reference benchmarks are:
Object Detection (R-CNN)

• For the object detection model, the number of interactions was capped at 3,000 which
resulted in a benchmark duration of around 15 min for the Volta family accelerators
(Nvidia Telsa V100).

Recommender (DLRM)

• The The dataset was cut from 1Tb down to 20 Gb to reduce the burden of fetching
training data for each test.

• The The number of epochs was limited by two, reducing the test duration to circa 45
min for virtual machine with one Nvidia Tesla V100 GPU.

Natural Language Processing (BERT)

• The architecture of the neural network was changed from BERT Large to BERT Base
[3] to revise the benchmark for accelerators with 7 Gb of available VRAM.

• Just-in-time CUDA code compilations were turned off to reduce the benchmark start-
up time.

• The number of training stepswas reduced to 15k, as a result one TeslaV100 performed
the test in circa 25 min.

2.3 Benchmarking Software Stack

To test the performance of different GPU driver/CUDA combinations, we administered
theDLRMbenchmark. Its implementationwas based on PyTorch 1.7.1which allowed us
to use several CUDA versions (in this chapter, we present only 9.2, 10.1, 10.2, and 11.0
versions) without changing the benchmark source code. For each test we used Ubuntu
16.04 (with kernel version 4.4) as an operating system, on top of it we installed seven
different GPU drivers obtained from the official Nvidia site. These drivers are:

• 410.129
• 418.165
• 440.118
• 450.80
• 455.32
• 460.32

This particular choice of drivers was guided by two things:

1. The compatibility of a driver with a Linux kernel (we decided not to drop below
version 4.4); and,

2. The compatibility of a particular driver with different CUDA libraries
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The benchmark was run inside of a container using docker v19.3 and nvidia-docker2.
It is worth mentioning that using the nvidia-docker was critical for the whole experi-
ment because when running a framework without a container, one should match the
CUDA version installed on a host with the version used during the compilation of the
framework’s libraries. Another important note is that a particular version of the CUDA
toolkit requires a certain version of the device’s driver. This driver is usually installed
simultaneously with the toolkit. Therefore, using a GPU enabled container engine is
crucial, without it, this experiment is not feasible.

2.4 Infrastructure

To test our hypothesis, we took the most popular cloud provider Amazon Web Services
(AWS) and ran our set of benchmarks on all of the available single GPU instances. It
is also important to note that all VMs were booked in one availability zone (US-East-2
according to AWS zone naming), and that we used only general-purpose volumes (gp2)
for benchmarking the driver/CUDA combinations (Table 1).

Table 1. The AWS instances with a single GPU used for benchmarking.

GPU CPU
family/model

AWS instance vCPU
(#)

RAM
(Gb)

VRAM1(Gb) Disk
(type)

Price
($/hour)

K80 E5-2686 v4 p2.xlarge 4 61 11 gp2/io1 0.9

M60 E5-2686 v4 g3s.xlarge 4 30.5 7 gp2/io1 0.75

M60 E5-2686 v4 g3.4xlarge 16 122 7 gp2/io1 1.14

V100 E5-2686 v4 p3.2xlarge 8 61 16 g2p/io1 3.06

T4 Cascade Lake g4dn.xlarge 4 16 15 gp2/io1 0.53

T4 Cascade Lake g4dn.2xlarge 8 32 15 gp2/io1 0.75

T4 Cascade Lake g4dn.4xlarge 16 64 15 gp2/io1 1.2

T4 Cascade Lake g4dn.8xlarge 32 128 15 gp2/io1 2.18

3 Benchmark Results

3.1 GPU Instances

Figure 1, Fig. 2, and Fig. 3 show the summary of the benchmark runtimes and costs
in relative terms. All pf the values are normalized to the best result (shown as equal
to 1.00) across all of the different instances. The benchmarks with the lowest duration
and costs are highlighted with dashed boxes, and all other results are multiples of these
best results. Blue bars represent the cost of running a benchmark, and red bars show the
duration of the benchmark.
1 GPU memory available inside virtual machine.
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Fig. 1. Relative performance results for the BERT

Fig. 2. Relative performance results for the DLRM2

2 reflects the best performance duration or cost estimated based on data from aborded test. The
actual test was stopped after 300 min and then duration/cost was extrapolated to get estimate
for the full successful test (e.g., all successful runs for other configurations took between 15
and 120 min).
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Fig. 3. Relative performance results for the Mask R-CNN

The above graphs in the figure clearly show that there is a notable performance
difference between instances across different neural networks. To illustrate this better,
let us use a different representation of the same data. Table 2 below shows a summary
across all VMs and neural networks. There are four interesting observations from this
table (highlighted). From top to bottom:

• Goofy VM configurations can give both the best price and performance. An example,
a g4dn.4xlarge instance (Tesla T4) which gives mediocre results for both BERT and
R-CNN appears to be the best option for DLRM in terms of price/performance.

• The cheapest instances for one network can be the most expensive for others. An
example, a g4dn.xlarge (Tesla T4) which gave the lowest training costs for BERT and
R-CNN is the most expensive for DLRM training by at least an order of magnitude.

• The most powerful GPUs are not always the fastest, and never cost-efficient. The
Tesla V100 (p3.2xlarge instance) is the most capable GPU in our set and provided the
lowest training time forBERTandR-CNN, but itwas 22%slower than the significantly
weaker Tesla T4 when used for the DLRM network.

• Legacy GPUs can still be the cheapest to train certain networks. Tesla K80 was the
cheapest for training the DLRM network.

Table 2. Benchmark results summary (relative values, lower is better)

GPU AWS instance Price ($/hour) BERT DLRM Mask R-CNN

Cost Time Cost Time Cost Time

T4 g4dn.8xlarge 2.18 4.00 2.61 1.78 1.00 3.99 2.18

T4 g4dn.4xlarge 1.2 2.29 2.71 1.02 1.03 2.59 2.56

(continued)
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Table 2. (continued)

GPU AWS instance Price ($/hour) BERT DLRM Mask R-CNN

Cost Time Cost Time Cost Time

T4 g4dn.2xlarge 0.75 1.43 2.71 1.40 2.27 1.59 2.52

T4 g4dn.xlarge 0.53 1.00 2.71 15.00 15.00 1.00 2.26

V100 p3.2xlarge 3.06 2.15 1.00 3.06 1.22 2.57 1.00

M60 g3.4xlarge 1.14 3.58 4.46 1.16 1.24 3.38 3.53

M60 g3s.xlarge 0.75 2.41 4.58 1.80 2.93 2.25 3.57

K80 p2.xlarge 0.9 2.93 4.64 1.00 1.36 4.53 6.01

To illustrate the last two bullet points further, let us consider Fig. 4 and Fig. 5.
The highlighted instances in these figures are for GPUs with substantially different
performance, but still showing very similar results in terms of training times. Moreover,
Fig. 5 highlights the case where the GPU from the latest generation available shows a
training time close to GPUs which are several generations earlier.

Fig. 4. Cloud instances with Tesla K80 give very similar training times for BERT as the instances
for the Tesla M60 (next-generation compared to K80).
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Fig. 5. Instances with Tesla V100 (the most powerful GPU in the set) show training times for
DLRM that are marginally better than the weakest Tesla K80 and the second weakest Tesla M60.

To summarize the evidence presented above, it is clear that choosing the most
performant GPU guarantees neither the fastest training time, nor the lowest training
costs.

In the following section, we scrutinize the evidence to explore why the DLRM
benchmark is so different comparing to BERT and Mask R-CNN.

Model Implementation Implications
According to [4], a DLRM architecture implies feature embedding where categorical
data (e.g., gender, geography, etc.) is transformed to a vector representation before being
submitted to a neural network. Feature embedding requires a significant amount of RAM
(44 Gb), and it forces instances with less memory to use the swap-space on a hard drive
to perform the task. As a result, the most efficient instances for BERT and R-CNN have
become the most expensive solution for a DLRM because of the lack of memory. We
can see this effect on the utilization graphs in Fig. 6, where the DLRMmodel consumes
all of the available RAM up to 44 Gb required to perform the training.

Another remarkable consequence of heavy RAM usage is low GPU utilization as
part of the computation is shifted to a CPU. Moreover, the benchmark implementation
used only one CPU thread. Both features led to a clear bottleneck on the CPU side which
can be seen in the monitoring data (Fig. 7), where the more powerful GPUs had less
utilization than did the less powerful.

As a result, the best performance was shown by instances with the best single-
threaded CPU performance (i.e., the g4dn instances in our set).

For both R-CNN and BERT, although their architectures differ significantly, there is
no evidence that their architecture leads to a significant loss of GPU performance.
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Fig. 6. Memory utilization charts for the DLRM benchmark. The green area represents the mem-
ory reserved by the benchmark, the yellow area for the memory used by the OS as a cache for IO
operations (irrelevant for our analysis). From top to bottom: 1) g3s.xlarge instance with 31 Gb of
RAM; 2) g4dn.4xlarge with 64 Gb of RAM; and, 3) g4dn.8xlarge with 128 Gb RAM.

Fig. 7. GPU Utilization. Top to bottom: Tesla K80 (p2.xlarge) and Tesla M60 (g3.4xlarge) with
30% utilization on average, Tesla T4 (g4dn.8xlarge) with 22% on average, and V100 (p3.2xlarge)
with 7% on average.

Comparing Training on a CPU Versus a GPU
To prove the point that the GPU is better for neural network training, we ran BERT and
DLRM benchmarks on a subset of AWS CPU instances optimized for computing and
storage (Table 3) and compared the training time and cost with results for GPU instances.

CPU instances appeared roughly seven times (7×) slower and five to six times
(5–6×)more expensive (Table 4)when comparing to the best-performingGPU instances.
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Table 3. AWS CPU instances chosen for benchmarking

CPU
family/model

AWS instance Optimized
for

vCPU
(#)

RAM
(Gb)

Disk
(type)

Price
($/hour)

E5 2666 v3 c4.4xlarge Compute 16 30 gp2/io1 0.90

E5 2666 v3 c4.8xlarge Compute 36 60 gp2/io1 0.75

Cascade Lake c5.metal Compute 96 192 gp2 io1 4.08

Cascade Lake c5.12xlarge Compute 48 96 gp2/io1 4.08

Cascade Lake c5.18xlarge Compute 72 144 gp2/io1 3.06

Cascade Lake c5.24xlarge Compute 96 192 gp2/io1 4.08

Cascade Lake c5d.4xlarge Storage 16 32 gp2/io1 0.77

Cascade Lake c5d.12xlarge Storage 48 96 gp2/io1 2.30

Xeon Platinum c5d.9xlarge Compute 36 96 gp2/io1 1.94

Xeon Platinum m5d.metal Storage 96 384 gp2/io1 5.42

Table 4. Comparing best performance for CPU instances versus GPU instances

Architecture CPU GPU

Runs (#) Min cost ($) Min time
(mins)

Runs (#) Min cost ($) Min time
(mins)

BERT 6 3.62 182 8 0.63 26

DLRM 9 3.59 237 12 0.74 36

The Effect of Storage
We also tested the influence of storage type for two instances. The results appeared to be
controversial and to require additional, but thorough research. It appears that addingmore
performance storage can both increase and decrease results depending on the instance
type (Table 5).

Table 5. Mask R-CNN benchmark storage type variations, �

Instance Type Time (mins) � Cost ($) �

g4dn.xlarge gp2 36 8.4% 0.32 8.4%

io1 33 0.29

p2.xlarge gp2 88 −5.2% 1.32 −5.2%

io1 93 1.39
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3.2 Performance Implications of GPU Drivers and CUDA Libraries

Figure 8, Fig. 9, Fig. 10, and Fig. 11 show the results of our benchmark performance for
the software stacks. The vertical axis represents the duration of the DLRM benchmark
in seconds, the horizontal axis represents the NVIDIA driver version, and each line
on the graph represents a particular version of the CUDA libraries (version 11.0 is not
supported by drivers older than 418, therefore, the yellow lines have fewer data points).

Each data point in these graphs aggregates at least 3 independent benchmarks and
equals themean benchmark duration. Each figure represents one of the four GPUmodels
(Tesla K80, M60, T4, and V100).

Instances with Tesla K80 and TeslaM60 show similar variations caused by the driver
version (around 10%). For both of these GPUs, CUDA11.0 on average resulted in longer
training time than the other versions. For K80 9.2 and 10.1, almost every time are better
than for the other versions. CUDA 9.2 and driver v.440 gave the lowest training time on
average, however, other versions of the driver (except 450) together with CUDA 9.2 or
10.1 showed very close performance.

Fig. 8. Tesla K80. Benchmark duration (in seconds, vertical axis) versus the NVIDIA driver
version (horizontal axis) for different CUDA library versions.

For the M60 performances, performance for all of the drivers lay within 3% from
each other, but with a clear disadvantage in using CUDA 11.0.

Tesla T4 and Tesla V100 show bigger variations (14% and 15% on average, corre-
spondingly). For T4, there is a clear optimum for CUDA 10.2 and driver v.410 and a
clear worst performer (CUDA v.11.0 and driver v.450). It is safe to say that the recent
two versions of CUDA gave longer training times compared to the older versions.

Tesla V100 instances show the highest variation of benchmark training times. It is
remarkable that all CUDA versions except 11.0 reveal similar behaviors. On average,
there is a clear optimum for the oldest version of the stack (CUDAv.9.2 and driver v.410),
and a clear worst performing stack (CUDA v10.1 and driver v.450). The difference
between these two combinations can exceed 20%. Another interesting observation is
that V100 is slowed down by v.450 of the driver more than the other GPUs in the set.



120 E. Bykov et al.

Fig. 9. Tesla M60: Benchmark duration (in seconds, vertical axis) versus the NVIDIA driver
version (horizontal axis) for different CUDA library versions.

Fig. 10. Tesla T4: Benchmark duration (in seconds, vertical axis) versus the NVIDIA driver
version (horizontal axis) for different CUDA library versions.

Fig. 11. Tesla V100: Benchmark duration (in seconds, vertical axis) versus the NVIDIA driver
version (horizontal axis) for different CUDA library versions.
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It is also remarkable that for almost all of theGPUs except for the TeslaK80 the driver
v.410 is better on average than all of the newer drivers; and the new version of CUDA
libraries is almost always worse than older versions. Another interesting observation is
that v.450 is a worse performer than both of the previous and succeeding versions of the
driver.

We believe that our data provide the evidence that optimizing a software stack can
give meaningful benefit in terms of speed and cost of training. Although we need to thor-
oughly examine statistical significance, reproducibility, and routes causing this behavior
in our future research.

4 Conclusion

In this chapter, we have investigated how a network’s training performance is linked to
a network’s architecture, hardware components of the training machine, and software
stack.We showed that a simple rule of thumb (e.g., always choosing the latest generation
or the most powerful GPU) can increase training cost and time by an order of magnitude
in theworst-case scenario.We also showed that components surrounding aGPU (e.g., the
RAMandCPU) can cause significant performance bottlenecks and should be considered
carefully in conjunction with a trained model architecture and implementation.

The overall results show that even in the case of a single GPU, the training setup
costs can significantly vary by hundreds of percent.

We also showed that there is a meaningful variation of training time caused by the
device driver version and the CUDA toolkit version, and that this variation is different
for different GPU families.
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