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Abstract. In a multi-agent game, the complexity of the environment
increases exponentially as the number of agents increases. Learning
becomes difficult when there are so many agents. Mean field multi-agent
reinforcement learning (MFRL) uses the average action of the neighbors
to increase the input of the value network, which can be applied in the
environment with hundreds of agents. However, inefficient exploration
and slow convergence speed limit the performance of the algorithm.
In this article, we propose a new Knowledge-Guided Reinforcement
Learning (KG-RL) method, which can be divided into rule-mix and plan-
extend. We use the rule-mix to encode knowledge into plans which can
reduce redundant information and invalid actions in the state. And the
plan-extend can combine the result of rule-mix with reinforcement learn-
ing to achieve more efficient joint exploration. Through experiments in
Magent environment, we prove that the win rate of our proposed KG-RL
is 22% higher than that of knowledge-based decision tree and 39% higher
than that of MFRL. Thus, the KG-RL can perform well in massive battle
games due to its high exploration efficiency and fast convergence.

Keywords: Knowledge-guided · Reinforcement learning ·
Multi-agent · Massive battle games

1 Introduction

In recent years, multi-agent reinforcement learning (MARL) has made remark-
able progress in various tasks [3,6,18]. However, learning in an environment of
multiple agents is still fundamentally difficult, because agents not only interact
with the environment, but also with each other [12]. With the increase number
of agents, the policy space expands rapidly, and the simultaneous learning of
multiple agents makes the environment non-stationary, which brings great dif-
ficulties for each agent to find the convergence policy [6], especially when the
number of agents is huge.

Due to the limitation of the network sizewhich increases linearlywhen the num-
ber of agents increases [11], the current popular methods, such as MADDPG [12],
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QMIX [15], etc., are often limited by the number of agents. Thus, the algorithm
represented by Independent Q-learning [17] directly treats other agents and the
environment as a whole. However, due to the instability caused by the other agents’
changing policies, the algorithm cannot converge stably. MFRL [21] proposes a
provably-converged mean-field formulation to scale up the actor-critic framework
by feeding the state and the average value of nearby agents’ actions to the critic,
enhancing the stability of learning. However, the average actions of other agents
in the execution process will be obtained by communication, which is not easy.

In addition, incorporating human knowledge into reinforcement learning is a
goodway.Purely knowledge-based approaches, such as decision trees, often require
a mass of human labor and expertise knowledge, while reinforcement learning (RL)
has a strong ability of sustainable learning. Recently, there has been a lot of work in
this area. DARLING [8] proposes a method in which candidate solutions are gen-
erated by the planner and then merged and passed to the reinforcement learning
module to learn the final approximate policy. However, the effect of this method
has a lot to do with the design of the planner. Bougie [1] used additional knowl-
edge as a supervision signal for network learning, and enhanced the information
provided to the agent by introducing human expertise, but this supervision signal
would interfere with the original training target of the network. Xie [20] proposed
to train an additional network to make decisions from knowledge-based policy or
the policy learned by the DDPG [9] algorithm. However, adding a network means
increasing training difficulty and training time, which runs counter to the original
intention of using human knowledge. In addition, these methods all need to pro-
vide a complete solution covering all states based on human knowledge, and do not
consider about the situation when the number of agents is huge.

In this article, we define the knowledge that can only give actions in some states
as rules, and the knowledge that has corresponding actions in all states as plan.
Then we propose a new Knowledge-Guided Reinforcement Learning (KG-RL)
method for massive battle games, which includes Rule-Mix and Plan-Extend mod-
ules. The difference from the previous method is that we only need to design some
effective rules instead of manually designing a complete solution. We designed a
rule-mix module based on the hypernetwork structure in Qmix [15], which can
learnmore complex logical relationships thanmanually designed decision trees and
reduce subjective bias of people. Then a plan-extend module is designed by extend-
ing the exploration policy of Actor-Critic (AC) [14] algorithm. It uses actor’s policy
and plan policies for joint exploration through a selector, which increases the explo-
ration efficiency of reinforcement learning and accelerates the convergence speed
of the algorithm. Through experiments in the Magent environment, we prove that
the win rate of KG-RL is 22% higher than rule-based decision tree and 39% higher
than the best-performing MFAC in pure reinforcement learning. The main contri-
butions of this paper can be summarized as follows.

– We innovatively propose the rule-mix module, which uses a hypernetwork
structure to learn more complex logical relationships between rules. It
improves the win rate by 17% over the rule-based decision tree;
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– We innovatively propose the plan-extend module. It combines rule-mix with
actor-critic for joint exploration and enhances the exploration efficiency of
the algorithm. The model with plan-extend improves the win rate by 22%;

– The KG-RL (rule-mix+plan-extend) method we proposed achieves the high-
est win rate in the Magent environment, which is 39% higher than the previous
best method MFRL in this environment.

2 Related Work

An important cluster of related research is the research on the scalability of
MARL. Based on graph convolutional neural network, [13] divided agents into
different domains, and the impact of dimensional explosion is reduced by reduc-
ing the number of agents in the domain; [10] combine the attention mechanism
with reinforcement learning, so that the agent can only consider about a part
of the agent which is most relevant to itself, rather than all of them. However,
these methods are all learned from scratch, and the number of agents that can
support is limited [11], which cannot be applied to the environment where there
are hundreds of agents.

Recent years, there has been a lot of research on combining human domain
knowledge with RL, such as [2,19] combine knowledge graph with reinforce-
ment learning in recommendation. PROLONETS [16] proposes a new network
structure by embedding human knowledge, and realizes the dynamic change of
network depth by adding random decision nodes. This method needs to design
the structure of decision tree manually, which requires a high level of human
technology. Based on QMix, RMLPE [5] expands the action space of RL with
the selection of rules, leverages the Q-value in RL as a uniform criterion to judge
the value of rules and original actions. The method is convenient to implement,
but the expansion of the action space increases the difficulty of learning.

3 Method

In many tasks, the state returned by the environment contains a lot of redundant
information, and the original action space also contains many invalid and illegal
action options. Therefore, it is necessary to encode some rules from the original
state space and action space through people’s understanding of the task. By mix-
ing these rules through the rule-mix module, we can quickly get some strategies
based on human knowledge, called plan 1, plan 2.... In order to enhance their
exploration capability, we combine them with the Actor-Critic [14] algorithm
to reduce the invalid exploration, and accelerate the convergence speed of the
algorithm. This method is collectively called KG-RL, and the overall structure
is shown in Fig. 1.
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Fig. 1. The overall structure of KG-RL. Rules is combined into plan through rule-
mix, and then plan-extend combine the plan with actor in RL for more efficient joint
exploration.

3.1 Rule-Mix

The original input often contains a lot of information and is not easy to process.
For example, for image input, we often only care about the content of the picture,
and it is quite time-consuming to directly input the entire image into the network
for end-to-end training. Besides we can use existing algorithms or common sense
to get some information that is helpful for decision-making. We first form the
method of extracting these more valuable information into decision modules,
which is represented by the function Ini(s), as shown in Table 1.

Similarly, the original action space directly uses the most direct actions like
up, down, left, right and attack, which does not contain any knowledge. There-
fore, in some cases, many invalid or illegal actions are often selected. Especially
in some environments, the cost of illegal actions is high. However, these invalid
and illegal actions are intuitive and easy to judge for humans in many problems,
such as suicide operations in games. Thus, we can embed human knowledge into
simple actions and form rules. We call these nodes which finally determine the
output action as action modules. They are represented by the function Outi(s),
as shown in Table 1.

Inspired by QMix, we also design a hypernetwork in rule-mix, which uses state
s to generate weight Wi and bias Bi through MLP, as shown in the left part of
Fig. 1. We combine Wi and Bi with the decision module, which can be calculated
as Eq. (1). This hypernetwork structure correlates the state s with the decision
module Ini through multiplication, by which an additional representation of the
current state is integrated into the gradient of Ini, so that more information can
be provided [23].

Hypernet out = Relu((Wi ∗ ini(s)) + Bi), (1)

Then, the output of the hypernetwork is processed through a Softmax layer,
and the probability of each action module is output of the latter. Finally, the AC
algorithm is used to train the network, and the goal is to maximize the long-term
return. The role of the hypernetwork is to generate a logical structure similar to
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a decision tree. With the powerful representation ability of deep neural network,
the hypernetwork designed by us can represent a more complex logical structure
than decision tree. This is an important reason why rule-mix performs better
than regular manual rules.

3.2 Plan-Extend

Actor-critic algorithm uses a stochastic policy for discrete actions, and actor out-
put the probability of each action. It is explored by sampling distribution of the
actor. In the early stage of training, the actor network contains less information.
The exploration based on the actor is almost equivalent to random exploration,
which is inefficient. Due to the low probability of success, rewards are often
sparse. This seriously affects the learning speed of the network. Therefore, we
can combine a actor policy with the rule-based policies for joint exploration.
Furthermore, we design a selector to choose the exploration policy.

We call the rule-based strategies obtained by rule-mix as Planj. Selector
decides to choose Planj or the current actor’s policy to interact with the envi-
ronment. Specifically, the selector determines the final action interaction with
the environment, as shown in Fig. 1. We can make a selection at each step or
at the end of each episode. The goal of selection is to choose the current better
policy, so that better samples can be generated and the convergence speed of
the algorithm can be accelerated.

Our goal is to use Planj to explore when the actor’s policy is not as good as
Planj. Thus selector can be a predefined function, or an adaptive variable. In
this article, we define it as a variable, which is selected by evaluation after each
round of training. When the win rate of the actor’s policy is lower than that
of the Planj in the last 30 evaluations, the Planj is selected for exploration.
Otherwise, the current actor’s policy is selected.

It is important to note that the selector and Planj here are only used to inter-
act with the environment to generate trajectories T (st, at, rt, st+1, done), which
is not included in the final reinforcement learning training model. Secondly, the
Planj uses deterministic rules, which means P (ap

t |st) = 1.0,∀st. So that the
importance sampling rate c can be represented as c = π(at|st)

P (at|st)
= π(at|st). There-

fore, the trajectory got by Planj can directly be used for Actor-Critic algorithm
updates. We call this method plan-extend which is shown in the right part of Fig. 1.

4 Experiment Setup

4.1 Environment

We conduct experiments in the Magent [22] environment, which is a confronta-
tion environment of large-scale agents. In the experiment, we use a 40×40 map.
At the beginning, there are 64 agents on each side, and they will not be sup-
plemented after death in battle. The termination condition is that one party
is completely wiped out or the maximum step of episode is reached. When the
terminal state is reached, the one with more surviving agents wins.
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There are two parts in the agent’s observation. One is a 7-channel 13 × 13
matrix representing obstacles, teammates, teammates’ HP, own mini map, oppo-
nent location, opponent’s HP, opponent’s mini map, the other is a 34 dimensional
feature vector including ID embedding, last action, last reward and position. The
21 actions of the agent include 13 movable positions and 8 attackable positions
around the agent. The reward setting in learning is the same as in MFRL1.

4.2 Human Knowledge Based Module Design

In the Magent environment, we use the rules of human experience in the battle
problem: attack only when there is an enemy within the attack range; give
priority to attacking the enemy with the least HP or the nearest distance; in
order to strengthen cooperation, people will approach teammates; for better
survive, humans will pay attention to their blood volume in time. Based on the
above human knowledge, we abstract the reules into the decision module Ini

and action module Outi as shown in Table 1.

Table 1. The decision modules and action modules we used in the experiment.

i Ini(s) Outi(s)

1 Are there any opponents in attack range Attack the enemy with the least health

2 Are there any opponents in observation Move to the nearest opponent

3 Are there any teammates in view Move to the teammate with the least health

4 Is my current health more than half Move to the opponent with the least health

5 Whether the number of our agents is greater
than that of the opponent

Move to the opponent with the least health

6 Whether the last action is an attack action Attack any one within range

4.3 Experiment Settings

In the experiment, agents in the same team share parameters. We use Adam
optimizer with a learning rate of 1 × 10−4. The discount factor γ is 0.95. For
value-based methods (MFQ, DQN, RMLPE [5]), the batch size is set to 64, and
the buffer contains the most recent 80000 transitions. All models are trained for
2000 rounds of self-plays, and then are used for battles.

Through the combination of human knowledge modules (rules), we can man-
ually design a decision tree based on human knowledge as shown in Fig. 3 as
Baseline. Experiments have proved that even this simple rule-base decision
tree performs better than other algorithms which are trained from scratch. In
addition, we also selected MFRL and RMLPE [5] for comparison. The MFRL
is the current state-of-the-art method in this environment and the RMLPE is
another practical method based on human domain knowledge.

1 https://github.com/mlii/mfrl.

https://github.com/mlii/mfrl
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5 Experimental Results

Winning or losing is a good condition for judging in the battle environment, and
it is also the most valuable indicator. Therefore, we first use the models trained
by each algorithm to play against each other. Then, with the Baseline as the
opponent, the model improvement speed of each model was compared in the
training phase. In addition, we also compared the output policies of rule-mix
and the Baseline to show the differences between them. Furthermore, we study
the influence of different decisions and action modules. Finally, we analyzed the
behavior of the model combined with the battle playback.

5.1 Battle Game

In this experiment, we directly use the models trained by each algorithm for
comparison. In order to reduce random errors, we trained three models for each
algorithm, named Algo 1, Algo 2, and Algo 3. In each round we randomly choose
two from all the models to have a battle. At the end of the experimentation, we
get a total of 200,000 duels. In addition to the number of wins for each model,
we also record the number of kills and be killed by each model.

Table 2. Result of battle

Elo score Wins Draws Totalls Win rate Killed Be killed Kill ratio

KG-RL 1 2521 15104 79 16792 90.42% 1039159 634900 1.64

KG-RL 2 2498 15070 72 16715 90.59% 1034676 636241 1.63

KG-RL 3 2409 15208 66 16766 91.10% 1038573 637606 1.63

Rule Mix 3 2351 14539 71 16807 86.93% 1031148 653521 1.58

Rule Mix 2 2322 14348 85 16677 86.54% 1022675 650434 1.57

Rule Mix 1 2242 14430 85 16732 86.75% 1025922 654432 1.57

Baseline 1 1848 11257 101 16496 68.85% 909402 620709 1.47

Baseline 3 1769 11454 106 16809 68.77% 926807 635147 1.46

Baseline 2 1749 11413 114 16558 69.62% 913718 621215 1.47

MFAC 3 1344 8407 131 16596 51.45% 869221 755577 1.15

MFAC 1 1299 8570 132 16638 52.30% 874899 748140 1.17

AC 3 1288 7770 159 16615 47.72% 835245 781361 1.07

MFAC 2 1268 8688 160 16857 52.49% 886280 760472 1.17

AC 1 1227 7866 161 16751 47.92% 843229 785245 1.07

AC 2 1169 7670 170 16554 47.36% 830664 778978 1.07

MFQ 3 842 3824 44 16414 23.57% 623389 931098 0.67

MFQ 1 804 3849 46 16470 23.65% 625485 934899 0.67

MFQ 2 802 4078 53 16528 24.99% 632251 931803 0.68

RMLPE 1 774 2910 6 16942 17.21% 380365 939619 0.40

RMLPE 2 655 2786 3 16715 16.69% 368833 929389 0.40

DQN 1 633 2269 96 16622 14.23% 480286 863041 0.56

DQN 3 617 2293 121 16715 14.44% 485276 867214 0.56

DQN 2 614 2266 111 16543 14.37% 481625 856605 0.56

RMLPE 3 552 2842 6 16688 17.07% 374305 925787 0.40
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In addition, learning from [4,7], we also use ELO ratings to describe the
performance of each agent, as commonly used in both traditional games like chess
and in competitive video game ranking and matchmaking services. Assuming
that the current grade scores of agent A and agent B are RA and RB respectively,
then the expected win rate of agent A to B, according to Logistic distribution,
should be:

EA =
1

1 + 10(RA−RB)/400
. (2)

If agent’s grade is adjusted accordingly, the specific mathematical formula is
R

′
A = RA +K(SA −EA). At the masters level K is usually 16. In order to create

a gap between agents, we set it to 32 here.
The result of the battle is shown in Table 2. It shows that the KG-RL (rule-

mix+plan-extend) we proposed is better than other methods in terms of ELO
scoring, win rate, or KD ratio. In particular, KG-RL and rule-mix are better
than the Baseline. On the contrary, other methods starting from scratch is not
as good as the Baseline. This illustrates the huge potential of embedding human
knowledge into RL.

5.2 Comparison of Training Process

Because each algorithm is trained by self-play. The model itself is constantly
changing when it is updated. In order to evaluate the convergence speed of each
algorithm, we let the model play a round against the Baseline after each round
of training. Then we calculate the win rate of the last 30 rounds. It can be
seen from Fig. 2 that KG-RL converges the fastest, and stably reaching a win
rate of 1.0 at 500 steps. In the end, only rule-mix and KG-RL have a winning
percentage of 1.0. This shows the good performance of reinforcement learning
based on human knowledge.

Fig. 2. The win rate of each algorithm when Baseline is used as opponent. We calculate
the win rate of the last 30 rounds after each round of training.

5.3 Model Differences

We count the output frequency of rule-mix and the Baseline on different action
modules. Through the different selection actions of each model in Table 3, we can
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find that the network after learning is quite different from the decision tree we
manually designed. This is because the neural network can learn more complex
logical relationships, corresponding to better strategies.

Fig. 3. Decision tree built from human
knowledge, which we used as Baseline in
experiment.

Table 3. Selection ratio of each
action module

Baseline Rule Mix

Times Rate Times Rate

Out1 13925 32.60% 13561 34.16%

Out2 17726 41.50% 14316 36.06%

Out3 840 1.96% 10659 26.85%

Out4 10214 23.91% 1165 2.93%

5.4 The Influence of Different Decisions and Action Modules

The different choices of the decision module and the action module have different
effects on the algorithm. We named the models that used the decision modules
(In1, In2, In3, In4), (In1, In2) and the model without the decision module as
rule mix in4, rule mix in2 and rule mix in0 respectively. Figure 4 shows their
training curve. It can be seen that the more input modules used, the faster the
convergence the algorithm will be. The added decision-making module reduces
the redundant information in the original state, providing more concise and more
valuable information for the network, which accelerates the learning speed of the
network.

Fig. 4. Comparison of models using dif-
ferent decision modules.

Table 4. Comparison of models
using different action modules.

Models ELO score Win rate

rule mix out 1 1586 82%

rule mix out 2 1268 21%

rule mix out 3 1369 43%

rule mix out 4 1479 51%

We named the models that used action modules (Out1, Out2, Out3, Out4),
(Out1, Out2, Out3, Out5), (Out2, Out3, Out4, Out5), (Out2, Out3, Out4, Out6) as
rule mix out1, rule mix out2, rule mix out3, rule mix out4, respectively.
Table 4 shows a comparison of the win rate of the trained models. It can be
seen that choosing different output modules will have different effects on the
final models. In this article, rule mix out1 performs best, so its corresponding
action modules are also used in other experiments.
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5.5 Discussion

As shown in Fig. 5, these are screenshots of a battle between KG-RL and MFAC.
It can be seen that KG-RL (in red) formed a semi-encircled state of the opponent
from the beginning. This semi-encirclement is a more advantageous position for
agents to concentrate their firepower and strengthen cooperation. Although each
agent is trained separately, it shows the intelligence of group as a whole, which
is meaningful.

Fig. 5. These are screenshots of a battle between KG-RL (red) and MFAC (blue). At
the beginning of battle, two group are initialized in a symmetrical position on the left
and right. In order to show the details, c) enlarges one of the screenshots. (Color figure
online)

Secondly, by observing the local actions of agents, we can see that MFAC (in
blue) has more ineffective attacks (attacks no-one’s areas) than KG-RL. Tak-
ing advantage of human rules, KG-RL directly shields those invalid and illegal
actions through rule-mix, which reduces the exploration space of the algorithm.

6 Conclusion

In this article, we propose a knowledge-guided reinforcement learning method for
massive agent battle games, named KG-RL, which can be divided into rule-mix
and plan-extend. The hypernetwork structure in the rule-mix can obtain more
complex logical relationships than manually designed decision trees. The plan-
extend can combine the result of rule-mix with reinforcement learning to achieve
more efficient joint exploration. In fact, the experimental results has proved it.
In the Magent environment, it shows that the win rate of KG-RL is 22% higher
than rule-based decision tree and 39% higher than the best-performing MFAC
in pure reinforcement learning. In the future, it will be meaningful to study the
design and evaluation of rule modules. In addition, we will continue to conduct
research on the automation of rule module design.
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