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Abstract. Dependency-based models for the named entity recognition
(NER) task have shown promising results by capturing long-distance
relationships between words in a sentence. However, while existing mod-
els focus on the syntactic dependency between entities, we are unaware of
any work that considers semantic dependency. In this work, we study the
usefulness of semantic dependency information for NER. We propose a
NER model that is guided by semantic dependency graphs instead of syn-
tactic dependency trees. The extensive experiments illustrate the effec-
tiveness of the proposed model and the advantages of semantic depen-
dency over syntactic dependency for NER. Also, it shows correlations
between the NER performance and the semantic dependency annota-
tions qualities.

Keywords: Named entity recognition · Syntactic dependency ·
Semantic dependency · Graph neural network

1 Introduction

Named Entity Recognition is one of NLP tasks to recognize named entities from
texts belonging to pre-defined semantic types such as person, date, events, loca-
tion, etc. [21,23]. NER has attracted wide interest not only as a standalone task
of information extraction, but also as an essential semantic information extrac-
tion step for downstream Natural language processing(NLP) tasks such as entity
linking [25], entity relationship extraction [16], and semantic parsing [4].

Meanwhile, research in linguistic dependency theory shows that there exists
a subject-subordinate relationship between words, and such a dependency struc-
ture could also capture useful semantic information within sentences. Based on
such insight, there have been quite some research efforts in enhancing NER mod-
els through grammar dependency features, with several valuable features proposed
based on syntactic dependency structures [9,10,24]. As highlighted in [9], there is
a clear correlation between the entity types and the dependency relations, which
can enhance the prediction of named entities with various dependency types.
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Fig. 1. Examples annotated with linguistic dependencies and named entities.

Figure 1 contains two sentences adapted from the SemEval-2015 task 18
English dataset (DM) [18], and it illustrates the relationship between language
dependency structures and named entity types. Some words or phrases in the
sentences are annotated with named entity types, such as ORG for organization
and CARDINAL for numerals that do not fall under another type [21]. Also, the
dependency relationship between words is expressed as labeled arcs. In particu-
lar, arcs in sentences ST1 and ST3 describe the syntactic dependency between
words, with tags such as nn for noun compound modifier and nsubj for a nom-
inal subject. On the other hand, the arcs in sentences ST2 and ST4 describe
the semantic dependency between words, with tags such as poss for possession
relations and part for measuring partitives(vague part-whole) relations.

There are several differences between syntactic and semantic dependency.
First, it is obvious that the arcs and the tags in these two types of dependency
convey different information. Secondly, as shown in the above example, syntactic
dependency (in ST1 and ST3) always forms a dependency tree, where each word
has only one head parent node. On the other hand, semantic dependency (in
Fig. 1 ST2 and ST4) is a directed acyclic graph (DAG). For instance, the word
seats in ST2 and ST4 has multiple head words three, Energy, seven, and
board. Thirdly, semantic dependency structure is often preserved under simple
rephrasing, whereas it is not the case for syntactic dependency. Note that ST3
and ST4 are rephrasing of ST1 and ST2, and hence the semantic dependency
graph is preserved from ST2 and ST4, but the syntactic dependency tree changes
from ST1 to ST3. This is an advantage of semantic dependency. Finally, each
word in a syntactic dependency tree (e.g., ST1 and ST3) has an arc, but it is
not the case for semantic dependency graphs (e.g., ST2 and ST4).
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The long-distance dependency has been found valuable for capturing non-
local structural information [5], and distributed hybrid representation deep learn-
ing models have been deployed to capture both syntactic and semantic features
of words. As discussed before, syntactic dependency has been applied to increase
the performance of NER, whereas we are unaware of any work on using seman-
tic dependency for NER. Hence, the usefulness of semantic dependency and the
complex long-distance interactions conveyed in such structures are unexplored,
and how to use such information to enhance the word embedding in NER remains
an open question.

In this work, we present the first study on leveraging semantic dependency for
NER to the best of our knowledge. The significant contributions are as follows.
We propose a BiLSTM-GCN-CRF model to capture the contextual information
and the long-distance semantic relationship between words for enhancing the
representation of the words for the NER task. Nevertheless, there is no exist-
ing NER dataset that contains semantic dependency annotations. Hence, we
apply existing semantic parsing models to predict semantic dependency relations
for OntoNotes 5.0 Chinese and English datasets [21], the CoNLL-2003 English
dataset [23]. Finally, our extensive experiments result on these corpora shows the
effectiveness of the proposed model and the advantage of semantic dependency
features over syntactic dependency for NER. Also, it shows correlations between
the NER performance and the semantic dependency annotations qualities.

2 Related Work

Existing works focus on learning distributed representations that capture seman-
tic and syntactic properties of words. Besides word-level (e.g., GloVe [19], Fast-
Text [26], ELMo [20]) and character-level [2] representations, additional informa-
tion is often incorporated into the representations before feeding them into con-
text encoding layers. For example, the BiLSTM-CRF model [8] uses four types
of features: spelling, context, and gazetteer features, as well as word embed-
dings. Some recent works make use of linguistic dependency information as an
additional feature [10,13]. Jie et al. [9] incorporate syntactic dependency struc-
tures to capture long-distance syntactic interactions between words. Aguilar et
al. [1] also consider syntactic tree structures with relative and global attentions,
and Nie et al. [17] incorporate syntactic information into neural models. These
approaches all make use of the syntactic dependency information, but have not
considered semantic dependency.

Syntactic and semantic dependency can be extracted by dependency pars-
ing, using bi-lexicalized dependency grammar [27]. Syntactic dependency pars-
ing reveals shallow semantic information in sentences [7]. In contrast, we could
regard semantic dependency parsing (SDP), based on dependency graph parsing,
as an extension of syntactic dependency parsing that characterizes more seman-
tic relations [18]. Hence, in this paper, we study NER models with semantic
dependency information.



290 P. Wang et al.

As we are unaware of any dataset with both human annotated named entities
and their semantic dependency, we need to obtain semantic dependency using
existing SDP models. Through comparing the performance of existing models
on SDP corpora, including the task 9 of SemEval 2016 [3], and the task 18
of SemEval 2015 [18], we selected two SDP models provided by NLP toolkits
HanLP1 and SuPar2.

3 Model

This section first briefly introduces the BiLSTM-CRF model [12], which is the
base for our model. Then we introduce our NER model Sem-BiLSTM-GCN-
CRF, which builds a GCN on top of the linear-chain structure in BiLSTM-CRF
to process complex semantic dependency graphs.

3.1 BiLSTM-CRF

The BiLSTM-CRF model turns the NER problem into a sequence labeling prob-
lem. For an input sequence x = x1, x2, . . . , xi, . . . , xn with n tokens, we need
to predict the corresponding label sequence y = y1, y2, . . . , yi, . . . , yn, defined
according to the BIO, IOBES or IOB tagging schemes [22]. The CRF [11] tags
the entity types, i.e., given x, scoring the label sequence y:

P (y | x) =
exp

(
score(x,y)

)

∑
y′ exp

(
score(x,y′)

)

The label prediction sequence has the highest output score [12], which means
the final prediction is the sequence y with the highest score in all output label
sequences. We can get the output score by summing the transitions score and
emissions score from the Bi-LSTM:

score(x,y) =
n−1∑

i=1

Tyi,yi+1 +
n∑

i=1

Ei,yi
,

where T is the transitions matrix with Tyi,yi+1 being the transition parameter
from yi to yi+1, and E is the emissions matrix obtained by the hidden layer
of the BiLSTM with Ei,yi

being the score of the label yi in the sentence’s i-th
position.

3.2 Sem-BiLSTM-GCN-CRF

To guide the BiLSTM-CRF model with semantic dependency information, we use
GCN to process such dependency graphs. Unlike [28], which uses only adjacency
matrices to capture dependency edges between words, our model also processes
1 HanLP: https://github.com/hankcs/HanLP.
2 SuPar: https://github.com/yzhangcs/parser.

https://github.com/hankcs/HanLP
https://github.com/yzhangcs/parser
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dependency tag information. GCN has also been considered in [9] to incorpo-
rate syntactic dependency information. Processing semantic dependency graphs
are more involved than syntactic ones, as the latter are tree-shaped, whereas the
former is not necessarily so. This is why using an MLP layer instead of GCN in
the model [9] improves its performance, as MLP is sufficient to capture depen-
dency trees, but it cannot handle multi-head relationships in semantic depen-
dency graphs. On the other hand, the dependency graphs need to be cleaned before
being input to the GCN. This is because some of the edges are often erroneous or
irrelevant, which is common in automatically constructed dependency graphs. To
address this issue, we employ the edge-wise gating parameters for specific depen-
dency relations. Hence, we use GCN with edge-wise gating for encoding semantic
dependency, and our model combines BiLSTM with directed GCN, using CRF as
the final layer. The architecture of our model Sem-BiLSTM-GCN-CRF is shown
in Fig. 2.3 To represent the input, each word is represented by the concatenation u
of the word embedding w, its context-based word vector v from ELMO [20], and
its character-based representation t from GloVe [19] for English and FastText [6]
for Chinese. That is, u = w ⊕ t ⊕ v. And then, the BiLSTM layer captures the
contextual information of in u.

Fig. 2. BiLSTM-GCN-CRF. Dashed connections mimic the dependency edges.

Following most of the implementation for context-based GCN [9,14,28], we
stack the GCN layer on top of LSTM to capture the semantic dependency rela-
tionship between the words to enrich the representation of words. As discussed
before, some semantic-dependency prediction models use directed acyclic graphs
3 The named entity tags use the BIO labeling scheme: B-LOC labels the beginning of a

location entity, I-LOC represents the inside word of the named entity, and O-LOCmeans
outside a named entity.
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(DAG) for dependency parsing. Thus in a dependency graph, each node (word)
may have more than one head node (word) (as shown in Fig. 1). Using GCN
allows our model to effectively capture global information and gives substantial
speedup as it does not involve recursive operations that are difficult to parallelize.
We treat the dependency graph as undirected and build a symmetric adjacency
matrix during the GCN update. The final GCN computation is formulated as:

h(l)
i = ReLU

( n∑

j=1

Aij(W
(l)
1 h(l−1)

j + W(l)
2 h(l−1)

j wrij + b(l−1)
rij )

)
(1)

where h(l)
i is the output vector at the i-th position in the l-th layer, Ai,j is

a value in the adjacency matrix A, and wrij is the weight of the dependency
relation ri,j . We use parameter matrix W1 for self connections and matrix W2

for dependency. For L layers of GCN in the model, h(L)
1 , . . . ,h(L)

n are the output
word representations. Finally, the last layer is CRF.

4 Experiment

We evaluate our model’s performance on commonly used datasets by comparing
it with the state-of-the-art NER models based on syntactic dependency infor-
mation and analyzing the behavior of our model in different configurations.

4.1 Datasets

There are datasets with human annotated named entities and their syntactic
dependency, including the Chinese and English OntoNotes 5.0 datasets [21].
We chose these datasets because they have syntactic dependency annotation, so
that we can compare our model with those using such information. Yet, we are
unaware of any open datasets of this type with annotated semantic dependency.
Hence, in our experiments, we had to use existing prediction models to generate
semantic dependency annotations. Besides OntoNotes 5.0, we also adopted the
CoNLL 2003 English dataset [23].

All of these datasets contain part-of-speech tags that can be used to gener-
ate semantic dependency annotations. For example, they are used as the input
feature of HanLP. Another toolkit SuPar is also used to generate the semantic
dependency tags for evaluating the effect of different semantic dependency infor-
mation (predicted by different models) on our performance. The English SDP
models of SuPar are trained on the DM, PAS, and PSD datasets from SemEval-
2015 task 18 [18], while Chinese models are trained on TEXT domain data of
corpora from SemEval-2016 Task 9 [3].

4.2 Experimental Setup

We used BiLSTM-CRF [12] as the baseline model, which incorporates either
syntactic or semantic dependency information. At the same time, we also feed
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syntactic dependency to our BiLSTM-GCN-CRF model, denoted Syn-BiLSTM-
GCN-CRF model, as another baseline for comparing the benefits of syntactic and
semantic dependency. In addition, we also compared our model to the DGLSTM-
CRF model [9], the state-of-the-art syntactic dependency NER model.

The system configurations are based on [9] and our parameter tunings. The
hidden layer size is set to 200 in the LSTM and GCN models. We use the
GloVe [19] with 100-d word embeddings for English text, and FastText [6] word
embeddings for Chinese text. ELMo [20] is used for both English and Chinese
texts in our experiments for deep contextualized word representations. Our mod-
els are optimized by mini-batch stochastic gradient descent, which learning rate
is 0.01. The L2 regularization parameter is 1e-8. We train for 300 epochs with a
clipping rate of 3.

4.3 Main Results

Our model are compared with existing models on the three datasets, OntoNotes
5.0 Chinese (OntoNotes CN), English (OntoNotes EN), and CoNLL-2003 English
(CoNLL). For each compared model, we used the numbers of LSTM/GCN layers
that gave the best performance; for instance, BiLSTM(2)-CRF has a 2 LSTM
layers and BiLSTM(1)-GCN(1)-CRF has 1 LSTM lay and 1 GCN layer. All
the inputs are concatenated with the ELMo representations. We used SuPar to
generate the semantic dependency tags. The Dependency column shows whether
dependency information is not included (-), or it is provided with the datasets
(gold), or it is generated. If the dependency is generated, we record the F1 score
of the generating models and the text corpus they are trained on4. Table 1 shows
the results, where those for BiLSTM-CRF and DGLSTM-CRF are from [9,12].

On all the three datasets, Sem-BiLSTM-GCN-CRF outperforms the base-
line BiLSTM-CRF and Syn-BiLSTM-GCN-CRF in most of the metrics. Note
that Sem-BiLSTM-GCN-CRF and Syn-BiLSTM-GCN-CRF have similar model
architecture, and the only difference is the type of dependency used. Also, on
OntoNotes CN and EN, Syn-BiLSTM-GCN-CRF uses dependency information
that comes from the datasets, where Sem-BiLSTM-GCN-CRF uses dependency
generates. Furthermore, on OntoNotes CN and CoNLL, the performance of Syn-
BiLSTM-GCN-CRF is not as good as BiLSTM-CRF, which shows the GCN
encoding of syntactic dependency may not always benefit the NER task. Hence,
overall it suggests the advantages of semantic dependency compared to syntactic
dependency in NER.

Compared to DGLSTM-CRF, Sem-BiLSTM-GCN-CRF achieves the state-
of-the-art recall performance on OntoNotes CN. Furthermore, while its perfor-
mance is closely after DGLSTM-CRF with “gold” dependency, it consistently
outperforms DGLSTM-CRF with generated dependency in all the other cases.

4 TEXT is the textbook corpus from SemEval-2016 Task 9, DM is the DELPH-IN
corpus from SemEval-2015 Task 18, PAS is the Enju corpus from SemEval-2015
Task 18, PSD is the Prague corpus from SemEval-2015 Task 18, and LAS is the
English Penn Treebank (PTB) corpus [15].
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Table 1. Comparison on OntoNotes 5.0 Chinese/English and CoNLL-2003 English.

Dataset Model (+ELMo) Dependency Prec. Rec. F1

OntoNotes CN BiLSTM(1)-CRF - 79.20 79.21 79.20

Syn-BiLSTM(1)-GCN(1)-CRF Gold 78.71 79.29 79.00

Sem-BiLSTM(1)-GCN(1)-CRF 80.41 (TEXT) 78.30 81.05 79.65

Sem-BiLSTM(1)-GCN(2)-CRF 79.10 80.60 79.84

DGLSTM(2)-CRF 89.28 - - 79.59

DGLSTM(2)-CRF Gold 78.86 81.00 79.92

OntoNotes EN BiLSTM(2)-CRF - 88.25 89.71 88.98

Syn-BiLSTM(1)-GCN(2)-CRF Gold 89.40 89.71 89.55

Sem-BiLSTM(1)-GCN(1)-CRF 92.32 (DM) 89.22 90.10 89.65

Sem-BiLSTM(1)-GCN(2)-CRF 88.78 89.90 89.34

Sem-BiLSTM(1)-GCN(1)-CRF 93.43 (PAS) 89.18 90.04 89.61

Sem-BiLSTM(1)-GCN(2)-CRF 88.98 89.77 89.37

Sem-BiLSTM(1)-GCN(1)-CRF 82.64 (PSD) 88.73 90.25 89.49

Sem-BiLSTM(1)-GCN(2)-CRF 88.00 89.10 88.55

DGLSTM(2)-CRF 94.89 - - 89.64

DGLSTM(2)-CRF Gold 89.59 90.17 89.88

CoNLL BiLSTM(2)-CRF - 92.10 92.30 92.20

Syn-BiLSTM(1)-GCN(1)-CRF 95.86 (LAS) 91.93 92.26 92.09

Sem-BiLSTM(1)-GCN(1)-CRF 92.32 (DM) 92.21 92.49 92.35

DGLSTM(2)-CRF 94.00 92.20 92.50 92.35

This shows the competitiveness of our model compared to DGLSTM-CRF on
generated dependency.

For the configurations of GCN layers, when it is increased from 1 to 2, in
most of the cases, the NER performance of our model decreases. Hence, it seems
GCN with a single layer is sufficient to capture the semantic dependency. We
have also evaluated our model jointly with syntactic and semantic dependency
features in a naive manner, which gave a suboptimal performance as compared
to the semantic based NER model. It is potentially due to the inequality of
the two types of information, as semantic dependency edges are often orders
of magnitude more than those syntactic ones. Hence, the syntactic dependency
information may not be effectively utilized. We leave the study of a joint model
as future work.

4.4 Effect of Dependency Quality

The previous set of experiments shows the difference between gold-standard and
predicted syntactic dependency in NER performance. To evaluate the impact
of the quality of semantic dependency on the NER performance, we used the
SuPar and Hanlp toolkits for comparison. As a result, semantic dependency tags
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with different accuracy, measured by their F1 scores, are generated for OntoNote
5.0 and ConLL-2003 datasets. Also, SuPar and Hanlp have different data pre-
processing methods, and their dataset segmentation sizes are different. Figure 3
shows the NER accuracy (NER F1 scores) of our model using semantic depen-
dency of various quality (dependency parsing F1 scores). A strong correlation
between the NER accuracy and dependency accuracy, which shows the potential
of our model with high-quality dependency annotations.

Fig. 3. Correlations between NER performance and semantic dependency quality.

5 Analysis

To further analyze why a NER model could benefit from semantic dependency
information, we show the heat maps in Fig. 4) on the named entity types and the
corresponding semantic dependency edges in the OntoNotes Chinese dataset.
The x-axis lists various semantic dependency annotations, the y-axis is the
named entity annotations, and each value shows the percentage (%) of semantic
dependency edges with annotation x associated with the named entity type y.

Figure 4(a) shows the correlation between the entity types and the prediction
of dependency relations on the OntoNotes Chinese test dataset. Specifically, each
entry denotes the percentage of the entities with a parent dependency with a
specific dependency relation. We can see that most of the entities relate to the
Desc, Nmod, Quan dependencies. Especially the dependency relationship Quan
(i.e., Quantity) have more than 80% of the entity type CARDINAL and 58% of the
entity type QUANTITY associated to it, which suggests the semantic correlations.
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(a) Heap map on training data. (b) Heap map on NER prediction.

Fig. 4. Correlations and Percentage between the entity types (y axis) and the of seman-
tic dependency relations (x axis) in the OntoNotes Chinese dataset. Columns with
percentage less than 5% are ignored for brevity.

We can see that Fig. 4(a) and Fig. 4(b) are similar in terms of density. More-
over, both of them show consistent relationships between the entity types and
the dependency relations. The comparison further illustrates that our model
effectively captures the relations between the named entities and the semantic
dependency.

6 Conclusion

Motivated by the relationships between semantic dependency graph and name
entities, we propose a BiLSTM-GCN-CRF model to encode semantic informa-
tion from the semantic dependency toolkits effectively and then enhanced the
word representations. Through extensive experiments on multiple corpora, the
proposed model effectively uses and captures the long-distance semantic depen-
dency relationships between the words for improving NER performance. Our
experiment analysis shows that NER benefits more from semantic dependency
relations than syntactic dependency based on the same model. In addition, we
find the high-quality dependency parsing will positively affect the improvement
of NER. We leave studying a multi-feature fusion mechanism of syntactic and
semantic of full dependencies for NER and other information extraction domains
as future work.
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