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Abstract. With the rapid development of convolutional neural net-
works, many CNN-based methods have emerged and made promising
progress in the field of crowd counting. However, dealing with extremely
scale variation remains a challenging but attractive issue. In this paper,
we propose an innovative Gated Cascade Multi-scale Network (GCM-
Net) to tackle with the issue by taking full advantage of the represen-
tation of multi-scale features in a multi-level network. First of all, we
implement such an idea by obtaining rich contextual information with
a multi-scale contextual information enhancement module. Then, con-
sidering the pixel-level image detail information that is lost during the
successive feature extraction process, we propose a hopping cascade mod-
ule to refine this detail information. However, naively refining all the
detail information is sub-optimal. Therefore, a gated information selec-
tion delivery module is designed to adaptively control the delivery of
information between multi-level features. Combined with our proposed
module, our method can effectively generate high-quality crowd density
maps. The superiority of our method over current methods is demon-
strated through extensive experiments on four challenging datasets.

Keywords: Crowd counting · Hopping cascade · Gated information ·
Multi-scale feature · Deep learning

1 Introduction

Crowd counting based on computer vision aims at generating high-quality den-
sity maps of crowd scenes, thereby calculating the total number of the crowd. It
is widely used in public safety and video surveillance. What’s more, the proposed
methods for crowd counting can be extended to other fields with similar tasks,
including traffic control, agricultural monitoring, and cell counting.

With the rapid growth of deep learning, many CNN-based methods have
made amazing improvements in crowd counting. However, crowd counting is
still a difficult task due to the complexity of the scenes, especially the large scale
variation (Fig. 1).
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Fig. 1. Scale variation in crowd scenes.

In recent years, numerous methods have been proposed to tackle with the
problem of scale variation. MCNN [31] uses filters with different sizes to solve
the size variation of the human head. CSRNet [12] adopts dilated convolutions
as the back-end part to extract deeper features by expanding the receptive fields.
Kang et al. [11] propose an adaptive fusion feature pyramid to handle multiple
scales. CAN [14] combines multiple receptive fields with different sizes and learns
the correct context for each image location.

Although above methods have achieved better performance, there are still
some deficiencies to be improved. On the one hand, the crowd scene has large
scale variations in size, shape, and location, and using a simple multi-column
structure does not effectively extract multi-scale contextual information. On the
other hand, features captured by earlier layers in the deep network contain less
semantic information, so naively cascading multi-level features in the network
does not effectively solve large scale variation.

To this end, we introduce an innovative deep learning framework named
Gated Cascade Multi-scale Network (GCMNet) to take full advantage of the
representation of multi-scale features. The architecture of GCMNet is shown
in Fig. 2. To perform more comprehensive multi-scale representations and over-
come the drawbacks of multi-branch structure, we design a multi-scale contextual
information enhancement module to capture the global context. We employ four
parallel convolutional layers with different filter sizes and combine the features
generated by these convolutions. By doing this, the representation capability of
the network is greatly improved. In addition, with the successive feature extrac-
tion process, a large amount of detail information is lost, so we have integrated
various pixel-level detail through a hopping cascade module, thus ensuring the
completion of multi-level feature fusion. Furthermore, the utilization of hopping
cascade module to integrate multi-level features does not weight the importance
of the information contained therein. While a gated information selection deliv-
ery module is adopted, we can determine the turn-on and turn-off of information
in multi-level features to perform adaptive and effective delivery of useful infor-
mation.
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In summary, the main contributions of our work are as follows:

– We design a multi-scale contextual information enhancement module with
multiple different sizes of convolutional filters to extract multi-scale contex-
tual information.

– We put forward a hopping cascade module that cascades multi-level features
to reconstruct pixel-level image detail.

– We propose a gated information selection delivery module to adaptively con-
trol information delivery between multi-level features.
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Fig. 2. The overall framework of our GCMNet.

2 Related Works

In recent years, significant improvements have been achieved in crowd counting
from traditional methods [3,7] to CNN-based methods [9,28]. In this paper,
we mainly focus on three categories of CNN-based methods: multi-scale feature
extraction methods, multi-level feature fusion methods, and feature-wise gated
convolution methods.

2.1 Multi-scale Feature Extraction Methods

This kind of method aims to address the scale variation in crowd counting with
multi-scale contextual information. Zhang et al. [31] propose a multi-column
convolutional neural network to extract multi-scale features. Similarly, Sam et al.
[20] put forward the Switching-CNN, which uses the density variation to improve
the accuracy and localization of crowd counting. Cao et al. propose the SANet
[1] for extracting multi-scale features based on the Inception architecture of
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encoders. ADCrowdNet [13] combines multi-scale deformable convolution with
an attention mechanism to construct a cascade framework. Jiang et al. [10]
design a grid coding network that captures multi-scale features by integrating
multiple decoding paths. In addition, the spatial pyramid pooling (SPP) [5]
uses pooling layers with different sizes to extract multi-scale feature maps and
finally aggregates them into a fixed-length vector, thus improving robustness and
accuracy. Therefore, it is widely used in SCNet [26], PaDNet [25], and CAN [14]
for extracting multi-scale features.

In this paper, we utilize four parallel convolutional layers to extract multi-
scale features and fuse features to improve the redundancy arising from the
multi-branch structure.

2.2 Multi-level Feature Fusion Methods

Several recent works for complex and intensive prediction tasks have demon-
strated that features from multiple layers are favorable to produce better results.
Deeply encoded features contain semantic information of the object, while shal-
lowly encoded features conserve more spatially detailed information. Several
studies on crowd counting [15,23,31] have attempted to use features from multi-
level convolutional neural networks for more accurate information extraction.
Many studies [15,31] predict the independent results of each stage and finally
fuse them to obtain multi-scale information. Sindagi et al. [23] introduce a multi-
level bottom-top and top-bottom fusion method to combine shallower informa-
tion with deeper information.

Different from the above methods, we propose a hopping cascade module to
perform multi-level feature fusion with hopping cascade, thereby the pixel-level
image details lost during extraction can be regained.

2.3 Feature-Wise Gated Convolution Methods

The introduction of gating mechanisms in convolutions has also been extensively
studied in language, vision, and speech. Dauphin et al. [2] effectively reduce
gradient dispersion by using linear gating units and also retain the ability to
be nonlinear. Oord et al. [18] employ a selected-pass mechanism to improve
performance and convergence speed. Yu et al. [29] propose an end-to-end gated
evolution-based generative image restoration system to improve the restoration
of free-form masks and user-guided inputs. WaveNet [17] applies gated activation
units to audio sequences to simulate audio signals and obtains better results.

In this study, we propose a gated information selection delivery module to
adaptively control the information delivery between multi-level features during
the hopping cascade.

3 Proposed Algorithm

In this section, we will outline the overall framework of our GCMNet and give
a detailed introduction of the theory to realize each module.
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3.1 Overview of Network Architecture

The overall framework is shown in Fig. 2. Following the practice of most previous
work, we adopt VGG-16 [22] as the backbone network and choose the first five
stages (Layer1 − Layer5) of the pre-trained VGG-16 to generate the hopping
features at five levels, which are represented as F e = {fe

i , i = 1, . . . , 5}. After
Layer5, we add the Multi-scale Contextual Information Enhancement Module
(MCIEM) consisting of multiple convolutional layers with different sizes of filters
to capture global context information. Afterwards, to reconstruct the pixel-level
image detail information that is lost in the successive feature extraction, we
propose the hopping cascade module to cascade the hopping features F e with
the upsampling features F d = {fd

i , i = 1, . . . , 5} generated by upsampling oper-
ations. Moreover, we design the Gated Information Selection Delivery Module
(GISDM) to control the delivery of the pixel-level image detail information in
F e with the aim of effectively integrating the multi-level features in the cascade
process.

3.2 Multi-scale Contextual Information Enhancement Module

It is observed that the output features fused by using parallel convolution con-
tain more image details than the features generated by successive convolution
operations. Therefore, we come up with the MCIEM to capture global context
information. The module consists of four parallel convolutional layers with filters
of different sizes k ∈ {3, 7, 11, 15} and four max-pooling layers. The details of
the MCIEM is given in Fig. 3.
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Fig. 3. Details of MCIEM.

Firstly, the multi-level features fe
5 extracted by the backbone network are

taken as the input to the MCIEM. Then the four parallel convolutions with the
receptive field of 3 × 3, 7 × 7, 11 × 11, and 15 × 15 are used to extract multi-
scale features. Finally, these features are fed into a 2 × 2 max-pooling layer and
then fused together to extract more comprehensive contextual features. With
the MCIEM, multi-scale features can encode richer contextual information.
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3.3 Hopping Cascade

Though MCIEM can extract effective contextual information through multi-
scale features, some pixel-level image detail information is lost in this extraction
process. Therefore, we introduce the hopping cascade module to reconstruct the
lost pixel-level image detail information.

Specifically, after the MCIEM, we choose the H1 − H5 with 32-fold bilinear
upsampling operations to generate upsampling features F d = {fd

i , i = 1, . . . , 5}.
Meanwhile, the lost pixel-level image detail information is reconstructed by cas-
cading F e with F d. Our cascade module takes the hopping features fe

3 , fe
4 , fe

5

and upsampling features fd
3 , fd

4 , fd
5 as input. The cascade process is implemented

by the following equation.

Hi = ReLU(Conv(fe
i ; θ)) + ReLU(Conv(fd

i ; θ)) (1)

where Conv(∗; θ) is a convolutional layer with parameter θ = {W, b}, ReLU() is
an activation function. fe

i is parallel to the multi-level feature fd
i and they have

the same size.

3.4 Gated Information Selection Delivery Module

The pixel-level image detail information is reconstructed with the hopping cas-
cade module, but not all of the pixel-level detail information contributes to the
realization of accurate crowd counting. Therefore, we propose the GISDM to
deliver this information from adaptive selection, which consists of a residual
block and a gated function, as shown in Fig. 4.

Conv 1x1

Conv 1x1

BN RELU

Conv 3x3

BN BN RELU

Conv 1x1

BN 

RELU GF+
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Fig. 4. Details of GISDM.

In our implementation, we feed the hopping features into a residual block to
improve the representation ability of hopping features, which is expressed as Gi:

Gi = Res(ReLU(Conv(fe
i ; θ)) (2)

where Res(∗) represents the residual block.
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Additionally, we introduce the gated function to further calibrate this infor-
mation and achieve adaptive delivery of pixel-level detail information instead of
indiscriminately delivering all information among multi-level features. The gated
function is essentially a convolutional layer with sigmoid activation in the range
of [0, 1]. Let GF (x; θ) denotes the gated function:

GF (x; θ) = Sig(Conv(x; θ)) (3)

where Sig() represents sigmoid function, Conv(x; θ) is a 1×1 convolutional layer
of channels with x.

With the gated function, Gi can be rewritten as:

Gi = GF (Gi; θ) ⊗ Res(ReLU(Conv(fe
i ; θ))) (4)

where ⊗ represents an element-wise product.
Therefore, the Hi is summarized as:

Hi = Conv(Gi; θ) + ReLU(Conv(fd
i ; θ)) (5)

where Gi is the updated features after performing the GISDM.

4 Experiments

In this section, we first give the description of the four widely used datasets and
the implementation settings. Additionally, we compare our method with state-
of-the-art methods by evaluating counting performance and density map quality.
Finally, we perform an extensive ablation study to demonstrate the effectiveness
of each component of our method.

4.1 Datasets

ShanghaiTech Dataset [31]. The ShanghaiTech dataset is composed of Part
A and Part B datasets. Part A dataset includes 482 images, which are randomly
crawled from the Internet and represent highly crowded scenes. It is divided into
the training sets and test sets. Part B dataset is acquired from the surveillance
cameras of commercial streets, representing relatively sparse scenes, with 400
images in the training sets and 316 images in the test sets.

UCF CCF 50 Dataset [7]. The UCF CCF 50 dataset is full of challenges. The
training sample is limited and it only collects 50 annotated images of complex
scenes from the Internet. These images have a large number of different people,
ranging from 94 to 4543. There are a total of 63,974 head annotations, with an
average of 1,280 per image.

UCF-QNRF Dataset [8]. The dataset contains 1535 high-resolution images
with 1,251,642 head annotations, which has more head annotations than the
previous datasets. The number of people in each image varies from 49 to 12,865.
And the training and test sets have 1,201 and 334 images, respectively.
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WorldExpo’10 Dataset [30]. This dataset includes 1,132 annotated video
sequences collected from 103 different scenes captured by 108 surveillance cam-
eras at the 2010 Shanghai World Expo. There are 3,980 annotated frames with
a total of 199,923 annotated pedestrians, of which 3,380 annotated frames are
used for model training and the other 600 frames are used for model testing.

4.2 Settings

Ground Truth Generation. We generate ground truth density maps following
the same theory as in MCNN [31]. We use a normalized Gaussian kernel to blur
each human head annotation thus generating the ground truth density maps
F (x).

F (x) =
N∑

i=1

δ(x − xi) × Gσi
(x), with σi = βdi (6)

where N represents the number of people in the image, x is the position of
the pixel in the image, xi represents the labeled position of the ith individual,
δ(x−xi) denotes a head annotation at pixel xi, Gσi

represents a Gaussian kernel
with standard deviation σi, and di represents the average distance between xi

and its nearest k heads. In our implementation, we set β = 0.3 and σi = 3.

Evaluation Metrics. To evaluate the performance of our method, we adopt
the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), which
are denoted as Eq. (7) and Eq. (8), respectively.

MAE =
1
N

N∑

i=1

|CES
i − CGT

i | (7)

RMSE =

√√√√ 1
N

N∑

i=1

(CES
i − CGT

i )2 (8)

where N is the total number of the test images, CES
i and CGT

i are the estimated
and ground-truth counts of the ith image, respectively.

MAE and RMSE determine the accuracy and the robustness of the crowd
counting, respectively. The lower their values, the better performance of the
count results.

In addition, the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
(SSIM) in images are exploited to evaluate the quality of the output density
maps.

The PSNR is defined as:

PSNR = 10 × log10(
MAX2

I

MSE
) (9)

where MAXI is the maximum possible pixel value of the images.
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SSIM(x, y) =
(2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ2
x + σ2

y + C2)
(10)

where μx and μy denote the mean values of images x and y, respectively. σx and
σy denote the variance of images x and y, respectively. σxy is the covariance of
images x and y. C1 and C2 are two constants and defined as:

{
C1 = (K1 × L)2

C2 = (K2 × L)2
(11)

where K1 = 0.01, K2 = 0.03, L = 255.
PSNR essentially represents the error between the corresponding pixels. The

higher its value, the better the quality of the density map. SSIM measures the
similarity between the predicted density map and the ground truth in terms of
brightness, contrast and structure. The higher its value, the smaller the image
distortion.

Implementation Details. We utilize the pre-trained VGG-16 to initialize the
parameters of the first five stages of our model, and parameters of the other
convolutional layers are initialized randomly using a Gaussian distribution with
δ = 0.01. Both upsampling and downsampling operations are simulated using
bilinear interpolation. We use Adam optimizer to train our network for 200
epochs, and the learning rate is initially set to 1e−5. And the network is trained
by minimizing the Euclidean distance between the estimated density map and
the ground truth. The loss function is defined as:

L(Θ) =
1

2N

N∑

i=1

||F (Xi;Θ) − Di||22 (12)

where N is the number of training images, Xi is the ith input image, F (Xi;Θ)
denotes the estimated density map, Di represents the ground truth density map.

4.3 Comparisons with the State-of-the-Art

ShanghaiTech. We compare our method with several state-of-the-art methods
and the comparison results are listed in Table 1. On Part A, our method obtains
the MAE improvement by 4.28% and RMSE improvement by 4.46% compared
to the second-best result. On Part B, our method achieves the MAE and RMSE
improvements by 4.31% and 4.61%, respectively, compared to the second-best
result.

UCF CC 50. The UCF CC 50 dataset has a huge challenge and we evaluate
our method according to 5-fold cross-validation [12]. As shown in Table 1, we
compare our method with the current state-of-the-art methods. Our method
has a very significant improvement, with MAE and RMSE improved by 18.57%
and 18.69%, respectively, compared to the latest CFANet method. Despite the
limited training samples, our method converges well in this dataset.
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Table 1. Comparisons of GCMNet and state-of-the-art methods on three datasets.

Dataset Part A Part B UCF CC 50 UCF-QNRF

Method MAE RMSE MAE RMSE MAE RMSE MAE RMSE

MCNN [30] 110.2 173.2 26.4 41.3 377.6 509.1 277.0 426.0

CSRNet [12] 68.2 115.0 10.6 16.0 266.1 397.5 120.3 208.5

TEDNet [10] 64.2 109.1 8.2 12.8 249.4 354.5 113 188

BL [16] 62.8 101.8 7.7 12.7 229.3 308.2 88.7 154.8

ASNet [9] 57.78 90.13 – – 174.84 251.63 91.59 159.71

AMSNet [6] 56.7 93.4 6.7 10.2 208.4 297.3 101.8 163.2

AMRNet [15] 61.59 98.36 7.02 11.00 184.0 265.8 86.6 152.2

CFANet [19] 56.1 89.6 6.5 10.2 203.6 287.3 89.0 152.3

GCMNet(ours) 53.7 85.6 6.22 9.73 165.8 233.6 84.7 148.1

UCF-QNRF. Table 1 shows the MAE and RMSE of our method as well as the
state-of-the-art methods on UCF-QNRF dataset. The proposed method is com-
pared with eight methods. It can be observed that the proposed method is able
to yield the best performance on this dataset. The MAE exceeds the second-best
method by 2.19% and RMSE improves over the second-best method by 2.69%.

WorldExpo’10. Our method is compared with six state-of-the-art methods.
In Table 2, we give the comparison results of MAE for each scene. Our proposed
method obtains the best performance in scene 1 (sparse crowd S1), scene 4 (dense
crowd S4). Moreover, the best average MAE performance is also achieved.

Table 2. Comparisons of GCMNet and state-of-the-art methods on WorldExpo’10.

Dataset WorldExpo’10

Method S1 S2 S3 S4 S5 Ave

TEDNet [10] 2.3 10.1 11.3 13.8 2.6 8.0

ADCrowdNet [13] 1.6 13.2 8.7 10.6 2.6 7.3

CAN [14] 2.9 12.0 10.0 7.9 4.3 7.4

PGCNet [27] 2.5 12.7 8.4 13.7 3.2 8.1

RPNet [28] 2.4 10.2 9.7 11.5 3.8 8.2

ASNet [9] 2.22 10.11 8.89 7.14 4.84 6.64

GCMNet (ours) 1.43 10.22 8.47 7.04 2.84 6.00

In this section, we first conduct experiments on four datasets and then com-
pare our model quantitatively with several state-of-the-art methods. It is clearly
seen from the results that our method achieves the best performance on Shang-
haiTech, UCF CC 50 and UCF-QNRF datasets, and outperforms some of the
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Fig. 5. Sample results of the GCMNet on ShanghaiTech dataset. The first row shows
the samples of the input image. The second row shows the ground truth for each sample
while the third row presents the density map generated by GCMNet. The number in
each density map denotes the count number.

current state-of-the-art methods on WorldExpo’10 dataset. And the predicted
density maps on ShanghaiTech dataset is also given and compared with the
ground truth, as shown in Fig. 5. It can be obviously seen from the figures that
our method is advanced for crowd counting in different scenes. Regardless of
highly crowded or sparse crowd counting scenes, we effectively address the scale
variation in crowd counting. Our method effectively uses multi-scale features for
accurate crowd counting.

4.4 Comparison of Density Map Quality

In this section, we compare our method with other representative methods:
MCNN, CP-CNN, CSRNet, CFF and SCAR in PSNR and SSIM.

Table 3. Comparisons of PSNR and SSIM of GCMNet and representative methods
on ShanghaiTech Part A.

Method PSNR SSIM

MCNN [31] 21.4 0.52

CP-CNN [24] 21.72 0.72

CSRNet [12] 23.79 0.76

CFF [21] 25.4 0.78

SCAR [4] 23.93 0.81

GCMNet(ours) 28.66 0.84

As shown in Table 3, our GCMNet achieves the highest SSIM and PSNR. In
particular, we get PSNR of 28.66 and SSIM of 0.84 on ShanghaiTech Part A
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dataset. Compared with SCAR, the PSNR and SSIM are improved by 19.77%
and 3.70%, respectively. The results show that our method has a significant
advantage in generating high-quality density maps.

4.5 Ablation Study

In this section, we conduct ablation study on ShanghaiTech dataset to verify the
effectiveness of each module in our network and analyze the impact of different
network combinations on the counting performance.

Table 4. Results of ablation study on ShanghaiTech Part A and Part B datasets.

Dataset Part A Part B

Configuration MAE RMSE MAE RMSE

VGG-16 78.3 120.1 18.3 22.9

VGG-16+MCIEM 66.8 102.3 14.7 17.9

VGG-16+MCIEM+Hopping Cascade 57.1 90.7 8.5 11.6

VGG-16+MCIEM+Hopping Cascade+GISDM 53.7 88.6 6.22 9.73

We use four different combinations to test our model:

(1) VGG-16: VGG-16 first 13-layer network with 32-fold upsampling operations
at the end.

(2) VGG-16+MCIEM: VGG-16 first 13-layer network with MCIEM for extract-
ing multi-scale contextual information and 32-fold upsampling operations at
the end.

(3) VGG-16+MCIEM+Hopping Cascade: VGG-16 first 13-layer network with
MCIEM for extracting multi-scale contextual information and hopping cas-
cade module for cascading the hopping features fe

3 , fe
4 , fe

5 with the upsam-
pling features fd

3 , fd
4 , fd

5 .
(4) VGG-16+MCIEM+Hopping Cascade+GISDM: our proposed method.

We give the experimental results of ablation study in Table 4. It can be seen
that directly using VGG-16 for feature extraction does not necessarily yield the
best performance. After injecting MCIEM into the network for multi-scale fea-
ture extraction, the counting error is greatly reduced compared to the previous
stage. Further improvements are made by adding the hopping cascade module,
and the results show that, as with MCIEM, the performance of the model is sub-
stantially improved and the counting error is substantially reduced. Finally, the
embedded GISDM adaptively performs information delivery, which further opti-
mizes the effect of crowd counting. In conclusion, our proposed final model achieves
the best performance and further accuracy in estimating the crowd. Each of the
structures added to our model is effective and complementary to each other. The
counting results are significantly better in the case of both high-density and low-
density scenes. Figure 6 gives the stage density maps of the ShanghaiTech Part B
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dataset during the ablation study, and it is observed that our final model improves
on the previous missing (yellow circles) and redundant (red circles) counts, effec-
tively addressing the problem of scale variation. Our model achieves accurate den-
sity estimation and produces high-quality density maps.

92.2394.98

79.435

90.52
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88

78 73.7
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(a) (b) (c) (d) (e) (f)

Fig. 6. Stage results of ablation study on ShanghaiTech Part B dataset. (a) Input
image, (b) Ground Truth, (c) Baseline (VGG-16), (d) VGG-16+MCIEM, (e) VGG-
16+MCIEM+Hopping Cascade, (f) Ours. The number in each density map denotes
the count number. The yellow and red circles label the missing and redundant counts
of the Baseline method, respectively.

5 Conclusion

This paper proposes a novel end-to-end Gated Cascade Multi-scale Network
(GCMNet), which effectively solves the problem of rapid scale variation in crowd
counting. With the MCIEM, our GCMNet can capture global context at multiple
scales. Then we introduce a hopping cascade module to make full use of the pixel-
level image detail information. Subsequently, we design a GISDM to selectively
integrate multi-level features by adaptively delivering valid information. Finally,
the multi-level features are used to generate the final density maps. Extensive
experimental results on four datasets show that our GCMNet is superior under
different evaluation metrics. In the future, we will explore better methods to
perform multi-scale feature extraction and effective integration of multi- level
features.

Acknowledgement. This work is supported by the National Natural Science Foun-
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