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Abstract. The recent trend in Multi-Object Tracking (MOT) is head-
ing towards using deep learning to detect objects and extract features.
Although tracking frameworks using detection network have achieved
outstanding performance in object locating on MOT, it is still challeng-
ing for crowded occlusion. In this paper, we propose to alleviate this dif-
ficulty by combining bounding boxes from outputs of both object detec-
tion and pose estimation. The motivation behind generating redundant
candidates is that object detection and pose estimation can complement
each other in tracking scenes. In order to get optimal tracking objects
from candidates, we present Soft-Pose-NMS. For similarity calculation,
we design a Dual Self-Attention Network (DSAN) with the self-attention
mechanism. The network generates the self-attention map that enables
the network to focus on the object area of detection and tracklet images.
Simultaneously, the network can extract the temporal self-attention fea-
ture map to suppress noisy images in the tracklet. Experiments are con-
ducted on the MOT benchmark datasets. Results show that our tracker
achieves competitive results and is state-of-the-art in half of the metrics.

Keywords: Multi-object tracking · Person re-identification · Dual
self-attention network

1 Introduction

Multi-object tracking (MOT) is one of the most fundamental computer vision
tasks, aiming to generate the trajectory information of all interested objects
across video frames. It has attracted much attention because of its broad appli-
cation such as intelligent video analysis, autonomous driving and smart city.
The current MOT studies mainly adopt the “tracking-by-detection” strategy
that applies the detector to locate objects in each frame and associates objects
among the different frames to generate object trajectories [5,25,31].

Despite the encouraging progress made in the past few years, there are two
significant problems with “tracking-by-detection” strategy. One is that tracking
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Fig. 1. Object locating with pose guiding. In applying only one kind of detection result,
the bounding boxes are mislabeled due to heavy occlusion. Object detection result and
pose estimation result can complement each other to locate objects correctly.

results heavily rely on the quality of object detection, which by itself is hard to
generate reliable results across frames. Taking the tracking scenes in the MOT16
dataset as examples, during the crowd scenes, the bounding boxes based on one
kind of detection method of the occluded objects is usually unreliable, posing
drifting and ID-switching in tracking, as shown in Fig. 1. To alleviate such issues,
recent research [24] introduces the object location information from an instance
segmentation method to locate the tracking objects. In this paper, we combine
the merits of multi-person pose estimation and object detection in a unified
framework to introduce object joint points information. We use the pedestrian
joint points information to assist in locating the object and alleviate unreliable
detection.

On the other hand, for similarity computation in MOT, we need to compare
the current detect object with a sequence of previous observations in the trajec-
tory. One of the most commonly track objects in MOT is pedestrians, so the re-
identification [16,22] is commonly used for similarity calculation with challeng-
ing factors including occlusion, partial loss and pose variation [31], as shown in
Fig. 1. To alleviate such issues, [7,31] propose the feature extraction network that
introduces attention mechanism [27] to extract detection and tracklet appearance
features. Additionally, inspired by [29], we introduce the self-attention mecha-
nism, which calculates the self-attention map for detection image and tracklet
images, respectively. Moreover, our network is end-to-end, which can alleviate
training complexity and extract more robust features.

The main contributions of this paper can be summarized as follows.

1. A new detection strategy is proposed to combine object detection and pose
estimation results. The strategy takes advantage of both object detection and
pose estimation to handle unreliable detection in online MOT.
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2. We design a Dual Self-Attention Network (DSAN), introducing the self-
attention mechanism to allocate different attention values to each location in
the object image and exploit self-attention temporal feature from the tracklet.

3. Experimental results demonstrate that our tracker achieves competitive per-
formance on the MOT benchmark dataset and is state-of-the-art in half of
the metrics.

2 Related Work

In recent years there has been an explosion of technological progress in
MOT driven primarily by object detection strategy. Sanchez-Matilla et al. [20]
exploited multiple detectors to improve detection performance in MOT. Chen
et al. [5] combined detection and predicted bounding boxes by Kalman filter as
tracking candidate set for quality evaluation and used different strategies for data
association. Although these methods alleviate the unreliable detection results,
they still use one kind of detection information. Hence these methods cannot
effectively alleviate the issue of missing detection. There are also several works
that use other category location information to determine the coordinates of the
tracking candidates [6,10,13,24]. Voigtlaender et al. [24] proposed MOTS task
and TrackR-CNN network to merge segmentation and multi-object tracking.
The network employed top-down segmentation information instead of detection
information to locate the object. Nevertheless, the top-down object location
information introduced in the above methods still depends on the quality of the
object detection results [8,24]. On the contrary, we propose the Soft-Pose-NMS
detection strategy to introduce object joint points information from the bottom-
up pose estimation method. The bottom-up object location information is not
affected by the object detection performance and can provide additional object
position information, and thereby it can effectively improve the object detection
results in MOT.

For object feature extraction and similarity computation, Mahmoudi et al.
[17] applied CNN extracted appearance features along with position features
to calculate more accurate similarity score. Chu et al. [7] introduced a Spatial-
Temporal Attention Mechanism (STAM) to handle the tracking drift caused
by the occlusion and interaction among objects. Zhu et al. [31] proposed a Dual
Matching Attention Networks (DMAN) with both spatial and temporal attention
mechanisms to perform the tracklet data association. In this paper, we integrate
both spatial and temporal self-attention mechanisms into the proposed MOT
framework. Our framework differs from the state-of-the-art DMAN [31] method.
First, the spatial attention in the DMAN corresponds to the detection image
and trajectory images. Since the attention map is affected by different trajectory
images, it becomes unreliable when other objects appear in the trajectory image.
In contrast, we exploit the image itself to generate the self-attention map, which
is demonstrated to be more robust to inter-object occlusion and noisy detection.
Second, the DMAN needs to be divided into two steps to train the model, while
our spatial and temporal self-attention map can be end-to-end trained.
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3 Proposed Method

Our online tracking framework consists of three tasks, object detection, similarity
calculation and trajectory management. We first measure all tracking objects
by the proposed Soft-Pose-NMS detection strategy that introduces object pose
information. Then we use the Dual Self-Attention Networks (DSAN) to extract
feature and compute the similarity score of the detection image and tracklet
images. Finally, we update the tracking state of objects and trajectories.

3.1 Soft-Pose-NMS Object Detection Strategy

Given a new frame, we get the joint points of each object through the pose esti-
mation network [15]. Nonetheless, there are abnormal points in these joint points,
as shown in Fig. 2. Therefore, the Soft-Pose-NMS detection strategy is designed
to generate accurate joint points-based bounding boxes with pose estimation
results and determine tracking candidates by screening two types of bound-
ing boxes. These bounding boxes are adopted to alleviate detection failures in
crowded scenes.

First, we obtain the primary detection-based bounding box set PBdet by
object detection method. It is necessary to generate a sufficient number of
detection bounding boxes to filter and obtain accurate tracking bounding boxes.
Therefore, we set a lower confidence threshold Tdetcon to generate the detection-
based bounding box set Bdet form PBdet.

Fig. 2. The bounding box results based on pose estimation. (a) shows the result missing
part of the object joint points. (b) shows the results of abnormal joint points with large
offsets. (c) shows the result of abnormal joint points with small offsets. Red points and
blue points are the clustering result of the object joint points and Wi is the width of
two point-groups.

Second, a primary joint points-based bounding box PBjpi is generated by
expanding the coordinates of the joint points. Here we define NPPBjpi as the
number of joint points and ARPBjpi as the aspect ratio for the PBjpi. Then the
primary joint points-based bounding boxes set PBjp can be defined as:

PBjp = {PBjp1...PBjpi} , NPjpi > Tnjp andARjpi < Tratio (1)
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where Tnjp is threshold for the number of joint points, Tratio is threshold of
the aspect ratio. We set Tnjp = 8 and Tratio = 0.6 to generate PBjp. However,
the joint points-based bounding box coordinate shifting still exists in PBjp, as
shown in Fig. 2(c). We observe that this shifting only appears on the abscissa. In
order to deal with this joint points drift issue to get exact width value for joint
points-based bounding box. First, we use the clustering algorithm to cluster the
joint points of each bounding box PBjpi in PBjp into two point groups. Then
we calculate the width ratio of the two points groups. Here we define w1 and
w2 as the width of two point group width, respectively, as shown in Fig. 2(c).
We define Rw as the width ratio of w1 and w2. Therefore, the width of ith joint
points-based bounding box WPBjpi can be generated by the following formula:

WPBjpi =

{
w1 Rw > Twratio

w2 Rw ≤ Twratio

(2)

where Twratio as the threshold of the width ratio. We analyse the position of
the drift joint point and set Twratio to 2.

After recalculating the width of each joint point-based bounding box, we get
the final joint point-based bounding box set Bjp. In order to combine detection
based bounding boxes and screen unreliable bounding boxes, we need to calculate
a reasonable confidence score to the ith joint points-bounding box Bjpi in Bjp.
Directly using the average score of each joint point in joint points-based bounding
box Bjpi as corresponding confidence value will cause confidence bias. Therefore,
we propose a function to explicitly encode pose information of each joint point
into the confidence maps. We expand the total variance and make the scoring
probability distribution distance of different pedestrians farther. The confidence
of Bjpi is defined as:

CBjpi =
1
n

i=1∑
n

tan h
si

σ
(3)

where CBjpi is the confidence of ith joint points-based bounding box Bjpi, σ is
a data-driven parameter used to control the degree of score suppression and si is
the score of each joint point. The scores are averaged after tan h function map-
ping to generate the confidence CBjpi and the final joint points-based bounding
box set Bjp.

In order to measure tracking objects bounding box set Btrack. First, we fuse
the detection-based bounding box set Bdet and the joint points-based bound-
ing box set Bjp to generate the all candidates bounding box set Bcan of cur-
rent frame. Second, we sort all the bounding boxes according to the confidence
and output the bounding box Bmax with the maximum confidence as tracking
objects. Then, we re-assign the confidence of remaining bounding boxes as:

CBcani =
{

CBcani IoUmi < TIoU

CBcani(1 − IoUmi) IoUmi > TIoU
(4)

where CBcani indicates the confidence of ith bounding box Bcani in candidates
bounding box set Bcan, IoUmi indicates the IoU of bounding box Bmax and
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Bcani, TIoU indicates the threshold of IoU. Finally, we delete the candidates
that confidence less than the confidence threshold Tcon, until Bcan is empty.

Algorithm 1 : The Soft-Pose-NMS detection strategy
Input: The primary detection-based bounding box set PBdet and the primary joint

points-based bounding box set PBjp of current frame in tracking video.
Output: Tracking objects bounding box set Btrack={Btrack1,...,Btracki} of the cur-

rent frame.
1: Generate detection-based bounding box set Bdet = {Bdet1,...,Bdetj}, CBdetj >

Tdetcon (CBdetj is confidence of detection-based bounding box Bdetj);
2: Generate joint points-based bounding box set PBjp by Ep.(1);
3: // Calculate the coordinates of joint points-based bounding boxes
4: for each PBjpi in PBjp do
5: Cluster the joint points of PBjpi into two groups;
6: Calculate the width WPBjpi for PBjpi by Ep.(2);
7: end for
8: Bjp = PBjp

9: for each Bjpi in Bjp do
10: Calculate the confidence CBjpi for PBjpi by EP.(3);
11: end for
12: Bcan = Bdet ∪ Bjp;
13: Btrack ← {}
14: while Bcan is not empty do
15: Bcan = Sort(Bcan)
16: Bmax = Bcan[0]
17: Btrack.append(Bmix)
18: Bcan = Bcan - Bmix

19: for each Bcani in Bcan do
20: Update confidence of bounding box in Bcan by Ep.(4);
21: if CBcani < Tcon then:
22: delete Bcani

23: end if
24: end for
25: end while
26: return Btrack;

3.2 Feature Extraction with Dual Self-Attention Network

Extracting more discriminative appearance feature is the critical component of
calculating accurate similarity scores. Moreover, the challenge is that object
and tracklet images may undergo occlusion and noise in the tracking scene. To
alleviate such issues, we design a Dual Self-Attention Network (DSAN) with
self-attention mechanisms. Figure 3 illustrates the architecture of our network.

In this work, we use the DenseNet-101 [12] as backbone network and intro-
duce the self-attention mechanism to extract tracking object and tracklet feature
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Fig. 3. The architecture of the proposed DSAN. It contains two branches. Given an
image of tracking object bounding box and sequence of object tracklet images as inputs.
The network extracts the detection and tracklet self-attention feature maps and pre-
dicts the probability that the detection and the tracklet are the same object by the
combined feature map Xc.

map. The self-attention mechanism can enlarge the receptive field and get con-
textual information which enables the network to pay more attention to the
object area in the detection and tracklet images. We convolve the tracklet image
in the temporal direction by the 3D convolutional layer to exploit the temporal
feature of the object. The self-attention map is applied to the feature maps from
the last convolutional layer of the DenseNet-101 to compute the self-attention
feature map. We apply the detection self-attention feature map Xα and tracklet
self-attention feature map Xβ for re-identification training and combined feature
Xc for binary classifier training to predict whether detection and tracklet are the
same object. Furthermore, we will apply the similarity probability Psame that
predicted by the network to calculate the similarity score between the detection
and trajectory.

To infer the self-attention maps of the detection and tracklet, we transform
the backbone network feature maps into query feature map fq, key feature map
fk and value feature map fv respectively. After that, we use the feature map fq

and fk to calculate the attention map as the following formula:

βi,j =
exp(Sij)∑N
i=1 exp(Sij)

, Sij = fq(xi)T fk(xj) (5)

where βi,j indicates the attention value of the other j th position in the image
on the ith pixel. Then we multiply βi,j with fv to get the self-attention masked
feature map fatt

org that weight by the self-attention map, where:

fatt
org =

N∑
i=1

βijfv (6)
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Additionally, we add the feature map fatt
org and forg. Therefore the final self-

attention feature map fsa is given by:

fsa = θfatt
org + forg (7)

where θ is a learnable scalar, to gradually emphasize the importance of self-
attention feature map.

The training objective of each feature map in DSAN can be modelled as a
multi-task training. The joint objective can be written as a weighted linear sum
of losses:

Ltotal = αLsig + (1 − α)Lseq + βLsame (8)

where Lsig and Lseq are used for re-id training and calculated by the cross-
entropy loss function. Lsame is used for the binary classification training and
applying the contrastive loss to calculate. α and β are loss weights. We utilize
the ground-truth bounding boxes and objects identity provided in the MOT16
training set to generate detection images and object trajectories for training the
network.

3.3 Data Association and Trajectory Management

For data association, we calculate the similarity score between the detection and
tracklet feature map firstly, by the following formula:

Sdt = w1dist(fα, fβ) + w2Psame (9)

where w1 and w2 are similar score weights, Sdt is the final similar score of detec-
tion and tracklet. Then tracker generates affinity matrix with the similar scores.
Meanwhile, we apply the Hungarian algorithm and affinity matrix to associate
the detection and tracklet. Last, the tracker associates the remaining detection
with unassociated tracklet based on IoU between detection and tracklets, with a
threshold TIoUa. For trajectory management, we initial the trajectory for detec-
tion, which is not associated with any trajectory in any of the first Tinit frames.
Trajectories are terminated if they are not associated for Tterm frames.

4 Experiments

4.1 Implementation Details

To validate the effectiveness of the proposed online tracking approach, we design
experiments on popular MOT datasets, MOT16 and MOT17 [18]. We employ
Pifpaf in [15] to estimate the objects pose information, and use SDP [28] detec-
tion results that officially provided by MOT16 and MOT17 as the object detec-
tion results. We set TIoU = 0.95 and Tcon = 0.5 for filtering repetitive bounding
box to generate the tracking object set Btrack and select 5 observations from
the 20 most recent frames as tracklet input for DSAN. We set TIoUa = 0.7 for
data association. For trajectory management, we set the threshold Tinit = 3 for
trajectory initialization and Tterm = 10 for trajectory termination.
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4.2 Performance on MOT Benchmark Datasets

In order to measure the accuracy of tracking results, we adopt multiple met-
rics used in the MOT benchmark [2] to evaluate the proposed tracking method,
including Multiple Object Tracking Accuracy (MOTA), ID F1 score (IDF, the
ratio of correct detections over the average number of ground-truth and com-
puted detections), MT (the ratio of Mostly Tracked objects), Ml (the ratio of
Mostly Lost objects), the number of False Negatives (FN), the number of False
Positives (FP), the number of ID Switches (IDS), the number of fragments
(Frag). Table 1 and Table 2 present the tracking performance on the MOT16
and MOT17 datasets, respectively.

Table 1. Tracking performance on MOT16 dataset. The arrow each metric indicates
that the higher (↑) or lower (↓) value is better.

Method Mode MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDs↓ Frag↓
EDMT [4] Batch 45.3 47.9 17.0% 39.9% 11122 87899 639 946

QuadMOT [21] Batch 44.1 38.3 14.6% 44.9% 6388 94775 745 1096

LMP [23] Batch 48.8 51.3 18.2% 40.1% 6654 86245 481 595

DMAN [31] Online 46.1 54.8 17.4% 42.7% 7909 89874 744 1616

Tracktor++ [1] Online 56.2 54.9 20.7% 35.8% 2394 76844 617 1068

CNNMTT [17] Online 65.2 62.2 32.4% 21.3% 6578 55896 946 2283

TrctrD16 [26] Online 54.8 53.4 19.1% 37.0% 2955 78765 645 1515

RAR16wVGG [9] Online 63.0 63.8 39.9% 22.1% 13663 53248 482 1251

MPNTrack [3] Online 58.6 61.7 27.3% 34.0% 4949 70252 354 684

Tube TK POL [19] Online 66.9 62.2 39.0% 16.1% 11544 47520 1236 1444

Ours Online 67.7 66.4 37.9% 18.6% 11453 42494 334 902

Table 2. Tracking performance on MOT17 dataset.

Method Mode MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDs↓ Frag↓
EDMT [4] Batch 50.0 51.3 21.6% 36.3% 32279 247297 2264 3260

MHT DAM [14] Batch 50.7 47.2 20.8% 36.9% 22875 252889 2314 2865

Tube TK POI [19] Online 63.0 58.6 31.2% 19.9% 27060 177483 4137 5727

CTTrack17 [30] Online 67.8 64.7 34.6% 24.6% 18498 160332 3039 6102

Ours Online 67.3 65.9 37.9% 20.7% 20574 195176 2031 2681

Quantitative results and comparison with the other tracking methods are
shown in Table 1 and Table 2. As shown in Table 1, our tracking method achieves
a comparable MT, ML, FP, Frag score and performs favourably against the state-
of-the-art methods in terms of MOTA, IDF1, FN and IDs on the MOT16 dataset.
Our tracker upgrades MOTA to 67.7, IDF1 to 66.4 and reduces FN to 42494,
IDs to 334. Meanwhile, our tracker achieves the best performance in IDF1 and
IDs among online and batch methods, demonstrating the merits of our tracker in
object identity matching and the stability of multi-object tracking. MOTA and
FN correspond to the object detection capability. Therefore, the improvement of
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MOTA and FN demonstrates the merits of our Soft-Pose-Nms detection strategy
in object locating for MOT. Similarly, Table 2 shows that our tracker outperforms
existing online trackers on half of the metrics and achieves the best performance
in terms of IDF1, MT, IDs and Frag on the MOT17 dataset.

In addition, as shown in Table 1, our tracker has a high FP. According to
this phenomenon, the detection strategy proposed in this paper is combining the
object detection results and pose estimation results. This can alleviate unreliable
detection and complement missing object. Second, we find that only the moving
pedestrians are recorded as tracking object ground-truth in MOT16 and MOT17.
Nevertheless the detection strategy proposed in this paper can detect and track
these small-scale pedestrians, occluded pedestrians, stationary pedestrians and
pedestrians who are not recorded as tracking objects. Therefore, our detection
strategy will cause the phenomenon of high FP, and the similar situation exists
in [4,5] too. This phenomenon also reflects the effectiveness of the detection
strategy proposed in this paper.

4.3 Ablation Studies

In order to verify the effectiveness of the proposed detection strategy and evalu-
ate its contribution, we use different object detection results and conduct abla-
tion experiments in the MOT16 dataset. We choose Mask R-CNN [11] and SDP
[28] as bounding box-based object detection method and PifPaf [15] as pose esti-
mation method. In addition, to exclude the disturbance of other factors, we use
DeepSORT [25], the more common method in MOT, for tracking.

Table 3. Evaluation tracking results on MOT16 dataset with different detection
method. Ours (M+P) indicates combining Mask R-CNN detection results and Pif-
Paf pose estimation results. Ours (S+P) indicates combining SDP detection results
and PifPaf pose estimation results.

Method MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDs↓
Mask R-CNN [11] 40.2 52.6 21.5% 26.9% 14266 51234 528

SDP [28] 60.7 62.4 31.3% 20.9% 3417 38041 462

PifPaf [15] 37.6 51.8 14.5% 32.1% 14652 53729 537

Ours (M+P) 43.8 55.8 22.6% 22.8% 15226 46270 511

Ours (S+P) 64.3 65.9 34.4% 15.6% 5115 35732 433

The experiment results are shown in Table 3. The comparison between our
detection strategy and object detection methods and pose estimation method
confirms that our detection strategy performs best. Our detection strategy
improves 3.6 in MOTA, 3.5 in IDF1, 3.1% in MT with the second best detection
method and effectively reduced FN demonstrating the merits of our detection
strategy in locating the objects. By combining object detection results and pose
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Fig. 4. Visualization of pose-guided object locating results and self-attention maps.

Table 4. Evaluation results on MOT16 with different feature representations.

Method MOTA↑ IDF1↑ IDs↓
DenseNet121 [12] 61.7 63.1 548

PCB [22] 62.6 64.3 482

Ours (TBSAN) 65.7 68.7 455

estimation results, our detection strategy can reduce unreliable detections and
alleviate missing detections, as shown in Fig. 4(a).

To demonstrate the contribution of the proposed DSAN network in our
method, we compare representations learned by DSAN with PCB, DenseNet-
121. Moreover, we use SDP [28] detection result, provide by MOT16 officially,
for tracking. The experiment results are shown in Table 4. It can be seen that
the IDF1, IDs and MOTA of DSAN are better than other methods. Our tracker
upgrades MOTA to 65.7, IDF1 to 68.7 and reduces IDs to 455, which demon-
strates the effectiveness of our feature extraction network.

Figure 4(b) shows the visualization results of the self-attention feature map
from DSAN. In Fig. 4(b), each group consists of four images. The top row of
each group shows an image pair from the same object, while the bottom row
presents corresponding self-attention feature maps. It can be seen that our self-
attention feature map focus more explicitly on object regions and suppress noise
and occlusion, which enhances the power of extracting discriminative features.

5 Conclusions

This paper presents a detection strategy and a feature extraction network to
improves two main components of most online trackers, detection and feature
extraction. The tracker locates joint points of objects with pose estimation
results. Then generating optimal object bounding boxes by proposed Soft-Pose-
NMS method, which also helps alleviate typical difficulties in tracking such as
occlusion handling and track drifting. In this paper, the tracker learns the dis-
criminative self-attention maps from the MOT dataset with the Self-Attention



234 X. Zhang et al.

mechanism to calculate more accurate similarity scores. The experimental results
on MOT Challenge datasets demonstrated that the proposed tracking framework
leads to competitive performance improvement through extensive experiments.
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