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Abstract. Nowadays, synthetic faces can completely trick human eyes,
which raises social concerns for malicious dissemination of such fake con-
tent. As a result, face forgery detection has become a significant research
topic. Due to the different distributions of synthetic data in different gen-
eration algorithms, it is a great challenge to improve the generalization
ability of the face forgery detection algorithm. To address this challenge,
we propose a general two-stream patch-based face forgery detection net-
work (FDPT), which introduces a patch transformation to encourage
the model to focus on stable information in different data. Specifically,
a random transformation is designed to help CNN stream extract local
subtle artifacts from images. Meanwhile, a sequence transformation is
employed to enhance the global spatial representation ability of the
image through the CNN-GRU stream. Finally, a fusion strategy is used
to improve the detection accuracy. We conduct extensive experiments to
show that FDPT achieves state-of-the-art performance on two popular
benchmarks. Moreover, FDPT outperforms the recently proposed gen-
eralization methods when applied to forgery generated by unseen face
manipulation techniques (e.g., 84.39% → 95.53% on Face2Face dataset).

Keywords: Face forgery detection · Generalization · Patch
transforamtion

1 Introduction

With the development of artificial intelligence technologies, researchers have pro-
posed various deep-learning-based generation algorithms to synthesize images
and videos. Since a Reddit user first used such algorithms in 2017 [11], fake con-
tent generation has gradually penetrated into politics, media, and many other
fields. It has become a serious problem that abusing fake images for malicious
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Fig. 1. Comparisons between our method and other patch-based methods. (a) There
are two fake faces (bottom) generated by DeepFakes [1] based on the two real faces
(top). (b) Other methods based on patch learning assume all patches cropped from a
fake image as fake (black line), but some patches may come from the real part (green
line). (c) Our method is trained with the global label instead of the aforementioned
assumption. FDPT uses patch transformation to capture the local subtle artifacts and
global spatial features of the image. (Color figure online)

purposes (e.g., influencing public opinions) will bring negative impacts on the
society, economics, and even politics. Therefore, it is necessary to study algo-
rithms for image forgery detection, especially for face forgery detection.

Researchers have made numerous attempts in order to address the challenge
of face forgery detection. For instance, a series of earlier works classify an image
into a real/fake category by using handcrafted features [7,12,25]. However, they
require high-resolution images and exhaustive feature tuning. In the past few
years, convolutional neural networks (CNNs) have shown a powerful ability in a
number of visual tasks. Therefore, recent works have begun to use deep learning
methods to achieve forgery detection [4,15,22,26,31]. However, most of these
methods are trained with known face manipulation techniques and have the
problem of insufficient generalizability.

Generalizability is highly desired in face forgery detection; in other words,
models should perform well not only on the face data used in training (i.e., known
face manipulation datasets), but also on other unseen face forgery datasets (i.e.,
generated by unknown face manipulation techniques). Due to the lack of gener-
alizability, most existing methods for face forgery detection are effective on seen
datasets (known face manipulation techniques) and can achieve a detection accu-
racy up to 98%. However, they tend to suffer from over-fitting and perform poorly
(50% or even lower) on unseen datasets. Therefore, forgery detection methods
without sufficient generalizability are unsuitable for practical applications.

There exists many challenges in the process of improving generalizability, for
example, large-scale dataset dependence, and forged class limitation [14,21,30].
To address such challenges, Chai et al. extract the local features from small
patches to improve the representation of the image [8]. Compared with the global
features of the whole image, the local and subtle features are more stable in differ-
ent datasets. However, Chai et al. assume that all patches cropped from a forgery
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face are considered fake (as shown in Fig. 1(a) and (b)). It is clearly not suitable
to apply such method to forgery images that consist of many real face parts
where some belong to a real one and some do not (as shown in Fig. 1(b)). There-
fore, although it has excellent generalization performance within the entire face
forgery datasets, it is not effective across different partial face forgery datasets
(e.g., the four manipulations of FaceForensics++ [27]).

Inspired by [8], we find that local information learning is a good method to
solve the lack of generalizability. To remove the assumption in [8] that degrades
the generalizability, we use a patch transformation strategy to help the model
focus on stable artifacts, rather than limiting model learning to a local patch.
The model can be trained with the global label without the aforementioned
assumption (i.e., a real/fake image corresponds to a real/fake label). Specifi-
cally, we randomly shuffle the image patches to help the CNN stream emphasize
local artifacts from the image. In addition, we convert the image into a patch
sequence and capture the global spatial features by using CNN-GRU stream.
Compared to the method proposed in [8], our method not only focuses on the
local subtle artifacts (local-level) by the CNN stream but also learns global
spatial features (global-level) from the CNN-GRU stream (shown in Fig. 1(c)).
Finally, we fuse different levels of features to further improve the performance
and generalizability of the model.

We summarize our contributions as follows. Firstly, we propose a patch ran-
dom transformation strategy to help the CNN stream focus on the local sub-
tle artifacts of the image. It provides a solution to distinguish the differences
between real and fake faces. Secondly, we employ a patch sequence transforma-
tion strategy to enrich the global representation of images by the CNN-GRU
stream, which firstly introduces spatial features between patches in face forgery
detection task. Lastly, we conduct extensive experiments to show the effective-
ness of our proposed method; moreover, we achieve meaningful gains in many
generalizability experiments.

2 Related Work

2.1 Fake Face Generation

The studies on Face forgery can be divided into two categories: entire face forgery
and partial face forgery.

Entire Face Forgery. The generative adversarial networks (GANs) are usually
used to synthesize images [6,16]. PGGAN [18] and StyleGAN [19] are proposed to
focus on the high-level attributes (e.g., pose and identity when trained on human
faces) in an image and generate a high-resolution image. Glow is a flow-based
generation model by using modified 1 × 1 invertible convolutions and achieves
excellent results in interpolation generation [20].

Partial Face Forgery. It usually contains many meticulous sub-tasks, such as
identity swap, expression swap, and attributes manipulation. For this category,
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StarGAN [9] and FaceApp [2] are proposed to achieve face attributes manipula-
tion by modifying the partial attributes of the face image (e.g., hair, gender, age,
etc.) during the training stage. Similar work includes recently proposed FaceSwap
[3], Face2Face [29], DeepFakes [1], and NeuralTextures [28]. Rossler et al.
collect the fake face videos from four popular generation methods [1,3,28,29]
and propose a dataset named FaceForensic++ to facilitate the evaluation of
detection methods [27].

2.2 Forgery Detection

We divide the studies on forgery detection into two categories: generalizable
forgery detection and patch based forgery detection.

Generalizable Forgery Detection. Recently, many methods achieve a high
accuracy on known datasets in forgery detection. However, their accuracies on
unseen datasets decrease significantly. To solve the generalizability problem,
recent works [8,14,21,30] have been proposed. Specifically, Du et al. employ a
locality aware strategy to enhance the representation of images [14] and achieve
incremental improvement. Wang et al. improve the generalizability by adding
blur and random noise during the training phase [30]. However, this method
relies on a large training set. Li et al. propose the Face X-Ray [21], which uses
noise as well as error level analysis to extract the blending boundary of fake
faces. Although it can achieve a certain level of generalizability, it is only appli-
cable to specific manipulation types of fake faces; in other words, it achieves high
generalizability between different face swap technologies, but is not suitable for
detecting fake faces in the entire face synthesis.

Forgery Detection with Patches. Most of recent excellent face forgery detec-
tion methods are based on an overall image [13,21,26,30]. But they often ignore
key local details in the image. To avoid this problem, many methods leverage
the local perspectives instead of global detection [22–24,32]. Specifically, Zhou
et al. propose a model to learn local features from patches [32]. Mayer et al. use
the similarity between patches to judge whether the image is forgery [23,24].
Chai et al. propose a patch-based classifier to focus on local artifacts and obtain
excellent generalization on the entire face forgery dataset [8]. They all assume
that all patches cropped from an image belong to the same class as the input
image, which is not consistent with reality (as shown in Fig. 1(b)).

3 Approach

3.1 FDPT Architecture for Face Forgery Detection

As shown in Fig. 2, FDPT is a two-stream face forgery detection network (i.e., a
CNN stream and a CNN-GRU stream). It benefits from two different but com-
plementary visual features. Specifically, the CNN stream learns on local subtle
artifacts through the pre-processing of patch random transformation, and the
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Fig. 2. FDPT architecture. The CNN stream focuses on local subtle artifacts through
a patch random transformation. The CNN-GRU stream first obtains the global spatial
features by passing input image through the patch sequence transformation. The CNN
module of CNN-GRU stream is expanded in the lower right corner.

CNN-GRU stream learns global spatial features between patches through patch
sequence transformation. Then, a fusion strategy is used to improve the accuracy
and generalization ability.

3.2 Local Subtle Artifacts Learning

The process of our local subtle artifacts learning stream (i.e., the CNN stream)
can be divided into four steps. First, we utilize a traditional data augmentation
strategy to enrich the training set by randomly cropping the images in batch
data. Second, a cropped image is self-shuffled by a patch random transformation
method. Third, we use a CNN module to learn and extract the subtle artifacts
of these shuffled images. In our method, the CNN stream is generic and could
be implemented on any backbone feature extractor (e.g., ResNet [17]). Finally,
two convolution blocks and fully connected layers are employed to predict the
authenticity of the input image, where the prediction is normalized by the Sig-
moid function and we denote the normalized result as the prediction forgery
score.

Fig. 3. Patch random transformation with different n. Fig. 4. Hilbert curves.

Patch Random Transformation. Most forgery detection methods extract
global artifacts in an entire image to distinguish real from fake. However, there
are different global artifacts in data generated by different face generators. As a
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result, most of the face forgery detection methods cannot be generalized across
different generators. We leverage the patch random transformation to disturb
the global artifacts existing in an entire image, thus to retain the local subtle
artifacts and represent the face image in a more stable fashion. In patch random
transformation, we divide the input image into patches, then randomly shuffle
and assemble these patches into a new image. The purpose of these operations
is to generate a new image after random transformation and force the stream to
focus on local subtle features in the training stage.

Denote an input image by I ∈ R
W×H×3 and the split parameter by n, where

W and H are the width and the height of the image, respectively. The image is
divide into n× n non-overlapped patches. The size of each patch is W

n × H
n × 3.

These patches are reconstructed into a new image. Figure 3 illustrates an original
image and the transformed new image.

Note that there is no need to pre-process that in the training stage during
the inference (i.e., patch random transformation). The input image is randomly
cropped and put into the CNN stream to get a prediction forgery score. If given
a video, we extract multiple frames randomly and average the predictions.

3.3 Global Spatial Features Learning

As shown in Fig. 2, we employ a hybrid CNN-GRU module to extract global
spatial features between patches. Given the patches split from an image, we
organize patches in a specific order and expect GRU to capture the dependency
among patches. Note that if patches are organized vertically or horizontally,
sequential learning can not correlate them well due to long-distance between
adjacent patches [5]. Inspired by the work in [5], we leverage the Hilbert curve
to organize the patches and maintain the local correlation in the spatial domain.
Then, we use a sequential module GRU to extract spatial features from the
reordered patch images.

Patch Sequence Transformation. The patch sequence transformation con-
sists of two steps: (1) we first split an image into several local patches on average
and connecting patches in order, (2) we then adopt a sequential learning method
(i.e., GRU) to capture the global spatial features between the patches. Note that
it is important to determine the order of patches fed to GRU. A common solu-
tion is to organize the patches either horizontally or vertically; however, such
sequences do not better capture local information. For instance, if we connect
patches horizontally, the adjacent patches in the vertical direction will be sep-
arated by an entire line of patches. Thus, it is difficult to learn the correlation
characteristics between patches due to long-distance interval. To solve this prob-
lem, the space-filling curve is proposed. It maps data in multi-dimensional space
to one-dimensional space and keeps the relevance of adjacent parts. We leverage
the Hilbert curve to reconstructed patches in our method. Compared with other
curves, the Hilbert curve maintains a better spatial local property, which is more
favorable for sequential learning. The second-order Hilbert curve that we used
is shown in Fig. 4.
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The CNN-GRU stream works in a similar way as the CNN stream. More
specifically, given an image I ∈ R

W×H×3, we first divide it into n × n non-
overlapped patches and the size of each patch is W

n ×H
n ×3. We then transform the

feature learning from a multi-dimensional to one-dimensional sequence by using a
space-filling curve (i.e., connect n×n patches into a sequence according to Hilbert
curve). After that, we put each patch into a CNN module to extract the patch
feature, where the CNN module can be any excellent backbone feature extractor.
In our method, we simplified the CNN module to reduce the parameters during
the training. Therefore, the CNN module in the CNN-GRU stream contains
three calculation blocks and each block has two convolution layers, two activation
layers, one batch normalization layer, and one max pooling layer. More detailed
structure is shown in Fig. 2. Last, we feed the features of patches into the GRU
module in the order of Hilbert curve to capture the correlation between patches.
Our GRU module has two stacked GRU layers and three fully connected layers,
and we normalize the outputs of the last layer using the Sigmoid function to
predict the authenticity of the input image. As a result of these steps, the CNN-
GRU stream can describe the correlation between patches and capture the global
spatial representation by the space-filling curve.

3.4 Fusion Strategy

As mentioned in Sect. 3.2 and Sect. 3.3, the proposed CNN and CNN-GRU
streams mine the local subtle artifacts and the global spatial features respec-
tively. The two patch-related forgery features are different but complementary.
Therefore, we adopt a fusion strategy to promote the final performance.

More specifically, we consider the prediction forgery score set P = {PC , PG}
in the evaluation phase, where PC ∈ [0, 1] and PG ∈ [0, 1] means the prediction
forgery scores of the CNN stream and the CNN-GRU stream, respectively. The
final forgery score Pfusion is calculated by Eq. (1), where the closer Pfusion is
to 1, the more likely the input image is a forgery.

Pfusion =
PC + PG

2
(1)

4 Evaluation

4.1 Experiment Setting

Dataset. We evaluate our method on two benchmark datasets: the entire face
forgery detection dataset and the partial face forgery detection dataset. For
the entire face forgery detection dataset, the real images come from FFHQ
and the fake images are generated by StyleGAN/PGGAN (labeled as Style-
GAN and PGGAN in corresponding datasets in the sequel). For the partial face
forgery detection dataset, we use FaceForensics++ collected by [8]. FaceForen-
sics++ contains 1,000 real videos and 4,000 manipulated fake videos, where
these manipulated videos are generated by four face manipulation algorithms,
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namely, DeepFakes (DF), Face2Face (F2F), FaceSwap (FS), and NeuralTexture
(NT). Similarly, we refer to the corresponding datasets using the DF, F2F, FS,
and NT labels in the sequel.

Evaluation Metrics. For fair comparisons with other methods, we use the
Accuracy score (ACC) to evaluate different methods. In addition, to evaluate
the effectiveness of each component of FDPT, we also calculate the Area Under
the Receiver Operating Characteristic Curve (AUC) in our ablation study.

Implementation. In our experiments, the input size of the CNN stream is
448 × 448 × 3. Then, we train the CNN stream using the stochastic gradient
descent (SGD) method, where the learning rate is 10−3 and the number of epochs
is 20. For the CNN-GRU stream, the input size is 256 × 256 × 3 and we train
the CNN-GRU stream using SGD with the learning rate being 10−2. We stop
the training stage of the CNN-GRU stream at the 50th epoch. For more details,
the code is available at https://github.com/xihe7/PatchT/.

During the training stage, we evaluate different parameters n in patch trans-
formation and find that the results of n = 4 perform better. Thus, we set n = 4
in our remaining experiments.

4.2 Ablation Study

In order to evaluate the effectiveness of each component of FDPT, we conduct
experiments on the entire face forgery and partial face forgery datasets separately
and summarize results in Table 1.

Note that ID 1 and 2 in Table 1 represent the CNN stream without and with
patch random transformation respectively, while ID 3 and 4 mean the CNN-
GRU stream without and with patch sequence transformation respectively. We
also apply the fusion strategy on different components to attempt to improve
the detection results. The fusion results are shown in ID 5−7. Specifically, ID 5
refers to the fusion of two streams without any patch transformation. ID 6 and 7
respectively indicate only one of the patch transformation methods used in the
weighted fusion two-stream network.

Table 1. Ablation study of FDPT.

ID Stream Patch random

transformation

Patch sequence

transformation

Entire face forgery Partial face forgery

ACC AUC ACC AUC

1 CNN × 94.10 0.9352 93.23 0.9277

2 � 98.25 0.9904 99.00 0.9932

3 CNN-GRU × 98.17 0.9864 98.44 0.9805

4 � 99.00 0.9941 99.17 0.9921

5 Fusion × × 95.03 0.9416 95.83 0.9524

6 × � 95.35 0.9456 96.50 0.9673

7 � × 98.53 0.9887 99.17 0.9940

8 FDPT � � 99.87 0.9996 99.83 0.9989

https://github.com/xihe7/PatchT/
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We observe that ACC and AUC are significantly improved due to patch
random transformation; more specifically, the detection ACC increases by 4%
and AUC is improved by 0.06 on the entire face forgery dataset. In addition, the
ACC increases by more than 5% and AUC increases by 0.06 on FaceForensics++.
Therefore, the effect of local artifacts on forgery detection is noticeable.

We also observe that ACC and AUC scores have slight improvement after
using the Hilbert curve to organize patches. Although the improvement of quan-
titative results is relatively small, it is a meaningful improvement for face forgery
detection. These results suggest that using the Hilbert sequence is conductive to
improving detection results.

Furthermore, after the application of the fusion strategy, we observed that
the results of ID 5–6 are not as good as one of the two streams. In the two-stream
network, when the performance of one stream is poor, the effect of simple fusion
is not obvious. On the contrary (compared ID 7 with ID 2 and 3), when the
network effect of both two streams is excellent, the final fusion performance is
improved. Further as shown in ID 8, both ACC and AUC scores of FDPT are
higher than its variants (i.e., ID 1–7). This suggests that the two features are
complementary to each other. We can draw a conclusion that local artifacts
play a key role in improving detection results, and the global representation is
excellent in detection.

4.3 Comparison with Existing Methods

We train and evaluate existing methods including full MesoInception4 [4],
MesoNet [4], ResNet [17], Xception [10], and a classifier proposed in [30] (CNNp)
on the same datasets as the datasets FDPTuses. In addition, we also compare
FDPT with the latest patch-based method [8] (PatchW).

Note that ResNet and Xception are advanced classification networks. Xcep-
tion draws on the idea of depth-wise separable convolution and combines with the
idea of ResNet. It is the leading classification network at present. On the other
hand, MesoInception4, MesoNet, and CNNp of [30] are open-source face forgery
detection algorithms. In particular, CNNp is one of the most recent works and
is trained to detect CNN artifacts via blurring and compression augmentations.
PatchW is the latest face forgery detection using patches. To better compare
with it, we directly take the experimental results in [8].

4.3.1 Comparison Results on Entire Face Forgery Dataset We divide
the fake face testing set into three types: PGGAN, StyleGAN, and their mixture.
The results are shown in the left of Table 2. We observe that the accuracy (i.e.,
ACC) of FDPT in three cases are 99.85%, 99.80%, 99.87%, respectively, with
a noticeable improvement compared against the current methods and excellent
classification networks (except PatchW). PatchW achieves almost 100% accuracy
on known datasets; however, it is more likely to suffer from over-fitting. The
significant performance gains mainly benefit from the two sets of complementary
discriminative information learnt from patches, which contributes to FDPT’s
capability of learning more local details of face images.
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Table 2. Accuracy results (%) on entire face forgery and partial face forgery dataset.

Methods Entire face forgery Partial face forgery

StyleGAN PGGAN Mix DF FS F2F NT FF++

ResNet [17] 91.65 97.01 94.10 95.53 92.77 93.02 96.92 93.23

Xception [10] 98.00 96.49 98.52 99.27 98.87 98.17 98.00 98.30

MesoNet [4] 91.90 98.70 94.17 92.19 93.75 90.62 88.97 86.67

MesoInception4 [4] 95.00 98.40 96.67 90.62 92.19 89.27 87.52 90.17

CNNp (p = 0.1) [30] 98.85 99.70 99.63 82.07 96.77 97.13 77.50 89.88

CNNp (p = 0.5) [30] 98.00 99.40 99.78 81.33 91.63 89.13 80.77 85.40

PatchW [8] 100.0 100.0 - 99.27 96.56 97.66 92.23 -

FDPT 99.85 99.80 99.87 99.83 99.83 99.00 98.67 99.53

4.3.2 Comparison Results on Partial Face Forgery Dataset Further-
more, we evaluate FDPT on different face manipulation techniques. We mix
four face manipulation techniques of FaceForensics++ for training and evalu-
ating together (i.e., DF, FS, F2F, NT). They are all fake face video datasets,
and we extract frames as fake face images in the experiments. We then train
the model and evaluate it in four types of face manipulated dataset respectively.
When training, in order to balance the proportion of real and fake datasets, the
number of frames extracted from original videos is four times that of each face
manipulation video. We summarize the results in the right of Table 2.

We observe that FDPT achieves a high detection accuracy and performs
much better than other methods. FDPT achieves an accuracy of nearly 100%
in all testing sets. Note that due to the two-stream structure, our FDPT model
extracts multiple frames from each video, and each frame is detected by the
CNN stream and CNN-GRU stream. The two streams complementarily make
corrections to the error and make the final results perform better.

4.3.3 Analysis By comparing the results in Sect. 4.3.1 and Sect. 4.3.2, we
observe that the performance of both CNNp and PatchW degrade significantly
on fake faces of FaceForensics++. Note that CNNp focuses on CNN-synthesized
images and detects CNN artifacts to distinguish real and fake. However, the
FaceForensics++ dataset lacks sufficient CNN artifacts, which is completely dif-
ferent from the entire face forgery dataset. Therefore, the accuracy results of
the classifier methods drop significantly. In terms of PatchW, it assumes that all
patches cropped from a fake image are considered as fake. Therefore, it has excel-
lent detection accuracy in the task of entire face forgery detection. However, the
detection results drop on the FaceForensics++ dataset due to the incorrectness
which may be introduced by the assumption mentioned above.

The experimental results suggest that FDPT can be applied to all fake face
image datasets, such as StyleGAN, PGGAN, and FaceForensics++, and consis-
tently achieves state-of-the-art performances. Note that CNNp [30] and PatchW
[8] are the latest face forgery detection methods. Both can only perform well on
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Table 3. Generalization ability evaluation on entire face forgery dataset. Each model
is trained on one dataset and evaluated on another unseen dataset.

Training set StyleGAN PGGAN

Testing set StyleGAN PGGAN PGGAN StyleGAN

ResNet [17] 91.65 62.18 97.01 52.37

Xception [10] 98.00 65.87 96.49 74.33

MesoInception4 [4] 95.00 76.23 98.40 71.27

CNNp (p = 0.1) [30] 99.85 86.92 99.70 85.27

CNNp (p = 0.5) [30] 98.00 85.28 99.40 56.34

PatchW [8] - - 100.0 95.85

FDPT 99.85 93.95 99.80 96.85

a specific type of fake face image. The results suggests that FDPT can achieve
good universality and is suitable for various types of fake faces.

4.4 Generalizability

Forgery generation algorithms have been constantly evolving. Therefore, it is cru-
cial to explore forgery detection methods that can achieve great generalizability;
in other words, the detection model trained with one face forgery dataset can be
generalized to images generated by other new forgery manipulated techniques.
We next investigate the generalizability performance of FDPT.

We first evaluate the generalizability on the entire face forgery dataset and
summarize the results in Table 3. We train each model with one face forgery
dataset and evaluate it on another one (unseen). Because there are many simi-
larities between StyleGAN and PGGAN, it is relatively easy to implement gener-
alization between them. We observe from Table 3 that many methods are prone
to over-fitting and perform poorly on the unseen dataset. PatchW performs bet-
ter than some other methods. The reason is that it utilizes small patches to
ignore global differences between real from fake images and focus on shared gen-
erator artifacts. Our method FDPT achieves an accuracy of nearly 100% on the
seen dataset, and is superior to all other methods on the unseen dataset. Even
though our accuracy is a little less than PatchW on PGGAN (seen), we have
significantly improved the generalizability on StyleGAN (unseen).

We then evaluate the generalizability of FDPT across four different genera-
tors of FaceForensics++. We train on each of the four manipulations and evaluate
on the remaining three datasets. We summarize in Table 4 the results in terms
of ACC with respect to each type of manipulated video. We observe that ACC
of most methods is up to 99% on seen manipulation dataset (in gray); however,
it drops drastically for unseen manipulations (in black). This is because the
model learns the specific artifacts quickly and suffers from over-fitting. There-
fore, it performs well on a given dataset and has poor generalizability on unseen
datasets.
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Table 4. Generalizability on FaceForensics++. Each model is trained on one dataset
and evaluated on the remaining datasets. ACC on the testing set corresponding to
training images is colored in gray.

Train on DF Train on FS

DF FS F2F NT DF FS F2F NT

ResNet [17] 95.53 52.43 53.15 52.42 58.83 92.77 53.16 51.04

Xception [10] 99.27 47.12 53.57 58.15 54.26 98.87 53.42 51.28

MesoInception4 [4] 94.32 51.34 60.17 58.27 51.64 96.19 55.32 49.46

CNNp (p = 0.1) [30] 92.64 51.23 57.66 59.29 55.24 96.72 61.32 52.88

CNNp (p = 0.5) [30] 91.46 55.99 56.06 54.02 57.29 97.65 60.04 51.16

PatchW [8] 99.14 58.74 71.74 74.99 61.77 97.13 62.00 53.44

FDPT 99.84 61.05 68.32 75.63 55.58 98.46 73.43 53.81

Train on F2F Train on NT

DF FS F2F NT DF FS F2F NT

ResNet [17] 54.32 53.08 93.02 52.86 65.76 50.14 55.23 89.56

Xception [10] 66.08 53.15 96.17 55.07 69.67 48.55 56.79 93.60

MesoInception4 [4] 64.43 55.16 94.37 54.42 63.72 55.83 62.25 86.87

CNNp (p = 0.1) [30] 66.24 59.04 97.83 62.97 69.27 49.88 67.04 88.50

CNNp (p = 0.5) [30] 66.86 64.52 93.42 62.17 67.08 51.63 69.45 90.88

PatchW [8] 84.39 63.10 97.66 79.72 70.32 52.37 65.04 86.93

FDPT 95.53 67.91 98.15 82.42 98.78 65.71 96.30 98.92

As shown in Table 4, our approach FDPT has better generalizability than
PatchW in most cases, and performs better than other methods in all cases.
Specifically, training on NT and F2F images can still achieve satisfactory gener-
alizability on remaining datasets, and generalization to FS images is the hardest.
PatchW is the latest patch-based forgery detection method, which focuses on
local patches. The assumption PatchW used will bring errors when training on
partial face forgery dataset; therefore, the generalizability of PatchW on Face-
Forensics++ is not as good as that on the entire face forgery dataset (as shown
in Table 3).

Compared with PatchW, FDPT achieves higher generalizability. More specif-
ically, FDPT achieves face forgery detection from more general evidences avail-
able from both local subtle artifacts and global spatial features. It is clear that
the improved generalizability comes from the design of FDPT, namely, detecting
discriminative information from local patch space instead of paying attention to
the global features of specific manipulation artifacts.

4.5 Impacts of Image Quality

Images and videos in practical scenarios may be of lower quality (e.g., due to
compression), and many methods with good performance on high-quality images
may suffer from low image quality.

Note that different quality is available in FaceForensics++. More specifically,
FaceForensics++ provides the original output video dataset (RAW). Addition-



Towards Generalizable Forgery Detection with Patch Transformation 349

Table 5. Accuracy results (%) of FDPT on FaceForensics++ with different quality.

HQ (High quality) LQ (Low quality)

DF FS F2F NT DF FS F2F NT

ResNet [17] 97.33 98.50 97.67 86.17 88.89 81.95 82.17 69.50

Xception [10] 97.17 96.33 95.67 88.50 90.57 82.35 83.67 73.83

MesoInception4 [4] 91.42 87.78 88.13 68.33 83.18 77.67 76.83 60.94

CNNp (p = 0.1) [30] 96.29 93.58 94.66 75.15 90.95 86.53 81.62 64.27

CNNp (p = 0.5) [30] 96.58 94.03 93.17 86.25 91.13 84.32 80.87 61.33

FDPT 98.33 98.17 98.00 94.17 91.17 88.33 88.67 81.50

ally, FaceForensics++ provides two different compression datasets: low-quality
videos (LQ) and high-quality videos (HQ). HQ is produced with a light compres-
sion which is almost visually lossless (i.e., constant rate quantization parameter
equal to 23), while LQ produced with the quantization parameter being 40 [27].

We evaluate FDPT on FaceForensics++ with different image quality. The
models are trained and evaluated on the HQ and LQ datasets for each of the
four face manipulation scenarios. We summarize the results in Table 5.

We observe that FDPT outperforms other methods. First, FDPT performs
well on the HQ datasets. More specifically, FDPT achieves 98.33%, 98.17%,
98.00%, and 94.17% accuracy on DF, FS, F2F, and NT, respectively. The accu-
racy of FDPT on the DF, FS and F2F datasets is close to 100.0%. This suggests
that FDPT can still perform excellent detection even when the light compression
degrades the image quality. We also observe that the performance of FDPT drops
on LQ dataset; more specifically, FDPT achieves 91.17%, 88.33%, 88.67%, and
81.50% accuracy on DF, FS, F2F, and NT, respectively. Although FDPT suffers
from heavily compressed images, it can still achieve a high detection accuracy.

Note that compared with videos generated by DF, FS and F2F, fake videos
generated by NT is a great challenge to detection models, due to its generated
faces without noticeable forgery artifacts. Therefore, the accuracy results on
the NT datasets are not as good as the results on the other three datasets.
But, the accuracy of FDPT on NT is more than 90% in HQ and 80% in LQ,
and FDPT still plays an excellent detection effect. This is consistent with the
research results in [26] which proposed a forgery detection method specifically
optimized for compressed videos.

5 Conclusion

In this paper, we propose FDPT, a general two-stream face forgery detection net-
work based on patch transformation, to achieve higher generalizability. Specifi-
cally, FDPT consists of a CNN stream and a CNN-GRU stream. The first CNN
stream enhances the capture of local subtle artifacts and avoids introducing the
pseudo labels used in other methods. Then, the second CNN-GRU stream cap-
tures global spatial features between patches to strength the representation of
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the image. Finally, the fusion of these two streams improves the performance and
generalization of our proposed models. The extensive experiments have shown
that our model achieves state-of-the-art results on two different face forgery
datasets. Moreover, FDPT remains effective when applied on unseen forgery
datasets and achieves superior performance in the generalizability experiments.
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