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Abstract. In 2D image domain, recent researches have made signifi-
cant progress in encoding context information for instance segmentation.
While the counterpart in point cloud is still left far behind. Previous
works mostly focus on leveraging semantic information and aggregat-
ing point local information through K-Nearest-Neighbor method. Such
methods are unaware of object boundary information which is impor-
tant to separating nearby objects. We propose a novel module to inte-
grate object bounding box information into embedding for Point Cloud
Instance Segmentation. The proposed module called Object Bounding
Box-aware module (OBAM) boosts the instance segmentation perfor-
mance by encoding Object Bounding Box information. Through atten-
tion mechanism, the module removes redundant boundary information.
Comprehensive experiments on two popular benchmarks (S3DIS and
ScanNetV2) show the effectiveness of our method. Our method achieves
the State-of-the-art instance segmentation performance on S3DIS bench-
mark.

Keywords: 3D point cloud · Instance segmentation · Object bounding
box-aware

1 Introduction

In computer vision, instance segmentation is a basic task for scene understand-
ing. It is always regarded as an extension to semantic segmentation. The task of
instance segmentation is to group pixels/points which have the identical seman-
tic labels into different object instances. In 3D domain, instance segmentation
has wild applications in robotics, autonomous driving. With the growth of 3D
sensors, it has gained more researchers attention and some approaches have been
proposed in some papers. However, it is far away from being solved.

Point cloud captured by 3D scanners is an important type of 3D data rep-
resentation. It consists of collections of points in Euclidean space. In 3D point
cloud, PointNet [5] is the pioneer deep-learning method directly using original
point cloud as input. Subsequent method PointNet++ [6] abstracts local region
information with PointNet to learn point features through a hierarchical struc-
ture. Methods like radius based ball query and K-Nearest-Neighbor are utilized
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for aggregating local region information. Our approach is building on Point-
Net++ network.

In 3D point cloud area, approaches for instance segmentation are mostly com-
posed of clustering-based approaches and proposal-based approaches. To tackle
the task of instance segmentation on point clouds, clustering-based approaches
group points through clustering algorithm and proposal-based approaches are
mostly based on object proposal. Semantic-aware instance segmentation is in
ASIS [12]. They put two tasks (instance segmentation and semantic segmen-
tation) together so the two tasks can help each other. While achieving com-
petitive performance, global information and object boundary information are
not encoded into embedding. To address the problem, we notice the approach
Bonet [13]. Yang proposed a new end-to-end network framework Bonet to learn
the coarse object bounding box information for point cloud instance segmenta-
tion. Object bounding box information is crucial for separating adjacent objects.
Bonet directly regresses coarse bounding box vertexes and corresponding scores
from global features.

As object boundary information is important to separate nearby objects, we
combine two kinds approaches through proposing object bounding box-aware
module. Our backbone network PointNet++ maintains an encoder-decoder
architecture. After abstracting point features, semantic segmentation branch,
instance segmentation branch and bounding box prediction branch compose
our network. With our proposed OBAM module, bounding box information
is encoded into our instance discriminative embedding. Our approach outper-
forms previous approaches. As object bounding box information is supervised,
our network gains more information about the scene.

Extensive experiments on popular benchmarks S3DIS and ScanNetV2 are
conducted to validate the effectiveness of our approach. To summarize, our main
contributions are as follows:

1) We propose a novel framework which combines clustering-based approaches
and proposal-based approaches. Our approach successfully encodes object
bounding box information for point cloud instance segmentation.

2) We propose object bounding box-aware module (OBAM). The module suc-
cessfully encodes object boundary information. Redundant object bound-
ary information is removed through attention element-wise manipulation in
OBAM.

3) Extensive experiments demonstrate the effectiveness of our network. With
the proposed module, our network outperforms previous approaches.

2 Related Work

Instance segmentation on point cloud has attracted the attention of researchers
in recent years. In this section, we briefly review previous approaches related to
this field.
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Fig. 1. Comparison of the instance segmentation results. Our proposed OBAM model
successfully encodes object boundary information which is crucial to separate adjacent
object instances.

2.1 Deep Learning Methods on Point Cloud

Deep learning methods on point cloud are mostly divided into multi-view-based
methods, voxel-based methods and point-based methods (Fig. 1).

As 2D convolution neural networks have gained considerable success, multi-
view-based methods projected 3D point clouds onto 2D images and process with
2D CNNs. MVCNN [9] recognizes 3D shapes from different views of the shapes.
Through a view-pool-layer, information can be accumulated into a single, com-
pact descriptor. However, such multi-view-based methods may lose geometric
details.

Voxel-based methods voxelize point cloud into spatial grids and utilize stan-
dard 3D convolution neural network framework to extract point features. In
order to improve the voxelization efficiency of point clouds, Riegler [8] proposes
a novel representation which uses a set of unbalanced Octrees. Pooled features
representation is stored in the leaf nodes of Octrees. Their methods enable the
network to be deep and high resolution. While achieving promising results, lower
running speed still effects because of spatial sparsity of point cloud. Graham [3]
proposes submanifold sparse convolution network to address the problem. With
a hash table storing point features, their networks avoid nonsense computation
cost and memory occupation of vacent voxels. Although achieving leading per-
formance, Voxel-based methods are still limited by heavy computation cost when
processing large-scale point clouds.

Unlike voxel-based and multiview-based methods, point-based methods
directly process point cloud. The pioneer work PointNet [5] learns per-point
encoding with Multilayer Perceptron. PointNet++ [6] is proposed to hierarchi-
cally extract local point features and maintains an encoder-decoder architecture.
Hu comes up with a novel framework called Randlanet [4] to address the problem
of efficient semantic segmentation. Instead of complex point selection algorithms,
Random point sampling is utilized for its remarkable memory and computation
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efficiency. As random point sampling may discard key geometric details, They
propose a novel local feature aggregation module to overcome the problem. In
our work, we leverage PointNet++ as our backbone network to verify the validity
of our approach.

2.2 Instance Segmentation on Point Cloud

Comparing with its counterpart on 2D images, the task of instance segmentation
on point cloud is left far behind. Deep-learning approaches to the task can be
divided into clustering-based approaches and proposal-based approaches.

SGPN [11] is the first work using deep learning technique in this field. With
PointNet++ extracting global features and point features, the network learns
feature space where points belonging to the same object have a close distance.
They predict a similarity matrix yielding point-wise group proposals and a corre-
sponding similarity map. They prune group proposals and generate point cloud
groups through applying Non-Maximum Suppression. Due to the pair wise sim-
ilarity matrix, the approach is heavily limited by computation and memory. In
order to overcome the problem, clustering-based method ASIS [12] proposed by
Wang removes the similarity matrix. Wang endorses that associative segment-
ing instances and semantics in point cloud are mutually beneficial to seman-
tic segmentation task and instance segmentation task. Wang comes up with a
method named mutual aid which enables the embedding of instance segmen-
tation to benefit from point-level features of semantic segmentation. Semantic-
aware embedding of instance segmentation achieves a huge breakthrough while
it is unaware of the object bounding information. 3D Bonet [13] proposed by
Yang directly predicts object bounding boxes. Better performance than ASIS
is obtained through shared multi-layer perceptron without Non-Maximum Sup-
pression algorithm. In our experiments, competitive performance are achieved
through combining clustering-based methods and proposal-based methods.

3 Method

In this section, except semantic segmentation branch we mainly describe the
other two branches (Bounding box branch and Instance segmentation branch).
Details of our Object Bounding Box-aware module (OBAM) are presented below.

3.1 Network Framework

As shown in Fig. 2, our network is composed of a shared encoder and three
parallel decoder branches. We apply PointNet++ as our backbone network to
extract point features and global features. One of the branches handles seman-
tic segmentation through decoding from point features. Another branch is to
directly learn object bounding boxes from global features as 3D Bonet [13].
The other branch is to generate per-point embedding for instance segmentation.
Backbone network encodes the input point cloud P ∈ RNp×D into point feature
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Fp ∈ RNp×Df matrix. Global point feature Fg ∈ RDf is obtained by aggrega-
tion. Np refers to the total number of input points. D denotes the dimension of
input point cloud feature dimension and Df is the point feature dimension. Sub-
sequently, per-point semantic results are generated by semantic segmentation
branch. Bounding box coordinates Bc ∈ RNb×6 and corresponding score Bs are
obtained through bounding box branch. Two diagonal points coordinates refer to
the rectangular bounding box. Nb is a predefined hyper-parameter denoting the
number of object bounding boxes. The instance segmentation branch outputs
per-point instance embedding Eins ∈ RNp×De . De is the embedding dimension.
The embedding of points belonging to the same object should be close while the
embedding of points belonging to different objects should be far away. Cluster-
ing algorithm mean-shift [7] is utilized to generate final group results during the
inference.

To achieve the object bounding box-aware embedding, our proposed model
OBAM is applied to encode the output of bounding box branch into instance
segmentation branch. Besides, redundant object bounding box information is
removed through an attention mechanism.

Fig. 2. The framework of our proposed method. Obviously, It is an encoder-decoder
architecture. Point feature Fp and global feature Fg are obtained through a shared
encoder. Three parallel decoders are applied. Semantic segmentation branch decodes
from shared point features and classical cross entropy Lsem is used to supervise. Bound-
ing box prediction branch predicts object bounding box and corresponding score. Out-
put of bounding box prediction branch is integrated into instance branch through
OBAM module. Final instance embedding are generated from instance segmentation
branch.

3.2 Bounding Box Prediction Branch

We utilize bounding box prediction branch in 3D bonet as it is lightweight and
effective. It takes global vector Fg as input. Bounding box Bc ∈ RNb×2×3 and
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its corresponding score Bs ∈ RNb are generated by the branch. For simplicity,
the rectangular bounding boxes are parameterized as follows:

bc = (xmin, ymin, zminxmax, ymax, zmax) ∈ Bs (1)

The corresponding score bscore ranges from 0 to 1. As the number of object
instance is variable, the bounding box prediction branch generates predefined
number Nb of bounding boxes. We assume Nb >= Nt where Nt refers to the
number of ground truth object bounding boxes.

Although there is no fixed order for ground truth bounding boxes. We formu-
late it as an optimal assignment problem to learn one-to-one match between pre-
dicted bounding box and ground truth bounding box. Boolean matrix A denotes
assignment where Ai,j = 1 refers to assign predicted box bi to the ground truth
box gj . Cost matrix C is conducted where Ci,j represents the cost between pre-
dicted bounding box bi and ground truth bounding box gj . The more similar the
two boxes, the less the cost Ci,j . Optimal problem is solved through the existing
Hungarian algorithm [14]. We formulate the problem as follows:

A = arg min
A

Nb∑

i=1

Nt∑

j=1

Ai,jCi,j subject to
Nb∑

i=1

Ai,j = 1 ,

Nt∑

j=1

Ai,j ≤ 1 (2)

Ci,j = CEcu
i,j + CSIou

i,j + Ccro
i.j (3)

The association cost Ci,j consists of three parts: Euclidean distance CEcu
i,j ,

soft intersection-over-union CSIou
i,j and point soft encoding cross-entropy Ccro

i.j

proposed in [13].
bscore lies in the range (0, 1) which indicates the validity of predicted bound-

ing box. After bounding box assignment, Nt predicted bounding boxes of Nb are
assigned to the ground truth. The scores btscore for the Nt ground truth bound-
ing boxes are all 1 while the remaining Nb − Nt scores are ‘0’. btscore refers to
the scores for predicted bounding boxes which are assigned to the ground truth
boxes while bfscore refers to the antithesis. The loss function of bounding box
prediction branch is defined as follows:

Lasso =
1
Nt

⎛

⎝
Nb∑

i=1

Nt∑

j=1

Ai,jCi,j

⎞

⎠ (4)

Lbscore = − 1
Nb

(
Nt∑

1

log btscore +
Nb∑

Nt+1

log bfscore

)
(5)

Lbox = Lasso + Lbscore (6)
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Fig. 3. The pipeline of our instance segmentation branch.

3.3 Instance Segmentation Branch

Pipeline. The instance segmentation branch fetches point feature matrix
extracted by the backbone network and processes with the following predic-
tions. Using efficient multilayer perceptrons (MLPs), the branch decodes the
shared point feature matrix and global point feature is concatenated to the
matrix. Applying Leaky Relu activation and Dropout technique, the intermedi-
ate feature matrix Fins is obtained. Object boundary information obtained by
the object bounding box branch is integrated and fused through OBAM module.
The final embedding Eins for instance segmentation can be represented as:

Eins = γ1

(
Fins

⊕
Fbou

)
(7)

Where γ1 : RDm → R
De (Dm refers to the intermediate point feature dimension)

and
⊕

means concatenating the features. Mixing up object instance bound-
ing information generates more informative instance embedding. The pipeline is
illustrated in Fig. 3.

Object Bounding Box-Aware Module. Benefiting from the bounding box
branch described above, object bounding information is integrated into our
instance branch through our proposed Object Bounding Box-aware Module. It
takes the outputs Rc, Bs of the bounding box branch as input. The higher valid-
ity of the predicted bounding box bc ∈ Rc, the higher the corresponding score
bscore ∈ Bs. Our module can be formulated as:

Fbou = γ2
(
R̄c ⊗ Bs

)
(8)

where Rc ∈ RNb×2×3 is reshaped to R̄c ∈ RNb×6. ⊗ denotes element-wise multi-
plication, and γ2 is a translation RNb×6 → RNb×Dm implemented by MLP. Dm

refers to the dimension of the intermediate point feature Fins.
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As described above, Bs is supervised by Lbscore. Redundant predicted bound-
ing boxes have scores close to ‘0’. Clearing up the effect of redundant predicted
object bounding information, Bs is also supervised by Lins (will be discussed in
next section) through element-wise multiplication. The network selects helpful
object bounding boxes information for instance embedding.

Loss Function. The informative embedding Eins for instance segmentation is
to learn a distance metric that can measure the probability of points belonging
to the same object. Intra-instance embedding should be pulled toward the corre-
sponding cluster center and different instance centers should be pushed far away
from each other. The loss function can be formulated as:

Lpush =
1

Nt (Nt − 1)

Nt∑

i=1

Nt∑

j=1j!=i

[2σd − ‖μi − μj‖1]2+ (9)

Lpull =
1
Nt

Nt∑

i=1

1
Ii

Ii∑

j=1

[‖μi − ej‖1 − σv]
2
+ (10)

Lins = Lpush + Lpull (11)

Where μi is the mean point embedding of instance i. Ii is point number of
instance i and ej refers to an embedding of a point belonging to instance i.
σd and σv are loose margins. ‖x‖1 is defined as the l1 distance. [x]+ denotes
[x]+ = max (0, x)

During the training, Lpush aims to make different instances repel each other
and Lpull is designed to pull point embedding toward the mean embedding of
instance. During the inference, we adopt existing clustering algorithm mean-shift
on instance embedding to obtain instance labels. As our instance embedding is
class-agnostic, the semantic label of the points having the same instance label is
assigned as the final instance category.

To summarize, our network is end-to-end trainable and supervised by three
branches losses. The loss weights are all equals to 1 in our experiment.

L = Lins + Lsem + Lbox (12)

4 Experiments

In this section, we conduct quantitative and qualitative experiments to evaluate
the effectiveness of our proposed approach. Ablation study and comparison with
other approaches are reported below.

4.1 Experiment Settings

Dataset. We evaluate our approach on two public datasets: Stanford 3D Indoor
Semantics Dataset (S3DIS) [1] and ScanNetV2 [2]. S3DIS consists of 3D scans in
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6 large-scale indoor areas, covering total 272 rooms. S3DIS is a large-scale real
indoor dataset containing more than 215 million points. Each point of S3DIS is
associated with an instance label and a semantic label from 13 common seman-
tic categories. Besides S3DIS, we further evaluate our approach on ScanNetV2.
ScanNetV2 [2] contains about 1500 scans, divided into 1201, 300 and 100 scans,
for training, validation and testing. We carry out our experiments on ScanNetV2
validation dataset.

Evaluation Metrics. We follow the 6-fold-cross-evaluation on S3DIS. Similar
to ASIS [12] and Bonet [13], the performance on area 5 is also reported. Our
instance segmentation performance is evaluated by four metrics: mean instance-
wise coverage (mCov), mean weighted instance-wise coverage (mWcov), mean
instance precision (mPrec), and mean recall (mRec). The experiments results
are presented with IOU threshold of 0.5. For ScanNetV2, results on validation
set are presented below.

Implement Details. For both S3DIS and ScanNetV2, each Scan contains a
great deal of points, which makes it difficult to process all the points at one
time. Each scene is split into 1 m × 1 m overlapped blocks. Each block contains
4096 points. Our experiment settings strictly follow Bonet [13], ASIS [12] and
IAE [10]. Nb is set as 24. The margins σd, σv are set as σd = 0.5 and σv = 1.5.
The embedding dimension De is 5. The learning rate is set to 0.01 (0.001 for
S3DIS) and divided by 2 every 20 epochs. We train the network 50 epochs for
PointNet++. We adopt Adam optimizer with its default hyper-parameters to
optimize the network. At test time, mean-shift [7] clustering with bandwidth
0.6 is used for inference. We use Blockmerging algorithm [11] to merge object
instances from different blocks.

Table 1. Instance segmentation results on ScanNetV2 dataset (validation set). We
report the metric of mAP@0.25. Categories of Sink, Sofa, Table, Toilet, and Window
are not presented in the table.

Method mAP bat bed she cab cha cou cur des doo oth pic ref shc

MaskRCNN [16] 26.1 33.3 0.2 0.0 5.3 0.2 0.2 2.1 0.0 4.5 2.4 23.8 6.5 0.0

SGPN [11] 35.1 20.8 39.0 16.9 6.5 27.5 2.9 6.9 0.0 8.7 4.3 1.4 2.7 0.0

ASIS [12] 47.4 57.3 52.1 1.4 18.5 46.1 19.2 20.3 13.3 13.8 18.8 6.6 17.6 33.1

Ours 51.2 64.7 61.3 0.3 23.1 69.7 13.6 16.9 15.4 14.7 24.0 11.5 18.3 60.7

4.2 Ablation Study

We firstly build a baseline without OBAM module. The baseline is made up
of two decoder branches: the semantic segmentation branch and the instance
segmentation branch. The baseline is supervised by cross-entropy loss Lsem for
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Table 2. Instance segmentation results on the S3DIS. Experiment results on Area 5 and
6-fold are reported. mCov: average instance-wise coverage. mWcov: weighted aver-
age instance-wise coverage. mPre: mean precision. mRec: mean recall. Experiment
performance is reported with IOU threshold of 0.5. For fair comparison, we carefully
train the vanilla PointNet++ (without multi-scale grouping) as our backbone.

Method Year mCov mWcov mPre mRec

Test on area 5

SGPN [11] 2018 32.7 35.5 36.0 28.7

ASIS [12] 2019 44.6 47.8 55.3 42.4

3D-BoNet [13] 2019 – – 57.5 40.2

JSNet [15] 2020 48.7 51.5 62.1 46.9

IAE [10] 2020 49.9 53.2 61.3 48.5

Ours – 50.3 52.8 65.3 49.2

Test on 6-fold

SGPN [11] 2018 36.0 28.7 31.2 38.2

MV-CRF [15] 2019 – – 36.3 –

ASIS [12] 2019 51.2 55.1 63.6 47.5

3D-BoNet [13] 2019 – – 65.5 47.6

PartNet[17] 2019 – – 56.4 43.4

Ours – 54.7 57.1 68.4 52.9

semantic task and discriminative loss Lins for instance grouping. All ablation
experiments we carry out are on the largest area 5 of S3DIS. The experiment
results are shown in Table 3.

OBAM. We study the influence of our proposed OBAM and its components.
Our proposed OBAM module with lscore can improve the results by 9.1 for mPre
and 3.4 for mRec. It indicates that encoding boundary information indeed boosts
instance segmentation performance by a large margin.

Manipulation. We find out that bounding box scores Bs supervised by lscore
are whether close to 1 or close to 0. As our OBAM module is based on multiple
layer perceptron, we design the attention element-wise manipulation to remove
the redundant boundary information and it further benefits instance segmenta-
tion performance. Comparing with the pipeline without attention element-wise
manipulation, the full pipeline of our method improves the result by 5 for both
mPre and mRec.

The Loss of Bounding Box Score. Presented in [13], bounding box scores
Bs serve as a regularizer for bounding box prediction branch. After removing
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Table 3. Ablation studies on the Area 5 of S3DIS. Both mPre and mRec metrics
are reported. OBAM: using our proposed OBAM module. Manipulation: attention
element-wise manipulation in Eq. (8). lscore: using lscore to supervise the bounding
boxes prediction branch.

Method OBAM Manipulation lscore mPre mRec

Baseline 51.2 40.7

Ours1 � � 60.3 44.1

Ours2 � � 60.5 46.1

Ours3 � � � 65.3 49.2

Fig. 4. Visualization of instance segmentation results on S3DIS. There are input point
cloud, instance segmentation ground truth and our results from left to right. Through
our proposed OBAM and discriminative embedding, our methods achieve sterling
results of distinguishing adjacent objects.

bounding box score loss lscore supervision, bounding box scores Bs are only
determined by attention element-wise manipulation. The instance segmentation
performance drops significantly, primarily because of the difficulty to directly
learn the score through attention mechanism.

4.3 Comparison with State-of-the-Art Approaches

In this section, Our comparison with other approaches is made on two popu-
lar benchmarks. Results on S3DIS and ScanNetV2 show the superiority of our
approach.

Quantitative Results on S3DIS. Instance segmentation results testing on
the area 5 of S3DIS and 6-fold validation are reported in Table 2. Our method
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is compared with other state-of-the-art methods which are also based on Point-
Net++. Equipped with instance boundary information, our method achieve obvi-
ous improvement with metric mPre. Comparing with existing state-of-the-art
methods, our method outperforms IAE [10] and JSNET [15], but not signifi-
cantly. Both IAE and JSNET make a full use of point semantic information. IAE
utilizes point semantic information and selects points from the instance to encode
geometric information and instance context. JSNET jointly processes point cloud
for Instance and Semantic Segmentation. Without leveraging semantic informa-
tion, our approach achieves competitive performance. The effectiveness of our
method and the importance of boundary information to instance segmentation
are demonstrated. However, our approach is heavily affected by the bounding
box prediction branch. We figure that more accurate bounding box prediction
may boost the performance. Respectively, Fig. 4 shows our results of instance
segmentation on the S3DIS dataset.

Quantitative Results on ScanNetV2. We conduct experiments on Scan-
NetV2 validation set and the performance are reported in Table 1. Comparing
with the previous state-of-the-art approach ASIS [12], our method achieves a
significant improvement of metric mAP@0.25, by 3.8 from 47.4 to 51.2. Our
bounding box-aware embedding shows great superiority on some categories. The
instance segmentation results on ScanNetV2 demonstrate the superiority of our
method.

5 Conclusion

In this paper, We presented a novel framework combining clustering-based and
proposal-based approaches. Our proposed module OBAM integrates bounding
box information into instance segmentation branch. Through OBAM, redun-
dant bounding information is removed. Extensive experiments indicate the effec-
tiveness of our method. Our bounding box-aware embedding indeed boots the
instance segmentation performance on S3DIS and ScanNetV2. Our method
achieves state-of-the-art performance on S3DIS dataset.

However, our method is limited by bounding box prediction. The limitation
that directly learning object boundary information may lead to the future work.
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of China (No. 61972157), National Key Research and Development Program of China
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