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Abstract. Occlusion is a major obstacle for facial expression recogni-
tion (FER) in the wild, which can change facial appearance significantly.
Current FER methods, although having achieved much progress in lab-
constrained scenarios, suffers from partial occlusion remarkably. In this
paper, we propose a novel Region Re-Weight Network (RRWN), to adap-
tively capture and emphasize the non-occluded areas of the face. RRWN
contains two modules: Occlusion-Aware Module (OAM) and Block-Loss
Module (BLM). More specifically, OAM works as an adaptive region
selector in a convolutional neural network. It selects areas whose fea-
tures made the best approximation to that of the whole face based on
their feature similarity. BLM contains a region biased loss called Block-
Loss to emphasize the role of key blocks. We validate our RRWN in four
public expression datasets with occlusions: RAF-DB, FERPlus, Affect-
Net, and SFEW. Experiments show that our RRWN largely improves
the performance of FER with occlusion.

Keywords: Facial expression recognition · Occlusion · Sparse
representation

1 Introduction

Facial expression recognition (FER) has been a popular research field for its
potential applications in human-computer interaction, driver fatigue monitoring,
mental health assessment, and other fields. Despite the high accuracy achieved
under a standard environment, spatial occlusion has been the standing challenge
to achieving robustness. Occlusions in real-life scenarios encompass a massive
number of daily objects and occupy different positions of face images, which
greatly affect the robustness of FER algorithms.

Earlier researchers mainly study the influence of occlusion positions on FER.
Boucher et al. [4] occluded key areas of the face to learn which areas are the
most important in human perception. Kotsia et al. [15] concluded that mouth
occlusion causes a greater decrease in FER than the equivalent eyes occlusion.
Then methods based on sparse representation are proposed. Cotter [7] presented
the weighted voting method based on sparse representation classifier (SRC) for
c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13033, pp. 209–222, 2021.
https://doi.org/10.1007/978-3-030-89370-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89370-5_16&domain=pdf
https://doi.org/10.1007/978-3-030-89370-5_16


210 X. Zhang et al.

FER. Zhang et al. [31] extracted three typical facial features to evaluate the
performance of the SRC method. Subsequently, with the emergence of large-
scale datasets and robust novel network architectures, researchers carried out
a combination of deep learning and sparse representation. Huang et al. [14]
exploited the sparse representation and residual statistics to occlusion detection
of video sequences. Zhong et al. [33] proposed a two-stage multi-task sparse
learning framework to find dominant patches and learn specific facial patches for
individual expression. Recently attention-based methods are proposed to address
occlusions in FER [19,20,27], determined whether the facial block should be
emphasized or not based on the importance score.

We are motivated to come up with a new mechanism to provide neural net-
works with the knowledge of occlusion for recognizing expressions with partial
occlusion. When observing face images with occlusions, people will focus on the
non-occluded areas and recognize expression based on the information of these
non-occluded areas. Inspired by this, we propose a novel Region Re-Weight Net-
work (RRWN) to capture and emphasize the non-occluded areas of the face.
RRWN is mainly composed of two modules, Occlusion-Aware Module (OAM)
and Block-Loss Module (BLM). OAM learns to pick out the non-occluded facial
regions to facilitate recognition, which is compatible with the mainstream convo-
lutional neural network (CNN) architecture. As depicted in Fig. 1, OAM works
with a widely-used convolutional architecture, in which the feature maps of the
holistic image are decomposed as the combination of feature maps from its local
regions. Different from the most widely-used attention-based methods, OAM
employs similarity measurements to capture the difference between facial and
non-facial areas. After getting the non-occluded regions through OAM, the non-
occluded regions will be highlighted in the latter network. In the meantime,
we use the Block-Loss to emphasize the role of the key area among these non-
occluded regions. Different from other occlusion-aware methods, our method
guides the model to separate occlusions from the human face.

The major contributions of this work can be summarized in three aspects: 1)
We propose OAM, a novel network structure to avoid facial blocks with occlusion
and select non-occluded blocks. 2) A region biased loss (Block-Loss) is proposed
to optimize the selection of crucial regions. 3) On four challenging datasets with
occlusions, we demonstrate that our methods achieve superior performance.

2 Related Work

2.1 FER Methods Against Occlusions

Many FER methods consider using prior knowledge to strike a better perfor-
mance both in lab-constraint and in-the-wild scenarios. Common options to
incorporate such knowledge includes manually design refined segmentation based
on detected facial landmarks since it is effective to constraint the model’s input
to only the regions where expression-related actions occur. According to the
facial action coding system [10], action units are situated around the eyes, the
forehead, and the mouth. Extracting those key areas accordingly reduces noise
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from hair, sunglasses, masks, and other occlusions. However, it works only if
these key areas are not occluded.

When the location of occlusions is uncertain, dividing the whole facial image
into smaller patches while applying some selection or weighting method over the
patches is often more robust than the key-area segmentation approaches. Face
partitioning methods varies from uniform partitioning [14], landmark-centered
partitioning [19], to sampling-oriented [27]. Subsequently, the occluded patches
are given smaller importance weights, or simply excluded from the recognition
process.

Recent works following this principle prefer to generate an importance score
for each block according to its contribution to the classification. For example, Li
et al. [19] proposed to use a convolution neural network with attention mecha-
nism to compute an adaptive weight from the region itself according to the unob-
structedness and importance. Wang et al. [27] proposed a novel region attention
network using the sigmoid value to represent the attention value and combining
the overall and part features to enhance the ability of the network.

The above methods obtain the importance score through a designed deep
neural network, and it is considered that the blocks with large importance scores
should be focused on by the network. But in fact, the blocks with large impor-
tance scores are possible to be the occluded blocks. Different from these works,
our method determines whether the block is occluded by the similarity between
the facial block and the whole image, rather than simply using the important
score. When the face image is partially obscured, its overall characteristics are
still close to a face, so the blocks which are close to the face image are non-
occluded blocks.

2.2 Sparse Representation

Inspired by the success of sparse approximation in the face recognition task
[29], researchers proposed adaptations and variations of sparse encoding to the
expression recognition task. Methods concerning sparse representation decom-
pose a facial image as a linear combination of images from the same expression
category. During the process, four typical facial features, i.e., the raw pixels [31],
Gabor wavelets representation [6], local binary patterns [2], and deep features
extracted by a deep convolutional network [1] are used as the effective represen-
tations for the expression images.

However, the above methods suffer drastically from insufficient training sam-
ple size and variations included. To effectively represent an unseen image con-
taining an occluded facial expression, they also require assistance from well-
performing decorrelation technique, precise face alignment, and normalization
which is far from reaching in many in-the-wild datasets to date. Although we
also decompose the whole facial image as a linear combination, our method dis-
tinguishes itself from existing sparse representation methods since we measure
how much content in each patch is related to the whole image.
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3 Proposed Method

3.1 Overview of Region Re-weight Network

As depicted in Fig. 1, RRWN extends the traditional CNN architecture by the
additional OAM and BLM. To begin with, the face image is fed into the first layer
of the backbone network to obtain feature maps for the whole face image as well
as each local block. Next, OAM selects the non-occluded blocks by measuring the
similarity between local and global vectors. Finally, the non-occluded blocks will
be highlighted in the latter CNN layers. In addition to OAM, we also introduce
BLM which contains a loss function to emphasize the role of critical block, which
comes from non-occluded blocks chosen by OAM. As a result, The whole RRWN
can be trained in an end-to-end manner.

Fig. 1. The framework of our RRWN. A face image is fed into Resnet-18 and is repre-
sented as the global vector y and local vectors xi. The Occlusion-Aware Module takes
y and xi as input to find the non-occluded {Blockrk}. Then the {Blockrk} will be
re-weighted in the latter network (the corresponding black squares). The Block-Loss
Modules emphasizes the role of key block among {Blockrk} through the Block-Loss
function.

3.2 Occlusion-Aware Module

We hold the presumption that the overall characteristics of the face image are
close to its components rather than the occlusions. In our case, the similarity
is used as a mathematical measure to find the clear facial areas similar to the
overall face image. In other words, the non-occluded blocks of the face image are
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located by the similarity measurement. Inspired by how the orthogonal matching
pursuit (OMP) method finds the most similar component of a signal [24], we
design OAM to find the non-occluded blocks.

As shown in Fig. 1, after getting feature maps that represent the whole facial
image, we partition the feature maps to multiple sub-feature-maps uniformly
to obtain diverse blocks of the same size. Next, an adaptive average pooling
operation is utilized to encode the feature maps into a vector, i.e., each three-
dimensional feature is mapped to a one-dimensional vector. Let y denotes the
global vector. We normalize y for convenient calculation so that we have ||y|| = 1.
Similarly, χ = {x1, x2, · · · , xn} denotes local vectors and ||xi|| = 1. According
to conventional sparse approximation methods, a dictionary is often created to
store atomic vectors before finding the sparse representation of the global vector.
In our method, the local vectors are used as the atomic vectors when building
the dictionary D = [x1, x2, · · · , xn] ∈ Rn×k, where n is the number of atomic
vectors and k is the dimensionality of the atomic vectors.

After building the dictionary, the inner product of the global vector y and
each atomic vector xi is calculated. Then, the atomic vector with the largest
absolute value of the inner product will be selected as the closest match-up to the
y. This selection iterates until we obtain the maximum number of atomic vectors.
In this way, y is decomposed into the vertical projection in the direction of the
chosen atomic vectors and the corresponding residual, which can be formulated
as,

y = 〈y, xr0〉xr0 + R1, (1)

where 〈., .〉 is the inner product, xr0 is the closest match atomic vector, r0 is the
column index of D, 〈y, xr0〉xr0 is the vertical projection in the direction of xr0 ,
and R1 is the residual. Then we decompose the residual R1 in the same way.
After k iterations, we can get

y =
K∑

k=0

〈Rk, xrk〉xrk + Rk+1, (2)

where K is a hyper-parameter served as the number of selected atomic vectors,
and R0 = y. If K is too small, only a few non-occluded areas can be found. On
the other hand, if K is too large, the non-occluded area may also be selected.
After several iterations, the linear representation of the target vector can be
obtained, which is formulated as follows:

y =
K∑

k=0

ckxrk

ck = 〈Rk, xrk〉 (3)

Now that the non-occluded blocks and the corresponding weight are obtained,
then we apply a re-weight operation on the original feature maps. The blocks
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corresponding to the selected atomic vectors are weighted as Eq. 4 while the
unselected blocks remain unchanged, which can be defined as,

blockrk = (ck + c)blockrk , (4)

where blockrk denotes the kth selected block. The ck can be arbitrary in (0, 1).
To strengthen the role of the non-occluded area, we increase the weight by c
times. If we overemphasize the key blocks and impose great weight on them, it
will lead to a decrease of accuracy. We will analyze this in the later ablation
studies. After OAM, the new feature maps continue to be input to the rest of
ResNet-18.

OAM optimizes the latter network during the training by performing the
weighting operation to the original feature maps. OAM can select the atom
vector that is closest to the target vector. The weights describe how similar the
atom vector is to the target vector. Even if the face is partially occluded, the
face is still the dominant object in the image. In this way, OAM can select the
non-occluded areas. However, when the occlusion is too large and occupies most
of the face image, the overall feature of the image tends to be the occlusion
rather than the face, OAM will perform poorly.

3.3 Block-Loss Module

After OAM, we find the non-occluded blocks. Among the non-occluded blocks,
some blocks contribute to recognizing the expression more significantly than
others [4]. To encourage high weights for the most important block among these
non-occluded blocks. Inspired by [27], we propose the Block-Loss.

As can be seen in Fig. 1, BLM contains a fully-connected layer and a sigmoid
function. After getting the global vector y and the non-occluded local vectors xrk

chosen by OAM, they are fed to BLM. After the fully-connected layer and the
sigmoid function, we get their importance value. Block-Loss can be formulated
as,

LB = max{0, α − (μmax − μy)},

μmax = max{f(xrkq)},

μy = f(yq), (5)

where α is a hyper-parameter served as a margin, q is the parameter of the fully-
connected layer, and f denotes the sigmoid function. In the training process,
the Cross-Entropy Loss is jointly optimized with the Block-Loss, which can be
defined as,

LAll = LCE + LB , (6)

where LCE denotes the Cross-Entropy Loss.
BLM optimizes the former network during the training by the loss function.

BLM enforces that one of the important values of non-occluded blocks should
be larger than the face image with a margin so that RRWN can focus on the
most important block among the non-occluded blocks.
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4 Experiments

4.1 Datasets

RAF-DB [17] contains 30, 000 facial images annotated with basic or compound
expressions by 40 trained human coders. In our experiment, only images with
basic emotions(neutral, happiness, surprise, sadness, anger, disgust, fear) are
used, including 12,271 images as training data and 3, 068 images as test data.
FERPlus [3] contains 28, 709 training images, 3, 589 validation images, and
3, 589 test images collected by the Google search engine, and all images are
resized to 48 × 48 pixels. FERPlus supplements a contempt emotion and is
annotated by 10 labels. AffectNet [23] is the largest FER dataset that contains
more than one million images collected by three search engines using expression-
related keywords. About 400,000 images are manually annotated with eight dis-
crete facial expressions as FERPlus. It has imbalanced training and test sets as
well as a balanced validation set. SFEW [8] contains 95 subjects and covers
unconstrained facial expressions, a large range of ages, varied head poses, and
real-word illumination. We use the newest version of SFEW [9] which has been
divided into three sets: training (958 images), validation (436 images), and test
(372 images), and all images are annotated with seven discrete facial expressions
as RAF-DB.

Table 1. Values of hyper-parameters

Parameter Value

Number of blocks 49

Number of selected atomic vectors 10

Weight increment c 2

Margin α 0.01

Ratio of the two loss functions 1:1

4.2 Implementation Details

The proposed RRWN is implemented on the environment of Python 3.6 and the
operating system of Windows 10. Preprocessing methods like image resizing are
executed through OpenCV 3.4 for convenience. The proposed network involved
in this work is run on Intel(R) Core(TM) i7-6700 3.4 GHz in CPU and NVIDIA
RTX 1080 Ti with CUDA 9.0 in GPU. RRWN is implemented using the Pytorch
platform and the backbone network is ResNet-18 [12]. By default, the ResNet-
18 is pre-trained on MS-Celeb-1M face recognition dataset and we extract the
feature maps after the first layer of ResNet-18.

Each face image is first resized to 224 × 224. Then the feature maps are
partitioned into 7 × 7 blocks uniformly as depicted in Fig. 1. After adaptive
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average pooling operation, the feature maps are encoded as vectors of 64 dimen-
sions. The number of selected atomic vectors is 10. The margin in Block-Loss is
default as 0.01 and the whole network is jointly optimized with Block-Loss and
Cross-Entropy Loss in training. The ratio of the two loss functions is empirically
set at 1 : 1. Values of hyper-parameters are shown in Table 1. The batch-based
stochastic gradient descent optimizer is used to train the model. On all datasets,
the batch size is set to 64, the base learning rate was set as 0.01 and was reduced
by the polynomial policy with the gamma of 0.1. Finally, the momentum was
set as 0.9 and the weight decay was set as 0.0001.

Fig. 2. Images with occlusions from RAF-DB. Each image is equally divided into 49
blocks. The orange squares represent the facial non-occluded areas, and the blue squares
represent the occluded areas. Dark orange and dark blue squares represent the blocks
selected by OAM. The number in the square is the coefficient of the linear combination
obtained by OAM. (Color figure online)

4.3 Visualization of the Blocks Selected by OAM

OAM should be able to match the non-occluded areas of the face. To demonstrate
the effect of OAM, non-occluded blocks selected by OAM are shown in Fig. 2. The
occluded areas are covered by blue masks while the clear face areas are covered
by orange masks. Areas selected by OAM are further highlighted with a darker
color and the corresponding weights. It is clear that most of the selected blocks
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which OAM selects are non-occluded blocks. In addition, some non-occluded
blocks play an important role in FER because they include key areas such as
eyes, mouth, etc.

For the images in the first row, where the occlusion and the face have many
differences, OAM can find the key blocks closest to the whole face, making it
effective to avoid the blocks with occlusions. In the next row, where the occlusions
occupy a relatively larger area of the face image, blocks containing occlusions
will be selected because features of the face image in this situation include quite
a lot of information of the occlusions. Down to the last row, if the occluded
object is a hand, in which the color, texture, and other features are relatively
similar to the face, OAM will be possible to select few blocks containing hands.

Table 2. Test accuracy(%) on real-world datasets.

Pretrain RRWN RAF-DB FERPlus AffectNet

� � 72.00 82.40 46.58

� � 76.83 82.68 48.63

� � 84.20 86.80 58.50

� � 85.82 87.70 58.70

4.4 Ablation Studies Evaluation

Effectiveness of RRWN: To evaluate the effectiveness of RRWN compared
with the baseline (ResNet-18), we conduct experiments on real-world datasets.
Results are shown in Table 2. When training from scratch, our proposed RRWN
outperforms the baseline network by a margin of 4.83%, 0.28%, and 2.05% on
RAF-DB, FERPlus, and AffectNet respectively. It shows that our method does
improve the accuracy of the baseline. In addition, when using ResNet-18 pre-
trained on MS-Celeb-1M, our method obtains improvements of 1.62%, 0.9%,
0.2% on these datasets.

Table 3. Test accuracy(%) of the two modules on RAF-DB.

OAM BLM ResNet-18 ResNet-18 (pretrain)

� � 72.00 84.20

� � 73.16 84.60

� � 75.68 85.50

� � 76.83 85.82

Furthermore, to explore the effectiveness of the two modules in improving
accuracy, we conduct comparative experiments on RAF-DB. The result is shown
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in Table 3. By the way, when only BLM is added, the input vectors of BLM are
directly from the vectors after the adaptive average pooling operation. When
only adding OAM or BLM, we obtain improvements of 3.68% and 1.16% based
on ResNet-18, 1.3% and 0.4% based on ResNet-18 (pretrain). This suggests that
both OAM and BLM contribute to improving accuracy. In addition, OAM is the
most contributed module for our RRWN.

Fig. 3. Evaluation of the position on RAF-DB

Position of OAM: We study the impact of the different OAM positions. Since
the backbone network is ResNet-18, which can be divided into four layers (we
represent them as layer1, layer2, layer3, and layer4). Experiments are carried
out with OAM being placed after the first, second, and third layers. Result on
RAF-DB is shown in Fig. 3. The test result indicates that OAM works best when
is placed after the first layer. And the further back it is placed, the worse the
effect will be.

We analyze this phenomenon and concluded two major reasons for the decli-
nation. First, OAM represents the target vector linearly with a certain number
of atomic vectors, so the greater the difference between the blocks, the more
accurate OAM is to find the non-occluded blocks. Second, as CNN deepens and
constantly carries out convolution, pooling, and other operations, the obtained
feature maps become smaller, and the features become more abstract. The fea-
tures of different blocks are mixed, which leads it more difficult to distinguish
different blocks. Therefore, adding OAM after the first layer is appropriate.

Evaluation of the Weight Increment c: In OAM, we obtain the atomic
vectors corresponding to the non-occluded blocks. The blocks corresponding to
the selected atomic vectors are re-weighted, and the blocks that are not selected
remain unchanged. We study the effect of the amount of weight increase, and
the result is shown in Fig. 4(a).

As can be seen from Fig. 4(a), when we just multiply the coefficient ck to the
non-occluded block, i.e., c = 0, the result is poor because the coefficient ck is
between 0 and 1, and the non-occluded blocks are weakened when we multiply
them directly. On the other hand, the accuracy declined as c increased. Because
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(a) Evaluation of c on SFEW (b) Evaluation of α on FERPlus

Fig. 4. Parameters evaluation

FER not only focuses on the partial key blocks but also the global features.
We should combine local features and global features. As the article [19,27], the
combination of global features and local features is more effective. If we focus
too much on local features and ignore the global features, the weight increment
c is too large and the accuracy will decline.

Evaluation of the Margin α: From Table 3, we can see that BLM further
improves performance on RAF-DB.

The margin α in Block-Loss is set to 0.01 by default. We evaluate the α
in FERPlus, the result is shown in Fig. 4(b). Increasing from 0 to 0.01 gradu-
ally improves the performance while larger α leads to fast degradation, which
indicates the features of the overall face image are also important for FER. It
also further confirms that we need to combine local features and global features.
We mainly carry out the combination of local features and global features in
two aspects. One is to input the global vector into BLM, and the other is to
appropriately emphasize the key blocks selected by OAM.

4.5 Results and Comparison

We compare our RRWN to several methods on RAF-DB, FERPlus, Affect-
Net, and SFEW including attention-based methods [19,20,27] and loss-function
methods [5,18,21]. The result is shown in Table 4.

pACNN [20] re-weights each patch according to the attention mechanism.
gACNN [19] leverages a patch-based attention network and a global network.
RAN-ResNet18 [27] captures the importance of facial regions and aggregates
region features into a compact representation. These attention-based methods
are time-consuming due to the carefully designed deep neural networks. Our
RRWN does not increase much computational expense by simply adding two
modules to the existing network architecture. DLP-CNN [18] uses a locality-
preserving loss for network training. Island Loss [5] proposes the island loss
which combines the Center Loss [28] and an inter-class loss. IACNN [21] pro-
poses an identity-sensitive contrastive loss to achieve identity-invariant FER.
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These loss-function methods do not emphasize the key block of the face image,
whereas our RRWN emphasizes the key block in the non-occluded blocks. Our
RRWN outperforms these recent methods with 85.80%, 87.70%, 58.70%, 54.26%
on RAF-DB, FERPlus, AffectNet, and SFEW.

Table 4. Comparison on datasets with occlusions

Datasets Methods Accuracy(%)

RAF-DB FSN [32] 81.10

pACNN [20] 83.27

DLP-CNN [18] 84.13

ALT [11] 84.50

gACNN [19] 85.07

Our RRWN 85.82

FERPlus TFE-JL [16] 84.30

PLD [3] 85.10

SHCNN [22] 86.54

ESR-9 [25] 87.15

DTAGN [13] 87.40

Our RRWN 87.70

AffectNet Up-Sampling [23] 47.00

pACNN [20] 55.33

IPA2LT [30] 55.71

IPFR [26] 57.40

Weighted-Loss [23] 58.00

Our RRWN 58.70

SFEW IACNN [21] 50.98

Island Loss [5] 52.52

RAN-ResNet18 [27] 54.19

Our RRWN 54.26

5 Conclusion

In this work, we propose RRWN to address facial expression recognition in the
presence of occlusions. Our RRWN uses the Occlusion-Aware module (OAM) to
adaptively capture and emphasize the uncovered area of the face. In addition,
we design a region biased loss (Block-Loss) function to encourage high weight
for the most important region. We evaluate our method on real-world datasets.
Experiments show that our proposed method has substantial improvement on
RAF-DB, FERPlus, AffectNet, and SFEW compared with other methods.
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