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Abstract. Hindsight experience replay (HER) is a goal relabelling tech-
nique typically used with off-policy deep reinforcement learning algo-
rithms to solve goal-oriented tasks; it is well suited to robotic manipu-
lation tasks that deliver only sparse rewards. In HER, both trajectories
and transitions are sampled uniformly for training. However, not all of
the agent’s experiences contribute equally to training, and so naive uni-
form sampling may lead to inefficient learning. In this paper, we pro-
pose diversity-based trajectory and goal selection with HER (DTGSH).
Firstly, trajectories are sampled according to the diversity of the goal
states as modelled by determinantal point processes (DPPs). Secondly,
transitions with diverse goal states are selected from the trajectories by
using k-DPPs. We evaluate DTGSH on five challenging robotic manip-
ulation tasks in simulated robot environments, where we show that our
method can learn more quickly and reach higher performance than other
state-of-the-art approaches on all tasks.

Keywords: Deep reinforcement learning · Determinantal point
processes · Hindsight experience replay

1 Introduction

Deep reinforcement learning (DRL) [3], in which neural networks are used as
function approximators for reinforcement learning (RL), has been shown to be
capable of solving complex control problems in several environments, including
board games [27,28], video games [4,19,30], simulated and real robotic manipu-
lation [2,9,15] and simulated autonomous driving [12].

However, learning from a sparse reward signal, where the only reward is
provided upon the completion of a task, still remains difficult. An agent may
rarely or never encounter positive examples from which to learn in a sparse-
reward environment. Many domains therefore provide dense reward signals [5], or
practitioners may turn to reward shaping [20]. Designing dense reward functions
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typically requires prior domain knowledge, making this approach difficult to
generalise across different environments.

Fortunately, a common scenario is goal-oriented RL, where the RL agent is
tasked with solving different goals within the same environment [11,25]. Even if
each task has a sparse reward, the agent ideally generalises across goals, making
the learning process easier. For example, in a robotic manipulation task, the goal
during a single episode would be to achieve a specific position of a target object.

Hindsight experience replay (HER) [1] was proposed to improve the learning
efficiency of goal-oriented RL agents in sparse reward settings: when past expe-
rience is replayed to train the agent, the desired goal is replaced (in “hindsight”)
with the achieved goal, generating many positive experiences. In the above exam-
ple, the desired target position would be overwritten with the achieved target
position, with the achieved reward also being overwritten correspondingly.

We note that HER, whilst it enabled solutions to previously unsolved tasks,
can be somewhat inefficient in its use of uniformly sampling transitions dur-
ing training. In the same way that prioritised experience replay [26] has signifi-
cantly improved over the standard experience replay in RL, several approaches
have improved upon HER by using data-dependent sampling [8,32]. HER with
energy-based prioritisation (HEBP) [32] assumes semantic knowledge about the
goal-space and uses the energy of the target objects to sample trajectories with
high energies, and then samples transitions uniformly. Curriculum-guided HER
(CHER) [8] samples trajectories uniformly, and then samples transitions based
on a mixture of proximity to the desired goal and the diversity of the samples;
CHER adapts the weighting of these factors over time. In this work, we intro-
duce diversity-based trajectory and goal selection with HER (DTGSH; See Fig. 1),
which samples trajectories based on the diversity of the goals achieved within the
trajectory, and then samples transitions based on the diversity of the set of sam-
ples. In this paper, DTGSH is evaluated on five challenging robotic manipula-
tion tasks. From extensive experiments, our proposed method converges faster and
reaches higher rewards than prior work, without requiring domain knowledge [32]
or tuning a curriculum [8], and is based on a single concept—determinantal point
processes (DPPs) [14].

Fig. 1. Overview of DTGSH. Every time a new episode is completed, its diversity is
calculated, and it is stored in the episodic replay buffer. During training, m episodes
are sampled according to their diversity-based priority, and then k diverse, hindsight-
relabelled transitions are sampled using a k-DPP [13].
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2 Background

2.1 Reinforcement Learning

RL is the study of agents interacting with their environment in order to max-
imise their reward, formalised using the framework of Markov decision processes
(MDPs) [29]. At each timestep t, an agent receives a state st from the environ-
ment, and then samples an action at from its policy π(at|st). Next, the action
at is executed in the environment to get the next state st+1, and a reward rt. In
the episodic RL setting, the objective of the agent is to maximise its expected
return E[R] over a finite trajectory with length T :

E[R] = E

[
T∑

t=1

γt−1rt

]
, (1)

where γ ∈ [0, 1] is a discount factor that exponentially downplays the influence
of future rewards, reducing the variance of the return.

2.2 Goal-Oriented Reinforcement Learning

RL can be expanded to the multi-goal setting, where the agent’s policy and the
environment’s reward function R(st, at) are also conditioned on a goal g [11,25].
In this work, we focus on the goal-oriented setting and environments proposed
by OpenAI [23].

In this setting, every episode comes with a desired goal g, which specifies
the desired configuration of a target object in the environment (which could
include the agent itself). At every timestep t, the agent is also provided with the
currently achieved goal gac

t+1. A transition in the environment is thus denoted
as: (st, at, rt, st+1, g, gac

t+1). The environment provides a sparse reward function,
where a negative reward is given unless the achieved goal is within a small
distance ε of the desired goal:

R
(
g, gac

t+1

)
:=

{
0 if

∥∥gac
t+1 − g

∥∥ ≤ ε

−1 otherwise.
(2)

However, in this setting, the agent is unlikely to achieve a non-negative
reward through random exploration. To overcome this, HER provides successful
experiences for the agent to learn from by relabelling transitions during training:
the agent trains on a hindsight desired goal g′, which is set to the achieved goal
gac

t+1, with rt recomputed using the environment reward function (Eq. 2).

2.3 Deep Deterministic Policy Gradient

Deep deterministic policy gradient (DDPG) [16] is an off-policy actor-critic
DRL algorithm for continuous control tasks, and is used as the baseline algo-
rithm for HER [1,8,32]. The actor πθ(st) is a policy network parameterised



Diversity-Based Trajectory and Goal Selection with HER 35

by θ, and outputs the agent’s actions. The critic Qη(st, at) is a state-action-
value function approximator parameterised by η, and estimates the expected
return following a given state-action pair. The critic is trained by minimis-
ing Lc = E[(Qη(st, at) − yt)2] where yt = rt + γQη(st+1, πθ(st+1)). The actor
is trained by maximising La = E[Qη(st, πθ(st))], backpropagating through the
critic. Further implementation details can be found in prior work [1,16].

2.4 Determinantal Point Processes

A DPP [14] is a stochastic process that characterises a probability distribution
over sets of points using the determinant of some function. In machine learning
it is often used to quantify the diversity of a subset, with applications such as
video [18] and document summarisation [10].

Formally, for a discrete set of points Y = {x1, x2, · · · , xN}, a point process
P is a probability measure over all 2|Y| subsets. P is a DPP if a random subset
Y is sampled with probability:

PL(Y = Y ) =
det(LY )∑

Y ′⊆Y det(LY ′)
=

det(LY )
det(L + I)

, (3)

where Y ⊆ Y, I is the identity matrix, L ∈ R
N×N is the positive semi-definite

DPP kernel matrix, and LY is the sub-matrix with rows and columns indexed
by the elements of the subset Y .

The kernel matrix L can be represented as the Gram matrix L = XT X,
where each column of X is the feature vector of an item in Y. The determinant,
det(LY ), represents the (squared) volume spanned by vectors xi ∈ Y . From
a geometric perspective, feature vectors that are closer to being orthogonal to
each other will have a larger determinant, and vectors in the spanned subspace
are more likely to be sampled: PL(Y = Y ) ∝ det(LY ). Using orthgonality as a
measure of diversity, we leverage DPPs to sample diverse trajectories and goals.

3 Related Work

The proposed work is built on HER [1] as a way to effectively augment goal-
oriented transitions from a replay buffer: to address the problem of sparse
rewards, transitions from unsuccessful trajectories are turned into successful
ones. HER uses an episodic replay buffer, with uniform sampling over trajec-
tories, and uniform sampling over transitions. However, these samples may be
redundant, and many may contribute little to the successful training of the agent.

In the literature, some efforts have been made to increase the efficiency of
HER by prioritising more valuable episodes/transitions. Motivated by the work-
energy principle in physics, HEBP [32] assigns higher probability to trajectories
in which the target object has higher energy; once the episodes are sampled,
the transitions are then sampled uniformly. However, HEBP requires knowing
the semantics of the goal space in order to calculate the probability, which is
proportional to the sum of the target’s potential, kinetic and rotational energies.



36 T. Dai et al.

CHER [8] dynamically controls the sampling of transitions during training
based on a mixture of goal proximity and diversity. Firstly, m episodes are uni-
formly sampled from the episodic replay buffer, and then a minibatch of k < m
is sampled according to the current state of the curriculum. The curriculum
initially biases sampling to achieved goals that are close to the desired goal
(requiring a distance function), and later biases sampling towards diverse goals,
using a k-nearest neighbour graph and a submodular function to more efficiently
sample a diverse subset of goals (using the same distance function).

Other work has expanded HER in orthogonal directions. Hindsight policy
gradient [24] and episodic self-imitation learning [6] apply HER to improve the
efficiency of goal-based on-policy algorithms. Dynamic HER [7] and competitive
ER [17] expand HER to the dynamic goal and multi-agent settings, respectively.

The use of DPPs in RL has been more limited, with applications towards
modelling value functions of sets of agents in multiagent RL [21,31], and most
closely related to us, finding diverse policies [22].

4 Methodology

We now formally describe the two main components of our method, DTGSH:
1) a diversity-based trajectory selection module to sample valuable trajectories
for the further goal selection; 2) a diversity-based goal selection module to select
transitions with diverse goal states from the previously selected trajectories.
Together, these select informative transitions from a large area of the goal space,
improving the agent’s ability to learn and generalise.

4.1 Diversity-Based Trajectory Selection

We propose a diversity-based prioritization method to select valuable trajectories
for efficient training. Related to HEBP’s prioritisation of high-energy trajecto-
ries [32], we hypothesise that trajectories that achieve diverse goal states gac

t are
more valuable for training; however, unlike HEBP, we do not require knowledge
of the goal space semantics.

In a robotic manipulation task, the agent needs to move a target object
from its initial position, gac

1 , to the target position, g. If the agent never moves
the object, despite hindsight relabelling it will not be learning information that
would directly help in task completion. On the other hand, if the object moves a
lot, hindsight relabelling will help the agent learn about meaningful interactions.

In our approach, DPPs are used to model the diversity of achieved goal states
gac

t in an episode, or subsets thereof. For a single trajectory T of length T , we
divide it into several partial trajectories τj of length b, with achieved goal states
{gac

t }t=n:n+b−1. That is, with a sliding window of b = 2, a trajectory T can be
divided into Np partial trajectories:

Ti = {{gac
1 , gac

2︸ ︷︷ ︸
τ1

}, {gac
2 , gac

3︸ ︷︷ ︸
τ2

}, {gac
3 , gac

4︸ ︷︷ ︸
τ3

}, · · · , {gac
T−1, g

ac
T︸ ︷︷ ︸

τNp

}}. (4)
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The diversity dτj of each partial trajectory τj can be computed as:

dτj = det(Lτj ), (5)

where Lτj is the kernel matrix of partial trajectory τj :

Lτj = MT M, (6)

and M = [ĝac
n , ĝac

n+1, · · · , ĝac
n+b−1], where each ĝac is the �2-normalised version of

the achieved goal gac [13]. Finally, the diversity dT of trajectory T is the sum
of the diversity of its Np constituent partial trajectories:

dT =
Np∑
j=1

dτj . (7)

Similarly to HEBP [32], we use a non-uniform episode sampling strategy.
During training, we prioritise sampling episodes proportionally to their diversity;
the probability p(Ti) of sampling trajectory Ti from a replay buffer of size Ne is:

p(Ti) =
dTi∑Ne

n=1 dTn

. (8)

4.2 Diversity-Based Goal Selection

In prior work [1,32], after selecting the trajectories from the replay buffer, one
transition from each selected trajectory is sampled uniformly to construct a
minibatch for training. However, the modified goals g′ in the minibatch might
be similar, resulting in redundant information. In order to form a minibatch
with diverse goals for more efficient learning, we use k-DPPs [13] for sampling
goals. Compared to the standard DPP, a k-DPP is a conditional DPP where the
subset Y has a fixed size k, with the probability distribution function:

Pk
L(Y = Y ) =

det(LY )∑
|Y ′|=k det(LY ′)

. (9)

k-DPPs are more appropriate for goal selection with a minibatch of fixed size
k. Given m > k trajectories sampled from the replay buffer, we first uniformly
sample a transition from each of the m trajectories. Finally, a k-DPP is used
to sample a diverse set of transitions based on the relabelled goals g′ (which,
in this context, we denote as “candidate goals”). Figure 2a gives an example of
uniform vs. k-DPP sampling, demonstrating the increased coverage of the latter.
Figure 2b provides corresponding estimated density plots; note that the density
of the k-DPP samples is actually more uniform over the support of the candidate
goal distribution.
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Fig. 2. Visualisation of k = 32 goals selected from m = 100 candidate goals of the Push
task using either uniform sampling or k-DPP sampling, respectively. The candidate
goals are distributed over a 2D (xy) space. Note that k-DPP sampling (right hand
plots) results in a broader span of selected goals in xy space compared to uniform
sampling (left hand plots).

Algorithm 1. Diversity-based Goal Selection using k-DPP
Require: set of m candidate goal states G := {gi}i=1:m, minibatch size k

1: J ← ∅, M ← [g1, g2, · · · , gm]
2: Calculate the DPP kernel matrix LM

3: {vn, λn} ← EigenDecomposition(LM )
4: ek(λ1, λ2, . . . , λm) :=

∑

J′⊆{1,2,...,m}
|J′|=k

∏

n∈J′
λn � elementary symmetric polynomial: emk

5: for n = m, m − 1, · · · , 1 do

6: if u ∼ Uniform[0, 1] < λn
en−1
k−1
en
k

then

7: J ← J ∪ {n}, k ← k − 1

8: if k = 0 then

9: break

10: end if
11: end if

12: end for
13: V ← {vn}n∈J , B ← ∅

14: while |V | > 0 do

15: Select gi from G with p(gi) :=
1

|V |
∑

v∈V (vT bi)
2 � bi is the ith standard basis

16: B ← B ∪ {gi}
17: V ← V⊥ � an orthonormal basis for the subspace of V orthogonal to bi
18: end while

19: return minibatch B with size k
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Algorithm 2. Diversity-based Trajectory and Goal Selection with HER
Require: RL environment with episodes of length T , number of episodes N , off-policy

RL algorithm A, episodic replay buffer B, number of algorithm updates U , candi-
date transitions size m, minibatch size k

1: Initialize the parameters θ of all models in A

2: B ← ∅

3: for i = 1, 2, · · · , N do
4: Sample a desired goal g and an initial state s0 � start a new episode
5: for t = 1, 2, · · · , T do
6: Sample an action at using the policy π(st, g; θ)
7: Execute action at and get the next state st+1 and achieved goal state gac

t+1

8: Calculate rt according to Eq. (2)
9: Store transition (st, at, rt, st+1, g, gac

t+1) in B
10: end for
11: Calculate the diversity score of current episode dTi using Eq. (5) and Eq. (7)
12: Calculate the diversity-based priority p(T ) of each episode in B using Eq. (8)
13: for iteration = 1, 2, · · · , U do
14: Sample m trajectories from B according to priority p(T )
15: Uniformly sample one transition from each of the m trajectories
16: Relabel goals in each transition and recompute the reward to get m candidate

transitions {(st, at, r
′
t, st+1, g

′)n}n=1:m

17: Sample minibatch B with size k from the m candidates using Algorithm 1
18: Optimise θ with minibatch B
19: end for
20: end for

Algorithm 1 shows the details of the goal selection subroutine, and Algo-
rithm 2 gives the overall algorithm for our method, DTGSH.

5 Experiments

We evaluate our proposed method, and compare it with current state-of-the-art
HER-based algorithms [1,8,32] on challenging robotic manipulation tasks [23],
pictured in Fig. 3. Furthermore, we perform ablation studies on our diversity-
based trajectory and goal selection modules. Our code is based on OpenAI Base-
lines1, and is available at: https://github.com/TianhongDai/div-hindsight.

5.1 Environments

The robotic manipulation environments used for training and evaluation include
five different tasks. Two tasks use the 7-DoF Fetch robotic arm with two-fingers
parallel gripper: Push, and Pick&Place, which both require the agent to move
a cube to the target position. The remaining three tasks use a 24-DoF Shadow
Dexterous Hand to manipulate an egg, a block and a pen, respectively. The
sparse reward function is given by Eq. (2).
1 https://github.com/openai/baselines.

https://github.com/TianhongDai/div-hindsight
https://github.com/openai/baselines
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(a) Push (b) Pick&Place (c) EggFull (d) BlockRotate (e) PenRotate

Fig. 3. Robotic manipulation environments. (a–b) use the Fetch robot, and (c–e) use
the Shadow Dexterous Hand.

In the Fetch environments, the state st contains the position and velocity
of the joints, and the position and rotation of the cube. Each action at is a 4-
dimensional vector, with three dimensions specifying the relative position of the
gripper, and the final dimension specifying the state of the gripper (i.e., open or
closed). The desired goal g is the target position, and the achieved goal gac

t is
the position of the cube. Each episode is of length T = 50.

In the Shadow Dexterous Hand environments, the state st contains the posi-
tion and velocity of the joints. Each action at is a 20-dimensional vector which
specifies the absolute position of 20 non-coupled joints in the hand. The desired
goal g and achieved goal gac

t specify the rotation of the object for the block
and pen tasks, and the position + rotation of the object for the egg task. Each
episode is of length T = 200.

5.2 Training Settings

We base our training setup on CHER [8]. We train all agents on minibatches of
size k = 64 for 50 epochs using MPI for parallelisation over 16 CPU cores; each
epoch consists of 1600 (16 × 100) episodes, with evaluation over 160 (16 × 10)
episodes at the end of each epoch. Remaining hyperparameters for the baselines
are taken from the original work [1,8,32]. Our method, DTGSH, uses partial
trajectories of length b = 2 and m = 100 as the number of candidate goals.

5.3 Benchmark Results

We compare DTGSH to DDPG [16], DDPG+HER [1], DDPG+HEBP [32] and
DDPG+CHER [8]. Evaluation results are given based on repeated runs with 5
different seeds; we plot the median success rate with upper and lower bounds
given by the 75th and 25th percentiles, respectively.

Figure 4 and Table 1 show the performance of DDPG+DTGSH and base-
line approaches on all five tasks. In the Fetch tasks, DDPG+DTGSH and
DDPG+HEBP both learn significantly faster than the other methods, while
in the Shadow Dexterous Hand tasks DDPG+DTGSH learns the fastest and
achieves higher success rates than all other methods. In particular, DDPG can-
not solve any tasks without using HER, and CHER performs worse in the Fetch
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Fig. 4. Success rate of DTGSH and baseline approaches.

tasks. We believe the results highlight the importance of sampling both diverse
trajectories and goals, as in our proposed method, DTGSH.

Table 1. Final mean success rate ± standard deviation, with best results in bold.

Push Pick&Place EggFull BlockRotate PenRotate

DDPG [16] 0.09 ± 0.01 0.04 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00

DDPG+HER [1] 1.00 ± 0.00 0.89 ± 0.03 0.11 ± 0.01 0.55 ± 0.04 0.15 ± 0.02

DDPG+HEBP [32] 1.00 ± 0.00 0.91 ± 0.03 0.14 ± 0.02 0.59 ± 0.02 0.20 ± 0.03

DDPG+CHER [8] 1.00 ± 0.00 0.91 ± 0.04 0.15 ± 0.01 0.54 ± 0.04 0.17 ± 0.03

DDPG+DTGSH 1.00 ± 0.00 0.94 ± 0.01 0.17 ± 0.03 0.62 ± 0.02 0.21 ± 0.02

5.4 Ablation Studies

In this section, we perform the following experiments to investigate the effective-
ness of each component in DTGSH: 1) diversity-based trajectory selection with
HER (DTSH) and diversity-based goal selection with HER (DGSH) are evalu-
ated independently to assess the contribution of each stage; 2) the performance
using different partial trajectory lengths b; 3) the performance of using different
candidate goal set sizes m.

Figure 5 shows the performance of using DTSH and DGSH independently.
DDPG+DTSH outperforms DDPG+HER substantially in all tasks, which sup-
ports the view that sampling trajectories with diverse achieved goals can sub-
stantially improve performance. Furthermore, unlike DDPG+HEBP, DTSH does
not require knowing the structure of the goal space in order to calculate the
energy of the target object; DDPG+DGSH achieves better performance than
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Fig. 5. Success rate of HER, DTGSH, and ablations DTSH and DGSH.

DDPG+HER in three environments, and is only worse in one environment.
DGSH performs better in environments where it is easier to solve the task (e.g.,
Fetch tasks), and hence the trajectories selected are more likely to contain use-
ful transitions. However, DTGSH, which is the combination of both modules,
performs the best overall.

Fig. 6. Success rate of DTGSH with different partial trajectory lengths b and different
candidate goal set sizes m.
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Figure 6 shows the performance of DDPG+DTGSH with different partial
trajectory lengths b and different candidate goal set sizes m. In this work, we use
b = 2 and m = 100 as the defaults. Performance degrades with b � 2, indicating
that pairwise diversity is best for learning in our method. m � 100 does not
affect performance in the Fetch environments, but degrades performance in the
Shadow Dexterous Hand environments.

5.5 Time Complexity

Table 2 gives example training times of all of the HER-based algorithms. DTGSH
requires an additional calculation of the diversity score of O(Npb

3) at the end
of every training episode, and sampling of O(mk2) for each minibatch.

Table 2. Training time (hours:minutes:seconds) of DTGSH and baseline approaches
on the Push task for 50 epochs.

DDPG+HER [1] DDPG+HEBP [32] DDPG+CHER [8] DDPG+DTGSH

Time 00:55:08 00:56:32 03:02:18 01:52:30

6 Conclusion

In this paper, we introduced diversity-based trajectory and goal selection with
hindsight experience replay (DTGSH) to improve the learning efficiency of goal-
orientated RL agents in the sparse reward setting. Our method can be divided
into two stages: 1) valuable trajectories are selected according to diversity-
based priority, as modelled by determinantal point processes (DPPs) [14]; 2)
k-DPPs [13] are leveraged to sample transitions with diverse goal states from
previously selected trajectories for training. Our experiments empirically show
that DTGSH achieves faster learning and higher final performance in five
challenging robotic manipulation tasks, compared to previous state-of-the-art
approaches [1,8,32]. Furthermore, unlike prior extensions of hindsight experi-
ence replay, DTGSH does not require semantic knowledge of the goal space [32],
and does not require tuning a curriculum [8].

Acknowledgements. This work was supported by JST, Moonshot R&D Grant Num-
ber JPMJMS2012.
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