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Abstract. Defect detection plays an important role in the industrial
field. Because the defective images are often insufficient and defects
can be various, defective image synthesis is commonly used and models
always tend to learn the distribution of defects. However, the complexity
of defective image synthesis and difficulty of detecting unseen defects are
still the main challenges. To solve these problems, this paper proposes
a semi-supervised defect detection method based on image inpainting,
denoted as SDDII, which combines the training strategies of CycleGAN
and Pix2Pix. First, we train a defect generator unsupervisedly to gen-
erate defective images. Second, we train the defect inpaintor supervis-
edly using the generated images. Finally, the defect inpaintor is used
to inpainting the defects, and the defective areas can be segmented by
comparing images before and after inpainting. Without ground truth for
training, SDDII achieves better results than the naive CycleGAN, and
comparable results with UNET which is supervised learning. In addition,
SDDII learns the distribution of contents in defect-free images so it has
good adaptability for defects unseen before.

Keywords: Defect detection · Automated optical inspection ·
Generative adversarial networks

1 Introduction

The defect detection is an important part to ensure product quality. Tradi-
tionally, this complex task is completed by manpower which is time-consuming
and labor-consuming, where the accuracy is affected by subjective judgments of
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workers and the efficiency depends on the physical condition of workers. In recent
years, with the development of deep learning, more and more defect detection
methods based on deep learning have been used to assist or even replace the
traditional manpower to improve the accuracy and efficiency [1,3,15].

In industrial scenes, it cost a lot to collect and label defective images so
the defective image synthesis is often used to help generate more data. However,
defective image synthesis [8] is complicated and not general-purpose which needs
to design exclusive method. Additionally, it is still challenging for model to
recognize unseen defects even though the data is sufficient.

Recently, to reduce complexity of defective image synthesis, CycleGAN [26]
is often used to generate defective images in an image-to-image manner by
inputting defect-free images [18]. Through this method, the defective images can
be inpainted back to defect-free images conveniently. By comparing the images
before and after inpainting, the defective areas can be segmented. This method
would make the model to learn the distribution of contents in defect-free images,
instead of learning the distribution of defects. It is like to make the model to
generate “mind-set”, where the unseen contents in images will be inpainted. So
this method can be good at detecting unseen defects. However, CycleGAN is
trained in an unsupervised manner and the generated defective images are not
utilized. It still has improvement space.

The main contribution of this paper is that we propose a semi-supervised
method utilizing the generated defective images to further improve inpainting
performance of CycleGAN [26]. Our method is denoted as SDDII, which stands
for “Semi-supervised Defect Detection based on Image Inpainting”. Firstly,
CycleGAN is trained to generate the defective images and inpaint the defec-
tive images. Secondly, we introduce the training strategy of Pix2pix [7], which
utilizes the generated defective images to supervisedly train the defect inpaint-
ing. Finally, the defects are segmented by comparing the images before and after
inpainting. Experiments show that SDDII can achieve better results than the
naive CycleGAN, and comparable results with the UNET which is supervised
learning.

The rest of the paper is structured as follows: in Sect. 2, we review the lit-
erature examining the applications of GAN on defect detection. In Sect. 3 we
outline the methodology employed, while in Sect. 4 we report the experiments
and results. In Sect. 5, we make a brief summary of this paper.

2 Related Work

GAN [6] is a network proposed by Ian Goodfellow in 2014. Compared with
other applications of convolutional network, such as image classification [19],
object detection [4], semantic segmentation [16], GAN can generate new data
by inputting random noise. Applications of GAN include face generation [23],
super-resolution generation [25], image inpainting [10], etc. To some extent, GAN
is a way of using reinforcement learning [9] to realize generative tasks. The ideas
of GAN and the “Actor-Critic” algorithm in reinforcement learning [12] are sim-
ilar, where actors are like generators in GAN, and critics are like discriminators
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in GAN, maintaining a game between actors (generators) and critics (discrimi-
nators) to achieve Nash equilibrium [20].

As GAN becomes more and more popular, GAN is gradually introduced into
the field of defect detection [2,14,24]. The common application is defective image
synthesis where defects are generated through GAN and pasted into the defect-
free image. Defective image synthesis has the following disadvantages: the design
process is complicated and the pasted images look fake. To overcome these, we
use CycleGAN [26] to generate the defective images in an image-to-image man-
ner where a forward mapping flow and a backward mapping flow form a circle.
In this method [18], a generator in a CycleGAN is adopted to generate defec-
tive images first, then the other generator is used to inpaint defective images,
finally the defective areas can be segmented by comparing the images before and
after inpainting (as shown in Fig. 1). However, consistency loss (LossF2) and
the adversarial loss (LossB1) are in two separated mapping flows which leads
to an imbalance in the training of DI (Defect Inpaintor). The performance of
DI has a direct impact on defect detection, so we aim to further improve the
defect inpainting. At this research, we introduce the supervised training strat-
egy of Pix2pix [7], where the consistency loss (LossF4) and the adversarial loss
(LossF3) are combined together in forward mapping flow (as shown in Fig. 2)
to improve the defect inpainting.

3 Methodology

3.1 Architecture

This paper proposes a semi-supervised defect detection method, denoted as
SDDII, which combines the training strategies of CycleGAN [26] and Pix2Pix
[7]. The training strategy of SDDII can be divided into two phases: the first
phase is unsupervised phase which contains unsupervised defect generation and
unsupervised defect inpainting. The second phase is supervised phase in which
we train additional supervised defect inpainting.

The unsupervised phase is implemented with CycleGAN, as shown in Fig. 1.
Through CycleGAN, data do not need to be collected in pairs [26]. Two gen-
erators in CycleGAN are defined as DG (Defect Generator) and DI (Defect
Inpaintor), which are responsible for defect generation and defect inpainting
respectively. We define the defect-free dataset as X and the defective dataset as
Y . As shown in Fig. 1, a defect-free image x in X is used to generate a defec-
tive image DG(x) by DG, then DG(x) is inpainted back to a defect-free image
DI(DG(x)) by DI. In the same way, a defective image y in Y is inpainted to a
defect-free image DI(y) by DI, then the DI(y) is used to generate a defective
image DG(DI(y)) by DG.

It is worth noting that in the actual operation process, the performance of
defect generation is often better than that of defect inpainting. That is because
the generated defects do not need too many constraints generally. The generated
content can be considered as defects as long as it can “destroy” the defect-free
images to some extent. As for the defect inpainting, we not only need to inpaint
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Fig. 1. The unsupervised training phase of SDDII. We train CycleGAN to generate
defective images and inpaint defects. Two generators in CycleGAN are defined as DG
(Defect Generator) and DI (Defect Inpaintor), which are responsible for defect gen-
eration and defect inpainting respectively. The loss functions in the forward mapping
flow are defined as LossFx, while those in the backward mapping flow are defined as
LossBx.

the defective content in local area, but also need to make the content distribution
of the whole image close to that of the defect-free images. So in practice, the
difficulty of defect inpainting is greater than that of defect generation.

Since CycleGAN [26] can use unpaired data to generate paired data, we intro-
duce an additional supervised training phase to improve the defect inpainting. As
shown in Fig. 2, we fix the parameters of DG and then input a defect-free image
x to generate a defective images DG(x). x and DG(x) are used for supervised
training of DI. In addition, a new discriminator DZ is added to form adversarial
training. The S operation is channel stacking, where the defective images DG(x)
are stacked with the defect-free images x or inpainted images DI(DG(x)), the
stacked images will be inputted to the discriminator for comparison. In essence,
it is an implementation of conditional GAN [17], which is also used in the famous
Pix2pix [7] and has achieved good results.

In terms of model structure, we adapt both DG and DI from UNET [21].
DX , DY and DZ use modules of the discriminator structure of patchGAN [7]
while the number of input channels of DZ is twice that of DX and DY . For
example, for RGB color images, the number of input channels of DX and DY is
3, and that of DZ is 6 because the S operation stacks two images with channel
number of 3 into a feature map with channel number of 6.

In the test phase, as shown in Fig. 3. The defective images y are inpainted to
defect-free images DI(y) by DI. Then the images before and after the inpaint-
ing, y and DI(y), are compared pixel by pixel and the pixels whose absolute
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Fig. 2. The supervised training phase of SDDII. We introduce an additional supervised
training phase which aims to improve defect inpainting. The parameters of DG are fixed
to generate defective images for DI’s training. S denotes image channel stacking.

difference is greater than the threshold will be segmented to form a binary image
D&T (y,DI(y)). The binary image D&T (y,DI(y)) represents the locations and
shapes of the defects, where D&T denotes pixel-level difference computing and
thresholding.

Fig. 3. The test phase of SDDII. DI is used to inpaint the images in testset. And then
we compare the images before and after inpainting pixel by pixel to get the defective
area, that is to calculate the prediction mask D&T (y,DI(y)). D&T denotes pixel-level
difference computing and thresholding.

3.2 Loss Function

Unsupervised Phase. In the unsupervised phase, which contains defect gen-
eration and inpainting, the loss is divided into two parts, the adversarial loss and
the consistency loss. As shown in Fig. 1, there are the forward (X → Y → X)
mapping flow and the backward (Y → X → Y ) mapping flow. Among them,
X → Y in the forward mapping flow is completed by DG cooperating with the
discriminator DY , and the loss function is shown in the Equation LossF1. DG
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tries to minimize this function against DY who tries to maximize it, that is,
min
DG

max
DY

LF1(DG,DY ). Similarly, for Y → X in the backward mapping flow,

the loss function is shown in the Eq. 2, i.e., min
DI

max
DX

LB1(DI,DX). The loss

functions in the forward mapping flow are defined as LossFx, and those in the
backward mapping flow are defined as LossBx. We define the data distribu-
tion as x ∼ Pdata(x) and y ∼ Pdata(y) where Pdata denotes the empirical
distribution of dataset.

LF1(DG,DY ) =Ey∼Pdata(y)[log DY (y)]
+Ex∼Pdata(x)[log(1 − DY (DG(x)))]

(1)

LB1(DI,DX) = Ex∼Pdata(x)[log DX(x)]
+ Ey∼Pdata(y)[log(1 − DX(DI(y)))]

(2)

Y → X in the forward mapping flow is mapped by DI. And X → Y in the
backward mapping flow is mapped by DG. The consistency loss of each of them
corresponds to LossF2 and LossB2 in Fig. 1 respectively. The loss functions are
shown in the Eq. 3 and the Eq. 4.

LF2(DG,DI) = Ex∼Pdata(x)[‖DI(DG(x)) − x‖1] (3)

LB2(DG,DI) = Ey∼Pdata(y)[‖DG(DI(y)) − y‖1] (4)

The total loss function of the unsupervised phase is shown in the Eq. 5, where
α is a balance parameter between adversarial loss and consistency loss. In this
phase, we aim to solve DG∗,DI∗ = arg min

DG,DI
max

DX ,DY

Lphase1(DG,DI,DX ,DY ).

Lphase1(DG,DI,DX ,DY ) = LF1(DG,DY ) + LB1(DI,DX)
+ α(LF2(DG,DI) + LB2(DG,DI))

(5)

Supervised Phase. In the supervised phase, the parameters of DG are fixed
and only the DI are trained because we aim to improve the defect inpainting. As
shown in Fig. 2, the defect-free image x is inputted to DG to generate the defec-
tive image DG(x), which is then inpainted by DI to obtain DI(DG(x)). The
discriminator DZ compares and judges the images before and after inpainting,
so as to assist DI to optimize the inpainting performance. In the training phase,
the discriminator label is true for the stacking input of x and DG(x), and false
for the stacking input of DI(DG(x)) and DG(x). And the loss is also divided
into adversarial loss and consistency loss. The adversarial loss corresponds to
LossF3 in Fig. 2, as shown in the Eq. 6 where z and Pz denote Gaussian noise
and Gaussian distribution respectively. According to cGAN [17], we should pro-
vide Gaussian noise z as an input to the generator in addition to original input.
If z is ignored, the mapping still can be learned, however, deterministic outputs
will be produced and DI can not learn a whole distribution.

LF3(DI,DZ) = Ex∼Pdata(x)[log DZ(DG(x), x)]
+ Ex∼Pdata(x),z∼Pz(z)[log(1 − DZ(DG(x),DI(DG(x), z)))]

(6)
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The consistency loss can be calculated according to the pixel difference
between the defect-free image x and the inpainted image DI(DG(x)), corre-
sponding to LossF4 in Fig. 2, as shown in the Eq. 7.

LF4(DI) = Ex∼Pdata(x),z∼Pz(z)[‖DI(DG(x), z) − x‖1] (7)

The total loss function of the supervised phase is shown in the Eq. 8, in which
β is a balance parameter between the adversarial loss and the consistency loss.
In this phase, we aim to solve DI∗ = arg min

DI
max
DZ

Lphase2(DI,DZ).

Lphase2(DI,DZ) = LF3(DI,DZ) + βLF4(DI) (8)

4 Experiments

4.1 Preparations

We evaluate SDDII on the RSDDs (Rail Surface Defect Datasets) [5] which
contains two types of datasets. The first is a Type-I RSDDs captured from
express rails, which contains 67 challenging images. The second is a Type-II
RSDDs captured from common/heavy haul rails, which contains 128 challenging
images. Each image contains at least one defect, and there is a corresponding
ground truth, which is a binary mask image with the same size that shows the
locations and shapes of the defects.

For evaluation, we choose IOU (Intersection over Union), pixel-level precision,
pixel-level recall, and pixel-level F1 score as the evaluation metrics which are
commonly used in semantic segmentation. As shown in Eq. 9, TP , FP , and
FN denote the numbers of correctly detected pixels, falsely detected pixels, and
undetected defect pixels. The values in following experiments are averaged over
the whole testset.

IOU = TP/(TP + FP + FN)
Pre = TP/(TP + FP )
Rec = TP/(TP + FN)
F1 = 2 × Pre × Rec/(Pre + Rec)

(9)

For comparison, on these datasets we also implement naive CycleGAN [26] for
ablation study, and UNET [21] which needs binary mask images for supervised
training while SDDII does not need. To be fair, no pre-trained model is used in
our experiments.

4.2 Implementation Details

For Type-I RSDDs, the width of each image is 160 px, and the height can be
from 1000 to 1282 px. And for Type-II RSDDs, all images share the same size
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of 55×1250 px2. To save GPU memory, we crop the original images and mask
images via sliding windows. What’s more, by this trick we can get more training
images although the number of images in original dataset is small. In our exper-
iments, the window size is set to 160×160 px2 and 55×55 px2, and the sliding
stride is set to 80 and 27 px, for Type-I and Type-II RSDDs respectively. All
the cropped images will be resized to 256×256 px2 before being inputted. As
for labelling, if a cropped binary image contains any TRUE pixels(pixel value
equals 1), we label the corresponding cropped image as defective image, other-
wise, defect-free image.

During the unsupervised training phase, we input the cropped images to
train our model with Adam [11] solver from scratch. The α is set to 10 and the
batchsize is set to 1. In the first 100 epoch we keep the learning rate at 0.0002
and in the next 100 epoch we decay the learning rate to zero linearly.

During the supervised training phase, we randomly pick a image x from X
and input it to DG to generate defective image DG(x), where x and DG(x) make
up the paired images for supervised training of DI. In theory, we can generate
training paired images infinitely. In our experiments, we generate 10000 paired
images for DI’s further training and we set β = 100 then keep other training
options the same as those of the unsupervised training phase.

In the test phase, we crop each image into an image-set and input the cropped
images into DI, like what we do in the training phase. For each cropped image
and its output, we compute the difference of each pixel between them and get
a pixel-level difference image. After inference of each image-set, we gather the
difference images and rebuild the whole prediction binary image which is used
to be compared with ground truth for evaluation.

4.3 Results

We train our model on a machine with a GPU of NVIDIA GTX 1660 Ti @ 6GB
and a CPU of Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz. It takes 2–3 days
to complete all the trainings. Then we implement the inference and the results
are shown in the Table 1 and Table 2. In addition, we also refer to the results of
CFE [5] which is proposed by the RSDDs publisher. By now, CFE still achieves
the best results. However, CFE is an exclusive system which is specially designed
for RSDDs, which contains lots of designs of feature extracting. That is, if we
change the dataset, we should design the method again, which is complicated
and not general-purpose.

Due to the complexity of analyzing the performance of inpainting, we directly
analyze the performance of segmentation instead. Besides, the performance of
segmentation is representative of the performance of inpainting.

As for UNET, we can see its performance differs a lot between two datasets.
On Type-I RSDDs the most of defects tend to be oval-shaped but on Type-II
RSDDs the shapes of defects are various. UNET is good at learning invariant
patterns so it get better results than SDDII on Type-I RSDDs, but get worse
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Fig. 4. The results of Rail 40 (a), 54 (b), and 55 (c) in Type-I RSDDs. The sequence of
images for each rail is the original image, result of UNET, result of CycleGAN, result
of SDDII, ground truth.

IOU , Pre and F1 than SDDII on Type-II RSDDs. Relatively, SDDII get more
stable performances on both Type-I and Type-II RSDDs. SDDII detects defects
by comparing images before and after inpainting, so it is adaptive for those
unseen defects and can handle defects with various shapes in Type-II RSDDs.
Besides, UNET is supervised learning which needs ground truth for training
while SDDII does not need. Some representative results are picked and shown in
Fig. 4 and Fig. 5. We can see that SDDII output comparable mask with UNET
on Type-I RSDDs in Fig. 4 and get more stable and accurate outputs of Type-II
RSDDs in Fig. 5.

Table 1. Results on Type-I RSDDs

Method IOU(%) Pre(%) Rec(%) F1(%)

CFE [5] – 87.54 85.63 85.12

UNET [21] 45.73 89.25 58.33 68.86

CycleGAN [26] 27.18 60.25 46.40 48.45

SDDII (Ours) 36.50 83.42 48.15 57.04

Compared to CycleGAN which is unsupervised learning, SDDII is semi-
supervised learning where we additionally implement the supervised training by
utilizing the generated paired data. And as shown in Table 1 and Table 2, SDDII
outperforms CycleGAN on both Type-I RSDDs and Type-II RSDDs, which
shows that our proposed supervised training phase can significantly improve
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Table 2. Results on Type-II RSDDs

Method IOU(%) Pre(%) Rec(%) F1(%)

CFE [5] – 83.88 83.58 82.11

UNET [21] 24.57 63.49 52.72 50.91

CycleGAN [26] 21.11 64.48 37.57 42.57

SDDII (Ours) 26.82 70.72 49.75 54.48

the defect inpainting and then improve the defect detection of CycleGAN. As
shown in Fig. 4 and Fig. 5, SDDII’s outputs are more stable and accurate than
that of CycleGAN.

Fig. 5. The results of Rail 6 (a), 11 (b), and 40 (c) in Type-II RSDDs. The sequence
of images is the same as Fig. 4.

5 Conclusions

Aiming at reducing the complexity of defective image synthesis and difficulty
of detecting unseen defects, we proposed a semi-supervised method, denoted as
SDDII, which combines the training strategy of CycleGAN and Pix2Pix. First,
through unsupervised training phase, DG and DI would get the abilities of
defect generation and defect inpainting respectively. Second, through supervised
training phase, we further improve the defect inpainting of DI. Finally, experi-
ments show that SDDII can indeed achieve better results than naive CycleGAN.
In addition, SDDII is practical in many industrial scenes, since SDDII has good
adaptability for unseen defects and we do not need to label the segmentation
masks for training.
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