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Preface

These three-volume proceedings contain the papers presented at the 18th Pacific Rim
International Conference on Artificial Intelligence (PRICAI 2021) held virtually during
November 8–12, 2021, in Hanoi, Vietnam.

PRICAI, which was inaugurated in Tokyo in 1990, started out as a biennial inter-
national conference concentrating on artificial intelligence (AI) theories, technologies,
and applications in the areas of social and economic importance for Pacific Rim
countries. It provides a common forum for researchers and practitioners in various
branches of AI to exchange new ideas and share experience and expertise. Since then,
the conference has grown, both in participation and scope, to be a premier international
AI event for all major Pacific Rim nations as well as countries from all around the
world. In 2018, the PRICAI Steering Committee decided to hold PRICAI on an annual
basis starting from 2019.

This year, we received an overwhelming number of 382 submissions to both the
Main track (365 submissions) and the Industry special track (17 submissions). This
number was impressive considering that for the first time PRICAI was being held
virtually during a global pandemic situation. All submissions were reviewed and
evaluated with the same highest quality standard through a double-blind review pro-
cess. Each paper received at least two reviews, in most cases three, and in some cases
up to four. During the review process, discussions among the Program Committee
(PC) members in charge were carried out before recommendations were made, and
when necessary, additional reviews were sourced. Finally, the conference and program
co-chairs read the reviews and comments and made a final calibration for differences
among individual reviewer scores in light of the overall decisions. The entire Program
Committee (including PC members, external reviewers, and co-chairs) expended
tremendous effort to ensure fairness and consistency in the paper selection process.
Eventually, we accepted 92 regular papers and 28 short papers for oral presentation.
This gives a regular paper acceptance rate of 24.08% and an overall acceptance rate of
31.41%.

The technical program consisted of three tutorials and the main conference program.
The three tutorials covered hot topics in AI from “Collaborative Learning and Opti-
mization” and “Mechanism Design Powered by Social Interactions” to “Towards
Hyperdemocary: AI-enabled Crowd Consensus Making and Its Real-World Societal
Experiments”. All regular and short papers were orally presented over four days in
parallel and in topical program sessions. We were honored to have keynote presen-
tations by four distinguished researchers in the field of AI whose contributions have
crossed discipline boundaries: Mohammad Bennamoun (University of Western
Australia, Australia), Johan van Benthem (University of Amsterdam, The Netherlands;
Stanford University, USA; and Tsinghua University, China), Virginia Dignum (Umeå
University, Sweden), and Yutaka Matsuo (University of Tokyo, Japan). We were
grateful to them for sharing their insights on their latest research with us.



The success of PRICAI 2021 would not be possible without the effort and support of
numerous people from all over the world. First, we would like to thank the authors, PC
members, and external reviewers for their time and efforts spent in making PRICAI
2021 a successful and enjoyable conference. We are also thankful to various fellow
members of the conference committee, without whose support and hard work PRICAI
2021 could not have been successful:

– Advisory Board: Hideyuki Nakashima, Abdul Sattar, and Dickson Lukose
– Industry Chair: Shiyou Qian
– Local/Virtual Organizing Chairs: Sankalp Khanna and Adila Alfa Krisnadhi
– Tutorial Chair: Guandong Xu
– Web and Publicity Chair: Md Khaled Ben Islam
– Workshop Chair: Dengji Zhao

We gratefully acknowledge the organizational support of several institutions
including Data61/CSIRO (Australia), Tsinghua University (China), MIMOS Berhad
(Malaysia), Thammasat University (Thailand), and Griffith University (Australia).

Finally, we thank Springer, Ronan Nugent (Editorial Director, Computer Science
Proceedings), and Anna Kramer (Assistant Editor, Computer Science Proceedings) for
their assistance in publishing the PRICAI 2021 proceedings as three volumes of its
Lecture Notes in Artificial Intelligence series.

November 2021 Duc Nghia Pham
Thanaruk Theeramunkong

Guido Governatori
Fenrong Liu
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Consistency Regularization for Ensemble
Model Based Reinforcement Learning

Ruonan Jia1,3, Qingming Li2, Wenzhen Huang2, Junge Zhang2(B),
and Xiu Li3(B)

1 Department of Automation, Tsinghua University, Beijing, China
jrn19@mails.tsinghua.edu.cn

2 CRISE, Institute of Automation, Chinese Academy of Sciences, Beijing, China
chapnhan367383@gmail.com, huangwenzhen2014@ia.ac.cn,

jgzhang@nlpr.ia.ac.cn
3 Tsinghua Shenzhen International Graduate School, Tsinghua University,

Shenzhen, China
li.xiu@sz.tsinghua.edu.cn

Abstract. It’s generally believed that model-based reinforcement learn-
ing (RL) is more sample efficient than model-free RL. However, model-
based RL methods typically suffer from model bias, which severely limits
the asymptotic performance of the algorithm. Although previous model-
based RL approaches use ensemble models to reduce the model error, we
find that vanilla ensemble learning does not consider the model discrep-
ancy. The discrepancy between different models is huge, which is not con-
ducive to policy optimization. To alleviate the problem, this paper pro-
poses an Ensemble Model Consistency Actor-Critic (EMC-AC) method
to decrease the discrepancy between models while maintaining the model
diversity. Specifically, we design ablation experiments to analyze the
effects of the trade-off between diversity and consistency on the EMC-AC
algorithm performance. Finally, extensive experiments on the continuous
control benchmarks demonstrate that our approach achieves the signif-
icant performance to exceed the sample efficiency of prior model-based
RL methods and to match the asymptotic performance of the state-of-
the-art model-free RL algorithm.

Keywords: Model-based reinforcement learning · Ensemble model ·
Consistency · Sample efficiency

1 Introduction

Deep reinforcement learning (DRL) has achieved great success in recent years,
including learning to play video games [24], mastering the game of Go [28,31,32],
as well as learning robotic control [21–23,30]. DRL algorithms can be devided
into two categories: model-based reinforcement learning (RL) which learns a
predictive model of the environment and then utilizes this model to learn a pol-
icy, and model-free RL which directly learns a policy. Model-free RL algorithms
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require a tremendous number of interactions with environment, and suffer from
sample complexity. The high sample complexity limits the application of such
methods to real-world domain, e.g., robotics where data collection is expensive
and time-consuming. In comparison, model-based RL algorithms learn to con-
struct a dynamics model of real environment, interact with the learned model to
produce imaginary samples and utilize these samples to train a policy. Therefore,
model-based RL methods can potentially be much more sample efficient than
model-free RL.

Model-based approaches tend to rely on accurate dynamics models to solve a
task. However, learning an accurate dynamics model for a complex environment
is very challenging. Inevitably, a learned model will not be perfectly precise.
Small errors are compounded and can grow rapidly as we propagate our learned
model to rollout imaginary trajectories further. Due to the inevitable errors of
learned models, model-based methods fall into sub-optimal solutions and strug-
gle to achieve the same asymptotic performance as model-free methods. Previous
works have tried to alleviate model bias by characterizing the uncertainty of the
models, often using ensemble probabilistic models to represent the posterior [35].
A detailed review could be found in Sect. 2.

Ensemble helps reduce the generalization error in unexplored states, and
improves the uncertainty quantification. However, multiple inconsistent models
will make the model usage full of uncertainty and likely lead to some inaccuracy
for model transitions. In our paper, the difference between transition states of
ensemble models is termed as model discrepancy. When the model discrepancy
is not considered properly, the predictions of ensemble models will be unreliable
and unstable, which are not conducive to policy optimization. We hope the next
transition states output by ensemble models shall not be arbitrarily diverse, in
the condition of the same input state-action pair. The consistency assumption
is used in many regularizers [5]: “Two points that are close in input space should
have the same label”. Inspired by the assumption, we reckon that the states
output by ensemble models should be similar. A natural concept that comes to
mind is to add the consistency regularization and decrease the model discrepancy.

To solve this issue, in this paper, we propose an Ensemble Model Consis-
tency framework built on the above insight. It utilizes semi-supervised learn-
ing to decrease the discrepancy between ensemble models while maintaining
the model diversity to some extent. Additionally, we adopt Soft Actor-Critic
(SAC) [13] as our policy optimization algorithm, which alternates between policy
evaluation and policy improvement. We name this implementation as Ensemble-
Model-Consistency Actor-Critic (EMC-AC). Experimental results demonstrate
that our method outperforms the state-of-the-art model-based and model-free
RL algorithms on multiple MuJoCo benchmarks.

The contributions of our work are as follows:

• Firstly, we analyze the problem of the distribution discrepancy of ensemble
models, which could cause the model performance degradation.

• Secondly, we propose a simple but powerful algorithm named Ensemble Model
Consistency Actor-Critic (EMC-AC) which constructs ensemble models with
consistency regularization for model-based RL.
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• Thirdly, our ablation study gives a meaningful insight that balancing discrep-
ancy and consistency is helpful for ensemble model learning.

• Lastly, extensive experiments on the continuous control tasks show that EMC-
AC has high asymptotic performance and low sample complexity. Our perfor-
mance reaches comparable scores to the state-of-the-art model-free method
with much fewer interactions.

2 Related Work

Recently, model-based RL shows a promising prospect of good performance with
fewer environment interactions. There are two main research problems: how to
learn an accurate model and how to utilize the learned model to train a policy.
Our work mostly falls into the model learning.

Model Learning. The key of model-based RL is to address the problem of
model inaccuracy. Previous methods are dedicated to combating the model error.
Some exciting results with model-based RL have been obtained using simple lin-
ear models [1,3]. However, nonparametric models, like Gaussian Processes [9,20],
are limited to the low dimensional domains. During recent years, neural network
predictive models [7,25] are appealing because they could scale to complex high
dimensional control problems. Ha et al. [12] and Hafner et al. [14] used VAE [17]
to encode observation images into the latent vectors and trained a RNN [11] to
model the next latent state vector. A major challenge when using neural network
models is learning a reliable and accurate model of high dimensional dynamics.

Compared to the single model, ensemble learning has shown to be effective to
boost the model accuracy [2]. Chua et al. [7] proposed a probabilistic ensemble
model with trajectory sampling which uses an ensemble of bootstrapped prob-
abilistic neural networks. Kurutach et al. [19] proposed to use an ensemble of
models to maintain the model uncertainty and combine with TRPO [29] to sta-
bilize policy learning. In contrast to prior ensemble methods, our method uses a
consistent ensemble pattern to train a model with less model error.

Model Usage. It is natural to combine elements of model-based and model-free
methods to attain high performance with low sample complexity. These methods
compute gradients of the policy or value function through the learned dynam-
ics model [8,15]. On the other hand, model-based value expansion (MVE) is a
promising area. Feinberg et al. [10] used fixed depth model rollouts to improve
value estimation and reduce sample complexity. Buckman et al. [6] extended
MVE to interpolate between model rollouts of various horizon lengths. Addi-
tionally, dynamics model can also be used to help decision making when the
agent interacts with environment [7,26]. Instead of using a learned dynamics
model to plan, our method uses the model to gather fictitious data to train the
policy and solve the task.
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3 Background

Markov Decision Process. Reinforcement learning uses the formal framework
of Markov Decision Process (MDP), defined by the tuple (S,A, p, r, γ, ρ0,H) [33].
We consider a discrete-time finite-horizon MDP that S and A are the state
and action spaces, γ ∈ (0, 1) is the discount factor, respectively, and H is
the horizon of the process. The dynamics or transition probability is denoted
as p(s′|s, a), the initial state distribution as ρ0(s), and the reward function
as r(s, a). We define the trajectory of states, actions, and rewards as τ =
(s0, a0, r0, s1, . . . , sH−1, aH−1, rH−1, sH). The goal of reinforcement learning is
to find the optimal policy π∗ that maximizes the expected sum of discounted
rewards, denoted by Jπ = Eτ∼π

[ ∑H−1
t=0 γtr(st, at)

]
.

Policy Optimization. Policy optimization is an effective RL approach to solve
continuous control tasks. Soft Actor-Critic [13] is one of the state-of-the-art
model-free methods, which optimizes a stochastic policy in an off-policy way. The
major difference to other policy optimization methods is that SAC augments the
objective with entropy regularization. The agent gets a bonus reward with the
entropy of the policy at each time step. This changes the optimization objective

into: Jπ = Eτ∼π

[∑H−1
t=0 γt

(
r(st, at) + αH(π(·|st))

)]
, where the temperature

parameter α is a trade-off coefficient.
The policy is trained to maximize a trade-off between expected return and

entropy. This means policy is incentivized to explore more widely, while possi-
bly giving up some anterior rewards. Especially, the entropy term could prevent
the policy from prematurely converging to a bad local optimum. SAC follows
the Actor-Critic framework [18]. The Critic estimates the action value (Q func-
tion), and the Actor updates the policy distribution in the direction suggested
by the Critic. We consider a parameterized Q function Qψ(st, at), Q-target func-
tion Q̂ψ̂(st, at) and a tractable policy πφ. The parameters of these networks are
ψ, ψ̂, and φ.

The policy evaluation and policy improvement are trained alternately. SAC
adopts Q function for policy evaluation which uses the MSE loss:

JQ(ψ) = E(st,at,at+1)∼D

[
1
2

(
Qψ(st, at) − Q̂ψ̂(st, at)

)2
]
,

Q̂ψ̂(st, at) = r(st, at) + γ
(
Q̂ψ̂(st+1, at+1) + αH(

πφ(at+1|st+1)
))

.

(1)

Correspondingly, the policy improvement uses the Kullback-Leibler (KL) diver-
gence loss:

Jπ(φ) = Est∼D

[
DKL

(
πφ(·|st)‖ exp

(
Qψ(st, ·) − log Z(st)

))]
, (2)

where Z(st) is the partition function which normalizes the distribution.
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Model-Based Reinforcement Learning. The standard model-based RL
approaches alternate between model learning and policy optimization. The
dynamics model p(s′|s, a) is assumed to be unknown. Model-based RL meth-
ods aim to construct a model of the transition distribution, pθ(s′|s, a), using
data collected from interacting with the MDP. The learned model can be used
to help for decision making when the agent interacts with environment.

Model-Based Policy Optimization (MBPO) [16] is one of the state-of-the-art
model-based methods, which studies the role of model usage in policy optimiza-
tion with theoretical guarantees. MBPO performs k-step rollouts from replay
buffer states using a fixed number of policy updates.

4 Method

In this section, we aim to answer several questions related to model learning and
implementation: (1) What is the dilemma of vanilla ensemble learning? (2) How
to design our ensemble model in model-based RL? (3) How to implement the
overall algorithm?

4.1 Model Discrepancy and Consistency

For the large and complex environments, when the training data is relatively
scarce, the predictive model is likely to be inaccurate. Many recent model-based
RL algorithms utilize ensemble models to capture epistemic uncertainty due
to sparse knowledge of datas. However, these ensemble models could greatly
differ from each other. It means that the different models would rollout much
inconsistent states given the same initial state and action sequence. Although
ensemble models could generate diverse samples, the model discrepancy will
bring some inaccuracy for model transitions. For addressing this problem, we
expect to reduce the disagreement between models while maintaining the model
diversity to some extent. So we consider to make a trade-off between diversity
and consistency.

Inspired by the consensus clustering [27] which improves the stability of clus-
tering models by generation and integration, we introduce the consistency learn-
ing into the training of ensemble models. In this way, we can reduce the variance
of predictive states rollouted by ensemble models. The reduction in variance is
conducive to improve both the robustness and the stability of model-based RL.

4.2 Model Learning

It is general to use the probabilistic neural network to capture the aleatoric
uncertainty and ensembles to capture the epistemic uncertainty. So we construct
an ensemble of dynamics models by probabilistic neural networks, whose outputs
simply parameterize the probability distribution functions. In our method, we
define the predictive model to output a Gaussian distribution with diagonal
covariances parameterized by θ: pθ(st+1|st, at) = N (μθ(st, at), Σθ(st, at)). The
overall framework of model learning in EMC-AC is shown in Fig. 1.
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Fig. 1. The framework of model learning in EMC-AC. N bootstrapped datasets and
one random dataset are sampled from data buffer Denv. We use semi-supervised learn-
ing to fit the ensemble models on the above two types of datasets with one-step loss
and consistency loss. The arrows denote the different data flows.

One-Step Prediction. The basic objective of model learning is to find a param-
eter θ that minimizes the L2 one-step prediction loss. Given that the N boot-
strapped datasets are sampled from data buffer Denv, i.e. {D1, · · · ,DN}, each
model pθi

is trained on Di with different initialization. We use the negative log
prediction probability as the loss function for each individual model,

Lone−step(θ) = −
N∑

n=1

log pθ(sn+1|sn, an). (3)

Take the above Gaussian models into Eq. (3). Then the loss becomes:

Lone−step(θ) =
N∑

n=1

[
μθ(sn, an) − sn+1

]T
Σ−1

θ (sn, an)
[
μθ(sn, an) − sn+1

]
+

log det Σθ(sn, an).

(4)

Consistency Regularization. To improve consistency for ensemble models,
we adopt the consistency regularization to constrain the structure error of model
learning. Given that the data batch Ds is randomly sampled from data buffer Denv,
each model pθi

predicts the next state transition for Ds. The overlap between any
two transitions is used to measure the consistency of different models. Based on
the discussion of Sect. 4.1, we use ensemble models with the consistency regular-
ization. We measure the distance between different models by the KL divergence.
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Algorithm 1. Ensemble Model Consistency Actor-Critic
1: Initialization: the policy πφ, Q function {Qψ1 , Qψ2}, Q-target function {Q̂ψ̂1

←
Qψ1 , Q̂ψ̂2

← Qψ2}, predictive model {pθi}N
i=1, environment dataset Denv ← ∅,

model dataset Dmodel ← ∅
2: for E epochs do
3: Bootstrap sample {D1, · · · , DN} and random sample Ds from Denv

4: Train ensemble models {pθi}N
i=1 on {D1, · · · , DN , Ds} via maximum likelihood

and consistency regularization, by the Eq. (6)
5: for K steps do
6: Collect transitions from the real environment with the policy πφ

7: Add the transitions to Denv

8: Sample st from Denv and perform model rollouts starting from st using πφ

9: Add the imaginary transitions to Dmodel

10: for G gradient updates do
11: Update ψi ← ψi − ωQ∇̂ψiJQ(ψi, Dmodel) for i ∈ {1, 2}, by the Eq. (1)
12: Update φ ← φ − ωπ∇̂φJπ(φ, Dmodel), by the Eq. (2)
13: Update ψ̂i ← ωψi + (1 − ω)ψ̂i for i ∈ {1, 2}
14: return Optimal policy parameters πφ

LKL =
N−1∑
i=1

N∑
j=i+1

DKL

[
pθi

(s, a)‖pθj
(s, a)

]
. (5)

By using the consistency loss in Eq. (5), the consistency of ensemble models can
be improved.

Overall Optimization Objective. Our intuition is to leverage the ensem-
ble models from generalization error and to improve consistency for the next
transitions. Based on the ensemble models with one-step loss Lone−step and con-
sistency loss of model distribution LKL, we obtain the overall optimization for
the whole dynamics models. Thus the final learning objective of EMC-AC is:

Ltotal = Lone−step + λ ∗ LKL, (6)

where λ is a balance factor.

4.3 Implementation

Model learning and policy training are tightly coupled and jointly trained, while
the stronger models learned by ensemble consistency help improve the policy, and
the improved policy, in turn generates better transitions to continue improving
the learned models.

To predict the next state transition from ensembles, we simply select a model
uniformly at random. That is, we generate different transitions along a single
model trajectory to be sampled from ensemble dynamics models. In addition,
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we adopt SAC [13] as our policy optimization algorithm, which alternates
between policy evaluation and policy improvement. The procedure of EMC-AC
is summarized in Algorithm 1.

5 Experiments

Our experiments are designed to address the following questions: (1) Compared
with the prior model-free and model-based algorithms, does EMC-AC improve
result in asymptotic performance and sample efficiency? (2) Are the ensemble
models of EMC-AC more consistent than those without the consistency loss? (3)
What is the relation between diversity and consistency in ensemble models?

Fig. 2. The screenshots of MuJoCo simulation environments used in our experiments.
From left to right: Ant-v2, HalfCheetah-v2, Hopper-v2, Humanoid-v2, Walker2d-v2.

To answer the three questions, we evaluate our algorithm compared to vari-
ous baselines on five continuous control benchmark tasks in the Mujoco simula-
tor [34], which is commonly used to evaluate RL algorithms. The visualization
of task environments is shown in Fig. 2. And our experimental environments are
standard 1000-step versions of the benchmarks.

5.1 Comparative Evaluation

We compare our method EMC-AC with state-of-the-art model-free and model-
based RL methods, including SAC [13], PETS [7], STEVE [6] and MBPO [16].
We run EMC-AC on the four tasks for 200 thousand timesteps, and on the Hop-
per task for 100 thousand timesteps where the algorithm is almost convergent.
To ensure a fair comparison, we run EMC-AC and MBPO with the same network
architectures and hyper-parameter configurations.

Figure 3 demonstrates the results in five complex continuous environments
of MuJoCo-v2. To measure the sample efficiency of EMC-AC, we additionally
run SAC 2 million timesteps on each task. We observe that EMC-AC achieves
significant improvements in terms of both performance and sample efficiency
across a wide range of environments. Specially, EMC-AC’s performance on the
HalfCheetah task at 200 thousand steps exceeds that of SAC at 2 million steps
with about 10× fewer samples. On the most challenging tasks: Humanoid and
Ant, our method significantly outperforms other baselines. However, on the task
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Fig. 3. Training curves on MuJoCo-v2 benchmarks. Solid curves depict the mean of
four trials and shaded regions correspond to standard deviation among trials. The
shaded area shows one standard deviation of scores in the region as defined above

of Walker2d, we observe that the return of EMC-AC drops at some timestep.
We attribute the reason to the fact that Walker2d environment is unstable and
sensitive to model bias.
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In addition, we find that PETS fails to make any progress on Hopper,
Walker2d and Humanoid. The reason is likely that PETS uses the cross-entropy
method (CEM) [4] to maintain a distribution of actions yielding high reward at
each time step which limits it to scale high-dimension space. Thus we exclude
the three learning curves of PETS.

5.2 Effects of Consistency Regularization

To verify the effectiveness of the proposed consistency regularization for ensemble
models, we compare the consistency of samples transitioned by ensemble models
with and without consistency constraint. We take the task of HalfCheetah as
an example. During the 50th round of model training, we sample two batches
of rollout transitions {(s, a, s′, r)}N

i=1 by ensemble models with and without con-
sistency constraint respectively, where the N is 7 and each batch size is 100.
The model discrepancy is computed by the average variance of predicted states
between ensemble models for each transition. We use the histogram to present the
discrepancy distribution of the average variance computed on the two batches of
samples as shown in Fig. 4. The result demonstrates that ensemble models with
consistency constraint significantly decrease model discrepancy.

Fig. 4. The statistical histogram on the discrepancy of ensemble models with and with-
out consistency loss. We compute the variance between the predicted states of ensemble
model transitions as the model discrepancy. Compared to the approach without con-
sistency loss, our method with consistency loss intuitively has the lower variance of the
predicted states in transition samples.
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5.3 Ablation Study

In order to understand the relationship between diversity and consistency in
ensemble models, we conduct experiments to compare with different consensus
coefficient λ. We examine several ablations on HalfCheetah and Hopper with a
few interactions.

Fig. 5. Ablation studies on the coefficient λ (50k steps for HalfCheetah and 100k steps
for Hopper). The bars are average returns over 4 runs and error lines indicate one
standard deviation.

As shown in Fig. 5, both results indicate that the trend between the perfor-
mance and λ looks like a parabola. This results also correspond to our intuition.
On the consistency coefficient λ, we observed that EMC-AC with λ = 1 per-
forms the best among [0, 0.1, 1, 2, 10]. In the case of λ< 1, the performance
gradually improves as λ increases. This means that our consistency loss (detail
in Sect. 4.2) works and model errors are alleviated. However, too large λ causes
performance degradation, mainly because the excessive constrain of consistency
loss discourages the diversity of ensemble models, which is not conductive to
model learning. Therefore, a moderate choice such as λ = 1 can be better.

Note that our purpose is not to tune the best parameter, but to give a
meaningful model learning discussion in model-based RL. That is, balancing
diversity and consistency is important for ensemble model learning.

6 Conclusions

In this paper, we discuss the consistency problem in ensemble model methods
from the perspective of model-based RL. We propose a simple but powerful
algorithm, Ensemble Model Consistency Actor-Critic (EMC-AC), which learns
an ensemble of dynamics models with the consistency regularization. Then we
conduct experiments to analyze the effects of the trade-off between diversity
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and consistency in ensemble model learning and the result demonstrates that
balancing diversity with consistency is helpful to learn a reasonable ensemble
model. To our best knowledge, this paper makes a first attempt to analyze the
consistency in ensemble model-based RL. Experimental results on the continuous
control benchmarks demonstrate that ensemble consistency models provide the
recipe for reaching the same level of performance as the state-of-the-art model-
free method with lower sample complexity. In the future, we will focus on model
usage to train a better policy based on ensemble model consistency.
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Abstract. Learning in automated negotiations, while successful for
many tasks in recent years, is still hard when coping with different types
of opponents with unknown strategies. It is critically essential to learn
about the opponents from observations and then find the best response
in order to achieve efficient agreements. In this paper, we propose a novel
framework named Deep BPR+ (DBPR+) negotiating agent framework,
which includes two key components: a learning module to learn a new
coping policy when encountering an opponent using a previously unseen
strategy, and a policy reuse mechanism to efficiently detect the strategy
of an opponent and select the optimal response policy from the policy
library. The performance of the proposed DBPR+ agent is evaluated
against winning agents of ANAC competitions under varied negotiation
scenarios. The experimental results show that DBPR+ agent outper-
forms existing state-of-the-art agents, and is able to make efficient detec-
tion and optimal response against unknown opponents.

Keywords: Automated negotiation · Multi-agent system · Policy
reuse · Reinforcement learning

1 Introduction

Automated negotiations are a widely studied, emerging area in the field of
autonomous agents and multi-agent systems. Research on agent-based negotia-
tion not only significantly alleviates the efforts of human negotiators, but also aids
humans in reaching better outcomes by compensating for the limited abilities of
humans, e.g., from the computational, reasoning and cognitive perspective. At
present, automated negotiation mechanism has been applied in many fields like
e-commerce, laws and supply chain management. Automated negotiations may
be rather complex, because there are many factors that characterize negotiations.
These factors include the number of issues, dependency between issues, repre-
sentation of the utility, negotiation protocol, negotiation form (e.g., bilateral or
multi-party [10,30]), and time constraints [14,24]. Automated negotiations have
been studied for a long time and there have been a large body of work concerning
various settings [11,20,25,27,31].
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In a multi-agent system, the optimal decision of the auto-negotiation agent
is contingent on the behaviors of co-existing agents. Especially, when faced with
different types of opponents and the opponent’s strategy is unknown, the agent
is required to be able to detect opponent’s strategy accurately and then adapt
its own policy accordingly. Though a lot of research works already existed in
the field of automated negotiation, none of these works explicitly categorizes the
other agent’s policy and then dynamically adjust their own coping strategies.

To address the above problem, we propose a novel framework, called Deep
BPR+ negotiating agent framework, which leverages Bayesian policy reuse
(BPR) [28] for responding to an unknown opponent by selecting among a num-
ber of policies available to the agent. BPR maintains a probability distribution
(Bayesian belief) over a set of known opponents capturing their similarity to
the new opponent that the agent is solving. The Bayesian belief is updated with
observed signals which can be any information correlated with the performance
of a policy. In this work, agreement utility, number of negotiation rounds and
standard deviation of the utility received from opponents’ offers are used as the
signal. When an unknown opponent strategy comes, identified through moving
average reward as in BPR+ [18], it switches to learning stage and starts to learn
an optimal response policy using deep reinforcement learning algorithm, which
learns to achieve efficient agreements by choosing a proper target utility at each
step, conditioning on the timeline and offer exchange history.

The main contributions of the paper are as follows:

– We propose a general negotiation framework – Deep BPR+ negotiating agent
framework – supports detection of an unlabeled opponent from observed sig-
nals and then adapts its own policy accordingly. Besides, our framework can
automatically switch to learn new response policy when faced with a previ-
ously unseen opponent.

– We provide a RL-based formulation for automated negotiation, and the learnt
policy can adapt to different negotiation domains without retraining.

– We validate this framework by evaluating it against ANAC winning agents
under various negotiation scenarios.

2 Related Work

This work involves two research fields, one is automated negotiation, and the
other is the detection and response of other agents in a multi-agent system
(MAS). In this section we discuss work done in both fields.

Automated negotiation has been widely studied in the recent years owing to
the growth in e-commerce and cloud-based applications. Artificial intelligence
techniques [16], game theory [16,22], bayesian learning [20,31] and evolutionary
programming [12,13] have all been used in automated negotiation. Baarslag et al.
[6] proposes an architecture named BOA architecture which separates negotia-
tion strategy to three components, namely, bidding strategy, opponent model and
acceptance strategy. A comprehensive survey on opponent models is presented by
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Baarslag et al. [4], which classified opponent models using a comprehensive tax-
onomy. [5] proposes an simple but efficient acceptance conditions which considers
both time and utility gap to determine whether to accept an offer.

In recent years, the successful application of reinforcement learning algorithms
in other fields has driven its application in the field of auto-negotiation. Bakker
et al. [8] proposes an RLBOA framework based on the BOA architecture for auto-
negotiation. The Tabular Q-learning algorithm is used to train the bidding strat-
egy. So they map the offers to the utility space and discretize the utility space.
But discretization can lead to information loss. Pallavi Bagga et al. [7] first pre-
trains the model through supervised learning to accelerate the learning process,
and then trains the DDPG [23] model. The disadvantage of this work is that it only
addresses a single issue, and its RL agent’s state and action are specific issue value,
so it cannot work in other negotiation scenarios. [9] is limited to specific negoti-
ation scenarios. In [29], SAC [17] algorithm is used to train the bidding strategy,
whose input and output are utility values. So learned model can be used in other
negotiation domains. But they do not consider the preferences of opponents.

In MAS, it is critically essential for agents to learn to cope with each other by
taking the other agent’s behaviors into account. But very little work has been done
to explicitly categorize the other agent’s policy. BPR+ algorithm [18,19] can pre-
dict other agent’s policy and learn a new response policy when previously unseen.
But BPR+ is a tabular based algorithm that directly stores learned policies as
Q-tables, which might be infeasible when handling large scale problems.

3 Preliminaries

3.1 Negotiation Settings

In this work, we consider bilateral negotiations which are negotiations between
exactly two participants. The negotiation protocol we use in this paper is the
stacked alternating offers protocol. During the negotiation, two parties will send
alternating offers to each other until both sides agree on an offer together, or a
deadline is reached [21].

A negotiation scenario consists of a negotiation domain and preference pro-
files of both parties. Both parties have certain preferences prescribed by a pref-
erence profile. These preferences can be modeled by means of a utility function
that map a possible outcome ω to a real-valued number u in the range [0, 1],
which indicates how satisfied the party is with an offer. The preference profiles
and negotiation domain together constitute the utility space U . In this paper we
consider multi-issue negotiations and linear utility function.

3.2 Bayes Policy Reuse

BPR [28] is proposed as an efficient policy reuse framework for an agent to select
the best policy from a policy library when facing unknown tasks. Formally, a
task τ ∈ T is defined as a MDP and a policy π(s) outputs an appropriate
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action given state s. The return, which is also known as cumulative reward,
is generated by interacting with the environment in the task over an episode
of k steps, U =

∑k
i=1 ri, where ri is the immediate reward received at step

i − 1. The agent is equipped with a policy library Π which contains coping
policies against previously seen tasks set T . When facing an unseen task τ∗,
the agent is supposed to select the best coping policy π∗ from Π within as
small number of trials as possible. BPR uses the concept of β(τ) to measure the
degree of similarity between current task τ∗and tasks seen before, where β is a
probability distribution over previous seen task T . BPR uses performance model
P (U |τ, π) to describe the performance of policy where P (U |τ, π) is a probability
distribution over the return U using π on task τ . The belief is initialized with a
prior distribution (e.g. random distribution) as β0(τ). Following the Bayes rule,
the belief βn−1(τ) is updated based on P (U |τ, π) as below:

βn(τ) =
P (Un|τ, πn) βn−1(τ)

∑
τ ′∈T P (Un|τ ′, πn) βn−1 (τ ′)

(1)

Based on the belief β(τ), BPR selects the policy most likely to achieve any
possible improvement of return Ū < U+ < Umax as the best coping policy π∗:

π∗ = arg max
π∈Π

∫ Umax

Ū

∑

τ∈T
β(τ)P

(
U+ | τ, π

)
dU+ (2)

BPR+ extends BPR to handle non-stationary opponent with a learning
mechanism, enabling it to continuously expand its policy library as needed. Deep
BPR+ [32] uses a refined belief model based on episode return and opponent
behavior. Besides, it improves BPR+’s learning mechanism by using a distilled
policy network for better and faster policy learning.

4 Agent Design

In this section we give the details of our proposed Deep BPR+ Negotiating Agent
Framework, as shown in Algorithm 1. This framework is capable of identifying
the opponent’s strategy in real time, and select the best coping policy in the
policy library. Besides, when encountering a previously unseen opponent and
none of the policies in the policy library can achieve good performance, it will
switch to learning module to learn the new coping policy using DRL algorithm.
In Sect. 4.1, we will introduce the learning module of our proposed framework,
and in Sect. 4.2, we will explain the policy reuse mechanism.

4.1 Deep Reinforcement Learning Based Learning Module

After detecting that the opponent is using a new strategy, the agent turns
to the learning stage and begins to learn the best-response policy against it.
We formulate the negotiation problem as a sequential decision making problem
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Algorithm 1. Deep BPR+ Negotiating Agent
Require: Episodes K, performance modelP (U |T , Π), efficiency model E(D|T , Π),

behavior model B(W |T , Π), policy library Π, known opponent policy set T , win-
dow h, threshold δ

1: for k = 1, 2, .., K do
2: if stage is reuse then
3: select a policy πk based on belief model βk−1 and received utility U t, agree-

ment round Dt and standard deviation W t (Eq. 2)
4: update belief model using U t, Dt and W t (Eq. 7)

5: calculated the average performance over past h episodes Ū =
∑i

i−h U

h

6: if Ū < δ then
7: switch stage to learn
8: end if
9: else

10: Optimize π using SAC
11: if the policy is converged then
12: update P (U |T , Π), E(D|T , Π), B(W |T , Π), Π, T
13: end if
14: switch stage to reuse
15: end if
16: end for

which can be solved with a RL agent. We first describe the environment and
the method used in this paper to estimate the opponent’s preference informa-
tion as well as acceptance conditions. After that, we describe the policy-based
RL agent and the training procedure of our RL agent. By interacting with the
environment, the agent learns to pick the optimal target utility value.

Environment - States, Actions, Transitions and Reward. The classic
framework of RL consists of two parts. The first part is the external environ-
ment ε which specifies the dynamics of the interaction between the agent and
the opponent. It is modeled as a Markov decision process (MDP) which can be
represented by a 4-tuple 〈S,A,P,R〉. The second part is a policy network which
maps the state vector to a stochastic policy. The neural network parameters θ
are updated using stochastic gradient descent. For the sake of generalization,
we design the output of the RL agent as the target utility value, which makes
the action space continuous and large. Therefore, compared to value-based RL
methods like Deep Q Network (DQN) [26], policy-based RL methods turn out to
be more appropriate for our negotiation problem. Before we describe the struc-
ture of our policy network, we first elaborate each component (states, actions,
rewards) of the RL environment.

States. In our negotiation setting, if an agreement cannot be achieved before the
deadline, then the negotiation fails. So our agent’s decision whether to compro-
mise and the extent of the compromise depends in part on the timeline. Besides,
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the context during the negotiation process, that is, the historical bid trajectory,
is crucial to the agent’s decision-making. The state vector at step t is given as
follows:

st =
(

t

Tmax
, ut−3

o , ut−3
s , ut−2

o , ut−2
s , ut−1

o , ut−1
s

)

where Tmax denotes the maximum rounds of each negotiation session. ut
o denotes

the utility of the bid received from the opponent at step t and ut
s denotes the

utility of the bid proposed by our own agent at step t.

Actions. The set of possible actions from a state consists of all possible target
utility values in the range [ur, 1], where ur denotes the reservation value. For-
mally, we define the action at step t as at = ut

s. To get the actual offer from
the utility value, we define an inverse utility function F : U → Ω that maps
a real-valued number u to an outcome ω, where Ω denotes the outcome space.
Specifically, we obtain several offers whose utility value falls within [u, u + Δu],
then select the one that the opponent may prefer the most according to the
opponent model. In this work, we use the approach proposed by Niels van Galen
Last [15] for estimating the opponents interests profile, whose main idea is issues
that are important to the opponent shall not be adjusted as often. Formally, the
inverse utility function F : U → Ω is defined as

F (us) = arg max
ω

U
′
o (ω) , where

us ≤ Us (ω) ≤ us + Δu (3)

where U
′
o denotes the opponent’s utility function estimated by the opponent’s

historical bids, and Us represents our utility function. Δu denotes the window
value. In practice, we set Δu = 0.05.

Rewards. We only have a terminal reward. The agent is given a positive reward
when two parties reach an agreement or reward of −1 when no agreement is
achieved before the deadline. Our RL agent’s acceptance condition is simple but
effective. If our agent plans to propose a deal that is worse than the opponent’s
offer, we have reached a consensus with our opponent and we accept the offer.
Formally, the reward function is defined as follows:

rt+1 (st, at) =

⎧
⎪⎨

⎪⎩

Us (ω) , if there is an agreement ω

− 1, if the deadline arrives and no agreement.
0, otherwise

(4)

Policy Network. Any policy-based DRL algorithm can be used to solve the
MDP modeled above. In this work, we consider Soft Actor Critic (SAC) algo-
rithm [17] for learning the optimal target utility value. SAC is a maximum
entropy DRL algorithm that optimizes a stochastic policy in an off-policy way.
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The objective of SAC is to maximize the expected return and the entropy at the
same time:

J(θ) =
T∑

t=1

E(st,at)∼ρπθ
[r(st, at) + αH(πθ(.|st))] (5)

where H(.) is the entropy measure and α controls how important the entropy
term is, known as temperature parameter. The policy is trained to maximize
a trade-off between expected return and entropy, a measure of randomness in
the policy. This helps in improving robustness and generalization of the trained
model. Soft Q-value that includes the entropy bonuses is defined as:

Q (st, at) = r (st, at) + γE(st+1,at+1)∼ρπ
[Q (st+1, at+1) − α log π (at+1 | st+1)]

(6)

To reduce the overestimation of the value function, SAC uses two value net-
works. Both value networks are learned with MSBE minimization, by regressing
to a single shared target. Since SAC is brittle with respect to the temperature
parameter, in implementation, we use SAC with automatically adjusted temper-
ature.

4.2 Policy Reuse Mechanism

It is difficult to find a policy that can deal with all opponents. In order to simplify
the problem, we consider to reuse our existing policies in the policy library using
a belief model that can match current opponent with previously seen opponents,
this corresponds to the lines 2–8 in Algorithm 1. Every policy in our policy library
is able to deal with a certain type of opponent. When encountering an unseen
opponent, our policy reuse mechanism will distinguish the possibility that the
previously unseen opponent belongs to a certain known negotiation style. The
policy reuse mechanism is a very critical part, since higher detection accuracy
can lead to more efficient strategy reuse. However, we cannot simply use the
vanilla BPR+, which uses a performance model as the signal to detect different
task. Since in the field of negotiation, opponents with different negotiation styles
may lead to the same agreement utility. Here, we use three signals to evaluate an
opponent’s negotiation style: agreement utility, number of negotiation rounds,
the changing trend of the utility received from opponent’s offer. The changing
trend of the utility received from opponent’s offer can be measured with different
criterion, here we use the standard deviation.

Similar to Deep BPR+, we can still using Bayes’ Rule to update our belief
model. Now the belief β(τ) can be regarded as the posterior probabilities measur-
ing the opponent’s policy, based on the agreement utility, number of negotiation
rounds and the changing trend of the utility received from opponent’s offer. Like
the rectified belief model defined in Deep BPR+, we use performance model
P (U |τ, π), efficiency model E(D|τ, π), behavior model B(W |τ, π) to describe
the agreement performance, the negotiation efficiency and changes in opponent
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behavior where P (U |τ, π), E(D|τ, π), B(W |τ, π) are three probability distribu-
tions over the agreement utility U , number of negotiation rounds D and the
standard deviation of the utility received from opponent’s offer W using π on
task τ respectively. The belief is initialized with a prior distribution (e.g. random
distribution) as β0(τ) and is updated as below:

βn(τ) =
P (Un|τ, πn) E (Dn|τ, πn) B (Wn|τ, πn) βn−1(τ)

∑
τ ′∈T P (Un|τ ′, πn) E (Dn|τ ′, πn)B (Wn|τ ′, πn) βn−1 (τ ′)

(7)

Based on the belief β(τ), we selects the policy most likely to achieve any
possible improvement of return Ū < U+ < Umax as the best coping policy π∗,
as is showed in Eq. 2.

For negotiation styles that have never been seen before, this refers to a brand-
new style that does not match the policies in the policy library. It usually causes
the agent to be at a lower agreement utility regardless of the strategy chosen for
a period of time. Specifically, our agent calculates the average agreement utility

Ū over h episodes Ū =
∑i

i−h U

h as the signal indicating the average performance
over all policies till the current episode i. If the average agreement utility Ū is
lower than a given threshold δ(Ū < δ ), the agent will switch to learning module.

5 Experiments

In this section, we present experimental results of our agent based on the pro-
posed Deep BPR+ negotiating agent framework. The goal of our experiments is
to verify that our agent can efficiently detect the strategy of opponents and also
supports the detection of previously unseen policies and learning a response pol-
icy accordingly. We first evaluate the performance of our agent against 8 ANAC
winning agents. Secondly, we evaluate the performance of our agent against
opponents using previously unseen strategies.

5.1 Experimental Setup

We evaluate the performance of our Deep BPR+ negotiating agent against
the following 8 ANAC winning agents: Ponpoko, Caduceus, ParsCat, Atlas3,
ParsAgent, The Fawkes, CUHKAgent and HardHeaded [1–3]1. We conduct
experiments on 20 domains from ANAC. The opposition of these domains ranges
from 0.051 to 0.840 and the carnality of outcome space ranges from 3 to 56700.
Table 1 shows the statistics of these 20 domains we conduct our experiments on.

In the training phase, the domain is randomly selected from these 20 domains
for each negotiation session and the policy that the agent learns is evaluated in
all 20 domains. The maximum rounds allowed per session is 60. In all exper-
iments the agents are trained until convergence. Moreover, for simplicity all
1 Ponpoko (2017 winner), Caduceus (2016 winner), ParsCat (2016 2nd position),

Atlas3 (2015 winner), ParsAgent (2015 2nd position), The Fawkes (2013 winner),
CUHKAgent (2012 winner) and HardHeaded (2011 winner).
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Table 1. Statistics of 20 domains used in experiments.

Domain Opposition Outcome space Domain Opposition Outcome space

Acquisition 0.117 384 Icecream 0.148 720

Amsterdam-B 0.223 3024 Kitchen 0.057 15625

Animal 0.110 1152 Laptop 0.160 27

Barter-C 0.492 80 NiceOrDie 0.840 3

Camera 0.212 3600 Outfit 0.198 128

Coffee 0.447 112 Planes 0.164 27

DefensiveCharms 0.322 36 RentalHouse-B 0.327 60

DogChoosing 0.051 270 SmartPhone 0.224 12000

FiftyFifty2013 0.707 11 Ultimatum 0.545 9

HouseKeeping 0.272 384 Wholesaler 0.308 56700

hyperparameters of SAC algorithm are kept fixed while training against differ-
ent opponents. Although we conduct our experiments on discrete domains, it is
worth noting that our proposed framework works in continuous domains as well.
When faced with different types of opponents and the opponent’s strategy is
unknown, an intuitive idea is to train a general agent, which we use as the base-
line agent. Specifically, the baseline agent is trained using SAC algorithm with
same hyperparameters. Both the scenarios and the opponents that the baseline
agent encounters during training are randomly selected for each negotiation ses-
sion. In our implementation, the baseline agent is trained for a total of 80,000
negotiation sessions.

All the experiments are conducted in our newly-developed negotiation envi-
ronment. Among the negotiation settings, the reservation price is set as 0.1 and
discount factor is ignored for all negotiations. Moreover, we used min-max nor-
malisation for normalising the issue values to between 0 and 1. For performance
comparisons, average utility values are calculated on negotiation data obtained
in 1000 negotiation sessions between a pair of agents for each negotiation domain.

5.2 Performance Against ANAC Winning Agents

In this section, we present the empirical results of our agent against 8 ANAC
winning agents. We pretrain our agent against each opponent for 10,000 nego-
tiation sessions in succession. So our agent is equipped with the corresponding
pre-trained response policies and aims at selecting the most appropriate policy in
hand to reuse against the opponent by detecting its behaviors. Our experiments
use the following metrics:

(1) Average utility benchmark: the mean utility acquired by the agent a when
negotiating with every other agent b ∈ A in all negotiation domains D where
A and D denote the set of all agents and all domains respectively.

(2) Utility against opponent benchmark: the mean utility acquired by agents
b ∈ A/a while negotiating with agent a in all negotiation scenarios.
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(3) Domain utility benchmark: the mean utility obtained by all agents a ∈ A in
domain d ∈ D, while negotiating with every agent b ∈ A.

Table 2. Comparison of our proposed Deep BPR+ negotiator with 8 ANAC win-
ning agents using average utility benchmark, average rounds per session and average
agreement achievement rate.

Agent Avg utility Avg round Agreement achievement rate

Caduceus 0.3461 ± 0.0013 48.98 ± 0.12 0.37 ± 0.00

ParsAgent 0.4570 ± 0.0017 51.73 ± 0.01 0.53 ± 0.00

PonPokoAgent 0.4880 ± 0.0011 48.65 ± 0.23 0.55 ± 0.00

ParsCat 0.5283 ± 0.0003 49.97 ± 0.05 0.64 ± 0.00

Atlas3 0.5572 ± 0.0026 38.16 ± 0.11 0.84 ± 0.00

HardHeadedAgent 0.3900 ± 0.0020 51.75 ± 0.15 0.47 ± 0.00

TheFawkes 0.4369 ± 0.0021 49.81 ± 0.01 0.53 ± 0.00

CUHKAgent 0.4329 ± 0.0007 49.80 ± 0.02 0.51 ± 0.00

Deep BPR+ Agent 0.6106± 0.0039 36.92± 0.06 0.90± 0.00

Table 2 shows the performance of our agent on the average utility bench-
mark, together with average rounds per negotiation session and average agree-
ment achievement rate with standard deviation. Our Deep BPR+ negotiator
outperforms all the ANAC winning agents, obtaining higher mean utility, higher
agreement achievement rate and converging to an agreement in less rounds,
which validates the effectiveness and efficiency of our proposed framework. On
the contrary, the baseline agent fails to handle different types of opponents
even though it trained with them2. In comparison with utility against oppo-
nent benchmark, the average utility obtained by our agent is 50% higher than
the average benchmark over all ANAC winning agents as shown in Fig. 1(a). This
means that when encountering each opponent, the agent is able to accurately
detect the strategy of the opponent and act with the optimal policy in order
to reach agreements. Figure 1(b) compares the average utility obtained by our
agent with that of 8 ANAC winning agents in each domain. It can be seen that
our agent performs best in 12 out of 20 domains. Although our agent doesn’t
obtain the highest utility in some domains with low opposition like Acquisition,
its absolute utility is still high, exceeding 0.8. Therefore in terms of average util-
ity across all domains, Deep BPR+ agent significantly outperforms other agents
as depicted in Table 2.

2 Due to the space limitation, we only present the statistics of baseline agent in this
control experiment. Mean utility, average rounds and average agreement achievement
rate are 0.4573 ± 0.0040, 49.54 ± 0.07 and 0.57 ± 0.00 respectively.



Detecting and Learning in Automated Negotiations 27

Fig. 1. (a) Comparison of our Deep BPR+ agent with utility against opponent bench-
mark consisting of 8 ANAC winning agents. (b) Comparison of Deep BPR+ agent with
domain utility benchmark consisting of 20 domains.

5.3 New Opponent Detection and Learning

In this section, we evaluate the performance of Deep BPR+ agent against oppo-
nents using previously unseen strategy. Now assume that Deep BPR+ agent
now is only equipped with 4 response policies against Ponpoko, ParsCat, The
Fawkes and HardHeaded. Caduceus, ParsAgent, Atlas3 and CUHKAgent are
unseen strategies to it. We first evaluate the performance of this agent against 8
ANAC winning agents by comparing with average utility benchmark and utility
against opponent benchmark, the empirical results can be seen in Fig. 2. In this

Fig. 2. The performance of our agent equipped with 4 response policy against 8 ANAC
winning agents by comparing it with average utility benchmark and utility against
opponent benchmark.
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evaluation, we set the opponent’s strategy to CUHKAgent and keep it unchanged
for 4000 negotiation sessions. Our agent may have learned a new response policy
against CUHKAgent in these 4000 sessions. Then we evaluate the performance
of this agent against 8 ANAC winning agents on all three metrics mentioned
above, the experimental results are shown in Fig. 33.

Fig. 3. The performance of our agent against 8 ANAC winning agents after encoun-
tering CUHKAgent opponent and learning the coping policy accordingly.

3 We also conducted other configures and found similar results, so we only report this
evaluation.
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In Fig. 2(a), average utility obtained by our agent is lower than Atlas3 and
perform comparably to the second place agent. In Fig. 2(b), although our agent
never encounters Caduceus and CUHKAgent before, it achieves higher mean util-
ity than utility against opponent benchmark when negotiating against Caduceus
and CUHKAgent. This is because our agent can choose the optimal policy avail-
able in the policy library to act, which illustrates the importance of policy reuse
mechanism.

After interacting with CUHKAgent opponent for 4000 sessions, our agent
performs comparably to the Atlas3 and achieves performance improvements on
all three metrics as shown in Fig. 3, which means that our agent can detect an
previously unseen strategy, and successfully learn a response policy accordingly.

6 Conclusion

This paper presents a novel framework called Deep BPR+ negotiating agent
framework, which responds to an unknown opponent by detecting the strategy
of the opponent from received signals during negotiation and then acting with the
best policy in the policy library. Besides, our framework enables online learning of
new model when encountering an opponent using a new strategy and our policies
available are not performing optimally. Experimental results show an efficient
detection of the opponent based on observation signals, obtaining higher average
utility than a baseline and ANAC winning agents.

The exceptional results justify to invest further research efforts into this deep
BPR+ negotiating agent framework. As for future work, it is worth investigating
how to accelerate the online new policy learning phase. Second, the extension of
this framework to other negotiation settings, such as concurrent negotiation or
multi-lateral negotiation, is another interesting avenue to exploit.
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Abstract. Hindsight experience replay (HER) is a goal relabelling tech-
nique typically used with off-policy deep reinforcement learning algo-
rithms to solve goal-oriented tasks; it is well suited to robotic manipu-
lation tasks that deliver only sparse rewards. In HER, both trajectories
and transitions are sampled uniformly for training. However, not all of
the agent’s experiences contribute equally to training, and so naive uni-
form sampling may lead to inefficient learning. In this paper, we pro-
pose diversity-based trajectory and goal selection with HER (DTGSH).
Firstly, trajectories are sampled according to the diversity of the goal
states as modelled by determinantal point processes (DPPs). Secondly,
transitions with diverse goal states are selected from the trajectories by
using k-DPPs. We evaluate DTGSH on five challenging robotic manip-
ulation tasks in simulated robot environments, where we show that our
method can learn more quickly and reach higher performance than other
state-of-the-art approaches on all tasks.

Keywords: Deep reinforcement learning · Determinantal point
processes · Hindsight experience replay

1 Introduction

Deep reinforcement learning (DRL) [3], in which neural networks are used as
function approximators for reinforcement learning (RL), has been shown to be
capable of solving complex control problems in several environments, including
board games [27,28], video games [4,19,30], simulated and real robotic manipu-
lation [2,9,15] and simulated autonomous driving [12].

However, learning from a sparse reward signal, where the only reward is
provided upon the completion of a task, still remains difficult. An agent may
rarely or never encounter positive examples from which to learn in a sparse-
reward environment. Many domains therefore provide dense reward signals [5], or
practitioners may turn to reward shaping [20]. Designing dense reward functions
c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13033, pp. 32–45, 2021.
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typically requires prior domain knowledge, making this approach difficult to
generalise across different environments.

Fortunately, a common scenario is goal-oriented RL, where the RL agent is
tasked with solving different goals within the same environment [11,25]. Even if
each task has a sparse reward, the agent ideally generalises across goals, making
the learning process easier. For example, in a robotic manipulation task, the goal
during a single episode would be to achieve a specific position of a target object.

Hindsight experience replay (HER) [1] was proposed to improve the learning
efficiency of goal-oriented RL agents in sparse reward settings: when past expe-
rience is replayed to train the agent, the desired goal is replaced (in “hindsight”)
with the achieved goal, generating many positive experiences. In the above exam-
ple, the desired target position would be overwritten with the achieved target
position, with the achieved reward also being overwritten correspondingly.

We note that HER, whilst it enabled solutions to previously unsolved tasks,
can be somewhat inefficient in its use of uniformly sampling transitions dur-
ing training. In the same way that prioritised experience replay [26] has signifi-
cantly improved over the standard experience replay in RL, several approaches
have improved upon HER by using data-dependent sampling [8,32]. HER with
energy-based prioritisation (HEBP) [32] assumes semantic knowledge about the
goal-space and uses the energy of the target objects to sample trajectories with
high energies, and then samples transitions uniformly. Curriculum-guided HER
(CHER) [8] samples trajectories uniformly, and then samples transitions based
on a mixture of proximity to the desired goal and the diversity of the samples;
CHER adapts the weighting of these factors over time. In this work, we intro-
duce diversity-based trajectory and goal selection with HER (DTGSH; See Fig. 1),
which samples trajectories based on the diversity of the goals achieved within the
trajectory, and then samples transitions based on the diversity of the set of sam-
ples. In this paper, DTGSH is evaluated on five challenging robotic manipula-
tion tasks. From extensive experiments, our proposed method converges faster and
reaches higher rewards than prior work, without requiring domain knowledge [32]
or tuning a curriculum [8], and is based on a single concept—determinantal point
processes (DPPs) [14].

Fig. 1. Overview of DTGSH. Every time a new episode is completed, its diversity is
calculated, and it is stored in the episodic replay buffer. During training, m episodes
are sampled according to their diversity-based priority, and then k diverse, hindsight-
relabelled transitions are sampled using a k-DPP [13].
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2 Background

2.1 Reinforcement Learning

RL is the study of agents interacting with their environment in order to max-
imise their reward, formalised using the framework of Markov decision processes
(MDPs) [29]. At each timestep t, an agent receives a state st from the environ-
ment, and then samples an action at from its policy π(at|st). Next, the action
at is executed in the environment to get the next state st+1, and a reward rt. In
the episodic RL setting, the objective of the agent is to maximise its expected
return E[R] over a finite trajectory with length T :

E[R] = E

[
T∑

t=1

γt−1rt

]
, (1)

where γ ∈ [0, 1] is a discount factor that exponentially downplays the influence
of future rewards, reducing the variance of the return.

2.2 Goal-Oriented Reinforcement Learning

RL can be expanded to the multi-goal setting, where the agent’s policy and the
environment’s reward function R(st, at) are also conditioned on a goal g [11,25].
In this work, we focus on the goal-oriented setting and environments proposed
by OpenAI [23].

In this setting, every episode comes with a desired goal g, which specifies
the desired configuration of a target object in the environment (which could
include the agent itself). At every timestep t, the agent is also provided with the
currently achieved goal gac

t+1. A transition in the environment is thus denoted
as: (st, at, rt, st+1, g, gac

t+1). The environment provides a sparse reward function,
where a negative reward is given unless the achieved goal is within a small
distance ε of the desired goal:

R
(
g, gac

t+1

)
:=

{
0 if

∥∥gac
t+1 − g

∥∥ ≤ ε

−1 otherwise.
(2)

However, in this setting, the agent is unlikely to achieve a non-negative
reward through random exploration. To overcome this, HER provides successful
experiences for the agent to learn from by relabelling transitions during training:
the agent trains on a hindsight desired goal g′, which is set to the achieved goal
gac

t+1, with rt recomputed using the environment reward function (Eq. 2).

2.3 Deep Deterministic Policy Gradient

Deep deterministic policy gradient (DDPG) [16] is an off-policy actor-critic
DRL algorithm for continuous control tasks, and is used as the baseline algo-
rithm for HER [1,8,32]. The actor πθ(st) is a policy network parameterised
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by θ, and outputs the agent’s actions. The critic Qη(st, at) is a state-action-
value function approximator parameterised by η, and estimates the expected
return following a given state-action pair. The critic is trained by minimis-
ing Lc = E[(Qη(st, at) − yt)2] where yt = rt + γQη(st+1, πθ(st+1)). The actor
is trained by maximising La = E[Qη(st, πθ(st))], backpropagating through the
critic. Further implementation details can be found in prior work [1,16].

2.4 Determinantal Point Processes

A DPP [14] is a stochastic process that characterises a probability distribution
over sets of points using the determinant of some function. In machine learning
it is often used to quantify the diversity of a subset, with applications such as
video [18] and document summarisation [10].

Formally, for a discrete set of points Y = {x1, x2, · · · , xN}, a point process
P is a probability measure over all 2|Y| subsets. P is a DPP if a random subset
Y is sampled with probability:

PL(Y = Y ) =
det(LY )∑

Y ′⊆Y det(LY ′)
=

det(LY )
det(L + I)

, (3)

where Y ⊆ Y, I is the identity matrix, L ∈ R
N×N is the positive semi-definite

DPP kernel matrix, and LY is the sub-matrix with rows and columns indexed
by the elements of the subset Y .

The kernel matrix L can be represented as the Gram matrix L = XT X,
where each column of X is the feature vector of an item in Y. The determinant,
det(LY ), represents the (squared) volume spanned by vectors xi ∈ Y . From
a geometric perspective, feature vectors that are closer to being orthogonal to
each other will have a larger determinant, and vectors in the spanned subspace
are more likely to be sampled: PL(Y = Y ) ∝ det(LY ). Using orthgonality as a
measure of diversity, we leverage DPPs to sample diverse trajectories and goals.

3 Related Work

The proposed work is built on HER [1] as a way to effectively augment goal-
oriented transitions from a replay buffer: to address the problem of sparse
rewards, transitions from unsuccessful trajectories are turned into successful
ones. HER uses an episodic replay buffer, with uniform sampling over trajec-
tories, and uniform sampling over transitions. However, these samples may be
redundant, and many may contribute little to the successful training of the agent.

In the literature, some efforts have been made to increase the efficiency of
HER by prioritising more valuable episodes/transitions. Motivated by the work-
energy principle in physics, HEBP [32] assigns higher probability to trajectories
in which the target object has higher energy; once the episodes are sampled,
the transitions are then sampled uniformly. However, HEBP requires knowing
the semantics of the goal space in order to calculate the probability, which is
proportional to the sum of the target’s potential, kinetic and rotational energies.
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CHER [8] dynamically controls the sampling of transitions during training
based on a mixture of goal proximity and diversity. Firstly, m episodes are uni-
formly sampled from the episodic replay buffer, and then a minibatch of k < m
is sampled according to the current state of the curriculum. The curriculum
initially biases sampling to achieved goals that are close to the desired goal
(requiring a distance function), and later biases sampling towards diverse goals,
using a k-nearest neighbour graph and a submodular function to more efficiently
sample a diverse subset of goals (using the same distance function).

Other work has expanded HER in orthogonal directions. Hindsight policy
gradient [24] and episodic self-imitation learning [6] apply HER to improve the
efficiency of goal-based on-policy algorithms. Dynamic HER [7] and competitive
ER [17] expand HER to the dynamic goal and multi-agent settings, respectively.

The use of DPPs in RL has been more limited, with applications towards
modelling value functions of sets of agents in multiagent RL [21,31], and most
closely related to us, finding diverse policies [22].

4 Methodology

We now formally describe the two main components of our method, DTGSH:
1) a diversity-based trajectory selection module to sample valuable trajectories
for the further goal selection; 2) a diversity-based goal selection module to select
transitions with diverse goal states from the previously selected trajectories.
Together, these select informative transitions from a large area of the goal space,
improving the agent’s ability to learn and generalise.

4.1 Diversity-Based Trajectory Selection

We propose a diversity-based prioritization method to select valuable trajectories
for efficient training. Related to HEBP’s prioritisation of high-energy trajecto-
ries [32], we hypothesise that trajectories that achieve diverse goal states gac

t are
more valuable for training; however, unlike HEBP, we do not require knowledge
of the goal space semantics.

In a robotic manipulation task, the agent needs to move a target object
from its initial position, gac

1 , to the target position, g. If the agent never moves
the object, despite hindsight relabelling it will not be learning information that
would directly help in task completion. On the other hand, if the object moves a
lot, hindsight relabelling will help the agent learn about meaningful interactions.

In our approach, DPPs are used to model the diversity of achieved goal states
gac

t in an episode, or subsets thereof. For a single trajectory T of length T , we
divide it into several partial trajectories τj of length b, with achieved goal states
{gac

t }t=n:n+b−1. That is, with a sliding window of b = 2, a trajectory T can be
divided into Np partial trajectories:

Ti = {{gac
1 , gac

2︸ ︷︷ ︸
τ1

}, {gac
2 , gac

3︸ ︷︷ ︸
τ2

}, {gac
3 , gac

4︸ ︷︷ ︸
τ3

}, · · · , {gac
T−1, g

ac
T︸ ︷︷ ︸

τNp

}}. (4)
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The diversity dτj of each partial trajectory τj can be computed as:

dτj = det(Lτj ), (5)

where Lτj is the kernel matrix of partial trajectory τj :

Lτj = MT M, (6)

and M = [ĝac
n , ĝac

n+1, · · · , ĝac
n+b−1], where each ĝac is the �2-normalised version of

the achieved goal gac [13]. Finally, the diversity dT of trajectory T is the sum
of the diversity of its Np constituent partial trajectories:

dT =
Np∑
j=1

dτj . (7)

Similarly to HEBP [32], we use a non-uniform episode sampling strategy.
During training, we prioritise sampling episodes proportionally to their diversity;
the probability p(Ti) of sampling trajectory Ti from a replay buffer of size Ne is:

p(Ti) =
dTi∑Ne

n=1 dTn

. (8)

4.2 Diversity-Based Goal Selection

In prior work [1,32], after selecting the trajectories from the replay buffer, one
transition from each selected trajectory is sampled uniformly to construct a
minibatch for training. However, the modified goals g′ in the minibatch might
be similar, resulting in redundant information. In order to form a minibatch
with diverse goals for more efficient learning, we use k-DPPs [13] for sampling
goals. Compared to the standard DPP, a k-DPP is a conditional DPP where the
subset Y has a fixed size k, with the probability distribution function:

Pk
L(Y = Y ) =

det(LY )∑
|Y ′|=k det(LY ′)

. (9)

k-DPPs are more appropriate for goal selection with a minibatch of fixed size
k. Given m > k trajectories sampled from the replay buffer, we first uniformly
sample a transition from each of the m trajectories. Finally, a k-DPP is used
to sample a diverse set of transitions based on the relabelled goals g′ (which,
in this context, we denote as “candidate goals”). Figure 2a gives an example of
uniform vs. k-DPP sampling, demonstrating the increased coverage of the latter.
Figure 2b provides corresponding estimated density plots; note that the density
of the k-DPP samples is actually more uniform over the support of the candidate
goal distribution.
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Fig. 2. Visualisation of k = 32 goals selected from m = 100 candidate goals of the Push
task using either uniform sampling or k-DPP sampling, respectively. The candidate
goals are distributed over a 2D (xy) space. Note that k-DPP sampling (right hand
plots) results in a broader span of selected goals in xy space compared to uniform
sampling (left hand plots).

Algorithm 1. Diversity-based Goal Selection using k-DPP
Require: set of m candidate goal states G := {gi}i=1:m, minibatch size k

1: J ← ∅, M ← [g1, g2, · · · , gm]
2: Calculate the DPP kernel matrix LM

3: {vn, λn} ← EigenDecomposition(LM )
4: ek(λ1, λ2, . . . , λm) :=

∑

J′⊆{1,2,...,m}
|J′|=k

∏

n∈J′
λn � elementary symmetric polynomial: emk

5: for n = m, m − 1, · · · , 1 do

6: if u ∼ Uniform[0, 1] < λn
en−1
k−1
en
k

then

7: J ← J ∪ {n}, k ← k − 1

8: if k = 0 then

9: break

10: end if
11: end if

12: end for
13: V ← {vn}n∈J , B ← ∅

14: while |V | > 0 do

15: Select gi from G with p(gi) :=
1

|V |
∑

v∈V (vT bi)
2 � bi is the ith standard basis

16: B ← B ∪ {gi}
17: V ← V⊥ � an orthonormal basis for the subspace of V orthogonal to bi
18: end while

19: return minibatch B with size k
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Algorithm 2. Diversity-based Trajectory and Goal Selection with HER
Require: RL environment with episodes of length T , number of episodes N , off-policy

RL algorithm A, episodic replay buffer B, number of algorithm updates U , candi-
date transitions size m, minibatch size k

1: Initialize the parameters θ of all models in A

2: B ← ∅

3: for i = 1, 2, · · · , N do
4: Sample a desired goal g and an initial state s0 � start a new episode
5: for t = 1, 2, · · · , T do
6: Sample an action at using the policy π(st, g; θ)
7: Execute action at and get the next state st+1 and achieved goal state gac

t+1

8: Calculate rt according to Eq. (2)
9: Store transition (st, at, rt, st+1, g, gac

t+1) in B
10: end for
11: Calculate the diversity score of current episode dTi using Eq. (5) and Eq. (7)
12: Calculate the diversity-based priority p(T ) of each episode in B using Eq. (8)
13: for iteration = 1, 2, · · · , U do
14: Sample m trajectories from B according to priority p(T )
15: Uniformly sample one transition from each of the m trajectories
16: Relabel goals in each transition and recompute the reward to get m candidate

transitions {(st, at, r
′
t, st+1, g

′)n}n=1:m

17: Sample minibatch B with size k from the m candidates using Algorithm 1
18: Optimise θ with minibatch B
19: end for
20: end for

Algorithm 1 shows the details of the goal selection subroutine, and Algo-
rithm 2 gives the overall algorithm for our method, DTGSH.

5 Experiments

We evaluate our proposed method, and compare it with current state-of-the-art
HER-based algorithms [1,8,32] on challenging robotic manipulation tasks [23],
pictured in Fig. 3. Furthermore, we perform ablation studies on our diversity-
based trajectory and goal selection modules. Our code is based on OpenAI Base-
lines1, and is available at: https://github.com/TianhongDai/div-hindsight.

5.1 Environments

The robotic manipulation environments used for training and evaluation include
five different tasks. Two tasks use the 7-DoF Fetch robotic arm with two-fingers
parallel gripper: Push, and Pick&Place, which both require the agent to move
a cube to the target position. The remaining three tasks use a 24-DoF Shadow
Dexterous Hand to manipulate an egg, a block and a pen, respectively. The
sparse reward function is given by Eq. (2).
1 https://github.com/openai/baselines.

https://github.com/TianhongDai/div-hindsight
https://github.com/openai/baselines


40 T. Dai et al.

(a) Push (b) Pick&Place (c) EggFull (d) BlockRotate (e) PenRotate

Fig. 3. Robotic manipulation environments. (a–b) use the Fetch robot, and (c–e) use
the Shadow Dexterous Hand.

In the Fetch environments, the state st contains the position and velocity
of the joints, and the position and rotation of the cube. Each action at is a 4-
dimensional vector, with three dimensions specifying the relative position of the
gripper, and the final dimension specifying the state of the gripper (i.e., open or
closed). The desired goal g is the target position, and the achieved goal gac

t is
the position of the cube. Each episode is of length T = 50.

In the Shadow Dexterous Hand environments, the state st contains the posi-
tion and velocity of the joints. Each action at is a 20-dimensional vector which
specifies the absolute position of 20 non-coupled joints in the hand. The desired
goal g and achieved goal gac

t specify the rotation of the object for the block
and pen tasks, and the position + rotation of the object for the egg task. Each
episode is of length T = 200.

5.2 Training Settings

We base our training setup on CHER [8]. We train all agents on minibatches of
size k = 64 for 50 epochs using MPI for parallelisation over 16 CPU cores; each
epoch consists of 1600 (16 × 100) episodes, with evaluation over 160 (16 × 10)
episodes at the end of each epoch. Remaining hyperparameters for the baselines
are taken from the original work [1,8,32]. Our method, DTGSH, uses partial
trajectories of length b = 2 and m = 100 as the number of candidate goals.

5.3 Benchmark Results

We compare DTGSH to DDPG [16], DDPG+HER [1], DDPG+HEBP [32] and
DDPG+CHER [8]. Evaluation results are given based on repeated runs with 5
different seeds; we plot the median success rate with upper and lower bounds
given by the 75th and 25th percentiles, respectively.

Figure 4 and Table 1 show the performance of DDPG+DTGSH and base-
line approaches on all five tasks. In the Fetch tasks, DDPG+DTGSH and
DDPG+HEBP both learn significantly faster than the other methods, while
in the Shadow Dexterous Hand tasks DDPG+DTGSH learns the fastest and
achieves higher success rates than all other methods. In particular, DDPG can-
not solve any tasks without using HER, and CHER performs worse in the Fetch
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Fig. 4. Success rate of DTGSH and baseline approaches.

tasks. We believe the results highlight the importance of sampling both diverse
trajectories and goals, as in our proposed method, DTGSH.

Table 1. Final mean success rate ± standard deviation, with best results in bold.

Push Pick&Place EggFull BlockRotate PenRotate

DDPG [16] 0.09 ± 0.01 0.04 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00

DDPG+HER [1] 1.00 ± 0.00 0.89 ± 0.03 0.11 ± 0.01 0.55 ± 0.04 0.15 ± 0.02

DDPG+HEBP [32] 1.00 ± 0.00 0.91 ± 0.03 0.14 ± 0.02 0.59 ± 0.02 0.20 ± 0.03

DDPG+CHER [8] 1.00 ± 0.00 0.91 ± 0.04 0.15 ± 0.01 0.54 ± 0.04 0.17 ± 0.03

DDPG+DTGSH 1.00 ± 0.00 0.94 ± 0.01 0.17 ± 0.03 0.62 ± 0.02 0.21 ± 0.02

5.4 Ablation Studies

In this section, we perform the following experiments to investigate the effective-
ness of each component in DTGSH: 1) diversity-based trajectory selection with
HER (DTSH) and diversity-based goal selection with HER (DGSH) are evalu-
ated independently to assess the contribution of each stage; 2) the performance
using different partial trajectory lengths b; 3) the performance of using different
candidate goal set sizes m.

Figure 5 shows the performance of using DTSH and DGSH independently.
DDPG+DTSH outperforms DDPG+HER substantially in all tasks, which sup-
ports the view that sampling trajectories with diverse achieved goals can sub-
stantially improve performance. Furthermore, unlike DDPG+HEBP, DTSH does
not require knowing the structure of the goal space in order to calculate the
energy of the target object; DDPG+DGSH achieves better performance than
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Fig. 5. Success rate of HER, DTGSH, and ablations DTSH and DGSH.

DDPG+HER in three environments, and is only worse in one environment.
DGSH performs better in environments where it is easier to solve the task (e.g.,
Fetch tasks), and hence the trajectories selected are more likely to contain use-
ful transitions. However, DTGSH, which is the combination of both modules,
performs the best overall.

Fig. 6. Success rate of DTGSH with different partial trajectory lengths b and different
candidate goal set sizes m.
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Figure 6 shows the performance of DDPG+DTGSH with different partial
trajectory lengths b and different candidate goal set sizes m. In this work, we use
b = 2 and m = 100 as the defaults. Performance degrades with b � 2, indicating
that pairwise diversity is best for learning in our method. m � 100 does not
affect performance in the Fetch environments, but degrades performance in the
Shadow Dexterous Hand environments.

5.5 Time Complexity

Table 2 gives example training times of all of the HER-based algorithms. DTGSH
requires an additional calculation of the diversity score of O(Npb

3) at the end
of every training episode, and sampling of O(mk2) for each minibatch.

Table 2. Training time (hours:minutes:seconds) of DTGSH and baseline approaches
on the Push task for 50 epochs.

DDPG+HER [1] DDPG+HEBP [32] DDPG+CHER [8] DDPG+DTGSH

Time 00:55:08 00:56:32 03:02:18 01:52:30

6 Conclusion

In this paper, we introduced diversity-based trajectory and goal selection with
hindsight experience replay (DTGSH) to improve the learning efficiency of goal-
orientated RL agents in the sparse reward setting. Our method can be divided
into two stages: 1) valuable trajectories are selected according to diversity-
based priority, as modelled by determinantal point processes (DPPs) [14]; 2)
k-DPPs [13] are leveraged to sample transitions with diverse goal states from
previously selected trajectories for training. Our experiments empirically show
that DTGSH achieves faster learning and higher final performance in five
challenging robotic manipulation tasks, compared to previous state-of-the-art
approaches [1,8,32]. Furthermore, unlike prior extensions of hindsight experi-
ence replay, DTGSH does not require semantic knowledge of the goal space [32],
and does not require tuning a curriculum [8].

Acknowledgements. This work was supported by JST, Moonshot R&D Grant Num-
ber JPMJMS2012.
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Abstract. TD(λ) has become a crucial algorithm of modern reinforce-
ment learning (RL). By introducing the trace decay parameter λ, TD(λ)
elegantly unifies Monte Carlo methods (λ = 1) and one-step temporal dif-
ference prediction (λ = 0), which can learn the optimal value significantly
faster than extreme cases with an intermediate value of λ. However, it is
mainly used in tabular or linear function approximation cases, which lim-
its its practicality in large-scale learning and prevents it from adapting to
modern deep RL methods. The main challenge of combining TD(λ) with
deep RL methods is the “deadly triad” problem between function approx-
imation, bootstrapping and off-policy learning. To address this issue, we
explore a new deep multi-step RL method, called SAC(λ), to relieve this
dilemma. Firstly, our method uses a new version of Soft Actor-Critic
algorithm which stabilizes the learning of non-linear function approxi-
mation. Secondly, we introduce truncated TD(λ) to reduce the impact
of bootstrapping. Thirdly, we further use importance sampling as the off-
policy correction. And the time complexity of the training process can be
reduced via parallel updates and parameter sharing. Our experimental
results show that SAC(λ) can improve the training efficiency and the
stability of off-policy learning. Our ablation study also shows the impact
of changes in trace decay parameter λ and emerges some insights on how
to choose an appropriate λ.

Keywords: Deep reinforcement learning · TD(λ) · Off-policy · Soft
Actor-Critic

1 Introduction

The choice of the update target is an important part when designing reinforce-
ment learning (RL) algorithms. It often influences the bias and the variance of the
algorithm, as well as the convergence guarantees and learning speed. Earlier deep
reinforcement learning algorithms [13,22,24] focus more on designing one-step
return as the target, i.e., they utilize only one forward reward to update value
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functions. Recently, algorithms such as Retrace(λ) [15], Rainbow [11], Reac-
tor [6], IMPALA [4] and Ape-X [12] have achieved great success on various RL
tasks. These algorithms are often designed with multi-step methods, which use
trajectories of length h to compute the target. Furthermore, a novel algorithm
called TD(λ) [19] elegantly combines the information of many multi-step targets
to create a mixed target. By introducing the trace decay parameter λ, TD(λ) is
also a new way to unify Monte Carlo methods (λ = 1) and one-step temporal
difference prediction (λ = 0).

Despite exhaustively studied, both theoretically and empirically, TD(λ) is
limited to tabular cases [27] or the semi-gradient method [18,28], preventing
it from adapting to large-scale learning and modern deep RL methods. The
main challenge of combining TD(λ) with deep RL methods is the deadly triad
problem [21] of function approximation, bootstrapping and off-policy learning.
Despite the success of recent deep neural networks with temporal difference
(TD) methods [4,6,11,12], the deadly triad problem makes the learning process
diverging and the value estimates becoming unbounded.

In this paper, we introduce truncated TD(λ) into deep reinforcement learning
to relieve this problem. Firstly, we use the Soft Actor-Critic (SAC) algorithms [9]
to stabilize the training of deep neural networks. Secondly, with multi-step
returns of truncated TD(λ), it reduces the impact of bootstrapping by increasing
the number of steps. Thirdly, we apply a variant of importance sampling to the
return, which can learn arbitrary target policies, and this off-policy correction
introduces substantial variance to the training process. To sum up, we build a
truncated TD(λ) algorithm with a general function approximator (e.g., a neural
network) to stabilize the training process and improve the learning efficiency
of reinforcement learning tasks. To show the generalization of our algorithm,
we evaluate our method on various types of reinforcement learning tasks. (with
discrete action space, continuous action space, low-dimension vector input and
high-dimension vision input) We compare our algorithm with normal multi-step
TD algorithms, and the results show that our method has lower training vari-
ance and faster convergence speed. We also investigate the influence of the trace
decay parameter λ in our ablation study section, which emerges some insights
on how to choose proper hyper-parameters for different tasks.

2 Related Work

2.1 TD Learning and Multi-step Methods

Temporal difference (TD) learning is a core learning technique in modern rein-
forcement learning [19], and there are a slew of TD control methods which have
been proposed. Q-learning [25] is one of the most popular TD methods, and it
is considered as an off-policy method. Sarsa [17] is a classical on-policy control
method because the behaviour and target policies are the same. And Sarsa can
also be extended to learn off-policy via importance sampling [16]. Expected Sarsa
is an extension of Sarsa that has been studied as a strictly on-policy method [23].
All of these methods are described as the one-step case of TD methods, but
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they can be extended to the multi-step case. For example, Multi-step Q(σ) [3]
unifies multi-step Sarsa and multi-step Tree-backup, which creates a mixture of
full-sampling and pure-expectation approach. Moreover, [27] propose a new algo-
rithm Q(σ, λ) that combines Q(σ) with eligibility trace. It unifies Sarsa(λ) [17]
and Qπ(λ) [10]. [28] further propose GQ(σ, λ) that extends tabular Q(σ, λ) with
semi-gradient methods. However, their algorithm can not extend to non-linear
function approximation, while our method can work with modern deep neural
networks for large-scale learning.

2.2 TD(λ) and Eligibility Traces

TD(λ) [20] is a new TD algorithm that combines basic TD learning with λ-return
for further speed learning. The forward view of TD(λ) is that the estimate at each
time step is moved toward the λ-return after the trajectory data been collected.
The forward version of TD(λ) is also named off-line TD(λ). The backward view
of TD(λ) [19] is also introduced for online learning with a small cost in compu-
tation. A new variable called eligibility trace is used during the online learning
process. [18] introduce a new variant of the backward view of TD(λ) called True
Online TD(λ), which takes into account the possibility of changing estimates.
However, their algorithm can only work with the linear function approxima-
tion and under the online setting. Our algorithm brings TD(λ) into modern RL
frameworks, which often rely on non-linear function approximation and off-line
training. [6] bring Retrace(λ) [15], a method similar to TD(λ), into a distri-
butional reinforcement learning setting. Their method focuses more on discrete
action space, while our method can be applied to both discrete and continuous
action spaces. [2] bring multi-step methods into an actor-critic framework, but
their method focuses more on how to store and use data in the replay memory,
and they do not deal with the difference between behavior policy and target pol-
icy. Our method applies importance sampling as the off-policy correction, which
reduces the bias of training data.

3 Preliminaries

3.1 MDPs and Temporal Difference Learning

RL problems are modeled as Markov decision processes (MDPs), in which an
agent interacts with the environment during a sequence of discrete-time steps.
At each time step t, the agent receives the observation about the environment’s
current state, st ∈ S, where S is the set of states in the MDP. The agent selects an
action, at ∈ A, based on current state, where A is the action space. Based on the
current state and the selected action, the agent receives next state st+1 from the
environment according to the state-transition function PT (st, at, st+1), and also
a scalar reward rt+1 according to the reward function rt+1 = r(st, at, st+1). The
action at is selected according to a policy π(at|st), which gives the probability
of taking action at at st. The target return is defined as:
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Gt =
T−1∑

k=t

γk−trk+1, (1)

where γ ∈ [0, 1] is the discount factor and T is the final time step, which can be
infinite in a continuing task.

In policy evaluation, the goal is to estimate the policy’s expected return. And
a state-value function is learned:

vπ(st) = Eπ[Gt|st]. (2)

In control, the goal is to learn a policy which maximizes the expected return.
And an action-value function is learned:

qπ(st, at) = Eπ[Gt|st, at]. (3)

In one-step temporal difference methods, we need to approximate value func-
tions by expressing Eqs. 2 and 3 in terms of successor values (the Bellman equa-
tion). The Bellman equation for vπ is:

vπ(st) =
∑

a

π(a|st)
∑

st+1

PT (st+1|st, a)[r(st, a, st+1)

+ γvπ(st+1)]. (4)

In a control task, the agent takes an action according to the policy, gets
immediate reward and successor state from the environment, and bootstraps off
of the current estimated value of the next state. The difference between this TD
target and the value of the previous state is denoted as the TD error δ. For
example, the TD error of Expected Sarsa is defined as:

δES
t = rt+1 + γV (st+1) − Q(st, at), (5)

where the expected action-value V (st+1) =
∑

a π(a|st+1)Q(st+1, a). And the
value function is iteratively updated by taking a step proportional to the TD
error with ξ ∈ (0, 1]:

Q(st, at) ← Q(st, at) + ξδES
t . (6)

3.2 Multi-step Algorithms and TD(λ)

TD methods presented in the previous section can be extended to longer time
intervals. In practical applications, RL algorithms [4,6,11] with longer backup
length usually achieve better performance than one-step methods. These algo-
rithms which make use of a multi-step backup are denoted as multi-step algo-
rithms. Just like one-step methods, multi-step algorithms also need to approach
a target return (the multi-step return). For multi-step Sarsa, the multi-step
return is:

Gt:t+n = rt+1 + γrt+2 + γ2rt+3 + ... + γn−1rt+n + γnQ(st+n, at+n)

=
n−1∑

k=0

γkrt+k+1 + γnQ(st+n, at+n), (7)
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where the subscript range t : t + n denotes the length of the backup. The target
return is biased when the trajectory is collected by other policies. To deal with
the off-policy learning, the importance sampling ratio [16] is introduced:

ρt:t+n =
τ∏

k=t

π(ak|sk)
b(ak|sk)

, (8)

where τ = min(t + n − 1, T − 1) is the time step before the end of the update
or the end of the episode, and b(ak|sk) is the behavior policy, which differs from
the target policy π(ak|sk). It will then be multiplied with the TD error to get
the update rule:

Q(st, at) ← Q(st, at) + ξρt+1:t+n [Gt:t+n − Q(st, at)] . (9)

This update rule is not only applicable for off-policy multi-step Sarsa, but
is also general for some other multi-step algorithms. Moreover, Tree-backup
(TB) [16] is a multi-step algorithm which does not require importance sampling
during off-policy learning and the target return of the Tree-backup is defined
as:

GTB
t:t+n = Q(st, at) +

τ∑

k=t

δES
k

k∏

i=t+1

γπ(ai|si), (10)

where δES
k is the TD error of Expected Sarsa from Eq. 5. When designing multi-

step algorithms, the backup length should be designated and different tasks
may need different backup lengths. There is a novel algorithm which can mix
many multi-step TD learning algorithms through weighting n-step returns, which
is referred to as λ-return algorithm [25]. In λ-return algorithms, different n-
step returns are weighted proportionally to λn−1, λ ∈ [0, 1]. For example, the
definition of λ-return of Sarsa(λ) [20] is as follows:

Gλ
t = (1 − λ)

∞∑

n=1

λn−1Gt:t+n, (11)

where Gt:t+n is n-step return of Sarsa from time t. And the TD(λ) algorithm
also applies temporal difference learning update to the value function:

Q(st, at) ← Q(st, at) + ξ[Gλ
t − Q(st, at)]. (12)

TD (λ) reduces to the one-step TD method and Monte Carlo method when
λ = 0 and λ = 1 respectively.
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4 Soft Actor-Critic with Truncated TD (λ)

4.1 Off-Policy Truncated TD(λ)

Truncated TD(λ), first introduced by [18], is a variant of TD(λ) and takes into
account the possibility of changing estimates. Correspondingly, the truncated
λ-return is defined as:

Gλ
t:t+h = (1 − λ)

h−1∑

n=1

λn−1Gt:t+n + λh−1Gt:t+h, (13)

where Gt:t+n is the n-step return of Sarsa as showed in Eq. 7, and h is the length
of the horizon. Because h is fixed and finite, we can sample a batch of data with
length h from the replay memory conveniently during off-policy training. In
Eq. 13, rewards values will appear in Gt:t+n multiple times. To make calculation
convenient, we derive a recursive version of the truncated λ-return:

Gλ
t:t+h = rt+1 + (1 − λ)γQ(st+1, at+1) + λγGλ

t+1:t+h, (14)

so that rewards and value functions will only be used once when calculating the
return.

In modern model-free RL learning, we often need to evaluate a policy from
the trajectory data from older policies, which is biased and needs to incorporate
the off-policy correction. The direct way for the off-policy correction is using
important sampling outside the target return as showed in Eq. 9. However, it
can not be applied to truncated TD(λ), whose return is a mixture of many
n-step Sarsa returns. Instead, we can use the form of per-decision importance
sampling, which could have lower variance [20]:

GλIS
t:t+h = ρt[rt+1 + (1 − λ)γQ(st+1, at+1) + λγGλ

t+1:t+h] + (1 − ρt)Q(st, at), (15)

where ρt = π(at|st)
b(at|st)

is the importance sampling ratio at time step t, π(at|st)
is the policy to be evaluated and b(at|st) is the behavior policy which maybe
differs from π(at|st). To prevent the variance explosion of importance sampling
ratios, we truncate the sampling ratio at 1:

ρt = min
(

1,
π(at|st)
b(at|st)

)
. (16)

In deep RL, we often use a parameterized Q-function Qθ(st, at), where θ is
the function parameter, which can be updated by minimizing the TD error loss.
The update rule for truncated TD(λ) is:

θ ← θ + ξ
[
GλIS

t:t+h − Qθ(st, at)
]
∇Qθ(st, at), (17)

where ξ is the learning rate. Learning an action-based value function is sufficient
for control tasks with a discrete action space, but this is inapplicable for tasks
with continuous action space. We will present how to involve truncated TD(λ)
into a flexible actor-critic framework in the following section.
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4.2 Soft Actor-Critic with Truncated TD(λ)

Soft Actor-Critic (SAC) [8] is an Actor-Critic algorithm based on the maximum
entropy RL framework, which provides a substantial improvement in exploration
and robustness [7,29]. We utilize the SAC algorithm as the basic architecture in
our method. As an Actor-Critic algorithm, there are separate policy and value
function networks. The policy is referred to as the Actor, and the value network as
the Critic. In this case, we consider a parameterized Q-function Qθ(st, at) and a
policy network πφ(at|st), whose parameters are θ and φ respectively. The Actor-
Critic algorithm is jointly trained via policy evaluation and policy improvement.

In policy evaluation, we need to update the value function Qθ(st, at). Instead
of using standard Bellman backup, SAC uses a soft value update function. For
a one-step value iteration, the soft Q-value is computed as:

Qθ(st, at) ← rt+1 + γEst+1∼PT
Vsoft(st+1), (18)

where

Vsoft(st) = Eat∼π[Qθ(st, at) − β log π(at|st))] (19)

is the soft value function, and β is the temperature parameter. Similar to Eq. 18,
our truncated λ-return with importance sampling can be modified to:

GλIS
t:t+h = ρt[rt+1 + (1 − λ)γVsoft(st+1) + λγGλ

t+1:t+h] + (1 − ρt)Qθ(st, at), (20)

and the Q-function parameters are trained via the update rule in Eq. 17. The
loss function of the Q-function is the mean squared error (MSE):

JQ(θ) = E(st:t+h+1,at:t+h)∼D

[
1
2
(Qθ(st, at) − GλIS

t:t+h)2
]

, (21)

where GλIS

t:t+h the soft λ-return in Eq. 20 and the gradient of GλIS

t:t+h is stopped.
The loss can be optimized with stochastic gradient descent.

As for the policy improvement, we need to use the value function to obtain a
better policy. The main idea for policy improvement is to minimize the Kullback-
Leibler divergence between the policy and the soft value function. The final loss
function for policy network is:

Jπ(φ) = Est∼D,εt∼N [β log πφ(fφ(εt; st)) − Qθ(st, fφ(εt; st))], (22)

where εt is an input noise sampled from the Gaussian distribution, and at =
fφ(εt; st) is an action sampler in line with current policy.

4.3 SAC(λ) Training

The learning process of deep RL algorithms is often unstable, we describe how
SAC(λ) is trained in detail in this section. As introduced in twin delayed DDPG
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Algorithm 1: SAC(λ) with Off-policy Training
1 Initialize: value network parameters θ1 and θ2, policy network parameters φ,

temperature parameter β, replay memory M, training sequential length h,
training batch size N , target network update parameter σ. Set target network
parameters equal to main parameters: θ̂1 ← θ1, θ̂2 ← θ2 and φ̂ ← φ.

2 for t = 1, 2, 3, ... do
3 Sample action at from policy πφ(·|st).
4 Observe next state st+1 and reward rt+1.
5 Store the transition (st, at, rt+1, st+1, πφ(at|st)) into the replay memory M
6 If st+1 is terminal, reset environment state.
7 Randomly sample a batch of sequential data

(s1:h+1, r1:h+1, a1:h, π(a|s)1:h)1:N from M and use target networks to
compute the λ-return as Equation 20.

8 Update parameters of Q-value functions, policy network and temperature.
9 Update target networks.

10 end

(TD3) [5], we use a pair of Q-value functions (Qθ1 , Qθ2) to reduce the overes-
timation bias. Thus, the loss function of the policy network is changed to the
average of losses with respect to these two value functions:

Jπ(φ) =Est∼D,εt∼N [β log πφ(fφ(εt; st))

− 1
2
[Qθ1(st, fφ(εt; st)) + Qθ2(st, fφ(εt; st))]]. (23)

The target network [14] is a standard approach in many RL algorithms,
which can provide a stable objective in the learning procedure. In our algorithm,
there are three sets of target network parameters (θ̂1, θ̂2, φ̂), which correspond
to parameters of two value functions and parameters of the policy network. The
target network parameters are updated via an exponentially moving average of
original parameters. The Q-value Qθ(st, at) used in Eq. 20 is replaced by the
minimum between the two target values:

Qmin(st, at) = min
i=1,2

Qθ̂i(st, at). (24)

The temperature parameter β can be manually set or learned automatically.
Usually, an adaptive temperature is more flexible to different tasks and different
learning periods. The loss function for temperature parameter β is defined as:

J(β) = Eat∼π,st∼D[−β log π(at|st) − H], (25)

where H is the desired minimum expected entropy. The temperature is usually
set to 1 at the beginning of training and gradually decreases along with the
learning process. A greater temperature in the early stage of learning can help
the exploration of the agent.
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Our algorithm can be applied to both discrete and continuous action space.
When the action space is discrete, πφ(at|st) is a softmax policy, whose outputs
are probabilities of different actions. And an ε-greedy policy is used to help
the exploration. When the action space is continuous, the output of πφ(a|s) is
a Gaussian distribution with mean and covariance. Constant action noises are
also added every time step to help the exploration.

Because of the off-policy training, the training data is generated by past poli-
cies and stored in a replay memory. At each training step, a batch of sequence
data is sampled from the replay memory and parameters of both value networks
and the policy network are updated by minimizing losses of Eq. 21, Eq. 23 and
Eq. 25. Value functions in the λ-return are computed by the same target net-
works, which can execute in parallel. Algorithm 1 shows the overall training
procedure of our algorithm.

5 Experiments

To show the generalization of our method, we evaluate our algorithm on three
types of OpenAI gym benchmarks [1], i.e., a task with a discrete action space
named CartPole, a task with a continuous space named BipedalWalker and a
task with a high-dimension input vector named Pong. We also investigate the
impact of hyper-parameter λ and the off-policy correction in the ablation study
section.

5.1 Evaluation of SAC(λ)

We apply five multi-step RL algorithms as our baselines:

Multi-step DQN (MS+DQN): a method which uses deep Q-learning [14]
and uses multi-step returns estimation as described in Eq. 7.
Tree-backup (TB) [16]: a method which takes an expectation at every step
and does not require importance sampling as described in Sect. 3.2.
Multi-step Soft Actor-Critic (MS+SAC): a method which uses multi-step
returns estimation and a vanilla Soft Actor-Critic framework.
Multi-step TD3 (MS+TD3) [5]: a method which uses multi-step returns
estimation and a TD3 framework.
Retrace(λ) [15]: a method which uses TD(λ) for control tasks with discrete
action space.

All the methods use the same hyper-parameters and the same basic neural
architecture for each task. The horizon length h is set to four for all algorithms.
As for SAC(λ), we set λ to an intermediate value, i.e., λ = 0.5. For each algorithm,
we conduct 10 independent runs and report means and variances of their results.

SAC(λ) with Discrete Action Space. We choose CartPole [1] as the test
benchmark for the agent with discrete action space. In the environment, a pole
is attached by an un-actuated joint to a cart, which moves along a frictionless
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(a) CartPole (b) BipedalWalker (c) Pong (d)

Fig. 1. (a)–(c) Learning curves of different algorithms on three tasks. The shaded region
represents half a standard deviation of the average evaluation over 10 independent runs.
Results show that SAC(λ) converges faster than other baselines on all three tasks. (d)
Impact of the trace decay parameter λ. λ ranges from 0 to 1 with step size 0.1 (10
independent runs for each scenario). We draw boxplots [26] for each value of λ and also
draw the smoothed curve of average steps of solving Cartpole. The result shows that
λ with an intermediate value performs better than extreme values.

track. The system is controlled by applying a force of +1 or −1 to the cart. The
goal is to prevent the pendulum from falling over. A reward of +1 is provided
for every time step that the pole remains upright. The episode ends when the
pole is more than 15 degrees from vertical, or the cart moves more than 2.4 units
from the center. CartPole defines “solving” as getting an average reward of 195
over 100 consecutive trials.

We use a deep architecture with four hidden layers with 128 hidden units
for both Actor and Critic in this task. The batch size is set to 64, the learning
rate is 0.001 for both Actor and Critic networks and 0.0001 for temperature
parameter. The discount factor is set to 0.9. Actions will be randomly sampled
during training with the probability of 0.1 to help the exploration. Figure 1(a)
shows the training curves of baselines and SAC(λ), and SAC(λ) converges faster
than other baselines. We also report the average steps of solving the task in
Table 1, which shows that SAC(λ) is more stable than other baselines.

SAC(λ) with Continuous Action Space. We choose BipedalWalker [1] as
the test benchmark for the agent with continuous action space. A four-dimension
action vector is required to control the agent walk through the rough terrain. A
positive reward is given for moving forward, total more than 300 points up to the
far end. If the robot falls, it gets −100. The episode ends when the robot body
touches the ground or the robot reaches the far right side of the environment.
BipedalWalker defines “solving” as getting an average reward of 300 over 100
consecutive trials. Because multi-step DQN, Tree-backup and Retrace(λ) can
only work with the discrete action space, we skip these methods for this task.

We use multi-layer neural networks in this task. The batch size is set to
200, the learning rate is 0.001 for both actor and critic networks and 0.0001
for temperature parameter. The discount factor is set to 0.99. Action noises uni-
formly sampled from [−0.3, 0.3] are added during training for better exploration.
Figure 1(b) shows the training curves of baselines and SAC(λ), and SAC(λ)
converges faster than other baselines. We also report the average steps of



56 S. Huang et al.

Table 1. Evaluation results of different algorithms on three tasks (the lower the better).
We report average steps of solving the task and ± corresponds to a single standard
deviation over 10 independent runs. SAC(λ) uses fewer steps to reach the solution on
all three tasks, which indicates that our method is more efficient than other baselines.
And SAC(λ) has lower variances, which shows that the SAC(λ) is more stable than
other baselines.

SAC (λ) Retrace (λ) MS+TD3 MS+SAC TB MS+DQN

CartPole 694± 71 768± 122 944± 153 810± 165 1960± 117 1056± 161

Walker(×104) 2.95± 0.41 – 4.40± 0.47 5.01± 0.47 – –

Pong(×105) 5.85± 0.43 6.42± 0.41 6.84± 0.22 6.12± 0.27 6.60± 0.35 6.78± 0.43

solving the task in Table 1, which shows that SAC(λ) is also more stable than
other baselines.

SAC(λ) with High-dimension Vector Input. We use Pong [1] as the test
benchmark for the agent with high-dimension vector input. In the environment,
the observation is an RGB image of the screen, which is an array of shape
(210, 160, 3). Pong is not an MDP task, because it can not obtain the velocity of
the moving ball from a single observation. As introduced in [14], we resize the
gray-scaled image to 84 × 84 and stack four frames as the input for the neural
network. Pong defines “solving” as getting an average reward of 18 over 100
consecutive trials.

We use deep convolution neural networks in this task to handle image inputs.
The batch size is set to 32, the learning rate is 0.0001 for both actor and critic
networks and 0.0001 for temperature parameter. The discount factor is set to
0.99. We use an ε-greedy policy with ε annealing linearly from 1.0 to 0.02 over
100, 000 frames. Figure 1(c) shows the training curves of different algorithms, and
SAC(λ) converges faster than other baselines. We also report the average steps
of solving the task in Table 1, which also shows that SAC(λ) is more efficient
than other baselines.

5.2 Ablation Study

We investigate the impact of the hyper-parameter λ and the off-policy correction
in this section.

Impact of Trace Decay Parameter λ: TD(λ) is a method which unifies
Monte Carlo methods (λ = 1) and one-step temporal difference prediction (λ =
0). We study how the performance changes when increasing the value of λ from 0
to 1 with step size 0.1. Figure 1(d) shows the curve of how performance changes
with λ. The result shows that λ with an intermediate value performs better than
extreme values.

Impact of Off-Policy Corrections: Some deep multi-step RL algorithms [2,
12] have achieved remarkable results without using off-policy corrections.
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We study whether off-policy corrections have a positive effect on off-policy train-
ing. We report the evaluation results of three versions of training strategies in
Table 2, i.e., without importance sampling, with normal importance sampling
and with truncated importance sampling as proposed in this paper. SAC(λ)
with truncated importance sampling achieves the best performance on Bipedal-
Walker and Pong, but performs slightly worse on CartPole. This is reasonable
because the policy converges fast on CartPole and the newest policy is close
to older policy, which weakens the demand of the off-policy correction. How-
ever, algorithms on BipedalWalker and Pong have a long training period, which
makes the newest policy differs from older ones. The truncated importance sam-
pling outperforms normal importance sampling on three tasks, which indicates
that the truncated importance sampling can prevent the variance explosion and
stabilize the learning process.

Table 2. Impact of off-policy corrections. We report evaluation results (average scores
of 10 independent runs) of three versions of training strategies, i.e., without importance
sampling (No IS), with normal importance sampling (With IS) and with truncated
importance sampling (With Truncated IS).

CartPole BipedalWalker Pong

×104 ×105

No IS 685 3.44 6.28

With IS 726 3.52 6.09

With Truncated IS 694 2.95 5.85

6 Discussion

In this paper, we explore a new algorithm called SAC(λ), which boosts Soft
Actor-Critic with truncated TD(λ). SAC(λ) relieves the dilemma of deadly triad
problem via using SAC and TD3 to stabilize the training of deep neural net-
works, incorporating truncated TD(λ) to reduce the impact of bootstrapping
and applying truncated importance sampling to deal with the off-policy. Our
algorithm has the generalization ability to various types of control tasks and is
easy to adapt to other deep RL algorithms. Experimental results on three types
of control tasks show that our algorithm is more efficient and stable than other
multi-step RL algorithms. Our ablation study shows that appropriate parameter
λ is crucial in performance improvement. And our experimental results also show
that off-policy corrections in SAC(λ) can improve the performance of off-policy
training. In the future, we will try to develop algorithms for automatically tuning
the parameter λ.
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Abstract. AlphaZero has achieved impressive performance in deep rein-
forcement learning by utilizing an architecture that combines search and
training of a neural network in self-play. Many researchers are looking for
ways to reproduce and improve results for other games/tasks. However,
the architecture is designed to learn from scratch, tabula rasa, accept-
ing a cold-start problem in self-play. Recently, a warm-start enhance-
ment method for Monte Carlo Tree Search was proposed to improve the
self-play starting phase. It employs a fixed parameter I ′ to control the
warm-start length. Improved performance was reported in small board
games. In this paper we present results with an adaptive switch method.
Experiments show that our approach works better than the fixed I ′,
especially for “deep”, tactical, games (Othello and Connect Four). We
conjecture that the adaptive value for I ′ is also influenced by the size
of the game, and that on average I ′ will increase with game size. We
conclude that AlphaZero-like deep reinforcement learning benefits from
adaptive rollout based warm-start, as Rapid Action Value Estimate did
for rollout-based reinforcement learning 15 years ago.

Keywords: MCTS · AlphaZero · Deep reinforcement learning

1 Introduction

The combination of online Monte Carlo Tree Search (MCTS) [1] in self-play and
offline neural network training has been widely applied as a deep reinforcement
learning technique, in particular for solving game-related problems by AlphaGo
series programs [9–11]. The approach of this paradigm is to use game playing
records from self-play by MCTS as training examples to train the neural network,
whereas this trained neural network is used to inform the MCTS value and policy.
Note that in contrast to AlphaGo Zero or AlphaZero, the original AlphaGo also
uses large amounts of expert data to train the neural network and a fast rollout
policy together with the policy provided by neural network to guide the MCTS.
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However, although the transition from a combination of using expert data
and self-play (AlphaGo) to only using self-play (AlphaGo Zero and AlphaZero)
appears to have only positive results, it does raise some questions.

The first question is: ‘should all human expert data be abandoned?’ In other
games we have seen that human knowledge is essential for mastering complex
games, such as StarCraft [14]. Then when should expert data be used?

The second question is: ‘should the fast rollout policy be abandoned?’
Recently, Wang et al. [19] have proposed to use warm-start search enhance-
ments at the start phase in AlphaZero-like self-play, which improves perfor-
mance in 3 small board games. Instead of only using the neural network for value
and policy, in the first few iterations, classic rollout (or RAVE etc.) can be used.

In fact, the essence of the warm-start search enhancement is to re-generate
expert knowledge in the start phase of self-play training, to reduce the cold-start
problem of playing against untrained agents. The method uses rollout (which can
be seen as experts) instead of a randomly initialized neural network, up until a
number of I ′ iterations, when it switches to the regular value network. In their
experiments, the I ′ was fixed at 5. Obviously, a fixed I ′ may not be optimal.
Therefore, in this work, we propose an adaptive switch method. The method uses
an arena in the self-play stage (see Algorithm 2), where the search enhancement
and the default MCTS are matched, to judge whether to switch or not. With
this mechanism, we can dynamically switch off the enhancement if it is no longer
better than the default MCTS player, as the neural network is being trained.

Our main contributions can be summarized as follows:

1. Warm-start method improves the Elo [2] of AlphaZero-like self-play in small
games, but it introduces a new hyper-parameter. Adaptive warm-start further
improves performance and removes the hyper-parameter.

2. For deep games (with a small branching factor) warm-start works better than
for shallow games. This indicates that the effectiveness of warm-start method
may increase for larger games.

The rest of paper is designed as follows. An overview of the most relevant
literature is given in Sect. 2. Before proposing our adaptive switch method in
Sect. 4, we describe the warm-start AlphaZero-like self-play algorithm in Sect. 3.
Thereafter, we set up the experiments in Sect. 5 and present their results in
Sect. 6. Finally, we conclude our paper and discuss future work.

2 Related Work

There are a lot of early successful works in reinforcement learning [12], e.g.
using temporal difference learning with a neural network to play backgam-
mon [13]. MCTS has also been well studied, and many variants/enhancements
were designed to solve problems in the domain of sequential decisions, espe-
cially on games. For example, enhancements such as Rapid Action Value Esti-
mate (RAVE) and All Moves as First (AMAF) have been conceived to improve
MCTS [3,4]. The AlphaGo series algorithms replace the table based model with
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a deep neural network based model, where the neural network has a policy
head (for evaluating of a state) and a value head (for learning a best action) [16],
enabled by the GPU hardware development. Thereafter, the structure that com-
bines MCTS with neural network training has become a typical approach for
reinforcement learning tasks [8,18] of this kind model-based deep reinforcement
learning [6,7]. Comparing AlphaGo with AlphaGo Zero and AlphaZero, the lat-
ter did not use any expert data to train neural network, and abandoned the fast
rollout policy for improving MCTS on the trained neural network.

Within a general game playing framework, in order to improve training
examples efficiency, [15] assessed the potential of classic Q-learning by intro-
ducing Monte Carlo Search enhancements. In an AlphaZero-like self-play frame-
work, [20] used domain-specific features and optimizations, starting from random
initialization and no preexisting data, to accelerate the training. We also base
our work on an open reimplementation of AlphaZero, AlphaZero General [5].

However, AlphaStar, which defeated human professionals at StarCraft [14],
went back to utilize human expert data, thereby suggesting that this is still an
option at the start phase of training. Apart from this, [19] proposed a warm-start
search enhancement method, pointed out the promising potential of utilizing
MCTS enhancements to re-generate expert data at the start phase of training.
Our approach differs from AlphaStar, as we generate expert data using MCTS
enhancements other than collecting it from humans; further, compared to the
static warm-start of [19], we propose an adaptive method to control the iteration
length of using such enhancements instead of a fixed I ′.

3 Warm-Start AlphaZero Self-play

3.1 The Algorithm Framework

Based on [10,16,19], the core of AlphaZero-like self-play (see Algorithm 1) is an
iterative loop which consists of three stages (self-play, neural network training
and arena comparison) within the single iteration. The detail description of these
3 stages can be found in [19]. Note that in the Algorithm 1, line 5, a fixed I ′

is employed to control whether to use MCTS or MCTS enhancements, the I ′

should be set as relatively smaller than I, which is known as warm-start search.

3.2 MCTS

Classic MCTS has shown successful performance to solve complex games, by
taking random samples in the search space to evaluate the state value. Basically,
the classic MCTS can be divided into 4 stages, which are known as selection,
expansion, rollout and backpropagate [1]. However, for the default MCTS in
AlphaZero-like self-play (e.g. our Baseline), the neural network directly informs
the MCTS state policy and value to guide the search instead of running a rollout.
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Algorithm 1. Warm-start AlphaZero-like Self-play Algorithm
1: Randomly initialize fθ, assign retrain buffer D
2: for iteration=1, . . . ,I ′, . . . , I do
3: for episode=1,. . . , E do � self-play
4: for t=1, . . . , T ′, . . . , T do
5: if I ≤ I ′ then πt ← MCTS Enhancement
6: else πt ← default MCTS

7: if t ≤ T ′ then at = randomly select on πt

8: else at = arg maxa(πt)

9: executeAction(st, at)

10: D ← (st, πt, zt) with outcome zt∈[1,T ]

11: Sample minibatch (sj , πj , zj) from D � training
12: Train fθ′ ← fθ

13: fθ = fθ′ if fθ′ is better, using default MCTS � arena

14: return fθ;

3.3 MCTS Enhancements

In this paper, we adopt the same two individual enhancements and three com-
binations to improve neural network training as were used by [19].

Rollout runs a classic MCTS random rollout to get a value that provides
more meaningful information than a value from random initialized neural net-
work.

RAVE is a well-studied enhancement to cope with the cold-start of MCTS in
games like Go [3], where the playout-sequence can be transposed. The core idea of
RAVE is using AMAF to update the state visit count Nrave and Q-value Qrave,
which are written as: Nrave(st1 , at2) ← Nrave(st1 , at2) + 1, Qrave(st1 , at2) ←
Nrave(st1 ,at2 )∗Qrave(st1 ,at2 )+v

Nrave(st1 ,at2 )+1 , where st1 ∈ V isitedPath, and at2 ∈ A(st1), and
for ∀t < t2, at �= at2 .

RoRa is the combination which adds the random rollout to enhance RAVE.
WRo introduces a weighted sum of rollout value and the neural network

value as the return value to guide MCTS [9].
WRoRa also employs a weighted sum to combine the values from the neural

network and the RoRa.
Different from [19], since there is no pre-determined I ′, in our work, weight

is simply calculated as 1/i, i ∈ [1, I], where i is the current iteration number.

4 Adaptive Warm-Start Switch Method

The fixed I ′ to control the length of using warm-start search enhancements as
suggested by [19] works, but seems to require different parameter values for
different games. In consequence, a costly tuning process would be necessary for
each game. Thus, an adaptive method would have multiple advantages.

We notice that the core of the warm-start method is re-generating expert data
to train the neural network at the start phase of self-training to avoid learning
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Algorithm 2. Adaptive Warm-Start Switch Algorithm
1: Randomly initialize fθ; Initialize retrain buffer D, Switch←False, rmcts ← 0
2: for iteration=1, . . . , I do � no I ′

3: if not Switch then � not switch
4: for episode=1,. . . , E do � arena with enhancements
5: for t=1, . . . , T ′, . . . , T do
6: if episode ≤ E/2 then
7: if t is odd then πt ← MCTS Enhancement
8: else πt ← default MCTS

9: else
10: if t is odd then πt ← default MCTS
11: else πt ← MCTS Enhancement

12: if t ≤ T ′ then at = randomly select on πt

13: else at = arg maxa(πt)

14: executeAction(st, at)

15: D ← (st, πt, zt) with outcome zt∈[1,T ]

16: rmcts+= reward of default MCTS in this episode

17: else � switch
18: for episode=1,. . . , E do � purely self-play
19: for t=1, . . . , T ′, . . . , T do
20: πt ← default MCTS
21: if t ≤ T ′ then at = randomly select on πt

22: else at = arg maxa(πt)

23: executeAction(st, at)

24: D ← (st, πt, zt) with outcome zt∈[1,T ]

25: Set Switch←True if rmcts >0, and set rmcts ← 0
26: Sample minibatch (sj , πj , zj) from D � training
27: Train fθ′ ← fθ

28: fθ = fθ′ if fθ′ is better, using default MCTS � arena

29: return fθ;

from weak (random or near random) self-play. We suggest to stop the warm-
start when the neural network is on average playing stronger than the enhance-
ments. Therefore, in the self-play, we employ a tournament to compare the stan-
dard AlphaZero-like self-play model (Baseline) and the enhancements (see Algo-
rithm 2). The switch occurs once the Baseline MCTS wins more than 50%. In
order to avoid spending too much time on this, these arena game records will
directly be used as training examples, indicating that the training data is played
by the enhancements and the Baseline. This scheme enables to switch at individ-
ual points in time for different games and even different training runs.

5 Experimental Setup

Since [19] only studied the winrate of single rollout and RAVE against a random
player, this can be used as a test to check whether rollout and RAVE work.
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Table 1. Default parameter setting

Para Description Value Para Description Value

I Number of iterations 100 lr Learning rate 0.005

rs Number of retrain iterations 20 m MCTS simulation times 100

ep Number of epochs 10 d Dropout probability 0.3

E Number of episodes 50 c Weight in UCT 1.0

bs Batch size 64 n Number of comparison games 40

T’ Step threshold 15 u Update threshold 0.6

However, it does not reveal any information about relative playing strength,
which is necessary to explain how good training examples provided by MCTS
enhancements actually are. Therefore, at first we let all 5 enhancements and the
baseline MCTS play 100 repetitions with each other on the same 3 games (6× 6
Connect Four, Othello and Gobang, game description can be found in [19]) in
order to investigate the relative playing strength of each pair.

In the second experiment, we tune the fixed I ′, where I ′ ∈ {1, 3, 5, 7, 9}, for
different search enhancements, based on Algorithm 1 to play 6× 6 Connect Four.

In our last experiment, we use new adaptive switch method Algorithm 2 to
play 6× 6 Othello, Connect Four and Gobang. We set parameters values accord-
ing to Table 1. The parameter choices are based on [17]. The detail introduction
of these parameters can be found in [17].

Our experiments are run on a high-performance computing (HPC) server,
which is a cluster consisting of 20 CPU nodes (40 TFlops) and 10 GPU nodes
(40 GPU, 20 TFlops CPU + 536 TFlops GPU). We use small versions of games
(6 × 6) in order to perform a medium number of repetitions. Each single run is
deployed in a single GPU which takes several days for different games.

6 Results

6.1 MCTS Vs MCTS Enhancements

Here, we compare the Baseline player (the neural network is initialized randomly
which can be regarded as an arena in the first iteration self-play) to the other 5
MCTS enhancements players on 3 different games. Each pair performs 100 repe-
titions. In Table 2, for Connect Four, the highest winrate is achieved by WRoRa,
the lowest by Rave. Except Rave, others are all higher than 50%, showing that
the enhancements (except Rave) are better than the untrained Baseline. In Gob-
ang, it is similar, Rave is the lowest, RoRa is the highest. But the winrates are
relatively lower than that in other 2 games. It is interesting that in Othello, all
winrates are relatively the highest compared to the 2 other games (nearly 100%),
although Rave still achieves the lowest winrate which is higher than 50%.

One reason that enhancements work best in Othello is that the Othello game
tree is the longest and narrowest (low branching factor). Enhancements like
Rollout can provide relatively accurate estimations for these trees. In contrast,
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Table 2. Results of comparing default MCTS with Rollout, Rave, RoRa, WRo and
WRoRa, respectively on the three games with random neural network, weight as 1/2,
T ′ = 0, win rates in percent (row vs column), 100 repetitions each.

Default MCTS

ConnectFour Othello Gobang

Rollout 64 93 65

Rave 27.5 53 43

RoRa 76 98 70

WRo 82 96 57

WRoRa 82.5 99 62

Gobang has the shortest game length and the most legal action options. Enhance-
ments like Rollout do not contribute much to the search in short but wide search
tree with limited MCTS simulation. As in shorter games it is more likely to reach
a terminal state, both Baseline and enhancements get the true result. Therefore,
in comparison to MCTS, enhancements like Rollout work better while it does not
terminate too fast. Rave is filling more state action pairs based on information
from the neural network, its weaknesses at the beginning are more emphasized.
After some iterations of training, the neural network becomes smarter, and Rave
can therefore enhance the performance as shown in [19].

6.2 Fixed I′ Tuning

Taking Connect Four as an example, in this experiment we search for an optimal
fixed I ′ value, utilizing the warm-start search method proposed in [19]. We set
I ′ as 1, 3, 5, 7, 9 respectively (the value should be relatively small since the
enhancement is only expected to be used at the start phase of training). The
Elo ratings of each enhancements using different I ′ are presented in Fig. 1.

The Elo ratings are calculated based on the tournament results using a
Bayesian Elo computation system [2], same for Fig. 2. We can see that for Rave
and WRoRa, it turns out that I ′ = 7 is the optimal value for fixed I ′ warm-start
framework, for others, it is still unclear which value is the best, indicating that
the tuning is inefficient and costly.

6.3 Adaptive Warm-Start Switch

In this final experiment, we train models with the parameters in Table 1 and then
let them compete against each other in different games. In addition, we record
the specific iteration number where the switch occurs for every training run
and the corresponding self-play arena rewards of MCTS before this iteration.
A statistic of the iteration number for the 3 games is shown in Table 3. The
table shows that, generally, the iteration number is relatively small compared to
the total length of the training (100 iterations). Besides, not only for different
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Fig. 1. Elo ratings for different warm-start phase iterations with different search
enhancement on 6 × 6 Connect Four

games, but also for different training runs on the same game, the switch iteration
varies. This is because for different training runs, the neural network training
progresses differently. Therefore, a fixed I ′ can not be used for each specific
training. Note that for Gobang, a game with a large branching factor, with the
default setting, it always switches at the first iteration. Therefore, we also test
with larger m = 200, thereby providing more time to the MCTS. With this
change, there are several runs keeping the enhancements see Table 3, but it still
shows a small influence on this game.
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Table 3. Switching iterations for training on different games with different enhance-
ments over 8 repetitions (average iteration number ± standard deviation)

Connect Four Othello Gobang

Rollout 6.625 ± 3.039 5.5 ± 1.732 1.375 ± 0.484

Rave 2.375 ± 1.218 3.125 ± 2.667 1.125 ± 0.331

RoRa 7.75 ± 4.74 5.125 ± 1.364 1.125 ± 0.331

WRo 4.25 ± 1.561 4.375 ± 1.654 1.125 ± 0.331

WRoRa 4.375 ± 1.576 4.0 ± 1.0 1.25 ± 0.433

More importantly, we collect all trained models based on our adaptive
method, and let them compete with the models trained using fixed I ′ = 5 in a
full round-robin tournament where each 2 players play 20 games.

From Fig. 2, we see that, generally, on both Connect Four and Othello, all
fixed I ′ achieve higher Elo ratings than the Baseline, which was also reported
in [19]). And all adaptive switch models also perform better than the Baseline.
Besides, for each enhancement, the Elo ratings of the adaptive switch models
are higher than for the fixed I ′ method, which suggests that our adaptive switch
method leads to better performance than the fixed I ′ method when controlling
the warm-start iteration length. Specifically, we find that for Connect Four, WRo
and RoRa achieve the higher Elo Ratings (see Fig. 2(a)) and for Othello, WRoRa
performs best (see Fig. 2(b)), which reproduces the consistent conclusion (at least
one combination enhancement performs better in different games) as [19]).

In addition, for Connect Four, comparing the tuning results in Fig. 1 and the
switch iterations in Table 3, we find that our method generally needs a shorter
warm-start phase than employing a fixed I ′. The reason could be that in our
method, there are always 2 different players playing the game, and they provide
more diverse training data than a pure self-play player. In consequence, the
neural network also improves more quickly, which is highly desired.

Note that while we use the default parameter setting for training in the
Gobang game, the switch occurs at the first iteration. And even though we
enlarge the simulation times for MCTS, only a few training runs shortly keep
using the enhancements. We therefore presume that it is meaningless to further
perform the tournament comparison for Gobang.
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Fig. 2. Comparison of adaptive switch method versus fixed I ′ based on a full tourna-
ment for 6 × 6 Connect Four and Othello

7 Discussion and Conclusion

Since AlphaGo Zero’ results, self-play has become a default approach for gen-
erating training data tabula rasa, disregarding other information for training.
However, if there is a way to obtain better training examples from the start,
why not use them, as has been done recently in StarCraft (see DeepMind’s
AlphaStar [14]). In addition [19] investigate the possibility of utilizing MCTS
enhancements to improve AlphaZero-like self-play. They embed Rollout, RAVE
and combinations as enhancements at the start period of iterative self-play train-
ing and tested this on small board games.

Confirming [19], we find that finding an optimal value of fixed I ′ is difficult,
therefore, we propose an adaptive method for deciding when to switch. We also
use Rollout, RAVE, and combinations with network values to quickly improve
MCTS tree statistics (using RAVE) with meaningful information (using Rollout)
before we switch to Baseline-like self-play training. We employed the same games,
namely the 6 × 6 versions of Gobang, Connect Four, and Othello. In these
experiments, we find that, for different games, and even different training runs
for the same game, the new adaptive method generally switches at different
iterations. This indicates the noise in the neural network training progress for
different runs. After 100 self-play iterations, we still see the effects of the warm-
start enhancements as playing strength has improved in many cases, and for all
enhancements, our method performs better than the method proposed in [19]
with I ′ set to 5. In addition, some conclusions are consistent to [19], for example,
there is also at least one combination that performs better.

The new adaptive method works especially well on Othello and Connect
Four, “deep” games with a moderate branching factor, and less well on Gobang,
which has a larger branching factor. In the self-play arena, the default MCTS is
already quite strong, and for games with a short and wide episode, the MCTS
enhancements do not benefit much. Short game lengths reach terminal states
early, and MCTS can use the true reward information more often, resulting in a
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higher chance of winning. Since, Rollout still needs to simulate, with a limited
simulation count it is likely to not choose a winning terminal state but a state
that has the same average value as the terminal state. In this situation, in a
short game episodes, MCTS works better than the enhancement with T ′ = 15.
With ongoing training of the neural network, both players become stronger, and
as the game length becomes longer, I ′ = 5 works better than the the Baseline.

Our experiments are with small games. Adaptive warm-start works best in
deeper games, suggesting a larger benefit for bigger games with deeper lines.
Future work includes larger games with deeper lines, and using different but
stronger enhancements to generate training examples.

Acknowledgments. Hui Wang acknowledges financial support from the China Schol-
arship Council (CSC), CSC No.201706990015.
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Abstract. We consider a completely offline inverse reinforcement learn-
ing setup, i.e., where the reward function is unknown and the interaction
with the environment is not possible. This typically occurs in situations
where data collection is risky or costly, such as healthcare or indus-
trial controls. Establishing explainable rewards for decision-making is
critical to quantifying and adapting policy. However, existing methods
hardly learn an interpretable reward in offline setting. In this paper, we
introduce an offline inverse reinforcement learning algorithm, BCIRL,
to recover the implicit reward function and optimal policy from expert
demonstrations in off-policy model-free settings. To address challenges in
offline settings, we restrict the action space to behave close to the policy
on the given data. We demonstrate that BCIRL performs strongly on
control environment, that recovered rewards provide useful insights on
experts’ preferences.

Keywords: Inverse reinforcement learning · Offline reinforcement
learning · Interpretable rewards

1 Introduction

For applications in risky and complicated environments, there is hardly access to
appropriate rewards here, nor to the environment dynamics to interact and test
policies. In this case, we can only get trajectories based on expert that record
states visited and actions taken in each state. For example, in clinical decision-
making, we want to learn policies from medical experts, but it is unreasonable
to implement policies on patients during the training process. Further, we are
interested in the trade-offs and preferences related to expert actions, and there-
fore we need to obtain interpretable rewards of expert behavior so that we can
quantify and adapt policies.

Given the trajectories made by an expert, imitation learning (IL) [10] simply
learns an imitator policy to match the expert. However, to further understand
expert motivation, we can recourse to inverse reinforcement learning (IRL) [21].
IRL attempts to obtain the expert policy by recovering the expert’s hidden
c© Springer Nature Switzerland AG 2021
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reward function. Abbeel et al. [1] proposes max-margin IRL to find a reward
function that maximizes the margin between feature expectations (the expected
discounted accumulated feature value) obtained by the expert decision and the
candidate policy, and execute forward reinforcement learning (RL) [23] to opti-
mize candidate policy for recovered reward function. Both estimating feature
expectation and forward RL are performed by interacting with the environment
online1. To operate IRL in the offline setting, Lee et al. [16] proposes Deep Suc-
cessor Feature Networks (DSFN) which picks the neural network to approximate
the feature expectation and performs forward RL with off-policy evaluation. But
off-policy methods in offline setting suffers from distributional shift (the distri-
bution of data in the buffer and that generated by the learning policy differ
significantly) which is also known as “cold-start” problem. DSFN constrains
state distribution shifts by limiting the extent to which learned policies devi-
ate from expert policies, i.e., initial policy must be close to the expert’s policy.
Moreover, features need to be carefully designed in DSFN which uses hidden
layers of the network to extract the features, so that the recovered reward of
unknown features cannot explain expert motivation. Instead, we replace the off-
policy evaluation with the batch reinforcement learning (BRL) approach [17],
which works to solve the problem of distribution shift with no additional online
data collection. The off-policy methods select the action with the largest value
function, while our method first excludes those actions with small probability
and then selects the action based on the value function.

Fig. 1. Overview. BCIRL is a frame-
work that output an optimal policy
πθ∗ and reward weights ω∗, leveraging
only expert trajectory without inter-
acting with the environment.

The main contribution of our work is
a method for advancing DSFN beyond
the cold-start problem and unexplainable
reward. First, our constraints on actions
during policy optimization adapt BCIRL
to the completely offline setting. This
allows us to no more need warm-start and
features-design. Using raw states as fea-
tures making us better interpret the recov-
ered reward. Second, Experiments demon-
strate that our recovered policy outper-
forms the rest of the baseline. Our algo-
rithm Batch-Constraint Inverse Reinforce-
ment Learning (BCIRL) are depicted in Fig. 1, which iteratively executes the
following steps to recover reward weights and optimal policy: (1) estimate fea-
ture expectations of current policy π, (2) update reward weights ω by maximizing
the distance of feature expectation between the expert and current policy, (3)
optimize π using linearly reward function R = ω · φ, φ is feature mapping.

In the following, we review modern approaches to offline IL/IRL (Sect. 2), and
present our algorithm in three sub-blocks (Sect. 3). Through experiments applied

1 The online learning mentioned in this paper refers to the need to interact with the
environment. Offline learning or batch learning refers to no interaction with the
environment at all.
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to control tasks and healthcare, we verified that the BCIRL algorithm is effective
in acquiring policies and recovering rewards (Sect. 4). Lastly, we summarize the
paper and propose our future research directions (Sect. 5).

2 Offline Inverse Reinforcement Learning

Preliminaries. We use the standard Markov decision process (MDP) setup,
which is defined as a five-tuple (S,A, P,R, γ), with the state set S, action set
A (discrete2), transfer probability matrix P (which we don’t know), a reward
function R, and a discount factor γ. The policy π(a | s) denotes the probability
of performing an action a(∈ A) at state s(∈ S). To measure the performance of
state s and action a under policy π, the value function is defined as:

V π(s) = Eπ

[
T∑

t=0

γtR (st, at) | s0 = s

]
, (1)

where s0 ∈ S0, denotes the initial state and Eπ denotes the expectation under
policy π. We consider a finite MDP, with T being the terminal step. The state-
action value function is defined as:

Qπ(s, a) = R(s, a) + Eπ

[
T∑

t=1

γtR (st, at) | s0 = s, a0 = a

]
. (2)

Reinforcement Learning (RL) objective is to find a policy π∗ such that the values
of Q and V are maximized, i.e.,

π∗ = arg max
π

V π(s),∀s ∈ S. (3)

Feature expectation is a core concept in IRL algorithm which is defined as the
expected discounted accumulated feature:

μπ (s, a) = φ(s, a) + Eπ

[
T∑

t=1

γtφ (st, at)

]
, (4)

where φ(s, a) is a feature map S,A → [0, 1]k. We assume that the reward function
is linear, i.e., R (s, a) = ω · φ(s, a). Note, from Eq. (2) and Eq. (4) we can get:
Qπ (s, a) = ω · μπ(s, a), μπ can be regarded as a component of the action value
function Qπ. To get the reward function for the raw features, the mapping:
φ(s, a) = concat(s, a) or φ(s, a) = s is used in our algorithm.

In our setting, reward function R(s, a) is unknown, and we cannot interact
with the environment in the training process. All we can get is the expert data
D =

{(
s
(i)
1 , a

(i)
1 , . . . , s

(i)

T (i) , a
(i)

T (i)

)}m

i=1
which is generated from experts(we denote

the implicit expert policy as πe).
2 The derivations and the experiments in this paper are in discrete case examples,

and our algorithm can be easily generalized to a continuous setting by changing
Q-learning to Actor-Critic model.
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Imitation Learning. The goal of imitation learning is to learn a policy π∗
which is as close as possible to the expert policy πe, i.e., to match the action. This
can be formulated as π∗ = argminπ Es∼DL (πe(· | s), π(· | s)), where L represents
some loss function. Behavior Cloning (BC) [2] is an efficient but very simple
approach that ignores the valuable information of states transition and uses only
supervised learning for classification. Since BC does not take long-term planning
into account, which leads to it being subject to compounding errors and drifting
away from expert data [20]. Once drifted to these out-of-distribution states, the
agents are unable to make correct decisions.

Inverse Reinforcement Learning. To use the information of states transi-
tion, the inverse reinforcement learning algorithm [19] was proposed, which not
only obtains the optimal policy but also recovers a reward. IRL assumes that a
reward function the expert always does better than any learning policies which
have been found previously and IRL uses forward RL repeatedly to optimize
policy in an inner loop. Forward RL can be executed according to Eq. 3. Reward
R is calculated by the following:

R = argminR

(
V πe − max

π
V π

)
. (5)

The value function of the learning policy and the expert policy value function are
closest given the learned reward R. Adversarial imitation learning [9] interprets
the above two processes as generators and discriminators in GAN [7] and proves
the convergence of the results. This type of learning method we mentioned above
is online learning, and forward RL requires access to the environment for training.

Offline IRL. However, in many cases we can’t interact with the environment
to train the agent, either because data collection is costly (e.g., in robotics or
educational agents) or risky (e.g., in autonomous driving or healthcare). A sim-
ple approach is to learn a simulator of the environment dynamics [8], but this
approach is only applicable to low-dimensional environments and requires a large
amount of data collection. DSFN [16] uses an off-policy approach with a fixed
expert buffer to execute forward RL, but the ensuing problem is to warm-start
the initial policy and to carefully design the feature functions. In contrast, some
excellent off-line methods in recent years, AVRIL [5], EDM [11], ValueDice [14],
do not explicitly learn the reward function.

3 Method

We use the max-margin apprenticeship learning [1,16] as a framework, mini-
mizing the distance of feature expectation between the expert and candidate
policy. We modify the interactive forward RL to offline learning and use a neu-
ral network to approximate the feature expectations. We iteratively execute the
following steps to recover reward weights and optimal policy: (1) estimate feature
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expectations of current policy π, (2) update reward weighs ω by solving quadratic
program(QP), (3) optimize π using recovered reward with Batch Reinforcement
Learning(BRL) [17]. As depicted in Fig. 1, the feature expectation is estimated
by a deep neural network, which is an off-policy evaluation method, as detailed
in Sect. 3.1. In contrast to DSFN, which uses the DQN [18] with a fixed buffer to
optimize the current policy, we use the BRL approach which constrains action
choice in the policy. Our approach no longer requires the initial policy π0 to be
similar to the expert policy πe, and an additional network to learn a suitable
feature representation, as detailed in Sect. 3.2. Finally, the algorithm Batch-
Constraint Inverse Reinforcement Learning (BCIRL) is introduced in Sect. 3.3.

3.1 Feature Expectation Approximation

As mentioned before, the feature expectation is actually a component of the
value function. So all methods of optimizing value function are applicable to
train feature expectation, such as Monte Carlo (MC) or temporal difference (TD)
methods. Similar to [16], We estimate the feature expectation using a neural net-
work parameterized with ψ and use an additional target network parameterized
by ψ′ to find the target value, and ψ replaces ψ′ at certain step intervals. Given
policy π, feature mapping φ, the Bellman target value is as follows:

yπ
ψ′ =

{
φ(s, a) if trajectory terminates at s′

φ(s, a) + γEa′∼π

[
μπ

ψ′ (s′, a′)
]

otherwise , (6)

where (s, a) is sampled from the fixed buffer(expert demonstration), a′ is gener-
ated by the current policy π following the ε-greedy policy. We train the network
using mean square error between estimated values and target values:

Lψ =
1
2
E(s,a,s′)∼De

[∥∥∥μπ
ψ(s, a) − yπ

(ψ′)

∥∥∥2
]

(7)

Gradient descent is used to update the parameters:

ψ ← ψ − α∇Lψ (8)

In the offline setting, cross-validation is used to determine whether the training
converges. We divide the expert demonstration into a training set and a vali-
dation set, and training ends when the validation loss Lval is less than a fixed
threshold δ or the iterations reaches the set maximum number. Algorithm 1
describes feature expectation approximation method.

3.2 Policy Optimization with BRL

When the weights ω of the reward function are updated, the optimal policy is
trained for the current reward. The existing methods [1,3,16] use off-policy opti-
mization directly. However, offline policy optimization is challenging because it
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Algorithm 1: Feature Expectation Approximation Network(FEAN)
Input : Expert demonstration D, Maximum number of iterations N
Output: μπ

ψ

1 while Lval > δ and n < N do
2 Sample batch B {(s, a, s′)} from D;
3 Compute feature expectation target with Equation 6;
4 Compute loss for batch B with Equation 7;
5 Update ψ with Equation 8;
6 Compute Lval on the validation set;

7 end

only relies on a fixed set of expert demonstration. Distribution drift occurs in
the truly offline setting. That means, the value function approximation networks
and policy networks we use are trained only on a fixed distribution, while apply-
ing or testing the optimal policy will encounter a different distribution, as the
policy will visit new states. The value function generates erroneous estimations
for state-action pairs that do not appear in the expert set. This issue has been
thoroughly studied in [17]. By constraining the degree of difference between the
learned policy π(a | s) and the expert policy πe(a | s), the state distribution
drift can be controlled to a certain upper limit [22].

The constraint we use refers to BCQ [6]. The training procedure is described
in Algorithm 2. The algorithm is a modification of DQN [18], approximating the
state action value function with a neural network Q Parameterized with θ, using
TD-error with 1-step bootstrapping. The learning policy still chooses the action
with the largest Q value, but the constraint is that the probability of selected
actions is above a threshold τ . The threshold Pr(a) of discrete actions can be
calculated as follows: Pr(a) = pb(a | s)/max

â
pb(â | s), where pb is BC network

trained on expert data D, it simply classifies actions with supervised learning,
using cross-entropy loss. Policy π can be described as:

π(s) = argmax
Pr(a)>τ

Qθ(s, a). (9)

The training loss of the Q network is as follows,

L(θ) = l
(
r + γQθ′,a′|Pr(a′)>τ (s′, a′) − Qθ(s, a)

)
, (10)

where l is Huber loss. The algorithm shrinks to Q-learning when τ = 0 and to
complete BC when τ = 1.

3.3 Batch-Constraint Inverse Reinforcement Learning Algorithm
(BCIRL)

Algorithm 3 shows our proposed Batch-Constraint Inverse Reinforcement Learn-
ing Algorithm (BCIRL) method for completely offline setup. BCIRL uses deep
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Algorithm 2: Batch Constraint Q-Learning
Input : Expert demonstration D, reward weights ω, maximum iterations T ,

threshold τ
Output: optimal policy πθ

1 Random Initial:Q-network θ,probability network pb;
2 for t = 0 to T do
3 Sample batch B {(s, a, s′)} from D;

4 Compute reward ri(s, a) = ωT
i φ(s, a);

5 Choose next action using Equation 9;
6 Update Q network using loss in Equation 10;
7 Update Pb network using loss −

∑
(s,a)∈B log pb(a | s);

8 end

neural networks to estimate feature expectations (described in Sect. 3.1) for
intermediate policies with an off-policy approach suitable for offline settings.
Then it updates the reward weights to minimize the difference of feature expec-
tation between the experts and intermediate policies. This optimization step can
be seen as an inverse reinforcement learning process where we attempt to guess
the reward function that the expert is optimizing. Let μe be the expert feature
expectation, μi be the intermediate feature expectation. Maximizing the margin
is equivalent to solving a quadratic program:

max
t,ω

t s.t. ωT μe ≥ ωT μi + t, i = 0, . . . , i − 1 and ‖w‖2 ≤ 1, (11)

where t denotes the value function margin between expert and intermediate
policy. Abbeel et al. [1] proves that the algorithm will end at finite step (assumed
to be n) and that the algorithm’s performance under the returned reward differs
from the expert performance by no more than t(n). We record the intermediate
results, the final output are the policy and reward weights corresponding to the
minimum margin tmin.

Algorithm 3: Batch-Constraint Inverse Reinforcement Learning
Input : convergence threshold ε, maximum iterations n
Output: reward weights ω∗, optimal policy π∗(parameterized by θ)

1 for i = 0 to n do
2 Estimate μπi

ψ using Algorithm 1;

3 Compute reward weights ωi using Equation 11;

4 if t < ε then break Update πi+1 with reward ri(s, a) = ωT
i φ(s, a) using

Algorithm 2;

5 end
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4 Experiments

We verify the effectiveness of our method in two aspects: (1) whether it can
obtain near-optimal policies, and (2) whether it can recover a reasonable reward
function. To evaluate (1), we perform experiments on the simulated environment
the OpenAI gym [4]. (2) is not easy to verify because there are few explicit reward
functions about the features in the simulation environment. And the true rewards
in the real world are even more unavailable for us. Therefore, we perform the
demonstration in a toy grid world environment to explicitly see the recovered
rewards.

4.1 Standard Control Environments

Benchmarks. We consider the following four baselines: LSTD-μ+LSPI [12],
SCIRL [13], DSFN [16], which recover reward and optimal policy in an offline
setting, and Behavior Cloning(BC). LSTD-μ estimates feature expectations by
off-policy evaluation using LSTD and solves MDP with Least-Squares Policy
Iteration (LSPI). SCIRL approximates the Q-function offline directly by a linear
score metric classifier, it still estimates feature expectations using LSTD. DSFN
uses a deep neural network to estimate feature expectations and uses DQN to get
an optimal policy. Since DSFN does not converge if there is no warm-start and
feature extraction, we still initialize the policy and extract features for DSFN.

Training Details. Three neural networks are used to approximate: feature
expectation μ, state action value function Q, and supervised classification net-
work Pr, respectively. Since the first two networks are modifications of the DQN,
they have common hyper-parameters. We adopt 3-layered full-connected net-
work with a hidden layer of 256 for each network. In addition, a 80–20 training-
validation split is used in feature expectation network, the training termination
threshold δ is set to 0.01. In Q network, action selection threshold τ is set to 0.1.
We choose three control tasks: CartPole-v0, MountainCar-v0, Acrobot-v1. We
first use DQN to obtain the best policy and then utilize this policy to produce
demonstration data. We collect in total 1000 demonstration episodes and then
use 1, 10, 100, and 1000 episodes as training input respectively. We do not access
the simulator anymore once the data has been collected.

Figure 2 shows the test results of the learned policies on the three control
tasks. Our model outperforms the benchmark in all tasks, reaching near-optimal
performance even when the amount of data is small (except in the case of
episodes of 1 under the MountainCar-v0 task, we conjecture that the agent car
experiences the same location several times in the MountainCar-v0 environment,
and the expert actions may be inconsistent at each experience, the learning pol-
icy cannot determine the optimal action with very little expert data). LSTD-μ
and SCIRL perform poorly because least squares estimation is highly sensitive
to data distribution and basis features. And the state-of-art method DSFN will
not converge at all if there is no warm-start. We attempt to explain the meaning
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of the recovered reward. There are four raw features of the CartPole-v0 envi-
ronment: cart position, cart velocity, pole angle and pole velocity at tip. The
normalized parameters recovered by the algorithm are: –0.3, –0.3, –0.8, –0.3.
The episode will end when the angle of the pole reaches ±41.8◦, therefore the
reward function has the largest penalty factor for this feature.

Fig. 2. The performance is the average of 5 random seeds and the error bars show a
standard error, showing results for 1, 10, 100 and 1000 demonstration episodes. All the
baselines were initialized with TRIL [16], the numerical results are identical to those
in Lee et al. [16].

We split the expert data into train-test sets of 80-20. Table 1 shows action
matching accuracy over 1000 expert trajectories. Action matching is calculated
as the proportion of same actions selected by the expert policy and the learn-
ing policy on the test set. The policies learned by BCIRL can best match the
behavior of the experts.

Table 1. Action matching accuracy in control environment

CartPole-v0 MountainCar-v0 Acrobot-v1

BCIRL 94±1% 81±3% 90±1%

DSFN 89± 3% 80± 2% 83± 3%

BC 83± 3% 75± 3% 80± 4%

LSTD-mu 65± 5% 45± 4% 55± 4%

SCIRL 66± 4% 40± 4% 61± 3%

4.2 Gridworld Example

We learn the optimal policy with value iteration and generate 100 episodes of
expert trajectories, then apply BCIRL to the grid world environment with the
reward discount of 0.5. The raw state of gridworld (vertical coordinates x, hor-
izontal coordinate y ) is treated as the feature, and the final recovered reward
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function is r = −0.54x + 0.84y when we put sparse reward endpoint at the top
right corner, r = 0.65x + 0.76y when the sparse reward endpoint is put at the
bottom right corner. Figure 3 plots heat-maps of the ground truth reward and
the recovered reward. The recovered linear reward replaces the original sparse
reward, both of which can guide the RL algorithm to the optimal policy. Our
algorithm establishes whether rewards and features are positively or negatively
correlated, while assigning certain reward weights to features.

Fig. 3. (a) and (c) depict the ground truth reward, (b) and (d) are the recovered
reward map. The BCIRL recovers the sparse reward with a linear reward function
approximation.

5 Conclusion

In this paper, we introduce an offline IRL algorithm, BCIRL, to recover the
implicit reward function from expert demonstrations and to obtain near-expert
policies. BCIRL constrains the probability of actions selection in off-policy evalu-
ation to mitigate the drift of the state distribution. We demonstrate that BCIRL
performs strongly in control environments, that recovered rewards provide useful
insights on experts’ preferences. However, our approach still has some limitations
that will be improved in the future. For example, we assume that the reward
function is linear which should be extended to a more flexible functional form in
the future. For future works, It seems promising to explore the connection of the
batch reinforcement learning and the inverse reinforcement learning. The data-
driven approach batch reinforcement learning has attracted extensive research,
such as [15,24].
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Abstract. In a multi-agent game, the complexity of the environment
increases exponentially as the number of agents increases. Learning
becomes difficult when there are so many agents. Mean field multi-agent
reinforcement learning (MFRL) uses the average action of the neighbors
to increase the input of the value network, which can be applied in the
environment with hundreds of agents. However, inefficient exploration
and slow convergence speed limit the performance of the algorithm.
In this article, we propose a new Knowledge-Guided Reinforcement
Learning (KG-RL) method, which can be divided into rule-mix and plan-
extend. We use the rule-mix to encode knowledge into plans which can
reduce redundant information and invalid actions in the state. And the
plan-extend can combine the result of rule-mix with reinforcement learn-
ing to achieve more efficient joint exploration. Through experiments in
Magent environment, we prove that the win rate of our proposed KG-RL
is 22% higher than that of knowledge-based decision tree and 39% higher
than that of MFRL. Thus, the KG-RL can perform well in massive battle
games due to its high exploration efficiency and fast convergence.

Keywords: Knowledge-guided · Reinforcement learning ·
Multi-agent · Massive battle games

1 Introduction

In recent years, multi-agent reinforcement learning (MARL) has made remark-
able progress in various tasks [3,6,18]. However, learning in an environment of
multiple agents is still fundamentally difficult, because agents not only interact
with the environment, but also with each other [12]. With the increase number
of agents, the policy space expands rapidly, and the simultaneous learning of
multiple agents makes the environment non-stationary, which brings great dif-
ficulties for each agent to find the convergence policy [6], especially when the
number of agents is huge.

Due to the limitation of the network sizewhich increases linearlywhen the num-
ber of agents increases [11], the current popular methods, such as MADDPG [12],
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QMIX [15], etc., are often limited by the number of agents. Thus, the algorithm
represented by Independent Q-learning [17] directly treats other agents and the
environment as a whole. However, due to the instability caused by the other agents’
changing policies, the algorithm cannot converge stably. MFRL [21] proposes a
provably-converged mean-field formulation to scale up the actor-critic framework
by feeding the state and the average value of nearby agents’ actions to the critic,
enhancing the stability of learning. However, the average actions of other agents
in the execution process will be obtained by communication, which is not easy.

In addition, incorporating human knowledge into reinforcement learning is a
goodway.Purely knowledge-based approaches, such as decision trees, often require
a mass of human labor and expertise knowledge, while reinforcement learning (RL)
has a strong ability of sustainable learning. Recently, there has been a lot of work in
this area. DARLING [8] proposes a method in which candidate solutions are gen-
erated by the planner and then merged and passed to the reinforcement learning
module to learn the final approximate policy. However, the effect of this method
has a lot to do with the design of the planner. Bougie [1] used additional knowl-
edge as a supervision signal for network learning, and enhanced the information
provided to the agent by introducing human expertise, but this supervision signal
would interfere with the original training target of the network. Xie [20] proposed
to train an additional network to make decisions from knowledge-based policy or
the policy learned by the DDPG [9] algorithm. However, adding a network means
increasing training difficulty and training time, which runs counter to the original
intention of using human knowledge. In addition, these methods all need to pro-
vide a complete solution covering all states based on human knowledge, and do not
consider about the situation when the number of agents is huge.

In this article, we define the knowledge that can only give actions in some states
as rules, and the knowledge that has corresponding actions in all states as plan.
Then we propose a new Knowledge-Guided Reinforcement Learning (KG-RL)
method for massive battle games, which includes Rule-Mix and Plan-Extend mod-
ules. The difference from the previous method is that we only need to design some
effective rules instead of manually designing a complete solution. We designed a
rule-mix module based on the hypernetwork structure in Qmix [15], which can
learnmore complex logical relationships thanmanually designed decision trees and
reduce subjective bias of people. Then a plan-extend module is designed by extend-
ing the exploration policy of Actor-Critic (AC) [14] algorithm. It uses actor’s policy
and plan policies for joint exploration through a selector, which increases the explo-
ration efficiency of reinforcement learning and accelerates the convergence speed
of the algorithm. Through experiments in the Magent environment, we prove that
the win rate of KG-RL is 22% higher than rule-based decision tree and 39% higher
than the best-performing MFAC in pure reinforcement learning. The main contri-
butions of this paper can be summarized as follows.

– We innovatively propose the rule-mix module, which uses a hypernetwork
structure to learn more complex logical relationships between rules. It
improves the win rate by 17% over the rule-based decision tree;
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– We innovatively propose the plan-extend module. It combines rule-mix with
actor-critic for joint exploration and enhances the exploration efficiency of
the algorithm. The model with plan-extend improves the win rate by 22%;

– The KG-RL (rule-mix+plan-extend) method we proposed achieves the high-
est win rate in the Magent environment, which is 39% higher than the previous
best method MFRL in this environment.

2 Related Work

An important cluster of related research is the research on the scalability of
MARL. Based on graph convolutional neural network, [13] divided agents into
different domains, and the impact of dimensional explosion is reduced by reduc-
ing the number of agents in the domain; [10] combine the attention mechanism
with reinforcement learning, so that the agent can only consider about a part
of the agent which is most relevant to itself, rather than all of them. However,
these methods are all learned from scratch, and the number of agents that can
support is limited [11], which cannot be applied to the environment where there
are hundreds of agents.

Recent years, there has been a lot of research on combining human domain
knowledge with RL, such as [2,19] combine knowledge graph with reinforce-
ment learning in recommendation. PROLONETS [16] proposes a new network
structure by embedding human knowledge, and realizes the dynamic change of
network depth by adding random decision nodes. This method needs to design
the structure of decision tree manually, which requires a high level of human
technology. Based on QMix, RMLPE [5] expands the action space of RL with
the selection of rules, leverages the Q-value in RL as a uniform criterion to judge
the value of rules and original actions. The method is convenient to implement,
but the expansion of the action space increases the difficulty of learning.

3 Method

In many tasks, the state returned by the environment contains a lot of redundant
information, and the original action space also contains many invalid and illegal
action options. Therefore, it is necessary to encode some rules from the original
state space and action space through people’s understanding of the task. By mix-
ing these rules through the rule-mix module, we can quickly get some strategies
based on human knowledge, called plan 1, plan 2.... In order to enhance their
exploration capability, we combine them with the Actor-Critic [14] algorithm
to reduce the invalid exploration, and accelerate the convergence speed of the
algorithm. This method is collectively called KG-RL, and the overall structure
is shown in Fig. 1.
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Fig. 1. The overall structure of KG-RL. Rules is combined into plan through rule-
mix, and then plan-extend combine the plan with actor in RL for more efficient joint
exploration.

3.1 Rule-Mix

The original input often contains a lot of information and is not easy to process.
For example, for image input, we often only care about the content of the picture,
and it is quite time-consuming to directly input the entire image into the network
for end-to-end training. Besides we can use existing algorithms or common sense
to get some information that is helpful for decision-making. We first form the
method of extracting these more valuable information into decision modules,
which is represented by the function Ini(s), as shown in Table 1.

Similarly, the original action space directly uses the most direct actions like
up, down, left, right and attack, which does not contain any knowledge. There-
fore, in some cases, many invalid or illegal actions are often selected. Especially
in some environments, the cost of illegal actions is high. However, these invalid
and illegal actions are intuitive and easy to judge for humans in many problems,
such as suicide operations in games. Thus, we can embed human knowledge into
simple actions and form rules. We call these nodes which finally determine the
output action as action modules. They are represented by the function Outi(s),
as shown in Table 1.

Inspired by QMix, we also design a hypernetwork in rule-mix, which uses state
s to generate weight Wi and bias Bi through MLP, as shown in the left part of
Fig. 1. We combine Wi and Bi with the decision module, which can be calculated
as Eq. (1). This hypernetwork structure correlates the state s with the decision
module Ini through multiplication, by which an additional representation of the
current state is integrated into the gradient of Ini, so that more information can
be provided [23].

Hypernet out = Relu((Wi ∗ ini(s)) + Bi), (1)

Then, the output of the hypernetwork is processed through a Softmax layer,
and the probability of each action module is output of the latter. Finally, the AC
algorithm is used to train the network, and the goal is to maximize the long-term
return. The role of the hypernetwork is to generate a logical structure similar to
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a decision tree. With the powerful representation ability of deep neural network,
the hypernetwork designed by us can represent a more complex logical structure
than decision tree. This is an important reason why rule-mix performs better
than regular manual rules.

3.2 Plan-Extend

Actor-critic algorithm uses a stochastic policy for discrete actions, and actor out-
put the probability of each action. It is explored by sampling distribution of the
actor. In the early stage of training, the actor network contains less information.
The exploration based on the actor is almost equivalent to random exploration,
which is inefficient. Due to the low probability of success, rewards are often
sparse. This seriously affects the learning speed of the network. Therefore, we
can combine a actor policy with the rule-based policies for joint exploration.
Furthermore, we design a selector to choose the exploration policy.

We call the rule-based strategies obtained by rule-mix as Planj. Selector
decides to choose Planj or the current actor’s policy to interact with the envi-
ronment. Specifically, the selector determines the final action interaction with
the environment, as shown in Fig. 1. We can make a selection at each step or
at the end of each episode. The goal of selection is to choose the current better
policy, so that better samples can be generated and the convergence speed of
the algorithm can be accelerated.

Our goal is to use Planj to explore when the actor’s policy is not as good as
Planj. Thus selector can be a predefined function, or an adaptive variable. In
this article, we define it as a variable, which is selected by evaluation after each
round of training. When the win rate of the actor’s policy is lower than that
of the Planj in the last 30 evaluations, the Planj is selected for exploration.
Otherwise, the current actor’s policy is selected.

It is important to note that the selector and Planj here are only used to inter-
act with the environment to generate trajectories T (st, at, rt, st+1, done), which
is not included in the final reinforcement learning training model. Secondly, the
Planj uses deterministic rules, which means P (ap

t |st) = 1.0,∀st. So that the
importance sampling rate c can be represented as c = π(at|st)

P (at|st)
= π(at|st). There-

fore, the trajectory got by Planj can directly be used for Actor-Critic algorithm
updates. We call this method plan-extend which is shown in the right part of Fig. 1.

4 Experiment Setup

4.1 Environment

We conduct experiments in the Magent [22] environment, which is a confronta-
tion environment of large-scale agents. In the experiment, we use a 40×40 map.
At the beginning, there are 64 agents on each side, and they will not be sup-
plemented after death in battle. The termination condition is that one party
is completely wiped out or the maximum step of episode is reached. When the
terminal state is reached, the one with more surviving agents wins.
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There are two parts in the agent’s observation. One is a 7-channel 13 × 13
matrix representing obstacles, teammates, teammates’ HP, own mini map, oppo-
nent location, opponent’s HP, opponent’s mini map, the other is a 34 dimensional
feature vector including ID embedding, last action, last reward and position. The
21 actions of the agent include 13 movable positions and 8 attackable positions
around the agent. The reward setting in learning is the same as in MFRL1.

4.2 Human Knowledge Based Module Design

In the Magent environment, we use the rules of human experience in the battle
problem: attack only when there is an enemy within the attack range; give
priority to attacking the enemy with the least HP or the nearest distance; in
order to strengthen cooperation, people will approach teammates; for better
survive, humans will pay attention to their blood volume in time. Based on the
above human knowledge, we abstract the reules into the decision module Ini

and action module Outi as shown in Table 1.

Table 1. The decision modules and action modules we used in the experiment.

i Ini(s) Outi(s)

1 Are there any opponents in attack range Attack the enemy with the least health

2 Are there any opponents in observation Move to the nearest opponent

3 Are there any teammates in view Move to the teammate with the least health

4 Is my current health more than half Move to the opponent with the least health

5 Whether the number of our agents is greater
than that of the opponent

Move to the opponent with the least health

6 Whether the last action is an attack action Attack any one within range

4.3 Experiment Settings

In the experiment, agents in the same team share parameters. We use Adam
optimizer with a learning rate of 1 × 10−4. The discount factor γ is 0.95. For
value-based methods (MFQ, DQN, RMLPE [5]), the batch size is set to 64, and
the buffer contains the most recent 80000 transitions. All models are trained for
2000 rounds of self-plays, and then are used for battles.

Through the combination of human knowledge modules (rules), we can man-
ually design a decision tree based on human knowledge as shown in Fig. 3 as
Baseline. Experiments have proved that even this simple rule-base decision
tree performs better than other algorithms which are trained from scratch. In
addition, we also selected MFRL and RMLPE [5] for comparison. The MFRL
is the current state-of-the-art method in this environment and the RMLPE is
another practical method based on human domain knowledge.

1 https://github.com/mlii/mfrl.

https://github.com/mlii/mfrl
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5 Experimental Results

Winning or losing is a good condition for judging in the battle environment, and
it is also the most valuable indicator. Therefore, we first use the models trained
by each algorithm to play against each other. Then, with the Baseline as the
opponent, the model improvement speed of each model was compared in the
training phase. In addition, we also compared the output policies of rule-mix
and the Baseline to show the differences between them. Furthermore, we study
the influence of different decisions and action modules. Finally, we analyzed the
behavior of the model combined with the battle playback.

5.1 Battle Game

In this experiment, we directly use the models trained by each algorithm for
comparison. In order to reduce random errors, we trained three models for each
algorithm, named Algo 1, Algo 2, and Algo 3. In each round we randomly choose
two from all the models to have a battle. At the end of the experimentation, we
get a total of 200,000 duels. In addition to the number of wins for each model,
we also record the number of kills and be killed by each model.

Table 2. Result of battle

Elo score Wins Draws Totalls Win rate Killed Be killed Kill ratio

KG-RL 1 2521 15104 79 16792 90.42% 1039159 634900 1.64

KG-RL 2 2498 15070 72 16715 90.59% 1034676 636241 1.63

KG-RL 3 2409 15208 66 16766 91.10% 1038573 637606 1.63

Rule Mix 3 2351 14539 71 16807 86.93% 1031148 653521 1.58

Rule Mix 2 2322 14348 85 16677 86.54% 1022675 650434 1.57

Rule Mix 1 2242 14430 85 16732 86.75% 1025922 654432 1.57

Baseline 1 1848 11257 101 16496 68.85% 909402 620709 1.47

Baseline 3 1769 11454 106 16809 68.77% 926807 635147 1.46

Baseline 2 1749 11413 114 16558 69.62% 913718 621215 1.47

MFAC 3 1344 8407 131 16596 51.45% 869221 755577 1.15

MFAC 1 1299 8570 132 16638 52.30% 874899 748140 1.17

AC 3 1288 7770 159 16615 47.72% 835245 781361 1.07

MFAC 2 1268 8688 160 16857 52.49% 886280 760472 1.17

AC 1 1227 7866 161 16751 47.92% 843229 785245 1.07

AC 2 1169 7670 170 16554 47.36% 830664 778978 1.07

MFQ 3 842 3824 44 16414 23.57% 623389 931098 0.67

MFQ 1 804 3849 46 16470 23.65% 625485 934899 0.67

MFQ 2 802 4078 53 16528 24.99% 632251 931803 0.68

RMLPE 1 774 2910 6 16942 17.21% 380365 939619 0.40

RMLPE 2 655 2786 3 16715 16.69% 368833 929389 0.40

DQN 1 633 2269 96 16622 14.23% 480286 863041 0.56

DQN 3 617 2293 121 16715 14.44% 485276 867214 0.56

DQN 2 614 2266 111 16543 14.37% 481625 856605 0.56

RMLPE 3 552 2842 6 16688 17.07% 374305 925787 0.40
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In addition, learning from [4,7], we also use ELO ratings to describe the
performance of each agent, as commonly used in both traditional games like chess
and in competitive video game ranking and matchmaking services. Assuming
that the current grade scores of agent A and agent B are RA and RB respectively,
then the expected win rate of agent A to B, according to Logistic distribution,
should be:

EA =
1

1 + 10(RA−RB)/400
. (2)

If agent’s grade is adjusted accordingly, the specific mathematical formula is
R

′
A = RA +K(SA −EA). At the masters level K is usually 16. In order to create

a gap between agents, we set it to 32 here.
The result of the battle is shown in Table 2. It shows that the KG-RL (rule-

mix+plan-extend) we proposed is better than other methods in terms of ELO
scoring, win rate, or KD ratio. In particular, KG-RL and rule-mix are better
than the Baseline. On the contrary, other methods starting from scratch is not
as good as the Baseline. This illustrates the huge potential of embedding human
knowledge into RL.

5.2 Comparison of Training Process

Because each algorithm is trained by self-play. The model itself is constantly
changing when it is updated. In order to evaluate the convergence speed of each
algorithm, we let the model play a round against the Baseline after each round
of training. Then we calculate the win rate of the last 30 rounds. It can be
seen from Fig. 2 that KG-RL converges the fastest, and stably reaching a win
rate of 1.0 at 500 steps. In the end, only rule-mix and KG-RL have a winning
percentage of 1.0. This shows the good performance of reinforcement learning
based on human knowledge.

Fig. 2. The win rate of each algorithm when Baseline is used as opponent. We calculate
the win rate of the last 30 rounds after each round of training.

5.3 Model Differences

We count the output frequency of rule-mix and the Baseline on different action
modules. Through the different selection actions of each model in Table 3, we can
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find that the network after learning is quite different from the decision tree we
manually designed. This is because the neural network can learn more complex
logical relationships, corresponding to better strategies.

Fig. 3. Decision tree built from human
knowledge, which we used as Baseline in
experiment.

Table 3. Selection ratio of each
action module

Baseline Rule Mix

Times Rate Times Rate

Out1 13925 32.60% 13561 34.16%

Out2 17726 41.50% 14316 36.06%

Out3 840 1.96% 10659 26.85%

Out4 10214 23.91% 1165 2.93%

5.4 The Influence of Different Decisions and Action Modules

The different choices of the decision module and the action module have different
effects on the algorithm. We named the models that used the decision modules
(In1, In2, In3, In4), (In1, In2) and the model without the decision module as
rule mix in4, rule mix in2 and rule mix in0 respectively. Figure 4 shows their
training curve. It can be seen that the more input modules used, the faster the
convergence the algorithm will be. The added decision-making module reduces
the redundant information in the original state, providing more concise and more
valuable information for the network, which accelerates the learning speed of the
network.

Fig. 4. Comparison of models using dif-
ferent decision modules.

Table 4. Comparison of models
using different action modules.

Models ELO score Win rate

rule mix out 1 1586 82%

rule mix out 2 1268 21%

rule mix out 3 1369 43%

rule mix out 4 1479 51%

We named the models that used action modules (Out1, Out2, Out3, Out4),
(Out1, Out2, Out3, Out5), (Out2, Out3, Out4, Out5), (Out2, Out3, Out4, Out6) as
rule mix out1, rule mix out2, rule mix out3, rule mix out4, respectively.
Table 4 shows a comparison of the win rate of the trained models. It can be
seen that choosing different output modules will have different effects on the
final models. In this article, rule mix out1 performs best, so its corresponding
action modules are also used in other experiments.



92 S. Zhou et al.

5.5 Discussion

As shown in Fig. 5, these are screenshots of a battle between KG-RL and MFAC.
It can be seen that KG-RL (in red) formed a semi-encircled state of the opponent
from the beginning. This semi-encirclement is a more advantageous position for
agents to concentrate their firepower and strengthen cooperation. Although each
agent is trained separately, it shows the intelligence of group as a whole, which
is meaningful.

Fig. 5. These are screenshots of a battle between KG-RL (red) and MFAC (blue). At
the beginning of battle, two group are initialized in a symmetrical position on the left
and right. In order to show the details, c) enlarges one of the screenshots. (Color figure
online)

Secondly, by observing the local actions of agents, we can see that MFAC (in
blue) has more ineffective attacks (attacks no-one’s areas) than KG-RL. Tak-
ing advantage of human rules, KG-RL directly shields those invalid and illegal
actions through rule-mix, which reduces the exploration space of the algorithm.

6 Conclusion

In this article, we propose a knowledge-guided reinforcement learning method for
massive agent battle games, named KG-RL, which can be divided into rule-mix
and plan-extend. The hypernetwork structure in the rule-mix can obtain more
complex logical relationships than manually designed decision trees. The plan-
extend can combine the result of rule-mix with reinforcement learning to achieve
more efficient joint exploration. In fact, the experimental results has proved it.
In the Magent environment, it shows that the win rate of KG-RL is 22% higher
than rule-based decision tree and 39% higher than the best-performing MFAC
in pure reinforcement learning. In the future, it will be meaningful to study the
design and evaluation of rule modules. In addition, we will continue to conduct
research on the automation of rule module design.
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Abstract. Defect detection plays an important role in the industrial
field. Because the defective images are often insufficient and defects
can be various, defective image synthesis is commonly used and models
always tend to learn the distribution of defects. However, the complexity
of defective image synthesis and difficulty of detecting unseen defects are
still the main challenges. To solve these problems, this paper proposes
a semi-supervised defect detection method based on image inpainting,
denoted as SDDII, which combines the training strategies of CycleGAN
and Pix2Pix. First, we train a defect generator unsupervisedly to gen-
erate defective images. Second, we train the defect inpaintor supervis-
edly using the generated images. Finally, the defect inpaintor is used
to inpainting the defects, and the defective areas can be segmented by
comparing images before and after inpainting. Without ground truth for
training, SDDII achieves better results than the naive CycleGAN, and
comparable results with UNET which is supervised learning. In addition,
SDDII learns the distribution of contents in defect-free images so it has
good adaptability for defects unseen before.

Keywords: Defect detection · Automated optical inspection ·
Generative adversarial networks

1 Introduction

The defect detection is an important part to ensure product quality. Tradi-
tionally, this complex task is completed by manpower which is time-consuming
and labor-consuming, where the accuracy is affected by subjective judgments of
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workers and the efficiency depends on the physical condition of workers. In recent
years, with the development of deep learning, more and more defect detection
methods based on deep learning have been used to assist or even replace the
traditional manpower to improve the accuracy and efficiency [1,3,15].

In industrial scenes, it cost a lot to collect and label defective images so
the defective image synthesis is often used to help generate more data. However,
defective image synthesis [8] is complicated and not general-purpose which needs
to design exclusive method. Additionally, it is still challenging for model to
recognize unseen defects even though the data is sufficient.

Recently, to reduce complexity of defective image synthesis, CycleGAN [26]
is often used to generate defective images in an image-to-image manner by
inputting defect-free images [18]. Through this method, the defective images can
be inpainted back to defect-free images conveniently. By comparing the images
before and after inpainting, the defective areas can be segmented. This method
would make the model to learn the distribution of contents in defect-free images,
instead of learning the distribution of defects. It is like to make the model to
generate “mind-set”, where the unseen contents in images will be inpainted. So
this method can be good at detecting unseen defects. However, CycleGAN is
trained in an unsupervised manner and the generated defective images are not
utilized. It still has improvement space.

The main contribution of this paper is that we propose a semi-supervised
method utilizing the generated defective images to further improve inpainting
performance of CycleGAN [26]. Our method is denoted as SDDII, which stands
for “Semi-supervised Defect Detection based on Image Inpainting”. Firstly,
CycleGAN is trained to generate the defective images and inpaint the defec-
tive images. Secondly, we introduce the training strategy of Pix2pix [7], which
utilizes the generated defective images to supervisedly train the defect inpaint-
ing. Finally, the defects are segmented by comparing the images before and after
inpainting. Experiments show that SDDII can achieve better results than the
naive CycleGAN, and comparable results with the UNET which is supervised
learning.

The rest of the paper is structured as follows: in Sect. 2, we review the lit-
erature examining the applications of GAN on defect detection. In Sect. 3 we
outline the methodology employed, while in Sect. 4 we report the experiments
and results. In Sect. 5, we make a brief summary of this paper.

2 Related Work

GAN [6] is a network proposed by Ian Goodfellow in 2014. Compared with
other applications of convolutional network, such as image classification [19],
object detection [4], semantic segmentation [16], GAN can generate new data
by inputting random noise. Applications of GAN include face generation [23],
super-resolution generation [25], image inpainting [10], etc. To some extent, GAN
is a way of using reinforcement learning [9] to realize generative tasks. The ideas
of GAN and the “Actor-Critic” algorithm in reinforcement learning [12] are sim-
ilar, where actors are like generators in GAN, and critics are like discriminators
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in GAN, maintaining a game between actors (generators) and critics (discrimi-
nators) to achieve Nash equilibrium [20].

As GAN becomes more and more popular, GAN is gradually introduced into
the field of defect detection [2,14,24]. The common application is defective image
synthesis where defects are generated through GAN and pasted into the defect-
free image. Defective image synthesis has the following disadvantages: the design
process is complicated and the pasted images look fake. To overcome these, we
use CycleGAN [26] to generate the defective images in an image-to-image man-
ner where a forward mapping flow and a backward mapping flow form a circle.
In this method [18], a generator in a CycleGAN is adopted to generate defec-
tive images first, then the other generator is used to inpaint defective images,
finally the defective areas can be segmented by comparing the images before and
after inpainting (as shown in Fig. 1). However, consistency loss (LossF2) and
the adversarial loss (LossB1) are in two separated mapping flows which leads
to an imbalance in the training of DI (Defect Inpaintor). The performance of
DI has a direct impact on defect detection, so we aim to further improve the
defect inpainting. At this research, we introduce the supervised training strat-
egy of Pix2pix [7], where the consistency loss (LossF4) and the adversarial loss
(LossF3) are combined together in forward mapping flow (as shown in Fig. 2)
to improve the defect inpainting.

3 Methodology

3.1 Architecture

This paper proposes a semi-supervised defect detection method, denoted as
SDDII, which combines the training strategies of CycleGAN [26] and Pix2Pix
[7]. The training strategy of SDDII can be divided into two phases: the first
phase is unsupervised phase which contains unsupervised defect generation and
unsupervised defect inpainting. The second phase is supervised phase in which
we train additional supervised defect inpainting.

The unsupervised phase is implemented with CycleGAN, as shown in Fig. 1.
Through CycleGAN, data do not need to be collected in pairs [26]. Two gen-
erators in CycleGAN are defined as DG (Defect Generator) and DI (Defect
Inpaintor), which are responsible for defect generation and defect inpainting
respectively. We define the defect-free dataset as X and the defective dataset as
Y . As shown in Fig. 1, a defect-free image x in X is used to generate a defec-
tive image DG(x) by DG, then DG(x) is inpainted back to a defect-free image
DI(DG(x)) by DI. In the same way, a defective image y in Y is inpainted to a
defect-free image DI(y) by DI, then the DI(y) is used to generate a defective
image DG(DI(y)) by DG.

It is worth noting that in the actual operation process, the performance of
defect generation is often better than that of defect inpainting. That is because
the generated defects do not need too many constraints generally. The generated
content can be considered as defects as long as it can “destroy” the defect-free
images to some extent. As for the defect inpainting, we not only need to inpaint
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Fig. 1. The unsupervised training phase of SDDII. We train CycleGAN to generate
defective images and inpaint defects. Two generators in CycleGAN are defined as DG
(Defect Generator) and DI (Defect Inpaintor), which are responsible for defect gen-
eration and defect inpainting respectively. The loss functions in the forward mapping
flow are defined as LossFx, while those in the backward mapping flow are defined as
LossBx.

the defective content in local area, but also need to make the content distribution
of the whole image close to that of the defect-free images. So in practice, the
difficulty of defect inpainting is greater than that of defect generation.

Since CycleGAN [26] can use unpaired data to generate paired data, we intro-
duce an additional supervised training phase to improve the defect inpainting. As
shown in Fig. 2, we fix the parameters of DG and then input a defect-free image
x to generate a defective images DG(x). x and DG(x) are used for supervised
training of DI. In addition, a new discriminator DZ is added to form adversarial
training. The S operation is channel stacking, where the defective images DG(x)
are stacked with the defect-free images x or inpainted images DI(DG(x)), the
stacked images will be inputted to the discriminator for comparison. In essence,
it is an implementation of conditional GAN [17], which is also used in the famous
Pix2pix [7] and has achieved good results.

In terms of model structure, we adapt both DG and DI from UNET [21].
DX , DY and DZ use modules of the discriminator structure of patchGAN [7]
while the number of input channels of DZ is twice that of DX and DY . For
example, for RGB color images, the number of input channels of DX and DY is
3, and that of DZ is 6 because the S operation stacks two images with channel
number of 3 into a feature map with channel number of 6.

In the test phase, as shown in Fig. 3. The defective images y are inpainted to
defect-free images DI(y) by DI. Then the images before and after the inpaint-
ing, y and DI(y), are compared pixel by pixel and the pixels whose absolute
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Fig. 2. The supervised training phase of SDDII. We introduce an additional supervised
training phase which aims to improve defect inpainting. The parameters of DG are fixed
to generate defective images for DI’s training. S denotes image channel stacking.

difference is greater than the threshold will be segmented to form a binary image
D&T (y,DI(y)). The binary image D&T (y,DI(y)) represents the locations and
shapes of the defects, where D&T denotes pixel-level difference computing and
thresholding.

Fig. 3. The test phase of SDDII. DI is used to inpaint the images in testset. And then
we compare the images before and after inpainting pixel by pixel to get the defective
area, that is to calculate the prediction mask D&T (y,DI(y)). D&T denotes pixel-level
difference computing and thresholding.

3.2 Loss Function

Unsupervised Phase. In the unsupervised phase, which contains defect gen-
eration and inpainting, the loss is divided into two parts, the adversarial loss and
the consistency loss. As shown in Fig. 1, there are the forward (X → Y → X)
mapping flow and the backward (Y → X → Y ) mapping flow. Among them,
X → Y in the forward mapping flow is completed by DG cooperating with the
discriminator DY , and the loss function is shown in the Equation LossF1. DG
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tries to minimize this function against DY who tries to maximize it, that is,
min
DG

max
DY

LF1(DG,DY ). Similarly, for Y → X in the backward mapping flow,

the loss function is shown in the Eq. 2, i.e., min
DI

max
DX

LB1(DI,DX). The loss

functions in the forward mapping flow are defined as LossFx, and those in the
backward mapping flow are defined as LossBx. We define the data distribu-
tion as x ∼ Pdata(x) and y ∼ Pdata(y) where Pdata denotes the empirical
distribution of dataset.

LF1(DG,DY ) =Ey∼Pdata(y)[log DY (y)]
+Ex∼Pdata(x)[log(1 − DY (DG(x)))]

(1)

LB1(DI,DX) = Ex∼Pdata(x)[log DX(x)]
+ Ey∼Pdata(y)[log(1 − DX(DI(y)))]

(2)

Y → X in the forward mapping flow is mapped by DI. And X → Y in the
backward mapping flow is mapped by DG. The consistency loss of each of them
corresponds to LossF2 and LossB2 in Fig. 1 respectively. The loss functions are
shown in the Eq. 3 and the Eq. 4.

LF2(DG,DI) = Ex∼Pdata(x)[‖DI(DG(x)) − x‖1] (3)

LB2(DG,DI) = Ey∼Pdata(y)[‖DG(DI(y)) − y‖1] (4)

The total loss function of the unsupervised phase is shown in the Eq. 5, where
α is a balance parameter between adversarial loss and consistency loss. In this
phase, we aim to solve DG∗,DI∗ = arg min

DG,DI
max

DX ,DY

Lphase1(DG,DI,DX ,DY ).

Lphase1(DG,DI,DX ,DY ) = LF1(DG,DY ) + LB1(DI,DX)
+ α(LF2(DG,DI) + LB2(DG,DI))

(5)

Supervised Phase. In the supervised phase, the parameters of DG are fixed
and only the DI are trained because we aim to improve the defect inpainting. As
shown in Fig. 2, the defect-free image x is inputted to DG to generate the defec-
tive image DG(x), which is then inpainted by DI to obtain DI(DG(x)). The
discriminator DZ compares and judges the images before and after inpainting,
so as to assist DI to optimize the inpainting performance. In the training phase,
the discriminator label is true for the stacking input of x and DG(x), and false
for the stacking input of DI(DG(x)) and DG(x). And the loss is also divided
into adversarial loss and consistency loss. The adversarial loss corresponds to
LossF3 in Fig. 2, as shown in the Eq. 6 where z and Pz denote Gaussian noise
and Gaussian distribution respectively. According to cGAN [17], we should pro-
vide Gaussian noise z as an input to the generator in addition to original input.
If z is ignored, the mapping still can be learned, however, deterministic outputs
will be produced and DI can not learn a whole distribution.

LF3(DI,DZ) = Ex∼Pdata(x)[log DZ(DG(x), x)]
+ Ex∼Pdata(x),z∼Pz(z)[log(1 − DZ(DG(x),DI(DG(x), z)))]

(6)
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The consistency loss can be calculated according to the pixel difference
between the defect-free image x and the inpainted image DI(DG(x)), corre-
sponding to LossF4 in Fig. 2, as shown in the Eq. 7.

LF4(DI) = Ex∼Pdata(x),z∼Pz(z)[‖DI(DG(x), z) − x‖1] (7)

The total loss function of the supervised phase is shown in the Eq. 8, in which
β is a balance parameter between the adversarial loss and the consistency loss.
In this phase, we aim to solve DI∗ = arg min

DI
max
DZ

Lphase2(DI,DZ).

Lphase2(DI,DZ) = LF3(DI,DZ) + βLF4(DI) (8)

4 Experiments

4.1 Preparations

We evaluate SDDII on the RSDDs (Rail Surface Defect Datasets) [5] which
contains two types of datasets. The first is a Type-I RSDDs captured from
express rails, which contains 67 challenging images. The second is a Type-II
RSDDs captured from common/heavy haul rails, which contains 128 challenging
images. Each image contains at least one defect, and there is a corresponding
ground truth, which is a binary mask image with the same size that shows the
locations and shapes of the defects.

For evaluation, we choose IOU (Intersection over Union), pixel-level precision,
pixel-level recall, and pixel-level F1 score as the evaluation metrics which are
commonly used in semantic segmentation. As shown in Eq. 9, TP , FP , and
FN denote the numbers of correctly detected pixels, falsely detected pixels, and
undetected defect pixels. The values in following experiments are averaged over
the whole testset.

IOU = TP/(TP + FP + FN)
Pre = TP/(TP + FP )
Rec = TP/(TP + FN)
F1 = 2 × Pre × Rec/(Pre + Rec)

(9)

For comparison, on these datasets we also implement naive CycleGAN [26] for
ablation study, and UNET [21] which needs binary mask images for supervised
training while SDDII does not need. To be fair, no pre-trained model is used in
our experiments.

4.2 Implementation Details

For Type-I RSDDs, the width of each image is 160 px, and the height can be
from 1000 to 1282 px. And for Type-II RSDDs, all images share the same size
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of 55×1250 px2. To save GPU memory, we crop the original images and mask
images via sliding windows. What’s more, by this trick we can get more training
images although the number of images in original dataset is small. In our exper-
iments, the window size is set to 160×160 px2 and 55×55 px2, and the sliding
stride is set to 80 and 27 px, for Type-I and Type-II RSDDs respectively. All
the cropped images will be resized to 256×256 px2 before being inputted. As
for labelling, if a cropped binary image contains any TRUE pixels(pixel value
equals 1), we label the corresponding cropped image as defective image, other-
wise, defect-free image.

During the unsupervised training phase, we input the cropped images to
train our model with Adam [11] solver from scratch. The α is set to 10 and the
batchsize is set to 1. In the first 100 epoch we keep the learning rate at 0.0002
and in the next 100 epoch we decay the learning rate to zero linearly.

During the supervised training phase, we randomly pick a image x from X
and input it to DG to generate defective image DG(x), where x and DG(x) make
up the paired images for supervised training of DI. In theory, we can generate
training paired images infinitely. In our experiments, we generate 10000 paired
images for DI’s further training and we set β = 100 then keep other training
options the same as those of the unsupervised training phase.

In the test phase, we crop each image into an image-set and input the cropped
images into DI, like what we do in the training phase. For each cropped image
and its output, we compute the difference of each pixel between them and get
a pixel-level difference image. After inference of each image-set, we gather the
difference images and rebuild the whole prediction binary image which is used
to be compared with ground truth for evaluation.

4.3 Results

We train our model on a machine with a GPU of NVIDIA GTX 1660 Ti @ 6GB
and a CPU of Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz. It takes 2–3 days
to complete all the trainings. Then we implement the inference and the results
are shown in the Table 1 and Table 2. In addition, we also refer to the results of
CFE [5] which is proposed by the RSDDs publisher. By now, CFE still achieves
the best results. However, CFE is an exclusive system which is specially designed
for RSDDs, which contains lots of designs of feature extracting. That is, if we
change the dataset, we should design the method again, which is complicated
and not general-purpose.

Due to the complexity of analyzing the performance of inpainting, we directly
analyze the performance of segmentation instead. Besides, the performance of
segmentation is representative of the performance of inpainting.

As for UNET, we can see its performance differs a lot between two datasets.
On Type-I RSDDs the most of defects tend to be oval-shaped but on Type-II
RSDDs the shapes of defects are various. UNET is good at learning invariant
patterns so it get better results than SDDII on Type-I RSDDs, but get worse
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Fig. 4. The results of Rail 40 (a), 54 (b), and 55 (c) in Type-I RSDDs. The sequence of
images for each rail is the original image, result of UNET, result of CycleGAN, result
of SDDII, ground truth.

IOU , Pre and F1 than SDDII on Type-II RSDDs. Relatively, SDDII get more
stable performances on both Type-I and Type-II RSDDs. SDDII detects defects
by comparing images before and after inpainting, so it is adaptive for those
unseen defects and can handle defects with various shapes in Type-II RSDDs.
Besides, UNET is supervised learning which needs ground truth for training
while SDDII does not need. Some representative results are picked and shown in
Fig. 4 and Fig. 5. We can see that SDDII output comparable mask with UNET
on Type-I RSDDs in Fig. 4 and get more stable and accurate outputs of Type-II
RSDDs in Fig. 5.

Table 1. Results on Type-I RSDDs

Method IOU(%) Pre(%) Rec(%) F1(%)

CFE [5] – 87.54 85.63 85.12

UNET [21] 45.73 89.25 58.33 68.86

CycleGAN [26] 27.18 60.25 46.40 48.45

SDDII (Ours) 36.50 83.42 48.15 57.04

Compared to CycleGAN which is unsupervised learning, SDDII is semi-
supervised learning where we additionally implement the supervised training by
utilizing the generated paired data. And as shown in Table 1 and Table 2, SDDII
outperforms CycleGAN on both Type-I RSDDs and Type-II RSDDs, which
shows that our proposed supervised training phase can significantly improve
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Table 2. Results on Type-II RSDDs

Method IOU(%) Pre(%) Rec(%) F1(%)

CFE [5] – 83.88 83.58 82.11

UNET [21] 24.57 63.49 52.72 50.91

CycleGAN [26] 21.11 64.48 37.57 42.57

SDDII (Ours) 26.82 70.72 49.75 54.48

the defect inpainting and then improve the defect detection of CycleGAN. As
shown in Fig. 4 and Fig. 5, SDDII’s outputs are more stable and accurate than
that of CycleGAN.

Fig. 5. The results of Rail 6 (a), 11 (b), and 40 (c) in Type-II RSDDs. The sequence
of images is the same as Fig. 4.

5 Conclusions

Aiming at reducing the complexity of defective image synthesis and difficulty
of detecting unseen defects, we proposed a semi-supervised method, denoted as
SDDII, which combines the training strategy of CycleGAN and Pix2Pix. First,
through unsupervised training phase, DG and DI would get the abilities of
defect generation and defect inpainting respectively. Second, through supervised
training phase, we further improve the defect inpainting of DI. Finally, experi-
ments show that SDDII can indeed achieve better results than naive CycleGAN.
In addition, SDDII is practical in many industrial scenes, since SDDII has good
adaptability for unseen defects and we do not need to label the segmentation
masks for training.
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Abstract. How to learn concepts from few-shot samples remains an
open challenge in the deep learning era. The previous meta-learning
methods require a large number of annotated samples in the training
phase, which still contributes to high manual-labeling costs. In this paper,
we propose a unsupervised few-shot learning framework and pointed out
that negative queue constructed via randomly sampling contains many
false-negative samples (noise), which has negative impacts on the model’s
generalized performance especially when only few samples are available.
Specially, we propose an Attention-based Noise Filtering (ANF) strategy
to make momentum contrastive loss more applicable to few-shot learn-
ing scenario. In addition, we also propose a dynamic momentum update
method, which can greatly improve the classification accuracy. Our eval-
uations demonstrate state-of-the-art unsupervised few-shot learning per-
formance, which is comparable to supervised baseline models.

Keywords: Self-supervised · Unsupervised few-shot learning ·
Attention mechanism · Computer vision

1 Introduction

Deep learning [13] has been a powerful tool to significantly advance the perfor-
mance of many computer vision tasks [15,17,20,22,23,33], e.g., image classifica-
tion, action recognition, person re-identification, semantic segmentation, etc., in
recent years. However, deep learning models generally rely on large-scale anno-
tated training samples to achieve promising generalized performance. In other
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Fig. 1. We eliminate noise in the negative queue through the filter.

word, these models are not capable of learning from few-shot samples, which
is inconsistent with human’s learning process. To illustrate, human beings can
easily understand novel concepts via very limited samples, and such a learn-
ing process is achievable as we can transfer knowledge obtained from previous
tasks. Consequently, few-shot learning is proposed to study how to make machine
learn like a human, and can adopt previous knowledge (parameters of pretrained
model) to solve new problems [3].

The meta-learning framework, in which models learn upon tasks to learn, has
been the most popular choice to study the knowledge transfer process. Most of
the recent few-shot learning works [9,24,34,36,37,39,40] are build upon meta-
learning architecture. Though its usefulness has been verified, the meta-training
tasks require plentiful manual annotations as supervision for gradient descent
optimization, thus the manual-labeling costs cannot be ignored under the cur-
rent few-shot learning setting. Recently the self-supervised learning strategies, i.
e., instance discrimination and transformation prediction, have demonstrated
strong performance in representation learning and shown an opportunity to
achieve unsupervised few-shot learning without any annotated samples. The
objective of metric-based few-shot learning works [9,24,34,36,37] is to learn dis-
criminative representations and making prediction by measuring the Euclidean
or Cosine distance, thus the quality of learnt representations apparently has sig-
nificant impacts. From this viewpoint, the self-supervised methods can be natu-
rally applied in few-shot learning pipelines as they share the same goal. Among
all self-supervised methods, the contrastive learning [3,14,28] has a closer for-
mulation to metric-based few-shot learning methods, thus it is the first learning
method to be applied in few-shot learning scenario.

In this paper, we first apply the most powerful contrastive learning method
Momentum Contrast (MoCo) [14] in few-shot setting to develop an unsuper-
vised few-shot learning framework. Though it is observed that MoCo achieves
strong few-shot classification accuracy, one issue existed in the dictionary (neg-
ative queue) may lead to significant performance loss. In fact, the key contribu-
tion of MoCo is to construct a large dictionary that covers a rich set of negative
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Fig. 2. The training and testing processes of our unsupervised few-shot learning frame-
work. Noise filter is capable of filtering the keys from the same class of data q in the
historical queue. The model is trained to learn the relations between q and 1 positive
sample and N negative samples. We apply the infoNCE [28] (NCE in picture) as our
training loss function to achieve the gradients for parameters’ updating, and lastly use
the encoder’s parameters to update the Momentum Encoder with a dynamic rate.

samples while the encoder for dictionary keys is kept as consistent as possible.
However, as the dictionary is constructed via randomly sampling, it may contain
many false-negative samples and lead to parameter biases in contrastive learning.
This drawback is especially important in few-shot setting as the model’s general-
ized performance can be very sensitive to such biases when only very few samples
are available.

To solve the above problem, we propose a novel attention-based two-stage
noise filter strategy as shown in Fig. 1, which can be easily embedded into
MoCo and other dictionary-based contrastive learning models to neglect the false-
negative samples in dictionary keys and reduce the knowledge biases. Our unsu-
pervised few-shot learning framework is shown in Fig. 2. It is obviously that the
historical queue is not directly used for contrastive learning, but it first fed into
the noise filter module to denoise the false-negative samples. In such a way, the
false-negative samples in the dictionary can be neglected and the overall quality
of contrastive knowledge is significantly improved. We calculate the similarities
between query data and filtered negative queue, then use the infoNCE [28] to cal-
culate loss, which is used to update encoder’s parameters. And following we use
dynamic momentum update method to update the momentum encoder.
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Our contributions in this paper can be summarized as follows:

– We reinvent an unsupervised few-shot learning model based on momentum
contrast, take a deeper look at the overall framework and analyze the noise
problems in the contrastive learning. We evaluate the framework with differ-
ent backbones, and search the optimal architecture for few-shot learning.

– The noises in the negative dictionary of momentum contrast is an important
issue as noises in the dictionary clearly lead to knowledge biases, and limit the
recognition performance, especially in few-shot learning scenario. To address
this issue, we propose a novel noise filter module which use the attention
mechanism to filter noise from different perspective.

– Based on our experimental finding that the performance with a dynamic
momentum is better than a fixed value for the momentum network, we pro-
pose a dynamic momentum update method, which greatly improves the clas-
sification accuracy.

We evaluate our proposed method on the publicly available dataset, and
the experimental results shows that the proposed method achieves state-of-the-
art unsupervised performance, which even surpasses some supervised baseline
models.

2 Related Work

One and Few-Shot Learning. The one- and few-shot learning has been studied
widely in computer vision in both shallow [2,6,8,21] and deep learning scenarios
[10,19,34,38]. Early works [6,21] propose one-shot learning methods motivated by
the observation that humans can learn new concepts from very few samples. These
two works employ a generative model with an iterative inference for transfer.

Matching Network [38] introduces the concept of support set and L-way
Z-shot learning protocols. It captures the similarity between one testing and
several support images, thus casting the one-shot learning problem as set-to-
set learning. Such a network works with test classes unobserved at the training
time without any modifications. Prototypical Networks [34] learn a model that
computes distances between a datapoint and prototype representations of each
class. Model-Agnostic Meta-Learning (MAML) [10] introduces a meta-learning
model which can be considered a form of transfer learning method. MAML is
trained on a variety of different learning tasks and falls into the category of
meta-learning approaches, and this results in a good initial condition for the
solver to generalize to other novel tasks.

A large family of meta-learning approaches apply some form of the gradient
correction. Algorithms such as Meta-SGD [25], MAML++ [1], CAVIA [41] and
LEO [31] adaptively alter the step-size of the gradient updates.

Self-supervised Learning. The self-supervised learning is a recent popular
learning strategy between unsupervised and supervised learning. It includes two
types of learning strategies: 1) transformation prediction; 2) instance discrimi-
nation (contrastive learning).
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Transformation prediction learns to predict self-information as auxiliary
objective to improve the performance and reduce the uncertainty on many tasks,
e.g., object recognition [12], video representation learning [7,32], and also few-
shot image classification [11,35]. To demonstrate, [12] learns to predict random
image rotations, [5] learns to discriminate a set of surrogate classes, and [11,35]
propose to improve the few-shot performance by predicting image rotations and
jigsaw patterns.

Contrastive self-supervised learning does not focus on the details of sam-
ples, but learn features that distinguish it from others. DeepMind proposes the
infoNCE loss function in CPC [28], which builds the foundation for Contrastive
self-supervised learning. CPC learns representations by predicting the future in
latent space by using autoregressive models. They employ a probabilistic con-
trastive loss which induces the latent space to capture information that is max-
imally useful to predict future samples. It also makes the model tractable by
using negative sampling. MoCo [14] proposes to expand the number of nega-
tive samples as a large dynamic dictionary with a queue and a moving-averaged
encoder. This enables building a large and consistent dictionary on-the-fly that
facilitates contrastive unsupervised learning.

Unsupervised Few-Shot Learning. Unsupervised few-shot learning is a new
field combining few-shot learning and unsupervised learning. It assumes that the
training set does not contain any label information. In unsupervised few-shot
learning, the simplest idea is to put a pseudo-label for unlabeled data through a
certain method, so that unlabeled data can be trained in the same way as labeled
data. Many scholars have followed this line of thinking and proposed a series
of methods. The CACTU [16] method proposed by Kyle et al. is the pioneer of
this type of method. CACTU first uses an unsupervised representation learning
method (such as BiGAN [4]) to obtain feature representations from the unlabeled
training set, and then uses clustering methods to divide the features into multiple
subsets and randomly add pseudo-labels to them, and finally uses Pseudo-label
data to train MAML [9], ProtoNet [34] and other FSL models. In the pre-training
process of CACTU, it need to obtain pseudo labels by clustering. The process of
this method is relatively complicated and the additional cost is relatively large.
To solve this problem, UMTRA [18] provides an end-to-end solution. UMTRA
first randomly samples N pictures from the unlabeled training set. These N pic-
tures are considered to be from different categories, then use data augmentation
to enhance each picture by K and divide the support set and query set, and finally
use the few-shot learning method (such as MAML [9]) to train.

3 Approach

The causes of noise is analyzed in this part first, and the detail of the attention-
based noise filtering strategy will be introduced then.
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3.1 Dictionary Noises

The Causes of Noise. In order to reduce the noises in the dictionary keys,
we first clarify the origin and the proportion of noises in the queue. Ideally, all
dictionary keys should differ from the positive query data, so that the contrastive
loss will not push intra-class samples farther. However, if the number of classes
is much smaller than the training batch size or the number of samples per class,
there is a very big possibility that the dictionary keys contain samples from the
same class and these samples are called false-negative keys.

The Proportion of False-Negative Keys. Currently, there are two main
ways to construct negative samples: 1) Taking historical samples as the negative
queue. Assuming the probability of each category data appearing in the queue is
equal, the queue length is L, the number of classes is C, then the average number
of false-negative keys in the dictionary is L

C ; 2) Randomly sampling a batch of
data points, and for every data point in the mini-batch, treating the rest data
points as negative samples [3]. Assuming the batch size is B and the number of
training classes is C, then the amount of noise in each batch is B

C . Therefore, it
is consistent with our analysis that as long as the queue length and batch size
is larger than the number of classes, there are definitely false-negative samples
existed in the queue. Regrettably, there are no works considering to address this
issue in self-supervised learning.

Softmax

argmax

Query Queue

Query
Labels

Queue Labels

……

……

Fig. 3. We annotate the data in the history queue using the attention-based method.
For each sample in the historical queue, we find the most similar to each input batch,
and then mark it as the same category.
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Table 1. The effect of cosine noise filtering, attention noise filtering and dynamic
momentum updating. We apply the trained model to novel class 5-way 1-shot few-
shot learning and 5-way 5-shot few-shot learning. ResNet-18 is used as backbone on
miniImagenet.

Case Cos Att. Dyn. Acc. (%)

(5, 1) (5, 5)

(a) – – – 50.04 69.87

(b) � – – 52.11 71.17

(c) � � – 52.77 71.25

(d) � � � 54.69 73.36

3.2 Direct Noise Filter

To address the above-mentioned issue, we first propose a simple solution named
Direct Noise Filter (DNF) to reduce the number of false-negative keys in the dic-
tionary. As the core task of the filter is to find the data points which are close to
xq and xk in feature space, we first calculate the similarities s between the pos-
itive sample xq and all dictionary keys, and then simply remove the data points
with top-k highest similarity scores from the dictionary in contrastive learning.
For a dictionary key xi, the similarity between it and xq can be calculated as
follows,

si = fq(xq)T · fq(xi), (1)

where fq(·) denotes the feature extractor in the network model and the notes T
refers the transpose of the feature vector xq. The top k results which mean most
similar to a positive sample will be removed from the dictionary queue.

Theoretically, the ratio of false-negative samples in the queue should be close
to p = 1

C , so we search the optimal discarding ratio around p. We conduct
numbers of experiments on miniImagenet. We find that the best performance
is achieved when the discard ratio is set to 1% for 5-way 1-shot learning task.
Due to the limited quality of feature space, there are some misclassifications in
the filtering, so that the best discarding ratio is slightly lower than p. If the
discarding ratio is high, some discriminative negative samples will be discarded,
which makes the losses outweigh the gains.
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Table 2. Comparison with previous results. ‘Clustering’ represents the clustering algo-
rithms used by that model. 5-1 represents 5-way 1-shot few-shot learning, 5-5 represents
5-way 5-shot few-shot learning, no special note, same in the following.

Methods Backbones Clustering miniImagenet Omniglot

5-1(%) 5-5(%) 5-1(%) 5-5(%)

Supervised models

MAML [9] ConvNet-4 N/A 46.81 62.13 94.46 98.83

PN [34] ConvNet-4 N/A 46.56 62.29 98.35 99.58

RN [36] ConvNet-4 N/A 50.44 65.32 97.6 99.1

SoSN [40] ConvNet-4 N/A 52.96 65.32 99.8 99.9

MetaOptNet [24] ResNet-12 N/A 62.64 78.63 – –

DeepEMD [39] ResNet-12 N/A 65.91 82.41 – –

Unsupervised models

MLP with dropout [4] – BiGAN 22.91 29.06 40.54 62.56

CACTUs-MAML [16] ConvNet-4 BiGAN 36.24 51.28 58.18 78.66

CACTUs-ProtoNets [16] ConvNet-4 BiGAN 36.62 50.16 54.74 71.69

MLP with dropout [4] – DC/ACAI 29.03 39.67 51.95 77.20

CACTUs-MAML [16] ConvNet-4 DC/ACAI 39.90 53.97 68.84 87.78

CACTUs-ProtoNets [16] ConvNet-4 DC/ACAI 39.18 53.36 68.12 83.58

UMTRA [18] ConvNet-4 N/A 39.93 50.73 83.80 95.43

Unsupervised-RN ConvNet-4 N/A 35.14 44.10 – –

MoCo ResNet-18 N/A 50.10 69.81 91.08 97.64

Ours (ANF) ResNet-18 N/A 54.69 73.36 91.78 97.73

3.3 Attention-Based Noise Filter

Though the DNF proposed initially by us has achieved some promising results,
it is easy to misjudge when only relying on transverse noise filtering. Inspired by
some recent work [37], we propose the Attention-based Noise Filter (ANF). In
general, the method contains two stages. The first stage is to use the attention
mechanism to label the data in the historical queue. The label ŷ is calculated by
Eq. (2),

ŷ =
N∑

i=1

S(x, xi) · yi, (2)

where y is the real label existed in the dataset. As shown in Fig. 3, for each
sample in the historical queue, we find the most similar to each input batch, and
then mark it as the same category. The similarity is calculated by Eq. (3),

S(x, xi) =
ef(x)·g(xi)

∑N
k=1 ef(x)·g(xk)

, (3)
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where f(·) and g(·) represent encoder and moment encoder respectively. The
second stage is to change the similarity of the same label to zero when calcu-
lating the similarity between the query data and the negative sample. Then we
use DNF filter the noise. The proposed ANF filter the noise in negative samples
from different perspective. From the perspective of input data, DNF searches
the historical queue for the data with the highest similarity to the query sam-
ple and then removes it. This method focuses on each individual input data.
ANF reflects a kind of reverse thinking, which starts from the perspective of
historical queues. ANF searches each round of input data and uses the label of
the input sample with the highest similarity as the historical data label. This
method focuses on the overall data sampled in each round.

3.4 Dynamic Momentum Updating

Table 1 shows the performance improvement of the model by cosine filtering,
attention filtering and dynamic momentum updating. In MoCo, momentum
encoder can be regarded as a historical version of encoder. We believe that when
the momentum encoder and encoder feature extraction capabilities are high, the
greater the gap between them, the better the filtering accuracy. This is actu-
ally a dilemma. When the momentum update is high, the momentum encoder
and encoder parameters are similar, and when the momentum update is low,
the feature extraction ability of the momentum encoder will be poor. We have
designed a dynamic update mechanism to solve this problem. The calculations
of dynamic momentum is given by Eq. (4), δ is used to control the growth rate.

m = mbase + δ · epochnow

epochall
, (4)

In the early stage of training, the encoder performance is poor. At this time,
we choose a higher momentum update ratio. As the training progresses, the
performance of the model gradually improves. Reducing the momentum update
ratio can improve the accuracy of similarity calculation and improve the accuracy
of filtering.

4 Experiments

In this section we empirically study the noise filter behaviors. We pay special
attention to how to improve filtering performance.
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Fig. 4. The comparison of filtered samples and positive samples. We selected some of
the filtered samples in the experiment as shown in this figure, where the samples in the
red dashed box represent samples of the same category as the positive samples. (Color
figure online)

4.1 Datasets

We evaluate our unsupervised model on two benchmarks, miniImagenet [37] and
Omniglot [21]. Our models are trained from scratch in unsupervised manner, and
do not require pre-training on any large-scale dataset.

miniImagenet is the most popular dataset for few-shot classification. It
contains 100 classes sampled from ILSVRC-2012 [30], and every class has 600
images with 84 × 84 resolution. It is randomly split to 64, 16, 20 classes for
training, validation and testing respectively.

Omniglot is a character image dataset containing 1623 handwritten charac-
ters from 50 alphabets. Every character in Omniglot has 20 different instances
written by different people. In Omniglot, 1200 characters are used for training,
100 characters are used for validation and 323 characters are used for testing.

Table 3. The performance of noise filter on different backbones without dynamic
momentum. ANF represents attention-based noise filter. 5-1 represents 5-way 1-shot
few-shot learning, 5-5 represents 5-way 5-shot few-shot learning

Methods Backbones 5-1(%) 5-5(%)

MoCo ConvNet4 42.78 58.98

Ours (ANF) ConvNet4 43.46 59.03

MoCo ResNet-12 50.33 68.20

Ours (ANF) ResNet-12 51.87 68.90

MoCo ResNet-18 50.10 69.81

Ours (ANF) ResNet-18 52.86 71.91
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4.2 Implementation Details

The experiments are built on PyTorch platform. The ResNet-18 [15] is used as
backbone in our unsupervised few-shot learning framework. We use SGD solver
as the optimizer, in which the initial learning rate is 0.03, weight decay is set
to 0.0001 and the momentum is 0.9. The training batchsize is 128. We train the
model for 200 epochs with 4 GPUs, and the learning rate is decayed by 0.1 at
the 120-th and the 160-th epochs. During training phase, we randomly augment
the training data, e.g., random resized crop (224 × 224), random color jitter,
random vertical and horizontal flips. The fully-connected layer in ResNet-18 is
modified to produce 128-dimension image features.

We set dynamic momentum update from 0.1 to 0.001. Following MoCo [14],
we apply shuffling BN [14] to further improve the discrimination of feature
space.The negative sample queue length is set to 6144 and the discarding ratio
to 1% respectively.

In the testing phase, the model is evaluated for 2000 episodes in 5-way 1-shot
setup to achieve the final performance. For fair comparisons between baselines
and our models, we use random seeds to control the generation of few-shot
learning tasks. We remove the fully-connected layer from the encoder for feature
extraction and all parameters are frozen.

4.3 Experimental Results

Following the standard few-shot setup [27], we conduct extensive experiments on
miniImageNet and Omniglot, whose results are shown in Table 2. It is observed
that the proposed method, i.e., Attention-based Noise Filter (ANF) significantly
outperforms all previous unsupervised baseline models with a large-margin. The
top-1 accuracy of Ours ANF on miniImagenet is up to 54.69% and 73.36%
under 5-way 1-shot and 5-way 5-shot respectively, which surpasses MoCo by
4.59% and 3.55% respectively and become the new state-of-the-art method. In
addition, Our ANF even surpasses part of supervised methods, e.g., MAML [9]
and ProtoNet [34] and narrows the gap between the performance of the best
supervised method to a certain extent.

4.4 Visualization of Filter Results

To verify the filtering quality of ANF, we randomly select several mini-batch of
query samples and visualize their corresponding false-negative keys and classes.
We observe in the visualization that many true false-negative keys can be indeed
selected as shown in Fig. 4. These experimental results verify our assumption that
there are noises existed in the dictionary, and reducing such noises can effectively
improve the performance.

4.5 Ablation Studies

Different Backbones. We further evaluate our methods on different backbones
as show in Table 3. The experimental results show that our method can improve
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Table 4. The performance of different distance metric on miniImagenet without
dynamic momentum, where Cos denotes Cosine distance and L2 denotes Euclidean
distance.

Metric Backbones 5-1(%) 5-5(%)

Cos ResNet-18 52.86 71.91

L2 ResNet-18 51.13 69.52

performance under different backbones. At the same time, we find an interesting
phenomenon: the simpler the backbone, the smaller the performance improve-
ment. We believe that this phenomenon occurs because the filter depends on
the features extracted by the backbone. We mainly filter the noise in negative
samples based on the cosine distance between sample feature vectors. When the
backbone is complex, the extracted feature vector is more accurate, so the filtered
noise is also more accurate. In other words, the more complex the backbone, the
more accurate the noise filtering and the higher the performance improvement.

Different Metrics. How to properly design the similarity measurement is also
an important factor in the filtering process. A better metric can bring higher
detecting accuracy. For example, in Prototypical Networks [34], the authors find
that using Euclidean distance instead of cosine distance can get better results.
In order to find the optimal distance metric, we perform experiments on replac-
ing the cosine similarity with squared Euclidean distance in filter as shown in
Table 4. While in [34] they analyze that squared Euclidean distance is a Breg-
man divergence which is suitable for taking average, we observe cosine distance
is a better choice for noise filter. A possible reason is that in contrast learning
the direction of the high-dimensional vector reflects category information better
than the squared distance. Another possible reason is that different backbones
apply different distance metrics.

Queue Length and Remove Ratio. As shown in the Table 5, we experiment
on miniImageNet and find that the model has a larger tolerance interval for the
queue length. And the effect is best when the dropped data is 1%.

Table 5. The effect of queue length and discard ratio on 5-way 1-shot classification
performance. The distance measure for the following experiment is cos.

Queue size Remove Acc. (%)

00256 0 50.04

06144 0 50.06

65536 0 49.26

06144 0.1 49.93

06144 0.01 52.11

06144 0.001 50.32
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Table 6. We use traditional methods to extract features and use this to filter noise.
This part of the experiment was based on ResNet-50.

Methods Queue size Remove Acc. (%)

sift 6144 0.01 48.36

orb 6144 0.01 49.12

cos 6144 0.01 50.88

4.6 Traditional Feature Descriptor

In Table 6, we use traditional methods to extract features to filter noise. We
believe that traditional feature description operators (such as orb [29], sift [26])
can learn different features from neural networks, and noise filtering with tra-
ditional feature description operators can supplement the features learned by
neural networks. In order to verify this method, we used traditional methods
to extract image features and constructed a mapping table to map the features
extracted by neural network one by one. Unfortunately, we find that the features
extracted by traditional methods are much worse than neural networks, and fil-
tering with this scheme is not as good as directly relying on features extracted
by neural networks.

5 Conclusions

In this paper, we propose a novel unsupervised few-shot learning framework
based on momentum contrast. We are the first to point out the noise problem
in momentum contrast, and present simple yet effective attention-based noise
filter (ANF) methods to reduce the noise in the contrastive dictionary. The
experimental results shows that our method outperforms recent state-of-the-art
methods with a large margin. Besides, we also designed a dynamic momentum
update method that can greatly improve model’s classification performance. The
ablation studies shows that our method can improve the performance with dif-
ferent backbones, and get better effect of noise filtering with cosine distance. We
hope our study will attract the community’s attention to effect of noise filter in
contrastive learning.
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visual learning with self-supervision. arXiv preprint arXiv:1906.05186 (2019)

12. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by
predicting image rotations. arXiv preprint arXiv:1803.07728 (2018)

13. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT
Press Cambridge (2016)

14. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.B.: Momentum contrast for unsuper-
vised visual representation learning. In: CVPR, pp. 9726–9735. IEEE (2020)

15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR, June 2016

16. Hsu, K., Levine, S., Finn, C.: Unsupervised learning via meta-learning. In: ICLR
(Poster). OpenReview.net (2019)

17. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4700–4708 (2017)
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Abstract. Unsupervised domain adaptation in person re-identification
is a challenging task. The performance of models trained on a spe-
cific domain generally degrades significantly on other domains due to
the domain gaps. State-of-the-art clustering-based cross-domain meth-
ods inevitably introduce noisy labels. The negative effects of noisy labels
gradually accumulate during iterative training. Besides, optimizing with
conventional triplet loss could make the model stuck in local optima in
the late stage of domain adaptation. To mitigate the effects of noisy
labels, this paper proposes an asymmetric mutual learning framework
which cooperates two models with asymmetric labels. The learned asym-
metric information is helpful for the two models to complement with each
other. Specifically, we propose a merging clusters algorithm to generate
asymmetric labels. We also introduce a similarity weighted loss which
can further adapt the model to target domain. Extensive experiments
demonstrate that our approach outperforms the state-of-the-art meth-
ods on three popular person re-identification datasets.

Keywords: Person re-identification · Asymmetric mutual learning ·
Unsupervised · Cross-domain

1 Introduction

Person re-identification (re-id) aims to find the matched person in a candidate
gallery given a query person image. Although existing supervised deep learning
methods of person re-id have made great achievements, most of them require
accurate labels which are time-consuming to annotate. Besides, these models per-
form poorly when the training dataset and the test dataset distribute in dif-
ferent domains. Unsupervised Domain Adaptation (UDA) approaches are pro-
posed to alleviate above issues. UDA aims to transfer the knowledge learned on a
source dataset with accurate identity labels to a target dataset without annotated
labels. State-of-the-art UDA methods [3,15] alternatively generate pseudo labels
on target domain with clustering algorithm and fine-tune the model with pseudo
labels. Nevertheless, noisy labels are introduced into the iterative training since
c© Springer Nature Switzerland AG 2021
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clustering algorithm can not classify images accurately. The noise will accumu-
late continuously and then hinder the improvement of the model. To address
above issue, some recent works [4,5] adopt mutual learning framework to miti-
gate the negative effects of noise. Mutual learning framework can make remark-
able improvement in cross-domain person re-id.

Mutual learning generally utilizes two collaborative models to solve a task
together [4,5,14,17]. The two collaborative models usually start from different
initial conditions. Diverse knowledge learned by two models can be combined in
various ways to improve the discriminative capability of the whole network. For
example, [17] utilizes KL divergence based loss to match the probability estimate
of two peer networks. [5] makes the two models select the reliable samples from
each other. Both of them use identical labels for two models, which restricts
the diversity of information learned by the whole network and thus hinders the
models from further adapting to the target domain. To address this issue, we
propose an asymmetric mutual learning framework (AML) which uses asymmet-
ric pseudo labels for two collaborative models. As shown in Fig. 1, one model uses
original labels generated by clustering algorithm, the other uses the new labels
augmented by our proposed algorithm of processing the original labels. When
generating pseudo labels with clustering algorithm, images of the same person
could be divided into different classes, these images will be separated further
during iterative training. In light of this, we generate augmented pseudo labels
by merging clusters based on k-nearest neighbors relationship. The augmented
pseudo labels can make the model learn more generative information compared
to original labels, while the model trained with original labels learns relatively
discriminative information. Both augmented labels and original labels can be
regarded as information complement to each other.

Fig. 1. The proposed asymmetric mutual learning framework (AML). Ltotal refers to
the normal loss. LSWtotal refers to the similarity weighted loss. The distance matrix
of two branches refers to the distance between features of all training images which is
computed with re-ranking in [21]. The average distance matrix is the average of two
distance matrix from two branches. Clustering algorithm takes the average distance
as the input and generates original clustering results. Our proposed merging clusters
algorithm merges part of the original clusters to get new labels.
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Triplet loss is commonly used in person re-identification. It focuses on the
difference between positive pairs and negative pairs. In the fully-supervised sce-
nario, since the identity labels are accurate, the expansion of the gap between the
distributions of positive pairs and negative pairs can enhance the discrimination
ability of the model. However, the pseudo labels are inaccurate in unsupervised
cross-domain scenario. The large gap between the inaccurate positive pairs and
negative pairs makes the model stuck in local optima and hinders the model
from further improving in the target domain. To address above issue, we utilize
the triplets which become invalid due to the large gap between positive pairs
and negative pairs. In this way, we propose a similarity weighted loss which can
further bring dissimilar positive pairs closer despite the large gap mentioned
above. We argue that similarity weighted loss allows the model to escape local
optima and continue adapting to target domain in late training stage. The main
contributions of our work are summarized as follows:

– We propose an asymmetric mutual learning framework (AML). AML utilizes
asymmetric pseudo labels to optimize models on the target domain, which
makes the whole network capable to learn more diverse information.

– We propose a similarity weighted loss which can further adapt the model to
the target domain in late training stage. It mines dissimilar positive samples
despite the difference between the distributions of positive pairs and negative
pairs.

– To evaluate our method, we conduct experiments on three large-scale
datasets. Experimental results show that our method outperforms state-of-
the-art methods for unsupervised cross-domain person re-identification.

2 Related Work

Unsupervised Domain Adaptation. Existing UDA methods can be gener-
ally classified into three categories. The first category of UDA methods aims
to improve the generalization ability of the model without training on target
domain [6,10]. EANet [6] introduces pose segmentation as auxiliary informa-
tion to enhance the generalization ability of the model. DIMN [10] improves the
generalization ability by mapping an image directly into an identity classifier.
The second category aims to reduce the domain gap between source domain and
target domain with GAN [1,8]. Deng et al. [1] propose a similarity preserving
generative adversarial network to transfer the image styles of source domain
to target domain. Liu et al. [8] propose a framework consisting of an ensemble
GAN and multiple factor GANs to do style transfer at image level and factor
level. In the third category, clustering algorithms are adopted to generate pseudo
labels on the target domain, and then pseudo labels are used to fine-tune the re-
identification models. SSG [3] obtains multiple pseudo labels by clustering global
and local features of persons respectively. Zhai et al. [15] present an augmented
discriminative clustering method to enforce the discrimination ability of models
in the target domain. Zhang et al. [16] propose a two-stage framework which
consists of conservative stage and promoting stage, the conservative stage aims
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to capture the local structure of target-domain data, while the promoting stage
aims to utilize of global information about the data distribution. The results of
the first and second kinds of methods are generally poor compared to the third
category. However, clustering-based algorithms are troubled by noisy labels and
the results are still unsatisfactory compared to supervised approaches.

Supervised Mutual Learning. Mutual learning generally refers to the idea
that two or more models learn from each other and stimulate each other.
DML [17] utilizes a pool of networks to solve the task collaboratively rather
than single network. Co-Teaching [5] makes two models select reliable samples
for each other. Both of them were originally designed for supervised tasks. Dif-
ferent from them, we mainly focus on the unsupervised cross-domain task.

Unsupervised Mutual Learning. MMT [4] introduces mutual learning into
cross-domain person re-identification and proposes an alternative training man-
ner that combines hard pseudo labels and soft refined labels. Zhao et al. [18]
propose a noise resistible mutual learning method which performs collaborative
clustering and mutual instance selection during training. Most of the existing
mutual learning works use symmetric structure, which makes the models learn
similar information. Yang et al. [14] propose an asymmetric co-teaching frame-
work (ACT) to make the models see hard examples.

We mainly focus on unsupervised mutual learning in this paper. Similar
but different from above works, our proposed AML aims to combine generative
information and discriminative information. Our work differs from ACT in the
following two aspects: (1) Our work does mutual learning without complicated
sample selection process, the two models interact in a simpler way. (2) While
ACT mainly focuses on effective usage of unreliable outliers, our work makes two
models learn more diverse information by utilizing reliable inliers effectively.

3 Proposed Method

3.1 Structure of Asymmetric Mutual Learning

Our proposed asymmetric mutual framework (AML) consists of two stages: (1)
Supervised training in the source domain. (2) Unsupervised clustering-based
adaptation to the target domain. In the supervised stage, we train two models
with same architecture on the source dataset. In the unsupervised adaptation
stage, we adapt the trained models to target domain with asymmetric pseudo
labels as shown in Fig. 1. To generate asymmetric labels, we propose a merging
clusters algorithm which will be discussed in Sect. 3.2. We train two models with
normal triplet loss and cross-entropy loss at first, and then utilize similarity
weighted loss in Sect. 3.3 to further adapt two models to target domain.

3.2 Merging Clusters Algorithm

Existing clustering algorithms generally need to set the number of clusters
except those based on density. Density-based clustering algorithms can generate
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Fig. 2. Our proposed merging clusters algorithm. (a) We consider a image x has a
KNC connection to cluster B if the union set of k1 normal nearest neighbors and k2
cross-camera nearest neighbors of x intersects with cluster B. (b) For two clusters A
and B, we compute KNC connection between two classes according to Eq. 2 and merge
then if both condition 3 and condition 4 satisfy.

the number of clusters by themselves. Since the number of clusters is usually
unknown in UDA tasks, we adopt a density-based clustering algorithm [2] to
cluster images. Density-based clustering algorithms generally consider points
from the same continuous high-density region as a cluster. However, in cross-
camera person re-identification scenario, the image distribution of the same per-
son may be sparse due to the difference of pose and camera view. Thus the
images belonging to the same person could be divided into different clusters. In
contrast, k -nearest neighbors are less affected by the density, sparse points can
also have k -nearest neighbors relationship. Accordingly, we propose a method to
merge clusters by calculating k -nearest connection (KNC) between two clusters.

Given a data point xa in cluster Ca, we look for two kinds of k-nearest neigh-
bors of it. One kind is normal k-nearest neighbors knnnormal(xa, k1) obtained
by sorting distance matrix computed with [21]. The other kind is cross-camera
k-nearest neighbors knncrosscam(xa, k2) which contains the nearest k2 neighbors
selected from samples of different cameras from xa. Note that knncrosscam(xa, k2)
is utilized to bridge the gap between images across cameras since the camera ID
is easy to obtain in real scenes and has effective supervised information. As shown
in Fig. 2(a), we consider that xa is connected to cluster Cb if the union set of
k1 normal nearest neighbors and k2 cross-camera nearest neighbors contains at
least one sample in cluster Cb, i.e.,

KNCxa−>Cb
=

{
1 if |knnunion(xa, k1, k2) ∩ Cb| > 0
0 otherwise

, (1)

where knnunion(xa, k1, k2) denotes the union set mentioned above. Hence, as
shown in Fig. 2(b), we define the asymmetric k-nearest connection (KNC) from
cluster Ca to cluster Cb as:
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KNCCa−>Cb
=

∑
xa∈Ca

KNCxa−>Cb
, (2)

which represents the number of samples that have k-nearest connection (KNC)
to cluster Cb in cluster Ca. Finally, we merge Ca and Cb if

KNCCa−>Cb

|Ca| > thresh (3)

and
KNCCb−>Ca

|Cb| > thresh, (4)

where thresh is a threshold that controls the proportion of KNCCa−>Cb
to the

number of samples in cluster Ca.
Our merging clustering algorithm tends to merge small clusters which usu-

ally do not contain all the images belonging to the same person. Although our
algorithm merges some images belonging to different persons during the merg-
ing process, it should be noted that our purpose is not to improve the clustering
accuracy. The key point is that the merged clusters contain relatively generative
information compared to original clusters. Training with merged clusters can
prevent the model from further separating some images belonging to the same
person. Thus the two models can complement with each other, which is effective
in mutual learning.

Fig. 3. A illustration of the motivation of similarity weighted loss. d(a, p1) and d(a, p2)
denote the distance between anchor a and its positive samples, while d(a, n1) and
d(a, n2) denote the distance between anchor a and its negative samples. When there is
a large gap between the distributions of the distance of negative pairs and the distance
of positive pairs, the triplet loss can not further narrow the distance between positive
pairs.
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3.3 Similarity Weighted Loss

Triplet loss and cross-entropy loss are two widely-used losses in person re-
identification. The purpose of triplet loss is to bring positive pairs closer and
push away the negative pairs. Typically, the triplet loss is defined as:

LTri = [dp − dn + α]+, (5)

where dp represents the distance between the anchor xa and its positive
samples xp

i , dn represents the distance between the anchor xa and its negative
samples xn

i , α is the margin between dp and dn, [x]+ means max(x, 0). The
triplet loss will expand the gap between dp and dn. When using triplet loss to
fine-tune re-id model, the triplet loss tends to be zero at the end of training
because dn is much larger than dp. However, it doesn’t mean that dp is nearly
zero. As shown in Fig. 3, when dn is too large, [dp − dn + α]+ can still be zero
while dp is a large value as long as dp ≤ dn − α. When Ltri is zero, the gradient
of Ltri is zero, which makes the triplet invalid and the effect of dp ignored. To
address this issue, we adapt triplet loss to focus more on dissimilar positive pairs,
which we call similarity weighted triplet loss. Our similarity weighted triplet loss
is computed as:

LSWTri = [dp − spdn + α]+, (6)

where α is the margin between dp and spdn, sp is the average cosine similarity
of the anchor and its positive samples in a mini-batch, i.e., for an anchor xa, its
sp is computed as:

sp =
1
K

K∑
i=1

cos(f(xa), f(xp
i )), (7)

where K is the number of positive samples of anchor xa in a mini-batch, f(xa)
is the feature of anchor anchor xa, xp

i denotes the ith positive sample of xa.
For dissimilar positive samples, their sp are smaller compared to similar positive
samples. According to Eq. 6, dissimilar positive samples have lower weight of dn,
which means that LSWTri is less likely to be zero while the positive pairs are not
similar. Thus we argue that our adapted triplet loss can avoid the problem that
the distance between the dissimilar positive samples can not be further narrowed
in the late training period. To cooperate with similarity weighted triplet loss, we
also design a similarity weighted cross-entropy loss:

LSWID =
1

max(β, sp)
LID, (8)

where LID is the cross-entropy loss with label smoothing in [9], β is a factor con-
trolling the range of similarity weight. LSWID gives more weight to those samples
which have low average cosine similarity with positive samples in a mini-batch
compared to LID. Since LSWTri could be larger for those dissimilar positive
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samples, LSWID ensures that the proportion of triplet loss and cross-entropy loss
will not change greatly. In summary, the normal total loss function is:

Ltotal = LTri + λLID, (9)

while the total similarity weighted loss is:

LSWtotal = LSWTri + λLSWID, (10)

where λ is the balanced weight of cross-entropy loss.

4 Experiments

Market-1501 [19], DukeMTMC-reID [20] and MSMT17 [13] are three large-scale
person re-identification datasets. We evaluate our method on four domain adap-
tation tasks: Duke-to-Market, Market-to-Duke, Market-to-MSMT17, Duke-to-
MSMT17. We take Rank-1 accuracy and mean average precision (mAP) as eval-
uation metrics. As shown in Table 1, experimental results show that our method
outperforms most of existing methods.

4.1 Datasets

Market-1501 [19]. The training set of Market-1501 contains 12936 annotated
images of 751 person identities shot from 6 cameras in total. The testing set
contains 3368 query images of 750 identities and 15913 gallery images of 751
identities.

DukeMTMC-reID [20]. The training set of DukeMTMC-reID contains 12936
annotated images of 751 person identities shot from 6 cameras in total. The
testing set contains 3368 query images of 750 identities and 15913 gallery images
of 751 identities.

MSMT17 [13]. As the largest and most challenging person re-ID dataset,
MSMT17 contains 32621 images of 1041 person identities for training and 93820
images of 3060 identities for testing. In the testing set, 11659 images of 3060
identities are used for query and the gallery contains 82161 images of 3060
identities.

4.2 Implementation Details

Stage 1: Supervised Training in Source Domain. Previous works [3,6] have
proved that focusing on local features can improve the cross-domain capabilities
of the model. In view of this, we adopt PCB [12] to extract global features and
local features of images and a semantic segmentation network to extract the
masks of the upper and lower parts of the body. Hence, we apply the upper-part
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mask and lower-part mask to the global feature to get upper-part feature and
lower-part feature which are used as local features. Then the global feature is
used to calculate the triplet loss and all features are used to calculate the cross-
entropy loss. We take ResNet-50 as backbone of PCB [12] and adopt SCHP [7] as
our semantic segmentation network. SCHP is initialized with the weights trained
on LIP dataset and does not update parameters during training. We adopt the
Adam optimizer to optimize two re-id models separately. The learning rate is
initially set to 3×10−4, and decreased by 0.1 at the 35th epoch, 55th epoch and
70th epoch respectively. In addition, we use same warmup strategy following
[9]. In the end of this stage, we get two feature extraction models with different
weights.

Stage 2: Unsupervised Clustering-Based Adaptation to Target
Domain. Given two models with different weights, we use them to extract fea-
tures of person images. As mentioned in Sect. 3.2, we adopt DBSCAN [2] to
cluster extracted global features, setting density radius eps = 1.6 × 10−3 and
minimum size of a cluster to 4. The distance matrix between features is cal-
culated separately using re-ranking in [21] and the average of them is given to
DBSCAN [2]. With pseudo labels γorigin generated by DBSCAN [2], we use the
method in Sect. 3.2 to get the new pseudo labels γnew with thresh = 0.5, k1 = 3
and k2 = 15. Then one of the two models is fine-tuned on target domain with
γorigin and the other with γnew. Different from stage 1, the learning rate is ini-
tially set to 3 × 10−5 and decreased by 0.1 at the 10th epoch, and the warmup
strategy is not used at this stage. Note that our proposed similarity weighted
loss is not utilized until the training with Eq. 9 converges, since the proposed
loss is to solve the problem that it is difficult to optimize the models in the
late training period. In practice, we set β to 0.7 and λ to 0.01 when the model
is transferred between Market1501 [19] and DukeMTMC-reID [20]. When the
model is transferred to MSMT17 [13], we change β to 0.9 to get best result.

4.3 Comparison with State-of-the-Art Methods

In this section, we compare our proposed method with state-of-the-art unsuper-
vised cross-domain methods for person re-identification including: (1) EANet [6]
that uses auxiliary information (2) SPGAN [1], ATNet [8] and ECN [22] that use
GANs (3) SSG [3], UDAP [11], PCB-R-PAST [16], ACT [14], AD-Cluster [15],
MMT [4], NRMT[18] that use pseudo labels. Among above methods, ACT, MMT
and NRMT adopt mutual learning for unsupervised cross-domain person re-
identification, which is highly relevant to our work. Specifically, our proposed
method combines asymmetric mutual learning with similarity weighted loss to
improve performance of cross-domain person re-id.



Asymmetric Mutual Learning 133

Table 1. Comparisons with state-of-the-art unsupervised cross-domain person re-
id methods on Duke-to-Market, Market-to-Duke, Market-to-MSMT17, Duke-to-
MSMT17.

Methods Duke → Market Market → Duke

mAP Rank-1 mAP Rank-1

SPGAN [1] 22.8 51.5 22.3 41.1

ATNet [8] 25.6 55.7 24.9 45.1

EANet [6] 35.8 66.1 36.0 56.1

ECN [22] 43.0 75.1 40.4 63.3

UDAP [11] 53.7 75.8 49.0 68.4

SSG++ [3] 68.7 86.2 60.3 76.0

PCB-R-PAST[16] 54.6 78.4 54.3 72.4

ACT [14] 60.6 80.5 54.5 72.4

Co-Teaching [5] 65.1 82.5 55.7 71.9

AD-Cluster [15] 68.3 86.7 54.1 72.6

MMT-500 [4] 71.2 87.7 63.1 76.8

NRMT [18] 71.7 87.8 62.2 77.8

Ours 75.5 88.7 64.5 78.6

Methods Market → MSMT17 Duke → MSMT17

mAP Rank-1 mAP Rank-1

ECN [22] 8.5 25.3 10.2 30.2

SSG++ [3] 16.6 37.6 18.3 41.6

MMT-500 [4] 16.6 37.5 19.9 41.3

Ours 19.4 46.8 22.2 51.5

As shown in Table 1, our method outperforms all compared methods. For
Duke → Market, our method outperforms state-of-the-art NRMT [18] by 3.8%
in mAP and 0.9% in rank-1 accuracy. For Market → Duke, our method outper-
forms NRMT [18] by 2.3% in mAP and 0.8% in rank-1 accuracy. For Market →
MSMT17, our method outperforms MMT-500 [4] by 2.8% in mAP and 9.3% in
rank-1 accuracy. For Duke → MSMT17, our method outperforms MMT-500 [4]
by 2.3% in mAP and 10.2% in rank-1 accuracy.

4.4 Ablation Study

In order to prove the effectiveness of our method, we create a baseline that
optimize two models with original labels and normal loss function. As shown in
Table 2, we perform ablation studies based on this baseline.
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Fig. 4. Visualization of some original clusters generated by DBSCAN and the corre-
sponding merged clusters generated by our proposed algorithm.

Effectiveness of Asymmetric Labels. For better clarity, we visualize some
original clusters and the corresponding merged clusters in Fig. 4. As shown in
Fig. 4, small clusters are merged with their adjacent clusters. To show the effec-
tiveness of new augmented labels generated by our proposed merging clusters
algorithm, we train the two models with augmented labels, the result is denoted
as “Baseline+Merged Clusters” in Table 2. As shown in the table, we improve the
performance on Duke-to-Market by 9.7% in mAP and 6.6% in rank-1 accuracy
with augmented labels. When testing on Market-to-Duke, “Baseline+Merged
Clusters” surpass “Baseline” by 4.7% in mAP and 3.0% in rank-1 accuracy. To
investigate the necessity of using asymmetric labels generated by our proposed
merging clusters algorithm, we create mutual learning baseline models that only
use original pseudo labels generated by DBSCAN [2]. As shown in Table 2, with
asymmetric labels, we improve the performance by 11.3% in mAP and 6.8% in
rank-1 accuracy compared to baseline on Duke-to-Market. Similarly, when the
model is transferred from Market-1501 to DukeMTMC-reID, the performance
gain becomes 5.8% in mAP and 3.1% in rank-1 accuracy. Besides, “AML” beats
“Baseline+Merged Clusters” by 1.6% and 1.1% in mAP when testing on Duke-
to-Market and Market-to-Duke respectively, which shows asymmetric labels per-
forms better than symmetric augmented labels.

Effectiveness of Similarity Weighted Loss. To show the performance of
similarity weighted loss, we train the baseline with similarity weighted loss after
the training with normal loss converges, the result is denoted as “Baseline*” in
Table 2. When testing on Duke-to-Market, “Baseline*” surpass “Baseline” by
1.6% in mAP and 0.9% in rank-1 accuracy. When testing on Market-to-Duke,
“Baseline*” surpass “Baseline” by 2.3% in mAP and 1.3% in rank-1 accuracy. To
prove the similarity weighted loss can work on AML, we also train the model with
asymmetric labels by optimizing Eq. 10 after the training with Eq. 9 converges.
As shown in Table 2, the combination of similarity weighted triplet loss and
similarity weighted cross-entropy loss surpasses the combination of normal triplet
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Table 2. Ablation studies of our proposed methods on Duke-to-Market and Market-
to-Duke. “Direct Transfer” refers to directly applying the model trained on source
domain to the target domain, “Baseline” refers to symmetric mutual learning with
original labels and normal loss function Ltotal, “Baseline*” refers to symmetric mutual
learning with similarity weighted loss function LSWtotal, “Baseline+Merged Clusters”
refers to symmetric mutual learning with augmented labels and Ltotal, “AML” denotes
our proposed asymmetric mutual learning framework in Sect. 3 optimized with Ltotal,
“AML*” stands for proposed AML enhanced by similarity weighted loss LSWtotal.

Methods Duke → Market Market → Duke

mAP rank-1 mAP rank-1

Direct transfer 25.4 55.6 24.6 42.9

Baseline 62.5 81.5 56.8 74.1

Baseline* 64.1 82.4 59.1 75.4

Baseline+Merged Clusters 72.2 88.1 61.5 77.1

AML 73.8 88.3 62.6 77.2

AML* 75.5 88.7 64.5 78.6

loss and cross-entropy loss by 1.7% in mAP and 0.4% in rank-1 accuracy on Duke-
to-Market. The performance testing on Market-to-Duke also boosts by 1.9% in
mAP and 1.4% in rank-1 accuracy.

5 Conclusion

In this paper, we propose a novel asymmetric mutual learning framework for
unsupervised cross-domain person re-identification. Our framework consists of
two models which utilize asymmetric labels. We propose a merging clusters algo-
rithm to generate new pseudo labels which contain different information from
original pseudo labels. Furthermore, a similarity weighted loss is proposed to
mine dissimilar positive samples so that the two models can continue adapt-
ing to target domain in late training stage. Comprehensive experimental results
demonstrate that the performance of our approach outperforms the most of
existing methods on three large-scale datasets. In the future, we will explore
how to integrate camera information into the network more reasonably.
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Abstract. Massive progress for vision-based action recognition has been
made in the last few years, owing to the advancement of deep con-
volutional neural networks (CNNs). In contrast with 2D CNN-based
approaches, 3D CNN-based approaches can effectively capture spatial
and temporal features. However, they are computationally intensive.
To boost 2D-CNN performance, most of the existing methods leverage
channel attention (e.g. squeeze and excitation), which despite its strong
impact on the model performance, operates only on the channel space
and ignores the spatial space. In this work, we design a generic and
collaborative excitation module, namely the Collaborative Positional-
Motion Excitation Module (CPME) for action recognition. CPME is a
dual-pathway excitation module designed to embed the crucial types of
information, mainly the positional information and the motion infor-
mation, for efficient action recognition. Positional Enhancement Path-
way (PEP), the first pathway of CPME, considers encoding direction-
aware and position-sensitive information. Motion Enhancement Path-
way (MEP), the second pathway, encodes the motion information by
emphasizing the informative features in each frame and excite motion-
sensitive channels. We integrate the proposed CPME into 2D CNNs to
form a simple yet effective CPME-Net with limited extra computational
cost. Finally, a discriminative and diverse video-level representation for
action recognition is generated by end-to-end training. Experiments on
two popular action recognition datasets demonstrate that CPME blocks
bring performance improvements on 2D CNN baseline, and our method
achieves competitive results against the state-of-the-art methods.
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1 Introduction

Considering the fact that video-based action recognition task has an essential role
in various real-world applications such as security and human-computer interac-
tion [1,2], designing an effective architecture for understanding video contents,
and hence recognizing the human actions became a persistence need. The key to
this task lies in learning powerful joint spatio-temporal and motion representa-
tions from large-scale video datasets. Spatial features mainly describe the scene
containing the objects involved in an action in each video frame, while tem-
poral features capture motion cues embedded in the evolving frames over time.
Generally, human actions are classified into spatial-related actions and temporal-
related actions. Spatial-related actions (e.g. “Brush hair” and “Kick ball”) can
be interpreted based on the scene itself, while temporal-related actions contain
similar “spatial” features and the only way to differentiate them is to capture
temporal features. For example, “Moving something up” and “Moving some-
thing down” are temporal-related actions which have similar ‘spatial’ features
with exactly ‘reversed’ temporal information, see Fig. 1. The same thing is true
for other actions like ‘rotate something clockwise’ and ‘rotate something coun-
terclockwise’. Therefore, studying action recognition comprehensively involves
temporal modeling and spatial modeling together.

Fig. 1. Illustration of scene-based actions (a and b) and temporal-based actions
(c and d).

Research into the wide spectrum of action recognition problems has been
highly dependent on 3D-CNN based approaches and 2D-CNN based approaches,
with each line of research attempting to tackle this problem effectively and effi-
ciently. 3D-CNN based approaches have been shown to be effective due to their
ability in jointly learning spatial and temporal features of video clips [3–6] by
employing 3D convolution kernels. However, some challenging issues such as the
inadequate modeling of information contained in videos as well as the computa-
tional burdens limit their deployment in real-world applications.

The recent progress of 2D CNN-based approaches [7–10] is impressive, owing
to the remarkable capability of CNN in capturing spatial features from video
frames. Despite that, such approaches do not bear the ability of temporal mod-
eling. Hence, weak performance in recognizing temporal-based actions is noticed.
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In addition to modeling the appearance information using 2D CNN, another line
of research, which is integrating optical flow as an additional stream to model the
temporal cues, is investigated [11,12]. The flow stream, which is usually called the
temporal stream, along with the RGB image stream (appearance stream) form
two stream architecture. To date, these two-stream approaches have emerged as
a dominant paradigm in video-based action recognition.

In recent years, the view has been shifting towards adopting the aspect of
channel attention to strengthen the power of discrimination of deep learning
models, which is a critical aspect in deep vision models. This shift in the view
was brought about by the recently proposed modules e.g. Squeeze and Excita-
tion (SE) [13] and Efficient Channel Attention (ECA) [14], which are proved to
enhance the model learning capability. To date, various action recognition meth-
ods employed enhancement modules based on self attention and channel atten-
tion to learn better representation [8,15]. The essential idea of SE is utilizing the
attention mechanism in a channel-wise manner, SE is a self-gating mechanism,
designed to embed two stages (1) Squeeze and (2) Excitation, before they are
fed into the next transformation. Motion information is another research line
focused on studying moving objects or people for each input video, aiming to
better modeling the temporal information. The importance of motion modeling
originates from the fact that the temporal evolution of visual features enables us
to capture dynamic variation in videos and relate adjacent frame-level features
for action recognition.

Despite the recent progress of previous methods, there are still several open
issues in this direction that deserve rethinking. First, the term channel atten-
tion module is better thought of as an umbrella term for a way of encoding
inter-channel information, in which features from the same channel are assigned
with the same coefficient. This definition neglects positional information and its
importance, which is critical for generating spatially selective attention maps.
Further, the fact that features from the same channel are assigned with the same
coefficient leads to a failure of distinguishing the crucial moving objects on the
spatial dimension.

Inspired by the previous analysis and to build a robust architecture for video
action recognition capable of capturing diverse information from video frames,
we focus on two complementary and crucial aspects including the positional
information and the motion encoding. Our proposed module is a Collabora-
tive Positional-Motion Excitation Module (CPME) consisting of two parallel
pathways, mainly the Motion Enhancement Pathway (MEP), which is designed
to emphasize the informative features in each frame then calculate and excite
motion-sensitive channels. The second pathway is the Positional Enhancement
Pathway (PEP), which embeds the positional information into the channel atten-
tion and captures long-range dependencies along the two spatial directions. In
this way, the motion-wise and long-range dependencies provided in one module
with the help of encoding positional and motion features, can offer a fine-grained
description for the motion clues collaboratively.
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The main contributions of this paper can be summarized as follows:

1) We propose a learning representational module, the Collaborative Positional-
Motion Excitation Module (CPME), to effectively and jointly capture appro-
priate channel-wise features and motion information for vision-based action
recognition.

2) We propose a simple yet effective 2D-CNN based module, namely CPME-Net
to learn a discriminative video-level representation for action recognition.

3) Our approach is a plug and play module, which allows it to be served as
a plug-in operation for a wide range of 2D CNN-based action recognition
architectures.

4) By end to end training, the proposed CPME-Net achieves promising action
recognition results on two benchmarks, UCF101 and HMDB51 datasets.

2 Related Work

In this section, we briefly review previous works regarding action recognition in
general, CNN-based action recognition approaches, temporal modeling in action
recognition and the attention mechanisms.

2.1 Action Recognition

Action recognition has attracted much attention in recent years. Most of the
previous works leverage convolutional networks to model video clips [4,16–19].
Two-stream methods are also investigated for this task. For instance, Simonyan
and Zisserman [11] proposed a two-stream ConvNet architecture, incorporat-
ing spatial stream ConvNet and temporal stream ConvNet. This architecture
exploits motion cues and significantly improves the model accuracy. Similarly,
in [20] the two streams are fused by a 3D filter which is able to learn correspon-
dences between highly abstract features of both streams.

2.2 CNN-Based Approaches

3D CNN has the ability to capture spatio-temporal features. Slowfast networks
[5] involved two branches, a slow pathway to model spatial semantics and a fast
path to model motion at fine temporal resolution. I3D [3] inflated the ImageNet
pre-trained 2D kernel into 3D to capture spatiotemporal features and modeled
motion features with another flow stream. STCNet [21] inserted its STC block
into 3D ResNet to capture both spatial-channels and temporal-channels correla-
tion information throughout network layers. To avoid the heavy computations of
3D CNNs, several works proposed 2D CNN-based frameworks for video action
recognition. TSN [9] was the first framework introduced the concept of ‘segment’
to process videos by extracting short snippets over a long video sequence with
a uniform sparse sampling scheme. STM block [22] is proposed to encode spa-
tiotemporal and motion features together. The original residual blocks in the
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ResNet architecture is replaced with STM blocks to form a simple yet effective
STM network with limited extra computation cost. Other works such as TEINet
[23] and TEA [8] are proposed to augment state-of-the-art 2D CNNs with tem-
poral aggregation modules, aiming to effectively capture the spatiotemporal fea-
tures at a low cost.

2.3 Temporal Modeling in Action Recognition

Various schemes have been proposed specifically to explore the temporal dimen-
sion, adopting the fact that temporal modeling is considered to be crucial for
action recognition [5,7,24]. In [7], authors proved that shifting the channels
along the temporal dimension yields a good performance gain fully based on 2D
CNNs. Several existing temporal modeling modules focus on capturing discrimi-
native features from the spatio-temporal vector by exciting the motion-sensitive
channels features. For instance, in [8], a temporal excitation and aggregation
(TEA) block is proposed to capture both short and long-range temporal evo-
lution. In this module, the motion modeling and the spatio-temporal features
learning are incorporated into a unified framework. Additionally, authors in [23]
propose an adaptive temporal modeling module composed of a motion enhanced
module, designed to excite channel features and a temporal interaction module,
designed to capture contextual features. To avoid the redundant information
utilization, authors in [25] proposed a sequential channel filtering mechanism
which is especially designed to excite the discriminative features channels from
different frames.

2.4 Attention Mechanisms

Attention mechanisms emerged as one of the most influential ideas in deep learn-
ing field, with a massive usage in various vision applications. The intensive explo-
ration of these mechanisms concludes that they boost the learning capability
of deep learning methods. CBAM [26] is an attention mechanism composed of
Channel Attention Module (CAM) and Spatial Attention Module (SAM), which
are integrated sequentially. Squeeze and Excitation blocks (abbreviated as SE-
block) [13] is an easy-to-plug-in attention module, designed to computes channel
attention. SE has gained remarkable performance at considerably low computa-
tional cost. However, it only considers encoding inter-channel information and
ignores the importance of spatial information, which is proved to be crucial to
capturing object structures in vision tasks. Coordinate Attention [27], on the
other hand, factorizes channel attention into two parallel 1D feature encoding
processes. Hence, spatial coordinate information are embedded into the gener-
ated attention maps.
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3 Approach

3.1 Architecture of CPME

The main insight of CPME is the dual encoding of the positional and motion
information in one module, in which the adaptively enhanced motion-related
channels as well as the positional information are complementary encoded in
two parallel pathways i.e., Positional Enhancement Pathway (PEP) and Motion
Enhancement Pathway (MEP) as illustrated in Fig. 2.

Fig. 2. A detailed view of the Collaborative Positional-Motion Excitation Module
(CPME). The enhanced feature map (xo) is obtained through the fusion of the result
of both PEP and PEM, which both share the same input vector. On MEP side, sev-
eral steps started with convolution, and ended with broadcasting the channel attention
vector to the original input tensor, are conducted. On PEP side, 1D horizontal global
pooling and 1D vertical global pooling are conducted then a series of concatenation,
batch normalization and convolution is also conducted. Finally, the output vector is
obtained by using a fusion operation.

Xin, which is a 5-dimensional vector of the shape (N, C, T, W, H) is fed
into both PEP and MEP. N represents the batch size, C represents the number
of channels, and T, H, W are the spatiotemporal dimensions. Xo, the output of
CPME module, is also a 5-D tensor of the same shape. MEP adopts the idea
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of exciting motion sensitive features as normally different channels tend to cap-
ture different features. For instance, some channels concerns motion information
while the others are tend to capture scene information. Motion excitation aspect
has been previously explored by [8,22], where they proposed a whole block for
extracting motion. Different from them, we use the MEP collaboratively with
PEP in on block.

First, a 1 × 1 2D convolutional layer with channel reduction is conducted.
Channel reduction is used for efficiency. We reduced the spatial channels by
a factor of r, which is set to 16 in our experiments and obtained Xr. Next,
we modeled the motion information by adjacent frames following the operation
proposed in [22], which can be represented as following:

Mexc = K ∗ Xr[:, t + 1, :, :, :] − Xr[:, t, :, :, :] (1)

where K is a 3×3 2D convolutional layer performing transformation for each
channel. We used the motion measurement Mexc instead of the original feature
map because the actual action is a reflection of content displacements of the two
successive frames. Afterwards, we concatenated the motion features and padded
the last element by 0. Next, a global feature descriptor represented by spatial
average pooling (GAP) is used to reduce the space to just N × T × C/r × 1 × 1,
as illustrated in Eq. 2:

Mp =
1

H × W

H∑

i=1

W∑

j=1

Mexc[:, :, :, i, j] (2)

In order to obtain the motion-attentive weights (A), we conduct another 1×1
2D convolution layer to expand the channel dimension of motion features to the
original channel dimension C and conducted the sigmoid function.

A = 2δ(conv ∗ Mp) − 1, AN×T×C×1×1 (3)

The motion-attentive weights (A) is then used to re-weight the input tensor
Xin by channel-wise multiplication and summation operation. As illustrated in
Eq. 4, the input feature Xin and the attentive weight A are multiplied in a
residual manner.

Xo = A · Xin + Xin (4)

The idea behind using the residual connection is to enhance the spatio-temporal
features meanwhile preserve scene information.

The main insight of MEP was exciting the motion features, which is crucial
aspect for vision recognition. As noticed in Eq. 2, we used a global spatial pooling
to focus on which channels are important. In PEP, from the other hand, we are
incorporating positional information into channel attention. Different from PEP
and to preserve positional information, we factorized the global pooling into 1D
horizontal global pooling and 1D vertical global pooling as illustrated in Eq. 5
and 6. To this end, we obtained direction-aware feature maps.

V h =
1
W

W∑

i=1

Xin[:, :, :, :, i] (5)
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V w =
1
H

H∑

j=1

Xin[:, :, :, j, :] (6)

The direction-aware feature maps are then concatenated and fed into 1 × 1
convolution layer followed by batch normalization and non-linear activation as
illustrated in Eq. 7. Channel reduction with (r) ratio is conducted in this stage
to reduce the overhead model complexity.

Vt = δ(conv ∗ [vw, vh]), V N×T×C/r×1×(H+W )
t (7)

V h and V w are again obtained by splitting Vt along the spatial dimension
into two separate tensors. Next, another transformation is needed in this stage
to restore the number of channels as in the input tensor Xin. See Eq. 8 and Eq. 9.

Ah = δ(conv ∗ V h) (8)

Aw = δ(conv ∗ V w) (9)

The Positional attentive vectors Ah and Aw are then used to re-weight the
input tensor Xin.

3.2 CPME Network

We integrate the proposed CPME module into the existing ResNet [28] to form
CPME Network. The overall design of the CPME-Net is illustrated in Fig. 3.

Fig. 3. The overall architecture of CPME network

A (1×1) 2D convolution layer is applied for channel reduction purpose. Then,
the compressed feature maps are fed into CPME block to encode positional and
motion features together. Adding CPME block does not require any modification
for the original design. The action recognition network can be constructed by
stacking the CPME blocks.
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We train our CPME-Net architecture on both RGB and optical flow inputs
and fuse the prediction scores at the end, following the two-stream framework
[11]. We use TVL1 optical flow algorithm [29] to compute optical flow because
of its efficiency.

4 Experiments

4.1 Experimental Settings

We conducted extensive experiments to demonstrate that the proposed CPME-
Net can enhance the performance of 2D CNN-based approaches compared to
previous models. The baseline method in our experiments is Temporal Seg-
ment Networks (TSN) [9] where we use the same backbone (ResNet-50) for fair
comparison. We conducted our experiments on two large scale human motion
datasets HMDB51 [30] and UCF101 [31]. HMDB51 includes 6.8K videos of 51
actions taken from movies and web videos. UCF-101 includes 13K videos of
101 action classes. We followed the original evaluation scheme using three train-
ing/testing splits. Also, we reported average accuracy over these splits. To con-
duct our experiments on video action recognition tasks, we followed the sampling
strategy in TSN [9]. Given an input video, we firstly divided it into T segments
of equal duration. Then one frame from each segment is randomly selected to
obtain a clip with T frames. Additionally, we utilize random scaling and corner
cropping during training for data augmentation. Each cropped frame was finally
resized to 224 × 224, which was used for training the model.

4.2 Implementation Details

The models were trained on a NVIDIA RTX 2080 Ti GPU. We adopted stochas-
tic gradient descent (SGD) as optimizer with a momentum of 0.9 and a weight
decay of 5 × 10−4. The Batch size was set as N = 16. Network weights were
initialized using ImageNet pre-trained weights. We started with a learning rate
of 0.0005 and reduced it by a factor of 10 at 20, 30, 45 epochs and stopped at 50
epochs. To overcome overfitting, we used a dropout layer with the probability
of 0.5.

4.3 Improving the Baseline 2D CNN-Approach

To highlight the effectiveness of CPME module, we showed the improvement of
its performance over 2D CNN based method. To do so, we conducted extensive
experiments on split 1 of HMDB51 dataset comparing the baseline with dif-
ferent CPME-Net architectures. First, we attached CPME’s components, PEP
and MEP in sequential manner, Fig. 4(b). Then, we used sum operation to fuse
CPME components, Fig. 4 (c). A shift module is added to both architectures,
Fig. 4 (d) and (e). The results are mentioned in Table 1.
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Fig. 4. The altered blocks of different architectures based on standard ResNet block.

As illustrated in Table 1, CPME module brings performance improvement on
2D CNN baseline by 0.8%. Temporal shift operation, embedded to a part of chan-
nels in TSM [7], encodes some temporal information to the network. However,
it lacks explicit temporal modeling and inter-channel information, which both
are included in CPME. Moreover, adding shift module boosts the model perfor-
mance. Further, summation fusion was better than sequential. Overall, results
demonstrate that exploring fine-grained key information by focusing on motion
and positional information makes the video-level representation more discrimi-
native for action recognition. To conclude, CPME block verifies that fine-grained
motion and positional attention scores benefit for boosting the action recognition
performance.

Table 1. Evaluation of key components on HMDB51 split 1.

Methods Top-1%

TSN (our implementation) 54.3

Baseline+CPME (summation) 55.0

Baseline+CPME (Sequential) 54.7

Baseline+CPME+Shift (summation) 55.1

Baseline+CPME+Shift (sequential) 54.8
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4.4 Comparison with the State of the Art

We compare our approach with the state-of-the-art methods on HMDB51 and
UCF101 which are summarized in Table 2. It can be seen that the proposed
CPME achieves promising action recognition performance. Specifically, the pro-
posed method achieves comparative performance on the two datasets, which
indicates that incorporating channel-wise attention and positional attention is
effective for action recognition as the fine-grained information is being explored
and the discriminative information in video-level representation are also being
highlighted. CMPE outperforms most of existing work except I3D, which is based
on 3D CNN not 2D CNN and thus, its computational FLOPs will be far more
than all the listed 2D CNN based methods, including ours.

Table 2. Comparison results of CPME with other state-of-the-art methods on
HMDB51 and UCF101.

Method Backbone Pre-train Flow HMDB51 (%) UCF101 (%)

C3D [4] 3D VGG-11 Sports-1M No 51.6 82.3

STC [21] ResNet101 Kinetics No 66.8 93.7

LTC [12] – – Yes 64.8 91.7

Conv Fusion [20] VGG-16 ImageNet Yes 65.4 92.5

ST-Multiplier [33] ResNet-50 & ResNet-152 ImageNet No 68.9 94.2

ST-Pyramid [34] ResNet-50 ImageNet Yes 66.5 93.8

ARTNet with TSN [35] 3D ResNet-18 Kinetics Yes 70.9 94.3

TSN [9] ResNet-50 ImageNet No 54.7 86.2

TSN two-Stream [9] BNInception ImageNet+Kinetics Yes – 97.0

TSN RGB [9] 91.0

StNet [36] ResNet-50 ImageNet+Kinetics No – 93.5

I3D [3] 3D Inception ImageNet+Kinetics Yes 80.7 98.0

TSM [7] ResNet-50 ImageNet+Kinetics Yes 70.7 94.5

Disentangling [32] BNInception ImageNet+Kinetics No – 95.9

Ours (RGB) ResNet-50 ImageNet No 55.1 86.5

Ours (RGB + Flow) ResNet-50 ImageNet Yes 72.3 95.1

5 Conclusion

In this paper, we presented a simple yet effective network for action recogni-
tion by encoding positional and motion features together in a unified 2D CNN
network. We replace the original residual blocks with CPME blocks in ResNet
architecture to build the CPME network. CPME block contains a MEP to model
channel-wise motion features and a PEP to capture long-range dependencies
with precise positional information together. Without any 3D convolution, our
CPME achieves promising results on both UCF101 and HMDB51. Despite that,
our method still has a drawback. Computing the optical flow is a bit expensive.
In future work, we will try to explore more efficient ways to model temporal
features.
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Abstract. Graph convolutional network (GCN) exhibits advantages
in handling non-Euclidean data. Previous works using spatio-temporal
graph convolution for skeleton action recognition achieve good perfor-
mance. However, several limitations still exist. First, the uniform mod-
eling of joint motion assumes that the motion tempo of different joints
remains constant, which ignores the dynamic changes in the position off-
set of each joint during the action. In this work, we propose a robust
action feature extractor, graph attention convolutional network with
motion tempo enhancement (MTEA-GCN), which captures different
joint motion tempos with two streams. Second, the dependencies among
bone-connected and spatially separated joints cannot be adequately con-
sidered from the graph topology based on the human physical connec-
tions. For this reason, we propose a multi-neighborhood graph attention
convolution module that fully considers the dependencies among each
joint and different neighborhood joints while focusing on discrimina-
tive joints. This study experiments on two large-scale skeleton datasets,
including Kinetics-Skeleton and NTU RGB+D. Our proposed MTEA-
GCN shows good performance with comparable computational complex-
ity and fewer parameters.

Keywords: Skeleton-based action recognition · Graph convolution
network · Human motion

1 Introduction

Human action recognition is widely used in many applications such as intelligent
video surveillance and smart retail. In the last few years, low-cost depth sensors
like the Microsoft Kinect [27] and advanced estimation algorithms [1] have brought
about a considerable increase in available skeleton data. Data are always the driv-
ing force behind the development of deep learning methods, which enables skele-
ton action recognition to make great progress. Skeleton data consist of 2D or 3D
c© Springer Nature Switzerland AG 2021
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Fig. 1. Similar single-frame skeletal poses (left) and motion tempo variations along the
time series (right) in the two actions of “drink water” and “brush teeth”.

coordinate positions of human joints, which are a high-level abstract represen-
tations of the human body. Compared with RGB videos, skeleton data are free
from activity-independent uncertainties (e.g. complex backgrounds, lighting, and
human appearance changes), allowing skeleton-based methods to compute effi-
ciently due to the low-dimensional feature representation.

GCNs generalize convolution operations to graph data in non-Euclidean
space. The human skeleton appears as a natural topological graph, with joints
as vertices and bones as edges. Existing GCNs [11,13,15,17,24] for action recog-
nition are devoted to utilizing the topological information of the graph to access
rich spatial correlations among joints and temporal dependencies in skeleton
sequences. However, the uniform spatio-temporal modeling of skeleton sequences
by GCNs ignores the motion tempo variations implied in sequences. The motion
tempo represents the displacement magnitude variations of the joint in the space-
time direction, which is an important factor to describe an action and distin-
guishing between actions with similar postures.

Taking Fig. 1 as an example, the two actions “drink water” and “brush
teeth” have similar spatial configurations of joints on a single-frame skeleton
graph, which differ significantly in the displacement variations of hand joints.
Inspired by this, we preprocess the raw skeleton sequences following two differ-
ent frame rates and input them to two branches of the relative static motion
feature extractor (RSM) and the relative dynamic motion feature extractor
(RDM), as shown in Fig. 2. The RSM branch extracts high-dimensional fea-
ture maps from sparse skeleton sequences to focus on the feature responses of
joints on the graph topology. The RDM branch extracts low-dimensional feature
maps from dense skeleton sequences to focus on the temporal motion variations
of joints. Thereby, the RSM and RDM branches model relatively static and
relatively dynamic joint motion tempos, respectively. Additional motion state
migration channels integrate the relatively dynamic motion tempo into the rel-
atively static motion tempo. The attention mechanisms in deep learning draw
on the human attentional mindset and are effective for many tasks [20,21,23].
Previous studies [16,18] have extended the GCN into a graph convolutional
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Fig. 2. Overview of our proposed MTEA-GCN.

long short-term memory (LSTM) network and added spatio-temporal attention
with a self-supervised gating mechanism. The LSTM gating mechanism improves
the skeleton recognition performance, but leads to a large number of additional
parameters. The recursive structure of LSTM cannot support parallel computa-
tion, limiting the efficiency of model learning. The purpose of this study is to
enhance the graph representation by adding a self-supervised attention mech-
anism, while bringing about an improvement in model performance with few
additional parameters.

In this work, we present a two-stream network MTEA-GCN for skeleton
action recognition. One branch is designed to capture relatively static motion
tempos of joints with sparse skeletal sequences of inputs and high-dimensional
representations of features. The other branch is designed to capture relatively
dynamic motion tempos of joints with dense skeletal sequences of inputs and low-
dimensional representations of features. Besides, we apply various single neigh-
borhood adjacency matrices to construct a powerful multi-neighborhood graph
convolution, which simultaneously learns the correlation between each joint and
its different neighborhood joints. A joint gating mechanism is proposed to learn
the self-attention weights of each joint and enhances joint feature information
with significant responses. The main contributions in this work are as follows:

1. We construct a two-stream GCN consisting of RSM and RDM, which model
different joint motion tempos. The state migration channels are used between
the two branches for the temporal alignment and feature fusion.

2. We propose a multi-neighborhood graph attention module (MNA-GCN) to
highlight discriminative joints, which can efficiently learn inter-joint depen-
dencies, including locally bone connected and physically unconnected joints.

3. We explicitly explore the complementary roles of the joint motion tempos for
action recognition. The proposed MTEA-GCN is lightweight, but robust and
effective for action feature representation.
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4. We conduct exhaustive ablation studies on two large-scale skeleton datasets,
Kinetics-Skeleton and NTU RGB+D, to demonstrate the effectiveness of
MTEA-GCN.

2 Related Work

2.1 GCN for Skeleton Action Recognition

GCN-based methods for skeleton action recognition conform to the original
topology of the human skeleton and does not rely on any artificial pre-defined
rules to analyze the spatial patterns of data. Yang et al. [24] first apply graph
convolution to action recognition and verify the effectiveness of GCNs in model-
ing human motion patterns spatially and temporally. To construct relationships
of non-physically connected joints, Li et al. [13] introduce a link inference mod-
ule to construct action-related potential relationships between joints and apply
a higher-order adjacency matrix to learn the dependencies of long-range joints.
Shi et al. [17] construct an adaptive graph and adds bone information to form
a two-stream framework for learning action features. Liu et al. [15] consider
the information flow across space-time by the decomposed multi-scale graph
convolution and space-time graph convolution operators. These works continu-
ously enhance the representational capabilities of the human skeletal graph and
model human skeletal sequences uniformly following the paradigm of 2D spatial
relationship extraction and 1D temporal dependency learning. The process of
co-encoding of spatio-temporal features ignores the variation of motion tempo
involved in the human skeletal sequences.

2.2 Motion Tempo Modeling

Several methods for RGB video-based activity recognition [5,22,25] consider
the effect of tempo changes in visual appearance. These attempts for extract-
ing the dynamic visual tempos of action instances mainly rely on construct-
ing a frame pyramid with different temporal resolutions. Feichtenhofer et al. [5]
believe that different dimensions of feature maps imply different degrees of visual
change information on the image. The traditional 3D convolution [2,19] indicates
that the motion of the two spatial dimensions x and y of the image along all
spatio-temporal directions are equally possible and displacement invariant, but
this condition is impractical. Modeling different visual tempos using branches
with different temporal resolutions allows for asymmetric treatment of spatial-
temporal features. On this basis, the variable displacement of individual joints
in the space-time direction is not equally possible for skeleton recognition. Many
daily actions involve rapid dynamic changes in joints on local body parts, such
as “eating”, “reading” and “writing”. Statistically, we find that approximately
70% actions in the NTU RGB+D dataset involve large dynamic changes only in
the local body parts. Therefore, the human joints are likely to move relatively
statically (slowly). We split the joint motion into relatively static and dynamic
branches to increase the flexibility of joint shifting in different space-time direc-
tions by capturing different motion tempos of each joint for each action instance.
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3 Method

The overview of our proposed MTEA-GCN is shown in Fig. 2. Here, c denotes
the feature dimensions. τ is the frame rate ratio of the two branches, and β
is the channel ratio. We follow a two-stream framework to build two branches,
RSM and RDM, which process different frame rates of skeleton sequences and
model motion tempo variations of joints. The RDM branch is lightweight. The
state migration channels between two branches are used to fuse different motion
tempos of joints. Each branch consists of STAG operators. The STAG opera-
tor is a robust spatio-temporal motion feature extractor that contains a multi-
neighborhood graph attention enhancement module (MNA-GCN) and multi-
scale temporal convolution modules (MS-TCN).

3.1 Multi-neighborhood Graph Attention Module

The raw skeleton data are a series of vectors consisting of the single-frame skele-
ton, where each vector represents 2D or 3D coordinates of human joints at a time
stamp. If V = {v0, v1, v2, . . . , vN} denotes N joints, C denotes the dimensions of
feature maps, the single-frame skeleton graph at time t can be represented by the
joint feature Xt ∈ XC×N and the adjacency matrix A ∈ RN×N . A represents
the topology of the graph, where if vi and vj are connected, Ai,j = 1, otherwise
Ai,j = 0. The update mechanism of the graph convolution layer l at time t can
be formulated as Eq. 1

X l+1
t = σ(D̃− 1

2 ÃD̃− 1
2X l

tW
l) (1)

Here, Ã = A + I, the self-loop constant matrix I considers the influence of

the node itself. σ(·) is the activation function. D̃− 1
2 ÃD̃− 1

2 is the normalization
of the adjacency matrix, which is used to weaken the influence of neighbor nodes
on the current node. W l ∈ RCl×Cl+1 is the weight matrix that can be learned
by the lth layer of the network.

As Liu et al. explored in [15], the dependencies captured by the adjacency
matrix of higher-order polynomials are still dominated by the bone-connected
joints. In our work, a multi-neighborhood graph convolution is used similar to
MS-G3D [15], where its adjacency matrix is a powerful matrix of k one-order
adjacency matrices concatenated (Fig. 3(a)) This adjacency matrix can effec-
tively access the dependencies between each joint and its k-neighborhood joints
by removing the redundant dependencies of close neighbors. Mask is a learnable
matrix initialized with random values around 0. Equation 2 shows the definition
of the kth adjacency matrix Ak according to MS-G3D [15]. However, the com-
plete non-differential treatment of different distance joints in MS-G3D [15] is
inconsistent with a common sense of the action.

A(k) =

⎧
⎪⎨

⎪⎩

1 if d (vi, vj) = k,

1 if i = j,

0 otherwise

(2)
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Fig. 3. Schematic illustration of Multi-neighborhood graph attention module (MNA-
GCN). (a) is a multi-neighborhood graph convolution. (b) and (c) are two joint gating
solutions considered in our work.

Our MNA-GCN module introduces the joint gating mechanism, which glob-
ally considers all joints and explicitly measures the importance of each joint.
We consider two joint gating solutions as shown in Fig. 3(b) and (c), which are
calculated as in Eq. 3, where f1×V denotes the convolution operation with filter
size 1×V . GSa is the attention weights to assign different importance for joints,
which is updated iteratively as the training process. The fine-tuned features rep-
resent more power. The additional joint gating mechanism introduces only a few
parameters. We use a MS-TCN to model the inter-frame association of skeletons
as in MS-G3D [15].

Xmean
V = Avgpool(Xin)

Xmax
V = Maxpool(Xin)

GSa = Sigmoid(f1×V (Xmax
V ,Xmean

V )) in (b)

GSa = Sigmoid(f1×V (Xmean
V )) in (c)

Xout = GSa ∗ Xin + Xin

(3)
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3.2 Motion Tempo Modeling

We construct two branches with different action tempos to represent action
instances (Fig. 2). On the one hand, the RSM branch represents slow varia-
tions of each joint displacement by extracting high-dimensional temporal feature
channels from sparse skeleton sequences. On the other hand, The RDM branch
represents fast variations of joint displacement by extracting low-dimensional
temporal feature channels from dense skeleton sequence. The ablation experi-
ments in Sect. 4.3 show a detailed exploration of the final two-stream model.

RSM Branch. To focus on the human pose and relatively static joint motion
on a single-frame skeleton graph, we uniformly sample the raw skeleton sequence
of Traw frames with a sampling factor τ , that is, processing one frame every τ
frame. The RSM branch has a skeleton sequence input of length Ts = Traw/τ .
The skeleton data extracted from RGB video maintains the same frame rate as
the original video. A skeleton sequence is extracted with 30 fps, that is, each
joint shifts 30 times per second. The sampled sparse frame sequence contains
30/τ body poses per second, corresponding to 30/τ joint motion tempo changes
per second. The input sequence of RSM branch has low temporal resolution
and thus an affordable computational complexity. The low temporal resolution
indicates a slow update of the body pose. The high-dimensional feature channels
characterize the detailed joint features in the graph topology. The RSM branch
thereby focuses on inter-joint dependencies spatially and captures the relatively
static motion tempo of each joint temporally.

RDM Branch. RDM and RSM are two parallel branches. The RDM branch
inputs dense skeleton sequences with a high frame rate, where the human pose
is rapidly updated. The full skeleton sequence is fed into the RDM branch to
ensure that the model observes the full human action, i.e. Td = Traw = τTs. τ
denotes the sampling factor of the RSM branch and the frame rate ratio of skele-
ton sequence processed by the two branches. The RDM branch is similar to the
RSM branch, but with a lower dimensions of extracted features. The number of
feature channels is only β(β < 1) times than that of the RSM branch. β defines
the channel ratio of features in two branches. Considering the intrinsic mech-
anism of convolution, higher dimensional feature representations have stronger
spatial semantic representation. Each dimension of the feature map corresponds
to the response of a convolutional kernel with trainable weights to the input
features. A higher dimensionality of the feature map indicates that the convo-
lutional layer uses more filters with different weights to extract various types of
detailed features across space. The representation of low-dimensional features in
the RDM branch weakens the ability to represent the structural information of
the human pose spatially, but is sensitive to the motion changes of the joints in
time. The low-dimensional feature representation makes the branch lightweight
and computationally efficient. The good performance of the model validates our
idea.
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Dynamic and Static Tempo Fusion. The features extracted from the two
branches represent different joint motion tempos, where the difference depends
on the frame rate ratio τ and the channel ratio β. The feature fusion in two
branches allows the two-stream model to integrate the feature representations of
joints at each stage of learning. We add state migration channels between the two
branches, which are implemented by convolution operations. The convolution
operations have been used to fuse features in two-stream networks [3,6]. Here,
we use 2D convolution for temporal feature alignment and migrate the aligned
relative dynamic features to the RSM branch in a concatenated manner.

4 Experiments

We evaluate the MTEA-GCN on two large-scale skeleton datasets, Kinetics-
Skeleton [24] and NTU RGB+D [16]. To demonstrate the validity of our final
model, we perform extensive ablation experiments on the NTU RGB+D dataset.

4.1 Datasets

NTU RGB+D. NTU RGB+D [16] is a human action dataset collected by
Microsoft Kinect V2 at 30 fps, which contains 3D joint coordinates of 25 body
joints. The dataset collects 60 action categories from 40 subjects, which contains
daily actions, interactive actions and health-related actions. A total of 56,880
video samples and 4 million images are available. The dataset has two bench-
marks: Cross-subject (X-Sub) and Cross-view (X-View). The former training
and validation set contain actions performed by the subjects in the two subsets.
The latter training set contains videos captured by cameras 2 and 3, and the
validation set contains videos captured by camera 1. Top-1 accuracy is reported
on two benchmarks.

Kinetics-Skeleton. The Kinetics-skeleton dataset is a collection of skeleton
data extracted from the Kinetics-400 dataset using OpenPose toolbox [1]. The
Kinetics video dataset [8] published by DeepMind is a high-quality collection of
YouTube videos and contains a wide variety of human actions. All videos are
first adjusted to a resolution of 340 × 256 at 30 fps before extracting the joints.
The OpenPose toolbox estimates the 2D coordinates of the 18 body joints of
each person and their corresponding confidence. If more than two individuals
are present, the ones with lower confidence are ignored. We report Top-1 and
Top-5 recognition accuracies.

4.2 Training Details

All models contain 3 STAG operators and are trained with the same batch size
(32). For NTU RGB+D and Kinetics-Skeleton, the learning rate is initialized
to 0.05 and 0.01, respectively, and reduce by a factor of 10 at epoch {30, 40}
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Fig. 4. Visualization of MTEA-GCN and MS-G3D extracted features.

and {45, 55}. Weight decay is set to 0.0005. The optimization scheme applies
stochastic gradient descent with momentum (0.9). Cross-entropy is selected as
the loss function to backpropagate gradients. The raw inputs are preprocessed
with normalization and translation following [15,17,24]. All action samples are
padded with skeleton sequences to 300 frames, where 256 consecutive frames are
randomly selected as inputs.

4.3 Ablation Study

To verify the rationality and validity of the two-stream model setup, we conduct
a series of ablation experiments on the NTU-RGBD dataset by using a single
variable. The performances of models are compared with the X-Sub benchmark.
If not specified, the neighborhood scale of the graph convolution in all models is
set to k = 5, the tempo ratio τ = 2, and the channel ratio β = 4 for two streams.

Appropriate Neighborhood-Scale Settings. Experiments on different
scales of sparse graph convolution in MS-G3D [15] suggest that different neigh-
borhoods of joints should be considered by the maximum diameter (12) of the
skeletal graph in the NTU RGB+D dataset. However, we experimentally found
that such a consideration is unsuitable, and considering each scale indiscrimi-
nately aggregates excessive useless joint dependencies (Fig. 4). A similar inten-
sity of attention to many distant joints unrelated to action can be observed for
the MS-G3D. We reconsider the different neighborhood settings on our proposed
model MTEA-GCN as shown in Fig. 5. When k = 2, it means that the adjacency
matrix contains self-loop with 1st order neighborhood. Figure 5 shows the accu-
racy, computational complexity and parameters for the model using different
neighborhood-scale k. We observe that the model achieves the best performance
for each joint with its 5th order neighborhood considered.

Joint Gating Mechanism Configuration. Pooling operations along the
channels can effectively highlight more discriminative feature regions [7]. We
perform experiments on the two configurations of joint gating mechanisms.
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Fig. 5. Comparisons of the recognition accuracy (%), number of parameters (M), and
computational complexity (GFLOPs) for MTEA-GCN using different neighborhood-
scale k.

The results are shown in Table 1. The joint features fine-tuned by the max-
imum pooling operation and average pooling operation can greatly represent
human actions. We believe that the maximum pooling operation highlight the
most salient responses of joint features and the average pooling operation is the
comprehensive consideration of individual joint features. Thus, we suggest using
both pooling operations in our joint gating mechanism.

Modeling Different Joint Motion Tempo. This study aims to explore the
joint feature representations of different motion tempos that are more discrimi-
native and lead to the robust characterization of human actions. Therefore, we
perform a series of ablation studies for the two-stream RSM and RDM with
different frame rate ratio τ and channel ratio β. We use the factorized pathway
MS-GCN from MS-G3D as the baseline. The baseline model has one branch
without motion tempo variations and inputs the raw skeletal frames. We first
observe that all settings outperform the baseline due to the modeling of the
motion tempo variations of joints from the Table 2 and 3.

Table 1. Comparisons of the recognition accuracy (%) for different joint gating con-
figurations

Gating set Params Accuracy&

None 16.0M 88.5

Avg 1.62M 88.7

Max+Avg 1.64M 88.8
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Table 2. Comparisons of the recognition accuracy (%) for different frame rate ratio
settings

Accuracy (%) RSM-input GFLOPs

MS-GCN 87.8 300f 9.76

=1 88.5 256f 13.46

2 88.8 128f 6.97

4 88.5 64f 3.73

8 88.0 32f 2.11

Table 3. Comparisons of the recognition accuracy (%) for different channel ratio set-
tings

Accuracy (%) Params

β = 1 88.3 5.48M

1/2 88.5 2.59M

1/4 88.8 1.64M

1/8 88.6 1.37M

Table 2 shows the different frame rate ratio settings between the two streams.
The frame rate ratio is related to the length of the skeletal sequence processed by
the RSM branch, where a larger τ leads to fewer frames processed and lower com-
putational complexity. The frame rate ratio τ = 2 results in 1.0% improvement to
the MS-GCN with lower computational complexity. Table 3 shows that the chan-
nel ratio has a significant effect on the number of model parameters. The RDM
branches with low channel capacity (β = 1/4, 1/8) improve the performance with-
out capturing the detailed features of the joints in the topology. A 4-fold reduction
in channel capacity results in the best performance of our model.

4.4 Comparisons with the State-of-the-Art Methods

We compare our model with state-of-the-art methods in Table 4, Table 5, includ-
ing RNN-based methods, CNN-based methods, and GCN-based methods. Our
model shows superior performance on two large-scale skeleton datasets, Kinetics-
Skeleton and NTU RGB+D, with improvements of 6% and 9%, respectively,
compared to the basic GCN method [24]. Compared to most existing methods,
MTEA-GCN consists of only three stacked layers of the spatio-temporal fea-
ture extraction operator STAG, which is shallow and lightweight, but achieves
a good performance improvement. Our model gains 0.3% higher accuracy than
2s-AGCN [17] by only using joint data. The model performance is slightly lower
than MS-G3D [15], but the amount of parameters is 50% less (1.6M vs 3.2M)
and the computational consumption is greatly reduced. MS-G3D considers over-
sized joint neighborhoods, resulting in slight overfitting in its training on the
NTU RGB+D dataset.



Graph Attention Convolutional Network with Motion Tempo Enhancement 163

Table 4. Comparisons of the recognition accuracy (%) on the NTU RGB+D dataset.

Methods X-Sub (%) X-View (%)

HBRNN [4] 59.1 64.0

ST-LSTM [14] 69.2 77.7

STA-LSTM [18] 73.4 81.2

VA-LSTM [26] 79.2 87.7

TCN [10] 74.3 83.1

Clips+CNN+MTLN [9] 79.6 84.8

CNN+Motion+Trans [12] 83.2 89.3

ST-GCN [24] 81.5 88.3

AS-GCN [13] 86.8 94.2

ST-GR [11] 86.9 92.3

2s-AGCN [17] 88.5 95.1

MS-G3D [15] 91.5 96.2

MTEA-GCN (Joint-only) 88.8 94.9

MTEA-GCN (Bone-only) 88.9 95.0

MTEA-GCN (Ours) 90.5 95.6

Table 5. Comparisons of the recognition accuracy (%) on the Kinetics-Skeleton.

Methods Top-1 (%) Top-5 (%)

TCN [10] 20.3 40.0

ST-GCN [24] 30.7 52.8

AS-GCN [13] 34.8 56.5

ST-GR [11] 33.6 56.1

Js-AGCN [17] 35.1 57.1

2s-AGCN [17] 36.1 58.7

MS-G3D [15] 38.0 60.9

MTEA-GCNOurs 36.7 59.6

5 Conclusion

In this work, we propose a multi-neighborhood motion tempo-enhanced graph
attention network (MTEA-GCN) for skeleton-based action recognition. We add a
lightweight RDM branch to form a two-stream framework and model the tempo
variation of joint motion. Detailed ablations validate the complementary role
of motion tempo in identifying human actions. The multi-neighborhood graph
attention module can effectively capture the dependencies between the current
joint and neighboring and distant joints, and automatically select the more dis-
criminative joints through the joint gating mechanism. Experiments show that
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our model represents human action features robustly. In future work, we will
further explore the rich and exact dependencies among joints in each action.
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Abstract. Most existing single image deraining networks are trained
in a supervised way, which relies on paired images including one clean
image and one rain image. In most cases, the rain images are synthe-
sized from the clean ones manually to obtain sufficient paired images.
However, not only huge time costs but expert knowledge are needed to
ensure the synthesized images are realistic enough. In addition, the supe-
rior performance of these deraining networks trained on manually syn-
thesized rain images is hard to be maintained when testing on real rain
images. To address these issues, we propose a scene adaptive asymmetric
CycleGAN (SAA-CycleGAN) which transfers clean images to their rainy
counterparts automatically so that adequate realistic rain images can be
obtained for training deraining networks in a supervised way. Moreover,
SAA-CycleGAN can both remove rain from rainy images and synthesize
rain on clean images benefiting from the cycle consistency strategy. Since
the information is not symmetric during the rain synthesis process and
the deraining process, the generators are designed with different archi-
tecture accordingly for these two processes. Comprehensive experiments
show that the SAA-CycleGAN is able to synthesize more lifelike rain
images and achieve similar deraining performance compared with the
state-of-the-art deraining methods.

Keywords: Rain synthesis · Image deraining · CycleGAN · Attention
mechanism

1 Introduction

Rain is common to see in daily life, while rain streaks and rain mist can reduce
visibility and thus degrade the performance of various high-level vision tasks,
including image classification, object detection in surveillance, etc. Single image
deraining aims to remove unpleasant rain streaks and rain mist from rain images
and provide the recovered background for subsequent high-level vision tasks,
which attracts lots of attention and has become an important topic in computer
vision fields [3].
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Fig. 1. The framework of SAA-CycleGAN: (a) branch one performs the deraining
process first and then the rain synthesis process; (b) branch two performs the rain
synthesis process first and then the deraining process. (Color figure online)

The existing single image deraining methods can be mainly divided into
traditional optimization-based methods [19] and deep learning-based methods
[4,5,10,18,23,28,29]. The traditional optimization-based deraining methods
firstly enforce handcrafted priors on both background and rain layers, then design
a deraining loss function and optimize it. However, due to the complexity of rain
streaks and background texture, the handcrafted priors are not adaptable to the
complex and changing rain images.

Since Fu et al. [4] first proposed to use convolutional neural networks
(CNNs) for single image deraining, deep learning-based methods have gradu-
ally replaced traditional optimization-based methods. Remarkably, most exist-
ing deep learning-based deraining algorithms are supervised ones whose training
depends on paired rain datasets where each image pair contains one clean image
and one rain image under the same scene. As we know that the image pairs
captured under the same real scenes are hard to be directly obtained, most of
the existing deraining works are trained on synthetic datasets. However, the
synthetic rain images look unreal from the real rain images and limit the per-
formance of single image deraining algorithms when applied to real rain images.
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To automatically generate a large-scale paired rain image dataset for train-
ing supervised deraining networks, we propose a novel unsupervised scene adap-
tive asymmetric network (SAA-CycleGAN) (see Fig. 1) to better synthesize rain
streaks and rain mist on the clean images, and meanwhile to obtain clean
images from the rain images as well. The proposed SAA-CycleGAN adopts
CycleGAN [31] as the backbone, which is proposed for unpaired image-to-image
translation between two different domains, and modifies two default symmetric
generators in CycleGAN to be asymmetric. The generator adopted for deraining
in SAA-CycleGAN is divided into the rain mask attention (RMA) module and
an U-Net. The generator adopted for rain synthesis in SAA-CycleGAN consists
of a rain mask refinement (RMR) module and another U-Net. In addition, we
introduce a novel loss function called mask loss to constrain the training of RMR
module.

The contributions of this work can be summarized as three-fold:

• To address the information asymmetry in rain synthesis and image derain-
ing, a scene adaptive asymmetric network (SAA-CycleGAN) is proposed to
implement these two tasks simultaneously.

• As an unsupervised adaptively rain synthesis method, SAA-CycleGAN can
obtain good visual performance without human intervention.

• In order to extract more information, we design RMA module and RMR mod-
ule for the rain synthesis process and the deraining process, and introduced
mask loss to constrain RMR module.

The remaining sections of this paper are organized as follows. Section 2
mainly reviews the image deraining and rain synthesis works as well as gen-
erative adversarial networks. In Sect. 3, the proposed SAA-CycleGAN is intro-
duced in detail, including the framework and objective function. Experimental
results including quantitative and qualitative evaluation are presented in Sect. 4,
followed by the conclusion in Sect. 5.

2 Related Work

Our target is to implement an efficient rain image synthesis method to produce
more natural rain images, with which single image deraining and other high-
level vision tasks can be trained in a supervised manner. To this end, we first
survey some closely related deraining and image synthesis works in this section.
Considering the architecture of SAA-CycleGAN, we also give a brief introduction
to the development of generative adversarial networks (GANs) [7].

2.1 Single Image Deraining Methods

Generally, a rain image can be modeled as a linear superposition of a rain layer
and a background layer, and the goal of the deraining task is to decompose
the rain image into these two layers and drop the rain layer. In [4] and [5],
Fu et al. creatively applied a low-pass filter to decompose a rain image into a
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high-frequency detail layer and a low-frequency background layer, then a CNN
was employed to remove the rain from the high-frequency detail layer. Deep
residual networks [8] have been demonstrated to be successful in different tasks,
inspired by this, some works adopted residual learning to predict the rain layer
and obtained the background image by element-wise subtraction between the
rain image and the predicted rain layer. Zhang et al. [29] predict the rain den-
sity by a residual-aware classifier and further estimate the rain layer by several
densely-connected networks. Li et al. [18] designed a contextual dilated network
using squeeze-and-excitation to predict the rain layer stage by stage. Ren et
al. [23] deploy residual blocks with iterative training procedures to predict the
rain layer. However, only rain streaks are taken into account but rain mist is
neglected in those methods due to existing datasets. Hu et al. [10] observed that
the rain mist is intimately related to the scene depth. Based on this observation,
they designed a network to extract depth-attention features, which were further
used for subsequent image deraining.

2.2 Rain Synthesis Methods

Some early works have synthesized rain image datasets by manual methods
in order to train their supervised deraining networks, such as Rain100L [28],
Rain100H [28] Rain12000 [29], etc. Rain12 [19] and Rain100L [28] were synthe-
sized by the photo-realistic rendering techniques designed by Garg et al. [6].
Different from those datasets mentioned above, Rain100H [28], Rain800 [30],
Rain14000 [5] and Rain12000 [29] were synthesized by adding noise first and
then a gaussian blur filter was applied to the noise in Photoshop1. The synthetic
rain images from these datasets only contain rain streaks ignoring the physical
properties of rain and no rain mist. Both Hu et al. [10] and Li et al. [17] proposed
to synthesize rain images combining scene depth information and released their
synthetic datasets, i.e., RainCityscapes and NYU-Rain, respectively. Due to con-
taining both depth-related rain streaks and rain mist, the rain images synthesized
based on depth information have a more natural visual effect. However, this kind
of synthesis method requires manual participation to choose appropriate param-
eters for different scenarios to achieve more natural effects. A method with a sim-
ple, standard, end-to-end procedure for rain image synthesis is urgently needed.
Therefore, in this paper, we propose an automatic method to synthesize natural
rain images.

2.3 Generative Adversarial Networks

GANs [7] have been demonstrated by many works to achieve great success in
many fields, e.g., image inpainting [13], image generation [15,25], image-to-image
translation [1,12,14,20,31]. GANs are intended to train a pair of generator and
discriminator based on the min-max game. In the training stage, the generator

1 http://www.photoshopessentials.com/photo-effects/rain/.

http://www.photoshopessentials.com/photo-effects/rain/
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tries to generate real enough images to fool the discriminator while the discrim-
inator tends to distinguish the synthesis images and real images. CycleGAN [31]
was proposed to translate images from a source domain X to a target domain
Y in the absence of paired samples. CycleGAN contains a generator G : X → Y
and a generator F : Y → X, where G and F are inverses of each other. In
addition, a cycleGAN is constrained by a cycle consistency loss, which is intro-
duced to encourage F (G(x)) ≈ x and G(F (y)) ≈ y. An attention mechanism
was proposed by Wei et al. [26] to help generators of CycleGAN to improve the
performance of deraining. However, they paid little attention to the information
asymmetry of the rain synthesis process and the deraining process, which made
the visual effect of the synthetic rain images still unreal.

3 SAA-CycleGAN

In this section, an overview of SAA-CycleGAN is firstly provided. Then, we
present the deraining process and the rain synthesis process in SAA-CycleGAN
in detail, respectively. At the end of the section, the objective function used to
train SAA-CycleGAN is introduced.

3.1 Overview

SAA-CycleGAN is proposed for rain synthesis and image deraining, which con-
sists of two branches (see Fig. 1). Branch one first performs the deraining process
on the rain image r to obtain the deraining image nr, and then performs the rain
synthesis process on nr to obtain a new synthetic rain image r̃, i.e., r → nr → r̃.
The procedure of branch two is the inverse version of branch one, which is to per-
form the rain synthesis process and deraining process in order, i.e., n → rn → ñ,
where n, rn, and ñ are the clean image, synthetic rain image and reconstructed
clean image, respectively. These two branches are based on adversarial learning.
Furthermore, to realize the unsupervised training of SAA-CycleGAN, the cycle-
consistency loss is implemented by ensuring that r̃ is as close as r and ñ is as
close as n.

3.2 Deraining Process

On the premise that R represents the rain image domain and N represents
the no-rain clean image domain, the deraining process can be considered as
a mapping from the rain image domain to no-rain clean image domain, i.e.,
G : R → N , as shown in the orange brace G in Fig. 1. To extract the features
of rain from the input rain image r, the RMA module is designed to output
a rain mask map m, which mainly contains the background texture informa-
tion obscured by rain mist and the appearance and location information of rain
streaks. To obtain the clean background image nr, the rain mask is inputted to
the subsequent U-Net as an attention map with the rain image r.
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Inspired by [26], our RMA module extracts the rain mask in multiple stages
(see Fig. 3(a), where each stage includes four parts: 1) a convolutional layer
fin receives the network inputs; 2) a dual-path residual dense block (DPRDB)
unit [27] fdprdb extracts the deep representation; 3) a LSTM unit [9] flstm prop-
agates feature dependencies across stages; 4) a convolutional layer fout outputs
the rain mask. The inference of RMA module at stage t can be formulated as

mt−0.5 = fdprdb(fin(r,mt−1)),

st = flstm(st−1,mt−0.5),

mt = fout(st) (1)

where fin, fdprdb, flstm, and fout are stage-invariant, i.e., the parameters reused
across different stages, mt denotes the output rain mask of stage t, m0 is set to
0.5 as the initial input, st denotes the LSTM state of stage t, and r denotes the
input rain image.

DPRDB has been proven effective by [27] in obtaining the deep feature rep-
resentation of rain streaks and rain mist. As shown in Fig. 3(b), the structure of
DPRDB is divided into two paths named residual path and dense path, which are
realized by skip connections. The skip connections can overcome the drawback
of gradient vanishing of deep layers. The residual path is inspired by ResNet [8],
which realizes the feature re-usage ability through a residual add operation
between the input and conducted feature maps. The dense path completes the
function of new features exploration of DenseNet [11] by the concatenation of
the input and conducted feature maps.

3.3 Rain Synthesis Process

In two branches of SAA-CycleGAN, the information passed to the rain synthesis
process is different. Thus, we design different network architectures for the rain
synthesis process in two branches.

In branch one, the generator used for rain synthesis receives the deraining
image nr and its corresponding rain mask m, which is generated by the RMA
module in G (see the blue brace F in Fig. 1(a)). We adopt the U-Net as the
generator to fuse them to reconstruct the rain image r̃.

Branch two first performs the rain synthesis process n → rn and then the
deraining process rn → ñ. However, the rain synthesis process in branch two only
receives the clean images from domain N as the input, which does not contain
any rain information. To provide the rain information, we synthesize a hand-
made rain mask (see Fig. 2(b)) using photoshop (See Footnote 1) as another
input of the rain synthesis process. However, the distribution of rain from the
hand-made rain mask has a simpler pattern (i.e. only rain streaks) compared
with the real rain pattern. Thus, we further design an RMR module to refine
the hand-made rain mask, referring to the green brace A in Fig. 1(b). The RMR
module receives the gradient map of the clean image and the hand-made rain
mask as inputs, where the gradient image provides texture information and the
hand-made rain mask provides rain streaks information. The RMR module fuses
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Fig. 2. The comparison of the rain mask generated by RMA module and the hand-
made rain mask made by photoshop referring to the existing method (See Footnote 1).

(a)RMA Module (b)DPRDB (c ) RMR Module

Fig. 3. The architecture of modules in SAA-CycleGAN: (a) the architecture of the
RMA module, where Conv represents the convolutional layer, ReLU is the activation
function and LSTM is a convolutional long short-term memory block; (b) the structure
of dual-path residual dense block (DPRDB), where IN represents the instance normal-
ization layer; (c) the architecture of the RMR module, where ResBlock represents the
ResNet block [8].

g and hm and outputs a refined rain mask rm, which is used to provide rain
information for the subsequent rain synthesis module F to obtain the synthesized
rain image rn.

The RMR module refines the rain mask in multiple stages just like the RMA
module in G, except that the DPRDB in RMA is replaced with several more
lightweight residual blocks [8] (see Fig. 3(c)). The inference of the RMA module
at stage t can be formulated as

rmt−0.5 = fres(fin(hm, rmt−1)),

st = flstm(st−1, rmt−0.5),

rmt = fout(st) (2)
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where fin, fres, flstm, and fout are stage-invariant, i.e., the parameters reused
across different stages, rmt denotes the output refined rain mask of stage t, rm0

is set to 0.5 as the initial input, st denotes the LSTM state of stage t, and hm
denotes the input hand-made rain mask.

3.4 Objective Function

The objective function used for the unsupervised training of SAA-CycleGAN is
presented as follows:

Ltotal = λadvLadv + λccLcc + λpLp + λidtLidt + λrmLrm + λrmcLrmc, (3)

where λadv, λcc, λp, λidt, λrm, and λrmc are trade-off parameters.

Adversarial Loss. Following the least-square GAN [21], the adversarial losses
are applied to both the deraining process and the rain synthesis process as:

Ladv = Ladv(G,DN , R,N) + Ladv(F,DR, N,R) (4)

For the deraining process G : R → N and its discriminator DN , we express
the objective as:

Ladv(G,DN , R,N) =
1

2
En∼pdata(n)[(DN (n))2] +

1

2
Er∼pdata(r)[(1 − DN (nr))

2]

=
1

2
En∼pdata(n)[(DN (n))2] +

1

2
Er∼pdata(r)[(1 − DN (G(r,m0)))

2]

(5)

where G aims to minimize this objective so that DN cannot distinguish between
clean image n and deraining image nr, while DN tries to maximize it.

Similarly, the adversarial loss used for the rain synthesis process can be
defined as:

Ladv(F,DR, N,R) =
1

2
Er∼pdata(r)

[(DR(r))2] +
1

2
En∼pdata(n)[(1−DR(rn))

2]

=
1

2
Er∼pdata(r)

[(DR(r))2] +
1

2
En∼pdata(n)[(1−DR((F (A(g, hm), n))2]

(6)

where F aims to minimize this objective so that DR cannot distinguish between
real rain image r and synthetic rain image rn, while DR tries to maximize it.

Cycle-Consistency Loss. Since there is no paired information in the unsuper-
vised training of SAA-CycleGAN, cycle-consistency constraint [31] is adopted in
two branches to avoid mode collapse. In branch one, given a rain image r ∈ R,
after the sequential translations of the deraining process and the rain synthesis
process, the reconstructed image r̃ is expected to be the same as the original
rain image r. Similarly, ñ is expected to be the same as n in branch two. The
cycle-consistency objective can be expressed as:

Lcc = Er∼pdata(r)

[‖r − r̃‖1

]
+ En∼pdata(n)

[‖n − ñ‖1

]

= Er∼pdata(r)

[‖r − F (G(r))‖1

]
+ En∼pdata(n)

[‖n − G(F (A(g, hm), n),m0)‖1

]

(7)
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Identity Loss. To ensure that the color distributions of the input image and
the output image are similar, the identity consistency constraint is applied to the
deraining process and the rain synthesis process. For a clean image n ∈ N , the
image is better not to be changed after the translation of n using the deraining
process G(n). The rain synthesis process has a similar situation as the deraining
process. The identity loss is presented as follows:

Lidt = Er∼pdata(r)[‖n − G(n,m0)‖1] + En∼pdata(n)[‖r − F (A(g, hm), r)‖1] (8)

Perceptual Loss. To avoid unpleasant artificials in the generated images, the
perceptual loss [26] is adopted to constrain the color and structure of rain image
r and deraining image nr in branch one and clean image n and synthetic rain
image rn in branch two:

Lp = Er∼pdata(r)[‖φl(nr) − φl(r)‖22] + En∼pdata(n)[‖φl(rn) − φl(n)‖22] (9)

where φl(·) is the feature extractor of the l-th layer of the VGG-16 network [24]
pre-trained on ImageNet [2].

Rain Model Loss. Based on the rain model R = M + N where R, M , and
N are rain image, rain mask and clean background image [26], we adopt the
constraint named rain model loss to the RMA module and the RMR module to
obtain natural rain masks:

Lrm = Er∼pdata(r)[‖r − m − nr‖22] + En∼pdata(n)[‖rn − rm − n‖22] (10)

Rain Mask-Consistency Loss. In branch two, the refined rain mask rm
generated by the RMR module is expected to be the same as the rain mask
generated by the RMA module mn. Based on the constrain, we introduce the
rain mask-consistency loss as:

Lrmc = En∼pdata(n)[‖rm − mn‖22] (11)

4 Experimental Results

In this part, we discuss the effectiveness of our SAA-CycleGAN in rain synthesis
and deraining by exhaustive experiments. Based on the implementation details
mentioned in Sect. 4.1 for training the SAA-CycleGAN, the comprehensive per-
formance of our method in rain synthesis and deraining compared with other
methods are illustrated in detail in Sect. 4.2 and Sect. 4.3. In order to investigate
the influence of functional modules in our proposed SAA-CycleGAN, here we
also complete the sufficient ablation studies at Sect. 4.4.
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Table 1. FID comparison with datasets synthesized by photoshop and CycleGAN
trained on the training set of RainCityscapes. The best result is highlighted in bold.

Methods Rain800 Rain14000 NYU-Rain CycleGAN SAA-CycleGAN

FID 250.16 261.86 218.96 89.45 85.91

Fig. 4. The comparison of rain images generated by SAA-CycleGAN and synthesized
by photoshop.

4.1 Implementation Details

Considering the visual effects in the real-world rainy environment, we adopt
the RainCityscapes [10] as the dataset for the training and evaluation of SAA-
CycleGAN without any paired data. In the training stage, we choose the
Adam [16] algorithm as the optimizer while the learning rate is set as 1 × 10−3.
As for balancing the training process of rain synthesis and deraining, we empiri-
cally define the parameters λadv = 1, λcc = 10, λp = 5, λidt = 0.5, λrm = 10 and
λrmc = 5. Here we resize the trainset images to 286×286, which is then cropped
to 256×256 as the input of the network with the batch size of 1. We complete the
training and testing task of our SAA-CycleGAN based on the PyTorch frame-
work [22] in the Python3 environment where an NVIDIA GeForce GTX 2080Ti
GPU with 12 GB memory on the 64-bit Ubuntu 18.04 LTS operating system has
been used to run the experiments.
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Fig. 5. The comparison of synthetic rain images between our SAA-CycleGAN and
RainCityscapes.

4.2 Rain Synthesis Results

Here we analyze the rain synthesis ability of our proposed SAA-CycleGAN com-
paring with other different synthetic methods. The paired rain image datasets
are divided into two parts, one only contains rain streaks synthesized by Photo-
shop (such as Rain800 [30] and Rain14000 [5] shown in Fig. 4(b)) and the other
includes both rain streaks and rain mist (such as RainCityscapes [10] shown in
Fig. 5(b)). With the reference of rain images from RainCityscapes in the test
set, we utilize the perceptual metric FID to evaluate the rain synthesis result.
The results of FID comparison of traditional methods (i.e., Rain800, Rain14000
and NYU-Rain) and trained methods (i.e., CycleGAN and our SAA-CycleGAN)
are listed in the Table 1. It is obvious that comparing with traditional methods,
CycleGAN and SAA-CycleGAN trained on the training set of RainCityscapes
acquire conspicuous FID values and our SAA-CycleGAN achieves significant
FID gains than CycleGAN.

Based on the comparison of FID, we also visualize some typical synthetic rain
images in Fig. 4 and Fig. 5. Figure 4 presents the effect of rain images synthesized
by our SAA-CycleGAN and Photoshop respectively, whose corresponding clean
images are collected from the Internet. It can be seen that the rain image syn-
thesized by Photoshop looks unreal comparing with our result. The rain images
generated by the SAA-CycleGAN have a more natural and comfort visual effect,
which are closer to the real rain environment. This means that SAA-CycleGAN
has a better rain generalization ability than traditional methods. Meanwhile, we
compare the synthetic rain images between our SAA-CycleGAN and RainCi-
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Table 2. PSNR/SSIM comparison with the state-of-the-art image deraining methods
on the test set of RainCityscapes. ∗Methods are supervised deraining networks while
†methods are unsupervised ones.

Methods GMMLP∗ DID-MDN∗ RESCAN∗ PReNet∗ DAF-Net∗ CycleGAN† SAA-CycleGAN†

PSNR 17.80 28.43 24.49 30.64 30.06 18.36 24.16

SSIM 0.8169 0.9530 0.8852 0.9789 0.9530 0.8341 0.8753

tyscapes based on the same environment. The rain images synthesized by both
methods look natural. However, our method needs no human intervention for get-
ting rain images while the RainCityscapes needs manual adjustment for improv-
ing the result.

4.3 Deraining Results

As for evaluating the deraining ability of our SAA-CycleGAN, we adopt the
objective metrics PSNR and SSIM for quantitatively measuring the derain-
ing result. This part we both compare the SAA-CycleGAN with several super-
vised deraining methods including GMMLP [19], DID-MDN [29], RESCAN [18],
PReNet [23], DAF-Net [10] and unsupervised deraining method CycleGAN. The
comparison result of deraining can be seen in Table 2 and Fig. 6. Results show
that most of these supervised methods can achieve better quantitative results
than our method. Considering that the SAA-CycleGAN is unsupervised, it is
inevitable that our PSNR and SSIM are limited without using paired data for
training. However, our SAA-CycleGAN still performs well in the deraining task
and quantitative results are close to these supervised methods, which also outper-
forms the unsupervised deraining method CycleGAN. Meanwhile, the deraining
images generated by our proposed SAA-CycleGAN achieve a good visual effect.
Both visual and quantitative results prove that our SAA-CycleGAN has a great
ability for dealing with the deraining task.

4.4 Ablation Study

In order to explore the effect of several functional modules i.e., asymmetry, hand-
made rain mask and rain mask-consistency loss in our SAA-CycleGAN, here we
define four variants of SAA-CycleGAN for the following ablation studies:

• Solution-1: This ablation model abandon all the functional module including
asymmetry, hand-made rain mask and rain mask-consistency loss, also known
as CycleGAN.

• Solution-2: This ablation model only incorporated with asymmetry by intro-
ducing the RMA module and the RMR module for verifying the influence of
asymmetry structure.

• Solution-3: This ablation model incorporated with asymmetry and hand-made
rain mask used as an additional input of the rain synthesis generator.
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Fig. 6. The visual effect of deraining image generated by SAA-CycleGAN.

Table 3. FID comparison with different variants of SAA-CycleGAN on RainCi-
tyscapes.

√
indicates the component is adopted while × means not. The best result is

highlighted in bold.

Asymmetry Hand-made
rain mask

Rain mask-
consistency loss

FID

Solution-1 × × × 89.45

Solution-2
√ × × 88.08

Solution-3
√ √ × 87.90

Solution-4
√ √ √

85.91

• Solution-4: This ablation model incorporated with asymmetry, hand-made
rain mask and rain mask-consistency loss, also known as SAA-CycleGAN.

We show the comparison result of perceptual metrics and visual effect of
the four variants mentioned above. Table 3 shows the improvement of FID
brought by these involving components. It can be seen that the adoption of
each function module makes the model performs better while the complete
SAA-CycleGAN achieves the best FID. This means that all the components
of our SAA-CycleGAN have corresponding influence for improving the percep-
tual quality of rain synthesis. Also as shown in Fig. 7, the rain synthesis result is
also visually more and more plausible as adopting each functional module. Rain
streaks synthesized by Solution-1 are too sharp, while rain streaks synthesized
by Solution-2 and Solution-3 are too sparse.
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Fig. 7. Visual quality comparison of synthetic rain images from different variants of
SAA-CycleGAN.

5 Conclusion

In this paper, a novel scene adaptive asymmetric CycleGAN is proposed for
the rain synthesis task and the deraining task. We design different generators
for the rain synthesis process and the deraining process according to the asym-
metric information of these two processes. We train our SAA-CycleGAN on
RainCityscapes and test it on real photos, and compare it with the state-of-
the-art methods to demonstrate its superiority qualitatively. In the future, we
plan to use SAA-CycleGAN to generate rain object detection datasets based on
the existing object detection datasets obtained in good weather. We will train
and test the object detection algorithms based on these synthetic rain object
detection datasets to improve the accuracy of object detection on rainy days.
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Abstract. In 2D image domain, recent researches have made signifi-
cant progress in encoding context information for instance segmentation.
While the counterpart in point cloud is still left far behind. Previous
works mostly focus on leveraging semantic information and aggregat-
ing point local information through K-Nearest-Neighbor method. Such
methods are unaware of object boundary information which is impor-
tant to separating nearby objects. We propose a novel module to inte-
grate object bounding box information into embedding for Point Cloud
Instance Segmentation. The proposed module called Object Bounding
Box-aware module (OBAM) boosts the instance segmentation perfor-
mance by encoding Object Bounding Box information. Through atten-
tion mechanism, the module removes redundant boundary information.
Comprehensive experiments on two popular benchmarks (S3DIS and
ScanNetV2) show the effectiveness of our method. Our method achieves
the State-of-the-art instance segmentation performance on S3DIS bench-
mark.

Keywords: 3D point cloud · Instance segmentation · Object bounding
box-aware

1 Introduction

In computer vision, instance segmentation is a basic task for scene understand-
ing. It is always regarded as an extension to semantic segmentation. The task of
instance segmentation is to group pixels/points which have the identical seman-
tic labels into different object instances. In 3D domain, instance segmentation
has wild applications in robotics, autonomous driving. With the growth of 3D
sensors, it has gained more researchers attention and some approaches have been
proposed in some papers. However, it is far away from being solved.

Point cloud captured by 3D scanners is an important type of 3D data rep-
resentation. It consists of collections of points in Euclidean space. In 3D point
cloud, PointNet [5] is the pioneer deep-learning method directly using original
point cloud as input. Subsequent method PointNet++ [6] abstracts local region
information with PointNet to learn point features through a hierarchical struc-
ture. Methods like radius based ball query and K-Nearest-Neighbor are utilized
c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13033, pp. 182–194, 2021.
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for aggregating local region information. Our approach is building on Point-
Net++ network.

In 3D point cloud area, approaches for instance segmentation are mostly com-
posed of clustering-based approaches and proposal-based approaches. To tackle
the task of instance segmentation on point clouds, clustering-based approaches
group points through clustering algorithm and proposal-based approaches are
mostly based on object proposal. Semantic-aware instance segmentation is in
ASIS [12]. They put two tasks (instance segmentation and semantic segmen-
tation) together so the two tasks can help each other. While achieving com-
petitive performance, global information and object boundary information are
not encoded into embedding. To address the problem, we notice the approach
Bonet [13]. Yang proposed a new end-to-end network framework Bonet to learn
the coarse object bounding box information for point cloud instance segmenta-
tion. Object bounding box information is crucial for separating adjacent objects.
Bonet directly regresses coarse bounding box vertexes and corresponding scores
from global features.

As object boundary information is important to separate nearby objects, we
combine two kinds approaches through proposing object bounding box-aware
module. Our backbone network PointNet++ maintains an encoder-decoder
architecture. After abstracting point features, semantic segmentation branch,
instance segmentation branch and bounding box prediction branch compose
our network. With our proposed OBAM module, bounding box information
is encoded into our instance discriminative embedding. Our approach outper-
forms previous approaches. As object bounding box information is supervised,
our network gains more information about the scene.

Extensive experiments on popular benchmarks S3DIS and ScanNetV2 are
conducted to validate the effectiveness of our approach. To summarize, our main
contributions are as follows:

1) We propose a novel framework which combines clustering-based approaches
and proposal-based approaches. Our approach successfully encodes object
bounding box information for point cloud instance segmentation.

2) We propose object bounding box-aware module (OBAM). The module suc-
cessfully encodes object boundary information. Redundant object bound-
ary information is removed through attention element-wise manipulation in
OBAM.

3) Extensive experiments demonstrate the effectiveness of our network. With
the proposed module, our network outperforms previous approaches.

2 Related Work

Instance segmentation on point cloud has attracted the attention of researchers
in recent years. In this section, we briefly review previous approaches related to
this field.
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Fig. 1. Comparison of the instance segmentation results. Our proposed OBAM model
successfully encodes object boundary information which is crucial to separate adjacent
object instances.

2.1 Deep Learning Methods on Point Cloud

Deep learning methods on point cloud are mostly divided into multi-view-based
methods, voxel-based methods and point-based methods (Fig. 1).

As 2D convolution neural networks have gained considerable success, multi-
view-based methods projected 3D point clouds onto 2D images and process with
2D CNNs. MVCNN [9] recognizes 3D shapes from different views of the shapes.
Through a view-pool-layer, information can be accumulated into a single, com-
pact descriptor. However, such multi-view-based methods may lose geometric
details.

Voxel-based methods voxelize point cloud into spatial grids and utilize stan-
dard 3D convolution neural network framework to extract point features. In
order to improve the voxelization efficiency of point clouds, Riegler [8] proposes
a novel representation which uses a set of unbalanced Octrees. Pooled features
representation is stored in the leaf nodes of Octrees. Their methods enable the
network to be deep and high resolution. While achieving promising results, lower
running speed still effects because of spatial sparsity of point cloud. Graham [3]
proposes submanifold sparse convolution network to address the problem. With
a hash table storing point features, their networks avoid nonsense computation
cost and memory occupation of vacent voxels. Although achieving leading per-
formance, Voxel-based methods are still limited by heavy computation cost when
processing large-scale point clouds.

Unlike voxel-based and multiview-based methods, point-based methods
directly process point cloud. The pioneer work PointNet [5] learns per-point
encoding with Multilayer Perceptron. PointNet++ [6] is proposed to hierarchi-
cally extract local point features and maintains an encoder-decoder architecture.
Hu comes up with a novel framework called Randlanet [4] to address the problem
of efficient semantic segmentation. Instead of complex point selection algorithms,
Random point sampling is utilized for its remarkable memory and computation
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efficiency. As random point sampling may discard key geometric details, They
propose a novel local feature aggregation module to overcome the problem. In
our work, we leverage PointNet++ as our backbone network to verify the validity
of our approach.

2.2 Instance Segmentation on Point Cloud

Comparing with its counterpart on 2D images, the task of instance segmentation
on point cloud is left far behind. Deep-learning approaches to the task can be
divided into clustering-based approaches and proposal-based approaches.

SGPN [11] is the first work using deep learning technique in this field. With
PointNet++ extracting global features and point features, the network learns
feature space where points belonging to the same object have a close distance.
They predict a similarity matrix yielding point-wise group proposals and a corre-
sponding similarity map. They prune group proposals and generate point cloud
groups through applying Non-Maximum Suppression. Due to the pair wise sim-
ilarity matrix, the approach is heavily limited by computation and memory. In
order to overcome the problem, clustering-based method ASIS [12] proposed by
Wang removes the similarity matrix. Wang endorses that associative segment-
ing instances and semantics in point cloud are mutually beneficial to seman-
tic segmentation task and instance segmentation task. Wang comes up with a
method named mutual aid which enables the embedding of instance segmen-
tation to benefit from point-level features of semantic segmentation. Semantic-
aware embedding of instance segmentation achieves a huge breakthrough while
it is unaware of the object bounding information. 3D Bonet [13] proposed by
Yang directly predicts object bounding boxes. Better performance than ASIS
is obtained through shared multi-layer perceptron without Non-Maximum Sup-
pression algorithm. In our experiments, competitive performance are achieved
through combining clustering-based methods and proposal-based methods.

3 Method

In this section, except semantic segmentation branch we mainly describe the
other two branches (Bounding box branch and Instance segmentation branch).
Details of our Object Bounding Box-aware module (OBAM) are presented below.

3.1 Network Framework

As shown in Fig. 2, our network is composed of a shared encoder and three
parallel decoder branches. We apply PointNet++ as our backbone network to
extract point features and global features. One of the branches handles seman-
tic segmentation through decoding from point features. Another branch is to
directly learn object bounding boxes from global features as 3D Bonet [13].
The other branch is to generate per-point embedding for instance segmentation.
Backbone network encodes the input point cloud P ∈ RNp×D into point feature
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Fp ∈ RNp×Df matrix. Global point feature Fg ∈ RDf is obtained by aggrega-
tion. Np refers to the total number of input points. D denotes the dimension of
input point cloud feature dimension and Df is the point feature dimension. Sub-
sequently, per-point semantic results are generated by semantic segmentation
branch. Bounding box coordinates Bc ∈ RNb×6 and corresponding score Bs are
obtained through bounding box branch. Two diagonal points coordinates refer to
the rectangular bounding box. Nb is a predefined hyper-parameter denoting the
number of object bounding boxes. The instance segmentation branch outputs
per-point instance embedding Eins ∈ RNp×De . De is the embedding dimension.
The embedding of points belonging to the same object should be close while the
embedding of points belonging to different objects should be far away. Cluster-
ing algorithm mean-shift [7] is utilized to generate final group results during the
inference.

To achieve the object bounding box-aware embedding, our proposed model
OBAM is applied to encode the output of bounding box branch into instance
segmentation branch. Besides, redundant object bounding box information is
removed through an attention mechanism.

Fig. 2. The framework of our proposed method. Obviously, It is an encoder-decoder
architecture. Point feature Fp and global feature Fg are obtained through a shared
encoder. Three parallel decoders are applied. Semantic segmentation branch decodes
from shared point features and classical cross entropy Lsem is used to supervise. Bound-
ing box prediction branch predicts object bounding box and corresponding score. Out-
put of bounding box prediction branch is integrated into instance branch through
OBAM module. Final instance embedding are generated from instance segmentation
branch.

3.2 Bounding Box Prediction Branch

We utilize bounding box prediction branch in 3D bonet as it is lightweight and
effective. It takes global vector Fg as input. Bounding box Bc ∈ RNb×2×3 and
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its corresponding score Bs ∈ RNb are generated by the branch. For simplicity,
the rectangular bounding boxes are parameterized as follows:

bc = (xmin, ymin, zminxmax, ymax, zmax) ∈ Bs (1)

The corresponding score bscore ranges from 0 to 1. As the number of object
instance is variable, the bounding box prediction branch generates predefined
number Nb of bounding boxes. We assume Nb >= Nt where Nt refers to the
number of ground truth object bounding boxes.

Although there is no fixed order for ground truth bounding boxes. We formu-
late it as an optimal assignment problem to learn one-to-one match between pre-
dicted bounding box and ground truth bounding box. Boolean matrix A denotes
assignment where Ai,j = 1 refers to assign predicted box bi to the ground truth
box gj . Cost matrix C is conducted where Ci,j represents the cost between pre-
dicted bounding box bi and ground truth bounding box gj . The more similar the
two boxes, the less the cost Ci,j . Optimal problem is solved through the existing
Hungarian algorithm [14]. We formulate the problem as follows:

A = arg min
A

Nb∑

i=1

Nt∑

j=1

Ai,jCi,j subject to
Nb∑

i=1

Ai,j = 1 ,

Nt∑

j=1

Ai,j ≤ 1 (2)

Ci,j = CEcu
i,j + CSIou

i,j + Ccro
i.j (3)

The association cost Ci,j consists of three parts: Euclidean distance CEcu
i,j ,

soft intersection-over-union CSIou
i,j and point soft encoding cross-entropy Ccro

i.j

proposed in [13].
bscore lies in the range (0, 1) which indicates the validity of predicted bound-

ing box. After bounding box assignment, Nt predicted bounding boxes of Nb are
assigned to the ground truth. The scores btscore for the Nt ground truth bound-
ing boxes are all 1 while the remaining Nb − Nt scores are ‘0’. btscore refers to
the scores for predicted bounding boxes which are assigned to the ground truth
boxes while bfscore refers to the antithesis. The loss function of bounding box
prediction branch is defined as follows:

Lasso =
1
Nt

⎛

⎝
Nb∑

i=1

Nt∑

j=1

Ai,jCi,j

⎞

⎠ (4)

Lbscore = − 1
Nb

(
Nt∑

1

log btscore +
Nb∑

Nt+1

log bfscore

)
(5)

Lbox = Lasso + Lbscore (6)
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Fig. 3. The pipeline of our instance segmentation branch.

3.3 Instance Segmentation Branch

Pipeline. The instance segmentation branch fetches point feature matrix
extracted by the backbone network and processes with the following predic-
tions. Using efficient multilayer perceptrons (MLPs), the branch decodes the
shared point feature matrix and global point feature is concatenated to the
matrix. Applying Leaky Relu activation and Dropout technique, the intermedi-
ate feature matrix Fins is obtained. Object boundary information obtained by
the object bounding box branch is integrated and fused through OBAM module.
The final embedding Eins for instance segmentation can be represented as:

Eins = γ1

(
Fins

⊕
Fbou

)
(7)

Where γ1 : RDm → R
De (Dm refers to the intermediate point feature dimension)

and
⊕

means concatenating the features. Mixing up object instance bound-
ing information generates more informative instance embedding. The pipeline is
illustrated in Fig. 3.

Object Bounding Box-Aware Module. Benefiting from the bounding box
branch described above, object bounding information is integrated into our
instance branch through our proposed Object Bounding Box-aware Module. It
takes the outputs Rc, Bs of the bounding box branch as input. The higher valid-
ity of the predicted bounding box bc ∈ Rc, the higher the corresponding score
bscore ∈ Bs. Our module can be formulated as:

Fbou = γ2
(
R̄c ⊗ Bs

)
(8)

where Rc ∈ RNb×2×3 is reshaped to R̄c ∈ RNb×6. ⊗ denotes element-wise multi-
plication, and γ2 is a translation RNb×6 → RNb×Dm implemented by MLP. Dm

refers to the dimension of the intermediate point feature Fins.
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As described above, Bs is supervised by Lbscore. Redundant predicted bound-
ing boxes have scores close to ‘0’. Clearing up the effect of redundant predicted
object bounding information, Bs is also supervised by Lins (will be discussed in
next section) through element-wise multiplication. The network selects helpful
object bounding boxes information for instance embedding.

Loss Function. The informative embedding Eins for instance segmentation is
to learn a distance metric that can measure the probability of points belonging
to the same object. Intra-instance embedding should be pulled toward the corre-
sponding cluster center and different instance centers should be pushed far away
from each other. The loss function can be formulated as:

Lpush =
1

Nt (Nt − 1)

Nt∑

i=1

Nt∑

j=1j!=i

[2σd − ‖μi − μj‖1]2+ (9)

Lpull =
1
Nt

Nt∑

i=1

1
Ii

Ii∑

j=1

[‖μi − ej‖1 − σv]
2
+ (10)

Lins = Lpush + Lpull (11)

Where μi is the mean point embedding of instance i. Ii is point number of
instance i and ej refers to an embedding of a point belonging to instance i.
σd and σv are loose margins. ‖x‖1 is defined as the l1 distance. [x]+ denotes
[x]+ = max (0, x)

During the training, Lpush aims to make different instances repel each other
and Lpull is designed to pull point embedding toward the mean embedding of
instance. During the inference, we adopt existing clustering algorithm mean-shift
on instance embedding to obtain instance labels. As our instance embedding is
class-agnostic, the semantic label of the points having the same instance label is
assigned as the final instance category.

To summarize, our network is end-to-end trainable and supervised by three
branches losses. The loss weights are all equals to 1 in our experiment.

L = Lins + Lsem + Lbox (12)

4 Experiments

In this section, we conduct quantitative and qualitative experiments to evaluate
the effectiveness of our proposed approach. Ablation study and comparison with
other approaches are reported below.

4.1 Experiment Settings

Dataset. We evaluate our approach on two public datasets: Stanford 3D Indoor
Semantics Dataset (S3DIS) [1] and ScanNetV2 [2]. S3DIS consists of 3D scans in
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6 large-scale indoor areas, covering total 272 rooms. S3DIS is a large-scale real
indoor dataset containing more than 215 million points. Each point of S3DIS is
associated with an instance label and a semantic label from 13 common seman-
tic categories. Besides S3DIS, we further evaluate our approach on ScanNetV2.
ScanNetV2 [2] contains about 1500 scans, divided into 1201, 300 and 100 scans,
for training, validation and testing. We carry out our experiments on ScanNetV2
validation dataset.

Evaluation Metrics. We follow the 6-fold-cross-evaluation on S3DIS. Similar
to ASIS [12] and Bonet [13], the performance on area 5 is also reported. Our
instance segmentation performance is evaluated by four metrics: mean instance-
wise coverage (mCov), mean weighted instance-wise coverage (mWcov), mean
instance precision (mPrec), and mean recall (mRec). The experiments results
are presented with IOU threshold of 0.5. For ScanNetV2, results on validation
set are presented below.

Implement Details. For both S3DIS and ScanNetV2, each Scan contains a
great deal of points, which makes it difficult to process all the points at one
time. Each scene is split into 1 m × 1 m overlapped blocks. Each block contains
4096 points. Our experiment settings strictly follow Bonet [13], ASIS [12] and
IAE [10]. Nb is set as 24. The margins σd, σv are set as σd = 0.5 and σv = 1.5.
The embedding dimension De is 5. The learning rate is set to 0.01 (0.001 for
S3DIS) and divided by 2 every 20 epochs. We train the network 50 epochs for
PointNet++. We adopt Adam optimizer with its default hyper-parameters to
optimize the network. At test time, mean-shift [7] clustering with bandwidth
0.6 is used for inference. We use Blockmerging algorithm [11] to merge object
instances from different blocks.

Table 1. Instance segmentation results on ScanNetV2 dataset (validation set). We
report the metric of mAP@0.25. Categories of Sink, Sofa, Table, Toilet, and Window
are not presented in the table.

Method mAP bat bed she cab cha cou cur des doo oth pic ref shc

MaskRCNN [16] 26.1 33.3 0.2 0.0 5.3 0.2 0.2 2.1 0.0 4.5 2.4 23.8 6.5 0.0

SGPN [11] 35.1 20.8 39.0 16.9 6.5 27.5 2.9 6.9 0.0 8.7 4.3 1.4 2.7 0.0

ASIS [12] 47.4 57.3 52.1 1.4 18.5 46.1 19.2 20.3 13.3 13.8 18.8 6.6 17.6 33.1

Ours 51.2 64.7 61.3 0.3 23.1 69.7 13.6 16.9 15.4 14.7 24.0 11.5 18.3 60.7

4.2 Ablation Study

We firstly build a baseline without OBAM module. The baseline is made up
of two decoder branches: the semantic segmentation branch and the instance
segmentation branch. The baseline is supervised by cross-entropy loss Lsem for
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Table 2. Instance segmentation results on the S3DIS. Experiment results on Area 5 and
6-fold are reported. mCov: average instance-wise coverage. mWcov: weighted aver-
age instance-wise coverage. mPre: mean precision. mRec: mean recall. Experiment
performance is reported with IOU threshold of 0.5. For fair comparison, we carefully
train the vanilla PointNet++ (without multi-scale grouping) as our backbone.

Method Year mCov mWcov mPre mRec

Test on area 5

SGPN [11] 2018 32.7 35.5 36.0 28.7

ASIS [12] 2019 44.6 47.8 55.3 42.4

3D-BoNet [13] 2019 – – 57.5 40.2

JSNet [15] 2020 48.7 51.5 62.1 46.9

IAE [10] 2020 49.9 53.2 61.3 48.5

Ours – 50.3 52.8 65.3 49.2

Test on 6-fold

SGPN [11] 2018 36.0 28.7 31.2 38.2

MV-CRF [15] 2019 – – 36.3 –

ASIS [12] 2019 51.2 55.1 63.6 47.5

3D-BoNet [13] 2019 – – 65.5 47.6

PartNet[17] 2019 – – 56.4 43.4

Ours – 54.7 57.1 68.4 52.9

semantic task and discriminative loss Lins for instance grouping. All ablation
experiments we carry out are on the largest area 5 of S3DIS. The experiment
results are shown in Table 3.

OBAM. We study the influence of our proposed OBAM and its components.
Our proposed OBAM module with lscore can improve the results by 9.1 for mPre
and 3.4 for mRec. It indicates that encoding boundary information indeed boosts
instance segmentation performance by a large margin.

Manipulation. We find out that bounding box scores Bs supervised by lscore
are whether close to 1 or close to 0. As our OBAM module is based on multiple
layer perceptron, we design the attention element-wise manipulation to remove
the redundant boundary information and it further benefits instance segmenta-
tion performance. Comparing with the pipeline without attention element-wise
manipulation, the full pipeline of our method improves the result by 5 for both
mPre and mRec.

The Loss of Bounding Box Score. Presented in [13], bounding box scores
Bs serve as a regularizer for bounding box prediction branch. After removing
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Table 3. Ablation studies on the Area 5 of S3DIS. Both mPre and mRec metrics
are reported. OBAM: using our proposed OBAM module. Manipulation: attention
element-wise manipulation in Eq. (8). lscore: using lscore to supervise the bounding
boxes prediction branch.

Method OBAM Manipulation lscore mPre mRec

Baseline 51.2 40.7

Ours1 � � 60.3 44.1

Ours2 � � 60.5 46.1

Ours3 � � � 65.3 49.2

Fig. 4. Visualization of instance segmentation results on S3DIS. There are input point
cloud, instance segmentation ground truth and our results from left to right. Through
our proposed OBAM and discriminative embedding, our methods achieve sterling
results of distinguishing adjacent objects.

bounding box score loss lscore supervision, bounding box scores Bs are only
determined by attention element-wise manipulation. The instance segmentation
performance drops significantly, primarily because of the difficulty to directly
learn the score through attention mechanism.

4.3 Comparison with State-of-the-Art Approaches

In this section, Our comparison with other approaches is made on two popu-
lar benchmarks. Results on S3DIS and ScanNetV2 show the superiority of our
approach.

Quantitative Results on S3DIS. Instance segmentation results testing on
the area 5 of S3DIS and 6-fold validation are reported in Table 2. Our method
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is compared with other state-of-the-art methods which are also based on Point-
Net++. Equipped with instance boundary information, our method achieve obvi-
ous improvement with metric mPre. Comparing with existing state-of-the-art
methods, our method outperforms IAE [10] and JSNET [15], but not signifi-
cantly. Both IAE and JSNET make a full use of point semantic information. IAE
utilizes point semantic information and selects points from the instance to encode
geometric information and instance context. JSNET jointly processes point cloud
for Instance and Semantic Segmentation. Without leveraging semantic informa-
tion, our approach achieves competitive performance. The effectiveness of our
method and the importance of boundary information to instance segmentation
are demonstrated. However, our approach is heavily affected by the bounding
box prediction branch. We figure that more accurate bounding box prediction
may boost the performance. Respectively, Fig. 4 shows our results of instance
segmentation on the S3DIS dataset.

Quantitative Results on ScanNetV2. We conduct experiments on Scan-
NetV2 validation set and the performance are reported in Table 1. Comparing
with the previous state-of-the-art approach ASIS [12], our method achieves a
significant improvement of metric mAP@0.25, by 3.8 from 47.4 to 51.2. Our
bounding box-aware embedding shows great superiority on some categories. The
instance segmentation results on ScanNetV2 demonstrate the superiority of our
method.

5 Conclusion

In this paper, We presented a novel framework combining clustering-based and
proposal-based approaches. Our proposed module OBAM integrates bounding
box information into instance segmentation branch. Through OBAM, redun-
dant bounding information is removed. Extensive experiments indicate the effec-
tiveness of our method. Our bounding box-aware embedding indeed boots the
instance segmentation performance on S3DIS and ScanNetV2. Our method
achieves state-of-the-art performance on S3DIS dataset.

However, our method is limited by bounding box prediction. The limitation
that directly learning object boundary information may lead to the future work.
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Abstract. Object detection can be regarded as a pixel clustering task,
and its boundary is determined by four extreme points (leftmost, top,
rightmost, and bottom). However, most studies focus on the center or
corner points of the object, which are conditional results of the extreme
points. In this paper, we present an Extreme-Point-Prediction-Based
object detector (EPP-Net), which directly regresses the relative displace-
ment vector between each pixel and the four extreme points. We also
propose a new metric to measure the similarity between two groups of
extreme points, namely, Extreme Intersection over Union (EIoU), and
incorporate this EIoU as a new regression loss. Moreover, we propose
a novel branch to predict the EIoU between the ground-truth and the
prediction results, and take it as the localization confidence to filter out
poor detection results. On the MS-COCO dataset, our method achieves
an average precision (AP) of 44.0% with ResNet-50 and an AP of 50.3%
with ResNeXt-101-DCN. The proposed EPP-Net provides a new method
to detect objects and achieves very competitive performance among the
state-of-the-art anchor-free detectors.

Keywords: Object detection · Extreme points · Localization ·
Regression loss

1 Introduction

Object detection is a crucial prerequisite for many computer vision tasks, such as
instance segmentation [4] and multi object tracking [21]. It also plays an essen-
tial role in many downstream technologies, such as intelligent video analysis
and autonomous driving. Benefiting from the excellent performance of anchors,
the detection accuracy of one-stage [15] and two-stage [16] object detectors has
substantially improved. However, these detectors rely excessively on predefined
anchors, thus requiring fine-tuning when training, and lead to poor generalization
performance. Anchor-free detectors [7,19] have recently drawn much attention for
their simple design, great accuracy, and high speed. Generally, anchor-free detec-
tors can be classified into key-point-based prediction and dense prediction.
c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13033, pp. 195–208, 2021.
https://doi.org/10.1007/978-3-030-89370-5_15
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Fig. 1. Illustration of EPP-Net predictions. As shown in this image, since the
boundary of an object is determined by the extreme points, the bounding box (bbox) is
actually a conditional result. Therefore, EPP-Net predicts four relative displacements,
an 8D vector as the location of the object.

1.1 Key-Point-Based Prediction

The location of an object is usually represented by the smallest enclosing rect-
angle called the bounding box (bbox). Nevertheless, not all objects can perfectly
fit into a rectangle, such as objects with a tilt angle. Therefore, bottom-up meth-
ods have been proposed to detect objects in a key-point-based fashion. Corner-
Net [8] represents an object using a pair of corner points (top left and bottom
right), whereas He et al. [3] also predicts the center point besides corner points.
ExtremeNet [27] argues that corner points usually lie outside the object and
lack appearance features. Therefore, it utilizes the four extreme points and the
center points to represent the object. Free from the limitations of the rectan-
gular box, these key-point-based detectors surpass anchor-based detectors for
the first time. However, they require post-processing to group key-points to the
same instance, which slows down the overall computing speed. Moreover, the
boundary of an object is determined by four extreme points, the corner points
and the center point are both conditional results. Therefore, the extreme regions
have more substantial location features than the other ones.

1.2 Dense Prediction

FPN [10] powers various detectors to achieve high-precision dense prediction,
such as FCOS [19] and FoveaBox [7]. In general, object detection algorithms
process an image on the object level, whereas FCOS proves for the first time
that the object detection task could also be solved in a per-pixel prediction
fashion. This pixel-level-based detector provides a more fine-grained manner to
understand an image. All these top-down methods represent the location of an
object by a rectangular box. Compared with the four extreme points, such unified
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representation lacks the shape feature of an object, especially for those non-rigid
objects with a large shape variance.

1.3 Motivation

Object detection involves classification and localization (bbox regression). How-
ever, there exists a misalignment between them. IoU-net [6] finds that some
detection results with high classification confidence have coarse bbox predic-
tions. Therefore, taking classification confidence as the only criterion of detec-
tion results is not accurate enough. BorderDet [13] utilizes border features to
improve detection results. It also reveals that the most important features for
localization lie in the extreme point regions.

In this paper, we provide EPP-Net , a simple yet effective fully convolutional
one-stage object detection method, which densely predicts the relative displace-
ment vector between each location and the four extreme points, as shown in
Fig. 1. We also propose a new evaluation metric, namely, Extreme Intersection
over Union (EIoU), to measure the similarity between two groups of extreme
points, and a new loss function, namely, Extreme IoU loss (EIoU loss), tailored
for this model. Moreover, we propose a new branch to predict the EIoU between
the extreme points and the matched ground-truth with the EIoU servers as the
localization confidence for each prediction result. By combining the predicted
EIoU with the classification confidence as the ranking keyword in non-maximum
suppression (NMS), we show a considerable improvement in the detection results.

In summary, the contributions of this paper are as follows:
1. EPP-Net decomposes the detection task into extreme points prediction and

classification. Compared with the bottom-up methods, EPP-Net does not
need a subsequent grouping process.

2. We propose EIoU , a normalized and scale-invariant evaluation metric, to
measure the similarity between any two groups of extreme points. By incor-
porating EIoU as the regression loss, namely, EIoU loss, the accuracy with
EIoU loss can easily exceed that of Smooth-�1 loss by 1.4% without fine-
tuning.

3. We present an EIoU predictor to solve the misalignment problem between
localization and classification. The predicted EIoU serves as the localization
confidence, and it is combined with the classification confidence as the ranking
keyword in NMS. After appending this branch, the AP is improved by 0.5%.

2 Related Work

2.1 Anchor-Free Object Detection

Current anchor-free detectors can achieve the same accuracy as anchor-based
ones, with fewer hyperparameters and no complicated IoU calculations. Despite
the fact that DenseBox [5] and YOLOv1 [14] are the earliest explorations of
anchor-free models, DenseBox is not suitable for generic object detection, and the
YOLO family added the anchor strategy in its subsequent versions. Therefore,
these two methods are not included in the following discussions.
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Fig. 2. Architecture of EPP-Net. This network consists of a backbone, a feature
pyramid network, and two subnets, corresponding to classification and regression. For
each pixel, EPP-Net outputs classification confidence, regression results, and the local-
ization confidence.

Key-Point-Based Prediction. Key-point-based detectors detect an object as
one or several key-points and utilize post-processing methods to group the key
points. CornerNet outputs the heatmaps of the top-left and bottom-right corners
and an embedding vector for each key-point. In its grouping process, embeddings
that have smaller Euclidean distances are grouped as the same instance. Based
on CornerNet, [3] adds center point prediction. In its grouping process, it also
uses embedding vectors to group points. Each predicted bbox has a predefined
central region and will be preserved only when the center point falls in this
region. ExtremeNet predicts four extreme points and a center point for each
object. In its grouping process, it uses a brute force method to enumerate all
possible combinations. The box will be preserved only when the geometric center
of the extreme points has a high response in the center point heatmap. The time
complexities of these post-processing methods are O(n2), O(n2), and O(n4),
respectively, which slow down the overall computing speed. Our EPP-Net is a
top-down method so that it does not need a grouping process.

Dense Prediction. FSAF [28] employs an extra anchor-free module on the
anchor-based detector for detection and feature selection. FSAF calculates the
total loss for each instance and selects the pyramid level with the minimal loss
to learn the instance. FoveaBox predicts category-sensitive semantic maps for
the object’s existing possibility and the bbox for each position that potentially
contains an object. Our method outperforms them without the feature selection
strategy and category-sensitive semantic maps. For FCOS, each location inside
the object is a potential positive sample, and it directly predicts the relative dis-
tances from the four sides of the bbox to the location. It also utilizes a center-ness
branch to suppress classification results far from the center region. Compared
with it, our EPP-Net combines the localization and classification confidence to
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select the best detection results, which is more reasonable. Moreover, Instead
of regressing the four bounds of the bbox, the way EPP-Net predicts is more
precise.

2.2 Localization and Classification Spatial Misalignment

Localization is a position-sensitive task, whereas classification is not because
of its translation and scale invariance properties; that is, the position or scale
change of features does not affect the classification results. Therefore, a spa-
tial misalignment exists between them. TSD [18] proves that localization is
boundary-sensitive, whereas classification is salient-area-sensitive. IoU-net [6]
utilizes an extra subnet to predict the IoU between the detection results and
ground-truth bboxes, and takes it as the ranking keyword in NMS. In contrast
to IoU-net, first, IoU-Net is a two-stage, anchor-based detector while ours is a
one-stage, and anchor-free detector. Second, The predicted IoU in IoU-Net is
class-aware, while our EIoU predictor is unrelated to classes and the IoU-guided
NMS is not used. Finally, our localization predictor is very light because it is
only a branch of the regression subnet, while IoU-net requires a new head that
is parallel with the classification and regression heads.

2.3 Regression Loss

�n-norm-based losses are widely used in bbox regression. However, they suffer
from the scale imbalance problem, which means the loss value is affected by the
scale of the bbox. IoU is an evaluation metric that measures the overlap between
two bboxes. [24] proposes IoU loss based on this metric, which also inherits
IoU ’s scale invariance. When the two bboxes do not overlap, IoU becomes 0
and cannot be optimized. Therefore, GIoU loss [17] is proposed to solve this
problem. Standing on the shoulders of giants, we propose EIoU loss to measure
the similarity of two convex quadrilaterals.

3 Method

In this section, we briefly introduce the details of EPP-Net. We use FCOS from
mmdetection [2] as the baseline and ResNet-50 as the basic backbone. In EPP-
Net, an object is detected as four extreme points (leftmost, top, rightmost, and
bottom) by predicting the relative displacement vector in a per-pixel prediction
fashion. We propose EIoU as well as EIoU loss for extreme point regression.
Finally, we propose a novel EIoU predictor for accurate key-point prediction.

3.1 Positive Sampling with Dynamic Radius

The extreme points ground-truth is defined as E, where E = (exl, eyl, ext, eyt,
exr, eyr, exb, eyb) ∈ R

8. Given a location (x, y), if it falls into the target area of
the ground-truth box, it is considered as a positive sample; otherwise, a negative
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sample. Let (cx, cy) be the center point of the ground-truth box, and sj [19] be
the stride of feature map j. The target area is defined as (cx − sj ∗ rx, cy − sj ∗
ry, cx + sj ∗ rx, cy + sj ∗ ry). rx and ry are the horizontal and vertical sampling
radii, respectively. Considering the large difference of aspect ratio of different
objects, it is improper if the sampling radii of different directions are set to be
the same length. Therefore, we dynamically adjust the radius according to the
aspect ratio, with the sampling radius on the longer side set to be larger, as
shown in Fig. 3(b). Let f = w

h , where w and h are the width and height of the
ground-truth box, respectively. rx and ry are defined as follows:

(rx, ry) =

⎧
⎪⎨

⎪⎩

(1.5 ∗ f, 1.5),f > 1
(

1.5,
1.5
f

)

,f < 1
(1)

Fig. 3. Positive sampling. The red points denote the positive samples. The center
sampling strategy from FCOS takes the positive area as a square, whereas we dynam-
ically adjust the sampling area according to the bbox shape. (Color figure online)

3.2 Network Outputs

As shown in Fig. 2, the classification subnet outputs the classification confidence
with a shape as H ∗W ∗C, where C is the number of MS-COCO categories [12].
The C channels of the classification outputs correspond to C binary classifiers.

The regression subnet consists of two branches, which output the EIoU
prediction results and the relative displacement vector, respectively, and their
shapes are H ∗ W ∗ 1 and H ∗ W ∗ 8, respectively. Details of the EIoU predictor
are in Sect. 3.4. Given a positive sample P (px, py) and the four extreme points
coordinates, the relative displacement vector is (exl −px, eyl −py, . . . , eyb −py, ).
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Fig. 4. Illustration of EIoU loss. The four extreme points are taken as a convex
quadrilateral composed of four vectors. To simplify the calculation, the IoU of the
smallest enclosing rectangles and the cosine similarity between each paired vectors are
used to measure the similarity of two groups of extreme points.

3.3 EIoU Loss

�n-norm-based losses have the scale imbalance problem. Moreover, a gap exists
between the �n-norm and the evaluation metric IoU . The performances of IoU
loss and GIoU loss prove the effectiveness of utilizing IoU in regression loss.
Compared with IoU loss, GIoU loss can optimize cases where bboxes have no
overlap area. Therefore, we want to design a regression loss that inherits the
scale-invariant property of IoU and can compare any two convex quadrilaterals,
even for non-overlapping cases.

As shown in Fig. 4(a), the four extreme points form an irregular convex
quadrilateral. Thus, calculating the IoU of these two quadrilaterals seems to
be optimal. However, the calculation of IoU with respect to non-axis-aligned
quadrilaterals is very complicated. Therefore, we choose a compromise way to
simplify the calculation. The features of a quadrilateral can be decomposed into
position, scale, and shape. To compare the first two features, we calculate the
similarity between the two smallest enclosing rectangles of these quadrilaterals
(The dotted rectangles in Fig. 4(b)), and the similarity (RecSim) is defined as
the IoU between them. For the last feature, we use the mean value of the cosine
similarity (CosSim) between each paired vectors to represent the overall shape
difference, as shown in Eq. 2. The cosine similarity is equivalent to the angle
between vectors, thus perfectly reflecting the shape difference.

CosSim =
1
4

∗
∑

cos θj , j ∈ {l, t, r, b} (2)

Therefore, the similarity of any two convex quadrilaterals on the Euclidean
plane can be measured by EIoU . If not specified, we use the IoU between the
two smallest enclosing rectangles as the RecSim in all equations. The definition
of EIoU is shown in Eq. 3.

EIoU =
1
2

∗ (IoU +
1 + CosSim

2
) (3)

The properties of EIoU are as follows:
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Algorithm 1. EIoU loss Forward
Input: G = (gxl, gyl, gxt, gyt, gxr, gyr, gxb, gyb) as the ground-truth.
Input: P = (pxl, pyl, pxt, pyt, pxr, pyr, pxb, pyb) as the prediction.
Input: {θl, θt, θr, θb} are the angles between paired vectors.
Output: LEIoU

1: for each prediction do
2: CosSim = 1

4
∗ ∑

cos θj , j ∈ {l, t, r, b}
3: Ix1 = max (gxl, pxl) , Iy1 = max (gyt, pyt)
4: Ix2 = min (gxr, pxr) , Iy2 = min (gyb, pyb)
5: Ag = (gxr − gxl) ∗ (gyb − gyt)
6: Ap = (pxr − pxl) ∗ (pyb − pyt)
7: I = (Ix1 − Ix2) ∗ (Iy1 − Iy2)
8: if I > 0 then
9: U = Ag + Ap − I
10: IoU = max

( I
U , e−6

)

11: LEIoU = −ln(IoU) + (1 − CosSim)
12: else
13: LEIoU = −ln(e−6) + (1 − CosSim)
14: end if
15: end for

1. IoU and cosine similarity are scale-invariant. Thus, EIoU also inherits this
property.

2. For any two convex quadrilaterals A and B. A,B ⊆ S, 0 ≤ IoU(A,B) ≤
1,−1 ≤ CosSim(A,B) ≤ 1, that 0 ≤ EIoU(A,B) ≤ 1 can be easily obtained.
Therefore, EIoU is an normalized evaluation metric.

3. IoU can be considered a special case of EIoU . When both convex quadrilat-
erals are axis-aligned rectangles, EIoU is equivalent to IoU .

With IoU ranges between 0 and 1, the cross-entropy of IoU is −1 ∗ ln(IoU).
The range of cosine similarity is between –1 and 1 and the cosine similarity
difference is defined as 1 − CosSim. Therefore, LEIoU is defined as Eq. 4:

LEIoU = LRecSim + LCosSim

= − ln(IoU) + (1 − CosSim)
(4)

The details of EIoU loss are shown in Algorithm 1. EIoU loss has the fol-
lowing properties:

1. EIoU loss is invariant to scale changes.
2. The value range of EIoU loss is [0, 8]. Its value will become 0 only when

the two groups of extreme points completely coincide; otherwise, it will be
positive. Consequently, EIoU loss can optimize any two groups of extreme
points.
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3.4 EIoU Predictor

Here, we provide this EIoU predictor to deal with the misalignment problem
between localization and classification. Object detection methods usually pre-
dict many bboxes with large overlapping areas. Therefore, the NMS algorithm is
used to filter out poor prediction results with the classification confidence as the
ranking keyword. However, this method may filter out the detection results with
good bbox predictions but low classification confidence. Thus, our EIoU predic-
tor scores each regression result by predicting the EIoU between each predicted
bbox and its associated ground-truth. By doing so, we take the localization and
classification confidence together as the evaluation criteria for prediction results.

During inference, we multiply the classification confidence and the EIoU
prediction results as the final ranking keyword in NMS, as shown in Eq. 5.

ranking = EIoU ∗ cls-confidence (5)

3.5 Optimization

The total loss of this model is formulated as follows:

L = λclsLcls + λregLreg + λeioupLeioup (6)

Lcls is focal loss for classification as in [11], and Lreg is defined in Eq. 4. Leioup is
BCE loss for EIoU predictions. To balance losses of all subtasks, hyperparame-
ters λcls, λreg, and λeioup are all set as 1.

4 Experiments

In this section, we perform several experiments on the MS-COCO dataset [12] to
show the effectiveness of EPP-Net and its counterparts. EPP-Net is trained on
the COCO train2017 split (115K images) and evaluated on the COCO val2017
split (5K images) for the ablation study. Visualization experiments are also con-
ducted on the val2017 split. We also upload the detection results on the test-dev
split (20K images) with different backbones to the MS-COCO server to compare
our EPP-Net with the recent state-of-the-art detectors.

4.1 Implementation Details

Our implementation is based on mmdetection [2] with Pytorch 1.6. Extreme
points are computed from the polygonal mask annotations following the extrac-
tion strategy from [27]. The hyperparameters in our model follow those in FCOS,
and we use pre-trained models on ImageNet to initialize network weights. If not
specified, we use ResNet-50 and the feature pyramid network as our basic net-
work. We train this network with stochastic gradient descent and a total batch
size of 16 images on 8 NVIDIA TITAN RTX GPUs for 90K iterations. We set
the initial learning rate as 0.01, and the momentum and the weight decay as 0.9
and 0.0001, respectively. We decrease the learning rate by 10 at epochs 8 and
epoch 11. The IoU threshold in NMS is set as 0.6.
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4.2 Ablation Study

We perform several groups of ablation experiments to validate the effectiveness
of different counterparts. All test results are reported on MS-COCO val2017
split.

Fig. 5. Qualitative results on the val2017 split. Extreme points and bbox detec-
tion results of EPP-Net are shown on the same image. With ResNet-50, our model
(The model with AP 39.5%) can achieve excellent detection results in various scenes.

Table 1. EPP-Net vs. FCOS. Comparisons on the val2017 split with ResNet-50-
FPN as the backbone. “bbox” and “ex”: representing objects by bounding boxes and
extreme points.“loc”: the localization confidence branch. “ctr-ness” and “ctr”: center-
ness and center sampling in FCOS. “dr”: our positive sampling strategy, details are in
Sect. 3.1.

Method Reg loc Sampling AP AP50 AP75 APS APM APL

FCOS [19] LGIoU+bbox ctr-ness ctr 38.6 57.4 41.4 22.3 42.5 49.8

EPP-Net LEIoU+ex ctr-ness ctr 38.9 57.3 42.2 23.0 42.7 50.0

EPP-Net LEIoU+ex EIoU ctr 39.4 57.7 43.2 23.4 43.6 50.6

EPP-Net LEIoU+ex EIoU dr 39.5 58.1 42.9 23.1 43.4 51.1

Overall Performance. We compare our method with FCOS to evaluate the
overall performance of EPP-Net. We use the control variable method to validate
each counterpart in EPP-Net, which are EIoU loss, the EIoU predictor, and
our positive sampling strategy. As shown in Table 1, the best model of EPP-
Net outperforms FCOS with an AP of 39.5%. Compared with bounding boxes,
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the representation of extreme points can improve the AP by 0.3% (The model
with AP 38.9). Our localization branch improves the AP@75 by 1.0%, which
indicates the effectiveness of the EIoU predictor. With our positive sampling
strategy, we observe a considerable improvement of AP in large objects, namely,
0.5%. We explain as follows: First, large objects are more likely to sample more
true positive samples. Second, the shape variance of large objects is larger than
that of small objects, therefore, a dynamic sampling radius following the changes
of object shapes is more appropriate. The visualization of the detection results
are shown in Fig. 5 and one can see that our detection results are more accurate
than that of FCOS.

Table 2. EIoU loss vs. Smooth-�1 loss. Settings are the same as the EPP-Net in
Table 1. The performance of EIoU loss is much better than that of Smooth-�1 loss.

loss AP AP50 AP75 APS APM APL

EIoU 39.5 58.1 42.9 23.1 43.4 51.1

w/Smooth-�1 38.1 57.5 40.7 21.5 42.2 49.9

EIoU Loss. The IoU-based losses require a 4D vector to represent the object
which is incompatible with our regression task (8D vector). Therefore, we take
Smooth-�1 loss and EIoU loss as the regression loss, respectively, to prove the
effectiveness of EIoU loss. The results are shown in Table 2. Smooth-�1 loss
achieves an AP of 38.1%, and our EIoU loss outperforms it by 1.4%. APS ,
APM , and APL are all raised considerably, which proves the importance of the
scale invariance property of regression loss.

Table 3. EIoU vs. other counterparts. EIoU-branch denotes our EIoU predictor.
QFL denotes the joint representation of IoU score and classification.

Type AP AP50 AP75 APS APM APL

EIoU-branch 39.5 58.1 42.9 23.1 43.4 51.1

Centerness-branch [19] 38.6 57.4 41.4 22.3 42.5 49.8

IoU-branch [6,22] 38.7 56.7 42.0 21.6 43.0 50.3

QFL [9] 39.0 57.8 41.9 22.0 43.1 51.0

EIoU Predictor. As shown in Table 3, we compare our localization confidence
predictor with other strategies. The center-ness in FCOS is hand-crafted with
the belief that the center area predicts better localization results. However, the
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geometric center of some objects does not fall in the foreground area, such as the
crescent moon. Compared with center-ness, taking IoU or EIoU as the localiza-
tion confidence is more generalized and has achieved better performance. The
IoU-branch in IoU-Net and QFL in GFocal loss are class-aware, while our EIoU
branch is independent of classes. Our EIoU outperforms all other counterparts
with an AP of 39.5%. We can conclude that the EIoU predictor can improve
the detection accuracy by suppressing inaccurate localization results.

4.3 State-of-the-Art Comparisons

Table 4 shows the comparison results between EPP-Net and the state-of-the-
art detectors. We use multi-scale training with the shorter side of input images
randomly resized from 640 to 800 and the longer side less than 1333. The training
process follows the 2× schedule in [2]. Test results are reported on the MS-COCO
test-dev split by uploading the detection results to the MS-COCO server. Our
model achieves a substantial improvement with different backbones. Compared
with anchor-based RetinaNet, our model achieves an improvement of 5.0% in
AP with backbone ResNeXt-101. EPP-Net also outperforms key-point-based
detectors, CornerNet and ExtremeNet, with better accuracy and without the

Table 4. EPP-Net vs. state-of-the-art detectors. “†” indicates the multi-scale
testing and settings are the same as in [20].

Method Backbone AP AP50 AP75 APS APM APL

Anchor-based

Faster R-CNN w/ FPN [10] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2

YOLOv4 [1] CSPDarknet-53 43.5 65.7 47.3 26.7 46.7 53.3

RetinaNet [11] ResNeXt-101 40.8 61.1 44.1 24.1 44.2 51.2

IoU-Net [6] ResNet-101 40.6 59.0 - - - -

FSAF [28] ResNeXt-101 42.9 63.8 46.3 26.6 46.2 52.7

ATSS [25] ResNeXt-101-DCN 47.7 66.5 51.9 29.7 50.8 59.4

GFL [9] ResNeXt-101-DCN 48.2 67.4 52.6 29.2 51.7 60.2

Anchor-free

CornerNet [8] Hourglass-104 40.5 59.1 42.3 21.8 42.7 50.2

ExtremeNet [27] Hourglass-104 40.2 55.5 43.2 20.4 43.2 53.1

CenterNet-HG [26] Hourglass-104 42.1 61.1 45.9 24.1 45.5 52.8

CenterNet511 [3] Hourglass-104 44.9 62.4 48.1 25.6 47.4 57.4

RepPoints [23] ResNet-101 41.0 62.9 44.3 23.6 44.1 51.7

FoveaBox-align [7] ResNeXt-101 43.9 63.5 47.7 26.8 46.9 55.6

FCOS-imprv [20] ResNeXt-101 44.8 64.4 48.5 27.7 47.4 55.0

FCOS-imprv†[20] ResNeXt-101-DCN 49.1 68.0 53.9 31.7 51.6 61.0

EPP-Net† ResNet-50 44.0 62.2 48.6 28.3 46.5 54.0

EPP-Net ResNeXt-101 45.8 65.1 49.9 28.1 49.0 56.4

EPP-Net† ResNeXt-101 48.1 66.7 53.0 31.8 50.9 58.8

EPP-Net ResNeXt-101-DCN 48.3 67.5 52.5 29.0 51.6 61.6

EPP-Net† ResNeXt-101-DCN 50.3 68.3 55.0 33.0 53.0 62.4
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grouping process. Moreover, EPP-Net outperforms the FCOS baseline by 1.0%
and achieves an AP of 45.8% with ResNeXt-101. Finally, the performance of the
best model reaches 50.3% AP with ResNeXt-101-DCN as the backbone.

5 Conclusion

In this paper, we present EPP-Net as a new method to detect an object by
predicting the relative displacement vector between each location and the four
extreme points. We also propose EIoU , a novel evaluation metric, to measure the
similarity between two groups of extreme points. Moreover, our proposed EIoU
loss can deal with the scale imbalance problem, which outperforms Smooth-�1
loss. Furthermore, we propose the EIoU predictor, which helps the detector
obtain better localization results. The detection results on the MS-COCO reveal
that our method can achieve the state-of-the-art accuracy.
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Abstract. Occlusion is a major obstacle for facial expression recogni-
tion (FER) in the wild, which can change facial appearance significantly.
Current FER methods, although having achieved much progress in lab-
constrained scenarios, suffers from partial occlusion remarkably. In this
paper, we propose a novel Region Re-Weight Network (RRWN), to adap-
tively capture and emphasize the non-occluded areas of the face. RRWN
contains two modules: Occlusion-Aware Module (OAM) and Block-Loss
Module (BLM). More specifically, OAM works as an adaptive region
selector in a convolutional neural network. It selects areas whose fea-
tures made the best approximation to that of the whole face based on
their feature similarity. BLM contains a region biased loss called Block-
Loss to emphasize the role of key blocks. We validate our RRWN in four
public expression datasets with occlusions: RAF-DB, FERPlus, Affect-
Net, and SFEW. Experiments show that our RRWN largely improves
the performance of FER with occlusion.

Keywords: Facial expression recognition · Occlusion · Sparse
representation

1 Introduction

Facial expression recognition (FER) has been a popular research field for its
potential applications in human-computer interaction, driver fatigue monitoring,
mental health assessment, and other fields. Despite the high accuracy achieved
under a standard environment, spatial occlusion has been the standing challenge
to achieving robustness. Occlusions in real-life scenarios encompass a massive
number of daily objects and occupy different positions of face images, which
greatly affect the robustness of FER algorithms.

Earlier researchers mainly study the influence of occlusion positions on FER.
Boucher et al. [4] occluded key areas of the face to learn which areas are the
most important in human perception. Kotsia et al. [15] concluded that mouth
occlusion causes a greater decrease in FER than the equivalent eyes occlusion.
Then methods based on sparse representation are proposed. Cotter [7] presented
the weighted voting method based on sparse representation classifier (SRC) for
c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13033, pp. 209–222, 2021.
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FER. Zhang et al. [31] extracted three typical facial features to evaluate the
performance of the SRC method. Subsequently, with the emergence of large-
scale datasets and robust novel network architectures, researchers carried out
a combination of deep learning and sparse representation. Huang et al. [14]
exploited the sparse representation and residual statistics to occlusion detection
of video sequences. Zhong et al. [33] proposed a two-stage multi-task sparse
learning framework to find dominant patches and learn specific facial patches for
individual expression. Recently attention-based methods are proposed to address
occlusions in FER [19,20,27], determined whether the facial block should be
emphasized or not based on the importance score.

We are motivated to come up with a new mechanism to provide neural net-
works with the knowledge of occlusion for recognizing expressions with partial
occlusion. When observing face images with occlusions, people will focus on the
non-occluded areas and recognize expression based on the information of these
non-occluded areas. Inspired by this, we propose a novel Region Re-Weight Net-
work (RRWN) to capture and emphasize the non-occluded areas of the face.
RRWN is mainly composed of two modules, Occlusion-Aware Module (OAM)
and Block-Loss Module (BLM). OAM learns to pick out the non-occluded facial
regions to facilitate recognition, which is compatible with the mainstream convo-
lutional neural network (CNN) architecture. As depicted in Fig. 1, OAM works
with a widely-used convolutional architecture, in which the feature maps of the
holistic image are decomposed as the combination of feature maps from its local
regions. Different from the most widely-used attention-based methods, OAM
employs similarity measurements to capture the difference between facial and
non-facial areas. After getting the non-occluded regions through OAM, the non-
occluded regions will be highlighted in the latter network. In the meantime,
we use the Block-Loss to emphasize the role of the key area among these non-
occluded regions. Different from other occlusion-aware methods, our method
guides the model to separate occlusions from the human face.

The major contributions of this work can be summarized in three aspects: 1)
We propose OAM, a novel network structure to avoid facial blocks with occlusion
and select non-occluded blocks. 2) A region biased loss (Block-Loss) is proposed
to optimize the selection of crucial regions. 3) On four challenging datasets with
occlusions, we demonstrate that our methods achieve superior performance.

2 Related Work

2.1 FER Methods Against Occlusions

Many FER methods consider using prior knowledge to strike a better perfor-
mance both in lab-constraint and in-the-wild scenarios. Common options to
incorporate such knowledge includes manually design refined segmentation based
on detected facial landmarks since it is effective to constraint the model’s input
to only the regions where expression-related actions occur. According to the
facial action coding system [10], action units are situated around the eyes, the
forehead, and the mouth. Extracting those key areas accordingly reduces noise
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from hair, sunglasses, masks, and other occlusions. However, it works only if
these key areas are not occluded.

When the location of occlusions is uncertain, dividing the whole facial image
into smaller patches while applying some selection or weighting method over the
patches is often more robust than the key-area segmentation approaches. Face
partitioning methods varies from uniform partitioning [14], landmark-centered
partitioning [19], to sampling-oriented [27]. Subsequently, the occluded patches
are given smaller importance weights, or simply excluded from the recognition
process.

Recent works following this principle prefer to generate an importance score
for each block according to its contribution to the classification. For example, Li
et al. [19] proposed to use a convolution neural network with attention mecha-
nism to compute an adaptive weight from the region itself according to the unob-
structedness and importance. Wang et al. [27] proposed a novel region attention
network using the sigmoid value to represent the attention value and combining
the overall and part features to enhance the ability of the network.

The above methods obtain the importance score through a designed deep
neural network, and it is considered that the blocks with large importance scores
should be focused on by the network. But in fact, the blocks with large impor-
tance scores are possible to be the occluded blocks. Different from these works,
our method determines whether the block is occluded by the similarity between
the facial block and the whole image, rather than simply using the important
score. When the face image is partially obscured, its overall characteristics are
still close to a face, so the blocks which are close to the face image are non-
occluded blocks.

2.2 Sparse Representation

Inspired by the success of sparse approximation in the face recognition task
[29], researchers proposed adaptations and variations of sparse encoding to the
expression recognition task. Methods concerning sparse representation decom-
pose a facial image as a linear combination of images from the same expression
category. During the process, four typical facial features, i.e., the raw pixels [31],
Gabor wavelets representation [6], local binary patterns [2], and deep features
extracted by a deep convolutional network [1] are used as the effective represen-
tations for the expression images.

However, the above methods suffer drastically from insufficient training sam-
ple size and variations included. To effectively represent an unseen image con-
taining an occluded facial expression, they also require assistance from well-
performing decorrelation technique, precise face alignment, and normalization
which is far from reaching in many in-the-wild datasets to date. Although we
also decompose the whole facial image as a linear combination, our method dis-
tinguishes itself from existing sparse representation methods since we measure
how much content in each patch is related to the whole image.



212 X. Zhang et al.

3 Proposed Method

3.1 Overview of Region Re-weight Network

As depicted in Fig. 1, RRWN extends the traditional CNN architecture by the
additional OAM and BLM. To begin with, the face image is fed into the first layer
of the backbone network to obtain feature maps for the whole face image as well
as each local block. Next, OAM selects the non-occluded blocks by measuring the
similarity between local and global vectors. Finally, the non-occluded blocks will
be highlighted in the latter CNN layers. In addition to OAM, we also introduce
BLM which contains a loss function to emphasize the role of critical block, which
comes from non-occluded blocks chosen by OAM. As a result, The whole RRWN
can be trained in an end-to-end manner.

Fig. 1. The framework of our RRWN. A face image is fed into Resnet-18 and is repre-
sented as the global vector y and local vectors xi. The Occlusion-Aware Module takes
y and xi as input to find the non-occluded {Blockrk}. Then the {Blockrk} will be
re-weighted in the latter network (the corresponding black squares). The Block-Loss
Modules emphasizes the role of key block among {Blockrk} through the Block-Loss
function.

3.2 Occlusion-Aware Module

We hold the presumption that the overall characteristics of the face image are
close to its components rather than the occlusions. In our case, the similarity
is used as a mathematical measure to find the clear facial areas similar to the
overall face image. In other words, the non-occluded blocks of the face image are
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located by the similarity measurement. Inspired by how the orthogonal matching
pursuit (OMP) method finds the most similar component of a signal [24], we
design OAM to find the non-occluded blocks.

As shown in Fig. 1, after getting feature maps that represent the whole facial
image, we partition the feature maps to multiple sub-feature-maps uniformly
to obtain diverse blocks of the same size. Next, an adaptive average pooling
operation is utilized to encode the feature maps into a vector, i.e., each three-
dimensional feature is mapped to a one-dimensional vector. Let y denotes the
global vector. We normalize y for convenient calculation so that we have ||y|| = 1.
Similarly, χ = {x1, x2, · · · , xn} denotes local vectors and ||xi|| = 1. According
to conventional sparse approximation methods, a dictionary is often created to
store atomic vectors before finding the sparse representation of the global vector.
In our method, the local vectors are used as the atomic vectors when building
the dictionary D = [x1, x2, · · · , xn] ∈ Rn×k, where n is the number of atomic
vectors and k is the dimensionality of the atomic vectors.

After building the dictionary, the inner product of the global vector y and
each atomic vector xi is calculated. Then, the atomic vector with the largest
absolute value of the inner product will be selected as the closest match-up to the
y. This selection iterates until we obtain the maximum number of atomic vectors.
In this way, y is decomposed into the vertical projection in the direction of the
chosen atomic vectors and the corresponding residual, which can be formulated
as,

y = 〈y, xr0〉xr0 + R1, (1)

where 〈., .〉 is the inner product, xr0 is the closest match atomic vector, r0 is the
column index of D, 〈y, xr0〉xr0 is the vertical projection in the direction of xr0 ,
and R1 is the residual. Then we decompose the residual R1 in the same way.
After k iterations, we can get

y =
K∑

k=0

〈Rk, xrk〉xrk + Rk+1, (2)

where K is a hyper-parameter served as the number of selected atomic vectors,
and R0 = y. If K is too small, only a few non-occluded areas can be found. On
the other hand, if K is too large, the non-occluded area may also be selected.
After several iterations, the linear representation of the target vector can be
obtained, which is formulated as follows:

y =
K∑

k=0

ckxrk

ck = 〈Rk, xrk〉 (3)

Now that the non-occluded blocks and the corresponding weight are obtained,
then we apply a re-weight operation on the original feature maps. The blocks
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corresponding to the selected atomic vectors are weighted as Eq. 4 while the
unselected blocks remain unchanged, which can be defined as,

blockrk = (ck + c)blockrk , (4)

where blockrk denotes the kth selected block. The ck can be arbitrary in (0, 1).
To strengthen the role of the non-occluded area, we increase the weight by c
times. If we overemphasize the key blocks and impose great weight on them, it
will lead to a decrease of accuracy. We will analyze this in the later ablation
studies. After OAM, the new feature maps continue to be input to the rest of
ResNet-18.

OAM optimizes the latter network during the training by performing the
weighting operation to the original feature maps. OAM can select the atom
vector that is closest to the target vector. The weights describe how similar the
atom vector is to the target vector. Even if the face is partially occluded, the
face is still the dominant object in the image. In this way, OAM can select the
non-occluded areas. However, when the occlusion is too large and occupies most
of the face image, the overall feature of the image tends to be the occlusion
rather than the face, OAM will perform poorly.

3.3 Block-Loss Module

After OAM, we find the non-occluded blocks. Among the non-occluded blocks,
some blocks contribute to recognizing the expression more significantly than
others [4]. To encourage high weights for the most important block among these
non-occluded blocks. Inspired by [27], we propose the Block-Loss.

As can be seen in Fig. 1, BLM contains a fully-connected layer and a sigmoid
function. After getting the global vector y and the non-occluded local vectors xrk

chosen by OAM, they are fed to BLM. After the fully-connected layer and the
sigmoid function, we get their importance value. Block-Loss can be formulated
as,

LB = max{0, α − (μmax − μy)},

μmax = max{f(xrkq)},

μy = f(yq), (5)

where α is a hyper-parameter served as a margin, q is the parameter of the fully-
connected layer, and f denotes the sigmoid function. In the training process,
the Cross-Entropy Loss is jointly optimized with the Block-Loss, which can be
defined as,

LAll = LCE + LB , (6)

where LCE denotes the Cross-Entropy Loss.
BLM optimizes the former network during the training by the loss function.

BLM enforces that one of the important values of non-occluded blocks should
be larger than the face image with a margin so that RRWN can focus on the
most important block among the non-occluded blocks.



Occlusion-Aware Facial Expression Recognition Based RRWN 215

4 Experiments

4.1 Datasets

RAF-DB [17] contains 30, 000 facial images annotated with basic or compound
expressions by 40 trained human coders. In our experiment, only images with
basic emotions(neutral, happiness, surprise, sadness, anger, disgust, fear) are
used, including 12,271 images as training data and 3, 068 images as test data.
FERPlus [3] contains 28, 709 training images, 3, 589 validation images, and
3, 589 test images collected by the Google search engine, and all images are
resized to 48 × 48 pixels. FERPlus supplements a contempt emotion and is
annotated by 10 labels. AffectNet [23] is the largest FER dataset that contains
more than one million images collected by three search engines using expression-
related keywords. About 400,000 images are manually annotated with eight dis-
crete facial expressions as FERPlus. It has imbalanced training and test sets as
well as a balanced validation set. SFEW [8] contains 95 subjects and covers
unconstrained facial expressions, a large range of ages, varied head poses, and
real-word illumination. We use the newest version of SFEW [9] which has been
divided into three sets: training (958 images), validation (436 images), and test
(372 images), and all images are annotated with seven discrete facial expressions
as RAF-DB.

Table 1. Values of hyper-parameters

Parameter Value

Number of blocks 49

Number of selected atomic vectors 10

Weight increment c 2

Margin α 0.01

Ratio of the two loss functions 1:1

4.2 Implementation Details

The proposed RRWN is implemented on the environment of Python 3.6 and the
operating system of Windows 10. Preprocessing methods like image resizing are
executed through OpenCV 3.4 for convenience. The proposed network involved
in this work is run on Intel(R) Core(TM) i7-6700 3.4 GHz in CPU and NVIDIA
RTX 1080 Ti with CUDA 9.0 in GPU. RRWN is implemented using the Pytorch
platform and the backbone network is ResNet-18 [12]. By default, the ResNet-
18 is pre-trained on MS-Celeb-1M face recognition dataset and we extract the
feature maps after the first layer of ResNet-18.

Each face image is first resized to 224 × 224. Then the feature maps are
partitioned into 7 × 7 blocks uniformly as depicted in Fig. 1. After adaptive
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average pooling operation, the feature maps are encoded as vectors of 64 dimen-
sions. The number of selected atomic vectors is 10. The margin in Block-Loss is
default as 0.01 and the whole network is jointly optimized with Block-Loss and
Cross-Entropy Loss in training. The ratio of the two loss functions is empirically
set at 1 : 1. Values of hyper-parameters are shown in Table 1. The batch-based
stochastic gradient descent optimizer is used to train the model. On all datasets,
the batch size is set to 64, the base learning rate was set as 0.01 and was reduced
by the polynomial policy with the gamma of 0.1. Finally, the momentum was
set as 0.9 and the weight decay was set as 0.0001.

Fig. 2. Images with occlusions from RAF-DB. Each image is equally divided into 49
blocks. The orange squares represent the facial non-occluded areas, and the blue squares
represent the occluded areas. Dark orange and dark blue squares represent the blocks
selected by OAM. The number in the square is the coefficient of the linear combination
obtained by OAM. (Color figure online)

4.3 Visualization of the Blocks Selected by OAM

OAM should be able to match the non-occluded areas of the face. To demonstrate
the effect of OAM, non-occluded blocks selected by OAM are shown in Fig. 2. The
occluded areas are covered by blue masks while the clear face areas are covered
by orange masks. Areas selected by OAM are further highlighted with a darker
color and the corresponding weights. It is clear that most of the selected blocks
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which OAM selects are non-occluded blocks. In addition, some non-occluded
blocks play an important role in FER because they include key areas such as
eyes, mouth, etc.

For the images in the first row, where the occlusion and the face have many
differences, OAM can find the key blocks closest to the whole face, making it
effective to avoid the blocks with occlusions. In the next row, where the occlusions
occupy a relatively larger area of the face image, blocks containing occlusions
will be selected because features of the face image in this situation include quite
a lot of information of the occlusions. Down to the last row, if the occluded
object is a hand, in which the color, texture, and other features are relatively
similar to the face, OAM will be possible to select few blocks containing hands.

Table 2. Test accuracy(%) on real-world datasets.

Pretrain RRWN RAF-DB FERPlus AffectNet

� � 72.00 82.40 46.58

� � 76.83 82.68 48.63

� � 84.20 86.80 58.50

� � 85.82 87.70 58.70

4.4 Ablation Studies Evaluation

Effectiveness of RRWN: To evaluate the effectiveness of RRWN compared
with the baseline (ResNet-18), we conduct experiments on real-world datasets.
Results are shown in Table 2. When training from scratch, our proposed RRWN
outperforms the baseline network by a margin of 4.83%, 0.28%, and 2.05% on
RAF-DB, FERPlus, and AffectNet respectively. It shows that our method does
improve the accuracy of the baseline. In addition, when using ResNet-18 pre-
trained on MS-Celeb-1M, our method obtains improvements of 1.62%, 0.9%,
0.2% on these datasets.

Table 3. Test accuracy(%) of the two modules on RAF-DB.

OAM BLM ResNet-18 ResNet-18 (pretrain)

� � 72.00 84.20

� � 73.16 84.60

� � 75.68 85.50

� � 76.83 85.82

Furthermore, to explore the effectiveness of the two modules in improving
accuracy, we conduct comparative experiments on RAF-DB. The result is shown
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in Table 3. By the way, when only BLM is added, the input vectors of BLM are
directly from the vectors after the adaptive average pooling operation. When
only adding OAM or BLM, we obtain improvements of 3.68% and 1.16% based
on ResNet-18, 1.3% and 0.4% based on ResNet-18 (pretrain). This suggests that
both OAM and BLM contribute to improving accuracy. In addition, OAM is the
most contributed module for our RRWN.

Fig. 3. Evaluation of the position on RAF-DB

Position of OAM: We study the impact of the different OAM positions. Since
the backbone network is ResNet-18, which can be divided into four layers (we
represent them as layer1, layer2, layer3, and layer4). Experiments are carried
out with OAM being placed after the first, second, and third layers. Result on
RAF-DB is shown in Fig. 3. The test result indicates that OAM works best when
is placed after the first layer. And the further back it is placed, the worse the
effect will be.

We analyze this phenomenon and concluded two major reasons for the decli-
nation. First, OAM represents the target vector linearly with a certain number
of atomic vectors, so the greater the difference between the blocks, the more
accurate OAM is to find the non-occluded blocks. Second, as CNN deepens and
constantly carries out convolution, pooling, and other operations, the obtained
feature maps become smaller, and the features become more abstract. The fea-
tures of different blocks are mixed, which leads it more difficult to distinguish
different blocks. Therefore, adding OAM after the first layer is appropriate.

Evaluation of the Weight Increment c: In OAM, we obtain the atomic
vectors corresponding to the non-occluded blocks. The blocks corresponding to
the selected atomic vectors are re-weighted, and the blocks that are not selected
remain unchanged. We study the effect of the amount of weight increase, and
the result is shown in Fig. 4(a).

As can be seen from Fig. 4(a), when we just multiply the coefficient ck to the
non-occluded block, i.e., c = 0, the result is poor because the coefficient ck is
between 0 and 1, and the non-occluded blocks are weakened when we multiply
them directly. On the other hand, the accuracy declined as c increased. Because
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(a) Evaluation of c on SFEW (b) Evaluation of α on FERPlus

Fig. 4. Parameters evaluation

FER not only focuses on the partial key blocks but also the global features.
We should combine local features and global features. As the article [19,27], the
combination of global features and local features is more effective. If we focus
too much on local features and ignore the global features, the weight increment
c is too large and the accuracy will decline.

Evaluation of the Margin α: From Table 3, we can see that BLM further
improves performance on RAF-DB.

The margin α in Block-Loss is set to 0.01 by default. We evaluate the α
in FERPlus, the result is shown in Fig. 4(b). Increasing from 0 to 0.01 gradu-
ally improves the performance while larger α leads to fast degradation, which
indicates the features of the overall face image are also important for FER. It
also further confirms that we need to combine local features and global features.
We mainly carry out the combination of local features and global features in
two aspects. One is to input the global vector into BLM, and the other is to
appropriately emphasize the key blocks selected by OAM.

4.5 Results and Comparison

We compare our RRWN to several methods on RAF-DB, FERPlus, Affect-
Net, and SFEW including attention-based methods [19,20,27] and loss-function
methods [5,18,21]. The result is shown in Table 4.

pACNN [20] re-weights each patch according to the attention mechanism.
gACNN [19] leverages a patch-based attention network and a global network.
RAN-ResNet18 [27] captures the importance of facial regions and aggregates
region features into a compact representation. These attention-based methods
are time-consuming due to the carefully designed deep neural networks. Our
RRWN does not increase much computational expense by simply adding two
modules to the existing network architecture. DLP-CNN [18] uses a locality-
preserving loss for network training. Island Loss [5] proposes the island loss
which combines the Center Loss [28] and an inter-class loss. IACNN [21] pro-
poses an identity-sensitive contrastive loss to achieve identity-invariant FER.
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These loss-function methods do not emphasize the key block of the face image,
whereas our RRWN emphasizes the key block in the non-occluded blocks. Our
RRWN outperforms these recent methods with 85.80%, 87.70%, 58.70%, 54.26%
on RAF-DB, FERPlus, AffectNet, and SFEW.

Table 4. Comparison on datasets with occlusions

Datasets Methods Accuracy(%)

RAF-DB FSN [32] 81.10

pACNN [20] 83.27

DLP-CNN [18] 84.13

ALT [11] 84.50

gACNN [19] 85.07

Our RRWN 85.82

FERPlus TFE-JL [16] 84.30

PLD [3] 85.10

SHCNN [22] 86.54

ESR-9 [25] 87.15

DTAGN [13] 87.40

Our RRWN 87.70

AffectNet Up-Sampling [23] 47.00

pACNN [20] 55.33

IPA2LT [30] 55.71

IPFR [26] 57.40

Weighted-Loss [23] 58.00

Our RRWN 58.70

SFEW IACNN [21] 50.98

Island Loss [5] 52.52

RAN-ResNet18 [27] 54.19

Our RRWN 54.26

5 Conclusion

In this work, we propose RRWN to address facial expression recognition in the
presence of occlusions. Our RRWN uses the Occlusion-Aware module (OAM) to
adaptively capture and emphasize the uncovered area of the face. In addition,
we design a region biased loss (Block-Loss) function to encourage high weight
for the most important region. We evaluate our method on real-world datasets.
Experiments show that our proposed method has substantial improvement on
RAF-DB, FERPlus, AffectNet, and SFEW compared with other methods.
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Abstract. The recent trend in Multi-Object Tracking (MOT) is head-
ing towards using deep learning to detect objects and extract features.
Although tracking frameworks using detection network have achieved
outstanding performance in object locating on MOT, it is still challeng-
ing for crowded occlusion. In this paper, we propose to alleviate this dif-
ficulty by combining bounding boxes from outputs of both object detec-
tion and pose estimation. The motivation behind generating redundant
candidates is that object detection and pose estimation can complement
each other in tracking scenes. In order to get optimal tracking objects
from candidates, we present Soft-Pose-NMS. For similarity calculation,
we design a Dual Self-Attention Network (DSAN) with the self-attention
mechanism. The network generates the self-attention map that enables
the network to focus on the object area of detection and tracklet images.
Simultaneously, the network can extract the temporal self-attention fea-
ture map to suppress noisy images in the tracklet. Experiments are con-
ducted on the MOT benchmark datasets. Results show that our tracker
achieves competitive results and is state-of-the-art in half of the metrics.

Keywords: Multi-object tracking · Person re-identification · Dual
self-attention network

1 Introduction

Multi-object tracking (MOT) is one of the most fundamental computer vision
tasks, aiming to generate the trajectory information of all interested objects
across video frames. It has attracted much attention because of its broad appli-
cation such as intelligent video analysis, autonomous driving and smart city.
The current MOT studies mainly adopt the “tracking-by-detection” strategy
that applies the detector to locate objects in each frame and associates objects
among the different frames to generate object trajectories [5,25,31].

Despite the encouraging progress made in the past few years, there are two
significant problems with “tracking-by-detection” strategy. One is that tracking
c© Springer Nature Switzerland AG 2021
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Fig. 1. Object locating with pose guiding. In applying only one kind of detection result,
the bounding boxes are mislabeled due to heavy occlusion. Object detection result and
pose estimation result can complement each other to locate objects correctly.

results heavily rely on the quality of object detection, which by itself is hard to
generate reliable results across frames. Taking the tracking scenes in the MOT16
dataset as examples, during the crowd scenes, the bounding boxes based on one
kind of detection method of the occluded objects is usually unreliable, posing
drifting and ID-switching in tracking, as shown in Fig. 1. To alleviate such issues,
recent research [24] introduces the object location information from an instance
segmentation method to locate the tracking objects. In this paper, we combine
the merits of multi-person pose estimation and object detection in a unified
framework to introduce object joint points information. We use the pedestrian
joint points information to assist in locating the object and alleviate unreliable
detection.

On the other hand, for similarity computation in MOT, we need to compare
the current detect object with a sequence of previous observations in the trajec-
tory. One of the most commonly track objects in MOT is pedestrians, so the re-
identification [16,22] is commonly used for similarity calculation with challeng-
ing factors including occlusion, partial loss and pose variation [31], as shown in
Fig. 1. To alleviate such issues, [7,31] propose the feature extraction network that
introduces attention mechanism [27] to extract detection and tracklet appearance
features. Additionally, inspired by [29], we introduce the self-attention mecha-
nism, which calculates the self-attention map for detection image and tracklet
images, respectively. Moreover, our network is end-to-end, which can alleviate
training complexity and extract more robust features.

The main contributions of this paper can be summarized as follows.

1. A new detection strategy is proposed to combine object detection and pose
estimation results. The strategy takes advantage of both object detection and
pose estimation to handle unreliable detection in online MOT.
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2. We design a Dual Self-Attention Network (DSAN), introducing the self-
attention mechanism to allocate different attention values to each location in
the object image and exploit self-attention temporal feature from the tracklet.

3. Experimental results demonstrate that our tracker achieves competitive per-
formance on the MOT benchmark dataset and is state-of-the-art in half of
the metrics.

2 Related Work

In recent years there has been an explosion of technological progress in
MOT driven primarily by object detection strategy. Sanchez-Matilla et al. [20]
exploited multiple detectors to improve detection performance in MOT. Chen
et al. [5] combined detection and predicted bounding boxes by Kalman filter as
tracking candidate set for quality evaluation and used different strategies for data
association. Although these methods alleviate the unreliable detection results,
they still use one kind of detection information. Hence these methods cannot
effectively alleviate the issue of missing detection. There are also several works
that use other category location information to determine the coordinates of the
tracking candidates [6,10,13,24]. Voigtlaender et al. [24] proposed MOTS task
and TrackR-CNN network to merge segmentation and multi-object tracking.
The network employed top-down segmentation information instead of detection
information to locate the object. Nevertheless, the top-down object location
information introduced in the above methods still depends on the quality of the
object detection results [8,24]. On the contrary, we propose the Soft-Pose-NMS
detection strategy to introduce object joint points information from the bottom-
up pose estimation method. The bottom-up object location information is not
affected by the object detection performance and can provide additional object
position information, and thereby it can effectively improve the object detection
results in MOT.

For object feature extraction and similarity computation, Mahmoudi et al.
[17] applied CNN extracted appearance features along with position features
to calculate more accurate similarity score. Chu et al. [7] introduced a Spatial-
Temporal Attention Mechanism (STAM) to handle the tracking drift caused
by the occlusion and interaction among objects. Zhu et al. [31] proposed a Dual
Matching Attention Networks (DMAN) with both spatial and temporal attention
mechanisms to perform the tracklet data association. In this paper, we integrate
both spatial and temporal self-attention mechanisms into the proposed MOT
framework. Our framework differs from the state-of-the-art DMAN [31] method.
First, the spatial attention in the DMAN corresponds to the detection image
and trajectory images. Since the attention map is affected by different trajectory
images, it becomes unreliable when other objects appear in the trajectory image.
In contrast, we exploit the image itself to generate the self-attention map, which
is demonstrated to be more robust to inter-object occlusion and noisy detection.
Second, the DMAN needs to be divided into two steps to train the model, while
our spatial and temporal self-attention map can be end-to-end trained.
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3 Proposed Method

Our online tracking framework consists of three tasks, object detection, similarity
calculation and trajectory management. We first measure all tracking objects
by the proposed Soft-Pose-NMS detection strategy that introduces object pose
information. Then we use the Dual Self-Attention Networks (DSAN) to extract
feature and compute the similarity score of the detection image and tracklet
images. Finally, we update the tracking state of objects and trajectories.

3.1 Soft-Pose-NMS Object Detection Strategy

Given a new frame, we get the joint points of each object through the pose esti-
mation network [15]. Nonetheless, there are abnormal points in these joint points,
as shown in Fig. 2. Therefore, the Soft-Pose-NMS detection strategy is designed
to generate accurate joint points-based bounding boxes with pose estimation
results and determine tracking candidates by screening two types of bound-
ing boxes. These bounding boxes are adopted to alleviate detection failures in
crowded scenes.

First, we obtain the primary detection-based bounding box set PBdet by
object detection method. It is necessary to generate a sufficient number of
detection bounding boxes to filter and obtain accurate tracking bounding boxes.
Therefore, we set a lower confidence threshold Tdetcon to generate the detection-
based bounding box set Bdet form PBdet.

Fig. 2. The bounding box results based on pose estimation. (a) shows the result missing
part of the object joint points. (b) shows the results of abnormal joint points with large
offsets. (c) shows the result of abnormal joint points with small offsets. Red points and
blue points are the clustering result of the object joint points and Wi is the width of
two point-groups.

Second, a primary joint points-based bounding box PBjpi is generated by
expanding the coordinates of the joint points. Here we define NPPBjpi as the
number of joint points and ARPBjpi as the aspect ratio for the PBjpi. Then the
primary joint points-based bounding boxes set PBjp can be defined as:

PBjp = {PBjp1...PBjpi} , NPjpi > Tnjp andARjpi < Tratio (1)
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where Tnjp is threshold for the number of joint points, Tratio is threshold of
the aspect ratio. We set Tnjp = 8 and Tratio = 0.6 to generate PBjp. However,
the joint points-based bounding box coordinate shifting still exists in PBjp, as
shown in Fig. 2(c). We observe that this shifting only appears on the abscissa. In
order to deal with this joint points drift issue to get exact width value for joint
points-based bounding box. First, we use the clustering algorithm to cluster the
joint points of each bounding box PBjpi in PBjp into two point groups. Then
we calculate the width ratio of the two points groups. Here we define w1 and
w2 as the width of two point group width, respectively, as shown in Fig. 2(c).
We define Rw as the width ratio of w1 and w2. Therefore, the width of ith joint
points-based bounding box WPBjpi can be generated by the following formula:

WPBjpi =

{
w1 Rw > Twratio

w2 Rw ≤ Twratio

(2)

where Twratio as the threshold of the width ratio. We analyse the position of
the drift joint point and set Twratio to 2.

After recalculating the width of each joint point-based bounding box, we get
the final joint point-based bounding box set Bjp. In order to combine detection
based bounding boxes and screen unreliable bounding boxes, we need to calculate
a reasonable confidence score to the ith joint points-bounding box Bjpi in Bjp.
Directly using the average score of each joint point in joint points-based bounding
box Bjpi as corresponding confidence value will cause confidence bias. Therefore,
we propose a function to explicitly encode pose information of each joint point
into the confidence maps. We expand the total variance and make the scoring
probability distribution distance of different pedestrians farther. The confidence
of Bjpi is defined as:

CBjpi =
1
n

i=1∑
n

tan h
si

σ
(3)

where CBjpi is the confidence of ith joint points-based bounding box Bjpi, σ is
a data-driven parameter used to control the degree of score suppression and si is
the score of each joint point. The scores are averaged after tan h function map-
ping to generate the confidence CBjpi and the final joint points-based bounding
box set Bjp.

In order to measure tracking objects bounding box set Btrack. First, we fuse
the detection-based bounding box set Bdet and the joint points-based bound-
ing box set Bjp to generate the all candidates bounding box set Bcan of cur-
rent frame. Second, we sort all the bounding boxes according to the confidence
and output the bounding box Bmax with the maximum confidence as tracking
objects. Then, we re-assign the confidence of remaining bounding boxes as:

CBcani =
{

CBcani IoUmi < TIoU

CBcani(1 − IoUmi) IoUmi > TIoU
(4)

where CBcani indicates the confidence of ith bounding box Bcani in candidates
bounding box set Bcan, IoUmi indicates the IoU of bounding box Bmax and



228 X. Zhang et al.

Bcani, TIoU indicates the threshold of IoU. Finally, we delete the candidates
that confidence less than the confidence threshold Tcon, until Bcan is empty.

Algorithm 1 : The Soft-Pose-NMS detection strategy
Input: The primary detection-based bounding box set PBdet and the primary joint

points-based bounding box set PBjp of current frame in tracking video.
Output: Tracking objects bounding box set Btrack={Btrack1,...,Btracki} of the cur-

rent frame.
1: Generate detection-based bounding box set Bdet = {Bdet1,...,Bdetj}, CBdetj >

Tdetcon (CBdetj is confidence of detection-based bounding box Bdetj);
2: Generate joint points-based bounding box set PBjp by Ep.(1);
3: // Calculate the coordinates of joint points-based bounding boxes
4: for each PBjpi in PBjp do
5: Cluster the joint points of PBjpi into two groups;
6: Calculate the width WPBjpi for PBjpi by Ep.(2);
7: end for
8: Bjp = PBjp

9: for each Bjpi in Bjp do
10: Calculate the confidence CBjpi for PBjpi by EP.(3);
11: end for
12: Bcan = Bdet ∪ Bjp;
13: Btrack ← {}
14: while Bcan is not empty do
15: Bcan = Sort(Bcan)
16: Bmax = Bcan[0]
17: Btrack.append(Bmix)
18: Bcan = Bcan - Bmix

19: for each Bcani in Bcan do
20: Update confidence of bounding box in Bcan by Ep.(4);
21: if CBcani < Tcon then:
22: delete Bcani

23: end if
24: end for
25: end while
26: return Btrack;

3.2 Feature Extraction with Dual Self-Attention Network

Extracting more discriminative appearance feature is the critical component of
calculating accurate similarity scores. Moreover, the challenge is that object
and tracklet images may undergo occlusion and noise in the tracking scene. To
alleviate such issues, we design a Dual Self-Attention Network (DSAN) with
self-attention mechanisms. Figure 3 illustrates the architecture of our network.

In this work, we use the DenseNet-101 [12] as backbone network and intro-
duce the self-attention mechanism to extract tracking object and tracklet feature
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Fig. 3. The architecture of the proposed DSAN. It contains two branches. Given an
image of tracking object bounding box and sequence of object tracklet images as inputs.
The network extracts the detection and tracklet self-attention feature maps and pre-
dicts the probability that the detection and the tracklet are the same object by the
combined feature map Xc.

map. The self-attention mechanism can enlarge the receptive field and get con-
textual information which enables the network to pay more attention to the
object area in the detection and tracklet images. We convolve the tracklet image
in the temporal direction by the 3D convolutional layer to exploit the temporal
feature of the object. The self-attention map is applied to the feature maps from
the last convolutional layer of the DenseNet-101 to compute the self-attention
feature map. We apply the detection self-attention feature map Xα and tracklet
self-attention feature map Xβ for re-identification training and combined feature
Xc for binary classifier training to predict whether detection and tracklet are the
same object. Furthermore, we will apply the similarity probability Psame that
predicted by the network to calculate the similarity score between the detection
and trajectory.

To infer the self-attention maps of the detection and tracklet, we transform
the backbone network feature maps into query feature map fq, key feature map
fk and value feature map fv respectively. After that, we use the feature map fq

and fk to calculate the attention map as the following formula:

βi,j =
exp(Sij)∑N
i=1 exp(Sij)

, Sij = fq(xi)T fk(xj) (5)

where βi,j indicates the attention value of the other j th position in the image
on the ith pixel. Then we multiply βi,j with fv to get the self-attention masked
feature map fatt

org that weight by the self-attention map, where:

fatt
org =

N∑
i=1

βijfv (6)
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Additionally, we add the feature map fatt
org and forg. Therefore the final self-

attention feature map fsa is given by:

fsa = θfatt
org + forg (7)

where θ is a learnable scalar, to gradually emphasize the importance of self-
attention feature map.

The training objective of each feature map in DSAN can be modelled as a
multi-task training. The joint objective can be written as a weighted linear sum
of losses:

Ltotal = αLsig + (1 − α)Lseq + βLsame (8)

where Lsig and Lseq are used for re-id training and calculated by the cross-
entropy loss function. Lsame is used for the binary classification training and
applying the contrastive loss to calculate. α and β are loss weights. We utilize
the ground-truth bounding boxes and objects identity provided in the MOT16
training set to generate detection images and object trajectories for training the
network.

3.3 Data Association and Trajectory Management

For data association, we calculate the similarity score between the detection and
tracklet feature map firstly, by the following formula:

Sdt = w1dist(fα, fβ) + w2Psame (9)

where w1 and w2 are similar score weights, Sdt is the final similar score of detec-
tion and tracklet. Then tracker generates affinity matrix with the similar scores.
Meanwhile, we apply the Hungarian algorithm and affinity matrix to associate
the detection and tracklet. Last, the tracker associates the remaining detection
with unassociated tracklet based on IoU between detection and tracklets, with a
threshold TIoUa. For trajectory management, we initial the trajectory for detec-
tion, which is not associated with any trajectory in any of the first Tinit frames.
Trajectories are terminated if they are not associated for Tterm frames.

4 Experiments

4.1 Implementation Details

To validate the effectiveness of the proposed online tracking approach, we design
experiments on popular MOT datasets, MOT16 and MOT17 [18]. We employ
Pifpaf in [15] to estimate the objects pose information, and use SDP [28] detec-
tion results that officially provided by MOT16 and MOT17 as the object detec-
tion results. We set TIoU = 0.95 and Tcon = 0.5 for filtering repetitive bounding
box to generate the tracking object set Btrack and select 5 observations from
the 20 most recent frames as tracklet input for DSAN. We set TIoUa = 0.7 for
data association. For trajectory management, we set the threshold Tinit = 3 for
trajectory initialization and Tterm = 10 for trajectory termination.
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4.2 Performance on MOT Benchmark Datasets

In order to measure the accuracy of tracking results, we adopt multiple met-
rics used in the MOT benchmark [2] to evaluate the proposed tracking method,
including Multiple Object Tracking Accuracy (MOTA), ID F1 score (IDF, the
ratio of correct detections over the average number of ground-truth and com-
puted detections), MT (the ratio of Mostly Tracked objects), Ml (the ratio of
Mostly Lost objects), the number of False Negatives (FN), the number of False
Positives (FP), the number of ID Switches (IDS), the number of fragments
(Frag). Table 1 and Table 2 present the tracking performance on the MOT16
and MOT17 datasets, respectively.

Table 1. Tracking performance on MOT16 dataset. The arrow each metric indicates
that the higher (↑) or lower (↓) value is better.

Method Mode MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDs↓ Frag↓
EDMT [4] Batch 45.3 47.9 17.0% 39.9% 11122 87899 639 946

QuadMOT [21] Batch 44.1 38.3 14.6% 44.9% 6388 94775 745 1096

LMP [23] Batch 48.8 51.3 18.2% 40.1% 6654 86245 481 595

DMAN [31] Online 46.1 54.8 17.4% 42.7% 7909 89874 744 1616

Tracktor++ [1] Online 56.2 54.9 20.7% 35.8% 2394 76844 617 1068

CNNMTT [17] Online 65.2 62.2 32.4% 21.3% 6578 55896 946 2283

TrctrD16 [26] Online 54.8 53.4 19.1% 37.0% 2955 78765 645 1515

RAR16wVGG [9] Online 63.0 63.8 39.9% 22.1% 13663 53248 482 1251

MPNTrack [3] Online 58.6 61.7 27.3% 34.0% 4949 70252 354 684

Tube TK POL [19] Online 66.9 62.2 39.0% 16.1% 11544 47520 1236 1444

Ours Online 67.7 66.4 37.9% 18.6% 11453 42494 334 902

Table 2. Tracking performance on MOT17 dataset.

Method Mode MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDs↓ Frag↓
EDMT [4] Batch 50.0 51.3 21.6% 36.3% 32279 247297 2264 3260

MHT DAM [14] Batch 50.7 47.2 20.8% 36.9% 22875 252889 2314 2865

Tube TK POI [19] Online 63.0 58.6 31.2% 19.9% 27060 177483 4137 5727

CTTrack17 [30] Online 67.8 64.7 34.6% 24.6% 18498 160332 3039 6102

Ours Online 67.3 65.9 37.9% 20.7% 20574 195176 2031 2681

Quantitative results and comparison with the other tracking methods are
shown in Table 1 and Table 2. As shown in Table 1, our tracking method achieves
a comparable MT, ML, FP, Frag score and performs favourably against the state-
of-the-art methods in terms of MOTA, IDF1, FN and IDs on the MOT16 dataset.
Our tracker upgrades MOTA to 67.7, IDF1 to 66.4 and reduces FN to 42494,
IDs to 334. Meanwhile, our tracker achieves the best performance in IDF1 and
IDs among online and batch methods, demonstrating the merits of our tracker in
object identity matching and the stability of multi-object tracking. MOTA and
FN correspond to the object detection capability. Therefore, the improvement of
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MOTA and FN demonstrates the merits of our Soft-Pose-Nms detection strategy
in object locating for MOT. Similarly, Table 2 shows that our tracker outperforms
existing online trackers on half of the metrics and achieves the best performance
in terms of IDF1, MT, IDs and Frag on the MOT17 dataset.

In addition, as shown in Table 1, our tracker has a high FP. According to
this phenomenon, the detection strategy proposed in this paper is combining the
object detection results and pose estimation results. This can alleviate unreliable
detection and complement missing object. Second, we find that only the moving
pedestrians are recorded as tracking object ground-truth in MOT16 and MOT17.
Nevertheless the detection strategy proposed in this paper can detect and track
these small-scale pedestrians, occluded pedestrians, stationary pedestrians and
pedestrians who are not recorded as tracking objects. Therefore, our detection
strategy will cause the phenomenon of high FP, and the similar situation exists
in [4,5] too. This phenomenon also reflects the effectiveness of the detection
strategy proposed in this paper.

4.3 Ablation Studies

In order to verify the effectiveness of the proposed detection strategy and evalu-
ate its contribution, we use different object detection results and conduct abla-
tion experiments in the MOT16 dataset. We choose Mask R-CNN [11] and SDP
[28] as bounding box-based object detection method and PifPaf [15] as pose esti-
mation method. In addition, to exclude the disturbance of other factors, we use
DeepSORT [25], the more common method in MOT, for tracking.

Table 3. Evaluation tracking results on MOT16 dataset with different detection
method. Ours (M+P) indicates combining Mask R-CNN detection results and Pif-
Paf pose estimation results. Ours (S+P) indicates combining SDP detection results
and PifPaf pose estimation results.

Method MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDs↓
Mask R-CNN [11] 40.2 52.6 21.5% 26.9% 14266 51234 528

SDP [28] 60.7 62.4 31.3% 20.9% 3417 38041 462

PifPaf [15] 37.6 51.8 14.5% 32.1% 14652 53729 537

Ours (M+P) 43.8 55.8 22.6% 22.8% 15226 46270 511

Ours (S+P) 64.3 65.9 34.4% 15.6% 5115 35732 433

The experiment results are shown in Table 3. The comparison between our
detection strategy and object detection methods and pose estimation method
confirms that our detection strategy performs best. Our detection strategy
improves 3.6 in MOTA, 3.5 in IDF1, 3.1% in MT with the second best detection
method and effectively reduced FN demonstrating the merits of our detection
strategy in locating the objects. By combining object detection results and pose
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Fig. 4. Visualization of pose-guided object locating results and self-attention maps.

Table 4. Evaluation results on MOT16 with different feature representations.

Method MOTA↑ IDF1↑ IDs↓
DenseNet121 [12] 61.7 63.1 548

PCB [22] 62.6 64.3 482

Ours (TBSAN) 65.7 68.7 455

estimation results, our detection strategy can reduce unreliable detections and
alleviate missing detections, as shown in Fig. 4(a).

To demonstrate the contribution of the proposed DSAN network in our
method, we compare representations learned by DSAN with PCB, DenseNet-
121. Moreover, we use SDP [28] detection result, provide by MOT16 officially,
for tracking. The experiment results are shown in Table 4. It can be seen that
the IDF1, IDs and MOTA of DSAN are better than other methods. Our tracker
upgrades MOTA to 65.7, IDF1 to 68.7 and reduces IDs to 455, which demon-
strates the effectiveness of our feature extraction network.

Figure 4(b) shows the visualization results of the self-attention feature map
from DSAN. In Fig. 4(b), each group consists of four images. The top row of
each group shows an image pair from the same object, while the bottom row
presents corresponding self-attention feature maps. It can be seen that our self-
attention feature map focus more explicitly on object regions and suppress noise
and occlusion, which enhances the power of extracting discriminative features.

5 Conclusions

This paper presents a detection strategy and a feature extraction network to
improves two main components of most online trackers, detection and feature
extraction. The tracker locates joint points of objects with pose estimation
results. Then generating optimal object bounding boxes by proposed Soft-Pose-
NMS method, which also helps alleviate typical difficulties in tracking such as
occlusion handling and track drifting. In this paper, the tracker learns the dis-
criminative self-attention maps from the MOT dataset with the Self-Attention



234 X. Zhang et al.

mechanism to calculate more accurate similarity scores. The experimental results
on MOT Challenge datasets demonstrated that the proposed tracking framework
leads to competitive performance improvement through extensive experiments.
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Abstract. Action recognition in videos has attracted growing research
interests because of the explosive surveillance data in social security
applications. In this process, due to the distraction and deviation of the
network caused by occlusions, human action features usually suffer differ-
ent degrees of performance degradation. Considering the occlusion scene
in the wild, we find that the occluded objects usually move unpredictably
but continuously. Thus, we propose a random walk erasing with atten-
tion calibration (RWEAC) for action recognition. Specifically, we intro-
duce the random walk erasing (RWE) module to simulate the unknown
occluded real conditions in frame sequence, expanding the diversity of
data samples. In the case of erasing (or occlusion), the attention area is
sparse. We leverage the attention calibration (AC) module to force the
attention to stay stable in other regions of interest. In short, our novel
RWEAC network enhances the ability to learn comprehensive features
in a complex environment and make the feature representation robust.
Experiments are conducted on the challenging video action recognition
UCF101 and HMDB51 datasets. The extensive comparison results
and ablation studies demonstrate the effectiveness and strength of the
proposed method.

Keywords: Action recognition · Random walk erasing · Data
augmentation · Attention calibration · Siamese network

1 Introduction

Action recognition has enjoyed great success in recent years owing to the devel-
opment of deep neural networks. It aims at analyzing an ongoing action from
an unknown video or image sequence automatically. Recent action recognition
methods have achieved promising results. Generally, these methods extract the
most representative action features in the monotonous environment, but they
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Fig. 1. Illustration of the effects of occlusion in action recognition. A complete moving
subject may be occluded by other subjects in the real world, thus losing helpful infor-
mation and causing attention confusion. The blue color in the figure is the occluded
action objects that need to be identified. We can see that the critical information is
occluded, and the model’s attention may be disturbed by other objects, resulting in an
inaccurate recognition effect. (Color figure online)

do not meet the standards of practical applications. Optimizing semantic infor-
mation in complex scenes is an elusive challenge [19].

As real-world video has complex motion information and a complex environ-
ment, many entities will move in unpredictable ways. Occlusion happens when the
background disturbs, or the action actor is hidden by another object of the same
type, and it will significantly interfere with the correct judgment of the network
for the action, as shown in Fig. 1, and this phenomenon is unpredictable. Previ-
ous methods [1,3,16,26] mainly focused on searching for more efficient and robust
architectures. [1,3] incomplete key-points and feed them to 3D temporal convo-
lution networks to handle the occlusion conditions. [16] introduces the radio fre-
quency (RF) signals as input. [26] discusses the background disturbing by adding
the background in the image. However, with the change of the position of the cam-
era or scene, the moving subject will change the occluded object or degree. The
above lacks enough persuasiveness for reality to separate humans from the back-
ground. In this way, the random occlusion is lost, and even the interaction between
persons and objects, persons, and background is ignored. The addition of another
modal increases the amount of calculation and also brings the alignment problem
between modals. In addition, the above-mentioned occlusion-based method does
not consider the diversity and authenticity of occlusion in the video, and there is
no associated spatio-temporal characteristic between video sequences, which does
not meet the random walk of occluded objects in a natural scene.

This paper aims to enhance the robustness of recognizing actions in complex
scenes by proposing random walk erasing (RWE). The difference from the ran-
dom erasing algorithm is shown in Fig. 3. In the continuous frame sequence of
each epoch, an RWE module is introduced to simulate the actual situation. As
we all know, action recognition may be affected by background information [26].
Due to the random erasing, we can treat persons and backgrounds equally
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without losing the connection between the actors and the appropriate envi-
ronment. If there is no additional modal noise, we should make the occlusion
area continue to occur in multiple frames and have a temporal and spatial cor-
relation between the previous and next frames. This operation makes the two
connected frames in the video more coherent, and at the same time, increases
the generalization ability of convolutional neural networks (CNNs).

However, the only branch cannot provide a precise and holistic description of
the whole video due to the occluded semantic information. The spatial-temporal
erasing branch deletes some region expressions and mistakenly gets rid of some
informative cues, especially under the circumstances of self-occlusion. Hence,
the Siamese inputs are introduced for obtaining more robust and informative
feature representations. On the one hand, the erased one pays more attention to
small-scale information after erasing some areas, which helps learn richer details.
On the other hand, the original path can retain useful features, preventing the
erased vital information.

Intuitively, visual semantic information, i.e., the actor, the interaction, and
the scene, is essential for action recognition. Semantics together with motion
trajectories reveal the implication of human action. Two different regions of the
same video frames would deliver various semantics. For example, for a region
in clear frames, the focus of this action is likely to be the objects related but
not the action itself. It might obstruct the machine from distinguishing the
specific features of videos. According to the drawback, we leverage the attention
mechanism to exclude the interference of occlusions. Here, we introduce the
attention mechanism to obtain attention map. Compared with previous attention
mechanisms [25] used in action recognition, attention map employed here is to
find more comprehensive and purposeful features. However, the existence of the
occlusion confuses the network to make the right decisions and hesitate around
the area of occlusion. Therefore, we introduced an attention calibration (AC)
module in our network to solve this problem. Through the AC module, the
acquisition error or scattered characterization information caused by occlusion
can be corrected again, and the impact of occlusion can be weakened so that the
attention mechanism can turn to find other regions of interest.

In this work, we propose an RWEAC network to improve the model’s ability
to recognize actions in complex video scenes with occlusion. Specifically, we use
the RWE module to simulate accurate occlusion and the AC module to correct
the attention confused by the occluded object. Given a video, we randomly select
an area, and then according to the randomness of the movement of the occluded
object relative to the moving object in the video, we randomly add a moving
direction and move a certain distance for each frame. After the occlusion, the
original information and the information are added to learn global and local fea-
tures through the Siamese network. By adding AC modules and fusing features,
different identification information of the same video can be aggregated. Using
attention calibration can reduce the distraction caused by occlusion and force
the attention mechanism to find other places of interest, thereby improving the
robustness of recognition tasks in complex scenes.
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The paper has threefold contributions:

• We introduce the random walk erasing (RWE) module to simulate the random
occlusion problem in reality. Meanwhile, the module can simulate occlusion
drift under natural conditions and concerns the data augmentation for the
videos.

• We present an attention calibration (AC) module to exploit semantic cor-
relations of the erasing feature and original feature. The AC module may
calibrate the attention under the occlusion shift condition.

• We introduce the RWEAC network to improve the robustness to partially
occluded samples. When we randomly add occlusion to the benchmark test-
ing dataset, extensive experiments significantly show that our methods out-
perform the baseline model.

2 Related Work

2.1 Video Action Recognition

Advances in action recognition are primarily driven by the success of 2D Con-
vNets in image recognition. Two-stream models and 3D convolution models are
two representative streams of neural network methods for action recognition.
Two-stream methods [8,22,29] train spatial (RGB) and temporal (optical) flows
separately, and the final prediction is obtained by averaging the outputs of the
two classifiers. However, these types of methods mainly suffer from two limita-
tions. First, these methods need pre-compute optical flow, which is expensive
in both time and space. Second, the learned feature and final prediction from
multiple segments are fused simply using weighted or average sum, making it
inferior to temporal relationship modeling.

Another type of method tries to learn spatio-temporal features from videos
directly with 3D CNN [2,4,7,24], which could only rely on RGB information
and achieve impressive performance in end-to-end ways. C3D [24] is the first
work to learn spatio-temporal features using deep 3D CNN. However, Its per-
formance on standard benchmarks is not satisfactory. I3D [2] inflated the filters
and pooling kernels of 2D ConvNet pre-trained on ImageNet into 3D to cap-
ture spatio-temporal features. After pre-training on Kinetics, I3D has achieved
very competitive performance in benchmark datasets. Since most traditional 3D
networks only use the local correlation along the input channels, STCNet [4]
inserts its STC block into 3D ResNet to model the spatial-temporal correlation
between 3D CNN channels, to improve the performance of 3D networks. The
Slowfast [7] model is an inspiring architecture, which uses a slow path to cap-
ture actual spatial semantics, and a fast path to capture motion at acceptable
temporal resolution.

2.2 Motion Occlusion in Video

Erasing algorithm has been widely used in the field of person and vehicle re-
identification [30,33] to simulate occlusion and has been gradually applied to
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the field of action recognition in recent years. [34] propose an occlusion-aware
Siamese network, which uses attention mechanism to predict the attention heat
map of recognizable occlusion, and performs feature reconstruction to recover
the information destroyed by occlusion excessively. By employing estimated 2D
confidence heatmaps of key-points and optical-flow consistency constraint, [3]
filter out the unreliable estimations of occluded key-points to enforce temporal
smoothness to produce a full 3D pose. [1] presented the ActionX Pose algo-
rithm for 2D pose-based Human Action Recognition, which proposed high-level
features to improve accuracy and robustness to occlusions and missing data in
comparison with the low-level features-based method. [16] is the first model to
generate a 3D human skeleton using RF signal as input, which proves that the
model can recognize the behavior and interaction under occlusion or extreme
lousy light conditions. To mitigate the model reliance towards the background,
[26] proposed a background erasing (BE) method, which forces the model to
draw closer to the features of the interfering video and the original video so
that the model is limited to resist the influence of the background and pay more
attention to the action.

Unlike these works that only consider the spatial information of the occlusion
region, our proposed RWE method more dynamically adapts to the occlusion
situation in the actual video scene, adding spatio-temporal correlations to the
inter-frame occlusion, and obtains more robust representation information.

3 Approach

This section presents the RWEAC network in three aspects in detail. We first
elaborate on the overall network architecture. Then, the RWE module and the
AC module are introduced.

3.1 Network Overview

The core idea of RWEAC mainly includes two parts. The RWE dynamically fits
the state of the unpredictable occluded area in the actual scene to obtain more
robust representation information. Moreover, the AC module is used to correct
the problem of attention wandering in the erasing area after RWE. As shown
in Fig. 2, we use the two-stream 3D CNN model, and each path uses the same
network structure. The network takes the original video as the input, and the
two paths sample video frames at different rates. The slow path of processing
spatial semantics takes T frames as the input, and the other path takes αT
frame as the input. In particular, the slow path is divided into two branches:
the branch processing the original data and the branch adding RWE informa-
tion. The specific RWE module is shown in Subsect. 3.2, and then the weight
information is shared in the way of Siamese input so that the local information
erased matches the global information of the original data. Then, the AC mod-
ule is used to make the network get more accurate and refined representation
information for training. The fast path adopts a structure similar to Slowfast,
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Fig. 2. Architecture diagram of our proposed approach. The RWEAC network includes
two paths, both of which use ResNet3D-50 as the backbone network. The RWE module
has the Siamese input and fused by the AC module after the conv1 of ResNet.

shares data with the network of the slow path using horizontal links, and finally
carries out prediction and classification together.

3.2 Random Walk Erasing Module

This paper uses Random Walk Erasing data with temporal information to
simulate occluded objects with unpredictable spatio-temporal features in nat-
ural complex scenes and consider the consistency between frames and unknown
occluded motion features. In this section, we describe the implementation of the
RWE algorithm and the use of Siamese input structure.

Random Walk Erasing Processing of Video. By adding random walk
spatio-temporal association information between frames in the erasing area, each
frame will move in a certain range relative to the previous frame, which can more
accurately simulate the occlusion movement in the video. The specific methods
are as follows:

During training, the video V is cut into T frames using a video decoder
during each round of training. The area Se and aspect ratio re of an erasing
region are initialized randomly for each video, and then the length and width of
the erased area can be initialized randomly:

h =
√

Se ∗ re

w =
√

Se/re
(1)
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Fig. 3. The difference between random erasing algorithm (a) and random walk erasing
algorithm (b). It can be seen that compared with the former, the latter adds a random
motion process to the occlusion block itself, which is similar to the random walk state
of non moving subjects in the real scene, and is more in line with the characteristics
of complex spatio-temporal characteristics of occlusion in video.

For the first frame of each video sequence T , the coordinates of the erasing
region are initialized randomly:

x0 = random(0,W − w)
y0 = random(0,H − h)

(2)

For the remaining i−1 frames, k units are moved in the direction of Direction
based on the (xi−1, yi−1) of previous frame. Direction is initialized randomly to
determine the movement angle of the occlusion area. A total of 8 directions are
taken, and the function Ψ as shown in Fig. 3.

Direction = random(0, 7) (3)

(xi, yi) = Ψ(Direction, xi−1, yi−1, k) (4)

Finally, random pixel values are processed for each frame erasing region:

P (x, y) = random(0, 255) (5)

Thus, the video frame sequence after erasing Tre is obtained.

Siamese Input. The entire network is divided into two main pathways, and
we choose the spatial way to learn feature semantic representation in the video.
There exist two branches that take the randomly occluded frames as input in
the spatial pathway. The sharing mechanism between the two branches reduces
the number of parameters and improves network efficiency.

Because the spatial semantic information in the video is redundant, the same
input may obtain different representations. To make the spatial path obtain more
valuable features, it is thought of using the teacher-student model, i.e. distillation
to perform the instructional program. Teacher models with more comprehensive
and reliable information provide more confident supervision for student models.
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Fig. 4. Attention Calibration Algorithm. It can be seen that the feature (d) obtained by
the AC model corrects the salient points in (a) and weakens the influence of occlusion.

In our method, we take the branch of the spatial path input original information
as the teacher and the branch input as the added occlusion information as the
student.

In this paper, we abandon the usage of distillation and propose a teacher-
student model to simulate the process. As shown in Fig. 2, the structure of
Siamese input is used to capture the representation information of different
branches in the spatial path.

3.3 Attention Calibration Module

Attention Calibration Algorithm. Adding attention mechanism after RWE
can enhance the most comprehensive features of the not occluded part and
improve the accuracy of action recognition in complex scenes. A single attention
mechanism may lead to the oscillation of the region of interest, thus reducing
the recognition accuracy of the network. Therefore, we propose an AC module,
as shown in Fig. 4.

The two branches of the spatial path get Fs and Fre, through the conv1 layer
of ResNet-50. The information lost in Fre may affect the overall performance,
and Fs itself still carries enormous distractive information. Therefore, we fuse
features in the following ways:

Firstly, normalize the feature Fre extracted from occlusion information to
get F

′
re:

F
′
re =

1
1 + e−Fre

(6)

Fc is obtained by Hadamard product of the feature Fs and F
′
re, which as (c)

showed in Fig. 4:
Fc = F

′
re � Fs (7)

so we can use the features of F
′
re to guide Fs to pay attention to the common

useful representation information.
Finally, we combine Fs and Fc by elements addition:

FAC = ϕ(Fs ⊕ Fc) (8)
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To get feature FAC , which is (d) in Fig. 4, And ϕ is the combination of batch
normalization (BN) layer and rectified linear unit (ReLU) activation function.
Compared with Fs, FAC can weaken the attention of the corresponding location
according to the characteristic information of the occluded patches of Fre.

3D-CBAM. CBAM [32] is a simple yet effective attention module for 2D feed-
forward CNNs, which consists of channel attention module (CAM) and space
attention module (SAM). Different from 2D convolution, 3D convolution net-
work has one more temporal dimension. Therefore, we improved CBAM to work
effectively in 3D convolutional networks.

For the feature map F3d ∈ R
C×T×H×W (T is the number of video frames)

after 3D convolution in this paper, we first get the one-dimensional feature map
MCAM3d ∈ R

C×1×1×1 through the CAM, and then multiply it with F3d to get
F

′
3d. Then the two-dimensional feature map MSAM3d ∈ R

C×1×1×1 is obtained
by SAM, and the final accurate output F

′′
3d is obtained by multiplying with F

′
3d.

The formula of the whole process is as follows:

F
′
3d = MCAM3d(F3d) ⊗ F3d

F
′′
3d = MSAM3d(F

′
3d) ⊗ F

′
3d

(9)

where ⊗ denotes element-wise multiplication.
The channel attention module uses the feature relationship between channels

to select the features that play a decisive role in prediction. We first aggregate
spatial information of a feature map by using both average-pooling and max-
pooling operations and get the F c

avg and F c
max, then forward to a shared network

multi-Layer perceptron (MLP). After passing through the shared network, we use
element-wise summation and the sigmoid function to generate channel attention
feature map MCAM3d . In short, the channel attention is computed as:

MCAM3D (F3D) = σ(MLP(AvgPool3D(F3D))) + MLP(MaxPool3D(F3D))
= σ(W1(W0(F c

avg)) + W1(W0(F c
max)))

(10)

where σ denotes the sigmoid function, W0 and W1 are MLP weights that are
shared for both inputs.

SAM focuses on which pixels in RGB images play a decisive role in network
prediction. Firstly, The channel attention feature map and input feature map
are element-wise multiplied to generate the input features F

′
3d of the SAM. After

that, we aggregate channel information of a feature map by using two pooling
operations, generating two feature maps: F s

avg and F s
max. Then they are con-

catenated and convoluted by standard convolution layer. After dimensionality
reduction, the sigmoid function is used to generate the 3D spatial attention map.
The formula is as follows:

MS3D(F
′
3D) = σ(fConv[AvgPool3D(F

′
3D);MaxPool3D(F

′
3D)])

= σ(fConv[F s
avg;F

s
max])

(11)
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4 Experiments

4.1 Datasets and Implementations

Datasets. We evaluate our approach on two widely applied benchmark datasets,
UCF101 [23] and HMDB51 [13]. UCF101 is a realistic video dataset that con-
tains 13,320 videos from YouTube, and each source video usually corresponds
to an action type. It has great diversity in action acquisition, including appear-
ance change, attitude change, object proportion change, background change,
etc. HMDB51 contains 6,849 videos in 51 action categories, most of which are
edited from movies clips. Moreover, it eliminates the interference caused by cam-
era motion and uses standard image stitching technology to align video clips.
We follow the provided evaluation protocol and adopt standard different train-
ing/testing splits for both of them. We use the same data format as Slowfast [7]
and resize the video to the short edge size of 256 via FFmpeg.

Metrics. The UCF101 and HMDB51 dataset has three official splits. We
calculate the accuracy of the three classifications and report the average. More-
over, we report the top-1 classification accuracy on the average accuracy over
three splits.

Implementations. The backbone network we used is ResNet-50. We pre-train
the model on Kinetics400 [12] and fine-tune it on the two datasets. Two 1080Ti
GPUs are used to train the whole model, with a batch size of 16 and an initial
learning rate of 0.025. We adopt stochastic gradient descent (SGD) as our opti-
mizer with momentum of 0.9 and weight decay of 1e−5. For each input video, it
is processed in the temporal domain and spatial domain. We randomly sample
an αT × τ (α = 4, T = 8, τ = 8) frame clip of a full-length video along the time
axis for processing in the temporal domain, and the input of the two pathways
are respectively T and αT frames. For the spatial domain, we stochastically crop
224 × 224 pixels from a video, or its horizontal flip, with a shorter side sampled in
[256, 320] pixels [56, 56]. And then, we randomly flip and jitter all inputs during
the training phase for data enhancement, same as other 3D CNN methods [31].

Following the conventional method of evaluating the accuracy of action recog-
nition in 3D-CNN, we sampled 10 clips uniformly along the time axis of the video,
and scale the shorter spatial side to 256 pixels, and take 3 crops of 256× 256
(instead of 224 × 224 for training) to cover the spatial dimensions. The inference-
time spatial size is 2562 and 10 temporal clips each with 3 spatial crops are used
(30 views). Then get the final prediction by averaging the scores of all clips.

4.2 Main Results

In this section, to verify the effectiveness of the algorithm, we compare our
method with other methods in the standard datasets UCF101 and HMDB51.
We use the train and test settings reported in Sect. 4.1 and report top-1 and
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Table 1. Comparison of top-1 accuracy (%) performances with the state-of-the-arts
on UCF101 and HMDB51. Bold numbers are the best results. Blue numbers is the
second best result. † indicates that method is reproduced by us.

Method Venue Flow Backbone UCF101 HMDB51

Two-stream [22] NeurIPS ’14 � CNN 88.0 59.4

LRCN [6] CVPR ’15 � CNN 82.3 -

TDD [28] CVPR ’15 � CNN 90.3 63.2

Fusion [8] CVPR ’16 � VGG-16 92.5 65.4

TSN [29] ECCV ’16 � BN-Inception 94.0 68.5

TLE [5] CVPR ’17 � BN-Inception 95.6 71.1

C3D [24] ICCV ’15 × VGG-16 82.3 56.8

P3D [21] ICCV ’17 × ResNet-50 88.6 -

I3D-RGB [2] CVPR ’17 × BN-Inception 95.6 74.8

ARTNET [27] CVPR ’18 × ResNet-18 94.3 70.9

ResNet3D [10] CVPR ’18 × ResNetXt-101 94.5 70.2

ECO [35] ECCV ’18 × ResNet-18 94.8 72.4

TSM [20] ICCV ’19 × ResNet-50 95.9 73.5

STM [11] ICCV ’19 × ResNet-50 96.2 72.2

SIFP [14] ACM MM ’20 × ResNet-50 94.0 72.3

CIDC [17] ECCV ’20 × ResNet-50 95.3 74.5

TEA [18] CVPR ’20 × ResNet-50 96.9 73.3

SPL [15] AAAI ’21 × ResNet-50 94.6 67.6

SMART [9] AAAI ’21 × BN-Inception 95.8 74.6

Slowfast [7] † ICCV ’19 × ResNet-50 95.7 75.7

RWEAC × ResNet-50 96.4 76.1

top-5 accuracy. The results in Table 1 show that our proposed method achieves
encouraging results. Typical neural network models currently used for origi-
nal video action recognition include two-stream methods and 3D convolution
methods. Following the chronology, we will compare these two methods and the
state-of-the-art methods.

The 2D two-stream methods use the original RGB video and computation-
ally complex optical flow for motion recognition. Our proposed method uses
only the original RGB video for recognition, and according to the comparison
results on the two datasets shown in Table 1, our method has higher recognition
accuracy than most 2D two-stream algorithms. This proves the advantages and
competitiveness of our RWEAC method. In the second part of the table, we only
compare methods of 3D convolution using RGB video as input. The results show
that our results on the two datasets have reached the best compared to some
classic methods. We compare state-of-the-art methods in the past two years,
and the experimental results prove that our method is better than most. Among
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Table 2. The respective ablation experiments of the two components and their influ-
ence in the overall framework on UCF101.

Method top-1 top-5

Baseline 95.7 99.4

Baseline w RE 95.9 99.6

Baseline w RWE (k = 0) 96.0 99.7

Baseline w RWE (k = 1) 96.2 99.7

Baseline w RWE (k = 2) 95.7 99.7

Baseline w RWE (k = 1) & CBAM 95.8 99.6

Baseline w RWE (k = 1) & AC 96.4 99.8

them, the result on UCF101 dataset is second only to TEA which used the
motion exception module to process adjacent frames, and uses the multiple tem-
poral aggregation module to process distant frames, so as to identify actions with
strong time correlation, such as the long jump actions in UCf101 dataset, which
is more accurate than our method. However, the accuracy rate on HMDB51
dataset has reached state-of-the-art. That is because compared with the former,
the interaction between the action objects of HMDB51 dataset and persons,
objects, and scenes are more frequent than that of UCF101 dataset, and there
are more occlusions. This further shows that our method improves the accuracy
and robustness of behavior recognition when occlusion occurs in complex scenes.

4.3 Ablation Studies

In this section, we investigate how the various components of our approach
contribute to its final performance and then use the accuracy of top-1 and top-5
on the UCF101 dataset to comprehensively evaluate our proposed RWEAC.
All ablation experiments use the reasoning setting of Sect. 4.1.

Network Structures. Our RWEAC framework contains two key structure
designs: the RWE module and the AC module. As shown in Table 2, we con-
ducted overall ablation experiments to verify the effect of these components and
the complete framework combined with components.

It can be seen that the addition of the RWE allows the network to learn more
about the action information when there is an occlusion in the video scene,
brings about 0.5% top-1 and 0.3% top-5 accuracy improvement compared to
the baseline. Moreover, the RWE module increases the Complexity of spatial
and temporal domains in video data and improves recognition. Therefore, the
addition of AC enables the network to pay attention to the critical information
after joining RWE, enhances the robustness of recognition, and improves the
top-1 of 0.7% and the top-5 of 0.4% compared with the baseline. From the
experimental results, it can be concluded that the two components are practical
and improve the overall framework’s recognition accuracy.
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Effect of RWE. Firstly, it can be seen from Table 2 that compared with the
baseline and its addition of the classic random erasing used in the image, it
proves that insufficient data with occlusion will limit the accuracy of action
recognition to a certain extent. At the same time, the RWE we proposed has
a higher accuracy rate, which shows that the random walk of erasure block is
more suitable for simulating the unpredictable dynamic occlusion information in
video than the classical RE method. Moreover, we also implement a parameter
comparison experiment on the stride k in RWE. The experimental results show
that the best effect is obtained when the k = 1 is more consistent with the
average moving speed of the occlusion area in the video scene, so it is more
suitable to simulate the dynamic occlusion information in the video.

Effect of AC. The results in the second part of Table 2 show that the effect of
adding attention mechanism after using erasing algorithm is worse than that of
using erasing algorithm alone, which indicates that after adding occlusion infor-
mation, attention will be distracted and inaccurate focus will be obtained. So we
need to correct attention so that the proper attention can pay more attention to
the right place. Our method is to send the features of the two branches into the
attention mechanism after calibration and fusion. The results show that adding
AC is better than only using attention mechanism and improves the accuracy
after adding RWE, which indicates that our AC model can eliminate the prob-
lem of distraction in the erased area. By fusing the two branches of the spatial
path, we can find features with high reliability in the residual information after
erasing, the robustness of occlusion recognition is enhanced.

5 Conclusion

This paper constructed a novel random walk erasing with attention calibra-
tion (RWEAC) network to learn the comprehensive video representation. We
introduced the random walk erasing (RWE) module to simulate the occlusion
of the natural environment. In addition, as a data expansion, the RWE module
increased the diversity of samples and improves the difficulty of identification. All
experiments demonstrated that our novel RWEAC achieved excellent accuracy
on benchmark video datasets, and the accuracy of top-1 on HMDB51 dataset
reaches the state-of-the-art result in 3D-CNN models. In the future, we intend
to improve the random walk erasure model and look forward to proposing a data
enhancement algorithm that better fits the complex scenes in the real world.
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Abstract. Target-driven visual navigation without mapping works to
solve navigation problems that given a target object, mobile robots
can navigate to the target object. Recently, visual navigation has been
researched and improved largely by learning-based methods. However,
their methods lack depth information and spatial perception, using only
single RGB images. To overcome these problems, two methods are pre-
sented in this paper. Firstly, we encode visual features of objects by
dynamic graph convolutional network and extract 3D spatial features
for objects by 3D geometry, a high level visual feature for agent to easily
understand object relationship. Secondly, as human beings, they solve
this problem in two steps, first exploring a new environment to find the
target object and second planning a path to arrive. Inspired by the way
of humans navigation, we propose direction estimation module (DEM)
based on RGB-D images. DEM provides direction estimation of the tar-
get object to our learning model by a wheel odometry. Given a target
object, first stage, our agent explores an unseen scene to detect the target
object. Second stage, when detected the target object, we can estimate
current location of the target object by 3D geometry, after that, each
step of the agent, DEM will estimate new location of target object, and
give direction information of the target object from a first-view image.
It can guide our agent to navigate to the target object. Our experiment
results outperforms the result of state of the art method in the artificial
environment AI2-Thor.

Keywords: Visual navigation · Mobile robot · Direction estimation
module · Reinforcement learning

1 Introduction

Target-driven visual navigation aims to help a agent to solve object-based goal
navigation problem based on its first-perspective visual observation. Given a tar-
get object, an agent can explore unseen environment and navigate to the target
object based on visual inputs. Because of complex environment and a lack of
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location information of the target object and agent itself, it is a challenging task
for agent to achieve without mapping. A series of deep learning based methods
and deep reinforcement learning methods [4,7,17,20,21,24] have been proposed
to tackle this problem. Their techniques bring large improvement of visual navi-
gation task in simulation environment. However, two problems need to be solved.
Firstly, lack of depth information and spatial perception makes it easier for the
agent to collide with other objects. Secondly, these methods ignore some complex
situations in the real world. For example, after the agent finds the target object,
it may lose field of view of the target object due to obstacles and perspective
reasons. In fact, once the agent finds the target object, it can estimate approx-
imate direction of each step for the target object by a wheel odometry. Since
the action spaces for our agent is limited, the agent has a fixed rotation angle
and moving distance. We present two methods to handle these questions. First
of all, we train our agent to explore an unseen environment to detect objects
by employing object detector from RGB-D images, encode spatial relationship
of objects by dynamic graph convolutional network and compute 3D coordinate
of detected objects as high level features by 3D geometry. We extract the high
level object relation features for our model to strengthen spatial awareness of
the agent. Moreover, when human beings try to navigate to a target object in
an unseen environment, they usually catch sight of the target, and then they
know its approximate location in their head for each step. Inspired by human
navigation, we design a new module called direction estimation module (DEM).
We compute coordinate of the detected target object by 3D geometry and then
project it to 2D space. After that, we take direction information of the target
object as additional input to train agent using DEM.

Like [20], we adopt LSTM [8] and Asynchronous Advantage Actor-critic
(A3C) architecture [15] to study navigation policy for agent in the 3D simu-
lation environment AI2-Thor [11]. Experiment results shows that our method
outperforms the state of the art method. Most notably, our method improves
5.5% of success rate (SR) and 3% of success weighted by path length (SPL) for
all length path.

Overall, the main contributions of this paper are as follows:

– We extract object detection information and employ dynamic GCN module
to encode visual features of objects from images and then we generate 3D
spatial features using RGB-D frame to get relationship of current objects.
It helps agent to easily perceive spatial relationship of objects in complex
environments.

– We design direction estimation module (DEM) to generate direction infor-
mation of target objects as input for our network, once the agent detected
the target object, it will accept direction feature of the target object as input
for each step which can guide the agent to navigate to the target object. The
direction information is not relevant to the environment, so it will improve
the generalization ability of our network.
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– We introduce a new reward strategy to train our model which efficiently
improves performance of navigation task. Owing to enhanced capability of 3D
spatial perception and direction estimation module, our model can converge
more quickly than other methods.

2 Related Works

Visual navigation is an important technique for indoor intelligent robots. Indoor
navigation is full of challenge because of complex and unseen environment. Map-
ping, navigation method and end-to-end visual navigation without mapping
method have been proposed by researchers to solve this problem. Traditional
navigation mainly focus on building a map and planning on the map. Feder
et al. [5]; Cummins et al. [3]; Oriolo et al. [16] propose traditional mapping
and planning methods for mobile robots. Sebastian et al. [19] proposed metric-
topological maps for indoor mobile robot navigation. Learning-based mapping
and navigation have been employed in [7] by Gupta et al. However, these tech-
niques rely on accuracy of mapping and can not work in dynamic semantic scenes
and unseen environment.

The navigation problem without prior information can be defined as a state
space search problem. Howard et al. [9]; Krose et al. [13] propose state space
search methods to solve navigation problems. Reinforcement learning method
can also solve some state search problems. Recently, reinforcement learning (RL)
based visual navigation has attracted many researchers to study. Piotr Mirowski
et al. [14] propose jointly learning and deep estimation to navigate in 3D mazes.
Zhu et al. [24] propose RL-based approach for agent to navigate taking only with
a target image and first-view images as input. These works [21,22] pay attention
to semantic scene and knowledge graph of objects for navigation. Wu, Yi et al.
[21] propose Bayesian Relational Memory for semantic visual navigation. Wei
Yang et al. [22] use Graph Convolutional Networks (GCN) with prior knowledge
from Visual Genome [12] dataset to encode 3D spatial relationship. Wortsman
et al. [20] propose meta-reinforcement learning method [6] to navigate.

Recently, many 3d simulation environments and datasets have been proposed
to solve navigation problem of embodied agent. AI2-Thor [11] environment is
designed to solve reinforcement learning and indoor visual navigation problem.
Matterport3D [2] is a cross-scene datasets, The authors of this article propose
visual and language navigation problem, meanwhile, they introduce a baseline
method for this problem. Habitat [18] is a modular high-level library for end-to-
end development for embedded robot to complete different navigation tasks. In
this paper, we focus on indoor visual navigation using AI2-Thor environment.

3 Method

We aim to improve spatial perception of mobile robot using RGB-D based
method. With only RGB image input, agent can not construct 3D spatial rela-
tionship of scenes efficiently. To achieve this goal, we construct a deep learning



RGB-D Based Visual Navigation Using Direction Estimation Module 255

reinforcement architecture to learn navigation policy. Firstly, given first per-
spective RGB-D images of our agent as input, we use object detection method
to detect objects and 3d geometry methods to compute 3d coordinate of the
objects as high level spatial features. Following [4], we use dynamic graph con-
volutional network to encode object visual features. An agent can navigate to
a target object in two stages. First stage, the agent explore novel environment
to find target object. Second stage, the agent plans a path to get to the target
object. The agent may lose field of view for the target object from first-view due
to the complexity of the unseen environment. To help the agent to avoid losing
the target object, we employ direction estimation module (DEM) to estimate
direction of current target object from first-view. We train our network to learn
navigation policy in AI2-Thor simulation environment.

Fig. 1. Model overview. We use object information detected by object detector and
frozen ResNet18 feature map extracted from images as model input. We encode object
visual features by dynamic graph convolutional network and compute 3D coordinate of
objects using 3D geometry. Specifically, we estimate direction of a target object using
DEM each step, concatenate inputs and feed them to LSTM module. We adopt A3C
architecture to train our model.

3.1 Task Definition

Our task is that given a target object from set O = {AlarmClock, ..., T oaster}
represented by word embedding and a scene random chosen from set S =
{S1, ..., Sn}, the agent can navigate to positions near the target. The distance
between the target and the ending position should be less than threshold (e.g.
1.5 m). The agent takes egocentric images as input, and the sensor input of agent
is RGB-D image in this paper. The action spaces for the agent are RotateLeft,
RotateRight, MoveAhead, Lookup, LookDown, Done. For each step, the agent
can choose an action to execute from action spaces.

We define a complete episode that once the agent executes action “Done”
or steps of agent exceeds a threshold, the episode ends. When the agent signals
“Done” and the target object appears in current first-view image and meanwhile
the actual distance from the target object to the agent is less than threshold (e.g.
1.5 m), we define this episode is successful, otherwise, the episode fails.
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3.2 3D Geometry

Without distance information, the agent can not understand spatial relationship
efficiently. To solve this problem, we use RGB-D images as input so that the agent
can enhance ability of spatial perception of the surrounding environment. We
can reconstruct 3d coordinate of any pixel point by 3d geometry with a RGB-D
image. Given an point (x, y, z) on camera coordinate system, we can calculate
pixel coordinate (u, v, 1) by using camera intrinsic matrix as follow:

z
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Similarly, we can compute 3d coordinate of pixel by inverse intrinsic matrix.
We can get intrinsic matrix by camera calibration methods such as zhang et
al. [23]. In this paper, we use 3d simulation environment AI2-THOR [11] to
train navigation policy for agent. Different from physical camera, AI2-THOR is
built by unity engine, we should compute 3d coordinate from rendering images
by inverse projection matrix rather than intrinsic matrix, we can get projection
matrix from AI2-Thor. Since the rendering method is not the focus of this article,
we will not go into details here.

Fig. 2. Example of DEM. As the graph shown, our agent detected the target object
in t-th step and calculate direction of the target object. After that, in t+2, t+4 step, we
use DEM to compute the new direction of the target object from first view. Direction
information can guide the agent get to the target object.

3.3 Visual and Spatial Features of Objects

We detect objects from an egocentric image and compute corresponding 3d coor-
dinate of objects on camera coordinate system. To get relative visual features for
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objects of interest, We perform Faster R-CNN network [17] to detect objects of
interest, extract information from the second ResBlock layer of the network and
project bounding box positions to the layer to get 512 dimensions of local detec-
tion feature. We concatenate local detection features of all objects to N × 512
features represented by L, where N is the number of different types of objects.
We extract bounding box position, confidence and labels information of objects,
concatenate them to N × 5 feature as 2d spatial feature map. Following [4], we
use dynamic graph convolutional module to encode 2d spatial relationship of
objects using the 2d spatial feature map as input. We can represent it as follow:

H(l+1) = f(A · H l · W l) (2)

where A is adjacent matrix and W l is the parameters of l-th GCN layer, the
final layer H encodes spatial relationship of objects. f is ReLU activate function.
Different from traditional GCNs, we do not use pre-defined adjacent matrix. We
represent A and W parameters by linear layers and our network learn A and W
parameters by training. After that, we encode 2d spatial feature map to N × N
feature represented by D. To get visual features of objects, we also employ graph
attention layer to focus on visual features for objects of interest. We use feature
D as our attention map. The formula as follow:

F̂ = f(D · L) (3)

F̂ represents our visual features of objects. We compute the (xcenter, ycenter)
center of bounding box for each category. If corresponding category of objects do
not exist in current perspective, we represent it as 0. We can obtain Z value from
depth image from (xcenter, ycenter) position. Then, we calculate 3D coordinate for
objects detected from first-view image and concatenate them as N × 3 features.
At last, we concatenate visual features of objects and 3D spatial features to
N×515 matrix as our features of objects. Since our GCN network encode features
without prior knowledge, It can adapt new environment well. And we directly
encode 3D spatial relationship as input so that our model can easily perceive
spatial relationship which is helpful for our agent to make decision to navigate
in complex environment.

3.4 Direction Estimation Module

When human beings navigate to a target object in an unseen environment, they
usually try to explore environment to catch sight of the target object and plan a
path to get to the target object. We know approximate orientation after we saw
the target object. We design Direction Estimation Module to estimate direction
estimation of target object each step after agent firstly caught sight of target.
Firstly, if object detector detect target object successfully, we can compute 3D
coordinate of target object on camera coordinate system. To simplify estimation
procedure, we project (x, y, z) to (x, z) from 3D coordinate system to 2D coor-
dinate system. Assume that our mobile robot has a perfect odometry, we can
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compute rotation matrix and translation vector of action for mobile robot each
step. The deduction of odometry system of mobile robot is omitted, because this
is not our primary focus. After finding the target object, we can calculate its
3D coordinate (x, y, z) and project it to a 2D coordinate (x, z) on 2D coordinate
system. We can deduce position of target object relative to the agent any step,
the equation as follows:

(
xt+1

zt+1

)
=
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cosθ sinθ β
−sinθ cosθ γ

0 0 1
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(xt, zt) and (xt+1, zt+1) are the positions of the target object relative to the
agent at t and t+1 step. (β, γ) is translation vector and θ is rotation angle from
t step to t+1 step. When getting relative position of target object of last step,
we compute direction of target object as follows.

θ = arctan(
z

x
) (5)

We convert the angle to direction of first-view for agent, for example, +45◦

means 45◦ to right of agent, similarly, −45◦ means to 45◦ to left of agent. The
example is shown in Fig. 2. We feed the direction information as input to model
to guide agent make rational decision each step. The reason why we do not
give accurate position to model is that existing error from odometry system
and object detection. Above all, we give rough direction rather than precise
position to avoid overfitting of model, a slight change in direction caused by
existing error has little effect on decision making for agent. We only need to know
its approximate direction. Meanwhile, to avoid cumulative error, once target
object detected by object detector again, we update its position again and reset
transform matrix.

3.5 Actor-Critic Policy Network

We employ Asynchronous Advantage Actor-Critic (A3C) [15] architecture to
learn policy for our agent. As the Fig. 1 shown, we extract global visual fea-
tures from egocentric image using Resnet18 backbone pre-trained on ImageNet,
concatenate object visual features from GCN module and 3d spatial features
from 3d geometry as inputs for our model. To estimate location of the target
object, we use DEM module proposed above to compute possible direction of the
target object. Meanwhile, we encode our target object and last action as word
embedding, concatenate with visual features mentioned above. Then we perform
pointwise convolution to the inputs and feed the inputs to a Long Short-Term
Memory module (LSTM). Finally we utilize A3C architecture to get policy and
value for our agent.

We consider a reward function to minimize the trajectory length of agent
for visual navigation. When our agent navigates to near of target object within
numbers of steps, we will give the agent a large positive reward 5. Each step, the
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agent will receive −0.005 negative reward so that the agent can learn to reduce
the number of steps. Moreover, to improve efficiency of navigation and avoid
status of dead lock which the agent is always repeating same actions. We penalize
the agent −0.005 when it steps to location where it has been arrived. This can
activate our agent to explore unknown location for complex environment.

4 Experiment

Our target in this section is to evaluate our model and compare with other meth-
ods, to demonstrate that our method is more effective to accomplish navigation
task and analyse how our method improve performance by ablation experiment.

4.1 Dataset and Evaluation

We train our model in AI2-Thor [11] which includes four types of 3D scenes. They
are living room, bedroom, kitchen and bathroom. Each of them has 30 rooms
with different layout, texture and furniture. Following [20], we choose 22 types
of objects from all rooms as our navigation targets. Each type of room has over
four different targets. We use Success Rate (SR) and Success weighted by Path
Length (SPL) as our performance evaluation for visual navigation. The success
rate is defined as 1

N

∑N
i=1 Si, SPL proposed by [1] evaluates navigation efficiency

of agent, defined as 1
N

∑N
i=1 Si

Li

max(Pi,Li)
, where N is number of episodes, Si

represents binary indicator (success or fail), Li is the length of the optimal
trajectory from initial position to target position and Pi denotes the length of
actual trajectory of navigation of the i-th episode. We evaluate our model on all
length path and length over 5, we use L ≥ 5 to represent it.

4.2 Experiment Setup and Comparison Methods

We adopt training and evaluation methods using AI2-Thor following [1]. Sim-
ilarly, we choose 20 rooms for training, 5 rooms for validation from each type
of scene. To evaluate generalization of our model, we use 20 remaining unseen
scenes to test.

Random Policy. We use random strategy to sample action from action space
for agent.

Scene Prior. [22] uses prior knowledge of object relation learned from additional
database to train a deep reinforcement learning model.

Self-adaptive Visual Navigation Method (SAVN). [20] proposes meta-
learning based visual navigation in unseen environments.

Learning Object Relation Graph and Tentative Policy for Visual Nav-
igation. [4] proposes object relation graph (ORG), tentative policy (TPN) and
imitation learning (IL) for visual navigation in unseen environment. It is state of
the art method so far in visual navigation field. The method did not use depth
feature of images. For fair comparison, we replace its input features with our
input features information encoding as new input called D-(ORG+IL).
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4.3 Training Details

We train our model with 12 asynchronous workers, each worker trains naviga-
tion gradient with random state in different scenes and transfer gradients to
shared model. We employ Adam optimizer [10] to update our parameters of
navigation policy. For learning rate, we choose 10−4. For evaluation, we perform
1000 episodes in different scenes, 250 episodes for each type of scene. For reward
function, we give a positive reward 5 when agent get to target object and sig-
nal “Done”, and each step we penalize agent −0.005. To reduce duplicate steps,
the agent will receive −0.005 when it repeats same action. We retrain our object
detector Faster R-CNN with dataset from AI2-Thor scenes. To avoid overfitting,
we only use images from half of scenes to train our object detector.

Table 1. Quantitative results. We compare our performance of model with above
methods. We use success rate (%) denoted by Success and SPL as our evaluation
metrics. As a result, our method shows major improvement in both SR and SPL.

Method ALL L ≥= 5

Success SPL Success SPL

Random 8.0 0.036 0.3 0.001

SP [22] 15.5 0.351 22.2 0.114

SAVN [20] 40.8 0.161 28.7 0.139

ORG+IL+TPN [4] 69.3 0.394 60.7 0.386

D-(ORG+IL) [4] 70.8 0.397 62.2 0.402

Ours 76.3 0.421 69.0 0.446

4.4 Results and Analysis

Table 1 summarizes the results of our approach and the baselines. Our method
outperforms other technologies listed in the table both on Success Rate (SR)
and Success weighted by Path Length (SPL) metrics. Scene Prior [22] extracts
object spatial relationship from extra database using graph convolutional net-
work. However, the spatial relationship between objects from different scenes
is changing. Thus, directly learning from additional database can not adapt
complex unseen environment. For this reason, we use object detector to detect
position of object and employ 3d geometry to compute 3d position of detected
object, encode local object spatial relationship by dynamic graph convolutional
network. Our model only pay attention to current object spatial relationship,
it stimulates our agent to select appropriate action by spatial perception rather
than using fixed object relation. Thus, our method can adapt new environment
well even without prior knowledge. SAVN [20] proposes meta learning based
method to visual navigation. The article uses glove embedding to encode tar-
get object and ResNet18 (frozen) feature as input. But visual feature and word
feature are characteristics from different dimension, it is difficult for network
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Fig. 3. SPL and Success Rate on testing set. The graph shows that our method
outperform other methods both on spl and success rate, and achieves the state of art.
Our approach has faster convergence speed than other methods.

to map target glove embedding to corresponding visual feature. To tackle this
problem, following [4] we encode target object to N × 1 one-hot embedding,
extract all object information and map them to N×M matrix, N is categories
of object, M is dimension of visual information encoded. It helps model to find
the relation between target object and visual features. Different from method
(ORG+IL+TPN) [4], we not only extract object relation from egocentric image
but compute 3d spatial relation of them rather than only information from object
detector. Thus, our model can more easily perceive the three-dimensional spatial
relationship. The agent may loses view of target object from first-view because of
avoiding obstacles or complex environment, these methods are not consider how
to handle this problem, our direction estimation module can solve this prob-
lem by estimating direction of target of first-view to guide agent to navigate.
Since our method utilises depth information of image and TPN module can not
train end to end, It needs extra 2M episodes to train from (ORG+IL) trained
model. So, for fair comparison, we feed our 3d spatial relation features to model
(ORG+IL), called D-(ORG+IL). As shown from tables, our method improves
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5.5% of success rate, 2.4% of SPL for all path and 6.8% of success rate, 4.4% for
at least 5 length path than state of art method.

Figure 3 compares the performance for SPL and Success Rate of above meth-
ods in 6 million epoches. We see that our method performs better than other
methods both on SPL and Success Rate. Above all, our method can fastly con-
verge and get higher success rate only within 1 million epoches than other meth-
ods and each epoch our method outperforms than other methods. Our direction
estimation module can guide our agent to navigate to target even encountering
obstacles or losing target from view. Meanwhile, in order to improve the effi-
ciency of our agent in navigation, we try to reduce duplicate actions to a same
position for the agent by designing corresponding reward function, when it steps
to the same position, we penalize our agent with a little negative value. It both
improves our Success Rate and SPL since our agent learn to plan an optimal
path to get more positive reward.

Table 2. Comparison of our modules. The comparison of performance for our
different methods.

Method w/o 3d features w/o DEM w/o our reward Ours

ALL Success 68.1 72.3 74.3 76.3

SPL 0.352 0.402 0.435 0.421

L >= 5 Success 60.0 63.7 67.7 69.0

SPL 0.368 0.408 0.448 0.446

4.5 Ablation Study

Our main contributions in this paper are that we proposed 3d spatial features,
direction estimation module and a new reward strategy for agent, to clearly
compare effects of our different methods, we perform an ablation on our methods
for our navigation task.

Ablation of 3d Spatial Features. To improve capability of spatial perception
for our agent, we introduce 3d spatial features so that the agent can understand
complex environment. We verify the effect of this module by ablation experiment.
As indicated in Table 2, the performance of our method with 3d spatial features
improves efficiently compared with (w/o 3d feature). This demonstrate that high
level spatial features can enhance ability of understanding spatial relationship
of unseen environment.

Impact of Direction Estimation Module. We propose DEM method
inspired by visual navigation of human in corresponding circumstance. Since
the agent may lose view of target object because of complicated environment
or path planning, we introduce DEM method to calculate direction of target
object which the agent have found in first-view image. As shown in Table 2, our
DEM method outperforms than (w/o DEM) method both on SPL and Success
Rate. A rough direction information of target object can guide our agent to



RGB-D Based Visual Navigation Using Direction Estimation Module 263

plan a better path and avoid duplicate steps. Another advantage of DEM is that
it’s independent of navigation environment, this means the method can adapt
complex environment and has good generalization capability.

Modifying Reward Function. We adjust reward strategy based on reward
function from SAVN [20] method. To avoid deadlock or duplicate steps for our
agent, we design reward function proposed above. As illustrated in Table 2, there
is an increase in Success Rate. We penalise a negative reward when the agent falls
into status of duplicate position. The experiment shows that our reward strategy
can improve success rate of navigation. We can see that the performance for SPL
using normal reward strategy is better than ours, because difficult tasks need
more steps to explore, when some complex object-based navigation tasks are
accomplished by our methods, it will reduce complete SPL metrices.

5 Conclusion

In this paper, we propose employing 3d geometry to compute high level visual
features and introduce a new method called direction estimation module to esti-
mate direction of target object. Our high level visual features improve ability
for spatial perception of agent, It helps agent fastly understand an unseen and
complex environment. When our agent navigates to a target object, it may lose
view of the target object. To avoid lose position of detected target object, we use
DEM to estimate a real-time direction for the target object, so that our agent
can quickly arrive to target object. Since DEM method is independent of the
environment, it has high generalization capability in other unseen environment.
To improve efficiency for path planning of our agent, we design a new reward
function to avoid duplicate actions. Our experiments results demonstrate our
method outperforms other methods and achieves state of art. Our next work
will focus on visual navigation of cross-scene.
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Abstract. In recent years, single image deraining has received consider-
able research interests. Supervised learning is widely adopted for training
dedicated deraining networks to achieve promising results on synthetic
datasets, while limiting in handling real-world rainy images. Unsuper-
vised and semi-supervised learning-based deranining methods have been
studied to improve the performance on real cases, but their quantitative
results are still inferior. In this paper, we propose to address this crucial
issue for image deraining in terms of backbone architecture and the strat-
egy of semi-supervised learning. First, in terms of network architecture,
we propose an attentive image deraining network (AIDNet), where resid-
ual attention block is proposed to exploit the beneficial deep feature from
the rain streak layer to background image layer. Then, different from
the traditional semi-supervised method by enforcing the consistency of
rain pattern distribution between real rainy images and synthetic rainy
images, we explore the correlation between the real clean images and the
predicted background image by imposing adversarial losses in wavelet
space IHH , IHL, and ILH , resulting in the final AID-DWT model. Exten-
sive experiments on both synthetic and real-world rainy images have
validated that our AID-DWT can achieve better deraining results than
not only existing semi-supervised deraining methods qualitatively but
also outperform state-of-the-art supervised deraining methods quanti-
tatively. All the source code and pre-trained models are available at
https://github.com/cuiyixin555/DeRain-DWT.

Keywords: Single image deraining · Semi-supervised learning ·
Attention · Discrete wavelet transform

1 Introduction

Single image deraining is a challenging task, and has a board application prospect
in object detection, outdoor recognition and automatic driving [4,11] when fac-
ing bad weather condition. Image deraining can be regarded as an image decom-
position problem that rainy image can be separated into rain pattern space R
and clean background image space X . Previously, traditional optimization algo-
rithms, e.g. low-rank model, sparse code model, and Gaussian mixture model
c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13033, pp. 265–278, 2021.
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[1,15,18,21,25], etc., are adopted as the priors of rain streak layer and back-
ground image layer. However, these handcrafted designed priors are limited in
modeling the complicated composition pattern of real-world rainy images, and
also they are very time-consuming. With the rapid development of deep learning
in recent years, learning-based deraining methods have achieved great progress.
Supervised learning is introduced to address image deraining problem, and many
Convolutional Neural Networks (CNNs)-based methods for single image derain-
ing have been proposed [6,8,24,26,28–30,33,41]. These methods employ deep
networks to automatically extract features of layers, enabling them to model
more complex mappings from rainy images to clean images. Albeit great quanti-
tative results on synthetic datasets, they cannot well deal with real-world rainy
images. Then, unsupervised learning and semi-supervised learning are suggested
to exploit real-world rainy images, leading to better generalization in practi-
cal applications. But unsupervised deraining method is quantitatively inferior
to supervised deraining methods. In [31,35], transfer learning is introduced to
transfer deraining model trained on synthetic images to real rainy images. As
for heavy rainy image, these semi-supervised deraining methods can not process
it, and there is leeway to improve deraining visual quality.

In this paper, we adopt semi-supervised strategy that we design a residual
attention image deraining network and introduce real clean images to make our
network learn the similarity of image texture in discrete wavelet space. In par-
ticular, we design the main network into two parts, where one is used to extract
rainy streak layer, and the other is used to recover clean background image.
As training iterations increasing, each convolution attention block is used as
a coefficient unit for rainy pattern feature aggregation in image space. As for
semi-supervised stage, to make the predicted clean background more natural,
we design a discriminator which contains multiple convolutional layers to cal-
culate adversarial losses between real-world clean images and predicted clean
images in three subband fHH , fHL and fLH . As for residual attention modules,
we adopt 4 kinds of attention modules to explore its performance advantages in
our deraining backbone.

Extensive experiments have been conducted on both synthetic and real-world
rainy benchmark datasets. Our model quantitatively outperforms not only semi-
supervised deraining method qualitatively but also state-of-the-art supervised
deraining methods quantitatively.

Our contributions can be summarized from three aspects:

– We propose a simple yet effective semi-supervised deraining approach by Dis-
crete Wavelet Transform (DWT), via which real-world clean images can be
easily used to benefit the generalization ability of trained deraining model.

– We design a residual attention-based image deraining model to enhance the
separation of the rain streak layer and the corresponding background layer;
We use a ordinary convolution attention block for rain streak feature extrac-
tion, and compare with the other three attention modules, such as self-
calibration block [17], attention feature fusion block [36] and self-attention
block [39].
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Fig. 1. The architecture of Semi-supervised deraining with Haar Wavelet Transform.

– Extensive experiments on synthetic and real-world rainy images have been
conducted to validate that our model is superior to both supervised and
semi-supervised deraining methods.

2 Related Works

Deep learning-based image deraining has been widely studied with the super-
vised learning manner, where various network architectures are designed to learn
the mapping from rainy image to clean background image. In pioneer works
[5,6], CNN and ResNet are first adopted to predict clean background image,
outperforming conventional deraining methods. Subsequently, more complicated
network architectures are proposed to better extract deep features from rainy
images. In [28,30], multi-scale strategy can help model learn image features
under different scales and enhance its robustness; Especially the application of
dilation convolution is proposed, which is benefited in detecting and removing
rain streaks simultaneously. In [14,26], recurrent networks are proposed to handle
heavy rain streak accumulation. In [29,37], densely connected CNN is adopted
for jointly estimating rain density and removing rain streaks. Besides, there are
several works to incorporate lightweight networks in a cascaded scheme [3] or in
a Laplacian pyramid framework [7].
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Moreover, in [38], the authors propose to take advantage of adversarial learn-
ing to enhance the texture details in derained images. Most recently, pre-trained
transformer [8] is introduced to significantly improve the quantitative metrics for
image deraining. To sum up, supervised learning-based deraining methods have
achieved excellent performance on paired synthetic datasets, but the trained
deraining model are likely to poorly generalize to real-world rainy images. Then,
unsupervised learning and semi-supervised learning are suggested to exploit real-
world rainy images, leading to better generalization in practical applications. In
[42], Zhu et al. proposed to adopt CycleGAN [43] to exploit unpaired real rainy
images, which can improve generalization ability to real rainy images. In [31],
SIRR is proposed to transfer deraining model trained on synthetic images to
real rainy images. In [35], Syn2Real is proposed by adopting Gaussian processes
to exploit both synthetic and real rainy images. However, these semi-supervised
and unsupervised deraining methods may also be inferior to supervised methods
in terms of quantitative metrics, and there is leeway to improve deraining visual
quality.

3 Semi-supervised Image Deraining by DWT

In this section, we first present the proposed semi-supervised deraining frame-
work by discrete wavelet transform in Sect. 3.1, and then give the details of
residual attention framework in Sect. 3.2, finally the realization of our semi-
supervised training method on the discrete wavelet transform is explained in
Sect. 3.3.

3.1 Methodology Overview

As shown in Fig. 1, we propose to exploit real-world rainy images without paired
ground-truth when training deraining networks, which is a semi-supervised app-
roach. Different from [31,35], we propose a simple yet effective discriminative
learning strategy by DWT to enforce the feature consistency of clean back-
ground from synthetic and real-world clean images on three subband fHH , fHL

and fLH . As shown in Fig. 1, the entire network structure is divided into two
parts; One is LSTM followed by 5 resblocks for background prediction, and the
other is LSTM followed by 3 resblocks to rain streak extracted. Between the
upper and lower parts, the residual attentive blocks is applied to converge rain
pattern feature removal in image space. Formally, the procedure is described as

Resr
t
i = Fresi(hr

t−1), i = 1, 2, 3

Resx
t
j = Fresj (hx

t−1), j = 1, 2, 3, 4, 5

Rabx
t
k = Frabk(resrti) × resx

t
j + resx

t
j , k = 1, 2, 3

(1)

where hidden state hr is from LSTM in space R, hidden state hx is from LSTM
in space X , resr

t
i indicates the residual map of i-th ResBlock in space R, resx

t
j

denotes the residual map of j-th ResBlock in space X . And thus there are three
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Fig. 2. Top row : (a) self-calibrated attention, (b) convolutional attention. Bottom row :
(c) feature fusion attention, (d) self-attention.

RAB modules, where rabx
t
k connects the i-th ResBlock in R and j-th ResBlock

in X , exploiting the beneficial deep features between R and X . The last crucial
issue is how to determine the connections of i and j. To answer this question, we
conducted experiments on Rain200H datasets [28] to validate the effectiveness
of different connections. We will explain it specificly.

Finally, the predicted background Xg is used to initialize discrete wavelet
transform discriminator network. When training deraining model shown on bot-
tom row by only using real-world clean images, adversarial losses calculated in
predicted background Xg and real clean image Xc in fHH , fHL and fLH that is
adopted to enforce its the consistency of feature distribution. Our model AID-
DWT can achieve better results than existing semi-supervised and supervised
deraining methods.

Overall, AID-DWT model consists of three parts: (i) Recurrent training for
rain streak extracted and clean background image predicted with ResLSTM
framework; (ii) Applying attention block for extracting rainy pattern feature
strongly in image space; (iii) Calculating three subband adversarial losses on
fHH and fHL and fLH .

3.2 Residual Attentive Network Architecture

The good design of attention block can describe the rain pattern feature to the
maximum extent. With the structure of deep CNNs becoming more and more
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Fig. 3. Examples about the comparison of our method with other methods on
Rain200H dataset.

complicated, extracting mean feature and max feature by average pool and max
pool is not enough to achieve satisfactory results. Thanks to variety of attention
module [17,32,36,39], as shown in Fig. 2, we will explain them respectively.

Self-Calibrated Block (SC): Different from the traditional attention mecha-
nism, its usually performs operations in the dimension of the feature to obtain
the average feature and the maximum feature. SC block has four parts of filters,
i.e., [K1, K2, K3, K4]. Through splitting filters, the input X with channel C is split
into X1 and X2 through 1 × 1 convolution with the channel C/2. Reviewing the
entire self-calibrated convolution, it enables each spatial position to adaptively
encode the context, which make difference between it and traditional attention
block (CA).

Self-Attention Block (SAN): In [39], Zhao et al. firstly introduce feature
aggregation into pairwise self-attention block. The whole procedure is describe
as

yi =
∑

j∈R(i)

α(xi, xj) � β(xj), (2)

where xi and xj are feature maps with indexes i and j, � is the Hadamard
product called aggregated with R(i). In order to utilize more surrounding pixels,
the size of footprint is set 5 × 5.

Attention Feature Fusion Block (AFF): Similar to traditional convolution
attention block (CA), AFF block [36] extracts the key pixels, as well as processes
the residual information further. The whole process can be described as
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Fig. 4. Examples about the comparison of our method with other methods on real-
world datasets.

αi = Local(xi) + Global(xi), (3)

yi = xi × α + Res(xi) × (1 − α), (4)

where αi is a attentional factor that is realized through a local attention block
and a global attention block; A local attention block include multi-layer con-
volution that help model to learn feature based on dimension, while a global
attention contains global average pool to extracted feature on space. Finally, the
original feature xi and the residual feature Res(xi) are proportionally distributed
through attentional factor, which effectively solves the problem of information
decreased as the number of convolution layers increases.

Convolution Attention Block (CA): As a traditional attention block, CA
is widely used in feature extraction. As for input feature map F (H×W×C), it
will be dealt with global max pooling and global average pooling, respectively
to obtain two 1 × 1 × C features. And then, its will be sent to a two-layer
neural network (MLP) that the number of neurons in the first layer is C/r (r is
the reduction rate), the activation function is Relu, and the number of neurons
in the second layer is C; The two-layer neural network is shared. After that,
the MLP output features are subjected to an element-wise addition operation,
as well as the sigmoid activation operation is performed to generate the final
channel attention feature, namely Mc. Finally, the Mc and the input feature
map F are subjected to an element-wise multiplication operation to generate
the input features required by the Spatial attention module.
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3.3 Discriminator by DWT for Semi-supervised Method

In 2D Discrete wavelet transform (DWT), four filters, i.e. fLL, fLH , fHL, and
fHH , are used to convolve with an image x [19]. To illustrate the three subband
filter, we first give the definition of fLH , fHL, and fHH ,

fLH =
[−1 −1

1 1

]
, fHL =

[−1 1
−1 1

]
, fHH =

[
1 −1

−1 1

]
. (5)

Given an image x with size of m × n, the (i, j)-th value of x1 after 2D discrete
transform can be written as x1(i, j) = x(2i−1, 2j −1)+x(2i−1, 2j)+x(2i, 2j −
1) + x(2i, 2j). Even though the downsampling operation is deployed, due to the
biorthogonal property of DWT, the original image x can be accurately recon-
structed by the inverse wavelet transform (IWT), i.e., x = IWT (x1,x2,x3,x4).

In order to make our predicted clean background image have similar tex-
ture distribution with real-world clean image, we introduce adversarial loss in
the three subband image fHH , fHL, fLH . First, we achieve Xhh, Xhl and Xlh by
Hadamard product with above three subband. Our goal is to train the discrim-
inator with the above subband images as

Lhh = Adv(Xi
hh,Xc

hh), (6)

Lhl = Adv(Xi
hl,X

c
hl), (7)

Llh = Adv(Xi
lh,Xc

lh), (8)

where Adv is WGAN-GP Loss, as well as Xi and Xc are denoted as a predicted
background and a real-world clean image, respectively. So, we can treat Xc

hh,
Xc

hl and Xc
lh as pseudo label for corresponding predicted output.

4 Experimental Results

In this section, we conduct extensive experiments to demonstrate the effective-
ness of the proposed method on widely used four synthetic datasets and two
real-world datasets. Eight state-of-the-art baseline are compared in this paper.
Next, we will introduce the datasets and measurements in details as in Sect. 4.1,
implementation details in Sect. 4.2, results on synthetic datasets and real-world
datasets in Sect. 4.3 and ablation study in Sect. 4.4, respectively.

4.1 Datasets and Measurements

Our experiment is verified on four synthetic datasets and two real-world datasets,
such as Rain200H [28], Rain1200 [37], Rain1400 [6] and Rain12 [16] for synthetic,
as well as SPADatasets [27] and Real275 for real-world datasets. Rain200H has
heavy rain with different shapes, directions and sizes, which is the most chal-
lenging dataset including 1800 images for training and 200 images for testing.
Rain200L contains the same number of pictures, which has light rain and easy to
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trained. Rain1200 has three different level of rain images, including heavy rain,
medium rain and light rain, which contains 12000 training images and 1200 test-
ing images. Rain1400 has medium level rain images, which includes 12600 images
for training and 1400 images for testing. Rain12 has 12 images for testing. SPA
Datasets include 1000 testing images with labels. In addition, we has achieve 275
real rainy images from Internet. We has trained our proposed model on different
datasets for verifying its robustness.

Table 1. The values of PSNR, SSIM and NIQE on two real datasets. Red, blue and
cyan colors are used to indicate top 1st, 2nd and 3rd rank, respectively.

NLEDN [13] ReHEN [34] PReNet [26] RPDNet [22] AID AID-HWT

Dataset PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SPA 30.596 0.9363 32.652 0.9297 32.720 0.9317 32.803 0.9337 31.721 0.9359 33.263 0.9375

Dataset Derain GT Derain GT Derain GT Derain GT Derain GT Derain GT

Real275 3.5554 – 3.7355 – 3.7745 – 3.8957 – 3.6013 – 3.5519 –

MSPFN [10] DRDNet [2] SIRR [31] Syn2Real [35] AID AID-HWT

Dataset PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SPA 29.538 0.9193 28.083 0.9126 22.666 0.7474 31.824 0.9307 31.721 0.9359 33.263 0.9375

Dataset Derain GT Derain GT Derain GT Derain GT Derain GT Derain GT

Real275 3.8616 – 3.6634 – 3.5592 – 4.0372 – 3.6013 – 3.5519 –

4.2 Implementation Details

Our AID-DWT networks are implemented using Pytorch [23] framework, adopt
ADAM [12] algorithm for optimization, and are trained on PC equipped with
two NVIDIA GTX 2080Ti GPUs. In our experiments, all the network shared
the same training setting. We trained the network for 100 epochs. Each pair of
training of samples will be randomly cropped 100× 100 pixels. Adam optimizer
is used with a learning rate of 0.001 which is divided by 5 after the 30th epochs,
50th epochs and 80th epochs.

4.3 Results and Analysis

Quantitative Comparsion. We compare our proposed model with NLEDN
[13], ReHEN [34], PReNet [26], RPDNet [22], MSPFN [10] and DRDNet [2],
which baseline models adopted supervised pattern, and SIRR [31], Syn2Real
[35] with semi-supervised methods under the three metrics of PSNR [9], SSIM
[40] and NIQE [20]. We trained our models on the synthetic datasets Rain200H,
Rain1200 and Rain1400, and compare the quantitative results obtained with
the training methods under the corresponding dataset, respectively. The metric
results are presented on Table 2 and Table 1. Our proposed method has achieved
the highest PSNR, SSIM and NIQE in all datasets.

Qualitative Comparsion. Figure 3 exhibits some synthetic examples on
Rain200H dataset. We can see that we proposed model can achieve the best
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Table 2. The values of PSNR and SSIM on four synthetic datasets. Red, blue and
cyan colors are used to indicate top 1st, 2nd and 3rd rank, respectively.

NLEDN [13] ReHEN [34] PReNet [26] AID-HWT

Dataset PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Rain200H 27.315 0.8904 27.525 0.8663 27.883 0.8908 28.903 0.9074

Rain1200 30.799 0.9127 30.456 0.8702 27.307 0.8712 31.960 0.9136

Rain1400 30.808 0.9181 30.984 0.9156 30.609 0.9181 31.001 0.9246

Rain12 33.028 0.9615 35.095 0.9400 34.7912 0.9644 35.587 0.9679

RPDNet [22] MSPFN [10] DRDNet [2] AID-HWT

Dataset PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Rain200H 27.909 0.8923 25.554 0.8039 22.825 0.7114 28.903 0.9074

Rain1200 26.486 0.8401 30.390 0.8862 28.386 0.8275 31.960 0.9136

Rain1400 30.772 0.9178 30.016 0.9164 28.360 0.8574 31.001 0.9246

Rain12 35.055 0.9657 34.253 0.9469 25.199 0.8497 35.587 0.9679

results, while other baseline models also are left some artifacts or remaining rain
streaks. Especially, DRDNet [2] fails to work on Rain200H datasets. In addition,
we also provide some examples shown in Fig. 4 of real-world datasets to prove
the superiority of the proposed algorithm comparing with others. Expecially the
rainy scene in forth column, our method can well recognize the cropped area that
presents interspace between a trunk and the other, while the RPDNet [22] model
removed it and regard it as a rain streak; In addition, our model can remove
most of the rain streaks in the background while MSPFN [10] and DRDNet [2]
even leaves behind traces of rain streaks. To sum up, our proposed model can
adapt various rainy condition and restore image details and texture information
better.

4.4 Ablation Study

In this section, we analyse the proposed model by conducting various experi-
ments on Rain200H [28] datasets.

We analyze the network designment that consist of different attention mod-
ules, different location for residual attention connection, different recurrent stage
numbers, different unsupervised losses. The experiment results are illustrated in
Table 3, Table 4 and Table 5;

We adopt four attention block in ablation experiments on condition of the
residual attention location fixed on j = 1, 3, 5, such as SAN block [39], AFF block
[36], SC block [17] and CA block [32]; Further more, as for different combinations
of location for residual attentive connection (RC), we set four experiments on
different location, such as j = 1, 2, 3, j = 2, 3, 4, j = 3, 4, 5 and j = 1, 3, 5;
To explore whether unsupervised losses with HWT can play a key role in the
clean background predication, we set four experiments with LHH , LHL, LLH

and without HWT operation.
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Table 3. The results of different modules on Rain200H. The best results are highlighted
in boldface.

Experiments E1 E2 E3 E4 E5 E6 E7 E8

Single SAN Block �
Single AFF Block �
Single SC Block �
Single CA Block � � � � �
RA Connection on Location 1, 2, 3 �
RA Connection on Location 2, 3, 4 �
RA Connection on Location 3, 4, 5 �
RA Connection on Location 1, 3, 5 � � � � �
PSNR 28.871 27.423 28.581 28.903 28.646 28.587 28.398 28.903

SSIM 0.9066 0.8882 0.9027 0.9074 0.9054 0.9046 0.9042 0.9074

Table 4. The results of different stage numbers on Rain200H. The best results are
highlighted in boldface.

Experiments E9 E10 E11 E12 E13 E14 E15 E16 E17

1 Recurrent Stage �
2 Recurrent Stage �
3 Recurrent Stage �
4 Recurrent Stage �
5 Recurrent Stage �
6 Recurrent Stage �
7 Recurrent Stage �
8 Recurrent Stage �
9 Recurrent Stage �
PSNR 25.753 26.392 27.501 27.761 28.073 28.277 28.346 28.903 28.760

SSIM 0.8732 0.8817 0.8914 0.8949 0.8986 0.8991 0.9006 0.9074 0.9062

Analysis on Single Attentive Block. We adopted four different blocks, such
as self-attention block [39] (SAN), attention fusion feature block [36] (AFF), self-
calibrated block [17] (SC) and convolution attention block [32] (CA); When the
residual attention position is fixed on j = 1, 3, 5, the experiment results proves
that CA block can achieve better performance.

Analysis on Different Residual Attentive Connection. In order to explore
the connection of residual attention output from rain space to image space, we
conducted experiments on Rain200H to validate the effectiveness of different
connections. We set four experiments on different connection location, namely
j = 1, 2, 3, j = 2, 3, 4, j = 3, 4, 5 and j = 1, 3, 5. The experimental results show
that the location j = 1, 3, 5 can achieve best results on Table 3.

Analysis on the Number of Recurrent Stage. As the number of recurrent
stage increasing, the separation of a background layer and its rain streak layer
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Fig. 5. Examples about the comparison of different unsupervised losses on Real275.

tends to be obvious. In order to discover the optimal value of the recurrent
stage number, we set the stage T = 1, 2, 3, 4, 5, 6, 7, 8, 9; The experiments results
verified that the stage T = 8 achieve the best performance in terms of PSNR
and SSIM, whose specific results are shown on Table 4.

Analysis on Unsupervised Losses. At the stage of semi-supervised training,
in order to show the effectiveness of DWT discriminative loss, we conduct exper-
iments with LossHH , LossHL, LossLH and No-DWT that is our AID model. As
shown in Table 5, we set four different experiments to verify the unsupervised
losses effectiveness on Real275 datasets. Our final results also confirm that calcu-
lating the adversial losses of fHH , fHL and fLH between real-world clean image
and the generated clean background are more beneficial to image restoration.

Table 5. The analysis on unsupervised losses.

Experiments LHH LHL LLH AID AID-DWT

PSNR 28.557 28.574 28.491 28.548 28.903

SSIM 0.9040 0.9030 0.9028 0.9042 0.9074

5 Conclusion

In this work, we proposed a semi-supervised approach with residual attention
based on Haar wavelet transform to tackle image deraining, i.e., AID-DWT. We
design two sets of multi-layer residual block combined with the LSTM network
to divide the rainy image into streak layer space and image layer space, and
connect the two spaces through the residual attention block to accelerate the
convergence and removal of rain features in image layer space. Moreover, we
simultaneously calculate the adversarial losses on fHH , fHL and fLH between
real-world clean image and restorated background image to better predict clean
background image. Extensive experiments on synthetic and real-world bench-
mark datasets have validated the effectiveness of our AID-DWT, which quantita-
tively and qualitatively outperforms existing semi-supervised deraining methods
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and state-of-the-art supervised deraining methods. In future work, the proposed
semi-supervised framework has the potential to be extended to other relevant
low-level vision tasks, e.g., blind image denoising.
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Abstract. Human pose estimation has achieved significant improve-
ment. However, most existing methods mainly consider how to improve
the model performance using complex architecture or computationally
expensive model, ignoring the deployment costs in practice, especially in
human-robot interaction. In this paper, we investigate a highly efficient
pose estimation model with comparable accuracy. We propose an adap-
tive convolution, which can adaptively generate one or more feature maps
with desired channels. Since redundant information in the feature map
is an important characteristic, to preserve the redundant information
while taking only a few numbers of FLOPs and parameters, we propose
a light-weight block based on adaptive convolution, which is performed
with two parallel convolution operations. And then, to further reduce
the FLOPs, we propose heterogeneous filters based light-weight block,
which contains two different kinds of filters in each layer. Finally, three
light-weight units are designed to stack light-weight block, and a simple
light-weight pose estimation network (SLPE) can be easily established.
Extensive evaluations demonstrate the advantages of SLPE over state-
of-the-art methods in terms of model cost-effectiveness on the standard
benchmark datasets, MPII and COCO dataset.

Keywords: Pose estimation · Adaptive convolution · Light-weight
network

1 Introduction

Human pose estimation (HPE) is an important research issue in the field of
human-robot interaction, which can better understand human behavior and rec-
ognize activity [6,22,23,25]. The aim of HPE is to accurately locate the posi-
tions of human keypoints (e.g., elbow, wrist, etc.) or parts from images. Similar
to many vision tasks, deep learning technology makes significant progress in
HPE [8,10,13,15]. The improvement of model performance comes from more
complex and deeper network architecture and a large number of parameters and
floating point operations (FLOPs). However, these models have poor scalability,
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and cannot be applied to mobiles and robots. Thus, it is an inevitable trend to
explore a light-weight human pose estimation.

The existing methods for exploring the light-weight model can be divided
into two categories. The first approach is to use model compression, such as
quantization [9], pruning [11], etc. Quantization based methods can map multiple
weights to the same value for weight sharing. However, during inference shared
weights need to be restored to their original positions, it cannot save run-time
memory. Pruning based methods can reduce redundant connections in a pre-
trained model, and the model is usually finetuned to maintain its performance,
which requires expensive training and is a costly process.

The second approach is to establish an efficient architecture by designing
efficient convolution operation [7,12,27]. We observe that AlexNet [16] first pro-
posed group convolution, which distributes the model over two GPUs. As a spe-
cial form, depthwise convolution was proposed in Xception [7], which has been
well demonstrated its effectiveness in MobileNet [12]. Depthwise convolution
requires the same input and output channels, so a 1× 1 pointwise convolution is
usually added before or after this layer. In this case, it is inevitable to decompose
a convolutional layer into two or three sequential layers. For example, a unit in
MobileNet splits each standard convolutional layer into two layers sequentially,
which first use depthwise convolution and then pointwise convolution. The strat-
egy reduces parameters and FLOPs, but latency1 occurred.

In this paper, to improve the efficiency of pose estimation with comparable
accuracy results, we propose a new simple light-weight human pose estimation
method. Specifically, combining the advantages of depthwise convolution (DWC)
and groupwise convolution (GWC), we propose adaptive convolution, which can
adaptively obtain features with desired channels. Based on the new convolu-
tion form, a light-weight block (LWB) is presented. Different from MobileNet,
which decomposes a convolutional layer into two sequential layers, we decom-
pose a convolutional layer into two parallel layers, which are responsible for the
information exchange of several channels and all channels, respectively. This
light-weight block can well reduce FLOPs and parameters with low latency. To
further reduce FLOPs and parameters, we propose a heterogeneous filter based
light-weight block (HFLWB). Different from traditional methods, which contain
the same filter in each layer, heterogeneous filters based HFLWB contain dif-
ferent filters in each layer. Our proposed LWB/HFLWB is a generic way, which
can be easily deployed as a plug-and-play block to replace standard convolution,
without the need of changing network architectures. Based on two different light-
weight blocks, we establish an efficient neural architecture for pose estimation.
Experimental results show that the proposed light-weight pose estimation model
can decrease computational costs while preserving comparable performance. Our
contributions can be summarized as follows:

1 If one parallel step is converted to multiple sequential steps, it means increasing the
latency. Because all computations have to be done sequentially across layers, the
latter layer needs to be executed after the previous layer is executed.
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• We propose adaptive convolution, which can adaptively obtain features with
desired channels.

• We propose a light-weight block, which decomposes a convolutional layer into
two parallel layers, one of which is the layer of information exchange between
channels, and the other is the layer of information exchange within channels.

• We propose heterogeneous filters based light-weight block (HFLWB), which
contains two different kinds of filters in each layer.

Fig. 1. The illustration of adaptive convolution.

2 Methodology

In this section, we first introduce the adaptive convolution, and then describe two
different light-weight blocks. Finally, we describe network architecture details,
and show how to integrate light-weight block into pose estimation architecture.

2.1 Adaptive Convolution

For standard convolutional layer, we assume the size of input feature map X is
Hi × Wi × Ci, where Hi and Wi is the height and width of input feature map,
and Ci is the number of input channels. The operation of convolutional layer is
as follows:

Y = W ∗ X (1)

where ∗ is the convolution operation, the bias term is omitted for simplicity,
Y ∈ RHo×Wo×Co is output feature map, Ho and Wo is the height and width of
output feature map, Co is the number of output channels, W ∈ RCi×K×K×Co is
convolution filters, K the size of kernel. Therefore, the total computational cost
is Ho×Wo×K×K×Ci×Co. Since the number of channels (Ci) and convolution
filters (Co) are very large, the computational cost of standard convolution is as
large as hundreds of thousands.

To reduce the computational cost, we propose adaptive convolution (AC),
which can use linear operation on each input feature map to adaptively gener-
ate multiple feature maps from one input feature map or merge multiple input
feature maps into one feature map. Adaptive convolution can be formulated as
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Y[m] =
mα+α−1∑

j=mα

Φm

(
X[j]

)
, if Ci/Co = α

Y[(mα):(mα+α−1)] = Φm

(
X[m]

)
, if Co/Ci = α

(2)

where α > 0 represents scaling factor, X and Y represents input feature map
and output feature map, respectively. Y[m] represents feature of channel m,
Y[(mα):(mα+α−1)] = [Y[mα],Y[mα+1],Y[mα+2], . . . ,Y[mα+α−1]] represents a set
of multiple feature maps. Φm represents m-th linear operation for generating
feature map. Thus, we can obtain Co output feature maps from Ci input feature
maps by Eq. 2 as shown in Fig. 1. By using linear operations, the total computa-
tional cost of adaptive convolution is Ho ×Wo ×K ×K ×Ci ×Co)/min(Ci, Co).
We can observe that the computational cost of adaptive convolution is much
less than the standard convolution. In practice, there could be several different
linear operations in adaptive convolution, e.g. 3 × 3 and 5 × 5 linear kernels. In
this paper, we use 3 × 3 linear kernels. Compared with DWC and GWC, adap-
tive convolution does not need to manually set the group number of each layer
like GWC, nor does it require the same input and output channels as DWC.
Furthermore, adaptive convolution has large diversity and has adaptive feature
mapping.

Fig. 2. The illustration of two different light-weight block.

2.2 Light-Weight Block

In this section, based on adaptive convolution, we propose a light-weight block
(LWB) to replace the standard convolution. As we all know, redundant infor-
mation in the feature map can better understand the input data. Thus, our
light-weight block preserves the advantage while taking only a few FLOPs and
parameters. For light-weight block, the feature map will perform two parallel
convolution operations. For one convolution operation, adaptive convolution is
utilized, which describes the spatial feature of each channel and the information
exchange within adjacent feature maps. For the other convolution operation,
pointwise convolution (PWC) is utilized, which describes the features of each
point and the information exchange across channels. The light-weight block is
illustrated in Fig. 2, and the formula is as follows:

Y = W′ ∗ X + Φ(X) (3)
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where W′ is 1 × 1 convolution filters. Since our light-weight block is a plug-and-
play block, we can easily replace the standard convolution or other convolution
with the light-weight block in existing neural architectures. Here we further
analyze the profit on memory usage and theoretical speed-up when using light-
weight block. The theoretical speed-up ratio of standard convolution with the
light-weight block is

Ho×Wo×K×K×Ci×Co

Ho×Wo×Ci×Co+Ho×Wo×K×K×Ci×Co/min(Ci,Co)

= K×K
1+K×K/min(Ci,Co)

= K×K×min(Ci,Co)
min(Ci,Co)+K×K ≈ K2 (4)

where K � min (Ci, Co). The compression ratio in parameters is equal to the
speed-up ratio, since they are proportional to each other.

Fig. 3. Comparison between the proposed heterogeneous filters with other filters.

2.3 Heterogeneous Filters Based Light-Weight Block

In light-weight block, each layer uses the same filter. To further reduce the
number of FLOPs and parameters, we propose heterogeneous filters based light-
weight block (HFLWB), which contains two different kinds of filters in each layer.
Figure 3 shows pointwise convolution filters, adaptive convolution filters and het-
erogeneous filters. From the figure we can see that our proposed heterogeneous
filter consists of pointwise convolution filters and adaptive convolution filters,
each of which contains Co/2 filters. Based on heterogeneous filters, the archi-
tecture of HFLWB is shown in Fig. 2. HFLWB operates using heterogeneous
filters. However, the operation is limited to respective filters, the information
flow of the model is restricted to the respective filter. In other words, there is
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no information exchange between feature maps using adaptive convolution filters
and feature maps using pointwise convolution filters. Therefore, it is necessary to
introduce a mechanism for information exchange. To tackle the problem, channel
shuffle is used. Thus, the formula of HFLWB is as follows:

Y = Γ(Ψ(X)) (5)

where Ψ is heterogeneous filters, Γ is shuffle operation. The theoretical speed-up
ratio of standard convolution with HFLWB is

Ho×Wo×K×K×Ci×Co

(Ho×Wo×Ci×Co)/4+Ho×Wo×K×K×Ci×Co/4min(Ci,Co)

= 4K×K
1+K×K/min(Ci,Co)

= 4K×K×min(Ci,Co)
min(Ci,Co)+K×K ≈ 4K2 (6)

and the theoretical speed-up ratio of LWB with HFLWB is

Ho×Wo×Ci×Co+Ho×Wo×K×K×Ci×Co/min(Ci,Co)
(Ho×Wo×Ci×Co)/4+Ho×Wo×K×K×Ci×Co/4min(Ci,Co)

= 4 (7)

It can be seen from the above formula that speed of HFLWB is four times faster
than LWB.

Fig. 4. Detail light-weight units. a) Light-weight residual unit; b) Light-weight basic
unit; c) Light-weight interface unit.

2.4 Network Architecture

The common pipeline to predict human keypoints is composed of a stem con-
sisting of two strided convolutions decreasing the resolution, the main body with
input and output feature maps of the same resolution, and a regressor estimating
the heatmaps where the keypoint positions are chosen and transformed to the full
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resolution. We mainly focus on the light-weight of the main body. We follow the
main body of HRNet [20] for its superiority. We describe the HRNet here, and
more details can be found in [20]. HRNet starts with a high resolution branch in
the 1st stage, and maintains high-resolution representations through the whole
process. In every following stage, a new branch is added to current branches in
parallel with 1/2 of the lowest resolution in current branches. The network starts
from a stem that consists of two strided 3 × 3 convolutions decreasing the resolu-
tion to 1/4. The 1st stage contains 4 residual units where each unit is formed by
a bottleneck with the width 64, and followed by one 3 × 3 convolution reducing
the width of feature maps to 32. The 2nd, 3rd, 4th stages contain 1, 4, and 3
multi-resolution blocks, respectively. The widths of the convolutions of the four
resolutions are 32, 64, 128, and 256, respectively. Each multi-resolution block
has 4 basic units and each unit has two 3× 3 convolutions in each resolution.

We adopt HRNet backbone as our baseline. Following its design principles,
we present a simple light-weight pose estimation network (SLPE). Different from
HRNet, we replace the three units used in HRNet backbone with our proposed
three light-weight units based on LWB or HFLWB. The three units are residual
units in the 1st stage, basic units in the 2nd, 3rd and 4th stages, and interface
units between two adjacent stages. We will take LWB as an example to introduce
these three units. For residual unit, we do not directly replace it with light-weight
block, and embed our light-weight block in residual units as shown in Fig. 4(a).
Similarly, we embed our light-weight block in basic unit as shown in Fig. 4(b).
For interface unit, we only replace convolution outputting the feature maps with
the same resolution as its input feature maps as shown in Fig. 4(c). HFLWB can
also be directly replaced with the corresponding position of light-weight block.
It must be noted that our proposed lightweight block can be applied to any
arbitrary pose estimation model according to the needs.

3 Experiments

3.1 Experiment Setup

We evaluate the proposed method on two public available human pose bench-
mark datasets: MPII dataset [1] and COCO dataset [17]. In our experiments,
we study two different pose estimation networks. One is based on LWB, and the
other one is based on HFLWB. For the convenience of description, the former is
called SLPE and the latter is called SLPE-light.

MPII Dataset. The MPII dataset consists of around 25K images with 40K sub-
jects (12K subjects for testing and the remaining subjects for training) labeled
with 16 keypoints. The test annotations are not provided. So in all of our exper-
iments, we train on a subset of training images while evaluating on a heldout
validation set of around 3000 samples. These images are taken from a wide-range
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of real-world activities with full-body pose annotations. The standard evaluation
metric is based on the PCKh (head-normalized probability of correct keypoint)
score. The PCKh@0.5 (α = 0.5) score is reported. During training, following [20],
we crop the human detection box from the image, which is resized to a fixed size,
256 × 256, and use data augmentation, which includes random rotation ([−45◦;
45◦]), random scale ([0.65, 1.35]), and flipping. We use the Adam optimizer [14].
The base learning rate is set to 1e−3, and dropped to 1e−4 and 1e−5 at the
170th and 200th epochs, respectively. We train the model for a total of 210
epochs.

COCO Dataset. The COCO dataset consists of over 200,000 images and
250,000 person instances labeled with 17 keypoints. We train our model on
COCO train2017 dataset, including 57K images and 150K person instances,
and evaluate our method on the val2017 set containing 5000 images. The
standard evaluation metric is based on Object Keypoint Similarity (OKS):

OKS =
∑

i exp(−d2
i /2s2k2

i )δ(vi>0)
∑

i δ(vi>0) . Here di is the Euclidean distance between the
detected keypoint and the corresponding ground truth, vi is the visibility flag of
the ground truth, s is the object scale, and ki is a per-keypoint constant that
controls falloff. We report standard average precision and recall scores: AP50

(AP at OKS = 0.50), AP75, AP (the mean of AP scores at 10 positions, OKS
= 0.50, 0.55, . . ., 0.90, 0.95; APM for medium objects, APL for large objects,
and AR at OKS = 0.50, 0.55, . . ., 0.90, 0.955. The data augmentation and the
training strategy are the same as MPII, except that the input size is cropped to
256 × 192.

Table 1. Comparisons on the MPII validation set (PCKh@0.5).

Method Hea Sho Elb Wri Hip Kne Ank Total #Params GFLOPs

Large networks

8-stage Hourglass 96.5 96.0 90.3 85.4 88.8 85.0 81.9 89.2 25.1M 19.1

PRM [26] 96.8 96.0 90.4 86.0 89.5 85.2 82.3 89.6 28.1M 21.3

DLCM [21] 95.6 95.9 90.7 86.5 89.9 86.6 82.5 89.8 15.5M 15.6

SimpleBaseline [24] 97.0 95.9 90.3 85.0 89.2 85.3 81.3 89.6 68.6M 20.9

HRNet-W32 [20] 97.1 95.9 90.3 86.4 89.1 87.1 83.3 90.3 28.5M 9.5

Small networks

MobileNetV2 [29] – – – – – – – 85.4 9.6M 1.97

MobileNetV3 [28] – – – – – – – 84.3 8.7M 1.82

ShuffleNetV2 [18] – – – – – – – 82.8 7.6M 1.70

BCLL [2] – – – – – – – 85.5 6M –

SLPE 96.8 95.7 89.8 85.3 88.7 85.2 81.1 89.5 11.8M 2.7

SLPE-light 96.6 95.2 88.5 82.8 88.0 82.7 78.3 88.1 4.6M 1.6
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Table 2. Comparisons on the COCO validation set. Pretrain = pretrain the backbone
on the ImageNet classification task.

Method Backbone Pretrain #Params GFLOPs AP AP50 AP75 APM APL AR

Large networks

8-stage Hourglass [19] 8-stage Hourglass N 25.1M 14.3 66.9 – – – – –

CPN [4] ResNet-50 Y 27.0M 6.20 68.6 – – – – –

CPN + OHKM [4] ResNet-50 Y 27.0M 6.20 69.4 – – – – –

Simple Baseline [24] ResNet-50 Y 34.0M 8.90 70.4 88.6 78.3 67.1 77.2 76.3

Simple Baseline [24] ResNet-101 Y 53.0M 12.4 71.4 89.3 79.3 68.1 78.1 77.1

Simple Baseline [24] ResNet-152 Y 68.6M 15.7 72.0 89.3 79.8 68.7 78.9 77.8

HRNet-W32 [20] HRNet-W32 N 28.5M 7.10 73.4 89.5 80.7 70.2 80.1 78.9

HRNet-W32 [20] HRNet-W32 Y 28.5M 7.10 74.4 90.5 81.9 70.8 81.0 79.8

Small networks

Mobile NetV2 [29] MobileNetV2 Y 9.6M 1.48 64.6 87.4 72.3 61.1 71.2 70.7

Shuffle NetV2 [18] ShuffleNetV2 Y 7.6M 1.28 59.9 85.4 66.3 56.6 66.2 66.4

Small HRNet HRNet-W16 N 1.3M 0.54 55.2 83.7 62.4 52.3 61.0 62.1

DY-Mobile NetV2 [30] DY-MobileNetV2 Y 16.1M 1.01 68.2 88.4 76.0 65.0 74.7 74.2

DY-ReLU [31] MobileNetV2 Y 9.0M 1.03 68.1 88.5 76.2 64.8 74.3 –

SLPE SLPE N 11.8M 2.06 72.2 89.2 79.5 68.5 78.9 77.7

SLPE-light SLPE N 4.6M 1.22 67.7 87.6 75.8 64.2 74.2 73.8

3.2 Results

Results on MPII. We report the PCKh@0.5 accuracy results, the model size
and the FLOPs of our method and other state-of-the-art methods in Table 1. It
can be seen from the table that the proposed model has much fewer parame-
ters and cost much fewer FLOPs with comparable results (better than 88.1%).
Specifically, compared with the best method [20], the proposed model only
requires 16.8%–28.4% (1.6/9.5–2.7/9.5) computational cost but gains 97.6%–
99.1% (88.1/90.3–89.5/90.3) performance in mean PCKh accuracy. This leads
to a 3.5×–5.8× (99.1/28.4–97.6/16.8) cost-effective advantage. Compared with
other light-weight methods, it is obvious that SLPE-light outperforms others,
which means that the method is efficient and has good generalization capability.

Fig. 5. Illustration of the GFLOPs and accuracy comparison on the COCO val and
MPII val sets. (a) Comparison on COCO val with 256 × 192 input size. (b) Comparison
on MPII val with 256 × 256 input size.
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Results on COCO. Table 2 shows the accuracy results, the model size and the
FLOPs of the proposed method and state-of-the-art methods on the validation
set of MSCOCO. Where Small HRNet simply reduces the depth and the width
of the original HRNet. From the results, we can see that SLPE trained from
scratch with the input size 256 × 192, achieves a 72.2 AP score, outperform-
ing many methods, which pretrain the backbone on the ImageNet classification
task. Compared to CPN and SimpleBaseline, SLPE trained from scratch, has
much fewer model sizes and lower complexity, achieves 1.8–3.6 points gain. Com-
pared to baseline HRNet, though our method has slightly worse performance,
the number of the parameters and the FLOPs of ours are only 41.4% and 29%
of HRNet, respectively. Our lighter network, SLPE-light, can further reduce the
size of model and FLOPs with acceptable performance. Compared to Hourglass,
which is also trained from scratch, SLPE-light improves AP by 0.8 points, and
reduces 20.5M parameters, and the GFLOPs of SLPE-light are much lower and
less than 10%. Compared to small networks, our methods are significantly better.

It can be seen from experiments on two datasets that SLPE-light is more suit-
able for MPII dataset. There are fewer people on each image in this dataset, and it
is easier to estimate the pose, so a lighter model is enough. While COCO dataset is
more challenging, so the performance of our large model, SLPE, will be more sta-
ble. Figure 5 shows the comparison of GFLOPs and accuracy. Our models achieve
a better balance between accuracy and computational complexity.

3.3 Ablation Study

We perform some ablation study to analyze the proposed method on MPII val-
idation set and COCO2017 validation set.

Effect of Light Weight Block. We test the effect of light-weight block, which
consists of two parallel convolution operations. The contrast method is HRNet
with sequential convolution operations (HRNet-SCO), i.e., depthwise followed by
pointwise convolution. Similar to SLPE, we replace residual units, basic units,
and interface units with sequential convolution. As shown in Table 3, HRNet-
SCO has only 88.9% mean PCKh@0.5 on MPII, and 70.3% AP on COCO,
whereas SLPE has significantly higher 89.5% mean PCKh@0.5 on MPII, and
72.2% AP on COCO with slightly higher model size and GFLOPs. The results

Table 3. Effect of light-weight block.

Dataset Method #Params GFLOPs PCKh@0.5

MPII SLPE 11.8M 2.7 89.5

HRNet-SCO 9.1M 2.4 88.9

Dataset Method #Params GFLOPs AP

COCO SLPE 11.8M 2.06 72.2

HRNet-SCO 9.1M 1.79 70.3
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Table 4. Effect of adaptive convolution.

Dataset Method #Params GFLOPs PCKh@0.5

MPII Ours-GWC 5.1M 1.7 87.9

Ours-AC 4.6M 1.6 88.1

Dataset Method #Params GFLOPs AP

COCO Ours-GWC 5.1M 1.3 67.4

Ours-AC 4.6M 1.2 67.7

Table 5. Effect of shuffle (PCKh@0.5).

Method Shuffle Hea Sho Elb Wri Hip Kne Ank Total

Ours × 96.2 94.8 87.5 82.2 87.6 81.9 77.4 87.4

Ours
√

97.0 94.9 87.8 82.4 88.1 82.6 78.2 87.9

mean that the fusion of information between and within channels in parallel
layer is helpful for feature acquisition.

Effect of Adaptive Convolution. To evaluate the effect of adaptive convolu-
tion, we further test the performance of GWC based model, whose group number
is 16. The results in Table 4 show that adaptive convolution is a better choice in
comparison to GWC. Adaptive convolution with fewer parameters and GFLOPs
can achieve slightly better performance. The plausible reason is that adaptive
convolution can divide feature maps into as many groups as possible, allows for
more channel information.

Effect of Shuffle. We further evaluate the effect of shuffle operation. Table 5
compares the performance of our method with/without channel shuffle. We can
see that channel shuffle improves the performance, which shows the information
exchange between the two branches can bring gain.

Cost Effectiveness Analysis of the Depth. We finally evaluate the effect
of the depth. Table 6 shows the results of SLPE-light with different stages on
MPII dataset. From the table we can see that removing more stages leads to
performance degradation. When the 3rd, 4th stages and even 2nd stage were
removed, performance deteriorated significantly. This indicates that multi-scale
fusion is helpful and more fusions lead to better performance. If the 4th stage
was removed, it leads to quite limited performance degradation, which is also an
acceptable result.

3.4 Qualitative Results

To visualize the results, Fig. 6 shows qualitative evaluations on COCO. We can
observe that our method can achieve reliable and robust pose estimation in
arbitrary images with various background clutters and different human poses.
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Table 6. Cost-effectiveness analysis of the depth on MPII dataset.

Stage #Params GFLOPs PCKh@0.5

4 4.6M 1.6 88.1

3 1.6M 1.5 86.3

2 0.5M 1.2 71.6

1 0.2M 0.7 46.8

Fig. 6. Qualitative results of some example images in COCO dataset.

4 Conclusion

In this paper, we propose a novel simple light-weight pose estimation network
(SLPE). Different from most of the methods, which only focus on the perfor-
mance of models and ignore the practicality, SLPE aims to improve the efficiency
of pose estimation with comparable accuracy results. We have carried out exten-
sive experiments on two datasets with the results suggesting the superiority of
SLPE in comparison to state-of-the-art methods. Moreover, we have also con-
ducted some ablation study to provide detailed analysis about the gains. Our
proposed light-weight block is sufficiently generic to replace the regular convolu-
tion operation in-place without model architecture adjustment. It can be applied
not only to HRNet, but also to other deep learning based pose estimation mod-
els, and even to deep learning methods in other fields. In future work, we will
apply the light-weight block to other tasks, e.g., semantic segmentation, object
detection, and design more efficient architectures.
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6. Chéron, G., Laptev, I., Schmid, C.: P-CNN: pose-based CNN features for action
recognition. In: ICCV, pp. 3218–3226 (2015)

7. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In:
CVPR, pp. 1251–1258 (2017)

8. Fang, H.-S., Xie, S., Tai, Y.-W., Lu, C.: RMPE: regional multi-person pose esti-
mation. In: ICCV, pp. 2334–2343 (2017)

9. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural net-
works with pruning, trained quantization and Huffman coding. In: ICLR, pp. 1–14
(2016)

10. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV, pp. 2961–
2969 (2017)

11. He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft filter pruning for accelerating
deep convolutional neural networks. In: IJCAI, pp. 2234–2240 (2018)

12. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 (2017)

13. Huang, S., Gong, M., Tao, D.: A coarse-fine network for keypoint localization. In:
ICCV, pp. 3028–3037 (2017)

14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR, pp.
1–15 (2015)

15. Kocabas, M., Karagoz, S., Akbas, E.: MultiPoseNet: fast multi-person pose esti-
mation using pose residual network. In: Ferrari, V., Hebert, M., Sminchisescu,
C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 437–453. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01252-6 26

16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: NIPS, pp. 1097–1105 (2012)

17. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

18. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for
efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C.,
Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9 8

19. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose esti-
mation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS,
vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46484-8 29

20. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning
for human pose estimation. In: CVPR, pp. 5693–5703 (2019)

21. Tang, W., Yu, P., Wu, Y.: Deeply learned compositional models for human pose
estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV
2018. LNCS, vol. 11207, pp. 197–214. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01219-9 12

http://arxiv.org/abs/1704.04861
https://doi.org/10.1007/978-3-030-01252-6_26
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.1007/978-3-319-46484-8_29
https://doi.org/10.1007/978-3-319-46484-8_29
https://doi.org/10.1007/978-3-030-01219-9_12
https://doi.org/10.1007/978-3-030-01219-9_12


292 B. Sun and M. Zhao

22. Wan, B., Zhou, D., Liu, Y., Li, R., He, X.: Pose-aware multi-level feature network
for human object interaction detection. In: ICCV, pp. 9469–9478 (2019)

23. Wang, C., Wang, Y., Yuille, A.L.: An approach to pose-based action recognition.
In: CVPR, pp. 915–922 (2013)

24. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking.
In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS,
vol. 11210, pp. 472–487. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-01231-1 29

25. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for
skeleton-based action recognition. In: AAAI, pp. 7444–7452 (2018)

26. Yang, W., Li, S., Ouyang, W., Li, H., Wang, X.: Learning feature pyramids for
human pose estimation. In: ICCV, pp. 1281–1290 (2017)

27. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolu-
tional neural network for mobile devices. In: CVPR, pp. 6848–6856 (2018)

28. Howard, A., et al.: Searching for mobilenetv3. In: ICCV, pp. 1314–1324 (2019)
29. Andrew, H., Andrey, Z., Liang-Chieh, C., Mark, S., Menglong, Z.: Inverted resid-

uals and linear bottlenecks: mobile networks for classification, detection and seg-
mentation. In: CVPR, pp. 122–138 (2018)

30. Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z.: Dynamic convolution:
attention over convolution kernels. In: CVPR, pp. 11030–11039 (2020)

31. Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z.: Dynamic ReLU. In: Vedaldi,
A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp.
351–367. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7 21

https://doi.org/10.1007/978-3-030-01231-1_29
https://doi.org/10.1007/978-3-030-01231-1_29
https://doi.org/10.1007/978-3-030-58529-7_21


SIN: Superpixel Interpolation Network

Qing Yuan1, Songfeng Lu2,3(B), Yan Huang1, and Wuxin Sha1

1 School of Computer Science and Technology, Huazhong University of Science and
Technology, Wuhan, China

2 School of Cyber Science and Engineering, Huazhong University of Science and
Technology, Wuhan, China

3 Shenzhen Huazhong University of Science and Technology Research Institute,
Shenzhen, China

{yuanqing,lusongfeng,m201372777,d201980975}@hust.edu.cn

Abstract. Superpixels have been widely used in computer vision tasks
due to their representational and computational efficiency. Meanwhile,
deep learning and end-to-end framework have made great progress in var-
ious fields including computer vision. However, existing superpixel algo-
rithms cannot be integrated into subsequent tasks in an end-to-end way.
Traditional algorithms and deep learning-based algorithms are two main
streams in superpixel segmentation. The former is non-differentiable and
the latter needs a non-differentiable post-processing step to enforce con-
nectivity, which constraints the integration of superpixels and down-
stream tasks. In this paper, we propose a deep learning-based super-
pixel segmentation algorithm SIN which can be integrated with down-
stream tasks in an end-to-end way. Owing to some downstream tasks
such as visual tracking require real-time speed, the speed of generating
superpixels is also important. To remove the post-processing step, our
algorithm enforces spatial connectivity from the start. Superpixels are
initialized by sampled pixels and other pixels are assigned to superpixels
through multiple updating steps. Each step consists of a horizontal and
a vertical interpolation, which is the key to enforcing spatial connectiv-
ity. Multi-layer outputs of a fully convolutional network are utilized to
predict association scores for interpolations. Experimental results show
that our approach runs at about 80 fps and performs favorably against
state-of-the-art methods. Furthermore, we design a simple but effective
loss function which reduces much training time. The improvements of
superpixel-based tasks demonstrate the effectiveness of our algorithm.
We hope SIN will be integrated into downstream tasks in an end-to-end
way and benefit the superpixel-based community. Code is available at:
https://github.com/yuanqqq/SIN.
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1 Introduction

Superpixels are small clusters of pixels that have similar intrinsic properties.
Superpixels provide a perceptually meaningful representation of image data and
reduce the number of image primitives for subsequent tasks. Owing to their repre-
sentational and computational efficiency, superpixels are widely applied to com-
puter vision tasks such as object detection [20,25], saliency detection [9,26,29],
semantic segmentation [7,8,18] and visual tracking [24,27].

In common, superpixel-based tasks first generate superpixels of input images.
Afterwards, features of superpixels are extracted and fed into subsequent steps.
Since most superpixel algorithms cannot ensure spatial connectivity directly,
we need to enforce spatial connectivity through a post-processing step before
extracting superpixel features. Recently, deep neural networks and end-to-end
framework have been widely adopted in computer vision owing to their effective-
ness. However, existing superpixel segmentation algorithms cannot be combined
with downstream tasks in an end-to-end way, which constrains the application of
superpixels and the performance of superpixel-based tasks. We will demonstrate
the limitations of existing superpixel segmentation algorithms in the following.

Existing superpixel segmentation algorithms can be divided into traditional
and deep learning-based branches. Traditional superpixel segmentation algo-
rithms [1,2,4,6,13,16] mainly rely on hand-crafted features. They are not train-
able and cannot be integrated to subsequent deep learning methods in an end-
to-end way obviously. Not to mention that most traditional algorithms run at
a low speed, which affects the speed of downstream tasks heavily. While few
attempts have been made [10,23,28], utilizing deep networks to extract super-
pixels remains challenging. [10,23] use a deep network to extract pixel features,
followed by a superpixel segmentation module. FCN [28] proposes a network
to directly generate superpixels and enforce connectivity as a post-processing
step. All these methods need a post-processing step to handle orphan pixels and
the step is non-differentiable. The post-processing step hinders existing deep
learning-based algorithms to be combined with superpixel-based tasks in an
end-to-end way. In fact, most traditional algorithms also need post-process to
enforce spatial connectivity.

In this paper, we aim to propose a superpixel segmentation algorithm which
can be integrated into downstream tasks in an end-to-end way. The speed of
generating superpixels is also very important, because some downstream tasks
such as visual tracking require real-time speed. Since the post-processing step
is the main obstacle of existing deep learning-based methods, we enforce spatial
connectivity from the start to remove the step. Without the post-processing step,
not only the algorithm becomes a whole trainable network, but also the speed
is faster. Our initial superpixels are initialized with sampled pixels and remain-
ing pixels are assigned to superpixels through multiple similar steps. Each step
consists of a horizontal and a vertical interpolation. According to current pixel-
superpixel map and association scores, the interpolations assign partial pixels
to superpixels. The pixel-superpixel map represents the map between pixels and
superpixels, and the association scores are predicted by the multi-layer outputs
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of a fully convolutional network. The rule of interpolations is the key to enforcing
spatial connectivity and we will prove it in Sect. 3.3. Furthermore, we design a
simple but effective loss function that can reduce training time and fully utilize
segmentation labels.

Extensive experiments have been conducted to evaluate SIN. Our method
is the fastest compared to existing deep learning-based algorithms(running at
about 80 fps), which means it satisfies the instantaneity of downstream tasks.
For superpixel segmentation, experimental results on public benchmarks such as
BSDS500 [3] and NYUv2 [21] demonstrate that our method performs favorably
against the state-of-the-art in a variety of metrics. For semantic segmentation
and saliency object detection, we replace superpixels in the original BI [7] and
SO [29] with ours. The results on PascalVOC 2012 test set [5] and ECSSD
dataset [19] show that SIN superpixels benefit these downstream vision tasks.

In summary, the main contributions of this paper are:

– We propose a superpixel segmentation network which can be integrated into
downstream tasks in an end-to-end way, which does not need post-processing
to handle orphan pixels. Our algorithm enforces spatial connectivity from the
first instead of using a non-differentiable post-processing step. To the best of
our knowledge, we are the first to develop a deep learning-based method to
be integrated into superpixel-based tasks in an end-to-end way.

– We analyze the runtime of deep learning-based superpixel algorithms and
our model has the fastest speed. When utilizing our SIN superpixels in sub-
sequent tasks, the instantaneity will not be destroyed. Extensive experiments
show that our method performs well in superpixel segmentation especially in
generating more compact superpixels.

– We design a simple but effective loss function that fully utilizes the segmen-
tation label. The loss function is computational efficiency and shortens plenty
of training time.

2 Related Work

2.1 Traditional Superpixel Segmentation

Traditional superpixel segmentation algorithms can be roughly categorized as
graph-based and clustering-based algorithms. Graph-based algorithms treat
image pixels as graph nodes and pixel affinities as graph edges. Usually, super-
pixel segmentation problems are solved by graph-partitioning. [16] applies the
Normalized Cuts algorithm to produce the superpixel map. FH [6] defines an
adaptive segmentation criterion to capture global image properties. ERS [13]
proposes an objective function for superpixel segmentation, which consists of
the entropy rate and the balancing term.

Clustering-based algorithms utilize clustering methods such as k-means for
superpixel segmentation. SEEDS [4] starts from an initial superpixel partition-
ing and continuously exchanges pixels on the boundaries between neighboring
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superpixels. SLIC [1] adopts a k-means clustering approach to generate super-
pixels based on a 5-dimensional positional and Lab color features. Owing to
its simplicity and high performance, there are many variants [2,11,14] of SLIC.
LSC [11] projects the 5-dimensional features to a 10-dimensional space and per-
forms weighted k-means in the projected space. Manifold-SLIC [14] maps the
image to 2-dimensional manifold feature space for superpixel clustering. SNIC [2]
proposes a non-iterative scheme for superpixel segmentation. Traditional super-
pixel algorithms are mainly based on hand-crafted features, which often fail to
preserve weak object boundaries. Most traditional algorithms are computed on
CPU, so it is hard to achieve real-time speed. What’s more, we cannot integrate
traditional methods into subsequent tasks in an end-to-end way because they
are non-differentiable.

2.2 Superpixel Segmentation Using DNN

Recently, some researchers have focused on integrating deep networks into
superpixel segmentation algorithms [10,23,28]. [10,23] use a deep network to
extract pixel features, which are then fed to a superpixel segmentation module.
SEAL [23] develops the Pixel Affinity Net for affinity prediction and defines a new
loss function which takes the segmentation error into account. These affinities are
then passed to a graph-based algorithm to generate superpixels. To form an end-
to-end trainable network, SSN [10] turns SLIC into a differentiable algorithm by
relaxing the nearest neighbors’ constraints. FCN [28] combines feature extraction
and superpixel segmentation into a single step. The proposed method employs
a fully convolutional network to predict association scores between image pixels
and regular grid cells. When utilizing superpixels generated by existing deep
learning-based methods, a post-processing step is needed to handle orphan pix-
els. The step is not trainable and can only be computed on CPU, so existing
deep learning-based methods cannot be integrated into downstream tasks in an
end-to-end approach.

2.3 Spatial Connectivity

Most superpixel algorithms [1,6,10,11,14,23,28] do not explicitly enforce con-
nectivity and there may exist some “orphaned” pixels that do not belong to
the same connected components. To correct this, SLIC [1] assigns these pixels
the label of the nearest cluster. [10,28] also apply a component connection algo-
rithm to merge superpixels that are smaller than a certain threshold with the
surrounding ones. These algorithms enforce connectivity using a post-processing
step, whereas SNIC [2] enforces connectivity explicitly from the start. SNIC uses
a priority queue to choose the next pixel to be assigned, and the queue is popu-
lated with pixels which are 4 or 8-connected to a currently growing superpixel. As
far as we know, there is no method which utilizes learned features and enforces
connectivity explicitly.
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3 Superpixel Segmentation Method

In this section, we introduce our superpixel segmentation method SIN. The
framework of our proposed method is illustrated in Fig. 1. We first present our
idea of superpixel initialization and updating scheme. After that, we introduce
our network architecture and loss function design. Finally, we will explain why
our method can enforce spatial connectivity from the start.

Fig. 1. Illustration of our proposed method. The SIN model takes the image
as input, and predicts association scores for each updating step. In the training stage,
association scores are utilized to compute loss. In the testing stage, new pixel-superpixel
maps are obtained from current pixel-superpixel maps and association scores.

3.1 Learn Superpixels by Interpolation

Our superpixels are obtained by initializing pixel-superpixel map and updating
the map multiple times. Similar to the commonly adopted strategy in [1,2,4],
we generate the initial superpixels by sampling the image I ∈ R

H×W×3 with a
regular step S. By assigning each pixel to a unique superpixel, we get the initial
pixel-superpixel map M0 ∈ Z

h0×w0 . The values of M0 denote ID of superpixels
to which sampled pixels are assigned.

Fig. 2. Illustration of expanding pixel-superpixel map. Each expanding step
consists of a horizontal interpolation followed by a vertical interpolation. The horizontal
interpolation inserts values in each row and the vertical interpolation inserts values in
each column. The inserted values are determined by association scores and neighboring
superpixels.
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Superpixel segmentation is to find the final pixel-superpixel map M ∈ Z
H×W ,

which assigns all pixels to superpixels. The problem of finding M can be seemed
as expanding M0 to M . Inspired by resizing image, we use interpolation to
expand the matrix. The rule of interpolation is carefully designed to enforce
spatial connectivity from the start and to be computed on GPU in parallel. As
depicted in Figure 1, the process of expanding M0 to M can be divided into
multiple similar steps and each step consists of a horizontal interpolation and a
vertical interpolation. As shown in Fig. 2, when we expand pixel-superpixel map
in horizontal/vertical dimension, we interpolate values among all neighboring
elements in each row/column. The inserted values are the same as neighbor-
ing elements with certain probability. The probabilities (association scores) are
computed by neural networks which we will introduce in Sect. 3.2.

In detail, we use P ∈ R
H×W to denote image pixels. P (i, j) represents the

image pixel at the intersection of i-th row and j-th column. M(i, j) is the super-
pixel to which P (i, j) is assigned. In the initial step, we find partial connections
between image pixels P and superpixels. M0(i, j) represents the superpixel to
which P (i ∗ S, j ∗ S) is assigned.

h0 = (H + S − 1)/S, w0 = (W + S − 1)/S. (1)

To obtain M , we need to expand M0 multiple times. At l-th expansion, we
use Mh

l ∈ Z
hl−1×wl and Ml ∈ Z

hl×wl to denote pixel-superpixel maps after
horizontal and vertical interpolation.

hl = 2 ∗ hl−1 − 1, wl = 2 ∗ wl−1 − 1. (2)

Figure 2 has shown a part of interpolation at l-th expansion. At l-th horizon-
tal/vertical interpolation step, the inserted values are confirmed by association
scores Ah

l ∈ R
hl−1×(wl−1−1)×2/Al ∈ R

(hl−1−1)×wl×2 and neighboring superpixels
Qh

l ∈ Z
hl−1×(wl−1−1)×2/Ql ∈ Z

(hl−1−1)×wl×2. Ah
l (i, j, k) and Al(i, j, k) denote

the probability of i-th row, j-th column inserted value is the same with its k-
th neighbor. All association scores are obtained from multi-layer outputs of the
neural network described in Sect. 3.2. Qh

l (i, j, k) and Ql(i, j, k) denote the k-th
neighbor’s value of i-th row, j-th column inserted element. Neighboring superpix-
els are obtained from current pixel-superpixel map. We interpolate new elements
among existing neighboring elements at each row/column, so a pair of existing
neighboring elements’ values are neighboring superpixel IDs of the corresponding
inserted element. According to association scores and neighboring superpixels,
inserted values can only be same with one of their neighboring elements with
certain probability.

3.2 Network Architecture and Loss Function

We use a convolutional neural network similar to [28] to extract image feature
F0 ∈ R

h0×w0×c0 . We stack module deconv h and deconv v multiple times to
extract multi-layer features Fh

l ∈ R
hl−1×wl×cl and Fl ∈ R

hl×wl×cl , where cl
denotes feature channels. deconv h and deconv v are transposed convolutional
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neural networks, in which stride are (1, 2) and (2, 1) respectively. Specially,
deconv h will reduce feature channels by half. conv is a convolutional neural
network, which transforms the multi-layer features to 2-dimensional association
scores.

Our model is trained with ground truth segmentation labels T ∈ Z
H×W from

BSDS500. Every interpolation is to find partial connections between pixels and
superpixels. To get loss of all connections, we need to compute partial loss at
every interpolation. We define sl = S/2l to simplify descriptions. The inserted
values at l-th step in horizontal/vertical dimension are ID of superpixels to which
pixels Uh

l and Ul are assigned. Uh
l denotes the subtraction of pixels sampled by

stride (sl−1, sl) and (sl−1, sl−1). Ul denotes the subtraction of pixels sampled
by stride (sl, sl) and (sl−1, sl). Partial ground truth connections Th

l and Tl are
segmentation labels of pixels Uh

l and Ul. To speed up training process, we do
not generate pixel-superpixel maps to compute loss. Instead, we utilize associ-
ation scores to compute loss directly. Association scores Ah

l and Al denote the
probabilities of pixels assigned to neighboring superpixels. Inspired by tasks of
classification, the ground truth labels Gh

l and Gl are defined as the indexes of
neighboring superpixels to which pixels should be assigned. Gh

l and Gl can be
inferred from Th

l and Tl. Owing to each inserted element has two neighbors, the
ground truth labels are 0 or 1. If the neighboring superpixels ID of an inserted
element are same, we will ignore it when computing loss. We define I

h
l and Il to

represent whether to consider the elements when computing loss. Loss of each
interpolation at l-th step can be computed by:

Lh
l = C

I
h
l
(Gh

l , Ah
l ), Lv

l = CIl
(Gl, Al) (3)

where Lh
l and Ll denote the loss of horizontal and vertical at l-th step. C

I
h
l

and CIl
denote cross entropy loss functions, which only consider partial elements

according to the values of Ihl and Il.
Total loss L can be computed by:

L = −
∑

l

(
wh

l Lh
l + wv

l L
v
l

)
(4)

where wh
l and wv

l denote weights of horizontal and vertical interpolation loss at
l-th step.

3.3 Illustration of Spatial Connectivity

Thanks to removing the post-processing step, our method can be integrated into
subsequent tasks in an end-to-end way. The key to enforcing spatial connectiv-
ity from the start is the rule of interpolation. An expanding step consists of a
horizontal interpolation and a vertical interpolation. The design ensures spatial
connectivity of pixel-superpixel maps will not be destroyed by interpolations.
Owing to initial pixel-superpixel map has spatial connectivity and interpola-
tions preserve the property, the final pixel-superpixel map M remains spatial
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connectivity. M assigns all pixels to superpixels, so M has spatial connectiv-
ity equals our SIN superpixels have spatial connectivity. In the following, we
will first explain why the spatial connectivity of M and superpixels are equiv-
alent. Afterwards, we illustrate how interpolations preserve spatial connectivity
of pixel-superpixel maps.

The fact that a superpixel has spatial connectivity means the set of all pixels
in the superpixel is a connected set. We use Xi to denote a set where elements
have same value i in M and X = {X1,X2, . . . , Xn} to denote all such sets. If all
elements in X are connected sets, M has spatial connectivity. Spatial information
of elements in Xi equals spatial information of pixels assigned to superpixel i, so
Xi is a connected set represents superpixel i has spatial connectivity. Evidently,
M has spatial connectivity equals all superpixels have spatial connectivity. All
sets in M0 only has one element, so M0 has spatial connectivity definitely. If
interpolations can preserve spatial connectivity, we can infer that M has spatial
connectivity.

Our scheme of interpolation is to insert elements among existing neighbor-
ing elements at each row/column. When we insert a element between a pair of
neighbors, only sets including these three elements will be taken into consider-
ation. If existing neighboring elements are in a same set, the inserted element
will be added to the set and the set is still connected. If existing neighboring
elements belong to different sets, the inserted element will be added to one of
the sets, and the other will not change. The added set is still connected and spa-
tial connectivity of the other will not be affected. We want to address that it is
the design of interpolation preserves spatial connectivity. If we interpolate once
at an expanding step and the inserted value is same with its 8-neighborhood,
spatial connectivity of pixel-superpixel map will be destroyed. Above all, our
method can enforce spatial connectivity explicitly through the delicate design of
interpolation.

4 Experiments

To be integrated into subsequent tasks in an end-to-end way without impeding
their instantaneity, we analyze the runtime of deep learning-based models. To
demonstrate the effectiveness of SIN in superpixel segmentation, we train and
test our model on the standard benchmark BSDS500 [3]. We also report its
performance without fine-tuning on the benchmark NYUv2 [21] to evaluate the
generalizability of our model. We use protocols and codes provided by [22] to
evaluate all methods on two benchmarks. SNIC [2], SEAL [23], SSN [10] and
FCN [28] are tested with the original implementations from the authors. SLIC [1]
and ERS [13] are tested with the codes provided in [22]. For SLIC and ERS, we
use the best parameters reported in [22], and for the rest, we use the default
parameters recommended in the original papers. Figure 3 shows the visual results
of some state-of-the-art methods and ours.
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4.1 Comparison with the State-of-the-Arts

Implementation Details. We implement our model with PyTorch and use Adam
with β1 = 0.9 and β2 = 0.999 to optimize it. For training, we randomly crop the
images to size 225 × 225 as input and perform horizontal/vertical flipping for
data augmentation. The initial learning rate is set to 5 × 10−5 and is reduced
by half after 200k iterations. It takes us about 3 h to train the model for 300k
iterations on 1 NVIDIA RTX 2080Ti GPU device.

Fig. 3. Visual results. Compared to SEAL, SSN and FCN, our method is competi-
tive or better in terms of object boundary adherence while generating more compact
superpixels. Top rows: BSDS500. Bottom rows: NYUv2.

We set the regular step S as 16 and we can get 15 × 15(225) superpixels
through 4 expanding steps when training. We set wh and wv as [20, 10, 5, 2.5]
and [8, 4, 2, 1] respectively. To generate the varying number of superpixels when
testing, we simply resize the input image to the appropriate size. For example,
if we want to generate 30 × 20 superpixels, we can resize the image to (30 ∗ 16 −
15) × (20 ∗ 16 − 15) i.e. 465 × 305.

Fig. 4. Runtime analysis.
Average runtime of different
DL methods w.r.t number of
superpixels. Note that y-axis
is plotted in the logarithmic
scale.

Runtime Analysis. We compare the runtime differ-
ence between deep learning-based methods. Figure 4
reports the average runtime w.r.t the number of
generated superpixels on a NVIDIA RTX 2080Ti
GPU device. Our method runs about 1.5 to 2 times
faster than FCN, 12 to 33 times faster than SSN,
and more than 70 times faster than SEAL. Note
that existing deep learning-based methods need a
post-processing step which takes 2.5 ms to 8 ms [17]
and runtime in Fig. 4 does not include the time.
The reason of our method has the fastest speed is
that we use a novel interpolation method to gen-
erate superpixels. What’s more, our method saves
plenty of training time compared to FCN due to the



302 Q. Yuan et al.

simple and effective loss function. For training, we spend about 3 h on a single
GPU, while FCN spends about 20 h.

Evaluation Metrics. To demonstrate the effectiveness of SIN, we use the achiev-
able segmentation accuracy (ASA), boundary recall and precision (BR-BP), and
compactness (CO) to evaluate the superpixels. ASA evaluates superpixels by
measuring the total effective segmentation area of a superpixel representation
concerning the ground truth segmentation map. BR and BP measure the bound-
ary adherence of superpixels given the ground truth boundary, whereas CO
assesses the compactness of superpixels. The higher these scores are, the better
the superpixel segmentation result is. As in [22], for BR and BP evaluation, the
boundary tolerance is 0.0025 times the image diagonal rounded to the closest
integer.

Fig. 5. Results on BSDS500. From left to right: ASA, BR-BP, and CO.

Fig. 6. Results on NYUv2. From left to right: ASA, BR-BP, and CO.

Results on BSDS500. BSDS500 contains 200 training, 100 validation, and 200
test images. Each image in this dataset is provided with multiple ground truth
annotations. For training, we follow [10,23,28] and treat each annotation as an
individual sample. With this dataset, we have 1633 training/validation samples
and 1063 testing samples. We train our model using both the training and vali-
dation samples.

Figure 5 reports the performance of all methods on BSDS500 test set. Our
method outperforms all traditional methods on all evaluation metrics, except
SNIC in terms of BR-BP. Comparing to the other deep learning-based methods,
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our method achieves competitive results in terms of ASA and BR-BP, and sig-
nificantly higher scores in terms of CO. With high CO, our method can better
capture spatially coherent information and avoids paying too much attention to
image details and noises. As shown in Fig. 3, when handling fuzzy boundaries,
our method can generate smoother superpixels.

Results on NYUv2. NYUv2 is an RGB-D dataset containing 1499 images with
object instance labels, which is originally proposed for indoor scene understand-
ing tasks. [22] removes the unlabelled regions near the image boundary and
develops a benchmark on a subset of 400 test images with size 608 × 448 for
superpixel evaluation. We directly apply the models of SEAL, SSN, FCN, and
our method trained on BSDS500 to this dataset without any fine-tuning.

Figure 6 shows the performance of all methods on NYUv2. In general,
these deep learning-based algorithms achieve competitive or better performance
against the traditional algorithms, which demonstrate that they can extract
high-quality superpixels on other datasets. Also, our method outperforms all
other methods in terms of CO. As the visual results shown in Fig. 3, our method
handles the fuzzy boundary better than other deep learning-based methods.

Illustration of High CO Score. The experimental results on BSDS500 and
NYUv2 show that our method has lower ASA and BR-BP scores, while a higher
CO score. We will illustrate the reason in the following.

Fig. 7. Illustration of high CO score. According to the rule of interpolation, the
above is a possible new pixel-superpixel map and the below is an impossible one.

To enforce spatial connectivity from the first, we expand pixel-superpixel
map in horizontal and vertical dimensions. The horizontal/vertical interpolation
constrains the inserted value can only be same with its horizontal/vertical neigh-
bors. As Fig. 7 shown, the black circled value can be 1/2 and cannot be 16/17.
However, if the ground truth of the value is 16, our method cannot interpolate
the same value. That is the reason our ASA and BR-BP scores are lower than
other deep learning-based methods. Meanwhile, the constraint results in pixels
in a superpixel are 4-neighborhood connected which is more compact than 8-
neighborhood connected. Owing to the high CO score, our method generates
smoother superpixels on the fuzzy boundaries as Fig. 3 shown. The importance
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of compactness has been demonstrated in [28]. To extract more useful features
in downstream tasks, it is important to capture spatial coherence in the local
region in our superpixel method. In our view, it is worthy to enforce spatial
connectivity from the start and get a higher CO score while sacrificing slight
ASA and BR-BP scores.

4.2 Ablation Study

We present an ablation study where we evaluate different design choices of the
image feature extraction and loss sum. Unlike [28], we do not take image features
from previous layers into account to predict association scores. Our total loss is
the sum of horizontal and vertical loss at each step, so we can compute average or
weighted sum. In our final model, we choose weighted sum to compute total loss.
For comparison, we include a baseline model which uses the previous features
and current features(concat) to predict scores and simply sums the loss values
averagely. We evaluate each of these design options of the network. Figure 8
shows that each of the 2 alternatives in our model performs better.

Fig. 8. Ablation study. We show the effectiveness of each design choice in the SIN
model in improving accuracy.

5 Application

In this section, we evaluate whether our SIN superpixels can improve the perfor-
mance of downstream vision tasks which utilize superpixels. For this study, we
choose existing semantic segmentation and salient object detection algorithms
and substitute the original superpixels with our superpixels. For the following
two tasks, our superpixels are generated by the network fine-tuned on PascaVOC
2012 training and validation datasets.

Semantic Segmentation. For semantic segmentation, CNN models [12,15]
achieve the state-of-the-art performance. However, most CNN architectures gen-
erate lower resolution outputs and then upsample them using post-processing
techniques. To alleviate the need for post-processing CRF techniques, [7] propose
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the Bilateral Inception (BI) networks to utilize SLIC superpixels for long-range
and edge-aware propagation across CNN units. We use SNIC and our super-
pixels to substitute SLIC superpixels and set the number of superpixels as 600.
We evaluate the generated semantic segmentation on the PascalVOC 2012 test
set [5]. Table 1 shows the standard Intersection over Union (IoU) scores. The
results indicate that we can obtain significant IoU improvements when using
SIN superpixels.

Salient Object Detection. Superpixels are widely used in salient object detec-
tion algorithms. We experiment with Saliency Optimization(SO) [29] and report
standard Mean Absolute Error (MAE) scores on the ECSSD dataset [19]. To
demonstrate the potential of our SIN Superpixels, we replace SLIC superpixels
used in SO with ours, SNIC, and ERS superpixels and set the number of super-
pixels as 200 and 400. Experimental results in Table 2 show that the use of our
200/400 superpixels consistently improves the performance of SO.

The above results on semantic segmentation and salient object detection
demonstrate the effectiveness of integrating our superpixels into downstream
vision tasks.

Table 1. Superpixels for semantic segmentation. We compute semantic segmen-
tation using the BI network with different types of superpixels and compare the IoU
scores on the PascalVOC 2012 test set.

Method DeepLab [12] +CRF [12] +BI (SLIC) [7] +BI (ERS) +BI (Ours)

IoU 68.9 72.7 73.5 74.0 74.4

Table 2. Superpixels for salient object detection. We run the SO algorithm with
different types of superpixels and evaluate on the ECSSD dataset.

Method SLIC SNIC ERS Ours

# of superpixels 200 0.1719 0.1714 0.1686 0.1657

# of superpixels 400 0.1675 0.1654 0.1630 0.1616

6 Conclusion

In this paper, we present a superpixel segmentation network SIN which can be
integrated into downstream tasks in an end-to-end way. To extract superpix-
els, we initialize superpixels and expand pixel-superpixel map multiple times.
By dividing an expanding step into a horizontal and a vertical interpolation,
we enforce spatial connectivity explicitly. We utilize multi-layer outputs of a
fully convolutional network to predict association scores for interpolations. To
speed up training process, association scores are used to compute loss instead
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of pixel-superpixel maps. Owing to our interpolation constrains the number of
neighbors of inserted elements, SIN has the fastest speed compared to existing
deep learning-based methods. The high speed of our method ensures it can be
integrated into downstream tasks requiring real-time speed. Our model performs
favorably against several existing state-of-the-art superpixel algorithms. SIN can
generate more compact superpixels thanks to the design of interpolation, which is
important to downstream tasks. What’s more, visual results illustrate that our
method outperforms when handling fuzzy boundaries. Furthermore, we apply
our superpixels in downstream tasks and make progress. We will integrate SIN
into downstream tasks in an end-to-end way in the future and we hope SIN can
benefit superpixel-based computer vision tasks.
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Abstract. 3D object detection is a fundamental technique in
autonomous driving. However, current LiDAR-based single-stage 3D
object detection algorithms do not pay sufficient attention to the encod-
ing of the inhomogeneity of LiDAR point clouds and the shape encoding
of each object. This paper introduces a novel 3D object detection net-
work called the spatial and part-aware aggregation network (SPANet),
which utilizes a spatial aggregation network to remedy the inhomo-
geneity of LiDAR point clouds, and embodies a part-aware aggrega-
tion network that learns the statistic shape priors of objects. SPANet
deeply integrates both 3D voxel-based features and point-based spatial
features to learn more discriminative point cloud features. Specifically,
the spatial aggregation network takes advantage of the efficient learn-
ing and high-quality proposals by providing flexible receptive fields from
PointNet-based networks. The part-aware aggregation network includes
a part-aware attention mechanism that learns the statistic shape priors
of objects to enhance the semantic embeddings. Experimental results
reveal that the proposed single-stage method outperforms state-of-the-
art single-stage methods on the KITTI 3D object detection benchmark.
It achieved a bird’s eye view (BEV) average precision (AP) of 91.59%,
3D AP of 80.34%, and heading AP of 95.03% in the detection of cars.

Keywords: 3D object detection · Spatial aggregation · Part-aware
aggregation · Single-stage method

1 Introduction

3D object detection has received increasing attention in recent years from both
industry and academia in various fields such as autonomous driving, unmanned
aerial vehicles, and robotics. It commonly uses data from range sensors such
as LiDAR sensors, time-of-flight cameras, and stereo cameras to predict accu-
rate 3D bounding boxes from objects in the real world. LiDAR sensors have
become the preferred type of sensor for the perception of outdoor scenes owing
to accurate distance information.

However, there are two critical problems involved in LiDAR-based 3D object
detection. The first is the need to generate low-level descriptive features against
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the sparse and inhomogeneous point clouds sampled from the LiDAR sensor.
There are more points within a short distance than at a large distance. In addi-
tion, the non-uniform distributions of the point cloud will decrease the perfor-
mance of the detector. To handle this problem, most existing 3D object detection
methods utilize grid-based and point-based approaches to encode point clouds.
The grid-based methods transform the irregular point clouds into 3D voxels or
bird’s eye view (BEV) maps to obtain a regular representation. 3D or 2D con-
volutional neural networks (CNNs) can be efficiently applied to these methods.
Point-based methods directly learn discriminative features from raw point clouds
and easily achieve a larger receptive field through the set abstraction module [15].
Both of the aforementioned methods have weaknesses. Grid-based methods are
only suitable for describing the local features of objects because the expanded
receptive field through downsampling will cause information loss. Meanwhile,
point-based methods have a higher computation cost associated with creating
a large receptive field. PV-RCNN [16] incorporates the advantages of both the
point-based and voxel-based feature learning methods to boost 3D detection
performance. However, this method consists of two stages. The first stage is
only dependent on a voxel-based network to predict coarse detection results,
and then the second stage uses the detected results to fuse the point-based and
voxel-based features. This type of architecture cannot be used in a single-stage
detector, and the voxel-based branch has a scarcity of larger receptive fields and
therefore lacks the encoding of the object as a whole.

Another problem is achieving efficient encoding of the shape of objects for
greater discrimination. Two-stage detectors use a region proposal network (RPN)
to predict coarse detection results and then apply the 2D or 3D ROI pooling [3]
technique to aggregate the features within a shape-specific box that eventually
encodes each instance to be detected. However, due to the working principle of
LiDAR, these methods ignore the fact that point clouds are only distribution
on parts of the surface of the object. In other words, the features of the LiDAR
point cloud region need to be enhanced. Part-aware aggregation module [18] is
proposed to handle this problem. It applies 3D ROI pooling technique and 3D
sparse convolution to encode each instance, and then converts the encode features
into full connected features. However, the part-aware aggregation information
using 3D sparse convolution may disappear during this process. In addition,
the ROI pooling operation increases the processing time of these algorithms.
Because of the lack of ROI pooling operation, the single-stage detectors is faster
than the two-stage detectors. To improve the lack of shape encoding in the single-
stage method, SARPNET [20] extends this type of BEV-based shape prior to
3D by redesigning the LiDAR encoding layers and adding a vertical attention
branch. SA-SSD [6] proposes a part-sensitive warping (PSWarping) operation to
solve the misalignment between the predicted bounding boxes and corresponding
confidence maps. PSWarping can provide more accurate object features, but it
lacks the important attribute of encoding of the shape of the objects.

This paper proposes a novel 3D object detection solution called the spatial
and part-aware aggregation network (SPANet) to address the aforementioned
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issues. SPANet introduces a spatial aggregation network to extract the point-
based and voxel-based features to improve the limitations of single encoding
features. It incorporates point-based and voxel-based features through a spatial
attention module to enhance the representation ability of the features. In addi-
tion, a part-aware aggregation network is proposed to encode the importance
of each object part to improve the recognition ability of the detector. The pro-
posed method is evaluated using the KITTI [2] 3D object detection benchmark.
The contributions of this study are as follows: A spatial aggregation network is
developed to handle the limitations of encoding features in current 3D object
detectors. A part-aware aggregation network is integrated into a single-stage
detector to learn the shape information of objects.

2 Related Work

There are roughly two types of methods for 3D object detection with LiDAR
point clouds.

2.1 Single-Stage Approaches

To enhance the computational efficiency, this type of object detector processes
the point cloud in a fully convolutional network and predicts the 3D detection
information immediately. VoxelNet [21] utilizes PointNet [14] to encode each
voxel, extracts spatial information using 3D dense convolutional network, and
applies a 2D detector head to predict 3D objects. SECOND [19] adopts 3D
sparse convolutional networks and introduces a heading classification branch
to accelerate the inference of the network and improve the performance of the
detector. PointPillars [9] enlarges the voxel size, upgrades the encoder of each
LiDAR point, and simplifies the above networks, thereby enabling it to be a
more rapid and efficient method. Because all the aforementioned methods lack
large receptive fields, Voxel-FPN [8] applies multi-scale voxel feature aggregation
to improve the performance of the detector. Point-based detectors can easily
obtain larger receptive field. VoteNet [12] uses PointNet++ networks to extract
point cloud features, applies the vote module to predict the offset from each seed
point to the object center point, and adopts clustering to obtain object candidate
regions. However, these methods cause a decline in performance and unstable
detection results because single-stage detectors ignore the shape prior for each
object. Unlike two-stage methods, single-stage methods lack ROI pooling-based
technology, which makes it difficult to encode the instance characteristics of
objects. To introduce the shape prior into single-stage detectors, SARPNET
[20] generates a 3D shape prior by modifying the feature encoding layers and
extending a vertical attention branch. SA-SSD [6] proposes a PSWarping module
to mimic the operation of ROI pooling and applies an auxiliary network with
point-level supervision to guide the intermediate features from different scales of
backbone 3D sparse CNN. However, the PSWarping module does not consider
the importance of each part overall.
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2.2 Two-Stage Approaches

To improve the detection performance of 3D object detectors, these methods
usually use ROI pooling-based technology to further optimize the results. By
designing LiDAR features based on the top view to predict the proposal, MV3D
[1] applies 2D convolution to encode LiDAR features and combines the features
extracted from the camera view and front view for 3D object detection. AVOD
[7] utilizes 3D anchors and fewer channels to enhance the detector’s efficiency.
F-PointNet [13] applies a 2D image detector to extract corresponding frustums
in the 3D point cloud, and then uses PointNet to predict 3D object informa-
tion. PointRCNN [17] generates 3D proposals by segmenting the point cloud of
the entire scene into background and foreground points and then, refines these
proposals using 3D ROI pooling. Part-A2̂ [18] consists of a part-aware stage
and a part-aggregation stage. The part-aware stage estimates the intra-object
part locations and generates 3D proposals, and the part-aggregation stage con-
ducts ROI-aware point cloud pooling operations to group the part features and
predict object information. PV-RCNN [16] utilizes the advantages of both the
point-based and voxel-based feature learning methods to boost 3D detection per-
formance. However, the voxel-based detector in the first stage affects detection
performance. Benefiting from the detected results of the 2D or 3D bounding
boxes (shape priors) in the first stage, two-stage detectors achieve better perfor-
mance than single-stage detectors.

3 SPANet

In this section, we describe the proposed SPANet in detail. As shown in Fig. 1,
it consists of four main components: (1) a voxel-based backbone, (2) a spatial
aggregation network, (3) a RPN, and (4) a part-aware aggregation network.

3.1 Voxel-Based Backbone

Voxel-based 3D detectors [18–20] apply 3D sparse convolution [4,5] to efficiently
encode point clouds. We utilize it as the backbone of our framework for fea-
ture encoding. The procedure for generating voxel representation from LiDAR
point clouds follows SA-SSD [6]. Supposing the LiDAR point cloud includes a
3D space with range H, W , D which represents height in the vertical direction,
position in the horizontal direction, and distance from the sensor, respectively.
Each voxel has a size ΔH , ΔW , ΔD. The size of the entire voxel grid is H/ΔH ,
W/ΔW , D/ΔD. Let {pi = (xi, yi, zi, ri), i = 1, ..., N} be the coordinates and
the reflectivity of the point cloud, which is the input data representation. The
backbone network consists of four 3D sparse convolutional blocks. Except for
the first block, all the other three blocks have a downsampling layer. Each con-
volution layer is followed by a batch normalization layer and ReLU. The size of
the output for each voxel is ΔH × 8, ΔW × 8, ΔD × 8.
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Fig. 1. The structure of SPANet. The detector takes a raw LiDAR point cloud as input,
utilizes 3D sparse convolutional layers to learn voxel-based features, and then applies
an aggregation module to encode spatial features. Finally, the RPN predicts the 3D
information of objects and a part-aware aggregation module to refine the results.

3.2 Spatial Aggregation Network

This network improves the encoding features of the network by aggregating the
spatial features and spatial attention. It includes a voxel-based encoding branch,
a point-based encoding branch and an aggregation module. Figure 2 shows the
comparison of the two encoding methods.

Voxel-Based Encoding Branch. This branch is mainly used to retain voxel-
based encoding features. The branch utilizes a 3D sparse convolutional layer
with a kernel size of (3, 3, 3) to encode the voxel-based features.

Point-Based Encoding Branch. It provides spatial information to the net-
work using a larger receptive field. This branch takes voxel-based features as
input, and each voxel is viewed as a point, PointNet++ is used to generate spa-
tial attention and spatial encoding features. A PointNet++ block consists of a
sampling layer, a grouping layer and a PointNet layer. The sampling stage adopts
the iterative furthest point sampling (FPS) algorithm to choose a small number
of N key points KP = {p1, ..., pn} from the voxel-based features. This strategy
can easily and efficiently generate a lager receptive field than voxel-based convo-
lution. In the grouping stage, the ball query method is used to generate N ′ local
areas. This ball query algorithm finds points within a sphere of a certain radius
R, and sets the upper number limit to K. The output of the grouped features
has a size of N ′ × K × (d+C). C is the dimension of the features, and d repre-
sents the coordinates. In the PointNet learning stage, it sets the features to be a
size of N ′ × (d + C). Suppose the input voxels have a shape (M,d + Cin), M is
the number of voxels, Cin is the dimension of the features, and d represents the
coordinates. We apply two PointNet++ blocks to learn N ′

1 = 512 and N ′
2 = 128
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Fig. 2. The diagram of voxel-based encoding and point-based encoding.

key points, respectively. The radius are set to R1 = 1.0 m and R2 = 1.6 m, and
the upper number limits K are set to 32 and 16, respectively. Such a processing
method can not only obtain larger receptive fields, but also avoid the computa-
tional burden caused by utilizing PointNet++ from raw LiDAR point cloud.

Aggregation Module. The module is used to integrate local features from the
voxel-based encoding branch and global features from the point-based encoding
branch. The point-based encoding branch applies a lager respective field to learn
spatial features Fsf and spatial attention Fsa. The voxel-based encoding branch
utilizes normal convolution to learn local features Flf . The spatial attention
Fsa and local features Flf are used to generate guided local features Fgl using
Eq. 1. PV-RCNN [16] applies both the point-based and voxel-based features to
boost 3D detection performance. But the point-based branch is only used in the
second stage. We employ a feature propagation FP layer [15] to interpolate Fsf

and Fsa, which sets these features to have the same voxel position as Flf . We
apply Tanh instead of Sigmoid activity function to obtain the effect from both
positive and negative values. Then, we combine the guided local and spatial by
using a concatenate operation (Eq. 2).
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Fgl = Tanh(FP (Fsa)) ∗ Flf (1)

Fspa = Concat(Fgl, Fsf ) (2)

3.3 Part-Aware Aggregation

Through observation, we find that only the area covered by the rays in the LiDAR
point cloud has points. This means that the information for each object depends
on the regions with points. The part-aware aggregation module proposed by
Part-A2̂ [18] utilizes sparse 3D convolution to encode non-empty regions and
aggregate different Semantic features. While, the proposed part-aware aggrega-
tion module is used to enhance the regions with points, and it attributes higher
attention weights to these regions to improve the encoding of each instance. The
module has two branches. One is the instance encoding branch. Each instance
feature Fins is obtained by using the PSWarping module [6], which makes each
instance generate N = 28 parts. However, PSWarping module lacks the impor-
tant attribute of encoding of the shape of the objects. The other branch is the
part-aware attention branch, which predicts the corresponding part-aware atten-
tion weights Faw for each part. The attention branch has N channels, and each
foreground anchor corresponds to the N parts of each instance. The process is
shown in Fig. 3. Supposing the input features Fin from the 2D encoder, we apply
Eq. 3 to obtain the attention encoding F ins

att for each detected object. However,
the size of F ins

att is based on region, which cannot be used for pixel-wise prediction.
We adopt a sum operation to obtain the re-score value for each object.

Fig. 3. The structure of part-aware aggregation network.
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Fins = PSWarping(Conv2D(Fin))
Faw = Conv2D(Fin)

F ins
att = Fins × Sigmoid(Faw)

(3)

3.4 Loss Function

For the 3D object proposal generation, we use classification and regression losses
followed [19]. It consists of three branches, a classification loss for type, a classi-
fication loss for direction, and a regression loss for position, size and heading.

Classification Loss Function. To solve the problem of an extreme imbalance
between foreground and background classes during training, the focal loss [10]
(Eq. 4) is applied.

Lcls = −αt(1 − pt)γt log(pt) (4)

pt =

{
p, y = 1,

1 − p, otherwise.
(5)

where the p is the estimated probability of the model for the class with label
y = 1. The αt and γt are the parameters of the focal loss. We set αt = 0.25 and
γt = 2 in our experiments.

Direction Classification Loss Function. Direction classification is used to
further strengthen the ability of the model to estimate yaw rotation. Because
the yaw will cause a large loss when the angle of the box is 0 or π radian. We
apply Ldir to indicate the direction classification loss.

Regression Loss Function. For anchor-based regression, supposing a 3D
ground truth bounding box as xg, yg, zg, lg, wg, hg, θg, where x, y, x are the cen-
tral location, l, w, h represent the length, width, and height of the 3D bounding
box, and θ is the yaw rotation around the z-axis. The positive anchor param-
eterized as ∗a, {∗ ∈ (x, y, z, l, h, w, θ)}. Then, we use Δ∗ to represent the cor-
responding residual. The residual can be viewed as Eq. 6. The SmoothL1 [11]
function is used to compute the regression loss.

Δx =
xg − xa

da
,Δy =

yg − ya

da
,Δz =

zg − za

ha
,

Δl = log(
lg
la

),Δw = log(
wg

wa
),Δh = log(

hg

ha
),

Δθ = sin(θg − θa).

(6)

where da =
√

l2a + w2
a is the diagonal of the base of the anchor.
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Total Loss. The overall loss function of our SPANet for end-to-end training is
calculated as:

Ltotal = βlocLloc + βclsLcls + βdirLdir (7)

where βloc = 2, βcls = 1, and βdir = 0.2 in our experiments.

4 Experiments

4.1 Dataset

Kitti Dataset. KITTI [2] is one of the most popular datasets used in 3D
detection for autonomous driving. It consists of 7,481 training samples and 7,518
test samples, in which the training samples are generally divided into train split
(3,712 samples) and val split (3,769 samples). The splitting of the sets follows
the approach proposed in MV3D [1].

4.2 Implementation Details

Network Architecture. The size of ΔH , ΔW , ΔD is (0.05, 0.05, 0.1) m and
the range of {H,W,D} is {(0, 70.4), (−40, 40), (−3, 1)} m for both training and
testing on KITTI dataset. The anchor size is (1.6, 3.9, 1.5) m for width, length,
and height respectively. The anchors are assigned to the positive objects when
intersection-over-unions (IOU) is above 0.6 and assigned to the negative when
IOU is less than 0.45. The rest of the anchors are ignored during training.

Training Parameters. The network was trained for 50 epochs using an SGD
optimizer. We set the batch size to 2, the learning rate to 0.01, and the weight
decay to 0.001. The learning rate was decayed with a cosine annealing strategy.
In the inference, we filter out the low-confidence bounding box by a threshold
of 0.3. The non-maximum suppression set an IoU threshold of 0.1.

Data Augmentation. Data augmentation is critical to prevent over-fitting
for achieving good performance. Inspired from SECOND [19], the strategy of
augmentation of ours is as follows. First, a lookup table is used to records all
the ground truth 3D boxes and the corresponding LiDAR point clouds. For
each LiDAR sample, we randomly select 15, 30 ground truth samples for cars
on KITTI dataset and vehicles on Waymo open dataset respectively and place
them into the current LiDAR sample to increase the number of objects. Second,
for each ground truth bounding box, we randomly rotate it from [−π/4, π/4]
and the center of box randomly shift from N (0, 0.5). Third, the scaling noise
is drawn from the uniform distribution [0.95, 1.05]. Fourth, a global rotation is
applied to the whole LiDAR sample from [−π/4, π/4].
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Table 1. The comparison of performances in bird’s eye view (BEV) detection, 3D
object detection and object orientation estimation: AP(%) on KITTI test set for the
class of Car.

Method Modality Times(s) BEV 3D Orientation

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Two-stage MV3D LiDAR & Img 0.36 86.62 78.93 69.80 74.97 63.63 54.00 N/A N/A N/A

F-PointNet LiDAR & Img 0.17 91.17 84.67 74.77 82.19 69.79 60.59 N/A N/A N/A

AVOD LiDAR & Img 0.10 90.99 84.82 79.62 83.07 71.76 65.73 94.65 88.61 83.71

STD LiDAR 0.08 94.74 89.19 86.42 87.95 79.71 75.09 N/A N/A N/A

PointRCNNLiDAR 0.10 92.13 87.39 82.72 86.96 75.64 70.70 95.90 91.77 86.92

PartA2̂ LiDAR 0.08 91.70 87.79 84.61 87.81 78.49 73.51 95.00 91.73 88.86

PV-RCNN LiDAR 0.08 94.98 90.65 86.14 90.25 81.43 76.82 98.15 94.57 91.85

Single-stage ContFuse LiDAR & Img 0.06 94.07 85.35 75.88 83.68 68.78 61.67 N/A N/A N/A

SECOND LiDAR 0.05 91.38 85.63 78.60 83.66 73.07 68.12 95.99 90.04 84.70

PointPillars LiDAR 0.016 90.07 86.56 82.81 82.58 74.31 68.99 93.84 90.70 87.47

SARPNET LiDAR 0.05 92.21 86.92 81.68 85.63 76.64 71.31 95.82 92.58 87.33

TANET LiDAR 0.035 91.58 86.54 81.19 84.39 75.94 68.82 93.52 90.11 84.61

SA-SSD LiDAR 0.04 95.03 91.03 85.96 88.75 79.79 74.16 39.40 38.30 37.07

3DSSD LiDAR 0.04 92.66 89.02 85.86 88.36 79.57 74.55 N/A N/A N/A

Point-GNN LiDAR 0.60 93.11 89.17 83.90 88.33 79.47 72.29 38.66 37.20 36.29

SPANet LiDAR 0.06 95.59 91.59 86.53 91.05 80.34 74.89 96.31 95.03 89.99

Table 2. The comparison of performances in bird’s eye view (BEV) detection and 3D
object detection: AP(%) on KITTI validation set for the class of Car.

Method Spatial Part-aware BEV 3D

Easy Mod. Hard Easy Mod. Hard

Baseline × × 96.40 90.27 87.53 92.87 83.79 78.96

Type1 × � 96.51 90.45 87.87 93.48 84.52 81.68

Type2 � × 96.63 90.36 87.69 93.36 84.15 79.36

SPANet � � 96.88 90.74 88.06 93.95 84.93 81.97

4.3 Results

We evaluate our model on the KITTI dataset to validate the effectiveness of
the proposed method. We use an NVIDIA GTX 1080 Ti GPU for the inference
of our experiments. We evaluate the proposed SPANet on the KITTI bench-
mark for bird’s eye view detection, 3D object detection, and orientation esti-
mation for the class of Car. The comparison results are shown in Table 1. The
upper part of Table 1 shows the results of two-stage methods, and the lower part
shows the results of single-stage methods. When compared with the single-stage
methods, SPANet achieves the best performance for bird’s eye view detection,
3D object detection and orientation estimation. The SPANet shows 0.5–0.6 AP
points improvement over the best results on bird’s eye view detection, 0.6–2.7
AP points improvement over the best results on 3D object detection, and 0.5–2.5
AP points improvement over the best results on orientation estimation. Some
detected results on KITTI dataset are shown in Fig. 4.
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Fig. 4. Results of the 3D object detection on the KITTI test set. 3D boxes are projected
on to the RGB images and LiDAR point cloud. The results of orientation estimation
are drawn in the LiDAR point cloud using green.

4.4 Ablation Studies

In this section, we conduct extensive ablation experiments to analyze the effec-
tiveness of different components of the SPANet on KITTI 3D object detection.
All the ablation experiments were trained on the train set and tested on the val-
idation set [1]. All the ablation studies were conducted on the car class because
the relatively large amount of data to make system run stably. To analyze the
effects of the proposed spatial aggregation and the part-aware attention mod-
ules, we tested the performance of each module separately. All results are shown
in Table 2. The Spatial indicates the spatial aggregation module. This module
improves 0.36 AP points for the performance of 3D. The Part-aware represents
the part-aware aggregation module. This module improves 0.73 AP points for
the performance of 3D. When we apply these two modules at the same time,
the performance of 3D is improved by 1.14 AP points. And the performance of
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BEV is improved by 0.52 AP points. The results prove the effectiveness of the
two proposed modules.

5 Conclusion

We have presented the SPANet framework, a novel method for accurate 3D
object detection from point clouds. SPANet integrates both the 3D voxel-based
features and the point-based features using the proposed spatial aggregation
module, which learns more discriminative features. In addition, the proposed
part-aware aggregation module integrates fine-grain shape priors into the detec-
tor to improve the performance of 3D object detection significantly. Experimen-
tal results on the KITTI dataset demonstrate that the proposed method achieved
state-of-the-art performance for single-stage 3D object detectors.
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Abstract. Human action recognition is an essential area of research
in the field of computer vision. However, existing methods ignore the
essence of infrared image spectral imaging. Compared with the visible
modality with all three channels, the infrared modality with approxi-
mate single-channel pays more attention to the lightness contrast and
loses the channel information. Therefore, we explore channel duplica-
tion and tend to investigate more appropriate feature presentations. We
propose a subspace enhancement and colorization network (S2ECNet)
to recognize infrared video action recognition. Specifically, we apply the
subspace enhancement (S2E) module to promote edge contour extraction
with subspace. Meanwhile, a subspace colorization (S2C) module is uti-
lized for better completing missing semantic information. What is more,
the optical flow provides effective supplements for temporal informa-
tion. Experiments conducted on the infrared action recognition dataset
InfAR demonstrates the competitiveness of the proposed method com-
pared with the state-of-the-arts.

Keywords: Infrared video action recognition · Subspace
enhancement · Subspace colorization · Optical flow · Feature fusion

1 Introduction

Human action recognition in many vital applications e.g. surveillance, health
monitoring, video recording, and human-computer interaction, has made remark-
able progress in the past few years [1–4]. Most research only focuses on action
recognition in the visible spectrum, providing rich color information and texture
information.

However, visible spectrum can be limited in surveillance and may not cap-
ture useful appearance information under poor illumination conditions. Due to
that, infrared cameras are used frequently in the place which may suffer low
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RGB

CIE Lab

Lightness & Chrominance

Color space2: Lab

Color space1: RGB

Infrared Image

Color space1: RGB

Color space2: Lab

Visible Image

Fig. 1. Illustration of Subspace, which exists between visible image and infrared image.
Color space1: RGB and Color space2: Lab represent the three-channel images of
visible image and infrared image in RGB color space and Lab color space. It should
be noted that channel a and channel b of the infrared image in the Lab color subspace
has little valuable information, proving that the infrared image is approximate single-
channel image and pays more attention to the lightness contrast. In addition, triangles
represent lightness, and circles represent chrominance.

light environment. Thus, action recognition in infrared modality has attracted
extensive attention as its immunity to visual influence.

Most of the existing methods leverage the multi-stream network to obtain dif-
ferent modality features. However, they ignore a characteristic of infrared images.
As an approximate single-channel image, infrared modality pays more attention
to the contrast of lightness and loses the chrominance channel information. A
series of the problem has been observed. Some existing methods tend to use the
infrared sequences without any background, making it susceptible to variations
in background [5]. What is worse, the infrared images can hardly capture the
interior motion [6], which motivates a rising trend to break through the single
modality limitation. Inspired by cross-modality tasks in image retrieval [7–9], we
find the vast performance gap to be bridged. It is an essential part of handling
mentioned problem to elaborate the subspace relationship between modalities.
To better explore the critical issue of our method, we visually illustrate it in
Fig. 1. Image can be expressed through chrominance and lightness channels. The
infrared image only has lightness information. Thus, we find that the subspace
containing the common points of the two modalities can be integrated to express
the feature.

According to the characteristics of human vision, humans perceive color from
hue, saturation, and lightness. The most common red-green-blue (RGB) color
subspace for human beings is expressed through the combination and super-
position of the three primary colors of red (R), green (G), and blue (B). The
disadvantage is that the uniform lightness change in human visual perception
cannot be reflected in the data. Infrared image expression tends to be a way of
separating lightness and color information. This inspired us to find a subspace
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to solve the above problem. Some of the satisfying condition color subspaces we
shall briefly discuss are HSV, HSL, Lab. It should be noted that there is no
proportional linear relationship between human vision’s perception of uniform
changes in color and the uniform change of light wavelength in the true physi-
cal sense. Therefore, the Lightness data designed in the color subspace of HSV
and HSL does not conform to the actual physical meaning. The data is evenly
distributed. This also results in the HSV and HSL color subspaces being more
suitable for art design applications and cannot meet the demand for uniform data
distribution required by the machine. In the varieties of color subspaces, CIE Lab
comprises three channels as L, a, and b. L represents the lightness/luminance,
whereas a and b are the chrominance. In the investigation process, we found
that the Lab color subspace is a subspace that has nothing to do with equip-
ment and expresses a broader color gamut. Further, color subspaces (essentially
transformations of original RGB images) can significantly affect classification
accuracy and commission Internationale de I’Eclairage (CIE) Lab obtain the
best accuracy [10].

In the research process, we find that the imaging of infrared images and
the Lightness channel showed a high correlation trend, and the reflection of
infrared rays by different types of objects is different. If the background infor-
mation can be appropriately subtracted from the infrared Lightness information
to enhance the edge contour information of the human body in the background,
the performance of infrared video action recognition can be improved to a cer-
tain extent. Thus, it is necessary to use the lightness information to suppress
the effect of background clutter. Inspired by the Simple Linear Iterative Clus-
tering (SLIC) [11] in image segmentation, we enhance the information of similar
pixels in the same area, expand the distance between the human body and the
background noise generated by the background clutter in the infrared image. We
propose the subspace enhancement (S2E) model by re-fusing the lightness chan-
nels to obtain the edge contour and relatively suppress the effect of background
noise from background clutter.

Automatically converting an infrared image to a plausible color image is
an exciting way to obtain plentiful information. However, predicting two miss-
ing channels from a given near single-channel image is inherently an illposed
problem. Previous works have utilized the colorization net to predict the color,
which goal is to minimize Euclidean error between an estimate and the ground
truth [10]. CIE Lab is a perceptually linear colorspace as it establishes a map-
ping between the colors in Euclidean space and the colors in human perception.
Therefore, it is more suitable than other colorspaces for our colorization task. In
this paper, we introduce the subspace colorization (S2C) module to our network.

In this paper, we propose a novel three-stream subspace enhancement and
colorization network (S2ECNet) network based on the CIE Lab latent space,
as Fig. 2 shows. Specifically, S2ECNet is naturally decomposed into spatial and
temporal components. In the form of individual frame appearance, the spatial
part carries information about scenes and objects depicted in the video. The S2E
model superimposes the channels with contrast information from single-channel
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to dual-channel, that is, XLab
i → XLaL

i . Then the S2C module achieves the
purpose of filling the color in the lab image.

In the form of motion across the frames, the temporal part conveys the
observer’s movement (the camera) and the objects. The objects with strong
reflectance to infrared light still exist in the video, so the immobile objects can be
further filtered through optical flow so that the network pays more attention to
the moving human body. Particularly, to better complement the spatial-temporal
information, we share the weighting. In theory, our method is to process the
data before it enters the deep convolutional network so that we can extend this
method to other action recognition techniques for infrared video.

Our main contributions are summarized threefold:

• We propose a three-stream S2ECNet and interpolate, which can provide a
subspace between infrared modality and visible modality. Besides, the net-
work has considered weight sharing to complement the spatial and temporal
information.

• We propose a new S2E module. The influence of background clutter in infrared
images is suppressed, and the contrast is improved to enhance the profile
information.

• We use the S2C module to bridge the modal gap between visible data and
infrared data and supplement the details of infrared video to improve the
video action recognition under infrared spectrum.

2 Related Work

2.1 Visible-Based Action Recognition

In the visible domain, with the significant progress of deep learning techniques,
various deep learning architectures have also been proposed. The deep learning
methods for RGB-based action recognition can be divided into two-stream 2D
CNN, 3D CNN-based methods, and recurrent neural network (RNN). Simonyan
et al. [1] proposed a two-stream CNN model consisting of a spatial network
and a temporal network. More specifically, given a video, each individual RGB
frame and multi-frame-based optical flows were fed to the spatial stream and
temporal stream, respectively, and fused their scores for final prediction. Wang
et al. [3] divided each video into three segments and processed each segment with
a two-stream network. Then the classification scores of the three segments were
then fused by an average pooling method to produce the video-level prediction.
However, the two-stream CNN model had limitations in effectively modeling the
video-level temporal information. Many researchers have extended 2D CNNs to
3D structures to simultaneously model the spatial and temporal context infor-
mation in videos crucial for action recognition. Tran et al. [2] proposed to model
spatial-temporal information using 3D CNNs.

To decrease the computation, R(2+1)D [12] decomposed the 3D filters into a
spatial filter and a temporal filter. Carreira et al. [13] inflated the weights from
pre-trained 2D CNNs, which can leverage both the successful design and solid
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parameters of deep image classification architecture. Lin et al. [14] proposed
a temporal shift module (TSM) for 3D CNN, which shifts the channels along
the temporal dimension both forward and backward. Thus the information is
exchanged between adjacent frames, and the complexity is maintained to the
level of 2D CNNs. More recently, RNN based approaches [4] and [15] were also
popular to model the spatial-temporal representation in videos.

2.2 Infrared-Based Action Recognition

With the maturity of infrared technology, some action recognition methods for
infrared video are gradually proposed. For the early research, Han et al. [16]
firstly applied infrared images in human contour detection and clipping by using
a hierarchical genetic algorithm (HGA). Zhu et al. [17] extracted the distribution
histogram features of infrared image and used an SVM classifier trained by
visible data to classify. The classification result was only a little higher than
that of random. Gao et al. [18] complemented the gap of undisclosed infrared
video datasets. Moreover, they proposed a new infrared action dataset, InfAR
dataset. On this dataset, Gao et al. evaluated some hand-made features e.g.
STIP [19], HOG3D [20], 3DSIFT [21], followed by feature encoding using Fisher
vector (FV) [22] and vector of locally aggregated descriptors (VLAD) [23]. In
terms of individual feature performance, DT gives the best result of 68.66% on
InfAR dataset using VLAD encoding with linear kernel.

For the infrared video, it is crucial to learn informative and efficient feature
representations. Since infrared frames are insufficient for texture detail, it is
natural to adopt multi-stream architecture. Gao et al. further proposed a two-
stream framework based on 2D CNNs to extract extra features like optical flow
and optical flow-Motion history image (OF-MHI) [24], and this method achieved
76.66% results. Some later methods adopted deeper networks than the previous
works. Hilsenbeck et al. [25] used Hoff forest and integral channel features (ICF)
to identify violent and non-violent actions in infrared images. Jiang et al. [26]
proposed a two-stream network using convolutional 3D (C3D) [2] to learn spatial-
temporal features from infrared images and optical flows. Wang et al. [27,28]
proposed a GAN network to generate information missing from the infrared data.
Ali et al. [29] applied the Beta-Liouville Hidden Markov Models (BLHMM) for
the first time in action recognition of infrared data. That model overcomes over-
fitting and under-fitting, and optimized the generalization ability. Riva et al. [30]
investigated Bayesian 3D ConvNets for action recognition when training infrared
video examples were scarce. Bayesian 3D ConvNets have been shown effective
regularizers for deep networks. Liu et al. [31] sent optical flow motion history
image, optical flow, and superimposed difference image of optical flow image
to a third-stream CNN network for action recognition, respectively. Inspired by
this, Imran et al. [32] proposed a four-stream architecture that uses two CNN
pathways to learn the global temporal information, while two CNN-BiLSTM
pathways to capture local spatial-temporal features. Chen et al. [33] explored
an effective way to generate optical flow and obtained discriminative features
automatically, with only input the single infrared stream.
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Fig. 2. Overview of the proposed method. Given an Infrared sequence XRGB
S as input,

our model starts with converting the color subspace from RGB to CIE Lab. We then
extract temporal feature Fflow via Optical flow and use S2E and S2C stream to extract
spatial feature FS2E and FS2C via XLab

S image. In addition, S2E replaces one of the
channels of XLab

S image and refuses to obtain XLaL
i . S2C uses colorization network to

colorize XLab
S and obtain globally consistent colorization results Colorization Image.

Finally, we propose to fuse all the features Fflow, FS2E , and FS2C in the last layer
network.

3 Method

3.1 Framework

In this section, we introduce our proposed method in detail. An overview of the
framework is presented in Fig. 2. We adopt an S2ECNet to learn informative
and efficient feature representations. In this architecture, we input a sequence of
infrared video frames XRGB

S into the network. Moreover, the temporal feature
is extracted by the first stream, the spatial feature is extracted by the second
and the third streams. The first stream is to use the optical flow to solve tem-
poral modeling. The second stream is S2E stream, in which the channels of the
image are recombined and pay more attention to the lightness information of the
infrared image. The third stream of the proposed network is S2C stream, and we
use it to complete the missing color details of the infrared image. Finally, we use
an inflated 3D ConvNet (I3D) [13] network to extract these features respectively
and fuse these three features and use the softmax function to classify human
action.

First of all, we use (1), (2), and (3) to transfer the color subspace of the
infrared video frame from RGB to CIE Lab color subspace. We convert the
RGB image to XYZ image. And then, we set a frame in video as XRGB

i , and
the network input is a sequence of frames XRGB

S ∈ R
N×T×H×W×C , which can

be obtained by (4).
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3.2 Subspace Enhancement

As we all know, the imaging of infrared images is mainly determined by the
strength of the object’s ability to reflect light. Therefore, compared to visible
imaging, background clutter has a more significant impact on infrared images.
Through the result of channel matrix and channel visualization output, as shown
in Fig. 1, as we can easily conclude that the imaging in infrared has the most
significant amount of information in the XL

i (Lightness) channel, and there is no
comparative and helpful information in the color channel Xa

i and Xb
i . Thus, to

suppress the effect of background clutter, in the S2E, the lightness channels of
the images are superimposed, such that the contour information of the human
is amplified and the contrast between the background noise and the human
body is increased. Finally, it has positive implications on the performance of the
action recognition model. As shown in Fig. 2, we propose a S2E module. Given
a sequences of infrared image XRGB

S in RGB color subspace, S2E starts with
extracting the infrared frame XRGB

S . We then obtained three channels of image
(XL

i , Xa
i , and Xb

i ) in Lab color subspace by converting the color subspace of
XRGB

S from RGB to Lab and split the channel of XLab
S . We utilize XL

i to replace
the color channel (i.e. Xa

i and Xb
i ) and merge these new three channels. Finally,

we have a new image in Lab space, i.e. XLab
i → XLaL

i (orXLLb
i ) → XLLL

i .
Based on the previous ablation experimental results, we select the configuration
XLaL

i ∈ R
N×T×224×224×C .

From Fig. 2, we can see that the boundary between the human and the back-
ground in image XLaL

i is more evident than in image XRGB
S , and the background

noise in XLaL
i is also less. All of these factors cause the network to pay more

attention to the human. One of the reasons that make the XLaL
i has a back-

ground color that the channel XL
i is used to replace the Xb

i channel, which
represents the chrominance. An image is nothing but numbers to a computer.
Hence, transformations of these images should be viewed as a completely new
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image to a computer. Essentially transferring an image into different color sub-
spaces should generate new images in the view of the computer, but for the
image after compositing the channels, it is giving inappropriate color informa-
tion to the infrared image. However, for the network, the lightness channel XL

i

is superimposed, and the contrast between the human and the background is
increased. At last, we resize the cropped images to a resolution of 224×224 after
channel fusion and input a sequence of XLaL

i .

3.3 Subspace Colorization

To bridge the modality gap between infrared and visible, we propose an S2C
module, which uses partial mode (infrared image) to generate full mode (color
image). Moreover, the network can obtain complementary but heterogeneous
information conveyed by different spectrums of data, which can improve the
model performance of infrared video action recognition.

Detecting

Colorizing

Fusion

Colorizing

Object Detection

Instance Colorization

Full-image Colorization

Channel
merge

Channel
merge

Fig. 3. Overview of the proposed S2C module. Given an infrared image X as input, our
model detects the object bounding boxes using an off-the-shelf object detection model.
Then we crop out every detected instance of {XL

i }Ni=1 and use instance colorization
network to colorize single-channel image XL

i . We obtain a three-channel (L, a, b) image
result Y Lab

i . However, as the color of instance may not be compatible concerning the
predicted background colors, features of instance maps in every layer are fused with
the extracted full-image feature maps by using the proposed fusion module. We obtain
globally consistent colorization results Y .

Referring to the method [34], as shown in Fig. 3, our colorization network is
also divided into two stages, object detection and colorization. The colorization
stage consists of two parts, one for coloring the instance images and the other for
coloring the full image. Before colorization, we employ an off-the-shelf pre-trained
network, Mask R-CNN [35], as our object detector. We crop the instances XLab

i

in the image according to the size of the bounding box. We feed each instance
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image XLab
i and original X to the instance colorization network and full-image

colorization network, respectively. Moreover, S2C module follows [36] to train
the model on COCO-Stuff dataset and fine-tune it. S2C module using channel
XL

i of XLab
i to predict a couple of chrominance {Xa

i , Xb
i } then merge these

three channels. Finally, we get the color instance image Y Lab
i and the color full

image Y Lab, then optimize the feature fusion to obtain these smooth colorization
results by a fusion module. Specifically, we resize the instance feature Y Lab

i as
well as the weight map W I

i to match the size of full-image and exploit zero
paddings on both of them. We denote the resized instance feature and weight
map as Ȳ Lab

Xi
and W̄ I

i . After that, we stack all the weight maps, apply softmax
on each pixel, and obtain the fused feature using a weighted sum as (5), where
Y Lab is a full-image feature, Ȳ Lab

i is a bunch of instance features, and N is the
number of instances. These two features are given different weights, WF and
W̄ I

i , and each instance feature Y Lab
i is integrated into the corresponding full-

image feature Y Lab. We utilize the input bounding box, which defines the size
and location of the instance Y Lab

i . The final fused image is image Y .

Y = Y Lab ◦ WF +
N∑
i=1

Ȳ Lab
i ◦ W̄ I

i (5)

3.4 Fusion

Fusion refers to the integration of information from two or more modalities for
training and inference. Therefore, it is natural to use the complementary advan-
tages of different data patterns through fusion to achieve higher performance.
There are two common multi-modal fusion methods in human action recognition:
score fusion and feature fusion. Our method will use feature fusion to integrate
modalities for training. In the S2ECNet, FS2E is generated by S2E module, FS2C

feature generated by S2C module, and Fflow feature extracted by optical flow.
We fuse these three features in the Logits layer after the last perception module.
The concatenate operation is as follows:

Y S = WS2E · FS2E ⊕ WS2C · FS2C ⊕ Wflow · Fflow (6)

where ⊕ is the concatenate operation, WS2E , WS2C , and Wflow are the weight
factors of the three features. Y S is the final fusion feature. Before feature fusion,
three kinds of features need to be normalized.

4 Experiment and Metrics

4.1 Datasets

InfAR dataset consists of 12 action classes. Each class consists of 90 videos
recorded at a resolution of 293 × 256. Each class has 75 videos as training set
and 25 videos as testing set. All action instances are displayed in Fig. 4. InfAR
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Fig. 4. Video samples for 12 action classes on InfAR action dataset.

dataset includes one-hand wave (wave1), multiple-hand wave (wave2), handclap,
jog, jump, walk, skip, hug, push, handshake, punch, and fighting action, with 25
frames per second (FPS) and resolution of 293×256. Each video clip lasts about
4 s on average. Some of these videos illustrate interactions between multiple
actors. We use Top-1% accuracy as our network metrics.

4.2 Experimental Settings

We conducted our experiments on video action recognition tasks by following
the same strategy mentioned in I3D, given an input video, then we randomly
selected frames to obtain a clip with T frames. The size of the shorter side of these
frames is fixed to 256, and cropping is utilized for data augmentation. We use
random cropping, both spatially resizing the smaller video side to 256 pixels,
then randomly cropping a 224 × 224, when picking the starting frame among
those early enough to guarantee a desired number of frames. The input fed to
the model is of the size N ×T ×224×224×3, where N is the batch size, T is the
number of frames in each clip. We looped the video as many times as necessary to
satisfy each model’s input interface for shorter videos. During testing, the model
is applied convolutionally over the whole video taking 224 × 224 center crops,
and the predictions are averaged. We briefly try spatially-convolutional testing
on the 256 × 256 videos but do not observe improvement. Better performance
could be obtained by also considering left-right flipped videos at test time and
adding additional augmentation during training. It is worth mentioning that we
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verified the results when T = 64, 25, 16. The best performance of the model is
obtained by T = 16, so we set T = 16 by default in the other experiment.

During training, the models were trained with two GPUs and were imple-
mented using TensorFlow library and accelerated by CUDA 10.0. We use I3D [13]
network as backbone, which uses ImageNet pre-trained Inception-V1 as baseline.
We follow each convolutional layer by a batch normalization layer and a rectified
linear unit (ReLU) activation function for all architectures, except for the last
convolutional layers, which produce the class scores for each network. Same as
I3D method, we adopted Adam optimization algorithm, and we set the initial
learning rate at 1×10−4. Meanwhile, we train S2E stream and S2C stream mod-
els on InfAR for 10k steps with the learning rate decreases by 0.1 every 2k
steps, while optical flow stream for 20k steps with the learning rate decreases
by 0.1 every 5k steps. We followed the I3D method of model fusion, the weight
of the appearance feature and the motion feature are equally distributed. Since
S2E stream and S2C stream are included in the appearance features, our method
also distributes the weights of S2E stream and S2C stream equally. Finally, we
choose WS2E = 0.25, WS2C = 0.25, and Wflow = 0.5. There are two common
multi-modal fusion methods in human action recognition: score fusion and fea-
ture fusion. However, due to lack of time and space, we will seek a better model
fusion method in future work.

Table 1. Comparison of top-1 accuracy (%) performances with the state-of-the-arts
on InfAR dataset. Bold numbers are the best results.

Method Venue Flow Accuracy

STIP [19] IJCV ’05 × 49.16

3DSIFT [21] ACM MM ’07 × 49.50

Dense-Traj [37] CVPR ’11 × 68.66

Two-stream 2D-CNN [18] Neurocomputing ’16 � 76.66

TSTDD [31] SPL ’18 � 79.25

Global + Local SSDI [32] IPT ’19 × 69.25

Global SSDI + Local SDFDI [32] IPT ’19 � 83.50

IR net 3D-CNN [26] CVPR ’17 × 54.58

Two-stream 3D-CNN [26] CVPR ’17 � 77.50

PM-GANs [27] ECCV ’18 � 78.00

Bayesian 3D ConvNets [30] ICCV ’19 × 45.00

Filter-OF 3D CNN [38] CEAI ’19 � 88.19

FEN [33] TMM ’21 � 84.25

I3D-RGB [13] (baseline) CVPR ’17 × 82.67

S2ECNet w/o Flow (ours) × 86.00

S2ECNet w Flow (ours) � 92.33
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4.3 Comparisons with Other Methods

We evaluate the performance comparison of our proposed S2ECNet against other
state-of-the-art methods on InfAR [18] dataset. In Table 1, the first compart-
ment contains the methods based on handcrafted features, the methods in the
second compartment are all based on 2D CNNs or 2D CNNs + RNN, and the
methods in the third compartment are all based on 3D CNNs. It can be observed
that methods based on 3D CNNs or 3D CNNs + GAN (except Bayesian 3D
ConvNets [30]) average outperform methods based on 2D-CNN architecture.
One reason is that the 3D-CNN architecture is better in modeling temporal
variations. In addition, we also find that the unpredictability of Bayesian 3D
ConvNets model may be due to the use of a small number of 3D CNN layers.
Moreover, the main reason why Global SSDI-Local SDFDI [32] performs so well
is that it learns the temporal feature of infrared video through bi-directional
long short-term memory (BiLSTM) + 2D CNN network.

Our propose S2ECNet outperforms the best-handcrafted techniques by more
than 23% (68.66% vs. 92.33%). Compared with the method based on 2D CNN,
the performance of our proposed S2ECNet is increased by a significant margin,
about 8.83% (83.50% vs. 92.33%). Furthermore, our method also outperforms
the best method Filter-OF 3D CNN [38] by 4.14% (88.19% vs. 92.33%). The
superiority of our S2E and S2C modules on InfAR dataset is quite impressive. It
confirms the remarkable ability of S2E and S2C modules for spatial and temporal
modeling. Our method uses I3D for feature extraction, where optical flow is
used to capture temporal information. Moreover, considering the proposed three-
stream network has impact both in spatial and temporal receptive fields, it
is necessary to ascertain the independent impact of the two aspects. To this
end, we compare the method without using optical flow, as shown in Table 1.
The “I3D-RGB” is our baseline, which only uses video frames in RGB color
subspace as input. The “S2ECNet w/o Flow” can be obtained by fusing S2E
stream and S2C stream. Our method “S2ECNet w Flow” contains S2E stream,
S2C stream, and optical flow stream. Compared with the method without optical
flow, we can see that the accuracies of S2ECNet w/o Flow all outperform the
best techniques without optical flow and even by more than 16% (69.25% vs.
86.00%). It proves that such improvement is not entirely brought about by using
optical flow information.

Table 2. Comparison of top-1 accuracy (%) performances with different variants of
our method on InfAR dataset. Bold numbers are the best results.

Baseline S2C S2E Flow Accuracy

� × × × 82.67

� � × × 84.00

� � � × 86.00

� � � � 92.33



S2ECNet for Infrared Video Action Recognition 333

4.4 Ablation Studies

In order to verify the effectiveness of different modules in our method, we con-
ducted ablation experiments, as shown in Table 2. We compare the first row and
the second row, and it can be seen that our S2C module improves the model’s
ability to represent the appearance information of the infrared video (82.67% vs.
84.00%). The third row adds the S2E and attains higher accuracy (84.00% vs.
86.00%). Finally, we fuse all of the modules, the accuracy of our S2ECNet can
be further improved to 92.33%.

To select the most suitable channel fusion method, we also perform a set of
ablation experiments on S2E stream. In this set of experiments, channel Xa

i and
channel Xb

i in the three-channel infrared image XLab
i are replaced with lightness

channel XL
i respectively. In this way, four types of combinations are obtained:

Lab, LaL, LLb, and LLL. The best channel combination is LaL, with an accuracy
rate of 84.00%. However, our experiments show that the model’s performance
does not increase with the number of L channels. One possible reason for this
may be that when the image is overlayed with too much light information, some
background clutter is magnified along with the human body. So the influence of
background clutter on the network is also amplified, resulting in a decline in the
result. Therefore, a moderate two-channel stacking method is selected on the
channel fusion.

5 Conclusion

We propose a subspace enhancement and colorization network (S2ECNet) to
solve the infrared video action recognition problem. In detail, the S2E module
enhances the edge contour of human by using channel duplication. Besides, the
S2C module is utilized to better complete missing semantic information, reducing
the modality gap between the infrared and visible images. What is more, optical
flow has made significant contributions to temporal modeling. Good experiments
prove that our proposed method has apparent competitiveness compared with
other existing methods on InfAR dataset. It would be of great value to extend
this method to other techniques of action recognition for infrared video, which
will be explored in our future work.
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nition in the longwave infrared and the visible spectrum using hough forests. In:
Proceedings of the IEEE International Symposium on Multimedia (ISM), pp. 329–
332 (2016)

26. Jiang, Z., Rozgic, V., Adali, S.: Learning spatiotemporal features for infrared
action recognition with 3D convolutional neural networks. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPR), pp. 309–317 (2017)

27. Wang, L., Gao, C., Yang, L., Zhao, Y., Zuo, W., Meng, D.: PM-GANs: discrim-
inative representation learning for action recognition using partial-modalities. In:
Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS,
vol. 11210, pp. 389–406. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-01231-1 24

28. Wang, L., Gao, C., Zhao, Y., Song, T., Feng, Q.: Infrared and visible image regis-
tration using transformer adversarial network. In: Proceedings of the IEEE Inter-
national Conference on Image Processing (ICIP), pp. 1248–1252 (2018)

29. Ali, S., Bouguila, N.: Variational learning of beta-liouville hidden Markov models
for infrared action recognition. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPR), pp. 898–906 (2019)

30. de la Riva, M., Mettes, P.: Bayesian 3D convnets for action recognition from few
examples. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision Workshops (ICCV), pp. 1337–1343 (2019)

31. Liu, Y., Lu, Z., Li, J., Yang, T., Yao, C.: Global temporal representation based
CNNs for infrared action recognition. IEEE Sig. Process. Lett. 25(6), 848–852
(2018)

32. Imran, J., Raman, B.: Deep residual infrared action recognition by integrating local
and global spatio-temporal cues. Infrared Phys. Technol. 102, 103014 (2019)

33. Chen, X., Gao, C., Li, C., Yang, Y., Meng, D.: Infrared action detection in the dark
via cross-stream attention mechanism. IEEE Trans. Multimed. (2021). https://doi.
org/10.1109/TMM.2021.3050069

34. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas,
J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9 40

35. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. IEEE Trans. Pattern
Anal. Mach. Intell. 42(2), 386–397 (2020)

https://doi.org/10.1007/s11760-014-0677-9
https://doi.org/10.1007/s11760-014-0677-9
https://doi.org/10.1007/978-3-030-01231-1_24
https://doi.org/10.1007/978-3-030-01231-1_24
https://doi.org/10.1109/TMM.2021.3050069
https://doi.org/10.1109/TMM.2021.3050069
https://doi.org/10.1007/978-3-319-46487-9_40


336 L. Xu et al.

36. Su, J., Chu, H., Huang, J.: Instance-aware image colorization. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 7965–7974 (2020)
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Abstract. Nowadays, synthetic faces can completely trick human eyes,
which raises social concerns for malicious dissemination of such fake con-
tent. As a result, face forgery detection has become a significant research
topic. Due to the different distributions of synthetic data in different gen-
eration algorithms, it is a great challenge to improve the generalization
ability of the face forgery detection algorithm. To address this challenge,
we propose a general two-stream patch-based face forgery detection net-
work (FDPT), which introduces a patch transformation to encourage
the model to focus on stable information in different data. Specifically,
a random transformation is designed to help CNN stream extract local
subtle artifacts from images. Meanwhile, a sequence transformation is
employed to enhance the global spatial representation ability of the
image through the CNN-GRU stream. Finally, a fusion strategy is used
to improve the detection accuracy. We conduct extensive experiments to
show that FDPT achieves state-of-the-art performance on two popular
benchmarks. Moreover, FDPT outperforms the recently proposed gen-
eralization methods when applied to forgery generated by unseen face
manipulation techniques (e.g., 84.39% → 95.53% on Face2Face dataset).

Keywords: Face forgery detection · Generalization · Patch
transforamtion

1 Introduction

With the development of artificial intelligence technologies, researchers have pro-
posed various deep-learning-based generation algorithms to synthesize images
and videos. Since a Reddit user first used such algorithms in 2017 [11], fake con-
tent generation has gradually penetrated into politics, media, and many other
fields. It has become a serious problem that abusing fake images for malicious
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Fig. 1. Comparisons between our method and other patch-based methods. (a) There
are two fake faces (bottom) generated by DeepFakes [1] based on the two real faces
(top). (b) Other methods based on patch learning assume all patches cropped from a
fake image as fake (black line), but some patches may come from the real part (green
line). (c) Our method is trained with the global label instead of the aforementioned
assumption. FDPT uses patch transformation to capture the local subtle artifacts and
global spatial features of the image. (Color figure online)

purposes (e.g., influencing public opinions) will bring negative impacts on the
society, economics, and even politics. Therefore, it is necessary to study algo-
rithms for image forgery detection, especially for face forgery detection.

Researchers have made numerous attempts in order to address the challenge
of face forgery detection. For instance, a series of earlier works classify an image
into a real/fake category by using handcrafted features [7,12,25]. However, they
require high-resolution images and exhaustive feature tuning. In the past few
years, convolutional neural networks (CNNs) have shown a powerful ability in a
number of visual tasks. Therefore, recent works have begun to use deep learning
methods to achieve forgery detection [4,15,22,26,31]. However, most of these
methods are trained with known face manipulation techniques and have the
problem of insufficient generalizability.

Generalizability is highly desired in face forgery detection; in other words,
models should perform well not only on the face data used in training (i.e., known
face manipulation datasets), but also on other unseen face forgery datasets (i.e.,
generated by unknown face manipulation techniques). Due to the lack of gener-
alizability, most existing methods for face forgery detection are effective on seen
datasets (known face manipulation techniques) and can achieve a detection accu-
racy up to 98%. However, they tend to suffer from over-fitting and perform poorly
(50% or even lower) on unseen datasets. Therefore, forgery detection methods
without sufficient generalizability are unsuitable for practical applications.

There exists many challenges in the process of improving generalizability, for
example, large-scale dataset dependence, and forged class limitation [14,21,30].
To address such challenges, Chai et al. extract the local features from small
patches to improve the representation of the image [8]. Compared with the global
features of the whole image, the local and subtle features are more stable in differ-
ent datasets. However, Chai et al. assume that all patches cropped from a forgery
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face are considered fake (as shown in Fig. 1(a) and (b)). It is clearly not suitable
to apply such method to forgery images that consist of many real face parts
where some belong to a real one and some do not (as shown in Fig. 1(b)). There-
fore, although it has excellent generalization performance within the entire face
forgery datasets, it is not effective across different partial face forgery datasets
(e.g., the four manipulations of FaceForensics++ [27]).

Inspired by [8], we find that local information learning is a good method to
solve the lack of generalizability. To remove the assumption in [8] that degrades
the generalizability, we use a patch transformation strategy to help the model
focus on stable artifacts, rather than limiting model learning to a local patch.
The model can be trained with the global label without the aforementioned
assumption (i.e., a real/fake image corresponds to a real/fake label). Specifi-
cally, we randomly shuffle the image patches to help the CNN stream emphasize
local artifacts from the image. In addition, we convert the image into a patch
sequence and capture the global spatial features by using CNN-GRU stream.
Compared to the method proposed in [8], our method not only focuses on the
local subtle artifacts (local-level) by the CNN stream but also learns global
spatial features (global-level) from the CNN-GRU stream (shown in Fig. 1(c)).
Finally, we fuse different levels of features to further improve the performance
and generalizability of the model.

We summarize our contributions as follows. Firstly, we propose a patch ran-
dom transformation strategy to help the CNN stream focus on the local sub-
tle artifacts of the image. It provides a solution to distinguish the differences
between real and fake faces. Secondly, we employ a patch sequence transforma-
tion strategy to enrich the global representation of images by the CNN-GRU
stream, which firstly introduces spatial features between patches in face forgery
detection task. Lastly, we conduct extensive experiments to show the effective-
ness of our proposed method; moreover, we achieve meaningful gains in many
generalizability experiments.

2 Related Work

2.1 Fake Face Generation

The studies on Face forgery can be divided into two categories: entire face forgery
and partial face forgery.

Entire Face Forgery. The generative adversarial networks (GANs) are usually
used to synthesize images [6,16]. PGGAN [18] and StyleGAN [19] are proposed to
focus on the high-level attributes (e.g., pose and identity when trained on human
faces) in an image and generate a high-resolution image. Glow is a flow-based
generation model by using modified 1 × 1 invertible convolutions and achieves
excellent results in interpolation generation [20].

Partial Face Forgery. It usually contains many meticulous sub-tasks, such as
identity swap, expression swap, and attributes manipulation. For this category,
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StarGAN [9] and FaceApp [2] are proposed to achieve face attributes manipula-
tion by modifying the partial attributes of the face image (e.g., hair, gender, age,
etc.) during the training stage. Similar work includes recently proposed FaceSwap
[3], Face2Face [29], DeepFakes [1], and NeuralTextures [28]. Rossler et al.
collect the fake face videos from four popular generation methods [1,3,28,29]
and propose a dataset named FaceForensic++ to facilitate the evaluation of
detection methods [27].

2.2 Forgery Detection

We divide the studies on forgery detection into two categories: generalizable
forgery detection and patch based forgery detection.

Generalizable Forgery Detection. Recently, many methods achieve a high
accuracy on known datasets in forgery detection. However, their accuracies on
unseen datasets decrease significantly. To solve the generalizability problem,
recent works [8,14,21,30] have been proposed. Specifically, Du et al. employ a
locality aware strategy to enhance the representation of images [14] and achieve
incremental improvement. Wang et al. improve the generalizability by adding
blur and random noise during the training phase [30]. However, this method
relies on a large training set. Li et al. propose the Face X-Ray [21], which uses
noise as well as error level analysis to extract the blending boundary of fake
faces. Although it can achieve a certain level of generalizability, it is only appli-
cable to specific manipulation types of fake faces; in other words, it achieves high
generalizability between different face swap technologies, but is not suitable for
detecting fake faces in the entire face synthesis.

Forgery Detection with Patches. Most of recent excellent face forgery detec-
tion methods are based on an overall image [13,21,26,30]. But they often ignore
key local details in the image. To avoid this problem, many methods leverage
the local perspectives instead of global detection [22–24,32]. Specifically, Zhou
et al. propose a model to learn local features from patches [32]. Mayer et al. use
the similarity between patches to judge whether the image is forgery [23,24].
Chai et al. propose a patch-based classifier to focus on local artifacts and obtain
excellent generalization on the entire face forgery dataset [8]. They all assume
that all patches cropped from an image belong to the same class as the input
image, which is not consistent with reality (as shown in Fig. 1(b)).

3 Approach

3.1 FDPT Architecture for Face Forgery Detection

As shown in Fig. 2, FDPT is a two-stream face forgery detection network (i.e., a
CNN stream and a CNN-GRU stream). It benefits from two different but com-
plementary visual features. Specifically, the CNN stream learns on local subtle
artifacts through the pre-processing of patch random transformation, and the
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Fig. 2. FDPT architecture. The CNN stream focuses on local subtle artifacts through
a patch random transformation. The CNN-GRU stream first obtains the global spatial
features by passing input image through the patch sequence transformation. The CNN
module of CNN-GRU stream is expanded in the lower right corner.

CNN-GRU stream learns global spatial features between patches through patch
sequence transformation. Then, a fusion strategy is used to improve the accuracy
and generalization ability.

3.2 Local Subtle Artifacts Learning

The process of our local subtle artifacts learning stream (i.e., the CNN stream)
can be divided into four steps. First, we utilize a traditional data augmentation
strategy to enrich the training set by randomly cropping the images in batch
data. Second, a cropped image is self-shuffled by a patch random transformation
method. Third, we use a CNN module to learn and extract the subtle artifacts
of these shuffled images. In our method, the CNN stream is generic and could
be implemented on any backbone feature extractor (e.g., ResNet [17]). Finally,
two convolution blocks and fully connected layers are employed to predict the
authenticity of the input image, where the prediction is normalized by the Sig-
moid function and we denote the normalized result as the prediction forgery
score.

Fig. 3. Patch random transformation with different n. Fig. 4. Hilbert curves.

Patch Random Transformation. Most forgery detection methods extract
global artifacts in an entire image to distinguish real from fake. However, there
are different global artifacts in data generated by different face generators. As a
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result, most of the face forgery detection methods cannot be generalized across
different generators. We leverage the patch random transformation to disturb
the global artifacts existing in an entire image, thus to retain the local subtle
artifacts and represent the face image in a more stable fashion. In patch random
transformation, we divide the input image into patches, then randomly shuffle
and assemble these patches into a new image. The purpose of these operations
is to generate a new image after random transformation and force the stream to
focus on local subtle features in the training stage.

Denote an input image by I ∈ R
W×H×3 and the split parameter by n, where

W and H are the width and the height of the image, respectively. The image is
divide into n× n non-overlapped patches. The size of each patch is W

n × H
n × 3.

These patches are reconstructed into a new image. Figure 3 illustrates an original
image and the transformed new image.

Note that there is no need to pre-process that in the training stage during
the inference (i.e., patch random transformation). The input image is randomly
cropped and put into the CNN stream to get a prediction forgery score. If given
a video, we extract multiple frames randomly and average the predictions.

3.3 Global Spatial Features Learning

As shown in Fig. 2, we employ a hybrid CNN-GRU module to extract global
spatial features between patches. Given the patches split from an image, we
organize patches in a specific order and expect GRU to capture the dependency
among patches. Note that if patches are organized vertically or horizontally,
sequential learning can not correlate them well due to long-distance between
adjacent patches [5]. Inspired by the work in [5], we leverage the Hilbert curve
to organize the patches and maintain the local correlation in the spatial domain.
Then, we use a sequential module GRU to extract spatial features from the
reordered patch images.

Patch Sequence Transformation. The patch sequence transformation con-
sists of two steps: (1) we first split an image into several local patches on average
and connecting patches in order, (2) we then adopt a sequential learning method
(i.e., GRU) to capture the global spatial features between the patches. Note that
it is important to determine the order of patches fed to GRU. A common solu-
tion is to organize the patches either horizontally or vertically; however, such
sequences do not better capture local information. For instance, if we connect
patches horizontally, the adjacent patches in the vertical direction will be sep-
arated by an entire line of patches. Thus, it is difficult to learn the correlation
characteristics between patches due to long-distance interval. To solve this prob-
lem, the space-filling curve is proposed. It maps data in multi-dimensional space
to one-dimensional space and keeps the relevance of adjacent parts. We leverage
the Hilbert curve to reconstructed patches in our method. Compared with other
curves, the Hilbert curve maintains a better spatial local property, which is more
favorable for sequential learning. The second-order Hilbert curve that we used
is shown in Fig. 4.
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The CNN-GRU stream works in a similar way as the CNN stream. More
specifically, given an image I ∈ R

W×H×3, we first divide it into n × n non-
overlapped patches and the size of each patch is W

n ×H
n ×3. We then transform the

feature learning from a multi-dimensional to one-dimensional sequence by using a
space-filling curve (i.e., connect n×n patches into a sequence according to Hilbert
curve). After that, we put each patch into a CNN module to extract the patch
feature, where the CNN module can be any excellent backbone feature extractor.
In our method, we simplified the CNN module to reduce the parameters during
the training. Therefore, the CNN module in the CNN-GRU stream contains
three calculation blocks and each block has two convolution layers, two activation
layers, one batch normalization layer, and one max pooling layer. More detailed
structure is shown in Fig. 2. Last, we feed the features of patches into the GRU
module in the order of Hilbert curve to capture the correlation between patches.
Our GRU module has two stacked GRU layers and three fully connected layers,
and we normalize the outputs of the last layer using the Sigmoid function to
predict the authenticity of the input image. As a result of these steps, the CNN-
GRU stream can describe the correlation between patches and capture the global
spatial representation by the space-filling curve.

3.4 Fusion Strategy

As mentioned in Sect. 3.2 and Sect. 3.3, the proposed CNN and CNN-GRU
streams mine the local subtle artifacts and the global spatial features respec-
tively. The two patch-related forgery features are different but complementary.
Therefore, we adopt a fusion strategy to promote the final performance.

More specifically, we consider the prediction forgery score set P = {PC , PG}
in the evaluation phase, where PC ∈ [0, 1] and PG ∈ [0, 1] means the prediction
forgery scores of the CNN stream and the CNN-GRU stream, respectively. The
final forgery score Pfusion is calculated by Eq. (1), where the closer Pfusion is
to 1, the more likely the input image is a forgery.

Pfusion =
PC + PG

2
(1)

4 Evaluation

4.1 Experiment Setting

Dataset. We evaluate our method on two benchmark datasets: the entire face
forgery detection dataset and the partial face forgery detection dataset. For
the entire face forgery detection dataset, the real images come from FFHQ
and the fake images are generated by StyleGAN/PGGAN (labeled as Style-
GAN and PGGAN in corresponding datasets in the sequel). For the partial face
forgery detection dataset, we use FaceForensics++ collected by [8]. FaceForen-
sics++ contains 1,000 real videos and 4,000 manipulated fake videos, where
these manipulated videos are generated by four face manipulation algorithms,
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namely, DeepFakes (DF), Face2Face (F2F), FaceSwap (FS), and NeuralTexture
(NT). Similarly, we refer to the corresponding datasets using the DF, F2F, FS,
and NT labels in the sequel.

Evaluation Metrics. For fair comparisons with other methods, we use the
Accuracy score (ACC) to evaluate different methods. In addition, to evaluate
the effectiveness of each component of FDPT, we also calculate the Area Under
the Receiver Operating Characteristic Curve (AUC) in our ablation study.

Implementation. In our experiments, the input size of the CNN stream is
448 × 448 × 3. Then, we train the CNN stream using the stochastic gradient
descent (SGD) method, where the learning rate is 10−3 and the number of epochs
is 20. For the CNN-GRU stream, the input size is 256 × 256 × 3 and we train
the CNN-GRU stream using SGD with the learning rate being 10−2. We stop
the training stage of the CNN-GRU stream at the 50th epoch. For more details,
the code is available at https://github.com/xihe7/PatchT/.

During the training stage, we evaluate different parameters n in patch trans-
formation and find that the results of n = 4 perform better. Thus, we set n = 4
in our remaining experiments.

4.2 Ablation Study

In order to evaluate the effectiveness of each component of FDPT, we conduct
experiments on the entire face forgery and partial face forgery datasets separately
and summarize results in Table 1.

Note that ID 1 and 2 in Table 1 represent the CNN stream without and with
patch random transformation respectively, while ID 3 and 4 mean the CNN-
GRU stream without and with patch sequence transformation respectively. We
also apply the fusion strategy on different components to attempt to improve
the detection results. The fusion results are shown in ID 5−7. Specifically, ID 5
refers to the fusion of two streams without any patch transformation. ID 6 and 7
respectively indicate only one of the patch transformation methods used in the
weighted fusion two-stream network.

Table 1. Ablation study of FDPT.

ID Stream Patch random

transformation

Patch sequence

transformation

Entire face forgery Partial face forgery

ACC AUC ACC AUC

1 CNN × 94.10 0.9352 93.23 0.9277

2 � 98.25 0.9904 99.00 0.9932

3 CNN-GRU × 98.17 0.9864 98.44 0.9805

4 � 99.00 0.9941 99.17 0.9921

5 Fusion × × 95.03 0.9416 95.83 0.9524

6 × � 95.35 0.9456 96.50 0.9673

7 � × 98.53 0.9887 99.17 0.9940

8 FDPT � � 99.87 0.9996 99.83 0.9989

https://github.com/xihe7/PatchT/
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We observe that ACC and AUC are significantly improved due to patch
random transformation; more specifically, the detection ACC increases by 4%
and AUC is improved by 0.06 on the entire face forgery dataset. In addition, the
ACC increases by more than 5% and AUC increases by 0.06 on FaceForensics++.
Therefore, the effect of local artifacts on forgery detection is noticeable.

We also observe that ACC and AUC scores have slight improvement after
using the Hilbert curve to organize patches. Although the improvement of quan-
titative results is relatively small, it is a meaningful improvement for face forgery
detection. These results suggest that using the Hilbert sequence is conductive to
improving detection results.

Furthermore, after the application of the fusion strategy, we observed that
the results of ID 5–6 are not as good as one of the two streams. In the two-stream
network, when the performance of one stream is poor, the effect of simple fusion
is not obvious. On the contrary (compared ID 7 with ID 2 and 3), when the
network effect of both two streams is excellent, the final fusion performance is
improved. Further as shown in ID 8, both ACC and AUC scores of FDPT are
higher than its variants (i.e., ID 1–7). This suggests that the two features are
complementary to each other. We can draw a conclusion that local artifacts
play a key role in improving detection results, and the global representation is
excellent in detection.

4.3 Comparison with Existing Methods

We train and evaluate existing methods including full MesoInception4 [4],
MesoNet [4], ResNet [17], Xception [10], and a classifier proposed in [30] (CNNp)
on the same datasets as the datasets FDPTuses. In addition, we also compare
FDPT with the latest patch-based method [8] (PatchW).

Note that ResNet and Xception are advanced classification networks. Xcep-
tion draws on the idea of depth-wise separable convolution and combines with the
idea of ResNet. It is the leading classification network at present. On the other
hand, MesoInception4, MesoNet, and CNNp of [30] are open-source face forgery
detection algorithms. In particular, CNNp is one of the most recent works and
is trained to detect CNN artifacts via blurring and compression augmentations.
PatchW is the latest face forgery detection using patches. To better compare
with it, we directly take the experimental results in [8].

4.3.1 Comparison Results on Entire Face Forgery Dataset We divide
the fake face testing set into three types: PGGAN, StyleGAN, and their mixture.
The results are shown in the left of Table 2. We observe that the accuracy (i.e.,
ACC) of FDPT in three cases are 99.85%, 99.80%, 99.87%, respectively, with
a noticeable improvement compared against the current methods and excellent
classification networks (except PatchW). PatchW achieves almost 100% accuracy
on known datasets; however, it is more likely to suffer from over-fitting. The
significant performance gains mainly benefit from the two sets of complementary
discriminative information learnt from patches, which contributes to FDPT’s
capability of learning more local details of face images.
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Table 2. Accuracy results (%) on entire face forgery and partial face forgery dataset.

Methods Entire face forgery Partial face forgery

StyleGAN PGGAN Mix DF FS F2F NT FF++

ResNet [17] 91.65 97.01 94.10 95.53 92.77 93.02 96.92 93.23

Xception [10] 98.00 96.49 98.52 99.27 98.87 98.17 98.00 98.30

MesoNet [4] 91.90 98.70 94.17 92.19 93.75 90.62 88.97 86.67

MesoInception4 [4] 95.00 98.40 96.67 90.62 92.19 89.27 87.52 90.17

CNNp (p = 0.1) [30] 98.85 99.70 99.63 82.07 96.77 97.13 77.50 89.88

CNNp (p = 0.5) [30] 98.00 99.40 99.78 81.33 91.63 89.13 80.77 85.40

PatchW [8] 100.0 100.0 - 99.27 96.56 97.66 92.23 -

FDPT 99.85 99.80 99.87 99.83 99.83 99.00 98.67 99.53

4.3.2 Comparison Results on Partial Face Forgery Dataset Further-
more, we evaluate FDPT on different face manipulation techniques. We mix
four face manipulation techniques of FaceForensics++ for training and evalu-
ating together (i.e., DF, FS, F2F, NT). They are all fake face video datasets,
and we extract frames as fake face images in the experiments. We then train
the model and evaluate it in four types of face manipulated dataset respectively.
When training, in order to balance the proportion of real and fake datasets, the
number of frames extracted from original videos is four times that of each face
manipulation video. We summarize the results in the right of Table 2.

We observe that FDPT achieves a high detection accuracy and performs
much better than other methods. FDPT achieves an accuracy of nearly 100%
in all testing sets. Note that due to the two-stream structure, our FDPT model
extracts multiple frames from each video, and each frame is detected by the
CNN stream and CNN-GRU stream. The two streams complementarily make
corrections to the error and make the final results perform better.

4.3.3 Analysis By comparing the results in Sect. 4.3.1 and Sect. 4.3.2, we
observe that the performance of both CNNp and PatchW degrade significantly
on fake faces of FaceForensics++. Note that CNNp focuses on CNN-synthesized
images and detects CNN artifacts to distinguish real and fake. However, the
FaceForensics++ dataset lacks sufficient CNN artifacts, which is completely dif-
ferent from the entire face forgery dataset. Therefore, the accuracy results of
the classifier methods drop significantly. In terms of PatchW, it assumes that all
patches cropped from a fake image are considered as fake. Therefore, it has excel-
lent detection accuracy in the task of entire face forgery detection. However, the
detection results drop on the FaceForensics++ dataset due to the incorrectness
which may be introduced by the assumption mentioned above.

The experimental results suggest that FDPT can be applied to all fake face
image datasets, such as StyleGAN, PGGAN, and FaceForensics++, and consis-
tently achieves state-of-the-art performances. Note that CNNp [30] and PatchW
[8] are the latest face forgery detection methods. Both can only perform well on
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Table 3. Generalization ability evaluation on entire face forgery dataset. Each model
is trained on one dataset and evaluated on another unseen dataset.

Training set StyleGAN PGGAN

Testing set StyleGAN PGGAN PGGAN StyleGAN

ResNet [17] 91.65 62.18 97.01 52.37

Xception [10] 98.00 65.87 96.49 74.33

MesoInception4 [4] 95.00 76.23 98.40 71.27

CNNp (p = 0.1) [30] 99.85 86.92 99.70 85.27

CNNp (p = 0.5) [30] 98.00 85.28 99.40 56.34

PatchW [8] - - 100.0 95.85

FDPT 99.85 93.95 99.80 96.85

a specific type of fake face image. The results suggests that FDPT can achieve
good universality and is suitable for various types of fake faces.

4.4 Generalizability

Forgery generation algorithms have been constantly evolving. Therefore, it is cru-
cial to explore forgery detection methods that can achieve great generalizability;
in other words, the detection model trained with one face forgery dataset can be
generalized to images generated by other new forgery manipulated techniques.
We next investigate the generalizability performance of FDPT.

We first evaluate the generalizability on the entire face forgery dataset and
summarize the results in Table 3. We train each model with one face forgery
dataset and evaluate it on another one (unseen). Because there are many simi-
larities between StyleGAN and PGGAN, it is relatively easy to implement gener-
alization between them. We observe from Table 3 that many methods are prone
to over-fitting and perform poorly on the unseen dataset. PatchW performs bet-
ter than some other methods. The reason is that it utilizes small patches to
ignore global differences between real from fake images and focus on shared gen-
erator artifacts. Our method FDPT achieves an accuracy of nearly 100% on the
seen dataset, and is superior to all other methods on the unseen dataset. Even
though our accuracy is a little less than PatchW on PGGAN (seen), we have
significantly improved the generalizability on StyleGAN (unseen).

We then evaluate the generalizability of FDPT across four different genera-
tors of FaceForensics++. We train on each of the four manipulations and evaluate
on the remaining three datasets. We summarize in Table 4 the results in terms
of ACC with respect to each type of manipulated video. We observe that ACC
of most methods is up to 99% on seen manipulation dataset (in gray); however,
it drops drastically for unseen manipulations (in black). This is because the
model learns the specific artifacts quickly and suffers from over-fitting. There-
fore, it performs well on a given dataset and has poor generalizability on unseen
datasets.



348 X. Zhang et al.

Table 4. Generalizability on FaceForensics++. Each model is trained on one dataset
and evaluated on the remaining datasets. ACC on the testing set corresponding to
training images is colored in gray.

Train on DF Train on FS

DF FS F2F NT DF FS F2F NT

ResNet [17] 95.53 52.43 53.15 52.42 58.83 92.77 53.16 51.04

Xception [10] 99.27 47.12 53.57 58.15 54.26 98.87 53.42 51.28

MesoInception4 [4] 94.32 51.34 60.17 58.27 51.64 96.19 55.32 49.46

CNNp (p = 0.1) [30] 92.64 51.23 57.66 59.29 55.24 96.72 61.32 52.88

CNNp (p = 0.5) [30] 91.46 55.99 56.06 54.02 57.29 97.65 60.04 51.16

PatchW [8] 99.14 58.74 71.74 74.99 61.77 97.13 62.00 53.44

FDPT 99.84 61.05 68.32 75.63 55.58 98.46 73.43 53.81

Train on F2F Train on NT

DF FS F2F NT DF FS F2F NT

ResNet [17] 54.32 53.08 93.02 52.86 65.76 50.14 55.23 89.56

Xception [10] 66.08 53.15 96.17 55.07 69.67 48.55 56.79 93.60

MesoInception4 [4] 64.43 55.16 94.37 54.42 63.72 55.83 62.25 86.87

CNNp (p = 0.1) [30] 66.24 59.04 97.83 62.97 69.27 49.88 67.04 88.50

CNNp (p = 0.5) [30] 66.86 64.52 93.42 62.17 67.08 51.63 69.45 90.88

PatchW [8] 84.39 63.10 97.66 79.72 70.32 52.37 65.04 86.93

FDPT 95.53 67.91 98.15 82.42 98.78 65.71 96.30 98.92

As shown in Table 4, our approach FDPT has better generalizability than
PatchW in most cases, and performs better than other methods in all cases.
Specifically, training on NT and F2F images can still achieve satisfactory gener-
alizability on remaining datasets, and generalization to FS images is the hardest.
PatchW is the latest patch-based forgery detection method, which focuses on
local patches. The assumption PatchW used will bring errors when training on
partial face forgery dataset; therefore, the generalizability of PatchW on Face-
Forensics++ is not as good as that on the entire face forgery dataset (as shown
in Table 3).

Compared with PatchW, FDPT achieves higher generalizability. More specif-
ically, FDPT achieves face forgery detection from more general evidences avail-
able from both local subtle artifacts and global spatial features. It is clear that
the improved generalizability comes from the design of FDPT, namely, detecting
discriminative information from local patch space instead of paying attention to
the global features of specific manipulation artifacts.

4.5 Impacts of Image Quality

Images and videos in practical scenarios may be of lower quality (e.g., due to
compression), and many methods with good performance on high-quality images
may suffer from low image quality.

Note that different quality is available in FaceForensics++. More specifically,
FaceForensics++ provides the original output video dataset (RAW). Addition-
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Table 5. Accuracy results (%) of FDPT on FaceForensics++ with different quality.

HQ (High quality) LQ (Low quality)

DF FS F2F NT DF FS F2F NT

ResNet [17] 97.33 98.50 97.67 86.17 88.89 81.95 82.17 69.50

Xception [10] 97.17 96.33 95.67 88.50 90.57 82.35 83.67 73.83

MesoInception4 [4] 91.42 87.78 88.13 68.33 83.18 77.67 76.83 60.94

CNNp (p = 0.1) [30] 96.29 93.58 94.66 75.15 90.95 86.53 81.62 64.27

CNNp (p = 0.5) [30] 96.58 94.03 93.17 86.25 91.13 84.32 80.87 61.33

FDPT 98.33 98.17 98.00 94.17 91.17 88.33 88.67 81.50

ally, FaceForensics++ provides two different compression datasets: low-quality
videos (LQ) and high-quality videos (HQ). HQ is produced with a light compres-
sion which is almost visually lossless (i.e., constant rate quantization parameter
equal to 23), while LQ produced with the quantization parameter being 40 [27].

We evaluate FDPT on FaceForensics++ with different image quality. The
models are trained and evaluated on the HQ and LQ datasets for each of the
four face manipulation scenarios. We summarize the results in Table 5.

We observe that FDPT outperforms other methods. First, FDPT performs
well on the HQ datasets. More specifically, FDPT achieves 98.33%, 98.17%,
98.00%, and 94.17% accuracy on DF, FS, F2F, and NT, respectively. The accu-
racy of FDPT on the DF, FS and F2F datasets is close to 100.0%. This suggests
that FDPT can still perform excellent detection even when the light compression
degrades the image quality. We also observe that the performance of FDPT drops
on LQ dataset; more specifically, FDPT achieves 91.17%, 88.33%, 88.67%, and
81.50% accuracy on DF, FS, F2F, and NT, respectively. Although FDPT suffers
from heavily compressed images, it can still achieve a high detection accuracy.

Note that compared with videos generated by DF, FS and F2F, fake videos
generated by NT is a great challenge to detection models, due to its generated
faces without noticeable forgery artifacts. Therefore, the accuracy results on
the NT datasets are not as good as the results on the other three datasets.
But, the accuracy of FDPT on NT is more than 90% in HQ and 80% in LQ,
and FDPT still plays an excellent detection effect. This is consistent with the
research results in [26] which proposed a forgery detection method specifically
optimized for compressed videos.

5 Conclusion

In this paper, we propose FDPT, a general two-stream face forgery detection net-
work based on patch transformation, to achieve higher generalizability. Specifi-
cally, FDPT consists of a CNN stream and a CNN-GRU stream. The first CNN
stream enhances the capture of local subtle artifacts and avoids introducing the
pseudo labels used in other methods. Then, the second CNN-GRU stream cap-
tures global spatial features between patches to strength the representation of
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the image. Finally, the fusion of these two streams improves the performance and
generalization of our proposed models. The extensive experiments have shown
that our model achieves state-of-the-art results on two different face forgery
datasets. Moreover, FDPT remains effective when applied on unseen forgery
datasets and achieves superior performance in the generalizability experiments.
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When Distortion Meets Perceptual Quality: A
Multi-task Learning Pipeline
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Abstract. Most of the existing studies about image quality assessment (IQA)
focus on predicting image quality score without adequately considering image
distortion clues, which is very significant in IQA tasks. To improve the perfor-
mance of current IQA algorithms, we propose a novel multi-task learning-based
deep convolutional neural network for predicting image quality score and rec-
ognizing distortion type simultaneously. Furthermore, to explore the significance
of utilizing multiple layers of image features, we introduce a multi-layer fea-
ture fusion strategy to exploit the effect of image features fully. By utilizing a
shared network to learn the commonalities and differences between two tasks,
we can achieve state-of-the-art performance on IQA tasks and a superior result
on distortion classification. The introduced framework is trained on three differ-
ent public IQA datasets LIVE, TID2013 and CSIQ, to verify the effectiveness
of the designed approach. Compared with current SOTA hand-crafted-based and
deep learning-based approaches, our pipeline achieves a great improvement on
both aforementioned tasks by a noteworthy margin.

Keywords: Multi-task learning · Image quality assessment · Distortion
classification

1 Introduction

Over the past years, image quality assessment (IQA) has been an active topic for
researchers since it can be used as an auxiliary function in several computer vision
tasks, such as super-resolution [30], image segmentation [7], image inpainting [11],
etc. IQA aims to design an effective model to automatically evaluate a given image’s
perceptual quality score, which should be consistent with the human subjective score as
much as possible. Generally speaking, image quality assessment tasks can be roughly
classified into three categories: full-reference IQA (FR-IQA), reduced-reference IQA
(RR-IQA), and no-reference IQA (NR-IQA), depending on the usability of the refer-
ence image information [9]. Unlike RR-IQA and NR-IQA methods, FR-IQA is able
to sufficiently utilize useful information from the reference images and can dig out the
extracted pixel-level information in reflecting the distortion degree of the images, which
often achieves the highest prediction accuracy. Hence, in this paper, we mainly focus
on the research of FR-IQA method.

Multi-task learning (MTL) [19,23,31] intends to improve the performance of mul-
tiple related learning tasks by taking advantage of available information among them.
c© Springer Nature Switzerland AG 2021
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JP2K (63.02) Gausian Blur (62.86) JPEG (62.42)

JPEG (46.69)Gausian Blur (46.89) White Noise (47.64)

Fig. 1. Sample images from the LIVE dataset with different distortion types and similar quality
scores. Lower scores indicate better perceptual quality.

Despite numerous IQA methods proposed throughout these years, there are still many
characteristics to be exploited. In the prior approaches, few attentions have been put to
the distortion type of the image, which is crucial in image quality evaluation. When the
human observers evaluate the visual quality level of an image, apart from evaluating the
degree of distortion, it is necessary to pay enough attention to the type of image dis-
tortion. For example, as shown in Fig. 1, the distorted images in each row have similar
scores. However, they have different distortion levels, attributing to their different kinds
of distortion. To dig into this clue, in this paper, we propose a novel MTL architecture,
which can predict the quality score of a given image and identify the distortion type
simultaneously. Rather than treating the loss weights of multiple tasks equally or based
on attempts, we introduce a novel strategy to automatically assign the weights for the
two tasks above.

In this work, we propose a novel multi-task learning architecture for full refer-
ence image quality assessment and distortion classification simultaneously, codenamed
MTL-IQA. Given an image and the corresponding reference image, our model is able
to predict the quality score and identify the distortion type of the image, as illustrated
in Fig. 2. The most significant contributions can be summarized as follows:

(1) We propose an efficient multi-task learning architecture for image quality assess-
ment and distortion classification, which leads to more accurate predictions and
robust generalization compared with single-task learning only.

(2) We introduce an enhanced edge fusion module into the proposed network, which
helps the edge information be better preserved during the feature extraction stage.

(3) We propose to fuse multi-layer feature outputs to compute the final image quality
score. Experimental results on diverse IQA datasets demonstrate that the fused
feature learning surpasses the score computation using the final feature output only.

(4) Instead of manually assigning, we automatically assign applicable loss weights to
the score prediction task and the distortion classification task to achieve the best
performance for both of them.
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Fig. 2. Our method conducts image quality assessment and distortion type classification from
distorted image and reference image during the testing stage.

2 Related Work

Full-Reference IQA: For full reference image quality assessment, the earliest tradi-
tional methods compute the pixel differences between distorted images and their corre-
sponding reference images, such as PSNR [25] and MSE [10], which are the most com-
monly used FR-IQA algorithms. However, these error sensitivity-based methods con-
stantly analyze the image differences mathematically, ignoring critical factors related
to characteristics of the human eye. As a result, the prediction results of this kind of
method often differ significantly from the human visual perception results. Structural
similarity (SSIM) index is proposed in [27], it treats the degradation of images as a
perceptual change in structural information. Comparing with error sensitivity-based
methods, SSIM considers luminance, contrast, and structure features to evaluate the
quality of images. Since then, a series of SSIM-based algorithms are proposed, for
instance, Gradient Magnitude Similarity Deviation (GMSD) [28], Feature Similarity
(FSIM) [29], Information ContentWeighting Structural Similarity (IW-SSIM) [26]. The
traditional FR-IQA methods are easy to use, however, since the neglect of advanced
semantic feature information, the improvement of prediction accuracy is minimal. In
recent years, deep learning has been widely utilized in FR-IQA tasks, which use a neu-
ral network and a large number of image data to train out a reliable IQA model. In order
to reflect the distorted image’s prediction quality score, DeepQA [15] uses convolu-
tional neural networks to learn the perceptual sensitivity map of the difference between
the distorted image and the reference image. DeepSim [8] and PAVIF [21] work in a
similar way which calculates the similarity of feature maps extracted from each convo-
lutional layer in feature extraction operations of the two input images, the quality score
of the distorted image is then computed by average pooling these values. WaDIQaM-
FR [3] randomly selects 32 patches from each image and predicts the quality scores of
them. The final score is obtained by weighted average pooling these patches’ values.

Distortion Classification: Distortion classification is one of the branches of image
classification, it is a crucial step for lots of image processing tasks. Identifying the
distortion type of image is able to help the model learn other image attributes, such as
image quality evaluation, image inpainting, distortion restoration, etc. Several distortion
classification methods have been proposed these years. Bandawi proposes a classifica-
tion method bases on the generalized Benford’s law, which extracts features from the
distribution of the first digit of the transformation coefficient of an image, and uses
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Fig. 3. The overall architecture of our MTL-IQA. The multi-task learning-based method can eval-
uate image quality and identify distortion type simultaneously. Several patches are selected ran-
domly from input distorted and reference images. The designed feature extractor is applied to
learn image information, and then they are fused as input for quality score and distortion type
prediction.

generalized Benford’s law to simulate distribution [2]. Deep learning is also be
employed in the distortion classification research, such as [1,4], which both use convo-
lutional neural networks to detect and identify image distortion.

Multi-task learning (MTL) pipeline is popular in deep learning networks. However,
to our best knowledge, seldom IQA methods have employed MTL into their models.
Among them, IQA-CNN++ [13] first proposes to utilize a shared network to estimate
image quality score and identify distortion type simultaneously. MGCN [12] uses a
convolutional neural network with an encoder module to transform and extract features,
and then predicts image quality and distortion.

3 Our MTL-IQA Framework

Figure 3 depicts the overall network architecture of our MTL-IQA. As a multi-task
learning network, we use a shared convolutional neural network to learn the character-
istics of each of the two tasks and the commonalities between them. As an FR image
quality assessment model, the inputs of this network are distorted images Id and their
corresponding reference images Ir, we use a siamese network to learn the relationship
between the inputs. Specifically, Each image is divided into small patches of size 32 ×
32 to calculate the global image score based on the weighted score of the local patch.
Furthermore, a number of small patches also rich the training data for CNN. We set
our feature extraction network with 10 convolutional layers and 5 max-pooling layers.
During the extraction process, in order to preserve more useful edge information, we
introduce an enhanced edge fusion module for both two input brands. After the feature
extraction, we leverage different feature fusion methods to compute the final outputs of
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the two tasks. We demonstrate that our model helps to achieve the best performance for
both distortion type classification and quality score estimation tasks.

3.1 Enhanced Edge Fusion Module

The human’s eye is sensitive to object’s contour or edge, however, as a low-level fea-
ture, edge information is lost as the network goes deeper. To address this problem, we
propose an enhanced edge fusion module to preserve edge information as much as pos-
sible. For edge detector, we directly choose Canny [5] detector to extract edge feature
and then use the edge map as input together with the raw image. It is worth mentioning
that for edge map, we use the first two layers of the same feature extraction network
to learn the edge information, which would output edge feature vector Fe, then fuse it
with the main branch after the second convolutional layer. To verify the effectiveness of
the enhanced edge fusion module, we show the ablation experiment results in Table 5.

3.2 Multi-layer Feature Fusion

The feature extractor is designed to learn the informative features of the input, which
is composed of convolutional neural networks. Compared with other conventional IQA
methods which only employ the feature vectors from the end of the network, we propose
to utilize multi-layer features to learn the image perceptual quality, which can provide
more informative and significant features. Hence, we assign three sets of fully con-
nected layers after the mid-level and high-level feature extraction process. To learn the
relationship between two output feature vectors, we explicitly provide useful relation
information which can help to improve prediction accuracy. In this way, the deviation
of the feature maps of distorted image patch Fdl

(l = 1, 2, 3), feature maps of reference
image patch Frl (Fdl

−Frl ) are fused. Then the branch outputs the fused vector Fil for
layer l, patch i. A rectified linear unit (ReLU) is used to activate Fil , afterwards output
βil . Since our model tends to weight local patch quality score qi for global score Q, we
express the weight ω of layer l as:

ωil =
βil

∑N
i βil

(1)

where N is the total amount of local patches.

3.3 Multi-task Learning for IQA and Classification

As a multi-task learning framework, in order to achieve the best performance on both
tasks simultaneously, it is crucial to decide where to branch the backbone into indepen-
dent tasks. In our method, for quality prediction task, we fuse the output of three sets
of fully connected layers for the final quality score computation. Then the global image
perceptual quality score Q can be computed as:

Q =
N∑

i

ωiqi =
N∑

i

(
l=3∑

1

ωilqil) =
N∑

i

(
l=3∑

1

βilqil
∑N

i βil

) (2)
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qi and qil denote the quality score of patch i and the layer l of patch i, respectively.
And for classification task, we only utilize one set of fully connected layers at the end
of the network, and we use a different feature fusion scheme from quality score predic-
tion task. By concatenating (Fdl

, Frl , Fdl
− Frl) as feature vector, we experimentally

find that this strategy helps obtain best prediction accuracy for classification. Then we
average the local distributions to global.

The design of loss function is crucial for multi-task learning, which influences the
final prediction accuracy directly. As a regression task, mean absolute error (MAE) is
utilized as the quality prediction loss, which is expressed as:

Lquality =
1
N

N∑

i

|qi − S| (3)

where S represents the ground-truth quality score of distorted image Id. And for the
distortion classification task, we use cross entropy loss as Lclass.

Lclass = −
M∑

c=1

yc log Pc (4)

where M indicates the number of distortion types. The label value c is the index in the
range of [1,M ], which is the true distortion type label of the distorted image. yc is the
indicator variable, and Pc means the prediction probability of class c.

3.4 Bayesian Uncertainty-Based Automatically Loss Weighting

Generally, the performance of multi-task learning system heavily depends on the inter-
task loss weights. However, manually adjusting the weights is time and labor consum-
ing. In our method, a Bayesian uncertainty-based method for automatically loss weight-
ing is introduced. Assume the overall loss function for two tasks is minimized as:

L = λ1Lquality + λ2Lclass (5)

where λ1 and λ2 weigh importance between the two tasks. Different from other methods
that tune weights manually, we set the regularization parameter by learning a relative
weighting, motivated by [14]. More specifically, we introduce a Gaussian likelihood
maximization loss function with homoscedastic uncertainty, which is given as:

L(W,σ1, σ2) =
1

2σ2
1

Lquality(W ) +
1
σ2
2

Lclass(W ) + log σ1 + log σ2 (6)

where W is parameter matrix, σ1 and σ2 are observation noise parameters of quality
score prediction task and distortion type classification task, respectively. By optimizing
W , σ1, σ2, and adjusting the weighted parameters in the loss function based on “uncer-
tainty”, the loss function in each task achieves a similar range of scale. Finally, λ1 and
λ2 are determined to be 0.83 and 0.17 for LIVE and CSIQ database, and 0.80 and 0.20
for TID2013 database, respectively.
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4 Experiments

In this section, we first briefly introduce datasets, evaluation metrics in our experiment.
Then we compare the performance of our method with other single-task or multi-task
methods. Ablation studies are also conducted to demonstrate the effectiveness of each
proposed component.

Table 1. Summary of the databases used in our experiments.

Databases # of reference
images

# of distorted
images

# of distortion
types

Score
type

Score
range

LIVE [24] 29 779 5 DMOS [1,100]

TID2013 [22] 25 3000 24 MOS [0,9]

CSIQ [18] 30 866 6 DMOS [0,1]

4.1 Experimental Protocol

Datasets:We train and test the proposed model on three standard image quality assess-
ment datasets: LIVE [24], TID2013 [22], and CSIQ [18], as summarized in Table 1.
The LIVE dataset includes 779 distorted images, which are degenerated from 29 super-
resolution images. It contains 5 distortion types: Gaussian blur, JPEG compression,
JPEG2000 compression, white noise, and simulated fast-fading Rayleigh channel. The
difference mean opinion scores (DMOS) of the images lie in the range of 0 to 100. It
should be noted that lower score value means better image quality degree. The TID2013
dataset contains 25 reference images and 3,000 distorted images with 24 types of dis-
tortion at 5 degrees of degradation. The mean opinion score (MOS) of each image is
provided, which ranges from 0 to 9, higher value indicates better image visual quality.
It is worth mentioning that different with numerous IQA approaches which only use a
part of TID2013, we use the full dataset and do not ignore any distortion type. And the
CSIQ dataset includes 866 distortion images. 30 high-resolution reference images are
distorted by Gaussian white noise, Gaussian pink noise, Gaussian blur, contrast change,
JPEG compression, or JPEG2000 compression. After a series of normalization pro-
cesses, the DMOS of CSIQ lies in the range of 0 to 1, lower value corresponds to better
perceptual quality.

Evaluation Metrics: To verify the IQA performance of the proposed model, we use
four metrics: Pearson linear correlation coefficient (PLCC), Kendall rank-order corre-
lation coefficient (KROCC), Spearman rank correlation coefficient (SROCC), and root
mean square error (RMSE). KROCC and SROCC reflect the monotonicity of the objec-
tive evaluation method to predict image quality, while PLCC and RMSE reflect the pre-
diction accuracy. The higher PLCC, KROCC, SROCC and lower RMSE means better
performance. For distortion classification, overall accuracy is used for evaluation.
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4.2 Training Strategy

In the implementation, we train and test the introduced model on the three aforemen-
tioned datasets. In experiments, each dataset is randomly divided by reference images
into a training set, a validation set and a testing set in the ratio of 60%, 20% and 20%.
The random division of the dataset by reference image strategy ensures that no dis-
torted or original images used for testing or validation are used during training. For
LIVE, there are 17 reference images used for training, 6 for validation and testing. For
TID2013, the training set bases on 15 reference images, both the validation and testing
sets are based on 5 images. Similarly, CSIQ is divided into 18 training, 6 validation
and 6 test images. We train the models by using Adam optimizer with the learning rate
starts as 0.0001, the batch size is set of 4 for each dataset. Models are trained for 1000
epochs. We repeat the experiment for 10 times, finally report the median performance
for each evaluation metrics.

Table 2. Performance comparison of different IQA models on three datasets LIVE, CSIQ, and
TID2013. Higher PLCC, SROCC, KROCC and lower RMSE indicate better performance. The
best results are bolded.

Class Methods LIVE TID2013 CSIQ

PLCC SROCC KROCC RMSE PLCC SROCC KROCC RMSE PLCC SROCC KROCC RMSE

NR IQA-CNN++ [13] 0.950 0.950 – – – – – – – – – –

MEON [20] – – – – 0.912 0.912 – – 0.944 0.932 – –

DIQaM-NR [3] 0.972 0.960 – – 0.855 0.835 – – – – – –

DIQA [16] 0.977 0.975 – – 0.850 0.825 – – 0.915 0.884 – –

FR PSNR [25] 0.865 0.873 0.680 13.716 0.677 0.687 0.496 0.912 0.819 0.810 0.601 0.154

SSIM [27] 0.945 0.948 0.797 8.946 0.790 0.742 0.559 0.761 0.861 0.876 0.691 0.133

FSIM [29] 0.960 0.963 0.834 7.678 0.859 0.802 0.629 0.635 0.912 0.924 0.757 0.108

GMSD [28] 0.960 0.960 0.827 7.694 0.855 0.804 0.634 0.642 0.954 0.957 0.812 0.079

VIF [24] 0.960 0.964 0.828 7.614 0.772 0.677 0.515 0.788 0.928 0.920 0.754 0.098

FR-DL WaDIQaM-FR [3] 0.977 0.968 0.846 5.101 0.958 0.947 0.802 0.387 0.953 0.961 0.829 0.083

DISTS [6] 0.954 0.954 0.811 8.214 0.855 0.830 0.639 0.643 0.928 0.929 0.767 0.098

DRF-IQA [17] 0.983 0.983 – – 0.944 0.942 – – 0.964 0.960 – –

MGCN-weight [12] 0.967 0.966 – – 0.942 0.934 – – – – – –

Ours MTL-IQA 0.985 0.979 0.882 4.302 0.961 0.961 0.837 0.369 0.970 0.973 0.868 0.067

4.3 Evaluation for IQA Task

As shown in Table 2, we compare ours with four NR-IQA methods IQA-CNN++ [13],
MEON [20], DIQaM-NR [3] and DIQA [16], five traditional IQA methods, PSNR [25],
SSIM [27], FSIM [29], GMSD [28], VIF [24], and four deep learning-based IQA meth-
ods, WaDIQaM-FR [3], DISTS [6], DRF-IQA [17], and MGCN-weight [12]. IQA-
CNN++, MEON, and MGCN-weight are MTL methods, which also predict perceptual
quality and identify distortion type simultaneously. Experimental results demonstrate
that the proposed method outperforms almost all other methods on three datasets. Espe-
cially, we achieve superior results in PLCC (0.985 on LIVE dataset), which indicates
the effectiveness of our model. Compared with the state-of-the-art method DRF-IQA,
our MTL-IQA outperforms all other methods on almost each dataset and evaluation
metric except the SROCC on LIVE database.
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Fig. 4. With the proposed MTL-IQA, SROCC evaluated on LIVE, CSIQ and TID2013 is given,
with x-coordinate referring to the different numbers of sampled patches. When N = 32, the
model on all of the three datasets can achieve best prediction performance.

Table 3. Comparison of distortion classification testing results of different MTL methods IQA-
CNN++ [13], MEON [20], MGCN-ave [12], and MGCN-weight [12]. Higher value means better
classification performance.

Class Methods LIVE TID2013 CSIQ

NR IQA-CNN++ [13] 0.951 – –

MEON [20] – 0.940 –

FR MGCN-ave [12] 0.950 0.979 –

MGCN-weight [12] 0.958 0.972 –

MTL-IQA (Ours) 0.980 0.982 0.977

4.4 Evaluation for Classification Task

Our model also obtains superior accuracy for classification task. We compare our
method with four advanced multi-task learning models: IQA-CNN++ [13], MEON
[20], MGCN-ave [12] and MGCN-weight [12]. As shown in Table 3, MTL-IQA
achieves the highest performance for classification task. Compared with the state-of-
the-art method MGCN-weight, the accuracy of our method has a 2.2% improvement
on the LIVE database, while on the TID2013 database, our model improves 0.3% over
MGCN-ave. The superior performance can be attributed to our deeper feature extraction
network, which outputs more efficient feature information.

4.5 Convergence Evaluation

In the experiments, we choose the number of local patches N as 32, which means we
randomly select 32 patches from each input image to predict a local quality score. We
find that the selection of N is able to significantly influence the prediction accuracy of
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the model. Therefore, we design a series of experiments to show the influence of N and
the reasonability of our choice.

We train and test this convergence evaluation experiment on datasets LIVE,
TID2013 and CSIQ, then report SROCC values of each set of experimental results. As
we see in Fig. 4, MTL-IQA tends to be saturated when N = 32 and almost achieves the
best performance for all the three databases. Though when N > 32 may have slightly
better results, considering the reasonable use of computing resources, finally we choose
N as 32.
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Fig. 5. Ablation study of the proposed components. To validate the contributions of the proposed
enhanced edge fusion module, multi-layer feature fusion, and multi-task learning pipeline, we
conduct ablation experiments on LIVE dataset.

4.6 Ablation Study

Furthermore, we conduct a series of ablation experiments on the LIVE database. To
validate the effectiveness of our contributions, we list ablation tests with regard to
enhanced edge fusion module, multi-layer feature fusion scheme and single-task learn-
ing for FR-IQA. The results are shown in Fig. 5. By adding enhanced edge informa-
tion and utilizing multi-layer feature fusion, the PLCC and classification accuracy val-
ues enjoy 0.4% and 1.2%, 1.5% and 3.4% improvements, respectively. Compared with
single-task learning for IQA, the multi-task learning helps to improve PLCC, SROCC,
and KROCC for 0.7%, 1.3% and 3.4%, respectively.

Finally, we design an experiment to depict the results on several sets of different
loss weight assignments. From Fig. 6 we are capable of observing that learning multiple
tasks simultaneously improves the performance of each task. And by using uncertainty
weights for the two tasks, we can find an improved performance for both of them.
Figure 6 demonstrates the higher accuracy of our setting (0.83 for IQA and 0.17 for
classification on LIVE, 0.8 for IQA and 0.2 for classification on TID2013) than other
experience-based settings.
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Fig. 6. Comparing the performance of different loss weight assignments when learning image
quality and distortion type on datasets LIVE and TID2013. These figures and tables indicate
the advantages of using a multi-task learning pipeline for IQA and distortion classification, also
show the importance of learning adaptive loss weights. Finally, We set λ1 and λ2 as 0.83, 0.17
for LIVE, λ1 and λ2 as 0.8, 0.2 for TID2013, respectively.

5 Conclusion

In this work, we have proposed a novel approach to the FR-IQA and distortion clas-
sification problems using multi-task learning architecture. By introducing an enhanced
edge fusion module, designing a multi-layer feature fusion scheme and dynamically
assigning loss weights automatically, the robustness and performance of the two
tasks both improve by a large margin. The experimental results on the LIVE, CSIQ
and TID2013 datasets demonstrate the state-of-the-art performance of our proposed
method.

Under the current trend that digital imaging and display technologies have greatly
changed the way how we capture, store, perceive and post images, our method has
performed remarkable results at predicting image quality like human judgments, and
has the capability of discerning the image and video quality and analyzing the distor-
tion reason in a short time. Future work will be put on to design more advanced IQA
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algorithms to handle the images in a wide range of applications, such as different com-
pression, transmission and display methods.
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Abstract. Object detection is a fundamental research field in computer
vision. Arbitrary-oriented objects inevitably appear in face, natural scene
text, and aerial image detection, which have attracted widespread atten-
tion recently. However, existing rotation detectors still suffer from the fea-
ture misalignment problem, due to the fixed convolution kernel adopted
in detecting arbitrary-oriented and deformed objects. In this paper, we
propose a novel method, One-stage Feature Adaption Network (OFA-
Net), for oriented object detection in aerial images. A feature adaption
module, implemented by the deformable convolution and the align convo-
lution, is proposed to refine the feature maps according to the predicted
offsets and decoded boxes. Furthermore, specific to the long-existing peri-
odic angle regression problem in the detection, the box regression branch
is decoupled into the size branch and the angle branch, with a new peri-
odic loss in the angle regression branch to leverage the periodic orienta-
tion of the object. Extensive experiments demonstrate the effectiveness
of our approach, achieving promising results compared with state-of-
the-art methods in three benchmark datasets, DOTA, HRSC2016, and
UCAS-AOD.

Keywords: Deep learning · Computer vision · Object detection

1 Introduction

Object detection based on deep learning is a topic of paramount importance
in image processing and computer vision with broad applications. Specifically,
the goal of object detection is to locate objects with rectangle boxes and fur-
ther classify them from images or videos. Traditional object detection methods
with axis-aligned bounding boxes fail in accurately detecting the ubiquitous
rotated objects, such as planes, ships, vehicles and harbors from aerial images,
which bring background information as noise [8]. In recent years, arbitrary-
oriented object detection with rotatable rectangular boxes has played a con-
siderable role in aerial image processing [4,21,25], natural scene text detection
[10], face recognition [16], and robot grasping [26], etc. A series of advanced
c© Springer Nature Switzerland AG 2021
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(a) Rotation (b) Deformation

(c) Align convolution (d) Deformable convolution

Fig. 1. Causes and solutions of feature misalignment problem.

rotation detectors based on deep learning have been proposed, concentrating
on the representation of bounding boxes [20], small objects [23], and densely
distributed objects [21,23]. Although these rotation detectors have achieved sat-
isfactory performance, the accurate object detection in an arbitrary-oriented
(Fig. 1(a)) and deformed (Fig. 1(b)) circumstance remains a challenging prob-
lem, limited by the use of axis-aligned and fixed convolution kernels, which can
not capture the essential information of different shaped objects and leads to
the feature misalignment problem.

To this end, we design a new feature adaption module that extracts infor-
mation from predicted offsets and decoded boxes to refine the feature maps by
jointly introducing the align convolution [6] and the deformable convolution [3].

The main contributions of this work are as follows:

• To alleviate the feature misalignment problem due to the fixed convolution
kernel adopted in detecting arbitrary-oriented and deformed objects, a fea-
ture adaption module, implemented by the deformable convolution and the
align convolution, is proposed to refine the feature maps with respect to the
predicted offsets and decoded boxes.

• To adapt the periodic angle regression, the box regression branch is decoupled
into the size branch and the angle branch, and a new periodic loss in angle
regression branch is proposed to alleviate the inconsistency in calculating the
regressing loss, improving the overall performance.

• Combining the above feature adaption module and the decoupled regres-
sion branch with angle loss, a universal method, One-stage Feature Adaption
Network (OFA-Net), is proposed to generate well-adapted feature maps and
high-quality bounding boxes enabling accurate oriented object detection.
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2 Related Work

2.1 Oriented Object Detection

Oriented object detection is a research focus. Yang et al. [25] design a sampling
fusion network, which fuses multi-layer feature maps to improve the detection
sensitivity for arbitrary-oriented small objects. Yang et al. [23] design an accu-
rate and fast One-stage rotating detector for large aspect ratio objects with
high accuracy. For the class imbalance problem, a two-phase Feature Refine-
ment Module (FRM) is proposed. Pan et al. [12] propose a Feature Selection
Module (FSM) and a Dynamic Refinement Head for Classification/Regression
(DRH-C/R) to solve the problem that all receptive fields of convolution kernels
are arranged along the axis and have the same shape while objects usually are
arranged in different directions and have different shapes.

2.2 Feature Adaption

Some methods have been proposed to deal with the feature misalignment prob-
lem. For example, deformable convolution [3] uses an extra convolution layer to
learn offsets from input feature maps and adjusts the input feature maps. Yang
et al. [23] design a feature refinement module to reconstruct the feature maps
using the information of refined anchor obtained by feature interpolation. How-
ever, these deformable-based feature adaption methods are implicit and often get
offsets from the extra structure without supervised information. Han et al. [6]
propose an explicit way, which is artificial design and can not able to express the
real feature adaption process. Our method can combine the implicit and explicit
information of predicted offsets and decoded boxes to realize feature alignment
compared to these methods.

2.3 Regression Loss

For the most current oriented bounding box methods, an additional angle vari-
able is added based on the horizontal bounding box, and the distance-based loss
is used to optimize the angle. IoU Smoothing L1 loss [25] and modular rotation
loss [14] replace the calculation method of regression loss using the IoU factor and
RIoU, respectively. However, these methods are complex and not always effec-
tive in different scenarios. The most commonly used method is still the Smooth
L1 loss [5] based on five parameters (x-coordinate, y-coordinate, width, height,
and angle), but the mismatch between angle periodicity and loss function of the
rotation box are still not solved, due to two different bounding boxes would be
predicted and the same loss value would be obtained in the same position in
some cases [25]. Therefore, we propose a new periodic angle loss function, which
can adapt to the periodicity of the angle and converge faster.
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3 Proposed Methods

We give an overview of our method in Fig. 2. The framework consists of three
components, a feature extraction backbone, a feature pyramid network, and a
regression and classification head. The baseline is a One-stage rotation detector
based on the RetinaNet. The feature adaption module is added in the head to
reconstruct the feature maps. To realize rotation detection, we use five parame-
ters (x, y, w, h, θ) to represent the rectangle with different orientations. θ refers
to the acute angle with the x-axis, and the other side corresponds to w. The
angle ranges in [−π

2 , 0). The regression targets are as follows:

tx = (x − xa) /wa, ty = (y − ya) /ha,

tw = log (w/wa) , th = log (h/ha) , tθ = θ − θa,

t′x = (x′ − xa) /wa, t′y = (y′ − ya) /ha,

t′w = log (w′/wa) , t′h = log (h′/ha) , t′θ = θ′ − θa, (1)

where x, y, w, h, θ represents the center x-coordinate, center y-coordinate,
width, height, and angle of the box, respectively. The variables x, xa, x′ are used
for the ground truth box, anchor box, and prediction box (also for y, w, h, θ).
The loss of our method consists of the first phase loss and the second phase
one. We assign a class label to each anchor or refined anchor for each phase and
regress the position. The loss function is defined as follows:

L =
λ1

N

N∑

n=1

tn
∑

j∈{x,y,w,h}
Lr

(
v′

nj , vnj

)
+

λ2

N

N∑

n=1

tnLθ (θ′
n, θn)

+
λ3

N

N∑

n=1

Lc (p′
n, pn) ,

(2)

where N indicates the number of anchors, tn is a binary variable (tn = 1
for foreground and tn = 0 for background). v′

nj represents the predicted off-
set vectors, vnj represents the targets vector of groundtruth. θ′

n represents the
predicted angle offset, θn represents the targets angle of groundtruth. pn is the
probability of predicted object category, p′

n represents the label of object. The
Focal loss, Smooth L1 loss and Theta loss are adopted as the classification loss
Lc, the regression loss Lr and the angle regression loss �Lθ, respectively. The
hyper-parameter λ1, λ2, and λ3 are set as 1.
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Fig. 2. The architecture of One-stage Feature Adaption Network (OFA-Net).

3.1 Feature Adaption Module

As shown in Fig. 3, we design different structures of the feature adaption mod-
ule. The implicit structure uses the deformable convolution [3] with the offsets
learned from the predicted offset by a 3 × 3 convolution. The explicit way uses
the decoded predicted box information, which is fed into the align convolution [6],
to refine the feature map. Our method combine the implicit and explicit way by
using the information of predicted offsets and decoded boxes in a parallel or
series way to achieve the purpose of feature alignment. The parallel structure
concatenates the refined feature maps with 3× 3 convolution kernels and the
series structure gets the explicit refined feature maps from the implicit refined
ones, the details are in Fig. 4.

3.2 Decoupled Branch

Considering that angle is a periodic variable and different from other regression
variables, but all predicted variables are shared the same feature maps, the
regression branch is decoupled into the size and the angle branch to fit various
regression tasks. The three-branch structure is in the head part (Fig. 2).

(a) Implicit structure (b) Explicit structure

(c) Parallel structure (d) Series structure

Fig. 3. Different adaption structures with predicted boxes.
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Fig. 4. Detailed series and parallel feature adaption module.

3.3 Angle Regression Loss

The simulation result of matching two oriented boxes (Fig. 5(a)) shows that
the relationship of the two radian is not entirely linear distribution (the darker
the color of the point, and the more data is located in), which means two pre-
dicted oriented bounding boxes would be regard as the same one even their
angle are total different. Aiming to handle this problem, a new angle loss func-
tion is designed to apply to angle regression. The Theta loss function is based
on Smooth L1 loss and is calculated as follow:

Theta Loss (x) =
{

0.5t2, if t < 2
t − 0.5, otherwise ,where t = 2 − 2| cos(x)| . (3)

Compared with Smooth L1 loss (Fig. 5(b)), the Theta loss is periodic, and its
gradient is larger when x is far away from zero in a period near the zero-point,
which means that the loss value will decline faster.

(a) (b)

Fig. 5. Analysis and comparison on the proposed Theta loss. (a) The angle distribution
of two oriented bounding boxes when IoU > 0.7. (b) The function graph of Smooth L1
loss and the proposed Theta loss.
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4 Experiments and Analysis

4.1 Datasets

Our experiments are conducted on three oriented datasets DOTA [18],
HRSC2016 [9]and UCAS-AOD [27]. All objects in these datasets are arbitrary-
oriented, and the ground-truth boxes are converted into oriented bounding boxes.

DOTA is a challenging benchmark and one of the largest datasets for hori-
zontal and orientated object detection in aerial images. We focus on the task of
detection with oriented bounding boxes. There are 15 common object categories,
including plane (PL), baseball diamond (BD), bridge (BR), ground field track
(GTF), small vehicle (SV), large vehicle (LV), ship (SH), tennis court (TC), bas-
ketball court (BC), storage tank (ST), soccer-ball field (SBF), roundabout (RA),
harbor (HA), swimming pool (SP), and helicopter (HC). The dataset consists
of the training set, validation set, and test set. Both the training and validation
sets are used for training, with a total of 1869 pictures.

UCAS-AOD is an aerial image dataset of two categories: airplanes and
vehicles. It contains 1510 images in total, with 1000 images of airplanes and 510
images of cars. The image shapes range from 1, 280 × 685 to 1, 372 × 941. We
follow the paper [11] and divide it into the training set, validation set, and test
set with a ratio of 5:2:3. In detail, we use the training set and validation set to
train.

HRSC2016 is a challenging remote sensing images detection dataset with
arbitrary-oriented and high aspect ratio ship objects. The dataset contains 1061
pictures ranging from 300 × 300 to 1, 500 × 900 pixels. All images are divided
into the training set, validation set, and test set, officially, including 436, 181,
and 444 images. In detail, we use the training set and validation set to train,
and all images are resized to 800 × 800 without changing the aspect ratio.

4.2 Implementation Details

The methods are implemented with PyTorch [13] based on the mmdetection [2]
project. We use the One-stage detector RetinaNet as baseline. If not specified,
We use ResNet-50 with FPN, initialize the pre-trained model from PyTorch [13]
as the experimental backbone network, and train the network on RTX 2080Ti or
RTX 3090, with a total batch size of 2. The training schedule is adopted the same
as mmdetection [2]. We train all models with 16 epochs for DOTA, 36 epochs
for UCAS-AOD and 72 epochs for HRSC2016. The Stochastic Gradient Descent
(SGD) method is adopted with an initial learning rate of 0.004, and the learning
rate is reduced by 10 at each decay step. The weight decay and momentum are
0.0001 and 0.9, respectively. The loss weight parameters λ1, λ2, λ3 are set as 1.
The hyperparameters of Focal loss �Lc are set as α = 0.25 and γ = 1.0. Finally,
a rotated Non-Maximum Suppression (NMS) with a threshold of 0.05 is applied
to the results for post-processing. All the performance is evaluated by the mean
Average Precision (mAP, VOC07 metric) method. The random rotation and
random HSV (Hue, Saturation and Value) are adopted for data augmentation.
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4.3 Ablation Studies

Effectiveness of Decoupled Branch. RetinaNet is a One-stage detector,
which can achieve competitive performance and better speed-accuracy trade-off.
Besides, most existed One-stage rotated detectors are based on it. To compare
with other existed methods fairly, we choose the RetinaNet as the baseline, and
the depth of the head is set as 4 in this ablation experiment. As the results
shown in Table 1, we decouple the regression branch into the size branch and
the angle branch, the mAP increases 0.29%, which means the decoupled branch
could adapt the angle regression and make a slight increase in performance by
generating adaption feature maps.

Table 1. Ablation experiments under different settings of network.

Methods Backbone Branches mAP

Baseline ResNet50 2 68.77

Baseline ResNet50 3 69.06

Effectiveness of Feature Adaption Module. Results are given in Table 2.
We compare the effect of different settings of the feature adaption module on the
effectiveness of the adaption module. Without adaption structure, the detector
only achieves 68.93% mAP (the depth of head is set as 2). The implicit structure
could improve about 2.76% mAP. And the mAP of the explicit structure could
increase to 73.43%. Furthermore, we design a series and a parallel structure that
combines the implicit and explicit way as depicted in Fig. 4, where the mAP
could reach 73.53% and 74.06%, respectively.

Effectiveness of Theta Loss. The results in Table 3 are based on baseline,
the input image size is 600 × 600 and resized to 800 × 800. The epochs are set
as 12, while the epochs in other experiments in this paper are set as 16, s &
s means the angle loss in two phases are Smooth L1 loss and Smooth L1 loss.
Likewise, t & t mean Theta loss and Theta loss. As the results shown, the Theta
loss could help converge faster and achieve about 73.40% mAP. Further studies
show that the Theta loss in phase 1 could achieve higher mAP, which means

Table 2. Ablation experiments under different settings of feature adaption module.

Methods mAP

w/o adaption 68.93

Implicit 71.69

Explicit 73.43

Series 73.53

Parallel 74.06
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that Theta loss could help converge faster. If Theta loss is set in phase 2, it will
lose generality as indicated in Table 4.

Table 3. Ablation experiments of loss based on baseline.

Input size Loss function mAP

600->800 s & s 72.80

600->800 t & t 73.40

Table 4. Ablation experiments under different settings of loss.

Angle regression loss (a) (b) (c) (d)

Phase 1 Theta loss � �
Smooth L1 loss � �

Phase 2 Theta loss � �
Smooth L1 loss � �

mAP 73.32 73.61 74.06 74.07

Comparisons with the State-of-the-Art. This section compares our pro-
posed methods with other state-of-the-art methods on three aerial image
datasets, DOTA, UCAS-AOD, and HRSC2016. The settings and implementation
details have been introduced in Sect. 4.2.

Results on DOTA. We compare our results with the state-of-the-art methods
in DOTA as depicted in Table 5. The DOTA results reported here are obtained
by submitting the predicted text file to the official DOTA evaluation server. The
latest two-stage detection methods, such as HSP [19] and ReDet [6], perform
well. However, they use a complex model structure in exchange for performance
improvement, which is highly inefficient in detection. The One-stage detection
method proposed in this paper has almost the same performance as the most
advanced two-stage detection method. In detail, our multi-scale testing results
are fused from tested results of different scales. In terms of overall performance,
our method can achieve the best performance so far on One-stage detectors,
about 79.52% mAP.

Results on UCAS-AOD. Experimental results in Table 6 show that our
method achieves the best performance compared with other methods, reach-
ing the mAP of 90.21% and getting the best results in detecting both the cars
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Table 5. Comparisons with state-of-the-art methods on DOTA, R-101 stands for
ResNet-101 (also R-50), H-104 for hourglass 104. † denotes multi-scale training with
data augmentation. ‡ means multi-scale training and testing.

Method Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

Two-stage

FR-O [18] R-101 79.09 69.12 17.17 63.49 34.20 37.16 36.20 89.19 69.60 58.96 49.4 52.52 46.69 44.80 46.30 52.93

ICN [1] R-101 81.40 74.30 47.70 70.30 64.90 67.80 70.00 90.80 79.10 78.20 53.60 62.90 67.00 64.20 50.20 68.20

SCRDET [25] R-101 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61

CSL [24] R-152 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17

ReDet [7] ReR50-ReFPN 88.81 82.48 60.83 80.82 78.34 86.06 88.31 90.87 88.77 87.03 68.65 66.90 79.26 79.71 74.67 80.10

One-stage

O2-DNET [17] H-104 89.31 82.14 47.33 61.21 71.32 74.03 78.62 90.76 82.23 81.36 60.93 60.17 58.21 66.98 61.03 71.04

DRN [12] H-104 89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48 73.23

R3DET [23] R-152 89.80 83.77 48.11 66.77 78.76 83.27 87.84 90.82 85.38 85.51 65.67 62.68 67.53 78.56 72.62 76.47

R3DET-DCL [22] R-152 89.26 83.60 53.54 72.76 79.04 82.56 87.31 90.67 86.59 86.98 67.49 66.88 73.29 70.56 69.99 77.37

S2ANet [6] R-50 88.89 83.60 57.74 81.95 79.94 83.19 89.11 90.78 84.87 87.81 70.30 68.25 78.30 77.01 69.58 79.42

Baseline R-50 81.26 74.43 41.03 71.67 65.13 74.29 77.55 90.87 85.19 72.42 56.84 64.17 56.83 68.13 51.67 68.77

OFA-Net w/da (ours) R-50 88.49 79.82 54.23 77.60 76.92 80.78 87.57 90.89 85.41 85.54 59.56 62.77 67.85 70.71 54.83 74.86

OFA-Net (ours) † R-50 87.91 82.21 55.27 74.18 77.78 83.88 88.58 90.75 85.85 87.79 66.05 70.54 76.59 72.87 68.18 77.89

OFA-Net (ours) ‡ R-101 88.75 82.75 57.14 81.37 78.83 85.45 88.63 90.90 86.60 87.97 66.46 70.66 77.35 78.82 71.55 79.52

and airplanes. The detection performance indicates that our approach is robust
to arbitrary-oriented objects.

Table 6. Comparison with state-of-the-art methods on UCAS-AOD.

Methods Backbone Input size Car Airplane mAP

Faster RCNN [15] ResNet50 800× 800 89.52 89.86 88.36

RRetinaNet (ours) ResNet50 800× 800 88.11 90.50 89.31

DAL [11] ResNet50 800× 800 89.25 90.49 89.87

S2ANet [6] ResNet50 800× 800 89.56 90.42 89.99

OFA-Net (ours) ResNet50 800× 800 89.88 90.54 90.21

Table 7. Comparison with state-of-the-art methods on HRSC2016.

Methods Backbone Input size mAP

R3Det [23] ResNet101 800× 800 89.26

DCL [22] ResNet101 800× 800 89.46

DAL [11] ResNet101 800× 800 89.77

S2ANet [6] ResNet101 512×800 90.17

OFA-Net (ours) ResNet50 800× 800 89.80

Results on HRSC2016. The HRSC2016 contains a large number of ships with
large aspect ratio and arbitrary direction, which poses a significant challenge to
the detector’s accuracy. Note that our methods are evaluated under PASCAL
VOC2007 metrics. S2ANet achieves the state-of-the-art performance based on
ResNet101 and the input image size is 512 × 800, which is closer to the aspect



376 M. Zou et al.

ratio of the original images. Under ResNet50 backbone, our model can achieve
the best mAP among the detector based on the input image size of 800 × 800
with smaller backbone structure, and the results are in Table 7.

4.4 Visualization on DOTA

We visualize the detection results of our method on the DOTA test dataset, the
results are shown in Fig. 6. The visualization shows that our approach is robust
to different categories and could obtain high-quality bounding boxes.

(a) PL (b) BD (c) BR (d) GTF (e) SV

(f) LV (g) SH (h) TC (i) BC (j) ST

(k) SBF (l) RA (m) HA (n) SP (o) HC

Fig. 6. Detection results on the Oriented Bounding Boxes (OBB) task on DOTA.

5 Conclusion

This paper proposes a One-stage Feature Adaption Network (OFA-Net), which
enables us to generate well-adapted feature maps and high-quality bounding
boxes for accurate arbitrary-oriented object detection. Considering the feature
misalignment problem, we design a new feature adaption module, integrating the
advantages of the deformable convolution and the align convolution, to refine the
feature maps. Existing frameworks always encounter the periodic angle problem,
recently many efforts have been devoted by techniques such as extending the
representations of the bounding boxes. Without adding complexity of bounding
box representations, we alternatively focus on the angle loss and replace it by
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a periodic one, effectively improving the detection accuracy. Promising results
compared with state-of-the-art methods in the DOTA, UCAS-AOD, HRSC2016
benchmarks demonstrate the broad applicability of our OFA-Net.
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Abstract. Crowd counting has been developed significantly, attributing
to the booming of deep learning. However, deep learning based methods
are extreme data consuming, and labeling dataset for crowd counting
is a sophisticated task. Both the number and the density of people in
an image can be very large while the resolution is too low. Meanwhile,
collecting crowd pictures without label is much easier. In this paper,
we propose a few-shot crowd counting method based on self-supervised
learning to leverage these unlabeled data. We firstly collect and clean an
unlabeled dataset consisting of crowd images. And two self-supervised
assistant tasks are designed with the purpose of training a backbone
model to extract the crowd-related features from those unlabeled images.
The parameters of the backbone model are then utilized as an initial-
ization for the crowd counting model, which is further fine-tuned with
only very few annotated images. We conduct experiments with different
amounts of annotated data. Results have demonstrated the effectiveness
of the proposed approach.

Keywords: Crowd counting · Self-supervised learning · Few-shot
learning

1 Introduction

In modern society, there are many large-scale crowd gathering scenarios, such as
community activities, concerts, sports events, etc., which will cause large crowds
to gather in a short time. Crowd counting, which can help with the security
issues, has attracted significant attention. A large amount of deep models have
been proposed to address this challenging task, from directly predicting the
number of people to estimating the crowd density [8,18,19].

However, deep neural networks acquire sufficient data for training, while
obtaining high-quality datasets can be extremely costly both temporally and
financially, especially for crowd counting. Thus, few-shot learning has become a
hot topic, which aims to leverage only few labeled data to train a model with
high capacity. In few-shot learning, a typical method is to train a model in a
two-stage manner. At the first stage, the model is trained on a source task with
c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13033, pp. 379–390, 2021.
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sufficient data, e.g. pre-training a CNN on the ImageNet. At the second stage,
the model is further fine-tuned on a target task, generally with few data. The
parameters of the model are partially or totally migrated from the for source-
task as a better initialization. Sometimes finding an appropriate source task for
pre-training can also be a tough problem. The targets of different tasks may vary
greatly and domain shifts of different datasets can be large. Thus, it is significant
to mine latent labels from in-domain unlabeled data and leverage them for model
training, for which self-supervised learning can be taken into consideration.

In crowd counting task, the burden of annotating is heavy due to the large
number and density of people in an image and the low resolution. Meanwhile,
with the popularity of cameras and smart phones, a great many of crowd images
are taken and uploaded to the Internet. Collecting unlabeled crowd data can be
accomplished easily with technologies such as search engines and web crawlers.
Therefore, it is valuable to find out how to leverage the large amount of unlabeled
data to boost deep learning based models.

In this paper, we propose a self-supervised learning based few-shot crowd
counting method. Specifically, two self-supervised assistant tasks are designed
to help with learning how to extract the crowd-related features. The first one
is a crowd count ranking task, which aims to guide the model to extract crowd
related features by ranking crowd counts of different images, instead of predicting
accurate counts directly. The other one is a crowd distance ranking task, in which
the model attempts to rank the distance between the crowd and the camera
based on perspective theory. A backbone model is trained on these tasks and
its parameters are transferred to the crowd counting model as an initialization.
Therefore, the crowd counting model is initialized with the ability to capture
crowd-related features before training and is further fine-tuned with few labeled
images for better performance.

We collect and clean an unlabelled dataset containing crowd images for the
self-supervised learning tasks. We conduct experiments with different amounts of
labeled data, results have demonstrated the effectiveness of the proposed method
and visualizations have further proved the benefits of the self-supervised learning
tasks.

2 Related Work

Most early works of crowd counting are detection-based approaches, which
employ a sliding window detector to detect people for counting [3,7]. Among
them, body-based approaches extract features from full bodies while part-based
approaches detect particular body parts such as head or shoulder. Besides,
regression-based methods are proposed to deal with occlusions, through learning
a mapping between extracted features and crowd counts [1,13]. Some of them
propose to learn a mapping from local patch features to corresponding density
maps to utilize spatial information in crowd images [6,11]. In recent years, a
variety of deep learning based methods have been proposed for crowd counting.
They either predict the crowd counts directly [18], or estimate a density map
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firstly and then compute the crowd counts based on it [8,14,16,19,21]. Den-
sity estimation based methods tend to outperform since a density map contains
more information than a simple crowd count number. Our model for the crowd
counting task is also a density estimating network.

Self-supervised learning, which attempts to mine annotations from unlabeled
data to reduce labeling burden, has attracted much attention recently. In [2], an
image is split into nine blocks, and the model is trained to predict the positions
of each block. In [10], part of the image is cut off and the model learns to
recover a complete image with the rest parts. Since most images are colorful,
[20] proposes a coloration task by converting all images into gray mode and the
model is trained to colorizing it. Besides, in [5], an image is rotated and the
model is trained to predict the rotation angle. Only few works has been done to
introduce self-supervised to crowd counting [9]. We try to move a step forward
and designed 2 unique tasks to leverage unlabeled data.

Few-shot learning is proposed to train a model with limited examples for a
task. There are 3 main ways to solve this problem: model-based, metric-based
and optimization-based respectively. Model-based methods tend to employ a
memory to store useful information [15]. Metric-based methods tend to learn a
distance to measure the differences between examples [17]. Optimization-based
methods intend to find a better initialization parameters through multiple tasks
[4,12]. It is believed that optimization-based methods can help alleviate the
difficulty for searching the best hypothesis in the large hypothesis space. Based
on this theory, we propose our two-stage method for few-shot crowd counting.

(a) Crowd count ranking (b) Crowd distance ranking

Fig. 1. An illustration of how we generate training examples for crowd count ranking
task (a) and crowd distance ranking task (b).

3 Our Method

Data labeling for crowd counting is an extremely onerous task due to the dense-
ness of individuals in crowd images and their low resolution. Whereas, collecting
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crowd images can be much easier. Thus, we attempt to leverage the images with-
out annotations. Specifically, we turn to self-supervised learning to utilize these
data with efficiency.

We propose two self-supervised tasks to mine latent information in the unla-
beled data.

3.1 Crowd Count Ranking

When confronting with several images, we can rank them easily according to
their approximate crowd counts without accurate estimations. Inspired by this,
we design a self-supervised crowd count ranking task.

For each image, we acquire five image blocks from it, each of which covers
different areas of the original image. The height and width of these blocks are
respectively 8/25, 2/5, 1/2, 5/8 and 25/32 of the raw image while sharing a
common center, which is presented in Fig. 1(a). It is natural that blocks with
larger areas retain larger or equal crowd counts when compared to smaller ones,
the smaller ones are contained by them. Thus, we can obtain the ranking labels
of these blocks according to their areas.

While training, each input image is processed as aforementioned and all the
image crops are scaled into the same size. Then each block is fed into the network
which predicts a crowd count value for it. The blocks are ranked according to
these predicted values, and losses can be calculated with the ranking labels. For
each raw image, five values are predicted corresponding to the five blocks. Each
block is compared with each other without duplication, so finally 10 ranking
results can be obtained.

3.2 Crowd Distance Ranking

Assuming that all the crowd photos are taken by cameras, we can find that the
sizes of the human bodies are highly related to their distances from cameras.
Specifically, the closer to the camera, the larger the body size is in the picture.
Therefore, in most cases, obtaining the size information of human bodies in dif-
ferent positions is homogeneous to extracting the distance information of them.
Following these premises, we propose a self-supervised crowd distance ranking
task.

For each image, we divide it into nine picture blocks, as presented in Fig. 1(b).
According to the perspective principle, in general, the distance between the
objects on the bottom side of the picture and the camera tend to be smaller
than that between the objects on the upper side and the camera. Accordingly, we
divide these blocks into three groups based on their distances from the camera.
The first group includes picture blocks I1, I2, I3, which is the farthest away from
the camera. The second one includes picture blocks I4, I5, I6. And the third
group, which is supposed to be the closest to the camera, consists of picture
blocks I7, I8, I9. Similar to the crowd count ranking task, we rank these blocks
in accordance with their distance away from the camera.
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During training, we only take use of the blocks in the second and third group.
As for blocks in the first group, we find that they tend to be filled with large
areas of sky and trees instead of crowds, so we drop them. The rest blocks are
fed into the network which predicts the distance of each block away from the
camera. Then we rank these blocks and calculate the loss based on the ranking
labels. Note that we only compare blocks from different groups as we assume
that crowds in the same group share a common distance away from the camera.
In summary, for each raw image, 6 values will be predicted corresponding to
each block in 2 groups, and 9 ranking results will be obtained.

Fig. 2. An overview of our proposed method. A backbone model is firstly trained on the
designed self-supervised tasks. The parameters of its features extractor are migrated
to the crowd counting model as an initialization. The crowd counting model is then
fine-tuned with few labeled data.

3.3 Model

We devise a simple but efficient model for our experiments. As is shown in Fig. 2,
the model can be split into 2 parts: public feature extracting layers and private
task-specific layers.

For self-supervised learning tasks, each image is passed by 4 convolutional
layers, which are combined by max pooling layers. Then the extracted features
are average pooled and fed into a fully connected layer, which projects the fea-
tures into a value standing for the crowd count or the distance away from the
camera. Note that these values are not expected to be precise but only used for
comparing and ranking.

After the first stage of self-supervised training, this backbone model has
gained the ability to extract features of the crowd. The parameters of its feature
extractor are migrated to the crowd counting model, hence it is able to extract
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crowd-related features before further training. The fully connected layer of the
backbone model is replaced by 2 convolutional layers to generate a density map.

Finally, we take use of only a small number of labeled crowd pictures to train
the crowd counting network in a supervised manner. The model can further learn
to extract essential features which are more related to crowd counting, thereby
obtaining a more accurate crowd density map.

3.4 Training

For self-supervised learning tasks, we apply Margin Ranking Loss for training.
Specifically, for the crowd count ranking task, its loss Lc is calculated as follows:

Lc(x1c, x2c, yc) = max(0,−yc ∗ (x1c − x2c) + mc) (1)

where x1c and x2c represent the crowd count values predicted by the self-
supervised model for two unique picture blocks respectively. And yc represents
the ranking label. If the area of the corresponding picture block of x1c is greater
than that of x2c, yc takes the value 1. Otherwise, the value of yc is -1. mc is a
margin constant.

Similarly, we define the loss function of crowd distance ranking task Ld as
follows:

Ld(x1d, x2d, yd) = max(0,−yd ∗ (x1d − x2d) + md) (2)

where x1d and x2d represent the crowd distance values for two unique picture
blocks from different groups. And yd represents the label of comparing result
similar to yc while md is similar to mc.

To collaboratively train the self-supervised model on 2 tasks, we add 2 losses
together to form up an overall loss Lss as follows:

Lss = α ∗ Lc + β ∗ Ld (3)

where α and β are the weight hype-parameters over two parts.
As for the second training stage, we apply Euclidean distance to measure the

differences between ground-truth maps and generated maps as follows:

Lfs =
1

2N

N∑

i=1

∥∥D∗
i − DGT

i

∥∥2
(4)

where N is the size of training batch, D∗
i represents the estimated density map

and DGT
i represents the ground-truth density map.

4 Experiments

4.1 Dataset

We use both unlabeled and labeled data in our experiments, the former for
self-supervised learning tasks and the latter for fine-tuning the model.
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Fig. 3. Density maps generated by each baseline and our method.

Unlabeled Data Collection
We collect unlabeled crowd images through search engine on Internet, based
on queries such as Street Crowd. Considering the noises, we conduct manual
check to filter out duplicate images and unnatural images(e.g. paintings and
comics). To this end, 2400 crowd pictures are reserved without. And we use them
for our proposed self-supervised tasks. Each image is processed as introduced in
Sects. 3.1 and 3.2, producing 11 image blocks. Each block is scaled into 512x512
before feeding into models.

Labeled Dataset. We employed the widely used datasets ShanghaiTech [21]
and UCF CC 50 for fine-tuning and testing our model. ShanghaiTech contains
1198 annotated images with a total of 330165 annotated people. It is divided
into two parts named Part A and Part B. We use Part A, which contains 482
images with highly congested scenes. We use the train-test splits provided in the
original paper [21]. UCF CC 50, which contains 50 images from the Internet, is a
very challenging dataset due to the limited number of images and large variance
in crowd counts. The number of annotated persons ranges from 94 to 4543 with
an average of 1280 per image. We select the last 30 pictures for testing, and the
rest are split as training set.

4.2 Settings

Our goal is to measure the performance of the crowd density map generation
model under few-shot settings. Thus, we only select a few pictures from the
training set randomly to fine-tune crowd count models. In order to alleviate
influences of the picture selection process, we repeated the selection and the
subsequent experiments for 5 times. The final result is the average of the 5
experimental results. We apply the nearest neighbor distance method to generate
the ground-truth crowd density maps and each density map is scaled to a size of
128x128. We use Adam for optimization in both training stages and the learning
rate is set to 1e-4. All the trainable parameters of each layer are initialized with a
Gaussian distribution with a standard deviation of 0.01. Each convolution layer
is followed by a ReLU layer.
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Fig. 4. Density maps generated by SS-DCC-CDGN fine-tuned with different numbers
of labeled crowd images.

As for evaluation, we employ mean absolute error(MAE), which is defined as
follows:

MAE =
1
N

N∑

i=1

∥∥Ci − CGT
i

∥∥ (5)

where N is the number of test images, CGT
i is the actual number of people in

the ith image and Ci is the estimated number of people in the ith image.

4.3 Comparing Methods

Since we focus on the effects of self-supervised learning tasks, we employ a simple
model as our baseline and try 2 tasks both respectively and collaboratively on
it. But note that our method can be compatible with any models with few
modifications.

CDGN: We do not pre-train the Crowd Density Generation Network with
any self-supervised tasks. The parameters of this model are all directly initialized
with a Gaussian distribution with a standard deviation of 0.01.

SS-CC-CDGN: For this model, we engage the Self-Supervised Crowd
Count(SS-CC) ranking task to get a better parameter initialization.

SS-D-CDGN: Similarly to SS-CC-CDGN, we engage the Self-Supervised
Distance(SS-D) ranking task for pre-training.

SS-DCC-CDGN: Both tasks are employed and the self-supervised models
are trained with 2 parts of losses, setting α and β to be equal as 1.

4.4 Results

Experimental results on ShanghaiTech Part A and UCF CC 50 are presented at
Table 1. k indicates the number of labeled images used to train or fine-tune each
model.
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(a) SS-CC-CDGN (b) SS-D-CDGN

Fig. 5. Visualizations of extracted features of the last convolutional layer.

On ShanghaiTech Part A, SS-DCC-CDGN outperforms all other baselines
while CDGN performs much worse than all other methods. Specifically, when
k is set to 5, MAE is reduced from 183 of CDGN to 152 of SS-DCC-CDGN,
improving around 17%.

Similarly, on UCF CC 50, SS-DCC-CDGN achieves best results when k is set
to 3, 5 and 10 while CDGN still performs worst under all conditions. Besides,
as k grows larger, the improvement of SS-DCC-CDGN against CDGN increases
as well. This may be caused by the diversity and complexity of this challenging
dataset. More data is required for fine-tuning and our method can leverage them
with more efficiency. When k is set to 10, SS-DCC-CDGN reduces MAE from
399 to 338, which improves over 15%.

As for SS-CC-CDGN and SS-D-CDGN, which applies only one self-
supervised task, they both achieve better results than CDGN, which implies
that both self-supervised tasks are effective for leveraging unlabeled data to
optimize crowd counting network.

Table 1. MAE results on ShangHaiTech Part A and UCF CC 50.

Model ShangHaiTech Part A UCF CC 50

k = 1 k = 3 k = 5 k = 10 k = 1 k = 3 k = 5 k = 10

CDGN 218 193 183 153 596 402 383 399

SS-CC-CDGN 204 167 164 144 575 376 373 371

SS-D-CDGN 203 182 163 148 585 384 370 344

SS-DCC-CDGN 197 163 152 144 576 371 356 338

We visualize the density map generated by each baseline and our model in
Fig. 3. It can be found that CDGN has significantly underestimated the density of
densely populated areas, resulting in a low crowd count prediction. This is mainly
due to the fact that the training set is too small, leading to its lack of feature
extraction capabilities for crowds, especially for dense crowds. The predicted
values of SS-CC-CDGN and SS-D-CDGN in high-density areas are larger and
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closer to the real situation, but the density maps predicted by these two networks
suffer from excessive blur. Meanwhile, SS-DCC-CDGN can better reflect the true
distribution of people in crowd scenes, whether in densely populated areas or
sparsely populated areas. The density map can be activated with higher accuracy,
and it is the closest to the ground-truth with less blur.

We also present the density maps generated by SS-DCC-CDGN fine-tuned
with different numbers of labeled images in Fig. 4. When there is only one picture
in the training set, the predicted density map seems to be blurred and not
accurate. When the size of training set is expanded to 3, the performance is
significantly improved. With the further enrichment of training samples, the
density map obtained is more refined and accurate. When the training set size
is 10, the crowd counting network has achieved very high counting accuracy on
the two images shown.

Overall, it can be concluded that our proposed self-supervised tasks can
benefit crowd counting, both separately and collaboratively.

4.5 Feature Visualization

We use CAM [22] to visualize the output features of the last convolutional layer
of SS-CC-CDGN, as shown in Fig. 5(a). The areas where the crowd exist are
activated and appear yellow, which proves that the outputs are formed of the
features extracted from these yellow parts, i.e., the network has the ability to
capture the location of the crowd to a certain extent.

Similarly, we do the visualizations for SS-D-CDGN, as shown in Fig. 5(b).
It can be found that in the parts farther from the camera (i.e., I4, I5, I6), the
extracted highlight features are denser. Thus, it can be inferred that the network
distinguishes the distance based on the denseness of the crowd features. Denser
crowd features tend to be corresponding to smaller body size of individuals in
the area, which is more likely to be farther from the camera. It can be concluded
that the model has the ability to capture the size information of human body.

In summary, both tasks are effective and can guide the network to capture
features related with crowd and thus beneficial for the crowd counting task.

5 Conclusion

In this paper, we propose a self-supervised learning based method for few-shot
crowd counting. Two different self-supervised tasks are devised to guide the
backbone model to extract crowd features with large amounts of unlabeled data.
Afterwards, parameters are partly migrated to another model for crowd counting,
provides a better initialization and thereby reducing the difficulty of subsequent
tasks and improving the performance. Extensive experiments and visualizations
have proved the effectiveness of our proposed self-supervised auxiliary tasks.
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Abstract. Sparse representation of images by analysis dictionary learn-
ing (ADL) has been an active topic in pattern classification as samples
can be transformed into sparse representation efficiently. However, learn-
ing a discriminative and compact analysis dictionary (ADL) has not been
well addressed when the samples are corrupted with noises. In this paper,
we propose a low-rank orthonormal analysis dictionary learning (LR-
OADL) model. Specially, the low-rank constraint is firstly imposed on
the analysis representation to handle the possible noises in the samples.
With orthonormal constraint and off-block diagonal supressing term, the
analysis dictionary atoms from different classes are incoherent from each
other, leading to discriminative block-diagonal representations. Further-
more, a novel locality constraint is exploited to promote the discrimina-
tive within class representation similarity. Finally, we employ an alter-
nating minimization algorithm to solve this problem. Experiments on
benchmark image datasets demonstrate the efficacy of the proposed LR-
OADL model.

Keywords: Low-rank representation · Analysis dictionary ·
Orthonormal constraint

1 Introduction

Recent years, sparse representation has been widely applied to many data min-
ing areas across signal processing and pattern recognition, by which signals can
be represented as a linear combination of a relatively small number of atoms
of an over-complete dictionary [1]. Then, sparse representation models can be
classified into two categories by the learning method, synthesis dictionary learn-
ing (SDL) and analysis dictionary learning (ADL) [1,9]. A typical SDL model
expects to learn the over-completed dictionary by minimizing the reconstruction
errors such that it can linearly represent the original signals. Instead of learn-
ing an over-complete representation dictionary in SDL, the ADL model mainly
focuses on learning a transformation matrix, and constructing sparse analyzed
coefficients. The ADL model has aroused much attention since it has a more
c© Springer Nature Switzerland AG 2021
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intuitive illustration for the role of analysis atoms and high classification effi-
ciency by a simple multiplication of analysis dictionary and the new sample.

However, images often include severe illumination, pose, expression and
occlusion changes that can destroy the subspace structures of data in reality,
which will inevitably affect the analysis representation and classification accu-
racy. Low-rank representation (LRR) has been widely used in computer vision
and pattern recognition due to its strong robustness to the noise of the corrupted
data [5,7]. However, the current LRR model are commonly combined with SDL
model for spanning the multiple subspaces, and learning representations for test
samples is a quite time-consuming procedure [2]. Furthermore, the traditional
ADL model views the signal transformation problem as a pure approximation
task, which may overlook signal intrinsic attributes, such as structural and dis-
criminative capability [9]. Thus, the discriminative ability of the analysis dictio-
nary is not fully exploited only with the label matrix of training samples [3,17].

To remedy these deficiencies, several sparse coding models incorporating the
geometrical structures of the image space have been proposed. They are based
on the locally invariant idea, which assumes that two close points in the original
space are likely to have similar representations [21]. Motivated by recent progress
in sparse representation, we present a novel orthonormal ADL model with man-
ifold learning, called low-rank and orthonormal ADL model(LR-OADL). Then,
we incorporate a novel weighted locality regularization characterizing the sim-
ilarity of nearby samples. Furthermore, the off-block suppressing term is also
imposed on analysis representations to enhance the inter-class samples discrim-
ination. Finally, a novel alternation direction method based on the linearized
alternating direction method with adaptive penalty(LADMAP) is proposed to
solve the LR-OADL model.

The rest of this paper is organized as follows. The related works are presented
in Sect. 2. The proposed LR-OADL model is presented in Sect. 3. The optimiza-
tion algorithm is introduced in Sect. 4. Experimental results are presented in
Sect. 5 and conclusions are given in Sect. 6.

2 Related Work

2.1 Dictionary Learning

Given signals X = [x1, x2, · · · , xn] ∈ Rm×n, let D = [d1, d2, · · · , dk] ∈ Rm×k be a
synthesis dictionary with a serials of atom di, and Z = [z1, z2, · · · , zn] ∈ Rk×n be
the sparse coefficient matrix. Synthesis dictionary learning (SDL) is to approxi-
mately reconstruct the original signals X by the combination of dictionary atoms
di(1 ≤ i ≤ k) with respective weight factors or coefficients Z. The sparse opti-
mization problem of SDL can be formulated as follows.

min
D,Z

(‖X − DZ‖2F + λ
M∑

i=1

‖zi‖0) (1)
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where ‖X−DZ‖2F is the reconstruction error term, ‖zi‖0 is the sparse constraint
term and λ is a scalar weight parameter [1].

The analysis dictionary learning (ADL) model aims to learn a projective
matrix (i.e., analysis dictionary) Ω ∈ Rk×m with k > m to implement the
approximately sparse representation Z ∈ Rk×n in transformed domain [8,9].
Specifically, it assumes that the product of Ω and xi is sparse, i.e., zi = Ωxi

with ‖zi‖0 = k − l, where 0 ≤ l ≤ k is the number of zeros in zi ∈ Rk. The
sparse optimization problem can be formulated as follows.

min
Ω,Z

(‖Z − ΩX‖2F + λ

M∑

i=1

‖zi‖0) (2)

where ‖Z − ΩX‖2F is the representation error term which shows the disparity
between sparse representation in the transformed space and the coefficients with
target sparsity level explicitly constrained by the ‖zi‖0 term.

2.2 Low-Rank Representation

Robust PCA (RPCA) is the first representative work of low-rank representation
for maintaining the global structure of training data [15]. It seeks to decompose
corrupted observations X into a low-rank matrix A and the associated sparse
error matrix E. RPCA minimizes the single low-rank of matrix A while reducing
the l0-norm of E. As the optimization of rank function and l0-norm is highly
nonconvex, we can get the following tractable convex optimization surrogate by
replacing the rank function with nuclear norm ‖A‖∗ and the l0-norm with the
l1-norm,

min
A,E

‖A‖∗ + λ1‖E‖1, s.t. X = A + E (3)

where λ1 is a scale parameter.
However, the practical images are approximately drawn from a union of mul-

tiple subspaces. Samples of one subject may be drawn from the same subspace,
while samples of different subjects are from different subspaces. Thus, Liu et al.
[7] presented a more general low-rank representation (LRR) minimization prob-
lem, defined as follows,

min
Z,E

‖Z‖∗ + λ1‖E‖1, s.t. X = DZ + E (4)

where D is a dictionary that linearly spans the data space into multiple sub-
spaces. The low-rank presentation of the training samples can be used as the
input features for training the classifier, but the representation of the test sam-
ples should also go through another time-consuming LRR processing. The alter-
nating direction method has been used to solve the LRR problem [6,7].

3 The LR-OADL Model

In this section, we propose a novel low-rank orthonormal analysis dictionary
learning (LR-OADL) model and an efficient image classifier. The proposed
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LR-OADL model considers three parts, including low-rank analysis representa-
tion [5], off-block diagonal discrimination and locality constrained representation
[20].

First, as the analysis dictionary can generate sparse representation more
efficiently than SDL for test samples. To generate a robust analysis dictionary, we
combine conventional ADL model and low-rank representation into one unified
framework with orthonormal dictionary constraint [2] as

min
Ω,Z,E

‖Z‖∗ + λ1‖E‖1
s.t . Ω(X − E ) = Z ,ΩTΩ = I

(5)

The above basic model means that samples without sparse noises can be
transformed into a low-rank subspace with a compact orthonormal analysis dic-
tionary Ω.

Second, in order to enhance the discriminative capability of the analysis
coefficients, we propose the discriminative off-block diagonal regularization term
‖Z � S‖2F to the coefficients Z, where � means the element-wise multiplication
operator [18]. The S ∈ Rk×n is defined as

S =
{

0, if ωi and xj belong to the same class
1, otherwise

(6)

where ωi is the ith row of the dictionary Ω, and xj is the jth column of training
samples matrix X. This off-block diagonal term can proved to be equal to the
Fisher discrimination constraint on representation [3].

Third, motivated by the recent progress in manifold learning [16,17], we
employ a locality constrained term which explicitly considers the local geomet-
rical structure representation sparsity of samples.

‖Z � R‖1 (7)

where the weight matrix R is defined as Rij = ‖xi − xj‖22. As such, with the
minimization of ‖Z � R‖1, the samples that are far from xi will have a smaller
coefficient in Z. Furthermore, the l1-norm in term ‖Z � R‖1 will also enforce
the reconstructed coefficient matrix Z to be sparse.

In brief, the proposed low-rank orthonomal analysis dictionary learning
model (LR-OADL) is defined as follows,

min
Ω,Z,E

‖Z‖∗ + λ1‖E‖1 + λ2 ‖Z � S‖2F + λ3‖Z � R‖1
s.t . Ω(X − E ) = Z , ΩTΩ = I

(8)

where the first and second term provide the robust analysis dictionary model,
the third term enhance the discrimination ability for representation, and the
fourth term can be seen as a weighted sparsity constraint which simultaneously
enables more locality and sparsity ability.

The linear ridge multivariate classifier is trained on the analysis representa-
tion and utilized in the following experiments as that in previous study [3,18].



Low-Rank Orthonormal Analysis Dictionary Learning 395

4 Optimization

In order to optimize problem (5), an auxiliary variable J and L are introduced,
and the optimization problem is rewritten as

min
Ω,Z,E,J,L

‖Z‖∗ + λ1‖E‖1 + λ2 ‖J � S‖2F + λ3‖L � R‖1
s.t . Ω(X − E ) = Z ,ΩTΩ = I ,Z = J ,Z = L

(9)

which can be solved based on LADMAP method with the iterative following
steps [6]. The augmented Lagrangian function of Eq. (4) is

L (Ω,Z,E, J, L,A,B,C, μ)

= ‖Z‖∗ + λ1‖E‖1 + λ2 ‖J � S‖2F + λ3‖L � R‖1
+ < A,Ω(X − E) − Z > + < B,Z − J > + < C,Z − L >

+
μ

2

(
‖Ω(X − E) − Z‖2F + ‖Z − J‖2F + ‖Z − L‖2F

)

s.t . ΩTΩ = I

(10)

where < A,B >= Tr(A,B) denotes the trace of AT B, A, B and C are Lagrange
multipliers and μ > 0 is a scalar parameter. The optimization of (10) can be
solved iteratively by updating Ω, Z, E, J and L one at a time. The updating
scheme is as follows.

Updating Ω: Fix the other variables and the minimization of Eq. (5) can be
deduced to

min
Ω

∥∥∥∥Ω(X − E) − Z +
A

μ

∥∥∥∥
2

F

s.t . ΩTΩ = I

(11)

which is a quadratic form of Ω. Let the first partial derivative w.r.t. Ω be zero,
and Ω is updated as

Ω(t+1) = (Z(t) − A(t)

μ
)(X − E(t))T ((X − E(t))(X − E(t))T )−1 (12)

then the Gram-Schmidt method is used to orthonormalize the rows vectors of Ω
after updating.

Updating Z: Fix the other variables and update Z by solving the following
problem

min
Z

⎛

⎜⎜⎜⎝

‖Z‖∗ +
μ

2

( ∥∥∥∥Z − Ω(X − E) − A

μ

∥∥∥∥
2

F

+
∥∥∥∥Z − J +

B

μ

∥∥∥∥
2

F

+
∥∥∥∥Z − L +

C

μ

∥∥∥∥
2

F

)

⎞

⎟⎟⎟⎠ (13)
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The quadratic term of Z can be replaced by its first order Taylor approxima-
tion at the previous iteration step Z(t). Thus, the representation Z is updated
by solving

Zt+1 = argmin
Z

(
‖Z‖∗ +

μη

2
‖Z − F‖2F

)

= US 1
μη

[Σ]V T
(14)

where F = (1 − 3/η)Z + (Ω(X − E) + A
μ + J − B

μ + L − C
μ )/η, and η is a param-

eter, and (U,Σ, V T ) = SV D(F ) and Sε[·] is the shrinkage operator defined as
follows [6]

Sε[x] =

⎧
⎨

⎩

x − ε, if x > ε
x + ε, if x < ε

0, otherwise
(15)

Updating E: Fix the other variables and update E by solving the following
problem

Et+1 = argmin
E

(
λ1‖E‖1 +

μ

2

∥∥∥∥Ω(X − E) − Z +
A

μ

∥∥∥∥
2

F

)
(16)

With the orthonormal constraint term ΩT Ω = I, the above equation can be
further deduced as.

Et+1 = argmin
E

(
λ1 ‖E‖1 +

μ

2

∥∥∥E − F
′
∥∥∥
2

F

)

= Sλ1
μ

[F
′
]

(17)

where F
′
= X − ΩT Z + ΩT A

μ , and Sε[·] is the magnitude shrinkage operator.

Updating J: Fix the other variables and update J by solving the following
problem

J t+1 = argmin
J

(
λ2 ‖J � S‖2F +

μ

2

∥∥∥∥Z − J +
B

μ

∥∥∥∥
2

F

)
(18)

which can be updated column-wisely as follows

J t+1
j = (μtxt+1

j + bt
j)M

−1

M = λ2diag(sj) + μtI
(19)

where I ∈ RN×N is the identity matrix, diag(sj) returns a diagonal matrix with
sj as the main diagonal elements, sj , hj and bj represent the jth row of S, H
and B, respectively.

Updating L: Fix the other variables and update L by solving the following
problem

Lt+1 = argmin
L

(
λ3‖L � R‖1 +

μ

2

∥∥∥∥L − (Z +
C

μ
)
∥∥∥∥
2

F

)
(20)
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which can be solved by elementwise strategy. For the element Lij , the optimal
solution of L is

Lt+1
ij = argmin

Lij

λ3Rij |Lij | +
μt

2
‖Lij − Mij‖2F

= Sλ3Rij

μt

(Mij)
(21)

where Mij = Zk+1
ij + Ck

ij

μt , and Sε[.] is the magnitude shrinkage operator.
The analysis sub-dictionary Ωi can be initialized as random matrix, and

the whole dictionary Ω(0) is obtained by combing all the sub-dictionaries as
Ω(0) = [Ω1, Ω2, · · · , Ωc], where c is the number of class in training samples. After
the orthonormalization of the initialized dictionary Ω(0), the representations
Z(0) is initialized by the orthogonal matching pursuit. The error E(0) and the
auxiliary variable J (0) and L(0) are initialized as zeros. Thus, the above training
procedure is summarized in Algorithm 1.

Algorithm 1. Solving Eq. (5) by LADMAP method
Input: Training data X, off-block diagonal supressing matrix S, weight matrix R,

model parameter λ1,λ2 and λ3.
1: Initialize Ω(0), Z(0), E(0), J(0), L(0) as described above, and A(0) = B(0) = C(0) =

0, μmax = 108, ε = 10−6, ρ = 1.15.
2: while not converge do
3: fix the others and update Ω by Eq. (12)
4: fix the others and update Z by Eq. (14)
5: fix the others and update E by Eq. (17)
6: fix the others and update J by Eq. (18)
7: fix the others and update L by Eq. (21)
8: update the multipliers:

A(t+1) = A(t) + μ(k)(Z(t+1) − Ω(t+1)(X − E(t+1)))
B(t+1) = B(t) + μ(k)(Z(t+1) − J(t+1))
C(t+1) = C(t) + μ(k)(Z(t+1) − L(t+1))

9: update μ:
μ(t+1) = min(μmax, ρμ(t))

10: check the convergence condition:

11:
∥
∥
∥Z(t+1) − J(t+1)

∥
∥
∥

∞
< ε,

∥
∥
∥Z(t+1) − L(t+1)

∥
∥
∥

∞
< ε and

∥
∥
∥Z(t+1) − Ω(t+1)(X − E(t+1))

∥
∥
∥

∞
< ε

12: end while
Output: Ω, Z and E.

5 Experiments

In this section, we evaluate our LR-OADL model on five image datasets for
sparse representation-based classification, i.e., Extended YaleB (EYaleB), AR,
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Scene15, UCF50 and CALTECH101. The features are provided by [4] and [10].
On EYaleB and AR datasets, random features are generated by the projec-
tion with a randomly generated matrix. AR face database contains illumination,
expression, and occlusions variations. We choose a subset consisting of 2600 face
images from 50 males and 50 females. On Scene15 datasets, features are achieved
by extracting SIFT descriptors, max pooling in spatial pyramid and reducing
dimensions by PCA. UCF50 is a large-scale and challenging action recognition
database. It has 50 action categories and 6680 realistic human action videos col-
lected from YouTube. The Caltech101 dataset are used to contains 9,144 images
from 102 categories, and 30 samples per category of the 3000 dimensional spatial
pyramid features are used to train the models.

With the above common used image classification features, we compare our
method with some state-of-the-art approaches: SRC [15], CRC, K-SVD [1],
D-KSVD [19], LC-KSVD [4], ADL-SVM [11], CADL [13], SLC-ADL [12] and
SK-DADL [14]. Strictly speaking, SRC and CRC are not dictionary learning
methods, as they use the full set of training samples as the dictionary for classi-
fication. For fair comparison, the experiment settings we follow are in accordance
with [4] and [14]. The sparsity is set as 45 in all the methods, and the dictionary
atom is set between 500 and 600 which is the integral multiple of the number of
classes in different datasets. There are four parameters in LR-OADL model, i.e.,
λ1, λ2, λ3 and δ, where δ = 0.001 is preset and the optimal λ1, λ2 and λ3 in the
training phase are obtained by 5-fold cross validation and optimized by using
grid search strategy. The best parameters we set in each database are listed in
Table 1. We repeat the experiments 5 times on different selected training and
testing image features, and the mean accuracies are reported.

Table 1. Parameter selection in the best performance for parameter λ1, λ2 and λ3.

EYaleB AR Scene15 UCF50 CALTECH101

λ1 25 15 20 10 30

λ2 0.01 0.05 0.11 0.01 0.5

λ3 0.001 0.01 0.01 0.001 0.03

5.1 Results and Analysis

Table 2 shows the mean classification accuracy results on different datasets. As
can be seen, our method achieves notably higher accuracy than SRC and LC-
KSVD on all four databases. This is mainly due to the low-rank constraint and
structured discrimination ability achieved in our method for ADL model, which is
a further improvement on the LC-KSVD that only considers the label-consistent
term and classification error term on SDL model. The SRC model that directly
uses all training samples as the dictionary will introduce noise for the sparse rep-
resentation. The low-rank and locality constraint on representation coefficients
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Table 2. Classification accuracy (%) comparison on different image datasets.

EYaleB AR Scene15 UCF50 CALTECH101

SRC (full) 96.5 97.5 91.8 68.4 70.7

CRC (full) 97.0 98.0 92.0 68.6 68.2

K-SVD 93.1 86.5 86.7 51.5 73.0

D-KSVD 94.1 88.8 89.1 57.8 73.2

LC-KSVD 96.7 97.5 92.9 70.1 73.6

ADL-SVM 95.4 96.1 91.8 72.3 64.5

CADL 96.7 97.3 97.6 78.0 75.0

SK-DADL 96.9 97.7 97.4 74.6 74.4

LR-OADL 97.2 97.9 98.5 78.5 74.7

can boost the selection of representative analysis atoms, enhance the atom sim-
ilarity of homogeneous samples while weakening the coherence of heterogeneous
samples, and this may help to overcome the above sample noise disadvantage.
Our method also achieves favorable results compared with all three ADL-based
methods. This proves the availability of adding off-block diagonal structured
constraint can further enhance the discriminative representation ability of the
conventional ADL models.

Table 3. The time (ms) for classifying one testing image.

EYaleB AR

SRC 39.93 41.24

LC-KSVD 0.426 0.442

SK-DADL 0.029 0.078

LR-OADL 0.025 0.073

As for the testing efficiency, Table 3 shows the time for classifying one testing
image on databases EYaleB (dictionary size = 570) and AR (dictionary size =
600). As can be seen, our LR-OADL method is approximately 15 times faster
than LC-KSVD method, which indicates that it can be applied in practical sce-
narios. This mainly owns to the simple projection and low classification complex-
ity of ADL which uses feature transformation with analysis dictionary and the
jointly learned classifier, without the time-consuming reconstruction processing
in SDL. Also, our LR-OADL method performs slightly better than SK-DADL,
due to the locality and off-block constraints on sparse coding, which enhance the
discriminative capability of the learned analysis dictionary. The accuracies and
time costs in tables can demonstrate that analysis dictionary learning has huge
potential in pattern classification tasks.
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Figure 1 shows the confusion matrix for our LR-OADL method on Scene15
dataset. It presents proportion of images in each category classified to all cate-
gories. We can observe that most images can be classified into the right category,
with some class even getting all right classification. From the figures, we can con-
clude that the desired effect of our LR-OADL method is reached.
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Fig. 1. Confusion matrix of the ground truth on Scene 15 dataset.

6 Conclusions

In this paper, we proposed a novel discriminative analysis dictionary learning
model with low-rank constraint on representation for robust image classification.
By introducing the off-block diagonal suppressing term and a locality constraint
term into robust low-rank analysis representation model, the proposed approach
could capture the intrinsic manifold structure of the training data, and leads to
discriminative and sparse representation. Moreover, the orthonormal constraint
on analysis dictionary atoms yields further discrimination for classification. The
experimental results on benchmark databases demonstrate the efficacy of the
proposed LR-OADL model.

Acknowledgments. This work is supported by the Natural Science Basic Research
Plan in Shaanxi Province of China (Grant No. 2021JM-339).

References

1. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing over-
complete dictionaries for sparse representation. IEEE Trans. Sig. Process. 54(11),
4311–4322 (2006). https://doi.org/10.1109/TSP.2006.881199

https://doi.org/10.1109/TSP.2006.881199


Low-Rank Orthonormal Analysis Dictionary Learning 401

2. Chen, C.F., Wei, C.P., Wang, Y.C.F.: Low-rank matrix recovery with structural
incoherence for robust face recognition. In: 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2618–2625 (2012). https://doi.org/10.1109/
CVPR.2012.6247981

3. Dong, Z., Pei, M., Jia, Y.: Discriminative orthonormal dictionary learning for fast
low-rank representation. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) Neural
Information Processing, pp. 79–89. Springer International Publishing, Cham (2015)

4. Jiang, Z., Lin, Z., Davis, L.S.: Label consistent K-SVD: learning a discriminative
dictionary for recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2651–
2664 (2013). https://doi.org/10.1109/TPAMI.2013.88

5. Li, Z., Zhang, Z., Qin, J., Li, S., Cai, H.: Low-rank analysis-csynthesis dic-
tionary learning with adaptively ordinal locality. Neural Netw. 119, 93–112
(2019). https://doi.org/10.1016/j.neunet.2019.07.013, https://www.sciencedirect.
com/science/article/pii/S0893608019302011

6. Lin, Z., Chen, M., Ma, Y.: The augmented lagrange multiplier method for exact
recovery of corrupted low-rank matrices. ArXiv http://arxiv.org/abs/1009.5055
(2009)

7. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace
structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell.
35(1), 171–184 (2013). https://doi.org/10.1109/TPAMI.2012.88

8. Ravishankar, S., Bresler, Y.: Learning sparsifying transforms. IEEE Trans. Sig.
Process. 61(5), 1072–1086 (2013). https://doi.org/10.1109/TSP.2012.2226449

9. Rubinstein, R., Peleg, T., Elad, M.: Analysis K-SVD: a dictionary-learning algo-
rithm for the analysis sparse model. IEEE Trans. Sig. Process. 61(3), 661–677
(2013). https://doi.org/10.1109/TSP.2012.2226445

10. Sadanand, S., Corso, J.J.: Action bank: a high-level representation of activity in
video. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1234–1241 (2012). https://doi.org/10.1109/CVPR.2012.6247806

11. Shekhar, S., Patel, V.M., Chellappa, R.: Analysis sparse coding models for image-
based classification. In: 2014 IEEE International Conference on Image Processing
(ICIP), pp. 5207–5211 (2014). https://doi.org/10.1109/ICIP.2014.7026054

12. Wang, J., Guo, Y., Guo, J., Li, M., Kong, X.: Synthesis linear classifier based anal-
ysis dictionary learning for pattern classification. Neurocomputing 238, 103–113
(2017). https://doi.org/10.1016/j.neucom.2017.01.041, https://www.sciencedirect.
com/science/article/pii/S0925231217301157

13. Wang, J., Guo, Y., Guo, J., Luo, X., Kong, X.: Class-aware analysis dictionary
learning for pattern classification. IEEE Sig. Process. Lett. 24(12), 1822–1826
(2017). https://doi.org/10.1109/LSP.2017.2734860

14. Wang, Q., Guo, Y., Guo, J., Kong, X.: Synthesis K-SVD based analysis dictionary
learning for pattern classification. Multimedia Tools Appl. 77(13), 17023–17041
(2018). https://doi.org/10.1007/s11042-017-5269-6

15. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition
via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227
(2009). https://doi.org/10.1109/TPAMI.2008.79

16. Yi, Y., Wang, J., Zhou, W., Zheng, C., Kong, J., Qiao, S.: Non-negative matrix
factorization with locality constrained adaptive graph. IEEE Trans. Circuits
Syst. Video Technol. 30(2), 427–441 (2020). https://doi.org/10.1109/TCSVT.
2019.2892971

17. Yin, H., Wu, X., Kittler, J.: Face recognition via locality constrained low rank
representation and dictionary learning. CoRR abs/1912.03145 http://arxiv.org/
abs/1912.03145 (2019)

https://doi.org/10.1109/CVPR.2012.6247981
https://doi.org/10.1109/CVPR.2012.6247981
https://doi.org/10.1109/TPAMI.2013.88
https://doi.org/10.1016/j.neunet.2019.07.013
https://www.sciencedirect.com/science/article/pii/S0893608019302011
https://www.sciencedirect.com/science/article/pii/S0893608019302011
http://arxiv.org/abs/1009.5055
https://doi.org/10.1109/TPAMI.2012.88
https://doi.org/10.1109/TSP.2012.2226449
https://doi.org/10.1109/TSP.2012.2226445
https://doi.org/10.1109/CVPR.2012.6247806
https://doi.org/10.1109/ICIP.2014.7026054
https://doi.org/10.1016/j.neucom.2017.01.041
https://www.sciencedirect.com/science/article/pii/S0925231217301157
https://www.sciencedirect.com/science/article/pii/S0925231217301157
https://doi.org/10.1109/LSP.2017.2734860
https://doi.org/10.1007/s11042-017-5269-6
https://doi.org/10.1109/TPAMI.2008.79
https://doi.org/10.1109/TCSVT.2019.2892971
https://doi.org/10.1109/TCSVT.2019.2892971
http://arxiv.org/abs/1912.03145
http://arxiv.org/abs/1912.03145


402 K. Jiang et al.

18. Yin, H., Wu, X., Kittler, J., Feng, Z.: Learning a representation with the block-
diagonal structure for pattern classification. Pattern Anal. Appl. 23(3), 1381–1390
(2020). https://doi.org/10.1007/s10044-019-00858-4

19. Zhang, Q., Li, B.: Discriminative K-SVD for dictionary learning in face recognition.
In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 2691–2698 (2010). https://doi.org/10.1109/CVPR.2010.5539989

20. Zhang, Z., Xu, Y., Shao, L., Yang, J.: Discriminative block-diagonal representation
learning for image recognition. IEEE Trans. Neural Netw. Learn. Syst. 29(7), 3111–
3125 (2018). https://doi.org/10.1109/TNNLS.2017.2712801

21. Zheng, M., et al.: Graph regularized sparse coding for image representation. IEEE
Trans. Image Process. 20(5), 1327–1336 (2011). https://doi.org/10.1109/TIP.2010.
2090535

https://doi.org/10.1007/s10044-019-00858-4
https://doi.org/10.1109/CVPR.2010.5539989
https://doi.org/10.1109/TNNLS.2017.2712801
https://doi.org/10.1109/TIP.2010.2090535
https://doi.org/10.1109/TIP.2010.2090535


MRAC-Net: Multi-resolution Anisotropic
Convolutional Network for 3D Point

Cloud Completion

Sheng Liu1(B), Dingda Li1, Wenhao Huang1, Yifeng Cao1,
and Shengyong Chen2

1 Zhejiang University of Technology, HangZhou, China
edliu@zjut.edu.cn

2 Tianjin University of Technology, Tianjin, China

Abstract. Point cloud completion aims to infer the missing parts of the
3D object from incomplete point clouds. Previous methods usually use
Multi-layer Perceptrons to directly extract latent features from incom-
plete point clouds. However, these latent features usually suffer from
the loss of information about the structural details of the local area of
incomplete point clouds. To solve this problem, we propose a new Multi-
Resolution Anisotropic Convolutional Network (MRAC-Net). It could
effectively extract latent features from incomplete point clouds through
a series of 3D convolutions, which contain the structure and context
information of point clouds. Also, we design a combined pyramid gener-
ation network to concatenate the feature vectors of different layers, which
could better estimate the missing point clouds hierarchically. Extensive
experiments on the ShapeNet benchmark show that the proposed app-
roach outperforms the previous state-of-the-art baselines by remarkable
margins.

Keywords: Point cloud completion · 3D convolution · Anisotropic
convolutional

1 Introduction

With the increasing popularity of low-cost sensors (such as LiDARs), 3D data
has attracted widespread attention in the vision and robotics community. 3D
data can usually be represented in different formats, including depth images,
point clouds, grids, and volume grids. As a commonly used format, point clouds
are the preferred representation for describing the 3D shape of objects. However,
due to occlusion, light reflection, surface material transparency, sensor resolution
and viewing angle limitations, etc., the point cloud is usually incomplete. This
will cause the geometric and semantic information of the point clouds to be lost
so that it cannot be used in practical applications directly.

Due to the disorder and unstructured nature of 3D point clouds, deep net-
works cannot be applied to 3D point clouds as simply as convolutional networks
c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13033, pp. 403–414, 2021.
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are applied to 2D images. There are also other ways of expressing point clouds,
such as GRNet [27], which proposed a gridding-based method that retrieves
structural context by performing cubic feature sampling per grid and complete
the output with “Gridding Reverse” layers and MLPs. These methods may cause
irreversible loss of geometric information. Thanks to the previous PointNet [22]
proposal, which pioneered the use of Multi-layer Perceptrons to directly process
point clouds, PCN [29] is the first framework to work on raw point clouds in a
coarse to fine way. Recently, PF-Net [11] retained the spatial structure of the
original incomplete point cloud and predicted the hierarchical missing points of
a multi-scale generation network. However, these methods use MLPs modules
to extract features and do not fully consider the connectivity across points and
the context of neighboring points.

In order to solve these problems, we propose a new network framework to
predict missing point clouds from incomplete point clouds in two stages. In
the first stage, we designed a novel multi-resolution anisotropic convolutional
encoder to better extract the latent features of 3D objects from incomplete point
clouds. These latent features contain not only local and global features but also
low-level features and high-level features. In the second stage, we design a novel
decoder to better infer the missing point cloud from the feature map.

The contributions of our paper can be summarized as follows:

– We propose a novel learning-based point cloud completion architecture, which
has better performance in detail preservation and potential shape prediction
through a multi-resolution feature aggregation strategy.

– We design a multi-resolution Anisotropic Convolutional Encoder (ACE) that
can better extract the local and global features of 3D objects to improve the
network’s ability to extract semantic and geometric information.

– We design a Combined Pyramid Decoder (CPD) to better infer the missing
point cloud from the feature map. It can output hierarchically point clouds
of different resolutions by layering to preserve the structure of the complete
shape in layers with different resolutions.

– Extensive experiments demonstrate that our proposed network outperforms
state-of-the-art 3D point cloud completion methods.

2 Related Work

2.1 3D Shape Completion

The traditional methods of 3D shape completion mainly include geometry-based
approaches and example-based approaches. The geometry-based approaches fill
in the partially broken parts by generating a smooth interpolation algorithm
[2] or repairs the shape by identifying symmetric and repetitive structures [21].
Example-based approaches are to match the input structure with the complete
structure in the database to obtain the complete structure [16]. However, this
approach is expensive to optimize in the inference and iteration process, which
makes it unsuitable for real-time tasks. Currently, 3D shape completion is mainly
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Fig. 1. The architecture of MRAC-Net. With input point clouds, it predicts additional
parts of sparse and partial data by an Anisotropic Convolutional Encoder (ACE) and
a Combined Pyramid Decoder (CPD).

based on learning-based methods such as 3D voxel grids or point clouds. Meth-
ods based on 3D voxels, such as the work of GRNet [27], have been proposed to
reconstruct the complete 3D voxels in a coarse-to-fine manner. However, for the
method based on the voxel grid [4], it is limited by its resolution, because as the
resolution increases, the computational cost will increase sharply. Without loss
of geometric information, the point cloud can become a more effective represen-
tation. Deep learning poses great challenges to the disorder and unstructured
nature of point clouds. L-GAN [1] introduced the first deep learning model with
Encoder-Decoder architecture on the point cloud. PCN [29] proposed a coarse-to-
fine program to synthesize dense and complete data through a specially designed
decoder. RL-GAN-Net [23] proposed a GAN controlled by a reinforcement learn-
ing agent to speed up the inference stage. PF-Net [11] recovers the point cloud
through multi-scale generation of the network layer based on the latent features
of the point cloud. Although these MLPs-based methods are effective, we claim
that MLPs-based methods would impair the capacity of the feature extraction,
and our network can effectively improve this.

2.2 Convolution-Based Networks

The convolution-based method follows the conventional convolution mechanism
in 2D image processing. However, compared with the kernel defined on the 2D
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grid structure, it is difficult to design a convolution kernel for 3D point clouds
due to the irregularity of the point cloud. Early work [4,8,14] usually applied 3D
Convolutional Neural Networks (CNN) to the volume representation of 3D point
clouds. However, converting a point cloud into a 3D volume introduces a quan-
titative effect, which discards some details of the data [25], and is not suitable
for representing fine-grained information. As far as we know, there is no work
to apply CNN directly to irregular point clouds to complete the shape. In the
understanding of point clouds, several works [10,12,13,15,19] developed CNNs
running on discrete 3D grids converted from point clouds. In order to generalize
typical CNNs to point clouds, PointCNN [15] proposes a χ transformation on the
points to transform the unordered points into a potentially canonical order by
MLPs. KPConv [24] defines a rigid and deformable kernel convolution on several
kernel points. In PointConv [26], the convolution kernel consists of a weighting
function learned through MLP layers and a density function learned through
the kernelized density estimation and an MLP layer. While these networks are
powerful to characterize the local structure, they fail to simultaneously consider
the global shape, i.e., the local feature extraction is unaware of the global infor-
mation. In comparison, our multi-resolution anisotropic convolutional encoder
enhances the local and global feature extraction capabilities of 3D objects.

3 Approach

In this section, we will introduce our MRAC-Net, which predicts the missing
region of the point cloud from its incomplete known configuration. Figure 1 shows
the complete architecture of MRAC-Net. The overall architecture of MRAC-Net
is composed of two fundamental building blocks, named Anisotropic Convolu-
tional Encoder (ACE) and Combined Pyramid Decoder (CPD).

3.1 Anisotropic Convolutional Encoder

The input to Anisotropic Convolutional Encoder is an N × 3 unordered point
cloud P = {p1, p2, ..., pN} . Each point contains 3D coordinates pi = [xi, yi, zi]

�

in the Euclidean space. For each point, its neighboring points are gathered by the
simple K-nearest neighbors (KNN) algorithm based on the point-wise Euclidean
distances for efficiency. We denote the ith point’s K-nearest neighbors as Ni =
{pi, pi,1, ..., pi,k−1}. It is first downsampled to obtain two more views of smaller
resolutions (size: N

k × 3 and N
k2 × 3) by iterative farthest point sampling (IFPS).

Three point clouds with different resolutions pass through three independent
anisotropic convolutional networks to extract the latent features of this point
cloud.

In the anisotropic convolutional network, we use permutable anisotropic
convolutional(PAI-Conv) [7] to encode each point into multiple dimensions
[64-64-128-256]. The Fibonacci lattice is first mapped to the surface of the
sphere by equal area projection to generate a set of kernel points K =
{k0, k1, ..., kl−1}(k0 = [0, 0, 0]�is at the origin and l is the number of kernel
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points), so that the kernel points are evenly distributed on the sphere. For the ith
point, we obtain the local neighboring positions of the neighbors as p̃i,j = pi−pi,j ,
where pi,j ∈ Ni and p̃i,0 = [0, 0, 0]� is at the origin. The soft-permutation matrix
is simply calculated by the dot product between the local neighboring positions
and the kernel points followed by sparsemax [20], expressed as

Mi = f
(
P̃iK

�
)

, (1)

where P̃i ∈ R
k×3,K ∈ R

l×3,Mi ∈ R
k×l, and f (·) is sparsemax.

For each kernel point, the dot product ensures a local neighboring position
with a smaller angle to the kernel point has a larger weight. Sparsemax ensures
the soft-permutation matrix is sparse and only those points with small angles
to a kernel point are selected and give the corresponding weight otherwise the
weight is zero. Inspired by RandLA-Net [9], we first encode the relative point
position of the point cloud as

ri,j = MLP (concat (pi, (pi − pi,j) , ‖pi − pi,j‖)) , (2)

where ‖·‖ Calculate the Euclidean distance between point pi and its neighbors.
The relative point position and feature of each point are concatenated as follows
to obtain the point feature, xi,j = concat (ri,j , fi,j) , where fi,j is the interme-
diate feature learned from the network structure, xi,j ∈ R

Din , and Din is the
feature dimension. For each point, we construct Xi = {xi,0, xi,1, ..., xi,k−1} ∈
R

Din×k for the convolutional operation.
Since the order and orientation of each point’s neighbors vary from one to

another, directly applying an anisotropic filter on unordered neighbors dimin-
ishes the representation power. While training, the anisotropic filter might strug-
gle to adapt to the large variability of the unordered coordinate systems, and
the possibility of learning rotation invariant filter increases. In this paper, we
resample each point’s neighbors using the soft-permutation matrix in (1). The
resampled convolutional neighbors of each point can be obtained by X̃i = XiMi,
where X̃i ∈ R

Din×l. Since the point’s neighbors are rearranged according to the
canonical order of the fixed kernel points, we can apply a shared anisotropic filter
on each point of a point cloud. This operation is the same as the conventional
convolution and can be expressed as

yi = g(vec(X̃i)�W + b), (3)

where W ∈ R
(Din×l)×Dout , b ∈ R

Dout is the bias, yi ∈ R
Dout is the output

feature point corresponding to the input feature point xi ∈ R
Din , vec(·) is a vec-

torization function which converts a matrix into a column vector, and g(·) is an
activation function, e.g., ELU [3], to introduce non-linearity. Resample the latent
features generated by four anisotropic convolutions through IFPS, concatenate
them (size: N

64 × 512) and use MLP to form new latent features (size: 1 × 1024).
Three latent features generated at different resolutions are concatenated, and
the final feature vector is generated by using MLP.
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3.2 Combined Pyramid Decoder

The encoder aims to complete the missing part of the point cloud from the
final feature vector. Inspired by Feature Pyramid Network (FPN) [18] and PF-
Net [11], we designed a combined pyramid decoder (CPN) from coarse to fine.
Three feature layers FC1, FC2, FC3 (size: 1024, 512, 256) are calculated by
passing the final feature vector through the fully connected layers, each of which
is responsible for predicting the point cloud in different resolutions. The coarse
center points Ycoarse are predicted by FC1, which are of the size of M1 × 3.
The relative coordinates of the middle center point Ymiddle are predicted by the
concatenate of FC1 and FC2. Each point in Ycoarse serves as the center of the
M2
M1

point that generates Ymiddle. Therefore, the size of Ymiddle is M2 × 3. The
fine points of Yfine will be predicted by connecting the three feature layers that
contain both low-level and high-level feature information, and the size is M × 3.

3.3 Loss Function

Fan [5] has proposed two permutation-invariant metrics to compare unordered
point clouds which are Chamfer Distance (CD) and Earth Mover’s Distance
(EMD). In this work, we choose Chamfer Distance as our completion loss since
it is differentiable and more efficient to compute compared to EMD. The Chamfer
Distance be expressed as

dCD (S1, S2) =
1
S1

∑
x∈S1

min
y∈S2

‖x − y‖22 +
1
S2

∑
x∈S2

min
y∈S1

‖y − x‖22 (4)

It measures the average nearest squared distance between the predicted point
set S1 and the ground truth S2. Sine the Combined Pyramid Decoder will predict
three point cloud in different resolution, the multi-level completion loss an be
expressed as

L = dCD1(Yfine, Ygt) + α dCD2(Ymiddle, Y
′
gt) + 2α dCD3(Ycoarse, Y

′′
gt), (5)

where dCD1, dCD2, dCD3 are weighted and α is a hyperparameter. We obtain Y ′
gt

and Y ′′
gt by applying IPFS from Ygt, Y ′

gt and Y ′′
gt to be the same size as Ymiddle,

Ycoarse, respectively. Then, the squared distances between the predicted values
of the three different resolutions and the ground truth of the corresponding
resolutions are calculated and assigned different weights.

4 Experiments

In this section, we subsequently present experimental evaluation, containing
datasets and implementation details, results, and ablation studies.
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4.1 Data Generation

We conduct experiments on 13 categories of different objects in the benchmark
data set ShapeNet-Part [28]. The total number of shapes totals 14473 (11705
for training and 2768 for testing). We follow PF-Net, all input point cloud data
are centered on the origin, and their coordinates are standardized to [−1, 1].
Creating ground truth point cloud data by uniformly sampling 2048 points on
each shape. Incomplete point cloud data is generated by randomly selecting a
viewpoint among multiple viewpoints as the center and deleting points within a
certain radius from the complete data. We control the radius to obtain different
numbers of missing points. When comparing our method with other methods,
the incomplete point cloud is set to lack 25% of the original data for training
and testing.

4.2 Implementation Detail

Our network is trained on 2 TITAN RTX GPUs using PyTorch. By using the
ADAM optimizer to alternately train all two components, the initial learning
rate is 0.0001 and the batch size is 32. We use batch normalization (BN) and
RELU activation units on ACE, but only use RELU activation units (except for
the last layer). In ACE, we set k = 2. In CPD, we only change M to control
the size of the final prediction, and set M1 = 64 and M2 = 128 according to the
number of points of each shape.

Table 1. Point cloud completion results of overall point cloud. The training
data consists of 13 categories of different objects [28]. The numbers shown are [Pred
→ GT error/GT → Pred error], scaled by 1000. We compute the mean values across
all categories and show them in the last row of the table.

Category LGAN-AE PCN 3D-Capsule PF-Net MRAC-Net (ours)

Airplane 0.856/0.722 0.800/0.800 0.826/0.881 0.263/0.238 0.143/0.125

Bag 3.102/2.994 2.954/3.063 3.228/2.722 0.926/0.772 0.615/0.449

Cap 3.530/2.823 3.466/2.674 3.439/2.844 1.226/1.169 0.581/0.449

Car 2.232/1.687 2.324/1.738 2.503/1.913 0.599/0.424 0.448/0.264

Chair 1.541/1.473 1.592/1.538 1.678/1.563 0.487/0.427 0.295/0.216

Guitar 0.394/0.354 0.367/0.406 0.298/0.461 0.108/0.091 0.068/0.065

Lamp 3.181/1.918 2.757/2.003 3.271/1.912 1.037/0.640 0.703/0.297

Laptop 1.206/1.030 1.191/1.155 1.276/1.254 0.301/0.245 0.223/0.174

Motorbike 1.828/1.455 1.699/1.459 1.591/1.664 0.522/0.389 0.345/0.212

Mug 2.732/2.946 2.893/2.821 3.086/2.961 0.745/0.739 0.549/0.387

Pistol 1.113/0.967 0.968/0.958 1.089/1.086 0.252/0.244 0.182/0.127

Skateboard 0.887/1.020 0.816/1.206 0.897/1.262 0.225/0.172 0.220/0.166

Table 1.694/1.601 1.604/1.790 1.870/1.749 0.525/0.404 0.348/0.273

Mean 1.869/1.615 1.802/1.662 1.927/1.713 0.555/0.458 0.363/0.247
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Fig. 2. Visualized completion comparison on ShapeNet. From top to bottom: Input,
PCN [29], 3D-Capsule [30], PF-Net [11], our method, and the ground truth. Our method
retains more detailed structural information, and predicts less noise and distortion.

4.3 Results

We compare our method with several representative baselines running directly
on 3D point clouds, including L-GAN [1], PCN [29], 3D Point Capsule Networks
[30], PF-Net [11]. Since these existing methods mentioned above are all trained
in different data sets, we train and test them in the same data set in order to
better quantitatively evaluate them. It should be noted that all methods are
trained in an unsupervised method, which means that no label information will
be provided. In order to evaluate the above methods, we use the evaluation
metric by [6,17]. It contains two indexes: Pred → GT (prediction to ground
truth) error and GT → Pred (ground truth to prediction) error. The Pred → GT
error calculates the average squared distance from each point in the prediction
to the nearest point in the ground truth. It can measure the difference between
the forecast and the actual situation. GT → Pred error calculates the average
square distance from each point in the ground truth to the closest point in the
prediction. Indicates the extent to which the real surface of the ground is covered
by the predicted shape.

We first connect the prediction of the network with the input point cloud to
calculate the Pred → GT error and GT → Pred error on the entire complete
point cloud. Table 1 shows the results. On Pred → GT and GT → Pred error,
our method outperforms the other methods mentioned above in all categories.
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Table 2. Point cloud completion results of the missing point cloud. The
numbers shown are [Pred → GT error/GT → Pred error], scaled by 1000. In this
table, We compute those two metrics in the missing region of point cloud.

Category LGAN-AE PCN 3D-Capsule PF-Net MRAC-Net (ours)

Airplane 3.357/1.130 5.060/1.243 2.676/1.401 1.091/1.070 0.775/0.742

Bag 5.707/5.303 3.251/4.314 5.228/4.202 3.929/3.768 2.893/2.524

Cap 8.968/4.608 7.015/4.240 11.040/4.739 5.290/4.800 2.832/2.541

Car 4.531/2.518 2.741/2.123 5.944/3.508 2.489/1.839 2.286/1.474

Chair 7.359/2.339 3.952/2.301 3.049/2.207 2.074/1.824 1.532 /1.256

Guitar 0.838/0.536 1.419/0.689 0.625/0.662 0.456/0.429 0.399/0.365

Lamp 8.464/3.627 11.610/7.139 9.912/5.847 5.122/3.460 4.589/2.305

Laptop 7.649/1.413 3.070/1.422 2.129/1.733 1.247/0.997 1.106/0.907

Motorbike 4.914/2.036 4.962/1.922 8.617/2.708 2.206/1.775 1.910/1.324

Mug 6.139/4.735 3.590/3.591 5.155/5.168 3.138/3.238 2.722/2.224

Pistol 3.944/1.424 4.484/1.414 5.980/1.782 1.122/1.055 1.039/0.843

Skateboard 5.613/1.683 3.025/1.740 11.490/2.044 1.136 / 1.337 1.232/1.066

Table 2.658/2.484 2.503/2.452 3.929/3.098 2.235/1.934 1.869/1.650

Mean 5.395/2.603 4.360/2.661 5.829/3.008 2.426/2.117 1.937/1.479

Because PF-Net noticed that the error of the overall complete point cloud comes
from two parts: the prediction error of the missing area and the change of the
original local shape. Our method takes part of the shape as input and only
outputs the missing area, so it does not change the original part of the shape.
To ensure that our evaluation is reasonable, we also calculate the Pred → GT
error and GT → Pred error on the missing region. Table 2 shows the results.
In terms of Pred → GT error and GT → Pred error, our method outperforms
existing methods in 12 of 13 categories. In addition, in terms of the mean values
of all 13 categories, our method has considerable advantages in both indicators.
The results in Table 1 and Table 2 show that our method can generate more
high-precision point clouds, while the distortion in the entire point cloud and
the point cloud in the missing area is smaller. The qualitative results in Fig. 2
further confirm the perceptual advantage of our method. In comparison, our
method can generate fine structures with shapes, while other methods are prone
to produce fuzzy results. It is also possible to generate realistically detailed
structures, such as where the front piece of the hat intersects with the visor. In
general, our completed result looks less noisy and visually pleasing.

4.4 Ablation Study

In this section, we will explore the effects of the two modules. We use PF-Net
[11] as the baseline, replace our related modules, and train on the ShapeNet-Part
data set. All models are trained with the same training parameters.

Analysis of ACE. In order to evaluate the effectiveness of our ACE module, we
choose the MRE module in PF-Net to replace. The results are shown in Table 3.
In terms of Pred → GT error and GT → Pred error, the network with the ACE
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Table 3. Quantitative comparisons for the ablation study. The numbers shown
are [Pred → GT error/GT → Pred error], scaled by 1000. In this table, the influence
of different modules on the two index values of the point cloud is shown.

Category Baseline w/o CPD w/o ACE Ours full

Airplane 0.952/0.960 0.902/0.859 0.894/0.952 0.775/0.742

Bag 3.542/4.278 3.332/2.899 3.556/3.587 2.893/2.524

Cap 8.549/5.467 3.590/2.968 3.482/3.026 2.832/2.541

Car 2.491/1.718 2.431/1.632 2.383/1.782 2.286/1.474

Chair 2.268/2.116 1.748/1.411 1.783/1.660 1.532/1.256

Guitar 0.395/0.383 0.450/0.382 0.499/0.513 0.399/0.365

Lamp 4.695/3.864 4.663/2.490 4.399 / 3.312 4.589/2.305

Laptop 1.308/1.087 1.187/1.049 1.230/1.299 1.106/0.907

Motorbike 2.453/1.883 2.049/1.474 2.146/1.592 1.910/1.324

Mug 3.642/4.603 2.862/2.381 2.871/3.304 2.722/2.224

Pistol 1.313/1.241 1.075/0.817 1.148/1.020 1.039/0.843

Skateboard 1.383/1.661 1.247/0.985 1.232/1.301 1.232/1.066

Table 2.751/2.741 1.998/1.704 2.213/1.954 1.869/1.650

Mean 2.749/2.462 2.118/1.619 2.141/1.946 1.937/1.479

module is better than the network without the ACE module in 12 of the 13
categories. Therefore, the anisotropic convolutional encode can better extract
the latent features of 3D objects, thereby better improving the extraction of
geometric and semantic information of the network.

Analysis of CPD. In order to prove the effectiveness of our CPD module,
we choose the PDD module in PF-Net to replace. The results are shown in
Table 3. In terms of Pred → GT error and GT → Pred error, the network with
CPD module is in 13 categories Both are better than the network without CPD
module. Therefore, it can be seen that the CPD module can better express and
map the latent features, so as to better infer the missing point cloud.

5 Conclusion

We present a novel framework MRAC-Net for point cloud completion. It includes
an anisotropic convolutional encoder for extracting local and global features for
3D objects to enhance the network’s extraction ability of latent features. In
addition, the combined pyramid encoder generates high-quality missing point
clouds by combining various feature vectors. Extensive experiments on ShapeNet
have verified the state-of-the-art performance of MRAC-Net and the effectiveness
of each suggested component.
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Abstract. Correlated weights neural layers (CWNL) extend the con-
cept of weight sharing present in the convolution layers by using neural
subnetworks that dynamically calculate multiple weights and biases as a
function of the position of a neuron and its inputs. By using, in contrast
to the convolutional layer, absolute coordinates of the neuron and inputs
and a universal approximator instead of a static kernel matrix, this type
of layer allows for global, parametric, and nonlinear operations on the
image. The article presents a mathematical model of such a layer and
the methodology of its training. The advantage of networks using CWNL
layers was demonstrated on the example of the nonlinear transformation
of images from the MNIST set and generation of synthetic images based
on Bezier curves.

Keywords: Neural network architecture · Overfitting prevention ·
Image transformation · Image generation

1 Introduction

Convolutional layers are the core of deep networks, which are currently triumph-
ing in many areas, such as, for example, image and video processing [1,2] and
strategy games [3]. One of the main reasons for the strength of this type of neural
layer is the reduced amount of parameters that have to be determined during a
learning process. Figure 1 shows a well-known diagram of the convolution layer.
For simplicity, we will analyze the layer generating a single feature map.

The layer performs the convolution operation using data from the weight
matrix - the kernel. A weight of a single connection between a neuron and its
input in the convolutional layer can be defined as a function of the relative
position of the neuron and the input:

w = f(P (I) − P (O)) (1)

where: P (O) - vector of a neuron spatial coordinates, P (I) - vector of spatial
coordinates of a neuron input.
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Fig. 1. Schematic diagram of a convolution layer.

In the case of the most commonly used CNN structures, two-dimensional
patterns are processed (for spatial dimensions), therefore the dimension of the
spatial coordinate vectors is 2, although it may be much larger in some appli-
cations. With such a definition of weight, the range of values min(P (I) −P (O))
and max(P (I) − P (O)) means the size and shift of the neuron receptive field in
the CNL layer. Since the value of P (I)−P (O) occurs many times for each neuron
in the layer, we obtain weight sharing - the main advantage of the CNL layer
is that it strongly reduces the number of parameters describing this layer. The
function f() itself is actually a kernel matrix indexed by difference P (I) −P (O).
Its parameters are discontinuous and limited by the kernel size.

As shown by the experience of recent years, such a function defining weights
based on relative coordinates works very well in local transformations of pat-
terns - e.g. the most common detection of local features. Unfortunately, the
architecture of the layer in which weights are a function of relative coordinates
can not perform global transformations of patterns (e.g. affine transformations
of images). Basing weights on relative coordinates means a loss of information
about the complete position of a neuron and its inputs and blocks the imple-
mentation of global pattern transformations. The only exception is the image
translation that can be performed by such a layer. However, you need to be
aware of the increase of the required size of the kernel with increasing the trans-
lation vector. The new network structure initially proposed in the paper [4] and
presented in a more mature form in the paper [5] is based on a description of
a weight of a connection between a neuron and its input by a function using
absolute spatial coordinates of the neuron and its input:

ω = f(P (I),P (O)) (2)

The implementation of the function was based on a universal approximator -
a neural subnetwork, which in the learning process discovers the correlation
between the spatial, absolute coordinates of the neuron, its input, and the weight
value. Both the CNL layer and the original version of the CWNL layer perform
a static transformation. The modification of the CWNL layer, by extending the
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definition of the weight function and including additional parameters, external
to the layer, controlling the work of the layer (3), allows you to build information
flow paths in the network architecture that are not available in existing solutions.

ω = f(P (I),P (O),S(E)) (3)

where: S(E)-vector of external signals.
The space of control parameters S(E) is continuous as opposed to the discrete

space of P (I) and P (O) limited by the finite resolution of the processed patterns.
The concept of contextual control of the method of data processing in the

neural network has already been proposed in the paper [6]. The proposed net-
work structure includes a module based on the parameterised sampling grid. The
points of this grid are delivered through a separate network processing path. The
proposed module is able to perform some limited range of transformations of pat-
terns. The CWNL layer, on the other hand, is based on a universal approximator
(neural network) and can perform any nonlinear, parametric transformations.
The work presents the mathematical model and methodology of teaching the
CWNL layer with external control. The paper describes the research on the
ability of a network with this type of neural layer to implement nonlinear image
transformations acquired in the learning process using a very limited size of the
training set. In addition, studies were carried out on a truncated version of the
CWNL layer used for the generation of images with a nonlinear structure based
on a set of parameters.

2 Mathematical Model of the CWNL Layer with
External Control

The structure of the correlated weights neural layer with external control is
shown in Fig. 2. The position of each layer input is described by the spatial
coordinates vector P (I), which size is compatible with the dimensionality of the
input data. The topology of the CWNL layer is compatible with dimensionality
and the size of its output pattern. Each of its neurons also has its own spatial,
absolute coordinates P (O). The output of the CWNL neuron is determined based
on the standard equation (4). The difference is that in the equation, instead of
the constant weights and the bias, their values are calculated dynamically by
dedicated neural subnets.

y
(O)
i = f (si) & si =

N(O)∑

j=1

ωij0

(
P

(O)
i ,P

(I)
j ,S(E)

)
y
(I)
j +βi0

(
P

(O)
i ,S(E)

)
(4)

where: f() - activation function of the CWNL layer, y
(O)
i - output of i-th neuron

in the layer (output of the layer), y
(I)
j - j-th input of the layer, ωij0() - dynam-

ically calculated weight, βi0() - dynamically calculated bias, P
(O)
i - vector of

i-th neuron spatial coordinates, P (I)
j - vector of spatial coordinates of j-th layer
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Fig. 2. Schematic diagram of a correlated weights neural layer with external control.

input, S(E) - vector of external signals. The function ω() that dynamically calcu-
lates the value of weights based on the coordinates of the neuron and the input
is implemented by a neural subnetwork with standard fully connected layers:

ω
(m)
ijk = φ(ω,m)

(
σ
(ω,m)
ijk

)
(5)

σ
(ω,m)
ijk =

N(ω,m−1)∑

l=1

w
(ω,m)
kl ω

(m−1)
ijl + b

(ω,m)
k (6)

where: ω
(m)
ijk - processed by the subnetwork signal of the dynamically calculated

weight for i-th neuron and j-th input (of the CWNL layer) in m-th subnet layer,
φ(m)() - activation function of m-th subnetwork layer, wkl(ω,m)- weight of l-th
input of k-th neuron (of the subnet layer), b

(ω,m)
k - bias of k-th subnet neuron.

The input of the subnetwork calculating weights is the union of the vector of
the neuron coordinates P (O), the vector of the layer input coordinates P (I) and
the vector of external control signals S(E):

ω
(0)
ijk = {Pi

(O) ∪ Pj
(I) ∪ S(E)}k (7)

A bias in a neural layer can be defined as a weight of an input with a constant
value of 1. In the case of a convolution layer, for one feature map, a single value
of the bias is repeatedly used for each neuron of this layer. The layer CWNL
allows to dynamically calculate the bias value based on the coordinates of the
neuron supplemented with external control signals. This task is performed by
the second dedicated subnet. Since each neuron has only one bias value, the
subnet does not use the coordinates of the inputs:

β
(m)
ik = φ(β,m)

(
σ
(β,m)
ik

)
(8)

σ
(β,m)
ik =

N(β,m−1)∑

l=1

w
(β,m)
kl β

(m−1)
il + b

(β,m)
k (9)
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β
(0)
ik = {Pi

(O) ∪ S(E)}k (10)

2.1 Training Methodology of the CWNL Layer

If activation functions of the CWNL layer and subnets layers are continuous
and differentiable, a learning process can be carried out based on any gradient
optimization technique. After determining error values for neurons of the CWNL
layer by backpropagation of loss function gradient in the main neural network of
which this layer is a component the error for the output layer of the subnetwork
providing weights can be calculated:

ε
(ω,M)
ij0 = eiy

(I)
j f ′ (si) (11)

where: ei - error for i-th neuron of the CWNL layer, y
(I)
j - j-th input of the

layer, f ′() - derivative of the activation function.

The determined error is then propagated through successive layers of the
weight subnet:

ε
(ω,m)
ijk =

N(ω,m+1)∑

l=1

(
ε
(m+1)
ijl w

(m+1)
lk φ′(ω,m+1)

(
σ
(ω,m+1)
ijl

))
(12)

Based on the error determined in all layers of the subnetwork, the partial
derivative of the loss function for all the subnet parameters (for single pattern
processing) can be calculated:

∂E

∂w
(ω,m)
kl

=
N(O)∑

i=1

N(I)∑

j=1

ε
(ω,m)
ijk ω

(m−1)
ijl &

∂E

∂b
(ω,m)
k

=
N(O)∑

i=1

N(I)∑

j=1

ε
(ω,m)
ijk (13)

The CWNL neuron error is also propagated to the output layer of the subnet
for calculating biases (one bias error for one neuron of the CWNL):

ε
(β,M)
i0 = eif

′ (si) (14)

The error backpropagation in the bias subnet layers is carried out in the same
way as in the weight subnet. Using this error, the partial derivatives of the loss
function for the parameters of this subnetwork are calculated:

∂E

∂w
(β,m)
kl

=
N(O)∑

i=1

ε
(β,m)
ik β

(m−1)
il &

∂E

∂b
(β,m)
k

=
N(O)∑

i=1

ε
(β,m)
ik (15)
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3 Experiments

3.1 Nonlinear Transformation

The first experiment concerned the ability of the CWNL layer to implement
nonlinear image transformations. An example of such a transformation was the
wave deformation of the image based on trigonometric functions (Fig. 3, the first
section). The transformation is controlled by two parameters: the amplitude and
the deformation period. Based on the MNIST set, synthetic training and test
sets were generated, in which the input data was an original image of the digit
and the transformation parameters. The output was a deformed image.

The CWNL layer in the main network used a sigmoidal activation function.
The structure of the subnet calculating values of weights was I4-H32-H16-H8-O1
(the ELU activation function in hidden layers, the linear output neuron). The
subnet calculating biases had layers I4-H8-H4-O1 (the ELU function in hidden
layers, the linear function in the output neuron). The learning process was based
on the minimization of the binary entropy loss function. The classic RProp
learning algorithm [7] was used, which proved to be much more effective for the
developed network architecture than the currently used algorithms (e.g. SGD,
Adam, RMSProp). The early stopping based on validation error was applied.

The third section of Fig. 3 shows images provided by the network with the
single CWNL layer. For only 96 examples in the training set, the obtained quality
of the transformed images is satisfactory and confirms the ability of the developed
network to implement this exemplary nonlinear transformation.

The same experiment was also carried out for a network with fully connected
layers. The structure of the network was modeled on the structures of autoen-
coders using FC layers [8]. The input of the autoencoder was supplemented with
additional inputs for control parameters (period and amplitude). Applied neural
network structure consisted of 5 hidden layers with the ELU activation function
and a sigmoid output layer, its layout: I(28*28+4)-H128-H64-H32-H64-H128-
O(28*28). The analysis of the obtained results (Fig. 3, the fourth section) shows
that the proposed network with FC layers can implement the expected onlinear
transformation subject to an increase in the required size of the training (two
orders of magnitude).

A network with convolutional layers is dedicated to image processing but the
great challenge is to introduce external control signals into such a layer. The
implementation of this task is impossible in the case of a single convolutional
layer. Therefore, a modified convolutional autoencoder structure [8] was used for
this task. The external signals were delivered to the middle layers starting the
block of the pattern decoder (Fig. 4). Using the network configured in this way,
slightly better results (Fig. 3, the last section) were obtained than the network
using only FC layers. Figure 5 presents a comparison of the obtained binary cross-
entropy loss levels for the three analyzed networks depending on the number of
training cases.
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Fig. 3. Nonlinear transformation using networks based on the CWNL layer, full connect
layers and convolutional layers: input control parameters (period and amplitude), input
(orginal) image; expected images from testing set and images after learning on the
training set containing 96–9600 examples.

Summarizing the results of this experiment, it can be stated that, at least in
terms of the required size of the training set, the network with FC layers only
and the mixed network with CNL and FC layers turned out to be clearly weaker
than the network with CWNL layer.



422 S. Golak

Fig. 4. Architecture of the CNN network implementing the parametric transformation:
CNL - convolutional layer, MF - max pooling layer, US - Upsampling layer, FC - fully
connected layer.

Fig. 5. Binary cross-entropy loss for both experiments and different number of exam-
ples in the training set.

3.2 Nonlinear Generation

The second, simple example of the use of a network with the CWNL layer is the
generation of an image only based on the numerical parameters that describe
it. This task may be defined as the network performing a decoder function in
an auto-encoder or a generator in a generative network. For the purposes of the
research, an artificial training set was generated, in which the input data are the
coordinates of four points defining the Bezier curve, and the output data is the
image of this curve. Since the network does not process the input pattern, in
this case, the CWNL layer is only implemented in a simplified form - the neuron
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Fig. 6. Schematic diagram of CWNL layer with external control and without multidi-
mensional pattern input.

output is determined only based on the bias value (Fig. 6). The network consisted
of a single CWNL layer (sigmoid activation function) controlled by 8 external
signals. The subnet computing biases had the structure I4-H32-H24-H16-O1
with the ELU activation function in hidden layers and a linear output layer.
As shown in Fig. 7, the network with such a structure achieved a satisfactory
generation quality for the training set containing 960 cases.

The result was compared with the results obtained for the network with only
FC layers (with the structure of I4-H64-H128-O(28*28), the ELU activation
function in hidden layers, the sigmoid output). This network was able to obtain
an acceptable quality of transformation (Fig. 7, the third section) based on the
training set containing 9600 examples.

The third of the networks used in this experiment had only the decoding
section of the CNN autoencoder (Fig. 8). The generation quality visually com-
parable to the network with the CWNL layer was obtained after training with
the use of 9600 examples (Fig. 7, the last section). However, a comparison of the
error measures (Fig. 5) shows that for 10 times as many examples, the generation
quality is significantly worse.
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Fig. 7. Bezier curve image generation using networks based on the CWNL layer, full
connect layers, and convolutional layers: input parameters, expected images from test-
ing set and images after learning on the training set containing 96–9600 examples.

Fig. 8. Architecture of the CNN network implementing the parametric generation:
CNL - convolutional layer, US - Upsampling layer, FC - fully connected layer.
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4 Conclusions

The conducted studies have shown that networks using the CWNL layer can
effectively implement parameterized, nonlinear image transformations. It has
been shown that due to the small number of parameters describing such a layer
(repeatedly used weights of subnets instead of direct weight values of the main
layer), related to the complexity of a pattern content (not to its size), small
data sets are enough to train a network with the CWNL layer. The ability of
the CWNL network to generate images with a nonlinear structure also demon-
strated during the research, gives a chance to use them, such as output parts of
autoencoders and auto-generative solutions.

The conducted analysis, confirmed by experiments, suggests that the CWNL
layer controlled by external signals can be an interesting component of more com-
plex network structures used in popular applications such as image classification
(especially in terms of reducing the influence of nonlinear pattern deformations)
or generation of synthetic images and videos.

An issue that requires extensive research is the computational complexity of
the CWNL layers. In contrast to the CNL layers in which it is proportional to
the product of the number of neurons and the size of the kernel, in the case of
the CWNL layer, it is associated with a much higher value of the product of the
number of neurons, the size of the input pattern and the subnet size.
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Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 295–300. Springer,
Heidelberg (2005). https://doi.org/10.1007/11550907 47

5. Golak, S., Jama, A., Blachnik, M., Wieczorek, T.: New architecture of corre-
lated weights neural network for global image transformations. In: Kůrková, V.,
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Abstract. Although the development of uncontrolled face detection and
location technology have made great progress, there are some problems
needing to be solved in more complicated situation, such as massive
occlusion and pose variation. In this paper, we propose a robust one-
stage face detection and location network named PupilFace. It can locate
faces of different sizes at the pixel level in complex scenarios. Specif-
ically, we have made contributions in the following three aspects: (1)
Using a lightweight backbone, we can not only detect images of dense
faces, but also mark facial landmarks in pictures of various scale. In this
paper, the pictures are difficult to detect because of massive occlusion
or tiny faces. On the WIDER FACE hard test set, PupilFace performs
better than other state-of-the-art networks. (2) The addition of the atten-
tion module–Hard Efficient Channel Attention (HECA), proposed by us,
enhances the connection between the feature channels and improves the
detection performance without reducing the dimension. The parameters
and computations of HECA, against the parameters and computations
of MobileNetV2 are 9 vs. 3.34M and 5.1e−4 GFLOPs vs. 0.32 GFLOPs.
(3) We can employ varying-depths backbones accordingly to different
detection and location tasks, so the model can be popularized in dif-
ferent fields. Extra annotations and code have been made available at:
https://github.com/Ideal-maths/PupilFace.

Keywords: Face location · Attention module · Hard Efficient Channel
Attention (HECA) · MobileNetV2 · Feature pyramid networks (FPN)

1 Introduction

Face detection and location are hot issues, however how to extract the facial key
points is a perplexing problem. As for the definition of face location, the narrow
definition can refer to the traditional face detection [24]. In a broad sense, it
includes four aspects: face detection, face alignment, pixel painting face analysis
and 3D intensive correspondence and regression.

In recent years, the application of convolutional neural network helps to solve
this problem well. In face position, it could be simply divided into methods based
on cascaded shape regression, such as Cascaded Pose Regression (CPR) [21],
c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13033, pp. 426–437, 2021.
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based deep learning method, such as Multi-task Convolutional Neural Network
(MTCNN) [2], RetinaFace [1] and so on.

At present, based deep learning methods do not consider the relationship
between channels enough, and regard channels as isolated things, which misses
important features. We introduce an attention module, Hard Efficient Channel
Attention (HECA), similar to Efficient Channel Attention (ECA), to solve this
problem. We can automatically obtain the weight of each feature channel by
learning, then enhance the useful character, and confine the useless character for
current task.

This greatly reduces the model complexity while maintaining the same effect.
Some studies have improved the attention module by capturing more complex
channel dependencies or incorporating additional spatial attention. Although
these methods achieve high accuracy, they often have high model computation
complexity. Unlike them, this paper pays attention to whether channel attention
can be learned in a more effective way. We want to employ a backbone being
light-weight network whose results are better than before, and the detecting and
locating speed is not reduced as much as possible, through the introduction of
attention module. For face detection, this architecture can effectively identify
and locate various size faces.

To summarize, the main contributions of this paper are as follows:

– Introduced the attention module, which enhanced the feature interaction
between channels and improved the detection performance. Especially in the
detection of difficult samples, performance was greatly improved.

– We propose a network that can replace the backbone as needed, and it could
solve a variety of practical problems, such as fatigue detection, facial expres-
sion recognition.

– Code and comments have been published to facilitate communication with
peers.

2 Related Work

We focused on the following parts to achieve our face positioning.

Feature Pyramid. The previous development of the feature pyramid took
three forms: a) Featurized image pyramid [12]: The feature pyramid consists
of images of different sizes, which are then convolved and predicted separately.
This way is too computationally heavy. b) Single feature map [15]: Convolution
is carried out on the image and prediction is made on the final feature map. This
method has a receptive field problem: the receptive field is larger in the more
abstract feature map, so the small feature may not be detected. c) Pyramidal
feature hierarchy [17,21]: We make prediction on the each layer feature map.
The large-sized feature maps at the bottom of pyramidal feature hierarchy have
little semantic information.
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Attention Module. The basic idea of attention is to teach the system to
pay attention to be able to ignore irrelevant information and focus on impor-
tant information. Squeeze-and-Excitation Networks (SE-Net) [9] uses both the
squeeze and excitation operations to learn the channel attention for each convo-
lution block. ECA-Net [20] considering every channel and their K neighbors to
capture the local cross channel information, their author could avoid reducing
the dimension and maintain the efficiency.

Context Model. Context modelling is divided into two types: rigid and non-
rigid. Rigid means expansion, while non-rigid means deformation. Single Stage
Headless face detector [11] and Pyramid-box [16] output the feature map of
feature pyramid to context modules to expand the receptive field. The work
enhances rigid context modelling capacity.

3 PupilFace

Our network, PupilFace, is based on RetinaFace [1], which is composed of the back-
bone (MobileNet [8] or ResNet [5]) with Feature Pyramid Networks(FPN) [10].
The feature maps go through the context module similar to SSH, finally out-
put five facial landmarks (i.e. mouth corners, nose tip and eye centers) and loss.
As an improvement of Retinaface, we use a light-weight backbone, improved
MobileNetV2. The specific method is to add the attention module, Hard Efficient
Channel Attention (HECA), to MobileNetV2 to enhance non-linear cross-channel
interaction. The structure of our network is briefly shown in Fig. 1.

Fig. 1. 640× 640 images with dense faces are input into our network. The last feature
map, at the backbone different stages, will output to Feature pyramid networks (FPN)
after adjusting the channels number. Then the output of FPN is processed by the
context module in turn. The multi-task loss is obtained after calculation at the end of
the network.
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3.1 Nonlinearities and Multi-task Loss

Nonlinearities. A nonlinearity, called swish, is imported in [3,6,13]. When this
nonlinearity is used as a direct substitute for ReLU, it can improve the accuracy
of the neural network significantly. Swish’s formula is as follows:

swishx = x · σ(x) (1)

We replace the sigmoid function with other activation functions, for example
ReLU6(x+3)

6 , which is very similar to [7]. The minor difference is that we use
ReLU6 instead of a custom clipping constant. H-swish’s formula is as follows:

H − swish[x] = x
ReLU6(x + 3)

6
(2)

In quantitative mode, H-swish reduces the numerical precision loss due to the
approximately sigmoid function.

Multi-task Loss. We propose multi-task loss, and i denotes training anchor.

L = Lcla(ni, n
∗
i ) + ϕ1p

∗
i Lbox(ci, c∗

i ) + ϕ2p
∗
i Lpfl(mi,m

∗
i ) (3)

(1) Face classification loss Lcla(ni, n
∗
i ), ni is the predictive probability of anchor

i being a human face. When n∗
i is 1, it means that the anchor is positive

and 0 presents negative anchor. Since only images with and without human
faces are considered in this paper, it is a binary classification problem when
considering classification loss.

(2) Face box regression loss Lbox(ci, c∗
i ), here, ci = {cx, cy, cw, ch},c∗

i =
{c∗

x, c∗
y, c

∗
w, c∗

h} respectively represent the coordinates of prediction box and
ground-truth box related to the positive anchor. We normalize the target
of the regression box (central coordinates, width and height). And we use
R(ci, c∗

i ) = Lbox(ci, c∗
i ), where R is smooth–L1 loss function.

(3) Facial landmark regression loss Lpfl(mi,m
∗
i ), here li = {mx1 ,my1 , . . . ,

mx5 ,my5}, l∗i = {l∗x1
, l∗y1

, . . . , l∗x5
, l∗y5

} represent the predicted five human
facial landmarks and ground-truth. The regression of the five facial land-
marks also adapts the target normalization based on anchor center. In this
paper, we set the loss-balancing parameters ϕ1, ϕ2 to 0.25 and 0.1.

3.2 Design of Fusing Attention Networks

Efficient Mobile Building Blocks. At present, the model applicable to
face detection and facial landmarks is based on increasingly efficient structure
blocks. MobileNet was a light-weight network proposed by Google. MobileNet
had three versions. MobileNetV1 [8] introduced Depthwise Separable Convo-
lution to replace the traditional convolution layer, which reduced quantities of
parameters while ensuring the effect as much as possible. MobileNetV2 [14] com-
bined the residual network with the Depthwise Separable Convolution. Com-
pared with MobileNetV2, MobileNetV3 [7] added Squeeze-and-Excite (SE) at
Bottleneck, which enhanced the feature connection between channels. The struc-
ture of MobileNetV3 is briefly shown in Fig. 2.
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Fig. 2. MobileNetV2 + Squeeze-and-Excite [9]. FC denotes Fully Connected Layers,
Hard-σ denotes Hard-sigmoid activation.

Attention Module. About channel attention module, some researchers used a
novel method, Efficient Channel Attention (ECA), to capture local cross-channel
information interaction. Some author also substituted the Global Average Pool-
ing (GAP) for Fully Connected Layers (FC) and compressed the feature map
into a 1 × 1 × C feature map. And then went through the activation function,
character multiplied the corresponding elements in the feature diagram before
passing GAP. This article only considered the information interaction between
the weights and its K neighbors,

yi = σ(
k∑

j=1

ωj
i y

j
i ), ωj

i ∈ ϕk
i (4)

To further improve performance, it is also possible to let all channels share weight
information, that is

yi = σ(
k∑

j=1

ωj
i y

j), ωj
i ∈ ϕk

i (5)

Based on these analyses, the original author proposed a novel approach that
enables information interaction between channels with a one - dimensional con-
volution, C1D, whose core size is K:

y = σ(C1Dk(ω)) (6)

In experiments, we set K being 3.
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The standard sigmoid is slow to compute because of computing the exp()
function. In many cases the high-precision exp() results aren’t needed, and an
approximation will suffice.

Hard − sigmoid =

⎧
⎨

⎩

0 if x < −2.5,
0.25x + 0.5 if − 2.5 ≤ x ≤ 2.5,

1 if x > 2.5.
(7)

Hard-sigmoid is a piecewise linear approximation of Logistic Sigmoid activa-
tion function. It’s easy to differentiate, and Hard-sigmoid computes faster than
sigmoid. In this paper, we replace the sigmoid with the Hard-sigmoid. If the
activation function is sigmoid function, this method will be called ECA. So we
call the attention module HECA.The structure of MobileNetV3 adding HECA
is shown in Fig. 3.

Fig. 3. MobileNetV2 + Hard Efficient Channel Attention (HECA). HECA uses Global
Average Pooling (GAP) to transform the feature map into 1×1×C, replacing the role
of Fully Connected Layers (FC). Fast 1D convolution is used to obtain local cross-
channel interaction information. The one-dimensional convolution kernel size, K, is
proportional to the channel dimension, C.

Redesigning the Net’s Backbone. As is mentioned above, we introduced
Feature Pyramid Networks, Attention Module–HECA and Context Model. We
choose MobileNetV2-HECA as our backbone, whose structure data are shown
in Table 1. As our networks go deeper, the cost of nonlinearity will be lower. In
our experiments, we find that H-swish alone in deeper layers could achieve most
benefits.
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Table 1. Specification for MobileNetV2-HECA. HECA denotes whether there is Effi-
cient Channel Attention with Hard-sigmoid activation in that block. T is the input
channels multiplier (that is, the channels number in the middle is t times the channels
number in the input). NL means the type of nonlinearity, used. HS is H-swish and RE
represents ReLU.

Input Operator Stride Exp ratio ksize HECA NL

6402 × 3 conv2d 2 – 1 – HS

3202 × 32 bneck 1 1 1 – RE

3202 × 16 bneck 2 6 1 – RE

1602 × 24 bneck 1 6 1 – RE

1602 × 24 bneck 2 6 1 – RE

802 × 32 bneck 1 6 1 – RE

802 × 32 bneck 1 6 1 Yes RE

802 × 32 bneck 2 6 1 – HS

402 × 64 bneck 1 6 1 – HS

402 × 64 bneck 1 6 1 – HS

402 × 64 bneck 1 6 1 – HS

402 × 64 bneck 1 6 3 – HS

402 × 96 bneck 1 6 3 – HS

402 × 96 bneck 1 6 3 Yes HS

402 × 96 bneck 2 6 3 – HS

202 × 160 bneck 1 6 3 – HS

202 × 160 bneck 2 6 3 Yes HS

102 × 160 bneck 1 6 3 Yes HS

102 × 320 ada-avgpool – – – – –

1 × 320 FC – – – – HS

4 Experiments

4.1 Dataset

We use a large-scale face detection dataset, the WIDER FACE dataset [22],
which is made up of 32,203 images and 393,703 labeled faces. For event classes,
the WIDER FACE dataset can be divided into 60 categories. For each category,
author randomly divide the images into a 4:1:5 ratio of the training, validation
and the test subsets. Based on the detection rate of Edgebox [27], the WIDER
FACE dataset is set to three levels, Easy, Medium and Hard.

Extra Annotations. As shown in Fig. 4, Retinaface divided the pictures in
the WIDER FACE dataset into five levels, according to the difficulty of marking
landmarks on the faces in images. It marked five facial landmarks (i.e. mouth
corners, nose tip and eye centers).
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4.2 Implementation Details

Feature Pyramid. The PupilFace feature pyramid has four layers, P2-P5. And
they are all made from the last feature map, C2-C5, for each stage in the back-
bone. Then they adjust the channel number with convolution layers. In C2-C5,
we add HECA to the inverted residual, which enhanced the information inter-
action between channels.

Fig. 4. RetinaFace added extra annotations of five facial landmarks.

Anchor Settings. As shown in Table 2, we take specific scale anchors on P2-P5,
like [19]. In order to recognize tiny faces, we use plenty of small anchors in P2.
This results in more computation complexity and a little false positive. In this
paper, the size of our picture is . The ratio of positive and negative samples is
more than 4:1.

Table 2. The details of feature pyramid, stride size, anchor in PupilFace.

Feature pyramid Stride Anchor

P2 (80 × 80 × 256) 8 16,32

P3 (40 × 40 × 256) 16 32,64

P4 (20 × 20 × 256) 32 64,128

P5 (10 × 10 × 256) 64 128,256

Training Details. We trained the PupilFace on two NVIDIA RTX 3080 (20 GB)
GPUs using the Adam optimizer (weight decay at 0.0005, batch size of 32).

Testing Details. As for the WIDER FACE test subsets, we did the same like [11]
with different sizes images. Using an IoU threshold of 0.35, we apply Box vot-
ing [4] on the union set of predicted face boxes.



434 X. Li and J. Zou

4.3 Experimental Results

Experimental Results and Analyses. According to Table 3, we can see that
PupilFace has achieved good results in choosing light-weight backbone. Com-
pared with the backbone, the attention module in our network has a small
amount of parameters and computation. For example, for MobileNetV2 with
3.34M parameters and 0.32 GFLOPs, the additional parameters and computa-
tions of HECA are 9 and 5.1e−4 GFLOPs, respectively; As compared in Table 3,
it adds MobileNetV2, which has a significant improvement on Average Precision
(AP) of hard test set.

Table 3. WiderFace Value Performance in single scale when we use different networks
as the backbone of PupilFace and other popular networks.

Backbone Easy Medium Hard

PupilFace MobileNet 90.92 89.17 79.62

PupilFace MobileNetV2 91.33 89.96 80.03

PupilFace MobileNetV2-ECA 91.60 90.28 80.57

PupilFace (ours) MobileNetV2-HECA 91.82 90.65 80.94

RetinaFace MobileNet 90.63 89.02 79.37

RetinaFace MobileNetV2 90.97 89.65 79.59

As shown in Fig. 5, we plot the Precision-recall curves of the PupilFace on
the WIDER FACE test subsets. They are drawn in three difficult levels: Easy,
Medium and Hard(The WIDER FACE dataset is set to three levels, based on
the detection rate of Edgebox [11]). And we could see the pictures that our

(a) Easy (b) Medium

(c) Hard

Fig. 5. The WIDER FACE test subsets’ Precision-recall curves.
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light-weight face detection and location network, PupilFace, works better than
quantities of the state-of-the-art networks. Here we compare our networks with
pyramid-box [17], DFS [18], Multitask Cascade CNN [25], ScaleFace [23], CMS-
RCNN [26] and Two-stage CNN [22].

In Fig. 6, we show our PupilFace on two pictures of dense faces. In the top
picture, it’s clear that we detect almost all the faces in the picture and mark
facial landmarks, except that the faces were covered by a hat (which means
massive occlusion). Even this image has a low pixel size and is a bit blurry, the
performance still looks good. The other is a high resolution image of the person
in different position, some of the faces being dim and wearing hats but can still
be detected and located. These performances are great for our light-weight face
detection and location network, PupilFace.

Fig. 6. Typical results on the WIDER FACE test subsets.
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5 Conclusion

We study how to simultaneously locate tiny faces and align faces with any scale
in the picture. The conventional method requires two-stage, but we proposed a
lightweight one-stage network called PupilFace. PupilFace shows excellent per-
formance in face detection in cases with massive occlusion and pose variations. In
addition, by employing different backbones it could adapt to more cumbersome
tasks. The model is available for further research on this topic. In the future, we
will apply the model to actual scenes. For example, we can increase the facial
landmarks number, and then use facial landmarks to determine whether the
driver is fatigue driving.
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