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Preface

These three-volume proceedings contain the papers presented at the 18th Pacific Rim
International Conference on Artificial Intelligence (PRICAI 2021) held virtually during
November 8–12, 2021, in Hanoi, Vietnam.

PRICAI, which was inaugurated in Tokyo in 1990, started out as a biennial inter-
national conference concentrating on artificial intelligence (AI) theories, technologies,
and applications in the areas of social and economic importance for Pacific Rim
countries. It provides a common forum for researchers and practitioners in various
branches of AI to exchange new ideas and share experience and expertise. Since then,
the conference has grown, both in participation and scope, to be a premier international
AI event for all major Pacific Rim nations as well as countries from all around the
world. In 2018, the PRICAI Steering Committee decided to hold PRICAI on an annual
basis starting from 2019.

This year, we received an overwhelming number of 382 submissions to both the
Main track (365 submissions) and the Industry special track (17 submissions). This
number was impressive considering that for the first time PRICAI was being held
virtually during a global pandemic situation. All submissions were reviewed and
evaluated with the same highest quality standard through a double-blind review pro-
cess. Each paper received at least two reviews, in most cases three, and in some cases
up to four. During the review process, discussions among the Program Committee
(PC) members in charge were carried out before recommendations were made, and
when necessary, additional reviews were sourced. Finally, the conference and program
co-chairs read the reviews and comments and made a final calibration for differences
among individual reviewer scores in light of the overall decisions. The entire Program
Committee (including PC members, external reviewers, and co-chairs) expended
tremendous effort to ensure fairness and consistency in the paper selection process.
Eventually, we accepted 92 regular papers and 28 short papers for oral presentation.
This gives a regular paper acceptance rate of 24.08% and an overall acceptance rate of
31.41%.

The technical program consisted of three tutorials and the main conference program.
The three tutorials covered hot topics in AI from “Collaborative Learning and Opti-
mization” and “Mechanism Design Powered by Social Interactions” to “Towards
Hyperdemocary: AI-enabled Crowd Consensus Making and Its Real-World Societal
Experiments”. All regular and short papers were orally presented over four days in
parallel and in topical program sessions. We were honored to have keynote presen-
tations by four distinguished researchers in the field of AI whose contributions have
crossed discipline boundaries: Mohammad Bennamoun (University of Western
Australia, Australia), Johan van Benthem (University of Amsterdam, The Netherlands;
Stanford University, USA; and Tsinghua University, China), Virginia Dignum (Umeå
University, Sweden), and Yutaka Matsuo (University of Tokyo, Japan). We were
grateful to them for sharing their insights on their latest research with us.



The success of PRICAI 2021 would not be possible without the effort and support of
numerous people from all over the world. First, we would like to thank the authors, PC
members, and external reviewers for their time and efforts spent in making PRICAI
2021 a successful and enjoyable conference. We are also thankful to various fellow
members of the conference committee, without whose support and hard work PRICAI
2021 could not have been successful:

– Advisory Board: Hideyuki Nakashima, Abdul Sattar, and Dickson Lukose
– Industry Chair: Shiyou Qian
– Local/Virtual Organizing Chairs: Sankalp Khanna and Adila Alfa Krisnadhi
– Tutorial Chair: Guandong Xu
– Web and Publicity Chair: Md Khaled Ben Islam
– Workshop Chair: Dengji Zhao

We gratefully acknowledge the organizational support of several institutions
including Data61/CSIRO (Australia), Tsinghua University (China), MIMOS Berhad
(Malaysia), Thammasat University (Thailand), and Griffith University (Australia).

Finally, we thank Springer, Ronan Nugent (Editorial Director, Computer Science
Proceedings), and Anna Kramer (Assistant Editor, Computer Science Proceedings) for
their assistance in publishing the PRICAI 2021 proceedings as three volumes of its
Lecture Notes in Artificial Intelligence series.

November 2021 Duc Nghia Pham
Thanaruk Theeramunkong

Guido Governatori
Fenrong Liu
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Abstract. Sentiment time series is an effective tool to describe the trend
of users’ emotions towards specific topics over time. Most existing studies
generate time series based on predicted results of the sentiment classi-
fiers, which may not correspond to the actual values due to the lack of
labeled data or the limited performance of the classifier. To alleviate this
problem, we propose a calibrated-based method to generate time series
composed of accurate sentiment scores. The texts are embedded into
high dimensional representations with a feature extractor and then get
fine-tuned and compressed into lower dimensional space with the unsu-
pervised learning of an autoencoder. Then a deep clustering method is
applied to partition the data into different clusters. A group of represen-
tative samples are selected according to their distance from the clustering
centers. Finally combined the evaluation results on the sampled data and
the predicted results, the calibrated sentiment score is obtained. We build
a real-world dataset crawled from Sina Weibo and perform experiments
on it. We compare the distance errors of predicted-based method with
our calibrated-based method. The experimental results indicate that our
method reduces the uncertainty raised by sampling as well as maintains
excellent performance.

Keywords: Sentiment time series · Representative sampling · Deep
clustering

1 Introduction

Nowadays people tend to share their emotions and attitudes towards specific
topics online. Sentiment time series is an effective tool to analyze the change
patterns of users’ sentiment expressed in their posts over time. The posts are
divided into different time slices according to their post time and then are aggre-
gated to obtain the corresponding sentiment score. Sentiment time series is gen-
erated by connecting the sentiment scores in the time order. Figure 1 shows an
example of the sentiment time series generation.1

The key problem of sentiment time series generation is to obtain an accurate
sentiment score for each time point. Sentiment score is defined in many ways in
1 https://www.weibo.com.

c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13032, pp. 3–16, 2021.
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Fig. 1. An example of sentiment time series generation. The grouped texts belong to
time slice t1, tk, tn are aggregated to obtained the sentiment score of the time points
colored in red. (Color figure online)

existing works to describe the overall sentiment of the grouped texts, including
volume [8], percentage [1,6], velocity and acceleration [6], etc. No matter which
definition is applied, the numbers of posts showing different sentiment orienta-
tions (e.g. positive or negative) are required to obtain the sentiment score. Most
existing researches related to sentiment analysis aim to improve the classifica-
tion accuracy of individual text, while few attempt to estimate the sentiment
distribution in grouped texts.

We are motivated to make proportion estimation of the overall data based
on the evaluation results on a sampling subset. In order to reduce the sam-
pling error, we propose a sentiment calibration method based on representative
sampling which could estimate the sentiment distribution in a stable way. Like
other sentiment classification methods, the texts are passed through a classifier
to obtain the predicted labels. Meanwhile, the high-dimensional embeddings of
the texts are acquired from the output layer of the classification model, which
are encoded with semantic features. Then the embeddings get fine-tuned and
compressed under the unsupervised learning of an autoencoder. Based on the
sentence embeddings we assign the data to different clusters by means of a deep
clustering algorithm Deep k-Means (DKM) [14]. The k closest samples to the
clustering centers are selected as representative samples by measuring the dis-
tance between the sample and its cluster centroid. Finally, we combine the pre-
dicted labels and the approximate evaluation results to obtain the corresponding
sentiment score. The main contributions of our work can be summarized as the
following:
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– We propose a calibrated-based method to obtain accurate sentiment scores,
which could estimate the sentiment distribution in a group of texts.

– Our proposed method requires only a small part of data to be labeled for
distribution estimation, which reduces a lot of annotation work.

– With the use of encoded semantic representations and representative sampling
strategy in the calibration process, the uncertainty caused by sampling is
reduced while excellent performance is maintained.

2 Related Work

Sentiment time series has been widely used to describe the sentiment of users’
online posts changing over time. It has been proved that sentiment time series
analysis is effective in a variety of applications including politics, economics,
public affairs and so on. Giachanou and Crestani [6] plot the sentiment time
series of tweets and retweets containing the key word ‘Michelle Obama’, the
sudden changes in which are found to have relations with Michelle Obama’s
political activities. Lansdall-Welfare et al. [12] generate time series of five affect
components (positive, negative, anger, anxiety and sadness) of the public mood
during the Brexit Referendum in UK. The change-points in the time series are
identified to be corresponded with several real-life events. Daniel et al. [3] extract
feelings implicit in tweets to detect and find the popularity of special events
that may influence the financial market. An et al. [1] track public discussions
on climate change to detect the connections between short-term fluctuations in
sentiment and major climate events.

Based on sentimental classification results of individual texts, existing
researches exploit various indicators to describe the sentiment trend. The most
explicit way is to use the volume of tweets showing different sentiment orienta-
tions. The volume trend of tweets is helpful in analyzing the change patterns of
users’ attitudes [8]. The percentage of different sentiment polarities is another
commonly-used indicator to measure the public mood. An et al. [1] have shown
the significance of the sentiment polarity percentage in climate opinion stud-
ies by identifying sudden changes in the sentiment of twitters regarding climate
change. In [6] the sentiment velocity and acceleration are proposed to represent
the sentiment change rate. Plotting sentiment velocity and acceleration is useful
not only to observe how a specific sentiment changes but also to detect if there
is any emerging sentiment.

Most of the sentiment indicators are defined based on the predicted result of
individual text, which is obtained by sentiment classifiers. A lot of classification
models have been proposed to identify the sentiment polarity at a sentence level,
including lexicon-based models [2,8], machine-learning methods [5,13,15,19] and
deep-learning methods [9,10,16,18]. Most of the sentiment classification studies
focus on correct classification of individual text, while few pay attention to the
proportion estimation of different sentiment polarities. Even if a model shows
excellent performance on sentiment classification for individual text, it could still
lead to severe bias in sentiment proportion estimation. We propose a calibrated-
based method to estimate the sentiment distribution for grouped texts based on
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evaluation results of representative samples, making the calibrated score closer
to the ground-truth.

3 Methods

In this section, we introduce our proposed method for sentiment calibration
in detail. On the first stage the texts are sent into a sentiment classifier to
obtain the predicted labels as well as high-dimensional representations of the
sentences. Secondly, the sentence embeddings are fed into an autoencoder and
jointly trained with a deep clustering model. Based on clustering results, we
select part of the samples from each cluster as representative samples. Finally, we
combine the evaluation results on the representative samples and the predicted
results to work out the calibrated sentiment score. The framework of our method
is illustrated in Fig. 2.

Fig. 2. Framework of our method for sentiment calibration.

3.1 Sentence Embedding

It is essential to obtain a sentence embedding suitable for clustering on the first
stage. We expect an elaborate embedding which could extract the sentimental
features and map the sentence to a high-dimensional space. We exploited the
BERT [4] model as the feature extractor as well as the based sentiment classifier.
BERT conducts pre-training tasks on top of the deep bidirectional Transformer
and shows comparable performance on a variety of downstream tasks. A two-way
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classification layer is added to the pre-trained model to predict the sentiment
labels of the sentences.

The hidden representation of the [CLS] token in BERT is utilized as the
sentence embedding. During the training process of sentiment classification,
the [CLS] token summarizes the information of contextual tokens via a self-
attention mechanism, and thus it could capture sentence-level characteristics.
Let X = {x1, x2, ..., xn} denote the dataset, H = {h1, h2, ..., hn} ∈ R

d×n denote
the sentence embeddings, where d is the dimension of the hidden representation.
Let Y p = {yp

1 , y
p
2 , ..., y

p
n} denote the predicted labels of the data, yp

i ∈ {0, 1} for
a binary classification problem. Given a sample xi, the sentence embedding hi

and the predicted label yp
i are generated as follows:

hi = BERT (xi)
yp

i = arg max
C

(Whi + b) (1)

where W ∈ R
d×2, b ∈ R

2, C = {0, 1} is the set of the labels.

3.2 Representative Sampling

Representative sampling module aims to select representatives samples from a
group of texts. Clustering is commonly used in representative sampling. With
clustering the data can be partitioned into different groups according to their
intrinsic features. We sample a fixed proportion r of data from the clusters to
compose the representatives of the overall data.

The original sentence embeddings, however, are not reliable enough for clus-
tering. The classifier has failed to distinguish between the texts with the same
predicted label, and thus it is hard for a clustering model to separate sam-
ples with the same polarity. Besides, clustering algorithms based on distance
metrics may no longer be effective in a high dimensional space. In order to
obtain adapted embeddings for clustering, an unsupervised autoencoder struc-
ture is utilized to adjust and compress the embeddings. With autoencoder the
predicted-based embeddings get fine-tuned for clustering as well as keep informa-
tive features from the classification task. Since it is hard for the original k-means
algorithm to be implemented with the optimization of gradient descending, we
follow the soft-k-means [14] method instead to perform the joint-training task
of auto-encoder and k-means clustering. The loss of the problem is consisted of
two parts: 1) a reconstruction loss of the auto-encoder; 2) a clustering loss of
k-means objective function, combined with a parameter λ to trade-off between
two parts.

min
θ

L(θ) = Lr(θ) + λLc(θ) (2)

The reconstruction loss of autoencoder is depicted as:

Lr(θ) = min
ϕ

n∑

i

||xi − gϕ(fθ(xi))||2 (3)
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where fθ and gϕ denote the encoder and decoder function respectively.
The formulation of the k-means loss is given by:

Lc(θ) =
n∑

i

K∑

k

||fθ(xi) − μk||2Gk,f (fθ(xi), α;R) (4)

where μk is the center representation of the kth cluster, and Gk,f takes the
following form:

Gk,f (fθ(xi), α;R) =
e−α||fθ(xi)−μk||2

∑K
k′ e−α||fθ(xi)−μ′

k||2 (5)

where R = {μ1, ..., μK} denotes the set of clustering centers.
Based on clustering results, the ns closest samples to the clustering centroid

are selected as the representatives of the individual cluster. The sampling size
ns is dependent on the sampling rate r. In our method we use euclidean distance
to measure the distance between the embeddings and the clustering centroids.

3.3 Sentiment Score Calibration

Evaluation results on representative samples can be obtained with:

rp =
TPs

TPs + FNs
rn =

TNs

TNs + FPs
(6)

pp =
TPs

TPs + FPs
pn =

TNs

TNs + FNs
(7)

a =
TPs + FPs

TPs + FPs + TNs + FNs
(8)

where {rp;rn}, {pp;pn}, a denote the indicators of recall, precision and accuracy
on the sampling dataset respectively. Based on the relationship between evalua-
tion indicators and the predicted labels the sentiment score can be worked out.
The sentiment score is simply defined as the difference between the numbers of
positive and negative texts:

Npos =
n∑

i

I(yg
i = 1) Nneg =

n∑

i

I(yg
i = 0) (9)

sg = Npos − Nneg (10)

where yg
i ∈ {0, 1} is the groundtruth label of the sample xi. sg is the groundtruth

sentiment score of a group of texts with size n.
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With sampling accuracy and recall the calibrated score can be formulated
as:

sc(rp, a) = npos ∗ (
2a

2rp − 1
− 1) + nneg ∗ (

2a − 2
2rp − 1

− 1) (11)

or

sc(rn, a) = npos ∗ (
2 − 2a

2rn − 1
+ 1) + nneg ∗ (

−2a

2rn − 1
+ 1) (12)

With sampling accuracy and precision the calibrated score is given by:

sc(pp, a) = npos ∗ (4pp − 2a − 1) + nneg ∗ (1 − −2) (13)

or

sc(pn, a) = npos ∗ (2a − 1) + nneg ∗ (2a − 4pn + 1) (14)

where npos =
∑n

i I(yp
i = 1), nneg =

∑n
i I(yp

i = 0) represent the numbers of
positive and negative samples in predicted results respectively.

Proof. The relationship between evaluation indicators (i.e. TP, FP, TN, FN) and
the numbers of texts can be depicted as following:

TP + FP = npos FN + TN = nneg (15)
TP + FN = Npos FP + TN = Nneg (16)

Combined with equations in (8), the solution of the equations gives (11)–(14).

The overall process of the sentiment calibration method is illustrated in Algo-
rithm 1. For representative sampling we employ the joint training of the autoen-
coder and soft k-means model, the details of which is shown in Algorithm 2.

4 Experiment

In this section, we introduce the exprimental settings and results on our self-
created dataset.

4.1 Dataset

We crawled 303,426 microblogs related to the topic ‘Game of Thrones’ from
Weibo. The span of the post time varies from April 1st to May 31st in 2019.
Preprocessing has been done on the raw data including redundant information
removal and objective statements filtering. After preprocessing the texts showing
obvious sentiment orientations are preserved. Details of the dataset are shown
in Table 1.

In order to obtain the ground-truth score of a specific time point, we select
several dates from the dataset and annotate all the texts belong to those dates,
details of which are shown in Table 2.



10 J. Wu et al.

Algorithm 1. Sentiment calibration algorithm
Input: Text set X = {x1, x2, ..., xn}, sampling rate r, number of clusters nc, trained

model BERT
Output: Calibrated sentiment score
1: Initialize an empty sentence embedding set H;
2: for all xi such that xi ∈ X do
3: Compute hi, yp

i using (1)
4: H = H ∪ hi

5: end for
6: npos ← ∑n

i I(yp
i = 1), nneg ← ∑n

i I(yp
i = 0)

7: Train the autoencoder parameters θ and cluster centers R = {μ1, ..., μnc} jointly
by running Algorithm 2

8: for i = 1 to nc do
9: Initialize an empty cluster clusteri

10: end for
11: for i = 1 to n do
12: ei ← fθ(hi)
13: clusterK = clusterK ∪ i, with K = argmink||ei − μk||2
14: end for
15: Initialize an empty sample set SAMPLE
16: for i = 1 to nc do
17: sz ← SIZEOF (clusteri) × r
18: for j = 1 to sz do
19: sample = arg mink EuclideanDistance(ek, μi)
20: clusteri = �clusteri{sample}, SAMPLE = SAMPLE ∪ sample
21: end for
22: end for
23: Initialize an empty predicted label set C and an empty groundtruth label set Ĉ
24: for all i such that i ∈ SAMPLE do
25: C = C ∪ yp

i

26: Ĉ = Ĉ ∪ Labeling(xi)
27: end for
28: Compute sampling indicators p, r, a = Compare(C, Ĉ)
29: Compute calibrated sentiment score based on (11) to (14)

Sentiment score = sc(p, r, a, npos, nneg)

4.2 Baselines

We compare the proposed method with the following baseline methods.

– Bert-Predict-0.01 The BertForSequenceClassification model is utilized to
obtain the predicted result, using bert-base-chinese [4] as pre-trained model
and 0.01 data as training set.

– Bert-Predict-0.05 A fine-tune model trained based on the same pre-trained
model as Bert-Predict-0.01, whereas the training set contains more data
up to 0.05.
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Algorithm 2. Deep clustering algorithm
Input: Deep embedding set H = {h1, h2, ..., hn}, balancing parameter λ, scheme for

α, numbers of training epochs T , number of minibatches N , learning rate η
Output: autoencoder parameters θ, cluster representatives R
1: for t = 1 to T do
2: for n = 1 to N do
3: Draw a minibatch X
4: Update parameter θ: θ ← θ − η( 1

|X| )∇θLr(θ)
5: end for
6: end for
7: for α = mα to Mα do
8: for t = 1 to T do
9: for n = 1 to N do

10: Draw a minibatch X
11: Update (θ, R):

(θ, R) ← (θ, R) − η( 1
|X| )∇(θ,R)L(θ, R)

12: end for
13: end for
14: end for

Table 1. Game of Thrones dataset.

Number Time Period Time Slice

118,316 2019-04-01:2019-05-31 1 day

– Proportion A direct esimation method based on sampling result of senti-
ment category proportion P (senti|all) to represent the proportion in total
population.

– Calibrate-Random A calibration method similar to our proposed method,
while using random sampling strategy instead. The distance result is an aver-
age value computed over 100,000 times repeated random sampling.

Table 2. Details of annotated corpora. Each row contains a time slice.

Date Num Ground-truth Date Num Ground-truth Date Num Ground-truth

04–01 2298 2162 04–02 2515 2155 04–11 689 521

04–21 3043 2313 05–19 1456 826 05–24 694 204
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4.3 Experimental Settings

Based Classifier Description. The BERT model mentioned in 3.1 is utilized
as our based classification model to obtain sentence embeddings and predicted
labels. We select the ‘bert-base-chinese’2 version as the pre-trained model. The
pre-trained model gets fine-tuned on a train set to adapt to sentiment classifi-
cation task. The validation result of the classifier is given in Table 3. We exploit
the model Bert-Predict-0.01 as our based predicted model for calibration.

Autoencoder Description and Implementation Details. The autoencoder
we used in the experiments is borrowed from previous deep clustering studies [7,
14,17]. The encoder is a fully-connected multilayer perceptron with dimensions
d-500-500-2000-K, where d is the original data space dimension and K is the
number of clusters to obtain. The decoder is a mirrored version of the encoder.

Follow the settings in [14], the number of ae-pretraining epochs is set to 50.
The soft k-means model is fine-tuned by performing 100 epochs with a constant
α = 1000. Our training is based on the Adam optimizer [11] with standard learn-
ing rate η = 0.001 and momentum rates β1 = 0.9 and β2 = 0.999. The minibatch
size is set to 256.

Hyperparameter Selection. The hyperparameter γ defined the trade-off
between the reconstruction and the clustering loss is set to be 1.0. The num-
ber of clusters nc is set to be 2. The sampling rate r is set to 0.04, which is only
a small part of the overall data.

Table 3. Validation results of models on dataset Game of Thrones.

Precision Recall F1

Bert-Predict-0.01 0.81356 0.96000 0.88073

Bert-Predict-0.05 0.86379 0.86667 0.86522

4.4 Evaluation Metrics

The evaluation metric is based on the distance between the groundtruth senti-
ment score and calibrated scores, which is defined as followed:

sp = npos − nneg (17)
dp = |sp − sg| dc = |sc − sg| (18)

where sp is the predicted score defined in (17), sg is the groundtruth score defined
in (10), and sc denotes the calibrated score obtained by our method which is
defined in (11)–(14). dp is utilized to measure the error of the predicted score
obtained by predicted results. dc is the error measurement of the calibrated score.

2 https://huggingface.co/bert-base-chinese.

https://huggingface.co/bert-base-chinese
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We use dp and dc for evaluation of predicted-based method and calibrated-based
method respectively.

The experimental results are shown in Table 4. The result of our method is
an average value computed over 10 runs. From the result we observe that the
score distance dc obtained by our method is smaller than other methods on all
the dates except ‘05–19’, which indicates the effectiveness of our method.

Table 4. Calibrated results of distance error on Game of Thrones.

Method 04–01 04–02 04–11 04–21 05–19 05–24

Ground-truth 2162 2155 521 2313 826 204

Bert-Predict-0.01 498 506 138 370 406 138

Bert-Predict-0.05 484 477 110 334 312 112

Proportion 276 279 73 203 226 71

Calibrate-Random 121 132 76 138 121 84

Calibrate-1 (Ours)a 84 88 59 108 136 59

Calibrate-2 (Ours)b 82 88 60 108 135 60
a,b Calibrate-1 and Calibrate-2 are calibrated results based on
sampling indicators {recall,accuracy} and {precision,accuracy}
respectively.

4.5 Analysis of the Parameter Cluster Number

In order to select an appropriate value for the hyperparameter cluster number,
we perform a line search from 2 to 10 with increment of 1. Figure 3 describes the
relationship between the distance dc and the cluster numbers. From the figure
we can conclude that the representative sampling result (i.e. the distance dc) is
insensitive to the choice of the cluster number.

Fig. 3. Relation between the distance dc and the parameter cluster number.
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4.6 Compare with Random Sampling

It has been proved that random sampling is effective when one kind of sentiment
dominates in the grouped data. However, random sampling suffers from the
uncertainty especially when the sampling frequency is limited. Due to the lack
of annotated data, the sampling process is performed only once for sentiment
calibration. It is hard to ensure stable performance using random sampling. To
be specific, even if random sampling shows excellent performance in most cases,
it could still fall into bad cases with a small probability.

We conduct repeated random sampling to obtain the distribution of random
sampling results and compare with the representative sampling result. Figure 4
depicts the experiment result. The repeat time is set as 100,000 in our experi-
ment. The result shows that the representative sampling results outperform more
than half of the cases of random sampling on all the dates except ‘05–19’, which
indicate the effectiveness of representative sampling in sentiment calibration.

Fig. 4. Comparison between random sampling and representative sampling. The his-
togram shows the distribution of dc in random sampling. The red vertical line denotes
the dc value of representative sampling. The value of the bar leftmost is the rate of
random sampling results better than the representative sampling result. Thus smaller
rate implies better performance of representative sampling.

5 Conclusion

In this paper, we propose a method to calibrate the sentiment score of grouped
texts. The sentences are encoded into high-dimensional representations by fea-
ture extractors (i.e. the BERT model) at first. Then sentence embeddings are
partitioned into different groups under the joint training of an antoencoder and
a deep clustering model (i.e. the soft k-means model). From individual groups we
select ns closest samples to the clustering center as the representative samples
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based on the euclidean distance metric. Finally, the calibrated sentiment score
is obtained based on evaluation results on the representative samples and the
predicted labels. The encoded semantic representations and the representative
sampling strategy reduce the uncertainty caused by sampling as well as maintain
high accuracy. The experimental results on our self-created dataset demonstrate
the effectiveness of our method.

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China (No. 51975294).
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Abstract. Named entity recognition (NER) is a basic task of natural language
processing (NLP), whose purpose is to identify named entities such as the names
of persons, places, and organizations in the corpus. Utilizing neural networks for
feature extraction, followed by conditional random field (CRF) layer decoding,
is effective for the NER task. However, achieving reliable results using neural
networks generally requires a large amount of labeled data and the acquisition of
high-quality labeled data is costly. To obtain a better NER effect without labeled
data, we propose a weak supervision approach with adversarial training (WSAT).
WSAT obtains supervised information and domain knowledge through labeling
functions, including external knowledge bases, heuristic functions, and generic
entity recognition tools. The labeled results are aggregated through the linked
hiddenMarkovmodel (linkedHMM), and adversarial training strategies are added
when using the aggregated results for training. We evaluate WSAT on two real-
world datasets.When compared to rival algorithms, the F1 values are improved by
approximately 2% and 1% on the MSRA and Resume NER datasets, respectively.

Keywords: Named entity recognition · Weak supervision · Adversarial training

1 Introduction

Named entity recognition (NER) is a fundamental task in natural language process-
ing (NLP). The task generally refers to recognizing entities with specific meanings in
unstructured or semi-structured text. The recognized entities primarily include the names
of people, places, organizations, and proper nouns. As the accuracy of NER determines
the performance of downstream tasks, NER plays an important role in many NLP tasks,
such as information extraction, question answering, and machine translation.

NER is often transformed into a sequence tagging problem.Utilizing neural networks
for feature extraction, followed by CRF layer decoding, has been shown to be effective
for the NER task [1, 2]. Based on the neural network feature extractor and CRF decoder,
the representation of the input layer can be improved by adding additional information
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such as the token level, word level, and artificially defined features. Such improvements
have been demonstrated to improve the effectiveness of NER. Improving and replacing
the feature extractor can also improve the effectiveness of NER. Recently, using context-
based language models, such as ELMo, BERT [3] and their related models, instead of
recurrent neural networks for feature extraction has been shown to achieve state-of-the-
art performance on NER tasks [4].

The abovementioned feature extractors, which are based on neural network struc-
tures, generally require a large amount of labeled data. Usually, 60%–80% of the data
in a dataset will be used for training, and the remaining data will be used to verify and
test the model’s ability. These methods often fail to achieve good results when provided
with no or very little labeled data.

Because the acquisition of high-quality labeled data is time-consuming, a few strate-
gies that increase the effectiveness of NER in domains without access to hand-annotated
data is proposed. A potential strategy for acquiring supervised data without hand anno-
tation is distant supervision, which can automatically produce a large amount of labeled
data. The concept of distant supervision was initially applied to the relational extraction
task. In distant supervision relationship extraction, there is a knowledge base. In the
knowledge base, if the relation between two entities e1 and e2 is r, then we apply this
knowledge during the process of labeling data and assume that the relation between e1
and e2 in the sentence is r. In this way, a large amount of labeled data for the relation
extraction task can be generated for model training. Similarly, in the NER task, we first
obtain a dictionary containing a list of certain types of entities as a knowledge base. Then,
large-scale labeled data are automatically produced by assuming that each entity that
appeared in the sentence is an entity of the corresponding type in the knowledge base.
However, the acquisition of high-quality entity list dictionaries is difficult, and entity
list dictionaries often cannot cover all entity types in the data. Therefore, it is difficult
to rely entirely on entity list dictionaries to obtain supervised data in a new domain.

In this paper, we propose a weak supervision approach with adversarial training
(WSAT) for NER tasks. TheWSAT does not require any hand-annotation for target data.
It relies on multiple labeling functions. The functions can inject domain knowledge into
the model and can be easily migrated between similar domains. The labeling results
from multiple labeling functions are also aggregated using the linked hidden Markov
model (linked HMM) model, and an adversarial training strategy is incorporated. It is
demonstrated by the experiments described in this paper that the WSAT can improve
the weak supervision NER effect.

The main contributions of this paper are as follows:

• For text data that has not been manually annotated, we introduce knowledge bases,
heuristic functions, and generic entity recognition tools to label the data and aggregate
the labeled data using the linked HMM.

• By incorporating an adversarial training method, the WSAT reduces the influence of
noise in weak supervision data and improves the weak supervision NER effect on the
MSRA and Resume NER datasets.

• The effect of WSAT is demonstrate by our experiment. When compared to rival
algorithms, the F1 values improved by approximately 2% and 4% on the MSRA and
Resume NER datasets, respectively.
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The content of this paper is organized as follows: Sect. 2 focuses on the related work,
and Sect. 3 describes the WSAT in detail. Experiments and results are shown in Sect. 4,
and Sect. 5 presents our conclusions.

2 Related Work

Named Entity Recognition: The entity recognition problem is generally transformed
into a sequence annotation problem. Using LSTM and CNNs as feature extractors and
CRF as a decoder has been demonstrated to be the baseline structure for named entity
recognition [5]. In addition, NER is usually enhanced by adding additional information
and replacing the feature extractor [6]. By adding spelling features, text features, word
vectors and gazetteer features to the model, it has been demonstrated that the accuracy
of NER can be improved [7]. Reference [8] concatenates a 100-dimensional word vector
with a 5-dimensionalword shape feature vector to add additional information to the input,
and these feature vectors help to improve the NER results. Reference [9] constructs word
representations using word embeddings, token embeddings and word-related syntactic
embeddings. These features introduce additional information to the model [10]. Refer-
ence [8] found that neural networks often discard most lexical features. Therefore, they
propose a new lexical representation that can be trained offline and used in any neural
network system. The lexical representation has a dimension of 120 for each word, and is
obtained by computing the similarity of the word to the entity type. Changing the feature
extractor can also improve the effectiveness of NER. Contextual acquisition of feature
information through BERT and its siblings has also been demonstrated to significantly
improve NER performance [3].

At the same time, some public tools can also be used to recognize general enti-
ties. The tools we used in our paper include Hanlp and FastHan. Hanlp is trained on
the world’s largest multilingual corpus, and it supports 10 joint tasks, including tok-
enization, lemmatization, part-of-speech tagging, token feature extraction, dependency
parsing, constituency parsing, semantic role labeling, semantic dependency parsing, and
abstract meaning representation (AMR) parsing. When writing the labeling functions,
the lemmatization function is primarily used for nonentity labeling, and its named entity
recognition function is utilized for entity labeling [11]. FastHan is a Chinese natural lan-
guage processing tool based on fast NLP and PyTorch, and like spaCy, is user friendly.
The kernel is a BERT-based federated model, which is trained on 13 corpora and can
handle four tasks: Chinese word separation, lexical annotation, dependency analysis,
and named entity recognition. FastHan has two versions, the base version and the large
version; the base version is used in our experiments. When writing the labeling func-
tions, the lemmatization function is mainly used for nonentity labeling, and its named
entity recognition function is utilized for entity labeling [12].

Weak Supervision: The purpose of weak supervision is to reduce the amount of hand-
annotated data. Generally, weak supervision acquires supervised information through
distant supervision from external sources [13], active learning and heuristic rules [14].
Reference [15] uses deep active learning to efficiently select sample sets for annotation
to reduce the annotation budget. Remote monitoring systems can also acquire weak
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supervision information using partially labeled data or external resources, such as web
dictionaries, knowledge bases, and location tags, instead of using manually labeled
data for training [16–19]. These approaches generally have certain requirements for the
required external resources. Reference [20] designed a knowledge-enhanced language
model for unsupervised neural network recognition. The model requires type-specific
entity vocabularies to calculate the type and word probability of a given type and neural
network recognition to determine whether a particular word is an entity. Reference [21]
uses hidden Markov models to aggregate the results from multiple labeling functions
to obtain supervision information. Reference [22] proposed a completely unsupervised
entity recognition model for the NER task using only word embedding vectors without
utilizing any external resources or annotation data.

The linkedHMMwhich is used in our paper is proposed in reference [23]. Themodel
is used to aggregate labeling functions such as labeling rules and linking rules. The main
idea is to link the outputs of the labeling and linking rules, represent the sequence labels
of the text as hidden variables, and generate a probabilistic generative model to generate
the final labeling results. Our work not only uses heuristic and linking rules to obtain
supervised information. More supervised information and adversarial training strategies
are introduced to improve the overall effectiveness of themodel. And the effect ofWSAT
is demonstrated by our experiments (detail in Sect. 4).

The input to the model is a text sequence X = (x1, x2 . . . . . . xi); for each xi, there
is a corresponding unknown label yi ∈ Y in the sequence, and Y is the set of labels.
Llabel1 ,Llabel2 . . . . . . Llabeln are the given labeling functions. For each sequence, each label
function Llabelj is able to generate a sequence of labels� = (λ1, λ2 . . . . . . λi). The linked
HMM then aggregates the results of the label sequences.

Fig. 1. Bayesian network representation of the linked HMM, with the first two true labels of the
sequence illustrated. Label n is the labeled result obtained from the N-th labeling function. Link
n is the labeled result obtained from the N-th linking function.

The linked HMM is defined as the joint distribution p
(
Y ,�tag,�link

)
over the

corresponding outputs generated by the sequence and label function. The distribu-
tion is defined by an initial distribution and a conditional distribution, as with other
dynamic Bayesian networks and hidden Markov models, and is shown in Fig. 1.
The initial distribution is defined as a Naive Bayesian distribution p(y1,�

tag
·,1 ) and

p
(
�

tag
·,1 |y1

)
= ∏n

j=1 p(λ
tag
j,1 |y1).



AWeak Supervision Approach with Adversarial Training for (NER) 21

The distribution is defined as p
(
yt,�

tag
·,t ,�link·,t |yt−1

)
, which is the template for

each linked HMM. First, the model allows the output of the labeling function to be
independent, provided the true label yt and

p
(
yt,�

tag
·,t ,�link·,t |yt−1

)
= p

(
�

tag
·,t |yt

)
p(yt,�

link·,t |yt−1)

Keeping p
(
�

tag
·,t |yt

)
identical throughout the sequence, i.e., p

(
�

tag
·,t |yt

)
=

p
(
�

tag
·,1 |y1

)
and then assuming that the different linking rules are conditionally

independent, we produce the true labels of the two tokens:

p
(
yt,�

link·,t |yt−1

)
= p(yt |yt−1)

n∏

j=1

p(λlinkj,t |yt, yt−1)

The model uses maximum likelihood estimation to estimate the parameters of the
linked HMM. We estimate all parameters of the linked HMM by maximizing the
probability of the observed output:

θ
∧

= argmax
∑

Y

P(Y ,�tag,�link)

Our work improves on the linked HMM model. Reference [23] only uses heuristic
and linking rules to obtain supervised information. Our work introduces more super-
vised information and incorporates adversarial training strategies to improve the overall
effectiveness of the model.

Adversarial Training: Adversarial training is a training method that introduces noise.
By introducing noise, the parameters can be regularized, and the robustness and gen-
eralization ability of the model can be improved. The key to adversarial training is to
construct adversarial samples. Generally, a certain perturbation is added to the original
input to construct the adversarial sample. This enables the model to identify adversarial
samples. The adversarial training problem can usually be defined as a min-max problem
[24].

min
θ
E(x, y) ∼ D[max

radv∈S
L(θ, x + radv, y)]

The equation can be divided into two parts:maximization of the internal loss function
and minimization of the external risk. The purpose of maximizing the internal loss
function is to find the amount of perturbation that allows the most judgment errors, i.e.,
to find the optimal attack parameters. The purpose of minimizing the external risk is
to further optimize the model parameters for the abovementioned attacks so that the
expectation is still minimized over the entire data distribution, i.e., to find the optimal
defense parameters. In this paper, we mainly use two adversarial training strategies,
Fast Gradient Method (FGM) and Projected Gradient Descent (PGD), to optimize the
training process. FGM and PGD are two basic and widely used adversarial training
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methods. The two methods are used to prove the effectiveness of adversarial training in
our work. These two adversarial training methods are briefly described below.

FGM: The FGM is scaled based on specific gradients to obtain a better antagonistic
sample. The obtained perturbations are as follows [25]:

radv = εg/||g||2

g = ∇xL(θ, x, y)

The additional adversarial samples are as follows:

xadv = x + radv

The process of FGM during the training process is as follows: For each sample X,
calculate the forward loss and backpropagation of X to obtain the gradient and calculate
R based on the gradient of the embedding matrix and add it to the current embedding,
which is equivalent to X + R; forward loss of X + R and backpropagation is calculated
to obtain the gradient of adversarial, and accumulate to the backpropagation of X.

PGD: Unlike FGM, which calculates the adversarial perturbation in one step, PGD
tries tofind theoptimal perturbationby iterating several times [24]. ThePGDperturbation
gradually accumulates in the loop. It is important to note that the last update parameter
uses only the gradient calculated from the last X + R.

Adversarial training method is added in theWSAT proposed in our paper. By adding
the abovementioned adversarial training method to the training process, the WSAT
improves the generalization ability of the model based on linked HMM and improves
the problem of higher accuracy but lower recall when aggregating labeling functions.
The experiments demonstrate that adding adversarial training is effective in improving
the overall effect of the model. The experimental results detail is in Sect. 4.

3 Approach

In this paper, we aggregate the labeled results from multiple labeling functions and
improve the generalization ability of themodel using adversarial training.The aggregated
multiple labeling functions include generic entity recognition tools, entity dictionary
matching, heuristic rules, and linking rules. Compared with distant supervision, more
supervision information can be obtained by introducing multiple labeling functions.
In addition, all entity types in the data can be covered. The outputs from the labeling
functions are aggregated by the linked HMM model, and the parameters of the model
are estimated in an unsupervised manner. In general, the labeled data obtained from the
labeling functions with heuristic rules or entity dictionary matching can only guarantee a
high accuracy rate, while the recall rate is usually low. In application, the model has poor
generalization ability. Therefore, in the WSAT, we add the adversarial training method,
as adversarial training can regularize the parameters and improve the generalization
ability of the model.

The overall structure of the WSAT is shown in Fig. 2. In this section, Sect. 3.1
briefly introduces themultiple labeling functions integrated into theWSAT, and Sect. 3.2
introduces the WSAT proposed in this paper.
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Fig. 2. Architecture of the weak supervision approach with adversarial training. The yellow rect-
angle represents the text, the circle represents the label corresponding to the text, and the different
colors represent the different entity types. (Color figure online)

3.1 Labeling Functions

This section describes the four types of labeling functions used in the WSAT, including
the generic entity recognition model, entity lexicon matching, heuristic rules and linking
rules. In our application of the generic entity recognition model, two publicly available
Chinese NLP tools are utilized. For entity lexicon matching, we construct a gazetteer
to serve as external knowledge to match entities. The heuristic rules are written manu-
ally according to the features of the experimental dataset. To implement linking rules,
language model similarity is used to link tokens in the text. The four types of labeling
functions are described in more detail below.

Generic entity recognition tools: This type of labeling function uses trained and
publicly available natural language processing toolkits to assist in labeling entities. The
tools we used include Hanlp and FastHan.

Entity Lexicon Matching: As with distant supervision, we use a knowledge base to
label toponymic entities. Specifically, we used a knowledge base comprised of geograph-
ical names, which includes all countries and regions in the world and some district-level
geographical names in China. The place names in the database are matched with the
text to perform toponymic entity labeling. In our experiments, we utilize only the geo-
graphical name knowledge base for the time being, and for other entities in the dataset,
we can also utilize corresponding knowledge bases or large knowledge bases such as
Wikipedia or DBPedia for matching to achieve better labeling results.

Heuristic Rules: We also inject domain knowledge into the model by writing heuristic
rules. The heuristic rules are used to identify specific named entities, including entities
related to nationality, ethnicity, position, profession, and education. Generally, the input
to a heuristic rule is a sequence of text, and the output is a sequence of labels of the same
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length that represents the labels applied to the text sequence by the heuristic rule. When
a token is labeled with ‘ABS’, it means that the output from that token does not affect
the final estimation. An example of the input and output of a heuristic rule is shown in
Fig. 3. Labeling takes the form of BIO labeling rules, where ‘B’ indicates the beginning
token of the entity and ‘I’ indicates the other token of the entity.

Fig. 3. Example of the input and output of a heuristic rule. ‘B’ indicates the entity’s beginning
token, and ‘I’ indicates the entity’s other token. ‘PER’ indicates the entity type is a person.

Linking Rules: Linking rules help with entity boundary identification by linking adja-
cent tokens. Like heuristic rules, the input to a linking rule is a sequence of text, and
its output is a token that indicates whether the current token is of the same type as the
previous token. A concrete example is shown in Fig. 4.

Fig. 4. Example of the input and output of a linking rule. SAME indicates that the current token
has the same entity type as the preceding token. ABS indicates the token is independent.

As shown in the above example, SAME indicates that the current token has the
same entity type as the preceding token, while ABS indicates that the current token is
independent from the preceding token. These rules are responsible only for capturing
the linking relationship between adjacent tokens. The linking rules do not care about the
specific type of any token.

Other more common and valid linking rules are as follows:
Frequent N-Gram: If a sequence appears several times in a text, it can be concluded

that the sequence may be a specific entity and that the tokens of the sequence can be
considered for linking.

Language model similarity: Using context-based word embedding models such as
ELMo and BERT, by obtaining the cosine similarity of embeddings between adjacent
tokens and links adjacent tokens when that similarity is greater than a certain threshold
value.

In the experiments of this paper, language model similarity is used as a linking rule
to link the token in the text.

3.2 WSAT: Weak Supervision Approach with Adversarial Training

TheWSAT is the approach proposed in this paper. For unlabeled text data, theWSATuses
multiple labeling functions to label the text data. Based on the weak supervision infor-
mation provided by the multiple labeling functions, the WSAT aggregates the labeled
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results using the linkedHMMmodel.When using the results of linkedHMMfor training,
we incorporate adversarial training methods. The specific adversarial training methods
used include Fast Gradient Method and Projected Gradient Descent.

In the WSAT, text data is labeled by the labeling functions introduced in Sect. 3.1.
The weak supervision information provided by the multiple labeling functions is not
fully effective, the linked HMM is widely used to aggregates the weak supervision
information. Moreover, it can generate a probabilistic generative model by associating
the outputs of the labeling functions to represent the sequential labels of the text as
hidden variables to generate the final labeling results (detailed in Sect. 2). The labeled
results aggregated by linked HMM are used to train the NER model after. However,
the labeled results have the problem of higher accuracy but lower recall. In order to
improve the generalization ability of the model, the strategy of adversarial training is
introduced in the training process. Adversarial training is a training method that intro-
duces noise. By introducing noise, the parameters can be regularized, and the robustness
and generalization ability of the model can be improved.

In this paper, we mainly use two adversarial training strategies, FGM and PGD, to
optimize the training process. The FGM is scaled based on specific gradients to obtain a
better antagonistic sample. Unlike FGM, PGD calculates the adversarial perturbation in
one step and tries to find the optimal perturbation by iterating several times. By adding the
abovementioned adversarial trainingmethod to the training process, theWSAT improves
the generalization ability of the model based on linked HMM and improves the problem
of higher accuracy but lower recall when aggregating labeling functions.

The overall structure of the WSAT is shown in Fig. 2. We have tried two adversarial
training strategies on themodel, and the experiments demonstrate that adding adversarial
training is effective in improving the overall effect of themodel. The experimental results
detail is in Sect. 4.

4 Experimental Results

Experiments are conducted on two real-world datasets to verify the effect of the WSAT.
The WSAT is compared with the other two weak supervision models. The effect of the
WSAT on the NER task was evaluated by incorporating different adversarial training
methods. The experiments show that the WSAT can improve the effect of the weak
supervision NER task.

4.1 Dataset

The WSAT is evaluated on two datasets: MSRA and Resume NER. The statistics for
each of these datasets is shown in Table 1. The types ‘Sentence’ and ‘Char’ represent
the number of sentences and characters in the dataset. ‘Train’ is the size of the training
set, ‘Dev’ is the size of the development set and ‘Test’ is the size of the testing set.

• MSRA NER: The MSRA NER is from the newswire domain. The dataset consists
of three main types of articles, including news, radio news, and blogs, and has three
types of entities, including person (PER), locations (LOC), and organizations (ORG)
[26].



26 J. Shao et al.

• Resume NER: The Resume NER dataset contains the resumes of senior executives
from listed firms in the Chinese stock exchange, and is taken from Sina Finance.
The dataset has eight types of entities, including person name (NAME), national-
ity (CONT), race (RACE), title (TITLE), education (EDU), organizations (ORG),
profession (PRO) and location (LOC) [27].

Table 1. Statistics of datasets.

Datasets Type Train Dev Test

MSRA [26] Sentence 46.4k – 4.4k

Char 2169.9k – 172.6k

Resume [27] Sentence 3.8k 0.46k 0.48k

Char 124.1k 13.9k 15.1k

4.2 Baselines

The WSAT was compared with the labeling results from the Snorkel and linked HMM
models. The effectiveness of the WSAT in improving the generalization of the model in
the weak supervision case is verified.

Snorkel [28]: Snorkel is a general framework for training discriminative classifiers
from user-written heuristic rules, and by default uses a Naive Bayes generative model
to denoise the rules. This model uses weak supervision data that has been labeled by
various types of labeling functions to aggregate the labeling results.

Linked HMMModel [23]: The weak supervision data input into this model are the
same as the weak supervision data input to Snorkel, with the exception of the data
labeled using the linking rule. In our experiments, the linking rule only adopts the
linguistic model of cosine similarity.

Bert-CRF: Utilizing context-based language models, such as BERT, for feature extrac-
tion followed by CRF layer decoding, has been shown to be effective for the NER task.
The weak supervision data input into this model are the same as the weak supervision
data input to Snorkel.

FLAT [29]: FLAT (Flat Lattice Transformer) is a model proposed for Chinese NER.
FLAT designed a novel position code for lattice structure and use transformer to com-
pletely model the lattice input. It has achieved good results on Chinese NER. The weak
supervision data input into this model are the same as the weak supervision data input
to Snorkel.
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4.3 Results and Discussion

The labeling results of labeling functions on train data and test data is given to illustrate
the labeling effects of different labeling functions. For MSRA [26] dataset, organization
(ORG) labeling function and person (PER) labeling function use generic entity recogni-
tion tools to identify organization entities and person entities. Location (LOC) labeling
function combines entity lexicon matching and generic entity recognition tools to iden-
tify location entities. For Resume [27] dataset, organization and name (ORG&NAME)
labeling function combines entity lexicon matching and general entity recognition tools
to identify organization entities and person entities. Moreover, other labeling functions
use heuristic rules to identify entities. The effect of the supervision signal provided by
each labeling function is detailed in Table 2.

Table 2. Labeling functions results on data.

Datasets Labeling functions Precision Recall F1

MSRA [26] Train Data ORG labeling function 0.9989 0.9053 0.9497

PER labeling function 0.9982 0.8953 0.9440

LOC labeling function 0.9910 0.8806 0.9325

Overall 0.9983 0.8922 0.9422

MSRA [26] Test Data ORG labeling function 0.9906 0.8080 0.8900

PER labeling function 0.9900 0.9442 0.9713

LOC labeling function 0.9695 0.7056 0.8168

Overall 0.9959 0.8098 0.8933

Resume [27] Train Data CONT labeling function 0.9872 0.9843 0.9857

RACE labeling function 0.9914 0.9871 0.9892

TITLE labeling function 0.9610 0.0674 0.1260

EDU labeling function 0.8724 0.6224 0.7265

PRO labeling function 0.7780 0.2911 0.4237

ORG&NAME labeling function 0.8679 0.7660 0.8138

LOC labeling function 0.9310 0.5696 0.7068

Overall 0.8830 0.5421 0.6717

Resume [27] Test Data CONT labeling function 0.9160 1.0 0.9561

RACE labeling function 1.0 1.0 1.0

TITLE labeling function 0.9438 0.0727 0.1350

EDU labeling function 0.8433 0.6278 0.7208

PRO labeling function 0.4259 0.3433 0.3802

ORG&NAME labeling function 0.8670 0.7720 0.8170

LOC labeling function 1.0 0.6060 0.7547

Overall 0.8722 0.5428 0.6692
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The WSAT is compared with the four baselines mentioned above, and the labeling
functions are the same. The MSRA dataset utilize generic entity recognition models
and entity lexicon matching. The BERT pretraining model is utilized for linking rules.
The Resume dataset uses generic entity recognition models, entity lexicon matching
and handwritten heuristic rules for entity labeling. After obtaining the labeling results,
Snorkel, the linked HMMmodel, Bert-CRF, FLAT andWSAT are used to aggregate and
train the labeling results, respectively, and the results are shown in Table 3.

The results of the experiments are shown in Table 3. The input of the models are all
weakly supervised data from the labeling functions in Table 2. On theMSRA dataset, the
WSAT’s accuracy is almost indistinguishable from the effect of Snorkel and the linked
HMMmodels, and the recall rate is improved. And the WSAT’s accuracy and recall rate
are both improved compared with the Bert-CRF. On the Resume dataset, the WSAT’s
accuracy is almost indistinguishable from the effect of Snorkel, linked HMM models
and Bert-CRF, and the recall rate is improved.

For the MSRA dataset, the WSAT improves the recall by approximately 4% com-
pared with Snorkel and the linked HMM models. For the Resume dataset, the WSAT
improves the recall by approximately 2% compared with the Bert-CRF model. With
guaranteed accuracy and improved recall, the F1 values improved by approximately 2%
for the MSRA dataset and approximately 1% for the Resume dataset. The experiments
demonstrate that when 1) there is no manually labeled data; 2) there is weakly super-
vised data obtained through labeling functions; 3) there are many false noise labels in the
weakly supervised data, the WSAT achieves better effect than other models. The WSAT
can improve the overall recall and enhance the generalization ability of the model in the
case of weak supervision data.

Table 3. Results of experiments in the case of weak supervision.

Dataset Approach Precision Recall F1

MSRA [26] Snorkel [28] 0.9959 0.8099 0.8933

Linked HMM [23] 0.9946 0.8084 0.8919

Bert-CRFa 0.9457 0.7384 0.8292

FLAT [29] 0.7104 0.7339 0.7219

WSAT without adversarial training 0.9926 0.8375 0.9085

WSAT with FGM 0.9901 0.8497 0.9145

WSAT with PGD 0.9900 0.8357 0.9063

Resume [27] Snorkel [28] 0.8858 0.541 0.6717

Linked HMM [23] 0.8899 0.5457 0.6765

Bert-CRFa 0.8862 0.5829 0.7033

FLAT [29] 0.8611 0.5753 0.6897

WSAT without adversarial training 0.8856 0.5583 0.6848

WSAT with FGM 0.8780 0.6025 0.7146

WSAT with PGD 0.8837 0.6003 0.7149
a https://github.com/bojone/bert4keras

https://github.com/bojone/bert4keras
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5 Conclusion

For the NER task, utilizing neural networks for feature extraction generally requires a
large amount of labeled data. In this paper, a weak supervision approach with adversarial
training (WSAT) was proposed. The WSAT acquires weak supervision data using vari-
ous labeling functions. Based on the acquired weak supervision data, WSAT aggregates
the labeling results using the linked HMMmodel and introduces the idea of adversarial
training to reduce the influence of noise in weak supervision data. The proposed algo-
rithm was verified on two datasets, and the experimental results showed that WSAT
can effectively improve the recall rate and NER effectiveness. In the future, we plan to
design methods that improve the model’s effectiveness in cases where the labeled data
have considerable noise, and we also expect to be able to automatically acquire labeling
and linking rules to reduce manual involvement.
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Abstract. Automatic text generation is widely used in dialogue sys-
tems, machine translation and other fields. Sequence Generative Adver-
sarial Network (SeqGAN) has achieved good performance in text gen-
eration tasks. Due to the discriminator can only evaluate the finished
text, and cannot provide other valid information to the generator. When
evaluating a single word, the Monte Carlo algorithm is mainly used to
generate a complete text. This process requires a huge computational
cost. As the length of the text increases, the time to obtain rewards
will increase significantly. For text, different words have different effects
on semantics, and keywords determine the final expression of semantics.
Evaluation of the importance of each word is particularly critical. In this
paper, we propose a new framework called AttGAN. We allow the dis-
criminator to provide more features to the generator. Specifically, we add
an attention layer to the new discriminator. The attention score is used
as the basic reward so that the discriminator can calculate the reward
value of each word through only one evaluation without multiple sam-
pling by the generator. And to meet the requirements of valid reward,
we further process the attention score. Our large number of experiments
on synthetic data and tests on dialogue systems show that AttGAN can
minimize computational costs and generate high-quality text. Further-
more, it also has a good performance in the generation of lengthy text.

Keywords: Text generation · GAN · Attention

1 Introduction

Generating meaningful and coherent text is significant for machine transla-
tion [17], dialogue system [9], and so on. The essential problem of text generation
is that in unsupervised learning, generating sequences that mimic the distribu-
tion of real data [19,20]. In the text generation task, the maximum likelihood
estimation is used as the objective function. In the inference stage, there is a
problem of exposure bias: predict the next token based on the previously pre-
dicted token, and generate the sequence in an iterative manner [12]. These tokens
may not be existing in the training data [2]. As the Generative Adversarial Net-
work was proposed for continuous data, it was later extended to discrete data,
c© Springer Nature Switzerland AG 2021
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showing success results [19]. It contains a sequence generator and a discrimi-
nator. The discriminator guides the training of the generator through feedback
rewards. Since the discriminator can only evaluate the completed sequence, a roll-
out policy is commonly used to evaluate a single token. When the rollout policy
is applied, the model keeps sampling words from the generative model until a
complete sequence is generated. The whole process is repeated N times, and the
average value is taken as the reward for the current token. This process requires
a huge computational cost. And as the amount of model parameters increases,
the computational cost of this method will also increase. Li [9] attempts to judge
the reward of incomplete sequence, but the accuracy has dropped. In addition, a
major disadvantage is that the discriminator only provides the final classification
result without any other information about the sequence. As we all know, the
discriminator is a trained model, e.g., a Convolutional Neural Network (CNN) [8]
or a Recurrent Neural Network (RNN) [4], rather than an unknown black box.
LeakGAN [6] provides the generator with the feature information in the dis-
criminator so that the generator can obtain more features about the sequence.
However, the problem of a large amount of calculation in the training process
still exists.

Fig. 1. An example of attention mechanism in machine translation [1].

Therefore, multiple repeated sampling calculations are costly during the
training process. The key to the problem is that the discriminator cannot evalu-
ate each token in the sequence through a single calculation. Solving this problem
without reducing accuracy can make training faster, thereby significantly reduc-
ing training time.
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It is well known that the importance of each word is highly context depen-
dent [18]. The keywords determine the semantic result in real text. In other
words, neutral words do not affect the results. The reward of each word is
obtained by taking the average value after multiple sampling, which undoubtedly
consumes a lot of calculation costs. Further, it is obvious that the attention mech-
anism can show the effect of different words on the final result. The attention
mechanism plays an essential position in neural networks. And it was first used in
Encoder-Decoder [3] translation tasks in NLP [1]. Figure 1 shows the application
of the attention mechanism in machine translation, which can well capture the
importance of different words. Zhou [21] propose Attention-Based BiLSTM [7]
Networks (AttBiLSTM) to obtain the key information. This is consistent with
the idea of our model. Yang [18] built a hierarchical attention network to serve
as a document-level classification. The attention mechanism has a wide range of
applications. The previous work using the attention mechanism can only acquire
important characteristics. However, the attention mechanism has not been used
as a way to reduce model training time. We combine the attention mechanism
with the discriminator so that the discriminator can output the attention score
of each word. By using the attention score as the basic reward, the process of
repeated sampling is greatly reduced. There are two problems to be solved here.
Firstly, the attention scores are normalized by softmax. As the length of the
text increases, most of the attention scores will be very small, which can not be
directly applied as a reward. Secondly, the attention scores only represent the
importance of the words in the current text. It cannot represent the classification
result of the discriminator. So it is an interesting challenge to apply the attention
mechanism to the accelerated sequence adversarial generation networks.

In this paper, we propose a new sequence adversarial generation framework
called AttGAN, which can greatly reduce training time without loss of accuracy.
Our model has a generator and an attention-based discriminator. By combining
the attention mechanism with the discriminator, the discriminator has the ability
to evaluate each word, thereby guiding the training of the generator more quickly.
To make the attention score can meet the requirements of the reward value, we
adopt the scaling algorithm and the function mapping based on the classification
result of the discriminator to process the attention scores. The generator can
obtain more accurate reward information.

Experiments on synthetic data show that our model greatly reduces the time
required for training, and as the length of the text increases, the time reduction
becomes more obvious. In particular, it is not premised on the loss of accuracy.
On the contrary, our model still has competitive performance. Tests on actual
tasks show that our method requires almost one-tenth of the time needed by
SeqGAN, and the evaluation indicators are all the best.

2 Related Work

GAN for Sequences Generation. Generative Adversarial Networks
(GANs) [5] can learn complex distributions in unsupervised learning. It is also
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the generative model with the most development potential. Due to the discrete
nature of natural language that makes it non-differentiable, GANs cannot be
directly applied to text generation tasks. To solve this problem, SeqGAN [19]
uses reinforcement learning combined with policy gradients [16] to deal with
non-differentiable. Another issue here is that the discriminator can only eval-
uate the complete text and cannot evaluate the quality of a single token. The
Monte Carlo search is used to complete the text. Zhang [20] applied this method
to dialogue generation by building a Seq2Seq [15] model, using a hierarchical
encoder as a discriminator, and achieved good results. Since the discriminator
can only provide the results of two classes, this is far from enough for expressing
diverse natural languages. RankGAN [11] learns the model through the rank-
ing information between the model-generated sequence and the actual sequence.
Similarly, LeakGAN [6] leaked the internal characteristics of the discriminator
to the generator to better guide the generator. In the above work, when getting
the reward of each token, the Monte Carlo search is used. This method requires a
huge computational cost. Li [9] proposed to train a discriminator that can score
partial sequences. The speed is indeed improved, but the accuracy is much lower
than that of SeqGAN. Song [13] uses beam search instead of Monte Carlo search
in the dialogue system but did not avoid repeated sampling. Our attention-based
discriminator can feedback the reward value of each token through the attention
mechanism without the need for repeated sampling. And it has success perfor-
mance.

3 Our Approach

Our approach introduces the attention mechanism in the discriminator so that
the discriminator can evaluate each token in the current sequence. As shown in
Fig. 2, the attention mechanism can avoid using Monte Carlo search for repeated
sampling, which greatly saves the time required for training. And the attention
mechanism can point out the importance of each token, avoiding the error caused
by random sampling of neutral words.
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Fig. 2. Comparison of MC search and attention-based methods.
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We denote the sequence generation task as: Given a dataset of real sequences,
the generator Gθ is excepted to be able to generate a sequence ˆSeq1:T =
{token1, token2, . . . , tokenT }, to fit the distribution of real data. Where T is the
timestep. Reinforcement learning is used to interpret this problem. The state s
represents an incomplete sequence generated before timestep t, st−1 = ˆSeq1:t−1,
ˆSeq1:t−1 = {token1, token2, . . . , tokent−1}, and the action a is the next token

tokent to sample, a = tokent. We also train a attention-based discriminator
Att Dφ( ˆSeq1:T ) that can provide the reward value of each token in the sequence.

3.1 Attention-Based Discriminator

Fig. 3. The structure of discriminator.

The discriminator evaluates whether the current sequence is a real sequence or a
sequence generated by the generator. We treat the real sequence as positive and
the sequence from the generator as negative. Most discriminators only provide
a reward value for the finished sequences. To evaluate each token, a common
strategy is to use the Monte Carlo search. The generator remains to sample
the next token until a complete sequence is generated. Repeat sampling several
times and take the average value as the final reward. Each round of training
has a huge computational cost. We introduce an attention mechanism in the
discriminator to solve this problem. While CNN has problems learning remote
semantic information, we choose RNN as our discriminator to better capture the
attention relationship within the sequence.
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The goal of our discriminator is not only to evaluate whether the current
sequence is positive or negative but also to have the ability to point out the
importance of each token. The structure of the attention-based discriminator
is shown in Fig. 3. The discriminator mainly includes a two-layer bidirectional
Gated Recurrent Unit(GRU) [3] and an attention module. Specifically, using the
hidden state at the last moment, the output vector at each moment is used to
calculate the attention, and the final classification result is made based on the
result of the attention. The basic reward value comes from attention information.

OT , hT = BiGRU(E1:T ) (1)

where E1:T is the embedding of the ˆSeq1:T .

hidden =
M∑

i=1

(hTi) M = num layers ∗ num directions (2)

Rbattention = {Rb1, Rb2, . . . , RbT } = softmax(
∑

hidden · (WαOT + b)) (3)

where Rbattention is the attention score.
The objective function of the discriminator Att Dφ is to minimize the cross

entropy. And the output from Att Dφ is:

Classification,Rbattention = Att Dφ( ˆSeq1:T ) (4)

where the Classification is the result of the classification.

3.2 Attention to Rewards

We treat the attention score as the basic reward. The discriminator only needs
one evaluation to reward each token. There are still two problems that need to
be solved. One is that attention is calculated by softmax. As the length of the
sequence increases, the attention score will decrease, which does not meet the
requirements of the reward value. Therefore, we need to expand the attention
score to an appropriate range without changing the size relationship. Another
problem is that the attention score only represents the degree of attention, not
the real output, so we need the result of classification to complete the reward
together with the attention score.

For the first problem, We use mathematical scaling algorithms. The advan-
tage of this algorithm is to scale the attention score to an appropriate range
without changing the size relationship between the data. In this part, we are
based on the assumption that the final output of the model is positive. By
default, the current sequence is the real data.

Rb =
Rbattention − min(Rbattention)

max(Rbattention) − min(Rbattention)
∗ Δ + L (5)
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where Δ is the size of the interval, and L is the lower bound of the interval.
For the second problem, we process the basic reward again. We keep the

original data unchanged for the case where the classification result is positive;
for the negative classification result, we let the data go through the mapping
function y = 1 − x. The negative token could get a greater penalty. The reward
value obtained after mapping the function is the real reward of each token in
the current sequence. The goal of the generator is to get the greatest reward.

mask = max(Classification).bool() (6)

RAtt Dφ

(
ˆSeq1:t

)
= mask ∗ Rb + ¬mask ∗ (1 − Rb) (7)

where the type of mask is bool, and ¬mask represents the inverse.
Each token can get the most realistic reward by effectively scaling the atten-

tion score and the final function mapping based on the classification result. The
neutral tokens in the sequence will not be affected too much. The token that
determines the actual semantics of the sequence can get the greatest encour-
agement or punishment. The generator can obtain more accurate information,
making the training results more excellent.

3.3 Training of G

Maximizing the reward of the generated sequence is the training goal of the
generator.

J (θ) =
T∑

t=1

Gθ

(
tokent | ˆSeq1:t−1

)
· QGθ

Att Dφ

(
tokent, ˆSeq1:t−1

)
(8)

where Gθ

(
tokent | ˆSeq1:t−1

)
is the generator with the parameter θ, and the

QGθ

Att Dφ
(tokent, ˆSeq1:t−1) is the action-value function at timestep t. Firstly, we

use a complete sequence ˆSeq. The discriminators evaluate ˆSeq and return the
corresponding attention score. After processing the attention score, it serves as
the reward.

QGθ

Att Dφ

(
a = tokent, st−1 = ˆSeq1:t−1

)
= RAtt Dφ

(
ˆSeq1:t

)
(9)

As mentioned above, we adopted the attention instead of the Monte Carlo search.
So, with the attention, the gradient of the objective function J (θ) can be derived
as

∇θJ (θ) =
T∑

t=1

[
∇θ log Gθ

(
tokent | ˆSeq1:t−1

)
· RAtt Dφ

(
ˆSeq1:t

)]
(10)

In summary, our overall framework is shown in Algorithm 1. First, we pre-
train Gθ to use Maximum Likelihood Estimation (MLE). Negative samples are
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Algorithm 1 Attention Generative Adversarial Nets
Require: generator Gθ, Attention-based Discriminator Att Dφ, dataset S from

Target Generator
1: Initialize Gθ, Att Dφ to the normal distribution N(−0.05, 0.05)
2: Pretrain Gθ using MLE on S.
3: Generate the negative samples from Gθ.
4: Pretrain Att Dφ on S and negative samples via minimizing the cross entropy.
5: for each epoch ∈ epochs do
6: for it ∈ g − steps do
7: Generate ˆSeq1:T .
8: Compute Q via attention.
9: Update the Gθ.

10: end for
11: for it ∈ d − steps do
12: Generate newly samples based on current Gθ.
13: Train Discriminator Att Dφ for k epochs.
14: end for
15: end for
16: return AttGAN converges

generated according to the state of the current generator Gθ, and together with
real samples are used as the training dataset of the discriminator. In the process
of adversarial learning generation, the generator generates new samples, and
the discriminator is responsible for providing rewards for each token based on
the samples. Regularly update the parameters of the discriminator to ensure
synchronization with the state of the generator. In the end, we get a better
generative model.

4 Experiments

The experiment includes synthetic data experiments, tests in a dialogue system,
and more internal analysis.

4.1 Training Settings

Synthetic Oracle. For the synthetic data experiments, similar to SeqGAN,
we first initialize the Target Generator (LSTM), and the parameters obey the
normal distribution N(0, 1). Then generate 10,000 sequences and use them as
real target dataset S. In particular, the length of these sequences is uniformly
set to 20. To test the effect of generating long text, we add a set of experiments
with 40.

GAN Setting. For the generator, similar to Target Generator, the parameters
of the generator are initialized to the normal distribution N(−0.05, 0.05). For the
discriminator, we adopt the two-layer GRU with a hidden size 64. In addition,
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the vocabulary size is 5000. To avoid overfitting, we use dropout [14] with the
keep rate of 0.75. As described in [19], different g-steps and d-steps will affect
the final result. The best parameter of our model is when the text length is 20,
the g-step adopted is 50, and when the text length is 40, the d-step is 10. And
the d-steps is 4, and the k is 2.

4.2 Baselines

To evaluate the effectiveness, we compared our model with the following strong
models:

SeqGAN. SeqGAN introduces the output of the discriminator into the train-
ing process of the generator through reinforcement learning. SeqGAN uses policy
gradients to solve the problem that discrete data cannot be differentiated. Eval-
uate each token through the Monte Carlo search [19].

RankGAN. RankGAN learns the model through the ranking information
between the model-generated sequence and the actual sequence [11].

LeakGAN. LeakGAN’s generator can obtain the advanced features inside the
discriminator to guide training [6]. Due to the generator of LeakGAN is different
from the previous works, the focus of our comparison is SeqGAN and RankGAN.

4.3 Evaluation Metrics

Using such an oracle can provide the training data and accurately evaluate the
quality of the generative model. The synthetic data experiment adopts the neg-
ative log-likelihood method (NLL.) to evaluate. Most importantly, we focus on
the time consumption(T.) of different models. To compare the time consumption
more accurately, we compare the time consumption of completing one epoch in
Algorithm 1.

4.4 Synthetic Data Experiments

Experiments on synthetic data show that treating attention as the basic reward
can effectively improve the training speed of the generator and make the gener-
ator have better performance.

We set the text length of the synthetic data experiments as 20 and 40. The
training curves and the time consumption are displayed in Fig. 4. The time con-
sumption and NLL performance are shown in Table 1. Since LeakGAN’s genera-
tor is different from the other three, the focus of our comparison is SeqGAN and
RankGAN. Firstly, Our generator obtains the best performance in the short-
est time. We can see that training time is significantly reduced by using the
attention mechanism, and the generator’s parameters distribution is also closer
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to the target parameters. Secondly, we also compared the performance of the
model when generating long texts. From the data listed in Table 1 that when
the text length increases, the effect of each model decreases slightly, and the
training time increases, but our approach can still obtain a better performance
in the shortest time. In addition, although LeakGAN has a different generator,
the effect achieved by our model is comparable to LeakGAN.

Table 1. The results of dialogue system.

Model Text length 20 Text length 40

NLL. T. (each epoch) NLL. T. (each epoch)

SeqGAN 8.683 167 10.310 303

RankGAN 8.149 84 9.958 152

LeakGANa 7.038 260 7.191 613

AttGAN 7.104 40 7.208 57
a LeakGAN’s generator is different from other models and is not
the focus of comparison.

(a) Time consumption(1000s) (b) NLL

Fig. 4. NLL and time consumption of different models.

In general, the experimental results show that the generator can obtain more
accurate reward value information from the attention-based discriminator, and
the model achieved excellent performance. It also shows that it is feasible to use
attention feedback information.

4.5 Dialogue Generation: DailyDialog

By verifying real tasks, the use of the attention mechanism in the discrimi-
nator can provide more accurate rewards, and the time required for training
is shortened dramatically. In real-world tasks, the generator generates higher-
quality responses based on the guidance of the attention-based discriminator.
The advantage of the attention mechanism is that neutral words will not get too
much attention, avoiding errors caused by sampling.
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Table 2. The results of dialogue system.

Model ppl. Loss. Ave. Grd. Ext. Dis-2. T. (Total)

MC (SeqGAN) 257 5.930 0.739 0.496 0.883 0.0959 50345

AttGAN 126 5.190 0.747 0.505 0.884 0.1001 4144

We apply it to the dialogue model to test the real effect of using attention as
the reward. We adopt a Seq2Seq [3] model as our generator. Through training,
the generator is responsible for generating fluent sentences. And for the discrim-
inator, we use the two-layer GRU with hidden size 300, and the structure is
the same as AttGAN’s. For the discriminator, the discriminator has the ability
to classify and feedback rewards. Specifically, seq2seq generates an appropriate
response from the above information of the dialogue, and the discriminator is
responsible for efficiently scoring the generated replies. The discriminator pro-
vides real rewards for each word by judging the fluency and naturalness of the
current response.

We choose the DailyDialog [10] Dataset. We use Perplexity (ppl.), the Cross-
Entropy Loss (Loss.), Embedding Average (Ave.), Embedding Greedy (Grd.),
Embedding Extrema (Ext.), distinct bigrams (Dis-2.), and the time (T.) con-
sumption. Ave., Grd., and Ext. are based on word embeddings. We use Google-
News 300D word vectors. Particularly, lower perplexity means better fluency.
We mainly compare the use of Monte Carlo search and the use of attention
information.

(a) Time consumption(1000s) (b) Loss

Fig. 5. The results of the Seq2Seq model.

Table 2 shows the result of the dialogue system. We can see that when using
attention, all evaluation indicators are better than using Monte Carlo search.
From Fig. 5, AttGAN’s performance is better, although there is a small fluctua-
tion in the middle. Since the training has just started, the discriminator is not
stable yet. As the training progresses, our model performs better and better.
Most importantly, the training time used by AttGAN is only one-tenth of the
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Monte Carlo search. For the Monte Carlo search, although the evaluation of each
token will be sampled multiple times and averaged, it is inevitable that the ran-
domness in the sampling process will still affect the final result. The attention
can be more precise to obtain which tokens have a more significant impact on
the sequence, guiding the generator to achieve better results.

4.6 Internal Comparison Experiments

To further verify the details in AttGAN, we compared different attention mech-
anism, scaling algorithms and mapping functions.

For the attention mechanism, we use the concat attention:

Rbattention = softmax(
∑

Wα[hidden;OT ]) (11)

For scaling algorithms, we adopt the Sigmoid function:

S(x) =
1

1 + e−2x
(12)

This function can directly enlarge the attention to 0.5 to 1. It also means that
the default sequence is positive. For the mapping functions, we use the following
functions:

y =
ex − 1
e − 1

(positive) (13)

y =
e−x+1 − 1

e − 1
(negative) (14)

For the selection of the mapping function, we require the mapping function
to pass through two points (0, 0) and (1, 1) (positive), and through two points
(1, 0) and (0, 1) (negative) because the reasonable range of reward value is the
range of 0 to 1.

Table 3. The NLL performance of different attention processing methods.

Model Only attention Sig linear Sig nonlinear Nonlinear (Linear) AttGAN

NLL. 9.007 12.647 11.258 8.85 7.104

The final results are provided in Fig. 6 and Table 3. Different forms of atten-
tion mechanisms have different effects, and general attention(AttGAN) is better.
If only the original data of the attention is used, the generator does not obtain
effective information. Because attention itself is not the final classification result,
combining the classification results to be used as a reward is necessary. When
using the Eq. (12) Sigmoid function, both models have very poor results because
the Sigmoid function cannot effectively handle maximum values, making the
reward or penalty too large, which leads to overtraining of the generator. Using
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(a) General attention and Concat atten-
tion

(b) Different attention processing meth-
ods

Fig. 6. Different attention processing

Eq. (5) (AttGAN), the extreme value can be limited to a fixed range, which is
more in line with the requirements of the real reward value. Equation (13) and
Eq. (14) non-linear functions distort the relationship between the attention score
so good results cannot be obtained.

By combining the attention with the scaling algorithm and the linear map-
ping function, the discriminator can provide more effective guidance to the gen-
erator to achieve the best result.

5 Conclusion and Future Work

In this paper, we proposed a new algorithm framework called AttGAN, which
reduces the training time of the generative model and achieves better perfor-
mance than similar algorithms. Attention mechanism could capture the impor-
tance of each token in the sequence more accurately, which can provide better
guidance to the generator. In addition, the attention mechanism can also be used
to accelerate other models, further shortening the training time. Although our
model has indeed been improved following previous works, for future work, we
will compare more variant models and more data sets to analyze the effectiveness
of the attention mechanism in accelerating model training.
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Abstract. Pre-training methods have been proven to significantly
improve language understanding ability of the model. However, when
dealing with machine translation tasks involving two or more languages,
the pre-training method can only handle a single language and pre-
vent further improvement of machine translation performance. There-
fore, there are two main methods to improve the quality of machine
translation model by using the pre-training model. One is to use the word
embedding generated by the pre-training model as the modeling unit.
Second is to make the machine translation model learn the probability
distribution of the pre-training model through the knowledge distillation
method. In addition, the self-attention based pre-training model affects
the effect of machine translation due to the “training-fine-tuning” dif-
ference and limited by the assumption of conditional independence. For
this reason, we proposed a XLNet based pre-training method, that cor-
rects the defects of the general self-encoding based pre-training model,
and enhance NMT model for context feature extraction. We conducted
experiments on the CCMT2019 Mongolian-Chinese (Mo-Zh), Uyghur-
Chinese (Ug-Zh) and Tibetan-Chinese (Ti-Zh) tasks, our method sig-
nificantly improves the quality compared to the baseline (Transformer),
which fully verifies the effectiveness.

Keywords: Pre-training · XLNet · Low-resource · Machine translation

1 Introduction

General neural machine translation (NMT) [1,6,9,15] adopt attention mecha-
nism to learn the alignment relationship between source language and target lan-
guage on the basis of sequence-to-sequence framework. The model evaluates the
cross-entropy between the generated token and the reference token through the
maximum likelihood estimation method (MLE). The training goal is to minimize
the cross-entropy to make the generated token more similar to the probability
distribution of the reference token. In order to be able to achieve the bias-variance
tradeoff in the training phase, the general approach is to improve the accu-
racy of the output probability and reduce the dispersion through Drop method,
c© Springer Nature Switzerland AG 2021
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data augmentation, add constraints to the objective function, etc. Therefore,
in addition to improving the network structure and training strategies, word
embedding is the key to improve the quality of machine translation. One-hot
word embedding can not learn semantic features due to the dimension disaster.
Both Word2vec [3] and GloVe [10] belong to low-dimensional word embedding
representation method, which maps the one-hot word embedding into the low-
dimensional dense feature space. The feature extraction method is similar to
N-gram language model [2], the cosine distance from the space origin to the
word embedding position in the initial neighborhood is used as the measure-
ment index. The closer the distance is, the greater the correlation is, and vice
versa. However, the generated word embedding is fixed and cannot be dynami-
cally optimized for specific tasks. At present, the pre-training method [5,11,12]
has emerged in natural language process (NLP) tasks with excellent feature rep-
resentation and extraction capabilities. However, NMT model combined with
pre-training methods is less studied because of the particularity of NMT. [18]
use the output layer of BERT as the word embedding representation of the NMT
model, and add a new attention model to realize the interactive representation of
the NMT model and the pre-training model. [16] proposed a hybrid strategy to
make the NMT model fully learn the knowledge of the pre-training model. They
graded the learned state representations according to correlation, and dynam-
ically fused the representations with high correlation into the corresponding
NMT model. In order to further learn the “dark knowledge” of the pre-training
model, they used the knowledge distillation method to learn the output distri-
bution of the pre-training model to improve the quality of the NMT model. [14]
proposed masked sequence-to-sequence pre-training method (MASS), which pre-
dicts tokens by adding a certain proportion of masks to the encoder and decoder
to learn language features. As we all know, the BERT model consists of masked
language model (MLM) [13] and next sentence prediction model [8], the MLM
model uses Mask to randomly replace words in a sentence, and uses the context
of the current Mask to predict true value. However, Mask is not used in the fine-
tuning phase, resulting in “training-fine-tuning” inconsistent. In addition, due
to the assumption of conditional independence, Mask cannot use other Mask
as a condition for prediction. While the autoregressive XLNet [17] alleviates the
“training-fine-tuning” difference and overcomes the context omission problem of
traditional autoregressive models, thereby improving the quality of the NMT
method combined with the pre-training model. Therefore, this paper is mainly
divided into the following parts.

– We proposed a partial sampling method to obtain the partial factorization
sequence of the sentence, and then use XLNet to encode the factorization
sequence into the corresponding word embedding.

– We proposed an interactive attention mechanism to realize information trans-
fer between NMT model and XLNet model, so that the NMT model can fully
acquire the knowledge of the XLNet based pre-training model.

– The NMT model learns the output probability distribution of the pre-training
model through knowledge distillation when the decoder predicts translation.
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2 Background

NMT. NMT model can simulate the translation probability P (y|x) from source
language x = {x1, ...xn} to target language y = {y1, ...ym}, as shown in Eq. 1.

P (yi|y<i,x,θ) ∝ exp {f(yi−1, si, ci; θ)} (1)

Where y<i indicates the translated tokens before the i-th decoding step, θ indi-
cates the parameters of the NMT model. si indicates the i-th hidden state of
the decoder, ci indicates the corresponding context of the source language at
time t, and f(·) indicates the nonlinear activation function in the current node
of the decoder. Given N training sentence pairs {xn, yn}N

n=1, the loss function is
defined as Eq. 2.

LCrossEntropy = argmax
θ

N∑

n=1

logP (yn|xn; θ) (2)

Pre-training Model Assisted NMT Method. The pre-training method
transfers knowledge from resource-rich tasks to low-resource downstream tasks.
However, the NMT method takes the cross entropy between the two languages
as the training goal to optimize the parameters, which is significantly different
from the monolingual pre-training model.

Therefore, one approach is to use the resource-rich language pre-training
model, and then put source language and the target language into the pre-
training model to obtain the corresponding word embedding, and use pre-trained
word embedding training NMT model. Another approach is to design a new
sequence-to-sequence pre-training task to directly realize bilingual mapping in
machine translation. Among them, XLM [4], MASS [14] and BART [7] are both
cross-lingual pre-training method based on sequence-to-sequence.

3 Method

This section mainly introduces the framework of the autoregressive pre-training
assisted NMT model, which including the partial factorization process of the
sequence, the NMT model integrating the XLNet pre-training method, and the
knowledge distillation method.

3.1 Partial Factorization Sequence Acquisition

For a sentence with n tokens, including n! corresponding factorization sequences.
The number of factorization sequences will increase exponentially as the number
of tokens increases. Generally, only a portion of the factorization sequence will
be encoded. For a factorization sequence, the corresponding maximum likelihood
probability Ez∼ZT

can be defined as Eq. 3.

max
θ

Ez∼ZT

[
T∑

t=1

logpθ (xzt
|xZ<t

)

]
(3)
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Where x represents the token in the sequence, ZT denotes all permutation of
sequences with length T , and z ∼ ZT represents one of the permutations.

We proposed a partial factorization sampling strategy to relieve computa-
tional pressure: for a sentence s, the word at the front of the sentence has fewer
corresponding contexts, so there are many candidate sets in prediction. How-
ever, the words at the end of the sentence have more corresponding contexts,
and there are fewer high-probability candidate sets in prediction, making it easier
to predict accurate words.

Fig. 1. Partial factorization sampling.

Therefore, we
set an anchor point
c on the sentence
s and divide a fac-
torization sequence
into two sub-fact-
orization sequence
y1 and y2, which
are called non-target
sequence and tar-
get sequence respec-
tively. We set a hyper-parameter K so that 1

K tokens in the sequence will be
predicted. In this paper, K is set to 2. As shown in Eq. 4 (Fig. 1).

|s| − y1

|s| =
1
K

(4)

Through Eq. 4, it can be calculated that K is approximately equal to |s|−c
|s| , since

we do not need to predict the first c tokens in the sequence, the consumption of
computing resources is reduced.

3.2 NMT Model Integrated with Autoregressive Based XLNet

The essence of factorization sequence is to traverse the probability decomposi-
tion order of sentences instead of changing the word position order. However,
according to the description of Eq. 5, the prediction probability of the target
token will not change with the decomposition order.

pθ (Xi = x|xz<t
) = pθ (Xj = x|xz<t

) =
exp

(
e (x)T

h (xz<t
)
)

∑
xj exp

(
e (x′)T

h (xz<t
)
) (5)

The representation of each word in Transformer is jointly predicted by word
embedding and corresponding positions. However, context representation and
current word position information need to be used when predicting the cur-
rent word, and context representation and current word embedding and position
need to be used when predicting subsequent words. The conflict can by solved by
introducing two-stream self-attention. Similar to BERT, XLNet still uses Mask
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to replace the target token, but the Mask will not be included in the calcula-
tion of the address vector K and the content vector V , the Mask only acts as
the query vector Q, and the representation of all tokens will not get the infor-
mation of the Mask, thus eliminating the difference between pre-training and
fine-tuning caused by the introduction of the Mask. Therefore, it is common
practice to construct new representation functions gθ and introduce additional
position information zt to realize the content perception of the corresponding
position, as shown in Eq. 6.

pθ (xzt
|xz<t

) =
exp

(
e (x)T

gθ (xz<t
, zt)

)

∑
x′ exp

(
e (x′)T

gθ (xz<t
, zt)

) (6)

Where g(·) uses the position representation zt instead of content representation
when predicting xzt

, and requires full representation of the current token (xzt
and

zt when predicting subsequent tokens xz(j,j>t). Two-stream refers to the query
representation attention (Query-Att) and the content representation attention
(Content-Att), respectively.

Fig. 2. The architecture of model. The dotted line indicates residual connections, HX ,
HY and HL

E denote the autoregressive based XLNet model corresponding to the source
language and target language, and the output of the last layer of the NMT encoder.

– Query-Att: Predict the current token using only position information zt, as
shown in Eq. 7.

g(l)
zt

← Att
(
Q = g(l−1)

zt
,KV = h(l−1)

z<t
; θ

)
(7)
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– Content-Att: The current position information zt and the content information
h

(l−1)
zt are used to predict subsequent tokens, as shown in Eq. 8.

h(l)
zt

← Att
(
Q = h(l−1)

zt
,KV = h(l−1)

z<t
; θ

)
(8)

Where g
(l−1)
zt and h

(l−1)
zt represent the position and content of the l−1 layer to be

queried respectively. Content-Att is consistent with the traditional self-attention
method.

The two-stream self-attention mechanism can be abstracted as:

– Randomly initialize vector gi = w in the first layer of Query-Att.
– The Content-Att uses the word vector hi = e(xi) and the network weights of

the two-streams are shared. Query-Att is removed in the fine-tuning phase,
and only the Content-Att is used.

The NMT model framework is shown in Fig. 2, where X and Y represent the
domains of the source and target languages, respectively. For each sentence,
x ∈ X, y ∈ Y . The outputs of the pre-trained XLNet-based autoregressive model
are HX = XLNet (x) and HY = XLNet (y). The i-th token in sentence x and
y represented as hX,i ∈ HX and oY,i ∈ HY . H0

E indicates word embedding, H l
E

indicates the l-th hidden layer representation. For any i ∈ [lx] and l ∈ [L], the
i-th element h̃l

i in H l
E as shown in Eq. 9.

h̃l
i = attx(hl−1

i ,HX ,HX),∀i ∈ [lx] (9)

Where attx(·) represents the attention module between the XLNet and NMT
model. The output is encoded by the feedforward neural network FNN to obtain
H l

E . The specific calculation method is shown in Eq. 10.

H l
E = (FNN(h̃l

1), ..., FNN(h̃l
lx)) (10)

Where Sl
<t represents the hidden state of the i-th decoder layer, before the time

step t, the decoder self-attention representation sl
t can be expressed as Eq. 11.

s̃l
t = attns(sl−1

t ,HY ,HY ) (11)

Where atts(·) represents the self-attention model, which is used to learn the
internal feature of sentence. In addition, external interaction representation can
be divided into encoder-decoder interaction attnE and encoder/decoder-XLNet
model interaction attnX . The final interaction representation s̃1

t is obtained by
combining these two external attention models. As shown in Eq. 12.

s̃l
t =

1
2
(attnX(s̃l

t,HX ,HX) + attnE(s̃l
t,H

L
E ,HL

E)), sl
t = FFN(s̃l

t) (12)

sL
t is finally obtained through iterative calculation, and then the t-th target word

ỹt is predicted according to softmax function. We use the negative log-likelihood
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of the probabilities to generate reference tokens as the loss function LCE for this
model, as shown in Eq. 13.

LCE = −
M∑

j=1

log(p(yj |ŷ<j)) (13)

Where ŷ<j denotes generated tokens, M indicate the length of the sequence. We
also use drop-net trick to prevent over-fitting, we set the drop-net rate to 1.0 in
this paper.

3.3 Knowledge Distillation Method

In order to learn the output probability distribution of the pre-training model,
we also add the knowledge distillation method to jointly train the model. The
training objectives include minimizing the cross-entropy between the output of
the NMT model and the reference translation, and the relative-entropy between
the NMT model and pre-training model. The common practice is to use the
output of the pre-trained model as distillation data to optimize the parameters
of the NMT model so that a more accurate and smooth translation can be out-
put. The knowledge distillation method is similar to the general cross-entropy
method. The difference is that the knowledge distillation method introduces
an additional temperature hyper-parameter τ to dynamically adjust the output
probability distribution, and appropriately increase the probability of some can-
didate sets to make the output distribution smoother. The output probability
can be defined as Eq. 14.

pprt =
exp(zprti/τ)∑
j exp(zprtj/τ)

(14)

Where zprti represents hidden state representation, the equation also applies
to the NMT model. By increasing τ we expose extra information to the NMT
model. The calculation of KL divergence is shown in Eq. 15.

DKL(pprt||pnmt) =
N∑

i=1

pprt(i) · log
pprt(i)
pnmt(j)

(15)

Where pprt and pnmt represent the probabilities of the pre-training model and
NMT model respectively, i represents the sentence number. Therefore, we define
the KL divergence (relative entropy) loss between the output probability distri-
bution of the pre-trained model and the NMT model, as shown in Eq. 16.

LRE =
N∑

i=0

τ2DKL(pprt||pnmt) (16)

Training goal is to minimize the KL divergence loss of pre-training model and
the NMT model. Therefore, the loss function of the model can be regarded as
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the weighted sum of cross-entropy loss (LCE) and relative entropy loss (LRE),
as shown in Eq. 17.

L = λLCE + (1 − λ)LRE (17)

Where λ is hyper-parameter and empirically set to 0.5.

4 Experiments

Dataset and Configuration. Our low-resource corpus is all from the
CCMT2019 data set, in which Mo-Zh corpus consists of 260 K sentence pairs
training set, 1000 sentence pairs verification set and 1000 sentence pairs test set.
Ug-Zh corpus consists of 300 K sentence pairs training set, 1000 sentence pairs
verification set and 1000 sentence pairs test set. Ti-Zh corpus consists of 150K
sentence pairs training set, 500 sentence pairs verification set and 500 sentence
pairs test set. We use the directed graph method (DG)-conditional random field
method (CRF) to identify and segment the agglutinated language into stem-
affix to alleviate the problem of low-frequency words. In addition, we limit the
vocabulary to 35K and limit the maximum sentence length to 50 words. We
adopt BLEU scores1 to evaluate the model. Parameters are set as follows: word
embedding dimension = 30, number of hidden layer nodes = 512, number of
layers = 4, number of heads = 6, dropout = 0.25, batch size = 128, and beam
size = 5. The parameters are updated by Stochastic gradient descent algorithm
(SGD) with learning rate controlled by Adam. All of the source language use
XLNet method2 to obtain vector representation. We employ single GTX 1080
to train model and obtained by averaging the last 5 checkpoints for task.

Baseline. Our baseline system includes the following:

– Transformer: An seq-to-seq framework based on self-attention, which has the
best translation effect3.

– XLM: A pre-training method based on cross-lingual supervised learning4.
– MASS: A sequence-to-sequence pre-training method based on BERT5.
– BART: A denoising sequence-to-sequence pre-training for machine transla-

tion6.

1 https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-
bleu.perl.

2 https://github.com/zihangdai/xlnet.
3 https://github.com/tensorflow/tensor2tensor.
4 https://github.com/facebookresearch/XLM.
5 https://github.com/microsoft/MASS.
6 https://github.com/pytorch/fairseq/tree/master/examples/bart.

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/zihangdai/xlnet
https://github.com/tensorflow/tensor2tensor
https://github.com/facebookresearch/XLM
https://github.com/microsoft/MASS
https://github.com/pytorch/fairseq/tree/master/examples/bart
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4.1 Results and Analysis

Table 1. Translation results in different
languages.

Model Mo-Zh Ug-Zh Ti-Zh

Transformer [15] 27.42 32.62 28.39

XLM [4] 29.53 34.59 29.96

MASS [14] 31.79 35.41 30.84

BART [7] 32.18 36.78 31.55

Ours 34.98 38.02 33.46

As shown in Table 1, the perfor-
mance of the pre-training model
assisted NMT model is generally
higher than that of the traditional
Transformer model. This fully illus-
trates the advantages of the pre-
training assisted NMT model. Among
them, the XLM model iteratively
replaces mask symbols with high-
frequency symbol pairs, resulting in
the model being insensitive to lan-
guage types. MASS has used the
transpose mask mechanism to implement the sequence-to-sequence feature learn-
ing tasks, making the model have a certain generalization. BART is based on
MASS and adds various noises to enrich the semantics. However, these three
pre-training assisted NMT models are all based on self-encoding BERT meth-
ods. Due to inherent defects, the performance of the model cannot be signifi-
cantly improved. While our method makes up for the defect, and encodes the
source language and target language in an autoregressive mode to realize the
translation between different languages. In three low-resource translation tasks,
the BLEU scores increased by 7.56, 5.4 and 5.07, respectively.

4.2 Ablation Experiments

Table 2. The Ablation experiment.

Model Mo-Zh Ug-Zh Ti-Zh

Dev Test Dev Test Dev Test

Morpheme 26.99 25.27 30.34 28.98 27.19 25.46

Stem-affixes 28.91 27.98 31.78 30.56 27.33 26.1

BPE 29.69 27.42 33.05 32.62 30.16 28.39

+XLNet 34.68 33.14 36.41 35.27 32.54 30.35

+Partial 37.35 34.64 38.39 37.94 34.93 32.76

+Knowledge 37.35 34.98 38.58 38.02 35.07 33.46

We conducted ablation exper-
iments to observe the impact
of various components on the
performance of the model,
including the use of pre-
training model (XLNet), par-
tial prediction methods (Par-
ial), knowledge distillation
(Knowledge), etc. In addition,
in order to verify the impact
of each granularity token on
the model, we divided the modeling unit into three types: Morpheme, stem-
affix and BPE. BLEU scores of NMT model are shown in Table 2. According to
Table 2, although the number of low-frequency words is reduced when morpheme
modeling is adopted, but local semantic and order adjustment information is also
lost. The different between BPE and stem-affixes method is not obvious, BPE
method divides high-frequency byte pairs by the frequency of continuous bytes.
The stem-affixes method uses complex rules to extract word-building affixes
and restore stem. Although it can obtain morphological feature, but consumes
resources. Therefore, we mainly use BPE below.
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Fig. 3. The BLEU scores in different translation tasks.

When the pre-training model (XLNet) is added, the BLEU scores improved
by 5.72, 2.65 and 1.96 respectively in the test sets of three low-resource tasks. The
experimental results show that the pre-trained word embedding by XLNet has
better representation and polysemous word recognition ability, it can update
the word embedding matrix during the iterative training process. The partial
prediction method (Partial) predicts part of the sequence token, which is more
efficient in language modeling and feature extraction. In addition, the quality
of the model after adding knowledge distillation is also significantly improved
compared with other methods, it also shows that the NMT model can learn
implicit knowledge representation from the pre-training model.

Fig. 4. Translation effects of different tasks.

4.3 Case Study

In case study, we mainly observe the BLEU scores of sentences with different
lengths and analyze the translation quality of specific examples. As shown in
Fig. 3, when the sentence length is between 11 and 20, the model has the best
performance, and the BLEU scores in the three low-resource translation tasks
are 34.98, 38.02 and 33.46, respectively. With the increase of sentence length,
the BLEU scores decreases continuously, and reaches the lowest when it is longer
than 50 tokens.

According to Fig. 4, our model significantly improves the translation fluency
and faithfulness compared with the translation generated by the pre-training
model based on BERT. It can be seen that our method pays more attention to
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semantic coherence in the process of context generation, and also alleviates the
problem of missing translation by improving the length penalty term.

5 Conclusion

In this paper, we proposed a low resource neural machine translation method
based on autoregressive pre-training model which combined partial sampling.
Compared with various pre-training sequence-to-sequence models, our method
improved the context semantic awareness and alleviates the mask independence
assumption. The pre-trained word embedding method has better scalability for
low-resource neural machine translation. In addition, the method of knowledge
distillation provides help for NMT models to learn richer semantic knowledge.
Therefore, in the future, we will research more neural machine translation models
based on pre-training methods.
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Abstract. The dependency tree of a natural language sentence can cap-
ture the interactions between semantics and words. However, it is unclear
whether those methods which exploit such dependency information for
semantic parsing can be combined to achieve further improvement and
the relationship of those methods when they combine. In this paper, we
examine three methods to incorporate such dependency information in
a Transformer based semantic parser and empirically study their com-
binations. We first replace standard self-attention heads in the encoder
with parent-scaled self-attention (PASCAL) heads, i.e., the ones that
can attend to the dependency parent of each token. Then we concate-
nate syntax-aware word representations (SAWRs), i.e., the intermedi-
ate hidden representations of a neural dependency parser, with ordinary
word embedding to enhance the encoder. Later, we insert the constituent
attention (CA) module to the encoder, which adds an extra constraint to
attention heads that can better capture the inherent dependency struc-
ture of input sentences. Transductive ensemble learning (TEL) is used
for model aggregation, and an ablation study is conducted to show the
contribution of each method. Our experiments show that CA is comple-
mentary to PASCAL or SAWRs, and PASCAL + CA provides state-
of-the-art performance among neural approaches on ATIS, GEO, and
JOBS.

Keywords: Semantic parsing · PASCAL · SAWRs · CA

1 Introduction

Semantic parsing is the task of mapping natural language sentences into tar-
get formal representations, which is crucial for many natural language process-
ing (NLP) applications. With the rapid development of deep learning, various
neural semantic parsers [5,6,10,17,19] have been implemented based on sophis-
ticated sequence-to-sequence (seq2seq) models [4] with Transformer [20]. Note
that syntax information of natural language sentences can be used as clues and
restrictions for semantic parsing. In this paper, we focus on incorporating syn-
tax information from dependency trees of natural language sentences in neural
semantic parsers.
c© Springer Nature Switzerland AG 2021
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The dependency tree [15,16] of a natural language sentence shows which
words depend on which other words in a tree structure that can capture the
interactions between the semantics and natural language words. In specific, the
dependency tree can be considered as the explicit structure prior to predict-
ing corresponding semantic structures in semantic parsing. Then the encoder of
a seq2seq based semantic parser can be enhanced by information from depen-
dency trees. On the other hand, dependency trees can be efficiently generated by
existing parsers, like Stanford Parser [14], with promising results. [24] encodes
such dependency trees in a graph-based neural network for semantic parsing and
achieves a great improvement in performance, which indicate potential advan-
tages of incorporating dependency trees in semantic parsers.

It is unclear whether those methods which exploit such dependency infor-
mation for semantic parsing can be combined for further improvement. In this
paper, we examine three such methods for a Transformer encoder of a seq2seq
based semantic parser and empirically study their combinations. In specific, we
first follow the idea of parent-scaled self-attention (PASCAL) [2], which replaces
standard self-attention heads in the encoder with ones that can attend to the
dependency parent of each token. We also concatenate syntax-aware word rep-
resentations (SAWRs) [27], i.e., the intermediate hidden representations of a
neural dependency parser, with ordinary word embedding to enhance the Trans-
former encoder. At last, we insert constituent attention (CA) module [22] to
the Transformer encoder, which adds an extra constraint to attention heads to
follow tree structures that can better capture the inherent dependency struc-
ture of input sentences. We also aggregate multiple models of these methods for
inference following transductive ensemble learning (TEL) [23].

We first implement a baseline semantic parser that is based on a simple
seq2seq model consisting of a 2-layer Transformer encoder and a 3-layer Trans-
former decoder. Then we evaluate the performance of the above three methods
and their combinations on ATIS, GEO, and JOBS datasets. We also evaluate
aggregated versions of these methods by TEL. The experimental results show
that the combination of PASCAL and CA provides state-of-the-art performance
among neural approaches, which can also be easily implemented.

The main contributions of this paper are:

– We introduce three methods by applying PASCAL, SAWRs, or CA to incor-
porate dependency trees in the Transformer encoder of a seq2seq semantic
parser. We show that all three methods can improve the performance.

– We evaluate the combinations of the three methods and show that they can
be fruitfully combined with better performance. The result show that CA is
complementary to PASCAL or SAWRs.

– We implement TEL for our models. We show that TEL is effective for these
improvements on semantic parsing.

– We implement the combination of PASCAL and CA based on a simple
seq2seq semantic parser. We show that this parser can be implemented easily
and achieves state-of-the-art performance among neural approaches on ATIS,
GEO, and JOBS datasets.
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2 Related Work

Neural semantic parsing has achieved promising results in recent years, where
various sophisticated seq2seq models have been applied. Many works focus on
integrating the syntax formalism of target representation into the decoder of the
seq2seq model. For instance, hierarchical tree decoders are applied in [5,18] to
take into account the tree structure of the logical expression. Sequence-to-tree
(seq2tree) model [5] updates the decoder by hierarchical tree-long short-term
memory (Tree-LSTM), which helps the model to utilize the hierarchical structure
of logical forms. [18,19,25] first map a natural language sentence into an abstract
syntax tree (AST), then serve it as an intermediate meaning representation and
incorporate it with grammar rules, finally parse the AST to the corresponding
target logic form.

On the other hand, there are few works on incorporating syntax informa-
tion of input natural language sentences to the encoder. Graph-to-sequence
(graph2seq) model [24] constructs a graph encoder to exploiting rich syntactic
information for semantic parsing.

It has shown that syntax information of input natural language sentences can
be helpful for the encoder in neural machine translation (NMT) tasks [1]. In spe-
cific, [2] places parent-scaled self-attention (PASCAL) heads, which can attend
to the dependency parent of each token, in the Transformer encoder to improve
the accuracy of machine translation. [27] concatenates syntax-aware word rep-
resentations (SAWRs), i.e., the intermediate hidden representations of a neural
dependency parser, with ordinary word embedding to enhance the Transformer
encoder. [22] introduces constituent attention (CA) module, which adds an extra
constraint to attention heads to follow tree structures that can better capture
the inherent dependency structure of input sentences. In this paper, we examine
these ideas in semantic parsing and empirically study their combinations.

3 Three Improvements

In this section, we specify three improvements to incorporate dependency trees
in the Transformer encoder of a seq2seq semantic parser.

As illustrated in Fig. 1, a dependency tree describes the structure of the sen-
tence by relating words in binary relations, which can be efficiently generated
by corresponding parsers, like Stanford Parser1. [15,16] have shown that depen-
dency trees can be used to construct target logical forms for semantic parsing.
In this paper, we focus on exploiting information from structures of these depen-
dency trees to enhance the encoder of a neural semantic parser. Note that, we
ignore the labels of corresponding dependency relations here, like ‘obj’, ‘case’,
and ‘conj’ in the example.

1 https://nlp.stanford.edu/software/stanford-dependencies.shtml.

https://nlp.stanford.edu/software/stanford-dependencies.shtml
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Fig. 1. A dependency tree
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Fig. 2. Overviews of model structures for three improvements.

3.1 Parent-Scaled Self-attention (PASCAL)

Parent-scaled self-attention (PASCAL) is first introduced in [2] for NMT tasks.
The main idea of PASCAl is to replace standard self-attention heads in the
encoder with ones that can attend to the dependency parent of each token. Here
we apply the idea in semantic parsing and evaluate its effectiveness.

In specific, the standard scaled dot-product attention mechanism in Trans-
former is defined as follows,

Attention(Q,K, V ) = softmax(
QK�
√

d
)V, (1)

where Q, K, V , d denote the query matrix, the key matrix, the value matrix, and
the dimension of K respectively, as in [20]. We also denote QK�

√
d

as HeadScore.
In PASCAL, HeadScore is replaced by its element-wise product with the

distance matrix D, which is generated from each token’s dependency parent
in the dependency tree by utilizing a Gaussian distribution2. In particular, the
attention mechanism used in PASCAL is defined as,

Attention(Q,K, V ) = softmax(
QK�
√

d
� D)V, (2)

where � denotes the element-wise product operation.

2 The detailed procedure for computing D is specified in [2]. We omit the procedure
due to the space limitation.
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We implement the improvement by applying PASCAL in the Transformer
encoder of a baseline seq2seq semantic parser, which consists of a 2-layer Trans-
former encoder and a 3-layer Transformer decoder. The model structure of the
improved encoder is illustrated in Fig. 2(a), where the blue box on the right denotes
the distance matrix D.

In this improvement, we first generate the dependency tree of an input sen-
tence by a dependency parser. Then we capture the information of the dependency
tree by its distance matrix D. We incorporate such dependency information in the
Transformer encoder using the element-wise product of D and HeadScore.

3.2 Syntax-Aware Word Representations (SAWRs)

Given a well-trained neural dependency parser, which parses an input sentence
to a dependency tree, we can obtain dependency information from its interme-
diate hidden representations, i.e., syntax-aware word representations (SAWRs).
In [27], such intermediate hidden representations are specified as the outputs of
the BiLSTM layer in the BiAffine dependency parser [7].

In this paper, we first train a neural dependency parser based on the model
proposed in [8], which is simpler and performs better. We also specify SAWRs as
the outputs of the BiLSTM layer in this dependency parser. Then we concatenate
such SAWRs with ordinary word embedding to enhance the Transformer encoder
for the semantic parser. In particular, the input of the Transformer encoder
is improved from WE + PE to (SAWRs ⊕ WE) + PE, where ⊕ denotes the
concatenate operation, WE and PE denote the word embedding and the position
encoding, respectively.

The model structure of the improved encoder is illustrated in Fig. 2(b), where
two yellow boxes on the left corner denote the pre-trained neural dependency
parser. We will specify the training process for the dependency parser in Sect. 5.3.

In this improvement, we first train a neural dependency parser. Then we
capture the information of the dependency tree by its intermediate hidden rep-
resentations, i.e., SAWRs. We incorporate such dependency information in the
Transformer encoder by concatenating SAWRs with WE.

3.3 Constituent Attention (CA)

[22] introduces Constituent Attention (CA) module, which adds an extra con-
straint to attention heads to follow tree structures, that can better capture the
inherent dependency structure of input sentences. Here we apply the idea in
semantic parsing and evaluate its effectiveness.

In specific, the attention mechanism in Transformer is improved to

Attention(Q,K, V ) =
(

C � softmax(
QK�
√

d
)
)

V, (3)

where � denotes the element-wise product operation, Q, K, V , d denote the
same as above, and C denotes the constituent prior generated from CA module.



Combining Improvements for Exploiting Dependency Trees 63

In particular, C is a symmetric matrix that describes the probabilities of whether
two words belonging to the same constituent3.

The model structure of the improved encoder is illustrated in Fig. 2(c), where
the blue round frame and the blue box on the right denote CA module. We will
specify the training process for the improved model in Sect. 5.

In this improvement, we add CA module to the Transformer encoder, which
introduces the constituent prior C to attention heads. Such constraint encourages
the attention heads to follow tree structures, which helps the encoder to capture
the inherent dependency information of input sentences.

4 Combining Improvements

In this section, we consider all possible combinations of the three improvements
and integrate the combinations into a single model. We also try to further
improve the performance by using the ensemble learning method, i.e., TEL.

A combination A + B denotes the seq2seq model that applies both improve-
ments A and B in its encoder. In specific, both combinations PASCAL + SAWRs
and SAWRs + CA can be directly implemented, as SAWRs does not affect the
implementation of either PASCAL or CA. For combinations PASCAL + CA
and PASCAL + SAWRs + CA, we need to improve the attention mechanism in
Transformer to

Attention(Q,K, V ) =
(

C � softmax(
QK�
√

d
� D)

)
V. (4)

Model structures of the improved encoders for all combinations are illustrated
in Fig. 3.

In this paper, we use Transductive Ensemble Learning (TEL) [23] to aggre-
gate multiple individual models for better performance. Note that, TEL is
applied under the transductive setting, i.e., the model can observe the input
sentences in the test set. TEL is first introduced for NMT tasks. Here we imple-
ment the idea in semantic parsing and evaluate its effectiveness.

In specific, following TEL, we first use all individual models to predict the
input sentences from the validation and test sets, and construct a synthetic
corpus by using these predicted results as corresponding labels. Then we select
the model with the best performance on the validation set4 and fine-tune this
model on the generated synthetic corpus. At last, we use the fine-tuned model
in the inference phase. Notice that, TEL is efficient and easy to be implemented,
as only one model is selected for inference.

In the following, we use A + TEL to denote the model that applies TEL for
ensemble learning based on A.

3 The detailed procedures for constructing CA module and computing C are specified
in [22]. We omit the procedures due to the space limitation.

4 The datasets of GEO and JOBS are small and do not contain validation sets. Then
parameters and the selected model are cross-validated on their training sets.
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Fig. 3. Overviews of model structures for combinations.

5 Experiments

5.1 Datasets

We evaluate the three improvements, their combinations, and TEL on three
famous datasets for semantic parsing, i.e., ATIS, a set of 5,410 queries to a flight
booking system, GEO, a set of 880 queries to a database of U.S. geography, and
JOBS, a set of 640 queries to a database of job listings.

We follow the standard train-dev-test split of these datasets and use the
preprocessed version as specified in [5]. We also adopt Stanford CoreNLP pack-
age [14] to do the tokenization. Then the target formal representations of these
datasets are all λ-calculus expressions here.

5.2 Evaluation Metrics

We use Exact Match [17] and Tree Exact Match (Tree Match) [19] to evaluate
the performance of different models. In particular, Exact Match computes the
percentage of sentences whose predicted results are exactly the same as their
labeled target logic forms, i.e., λ-calculus expressions. However, in some cases,
the order of formulas can be equivalently changed in λ-calculus expressions. For
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instance, the order of two formulas in conjunction can be equivalently reversed.
Then Tree Match is introduced to avoid these spurious errors by considering the
tree structures of resulting logic forms. Note that, there is little previous work
using Tree Match for JOBS. Then we only use Exact Match for JOBS.

5.3 Implementation Details

The baseline model for the semantic parser considered here is a seq2seq model
consisting of a 2-layer Transformer encoder and a 3-layer Transformer decoder.
We trained this model with the hyperparameters listed in Table 1, whose param-
eters were chosen based on the performance of the model on the validation set
for ATIS and cross-validated on the training sets for GEO and JOBS.

Table 1. Hyperparameters for the baseline model.

Hyperparameter Value

Word embedding dimension 512

Position encoding dimension 512

Transformer head number 8

Transformer attention dimension 512

Transformer feed forward dimension 2048

Transformer activation ReLU

Dropout rate 0.1

Batch size 16

Learning rate 1e−4

Fig. 4. Comparison of models on different datasets.

Notice that, the three improvements and their combinations do not affect these
hyperparameters for the baseline model. Then all the models considered in our
experiments were trained based on such hyperparameters for their baseline part.

Networks in our experiments are implemented in PyTorch and trained with
the AdamW optimizer with its default parameters. We trained every model for
45 (resp. 250) epochs for ATIS (resp. GEO and JOBS) on two GPUs, i.e., Nvidia
GeForce 2080Ti and Nvidia RTX 3090, which takes around 2 (resp. 3) hours for
ATIS (resp. GEO and JOBS).
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Table 2. Experimental results.

Model ATIS GEO JOBS

Evaluation metric Exact Tree Exact Tree Exact

match match match match match

Pre-neural methods

ZC07 [26] 84.6 – 86.1 – 79.3

FUBL [12] 82.8 – 88.6 – –

DCS [13] – – 87.9 – 90.7

KCAZ13 [11] – – 89.0 – –

WKZ14 [21] 91.3 – 90.4 – –

TISP [29] 84.2 – 88.9 – 85.0

Neural methods

Seq2Seq [5] – 84.2 – 84.6 87.1

Seq2Tree [5] – 84.6 – 87.1 90.0

JL16 [10] 83.3 – 89.3∗ – –

TranX [25] – 86.2 – 88.2 –

Coarse2fine [6] – 87.7 – 88.2 –

Seq2Act [3] 85.5 – 88.2∗ – –

Graph2Seq [24] 85.5 – 88.9 – 91.2

AdaNSP [28] – 88.6 – 88.9 –

GNN [17] 87.1 – 89.3 – –

TreeGen [19] – 89.1 – 89.6 –

Our methods without TEL

Baseline 85.0 86.2 83.2 87.5 87.9

PASCAL 87.5 88.6 85.0 88.2 90.7

SAWRs 86.6 87.7 85.0 87.9 90.7

CA 87.1 88.6 85.4 88.9 91.4

PASCAL + SAWRs 86.8 87.5 84.3 88.2 89.3

PASCAL + CA 88.4 89.1 85.4 88.9 92.1

SAWRs + CA 88.0 89.5 84.3 87.9 90.7

PASCAL + SAWRs + CA 87.7 89.3 84.3 87.9 91.4

Our methods with TEL

Baseline + TEL 87.3 88.4 84.6 88.2 88.6

PASCAL + TEL 88.6 89.5 86.8 90.4 92.1

SAWRs + TEL 88.4 89.1 86.8 90.7 92.1

CA + TEL 89.1 90.0 87.1 90.4 92.9

PASCAL + SAWRs + TEL 87.5 88.4 85.7 89.3 91.4

PASCAL + CA + TEL 89.2 90.2 87.1 90.4 92.9

SAWRs + CA + TEL 89.1 90.2 85.7 88.9 92.9

PASCAL + SAWRs + CA + TEL 89.1 90.0 85.7 89.6 92.1
∗ Denotation Match [10] is used.
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Table 3. Numbers of parameters and time costs per training epoch for our models.

Model Number of Time (s)

parameters (M) ATIS GEO JOBS

Baseline 20.27 5.78 0.78 0.63

PASCAL 20.27 7.77 0.99 0.83

SAWRs 22.14 7.94 1.05 0.88

CA 20.42 7.89 1.07 0.87

PASCAL + SAWRs 22.14 9.69 1.19 1.03

PASCAL + CA 20.42 9.06 1.10 0.96

SAWRs + CA 22.29 9.49 1.26 1.06

PASCAL + SAWRs + CA 22.29 11.75 1.45 1.25

Fig. 5. Heat maps of corresponding self-attention heads for each model and the distance
matrix D.

In SAWRs, a neural dependency parser needs to be pre-trained to obtain its
intermediate hidden representations. In this paper, we implement such a depen-
dency parser based on the model in [8]. We first adopt Stanford CoreNLP pack-
age [14] to obtain the dependency trees and the corresponding part-of-speech tag-
ging sequences. Then we use these dependency trees as labels for these sequences
and train the dependency parser based on this synthetic dataset. it eliminates
the need of manual work for labeling dependency data of ATIS,GEO or JOBS.

We use AdamW as the optimizer and set the learning rate as 1e − 4 for
the training. We applied the ensemble learning method TEL to further improve
the performance of models. We also tried the conventional ensemble method [9].
However, it did not perform well in our experiments.

5.4 Results

Table 2 summarizes the performance of our models in datasets, where ‘Baseline’
denotes the baseline model without any improvements, and ‘PASCAL’ (reps.
‘SAWRs’ and ‘CA’) denotes the model that applies the improvement PASCAL
(resp. SAWRs and CA) on the baseline model. We also illustrate the results in
Fig. 4.

The experimental results show that all three improvements can improve the
performance of the baseline model. Although the baseline model is very simple,
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Fig. 6. Heat maps of corresponding constituent prior C for ‘CA’, SAWRs + CA, PAS-
CAL + CA, and D′.

the models ‘PASCAL’, ‘SAWRs’, and ‘CA’ still achieve good performance among
other neural methods. Moreover, the performance can be further improved by
applying TEL. These results show that the improvements PASCAL, SAWRs,
and CA are effective in exploiting dependency information for semantic parsing,
and TEL can further improve the performance of a semantic parser.

For the combinations of the three improvements, we find out that PASCAL +
CA and SAWRs + CA achieve better performance than PASCAL + SAWRs. PAS-
CAL + SAWRs performs better than ‘Baseline’. However, it even performs worse
than the model ‘PASCAL’ or ‘SAWRs’ in some cases. It seems that both PAS-
CAL and SAWRs obtain similar information from the dependency tree. Then the
combination of both does not provide additional benefits. On the other hand, PAS-
CAL + CA, SAWRs + CA, PASCAL + SAWRs + CA achieve good performance
among all neural methods. This implies that the dependency information obtained
from CA is complementary to the one from PASCAL or SAWRs. PASCAL + CA
is much simpler than SAWRs + CA and PASCAL + SAWRs + CA. Then we sug-
gests applying the combination of PASCAL and CA on the Transformer based
seq2seq semantic parser. The performance of these combinations can also be fur-
ther improved by applying TEL. These results show that CA is complementary
to PASCAL and SAWRs, PASCAL + CA provides state-of-the-art performance
among neural methods, and TEL can further improve the performance.

Notice that, our methods do not perform well for Exact Match on GEO. This
is mainly due to the facts that the size of GEO is small and Exact Match causes
spurious errors. We can observe that our methods perform well for Tree Match
on GEO.

We also compare the training costs of the three improvements and their
combinations. Table 3 summarizes numbers of parameters and time costs per
training epoch on ATIS for our models. Note that, the size of ‘PASCAL’, ‘CA’,
or PASCAL + CA is almost the same as ‘Baseline’. ‘SAWRs’ and the combi-
nations with it introduce a few additional parameters for ‘Baseline’. The time
cost per training epoch is slightly increased when an improvement is applied to
‘Baseline’ and a combination requires more time. Notice that, PASCAL + CA
achieves state-of-the-art performance with the similar size of ‘Baseline’ and a
slight increase in time cost.
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5.5 Visual Analysis

In this section, we try to analyze what has been learned to help the baseline
model by applying each improvement and what has been learned for CA and
combinations with it.

We first visualize the heat map of the weights on V , i.e., the attention weights
of tokens for the input sentence, which are obtained from the self-attention heads
of the last layer in the encoder for each model. Figure 5 illustrates such heat
maps for ‘Baseline’, ‘SAWRs’, ‘CA’, and ‘PASCAL’. Figure 5(e) also illustrates
the heat map of the distance matrix D obtained from the dependency tree of
the sentence, as specified in Sect. 3.1. Notice that, the heat map for ‘PASCAL’ is
similar to the one of D due to Eq. (2). We can also observe that, different from
the heat map for ‘Baseline’, the ones for ‘SAWRs’ and ‘CA’ are more similar
to the heat map for ‘PASCAL’. This implies that both SAWRS and CA tend
to encourage the self-attention heads to follow the structure of the dependency
tree.

On the other hand, we also visualize the heat map of the constituent prior C
used in CA. Figure 6 illustrates heat maps of corresponding constituent priors
for ‘CA’, SWARs + CA, and PASCAL + CA. Notice that, C is a symmetrical
matrix. Then we can generate a symmetrical matrix D′ from the distance matrix
D of the sentence by D′ = D+D�

2 . Figure 6(d) also illustrates the heat map of
D′. We can observe that, the heat maps for PASCAL + CA and SWARs + CA
are more and more similar to the one of D′. This implies that the combinations
PASCAL + CA and SWARs + CA help the constituent prior C to capture
information from the dependency tree of the sentence, and PASCAL + CA
captures more information. This observation partially explains the reason why
PASCAL + CA performs better.

6 Conclusion

In this paper, we implement three improvements, i.e., PASCAL, SAWRs, and
CA, to incorporate the dependency information of input sentences in a Trans-
former encoder for a seq2seq semantic parser. We show that all three improve-
ments are effective in exploiting such dependency information for semantic pars-
ing with a slight increase in training cost. We also examine the combinations of
these improvements. We observe that both PASCAL and SAWRs obtain similar
information from the dependency tree, and the combination of both does not
provide additional benefits. We find out that CA is complementary to PASCAL
and SAWRs, and PASCAL + CA provides state-of-the-art performance among
neural approaches on ATIS, GEO, and JOBS datasets. Moreover, PASCAL +
CA can be implemented easily with a slight increase in training costs. We provide
visual analysis that tries to explain why PASCAL + CA performs better among
other improvements and combinations. We also implement TEL for the models
and show that TEL is effective for these improvements on semantic parsing.
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Abstract. Joint entity and relation extraction is still a challenging prob-
lem in natural language processing, which goal is to extract all possible
relational triplets from original texts. Nevertheless, previous work rarely
considered the integration of relation information to capture fine-grained
correlations over token and relation spaces before extracting the entity
pair, resulting in the unreasonable matching of entities and relations. In
this paper, we propose a deep semantics fusing representation method
based on a special mechanism of information transmission for joint entity
relation extraction (DSFR). Specially, we called this special information
transmission mechanism with a gate structure as UMIT, and then fuse
the fine-grained information of tokens and relations by stacking multiple
layers of UMIT. Finally, we extract the head and tail entities of a sen-
tence under a certain relation by sequence labeling. Experiments on two
publicly available New York Times (NYT) and WebNLG corpus show
that our proposed approaches can effectively extract overlapping triplets
and achieve better performance.

Keywords: Joint entity relation extraction · Information transmission
mechanism · Gate architecture · Overlapping triplet

1 Introduction

As a critical task in the area of natural language processing (NLP), entity and
relation extraction has attracted increasingly more attention. Given a sentence,
the task goal is to identify entity pairs from the original text and extract any
number of semantic relations between entity pairs, resulting in a triple in the
form of (head-entity, relation, tail-entity). The extracted triples are used widely
in a great amount of downstream NLP tasks, such as large-scale knowledge graph
construction [1] and question answering [2].

Early work [3–6] on relational triples extraction has achieved promising
results. However, most of the existing methods ignore the scenario where a sen-
tence contains a triplet of overlapping entities and multiple relations between
c© Springer Nature Switzerland AG 2021
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entity pairs. As shown in Fig. 1, the triples with different relationships between
the same entity pair are called EntityPairOverlap (EPO), and the triples with the
same entity between multiple entity pairs are called SingleEntityOverlap (SEO).

The Eiffel Tower in Paris, the capital of France, was designed
by architect Gustave Eiffel and completed in 1889.

ParisFrance The Eiffel Tower Paris

Gustave Eiffel

1889

location
completionDate

architect

contains

capital

EPO SEO

Fig. 1. Examples of EntityPairOverlap (EPO) and SingleEntityOverlap (SEO) over-
lapping triplets.

To address the overlapping issue, [7] proposed an end-to-end relation extrac-
tion model, which considers the interaction between named entities and relations
through relation-weighted graph convolutional networks. [8] introduced a hier-
archical reinforcement learning framework to enhance the interaction between
entities and relations. The above works begins by recognizing head entities and
then creating joint decoding strategies to extract the corresponding tail entities
and relations.

We recognized that the meaning of the sentence, not the target entity, nor-
mally is determined by the relation. [9–11] proposed a relation-based joint extrac-
tion model, which takes relation classification as the first step of its joint extrac-
tion strategy. The relation information is introduced as prior knowledge to min-
imize the model’s extraction of semantically unrelated entities, thereby reducing
redundant operations. Therefore, how to effectively introduce relations informa-
tion is crucial to the final performance. We realized that different words in a
sentence should contribute differently to the representation of a certain type of
relation. Similarly, if there are multiple relations in a sentence, different relations
will also lead to different sentence representations. Therefore, the joint extrac-
tion of entity and relations will benefit from the close interaction between words
and relations.

In this paper, we propose a special mechanism of information transmission
(UMIT) to effectively interact relation and word information, thereby achiev-
ing mutual enhancement between word and relation representation. Afterward,
through stacking multiple layers of UMIT, we perform a deep fusion of relations
and words information and update their representation. After that, we use the
method of sequence labeling to extract the entity pairs that exist in the sentence
under a certain relation, which effectively solves the triple overlap problem. We
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further use a relation-level negative sampling strategy to avoid most of the redun-
dant decoding processes during training. Eventually, we introduce focal loss [12]
to pay greater attention to those harder training samples.

This work has the following main contributions:

• We propose a joint entity and relation extraction model called DSFR, which
extracts fine-grained semantic features between relations and sentences to
guide the entity recognition process.

• We design a special mechanism of information transmission that uses a gate
mechanism to achieve multi-channel transmission of information to obtain
enhanced representations of relations and tokens, and the stacking of this
mechanism is used to update the representation of relations and tokens.

• We implement a negative relational sampling strategy to reduce redundant
operations and use the focal loss to alleviate the out-off balance between
positive and negative samples. Our model has proved its effectiveness on two
public datasets.

2 Related Work

The traditional pipeline method is mainly based on the existing LSTM [13,
14], CNN [15,16], and GCN [17], and then improves the performance of the
model by changing the network structure or input features of the model. To
alleviate the error propagation problem in the pipeline method, subsequent works
proposed joint learning of entities and relations, through the close interaction
between entity recognition and relation classification, the performance is often
better than the pipeline method. [4] used the attention mechanism together
with Bi-LSTM for joint entity relation extraction for the first time. [5] proposed
an entity relation extraction method based on a new tagging strategy, which
completely turned the joint learning model of named entity recognition and
relation classification into a sequence tagging problem.

However, most of the past methods cannot correctly handle the relational
triplet scenes containing multiple overlapping entities in the sentence. Recently,
some methods have been proposed specifically to overcome this problem. [9]
proposed a Seq2Seq model with a copy mechanism for joint entity and relation
extraction tasks, which sequentially extracts triples in sentences. [10] decom-
posed the joint entity relation extraction task into two interrelated subtasks,
first extracts all head entities, and then identifies the tail entities and relations
corresponding to each head entity. [18] proposed a novel cascading binary frame-
work, which first obtains the subject entities in the sentence, and then identifies
all possible relations and object entities corresponding to each subject entity. [11]
proposed a relation-based attention network, which uses the attention mecha-
nism of relation perception to construct a specific sentence representation for
each relation, and then performs sequence annotation to extract its correspond-
ing head and tail entities.
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3 Task Definition and Tagging Scheme

Given a sentence as S = {w1, w2, ..., wm}, where wi is the i-th word, the goal of
the relation extraction task is to identify all possible triples {π = (h, r, t)|h, t ∈
E, r ∈ R} in the sentence, where (h, t) represents the mentioned entity pair, and
r represents the relations between them, E and R are entity sets and predefined
relation sets respectively.

In this paper, the predefined relations will be used as prior information for
our method, and then the head and tail entities corresponding to a certain
relationship in the sentence will be extracted. The data tagging scheme is similar
to [11], as shown in Fig. 2. Combine the head and tail roles {H,T} in the triple
with the typical BIES signs (Begin, Inside, End, Single) as our entity tag. We
only annotate the head and tail entities corresponding to the relation, and the
remaining words are assigned the label O. If there are multiple relations in a
sentence, separate corresponding tag sequences will be generated based on the
different relations.

Fig. 2. An example for tagging scheme. For different given relations, a corresponding
tag sequence will be generated.

4 The Proposed Model

In this section, we will introduce the overall framework of DSFR in detail.
Figure 3 shows an example overview of DSFR under a certain relation rk, which
consists mainly of three parts:

• Representations of Token and Relation Given a sentence and a pre-
defined relation type, we encode the tokens and the relation as a vector,
respectively.

• Deep Semantics Fusion Here, we stack multiple layers of UMIT for multi-
channel transmission with gate structure to achieve further integration of
tokens and relations representation.

• Triple Extraction The sentence representation will be directly combined
with the current relation r̃k, and then the head and tail entities will be directly
extracted.

4.1 Representations of Token and Relation

Token Representations. Given a sentence containing m words, we need to
map each word in the sentence to a real-valued embedding to express its semantic
and syntactic meaning. In addition, we also used character embedding, which is
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generated by encoding using a Convolutional Neural Network (CNN). Then, the
input representations of each token are a concatenation of character embeddings,
part-of-speech (POS) embeddings, and glove embeddings [19]. In this way, the
input vector X ∈ R

m∗ds of a sentence can be obtained, where ds = dw +dp +dc,
and dw, dp, dc represent the dimension of word embedding, POS embedding and
character embedding respectively.

We utilize BiLSTM as the basic encoding component. Given a sequence of
input vectors X = [x1, x2, ..., xm], BiLSTM can be used to output hidden repre-
sentations H ∈ R

m∗dh as
H = BiLSTM(X) (1)

Relation Representations. For each predefined relation label, we initialize it
randomly, and represent it with a high-dimensional vector, then pass through a
linear map layer to finally get the representation of each relation.

[r1, r2, ..., rn ] = Linear([r1, r2, ..., rn]) (2)

where n is the number of predefined relations, ri is random initialization vector
of the i-th relation in the set of predefined relations, ri ∈ Rdh is obtained by
mapping the vector ri through Linear, Linear is a linear mapping function.

mlp attention

BiLSTM Randomly Initialized BiLSTM

word emb

pos emb

char emb

UMIT

B-H E-H S-T

sampling

Stacking

Fig. 3. The overall structure of our proposed DSFR for joint entity and relation
extraction.

4.2 Deep Semantics Fusion

4.2.1 Special Mechanism of Information Transmission
We have constructed a special mechanism of information transmission (UMIT)
based on a gate architecture to extract key semantic information. UMIT is com-
posed of two F units and a gate structure. Through this architecture, we capture
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the semantic association between two types of nodes and then update their vec-
tor representations respectively. As shown in the left part of Fig. 4, given the
semantic representation of two types of nodes: {ui}m

i=1 and {vj}n
j=1. The node

ui aggregates another type of node {vj}n
j=1 information through two F units,

and then update the node ui, so that the node representation incorporate more
information and is more suitable for specific tasks. Following that, we elaborate
on the two F units and the gate structure.

Fig. 4. The overall structure of UMIT. The left part is the overall architecture of
UMIT, which includes two F units and a gate structure, and the right is the detailed
internal structure of the F1 unit.

Two F units. The calculation method for F1 unit is shown in the right panel of
Fig. 4. We use the attention mechanism [20] to achieve the preliminary semantic
fusion of the two types of nodes. Then, to avoid gradient disappearing during
training, we add a residual connection:

aij = αT [W1ui + b1;W2vj + b2] (3)

λij = softmax(aij) (4)

u′
i = ui +

n∑

j=1

λij(W3vj + b3) (5)

where W1,W2,W3 ∈ R
dh∗dh , b1, b2, b3 ∈ R

dh , αT ∈ R
2∗dh are trainable weights,

λij is the attention weight, ui, vj ∈ R
dh means two types of nodes.

For F2 unit, we need to integrate the information of u′
i and ui, we perform

cascade operation after linear transformation of them. The calculation formula
is as follows:

βi = (W4ui + b4) ⊕ (W5u
′
i + b5) (6)

where ⊕ is concatenating operation, W4,W5 ∈ R
dh∗dh , b4, b5 ∈ R

dh are trainable
weights.

A Gate Mechanism. The above two F units preliminary finished the informa-
tion fusion between two types of nodes. Now, we use a gate mechanism to allow
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information to be transmitted in multiple channels. At the same time, we added
noise to the gate mechanism to enable it more robust.

σ = σ(βi � (1 + ε)) (7)

ũi = (1 − σ) � ui + σ � u′
i (8)

where σ indicates the element-wise sigmoid activation function, which returns
values from 0 to 1, therefore the results σ can be viewed as percentage of infor-
mation to keep. � is element-wise production. ε represents a uniform random
distribution of [−0.1, 0.1].

4.2.2 Stacking Multiple Layers of UMIT
We briefly express the above general architecture (see Sect. 4.2.1) as follows: ũi =
UMIT (ui, {vj}n

j=1). We perform deep semantics fusion by feeding token and
relation features into a deep network that contains a carefully designed mecha-
nism of information transmission. Given a sentence features H = {h1, h2, ..., hm}
of length m, for a certain relation node ri, then obtain relation node ri’s updated
representation r̃i through UMIT. Similarly, the token node performs similar oper-
ations to obtain the updated node vector representation. A residual connection
is also added here to avoid gradient disappearing during training.

r1i = r0i + UMIT (r0i , {h0
j}m

j=1) (9)

h1
j = h0

j + UMIT (h0
j , {r0i }n

i=1) (10)

When we get the representation of the new word node and the relation node
through a layer of UMIT, we will further update these two nodes according to
the new representation. The update process of layer s(> 1) can express as:

rs
i = rs−1

i + UMIT (rs−1
i , {hs−1

j }m
j=1) (11)

hs
j = hs−1

j + UMIT (hs−1
j , {rs−1

i }n
i=1) + UMIT (hs−1

j , {rs
i }n

i=1) (12)

where rs
i ∈ R

dh is the updated representation of the initial relation node rs−1
i ∈

R
dh , hs

j ∈ R
dh is the updated representation of the initial token node hs−1

j ∈ R
dh .

So far, we have obtained the sentence representation S = {hs
1, h

s
2, ..., h

s
m}

that fused with the relational information and the relation nodes representation
R = {rs

1, r
s
2, ..., r

s
n} that contains the word information.

4.3 Triple Extraction

To evaluate the importance of the tokens in each sentence, the more important
tokens are assigned more attention weight. Here, we use MLP attention [21] to
adjust sentence representation. Take the sentence S as an example.

�i = MLPi(h̃i) (13)
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γi =
exp(�i)∑m

j=1 exp(�j)
(14)

sg =
m∑

k=1

γkh̃k (15)

where �i is a scalar, i ∈ [1,m]; γi is the attention weight of h̃i, computed by
Softmax function; sg is the sentence global representation by matrix calculation
on attention weights.

Note that the extracted entities will be directly combined with the current
relation rk, thus there are no extra relation classification operations in our model.
r̃k is the reserved relational features of rs

k. We concatenate h̃i, r̃k and sg to obtain
the final representation of the i-th word.

sg = tanh(Wssg + bs) (16)

r̃k = Wkrs
k + bk (17)

hk
i = [h̃i; r̃k; sg] (18)

where Ws,Wk ∈ R
dh∗dh , bs, bk ∈ R

dh are trainable weights, [;] is concatenating
operation. Consequently, sentence S under a certain relation rk is thus repre-
sented as Sk = {hk

1 , h
k
2 , ..., h

k
n} and will be used for the entity extraction process.

Here we run another BiLSTM network on the word sequence Sk, and map
each of the words to the relation space, finally perform sequence labelling to
extract its corresponding entities:

ok
i = BiLSTM(Whhk

i + bh) (19)

p(yk
i ) = Softmax(Wo · ok

i + bo) (20)

where i ∈ [1,m]. Wh ∈ R
3dh∗dh , bh ∈ R

dh , bo ∈ R
nl are trainable weights.

Here Wo ∈ R
2dh∗nl and dh indicates the dimension of the BiLSTM hidden state,

nl indicates the number of entity labels. p(yk
i ) indicates the probability of i-th

word’s predicted label under relation rk.

4.4 Training

We adopt a relational negation sampling strategy, which is to randomly select
nneg relations from the negation set of the current sentence, where nneg is a
hyperparameter. Therefore, for a sentence S with npos positive relations, the
model will generate a total of ns = npos + nneg tag sequence when decoding.

However, we discovered that while the negative relation sampling strategy
will help to mitigate the issue of a positive and negative sample ratio imbalance
to some degree, there will still be situations where the loss is hard to converge.
Therefore, we use the focal loss to not only adjust the weight of positive and
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negative samples but also control the weight of samples that are difficult to
classify.

FL = − 1
ns ∗ m

ns∑

k=1

m∑

i=1

δ(1 − p(yk
i ))γ log(p(yk

i )) (21)

where the values of γ and δ are 2 and 1 respectively. δ is used to control the
weight of positive and negative samples. By setting the hyperparameter γ, the
weight of easy-to-classify samples is reduced, so that the model can focus more
on difficult-to-classify samples during training.

5 Experiments

5.1 Dataset and Experimental Settings

We evaluate the model on two public datasets, New York Times(NYT) and
WebNLG. Statistics of the two datasets are shown in Table 1. We set the dimen-
sion of word embedding dw = 300, POS embedding dpos = 30, character embed-
ding dc = 50, and relation embedding dr = 300. All of these embeddings are
initialized randomly, except that the word embedding uses a 300-dimensional
glove vector. The window size of CNN for the character-based word feature vec-
tor is set to 3, the maximum of words is set to 10, and the number of filters is 50.
Hidden State of the encoder BiLSTM, attention, gate and the decoder BiLSTM
are all set to 300 dimensions. The sentence-level relational negative sampled
number nneg is set to 4. We use the Adam optimizer to optimize our model. The
training batch size is 16, and the learning rate is 0.0001. We apply a dropout
mechanism to the embedding layer with a rate of 0.3 to avoid overfitting, and
UMIT’s stacking layer number s is set to 2.

Table 1. Statistics about the datasets.

DataSet NYT WebNLG

Train Test Train Test

Normal 37013 3266 1596 246

EPO 9782 978 227 26

SEO 14735 1297 3406 457

ALL 56195 5000 5019 703

Relation 24 246

5.2 Baselines and Evaluation Metrics

We compare our model with several strong state-of-the-art model: NovelTag-
ging [5], CopyRE [9], GraphRel [7], ETL-Span [10], CasRel [18], RSAN
[11]. We report the standard micro Precision (Prec.), Recall (Rec.), and F1-score
as in line with baselines. The predicted triplet is deemed right if and only if the
relation and the two corresponding entities are correct.
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5.3 Experimental Results

As shown in Table 2, experimental results demonstrates that our model’s com-
prehensive performance F1 value is higher than that of all baseline models,
positive to [11] 1.2% on NYT and 2.4% on WebNLG respectively. For Precision
on the WebNLG dataset, ours’ precision is only 1.8% lower than the highest
[10], but ours’ recall is 3.3% higher than it. Compared with the other baseline
models, ours’ precision, recall and F1 are superior. Therefore, it is proved that
our work is effective and the comprehensive performance of our proposed model
is outstanding.

Table 2. Results of different methods on NYT and WebNLG datasets.

Method NYT WebNLG

Prec. Rec. F1 Prec. Rec. F1

NovelTagging 0.624 0.371 0.42 0.525 0.193 0.283

CopyRE 0.61 0.566 0.587 0.377 0.364 0.371

GraphRel 0.639 0.6 0.619 0.447 0.411 0.429

HRL 0.781 0.771 0.776 – – –

ETL-Span 0.855 0.717 0.78 0.843 0.82 0.831

CasRelLSTM 0.842 0.83 0.836 0.869 0.806 0.837

RSAN 0.857 0.836 0.846 0.805 0.838 0.821

DSFR 0.869 0.847 0.858 0.851 0.839 0.845

6 Analysis

6.1 Ablation Study

To demonstrate the effectiveness of each component, we remove one particular
component at a time to understand its impact on the performance, using the
best performing model on the NYT dataset. Concretely, we investigated character
embedding, POS embedding, the gate mechanism (replaced with the tanh activa-
tion function), token node update and relation node update representation respec-
tively. Table 3 shows the results. We find that the character-level representations
are helpful to capture the morphological and dealing with OOV words. When we
remove POS embedding, the score drops by 0.11, which indicates POS embeddings
in the input layer effectively provides the sentence with additional syntactic detail.
The value of F1 drops to 85% when the word node update is removed, demonstrat-
ing the importance of fusing relation and word representations.

6.2 Parameter Analysis

We determine the size of the negative sampling strategy nneg. Experiments have
found that when nneg is greater than 4, the positive and negative samples will be
seriously unbalanced, which will make the model more difficult to converge. So
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we set nneg = 4. At the same time, we found that after replacing NLL loss with
focal loss, the model convergence speed will be about 30% faster. To determine
the number of layers of the UMIT stack, we studied the results of using different
layers of UMIT on the NYT validation set. All models are trained for 50 epochs.
Table 4 shows the results of different layers. If s = 0, which means to replace
UMIT with a simple attention mechanism. We can observe that the result of
s = 3 is the best, but it will take up more memory, so we set s = 2.

Table 3. Ablation tests on the NYT
dataset.

Model Precision Recall F1

DSFR 0.869 0.847 0.858

-Character embedding 0.862 0.845 0.853

-POS embedding 0.86 0.841 0.85

-Gate mechanism 0.844 0.841 0.842

-Word node update 0.850 0.843 0.846

-Relation node update 0.848 0.839 0.843

-focal loss 0.857 0.839 0.848

Table 4. The F1-score (%) correspond-
ing to the number of layers of UMIT.

Number F1-score

s= 0(attention) 82.8

s= 1 83.6

s= 2 84.5

s= 3 84.8

6.3 Analysis on Different Sentence Types

We follow [9] and perform further experiments on the NYT dataset to check our
DSFR’s ability to handle multiple triplets. Normal, SingleEntityOverlap (SEO),
and EntityPairOverlap (EPO) are the three types of test sentences based on
different overlapping instances. The detailed results on three different overlap-
ping patterns are presented in Fig. 5. In contrast, the proposed DSFR model has
achieved some performance improvements on all three overlapping modes. We
attribute the improvement to the following fact: the deep integration of token
and relation representation will mine some semantic information. At the same
time, the focal loss will pay more attention to those harder training samples.
Another observation is that [10] still performs best in Normal class, but our

Fig. 5. F1-score of extracting triples
from sentences with different overlap-
ping pattern.

Fig. 6. F1-score of extracting triples
from sentences with different number
of triples.
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DSFR has improved some effects compared to [11], enhancing the ability to
extract Normal class.

We also compare how well the models extract multiple triplets from a sen-
tence. The sentences in the NYT test set are divided into five sub-categories,
each with a different number of triplets: 1, 2, 3, 4 and ≥5. Figure 6 shows that
DSFR outperforms the baseline in terms of the total number of triplets in the
sentence. When there are multiple triples in a sentence, DSFR is still better
than [11].

7 Conclusion

This paper proposed a deep semantic fusion method for joint entity and rela-
tion extraction tasks and proves the effectiveness of the method in experiments.
We used a special transmission mechanism of information(UMIT), which can
effectively realize the interaction of relation and token information, and then
perform deep semantic fusion to achieve the purpose of mutual enhancement
between token and relation representation. Experiments are conducted on the
NYT and WebNLG corpus show that our proposed model DSFR has achieved
great improvements.
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Abstract. Transformers represent the state-of-the-art in Natural Lan-
guage Processing (NLP) in recent years, proving effective even in tasks
done in low-resource languages. While pretrained transformers for these
languages can be made, it is challenging to measure their true perfor-
mance and capacity due to the lack of hard benchmark datasets, as well
as the difficulty and cost of producing them. In this paper, we present
three contributions: First, we propose a methodology for automatically
producing Natural Language Inference (NLI) benchmark datasets for
low-resource languages using published news articles. Through this, we
create and release NewsPH-NLI, the first sentence entailment bench-
mark dataset in the low-resource Filipino language. Second, we produce
new pretrained transformers based on the ELECTRA technique to fur-
ther alleviate the resource scarcity in Filipino, benchmarking them on
our dataset against other commonly-used transfer learning techniques.
Lastly, we perform analyses on transfer learning techniques to shed light
on their true performance when operating in low-data domains through
the use of degradation tests.

Keywords: Low-resource languages · Automatic corpus creation ·
Transformer neural networks

1 Introduction

In recent years, Transformers [25] have begun to represent the state-of-the-art
not only in common NLP tasks where they have cemented their reputation, but
also in the context of tasks within low-resource languages. Using Transform-
ers, advancements have been done in various low-resource tasks, including low-
resource translation [8,20], classification [7,21], summarization [14], and many
more.

Transformers and transfer learning techniques in general owe their wide adap-
tation in low-resource language tasks to the existence of abundant unlabeled
c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13032, pp. 86–99, 2021.
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corpora available. While labeled datasets may be scarce to perform tasks in
these languages, unlabeled text is usually freely available and can be scraped
from various sources such as Wikipedia, news sites, book repositories, and many
more. Pretraining allows transfer learning techniques to leverage learned priors
from this unlabeled text to robustly perform downstream tasks even when there
is little task-specific data to learn from [5,13].

However, while it is possible to produce large pretrained models for trans-
fer learning in low-resource languages, there is a challenge in properly gauging
their performance in low-resource tasks. Most, if not all Transformers that are
pretrained and released open-source are evaluated with large, commonly-used
datasets. In low-resource languages, these datasets may not exist. Due to this, it
is often hard to properly benchmark a model’s true performance when operating
in low-data domains.

While it is possible to remedy this by constructing hard datasets in these
languages, added concerns have to be addressed.

Dataset construction is slow and cost-prohibitive. For hard tasks such as
various natural language inference and understanding tasks, datasets are usually
sized around 500,000 samples and more [1,4,27]. This would entail a large enough
budget to hire annotators to write text samples, and a different set of annotators
to write labels. This process is also slow and may take months to finish. In
that span of time, stronger techniques may have been created that require more
difficult datasets to accurately assess them. In addition, once the dataset has
been solved, harder datasets are needed to properly gauge further, succeeding
methods.

This creates a need for a method to produce benchmark datasets for low-
resource languages that is quick and cost effective, while still capable of gener-
ating tasks that are challenging for high-capacity models such as Transformers.

In this paper, we present the following contributions:

– We propose an automatic method to generate Natural Language Inference
(NLI) benchmark datasets from a corpus of news articles.

– We release NewsPH-NLI, the first sentence entailment benchmark dataset
in the low-resource Filipino language, created using the method we propose.

– We produce pretrained Transformers based on the ELECTRA pretraining
scheme to further alleviate resource scarcity in Filipino.

– We perform benchmarks and analyses on commonly-used transfer learning
techniques to properly and accurately gauge their true performance in low-
data domains.

Our method has a number of advantages. First, since our method is auto-
matic, it evades the issue of time and cost. This also allows datasets created this
way to be updated regularly as news is released everyday. Second, given that
news is freely available and published online even in low-resource languages, text
data for producing benchmark datasets will be easy to source. Lastly, given that
we generate sentence entailment tasks within the domain of news, our method
will produce sufficiently challenging datasets to properly gauge the performance
of large Transformers.
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2 Methodology

In this section, we outline our experimental setups and methodology. First, we
describe our proposed methodology for producing benchmark NLI datasets in
any language, using our NewsPH-NLI dataset as an example. Second, we outline
the creation of ELECTRA models in Filipino. Lastly, we outline our methodology
for analysis using degradation tests.

2.1 NLI Datasets from News Articles

The creation of large datasets for NLI is often difficult, time-consuming, and cost-
prohibitive. It may also be not be feasible in low-data and low-resource domains
due to the lack of pre-encoded text data that can immediately be annotated.

We propose the use of news articles for automatically creating benchmark
datasets for NLI because of two reasons. First, news articles commonly use single-
sentence paragraphing, meaning every paragraph in a news article is limited to
a single sentence [10,11]. Second, straight news articles follow the “inverted
pyramid” structure, where every succeeding paragraph builds upon the premise
of those that came before it, with the most important information on top and
the least important towards the end [2,16,23]. A figure illustrating the inverted
pyramid can be found in Fig. 1.

Fig. 1. Inverted pyramid structure of straight news articles. The most important facts
are at the top with succeeding paragraphs containing facts of less and less importance.
The structure of news articles makes succeeding paragraphs build up on the information
of prior paragraphs. Figure taken from [22]

Due to the inverted pyramid structure, we can assume that every succeeding
paragraph (our “hypothesis”) entails the paragraph preceeding it (our “premise”).
This can be exploited to produce multiple samples of entailments from a single
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news article. This way, using a corpus of straight news articles, we can produce a
large number of samples of entailments to make up an NLI corpus.

Contradictions, on the other hand, are more difficult to produce. To automat-
ically make contradiction samples, we first randomly sample two news articles
from the pool of collected news articles, then randomly sample one paragraph
from each article to serve as our premise-hypothesis pair. To ensure that the
produced pair is a contradiction, we must first make sure that the two randomly-
sampled articles have two different topics. To do this, we train a Doc2Vec [17]
model on all of the collected news articles. Afterwards, we then cluster the most
similar articles. When sampling articles for contradictions, we sample from two
different clusters to ensure that the topics are different.

One limitation of our proposed methodology is that it can only generate
entailments and contradictions, as “neutral” premise-hypothesis pairs can only be
obtained through manual annotation by humans. This lack of a third label makes
the generated datasets easier as compared to standard NLI datasets with three
labels. While a 2-label classification task is easier than a 3-label classification task,
the generated dataset will still be harder than a standard single-sentence classifi-
cation problem (like sentiment classification) as the model will have to be able to
encode inter-dependent information between the sentence pairs.

In addition, there is a chance that an auto-generated dataset will have errors
that can only be identified when checked and studied by human annotators.
As the goal of the research is to produce a dataset with little-to-no human
supervision nor annotation, this human-based check is not done. Correctness is
instead ensured by thorough testing of the topic clustering model.

2.2 NewsPH-NLI

Using our proposed methodology, we automatically generate an NLI benchmark
dataset in Filipino we call the NewsPH-NLI dataset.

To create the dataset, we scrape news articles from all major Philippine news
sites online. We collect a total of 229,571 straight news articles, which we then
lightly preprocess to remove extraneous unicode characters and correct minimal
misspellings. No further preprocessing is done to preserve information in the
data.

We then use our proposed methodology. First, we create a Doc2Vec model
(via the Gensim1 package) on our collected news corpus, using Annoy2 as an
indexer. We remove Tagalog stopwords and use TF-IDF to filter the functions
words (e.g. “ng” and “nang”) as these create noise. In testing, without the use of
stopword removal and TF-IDF filtering, clustering was difficult as most articles
were embedded closely due to their common usage of stopwords and function
words. After producing the Doc2Vec embeddings, we then cluster, comparing
two articles via the cosine similarity of the mean of their projected vectors. We
consider two articles to be dissimilar if their cosine similarity is less than 0.65.

1 https://radimrehurek.com/gensim/.
2 https://github.com/spotify/annoy.

https://radimrehurek.com/gensim/
https://github.com/spotify/annoy
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After clustering, we then take entailments by running through each article
iteratively, and produce contradictions by sampling from two randomly cho-
sen clusters. We shuffle the final set and randomly sample 600,000 premise-
hypothesis pairs to be part of the final dataset. We set this size for our dataset
in order to follow the size of the widely-used SNLI dataset [1].

From the full generated dataset, 420,000 of which form the training set,
while the remaining 80,000 are split evenly to produce the validation and test
sets. To generate the splits, we first sample 300,000 of both entailments and
contradictions using our methodology, shuffle the set, then split them accordingly
into training, validation, and testing sets.

2.3 ELECTRA Pretraining

We alleviate the resource scarcity of the Filipino language by producing pre-
trained transformers. We chose the ELECTRA [3] pretraining method because
of the data efficiency of its pretraining task. While a large corpus of unlabeled
text is available in Filipino, this consolidated corpus is still far smaller than the
ones commonly used to pretrain English models. ELECTRA poses an advan-
tage over the widely-used BERT [9] in its ability to use pretraining data more
efficiently, as BERT only uses 15% of the training data for masked language
modeling per epoch, leading to data inefficiency. We surmise that this increased
data efficiency will provide improvements for tasks in low-resource languages.

We produce four ELECTRA models: a cased and uncased model in the base
size (12 layers, 768 hidden units, 12 attention heads), and a cased and uncased
model in the small size (12 layers, 256 hidden units, 4 attention heads). All our
models accept a maximum sequence length of 512.

Our models are pretrained using the WikiText-TL-39 dataset [5], producing a
SentencePiece3 vocabulary of 320,000 subwords. We train the small models with
a learning rate of 5e-4, batch size of 128, and a generator hidden size 25% of
the discriminator hidden size. For the base models, we train with a learning rate
of 2e-4, batch size of 256, and a generator hidden size 33% of the discriminator
hidden size. Models are pretrained using the Adam [15] optimizer. We pretrain
for a total of 1 million steps for the base models and 766,000 steps for the small
models, using the first 10% of the total steps for linear learning rate warmup.

Pretraining was done using Tensor Processing Unit (TPU) v3 machines on
Google Cloud Platform, with small models finishing in four days and base vari-
ants finishing in nine days.

2.4 Benchmarking

We then finetune to set initial benchmarks on the NewsPH-NLI using our ELEC-
TRA models, comparing their performance against another Transformer-based
finetuning technique (BERT) and an RNN-based finetuning technique (ULM-
FiT). For Filipino versions of the aforementioned benchmark models, we use
Tagalog-BERT [6,7] and Tagalog-ULMFiT [26].
3 https://github.com/google/sentencepiece.

https://github.com/google/sentencepiece
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For finetuning, small variants of ELECTRA use a learning rate of 2e-4. Base
variants of both ELECTRA and BERT use a learning rate of 5e-5. All trans-
formers were finetuned on the dataset for a total of 3 epochs using the Adam
optimizer, using the first 10% of the total steps for linear learning rate warmup.
For transformers, the standard separator token [SEP] was used to convert sen-
tence pairs into one single sequence.

ULMFiT follows a different finetuning protocol compared to the transformer
models. We first preprocess the data using the FastAI [12] tokenization scheme.
Sentence-pairs are turned into one sequence by using a special xxsep token
introduced in finetuning.

Finetuning was done in two stages: language model finetuning, and classifier
finetuning. For language model finetuning, we first finetune the last layer for 1
epoch, leaving all other layers frozen, before unfreezing all layers and finetuning
for two epochs. We use a learning rate of 5e-2. For classifier finetuning, we
perform 5 epochs of finetuning, performing gradual unfreezing [13] while reducing
the learning rate from 1e-2 per epoch by a factor of 2. All experiments with
ULMFiT also used discriminative learning rates [13] and cyclic learning rate
schedules [24].

Finetuning, testing, and all other experiments were done on machines with
NVIDIA Tesla P100 GPUs. For small ELECTRA models, finetuning on the full
dataset takes three hours to finish. For base ELECTRA and BERT variants, full
finetuning finishes in five hours. For ULMFiT, it takes two hours.

2.5 Degradation Tests

To further investigate the capacity and performance of these models especially
when operating in low-data environments, we run a number of degradation tests
[6].

Simply put, we reduce the amount of training data to a certain data per-
centage (p%) of the full dataset while keeping the validation and testing data
sizes constant, then proceed to finetune a model. For each model, we perform
degradation tests at four different data percentages: 50%, 30%, 10%, and 1%.

For each degradation test, we log the test loss and test accuracy. In addition,
we take the accuracy degradation, which is described as:

ADp% = Acc100% −Accp%

where Acc100% refers to the accuracy of the model when finetuned on the full
dataset, and Accp% refers to the accuracy of the model when finetuned on p%
of the dataset. We also take the degradation percentage, which is described
as:

DPp% = ADp%/Acc100% × 100

where ADp% is the accuracy degradation of the model when finetuned at p%
data percentage. The degradation percentage measures how much of the full
performance of a model is lost when trained with less data, at a certain data
percentage p%.
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To compare which models are more robust to performance degradation in
low-data domains, we also measure degradation speed, which we define as the
standard deviation between the degradation percentages of a model for the 50%,
30%, 10%, and 1% setup. When the degradation percentages are more spread
out, this indicates that the model degrades faster as the number of training data
is reduced.

We perform degradation tests as a form of “stress test” to gauge the per-
formance and effectiveness of models when forced to work in low-data domains.
Most models in published literature show results as tested in environments with
abundant data. While this is an effective way to compare performance against
other models tested in a similar manner, it is not representative of a model’s
actual performance when adapting to low-data domains, especially with low-
resource languages.

3 Results and Discussion

3.1 Finetuning Results

Finetuning results show that ELECTRA outperforms both the Transformer
baseline (BERT) and the RNN baseline (ULMFiT). The best ELECTRA model
(Small Uncased) outperforms the best BERT model (Base Cased) by +3.75%
accuracy, and outperforms the ULMFiT model by +3.63%.

The ELECTRA models outperformed the BERT models on average by 3.01%
accuracy (average ELECTRA performance being 92.17% while average BERT
performance is only 89.16%). We hypothesize that the ELECTRA models per-
form better than the BERT, with the small variants performing better than
their larger BERT counterparts despite the size and capacity difference, due to
the pretraining scheme. ELECTRA leverages pretraining data in a more data
efficient way, using all of the training data per batch to train the model. This
is opposed to BERT’s (particularly masked language modeling’s) inefficient use
of pretraining data, using only 15% of each batch to train the model. Since our
pretraining dataset is considerably smaller than most common English pretrain-
ing datasets (39 million words in WikiText-TL-39 vs 2,500 million words in the
Bookcorpus dataset), a pretraining scheme that uses data more efficiently will
be able to learn more effectively.

Difference in performance among the ELECTRA variants is marginal at
best, with the difference in accuracy between the best ELECTRA model (Small
Uncased) and the weakest one (Base Cased) being only 1.22%. An interesting
observation is that the small variants both outperform their base variants, albeit
marginally. The small uncased model outperforms the base uncased model by
1.34%, while the small cased model outperforms the base cased model by 0.51%.
We hypothesize that this is due to the small models being easier to train, given
that there are less parameters to consider.

While the small variants outperform their base variants on the full dataset,
we hypothesize that the base models have an advantage in settings where there
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is less data to learn from, since they have more effective capacity. We verify this
through our use of degradation tests shown in the next subsection.

Table 1. Final Finetuning Results. The best ELECTRA model (Small Uncased) out-
performs the best BERT model (Base Cased) by +3.75% and the ULMFiT model
by +3.63%. An interesting observation is that the small ELECTRA models perform
marginally better than their base counterparts. We also report the random seed used
in our experiments for reproducibility with our released code.

Model Val. Loss Val. Acc. Test Loss Test Acc. Seed

ELECTRA Tagalog Base Cased 0.2646 91.74% 0.2619 91.76% 4567

ELECTRA Tagalog Base Uncased 0.2502 91.98% 0.2581 91.66% 4567

ELECTRA Tagalog Small Cased 0.1931 92.58% 0.1959 92.27% 1439

ELECTRA Tagalog Small Uncased 0.1859 92.96% 0.1894 93.00% 45

BERT Tagalog Base Cased 0.3225 88.81% 0.3088 89.25% 1111

BERT Tagalog Base Uncased 0.3236 89.04% 0.3257 89.06% 6235

ULMFiT Tagalog 0.2685 89.11% 0.2589 89.37% 42

A table summarizing the finetuning results can be found in Table 1.

3.2 Degradation Tests

In total, we perform four degradation tests per model variant, for a total of 28
degradation tests. Each model is finetuned with a fraction of the entire NewsPH-
NLI dataset (50%, 30%, 10%, and 1%), with the resulting performance compared
against the performance of the same model when finetuned with the full dataset.
A summary of all degradation tests can be found in Table 2.

As we start to reduce the training data to 50%, the ELECTRA models remain
more resilient to performance degradation compared to the BERT models and
ULMFiT. We hypothesize this to be due to the more effective means of imparting
learned priors to the Transformer by its data-efficient pretraining scheme. At the
50% data percentage, ELECTRA has only degraded by 1.02% on average, while
BERT and ULMFiT has degraded by 2.28% and 2.85% on average, respectively.
This trend is still evident at the 30% data percentage mark, with ELECTRA
degrading by 2.62% on average, while BERT and ULMFiT degrade by 3.38%
and 5.57% on average, respectively.

The trend begins to shift as we approach settings with even less data. As the
training data is reduced to 10% of the original (42,000 examples), we see that
ELECTRA starts to begin degrading faster, while BERT degrades at about the
same rate. ELECTRA has degraded by 5.11% on average. Meanwhile, BERT
degrades by 5.89% on average, which is only minimally larger than ELECTRA’s
degradation. The same is true on the extremely-low data 1% data percentage
mark, where ELECTRA has degraded by 15.04% on average, which is 6.2%
higher than BERT’s average degradation of 8.84%.
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Table 2. Degradation Test Results. “Acc. Deg.” refers to Accuracy Degradation, the
difference between the performance of the model when trained with the full dataset
and when trained with a smaller Data %. “Deg. %” refers to Degradation Percentage,
the percentage of the performance of the model when trained with the full dataset
that is lost when finetuned with a smaller Data %. Degradation speed is the standard
deviation of a model’s Degradation Percentages, lower is better.

Model Data % Test Loss Test Acc Acc. Deg. Deg. % Degradation Speed

ELECTRA Tagalog 100% 0.2619 91.76% 4.47

Base Cased 50% 0.3184 90.56% −1.20 1.31%

30% 0.3769 88.85% −2.91 3.17%

10% 0.4467 86.23% −5.53 6.03%

1% 0.5046 79.78% −11.98 13.06%

ELECTRA Tagalog 100% 0.2581 91.66% 4.47

Base Uncased 50% 0.2920 90.85% −0.81 0.88%

30% 0.3333 89.21% −2.45 2.67%

10% 0.4041 87.20% −4.46 4.87%

1% 0.5300 79.43% −12.23 13.34%

ELECTRA Tagalog 100% 0.1959 92.27% 5.69

Small Cased 50% 0.2260 91.56% −0.71 0.77%

30% 0.2504 90.13% −2.14 2.32%

10% 0.3075 87.66% −4.61 5.00%

1% 0.4873 78.09% −14.18 15.37%

ELECTRA Tagalog 100% 0.1894 93.00% 6.92

Small Uncased 50% 0.2154 91.97% −1.03 1.11%

30% 0.2439 90.86% −2.14 2.30%

10% 0.2963 88.77% −4.23 4.55%

1% 0.5303 75.91% −17.09 18.38%

BERT Tagalog 100% 0.3088 89.25% 2.49

Base Cased 50% 0.3800 87.09% −2.16 2.42%

30% 0.4394 86.25% −3.00 3.36%

10% 0.5046 84.15% −5.10 5.71%

1% 0.5285 81.33% −7.92 8.87%

BERT Tagalog 100% 0.3257 89.06% 2.57

Base Uncased 50% 0.4126 87.15% −1.91 2.14%

30% 0.4434 86.04% −3.02 3.39%

10% 0.5232 83.65% −5.41 6.07%

1% 0.5672 81.21% −7.85 8.81%

ULMFiT Tagalog 100% 0.2589 89.37% 8.33

50% 0.3093 86.82% −2.55 2.85%

30% 0.3699 84.39% −4.98 5.57%

10% 0.4840 79.07% −10.30 11.53%

1% 0.8140 67.50% −21.87 24.47%
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In extremely low-data domains, we see that BERT is more resilient to per-
formance degradation than ELECTRA is. ELECTRA is shown to degrade expo-
nentially as the number of training examples is reduced. As shown in Fig. 2, while
BERT’s degradation on average remains relatively linear, ELECTRA starts
degrading faster and faster as we approach the 1% (4,200 examples) data per-
centage mark. When looking at degradation speeds, it is also evident that ELEC-
TRA degrades more (average degradation speed of 5.46) while BERT degrades
less (average degradation speed of 2.53).

Fig. 2. Per-technique degradation curves, averaging the performance of all models
belonging to one technique. ULMFiT still remains the easiest model to degrade as
the number of training examples reduce. ELECTRA starts to degrade strongly after
the 10% mark, while BERT remains to degrade slowly.

We hypothesize that this is a direct effect of their pretraining schemes. ELEC-
TRA is trained without a specific downstream task in mind, while BERT is
trained considering sentence-pair classification tasks, leading to its use of next
sentence prediction as a secondary pretraining task. Since BERT’s biases are
more adjusted to sentence-pair classification, we can hypothesize that it should
perform reliably well even when finetuned with little data, as it already has an
“idea” of how to perform the task.

In terms of per-model degradation, while the small ELECTRA models out-
performed their larger base counterparts in the full dataset, we show that the
base models are more resilient to degradation. As shown in Fig. 3, this is more
evident as we approach the 1% data percentage mark, with the small uncased
model degrading 5.04% more than the base uncased model, and the small cased
model degrading 2.31% more than its base cased counterpart. In terms of speed,
we also see that the small models degrade more (average degradation speed of
6.31) than the base models (average degradation speed of 4.62).
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Fig. 3. Per-model degradation curves. ULMFiT degrades the fastest out of the three
transfer learning techniques. ELECTRA begins to degrade at the 10% data percentage
mark. Both ELECTRA and ULMFiT degrade exponentially, while BERT degrades
nearly linearly, which is likely due to it’s pretraining scheme designed for sentence-pair
classification tasks.

3.3 Heuristics for Choosing Techniques for Low-Data Domains

Overall, the finetuning results and the degradation tests give us good heuristics
for choosing which techniques are appropriate for different tasks when dealing
with low-data domains.

ELECTRA is most effective in the general use-case. When there is a lot of
task-specific data to finetune a model, we see that ELECTRA is more effective
than the baselines BERT and ULMFiT. ELECTRA is also best to use when
there is little pretraining data available, as is with the case of the low-resource
language Filipino. Since there is less pretraining data, ELECTRA’s more data-
efficient pretraining scheme will impart more learned priors than BERT’s masked
language modeling objective will. From our results, we hypothesize that the same
will be true when compared with other Transformer-based pretraining techniques
that use the masked language modeling objective, such as RoBERTa [18].

However, while ELECTRA is effective in the general case, this does not mean
that BERT will be deprecated anytime soon. BERT is very effective in the low-
data case, especially in tasks that deal with sentence-pair classification such as
natural language inference and sentence entailment. Since BERT’s pretraining
scheme is designed with sentence-pair classification tasks in mind, it will perform
well for such tasks even with little finetuning data as it already has an idea how
to perform these tasks due to its pretraining. As we show with empirical results,
BERT also degrades slower than ELECTRA, and should be more robust for
various tasks in low-data domains and low-resource languages.

While both Transformer-based finetuning techniques outperform ULMFiT
in the degradation tests, this does not mean that RNN-based methods do not
have a use in current research dealing with language inference tasks. On the full
dataset, we see that ULMFiT performed with accuracy comparable to BERT,
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albeit degrading the fastest on average on the degradation tests. ULMFiT’s fast
degradation is likely due to it being RNN-based, which has significantly less
representational capacity than the larger Transformers that leverage attention
used in the study. While this is the case, in settings where there is enough data
to finetune, ULMFiT (and other RNN-based transfer learning techniques) will
perform comparably to the Transformer-based techniques when tuned properly.
ULMFiT’s AWD-LSTM [19] backbone also enjoys the benefit of being cheaper
and faster to train. In cases where there is a lack of resources to use Transformers
effectively, RNN-based models will still suffice, assuming there is an abundance
of data.

4 Conclusion

In this paper, we proposed an automatic method for creating sentence entail-
ment benchmark datasets using news articles. Through our method, datasets
can be generated quickly and cost-efficiently, while ensuring that they are chal-
lenging enough to accurately benchmark performance of high capacity models.
In addition, our method leverages the abundance of news articles online, which
allows datasets even in low-resource languages to be created.

Using our method, we produce the first sentence entailment benchmark
dataset in Filipino which we call NewsPH-NLI. We also produce pretrained
Transformers based on the ELECTRA pretraining scheme, which we benchmark
on our dataset against two widely-used techniques, BERT and ULMFiT.

We shed light on the true performance of transfer learning techniques when
operating in low-data domains to solve a hard task. We show the importance
of the choice of pretraining task to the effectiveness of a Transformer when
finetuned with little data. We also show that while newer techniques outperform
older established ones, they may still perform worse when dealing with low-
resource languages.

For future work, we recommend further studies on automatic corpus gener-
ation be done; particularly on correctness checking. The biggest disadvantage
that our method has is that to fully ensure correctness, humans will still have
to evaluate the resulting dataset. Should an automatic technique to verify cor-
rectness be made, our dataset generation method will be more robust, and can
then be adapted to generate other tasks that require more human supervision
in creating, such as summarization and translation.
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Abstract. Fake news, or false information presented as news, is an
increasing risk in today’s society. The practice of automatically detecting
fake news is by no means an easy task, since the authors of fake news
intend to confuse the readers and make them vulnerable to false informa-
tion. Traditional methods only consider a limited number of characteris-
tics of fake news, and hence, they face many difficulties in predicting the
credibility of the news. This paper proposes WES, an integrated stacking
model where the multiple-view text representation from (i) Word-level
features, (ii) Emotional features, and (iii) Sentence-level features are used
to classify the news article. The proposed system is applied on a real-
world dataset, FakeNewsNet, and the experimental results show that
the proposed approach achieves significantly better performance than
the current state-of-the-art fake news detection method.

Keywords: Fake news detection · Multiple-view text representation ·
Convolutional neural networks

1 Introduction

Recently there has been an increasing number of fake news on both traditional
news media and social networks, which causes severe consequences on society.
The typical examples are the false information about COVID-19 and the fake
news during the U.S. 2020 presidential election. Not only is fake news written
in a way to trigger extreme emotions of the readers, but it also misleads them
to be more likely to accept false information in the future and hence reduces
the ability of readers to distinguish between true and false information [13]. To
make matters worse, the rapid development of social networks, such as Facebook,
Twitter, enables fake news to be widely spread in a much easier way. As the
negative impacts unfold, it becomes crucial to develop a robust system which
can predict the credibility of a given news article. In order to solve the fake news
detection problem, researchers have developed a variety of approaches, which
can be categorised into two main categories based on the source of features used
to predict fake news: News Content and Social Context approaches [13,18]. Our
approach uses both and introduces a two-stage stacking model to integrate them.

Fake news detecting is a very challenging problem; existing approaches typ-
ically consider one particular representation of a document and may face many
c© Springer Nature Switzerland AG 2021
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difficulties in fact-checking the news article. Text is information-rich, and hence,
one representation might not be sufficient. One approach to address this limita-
tion is to use Multiple-view Text Representation in which the features extracted
are not limited to one type of text representation, but a combination of different
types. However, there is not much research focusing on this new type of text rep-
resentation. The proposed method is to use a system considering three views of
representation (word, emotion, and sentence), and we expect it can outweigh the
performance of existing methods. Our main contribution is the development of
a novel Multiple-view Text Representation consisting of (i) Word-level features,
(ii) Emotional features, and (iii) Sentence-level features to capture discriminative
features from fake news.

The remainder of this paper is organised as follows. In Sect. 2, we will discuss
the background and related work in the field of fake news detection. In Sect. 3,
a proposed approach to overcome the limitations of current methods will be
discussed. We then discuss the evaluation of the proposed method in Sect. 4.
Finally, Sect. 5 contains the conclusion and future work.

2 Background and Related Work

2.1 Fake News Detection

The existing approaches of fake news detection can be categorised by the source
of features extracted to predict the credibility of the news. The two main cate-
gories are News Content and Social Context. The former uses (i) fact-checking
sources or (ii) linguistic-based features (title, body text of the news) and may
combine with visual-based features (images and videos) [18], whereas the latter
makes use of user profiles, posts and user networks which interact with the news
article [17].

News Content models can be categorised into two sub-categories: Knowledge-
based and Style-based approaches. Among the methods of fake news detection,
Knowledge-based approaches can be considered as the most straightforward ones,
which use external sources to predict the credibility of a news article. [3,15]
make use of the factual information from Wikipedia to construct a knowledge
graph; the credibility score of the claims in the news will be based on the path
between the subject and object mentioned. [6] proposes a method which only
pays attention to check-worthy claims by extracting information expressing key
statements and viewpoints. Style-based approaches are based on the assumption
that the publishers of fake news, whether intentionally or unintentionally, will
use particular writing styles which are more deception-oriented and much less
objectivity compared to true news. These writing styles’ characteristics can be
captured by analysing the text representation extracted from the news content.
[13] uses Unmasking to detect hyperpartisan from the news. In [2], the authors
propose a method which exploits the title of news to predict its veracity; their
rationale behind is that news titles will summarise the main viewpoint the writers
want to express.
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On the other hand, Social Context models can be categorised into two
sub-categories: Stance-based and Propagation-based approaches. Stance-based
approaches refer to methods that use the stance of users who interact with
a news article (whether they prefer fake news or not) to predict the credibil-
ity of the news. The stance of users toward fake news can be extracted either
directly from their likes or indirectly via the sentiment in their posts [10,19].
Propagation-based methods use interrelations of relevant social media posts to
predict the credibility of a news article. To put it another way, they assume that
a news’ veracity highly depends on the veracity of relevant social media posts,
unlike their stance-based counterparts which focus on the users [7,8].

2.2 Text Representation

A classifier cannot use the text document directly as the input, and hence, it
is necessary to use a specific method to map the text document into a suitable
text representation. The most commonly-used text representations are TF-IDF,
Word Embeddings, and Sentence Embeddings.

In TF-IDF representation, each document is represented as a very sparse
vector d ∈ R

Nt , where Nt is the number of terms in the corpus. Each com-
ponent of d, which is the term weight of the term ti, can be calculated as
TermWeighti = TFi × IDFi. TFi is the Term Frequency (the number of times
the term ti appears in a text document), and IDFi is the Inverse Document
Frequency whose main purpose is to penalize the terms appearing in many doc-
uments in the collection but are not useful for distinguishing between different
documents.

In Word Embedding, each document is represented as an m × n matrix D;
where m is the max sequence length, and n is the word embedding dimensions.
Each row of this matrix is a dense vector wi ∈ R

n which indicates the position
of the word within the vector space, and it is called Word Embedding. Word
Embeddings can be either trained using the input corpus or generated using
pre-trained Word Embeddings such as GloVe and Word2Vec. Mathematically,
by using Word Embeddings, the vector differences between man − woman and
king − queen are roughly equal.

Sentence Embedding, as its name indicated, represents the sentence and its
semantic information as a dense vector. The popular Sentence Embedding tech-
niques include BERT, InferSent, and Universal Sentence Encoder. Among them,
BERT (Bidirectional Encoder Representations from Transformers) [4] is a cru-
cial breakthrough because not only does it achieve state-of-the-art results on a
variety of NLP tasks, but it also inspires many recent NLP architectures and
language models, e.g. TransformerXL, RoBERTa.

3 Proposed Method

As discussed in Sect. 2, most of the existing fake news detection approaches use
either News Content or Social Context, and only a few of them make use of
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both sources [14,16]. Typically for News Content models, only one text repre-
sentation is used and this is not sufficient to capture useful information from the
news article; as a consequence, the accuracy is not as high as expected. In order
to resolve this issue, the proposed approach takes into account many aspects
of news by utilising a variety of text representations. All text representations
cannot be simply concatenated together, because there are many differences
between them in terms of (i) shapes (vectors and matrices), (ii) density (sparse
and dense vectors), and (iii) the number of dimensions as mentioned in Sect. 2.
To overcome such limitations, this paper proposes a framework named WES.
WES is an integrated stacking model, which utilises Multiple-view Text Repre-
sentation consisting of (i) Word-level features, (ii) Emotional features, and (iii)
Sentence-level features from News Content and Social Context.

3.1 Multiple-View Text Representation

To capture the patterns at Word-level features of a document, we use CNN
(Convolutional Neural Network) and GloVe (Global Vectors for word represen-
tation) [12] pre-trained Word Embeddings. CNN has been well-known for its
robust performance in the field of Computer Vision because it can preserve 2D
spatial orientation. Similar to images, texts also have an orientation. The main
difference is that texts have 1D spatial orientation, where the sequence of words
is essential. CNN has shown good performance in text classification [9]. Table 1a
shows the parameter settings of the Word-level models.

Table 1. Parameter settings of Level 0 models.

(a) Word-level models

Parameter Setting

Pre-trained word vectors GloVe

Corpus Twitter

# Dimensions 200

# Words in vocabulary 20,000

The max sequence length 500

(b) Emotional models

Parameter Setting

Emotional word vectors EmoLex

# Dimensions 10

# Words in vocabulary 20,000

The max sequence length 500

(c) Sentence-level models

Parameter Setting

Pre-trained BERT model BERT Large - Uncased - Whole Word Masking

# Sentences per news article 20

# Tweets per news 20

# Words per sentence or tweet 30

The chosen Encoder layer The second to last Encoder
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In addition to the Word-level features, the Emotional features of a document
also play an important role in detecting the credibility of news. A recent study
has shown that fake news is more likely to trigger extreme emotions of fear,
disgust and surprise; on the other hand, real news tends to trigger joy, sadness,
trust and anticipation from the readers [5,20]. For that reason, we believe that
emotional text representation can increase the performance of fake news detec-
tion system significantly. In order to extract the emotions from the document,
we use NRC Word-Emotion Association Lexicon (EmoLex) [11] to encode the
document to Emotional Embeddings. In EmoLex, each word is associated with
eight basic emotions (anger, fear, anticipation, trust, surprise, sadness, joy, and
disgust) and two sentiments (negative and positive). Every word in a document
is transformed into a vector wi ∈ {0, 1}10 containing the emotional informa-
tion, and as a result, we will have a matrix for each document (similar to Word
Embeddings). The parameter settings of the Emotional models are shown as in
Table 1b.

The last but not least information the system wants to extract from news is
semantics. Nevertheless, we cannot use Word Embedding to capture the seman-
tics of a document, since it has the polysemy issue. Word Embedding only gives
each word one particular representation vector, for example, the “bank” words
in “I need to go to the bank to withdraw my money”. and “I want to see a
river bank”. will be vectorised into the same vector. To overcome this issue,
we use BERT-based Embeddings [4] to capture the semantics of a document
as Sentence-level features. BERT contains a number of Encoders based on its
model; e.g. BERT Base has 12 Encoders, and BERT Large 24. The output of
each Encoder can be used as a Sentence Embedding which captures the meaning
of the input sentence. Table 1c shows the parameter settings of the Sentence-level
models.

3.2 Integrated Stacking Model

In this section, an approach to combine the three aforementioned text representa-
tions to form the Multiple-view Text Representation will be discussed. The basic
idea is to use an integrated stacking model with two levels to extract separate
text representations from the document. Integrated stacking model is an ensem-
ble method in which the model in higher level learns how to best combine the
output of models from the previous level [21]. Figure 1 shows the overall archi-
tecture of the proposed framework to detect fake news. The integrated stacking
model contains two main parts: (i) Level 0 models and (ii) Level 1 model. The
former acts as feature extractors, while the latter a classifier.

Level 0 Models as Feature Extractors. The raw text inputs of Level 0
models are the News Content (the text body of the news article) and Social
Context (the tweets posted sharing the news in Twitter). The raw text inputs
are then vectorised into Word Embeddings, Emotional Embeddings, and Sen-
tence Embeddings. Since we have two sources of input (News Content and Social
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Fig. 1. The overall architecture of the proposed framework to detect fake news.

Context), and each has three types of text representation, the number of Level
0 models needed to process the embeddings are six models. Each text represen-
tation is fed into a Convolutional Neural Network i to output a vector ti ∈ R

ki .
For the fake news detection problem, this paper treats all types of text repre-
sentation equally; therefore, all ki values are set to 10. After that, the six output
vectors are concatenated to form a single vector τ ∈ R

60. The concatenated
vector τ , the expected result of the Level 0 models, is also the Multiple-view
Text Representation that we want to extract from the News Content and Social
Context.

Level 1 Model as a Classifier. The second part of the integrated stacking
model is a Level 1 model whose primary purpose is to classify a news is fake
or not. The learning algorithm used in this part is a Multilayer Perceptron
(MLP). The aforementioned Multiple-view Text Representation τ is taken as
an input to the MLP whose output layer uses a sigmoid function to predict the
trustworthiness of the news (1: fake news, 0: real news).

Train the Integrated Stacking Model. Not only is the framework divided
into two parts, but its training process also has two stages. The data are divided
into five parts as follows: (1) the training set train 0 for Level 0 models, (2) the
validation set val 0 for Level 0 models, (3) the training set train 1 for Level 1
model, (4) the validation set val 1 for Level 1 model, and (5) the test set test to
evaluate the whole integrated stacking model.

Level 0 models and Level 1 model use different training datasets in order to
prevent Level 1 model from being biased towards the best of Level 0 models.
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Each Level 0 model is trained separately on the train 0 data. They are trained
on the fake news detection task, and the val 0 data are used to (i) validate the
training process and to (ii) learn the hyper-parameters of the CNNs. We do
not fix the architecture of the CNNs, and their hyper-parameters, such as drop
out rate, the number of filters, the number of blocks (each block consists of one
Conv1D layer and one MaxPooling1D layer), are automatically optimised using
Random Search [1]. Table 2 shows the ranges of hyper-parameters optimisation.

Table 2. The ranges of hyper-parameters optimisation.

Hyper-parameters Ranges

Dropout rate [0.2, 0.3, 0.4]

# Filters [32, 64, 128, 256]

Kernel size [3, 5]

# Blocks From 1 to 3

Learning rate [1e-2, 1e-3, 1e-4]

The trained Level 0 models are then integrated with the Level 1 model to
form the integrated stacking model. In this second training stage, the output
layers of Level 0 models are removed. As a result, instead of outputting the
prediction about whether a news is fake or not, each Level 0 model i outputs a
vector ti ∈ R

ki as shown in Fig. 1. The weights of the trained Level 0 models
are set to untrainable, because the framework wants to train only the Level 1
model on the train 1 data in this stage. In order to validate the training process
of the Level 1 model (MLP), the val 1 is used.

Finally, the whole fake news detection framework is tested on the test data
to measure how well it performs on the unseen data. Our source code is made
publicly available1.

4 Evaluation

4.1 Metrics

Fake news detection is a binary classification problem, and hence, Accuracy,
Precision, Recall, and F1 Score are the typical measures. This problem typically
has a class-imbalanced dataset; therefore, Accuracy alone can not tell the full
story about the effectiveness of the learned model. For that reason, other metrics
such as Precision, Recall, and F1 Score are also used.

1 https://github.com/TobiasTHa/WES FakeNewsDetection.

https://github.com/TobiasTHa/WES_FakeNewsDetection
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4.2 The Compared Fake News Detection Methods

Our approach is compared with (i) three ensemble learning methods: AdaBoost,
Bagging SVM (Support Vector Machine), and Random Forrest, (ii) Bi-LSTM
(Bidirectional Long Short-Term Memory), and (iii) the current state-of-the-art
fake news detection systems dEFEND. All compared methods make use of text
representation from both News Content and Social Context. For the ensemble
learning methods, their hyper-parameters are the default values of the scikit-
learn Python package2, and we utilise TF-IDF as the text representation. As
regards Bi-LSTM, we use the standard implementation from TensorFlow3, and
GloVe is used as the word vectors. In 2019, Shu et al. proposed the dEFEND
framework [16]. This framework makes use of a co-attention mechanism to cap-
ture the explainability of news sentences and user comments; it then selects top-k
check-worthy sentences and user comments to predict the credibility of the news.
The dEFEND framework has achieved significantly better results compared to
the top existing approaches [16].

4.3 Dataset

The dataset used for evaluation is FakeNewsNet [17]. This dataset, which con-
tains more than 20,000 fact-checked news articles, is commonly-used in fake
news detection research. The dataset includes a variety of feature sources: (i)
News Content, (ii) Social Context, and (iii) Spatiotemporal Information (how
fake news spreads over time in different regions).

To make the comparison as fair as possible, we used the same split size of
data and also the same number of candidate news from FakeNewsNet dataset
that the authors of dEFEND [16] used in their paper. The statistics of the
experimental dataset and its setting are shown in Table 3. The number of runs
for each experiment is five times, which is the same as Shu et al. [16] used; the
experimental results are the average values of those run.

Table 3. The statistics and settings of the experimental FakeNewsNet dataset.

Value

Platform GossipCop

# Candidate news 5,816

# True news 3,586

# Fake news 2,230

% Training set 0.75

% Test set 0.25

2 https://scikit-learn.org.
3 https://www.tensorflow.org/tutorials/text/text classification rnn.

https://scikit-learn.org
https://www.tensorflow.org/tutorials/text/text_classification_rnn
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4.4 Experimental Results

Results of the Whole Multiple-View Text Representation. The compar-
ison results are shown in Table 4, and WES achieves the best results among the
compared methods in all evaluation metrics, followed by Bi-LSTM and dEFEND.
The accuracy and F1 Score of WES are higher than those of dEFEND by about
0.08 and 0.1 respectively. Due to the complexity of the fake news detection
problem, the F1 Score of the compared ensemble approaches (AdaBoost, Bag-
ging SVM, and Random Forrest) are not able to exceed the value of 0.75. The
observation, as a result, can confirm the effectiveness of WES in the fake news
detection problem.

Table 4. The performance comparison for fake news detection.

Accuracy Precision Recall F1 Score

AdaBoost 0.774 0.702 0.719 0.710

Bagging SVM 0.811 0.813 0.663 0.730

Random Forrest 0.806 0.760 0.723 0.741

Bi-LSTM 0.823 0.769 0.774 0.771

dEFEND 0.808 0.729 0.782 0.755

WES 0.892 0.869 0.856 0.863

Results of the Single-View Text Representation. We further analyse the
internal components of WES to investigate the contribution of each single-view
text representation. There are three points that can be drawn from analysing
the results in Table 5.

Firstly, using the whole Multiple-view Text Representation achieves signif-
icantly higher performance than using only one text representation. The only
exception is the Precision metric, where the value of Sentence-level features of
Social Context is higher than that of the whole Multiple-view Text Representa-
tion by 0.015. Secondly, the components using information from Social Context
have considerably higher performance than their News Content counterparts.
It shows that Social Context does play such an important role in predicting
the credibility of news, and future research should pay more attention to Social
Context when it comes to capturing the characteristics of fake news. Thirdly, for
Social Context, Sentence-level features achieve the best results; however, regard-
ing News Context, its performance is the worst. For this reason, by combining
multiple types of text representation from different sources, these text represen-
tations can assist each other; therefore, the performance of the whole system can
be improved.
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Table 5. The performance comparison for each single-view text representation.

Accuracy Precision Recall F1 Score

News content Word-level features 0.783 0.746 0.680 0.711

Emotional features 0.775 0.754 0.634 0.688

Sentence-level features 0.766 0.759 0.602 0.668

Social context Word-level features 0.868 0.853 0.801 0.826

Emotional features 0.864 0.842 0.800 0.820

Sentence-level features 0.883 0.884 0.808 0.844

WES 0.892 0.869 0.856 0.863

Analysis of the Multiple-View Text Representation. We further investi-
gate whether the Multiple-view Text Representation does extract useful infor-
mation from fake news. The data used for this analysis are the Multiple-view
Text Representations extracted from a subset of 300 fake news and 300 real
news. As discussed in Sect. 3, this 60-dimensional Multiple-view Representation
consists of the following three text representations: (i) 20 Word-level features,
(ii) 20 Emotional features, and (iii) 20 Sentence-level features. We apply PCA
(Principal Component Analysis) to project the feature vectors into two dimen-
sions (number of chosen principal components = 2) for ease of interpretability.

Figure 2 demonstrates the projection of four different text representations.
It is evident that the extracted Multiple-view Text Representation does capture
useful information to separate between fake and real news. Compared to other
text representations, using Multiple-view Text Representation as the input to the
classifier can help decrease the complexity of the learned model and hence lead
to better generalisation. The text representation which can achieve a result close
to that of the Multiple-view Text Representation is Sentence-level features. How-
ever, it is worth noting that the transition region between false and real informa-
tion in Multiple-view Text Representation is sparse, whereas that of Sentence-
level features is very dense and overlapping. As a consequence, Sentence-level
features may face difficulties in distinguishing between fake and real news in the
transition region.
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(a) Multiple-view Text Representation. (b) Word-level features.

(c) Emotional features. (d) Sentence-level features.

Fig. 2. Projection of text representations.

5 Conclusions and Future Work

This paper proposes the WES framework to detect fake news using Multiple-
view Text Representation consisting of (i) Word-level features, (ii) Emotional
features, and (iii) Sentence-level features. To combine the features extracted
from different sources, WES makes use of an integrated stacking model whose
architecture is divided into two parts: Level 0 models and Level 1 model. The
former acts as a feature extractor which contains six CNN models, each utilises
a particular text representation from either News Content or Social Context of
news. The latter serves the role of a classifier which contains an MLP model to
predict the credibility of news. The experimental results using the FakeNews-
Net dataset indicate that the WES system achieves significantly better results
compared to the current state-of-the-art method.

We believe the proposed Multiple-view Text Representation can be applied
on a broader range of domains rather than only fake news detection problem.
By tuning parameters ki (the number of dimensions of the feature vector for a
text representation) to appropriate values, we can adjust the Multiple-view Text
Representation so that it is suitable for a specific task. For example, Sentiment
Analysis may need higher weights on the Emotional features. Our future research
will investigate other domains and other tasks.



Fake News Detection Using Multiple-View Text Representation 111

References

1. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (2012)

2. Chen, Y., Conroy, N.J., Rubin, V.L.: Misleading online content: recognizing click-
bait as “false news”. In: Proceedings of the 2015 ACM on Workshop on Multimodal
Deception Detection, pp. 15–19 (2015)

3. Ciampaglia, G.L., Shiralkar, P., Rocha, L.M., Bollen, J., Menczer, F., Flammini,
A.: Computational fact checking from knowledge networks. PLoS ONE 10(6),
e0128193 (2015)

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp.
4171–4186 (2019)

5. Giachanou, A., Rosso, P., Crestani, F.: Leveraging emotional signals for credibility
detection. In: Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 877–880 (2019)

6. Hassan, N., Li, C., Tremayne, M.: Detecting check-worthy factual claims in presi-
dential debates. In: Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management, pp. 1835–1838 (2015)

7. Jin, Z., Cao, J., Jiang, Y., Zhang, Y.: News credibility evaluation on microblog
with a hierarchical propagation model. In: 2014 IEEE International Conference on
Data Mining, pp. 230–239 (2014)

8. Jin, Z., Cao, J., Zhang, Y., Luo, J.: News verification by exploiting conflicting
social viewpoints in microblogs. In: AAAI 2016 (2016)

9. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1746–1751 (2014)

10. Mohammad, S.M., Sobhani, P., Kiritchenko, S.: Stance and sentiment in tweets.
ACM Trans. Internet Technol. (TOIT) 17(3), 1–23 (2017)

11. Mohammad, S.M., Turney, P.D.: Crowdsourcing a word-emotion association lexi-
con. Comput. Intell. 29(3), 436–465 (2013)

12. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Empirical Methods in Natural Language Processing (EMNLP), pp.
1532–1543 (2014)

13. Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J., Stein, B.: A stylometric
inquiry into hyperpartisan and fake news. In: Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (vol. 1: Long Papers),
pp. 231–240 (2018)

14. Ruchansky, N., Seo, S., Liu, Y.: CSI: a hybrid deep model for fake news detection.
In: Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management, pp. 797–806 (2017)

15. Shi, B., Weninger, T.: Fact checking in heterogeneous information networks. In:
Proceedings of the 25th International Conference Companion on World Wide Web,
pp. 101–102 (2016)

16. Shu, K., Cui, L., Wang, S., Lee, D., Liu, H.: Defend: explainable fake news detec-
tion. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 395–405 (2019)



112 T. Ha and X. Gao

17. Shu, K., Mahudeswaran, D., Wang, S., Lee, D., Liu, H.: Fakenewsnet: a data reposi-
tory with news content, social context, and spatiotemporal information for studying
fake news on social media. Big Data 8(3), 171–188 (2020)

18. Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection on social media:
a data mining perspective. ACM SIGKDD Explor. Newsl. 19(1), 22–36 (2017)

19. Tacchini, E., Ballarin, G., Vedova, M.L.D., Moret, S., de Alfaro, L.: Some like it
hoax: automated fake news detection in social networks. CoRR abs/1704.07506
(2017)

20. Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science
359(6380), 1146–1151 (2018)

21. Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992)



Generating Pseudo Connectives
with MLMs for Implicit Discourse

Relation Recognition

Congcong Jiang1, Tieyun Qian1(B), Zhuang Chen1, Kejian Tang2,
Shaohui Zhan2, and Tao Zhan2

1 School of Computer Science, Wuhan University, Wuhan, Hubei, China
{jiangcc,qty,zhchen18}@whu.edu.cn

2 Jiangxi Branch, State Grid Corporation of China, Nanchang, Jiangxi, China
Jepctkj@sina.com.cn

Abstract. Due to the lack of connectives, the recognition of implicit dis-
course relations faces a big challenge. An early attempt overcomes this dif-
ficulty by predicting connectives with the use of the statistical language
model. Recent years have witnessed the great success of masked language
models (MLM). Then a new problem naturally arises, i.e., how can con-
nectives benefit implicit discourse relation classification from such mod-
els? In this paper, we address this problem by developing a novel frame-
work to generate the pseudo connectives using the pre-trained MLM. The
key idea is to treat the absent connectives as missing words between two
arguments and produce the pseudo connective from its contexts by fine-
tuning MLM on the classification task. Moreover, we leverage the real
connectives in explicit discourse relations to supervise the generation of
pseudo connectives. Extensive experiments show that our model achieves
the state-of-the-art performance on the PDTB benchmark.

Keywords: Implicit discourse relation · Connective · Masked
language model

1 Introduction

Discourse relation analysis aims to recognize discourse relations that hold
between two text spans (arguments) [22,28]. Discourse relation recognition is
beneficial to many downstream applications including machine translation [21],
question answering [14], text generation [3], and classification [12]. The task is
defined as implicit or explicit discourse relation recognition (termed as IDRR
and EDRR, respectively) depending on whether the discourse connectives like
but and before exist in the texts.

Connectives provide strong linguistic cues to discourse relations. Indeed, gen-
eral classifiers can yield a 93% accuracy on EDRR by using connectives alone
for classification [33], whereas IDRR is still a challenging problem due to the
absence of connectives [10,24].
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Several studies [1,2,29,36,44] exploit the manually annotated implicit connec-
tives in the PDTB dataset under the framework of multi-task learning or multiple
neural networks. However, annotated connectives may not exist in real text. As
an early attempt, Zhou et al. [46] insert implicit connectives between arguments
based on a language model trained on raw corpora without any hand-annotated
data. While being in the right way, this method obtains the connectives using a
statistical n-gram model. In recent years, pre-trained language models (PLMs),
especially the masked language models (MLMs) like BERT and RoBERTa [7,26],
have shown significant improvements over statistic models in various natural lan-
guage processing tasks. Consequently, a new question arises: how can connectives
benefit implicit discourse relation classification from MLMs?

In this paper, we propose a novel framework to generate the pseudo connec-
tives using the pre-trained MLM. Our basic idea is to treat the absent connectives
as missing words between two arguments where each token is an embedding from
a pre-trained MLM. We then produce the pseudo connective from its contexts by
fine-tuning MLM on the target IDRR task. Moreover, we leverage the real connec-
tives in explicit discourse relations as additional constraints to supervise the gener-
ation of pseudo connectives. The generated connectives are used to assist the pre-
diction of discourse relations. Extensive experiments on various IDRR tasks show
that our model achieves the state-of-the-art performance on the PDTB bench-
mark.

2 Related Work

After the release of PDTB 2.0 [34], the IDRR task has received much attention.
A great deal of work has focused on direct classification based on the observed
arguments, including feature engineering with linguistically-informed features
[15,20,22,32,37]. With the development of deep learning, many researches
encode arguments as dense and continuous representation based on various neu-
ral networks such as CNN, RNN, and other complex neural networks [24,35,42].
Further studies tend to discover more semantic interactions between two argu-
ments from word-level [4,19] or argument-level [9–11]. Recently, the pre-training
methods have shown their powerfulness in learning general semantic represen-
tations. Shi and Demberg [40] find that the Next Sentence Prediction (NSP)
pre-training task is beneficial to the IDR task. What’s more, the encoder based
on RoBERTa has achieved great improvement [23]. However, the lack of the effec-
tive cue of connectives makes learning purely contextual semantics challenging.

Previous work has also tried to take advantage of the labeled connectives
in IDRR in the PDTB dataset as useful information. Zhou et al. [46] firstly
uses the information of connectives in a pipeline way. Qin et al. [36] proposes
an adversarial model in which an implicit relation network is driven to learn
from another neural network. Other models [1,2,29] take the classification of
connectives as an auxiliary task to help the main model in relation classification.
Shi et al. [39] present a sequence-to-sequence model to generate a representation
of the discourse relational arguments by predicting the relational arguments. The
main drawback of this type of methods is that the connectives need to be labeled
manually, which is impractical in real world scenario.
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Explicit discourse relations have the exact connectives. Several previous mod-
els [18,25,41,43] remove explicit discourse connectives and regard them as the
“fake” implicit discourse relation data for IDR classification tasks. Dai and
Huang [5,6] classify the implicit and explicit data together in the paragraph level.
Huang et al. [13] tackle this task as domain adaptation from explicit relations to
implicit relations. Nie et al. [30] propose a post-training task which classifies the
explicit connectives only based on the explicit arguments information before the
IDR classification.

In summary, the connectives are extremely helpful for discourse relation
recognition. While there are exact connectives in explicit discourse relations, it is
laborious and impractical to get the connectives for implicit discourse relations.
This drives us to generate the pseudo connectives for IDRR task and develop
a multi-task learning framework for exploring the connectives in the EDRR
task. Though an early attempt [46] also inserts the connectives, it is based on
the statistic language model. Moreover, it does not exploit the connectives in
explicit discourse relations.

3 Our Model

Given an argument pair A = {w1, w2, ..., wn} and A
′
= {w

′
1, w

′
2, ..., w

′
m}, which

does not have connectives, IDRR aims to predict the implicit discourse rela-
tion between them. In this study, we propose a Connective Generation and
Supervision (CGS) framework which generates pseudo connectives for IDRR
under the supervision of the real connectives in explicit discourse relations.

3.1 Model Overview

As shown in Fig. 1, CGS consists of three components: P1 produces the con-
nective embeddings, P2 uses real connectives in explicit relations to supervise
the generation of pseudo connectives, and P3 predicts the discourse relation for
IDRR and EDRR tasks.

Fig. 1. An overview of our proposed CGS model.
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3.2 Generating Connective Embeddings

MLMs have shown their powerful ability in learning contextual word embeddings.
There are several special symbols in MLMs. [MASK] is used to replace the masked
tokens in the input. [CLS] denotes the overall representation for the entire sentence
which is added in front of each sample. [SEP] is used to separate sentences. MLMs
can avoid training a new model from scratch. In light of this, we design a down-
stream task to generate the pseudo connectives by fine-tuning MLM. Specifically,
we treat the absent connective in IDRR as a missing word between two arguments
and insert a [MASK] token at the beginning of Arg2 which is the position of con-
nectives in the arguments of PDTB, as shown in Fig. 2.

Fig. 2. The input format of implicit and explicit samples.

We then fine-tune MLMs on the discourse relation classification task. By
doing this, we generate the pseudo connective from its contexts where its embed-
ding is encoded in [MASK]. Besides, we get the corresponding representation of
each token in two arguments A and A

′
of the implicit discourse sample, denoted

as h and h
′
.

3.3 Supervising the Generation of Connective

The [MASK] symbol in MLMs denotes a general representation for all masked
tokens in the large corpus. Though we fine-tune it on our target task, the indi-
cation of [MASK] for pseudo connectives is not that strong due to the lack of
labeled connectives. To address this problem, we propose to utilize the explicit
discourse connectives in EDRR as the guidance to supervise the generation pro-
cess of pseudo connectives.

As shown in Fig. 1, corresponding to each pair of implicit discourse arguments,
we randomly select an explicit discourse sample with the same relation as that
in the implicit discourse sample. We term this a positive explicit sample. The
input format for the positive explicit sample is similar to that for the implicit one,
except that the position of the [MASK] is now placed with a real explicit connec-
tive (denoted as a [CON] in Fig. 2). Through this way, we can also get the rep-
resentation of each token in two arguments ˜A and ˜A

′
of the explicit discourse

sample, denoted as ˜h and ˜h
′
. Together with the pre-trained embeddings for the

pseudo implicit connectives ([MASK]) and the real explicit connectives ([CON]),
we now employ [CON] to guide the generation of [MASK] in our target discourse
relation classification task. Given that the explicit relation is a positive sample, we
assume that the relation prediction probability between implicit connective and its
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corresponding explicit connective is similar. Consequently, we introduce KL-
divergence to measure the distance between two relation distributions as follow:

pmask = softmax(Wmh
′
MASK + bm), (1)

p̃kc = softmax(Wm
˜h

′
CON + bm), (2)

LossKL = DKL ( pmask || p̃kc ), (3)

where DKL is the calculation function of the KL-divergence, Wm ∈ RdR×dc , bm
∈ Rdc are the weights and bias, dR denotes the word embedding dimension, and
dc is the number of relation classes. pmask and p̃kc are the prediction probabilities
of pseudo connectives and explicit connectives.

3.4 Relation Classification

At first, we simply leverage the explicit discourse samples by directly using their
connectives as supervision for pseudo connectives. We then turn to a multi-task
learning framework, i.e., one subtask for IDRR and the other for EDRR. The rea-
sons are as follows. Firstly, the embeddings of real explicit connectives are also
from the pre-trained MLMs, which may convey multiple meanings for different dis-
course relations. For example, “since” may denote a temporal relation in “It’s five
years since I’ve seen her” or a contingency relation in “He is a changed man since
he got that job”. It would be better to refine their representations using the rela-
tion labels in EDRR. Secondly, the connections between the explicit connectives
and their contexts can be also strengthened during the learning process, which will
improve both the representations of explicit connectives and those of contextual
words. Below we detail the relation classification in IDRR and EDRR.

Since the final state of the symbol [CLS] denotes the representation of entire
sentence, we use it for classification in IDRR.

pcls = softmax(WihCLS + bi), (4)

where Wi ∈ RdR×dc and bi ∈ Rdc are the weight matrix and bias term of [CLS]
for implicit discourse relation, respectively. Besides, the symbol [MASK] denotes
pseudo connective and it contains rich relation information, we also employ it
for classification. In summary, the optimization target for IDRR is to reduce the
cross entropy loss between the predicted and true labels:

Lossi = −
J

∑

j=1

yj ∗ log(pclsj ) −
J

∑

j=1

yj ∗ log(pmask
j ), (5)

where yj is the ground-truth label, pclsj and pmask
j are the labels predicted by

[CLS] and [MASK] in IDRR, and J is the number of instances.
Similarly, we define the optimization target for EDRR based on the [CLS]

and [CON] symbols. Note that if the explicit connectives correspond to multiple
tokens, we take the mean value of their representations.

p̃cls = softmax(We
˜hCLS + be), (6)
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p̃con = softmax(Wc
˜h

′
CON + bc), (7)

Losse = −
J∑

j=1

ỹj ∗ log(p̃cls
j ) −

J∑

j=1

ỹj ∗ log(p̃con
j ), (8)

where ỹj is the ground-truth label, p̃clsj and p̃conj are the labels predicted by
[CLS] and [CON] in EDRR.

The overall loss in our CGS model consists of Loss i from IDRR, Losse from
EDRR, and LossKL from KL-divergence. Moreover, we would like to balance
IDRR and EDRR by introducing a hyper-parameter α (0 < α < 1) since IDRR
is our major classification task while EDRR is an auxiliary one. The overall loss
function is then defined as:

Loss = Lossi + α ∗ Losse + LossKL. (9)

We appropriately reduce the proportion of explicit data classification loss
Losse by α (0 < α < 1) [18]. During test, we employ the mean predicted
probabilities of [CLS] embedding and [MASK] embedding for IDRR.

4 Experiments

4.1 Dataset and Settings

PDTB 2.0 [34] is an English corpus containing 2,312 Wall Street Journal articles.
We report the training, development and test set sizes on 4-way classification
using Ji split [15] for implicit and explicit data used in the paper (Table 1).

Table 1. Data statistics for implicit and explicit relations in PDTB 2.0.

Relation Train Dev Test Sum

Implicit relation 13902 1165 1188 16255

Explicit relation 14485 1321 1474 17280

We evaluate CGS on 4 top-level classification task using the Ji split [15], and
on 11 s-level task [1] using Ji [15], Lin [22], and P&K [30] splits (Table 2).

Table 2. Data statistics for implicit and explicit relations in PDTB 2.0.

Split Train Dev Test

Ji Section 02-20 Section 00-01 Section 21-22

Lin Section 02-21 Section 22 Section 23

P&K Section 02-22 Section 00-01 Section 23–24
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The neural parameters are trained up to 30 epochs using Adam [17] with an
initial learning rate of 2 × 10−5 and a batch size of 16. The α in Eq. 9 is set to
0.4. The hyper-parameter settings of CGS (BERT) and CGS (RoBERTa) are
the same. We use the base model of BERT and RoBERTa [7,26]. We add the
trainable segment embeddings to RoBERTa as Liu et al. [23] do. Besides, we
train models up to 30 epochs and take the best result on the test set, which
strictly follows the previous studies [1,23]. All experiments are performed three
times on three random seeds with 16 GB NVIDIA V100 GPUs to get the mean
results. Our model and variants are all implemented by PyTorch.

4.2 Comparison Results

We choose three types of baselines: M1∼M10 only use arguments, M11∼M14
employ the labeled implicit connectives, and M15∼M21 use explicit data. The
comparison results on 4-way and binary classification and 11-way classification
are shown in Table 3 and Table 4, respectively. Results for baselines are taken

Table 3. F1 and accuracy score (%) on 4-way classification and F1 score (%) on binary
classification.

Model F1 Acc Comp. Cont. Exp. Temp.

M2 [24] 46.29 57.17 36.70 54.48 70.43 38.84

M3 [19] 46.46 – 40.47 55.36 69.50 35.34

M4 [20] 47.15 – 43.24 57.82 72.88 29.10

M6 [9] 47.90 57.25 43.92 57.67 73.45 36.33

M7 [11] 51.24 59.94 47.98 55.62 69.37 38.94

M8 [23] (RoBERTa) 63.39 69.06 59.44 60.98 77.66 50.26

M9 [16] (BERT) 52.60 64.30 – – – –

M9 [16] (XLNet) 56.00 66.30 – – – –

M10 [46] (PLM) 51.34* 18.43* 24.55 16.26 60.70 14.75

M10 [46] (BERT) 58.05* 66.57* – – – –

M10 [46] (RoBERTa) 62.86* 69.98* – – – –

M12 [1] 51.06 – 47.85 54.47 70.60 36.87

M13 [39] 46.40 61.42 41.83 62.07 69.58 35.72

M14 [29] 53.00 – 48.44 56.84 73.66 38.60

M15 [25] 44.98 57.27 37.91 55.88 69.97 37.17

M16 [18] (Imp+Exp) 45.70 57.17 38.91 56.91 71.41 36.92

M17 [43] 44.48 60.63 – – – –

M18 [5] 48.82 57.44 37.72 49.39 67.45 40.70

M19 [6] 52.89 59.66 45.34 51.80 68.50 45.93

M20 [41] 51.84 60.52 46.84 53.74 72.42 43.97

CGS (BERT) 58.30 67.15 51.01 56.30 76.05 50.25

CGS (RoBERTa) 65.30† 71.48† 58.09 63.03 78.04 51.57
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Table 4. Results (Acc %) on 11-way classification.

Model Lin Ji P&K

M1 [15] – 44.59 –

M5 [40] (BERT) 54.82 53.23 –

M8 [23] (RoBERTa) – 58.13 –

M9 [16] (BERT) 51.41 52.13 52.00

M9 [16] (XLNet) 55.82 54.73 54.71

M10 [46] (PLM) 19.32* 17.71* 19.70*

M10 [46] (BERT) 53.78* 53.67* 53.36*

M10 [46] (RoBERTa) 56.81* 58.67* 57.24*

M11 [36] 44.65 46.23 –

M12 [1] 45.73 48.22 –

M13 [39] 45.82 47.83 –

M14 [29] 46.48 49.95 –

M19 [6] – 48.23 –

M21 [30] (BERT) – – 54.70

CGS (BERT) 55.09 54.02 53.93

CGS (RoBERTa) 56.83 58.81‡ 57.60‡

from their original papers, except results with ∗ which are replicated by ourselves.
The best scores are in bold, and the second best ones are underlined.

It is clear that our CGS (RoBERTa) is the best on 4-way in Table 3, and
it consistently outperforms all baselines on 11-way classification in all different
splits in Table 4. As for the binary classification results, although our model
performs slightly worse on Comp. than M8, it performs best on the other three
classes. Results with † and ‡ are significantly better than M8(RoEBRTa) on 4-
way classification and M9(RoBERTa) on 11-way classification (p < 0.05) based
on one-tailed unpaired t-test, respectively. For t-test, we also rerun source codes
of M8 and M9 three times.

M10 (BERT) and M10 (RoBERTa) are adapted from the method in [46]
as follows: (1) Given the input “Arg1 + [MASK] + Arg2”, we use RobertaFor-
MaskedLM to get the mask’s predicting probability for all words in vocabulary,
and select the connective with the highest probability as the pseudo-connective.
(2) We input the pseudo connectives and arguments into the PLM model and
fine-tune them on the IDR task. (3) We use the final pseudo connectives and
CLS to predict the sense. Note SLM doesn’t include (2) and (3) and we add
them for a fair comparison with our model. M10 (PLM) is the method which
we discard them. As we can see, the results are extremely poor. This strongly
demonstrate that simply replacing SLM with PLM may not bring about perfor-
mance increase.
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Among the baselines, M5, M8, M9, and M21 are based on PLMs (none of
them involving pseudo connectives), and they far exceed other baselines. This
demonstrates that PLMs (especially MLMs) have a positive impact on discourse
relation classification. Moreover, our CGS (BERT) is slightly inferior to M8,
M10 (RoBERTa) in Table 3, and slightly inferior to M8, M9 (XLNet), and M21
in Table 4. XLNet [45] is a generalized PLM which outperforms BERT on many
tasks.

We make the following notes. (1) The choosing of PLM plays an important
role in determining the performance. For example, M8 (RoBERTa), M9 (XLNet),
and M10 (RoBERTa), outperform CGS (BERT), but are worse than our CGS
(RoBERTa). The main reason is that RoBERTa is pre-trained with dynamic
masking and a larger byte-level BPE [38]. (2) M21 is BERT based, but it benefits
a lot from an extra huge dataset to post-train BERT and a fine-tuning on the
target IDRR task.

Overall, the best performance of our CGS (RoBERTa) can be mainly due
to the method itself. This can be concluded from the comparison among the
RoBERTa based CGS, M8, and M10, and also from the comparison among the
BERT based CGS, M5, M9, and M10.

4.3 Discussion

Ablation Study. We conduct the following ablation study and show the results
in Table 5. (1) A0: We input the implicit argument pairs without [MASK] into
the pre-trained base model, and use the final state of [CLS] for classification. (2)
A1: We add the [MASK] symbol into the input sequence on the basis of A0, and
employ its representation for classification besides the [CLS]. (3) A2: We add
the explicit connectives in A1 to supervise the generation of pseudo connectives
with KL-divergence loss LossKL. (4) A3: We add the loss Losse for EDRR to
A2. As we can see, adding the pseudo implicit connectives, the supervision of
LossKL, and the supervision of Losse gradually increase the model performance.

Table 5. Ablation results (%) on 4-way classification.

Model BERT RoBERTa

F1 Acc F1 Acc

A0 Base model 57.80 66.53 59.96 67.46

A1 A0 + Generation 58.17 66.57 64.25 70.55

A2 A1 + Supervision 57.56 67.11 64.81 71.54

A3 A2 + EDRR 58.30 67.15 65.30 71.48

Impact of Hyper-Parameter α. Impacts of the hyper-parameter α in Eq. 9
on CGS (BERT) and CGS (RoBERTa) are shown in Fig. 3.
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(a) CGS (BERT) (b) CGS (RoBERTa)

Fig. 3. Impacts of the hyper-parameter α.

As we can see, both of them achieve the highest performance at 0.4. Remem-
ber that there are two subtasks in our model, where IDRR is our main task, and
EDRR the auxiliary. The α controls the balance between IDRR and EDRR tasks.
The smaller the α, the stronger the importance of the IDRR task. However, there
is no guarantee of the quality of explicit connectives in EDRR, so the guidance
from explicit connectives for IDRR is still limited. On the other hand, if the α
is large, the classification quality of explicit connectives is guaranteed but the
proportion of IDRR is reduced, and thus the performance on IDRR task is also
affected. This shows that we need a hyper-parameter to constrain the balance
between the importance of these two tasks. It can be obtained from experiments
that this balance can be achieved when α is 0.4.

Impact of Special Token. We replace the [MASK] token with other special
tokens in MLMs to prove the effectiveness of the [MASK]. The results are shown
in Table 6. Experiments are done on the basis of removing explicit relation infor-
mation. As we can see, [MASK] yields the best results among all tokens.

Table 6. Accuracy and F1 score (%) on 4-way classification with different special
tokens.

Special Token BERT RoBERTa

F1 Acc F1 Acc

[CLS] 58.14 66.73 63.34 70.04

[UNK] 57.99 66.79 63.55 70.49

Unused token 58.04 66.44 63.39 70.42

[MASK] 58.17 66.57 64.25 70.55



Generating Pseudo Connectives with MLMs for IDRR 123

Visualization Analysis. We visualize the prediction probability vectors on 4-
way classification task by using implicit connectives in PDTB1 and those by using
our pseudo connectives with the t-SNE method [27] in Fig. 4. Without model
training, the prediction probability vectors of the implicit connectives and those
of our generated ones are clearly separated (Fig. 4(a)). In contrast, as shown
in Fig. 4(b), most of the probability vectors of these two types of connectives
are mixed together or have small distance after training. This proves that our
framework has successfully driven the pseudo connective embeddings close to
the labeled ones.

(a) untrained. (b) trained.

Fig. 4. Visualization results.

5 Conclusion

We propose a novel method to generate the pseudo connectives by leveraging the
MLMs and explicit discourse relation data for IDRR and prove its effectiveness
by extensive experiments. Our study opens doors to more sophisticated methods
in that (1) pseudo connectives generated from MLMs do offer a helping hand for
IDRR, (2) a suitable MLM is more important than ever, and (3) the design of
the model still takes the lead in yielding better performance.

Acknowledgements. This work has been supported in part by the NSFC Projects
(61572376, U1811263, 62032016, 61972291). The work described in this paper was sup-
ported in part by a grant from the State Grid Technology Project (5700-202072180A-0-
00-00). The numerical calculations in this paper have been done on the supercomputing
system in the Supercomputing Center of Wuhan University.

1 The implicit connectives are manually labeled and provided in PDTB, but we do
not use them in our model since such connectives do not exist in real texts.
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Abstract. Multi-label Text Classification (MLTC) aims to learn a clas-
sifier that is able to automatically annotate a data point with the most
relevant subset of labels from an large number of labels. Label semantics
and relationships are important information for multi-label text classi-
fication. Existing methods tend to ignore explore high-order dependen-
cies among labels. In this paper, a model called HRGCN (Hop-Residual
graph convolutional network) is proposed to capture label dependency
and label structure. The hop-connected graph convolutional network can
obtain the deep dependence between the labels through a label graph,
where the label graph constructed by a correlation matrix and a fea-
ture matrix represents the co-occurrence of the labels. Meanwhile, the
self-attention mechanism allows to assign different weights to the text
features extracted by BiGRU. Fusion of text representation and label rep-
resentation to form label-text awareness to achieve interaction and gen-
erate multi-label classifiers for end-to-end training. Experimental results
demonstrate that the proposed model achieves better performance com-
pared to baseline models on the dataset RCV1-V2 and AAPD.

Keywords: Multi-label text classification · Graph convolutional
network · Self-attention

1 Introduction

Text classification is the most basic task in natural language processing. The
amount of text information that people are exposed to shows an explosive growth
trend, and the text appears to be multi-labeled. XMTC is the task of solving
this problem, it assigns one or more labels for each given text. It has achieved
great success in many important real-word applications, such as recommendation
system [1], emotional analysis [2], suggesting keywords to advertisers on Amazon
[3], information retrieval [4], and so on. Compared with multi-classification tasks,
multi-label classification is more widespread and more difficult.

The research content of multi-label text classification mainly focuses on two
points: 1) how to extract rich text features; 2) how to obtain label information
including feature information and structure information and generate classifiers.
c© Springer Nature Switzerland AG 2021
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A large number of studies have shown that these two parts are essential for
multi-label text classification. Extreme multi-label classification methods include
embedding-based method [5] and the tree-based method [6]. The embedding-
based method maps data to a low-dimensional feature space, while the tree-based
method constructs a hierarchical structure for the label semantics. With the
development of deep learning, classical models have made remarkable achieve-
ments on this issue. However, most researches focus on the extraction of text
features and label pair relationship, and rarely involve label structure and high-
order relationships.

In this paper, we propose a model based on Graph Convolutional Network
to solve the MLTC problem. Self-attention mechanism keeps a watchful eye on
text feature information and enriches text representation by assigning different
weights. The graph convolution neural network captures the label information
using the label correlation matrix and the label feature matrix. The label rep-
resentation is then combined with the text representation to obtain text-label
awareness and sent to the multi-label classifier. Specifically, we accomplish this
paper with the following contributions:

• We propose a model HRGCN, which leverages the hop residual graph con-
volutional neural network to find the semantic and structural information of
labels and the high-order dependencies among labels.

• The label-text fusion method realizes the interaction between labels and text,
portrays the association between the local semantic of text and high-order
dependent labels for classification.

• Results on RCV1-V2 and AAPD benchmark datasets show that the proposed
method outperforms the baseline multi-label text classification methods.

The rest of the paper is organized as follows. Section 2 introduces the related
work. We describe our method in Sect. 3. In Sect. 4, we present the experiments
and make analysis and discussions. Finally in Sect. 5 we conclude this paper.

2 Related Work

For a given dataset
{
(xi, yi)

}N

i=1
, xi represents the text, and yi ∈ {0, 1}dl is the

dl dimensional label vector corresponding to the text. MLTC can be expressed as
a task for a text to find an optimal labels sequence ŷ that maximize conditional
probability p(y|x), which is calculated as follows:

p(y | x) =
N∏

i=1

p
(
yi | y1, y2, . . . , yi−1, x

)
(1)

There are three types of methods to solve this task: embedding-based meth-
ods; tree-based methods; deep learning-based methods.

In the embedding-based method, each label vector can be projected into a
lower dimensional compressed label space, which can be deemed as encoding.
A regression is then learned for each compressed label. Finally, perform label
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decoding on the regression output of each test instance. The most representative
embedding methods SLEEC [5] learns the low dimensional embedding matching
scores between words and labels to construct an interaction matrix, and retains
small scores to represent embeddings for more accurate classification.

Different texts in a dataset may have partially the same label. The tree-based
method learns the label sharing relationship of texts by using tree structure, and
introduces a label sharing relation on each non-leaf node to divide the text in
a recursive manner to convert the original large-scale problem into a series of
small-scale subproblems. AttentionXML [7] combines the ideas of k-means and
decision tree, grouping all labels into a probabilistic label tree (PLT) [8], with
each leaf node being a label group. PLT models that use shallow and broad
top-down hierarchies can handle large datasets.

Deep learning emphasizes the depth of model structure and the importance
of feature learning. Typical models include CNN, RNN, LSTM and GRU. Many
CNN-based models have been proposed to solve multi-label classification, such
as XML-CNN [9], TextCNN [10], DCNN [11]. XML-CNN is the first work of deep
learning-based method, which uses CNN, dynamic maximum pool and bottle-
neck layer to build deep model. Another type of method, using the sequence-to-
sequence model to transform the classification problem into a generation prob-
lem, has made a breakthrough in multi-label classification. It mainly uses RNN
as encoder and decoder to predict and generate continuous labels. SGM [12]
introduces global embedding in the decoding part, and Transform Gate con-
trols the proportion of weighted average embedding. MDC [13] adopts LSTM
as encoder and expands the receiving domain with empty convolution. However,
these models assume that labels are ordered, which is obviously unreasonable.

Recently, graph neural network [14–16] has attracted widespread attention.
The complex relational structure of graph neural network can save global infor-
mation, which is effective in task processing. Graph-CNN [17] utilize the graph
operations on the graph of words. MAGNET [18] uses graph attention mecha-
nism to model label relationships. However, the structural information among
labels is often ignored. To address the aforementioned problems, we use stacked
graph convolutional network (GCN) [19] to capture essential features that deter-
mine the attributes of label nodes, and track the spatial structure of nodes by
analyzing the relationship between adjacent nodes.

3 Proposed Method

In this part, we elaborate on our HRGCN model for multi-label text classifica-
tion. We introduce some preliminary knowledge of GCN, and then explain the
proposed HRGCN model in detail.

3.1 Graph Convolutional Network Recap

Most data in the real world is in non-Euclidean forms, such as social networks,
protein interaction networks, transportation networks, etc. Graph Convolutional
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Network was proposed on the basis of the inability of convolutional neural net-
works to handle non-Euclidean data. Compared with the complete connection
of the traditional multi-layer perceptron (MLP) model, GCN reduces the com-
putational cost by calculating a few parameters.

GCN uses a message passing mechanism to aggregate node information and
update nodes. The adjacency matrix of the graph guides the aggregation of node
information, and then the nonlinear function is used to update the node. The
(l + 1)-th layer of GCN can be expressed as

h(l+1) = f
(
Âh(l)w(l)

)
(2)

where Â ∈ RN×N is the normalized adjacency matrix that preserves the feature
scale, w(l) ∈ Rd×dl is the weight parameter of layer l to be learned. And f(·)
stands for the nonlinear function ReLU.

According to deep learning, the deeper the network is, the richer the features
are obtained. In this paper, we propose to stack graph convolutional network to
capture the high-order relationship of labels.

3.2 Hop-Residual Graph Convolutional Networks for Multi-Label
Classification

In the following, we will introduce HRGCN model in detail from three parts: text
representation, label representation and label-text awareness. Figure 1 shows the
overall structure of the model.

Text Representation. The prerequisite for multi-label classification is to com-
pletely extract text features, which is the premise and focus for all related tasks.
xi = {w1, w2, . . . , wn} represent the i-th text, wn ∈ Rd is a word vector in text
whose length is n. In order to obtain contextual bidirectional information, we
consider the model that introduce gate mechanism to solve the problem of long-
distance dependence on text semantics. Specifically, we use BiGRU [20] to learn
the past and future contextual information at each moment from the forward
and reverse directions. To be specific, the computations is illustrated below:

→
h t = GRU

(
wt,

→
h t−1

)
;

←
h t = GRU

(
wt,

←
h t−1

)

→
h t =

(→
h1,

→
h2, . . . ,

→
hn

)
;

←
h t =

(←
h1,

←
h2, . . . ,

←
hn

)

H = [
→
h ;

←
h ] (3)

where
→
h t ∈ Rd and

←
h t ∈ Rd are the forward and backward word context rep-

resentations respectively, and GRU(·) function represents the nonlinear trans-
formation of the word vector. The whole output of text is taken as a matrix
H ∈ R2d×n.
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Fig. 1. The overall structure of the Hop-Residual graph convolutional network
(HRGCN). Obtain the label representation from the label input and the text rep-
resentation from the text input, combining the two parts of the label-text awareness
for multi-label classification.

The self-attention mechanism [21] gives enough attention to the key infor-
mation, highlights the local important information, and improves the quality of
feature extraction. Text representation S ∈ Rk×2d is calculated as follows:

S = Softmax

(
(HWq) (HWk)

T

√
dk

(HWv)

)

(4)

where Wq ∈ Rn×k, Wk ∈ Rn×k, Wv ∈ Rn×k denotes the trainable parameters.

Label Representation. The label representation involve the label relationship
extracted from the feature matrix and the relationship matrix by the label graph.
The following describes the relationship matrix and the relationship extraction
network. Each label Li ∈ Rd(i = 1, 2, . . . , k) acquired from word2vec technique in
the whole label set L = (L1, L2, . . . , Lk) ∈ Rk×d represented by an r-dimensional
dense vector.

Label Correlation Matrix. In order to capture label dependency better, adaptive
attention weights are added to the feature matrix to perform graph convolution.
We use the Pointwise Mutual Information frequency calculation technique to
construct the label co-occurrence matrix as the attention weight. The pointwise
mutual information can be obtained by

PMI(i; j) = log
P (i, j)

P (i)P (j)
(5)
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P (i, j) is the number of simultaneous appearances of label i and label j, and
P (i) and P (i) are the number of appearances of i and j, respectively. When two
labels are independent of each other, the pointwise mutual information is 0. The
label correlation matrix L̃ ∈ Rk×k is a symmetric matrix, in which the value of
the corresponding position is the point mutual information of the two labels.

HRGCN (Hop-Residual graph convolutional network). Multi-layer convolutional
neural networks use high-level coding of semantic information and shallow cod-
ing of detailed information. However, labels are usually short, and the semantic
information and detailed information contained in themselves are very limited.
Encoding the label relationship has become the focus of consideration. But the
relationship is intricate, and graph convolutional networks can handle this irreg-
ular relationship better than common convolutional networks. The one-layer
graph network connects co-occurring pairwise labels, and the multi-layer GCN
establishes connections with non-co-occurring labels based on the interconnec-
tion of nodes. The high-level connections established through intermediate nodes
can enrich the label representation.

Label high-order relationships can be captured by multi-layer GCN domain
extension. For example, an article belongs to both computer vision and deep
network, and deep network and machine learning co-occur, then the two-layer
GCN makes the representation of computer vision combines part of deep network
and machine learning information. For articles to be classified, the possibility
of being classified as computer vision and machine learning at the same time is
increased, so that the classification results will be more reliable. However, the
more GCN layers are, the more serious the over-smoothing phenomenon, and the
smaller the difference between nodes. HRGCN takes the residual structure as a
reference, and performs residuals in the aggregation phase rather than during
update. This residual is a hop connection, with each layer of output retains part
of the information from the input.

HRGCN has the same input as GCN and adds a hop connection from the
initial input h(0) to the output of each layer. Formally, the (l + 1)-th layer
L(l+1) ∈ Rk×d is defined as

L(l+1) = f
((

(1 − θ)L̃L(l) + θL(0)
)

w(l)
)

(6)

where w(l) ∈ Rd×d, and the parameter θ determines how many initial input
features are retained by the hop connection. When it is equal to 0, it is GCN,
when it is 1, it only changes the input, which does not meet our requirements. So
θ ∈ (0, 1) and a smaller value is better. Because θ is introduced to alleviate over-
smoothing, it will retain too much source information and reduce the aggregation
of the graph network. In Sect. 4.4, we experiment to show the reasonable value.

Label-Text Awareness. Multi-label text can be annotated with more than
one label, and each label has its most representative part of the text content.
According to the association relationship between labels and the local semantics
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of text, we use the label-text fusion method to realize the interaction between
labels and text. First, the text representation H extracted by the feature extrac-
tion network and the label representation L(l+1) extracted by the relationship
extraction network are combined to generate a label-text representation, denoted
by C(lt) ∈ Rk×2d, where w ∈ Rn×d and “⊗” stand for element-wise multiplica-
tion.

C(lt) = L(l+1) ⊗ tanh(Hw) (7)

Both of the S and C(lt) will be input to the fusion part to get the label-
text awareness. The former focus on text content, while the latter perfers to the
label-text relations and label structure. Get weights λ1, λ2 ∈ Rk through the fully
connected layer with the parameters wt, wlt ∈ R2d. The specific implementation
process is as follows:

λ1 = σ (wtS) ; λ2 = σ
(
wltC

(lt)
)

; M = λ1 · S + λ2 · C(lt) (8)

where σ is sigmoid function to ensure the weights between 0 and 1, and label-text
awareness matrix M ∈ Rk×2d.

Eventually the multi-label classifier is built of two fully connection layer.
Mathematically, the predicted probability of each label for the coming text can
be estimated via

ŷ = σ
(
w2f

(
w1M

T
))

(9)

where w1 ∈ Rd×2d and w2 ∈ R1×2d are trainable parameters, f(·) is denote
nonlinear functions Relu and σ(·) is Sigmoid to make the output be a probability
value.

3.3 Loss Function

We use binary cross-entropy as the loss function for multi-label classifier. Assum-
ing that the ground truth label of a text is y ∈ Rc, where ŷi = {0, 1} indicates
whether label i appears in the given text.

Lloss =
c∑

c=1

yc log (σ (ŷc)) + (1 − yc) log (1 − σ (ŷc)) (10)

where σ(·) is sigmoid activation function.

4 Experiments

In this section, we introduce three English datasets, evaluation metrics and our
experiment settings as well as the baseline models that we compare with. Sub-
sequently, we make a comparison of the proposed method with baselines and
analyze the impact of two parameters.
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4.1 Datasets

Arxiv Academic Paper Dataset (AAPD) [9] is an English dataset consists of
55,840 papers in computer science and related disciplines. A paper with a varying
number of subjects and there are a total of 54 categories. The purpose is to
predict the corresponding subjects of an academic paper based on the abstract
content.

Reuters Corpus Volume I (RCV1-V2) [22] is an English dataset includes over
800,000 newswire stories hand-compiled by Reuters Ltd for scientific research,
with a total of 103 topics assigned to each story.

Table 1. Details of the experimental datasets. Ntrain is the number of train instances,
Ntest is the number of test instances, D is the number of features, L is the total number
of classes, L is the number of average labels per instance.

Datasets Ntrain Ntest D L L

AAPD 54840 1000 69399 54 2.41

RCV1-V2 726554 77860 47236 103 3.24

4.2 Evaluation Metrics

We choose P@K [23] and nDCG@K [9] as evaluation metrics, which represent
the Precision and Normalized Discounted Cumulative Gain at the highest K.
We set K = 1, 3, 5. The calculation formula as shown in the following:

P (K) =
1
k

∑

n∈rk(ŷ)

yn

DCG@K =
∑

n∈rk(ŷ)

yn
log(n + 1)

(11)

nDCG@K =
DCG @K

∑min(k,‖y‖0)
n=1

1
log(n+1)

Where yn is the ground truth label vector and ŷ is the prediction label vector
output of the model. rk(ŷ) is the label index ranking the top K in the current
prediction result score. The correlation label ||y||0 of the ground truth vector y
is introduced to normalize DCG@K. Calculate P@k and nDCG@K for each test
data, and the average of all test data is the final result.

4.3 Baseline Methods and Setting Details

We compare the proposed HRGCN with four baseline methods, including the
embedding-based methods SLEEC [5]; the tree-based methods AttentionXML
[7]; and two deep learning methods XML-CNN [9] and LSAN [24].
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Our model implemented and trained by Pytorch on an NVIDIA 1080Ti GPU.
We obtained vocabularies from the training data. For both datasets, the size of
the vocabulary is 30,000 and out-of-vocabulary (OOV ) words are replaced with
unk. Besides, we set the word embedding size to 300. And the batch size is set to
64 and the length of sentences is 500 words. To avoid overfitting, we use Adam
optimizer to minimize the final objective function.

4.4 Analysis and Discussion

Table 2 shows the results of comparing our method with the baseline methods
on P@K and nDCG@K (K = 1, 3, 5), respectively. According to Equation (11),
we know that P@1 = nDCG@1, so nDCG@1 is not listed in the table.

Table 2. Comparison of our method and all baselines in terms of P@K and nDCG@K
(K = 1, 3, 5) on benchmark datasets.

Datasets Metrics XML-CNN SLEEC AttentionXML LSAN HRGCN(ours)

AAPD P@1 74.38 81.67 83.02 84.16 85.19

P@3 53.84 56.60 58.72 60.91 61.99

P@5 37.83 38.79 40.56 41.52 42.10

nDCG@3 71.12 76.81 78.01 80.58 81.27

nDCG@5 75.93 81.34 82.31 84.03 84.94

RCV1-V2 P@1 95.75 95.12 96.41 96.33 96.87

P@3 78.63 79.47 80.91 81.54 82.16

P@5 54.94 55.29 56.38 56.77 57.03

nDCG@3 89.89 89.85 91.88 92.23 92.86

nDCG@5 90.77 91.21 92.70 92.93 93.25

It is observed that HRGCN outperforms the other methods on AAPD and
RCV1-V2 datasets. Since XML-CNN only considers text and ignores the impor-
tance of the relationships among labels. AttentionXML does not connect text and
labels. When some labels have a few corresponding texts, it fails to adequately
train the tail-labels, resulting in poor performance. The label structure is not
considered by LSAN, leading to underutilized label information. Our method
focuses on the text representation while considering the high-order relation-
ship of labels, fully excavate the semantics and structure of labels, and further
builds label-text perception to solve the problems in baseline methods. From
the results, our model establishes a comprehensive graphical relationship among
labels, which can effectively improve the performance of multi-label classification
by improving the ability to capture label relationships.

Effect of the Number of GCN Layers. We conducted experiments on the
effect of the number of GCN layers on the AAPD dataset. The deeper the GCN
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(a) P@1 (b) P@3

(c) P@5 (d) nDCG@3

(e) nDCG@5 (f) epoch=5

Fig. 2. Variation of evaluation metric values at different layers on AAPD.

layers are, the larger the receiving field is. To a certain extent, deeper layers
of the network help to better aggregate neighbor information. A layer of GCN
aggregates the first-order neighbors, while higher-order neighbor information
requires multiple layer.



Graph Convolutional Network Exploring Label Relations for MLTC 137

From Table 1, the average label number of samples in the AAPD is 2.41,
we set the number of layers as 3, 4, and 5 respectively. When the number of
layers is 2, it means the low-order co-occurrence relationship of label pair, which
is not considered here. The corresponding results for each epoch are shown in
Fig. 2. Wherein (a) to (e) represent the change of each evaluation metric value of
different layers in the same epoch. It is observed that the performance is better
when the number of layers is 3, and the best is obtained when the epoch is 5. In
order to make a more intuitive comparison, we drew a histogram (f) of each result
under different layers when the epoch is 5. For the GCN with various number of
layers, the reason why their performances start decreasing in 5-th epoch may be
due to the number of label categories in the AAPD dataset is small, so that a few
rounds of training are sufficient. The average number of labels is rounded up to
3, which is why the optimal solution can be obtained when the number of layers
is 3. It can maximize the inclusion of relevant label information without losing
the co-occurrence relationship. Therefore, the number of GCN layers should be
the rounded up value of the average number of labels in the dataset. Similarly,
the average number of labels in RCV1-V2 is 3.24, so the number of layers is set
to 4.

Fig. 3. When the number of layers is 3, parameter θ takes the result of 0.1, 0.2, 0.3.

Effect of Parameters θ. We conducted an experiment on the influence of
parameter θ on the AAPD dataset. The parameter is to keep each GCN output
retaining some of the label features from the original input. When the number of
layers is 3, we select θ = 0.1, 0.2, 0.3 for experimental comparison. As shown in
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Fig. 3, the results of 0.1 are better than those of 0.2 and 0.3. The hop connection
is added to alleviate the over-smoothness, but according to experimental results,
retaining too much initial label information will reduce performance, because
excessive emphasis on the node itself will weaken the GCN’s function of aggre-
gating the information of neighbor nodes. It is effective to properly keep the
node itself when aggregating neighbors. We verify that the value of 0.1 is more
reasonable.

5 Conclusion

In this paper, we propose a HRGCN model which employs graph convolutional
networks to explore label relations for multi-label classification. Our proposed
method outperforms the baseline methods by using hop residual graph convolu-
tion that capture high-order label semantic and structure, a feature extraction
network composed of BiGRU and self-attention that differentially obtain text
representations, a label-text interaction method that achieve deeper perception
of labels and text. Numerical experimental results over two benchmark datasets
verify the effectiveness of our proposed method.
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Abstract. Generating questions that can be answered with word spans
from passages is an important natural language task, which can be used
for educational applications, question-answering systems, and conversa-
tional systems. Existing question generation models suffer from creating
questions that are often unrelated to the context passage and answer
span. In this paper, we first analyze questions generated by a common
baseline model: we find over half of the generated questions that are
rated as the lowest quality to be semantically unrelated to the con-
text passage. We then investigate how humans ask factual questions and
show that most often they are a reformulation of the target sentence and
information from context passage. Based on these findings, we propose
a multi-level encoding and gated attention fusion based neural network
model for question generation (QG) which overcomes these shortcom-
ings. Our experiments demonstrate that our model outperforms existing
state-of-art seq2seq QG models.

1 Introduction

The ability to ask questions is essential for a wide range of applications, such
as creating conversational systems like Google Assistant, Siri and Cortana or
building education applications where questions are an essential tool for learners
to aid their comprehension and memory [8]. As an important natural language
processing task, question generation (QG) has received a lot of attention in recent
years [3,4,7,8,10,11,22,25,29]. Based on the context information source(s), the
QG task can be classified as QG from images, open-domain QG, table QG and
text QG. Our work focuses on text-based factual question generation, which
means that the answers are word spans from context passages. The early QG
research works relied on rule-based or hand-crafted template-based methods [7,8,
16]. These methods faced scalability and generalization issues. More recently, QG
research considers the QG task as a sequence-to-sequence (seq2seq) generation
problem and tackles it with LSTM-based encoder-decoder models [4].

Despite the remarkable progress, it remains a challenge to generate high-
quality questions from unstructured documents. Consider Fig. 1a for a concrete
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(a) (b) (c)

Fig. 1. Analysis of the QG baseline model [29] trained and evaluated on the SQuAD
V1.1 dataset. a: Distribution of BLEU-4 scores. b: Generated questions with the lowest
BLEU-4 scores were manually labeled according to their main issue. c: Cosine similar-
ity between the TF-IDF encoded vector of the question (as provided in the SQuAD
dataset) and the sentences within the context paragraph.

example: here we analyze the generated questions made by a recent baseline
model [29] on the SQuAD V1.1 dataset [20]. Over 26.6%, 52.7% and 71.1%
of the generated questions’ sentence BLEU-2/3/4 scores respectively are under
1%, which means that they are of very poor quality as measured by BLEU [17].
Taking this a step further, we then sampled 200 generated questions with the
lowest BLEU-4 scores and manually labeled them. Concretely, in line with [26],
we employed five categories for labeling: out-of-vocabulary (OOV), too short or
truncated questions (short), repeated phrases (repeat), grammar errors (gram-
mar), and questions at least partly unrelated to the context passage (unrelated).
As shown in Fig. 1b, more than 50% of the sampled generated questions are ask-
ing questions that are not related to the context passage; instead, they exhibit
semantic drift [28]. Table 1 provides a typical example of a semantic drift error.

To further investigate the semantic drift issue, we conducted an analysis of
how humans ask factual questions using the SQuAD V1.1 dataset which consists
of 100k+ question-answer pairs posed by crowd workers on a set of Wikipedia
articles, where the answer to each question is a segment of text from the corre-
sponding context passage. We compute the cosine similarity between the ques-
tion vector and each sentence in the context paragraph using TF-IDF word
vectors. We refer to the particular sentence that contains the answer span as the
target sentence. As shown in Fig. 1c, the cosine similarity between the question
vector and its corresponding target sentence is 0.35, which is significantly higher
than the question’s similarity to the other sentences in the context. Based on this
observation, we can conclude that often people ask questions that are to some
extent a reformulation of the target sentence, i.e. the sentence which contains
the answer spans.

Based on this insight, we argue that it is still necessary to investigate how
to utilize multi-level context information for question generation. Thus, we
propose a novel multi-level encoding and gated attention fusion-based neural
network model for question generation and show that this model outperforms
other seq2seq QG approaches. In addition, several recent QG works [1,28] opti-
mize for the eventual evaluation metrics (which are not differentiable) using
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Table 1. An example of questions generated by various models, and a case of semantic
drift issue, where the baseline model S2S-MCP generates a question is not about the
answer ‘Scotland Act’. Our models are labels with �.

Context passage with
the target sentence
and the answer span

Following a referendum in 1997, in which the Scottish elec-
torate voted for devolution, the current Parliament was con-
vened by the Scotland Act 1998, which sets out its powers
as a devolved legislature. The Act delineates the legislative
competence of the Parliament the areas in which it can make
laws by explicitly specifying powers that are “reserved” to
the Parliament of the United Kingdom. The Scottish Par-
liament has the power to legislate in all areas that are not
explicitly reserved to Westminster. The British Parliament
retains the ability to amend the terms of reference of the
Scottish Parliament, and can extend or reduce the areas in
which it can make laws. The first meeting of the new Parlia-
ment took place on 12 May 1999.

Gold standard What act set out the Parliament ’s powers as a devolved
legislature?

S2S-MCP where was the current parliament convened?

�RL-MT what is the name of the act that sets the current parliament
as a devolved legislature?

� RL-MT without
answer tag encoding

what act sets its powers as a devolved legislature?

� RL-MT without
attention fusion

what is the name of the act that sets the current parliament
in 1997 ?

Reinforcement Learning (RL). We follow these existing approaches as well, and
also show that we achieve significant performance improvement with automatic
evaluation metrics as the reward.

2 Related Work

Past question generation research can be categorized as the rule-based and the
neural network-based according to the generation approaches they employ. The
rule-based approaches [7,8,10,14–16] rely on well-designed manually created
templates and heuristic linguistic and semantic rules for question generation.
Rule-based approaches are efficient and retains interpretability. They are espe-
cially effective for unsupervised question answering or generation applications [5].
However, template-based approaches have a lack of diversity, and usually create
questions from sentence-level short texts. They cannot scale well on paragraph-
level long content.

Inspired by the advances in machine translation, various neural network mod-
els have been proposed for question generation [1,4,11,12,22,23,25,27,29]. These
models formulate the question generation task as a sequence-to-sequence neural



Multi-level Passage Encoding for RL QG 143

learning problem with different types of encoders, decoders, and attention mech-
anisms. Despite all the achieved advances, these models only use either context
or sentence for QG. As in the paragraph-level long context, there are usually sev-
eral facts are related to the answer. Therefore, multiple questions are valid for
the context and answer. However, on one hand, usually only one ground-truth is
given in datasets for each context-answer pair; on the other hand, as we show in
Fig. 1c, while further information from the whole paragraph is required for ask-
ing questions, human generally pays more attention to the target sentence which
contains the answer. Thus, we argue that the multi-level information between
the sentence and the whole paragraph requires further investigation for creating
reliable and stable neural models for QG.

3 Architecture Overview
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Fig. 2. Architecture of our proposed question generation model.

In this section, we now present and motivate our proposed neural architecture
for question generation.

We use P , T , A to represent the passage, target sentence, and answer span
respectively. The answer span is contained in the target sentence. We create a
processed target sentence by replacing all words in the answer span with the
special answer token <ans>. Let Q represent the generated question. Then, the
question generation task can be formalized as:

Q = argmaxQProb(Q|P, A, T)
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where the passage is comprised of a sequence of words P = {xi}Mi=1 (with M
being the size of the passage), similar to the reference sentence T = {xi}Ni=1

(with N being the size of the reference sentence) which contains the answer
span. Figure 2 shows the end-to-end question generation model we propose in
this work. We now explain its components in detail.

3.1 Encoder

Word Embedding. The encoder uses six different representations of each word
xi to form the final word embedding ei: word vector vi, POS and NE, answer
tag ai, sentence position si and BERT encoding vector bi. We encode the pas-
sage with BERT to obtain each word’s context vector, as BERT provides deep
bidirectional representations. For words out of BERT’s vocabulary, we sum up
the hidden states of all sub-tokens as their context vector. We use Glove [19] to
obtain the word vector. We use Stanford’s CoreNLP [13] package for labeling
the named entities and determine the part-of-speech tags in each paragraph. The
POS tags and named entity representation sizes are set as log2 |POS| + 1 and
log2 |NE| + 1. The answer tag represents whether word xi is part of the answer
span. We use one float for sentence position embedding, which represents the
sentence distance to the reference sentence containing the answer-span. In this
way, we specify explicitly each sentence’s importance. Overall, we thus encode
each word as follows:

ei = [vi;POSi;NEi; ai; si; bi]

Passage and Reference Sentence Encoders. The embedding output of
the passage is then encoded by a two-layer bi-directional LSTM network. We
concatenate the two direction’s hidden states

−→
hp
i ,

←−
hp
i as the hidden representation

hp
i of any word at position i. Then, the bi-directional LSTM network is a list of

hidden representation Hp:

−→
hp
i =

−−−−→
LSTM(epi ,

−−→
hp
i−1)←−

hp
i =

←−−−−
LSTM(epi ,

←−−
hp
i+1)

hp
i =

[−→
hp
i ;

←−
hp
i

]

Hp =
{
hp
i

}M

i=1

(1)

Analogously to the passage encoder, the embedding output of the reference
sentence is also encoded by a two-layer bi-directional LSTM network. The bi-
directional LSTM network output of the reference sentence is denoted as Hq.

Multi-head Self-attention. Multi-head self-attention [24] allows the model to
jointly attend to information from different representation subspaces at different
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positions. We apply it here on the passage and reference sentence respectively
to embed their interdependency:

M-attn(Q,K, V ) = Concat(hd1, . . . , hdh)WO

where hdi = Attn(QWQ
i ,KWK

i , V WV
i )

Attn = softmax(
QKT

√
dk

)V

(2)

Gated Attention at Passage and Reference Sentence Level. In our
model, we use gated attention between the self-attention output of the pas-
sage and reference sentence to aggregate information from both. Inspired by
[29] we conduct the following two steps: 1) we determine the matching between
the passage output Hp and the encoded reference sentence representation hq

i to
compute a matching representation; 2) we combine the matching representation
with the passage encoding using a feature fusion gate [6]:

dc
i = softmax(HpTWchq

i )

gi = HqT · dc
i

fi = tanh(Wf
[
hp
i ,gi

]
)

gi = sigmoid(Wg
[
hp
i , si

]
)

ĥp
i = gi � si + (1 − gi) � hp

i

(3)

Here, W refers to a trainable weight matrix.

3.2 Decoder

The decoder is a two-layer uni-directional LSTM network with attention mecha-
nism and max-out copy mechanism. The decoder LSTM’s hidden state is initial-
ized by concatenating the forward and backward encoder hidden states [

−→
hp;

←−
hp].

At each decoding step t, the decoder calculates the current hidden state with
previous predicted word embedding wt−1 and previous attention context vector
ct−1, and previous step hidden state ht−1:

ht = LSTM([wt−1, ct−1],ht−1),

where the context vector ct is the calculated by concatenating the LSTM output
ht and the attention context vector dt. Here, we make use of the Luong attention
mechanism:

rt = ĤpT

W aht

ah
t = softmax(rt)

dt = Ĥp · ah
t

ct = tanh(W b[ht; dt])

(4)
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For the out-of-vocabulary problem, we apply a max-out pointer network to copy
words from the input directly [29]. We use raw attention scores ri = {ri,k}Mk=1

over the input sequence which has a vocabulary Ω. At every step, the word is
regarded as a unique copy target and the final score is calculated as the maximum
value of all scores pointing to the same word:

sccopy(yi) =

⎧
⎨
⎩

max
k,wherexk=yi

ri,k, yi ∈ Ω

− inf, otherwise
(5)

Here, xk is the word vocabulary index of the kth word in the input and yi denotes
the ith word in the decoded sequence. Scores of non-occurring words are set to
negative infinity. Then, we concatenate sccopy(yi) and scgen(yi) and perform
softmax on the concatenated vectors. Non-occurring words are masked out in
this step.

3.3 Reinforcement Learning

We use the self-critical sequence training (SCST) algorithm [21] for RL. SCST
is an efficient reinforcement algorithm that directly utilizes the test-time infer-
ence output to normalize the rewards it experiences. At each training iteration,
the model generates two output sequences: the sampled output Y s, produced
by multinomial sampling, that is, each word ys

t is sampled according to the
likelihood P (yt|X, y<t) predicted by the generator, and the baseline output Ŷ ,
obtained by greedy search, that is, by maximizing the output probability dis-
tribution at each decoding step. We define r(Y ) as the reward of an output
sequence Y , computed by comparing it to corresponding ground-truth sequence
Y ∗ with some reward metrics. The loss function is defined as:

Lrl = (r(Ŷ ) − r(Y s))
∑
t

logP(ys
t |X, ys

<t)

Using this reinforcement loss alone does not result in correctly learnt word prob-
abilities. For this reason, we follow the mixed objective approach [1], combining
both cross-entropy loss (language model loss) and the RL loss:

Lmixed = λLrl + (1 − λ)Lml

where λ is a mixing ratio to control the balancing between RL loss and model
loss. We experiment with different automatic evaluation metrics as our reward
function: BLEU, METEOR and Rouge-L.

4 Experimental Setup

In this section, we first introduce the dataset we use for model evaluation and
then outline implementation details, evaluation metrics and our baselines to
compare against.
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Table 2. Question generation evaluation results as reported on the SQuAD test sets
as defined in Sect. 4.1 (“split 1” and “split 2”). Evaluation metrics not reported in the
respective papers are marked as ‘-’. The reported metrics are BLEU-3 (B-3), BLEU-4
(B-4), Meteor (MT) and Rouge-L (RGL).

Models Split1 Split2

B-3 B-4 MT RGL B-3 B-4 MT RGL

S2S-MCP 21.60 16.38 20.25 44.48 22.16 16.85 20.25 44.99

SemQG - 18.37 22.65 46.68 - 20.76 24.20 48.91

G2S-RLQG - 17.94 21.76 46.02 - 18.30 21.70 45.98

ours-basic 24.97 19.18 22.56 47.44 26.25 20.46 23.15 48.57

ours-RL-B4 26.39 20.39 23.60 48.65 27.46 21.49 24.45 49.61

ours-RL-MT 26.73 20.69 23.72 48.56 28.01 22.02 24.35 49.66

ours-RL-RGL 25.60 19.85 22.95 48.66 26.68 20.95 23.41 49.76

4.1 Datasets

We test our proposed QG model on the SQuAD [20] dataset. It contains over
100K question-answer pairs generated by crowdworkers from 536 Wikipedia arti-
cles. The answers are selected word spans from article sentences. The dataset
contains publicly accessible train and development splits and a privately hosted
test split. Following [4], we split the original training dataset into training and
development set with a 90%-10% ratio, and use the whole original development
set as our test set (we refer to this as “split 1”). In addition, we also conduct
experiments on another data split (“split 2”) following [29], which uses the whole
original training data as training set and splits the original development set as
development set and test set with a 50%-50% ratio. Providing results on both
types of splits tells us something about the robustness of our model and allows
a fair comparison to a range of prior works.

4.2 Implementation Details

We implement the proposed QG model in PyTorch 1.4 [18]. We set the hyperpa-
rameters based on the literature and an empirical evaluation of data split 2. We
select the model that performs best on the development set as the final model.
The encoder uses a 2 layer bi-directional LSTM. The LSTM hidden cell size is
300. A dropout layer with a probability 0.3 is applied between two bi-directional
LSTM layers. We keep the 45K most frequent words in SQuAD as vocabulary.
The decoder uses a 2 layer LSTM with a hidden cell size 600. We use SGD
with momentum for optimization (momentum value is 0.8). The initial learning
rate is 0.1 and decreases linearly after half of the training steps. We use beam
search (beam size 10) for the decoding. Decoding stops when the <EOS> token
is generated or the length of generated question exceeds the maximum allowed
length. We set the mini-batch size to 64 and train the model with 2 GTX 1080
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Ti GPUs for 40 epochs. We truncate all paragraphs to 400 words by keeping the
sentences closest to the target sentence. The minimum and maximum decoding
lengths are set to 5 and 32 words respectively. The mixing ratio λ in RL is set
to 0.2.

4.3 Evaluation Metrics

Following [4,12,29], we compare the performance of our proposed model to
a number of baselines along with three automatic evaluation metrics: BLEU,
Meteor and Rouge-L, which are commonly used in text generation tasks. We
calculate these metrics using the evaluation package released by [4]. BLEU [17]
is a widely used automatic text evaluation metric especially for machine trans-
lation task. It is computed with the geometric average of the modified n-gram
precision and the brevity penalty. In our experiments, we consider the BLEU-3
and BLEU-4 scores. Meteor [2] is a language-specific evaluation metric that
compares the candidate with the reference text in terms of exact, stem, syn-
onym, and paraphrase matches between words and phrases. Lastly, Rouge [9]
measures the number of overlapping units such as n-gram, word sequences, and
word pairs between the candidates and the references. Rouge-L calculates the
longest common sub-sequence shared by the candidate and reference text.

In addition to the automatic metrics, we also conducted a human evalua-
tion on split-2. We randomly sampled 100 questions generated by the baseline
model S2S-MCP and our meteor-rewarded RL model. Our annotator received
the context paragraphs, the answers, and the two types of generated questions
plus the gold standard questions. The annotator rated the (generated) questions
on a 3-point scale along two dimensions: their syntax correctness and their rel-
evance (i.e. is the question relevant to the context and the answer). For syntax,
1 means major syntax issues; 2 means a small mistake (e.g. lacking an article
or pronoun); 3 is correct. In the relevance category, 1 means the question is not
relevant to the context and the answer; 2 means partially relevant (e.g. question
may be more general than what the answer is about); 3 means the question is
relevant and has the answer span as the answer.

4.4 Baseline Methods

We compare our proposed model with the following baselines: S2S-MCP [29],
SemQG [28], and G2S-RLQG [1]. S2S-MCP is a paragraph-level end-to-end
question generation model using LSTM, max-out copy network and gated self-
attention networks. The SemQG model addresses semantic drift in question gen-
eration using reinforcement learning with hybrid rewards and deep context word
vectors like BERT and ELMo. G2S-RLQG proposes a reinforcement learning-
based graph-to-sequence model for QG. We report the results as found in the
respective papers.
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5 Results and Analysis

In this section, we report the evaluation results of our proposed model, conduct
model analysis, and compare our results with state-of-art baselines.

Table 2 presents a comparison of our proposed model along with the just-
introduced baselines. We conducted our experiments with four variants of our
model: one without RL (“ours-basic”) and three variants with RL and each time
a different metric as reward function: BLEU-4, Meteor, and Rouge-L respectively.
In terms of model effectiveness, we can see our basic model without reinforce-
ment learning to achieve better results than all baseline methods. By applying
reinforcement learning with BLEU-4, Meteor, or Rouge-L as the reward, we
achieve further improvements on all these metrics. On both dataset splits, RL
using METEOR as reward overall yields the best results.

Table 3. Ablation study on SQuAD split-1 test set.

Model B-3 B-4 MT RGL

ours-basic 24.97 19.18 22.56 47.44

Without answer tag 24.29 18.59 22.47 46.28

Without bert encoding 22.87 17.45 21.30 44.34

Without attention fusion 24.55 18.78 22.22 46.37

Next, we perform an ablation study to assess the impact of different model
components. The results are shown in Table 3. We here compare the performance
of our model without BERT embeddings, without answer tags, and without
attention-fusion. Without answer tags, the BLEU-4 score of our model drops
from 19.18 to 18.59, which indicates the importance of tagging answer spans
in the context for QG. Without BERT’s context encoding, the model perfor-
mance in BLEU-4 scores drops from 19.18 to 17.45. Given the extent to which
BERT has improved state-of-the-art models, this drop is not surprising. The
model performance without BERT encoding still outperforms baseline model
S2S-MCP, which indicates our model architecture’s effectiveness. We also com-
pare our model’s performance without attention-fusion of multi-level encoding.
In this instance, the BLEU-4 score drops from 19.18 to 18.78. This shows that
the attention-fusion captures the alignment information from the target sen-
tence and paragraph. We also conduct a human evaluation in terms of syntax
and relevance on 100 randomly sampled ground-truth questions and questions
generated by the baseline model S2S-MCP and our model. Table 4 shows the
human evaluation results. Importantly, we find our model to outperform our
baseline in terms of relevance (2.42 vs. 2.04) while having a comparable level of
syntax correctness (2.48 vs. 2.50).

To gain an intuition of the questions the different models produce, we provide
two examples in Table 1. For the latter example, we also visualize the alignment
scores of the target sentence and paragraph in Fig. 3. We can see the words that
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Table 4. Human evaluation (mean and standard deviation) on split-2. The evaluation
adopted a 3-point scale. Higher is better.

Model Syntax Relevance

Gold 2.91 (0.35) 2.94 (0.28)

ours-RL-MT 2.48 (0.77) 2.42 (0.78)

S2S-MCP 2.5 (0.745) 2.04 (0.88)

neighbor the answer span (such as cytotoxic, immunosuppressive, drugs, anti-
inflammatory) receive greater scores. This alignment indicates the encoder can
capture most useful knowledge for decoding.

Fig. 3. Attention fusion alignments map: each row represents an alignment vector from
target sentence to the context paragraph. Cold blue color means lower score and the
hot red colors means higher scores. (Color figure online)

6 Conclusions

In this paper, we propose a novel sequence to sequence model for paragraph-level
question generation. In this model, we encode the paragraph and target sentence
separately and use attention-fusion to learn the alignment of the paragraph and
the target sentence. We demonstrate that the proposed model can effectively
learn the alignment between the paragraph the reference question, and out-
perform existing baseline models. We further conduct RL on the model and
show that with the automatic evaluation metrics such as METEOR, BLEU and
Rouge-L as the reward, the application of RL can further improve the model’s
performance. A human evaluation confirms this finding. While in this work we
are focusing on generating factual questions, in future work, we aim to generate
more diverse and complicated questions for education purposes, that cover dif-
ferent levels of learning (not just questions for remembering facts, but also for
knowledge understanding and analyzing).
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Abstract. Recent advances in deep learning facilitate the development
of end-to-end Vietnamese text-to-speech (TTS) systems that produce
Vietnamese voices with high intelligibility and naturalness. However,
enabling these systems to speak Vietnamese and English words in the
same utterance fluently remains a challenge known as the code-switching
(CS) problem in speech synthesis. The main reason is that it is not easy
to obtain a large amount of high-quality CS corpus from a Vietnamese
speaker. In this paper, we explore the efficacy of three approaches, which
are based on the Tacotron-2 end-to-end framework, to build such a Viet-
namese TTS system under a limited code-switched data scenario: (1) CS
synthesis based on grapheme-to-syllable (G2S), (2) CS synthesis based
on speaker embedding, and (3) CS synthesis based on speaker embedding
and language embedding. We handle English and Vietnamese words in
the code-switched input text by converting them into Vietnamese sylla-
bles using our G2S model. For the speaker-embedding based approach,
we combine Vietnamese monolingual data in our dataset with an English
public dataset to train a multi-speaker Tacotron-2 system. The experi-
mental results show that adding language embedding is effective, and
training with character input representations outperforms phonemes.
Thus, the speaker and language-embedding based approach achieves
strong results in naturalness for CS speech. Besides, the G2S-based CS
synthesis also has good results, with almost absolute English pronuncia-
tion accuracy.
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1 Introduction

Text-to-Speech (TTS) is a technology that converts any text into a speech sig-
nal. With TTS, human-machine communication is easier and more natural than
ever. As a result, it has great potential and can be applied to many different
purposes, e.g., audiobooks, movie narrations, response services in telecommuni-
cations, and virtual assistants. Through decades of research and development,
end-to-end speech synthesis systems for a single language have achieved out-
standing results and produced natural human-like voices even in real-time. Based
on these advances, recent end-to-end neural TTS models have been extended to
enable control of speaker identity, controllability, or multilingual.

In the last two decades, there have been many attempts to build high-quality
Vietnamese TTS systems. A data processing scheme proved its efficacy in opti-
mizing the naturalness of end-to-end TTS systems trained on Vietnamese found
data [12]. Text normalization methods were explored, utilizing regular expres-
sions and language model [17]. New prosodic features (e.g., phrase breaks) were
investigated, which showed their efficacy in improving the naturalness of Viet-
namese hidden Markov models (HMM)-based TTS systems [2]. Different types
of acoustic models were investigated, such as HMM [9], deep neural networks
(DNN) [8], and sequence-to-sequence models [12]. For post-filtering, it was shown
that a global variance scaling method might destroy the tonal information; there-
fore, exemplar-based voice conversion methods were utilized in post-filtering to
preserve the tonal information [18]. Moreover, recently, Phung has applied new
data processing method to generate natural Vietnamese human-like voices; and
achieved good results in Vietnamese speech synthesis [12]. To our knowledge,
there is little to no study on CS TTS systems involving Vietnamese. In linguis-
tics, the interlacing of languages in text or speech is known as code-switching (CS).
Along with the rise of globalization, code-switching is a common phenomenon that
occurs in social media text, informal messages, and voice navigation [16]. The CS
phenomenon poses a significant challenge for modern TTS systems to generate
corresponding sounds of foreign words in CS texts. A typical foreign language
in the CS synthesis system is probably English because of its popularity. Mac
showed that among the top 10000 foreign words, which cover up 83% foreign word
tokens in his Vietnamese corpus text, 70% of these words are in the English dic-
tionary [6]. Therefore, we can see building a Vietnamese TTS system, which can
pronounce English in code-switched utterances fluently, as building a CS bilin-
gual Vietnamese-English system. Those two languages use two different sets of
phonemes. If we have a large amount of code-switched data, then that problem is
relatively trivial. However, it is not easy to obtain a bilingual CS TTS dataset from
a single Vietnamese speaker who achieves native-level fluency in both languages.
In this work, our Vietnamese dataset consists of mostly Vietnamese monolingual
utterances, and only 12% are Vietnamese-English code-switched utterances (e.g.,
“ ”).

In order to manage the alphabetic inputs from multiple languages, two types
of encoders were examined in the context of CS TTS: shared multilingual encoder
with explicit language embedding and separated monolingual encoder [1]. Using
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the encoders created more natural code-switched utterances than Tacotron [19].
Xue proposed a robust Mandarin-English mixed-lingual TTS system using solely
monolingual data in [21]. In summary, E2E TTS introduces one of the most
successful implementations for CS speech content [23].

We explore the efficacy of three approaches, which are based on the Tacotron-
2 end-to-end framework [15], to build a Vietnamese TTS system under a limited
bilingual code-switched data scenario. (1) Grapheme-to-Syllable-based CS syn-
thesis, (2) Speaker-embedding based CS synthesis, (3) Speaker-embedding and
language-embedding based CS synthesis. With the grapheme-to-syllable (G2S)
model, we convert all English words into Vietnamese syllables and some self-
defined syllables to describe features of English pronunciation, such as voice-
less consonants. In this approach, we take advantage of the efficiency of the
Tacotron-2 model for monolingual syllables, and we utilize the code-switched
data contained in our Vietnamese dataset to learn the features of English pro-
nunciation. Using the G2S model, however, does not guarantee the naturalness
of the voice because the pronunciation of Vietnamese syllables is probably dif-
ferent from that of English syllables. This limitation of G2S model motivates us
to adopt a speaker-embedding based approach that should improve the natu-
ralness of pronunciation. Specifically, we combine Vietnamese monolingual data
from our Vietnamese dataset with an English public dataset to train a multi-
speaker Tacotron-2 system. We expect that this speaker-embedding model can
learn the native pronunciation of English words from English speakers. Our last
approach, which is the speaker embedding and language-embedding based CS
synthesis, combines speaker-based CS synthesis and language embedding. In our
intuition, by providing explicit language information for each input character,
our system can learn to handle the code-switched data better.

2 Vietnamese-English Code-Switching Synthesis Systems

Our systems are based on Tacotron 2, which comprises a sequence-to-sequence
acoustic model, followed by a neural vocoder to generate waveform from the
acoustic feature. We used WaveGlow [14] vocoder instead of WaveNet [10]
vocoder as in the original Tacotron 2 architecture. WaveGlow is a deep gen-
erative model for audio that integrates Glow [5], a generative model for image
processing, with WaveNet. The acoustic model has an encoder and an autore-
gressive decoder with attention. The encoder converts an input text into a hidden
linguistic feature representation which the decoder consumes to predict an acous-
tic feature. Thus, to solve the code-switched synthesis problem, we focus on the
feature prediction part.

2.1 Grapheme-to-Syllable-Based Code-Switching Synthesis

In this approach, we convert all English words into Vietnamese syllables
and some self-defined syllables to describe features of English pronunciation.
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Vietnamese is a monosyllabic language where each Vietnamese word contains
a syllable, a complete block in pronunciation. Meanwhile, English is a multi-
syllable language. Therefore, many words in English are composed of more than
one syllable. Nevertheless, English syllables and Vietnamese syllables are quite
similar, especially in the pronunciation of Vietnamese people.

The most obvious difference is the presence of voiceless consonants in English
syllables (e.g., final fricative consonants), which is absent in Vietnamese sylla-
bles. To read English words more naturally, the model needs to read voiceless
consonants. With the small number of English words in the dataset, our solu-
tion is to borrow Vietnamese syllables and voiceless consonants to read the
English words. For examples, ‘studio’ is split into ‘ ’, ‘speech’ becomes
‘ ’. In the examples above, the voiceless consonants are the ‘x’ sound
and ‘ch’ sound. We link syllables with hyphens, so the model knows they are
syllables of an English word and are not separate Vietnamese syllables, making
the duration and pronunciation of an English word more accurate.

To do so, we build a specific G2S converter where the input is the English
word (such as “studio”) and the corresponding syllables (such as “ ”
with hyphens separating the four syllables). We use the G2S converter to nor-
malize English words in the input text of our Tacotron-2 system to phonetic
form. Our G2S converter is a seq2seq model with 2 BiLSTM encoders and 2
LSTM decoders with attention as described in Fig. 1. Our implementation is
based on [11] but we use character input representations instead of phoneme.
We also train the Tacotron-2 system with character-level input.

Fig. 1. An overview of the components of the G2S model

2.2 Speaker-Embedding Based Code-Switching Synthesis

In this approach, we utilize speaker embedding to address the CS phenomenon.
We build a multi-speaker TTS system by prepending a speaker embedding mod-
ule, making the system share the vast majority of parameters between speakers
to a traditional Tacotron-2 system. Thus, the multi-speaker speech synthesis
model is a single model that can generate speech from many different voices of
different speakers.

Unlike Deep Voice 3 [13] which learned low-dimensional site-specific speaker
embedding for each training speaker, we use a channel-wise speaker embed-
ding. Figure 2 shows an overview of speaker embedding code-switching synthesis
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system, but we do not use the language embedding module. One-hot speaker iden-
tity vector is converted to a 32-dimensional speaker embedding vector by the
speaker embedding network. The embedded vector is concatenated with each ele-
ment of the Tacotron-2 encoded sequence attended by the Tacotron-2 attention
and decoder network while generating a spectrogram.

Fig. 2. An overview of speaker-embedding and language-embedding based code-
switching synthesis system

With this approach, we do not need the CS data. In our experiment, we only
use the Vietnamese monolingual data in our Vietnamese dataset to remove the
effect of CS data. We combine Vietnamese monolingual data with an English
monolingual public dataset to train the speaker-embedding based CS synthesis
system. We have two speakers, so the input one-hot speaker identity vector is
[0, 1] or [1, 0]. We expect the model to learn the pronunciation of English words
from a native speaker. When we apply the model on CS input text to synthesize
Vietnamese voice, the model knows how to pronounce the English words as
English speakers.

The original Tacotron-2 system uses character input representations [15].
However, some other end-to-end TTS systems also achieve good results when
used phoneme input representations [20], or hybrids between character and
phoneme [4]. Another study showed that phoneme input representation gives bet-
ter results than the character in multi-lingual TTS [22]. This paper also evaluates
the effect of using different text input representations in our speaker-embedding
based CS synthesis system. The input text is represented by a 512-dimensional
character embedding or phoneme embedding.

Speaker-Embedding and Character-Representation Based CS Synthe-
sis. Vietnamese characters originated from Latin characters, so Vietnamese
characters were most similar to English. So for extending a character-based
input vocabulary to a multilingual setting is straightforward; we concatenate
character sets in the training corpus for each language. Equivalent characters
are shared across languages. We keep all English words in origin included in the
dataset.
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Speaker-Embedding and Phoneme-Representation Based CS Synthe-
sis. We use grapheme-to-phoneme (G2P) models to convert input text to the
corresponding phoneme sequence. For Vietnamese input text, we use a dictionary
built by a language expert to map Vietnamese syllables with the corresponding
Vietnamese phonemes. For English input text, we use a pre-trained English G2P
model from Montreal Forced Aligner [7].

2.3 Speaker-Embedding and Language-Embedding Based
Code-Switching Synthesis

The speaker and language-embedding based code-switching synthesis is a combi-
nation of speaker-based code-switching synthesis and language embedding mod-
ule. We use character input representations. In this way, each input sequence
x = [x1, x2, ..., xn] has a character-level language ID sequence l = [l1, l2, ...,
ln] where each element denotes the language ID of corresponding character in
the input sequence. In our system, a character corresponding to language ID of
1 if it is from Vietnamese words and corresponding to language ID of 2 if it is
from English words. We obtain language-embedded information for each char-
acter of the input text by a learned 4-dimensional language embedding network.
We concatenate the language embedded information with the character embed-
ded information from a learned 512-dimensional character embedding to form
the input of the Tacotron-2 encoder (see Fig. 2). In our intuition, by providing
explicit language information for each input character, our system can learn to
handle the code-switched data better.

3 Experiments

3.1 Dataset

The data we build for training the G2S model are Out-Of-Vietnamese-
Vocabulary (OOV) words collect from a news website1, which are primarily
English words. Our dataset consists of 20000 pairs of OOV words and corre-
sponding spelling. We also use a method of concatenating short words to long
words to generate more data for the model.

Our Vietnamese internal TTS dataset contains 21 h of voice recording from a
northern Vietnamese female speaker, including 11900 utterances, and only 12%
are CS utterances. In the CS utterances, English words only account for 8.29%,
with most English words like famous people’s names, teams, or places.

Due to the limited number of English words in our Vietnamese dataset, we
utilize an additional English database to learn English pronunciation. We use
LJSpeech public database that consists of 13,100 short audio clips of a female
speaker reading passages from 7 non-fiction books and have a total length of
approximately 24 h [3].

1 baomoi.com.

http://baomoi.com
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3.2 Training Setup

For the G2S-based CS synthesis system, we first train the G2S model with a
batch size of 32, using the Adam optimizer configured with an initial learning rate
of 0.001. Then we use the G2S model to convert the English words contained in
the original Vietnamese dataset to phonetic form. Finally, we train the Tacotron-
2 system on a Vietnamese normalized dataset with batch size 32 on a single
GPU.

For systems based on speaker embedding and speaker-language embedding,
we remove the CS data in the original Vietnamese dataset to obtain the Viet-
namese monolingual dataset, combined with the LJSpeech dataset for training.
The systems are all trained with a batch size of 32, using the Adam optimizer
configured with an initial learning rate of 10−3. After 15k steps, an exponential
decay halves the learning rate every 10k steps.

4 Evaluation and Discussion

This section evaluates the efficacy of four CS TTS systems in terms of speech
quality, English word pronunciation quality, and English pronunciation accuracy
test. In Sect. 4.1, we conduct a MOS test to evaluate the overall sound quality.
In Sect. 4.2, we also conduct a MOS test to evaluate the pronunciation quality
of English words. Finally, in Sect. 4.3, we evaluate the pronunciation accuracy
of English words. The pronunciation assessment set of English words that we
use has 20 sentences, with 671 words, of which 15% are English words, and the
rest is in Vietnamese. We have used English words that are not included in the
training dataset and are not ordinary words. 40% of them are English words
that contain voiceless consonants. The tests can be found here 2.

4.1 Speech Quality Test

We evaluate the overall sound quality, including both English and Vietnamese
languages. We have eight participants in the assessment. Each participant lis-
tened to 20 test sentences once and rated the quality of each sentence on a
5-point scale, including “very bad” (1), “bad” (2), “fair” (3), “good” (4), and
“very good” (5). In total, there are 80 (sentences) × 4 (systems) = 320 (trials).
The results are presented in Table 1.

The evaluation results show that the G2S-based model produces the best
natural voice. Speaker and language-embedding based model is also close to
achieving the best results.

4.2 English Pronunciation Quality Test

We conduct the second MOS test to evaluate how well English words are pro-
nounced. In this section, we only evaluate the pronunciation quality of English
2 Samples are available at: https://proptitclub.github.io/paper/sample.html.

https://proptitclub.github.io/paper/sample.html
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Table 1. The average MOS of four systems.

Systems MOS

G2S-based CS synthesis 4.03

Speaker-embedding and character-representation based CS synthesis 3.95

Speaker-embedding and phoneme-representation based CS synthesis 3.33

Speaker and language-embedding based CS synthesis 3.96

words in the test set and exclude Vietnamese words. Eight participants listened
to 20 test sentences and rated the quality of the pronunciation in a 5-point
scale: “very bad” (1), “bad” (2), “fair” (3), “good” (4), and “very good” (5).
The results are presented in Table 2.

Table 2. The average MOS of four systems focus on English words pronounced.

Systems MOS

G2S-based CS synthesis 3.75

Speaker-embedding and character-representation based CS synthesis 3.82

Speaker-embedding and phoneme-representation based CS synthesis 3.22

Speaker and language-embedding based CS synthesis 3.97

As expected, the best performance is obtained when using the speaker and
language-embedding based model, the addition of language embedding to pro-
vide language information about input characters helps the model pronounce
English words more naturally.

4.3 English Pronunciation Accuracy Test

We estimate the percentage of English words that can be pronounced correctly,
in other words, that the participants can recognize the word. We have 4 partic-
ipants with an average English background. They will see the vocabulary first
and then listen to all 80 sentences. For each English word, the participant will
rate ‘1’ if they can recognize it and ‘0’ if they cannot. We then sum up the per-
centage of correctly pronounced words achieved by the models, the final result is
averaged. Table 3 show that the number of English words pronounced correctly,
in percentage.

The G2S-based model gave the best results with 96.41% of English words
recognizable by the participants. Speaker and language-embedding based model
and speaker-embedding and character-representation based model also have
good results with more than 90% accuracy. Speaker-embedding and phoneme-
representation based model have much worse results when participants can only
recognize 71.01% of English words.
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Table 3. Percent of the number of English words pronounced correctly.

Systems Accuracy

G2S-based CS synthesis 96.41

Speaker-embedding and character-representation based CS synthesis 90.81

Speaker-embedding and phoneme-representation based CS synthesis 71.01

Speaker and language-embedding based CS synthesis 92.61

4.4 Discussion

G2S-Based CS Synthesis: The pronunciation of the English words has the
same tone as Vietnamese ones, so Vietnamese people can understand and be
closer. We can also customize the pronunciation of some of the new words that
appear in the world (e.g., “Covid-19”) or manually modify the pronunciation of
words that are less likely to appear in the dictionary. Thus, it gives us more con-
trollable. However, the pronunciation of English word is occasionally vietname-
selized too much, which results in an unnatural pronunciation. Furthermore,
this is not an automatic method. This G2S system requires linguistic experts to
manage the Vietnamese pronunciation of English words manually.

We found that the end-to-end model Tacotron-2 produces stable audio, low
noise, good sound quality, and a natural voice for Vietnamese monolingual sen-
tences. Furthermore, with the normalization of English words in the data, the
model shows that the ability to learn voiceless consonants is quite good while the
code-switched data is limited. With the G2S converter, our CS synthesis system
can read almost all English words, but pronunciation accuracy depends heavily
on the G2S model.

Speaker-Embedding and Character-Representation Based CS Synthe-
sis: On the English word pronounced, this model gives the best quality accord-
ing to the participants’ rating. Due to not using code-switched data, the model
can learn how to pronounce English words from the LJSpeech dataset; read-
ing English words is much more natural. The LJSpeech dataset includes many
common English words, but no dataset can cover all the English words, such as
“Covid-19”, which is a recent emerging word. This approach also has limitations:
English words that are not in the dataset sound unnatural, and word stress is
often misread.

Speaker-Embedding and Phoneme-Representation Based CS Syn-
thesis: This approach produces quite lousy audio. This result comes from
the model’s inability to generalize the phoneme mix between Vietnamese and
English; moreover, the two sets of phonemes of English and Vietnamese do not
share the same information as to characters. With Vietnamese words still retain-
ing a quite good voice, clear sound, and accurate pronunciation. Nevertheless,
the synthesized English words sound bad. In addition, many words could not be
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pronounced, especially words that were not in the training dataset, which made
the rating of the model underestimated by participants.

Speaker and Language-Embedding Based CS Synthesis: In this app-
roach, the synthesized voice is not as soft and natural as the previous approaches.
However, the ability to pronounce unseen English words is better than character-
representation based CS synthesis.

5 Conclusion and Future Works

We presented three approaches to create a code-switching synthesis system under
a limited code-switched data scenario. We used a public dataset of English [3],
and a Vietnamese dataset contains 12% of CS data, and our model is based on
Tacotron-2. The results of our evaluation verified the effectiveness of the three
methods. In the first approach using G2S, our model can read most English
words with pleasing naturalness; however, the pronunciation of English words
still has some disadvantages, e.g., the pronunciation of words with voiceless con-
sonants. In the second approach using speaker-embedding, Our model showed
that the pronunciation quality of English words was better than that of the G2S-
based model, and using character input representations outperforms phonemes.
Moreover, for the third approach using both language embedding and speaker
embedding, our model can read English words more naturally and stably than
the above two approaches. The above results showed that we can ultimately
create a robust bilingual speech synthesis model using limited code-switched
training data, which have only a small number of English words in the dataset.
Furthermore, this method promises to apply to other languages to create a nat-
ural multilingual speech synthesis model.
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Abstract. Text normalization for Text-To-Speech includes several chal-
lenging tasks in natural language processing such as verbalizing abbrevi-
ations, Out-Of-Vocabulary (OOV) words, and chunking phrases for long
sentences without punctuation. Instead of dealing with these tasks inde-
pendently, we propose a multi-task end-to-end model based on a denois-
ing auto-encoder. As enriching information via multi-task learning and
text denoising, the proposed approach shows improvement in the text
normalization task, especially for complicated cases which require con-
text and language understanding. In addition, we also design a novel
process of data prepossessing to leverage annotated data for training.
According to experiments on a handcrafted test set of 200,000 sentences
in Vietnamese, our model achieves an overall accuracy of 95.5%.

Keywords: Text normalization · End-to-end model · Handle OOV
words · Handle abbreviation · Speech synthesis · Prosodic phrasing ·
Machine translation

1 Introduction

Text normalization plays a significant role in building a good Text-To-Speech
(TTS) system. This process is usually the first step for any TTS system, which
aims to translate written form words (i.e., non-standard word (NSW)) to “spo-
ken” form. There are various types of NSWs in text that should be normalized:
date, number, digit, expression, OOV words, etc. They can be divided into two
main classes: (i) basic NSWs and (ii) ambiguous NSWs. Basic NSWs which
have only one meaning are easily modeled by handcrafted rules. For ambiguous
NSWs, the normalization process has to deal with a high degree of ambiguity
where words have more than one pronunciation. Therefore, the correct word has
to be distinguished from the surrounding context.
c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13032, pp. 164–176, 2021.
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Recently, text normalization for TTS applications has attracted a large num-
ber of Natural Language Processing (NLP) research [9,11,14]. However, this task
also has faced several challenges. Firstly, verbalization of numbers has several
ways to express such as time, score readers in the sports domain, measure-
ment, fraction, day range, monetary amounts. For example, “3/5” can be read as
“ ” (the 3rd of May) as a date, or “ ” (three fifths)
as a fraction; “12:30” could be time “ ” (half past twelve)
or the score of a game “ ” (twelve thirty). In addition, OOV
words and abbreviations are also complex issues. The former is how to convert
from a foreign word to proper syllable sequences in Vietnamese (e.g., Barcelona,
Arsenal). The latter requires additional information to translate a shortened
form to the original one correctly. For example, an abbreviation “TT” can be
expanded as “ ” (information), “ ” (market) or “ ”
(arbitration). Some prior works [12] proposed to expand OOV words and abbre-
viations via dictionaries, which made it impossible to deal with unseen words and
ambiguity of abbreviations in different contexts. Finally, long sentences without
punctuation make speech synthesis systems generate unnatural speech results.
Therefore, prosodic phrasing is a necessary and challenging phase in text nor-
malization for TTS systems.

Previous studies on text normalization focus on rule-based methods [9,12]
with labor-intensive sets of additional rules for individual cases despite the ambi-
guity of the actual text. This work typically classifies NSWs into different pattern
groups such as date, time, numbers, and then into sub-groups such as phone
numbers, year, and corresponding NSWs transformations. However, the rule-
based method generally encounters time-consuming and labor-intensive analysis
or labeling processes with linguistic expertise. In addition, a large number of
added rules lead to difficulties in maintaining comprehension and consistency.

Recently, deep learning has achieved much success in computer science, espe-
cially in computer vision [3,5] and natural language processing [2,13]. Especially,
sequence-to-sequence (seq2seq) tasks for Machine Translation, Auto-Tagging,
Speech-To-Text, Text-To-Speech, Handwriting recognition, and Text Normal-
ization are among them. The advantage of seq2seq models lies in the fact that
these models can map sequences of different lengths to each other.

In this paper, we propose a multi-task end-to-end text normalization model
with automatically prepared data from our processing technique for NSWs.
This solution handles OOV words and abbreviations to make training data
reliable without manually labeling. To process OOV words, we introduce a
Grapheme-To-Phoneme (G2P) model for text normalization without requiring
post-processing OOV words. Our module handles OOV words as an independent
component of the rule-based system in existing systems. After being processed
by a rule-based system, the word detected as OOV is converted to spelling (i.e.,
how to read the word) via the G2P model. The G2P model has the same idea as
the G2P model in English [10]. However, instead of using phonemes to represent
an OOV spelling, we split it into first sounds and rhymes in Vietnamese. We
come up with the convenience of integrating the G2P model for handling OOV
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spelling to the text normalization model while keeping the result reasonable as
the G2P model works independently. For abbreviation, it is challenging to collect
sufficiently abbreviation data for deep learning models. We propose a strategy to
achieve abbreviation data automatically and efficiently for training robustness
models. In addition, we employ speech synthesis data to tune the phrase pre-
diction task for handling long-sentence synthesis problems. Dealing with these
above tasks in an end-to-end model via multi-task training shows impressive
results compared to individual models. According to our experiments, apply-
ing denoising auto-encoder [6] significantly improves performance compared to
models without this pretrain phase.

The rest of this paper is organized as follows: Sect. 2 reviews related work.
Section 3 introduces our solution to build an end-to-end text normalization with
pre-processing for NSWs and speech synthesis data. After the processing phase,
we describe the proposed LSTM-based machine translation model. Section 4
shows the results of experiments, and Sect. 5 concludes our work and discusses
future work.

2 Related Work

This section briefly reviews related work, including Text normalization for the
TTS system and Prosodic phrasing for the TTS system.

Neural Network-Based Text Normalization: several research works have
applied neural networks for text normalization and achieved impressive results.
Trang et al. [11] propose a two-step model for text normalization, including: (i)
classify NSWs into different categories using Random Forest, (ii) expand them
via a seq2seq model. The seq2seq model shows 96.53% for abbreviations and
96.25% for loanwords with a post-adjustment for some completely wrong cases.
Junhui Zhang et al. [14] focus on building a hybrid text normalization system
combining a rule-based model and a neural model. NSWs are firstly extracted
from the input text by regular expressions. The remaining NSWs pass to multi-
head self-attention to predict pattern classifications, where the label is one of
36 categories that are the inheritance from the rule-based system. Overall, the
performance is improved by over 1.9% on sentence level.

Prosodic Phrasing for TTS System: several studies have been conducted to
resolve prosodic phrasing. Trang et al. [8] proposed a phrasing model using syn-
tactic information: structure based on syntactic rules, final lengthening linked
to syllabic structures and tone types. Break levels (including significant breaks,
minor breaks) and relative positions of syllables are used to train VTed, an
HMM-based TTS system for Vietnamese. Ngoc [7] present a study on prosodic
models using CaPu (Capitalization and Punctuation model) model using the
ViBert embedding for generating fixed vectors to GRU layer followed by condi-
tional random field and the final one is a layer to classify punctuation-tag, with
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data collected from several domains. All data has to be converted to the nor-
malized format of TTS and remove punctuation for recovery task using CaPu.
They also model the phase of OOV to spelling as a machine translation problem
by an encoder-decoder-based transformer with data collected from the English
vocabulary.

3 The Proposed Approach

3.1 Pre-processing Method

Instead of attempting to classify the various types of NSWs, we group them into
three main classes: (i) OOV, (ii) abbreviation and (iii) the others.

An overview process of the pre-processing method is shown in Fig. 1.

Fig. 1. An overview process of system

Handle OOV Words: Based on the idea that pronouncing OOV is context-
independent, we break OOV words into characters and wrap them with OOV
tags to make the model focus on OOV words, for example:

–Original sentence: .

Our implementation is based on [10], but we do not use phonemes for repre-
sentation. Instead, we split each Vietnamese syllable by first sounds and rhymes.
The OOV spelling is generated by a previously trained G2P model.
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Model G2P for OOV words in Vietnamese. We collect OOV words from a news
aggregator website in Vietnam1. With a dataset of more than 20.000 data pairs
of OOV words and corresponding spelling, the OOV words are not only English
but also come from different languages such as Japanese, Chinese, German,
Thai. Most of them are proper names, technical terms, movie titles, or quotes in
foreign languages. We use a simple seq2seq model including a BiLSTM encoder
and a LSTM decoder with attention as described in Fig. 2. To avoid an error
of duplicating end of a word in conventional seq2seq models, we do some post-
processing methods.

Fig. 2. G2P system

Handle Abbreviation. We collect abbreviation data in a large available news
corpus text of Vietnamese [1]. The text corpus contains 25 GB of data with
more than 9 million articles after character encoding conversion and removing
duplicate articles. For each article, abbreviations are identified by the following
assumption:

– NSWs have characters in uppercase form.
– A NSW is followed by an annotation where the first character of each word

in the annotation is corresponding to the character in NSW.

Identified abbreviations will be substituted for the entire article. Finally, we have
6 million sentences with reliable labeled abbreviations.

Remaining NSWs. For tokens not in Vietnamese syllable, we break it into
characters:

– Original sentence: “ ”
– Source sentence: “ ”

Each character in NSWs has prefix “ ” for additional information about its posi-
tion against the others.

1 baomoi.com.

http://baomoi.com
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3.2 Prosodic Phrasing

Chunking phrases for long sentences plays an essential role in improving the
naturalness of the TTS system. Our solution is to build a dataset by combining
output data from the normalization tool and the data with breaks using the word
time-stamp of an Automatic Speech Recognition (ASR) system. If the quiet time
in audio is more than 0.5 s, we put a break mark at this silent position. The
output of the system are described in the following example:

The punctuation “*” means break, which is silence detected from ASR align-
ment. When combining with target sentence, we keep both origin punctuation
break in normalization tool and break phrase from ASR. As a result, we have
more than 20.000 sentences from two recorded voices (i.e., male and female).
This data is relatively small compared to all data we trained for the text nor-
malization task; thus, it is used for the last fine-tuning phase.

3.3 Neural Machine Translation Model

Model Architecture. In machine translation tasks, a neural machine trans-
lation is a solution using neural networks. Recently, transformer-based architec-
tures are dominant in this area. However, we have some constraints on speed
and hardware, so instead of using the transformer-based model, we use a LSTM
model with transfer learning techniques. As shown in Fig. 3, our model consists
of 3 transfer learning schemes: (i) denoising auto-encoder pre-train model with
BART transform, which is described in the next section, (ii) text normalization
model trained with directly rule-based system data and (iii) the final model with
prosodic phrasing trained with TTS data including break punctuation generated
by ASR alignment.

Each LSTM-based machine translation model has 3 Bi-LSTM layers encoder
and 2 Bi-LSTM layers decoder with attention, which totally has 10 million
parameters. Our model uses an adam optimizer with a learning rate of 0.001,
label smoothing of 0.1, which makes the model smooth with wrong cases gener-
ated by the rule-based system.

Denoising Auto-encoder Model. To make the model quickly understands
the sentence context, we have experimented with BART: a pre-trained denoising
auto-encoder [6]. BART is a pretext task with two stages: (i) text is corrupted
with an arbitrary noising function, and (ii) a sequence-to-sequence model is
learned to reconstruct the original text. However, unlike BART original, we make
text corrupted with span token mask and token replace, not using token drop
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Fig. 3. An overview of the proposed approach

and processing text with sent pair like swap sentence position. Moreover, we add
an option for position mask to word in sentence focus on punctuation because the
context of punctuation will bring more information for the downstream task to
predict ambiguous NSWs, like date-time, score readers in sport domain, measure
expressions. An overview process of denoising auto-encoder is shown in Fig. 4.

Fig. 4. Denoising auto-encoder

We experiment with the following BART configuration: random ratio: 0.02,
mask ratio: 0.15, including the probability of mask punctuation, is 0.3, and all
other tokens share 0.7.
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4 Experiment

4.1 Dataset

We experiment in a large available news corpus text of Vietnamese [1]. The
training dataset has more than 66 million sentences converted by the rule-based
normalized system and improved by the self-training feedback model. The cases
containing OOV words and abbreviations are handled by the proposed processing
method.

For the test dataset, we manually label 200.000 sentences in Vietnamese
collected from 13 fields: technology, life, entertainment, education, science, eco-
nomic, real estate, legal, world, sports, cultural, social, vehicle. The sentence-
level accuracy of the rule-based system for the test set is 92.5%. Table 1 shows
statistics of our test set consisting of sentences in 31 primary classes.

4.2 Experimental Settings

In our experiments, we use OpenNMT-py, an open-source machine translation
toolkit developed by Guillaume Klein et al. [4]. It is a robust framework to
support for implementing several research in the machine translation field. In
experiments 1 and 2, we compared the effectiveness of the pretext denoising task
for training text normalization. Table 2 summarizes the performance for each
model. Experiment 3 is to use the text normalization model for the downstream
phrase prediction task.

Experiment 1: Training Model with Directly Data Generated by the
Rule-Based System. Firstly, we train a model without a pre-train denoising
auto-encoder. The result shows 93.2% in the test set, although the accuracy in
the valid set is nearly 96.7%. It means our model is quite fitted to data generated
by the rule-based system for both correct and incorrect cases. For example:

Because the rule-based system does not cover a case where the word after “ ”
(to) is date-time, so it wrongly converts “-” to range pattern. If our model
understands more about the sentence context, it can correctly convert this case.

Experiment 2: Training Pretext Task Denoising Then Transfering to
the Text Normalization Task. This experiment includes two steps: (i) train
the denoising auto-encoder task with the objective described in Sect. 3.3, (ii) use
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Table 1. Statistic category of test set

Table 2. Accuracies of Text normalization models

Experiment Validation Test

Model trained with directly data generated by the
rule-based system

96.7 93.2

Model trained with transfer from the pretext
denoising task

94.1 95.5
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this model to the downstream text normalization task. The amount of data used
for the downstream task is 10 million sentences, which just contain NSWs. Our
model reaches 94.1% accuracy on the validation set but nearly 95.5% on the test
set. We have analyzed some sentences with ambiguous NSWs:
Example 1:

Example 2:

Abbreviation “ ” in example 1 has many alternative words such as:
“ ” (college), “ ” (federation), “ ” (shareholder), etc.
In the second example, the abbreviation “U T” and “M D” are too hard if we
just use 2, or 3 words around to predict. With the efficiency of understanding
context after training with the pretext denoising task, our model has predicted
correctly abbreviation for this situation. However, the rule-based system has the
wrong label in some instances:
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When analyzing the data train, we recognize the rule-based system has failed
for converting “S” in the phrase “iphone 4 S” to “ ” (iphone four
seconds) and that made our model failed in this case.

Our model does not work well in all cases. Some sentences containing NSWs
about score reading in the sport domain are confused between range pattern and
ratio as follow:

With phrase “2 1 - 1 5 , 2 1 - 1 5”, our model is just correct to convert
it to score reading in the first sub phrase: “2 1 - 1 5”, and wrong to convert
score reading in the second sub phrase instead of range expression.

Experiment 3: Using the Text Normalization Model for the Down-
stream Phrase Prediction Task. The final text normalization model is
employed for the phrase prediction task. We train with 20.000 sentences parsed
from the output data of TTS audio aligned by ASR. Our model gets accuracy
81% F1 for punctuation break compared to the ASR output. The major draw-
back is that our model does not add break compared to break recognition by the
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ASR alignment. It is easy to understand because the TTS audio records are not
consistent across two people, so breaking phrases from different people can be
not the same. We generate some cases to analyze the model for phrase prediction
as follow:

The model added token “*” for break after phrase: “ ” (it is neces-
sary to understand that), it is reasonable as “ ” is used to introduce
the next content and not depend on the next phrase that makes TTS systems
more naturalness.

5 Conclusion and Future Works

We presented a multi-task end-to-end text normalization model based on a
denoising auto-encoder. In addition, we proposed a novel process of data pre-
possessing to take advantage of labeled data for training. Our model achieved
impressive results with a handcrafted test set of 200,000 sentences in Vietnamese,
especially for complicated cases which require surrounding context. Furthermore,
integrating prosodic phrasing which inserts punctuation into long sentences
makes speech synthesis more naturalness. In the future, we plan to improve
data provided by the rule-based system by comparing to data generated by the
text normalization model to identify mismatched samples for reviewing.
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Abstract. Recently, the use of Reinforcement Learning with Neural
Networks in Abstractive Summarization is getting more popular, but
still currently restricted. In this paper, we propose PEARL as a novel
framework to expand the proficiency of Reinforcement Learning app-
roach in Abstractive Text Summarization. PEARL consists of two out-
of-the-box Reinforcement Learning algorithms: FRouge and DThreshold,
where FRouge reconstructs the training objective, andDThreshold helps to
improve the flexibility for the arbitrary data. We evaluate PEARL in the
large-scale CNN/DailyMail and the medium-scale VNTC-Abs datasets.
Results show that our PEARL produces significantly greater Rouge
scores than baselines as well as achieves the new state-of-the-art model
without either pre-trained models or extra training data. This research
provides proof of validity based on data analysis.

Keywords: Abstractive Text Summarization · Reinforcement
Learning · REINFORCE · Performance-driven · PEARL · Cohesion
threshold

1 Introduction

Text Summarization is the act of shortening sentences or documents where the
grammar and the content from the original text are guaranteed. There are two
approaches: Extractive and Abstractive. The Extractive way collects a subset of
words from the source text to form the output summary. On the other hand,
Abstractive Summarization is free to choose the words that may or may not
appear in the input, then interprets valuable information in a new way. This
study focuses on Abstractive summarizing only.

With the Encoder-Decoder design, Sequence-to-Sequence [17] is a popular
framework used in various tasks, including Abstractive Text Summarization. The
Encoder processes the input words sequentially to have an abstract representa-
tion. This information is then used as initial data for Decoder to make a sequence
of output’s word predictions. The Recurrent Neural Networks (RNNs) is applied
along with the Encoder-Decoder design to significantly improve the Summariza-
tion task by [3,10,15]. However, the primary Sequence-to-Sequence with RNNs
faces the out-of-vocabulary (OOV) issue and the long sequences scaling.
c© Springer Nature Switzerland AG 2021
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Fig. 1. The general Sequence-to-Sequence with Selector architecture

To solve the OOV issue, Pointer Generator Network [16] (PG Network)
observes words in the vocabulary and also considers words from source text
via a switching gate. In detail, the switching gate decides to select one word in
the vocabulary or extract exactly one word from the input at each Decoder step.
Besides, to deal with the long sequences, Selector [2] raises a focus mask to
mark crucial words along with the input that needs to be paid more attention to.
Figure 1 visualizes the main idea of the Encoder-Decoder associated with Selec-
tor. Although these methods are proven to provide positive updates, there are
still problems of flexibility and weak rigor caused by the hyperparameters.

Along with Neural Networks, the Reinforcement Learning (RL) is gaining sig-
nificant notice in Natural Language Processing [9,19]. The principle elements of
RL are (1) Agent: a trainable input-output system, (2) Action: agent’s behaviors,
and (3) Reward: value received after a specified number of completed actions.
Besides, three primary categories of RL tasks are to (1) train an Actor to pro-
duce the best Action, (2) train a Critic to estimate the Reward value correctly
among a fixed Actions set, and (3) the mixed Actor-Critic. As a general-purpose
framework, RL aims to maximize the Reward along a sequential Action-making.
However, previous works showed that RL is limited to small-scale corpora [19].

The early works on Abstractive Summarization applied RL with the sentence-
level’s feedback as Reward. [12] combined the supervised Neural Network model
with Self-Critical Sequence Training (SCST) [14]. SCST is the idea of preferring
the inference procedure rather than the uncontrollable Critic model to estimate
Reward. Besides, [7] also made use of SCST, but combined the semantic assess-
ment with Reward calculation. However, current algorithms for RL approach
applied in Abstractive Summarization are not diverse when most of the research
is directing to solve certain problems. By the ability to exploit feedbacks from
the environment for the final output result, it is worth expanding RL to uncer-
tain corners in Abstractive Summarization. For example, receiving feedbacks on
the quality of the output summary, the model is not only able to update the
labeled word probability but also another unlabeled tasks.

In response, we propose the Performance-driven Reinforcement Learning
(PEARL) approach to (1) reconstruct the training objective to produce sum-
maries that are close to human-action, (2) provide a dynamic cohesion esti-
mator on the document unit to be adaptable with arbitrary data. We tested
PEARL on the large-scale CNN/DailyMail [5] and the medium-scale VNTC-Abs
[11] datasets. Our methods not only significantly outperform baselines but also
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achieve the state-of-the-art result with neither a pre-trained model nor extra train-
ing data. This research proves the validity based on data analysis.

2 Background

In general, the Abstractive Summarization task is the many-to-many form of
Sequence-to-Sequence. In Encoder-Decoder framework, the Encoder receives a
sequence of x = (x1, x2, ..., xS) as S words in the source text. Then, the Decoder
generates ŷ = (ŷ1, ŷ2, ..., ŷN ) as N words for the summary. Specifically, ŷi is
selected from a conditional Multinomial distribution p(y|x) = E[pθ(y|x)], where
θ is the trainable parameters.

2.1 Related Works

Pointer Generator Network. (PG Network) [16] desires to solve the OOV
problem which is one of Encoder-Decoder’s issues. A word is considered to be
OOV if it appears in the input but is not listed in the fixed vocabulary built
from the most popular words. Practically, OOV could store the key information
such as names, dates, or numeric data. Therefore, ignoring OOV leads to the
lack of content or a misleading summary. To deal with OOV, at each Decoder
step, PG Network selects one word for the summary by considering picking out
from the fixed vocabulary or extracting from the input.

First, the probability of each word in the fixed vocabulary set is represented
by Pvocab. Applying the Attention Mechanism [18] in Pvocab computation, the
Attention Score et is calculated to store the importance of each word in the
input based on the Encoder’s (hi) and Decoder’s output (st), then normalized
to get the Attention Distribution at. The et and at calculation given by [1] are
presented in Eq. 1, where ν, Wh, Ws, and battn are learnable parameters. In
Eq. 2, a context vector h�

t is produced by making use of at and hidden states
h, and then normalized by Softmax function to achieve Pvocab, where V ′, V are
learnable variables.

et
i = νT tanh(Whhi + Wsst + battn)

at = Softmax(et)

h�
t =

∑

i

at
ihi

(1)

Pvocab = Softmax(V ′(V [st, h�
t ])) (2)

Next, the probability of words in both input and vocabulary set is denoted
as P (w). To construct P (w), PG Network generates pgen as a switching gate
to modify words probability, which is showed in Eq. 3, with trainable param-
eters wh, ws, and wx. In Eq. 4, the output ŷ is the highest value’s index
in P . Then, the training objective is to minimize the maximum-likelihood
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Fig. 2. The baseline Sequence-to-Sequence with PG Network and Selector (Color
figure online)

Lml = −∑N
t=1 log(p(ŷt|ŷ1, . . . , ŷt−1, x)). Figure 2 visualizes the main concept

of PG Network.

pgen = σ(wT
h h�

t + wT
s st + wT

x xt)

P (w) = pgen � Pvocab(w) + (1 − pgen)
∑

i:wi=w

at
i

(3)

ŷ = Argmax(P ) (4)

SELECTOR [2] generates a binary focus mask to emphasize the crucial words
along the input. According to Selector, a word is crucial if it appears in
the referenced summary created by humans. By this assumption, Selector
constructed the focus mask ’s ground-truth by setting value one at indices caring
words that appear both in the source text and the referenced summary, the value
zero marks for otherwise. To train, the input document is fed to a Bidirectional
Gated Recurring Units (BiGRU) to form the focus logit (logit). Following Eq. 5,
a fixed threshold is used to transform logit to a binary mask m. The blue part in
Fig. 2 visualizes how the binary focus mask is concatenated to word embedding
as an extra information before going through the Encoder-Decoder.

(h1...hS) = BiGRU(x)
logitt = σ(FC([ht;h1;hS ]))

m = (binary)(logit > threshold)
(5)

Previous Reinforcement Learning approaches in Summarization task are
to maximize the Reward of the predicted summary, after a sequence of Actions
on every single step in predicting word. Where the Agent is the Sequence-to-
Sequence model, the Action is the summary and the Reward is determined by
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the Summarization metrics such as Rouge [8] scores. RL defines the policy pθ in
respect of parameter θ, to map Actions to words probability. Then, the training
purpose is to minimize the negative expected Reward, which is formularized as
Lrl(θ) = −Ews∼pθ

[Rfunc(ws)], via Policy Gradient optimization, where ws is
the predicted word in the output summary. Lrl(θ) is estimated with a single
sample in pθ that Lrl(θ) ≈ −Rfunc(ws), ws ∼ pθ.

Policy Gradient with REINFORCE Algorithm computes and adjusts the
expected gradient ∇θLrl(θ). According to [20], ∇θLrl(θ) could be calculated as
∇θLrl(θ) = −Ews∼pθ

[Rfunc(ws)∇θlog(pθ(ws))]. In practical, by using Monte-
Carlo [13] random sample, the expected gradient is approximated as described
in Eq. 6. On another note, REINFORCE provides a simple-to-conduct solution,
however, the high variance of Reward could lead to a less-than-desirable result
in some situations.

∇θLrl(θ) ≈ −Rfunc(ws)∇θlog(pθ(ws)) (6)

Moreover, term baseline (denoted as b) in REINFORCE is defined as the pre-
ferred Reward value that helps to reduce the variance. Since the baseline cal-
culation is designed independent of Action, it does not affect to the expected
gradient. The REINFORCE with baseline is shown in Eq. 7.

∇θLrl(θ) ≈ −(Rfunc(ws) − b)∇θlog(pθ(ws)) (7)

Self-critical Sequence Training (SCST) [14] is a branch of REINFORCE
with baseline. SCST obtains its baseline from the procedure used in the inference
time. In more detail, ws and ŵs are defined as output word that generated by the
RL model and the inference procedure, respectively. In [12]’s work, with the
same parameter θ, the words logit is sampled by the Multinomial distribution to
produce ws and passed through the Softmax to form ŵs as in the test-time. Fol-
lowing the Eq. 8, Rfunc(ŵs) is then used as the baseline in the SCST structure.
In reality, the SCST is trained parallel with maximum-likelihood training objec-
tive (Lml(θ)), which is introduced as a mixed learning objective [12]. Equation 9
defines the mixed of Lrl(θ) and Lml(θ), where α is the scaling factor to divide
the magnitude between them.

∇θLrl(θ) ≈ −(Rfunc(ws) − Rfunc(ŵs))∇θlog(pθ(ws)) (8)

∇θLmixed(θ) = α∇θLrl(θ) + (1 − α)∇θLml(θ) (9)

2.2 Materials

Evaluation Metric. We evaluate our work by Rouge [8], which is the typical
assessment for Abstractive Text Summarization. Rouge calculates the similar-
ity between the two summaries by counting the words overlapping on them. In
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details, there are three Rouge points: Rouge-1 (R-1) - the unigram overlap-
ping, Rouge-2 (R-2) - the bigram overlapping, Rouge-L (R-L) - the longest
common subsequence. The high value of Rouge points means the high level of
similarity between the reference and the predicted summary.

Datasets. WeconductPEARLon twodatasets, which are theCNN/DailyMail
[5] collected from CNN News1, and the VNTC-Abs [11] collected from Viet-
namese Online NewsVNExpress2.CNN/DailyMail contains 287113, 13368, 11490
pairs of input document - referenced summary for the train, validate and test set,
respectively. For VNTC-Abs, the numbers are 34503, 7422, 7364. Following the
prior works [2,16], we set the maximum length of the input document and the sum-
mary to 400 and 100 words for CNN/DailyMail. For VNTC-Abs, we truncate the
length to 650 words for the input and 100 words for the output.

3 PEARL: Performance-Driven Reinforcement Learning

With the PG Network, Selector, and SCST as the based models, our PEARL
produces an out-of-the-box method of performing the Abstractive Summarization
task by applying two RL algorithms, FRouge and DThreshold. We first present in
Sect. 3.1 the semantic metrics analysis to explore the Reward Function design.
Next, Sect. 3.2 is for FRouge that reconstructs the training objective to expand
the quality as well as the ability of focus mask. Finally, in Sect. 3.3, the DThreshold

is described as a dominant update that increases the flexibility of the whole
framework.

3.1 Reward Function design and the problem of averaged score

Fundamentally, we use the Rouge score [8] for the strategy of designing Reward
function (Rfunc). The general form of Rfunc can be fomularized as:

Rfunc = γ1G(R-1) + γ2G(R-2) + (1 − γ1 − γ2)G(R-L) (10)

where G(r) is the normalize function on the Rouge point r, γ1 and γ2 are
hyperparameters for partitioning Rouge points’ contribution in Rfunc. Recent
reports [6,12] simply defined G(r) = r and shared the balance ratio of contribu-
tion. In other words, they built Rfunc as the average of the three Rouge points
(denoted as R-avg). Then, following the training objective of RL, they aimed to
maximize this average. However, the average operation could not tightly reply
for the quality of the predicted summary. To optimize, we first figure out the
causes and then propose a new design for the Reward function.

First, we examine the semantic relation from the three Rouge points on 200
documents collected from CNN/DailyMail. Figure 4 displays Rouge results in

1 CNN News: edition.cnn.com.
2 VNExpress: vnexpress.net.

http://edition.cnn.com
http://vnexpress.net
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Fig. 3. The architecture comparison between Selector [2] baseline (Fig. 3a) and our
PEARL. PEARL consists of FRouge (Fig. 3b) and DThreshold (Fig. 3c).

the increasing direction of R-avg. Noted that the R-avg calculation is depended
on the value of R-1, R-2, and R-L, but does not reflect the distance among
three of them. The result shows that the high value of R-avg comes from the
abnormally high value of R-1 in some situations, which are bounded by the
red rectangles. Moreover, the unbalance Rouge points could lead to the worse
quality of the summary due to the lack of structure correction which is qualified
by R-L [8].

Next, for the design of Reward Function, our strategy is to select a metric that
is independent in calculating but strongly reflects the tendency of the Rouge
changing. We do the Pearson Correlation analysis between Rouge points, which
is performed in Fig. 5. The data for experimenting is the Validation results dur-
ing training Selector, three different epochs for each CNN/DailyMail and
VNTC-Abs dataset. The visualization shows that in all of the cases, R-L has
the strongest correlation with other Rouge points. Therefore, we exploit R-L as
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the main component of Reward Function, which is Rfunc = R-L. To conclude,
the new design of Rfunc = R-L has two benefits (1) R-L is able to capture the
quality of the summary well by automatically caring assessment of other n-grams
[8], (2) R-L is clear in comparison to other summary’s result.

3.2 FRouge : ROUGE-Based REINFORCE Algorithm

The training objective of Selector is to achieve the high accuracy of predicted
focus mask (denoted as F-acc). F-acc is simply calculated by the ratio between
the numbers of correct positions and the sequence length, comparing to the
focus mask ’s ground truth. However, our analysis displayed in Fig. 6 shows that
in the increasing direction of R-L, F-acc does not run on the same tendency but
strongly fluctuates. Moreover, we apply the Pearson Correlation to examine the
data and record the result in Table 1. The result shows the correlation between
Rouge scores and F-acc is truly weak. Therefore, our work proposes a RL
algorithm named FRouge to reconstruct the training objective from generating a
focus mask with high accuracy to a focus mask that produces the high quality
of the final outputted summary.

Fig. 4. The relation between Rouge metrics and Rouge Average in the increasing
direction of the averaged score (R-avg)

(a) (b) (c) (d) (e) (f)

Fig. 5. The Correlation between Rouge metrics. Figures 5a, b, c are collected from
CNN/DailyMail, Figs. 5d, e, f are collected from VNTC-Abs
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Fig. 6. The relation between Rouge metrics and the focus mask accuracy (F-acc) in
the increasing direction of R-L

Table 1. Correlation between Rouge and focus mask accuracy (F-acc)

R-1 R-2 R-L R-avg

F-acc −0.089 −0.0981 −0.0739 −0.0903

FRouge is designed as a REINFORCE Algorithm that rebuilds the training
type from supervised (learning from the focus mask ’s ground-truth) to unsuper-
vised (directing to the performance of the outputted summary). Mapping to the
three main elements of RL’s theory, FRouge is described as following:

– Agent is based on the concept of Selector model. Specifically, the BiGRU
of Selector model is directly trained during the training process.

– Action created for each input document is a binary focus mask, similar to
what the original Selector model did.

– Reward is calculated by the Reward function Rfunc. Rfunc is constructed
from Rouge score which is described in Sect. 3.1.

Figure 3 visualizes the training processes comparison between FRouge

(Fig. 3b) and the baseline Selector (Fig. 3a). Instead of computing loss based
on Binary Cross Entropy from the focus mask ’s ground-truth as Selector,
our FRouge calculates loss by REINFORCE algorithm that depends on Action
(the generated focus mask) and Reward value. The Reward value is measured
from the Reward function which receives the input as the summary generated
by feeding the predicted focus mask to the Encoder-Decoder. Then, by following
the REINFORCE’s theory described in Eq. 6, FRouge updates Agent based on
the Policy Gradient algorithm.

3.3 DT hreshold : Dynamic Cohesion Threshold for Document Unit

According to Selector [2], a fixed threshold which equals to 0.15 is used to
transform the focus logit to the focus mask for all documents. In Eq. 5, all indices
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in the focus logit whose value is greater than threshold will be marked as one
in the focus mask, others are placed with zero value. However, the threshold
value, in this case, is firmly related to the cohesion or the density of informative
words in the input, which is different among documents, especially for the genre
diversity of texts. This fixed threshold is a bottleneck that leads to trouble in
specifying and proving the optimization for other datasets. Therefore, we propose
a trainable dynamic threshold named DThreshold to estimate the proper threshold
based on document context. DThreshold replaces the fixed threshold by a dynamic
one to improve the flexibility for each document as well as other arbitrary data.

DThreshold is constructed as a continuous space REINFORCE algorithm
which aims to estimate a proper threshold for each input document. Aligning to
a general RL architecture, the three main elements of DThreshold includes:

– Agent : we design Agent as a Multilayer Perceptron model that learns from
the context, then determines the cohesion level of the input document.

– Action : For each input document, the DThreshold’s Agent generates dthreshold

which is a real number in a continuous space [0, 1] for Action.
– Reward : to observe the compatible of dthreshold on the outputted summary’s

quality, the Reward function is built from Rouge score that also follows the
design in Sect. 3.1.

dthreshold = σ(FC([hS ; logit]))
m = (binary)(logit > dthreshold)

(11)

DThreshold’s Agent receives two inputs, both are collected from Eq. 5: (1) hS ,
which is the Selector Encoder’s output as the general context of the whole
input document, and (2) the focus logit (logit) which rates informative words
along the input. The two inputs are concatenated, then added weights via Lin-
ear Layers and passed through the Sigmoid Activation Functions. After that,
DThreshold outputs a real number dthreshold in range [0, 1] as Action. dthreshold is
then used as the dynamic threshold for Selector to normalize logit to the focus
mask m. The Fig. 3c and the Eq. 11 shows our updated process with DThreshold.

4 Experiments and Results

4.1 Implementation Detail

Baselines. PEARL is based on three previous works as the initial model: PG
Network [16], Selector [2], and the SCST [12]. In detail, with PG Network
and Selector, we followed the whole concept and configuration reported by
the prior works. With SCST, we utilized the main idea but used the Reward
function described in Sect. 3.1. We also compared the original Reward function
design with ours. The result is recorded in Table 2, where SCST (avg) denotes
the average operation as [12]’s work and SCST denotes our form of the Reward
function.
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Table 2. PEARL’s sub-methods result and the comparison to baselines. The best
scores are bolded

Method CNN/DailyMail VNTC-Abs

R-1 R-2 R-L R-1 R-2 R-L

The based models

baselines 41.72 18.74 38.79 25.72 8.23 21.84

baselines+ SCST (avg) 41.89 18.92 39.02 32.48 12.72 28.47

PEARL

baselines+ SCST 42.30 18.97 39.15 34.73 14.97 31.65

+FRouge 42.89 19.76 39.69 39.14 16.33 37.40

+FRouge +DThreshold 43.61 20.10 40.42 43.92 19.74 39.09

Training Process. We first trained the PG Network and Selector mod-
els simultaneously until getting the non-increasing result. Then, the checkpoint
(denoted as baseline) that achieved the highest Rouge score on the Validation
set continued to be trained with RL. Next, the training processes with RL are
divided into three ordered phases:

1. SCST : we froze Selector’s parameters and then trained with SCST algo-
rithm to improve the Sequence-to-Sequence model.

2. FRouge: we froze Sequence-to-Sequence’s parameters then executed the FRouge

to improve the ability to learn the representation of the focus logit.
3. DThreshold: we trained the dynamic threshold generator DThreshold with the

non-increasing checkpoint collected from FRouge in the second phase. Mean-
while, we froze all parameters of the Sequence-to-Sequence model and Selec-
tor model.

4.2 Result

Our test results for CNN/DailyMail and VNTC-Abs are shown in Table 2. We
observe that PEARL achieves significantly higher Rouge scores than the based
models on both datasets. In particular, the (+1.89 R-1;+1.36 R-2;+1.63 R-L)
increased for CNN/DailyMail and (+18.20 R-1;+11.51 R-2;+17.25 R-L) for
VNTC-Abs. Moreover, Table 3 shows that PEARL also produces a better result
than other related researches. In addition, PEARL achieves the new state-of-the-
art for both CNN/DailyMail and VNTC-Abs datasets without any pre-trained
model or extra-training data.

Analysing further on PEARL’s algorithms presented in Table 2, all of our sub-
methods are outperforms baselines. First, the +0.13 R-L in CNN/DailyMail and
+3.18 R-L in VNTC-Abs that SCST performs better than SCST(avg) proves
the importance of choosing Reward function and the reasonable of our design.
Next, the +0.54 R-L on CNN/DailyMail, especially +5.75 R-L on VNTC-Abs
improved by FRouge in the fourth row proves the rationality of the training
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Table 3. The comparison of PEARL to related researches. The best results are bolded.
The “-” symbol stands for the unreported results

Method CNN/DailyMail VNTC-Abs

R-1 R-2 R-L R-1 R-2 R-L

PG network [16] 39.53 17.25 36.38 25.21 9.11 21.70

Selector [2] 41.72 18.74 38.79 25.72 8.23 21.84

DeepReinforce [12] 41.16 15.75 39.08 – – –

Bottom-Up [4] 41.22 18.68 38.34 – – –

Contour [11] 42.08 19.11 39.10 27.27 9.10 23.70

PEARL (Ours) 43.61 20.10 40.42 43.92 19.74 39.09

objective that focuses on summary’s performance. Finally, DThreshold makes the
change of +0.73 R-L on CNN/DailyMail and +1.69 R-L on VNTC-Abs. This
strongly corroborates that our dynamic cohesion estimator helps to generate a
better threshold and reforms the quality of focus mask as well as enhances the
flexibility for the variety of data.

Apart from comparing with PG Network [16] and Selector [2], in Table 3,
we also measure the full reported result of the DeepReinforce [12] which is the
association of SCST and intra-attention. Furthermore, we analyze the result of
Bottom-up [4] and Contour [11] due to the similar idea to take the advantage
of informative words in the input. With CNN/DailyMail dataset, the highest
improved is +4.04 R-L better than PG Network and the nearest updates is
+1.32 R-L better than Contour. With VNTC-Abs, +17.39 R-L is the highest
improved better than PG Network, and +15.39 R-L is the nearest updates better
than Contour.

5 Conclusion

In this paper, we introduce PEARL as a framework that consists of two novel
approaches based on Reinforcement Learning for Abstractive Text Summariza-
tion. PEARL helps to enhance the semantic relation, redirect the training objec-
tive to the sustainable goal that produces the summary closer to the human’s
one, considerably improve the flexibility for the arbitrary data. Especially, we
explain the validity through data analysis. We set up the experiments with the
CNN/DailyMail and VNTC-Abs datasets. The results show that PEARL is rea-
sonable by significantly outperformed baselines. Moreover, PEARL accomplishes
the new state-of-the-art for the Abstractive Text Summarization task on both
datasets, comparing to other methods that do not use either pre-trained model
or extra training data.
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Abstract. Punctuation prediction is the task of predicting and insert-
ing punctuation like periods, commas, exclamation marks, etc. into the
appropriate positions in transcribed texts in ASR systems. This helps to
improve user readability and the performance of many downstream tasks.
While most related studies have been performed for popular languages like
English and Chinese, there is very little work done for low-resource lan-
guages. In order to stimulate the research on these languages, in this paper,
we target to improve the quality of punctuation prediction for Vietnamese
ASRs. Specifically, we propose a method based on recent advances on pre-
trained language models (LMs) for general purposes such as BERT and
ELECTRA. The benefit of using these models is that they can be effec-
tively fine-tuned on this punctuation prediction task where only a small
amount of training data is available. To further enhance the performance,
a simple yet effective technique to provide more context information in pre-
dicting punctuation marks for the very left and right words in each segment
is also proposed. The experimental results of the proposed model on public
benchmark datasets are quite promising. Overall, the proposed architec-
ture substantially enhanced the prediction performance by a large margin
and yielded a new state-of-the-art result on these datasets. Specifically, we
achieved the F1 scores of 71.49% and 80.38% on the Novel and Newspaper
public datasets, respectively.

Keywords: Punctuation prediction · Vietnamese ASR · viBERT ·
vELECTRA

1 Introduction

Automatic Speech Recognition (ASR) systems normally generate un-normalized
sequences of words (transcripts) which are difficult for human beings to read.
It does not contain a proper segmentation into sentences as well as other pre-
dicted punctuation symbols like commas, question marks, etc. This also results
in the degradation in performance of many further text processing tasks such as
question answering, machine translation, etc. because these tasks are normally
trained on punctuated texts [13,21]. Hence, recovering punctuation marks is a
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very important step towards generating normalized texts [23] in the output of
ASR systems. It relates to automatically infer the presence of punctuation and
then insert it to the appropriate positions in the transcribed texts.

Detecting punctuation in un-normalized texts requires quite a bit of linguis-
tic sophistication and native speaker intuition [16]. Traditionally, this task was
treated as a sequence labelling problem. Based on this approach, researchers
exploited different machine learning techniques with different kinds of features
to enrich the prediction models. For example, there existed work which used
raw speech waveforms with pause duration [6,9,10,20], textual features only
[1,4,12,24], or both two feature types in a combination model to build the cor-
responding prediction models. Most of these studies have been done for popular
languages such as Czech, English, French, German, Chinese, and Spanish [2].

While most work so far focused on high resource languages, there is very
little work dedicated to low resource languages. In Vietnamese, the research
about this field is still very limited. To our knowledge, there is only one work
done for punctuator prediction in Vietnamese [15].

In recent years, we have witnessed an increasing interest in using pre-trained
LMs based on transformers [25] to improve performances of many NLP tasks [3].
These models have been proposed to deal with the shortage of training data in
many NLP tasks by pre-training LMs on a large number of unlabeled datasets.
These pre-trained models are then effectively fine-tuned on small labeled datasets
of the downstream NLP tasks. They typically result in substantial performance
improvements compared to training on these small datasets from scratch [3]. For
low-resource languages, this approach is highly effective when it is only possible
to collect and annotate very little amount of labeled data for almost every NLP
task. For Vietnamese, to the best of our knowledge, these models have not been
investigated to address this punctuation prediction task. Hence, in this paper, we
aim at exploring these pre-trained LMs for this task in Vietnamese. Two kinds
of models which are BERT [3,8] and ELECTRA [3,7] are exploited to boost the
accuracy of predicting punctuation in Vietnamese transcribed texts.

In predicting punctuation, the whole transcribed text is usually long, so it is
processed by splitting the text into the unit of segments before feeding into the
model. For example, we acknowledged that the maximum segment length that
BERT can process is 512 tokens. In such cases, it can be seen that the model
is prone to make quite bad predictions for the words at the very left and right
ends of the segment because there is not enough context information for those
words at the boundary positions. To process such cases, we further propose a
technique to provide more information about the surrounding words in making
prediction of punctuation near those boundary words. This is called surrounding
context information (or context information for short) hereafter.

In conclusion, the contribution of this paper is three folds:

– Firstly explore the effectiveness of pre-trained LMs for the task of punctuation
prediction in a low-resource language, namely Vietnamese.

– Propose a simple yet effective technique to integrate surrounding contexts in
predicting punctuation of the very left and right words in each segment.
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– Extensively perform different kinds of experiments on public datasets to make
comparisons and provide new SOTA results for future research in this inter-
esting field.

The rest of this paper is organized as follows. Section 2 discusses related work.
In Sect. 3, we formally define the problem, and then propose a solution to solve
it using pre-trained LMs. Section 4 describes the datasets, experimental setups,
experimental results, and some discussions. Finally, we conclude the paper and
point out some future lines of work in Sect. 5.

2 Related Work

So far, there have been many studies done for predicting punctuation in post-
processing the output of ASR systems. It can be divided into three main
approaches based on the type of information available for building prediction
models.

The first approach is to use the information of raw speech waveforms with
pause duration between words, pitch and intensity as inputs in order to make
the prediction. And there is a significant variation in how different researchers
use pauses [6,9,10]. However, such information is not always available.

In the case where audio is not provided, researchers have entirely relied on
the appearance of texts only. Several methods have already been introduced to
deal with this task by using textual information. The first method is to cast it
as a sequence labeling problem and then exploit different machine learning algo-
rithms such as conditional random fields (CRFs) [12,24], deep and convolutional
neural networks [4], or recently transformer-based models [1] to make punctu-
ation prediction. Another method is to treat the punctuation restoration as a
machine translation task, that is, translating from unpunctuated text to punc-
tuated text [5]. There are also other methods which combine both feature types
(prosodic features and text features) or build separate models then combined in
various ways to further improve the performance.

In the case where the datasets are labeled with not only the information on
punctuation marks but also the information on true-casing of words, researchers
proposed a variety of joint architectures to jointly learn both punctuation and
truecasing information in one go. For example, Sunkara et al., 2020 [19] proposed
a joint framework using pre-trained masked LMs such as BERT to build the joint
model. Nguyen et al., 2019 [14] proposed a method to restore the normalized
texts for long-speech ASR transcription based on Transformer models and chunk
merging.

As can be seen that most current work has been extensively studied for
high resource languages like English, Spanish, Estonian or Chinese. These lan-
guages usually have many public benchmark datasets such as TED talks within
IWSLT datasets1, TDT4 English data2, Wiki dataset [18], Tsinghua Chinese

1 https://sites.google.com/site/iwsltevaluation2016/.
2 http://ssli.ee.washington.edu/people/leixin/TDT4.html.

https://sites.google.com/site/iwsltevaluation2016/
http://ssli.ee.washington.edu/people/leixin/TDT4.html
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Treebank [26] and Estonian speech transcripts [20]. Unfortunately, there is very
little work dedicated to low resource languages. In Vietnamese, the research
about this field is still very limited. To our knowledge, there is only one work tar-
geted to punctuator prediction [15]. Encouraging from the effectiveness of recent
innovation in pre-trained LMs, in this paper, we propose a learning architecture
using BERT [8] and ELECTRA [7], to enhance the performance of punctua-
tion prediction for Vietnamese ASRs. These models are quite effective especially
for the NLP tasks with a small amount of labeled data [22]. Additionally, a
technique to further boost the performance on predicting the punctuation of
boundary words in each segment is also introduced.

3 A Proposed Model to Predict Punctuation

This section first formulates the problem and then introduces a proposed archi-
tecture based on pre-trained LMs with extra boundary context information to
solve the task.

3.1 Problem Definition

Given an input segment s1:T = {x1, x2, ..., xT }, of length T and consisting of
T syllables xi. We assume that there are 6 classes corresponding to 6 possible
punctuation marks mostly appear in the text documents which are commas,
periods, colons, question marks, exclamation marks, and semi-colons.

We need to build a model f to map from each syllable xi into its class
ŷi that maximize P (ŷi|xi) where ŷi ∈ {comma, period, colon, question-mark,
exclamation-mark, semi-colon and Other}. The mapping indicates that the
punctuation mark ŷi is located right after the syllable xi in the recovered form
of this text segment. We add one more class, Other, to represent that there is
no punctuation mark located right after xi.

This problem can be considered as a sequence labelling task where we make
a prediction label for each syllable in the input segment.

3.2 A Proposed Architecture Using Pre-trained LMs
with Boundary Context Information

We first describe the key points of pre-trained LMs, namely BERT [8] and ELEC-
TRA [7]. Then, a proposed framework for learning and predicting punctuation
using these LMs is presented. The reason for choosing these models is that many
previous works have pointed out that these models normally yielded better per-
formance on many downstream NLP tasks. In fact, the experimental results on
the benchmark datasets also prove this statement.

BERT. BERT is trained based on Transformer [25]. Its attention mechanism
learns contextual relations between words (or sub-words) in a text. It is basically
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an encoder-decoder model where an encoder reads the text input and a decoder
produces a prediction for the task. The goal of BERT is to generate a language
model, therefore, only the encoder mechanism is necessary. Because the encoder
reads the entire sequence of words at one time, it allows the model to learn the
context of a word based on all of its surroundings (left and right of the word).
The detailed workings of Transformer can be found in the paper [8].

When training BERT, there are two prediction goals which are Masked Lan-
guage Model (MLM) and Next Sentence Prediction (NSP) which are described
in more details as follows:

– MLM : 15% of the words in each sequence are masked with a [MASK] token.
BERT then learns to predict the original one of the masked words, based
on the context provided by the other words which are non-masked in this
sequence.

– NSP : BERT receives pairs of sentences as input and learns to predict if the
second one is the subsequent sentence in the original document.

ELECTRA. BERT is trained to correctly predict typically 15% of masked
tokens. Therefore, it can only learn from a small portion of text sequences.
ELECTRA, which stands for Efficiently Learning an Encoder that Classifies
Token Replacements, was proposed to deal with the disadvantage of BERT by
learning the task called Replace Token Detection (RTD). It trains the model to
distinguish between the real input token from the replaced one. As a consequence,
it is more effective in learning from the entire sequence instead of just a small
portion of it. ELECTRA consists of two components as described below:

– Generator : is a small masked language model trained jointly with the dis-
criminator. It is trained with maximum likelihood to predict masked words.
After pre-training, this component is ignored and only the discriminator is
fine-tuned on the punctuation prediction task.

– Discriminator : trains the model to distinguish between the real and the fake
input data. Then, it is used to recognize which token has been replaced or
kept the same.

The Proposed Architecture. Figure 1 depicts our proposed architecture to
solve the task. This architecture includes three main layers which are described
as follows:

Embedding Layer. The input segment is tokenized by the WordPiece tokenizer
(Sennrich et al., 2016) [17] and fed into the BERT or ELECTRA encoders. Sim-
ilar to the work of Pham et al., [15], we also trained the model on segments
consisting of 100 syllables. However, for each segment we observe that the token
in the middle positions are normally leveraged by the full context information
of both left and right words in the input segment. While, the very left or right
words at the boundary of the segment only have very little or not enough sur-
rounding context information at the left or right side, respectively. To provide
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more context for the words at these positions, more contexts are complemented
to enrich the information for those words. Specifically, the sequences of k tokens
that come before and after the segment are also included before feeding to the
BERT/ELECTRA models.

The input segment enriched with the context information at the boundary is
tokenized into s1:T+2∗k = x−k, ..., x1, x2, ..., xT , ..., xT+k, of length T + 2 ∗ k and
consisting of tokens xi. When necessary, context information is padded to the
left or to the right with [PAD] tokens.

xt xt+1 xt+2 ... xt+nxt-1xt-2... xt+n+1 xt+n+2 ...

Et Et+1 Et+2 Et+n Et+n+1 Et+n+2Et-1Et-2

Trm Trm Trm Trm

...... ...

Trm Trm Trm Trm

...

...

Raw Tokenized
SegmentLeft Tokens Right Tokens

TRANSFORMERS

Softmax

Representation
Layer

Inference 
Layer

PERIOD O COMMA O

Embed- 
 ding Layer

Fig. 1. A proposed architecture using pre-trained LMs with the context information
around each segment.

Representation Layer. The lower component exploits BERT or ELECTRA
models to encode the context information of s into a representation vector
H = [h−k, ..., hT+k]. After obtaining the representation, H, we design the
decoder architecture on top of the BERT embedding layer for solving the task.

Inference Layer. This layer predicts a probability distribution over punctuation.
In more details, the decoder takes in the vector representation hi for token xi

and passes it through the activation layer L which is calculated as follows:

Li = f(Wohi + bo) (1)

where f is a linear function, Wo is the weight matrix, and bo is the bias vector
of two layers. They are learnable parameters of the linear layer.
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The prediction for this layer P is calculated using the corresponding sigmoid
function which connects the activation layer with the output of this layer.

P (yi|xi) = softmax(Li) (2)

During training, the model minimizes the loss function of the predictor P over
only the tokens of the original segment. We don’t predict the labels for extra
tokens added as surrounding contexts.

4 Experiments

4.1 Datasets

These two datasets (i.e. Novels and Newspaper) [15] were built from Vietnamese
novels and newspapers. There are 6 types of punctuation marks with some statis-
tics given in Table 1.

Table 1. Some statistics about the two Vietnamese benchmark datasets which are
Novel and News.

Punctuation Novel dataset News dataset

Training set Testing set Training set Testing set

Number % Number % Number % Number %

Comma (;) 50909 3.77 21231 4.045 482435 4.041 160472 4.054

Period (·) 66519 4.926 29643 5.648 419580 3.514 138967 3.51

Colon (:) 742 0.055 1153 0.221 32177 0.269 10728 0.271

Qmark (?) 14899 1.103 5271 1.004 13902 0.116 4468 0.113

Exclam (!) 30183 2.235 9167 1.747 7384 0.062 2333 0.059

Semicolon (;) 48 0.004 43 0.008 5675 0.048 2045 0.052

Sentences 111601 44081 440866 145768

These datasets are divided into training, validation and testing with the ratio
of 6:2:2. In these datasets, there is no assumption about sentence boundaries
inside texts. We also noticed that the distribution of punctuation marks are not
equal. Some marks (i.e. comma, period) dominate, while the others (i.e. colon,
semicolon) only appear very little.

4.2 Experimental Setups

For BERT, we exploited two variants which are mBERT3 and viBERT4. For
ELECTRA, we exploited the vELECTRA5 which is pre-trained for the Viet-
namese language. The viBERT and vELECTRA [3] are optimally pre-trained
LMs for the Vietnamese language.
3 https://github.com/google-research/bert/blob/master/multilingual.md.
4 https://github.com/fpt-corp/viBERT.
5 https://github.com/fpt-corp/vELECTRA.

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/fpt-corp/viBERT
https://github.com/fpt-corp/vELECTRA
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Our models were implemented in PyTorch6. We set the batch size to 32 for
both viBERT and vELECTRA. The maximum sequence length is set at 100
which is similar to the previous work [15]. The value of k was set to 50. Our
models were trained using the AdamW optimizer [11], a stochastic optimization
method that modifies the typical implementation of weight decay in the Adam
optimizer by decoupling weight decay from the gradient update. The learning
rate was tuned in [1e-5, 1.5e-5, 2e-5, 3e-5, 5e-5, 1e-4] with a linear warm up
schedule. To reduce overfitting, we also added dropout with a dropout rate of
0.1 for BERT components and 0.5 for the last layer of fine-tuning.

All experiments were performed on the server where its hardware components
are CPU Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20 GHz, and GPU NVIDIA
Tesla V100 32 GB CoWoS HBM2 PCIe 3.0.

4.3 Evaluation Metrics

The system performance is evaluated using precision, recall, and the F1 score as
in many sequence labeling problems as follows:

F1 = 2∗precision∗recall
precision+recall

precision = TP
TP+FP

recall = TP
TP+FN

where TP (True Positive) is the number of punctuation marks that are cor-
rectly identified. FP (False Positive) is the number of punctuation marks that
are mistakenly identified as valid ones. FN (False Negative) is the number of
punctuation marks that are not identified.

4.4 Experimental Results

This section presents extensive experiments to prove the effectiveness of the
proposed architecture and some discussions on the final experimental results.

Firstly, we show experimental results of the proposed architecture with and
without using surrounding context information. The results on the NOVEL
dataset are illustrated first, followed by the results on the Newspaper dataset.
Additionally, to see the impact of the pre-trained models on this downstream
task, we performed experiments with different training data sizes to see the per-
formance of the final model on the two datasets. Finally, some discussions on
comparison with the previous work and performance on each punctuation mark
are also presented.

6 https://pytorch.org/.

https://pytorch.org/
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Experimental Results on the NOVEL Dataset. Tables 2 and 3 show exper-
imental results of the proposed models on the NOVEL dataset with and without
using surrounding contexts. Among three models, the vELECTRA yielded the
best F1 scores and outperformed the other two models by a large margin on all
three evaluation metrics. Using vELECTRA, we achieved the F1 scores of 69.56%
without using surrounding contexts, and 71.49% by using surrounding contexts. In
comparisonwithmBERT, the one optimized forVietnamese, viBERT, boosted the
F1 scores by 4.3% and 3.8% with and without using surrounding contexts, respec-
tively.

Table 2. Experimental results on the NOVEL dataset WITHOUT using surrounding
contexts.

Punctuation mBERT viBERT vELECTRA

Pre Rec F1 Pre Rec F1 Pre Rec F1

PERIOD 62.77 64.58 63.66 66.32 68.97 67.62 72.05 73.63 72.83

COMMA 61.21 52.58 56.57 63.31 59.67 61.43 68.44 64.48 66.40

COLON 26.21 2.34 4.30 36.84 4.25 7.62 48.39 5.20 9.40

SCOLON 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

QMARK 77.34 73.17 75.20 77.77 75.81 76.78 80.72 79.53 80.12

EMARK 59.24 58.44 58.84 61.48 60.83 61.15 62.88 66.02 64.41

MICRO AVG. 62.91 59.47 61.14 65.57 64.25 64.90 70.24 68.89 69.56

Table 3. Experimental results on the NOVEL dataset using surrounding contexts.

Punctuation mBERT viBERT vELECTRA

Pre Rec F1 Pre Rec F1 Pre Rec F1

PERIOD 64.45 66.33 65.37 69.21 70.90 70.05 73.28 76.46 74.84

COMMA 62.88 54.70 58.51 66.76 61.24 63.88 71.18 66.06 68.53

COLON 25.76 2.95 5.29 43.20 4.68 8.45 47.85 6.76 11.85

SCOLON 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

QMARK 79.18 75.20 77.14 80.27 77.63 78.93 84.11 80.72 82.38

EMARK 59.70 62.27 60.96 62.61 63.90 63.25 64.08 66.96 65.49

MICRO AVG. 64.36 61.62 62.96 68.33 66.19 67.24 72.07 70.91 71.49

Experimental Results on the NEWSPAPER Dataset. Tables 4 and 5 show
experimental results of the proposed models on the NEWSPAPER dataset with
and without using surrounding contexts. Observing the results, we draw the same
conclusion as shown on the Novel dataset. Specifically, the vELECTRA outper-
formed the other two models and yielded new state-of-the-art results. We achieved
78.30% and 80.38% in the F1 scores without and with using surrounding informa-
tion, respectively. Because viBERT is optimized on Vietnamese language, this spe-
cialized model gave a higher improvement compared to mBERT. It boosts the F1

scores by 2.8% and 3% with and without using surrounding contexts, respectively.
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Table 4. Experimental results on the NEWSPAPER dataset WITHOUT surrounding
contexts.

Punctuation mBERT viBERT vELECTRA

Pre Rec F1 Pre Rec F1 Pre Rec F1

PERIOD 78.60 80.27 79.43 80.05 84.35 82.14 83.85 86.01 84.92

COMMA 69.92 67.16 68.51 74.51 68.98 71.64 75.46 74.27 74.86

COLON 58.66 47.48 52.48 62.34 48.77 54.73 65.48 56.34 60.56

SCOLON 31.54 12.03 17.42 30.59 19.46 23.79 44.28 10.22 16.61

QMARK 64.86 58.12 61.31 68.81 63.94 66.29 70.12 70.01 70.06

EMARK 38.07 11.36 17.50 38.63 12.30 18.66 38.14 16.67 23.20

MICRO AVG. 73.34 71.32 72.32 76.45 74.19 75.31 78.71 77.89 78.30

Table 5. Experimental results on the NEWSPAPER dataset using surrounding con-
texts.

Punctuation mBERT viBERT vELECTRA

Pre Rec F1 Pre Rec F1 Pre Rec F1

PERIOD 80.68 83.12 81.88 82.17 86.67 84.36 85.75 89.03 87.36

COMMA 71.68 69.28 70.46 75.52 71.59 73.50 77.99 74.93 76.43

COLON 62.27 50.14 55.55 66.62 50.57 57.50 69.47 57.87 63.14

SCOLON 34.11 16.53 22.27 33.49 17.11 22.65 42.11 21.12 28.13

QMARK 68.32 62.76 65.42 68.99 71.04 70.00 75.73 72.22 73.94

EMARK 41.60 12.73 19.49 45.83 10.59 17.20 49.21 13.29 20.92

MICRO AVG. 75.31 73.82 74.56 78.11 76.65 77.37 81.12 79.66 80.38

Experimental Results with Different Training Sizes. For a better under-
standing of the performance of the proposed architecture, we performed an
empirical comparison taking into consideration the level of different sizes of
training sets. On each dataset, we varied the training data sizes by 10% and
performed this 10 times. Figure 2 and 3 shows experimental results using the
best model, vELECTRA, with surrounding contexts on the Novel and Newspa-
per datasets.

As we can see, the more training data we have, the better the performance
of the model. However, with only very little amount of data, we still achieve
quite good performance. For example, with only 10% of original training data
size, we could obtain around 62% and 76.7% in the F1 scores on the Novel and
Newspaper datasets, respectively.

Discussion

Comparison with the Best Baseline Model. Figure 6 shows experimental results
on the two datasets of the best baseline model (i.e. biLSTM without focal losses)
and the best proposed model (i.e. vELECTRA) integrated with surrounding
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Fig. 2. The F1 scores using different training sizes using vELECTRA with context
information on the NOVEL dataset.

contexts. We observed a significant improvement of the proposed model over the
baseline one mentioned in [15] on all three evaluation metrics of precision, recall
and F1 scores. Specifically, on the Novel dataset, vELECTRA boosted the F1

score by 17.71%. On the Newspaper dataset, it boosted the F1 score by 21.18%.
These results set new SOTA results for future work for this task using these
benchmark datasets.

Table 6. Experimental results of the best baseline method (biLSTM) and the best
proposed model (vELECTRA) integrated with surrounding contexts (micro averaged
on all 6 punctuation marks).

Datasets Models Pre Rec F1

NEWSPAPER biLSTM-attention (BAW) 69.63 56.97 62.67

vELECTRA 81.12 79.66 80.38

NOVEL biLSTM-attention (BAW) 56.52 45.34 50.31

vELECTRA 72.07 70.91 71.49

Performance on Each Punctuation Mark. Tables 2, 3, 4, and 5 also show the
experimental results of the proposed model on all punctuation marks. We
observed that the proposed models yielded relatively high performance on three
labels which are period, comma and question marks. On the Novel dataset, the
performance on two labels of colon and semi-colon are lowest. On the News
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Fig. 3. The F1 scores using different training sizes using vELECTRA with context
information on the NEWSPAPER dataset.

dataset, the performance on the two labels of exclamation and semi-colon are
lowest. The reason is that the number of samples in the training datasets on these
labels are much smaller in comparison to other labels. This imbalance data prob-
lem needs solving in order to improve the performance on these skewed labels.

5 Conclusion

This paper presents an effort to improve the performance of a punctuation pre-
diction model on Vietnamese ASRs. To cope with the data sparsity problem
in low-resource languages, we proposed to exploit the recent innovation of pre-
trained LMs to solve the task. Trained on a large amount of unlabelled data
for general purposes, these pre-trained LMs can be further fine-tuned effectively
on many downstream NLP tasks with a small amount of training data. In more
detail, we used two LMs, namely BERT and ELECTRA, which are specifically
pre-trained for the Vietnamese language. To improve even more, we also pro-
posed a technique to better make the prediction of punctuation marks of the
boundary syllables in each segment. The experimental results of these proposed
models on two public datasets showed promising results. The best model inte-
grated with surrounding contexts yielded the best performance and established
new challenging SOTA results. It outperformed the best baseline model by a large
margin. Using the best model with surrounding contexts, we achieved 71.49%
and 80.38% in the F1 scores on the Novel and Newspaper datasets, respectively.

In the future, we will continue to consider the imbalance data problem to
deal with the skewed data of rare punctuation marks.
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Abstract. Online social media platforms have been developing rapidly
in the era of the Internet and big data, which accelerate rumors being
circulated. The spread of rumors might damage citizen rights and dis-
turb social stability. Rumor detection on social media is a challenging
task worldwide due to rumor’s feature of the high speed, fragmental
information, and extensive range. In this paper, we propose a novel
model for rumor detection based on Graph Neural Networks (GNN),
named Dual-grained Feature Aggregation Graph Neural Networks
(Du-FAGNN). It applies a Graph Convolutional Network (GCN) with a
graph of rumor propagation to learn the text-granularity representations
with the spreading of events. We employ a GNN with a document graph
to update aggregated features of both word and text granularity, it helps
to form final representations of events to detect rumors. Experiments on
the Sina Weibo dataset validate the performance of the proposed method
for rumor detection.

Keywords: Rumor detection · Graph neural networks · Dual-grained
aggregation · Rumor propagation

1 Introduction

In the era of big data, social media platforms have become an indispensable
part of our daily life, which increase people’s ability to obtain and exchange
information significantly. Users can post, forward, and comment on any real-time
information through various platforms. Therefore, microblog platforms like Sina
Weibo usually have higher flexibility and stronger interactivity, and information
can be fully diffused. The explosive growth of data usually leads to fake news
and rumors. Since the lack of monitoring mechanisms, harmful information can
easily flourish. Rumors on social media have become a serious concern in recent
years, especially when disasters like Coronavirus Disease-19 (the COVID-19)
outbreak. Peace and order of the society may be affected because of diverse
misinformation.
c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13032, pp. 205–216, 2021.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89363-7_16&domain=pdf
https://doi.org/10.1007/978-3-030-89363-7_16


206 S. Xu et al.

Society is taking great efforts to fight against rumors. There are a large
number of researches on rumor detection. Most of the traditional methods tend to
use classification algorithms with manually extracted features, such as Support
Vector Machine (SVM) [22,25], Random Forest [11,20] and Decision Trees [3,27].
Recent researches have employed deep learning methods to explore high-level
representations of rumors from text contents, spreading path, users [16] and other
features. There are still some challenges. Though plenty of research has been done
on text contents, emotional tendency, and user information, the propagation
mechanism of rumors has not been studied adequately. How to concretize the
propagation patterns is still a problem in terms of rumor diffusion.

In this paper, we propose a novel dual-grained feature aggregation graph neu-
ral network (Du-FAGNN)1, which operates on Graph Convolutional Networks
(GCN) and Graph Neural Networks (GNN). The proposed method obtains the
text features via GCN and acquires word-text aggregated features via GNN.
GCN updates text representations by formulating rumor propagation. GNN gen-
erates word-text fused vectors and further updates them to form final represen-
tations by constructing co-occurrence graphs of words. We optimize our model
components to improve the accuracy of the method. The main contributions of
this work are as follows:

• We adopt both GCN and GNN to detect rumors at different grain sizes, which
few people would take into account.

• We propose the Du-FAGNN model that considers both word-level represen-
tations and text-level updated vectors. Besides, we generate text-granularity
features through rumor propagation.

• We concatenate the updated text features of the rumor with the word features
of source post at graph neural network module to make comprehensive use of
both source posts and retweet posts. Experiments on the Sina Weibo dataset
achieve great performance in rumor detection.

The remainder of this paper is organized as follows. Section 2 presents the
related work of rumor detection. Section 3 is the statement of variables and data
structures and describes GCN and GNN. In Section 4, the proposed model and
its modules are elaborated. Section 5 presents the experiments and analyzes the
results.

2 Related Work

Automatic detection of rumors aims to identify rumors using series of approaches
through plentiful information like text contents, comments, and forwarding pat-
terns on social media. Most previous work focuses on traditional handworked fea-
tures and classification methods. Yang et al. [25] extracted 19 features from Sina
Weibo manually, which exhibited characteristics different from those of Twitter.

1 The Code of our Du-FAGNN model is available and can be accessed via: https://
github.com/LXD789/Du-FAGNN.

https://github.com/LXD789/Du-FAGNN
https://github.com/LXD789/Du-FAGNN
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They sent these features into an SVM classifier with RBF kernel. Considering
that traditional rumor detection methods ignored the propagation structure of
massages, Wu et al. [22] proposed a hybrid SVM based on a graph kernel to
capture the semantic features and high-order propagation patterns. Ma et al.
[16] pointed out the present work of detecting rumors neglected the importance
of variational features over time, so they proposed a time series method cap-
turing the time-varying features based on the rumor life cycle. Ma et al. [17]
also proposed a kernel-based method that captures high-level representations
distinguishing different types of rumors by evaluating the similarities between
propagation trees. These conventional methods are not only ineffective but also
a waste of time and resources.

Several methods based on deep learning were proposed in recent years.
Sumeet et al. [10] proposed an approach that represents conversations on social
media as binarized constituency trees, which can learn features from source posts
and their replies effectively. They used Long Short Term Memory (LSTM) to
classify rumors at the root. Ma et al. [15] discovered the continuity of the text
stream, and that Recurrent Neural Networks (RNN) could capture the dynamic
time signals of rumor forwarding. They proposed a model based on RNN to
learn the semantic features of tweet context over time. Using Recursive Neu-
ral Networks (RvNN), Ma et al. [18] also proposed top-down and bottom-up
tree-structured neural networks that relate text content to propagation clues. It
helps to learn rumor representations. Shu et al. [21] found that social context
in the process of news spreading on social media has formed inherent relation-
ships among the publisher, the news, and the users. They proposed a framework
of modeling publisher-news and user-news interaction relations to classify fake
news. Ruchansky et al. [19] proposed the CSI (Capture, Score and Integrate)
model in combination with users, texts, and group behavior of spreading fake
news. Liu et al. [12] presented a CNN+RNN based time series classifier to detect
fake news, its input is time-series in news forwarding paths. Wu et al. [23] put
forward a novel method that employs social networks to infer the involvement
of users. They used LSTM-RNN to represent and classify the paths of message
spreading. Lukasik et al. [14] treated the classification of rumors as a super-
vised learning task that considers both supervised and unsupervised domain of
self-adaption. Gao et al. [6] presented a novel hybrid neural network that com-
bines a task-specific character-based bidirectional language model and stacked
LSTM. It can represent text content and the social-time context of source posts
to address the early rumor detection task. These deep-learning approaches are
more efficient, but cannot learn propagation and high-level representations of
rumors well.

Graph Neural Networks (GNN) is very efficient and popular in the past few
years. Kipf et al. [9] proposed a CNN-based graph-structured semi-supervised
approach in 2016. Bian et al. [2] proposed a new bi-directional graph convo-
lutional model to explore the propagation and dispersion of rumors through
the top-down and bottom-up structure. Lu et al. [13] exploited graph-aware co-
attention networks based on source posts and series of no-comment retweet users.
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It can highlight suspicious retweeters and words to predict whether the source
is a rumor. Dong et al. [5] presented a model which can locate several rumor
sources in the case of an unknown propagation pattern. Yu et al. [8] created a
GCN-based model that takes both static characteristics like user information,
text content and dynamic features such as rumor diffusion. Han et al. [7] adopted
GNN to differentiate spreading mode between fake news and real news. Aiming
to solve rumor detection tasks under the framework of representation learning,
Wu et al. [24] proposed a novel approach of constructing propagation graph
through spreading structure of posts on Twitter, and they applied an algorithm
of gated graph neural networks to generate powerful representations for nodes in
forwarding graph. Ke et al. [8] exploited a rumor detection framework that pro-
vides sufficient knowledge to accurately classify rumors and symmetrically fuses
semantic information with propagation heterogeneous graph. Benamira et al. [1]
focused on the content-based approach of fake news detection. They considered
the problem as a binary text classification task and proposed a graph neural
network-based semi-supervised method for fake news detection. Our proposed
model is inspired by the GNN.

3 Du-FAGNN Rumor Detection Model

In this section, we propose a GNN-based double-level feature aggregation method
for rumor detection, named as Dual-grained Feature Aggregation Graph Neural
Networks (Du-FAGNN). The core idea of Du-FAGNN is to learn both word and
text granularity high-level representations from text content and event propaga-
tion to detect rumors.

3.1 Problem Statement

We define a rumor detection dataset as a set of events C = {c1, c2, ..., cn},
where ci is the i-th event and n is the number of events. ci = {ci

0, ci
1, ..., ci

m},
where ci

0 is the source tweet and each ci
j is the j-th responsive post of ci

0. Denote
Gi = (Ni, Ei) as the propagation graph of event ci, where node set Ni =
{ci

0, ci
1, ..., ci

m} and Ei = {ei
1, ei

2, ..., ei
m} represents the set of edges from

responded tweet to the retweet post. Denote Ai ∈ {0, 1}mi×mi as the adjacency
matrix where

Ai =
{

1 , if ei
j ∈ Ei

0 , otherwise.
(1)

Denote Xi = [xi
0, xi

1, ..., xi
m]T as the sentence feature matrix extracted from

the posts in ci, where xi
0 represents the sentence feature vector of ci

0 and xi
j

represents the sentence feature vector of ci
j .

Then we extract source tweets in the rumor detection dataset S =
{c10, c20, ..., c

n
0}. Define a textual document graph g′

i = (Nodei, Edgei) for source
tweet ci

0, where Nodei = {nodei
1, nodei

2, ..., nodei
p} and each nodei

j is a word
in the text of source tweet ci

0. Edgei = {edgei
1, edgei

2, ..., edgei
p−1} represents
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the co-occurrence between words which describes the relationship of words that
appear in the same sliding window. Denote ai ∈ {0, 1}pi×pi as the adjacency
matrix where

A′
i =

{
1 , if edgei

j ∈ Edgei

0 , otherwise.
(2)

Denote Fi = [f i
1, f i

2, ..., f i
p] as the word feature matrix extracted from the words

in ci
0, where f i

j represents a word feature vector of word nodei
j .

In addition, each event ci is related to a label yi ∈ {F, T} (i.e., False Rumor
or True Rumor). Given the dataset, we describe this task as a supervised clas-
sification problem that learns a classifier f : C → Y to predict the label of an
event based on textual content and propagation structure, where C is the event
sets and Y is the set of labels.

The rumor detection model consists of three modules, i.e., the text-level
feature generation module, the graph neural network module, and the pooling
module, as shown in Fig. 1. Specifically, the text-level feature generation mod-
ule captures textual content features from both source tweets and retweet posts.
GCN is used to obtain updated representations of text contents with event prop-
agation structure. The graph neural network module uses Gated GNN to update
word-text aggregated representations. We design the pooling module to aggre-
gate node vectors and get the final representation vector of the entire graph.

3.2 Text-Level Feature Generation Module

Adding propagation structure and retweet features, the source tweet feature
is enhanced. Based on the retweet relationships, we construct an event graph
Gi = (Ni, Ei) for event ci. Then let Ai ∈ R

mi×mi be its corresponding adjacency
matrix of ci. Ai contains the edges from responded tweets to the retweet posts.

After constructing the event graph Gi, we consider 3-layer GCN to gener-
ate text updated representation of event ci based on Ai and Xi. The propaga-
tion function defined in the first-order approximation of ChebNet (1stChebNet)
which is applied in GCN is as follows:

H(l+1) = F (A,H(l); D̃,W (l)) = σ(D̃− 1
2 ÃD̃− 1

2 H(l)W (l)), (3)

where Ã = A + IN is the adjacency matrix with added self-connections,
D̃ii =

∑
j Ãij and W (l) represents the layer-specific trainable weight matrix.

σ(·) denotes an activation function, for instance, the ReLU(·) = max(0, ·). And
the normalized symmetric adjacency matrix Â = D̃− 1

2 ÃD̃− 1
2 .

Then we feed the event graph Gi into GCN. The forward propagation func-
tion is as follows:

Z = f(X,A) = softmax(ÂReLU(ÂReLU(ÂXW (0))W (1))W (2)). (4)
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Fig. 1. Our Du-FAGNN rumor detection model

Here, W (0) ∈ R
C×H is an input-to-hidden weight matrix for the first hidden

layer with H feature maps. W (1) is a hidden weight matrix, while W (2) is a
hidden-to-output weight matrix.

We treat the 3-layer GCN model as a pre-trained model that saves parameters
after stopping training. Then we use the saved parameters and a modified 3-
layer GCN model to generate the source tweet updated representation of event
ci. Dropout is applied to avoid over-fitting.

3.3 Graph Neural Network Module

We consider aggregating word features with updated text features produced in
the text-level feature generation module. Base on the textual document graph
g′

i = (Nodei, Edgei) of event ci, GRU is applied on graph g′
i to learn the

embeddings of word nodes. The nodes receive information from their neighbors,
then selectively decide which to save and which to get rid of, and finally, merge
the stayed information with their own representations to update. The formulas
of the operations are:

at = Aht−1Wa, (5)

zt = σ(Wza
t + Uzh

t−1 + bz), (6)
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rt = σ(Wza
t + Uzh

t−1 + bz), (7)

h̃t = tanh(What + Uh(rt � ht−1 + bh)), (8)

ht = h̃ � zt + ht−1 � (1 − zt), (9)

where A ∈ R
|V|×|V| is the adjacency matrix, σ is the sigmoid function, zt is the

update gate while rt is the reset gate. W ,U and b are trainable parameters.
By using GRU, we get the updated word features. Then further update the

representations. The equation is as follows:

hv = σ(f1(ht
v)) � tanh(f2(ht

v)), (10)

where ht
v is the node representation that GRU generates. f1 and f2 are multilayer

perceptrons (MLP) where the former is an attention weight and the latter is a
non-linear feature transformation.

3.4 Pooling Module

Considering that each word plays a certain role in the text, we average the word
features. In addition, the role of keywords should be more explicit, we employ
the maximum pooling, as shown in (11):

hG =
1

|V|
∑
v∈V

hv + max(h1, . . . , hv). (11)

The maximum pooling is selecting the largest value of all nodes in the same
dimension as the final output of each dimension. Here, hG is the graph repre-
sentation, V is the node set of a graph and hj is the ultimate updated word
representation of each node.

Then the predicted label of event ci is calculated by using a softmax layer
after obtaining the graph-level vector hG:

ŷG = softmax(WhG + b), (12)

where W and b are weights and bias, and ŷG ∈ R
1×C is a probability vector for

all the classes used to predict the label of event ci, C is the number of categories.

4 Experiments and Analysis

4.1 Dataset

We choose the dataset in Weibo [15] to assess our proposed method. It includes
two categories of labels: False Rumor (F) and True Rumor (T). In the dataset,
nodes in the event propagation graph refer to tweet posts while nodes in the
source tweet text graph refer to words in text content. Besides, edges in the
event graph represent the forwarding relationship, and edges in the source text
graph represent the co-occurrence relationship. The statistics of the dataset are
shown in Table 1.
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Table 1. Statistics of the dataset

Statistic Weibo

# of events 4664

# of Rumors 2351

# of Non-rumors 2313

# of Posts 3,805,656

# of Users 2,746,818

4.2 Experiment Settings

The pre-trained BERT [4] model with 12 layers and 256 dimensions is utilized to
extract vectors. In the text-level feature generation module, we use it to extract
text features for the source tweets and the first 15 retweets of each event. In
the graph neural network module, it is applied to extract word vectors in every
source tweet. The output of the penultimate layer in BERT is taken as the text
and word representations.

In the text-level feature generation module, we use the 3-layer GCN whose
dimensions of input and hidden feature vectors are 16 and 128 respectively, and
the dimension of output vectors is 32. In the graph neural network module, we
concatenate 256-dimension word feature vectors with 32-dimension text repre-
sentations. 2-layer GGNN is employed to update the word-text aggregated rep-
resentations to help detect rumors. It has a hidden feature dimension of 96, and
it uses stochastic gradient descent to update parameters. Moreover, the Adam
algorithm is applied to optimize the model. The dropout rate is 0.5. The graph
pooling module uses a maximum pooling algorithm and an average operation.

4.3 Baselines

We compare the proposed model with the following baselines, including:

• SVM-RBF [25]: a rumor detecting method using manual features and SVM
classifier with RBF kernel function. The handworked features are extracted
from Sina Weibo.

• RvNN [18]: a rumor detecting approach based on tree-structured recursive
neural networks. It learns tweet representations via event propagation.

• TextING [26]: a text classification model with GRU, MLP, and graph struc-
ture. In the graph, nodes represent words and edges represent word co-
occurrence relations.

• TextGCN [9]: a GCN model applied in text classification field. They use word
co-occurrence and document word relations to build a text graph. They utilize
the one-hot vector as the word features and apply TF-IDF as the edge weight
in the text graph.

• PPC RNN+CNN [12]: an early detection approach of fake news through clas-
sifying propagation paths. They construct the paths as multivariate time
series and build a time series classifier incorporating RNN and CNN.
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Fig. 2. Comparison of different methods on Weibo dataset

To evaluate the classification model, we generate a confusion matrix between
the prediction results and the real label, and we calculate the indicators based
on the values in the matrix. We use the four indicators to evaluate the model:
Accuracy, Precision, Recall, and F1-score. Accuracy indicates the proportion of
correctly classified results in the total results. Precision represents the share of
the correctly predicted results among all results predicted to be positive. Recall
indicates the proportion of correctly predicted results in all real-positive results.
And F1-score represents the comprehensive results of Precision and Recall. It
ranges from 0 to 1, 0 means the worst performance while 1 means the best.

Table 2. Results on Weibo dataset (F:False Rumor,T:True Rumor)

Method Class Accuracy Precision Recall F1

SVM-RBF∗ F
T

0.818 0.822
0.815

0.812
0.824

0.817
0.819

TextGCN F
T

0.837 0.809
0.862

0.840
0.835

0.824
0.848

TextING F
T

0.842 0.851
0.832

0.844
0.839

0.848
0.836

RvNN∗ F
T

0.908 0.912
0.904

0.897
0.918

0.905
0.911

PPC RNN+CNN∗ F
T

0.916 0.884
0.955

0.957
0.876

0.919
0.913

Du-FAGNN F
T

0.957 0.949
0.970

0.983
0.917

0.966
0.943
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4.4 Result Analysis

As shown in Fig. 2, our proposed model yields better than the baseline meth-
ods. It is observed that deep learning approaches perform better than those
using manually extracted features. The detection speed of Du-FAGNN increases
rapidly in the beginning. It can be inferred that the high-level aggregated rep-
resentations are helpful for model learning.

Results of baseline models and the proposed model are shown in Table 2. In
terms of Accuracy, the proposed model improves TextGCN, TextING, RvNN,
and PPC RNN+CNN by 10.9%, 10.4%, 3.8% and 3% respectively on the Weibo
dataset. This is because we employ both GCN and GNN structures. We find that
the combination of a complex text classification approach and large vectorization
models may not be helpful for accuracy. In addition, we find that models with
propagation features have higher scores in the evaluation. It is vital of employing
different types of features to enhance text vectors for helping to classify the event.

Figure 3(a) shows that our proposed model outperforms the TextING and
TextGCN by 5.8% and 6.3% respectively in the case of using only word features.
Figure 3(b) shows that the Du-FAGNN model performs better than TextING
in the circumstance of using both source-retweet text-granularity features and
word-granularity features. The input of TextING is original word-text features
without GCN-updating, while the input of Du-FAGNN is the updated word-text
features. It can be inferred that word-text aggregated features with propagation
structures are conducive for constructing models.

(a) (b)

Fig. 3. The comparison of our model and TextING,TextGCN

5 Conclusions

In this paper, we propose an improved GNN-based model named Du-FAGNN
for rumor detection on social media. We utilize GCN to generate source text-
granularity features by constructing events as graphs. The event graphs help to
update source text features by retweet post features. We aggregate text-level
features with word-granularity features to make new fused features, they are
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word representations in events. Besides, we adopt GNN to update and gener-
ate the ultimate representations of events and predict. The experimental results
on the Sina Weibo dataset demonstrate that the GNN-based method outper-
forms baselines in terms of both efficiency and accuracy. In particular, the Du-
FAGNN model achieves performance by considering both word features and
source-retweet features with propagation structure.
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Foundation of China (Grant No. U1703261 ). The corresponding author is Kai Ma.

References

1. Benamira, A., Devillers, B., Lesot, E., Ray, A.K., Saadi, M., Malliaros, F.D.:
Semi-supervised learning and graph neural networks for fake news detection. In:
ASONAM ’19: International Conference on Advances in Social Networks Analysis
and Mining (2019)

2. Bian, T., et al.: Rumor detection on social media with bi-directional graph convolu-
tional networks. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, pp. 549–556 (2020)

3. Castillo, C., Mendoza, M., Poblete, B.: Information credibility on twitter. In: Pro-
ceedings of the 20th International Conference on World Wide Web, pp. 675–684
(2011)

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

5. Dong, M., Zheng, B., Quoc Viet Hung, N., Su, H., Li, G.: Multiple rumor source
detection with graph convolutional networks. In: Proceedings of the 28th ACM
International Conference on Information and Knowledge Management, pp. 569–
578 (2019)

6. Gao, J., Han, S., Song, X., Ciravegna, F.: Rp-dnn: A tweet level propagation con-
text based deep neural networks for early rumor detection in social media. arXiv
preprint arXiv:2002.12683 (2020)

7. Han, Y., Karunasekera, S., Leckie, C.: Graph neural networks with continual learn-
ing for fake news detection from social media. arXiv preprint arXiv:2007.03316
(2020)

8. Ke, Z., Li, Z., Zhou, C., Sheng, J., Silamu, W., Guo, Q.: Rumor detection on social
media via fused semantic information and a propagation heterogeneous graph.
Symmetry 12(11), 1806 (2020)

9. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

10. Kumar, S., Carley, K.M.: Tree lstms with convolution units to predict stance and
rumor veracity in social media conversations. In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 5047–5058 (2019)

11. Liu, X., Nourbakhsh, A., Li, Q., Fang, R., Shah, S.: Real-time rumor debunk-
ing on twitter. In: Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management, pp. 1867–1870 (2015)

12. Liu, Y., Wu, Y.F.: Early detection of fake news on social media through propaga-
tion path classification with recurrent and convolutional networks. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2002.12683
http://arxiv.org/abs/2007.03316
http://arxiv.org/abs/1609.02907


216 S. Xu et al.

13. Lu, Y.J., Li, C.T.: Gcan: Graph-aware co-attention networks for explainable fake
news detection on social media. arXiv preprint arXiv:2004.11648 (2020)

14. Lukasik, M., Cohn, T., Bontcheva, K.: Classifying tweet level judgements of
rumours in social media. In: Conference on Empirical Methods in Natural Lan-
guage Processing (2015)

15. Ma, J., et al.: Detecting rumors from microblogs with recurrent neural networks
(2016)

16. Ma, J., Gao, W., Wei, Z., Lu, Y., Wong, K.F.: Detect rumors using time series of
social context information on microblogging websites. In: Proceedings of the 24th
ACM International on Conference on Information and Knowledge Management,
pp. 1751–1754 (2015)

17. Ma, J., Gao, W., Wong, K.F.: Detect rumors in microblog posts using propagation
structure via kernel learning. Association for Computational Linguistics (2017)

18. Ma, J., Gao, W., Wong, K.F.: Rumor detection on twitter with tree-structured
recursive neural networks. Association for Computational Linguistics (2018)

19. Ruchansky, N., Seo, S., Liu, Y.: Csi: a hybrid deep model for fake news detection.
In: Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management, pp. 797–806 (2017)

20. Sejeong, K., Meeyoung, C., Kyomin, J.: Rumor detection over varying time win-
dows. Plos One 12(1), e0168344 (2017)

21. Shu, K., Wang, S., Liu, H.: Beyond news contents: the role of social context for
fake news detection. In: Proceedings of the Twelfth ACM International Conference
on Web Search and Data Mining, pp. 312–320 (2019)

22. Wu, K., Yang, S., Zhu, K.Q.: False rumors detection on sina weibo by propagation
structures. In: 2015 IEEE 31st International Conference on Data Engineering, pp.
651–662 (2015). https://doi.org/10.1109/ICDE.2015.7113322

23. Wu, L., Liu, H.: Tracing fake-news footprints: characterizing social media mes-
sages by how they propagate. In: Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining, pp. 637–645 (2018)

24. Wu, Z., Pi, D., Chen, J., Xie, M., Cao, J.: Rumor detection based on propagation
graph neural network with attention mechanism. Expert Syst. Appl. 158, 113595
(2020)

25. Yang, F., Liu, Y., Yu, X., Yang, M.: Automatic detection of rumor on sina weibo.
In: Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, pp.
1–7 (2012)

26. Zhang, Y., Yu, X., Cui, Z., Wu, S., Wen, Z., Wang, L.: Every document owns its
structure: inductive text classification via graph neural networks. arXiv preprint
arXiv:2004.13826 (2020)

27. Zhao, Z., Resnick, P., Mei, Q.: Enquiring minds: early detection of rumors in social
media from enquiry posts. In: Proceedings of the 24th International Conference on
World Wide Web, pp. 1395–1405 (2015)

http://arxiv.org/abs/2004.11648
https://doi.org/10.1109/ICDE.2015.7113322
http://arxiv.org/abs/2004.13826


Short Text Clustering Using Joint Optimization
of Feature Representations and Cluster

Assignments

Liping Sun1,2, Tingli Du1,2, Xiaoyu Duan1,2, and Yonglong Luo1,2(B)

1 School of Computer and Information, Anhui Normal University, Wuhu 241002, Anhui, China
ylluo@ustc.edu.cn

2 Anhui Provincial Key Laboratory of Network and Information Security, Anhui Normal
University, Wuhu 241002, Anhui, China

Abstract. The application of traditional text clustering methods to short text data
is inefficient owing to the high dimensionality and semantic sparseness of such
data. Contrastingly, convolutional neural networks can capture the local informa-
tion between consecutive words in a sentence and extract the semantic features of
the text. In this paper, we propose a short text clustering method based on convo-
lutional autoencoders (CAE-STC) that jointly optimizes feature representations
and cluster assignments. The proposed method employs a convolutional autoen-
coder to learn deep text feature representations and preserve the local structure of
text generation distribution. By integrating the clustering loss and convolutional
autoencoder’s reconstruction loss, a unified loss function is formulated to update
the network parameters and cluster centers iteratively, improving the performance
of the feature learning and clustering tasks. The results of extensive experiments
conducted on three public short text datasets demonstrate that the proposedmethod
outperforms several popular clusteringmethods in terms of the normalized mutual
information and clustering accuracy.

Keywords: Short text clustering · Unsupervised learning · Convolutional
autoencoder · Feature learning

1 Introduction

With the rapid development of the internet and popularization of social platforms, short
text data such asmicroblogs, online news, and product reviews progressively accumulate
every day. Therefore, the extraction of valuable information from these data is of great
significance. Short text clustering aims to identify the internal connections between short
texts through cluster analysis, which can effectively reduce information redundancy
and improve information diversity [1]. In addition, because short text data are rich
in emotional vocabulary and user information, short text clustering is widely used in
sentiment analysis [2], topic detection [3] and personalized recommendations [4].

In contrast to long texts, the high dimensionality and semantic sparseness of short
texts make the application of traditional text clustering methods unsatisfactory [5]. To

© Springer Nature Switzerland AG 2021
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solve this problem, some researchers have proposed enriching the semantics of words by
extending the external information of the short texts. The resulting expanded text feature
space can improve the accuracy of the similarity measurement between the short texts,
but the selection of an external information database has a degree of subjectivity on the
clustering results [6]. Other researchers have solved the problem of text sparseness by
mining the information of the short text itself. Specifically, by extracting the features of
short text, and then clustering the frequent itemsets in the text. In recent years, owing to
the high efficiency of deep learning, numerous researchers have proposed methods that
involve combining deep learning and clustering, in which the inherent highly nonlinear
transformation characteristics of deep neural networks are used to transform data into
a clustering-friendly representation. This approach is widely used in the field of image
recognition, and research has also been carried out in the field of natural language
processing [7]. Further, with the proposal of the 2013 word vector [8], deep neural
networks have exhibited their superiority in constructing text representations, and they
have also been applied in text clustering: first, deep neural networks are pre-trained in
an unsupervised manner; then, traditional methods are employed to cluster the samples.
However, this method is limited because the features learned by neural networks are not
modified further during the clustering process, which may cause the learned features to
be unreliable during clustering. The effectiveness of feature extraction can directly affect
the accuracy of the clustering results; conversely, the quality of the clustering results can
provide supervision signals for feature learning.

Among numerous network models, convolutional neural network (CNN) and recur-
rent neural network are widely used in text processing-related research and rely mainly
on automatic machine learning without manual intervention [9, 10]. Compared with
recurrent neural network, CNN can not only extract the local information between con-
secutive words in a sentence but its parameter sharing mechanism also reduces training
complexity. In this paper, combined with the Glove word vector model, we propose
a short text clustering method based on convolutional autoencoders (CAE-STC) that
jointly optimizes feature representations and cluster assignments. Specifically, we first
pre-train a convolutional autoencoder (CAE) to obtain network initialization parameters
and text latent features. Thereafter, the Kullback-Leibler (KL) divergence of the soft
cluster assignment and its auxiliary target distribution are used as the clustering loss
function. The clustering loss function is embedded into the CAE to promote the cluster-
ing task and guide the feature learning process. Subsequently, the network parameters
and cluster centers are iteratively updated by minimizing the loss function. In this man-
ner, cluster-friendly text features and improved clustering results are simultaneously
obtained.

Our main contributions can be summarized as follows:

• We construct a CAE for text feature learning and use a CNN to extract local features
of the text to eliminate the high dimensionality and high sparseness limitations of
short text data.

• We embed the CAE and clustering tasks into a unified learning framework for
training to achieve the joint optimization of text feature representations and cluster
assignments.
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• We conduct numerous experiments on Chinese and English short text datasets. The
experimental results reveal that the proposed method achieves a better clustering
performance than other models.

2 Related Work

In this section, we review the related work from the following two perspectives: short
text clustering and deep neural networks.

2.1 Short Text Clustering

To overcome the dimensionality catastrophe caused by feature sparsity in short text rep-
resentations, numerous popular approaches have been applied to investigate the semantic
extension of short text by introducing external information and mining the information
from the short text itself. For the former, Hu et al. [11] combined multiple semantic
knowledge bases such as Wikipedia and WordNet to expand the features of short texts
and solved the data sparse problem of original short texts. Bouras and Tsogkas [12]
exploited the knowledge of WordNet to enhance a K-means algorithm. Chen et al. [13]
proposed an improved feature selection method based on HowNet, which redefines the
vector space model at the semantic level and uses a new feature generation strategy
that incorporates the features of generalized synonyms. Mizzaro et al. [14] employed
Wikipedia to enrich the original text with a set of new words. Wei et al. [6] attempted to
eliminate word ambiguity by using to WordNet-improved semantic similarity method.
Yang et al. [15]modeled the semantics of short textswith the help of a Probase knowledge
base and corpus to solve the problem of one word having multiple meanings. However,
relying on external knowledge bases causes the clustering results to be subjective, and the
quality of the external knowledge base itself has a significant influence on the clustering.

For the latter, Beil et al. [16] employed a topic model to mine sentences topics, and
then obtained frequent itemsets of topics and clustered the text. Peng et al. [17] proposed
a short text clustering and topic extraction framework based on frequent itemsets, which
employs similarity to filter non-important frequent itemsets; thereafter, combines the
filtered results with the topic model and spectral clustering algorithm. Finally, it divides
the short text into corresponding topic clusters. Cekik and Uysal [18] proved that the
use of rough set theory to divide the region according to the value set of the term
could more accurately identify documents belonging to a certain category. Although
the above-mentioned clustering algorithms can alleviate the sparseness of short text
representation, they ignore the sequence of words in the text and cannot capture deep
semantic information.

2.2 Deep Neural Networks

Deep learning models have achieved promising results in the field of natural language
processing concomitant with the advent of word embeddings. Clustering performance is
highly dependent on the data representation quality; word embeddings can represent text



220 L. Sun et al.

as low-dimensional, dense, and continuous vectors that can effectively extract the seman-
tic features of each word. Mikolov et al. [8] introduced the Skip-gram and continuous
bag-of-words models, which can map words with similar semantics to similar positions
in the vector space. Pennington et al. [19] proposed a new word vector model, named
Glove, which considers both corpus local information and overall information. Recently,
numerous approaches have combined neural networks with word embeddings to capture
truly meaningful syntactic and semantic rules. For example, Xu et al. [20] combined the
word2vec word vector model and proposed a CNN-based short text clustering algorithm
(STC2). This algorithm uses a self-learning framework to embed original keyword fea-
tures into the compressed binary code with local preserving constraints, matches it with
deep feature representations using the CNN, and finally, performs K-means clustering
on the learned features. Xu et al. [21] attempted to use unsupervised dimensionality
reduction methods to replace text hashing to learn unbiased deep text representation on
the basis of the above. However, the above-mentioned methods regard feature extraction
and clustering as two independent processes and do not consider the clustering results
in the provision of supervision signals for feature extraction.

Xie et al. [22] developed a deep embedding clustering (DEC) framework that simul-
taneously learns feature representations and cluster assignments. The method learns a
mapping from the data space to a low-dimensional feature space by using a deep neu-
ral network in which the clustering objective is iteratively optimized. Guo et al. [23]
employed a CAE structure to learn image features, and preserved the local structure of
data generating distribution by integrating the reconstruction and clustering losses. Li
et al. [24] proposed a unified clustering framework based on full CAE and soft K-means
scoring for image representations and cluster centers joint learning. The effectiveness of
the above-mentioned CNN-based deep clustering models has been verified in the field
of image recognition, but there are relatively few studies on short text clustering.

Fig. 1. Architecture of the proposed short text joint optimization clustering model
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3 Short Text Clustering Using Joint Optimization of Feature
Representations and Cluster Assignments

Figure 1 shows the overall architecture of the proposed CAE-STC model. It combines
clustering tasks and deep feature learning in a unified networkmodel for training. Specif-
ically, the model is composed of a convolutional encoder for text feature learning, a
convolutional decoder for data reconstruction, and a clustering layer that clusters the
features between the encoder and decoder.

3.1 Convolutional Neural Networks (CNN)

For image data, the size of the convolution kernel can theoretically be any value that does
not exceed the input size, whereas for text data, it is unreasonable to splice or truncate
text or words at will. Figure 2 shows the model architecture, which is a slight variant of
the traditional CNN architecture [25]. To ensure minimum granularity of words under
natural language processing, the convolution kernel should be at least a complete word
vector, and it can only slide along the longitudinal direction of the word vector matrix.
Given a dataset of n texts denoted as X = {x1, x2, . . . , xn}, let xi ∈ Rt∗d , representing
a matrix stacked by word vectors, be the input of the network, where t denotes the
maximum length of the text. Further, set the number of words in all sentences to t
(padded where necessary), and represent each word by a d -dimensional word vector. A
convolution operation involves a filter wj ∈ Rh∗d that is applied to a window of h words
to produce a new feature. This filter is applied to each possible window of words in the
sentence to produce a one-dimensional feature map cj ∈ Rt−h+1. Multiple filters are
used to obtain multiple feature maps c = [c1, c2, . . . , ca], where a denotes the number
of filters. Thereafter, we apply the max-over-time pooling operation on each feature map
ĉj = max

{
cj

}
and assume that the maximum value captures the most important feature.

Subsequently, we pass the result to the fully connected layer. The output of the fully
connected layer represents the extracted text feature.

Fig. 2. The convolutional neural network architecture for text
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We construct a text-oriented CAE based on the above CNN, which aims to copy the
input to its output neural network. First, the input high-dimensional data are transformed
into low-dimensional features by employing a convolutional encoder z = fw(x); there-
after, the original input data are reconstructed by employing a convolutional decoder
with a similar structure to the convolutional encoder x̂ = gw′(z). The network model
is trained by minimizing the mean square error loss function between the input and
reconstructed data. The output of the hidden layer z represents text latent features.

Lr = 1

n

∑n

i=1

∥∥xi − x̂i
∥∥2
2 (1)

3.2 Clustering Loss

We followed DEC [22] to adapt the soft assignment based on Student’s t-distribution
to measure the easiness of a sample. Cluster assignment hardening is a commonly used
cluster loss function that is composed of the KL divergence between the soft assignment
Q and its auxiliary target distribution P. This cluster assignment hardening loss forces
the soft assignment to have a stricter probability distribution by promoting the cluster
assignment probability distribution Q close to the target distribution P.

Lc = KL(P||Q) =
∑

i

∑

j
pijlog

pij
qij

(2)

where qij employs the Student’s t-distribution as the kernel to measure the similarity
between the embedded point zi and cluster center uj.

qij =
(
1 + ∥∥zi − uj

∥∥2
)−1

∑
j′
(
1 + ∥∥zi − uj′

∥∥2
)−1 (3)

By squaring the soft cluster assignment and subsequently normalizing them, we aim to
learn the cluster assignments with high confidence in the soft cluster assignment and
improve the clustering accuracy. The target distribution, pij, is expressed in Eq. (2) as
follows:

pij = q2ij/
∑

i qij
∑

j′
(
q2ij′/

∑
i qij′

) (4)

3.3 CAE-Based Short Text Clustering

Our proposed CAE-STC model consists of two stages: pre-training and fine-tuning.
The whole algorithm is summarized in Algorithm 1. The purpose of pre-training is to
obtain the initialization parameters for the network. The CAE is pre-trained end-to-end
through the reconstruction loss function between the input and reconstructed data. The
last layer of the convolutional encoder generates text embedded features and performs
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K-means clustering on the pre-trained features to obtain the initial cluster centers. In the
fine-tuning stage, the network architecture is composed of CAE and a clustering layer.
The network parameters and cluster centers are iteratively updated by minimizing the
loss function to extract text features suitable for clustering and learn cluster assignments
with high confidence. Equation (5) shows that to minimize damage to the feature space
caused only by clustering loss, we set the weighted sum of the CAE’s reconstruction
loss and the clustering loss as the loss function of the entire network. The CAE is used
to learn the embedded features and preserve the local structure of the original text data.
The clustering loss guides the embedded features to be prone to forming clusters.

L = αLc + (1 − α)Lr (5)

where Lc and Lr are the clustering and reconstruction losses, respectively, and α is the
weight parameter of the two loss functions.

Update CAE’s Weights and Cluster Centers: Calculate the gradient of clustering
loss Lc with respect to the text feature zi and cluster center uj by fixing the auxil-
iary target distribution according to Eqs. (6) and (7). Thereafter, the Adam algorithm is
combined with the backpropagation algorithm to directly optimize the network model,
and jointly update the cluster centers and the network parameters. The convolutional
encoder’s weightsW is updated by the combined effect of the clustering loss Lc and the
reconstruction loss Lr , whereas the convolutional decoder’s weightsW ′ is only affected
by the reconstruction loss Lr .

∂Lc
∂Zi

= 2
∑k

j=1

(
1 +

(∥∥zi − uj
∥∥2

))−1(
pij − qij

)(
zi − uj

)
(6)
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∂Lc
∂uj

= 2
∑n

i=1

(
1 + ∥∥zi − uj

∥∥2
)−1(

qij − pij
)(
zi − uj

)
(7)

Update Target Distribution: The target distribution forces the soft cluster assignment
to have a stricter probability distribution. In practice, we update the soft assignment and
target distribution using all the embedded points at each iteration. See Eqs. (3) and (4)
for our update rules.

After fine-tuning, the final clustering result is that the soft cluster assignment function
qij assigns the text feature zi to the label of the cluster center uj with the maximum
probability:

yi = argmax
j

qij (8)

The trainingprocess stops if the cluster label assignment changebetween twoconsecutive
iterations and is less than a threshold of δ.

4 Experiments

4.1 Datasets

We evaluate the proposed method on two English datasets (SearchSnippets and TREC)
and one Chinese dataset (Sohu News Headline). Table 1 summarizes the size of the
datasets, number of clusters, mean and maximum length of the texts, and vocabulary
sizes.

Table 1. Characteristics of the short text datasets.

Datasets Characteristics

Number of clusters Dataset size Mean/maximum
length of texts

Vocabulary size

SearchSnippets 8 12340 17.88/38 30643

TREC 6 5952 5.93/19 9231

Sohu 10 10000 5.964/14 18713

SearchSnippets1 is selected from the results of web search transactions using prede-
fined phrases in eight domains, which include Business, Engineering, Culture-Arts-Ent,
Politics-Society, Computers, Health, Education-Science and Sports [26].

TREC2 is a question dataset comprising sentences divided into six question types—
specifically, DESC., HUM., ABBR., LOC., ENTY., and NUM.—with a total of 5952
samples.

1 http://jwebpro.sourceforge.net/data-web-snippets.tar.gz.
2 https://cogcomp.seas.upenn.edu/Data/QA/QC/.

http://jwebpro.sourceforge.net/data-web-snippets.tar.gz
https://cogcomp.seas.upenn.edu/Data/QA/QC/
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Sohu3 consists of text obtained from Sohu News Data from Sogou Lab. The Sohu
news data contains real-world news in various aspects such as sports, society and enter-
tainment in 2008. The short text dataset is made up of 10 randomly selected categories,
with each category consisting of 1000 news headline compositions.

4.2 Pre-trained Word Vectors

The word vector model represents the text as a low-dimensional, dense, and continuous
vector. In our experiment, we use the Glove model to train the word embeddings, and
most parameters are set at similar points to those as in [19] to train word vectors, except
for using a vector dimensionality of 48, minimum count of five, and window size of
five. For the Chinese dataset, we use a large-scale Chinese Wikipedia corpus to train
the model to obtain Chinese word vectors. We first use the Jieba tool to segment the
sentences; then, we remove the stop words. Subsequently, the words are converted into
vectors according to the trained word vectors, and the vectors are used as the input of
the network model. For the English dataset, we use a large-scale English Wikipedia
corpus to train the model to obtain English word vectors. The English text is directly
divided into words using spaces in sentences. The SearchSnippets dataset is processed
in advance; thus, there is no need for pre-processing. For the TREC dataset, because it
contains numerous words and punctuations that affect semantics, stop words have to be
removed.

4.3 Experiment Setting

Comparing Methods. To validate the clustering performance of CAE-STCon the short
text datasets, we compare it with the following methods.

– K-means [29] on the original keyword features weighted with term frequency (TF)
and term frequency-inverse document frequency (TF-IDF).

– Recursive neural network (RecNN) is proposed in [30]. In the RecNN, a tree structure
is first used for greedy approximationwith unsupervised recursive autoencoders. Then,
semi-supervision is used to capture the semantics of the text based on the predicted
structure. To make this recursive method completely unsupervised, we removed the
second phase of the cross entropy error to learn the vector, and then averaged all
vectors in the tree using K-means.

– DEC [22] first pre-trains the deep autoencoder composed of multilayer perception
(MLP), then removes the decoder, employs the encoder to extract text features, and
finally optimizes the cluster assignment and feature learning.

– STC2 [21] represents the text with the word2vec word vector, uses unsupervised
dimensionality reductionmethods to embed it into a compressedbinary codewith local
preserving constraints,matches itwithCNN learning deep feature representations, and
performsK-means on the obtained features. In this study, twodimensionality reduction
methods, Laplacian Eigenmaps (LE) and Locality Preserving Indexing (LPI), with
better clustering performance are selected.

3 https://www.sogou.com/labs/resource/list_pingce.php.

https://www.sogou.com/labs/resource/list_pingce.php
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– CAE + K-means uses a CAE to extract text features and thereafter clusters them.
Feature learning and clustering are independent of each other.

Hyperparameter Setting. The parameter setting of the clustering method based on
deep learning has a significant influence on the learning ability of deep neural networks.
For theCNNmodel, the networks consist of a convolution layer, amax-over-time pooling
layer, and a fully connected layer. The number of convolution filters is 256, and the size
of the convolution kernels is three, one, and one for SearchSnippets, TREC, and Sohu,
respectively. For the CAE-STC model, the networks consist of CAE and a clustering
layer. The CAE is pre-trained for 10, 25, and 15 iterations for SearchSnippets, TREC,
and Sohu, respectively; the maximum number of iterations in the optimization process
is 100, 250, and 250 for SearchSnippets, TREC, and Sohu, respectively. The parameter
a, which is used to weigh the clustering loss and reconstruction loss, is 0.9, 0.7, and
0.1 for SearchSnippets, TREC, and Sohu, respectively. The convergence threshold is set
to δ = 0.1% and the batch size to 200 for all datasets. Our implementation is based on
the Keras deep learning framework. To design independent adaptive learning rates for
the different parameters, the Adam optimization algorithm is adopted to accelerate the
convergence speed of the network.

Evaluation Metric. Clustering performance evaluation is conducted by compar-
ing the labels of the text corpus with the clustering results. Based on the
text dataset with a set of labels, two common evaluation criteria are used: accuracy
(ACC) [27] and normalized mutual information (NMI) [28].

5 Results and Analysis

Table 2 summarizes the ACC and NMI performances of our proposed method compared
with the other methods on the three short text datasets. The experimental results reveal
that, with the exception of NMI on the Sohu dataset, the proposed CAE-STC achieves
better clustering performance thanK-means, STC2-LE, STC2-LPI, andCAE+K-means
on the three datasets. The reason for the NMI exception of the Sohu dataset may be
because that dataset contains a small number of words with a maximum text length of
14. CAE-STC has difficulty capturing rich word order information through CNN using
shorter texts, and thus does not yield significant improvement. In contrast, STC2-LPI
uses binary learning objectives constructed by LPI to guide the training of the CNN. The
binary code retains the similarity information in the output of LPI, which embeds the
text representationwith both theword order information and other semantic information.
Moreover, we observe that the deep clustering algorithms STC2-LE, STC2-LPI, CAE
+ K-means, and CAE-STC outperform the K-means algorithm based on the vector
space model representation by a significant margin on SearchSnippets and Sohu. This
is because the traditional vector space model is based on the bag-of-words model at its
core, and it ignores the order of the words in the text. When applied to short text data, the
traditional vector space model has limitations such as high dimensionality and sparse
features, whereas deep neural networks have powerful representation capabilities that
can extract text features to obtain low-dimensional and effective text representation.
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Table 2. Comparison of clustering performance on the three datasets.

Method SearchSnippets TREC Sohu

ACC NMI ACC NMI ACC NMI

K-means(TF) 25.44 9.65 52.15 45.99 17.23 12.19

K-means(TF-IDF) 37.84 21.24 60.03 46.68 19.20 13.73

STC2-LE 75.55 62.80 61.63 41.10 41.52 31.31

STC2-LPI 75.73 62.91 62.58 44.07 45.75 32.99

CAE + K-means 68.03 52.64 57.63 34.85 46.52 29.29

CAE-STC 82.68 66.02 63.93 48.24 47.43 31.55

To verify that CNN has advantages in text processing, we apply MLP, RecNN, and
CNN individually to short text clustering. Figures 3 and 4 show the experimental results.
The results demonstrate that CAE-STC, CAE + K-means, and STC2-LPI are signifi-
cantly better than DEC and RecNN on SearchSnippets and TREC. This implies that
CNN is more suitable for processing short text data than MLP and RecNN, and they can
extract local information between text words. In comparison with STC2-LPI and CAE
+K-means, the proposed CAE-STC extracts deep learned representation from the CAE
to achieve a large improvement of 6.95%/3.11% and 14.65%/13.38% (ACC/NMI) on
SearchSnippets. This is because STC2-LPI and CAE + K-means first use unsupervised
methods to pre-train the neural network, and thereafter perform K-means on the learned
features, which results in an inability to further modify the feature representations dur-
ing the clustering process. Our proposed CAE-STC adopts a framework for the joint
optimization of the feature learning and clustering tasks. Feature learning is not only
conducive to the improvement of clustering performance but the clustering results can
also provide good supervision signals for feature learning.
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Fig. 3. Comparison of clustering accuracy for DEC, RecNN, CAE + K-means, STC2-LPI, and
CAE-STC on the three datasets, respectively.
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Fig. 4. Comparison of NMI for DEC, RecNN, CAE + K-means, STC2-LPI, and CAE-STC on
the three datasets, respectively.

To explore the representations generated by CAE-STC and the compared methods,
we use t-SNE [31] to visualize their short text embedding on SearchSnippets. Figures 5
and 6 respectively show the visualization of the text feature representations on the clus-
tering results and standard labels. We can observe that the clustering results represented
by the deep features learned from CAE-STC depict clear boundaries between differ-
ent clusters, and the samples in the same cluster are highly compact. In addition, the
color similarity of the corresponding positions in Figs. 5 (h) and 6 (h) is higher, which
illustrates that the clustering performance of the proposed CAE-STC is better.

(a) K-means(TF) (b) K-means (TF-IDF) (c) RecNN (d) DEC

(e) CAE+K-means (f) STC2-LE (g) STC2-LPI (h) CAE-STC

Fig. 5. A 2-dimensional embedding of original keyword features weighted with (a) TF, (b) TF-
IDF, (c) average vectors of all tree nodes in RecNN, and deep learned features from (d) DEC,
(e) CAE + K-means, (f) STC2-LE, (g) STC2-LPI, and (h) CAE-STC. All the above features
are respectively used in K-means (TF), K-means (TF-IDF), RecNN, DEC, CAE + K-means,
STC2-LE, STC2-LPI and our proposed CAE-STC on SearchSnippets. Different colors represent
different clusters.
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(a) K-means(TF) (b) K-means (TF-IDF) (c) RecNN (d) DEC

(e) CAE+K-means (f) STC2-LE (g) STC2-LPI (h) CAE-STC

Fig. 6. A 2-dimensional embedding of original keyword features weighted with (a) TF, (b) TF-
IDF, (c) average vectors of all tree nodes in RecNN, and deep learned features from (d) DEC,
(e) CAE + K-means, (f) STC2-LE, (g) STC2-LPI and (h) CAE-STC. All the above features
are respectively used in standard labels on SearchSnippets. Different colors represent different
clusters.

6 Conclusion

This paper proposed a method for short text clustering called CAE-STC, which jointly
performs clustering and learns representative text features that are suitable for clustering
and preserves the local structure of the text in the feature space. CAE-STC extracts text
features with the local structure preserved by using a CAE and manipulates the feature
space to scatter data by optimizing a KL divergence-based clustering loss. Experimen-
tal results reveal that our method achieves better clustering performance than other
baseline methods on Chinese and English datasets. Our future work will investigate
the incorporation of bidirectional long short-term memory networks into the proposed
framework.

Acknowledgments. This research is supported by the Anhui Provincial Natural Science Foun-
dation of China (No. 2108085MF214), the Key Program in the Youth Elite Support Plan in
Universities of Anhui Province (No. gxyqZD2020004) and National Natural Science Foundation
of China (No. 61972439).

References

1. Jung, H., Lee, B.G.: Research trends in text mining: semantic network and main path analysis
of selected journals. Expert Syst. Appl. 162, 1–12 (2020)

2. Rezaeinia, S.M., Rahmani, R., Ghodsi, A., Veisi, H.: Sentiment analysis based on improved
pre-trained word embeddings. Expert Syst. Appl. 117(1), 139–147 (2019)

3. Chen, J., Gong, Z., Liu, W.: A nonparametric model for online topic discovery with word
embeddings. Inf. Sci. 504, 32–47 (2019)



230 L. Sun et al.

4. Campos, L.M.D., Fernández-Luna, J.M., Huete, J.F., Redondo-Expósito, L.: Automatic con-
struction of multi-faceted user profiles using text clustering and its application to expert
recommendation and filtering problems. Knowl.-Based Syst. 29, 1–18 (2020)

5. Meht,V., Bawa, S., Singh, J.: Stamantic clustering: combining statistical and semantic features
for clustering of large text datasets. Expert Syst. Appl. 174(15), 1–9 (2021)

6. Wei, T., Lu, Y., Chang, H., Zhou, Q., Bao, X.: A semantic approach for text clustering using
WordNet and lexical chains. Expert Syst. Appl. 42(4), 2264–2275 (2015)

7. Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: a survey. WIREs Data
Mining Knowl. Discov. 8(4), 1–25 (2018)

8. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in
vector space. In: Proceedings of Workshop at ICLR, pp. 1–12 (2013)

9. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing, pp. 1746–1751.
ACL, Doha (2014)

10. Gharavi, E., Veisi, H., Silwal, R., Gerber, M.S.: Improving discourse representations with
node hierarchy attention. Mach. Learn. Appl. 3, 1–7 (2021)

11. Hu, X., Sun, N., Zhang, C., Chua, T.-S.: Exploiting internal and external semantics for the
clustering of short texts using world knowledge. In: Proceedings of the 18th ACMConference
on Information and Knowledge Management, pp. 919–928. ACM, Hong Kong (2009).

12. Bouras, C., Tsogkas, V.: A clustering technique for news articles using WordNet. Knowl.-
Based Syst. 36, 115–128 (2012)

13. Chen, X., Zhang, Y., Cao, L., Li, D.: An improved feature selection method for chinese short
texts clustering based on HowNet. In: Wong, W.E., Zhu, T. (eds.) Computer Engineering and
Networking. LNEE, vol. 277, pp. 635–642. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-01766-2_73

14. Mizzaro S., PavanM., Scagnetto I., ValentiM.: Short text categorization exploiting contextual
enrichment and external knowledge. In: Proceedings of the First International Workshop on
Social Media Retrieval and Analysis, pp. 57–62. ACL, Gold Coast (2014)

15. Yang, J., Li, Y., Gao, C., Zhang, Y.: Measuring the short text similarity based on semantic
and syntactic information. Futur. Gener. Comput. Syst. 114, 169–180 (2021)

16. Beil, F., Ester, M., Xu, X.: Frequent term-based text clustering. In: Proceedings of the Eighth
ACMSIGKDDInternationalConference onKnowledgeDiscovery andDataMining, pp. 436–
442. ACM, Edmonton (2002)

17. Peng, M., Huang, J., Zhu, J., Huang, J., Liu, J.: Mass of short texts clustering and topic
extraction based on frequent itemsets. J. Comput. Res. Develop. 52(9), 1941–1953 (2015)

18. Cekik, R., Uysal, A.K.: A novel filter feature selection method using rough set for short text
data. Expert Syst. Appl. 160, 1–15 (2020)

19. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word representation. In:
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,
pp. 1532–1543. ACL, Doha (2014)

20. Xu, J., Wang, P., Tian, G., Xu, B., Zhao, J., Wang, F., Hao, H.: Short text clustering via
convolutional neural networks. In: Proceedings of the 1stWorkshoponVector SpaceModeling
for Natural Language Processing, pp. 62–69. ACL, Denver (2015)

21. Xu, J., et al.: Self-taught convolutional neural networks for short text clustering. Neural Netw.
88, 22–31 (2017)

22. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In:
Proceedings of the 33rd International Conference on Machine Learning, pp. 1–10. ACM,
New York (2016)

23. Guo,X., Liu,X., Zhu, E., Yin, J.: Deep clusteringwith convolutional autoencoders. In: Liu,D.,
Xie, S., Li, Y., Zhao, D., El-Alfy, E.-S.M. (eds.) ICONIP 2017, LNCS (LNTCS), vol. 10635,
pp. 373–382. Springer, Guangzhou (2017). https://doi.org/10.1007/978-3-319-70096-0_39

https://doi.org/10.1007/978-3-319-01766-2_73
https://doi.org/10.1007/978-3-319-70096-0_39


Short Text Clustering Using Joint Optimization 231

24. Li, F., Qiao,H., Zhang, B.: Discriminatively boosted image clusteringwith fully convolutional
auto-encoders. Pattern Recogn. 83, 161–173 (2018)

25. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural
language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)

26. Phan, X.-H.., Nguyen, L.-M., Horiguchi, S.: Learning to classify short and sparse text & web
with hidden topics from large-scale data collections. In: WWW, pp. 91–100. ACM, Beijing
(2008)

27. Zheng, C.T., Liu, C., Sanwong, H.: Corpus-based topic diffusion for short text clustering.
Neurocomputing 275(31), 2444–2458 (2018)

28. Janani, R., Vijayarani, D.S.: Text document clustering using spectral clustering algorithm
with particle swarm optimization. Expert Syst. Appl. 134(15), 192–200 (2019)

29. Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained K-means clustering with back-
ground knowledge. In: Proceedings of the Eighteenth International Conference on Machine
Learning, pp. 577–584. ACM, San Francisco (2001)

30. Socher, R., Pennington, J., Huang, E.H., Ng, A.Y., Manning, C.D.: Semi-supervised recursive
autoencoders for predicting sentiment distributions. In: Proceedings of the 2011 Conference
on EmpiricalMethods in Natural Language Processing, pp. 151–161. ACL, Edinburgh (2011)

31. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605
(2008)



Soft-BAC: Soft Bidirectional Alignment
Cost for End-to-End Automatic Speech

Recognition

Yonghe Wang, Hui Zhang(B), Feilong Bao, and Guanglai Gao

College of Computer Science, Inner Mongolia University, Inner Mongolia Key
Laboratory of Mongolian Information Processing Technology, Huhhot 010021, China

{cszh,csfeilong,csggl}@imu.edu.cn

Abstract. Connectionist temporal classification (CTC) has gained suc-
cess in both end-to-end ASR model and as an auxiliary task for attention-
based sequence-to-sequence (S2S) system. However, the special topolog-
ical structure of CTC and the modeling form that a redundant blank
symbol to be optionally inserted between each modeling units makes the
CTC inclined to model blank symbols, resulting in a worse than expected
model alignment effect, and frames are usually aligned with redundant
symbols. In this paper, we design a new simple topology and propose a
novel smooth alignment optimization method named soft bidirectional
alignment cost (soft-BAC), which is an alternative to the CTC. We pro-
pose a scheme that only inserts identifiers between consecutive repeti-
tive labels and solve the alignment problem between two time series of
speech-transcription pair by minimizing all costs of the left-to-right and
right-to-left alignment process. Experiments on the LibriSpeech corpus
show that the proposed soft-BAC method achieves significant improve-
ment in word error rate and alignment effect over the CTC-based baseline
model.

Keywords: Speech recognition · End-to-end · CTC · Soft
bidirectional alignment cost · Multitask learning

1 Introduction

In recent years, end-to-end models have shown promising performance on auto-
matic speech recognition (ASR) tasks. Compared to traditional hybrid systems
consisting of separate pronunciation, acoustic and language models, the end-to-
end system uses only a single neural network architecture to implicitly model
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all these three to directly transcribe speech to text without requiring prede-
fined alignment between acoustic frame sequences and target labels. For exam-
ple, the connectionist temporal classification (CTC) [1] and the attention-based
sequence-to-sequence (S2S) [2] encoder-decoder architecture are the most com-
monly used end-to-end ASR models.

Based on the two aforementioned end-to-end methods, various improve-
ments are proposed. For CTC, the original CTC architecture is extended to
RNN-transducer [3,4] by combining an independent recursive prediction net-
work trained over the label sequences, which can model the interdependence
between the outputs. Also, by integrating with the attention mechanism, CTC
shows greater competitiveness [5–7]. For S2S, “listen, attend and spell” (LAS)
[8], neural aligner [9], multi-head attention [10,11] and transformer [12–16] were
introduced. Recently, hybrid CTC-attention method [17–19] has attracted lots
of attention by combining the advantages of the CTC model and the attention
model and integrating them together for training. In this architecture, the CTC
objective is attached to the attention-based S2S encoder-decoder model as an
auxiliary task to guide the attention to perform monotonic alignments. And dur-
ing decoding, the joint CTC-attention beam search approach has been widely
adopted [20].

The advantage of CTC is that it assumes a special topology to monotonically
align each label in the target sequence with one or more frame sequences corre-
sponding to the label, which is the right assumption for the ASR task. However,
since an additional blank symbol is inserted between each label in the target
sequence during the alignment process. The blank symbol is not only used to
depict the space label that usually corresponds to the silence between words,
but also to segment the continuously repeated label, e.g. double “l” in “hello”
should be segmented with the blank symbol to avoid error merging to a single “l”.
This makes blank symbols assigned with multiple roles. Since the blank symbols
have no corresponding fixed acoustic frames, they have more modeling prepon-
derances than other labels, the blank symbol can come from silence frames even
any frames. Therefore, CTC inclined to model blank symbols, and produce other
labels in very few frames, while most frames correspond to blank symbols, result-
ing in a worse than expected alignment effect. Recent work [21,22] confirmed
that removing the blank symbol is feasible. We believe that the blank symbol is
not necessary to insert between each label during the alignment process.

To fix the blank symbol issue, we design a new simple topology and proposed
a novel smooth alignment optimization method named soft bidirectional align-
ment cost (soft-BAC), which is an alternative to the CTC. Specifically, we focus
on the left-to-right and right-to-left alignment process of the speech-transcription
pair in the end-to-end model, and propose a scheme of inserting an identifier
only between consecutive repeated labels and a multitask learning method to
train a shared single network by minimizing all the costs of all possible forward
and backward alignments. We evaluated and compared our proposal with CTC-
based model and CTC loss as an auxiliary task in S2S model, respectively. The
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experimental results demonstrate that by replacing the CTC with soft-BAC, our
proposed method outperforms the CTC baseline and the hybrid CTC-attention
architecture both using graphemes or subwords as modeling units.

2 Connectionist Temporal Classification

The CTC-based ASR model directly learns the mapping between acoustic feature
sequences x and transcription sequences y of different lengths. The key to CTC
is that an additional blank symbol is inserted between each label in the target
sequence during training. The intention of the blank symbol is not only used
to depict the space label that usually corresponds to the silence between words,
but also to segment the continuously repeated label. The objective of CTC loss
is to maximize the probability distribution over all possible output sequences:

P (y|x) =
∑

π∈Φ(y∗)

P (π|x) =
∑

π∈Φ(y∗)

T∏

t=1

P (πt|xt) (1)

where π = (π1, ..., πT ) is a CTC path corresponding to the input sequence x of
length T . y∗ is the label sequence that insert the blank symbol between each
subword of y. Φ(y∗) is a set of all possible CTC paths. The posterior probabilities
P (πt|xt) are the model outputs for observed labels at each time t.

And minimizing the negative log-probabilities is used in training LCTC =
−logP (y|x). CTC-based models tend to produce labels in a very few frames,
while most frames correspond to blank symbols.

3 Proposed Approach

3.1 Soft Bidirectional Alignment Cost

In end-to-end speech recognition systems, it is assumed that the speech x with
sequence length T is a concatenation of feature vectors generated by transcrip-
tion y with sequence length U , which means that there are some correspondences
between the speech vector xi and the subword yj . Then the score between speech
and transcription S(x,y) is calculated by taking the sum of all corresponding
xi and yj pairs:

S(x,y) =
∑

(i,j)∈A

δ(xi, yj) (2)

where δ(·) is a distance function used to measure the alignment cost. A ⊂
{0, 1}T×U is called alignment, which is a sequence of the corresponding xi and
yj pairs, denoted with their indexes (i, j). Aij = 1 if speech frame xi is labeled
as yj and Aij = 0 otherwise.

There exists a set of possible alignment matrices and is defined as A. The
score S(x,y) is calculated by using the minimum approximation:
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S(x,y) = min
A∈A

∑

(i,j)∈A

δ(xi, yj) (3)

This problem is a common optimal match with the minimum cost problem. The
optimization goal is to consider the cost of all possible alignment matrices to
find the best alignment A∗ ∈ A:

A∗ = arg min
A∈A

〈A,S(x,y)〉 , (4)

where 〈A,S(x,y)〉 is the inner product between the eligible alignment matrix A
and the cost matrix S(x,y).

Taking these findings into account, in this paper, we propose an alignment
optimization method named soft bidirectional alignment cost (soft-BAC) for end-
to-end speech recognition system, which is an alternative to the CTC. There are
two main points to explain the advantages:

• Our proposed soft-BAC optimization method is much simpler. We abandoned
the practice of inserting blank symbols between each label in the model train-
ing stage, which is an important characteristic of CTC. Instead, we insert an
identifier “#” only between consecutive repeated labels. For example, differ-
ent label sequences of the same word are expressed as:

sta g # g er # er
sta g # g e r e r
sta gg er # er
sta gg e r e r

⎫
⎪⎪⎬

⎪⎪⎭
⇒ staggerer (5)

• The soft-BAC method can make the model fit faster. Since we use both for-
ward and backward alignment methods to align the input and output of the
model based on a frame-by-frame emit/shift strategy without modeling blank
symbols, the model will converge quickly.

• The simple topology structure of soft-BAC and redundant blank symbols do
not need to be optionally inserted between each modeling unit makes the
model strictly implements monotonic alignment of the input speech frames
and output labels. The soft-BAC based model can get strict segment align-
ment labels.

Our soft-BAC optimization method is implemented as a multitask learning
(MTL), in which a shared network is trained by using forward and backward
alignment cost criteria. The loss function for soft-BAC based MTL architecture
is defined as follows:

Lsoft−BAC = αLf
soft−BAC + (1 − α)Lb

soft−BAC (6)

where Lf
soft−BAC and Lb

soft−BAC are the forward and backward alignment cost
loss functions, respectively. The α is a tunable weight smoothing factor, which
may be set to be larger than 0.5.
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Subword

O1 O2 O3 O4 O5 O6 O7 O8 O9 O11O12O13O14 O15 O16O17
Feature vector sequence

-
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d
-

O10 O17O16 O15O14O13O12O11 O10O9 O7 O6 O5 O4 O3 O2 O1

Feature vector sequence

Subword

-
d
or
w
-
o
ll
he
-

O8

Fig. 1. The alignment procedure in the forward (left) and the backward (right) which
represents the subword sequences for the transcription “hello word” over 17 frames.
Note that in the alignment approach blank symbols have been discarded, and the
subword “-” represent space.

The purpose of alignment is to make each speech frame only be aligned to
a single label, so we need to impose rigorous constraints on the eligible warping
path to ensure the alignment from x to y is strictly one-to-one. Figure 1 shows
the alignment procedure in the forward (left) and the backward (right), which is
a very simple topology. All paths on the alignment matrices connect the lower-
left matrix entry to the upper-right matrix entry using only →↗ moves. The
cost of an alignment is equal to the sum of the distance measurements of entries
visited along the path.

At each time step t, the distance measurement value calculated by δ(xi, yj)
in Eq. (3) is replaced with the corresponding negative log-probability output
by the acoustic model and the probability is calculated by L2 normalization.
Therefore, the Eq. (4) is not differentiable. In order to solve this challenge, we
propose to use the min function with its soft version to optimize both Lf

soft−BAC

and Lb
soft−BAC criteria. Take Lf

soft−BAC for example:

Lf
soft−BAC(x,y) = minγ{〈A,S(x,y)〉, A ∈ A}, (7)

where the generalized minγ{} operator is formulated as Eq. (8) with a smoothing
parameter 0 < γ ≤ 1:

minγ{a1, ..., an} = −γ log
n∑

i=1

e−ai/γ . (8)

The hyper-parameter γ controls the degree of leakage, and the higher value
means mixing more non-minimum values into the output. And γ = 1 makes the
soft-min degenerate to the original min.

During backpropagation, the gradient of Eq. (7) can be derived via the chain
rule:

∇xLf
soft−BAC(x,y)=

(
∂Δ(x,y)

∂x

)T

Eγ [A] , (9)
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where ∂Δ(x,y)/∂x is the Jacobian of Δ w.r.t. x. Eγ [A] as shown in Eq. (10), is
defined as the average alignment matrix A under the Gibbs distribution pγ ∝
e−〈A,Δ(x,y)〉/γ ,∀A ∈ A.

Eγ [A] =
∑

A∈A e−〈A,Δ(x,y)〉/γA∑
A∈A e−〈A,Δ(x,y)〉/γ

. (10)

3.2 Hybrid Soft-BAC Attention Architecture

In the hybrid CTC-attention based end-to-end ASR architecture, the CTC objec-
tive is attached to the attention-based model as an auxiliary task to guide the
attention to perform monotonic alignment [17–19]. Our proposed soft bidirec-
tional alignment cost (soft-BAC) is an alternative to CTC. In this paper, we
also proposed a hybrid soft-BAC attention architecture. This is implemented as
a multitask learning framework, in which the soft-BAC is used as an auxiliary
loss to optimize the shared encoder subnetwork. The objective function of MTL
is defined as the weighted sum of losses propagated from both soft-BAC and
attention model:

LMTL = λLsoft−BAC + (1 − λ)LAttention (11)

where hyperparameter λ is the weight smoothing factor, and we set to 0.4 in our
experiment.

4 Experimental Results

4.1 Datasets

We carry out experiments on the LibriSpeech corpus [23] to verify the perfor-
mance of the proposed method. The corpus comes with its own train, develop-
ment and evaluation sets, and are split into “clean” and “other” subsets. Among
them, the training set has three subsets with different amounts of transcribed
training data: 100 h, 460 h and 960 h. In our experiments, we used 100 h of
clean training set and 960 h of mixed data sets for training, respectively. The
development data and evaluation data were used to validate our models. For the
modeling units, we used graphemes and byte pair encoding (BPE) [24] based
subwords, respectively. For the subword sequence of each sentence, the first sub-
word of each word is not marked with a special character. Instead, we use space
symbol to separate each word of the sentence.

4.2 Setup

For all experiments, we extracted 80-dimensional log Mel-filterbank plus 3-
dimensional pitch from the speech signal based on Kaldi toolkit [25] as the frame-
level audio input features. The frame-length is 25 ms with a 10 ms shift. The fea-
tures were normalized by the mean and the standard deviation on the speaker
basis. SpecAugment [26] is applied for data augmentation in the experiment.
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Table 1. Comparison of WER using greedy search strategy among CTC-baseline
and proposed soft-BAC based Bi-LSTM models with different γ and α values on the
LibriSpeech-100 datasets. The modeling units are graphemes and BPE based subwords.
None of our experiments used any language model or lexicon information.

No. Model LibriSpeech-100

Grapheme BPE-200

Test-clean Test-other Test-clean Test-other

1 CTC-baseline 14.8 39.7 15.2 39.5

2 soft-BACγ=1.00,α=1.0 14.4 39.8 15.2 38.7

3 soft-BACγ=0.45,α=1.0 14.1 36.7 14.2 35.3

4 soft-BACγ=0.55,α=1.0 13.5 34.3 13.4 34.6

5 soft-BACγ=0.65,α=1.0 13.7 34.5 12.4 33.8

6 soft-BACγ=0.75,α=1.0 14.1 35.8 13.5 34.8

7 soft-BACγ=0.55,α=0.5 13.6 34.6 12.4 34.2

8 soft-BACγ=0.55,α=0.8 13.0 34.0 12.4 33.8

9 soft-BACγ=0.65,α=0.5 13.4 34.7 12.1 34.1

10 soft-BACγ=0.65,α=0.8 13.4 34.4 12.0 33.2

To verify the effectiveness of our proposed method, two different model struc-
tures were used, including Bi-LSTM and LAS. For Bi-LSTM based experiments,
we use 5-layer of bi-directional LSTM with 1024 hidden units. For LAS based
experiments, we use 2 blocks of VGG [27] layer followed by a 5-layer bi-directional
LSTM with 1024 hidden units in the encoder, and 2 unidirectional LSTM layer
with 1024 hidden units in the decoder. A location-based attention mechanism
with 1024 hidden units was also used in the decoder, where the convolution layer
was 10 centered convolution filters. All of the experiments are implemented and
performed using the ESPnet [28] end-to-end speech processing toolkit.

In the training phase, the batch size was set to 32 for all tasks. The Adadelta
algorithm with the setting described in [29] was used for all tasks. For regular-
ization, label smoothing [30] was applied by weighing the ground truth token at
each output step by 0.9, and uniformly distributing the remaining probability mass
among other tokens. To speed up the training time and reduce the memory con-
sumption of the training tasks, hierarchical subsampling [31] is used on the second
and third bi-directional LSTM layers in the Bi-LSTM task and the encoder net-
work in the LAS task, and the number of time-step factors is set to 2. We trained
our models on P40 GPUs and all networks were trained for 50 epochs.

We use the CTC-based model as the baseline. For soft-BAC in the Bi-LSTM
model, We conducted a number of experiments in ablation studies and explored
several configurations with different γ and α values. As for hybrid CTC/soft-BAC
LAS models, MTL hyperparameters λ = 0.4. Note that, as we did not use any
lexicon or language models in the decoding phase, our results were not compared
directly with the existing results of the end-to-end model based systems.
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Table 2. Comparison of WER using greedy search strategy among CTC-baseline
and proposed soft-BAC based Bi-LSTM models with different γ and α values on the
LibriSpeech-960 datasets. The modeling units are graphemes and BPE based subwords.
None of our experiments used any language model or lexicon information.

No. Model LibriSpeech-960

Grapheme BPE-5000

Test-clean Test-other Test-clean Test-other

1 CTC-baseline 5.7 14.6 5.3 13.5

2 soft-BACγ=1.00,α=1.0 5.5 14.8 5.2 13.7

3 soft-BACγ=0.45,α=1.0 4.9 13.1 5.1 13.5

4 soft-BACγ=0.55,α=1.0 5.2 13.5 4.6 12.3

5 soft-BACγ=0.65,α=1.0 5.1 13.6 4.4 12.1

6 soft-BACγ=0.75,α=1.0 5.4 14.0 4.6 12.9

7 soft-BACγ=0.55,α=0.5 5.2 13.3 4.6 12.3

8 soft-BACγ=0.55,α=0.8 4.9 12.7 4.4 12.1

9 soft-BACγ=0.65,α=0.5 5.2 13.5 4.5 12.1

10 soft-BACγ=0.65,α=0.8 4.7 12.9 4.3 11.9

4.3 Results

Table 3. Comparison of WER using beam search strategy (beam size = 20) among
hybrid CTC/soft-BAC LAS models. The modeling units are graphemes and BPE
subwords, where BPE-200 is used for LibriSpeech-100 and BPE-5000 is used for
LibriSpeech-960. The hyperparameters γ and α for soft-BAC loss are set to 0.55 and
0.8, respectively. None of our experiments used any language model or lexicon infor-
mation.

Train
data

Model Grapheme Subword

Test-clean Test-other Test-clean Test-other

100 CTC-LAS 11.5 31.3 10.8 29.5

soft-BAC LAS 10.9 29.7 10.1 28.2

960 CTC-LAS 4.8 12.9 4.4 11.5

soft-BAC LAS 4.3 11.6 4.1 10.9

The ablation study of the proposed soft-BAC method based on the Bi-LSTM
model and the comparison results with the CTC baseline are presented in Table 1
and 2. We conducted a number of experiments on soft-BAC models with dif-
ferent γ and α values on the LibriSpeech-100 and LibriSpeech-960 datasets.
To fully see the effect of the proposed soft-BAC methods, we conduct experi-
ments on different modeling unit tasks including graphemes and BPE-based sub-
words. We use the simple greedy search strategy to report the 1st pass results
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Fig. 2. Word error rate (WER) for the first training epochs of CTC and our soft-BAC
based Bi-LSTM model on the LibriSpeech-960 datasets. The hyperparameters γ and
α for soft-BAC are set to 0.65 and 1.0, respectively. (a): Grapheme as modeling units.
(b): BPE-5000 as modeling units.

directly without using any language model or lexicon dictionary. Table 1 and 2
shows the word error rate (WER) obtained for these experiments. By comparing
the results against the baseline CTC, our result shows that the performance is
comparable by using the proposed forward alignment cost criterion without the
soft operation (γ = 1.00, α = 1.0) as the loss function. We also find that only
using the proposed forward alignment cost criterion with the soft operation
can achieve significant improvements in both tasks. The best performances were
obtained by setting the γ in the grapheme and subword tasks to 0.55 and 0.65 on
LibriSpeech-100, and 0.45 and 0.65 on LibriSpeech-960. Furthermore, our MTL
soft-BAC method yielded consistent improvements for all types of tasks. The
weight α = 0.8 in the MTL give the best performance.

We also compared the performance of CTC and the proposed soft-BAC as an
auxiliary tasks of the LAS model on the LibriSpeech-100 and LibriSpeech-960
datasets. The hyperparameters γ and α of soft-BAC were set to 0.55 and 0.8,
respectively. During decoding, we use a beam search strategy similar to [20],
which combines the CTC/soft-BAC prefix score (weight = 0.4) and the beam
size was set to 20. The results were summarized in Table 3. We can see that using
graphemes and BPE-based subword as modeling units, our proposed soft-BAC
as an auxiliary task of LAS model has a significant performance improvement
compared with CTC. On LibriSpeech-100 datasets, the proposed model improves
the CTC baseline model by relative WER reduction 5.2% and 6.5% on test-clean,
5.1% and 4.6% on test-other. On LibriSpeech-960 datasets, the proposed model
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improved the CTC baseline model by relative WER reduction 10.4% and 6.8%
on test-clean, 10.0% and 5.2% on test-other.

In addition to the WER improvements, our proposed soft-BAC is also very
helpful in model training. Our soft-BAC criterion is implemented based on
PyTorch [32], and the model training takes less time under the same epochs
and GPUs compared to the CTC provided by SeanNaren1. Figure 2 shows the
curves of CTC/soft-BAC based Bi-LSTM model Word Error Rate (WER) on the
development sets of LibriSpeech-960 over training epochs. Note that the accura-
cies of the model were obtained with given gold standard history. We observed
that the soft-BAC loss is helpful to the model training with fast convergence and
improve the recognition performance achieved by simultaneously using forward
and backward alignment optimization methods.

_ s t u f _ i _ o _ y oi n t uf #

_ i

t _

s tBu f Bf it _ n B t o _ yo u B h Bi s _ B c o u nb e l B l y B _

l y _ c o unsh i s _ b e l # e l # l e d_ h i m _

le _h i m BBc e d _B

Fig. 3. Comparison of alignments produced by the Bi-LSTM based models with CTC
(top) and our soft-BAC (bottom) criterions on audio spectrogram. The modeling units
are graphemes and the dataset is LibriSpeech-100.

Figure 3 depicts the alignment of the recognition results of the grapheme-
based model in the CTC (top) and soft-BAC (bottom) loss functions. For the
CTC result, “B” represent additional blank symbol and “ ” represent space. For
Soft-BAC result, “#” represent identifier that distinguishes consecutive repeated
graphemes and “ ” represent space. We observe that our proposed soft-BAC
loss can achieve better alignment results, while the CTC based model exhibits
200ms delay and there has been a phenomenon of inserting extra blanks between
different characters. In addition, the recognition result of the CTC-based model
is worse than that of the soft-BAC based system. For example, an additional
blank symbol should be inserted between the red marked graphemes “l” in the
figure.

5 Conclusions

We have proposed a new training approach for end-to-end speech recognition
by integrating forward and backward alignment optimization methods based on
multitask learning architecture. Our method optimizes the model by minimizing

1 https://github.com/SeanNaren/warp-ctc.

https://github.com/SeanNaren/warp-ctc
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all costs of the left-to-right and right-to-left alignment process between two time
series of speech-transcription pair. We evaluated and compared our proposal
with just CTC loss as the baseline and CTC loss as an auxiliary task in LAS
mosel. Our method outperforms CTC in both using graphemes or subwords as
modeling units. Future work includes fusing implicit language models to improve
performance, and applying our proposal to online models.
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Abstract. In this paper, we propose a span labeling approach to model n-gram
information for Vietnamese word segmentation, namely SPANSEG. We compare
the span labeling approach with the conditional random field by using encoders
with the same architecture. Since Vietnamese and Chinese have similar linguis-
tic phenomena, we evaluated the proposed method on the Vietnamese treebank
benchmark dataset and five Chinese benchmark datasets. Through our experimen-
tal results, the proposed approach SPANSEG achieves higher performance than
the sequence tagging approach with the state-of-the-art F-score of 98.31% on the
Vietnamese treebank benchmark, when they both apply the contextual pre-trained
language model XLM-RoBERTa and the predicted word boundary information.
Besides, we do fine-tuning experiments for the span labeling approach on BERT
and ZEN pre-trained language model for Chinese with fewer parameters, faster
inference time, and competitive or higher F-scores than the previous state-of-the-
art approach, word segmentation with word-hood memory networks, on five Chi-
nese benchmarks.

Keywords: Natural language processing · Word segmentation · Vietnamese ·
Chinese

1 Introduction

Word segmentation is the first essential task for both Vietnamese and Chinese. The
input of Vietnamese word segmentation (VWS) is the sequence of syllables delimited
by space. In contrast, the input of Chinese word segmentation (CWS) is the sequence
of characters without explicit delimiter. The use of a Vietnamese syllable is similar to
a Chinese character. Despite deep learning dealing with natural language processing
tasks without the word segmentation phase, the research on word segmentation is still
necessary regarding the linguistic aspect. Since Vietnamese and Chinese have similar
linguistic phenomena such as overlapping ambiguity in VWS [13] and in CWS [26],
therefore the research about VWS and CWS is a challenging problem.

Many previous approaches for VWS have been proposed. For instance, in the early
stage of VWS, Dinh et al. [6] supposed VWS as a stochastic transduction problem.
c© Springer Nature Switzerland AG 2021
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https://doi.org/10.1007/978-3-030-89363-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89363-7_19&domain=pdf
https://doi.org/10.1007/978-3-030-89363-7_19


Span Labeling Approach for Vietnamese and Chinese Word Segmentation 245

Therefore, they represented the input sentence as an unweighted Finite-State Acceptor.
As a consequence, Le et al. [13] proposed the ambiguity resolver using a bi-gram lan-
guage model as a component in their model for VWS. After that, Nguyen et al. [16]
used conditional random fields (CRFs) and support vector machines (SVMs) for VWS.
Recently, Nguyen and Le [22] utilized rules based on the predicted word boundary and
threshold for the classifier in the post-processing stage to control overlapping ambigu-
ities for VWS. Besides, Nguyen et al. [18] proposes a method for auto-learning rule
based on the predicted word boundary for VWS. Furthermore, Nguyen [17] proposed
the joint neural network model for Vietnamese word segmentation, part-of-speech tag-
ging, and dependency parsing. Lastly, Nguyen et al. [20] proposed feature extraction to
deal with overlapping ambiguity and capturing word containing suffixes.

From our observation, the number of research and approaches for CWS is
greater than VWS. The research [1,10,15,24,28,32] treated CWS as a character-based
sequence labeling task. The contextual feature extractions were proved helpful in CWS
[10]. After that, neural networks were powerful for CWS [1,10,15]. The measuring
word-hood for n-grams was an effective method for non-neural network model [26]
and neural network model [27]. Besides, the multi-criteria learning from many differ-
ent datasets is a strong method [2,12,23]. Remarkably, Tian et al. [27] incorporated the
word-hood for n-gram into neural network model effectively.

We have an observation that most of the approaches for VWS and CWS treated
word segmentation as a token-based sequence tagging problem, where the token is a
syllable in VWS and character in CWS. Secondly, the intersection of VWS and CWS
approaches leverages the context to model n-gram of token information, such as mea-
suring the word-hood of the n-gram in CWS. All of the previous approaches in CWS
incorporate the word-hood information as a module of their models. Therefore, our
research hypothesizes whether we can model a simple model that can simulate measur-
ing word-hood operation.

From our observation and hypothesis, we get the inspiration of span representation
in constituency parsing [25] to propose our SPANSEG model for VWS and CWS. The
main idea of our SPANSEG is to model all n-grams in the input sentence and score them.
Modeling an n-gram is equivalent to find the probability of a span being a word. Via
experimental results, the proposed approach SPANSEG achieves higher performance
than the sequence tagging approach when both utilize contextual pre-trained language
model XLM-RoBERTa and predicted word boundary information on the Vietnamese
treebank benchmark with the state-of-the-art F-score of 98.31%. Additionally, we do
fine-tuning experiments for the span labeling method on BERT and ZEN pre-trained
language model for Chinese with fewer parameters, faster inference time, and compet-
itive or higher F-scores than the previous state-of-the-art approach, word segmentation
with word-hood memory networks, on five Chinese benchmarks.

2 The Proposed Framework

Differing from previous studies, we regard word segmentation as a span labeling task.
The architecture of our proposed model, namely SPANSEG, is illustrated in Fig. 1,
where the general span labeling paradigm is at the top of the figure. This paper is the
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Fig. 1. The architecture of SPANSEG for VWS. The input sentence is “ho. c sinh ho. c sinh ho. c”
(student learn biology) including five syllables {“ho. c”, “sinh”, “ho. c”, “sinh”, and “ho. c”}. The
gold-standard segmentation for the input sentence is “ho. c_sinh ho. c sinh_ho. c” including three
words {“ho. c_sinh”, “ho. c”, and “sinh_ho. c”}. The initial BIES (Begin, Inside, End, or Singleton)
word boundary tags (differing from gold-standard segmentation) were predicted by an off-the-
shelf toolkit RDRsegmenter [18].

first work approach to word segmentation as a span labeling task to the best of our
knowledge. Before presenting the details of SPANSEG, we take a first look at problem
representation of SPANSEG. In Fig. 1, we consider the input sentence in the form of the
index (integer type) and syllable (string type) as an array {0: “ho. c”, 1: “sinh”, 2: “ho. c”,
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3: “sinh”, 4: “ho. c”}. With this consideration, the gold-standard segmentation “ho. c_sinh
ho. c sinh_ho. c” (student learn biology) (including three words {“ho. c_sinh”, “ho. c”, and
“sinh_ho. c”}) is presented by three spans (0, 2) (“ho. c_sinh”), (2, 3) (“ho. c”), and (3, 5)
(“sinh_ho. c”). By approaching word segmentation as a span labeling task, we have three
positive samples (three circles filled with gray color) for the input sentence in Fig. 1,
whereas other circles filled with white color with solid border are negative samples for
the input sentence in Fig. 1. Also, in Fig. 1, we note that all circles with dashed border
(e.g., spans (0, 0), (1, 1), . . . , (n, n), where n is the length of the input sentence) are
skipped in SPANSEG because they do not represent spans.

After presenting SPANSEG, in the rest of this section, we firstly introduce problem
representation of word segmentation as a span labeling task (in Subsect. 2.1). Secondly,
we introduce the proposed span post-processing algorithm for word segmentation (in
Subsect. 2.2). The first and second subsections are two important points of our research.
Thirdly, we describe the span scoring module (in Subsect. 2.3). In the last two subsec-
tions, we provide the architecture encoder for VWS and CWS. We describe the model
SPANSEG for VWS (in Subsect. 2.4). Lastly, we describe SPANSEG for CWS (in Sub-
sect. 2.5).

2.1 Word Segmentation as Span Labeling Task for Vietnamese and Chinese

The input sentence of word segmentation task is a sequence of tokens X = x1x2 . . . xn

with the length of n. The token xi is a syllable or character toward Vietnamese or
Chinese, respectively. Given the input X , the output of word segmentation is a sequence
of words W = w1w2 . . . wm with the length of m, where 1 ≤ m ≤ n. We have a
property that the word wj is constituted by one token or consecutive tokens. So, we
use the sequence of tokens xixi+1 . . . xi+k−1 for denoting the word wj be constituted
by k consecutive tokens beginning at token xi, where 1 ≤ k ≤ n (concretely, k = 1
representing single words and 2 ≤ k ≤ n representing compound words for both
Vietnamese and Chinese). Inspired by the work of Stern et al. [25] for constituency
parsing, we use the span (i − 1, i − 1 + k) to represent the word constituted by k
consecutive tokens xixi+1 . . . xi+k−1 beginning at token xi. Therefore, the goal of the
span labeling task for both VWS and CWS is to find the list of spans Ŝ such that every
token xi is spanned, and there is no overlapping between every two spans. Formally,
the word segmentation model as span labeling task for both VWS and CWS can be
formalized as:

Ŝ = SPANPOSTPROCESSING(Ŷ) (1)

where SPANPOSTPROCESSING(·) simply is a algorithm for producing the word seg-
mentation boundary satisfying non-overlapping between every two spans. The Ŷ is the
set of predicted spans as following:

Ŷ = {(l, r)|0 ≤ l ≤ n − 1 and l < r ≤ n and SCORER(X , l, r) > 0.5} (2)

where n is the length of the input sentence. The SCORER(·) is the scoring module for
the span (l, r) of sentence X . The output of SCORER(·) has a value in the range of 0
to 1. In our research, we choose the sigmoid function as an activation function at the
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last layer of SCORER(·) module. Lastly, the word segmentation as a span labeling task
is the binary classification problem. We use the binary cross-entropy loss for the cost
function as following:

J(θ) = − 1
|D|

∑

X ,S∈D

(
1

(n(n + 1))/2

n−1∑

l=0

n∑

r=l+1

[(l, r) ∈ S] log (
SCORER(X , l, r)

)

+ [(l, r) /∈ S] log (
1 − SCORER(X , l, r)

))
(3)

where D is the training set and |D| is the size of training set. For each pair (X ,S) in
training set D, we compute binary cross-entropy loss for all spans (l, r), where 0 ≤
l ≤ n − 1 and l < r ≤ n, and n is the length of sentence X . The term [(l, r) ∈ S]
has the value of 1 if span (l, r) belongs to the list S of sentence X and conversely,
of 0. Similarly, the term [(l, r) /∈ S] has the value of 1 if span (l, r) does not belong
to the list S of sentence X and conversely, of 0. Lastly, we make a note that in our
training and prediction progress, we will discard spans with length greater than 7 for
both Vietnamese and Chinese (7 is maximum n-gram length following [5] for Chinese,
so we decide to choose 7 for Vietnamese according to the statistics in the work of [20]).

2.2 Post-processing Algorithm for Predicted Spans

In the previous Subsect. 2.1, we presented word segmentation as a span labeling task for
Vietnamese and Chinese. In this subsection, we present our proposed post-processing
algorithm for predicted spans from the span labeling problem. However, we found that
in the predicted spans set Ŷ there exists overlapping between some two spans. We
deal with the overlapping ambiguity by choosing the spans with the highest score and
removing the rest. The overlapping ambiguity phenomenon occurs when our SPANSEG
predicts compound words. It occurs in our SPANSEG and other word segmenters on
Vietnamese [13] and Chinese [26].

Apart from overlapping ambiguity, our SPANSEG faces the missing word boundary
problem. That problem can be caused by originally predicted spans or as a result of
solving overlapping ambiguity. We choose the missing word boundary based on all pre-
dicted spans (i − 1, i − 1 + k) with k = 1 for single words to deal with the missing
word boundary problem. To sum up, our proposed post-processing algorithm for pre-
dicted spans from the span labeling problem, namely SPANPOSTPROCESSING, deals
with overlapping ambiguity and missing spans from predicted spans. The detail of our
SPANPOSTPROCESSING is presented in Algorithm 1.

2.3 Span Scoring Module

In two previous Subsect. 2.1 and 2.2, we presented two critical points of our research.
There we mentioned the SCORER(·) module many times. In this section, we present
SCORER(·) module. It is based on the familiar module that name Biaffine [7]. While
Zhang et al. [33] experimenting with the Biaffine module for constituency parsing, we
use the Biaffine module for span labeling word segmentation. The Biaffine module
is used in [7] to capture the directed relation between two words in a sentence for
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Algorithm 1. SPANPOSTPROCESSING

Require:
The input sentence X with the length of n;
The scoring module SCORER(·) for any span (l, r) inX , where 0 ≤ l ≤ n−1 and l < r ≤ n;
The set of predicted spans Ŷ , sorted in ascending order.

Ensure:
The list of valid predicted spans Ŝ, satisfying non-overlapping between every two spans.

1: Ŝnovlp = [(0, 0)] � The list of predicted spans without overlapping ambiguity.
2: Ŝ = [] � The final list of valid predicted spans.
3: for ŷ in Ŷ do � The ŷ[0] is the left boundary and ŷ[1] is the right boundary of each span ŷ.
4: if Ŝnovlp[-1][1] < ŷ[0] then � Check for missing boundary.
5: Ŝnovlp.append

(
(Ŝnovlp[-1][1], ŷ[0])

)
� Add the missing span to Ŝnovlp

6: end if
7: if Ŝnovlp[-1][0] ≤ ŷ[0] < Ŝnovlp[-1][1] then � Check for overlapping ambiguity.
8: if SCORER(X , Ŝnovlp[-1][0], Ŝnovlp[-1][1]) < SCORER(X , ŷ[0], ŷ[1]) then
9: Ŝnovlp.pop() � Remove the span causing overlapping with the lower score than ŷ.
10: Ŝnovlp.append

(
(ŷ[0], ŷ[1])

)
� Add the span ŷ to Ŝnovlp.

11: end if
12: else
13: Ŝnovlp.append

(
(ŷ[0], ŷ[1])

)
� Add the span ŷ to Ŝnovlp.

14: end if
15: end for
16: if Ŝnovlp[-1][1] < n then � Check for missing boundary.
17: Ŝnovlp.append

(
(Ŝnovlp[-1][1], n)

)
� Add the missing span to Ŝnovlp

18: end if
19: for i, ŷ in enumerate(Ŝnovlp) do � The ŷ[0] is the left boundary and ŷ[1] is the right

boundary of each span ŷ, and i is the index of ŷ in list Ŝnovlp.
20: if 0 < i and Ŝnovlp[i − 1][1] < ŷ[0] then � Check for missing boundary.
21: missed_boundaries =

[Ŝnovlp[i − 1][1]
]

22: for bound in range
(Ŝnovlp[i − 1][1], ŷ[0]

)
do

23: if SCORER(X , bound, bound+ 1) > 0.5 then � Check for single word.
24: missed_boundaries.append(bound+ 1)
25: end if
26: end for
27: missed_boundaries.append(ŷ[0])
28: for j in range

(
len(missed_boundaries) − 1

)
do

29: Ŝ.append(
(missed_boundaries[j],missed_boundaries[j + 1])

)
� Add the

missing span to Ŝ
30: end for
31: end if
32: Ŝ.append(

ŷ[0], ŷ[1]
)

� Add the non-overlapping span to Ŝ
33: end for

dependency parsing. In the constituency parsing problem, Zhang et al. [33] used the
Biaffine module to find the representation of phrases. Our research uses the Biaffine
module to model the representation of n-gram for the word segmentation task.
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As we can see in Fig. 1, each token xi in the input sentence has two context-aware
word representations including left and right boundary representations except the begin
(“<s>”) and end (“</s>”) tokens. In case we use the BiLSTM (Bidirectional Long
Short Term Memory) encoder, the left boundary representation of token xi is the con-
catenation of the hidden state forward vector fi−1 and the hidden state backward vector
bi and the right boundary representation of token xi is the concatenation of the hidden
state forward vector fi and the hidden state backward vector bi+1, following Stern et al.
[25]. In case we use BERT [4] or ZEN [5] encoder, we chunk the last hidden state vector
into two vectors with the same size as forward and backward vectors of the BiLSTM
encoder. Even though we use the BiLSTM, BERT, or ZEN encoder, we always have the
left and right boundary representation for each token xi in the input sentence. There-
fore, in Fig. 1, we see that the right boundary representation fi ⊕ bi+1 of token xi is the
left boundary representation of token xi+1. As the work of Zhang et al. [33], we use
two MLPs to make the difference between the right boundary representation of token
xi and the left boundary representation of token xi+1. To sum up, we have the left rlefti

and right rrighti boundary representations of token xi as following:

rlefti = MLPleft(fi−1 ⊕ bi) (4)

rrighti = MLPright(fi ⊕ bi+1) (5)

Finally, inspired by Zhang et al. [33], given the input sentence X , the span scoring mod-
ule SCORER(·) for span (l, r) in our SPANSEG model is computed by using a biaffine
operation over the left boundary representation of token xl and the right boundary rep-
resentation of token xr as following:

SCORER(X , l, r) = sigmoid

( [
rleftl

1

]T

Wrrightr

)
(6)

where W ∈ R
d×d. To sum up, the SCORER(X , l, r) gives us a score to predict whether

a span (l, r) is a word.

2.4 Encoder and Input Representation for VWS

In three previous Subsect. 2.1, 2.2, and 2.3, we describe three mutual parts of the
SPANSEG model for Vietnamese and Chinese. In this subsection, we present the
encoder and the input representation for VWS of the SPANSEG model. Firstly, the
default configuration of SPANSEG for the input representation of token xi is composed
as following:

default_embeddingi =
(
static_syl_embeddingi

+ dynamic_syl_embeddingi

) ⊕ char_embeddingi

(7)

where the symbol⊕ denotes the concatenation operation. The static_syl_embeddingi

is extracted from the pre-trained Vietnamese syllable embedding with the dimension
of 100 provided by Nguyen et al. [19]. So, the dimension of vector dynamic_syl_



Span Labeling Approach for Vietnamese and Chinese Word Segmentation 251

embeddingi also is 100.We initialize randomly and update the value ofdynamic_syl_
embeddingi in the training progress. We do not update the value of static_
syl_embeddingi during training model. Besides, we also use a character embed-
ding for the input representation by using BiLSTM network for sequence of characters
in token xi to obtain char_embeddingi.

The default configuration does not utilize the Vietnamese predicted word boundary
information as many previous works on VWS did. Following the work of Nguyen [17],
we additionally use the boundary BIES tag embedding for the input representation of
token xi. Therefore, the second configuration of SPANSEG, namely SPANSEG (TAG)
is presented as following:

default_tag_embeddingi = default_embeddingi ⊕ bies_tag_embeddingi

(8)

where the value of bies_tag_embeddingi (with the dimension of 100) is initialized
randomly and updated; and the boundary BIES tag is predicted by the off-the-shelf
toolkit RDRsegmenter [18].

Recently, many contextual pre-trained language models were proposed inspired by
the work of Devlin et al. [4]. However, our research utilizes contextual pre-trained multi-
lingual language model XLM-Roberta (XLM-R) [3] with the base architecture for VWS
since there is no contextual pre-trained monolingual language model for Vietnamese at
this time. So, the third configuration of SPANSEG, namely SPANSEG (XLM-R), is pre-
sented as following:

default_xlmr_embeddingi = default_embeddingi ⊕ xlmr_embeddingi (9)

where the xlmr_embeddingi is the projected vector from the hidden state of the last
four layers of the XLM-R model. The dimension of xlmr_embeddingi is 100. We do
not update parameters of the XLM-R model during the training process.

Lastly, we make the fourth configuration for SPANSEG, namely SPANSEG (TAG +
XLM-R). This configuration aims to combine all syllables, characters, predicted word
boundaries, and contextual information for VWS.

default_tag_xlmr_embeddingi = default_embeddingi

⊕ bies_tag_embeddingi ⊕ xlmr_embeddingi (10)

After we have the input representation for each token xi of the input sentence X ,
we feed them into the BiLSTM network to obtain the forward fi and backward bi vec-
tors. The forward fi and backward bi vectors is used in the SCORER(·) module in Sub-
sect. 2.3.

2.5 Encoder and Input Representation for CWS

To make a fair comparison to the state-of-the-art model for CWS, we used the same
encoder as the work of Tian et al. [27]. Following the work [27], we choose two BERT
[4] and ZEN [5] encoders with the base architecture. The BERT and ZEN are two
famous encoders utilizing contextual information for Chinese language processing, in
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which the ZEN encoder enhances n-gram of characters information. For each character
xi in the input sentence X , we chunk the hidden state vector of the last layer of BERT
or ZEN into two vectors with the same size as the forward fi and backward bi vectors
in the BiLSTM network. Finally, the forward fi and backward bi vectors are used in
the SCORER(·) module in Subsect. 2.3. We update the parameters of BERT and ZEN in
training progress following the work of Tian et al. [27].

3 Experimental Settings

3.1 Datasets

The largest VWS benchmark dataset1 is a part of the Vietnamese treebank (VTB)
project [21]. We use the same split as the work of Nguyen et al. [18]. The summary
of the VTB dataset for the word segmentation task is provided in Table 1.

Table 1. Statistics of the Vietnamese treebank dataset for word segmentation. We provide the
number of sentences, characters, syllables, words, character types, syllable types, word types.
We also compute the out-of-vocabulary (OOV) rate as the percentage of unseen words in the
development and test set.

VTB

Train Dev Test

# sentences 74,889 500 2,120

# characters 6,779,116 55,476 307,932

# syllables 2,176,398 17,429 96,560

# words 1,722,271 13,165 66,346

# character types 155 117 121

# syllable types 17,840 1,785 2,025

# word types 41,355 2,227 3,730

OOV Rate – 2.2 1.6

For evaluating our SPANSEG on CWS, we employ five benchmark datasets includ-
ing MSR, PKU, AS, CityU (from SIGHAN 2005 Bakeoff [8]), and CTB6 [31]. We
convert traditional Chinese characters in AS, and CityU into simplified ones following
previous studies [1,23,27]. We follow the official training/test data split of MSR, PKU,
AS, and CityU, in which we randomly extract 10% of the training dataset for develop-
ment as many previous works. For CTB6, we the same split as the work of Tian et al.
[27]. For pre-processing phase of all CWS dataset in our research, we inherit the pro-
cess2 of Tian et al. [27]. The summary of five Chinese benchmark datasets for the word
segmentation task is presented in Table 2.

1 The details of VTB dataset are presented at https://vlsp.org.vn/vlsp2013/eval/ws-pos.
2 https://github.com/SVAIGBA/WMSeg.

https://vlsp.org.vn/vlsp2013/eval/ws-pos
https://github.com/SVAIGBA/WMSeg
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Table 2. Statistics of five Chinese benchmark dataset for word segmentation. We provide the
number of sentences, characters, words, character types, word types. We also compute the out-of-
vocabulary (OOV) rate as the percentage of unseen words in the test set.

MSR PKU AS CITYU CTB6

Train Test Train Test Train Test Train Test Train Dev Test

# sentences 86,918 3,985 19,054 1,944 708,953 14,429 53,019 1,492 23,420 2,079 2,796

# characters 4,050,469 184,355 1,826,448 172,733 8,368,050 197,681 2,403,354 67,689 1,055,583 100,316 134,149

# words 2,368,391 106,873 1,109,947 104,372 5,449,581 122,610 1,455,630 40,936 641,368 59,955 81,578

# character types 5,140 2,838 4,675 2,918 5,948 3,578 4,806 2,642 4,243 2,648 2,917

# word types 88,104 12,923 55,303 13,148 140,009 18,757 68,928 8,989 42,246 9,811 12,278

OOV Rate – 2.7 – 5.8 – 4.3 – 7.2 – 5.4 5.6

3.2 Model Implementation

The Detail of SPANSEG for Vietnamese. For the encoder mentioned in the Sub-
sect. 2.4, the number of layers of BiLSTM is 3, and the hidden size of BiLSTM is 400.
The size of MLPs mentioned in the Subsect. 2.3 is 500. The dropout rate for embed-
ding, BiLSTM, and MLPs is 0.33. We inherit hyper-parameters from the work of [7].
We trained all models up to 100 with the early stopping strategy with patience epochs
of 20. We used AdamW optimizer [11] with the default configuration and learning rate
of 10-3. The batch size for training and evaluating is up to 5000.

The Detail of SPANSEG for Chinese. For the encoder mentioned in the Subsect. 2.5,
we do fine-tuning experiments based on BERT [4] and ZEN [5] encoders. The size of
MLPs mentioned in the Subsect. 2.3 is 500. The dropout rate for BERT and ZEN is 0.1.
We trained all models up to 30 with the early stopping strategy with patience epochs of
5. We used AdamW optimizer [11] with the default configuration and learning rate of
10-5. The batch size for training and evaluating is 16.

4 Results and Analysis

4.1 Main Results

For VWS, we also implement the BiLSTM-CRF model with the same backbone and
hyper-parameters as our SPANSEG. The overall results are presented in Table 3. On the
default configuration, our SPANSEG gives a higher result than BiLSTM-CRF with the F-
score of 97.76%. On the configuration with pre-trained XLM-R, our SPANSEG (XLM-
R) gives a higher result than BiLSTM-CRF (XLM-R) with the F-score of 97.95%.
On the configuration with predicted boundary BIES tag from off-the-shelf toolkit
RDRsegmenter [18], the BiLSTM-CRF (TAG) gives a higher result than our SPANSEG
(TAG) with the F-score of 98.10%. Finally, on the configuration with a combination
of all features, our SPANSEG (TAG+XLM-R) gives a higher result than BiLSTM-CRF
(TAG+XLM-R) with the F-score of 98.31%, which is also the state-of-the-art perfor-
mance on VTB. We can see that the contextual information is essential for SPANSEG
since SPANSEG models the left and right boundary of a word rather than the between
to consecutive tokens.
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Table 3. Performance (F-score) comparison between SPANSEG (with different configurations)
and previous state-of-the-art models on the test set of VTB dataset.

VTB

P R F ROOV

vnTokenizer [13] 96.98 97.69 97.33 –

JVnSegmenter-Maxent [16] 96.60 97.40 97.00 –

JVnSegmenter-CRFs [16] 96.63 97.49 97.06 –

DongDu [14] 96.35 97.46 96.90 –

UETsegmenter [22] 97.51 98.23 97.87 –

RDRsegmenter [18] 97.46 98.35 97.90 –

UITsegmenter [20] 97.81 98.57 98.19 –

BiLSTM-CRF 97.42 97.84 97.63 72.47

SPANSEG 97.58 97.94 97.76 74.65

BiLSTM-CRF (XLM-R) 97.69 97.99 97.84 72.66

SPANSEG (XLM-R) 97.75 98.16 97.95 70.01

BiLSTM-CRF (TAG) 97.91 98.28 98.10 69.16

SPANSEG (TAG) 97.67 98.28 97.97 65.94

BiLSTM-CRF (TAG+XLM-R) 97.94 98.44 98.19 68.87

SPANSEG (TAG+XLM-R) 98.21 98.41 98.31 72.28

For CWS, we presented the performances of our SPANSEG in Table 4. We do not
compare our method with previous studies approaching multi-criteria learning since
simply the training data is different. Our research focuses on the comparison between
our SPANSEG and sequence tagging approaches. Firstly, we can see that our SPANSEG
(BERT) achieves higher results than state-of-the-art methods WMSEG (BERT-CRF)
[27] on four datasets including MSR (98.31%), PKU (96.56%), AS (96.62%), and
CTB6 (97.26%) except CityU (97.74%). Our SPANSEG (ZEN) do not achieve the stable
performance as SPANSEG (BERT). The potential reason for this problem is that both
ZEN [5] encoder and our SPANSEG try to model n-gram of Chinese characters causing
inconsistency.

Lastly, we test the WMSEG and our SPANSEG when dealing with the largest bench-
mark dataset AS on Chinese to discuss the size of the model and the inference time. The
statistics are presented in Table 5, showing that our SPANSEG has the smaller size and
faster inference time than WMSEG. The statistics can be explained by WMSEG [27]
containing word-hood memory networks to encode both n-grams and the word-hood
information, while our SPANSEG encodes n-grams information via span representation.
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Table 4. Performance (F-score) comparison between SPANSEG (BERT and ZEN) and previ-
ous state-of-the-art models on the test set of five Chinese benchmark datasets. The symbol [�]
denotes the methods learning from data annotated through different segmentation criteria, which
means that the labeled training data are different from the rest.

MSR PKU AS CITYU CTB6

F ROOV F ROOV F ROOV F ROOV F ROOV

Chen et al. [1] 97.40 – 96.50 – – – – – 96.00 –

Xu and Sun [30] 96.30 – 96.10 – – – – – 95.80 –

Zhang et al. [32] 97.70 – 95.70 – – – – – 95.95 –

Chen et al. [2] [�] 96.04 71.60 94.32 72.64 94.75 75.34 95.55 81.40 – –

Wang and Xu [29] 98.00 – 96.50 – – – – – – –

Zhou et al. [34] 97.80 – 96.00 – – – – – 96.20 –

Ma et al. [15] 98.10 80.00 96.10 78.80 96.20 70.70 97.20 87.50 96.70 85.40

Gong et al. [9] 97.78 64.20 96.15 69.88 95.22 77.33 96.22 73.58 – –

Higashiyama et al. [10] 97.80 – – – – – – – 96.40 –

Qiu et al. [23] [�] 98.05 78.92 96.41 78.91 96.44 76.39 96.91 86.91 – –

WMSEG (BERT-CRF) [27] 98.28 86.67 96.51 86.76 96.58 78.48 97.80 87.57 97.16 88.00

WMSEG (ZEN-CRF) [27] 98.40 84.87 96.53 85.36 96.62 79.64 97.93 90.15 97.25 88.46

METASEG [12] [�] 98.50 – 96.92 – 97.01 – 98.20 – 97.89 –

SPANSEG (BERT) 98.31 85.32 96.56 85.53 96.62 79.36 97.74 87.45 97.25 87.91

SPANSEG (ZEN) 98.35 85.66 96.35 83.66 96.52 78.43 97.96 90.11 97.17 87.76

Table 5. Statistics of model size (MB) and inference time (minute) of WMSEG [27] and our
SPANSEG dealing with the training set of the AS dataset on Chinese. We use the same batch size
as the work of Tian et al. [27]. The inference time is done by using Tesla P100-PCIE GPU with
memory size of 16,280 MiB via Google Colaboratory.

BERT Encoder ZEN Encoder

WMSEG SPANSEG WMSEG SPANSEG

Size (MB) 704 397 1,150 872

Inference Time (minute) 28 15 46 32

4.2 Analysis

Table 6. Error statistics of the overlapping ambiguity problem involving three consecutive tokens
on VWS dataset. The symbols ✓ and ✗ denote predicting correctly and incorrectly, respectively.

BiLSTM-CRF SPANSEG Configuration

Defalut XLM-R TAG TAG+XLM-R

✗ ✗ 15 5 19 7

✓ ✗ 7 0 4 0

✗ ✓ 7 0 18 1
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To explore how our SPANSEG learns to predict VWS and CWS, we select the statistics
of the overlapping ambiguity problem involving three consecutive tokens. The first case
is that given the gold standard tags “B E S”, the prediction is incorrect if its tags “S B E”,
and is correct if its tags “B E S”. The second case is that given the gold standard tags
“S B E”, the prediction is incorrect if its tags “B E S”, and is correct if its tags “S B E”.
Notably, we do not count the case that is not one in two cases we describe. We present
the error statistics for Vietnamese in Table 6. We can see that the contextual informa-
tion from XLM-R helps both BiLSTM-CRF and our SPANSEG in reducing ambiguity.
However, according to Table 3, the predicted word boundary information helps both
BiLSTM-CRF and our SPANSEG in increasing overall performance but causes the over-
lapping ambiguity problem. Our SPANSEG (TAG) solves overlapping ambiguity better
than BiLSTM-CRF (TAG) when utilizing predicted word boundary information. Lastly,
we also provide error statistics for Chinese in Table 7. We can see that overlapping ambi-
guity is the crucial problem for both WMSEG [27] and our SPANSEG on MSR, PKU,
and AS datasets.

Table 7. Error statistics of the overlapping ambiguity problem involving three consecutive tokens
on five Chinese benchmark datasets. The symbols ✓ and ✗ denote predicting correctly and incor-
rectly, respectively.

WMSEG [27] SPANSEG MSR PKU AS CITYU CTB6

✗ ✗ 14 13 12 2 3

✓ ✗ 2 2 2 1 2

✗ ✓ 2 1 5 0 0

5 Conclusion

This paper proposes a span labeling approach, namely SPANSEG, for VWS. Straight-
forwardly, our approach encodes the n-gram information by using span representations.
We evaluate our SPANSEG on the Vietnamese treebank dataset for the word segmenta-
tion task with the predicted word boundary information and the contextual pre-trained
embedding from the XLM-RoBerta model. The experimental results on VWS show that
our SPANSEG is better than BiLSTM-CRF when utilizing the predicted word bound-
ary and contextual information with the state-of-the-art F-score of 98.31%. We also
evaluate our SPANSEG on five Chinese benchmark datasets to verify our approach.
Our SPANSEG achieves competitive or higher F-scores through experimental results,
fewer parameters, and faster inference time than the previous state-of-the-art method,
WMSEG. Lastly, we also show that overlapping ambiguity is a complex problem for
VWS and CWS. Via the error analysis on the Vietnamese treebank dataset, we found
that utilizing the predicted word boundary information causes overlapping ambiguity;
however, our SPANSEG is better than BiLSTM-CRF in this case. Finally, our SPANSEG
will be made available to the open-source community for further research and develop-
ment.
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Abstract. Spelling error correction is one of topics which have a long
history in natural language processing. Although previous studies have
achieved remarkable results, challenges still exist. In the Vietnamese lan-
guage, a state-of-the-art method for the task infers a syllable’s context
from its adjacent syllables. The method’s accuracy can be unsatisfactory,
however, because the model may lose the context if two (or more) spelling
mistakes stand near each other. In this paper, we propose a novel method
to correct Vietnamese spelling errors. We tackle the problems of mistyped
errors and misspelled errors by using a deep learning model. The embed-
ding layer, in particular, is powered by the byte pair encoding technique.
The sequence to sequence model based on the Transformer architecture
makes our approach different from the previous works on the same prob-
lem. In the experiment, we train the model with a large synthetic dataset,
which is randomly introduced spelling errors. We test the performance
of the proposed method using a realistic dataset. This dataset contains
11,202 human-made misspellings in 9,341 different Vietnamese sentences.
The experimental results show that our method achieves encouraging per-
formance with 86.8% errors detected and 81.5% errors corrected, which
improves the state-of-the-art approach 5.6% and 2.2%, respectively.

Keywords: Vietnamese spell correction · Deep learning · Subword
level · Vietnamese realistic dataset

1 Introduction

Spelling error correction [4] is an important task, which aims to detect and
correct spelling errors in a document. It is used for a variety of natural lan-
guage applications, including search queries [1,6,10], message filtering sys-
tems [7,23,24], and optical character recognition (OCR) [16,19,20]. In this paper,
we consider Vietnamese spelling correction in general.

In most cases, there are two kinds of errors in the Vietnamese language:
mistyped errors and misspelled errors [11]. Mistyped errors are errors that occur
during the typing process. The majority of these mistakes are caused by the

c© Springer Nature Switzerland AG 2021
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https://doi.org/10.1007/978-3-030-89363-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89363-7_20&domain=pdf
https://doi.org/10.1007/978-3-030-89363-7_20


260 D.-T. Do et al.

typist’s unintentional actions, such as pressing the wrong key between two adja-
cent characters on the keyboard. Furthermore, these errors typically stop at the
syllable level, and they can be detected if the typist carefully reviews the text.
Mistyped errors can be classified into two smaller categories: non-word errors
and real-word errors. Non-word errors mean that the words completely do not
exist in the dictionary. Real-word errors, on the other hand, are errors that the
words that are still in the dictionary but used in the wrong contexts.

A misspelled error is one that the typists did not realize was incorrect. This
type of error is caused by regional pronunciation mistakes or the difficulty of
some Vietnamese words. Compared to mistyped errors, misspelled errors are
harder to detect since we not only need to rely on the context but also have
knowledge of the standard dialect to detect these errors. Table 1 shows some
examples of spelling errors in Vietnamese.

Table 1. Examples of Vietnamese spelling errors.

Spelling error correction is a problem that has received a lot of attention
from the natural language processing community. In the Vietnamese language,
there were a large number of studies approaching this problem by adopting
statistical language models [9,12–14], such as N-gram. These traditional models
learn the context by training on a large dataset. This method, however, has
its limitation: the context of a syllable can only be grasped by the adjacent
syllables. For sentences that have two or more spelling mistakes next to each
other, it is harder for the model to identify errors. In recent years, the application
of deep learning models to the Vietnamese spelling check is a new trend that
interests researchers [11]. The advantage of this approach is that the context
of a syllable is not constrained by surrounding syllables, allowing the model to
detect spelling errors more accurately. Although some positive results have been



VSEC: Transformer-Based Model for Vietnamese Spelling Correction 261

obtained, almost all studies on this method primarily focus on correcting certain
types of spelling errors, making it difficult to apply in the real world.

In this paper, we propose a subword-level Transformer based model for Viet-
namese spelling correction and evaluate it with a realistic dataset. The contri-
butions of the paper include:

– A deep learning method for Vietnamese spelling correction, where both
mistyped errors and misspelled errors are considered;

– A process of generating Vietnamese spelling errors, which artificially add
errors to a non-error sentence; this process is used to produce a large number
of artificial mistakes for deep learning models to learn from;

– A public dataset of human-made spelling errors, which includes 9,341 sen-
tences in 4,582 different types of errors; this dataset is a benchmark for eval-
uating various approaches.

The rest of the paper is organized as follows. The next section briefly intro-
duces some related works. Section 3 details each step of the proposed method.
Section 4 presents the experimental results of the models, and we draw some
conclusions in Sect. 5.

2 Related Work

Spelling error correction is an essential part of natural language processing
(NLP). In the Vietnamese language, many methods have been proposed for
this problem. Previous approaches can be primarily divided into two categories.
One employs traditional statistical language models and the other uses machine
learning.

In 2008, Phuong H. Nguyen et al. [12] proposed a statistical method that used
POS Bigram (Part Of Speech Bigram) to detect suspected syllables. Minimum
Edit Distance and SoundEx algorithms have been applied to generate suggestion
candidates in the correcting phase. To rank these candidates, some heuristics in
relevant criteria are also used.

Nguyen Thi Xuan Huong et al. [9] developed an N-gram language model
for Vietnamese spell correction. A large unlabeled dataset is used to learn the
context of syllables. Specifically, the N-gram score for each syllable in the candi-
date set is calculated based on the frequency of occurrence in unigram, bigram,
and trigram. The model creates the candidate set based on changing characters
in syllables corresponding to typing errors, consonant errors, etc. The current
syllable is considered an error if a syllable in the candidate set has a higher
N-gram score than the current one. This approach is currently state-of-the-art
with approximately 94% F1 score on their experimental data.

By detecting and correcting spelling errors, Nguyen Hong Vu et al. [14] pro-
posed a method to normalize Vietnamese tweets. The words with spelling errors
were detected based on a dictionary. The model corrected the errors by com-
bining the Vietnamese vocabulary structure with a language model based on
improved Dice and SRILM (A language model).
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Spelling error correction is an important step in improving the accuracy of
OCR-generated text. For Vietnamese OCR errors, Quoc-Dung Nguyen et al. [13]
developed an approach for generating and scoring correction candidates based
on linguistic features. The spelling errors will be detected based on the unigram,
bigram, and trigram dictionaries. After the detecting phase, a candidate set
for each syllable error will be generated by applying insertion, deletion, and
substitution operators. The candidates with high score which is calculated based
on linguistic features such as Syllable Similarity, Bigram frequency, Trigram
frequency, and Edit Probability will be included in the suggestion list.

In 2018, Nguyen Ha Thanh et al. [11] proposed a deep learning method to
solve Vietnamese consonant misspell errors. To identify and correct error posi-
tions, the model employs misspell direction encoding and bidirectional stacked
LSTM architecture.

Spelling error correction can be formulated as a problem of translating a mis-
spelling sequence to a corrected one. This type of problem can be solved with
typical methods used for machine translation. Some researchers have applied
Neural Machine Translation (NMT) models [2,8,25] to correct spelling errors in
popular languages such as English and Chinese. Their positive results demon-
strate that this is a viable solution to the problem of spelling error correction.

One of challenges with NMT is the out-of-vocabulary problem. Increasing the
model’s vocabulary size is a simple way to solve this problem. However, if the
vocabulary is too large, the dimension of the vector embedding will be too high.
It increases the computation time and adds complexity to the model’s train-
ing. To address this problem, some studies [3,18] applied Byte Pair Encoding
(BPE), which tokenizes sentences at subword level [17]. This technique keeps
input length to a reasonable level while handling unseen and rare words.

3 Methodology

3.1 Problem Statement

Vietnamese spelling correction can be formulated as follows. Given a set of syl-
lable sequences X = {xi = (xi

1, x
i
2..., x

i
n)} with some errors in xi, and a set of

syllable sequences Y = {yi = (yi1, y
i
2..., y

i
m)}, where yi is error-free. The goal is

to transform each sequence xi into corresponding sequence yi. Following that,
the task can be considered as a problem of learning a function f : X → Y that
satisfies f(xi) = yi.

3.2 Model Overview

The state-of-the-art method for Vietnamese spelling correction is to use a sta-
tistical language model. Although the method is trainable on a large dataset, it
uses a limited context. This motivates us to create a new model which exploits
broad context.
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Figure 1 illustrates an overview of our proposed model, called VSEC, in train-
ing and testing processes. The pipeline of VSEC is composed of three com-
ponents: a preprocessing module, a tokenization module, and a Transformer-
based model. The original data is first preprocessed to remove any noise that
might appear in the sentence. The BPE tokenizer then converts each sentence
into a sequence of tokens. Finally, the Data Loader feeds the sequence into the
Transformer-based model for training.

Fig. 1. Model pipeline

3.3 Preprocessing

To ensure that the results are reliable, data quality assurance is critical. Each
input sequence needs to be removed noise before proceeding to the next phase.
Our preprocessing module, in particular, consists of five steps:

– Step 1: Remove noise characters - In this step, we remove characters
that are not useful for learning the context of a sentence such as emojis, line
break characters.

– Step 2: Convert uppercase to lowercase - Using both upper and lower
case can affect the model’s data density. Therefore, all uppercase characters
are converted to lowercase.

– Step 3: Standardize marks - In this step, each syllable is converted to
the syllable in the telex typing form. Following that, the data is standardized
using a mapping set between the telex syllable and the correct mark syllable.
For example: Syllable “ ” => Telex syllable “cuar” => Standardized
syllable “ ”.

– Step 4: Split merged syllables - The appearance of merged syllables in
the dataset may have a detrimental effect on the model’s learning. We use the
Peter Norvig word segmentation algorithm to solve this problem [15]. When
syllables are merged in the Vietnamese language, they transform into the
syllables in the telex typing form. This occurs as a result of the Vietnamese
typing tools’ mechanism. Therefore, while calculating probability using the
Peter Norvig algorithm, it is critical to convert the telex syllable to the stan-
dard Vietnamese syllable.
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– Step 5: Merge separated syllables - A syllable that has spaces between its
characters is known as a separated syllable. The model is also more difficult
to converge due to the appearance of these strange syllables. To solve this
problem, we employ the Trie structure [21], which has demonstrated its ability
to browse prefixes.

3.4 Tokenization

In Vietnamese, each space-separated token is in monosyllabic form. Therefore,
we call the word level in English as the syllable level in Vietnamese from now
on. At first glance, using syllable level as the input seems like a good idea.
However, this level is not well suited for spelling error correction, as we can
have difficulties with misspelling syllables or rare syllables (out of vocabulary).
It makes the model harder to learn the sentence’s context. One of the solutions
to this problem is to use the character level. Nevertheless, breaking syllables into
characters will increase the sequence length. As a result, the model is large and
slow to converge.

Subword level is between syllable level and character level. It keeps the input
length at a reasonable level while addressing the out-of-vocabulary problem.
For example, we can split a Vietnamese misspelling syllable into two
tokens: “ngh” and , and present by vectors of these tokens. The
BPE algorithm is used to construct a subword dictionary [17]. Given a large
corpus, this tokenization technique groups characters into frequent sequences.
It is totally unsupervised and requires no information about the context of the
sentence. An example of how BPE obtains vocabulary from raw text is shown
in Table 2.

Table 2. An example of how BPE obtains vocabulary given a raw sequence

Iteration Sequence Vocabulary

0 a t e /w a t /w {a, t, e, /w}
1 at e /w at /w {a, t, e, /w, at}
2 at e /w at/w {a, t, e, /w, at, at/w}
3 at e/w at/w {a, t, e, /w, at, at/w, e/w}
4 ate/w at/w {a, t, e, /w, at, at/w, e/w, ate/w}

The algorithm of BPE is as follows. Firstly, a special token /w is appended
to each syllable to indicate the end position of a syllable. Then, we split all sen-
tences in the corpus into characters. At this point, the vocabulary only contains
single characters. After that, we iteratively count all token pairs and merge each
occurrence of the most frequent pair (Y, Z) into a new token YZ and add it to
the vocabulary. The size of the final vocabulary is equal to the total number of
merge operations and initial characters. The number of merge operations is the
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only parameter of the BPE algorithm. We will have a large vocabulary if this
number is large. An example of the BPE tokenization result is in Fig. 2.

Fig. 2. Comparison of different tokenization levels. Tokens are separated by “|”.

is not a Vietnamese syllable.

3.5 Transformer Model

Based on the idea of treating Vietnamese spelling error correction as a machine
translation problem, the proposed model learns to translate the sentence having
spelling errors to the corrected one. Specifically, we use the Seq2seq architecture
based on Transformer [22] as our baseline. The Transformer encodes a misspelling
sentence to a context hidden state using a stack of L encoder blocks, each of
which employs a multi-head self-attention layer and a feed-forward network. The
decoder uses the encoder’s hidden states and the sequence of previous target
tokens to generate the target hidden state by applying a stack of L decoder
blocks. The decoder block has the same architecture as the encoder one, except
it has an extra attention layer over the encoder’s hidden states.

The goal of Transformer is to predict the next token yt, given the source
tokens (x1, x2, ..., xn). The formulas of this process are:

hsrc
1..n = encoder(Esrc

x1..n
) (1)

ht = decoder(Etrg
y1..t−1

,hsrc
1..n) (2)

Pt(w) = softmax(WTht) (3)
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The embedding matrix is represented by E ∈ Rd×|V |, where d is the embed-
ding dimension, and |V | is the size of the vocabulary. The value of xi represents
the position of the i -th token in the vocabulary. The encoder’s hidden states are
denoted by hsrc

1..n and the target hidden state of the next token is denoted by ht.
After obtaining the target hidden state, the model determines the next token to
be generated by feeding ht into the fully connected (dense) layer behind. Partic-
ularly, the fully connected layer has |V | hidden units activated by the Softmax
function, which produces scores whose total is 1.0. These values correspond to
the generation probability distribution of the next token.

4 Experimental Results

4.1 Dataset

To generate a dataset for training the proposed model, we created a process
for artificially adding errors to non-error sentences in Vietnamese. This process
is referred to as Error Generator. We began by extracting 5 million sentences
from a Vietnamese news corpus1, which was crawled from several prominent
Vietnamese websites. A fusion table was also constructed, in which each syllable
is linked to a group of other candidates, to present common types of Vietnamese
spelling errors such as mistyped errors, consonant errors. Then, at random, we
selected 8% of the syllables in the sentences to artificially generate errors, with
90% of them being replaced with other syllables, 5% being removed, and 5%
being duplicated. The difference between VSEC Error Generator and others is
the use of add and delete operators, which represents errors when the typists
often use copy and paste.

In addition, we developed a realistic dataset for testing. We sampled the
contents of 618 documents at Tailieu2, an educational material website. To ensure
that the dataset includes a significant amount of incorrect sentences, we sampled
documents from lower quality texts, and thus the error rate of the dataset higher.
Three people handled three phases of labeling to carefully correct spelling errors
in the texts. The dataset includes 9,341 sentences, which contain 11,202 spelling
errors in 4,582 different types3.

4.2 Evaluation Metric

We utilized syllable-level precision, recall, and F1 score which are common in the
community [9,12,14]. In addition, we evaluated the accuracy of both detection
and correction tasks. Specifically, we used six metrics:

Detection Precision =
# of true detections
# of error detected

(DP ) (4)

1 https://github.com/binhvq/news-corpus.
2 https://tailieu.vn.
3 https://github.com/VSEC2021/VSEC.

https://github.com/binhvq/news-corpus
https://tailieu.vn
https://github.com/VSEC2021/VSEC
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Detection Recall =
# of true detections
# of actual errors

(DR) (5)

Detection F1-score =
2 ∗ DR ∗ DP
DR + DP

(DF ) (6)

Correction Precision =
# of true corrections
# of error detected

(CP ) (7)

Correction Recall =
# of true corrections
# of actual errors

(CR) (8)

Correction F1-score =
2 ∗ CR ∗ CP

CR + CP
(CF ) (9)

4.3 Experimental Setting

The BPE Tokenizer is used in the experiments based on HuggingFace’s library.4

Specifically, the BPE Tokenizer was trained on news corpus to build a subword-
level vocabulary. We set the vocab size to 30,000 and kept other default hyper-
parameters.

In the training phase, we use Adam optimizer with Cross-Entropy Loss to
train the neural network model with Transformer architecture. Through the
experiment, the model achieved the best results with hyperparameters are shown
in Table 3.

Table 3. Parameters

Parameters Value

Embedding dimension 512

Sequence length 200

Number of head in multi-head attention 8

Number of encoder/decoder layers 3

Batch size 32

Learning rate 0.0003

Drop out rate 0.1

To conduct an informative experiment, we rebuild the N-gram model as a
single baseline for comparison. Comparison to other approaches [11,13,14] is not
conducted due to two main reasons. First, they are proposed for domains dif-
ferent from ours [13,14]. Some studies only focus on OCR spelling correction.
Apparently, it is not directly comparable to the methods for general solutions

4 https://github.com/huggingface/tokenizers.

https://github.com/huggingface/tokenizers
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like VSEC. Second, some studies primarily focus on a specific sort of Vietnamese
spelling errors, such as consonant misspell errors [11]. Thus, it is unfair to com-
pare VSEC with methods in these studies. For the above reasons, we evaluate
and analyze the current state-of-the-art method, N-gram, to ensure fairness and
generality of the experiment.

In addition, the BiLSTM Seq2seq model with attention mechanism and the
Transformer models at different token levels are also trained and tested according
to the same process. The Vietnamese news corpus is still being used to build
these baseline methods.

4.4 Main Results

Table 4 shows the experimental results of all methods on the test dataset. From
the table, we can see that the proposed model substantially outperforms the
baseline methods. Particularly, in the detection phase, our proposed method
performs much better than the baselines in terms of all metrics. The result for
recall of correction task on the test dataset is greater than 76%, implying that
more than 76% of errors will be fixed.

Table 4. Performances of Different Methods on Vietnamese spelling correction

Method Detection Correction

DP DR DF CP CR CF

N-gram 0.912 0.731 0.812 0.891 0.714 0.793

Seq2seq with attention 0.310 0.752 0.439 0.222 0.539 0.315

Character-level Transformer 0.775 0.367 0.498 0.612 0.290 0.393

Syllable-level Transformer 0.719 0.776 0.746 0.636 0.686 0.661

VSEC 0.931 0.813 0.868 0.874 0.763 0.815

The N-gram method achieves the highest precision of correction because it
can reduce false corrections by using an additional parameter, error threshold.
The use of this parameter is effective with more than 89% of precision in both
evaluation criteria. However, precision and recall are a tradeoff. Increasing the
precision of the N-gram method entails lowering the recall. On the other hand,
the proposed method shows more balance, when the values of the precision and
recall measurements are not significantly different. Specifically, the proposed
method reaches 86.8% with the F1 score measure in the error detection task and
81.5% in the error correction task, while the N-gram method only reaches 81.2%
and 79.3%, respectively.

For the methods of using Seq2seq architecture, the subword-level Transformer
model performs better than the other baselines, while the method of the BiLSTM
Seq2seq model with attention mechanism performs fairly poorly. This indicates
that, despite ignoring traditional recurrent architectures, the Transformer-based
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models are still able to outperform the LSTM-based models. Furthermore, the
subword-level model can beat the models at other token levels. This demon-
strates that the subword-level model can handle the out of vocabulary problem
better than one at the syllable level and it also performs effectively than the
character-level model.

4.5 Effect of Hyperparameter

We also investigate the effect of the vocabulary size and the data size. Table 5
shows that the proposed method reaches its best performance with the data size
is 5 million. This indicates that the more training data the higher performance
can achieve.

Table 5. Impact of different sizes of training data

Training Set Detection Correction

DP DR DF CP CR CF

500K 0.880 0.679 0.767 0.777 0.599 0.676

1M 0.896 0.729 0.804 0.817 0.665 0.733

2M 0.891 0.769 0.826 0.826 0.713 0.765

5M 0.931 0.813 0.868 0.874 0.763 0.815

A larger vocabulary size means fewer syllables split into two or more tokens.
Table 6 presents the results of the proposed method in different values of the
hyperparameter vocabulary size. The highest F1 score is obtained at the vocab-
ulary size equal to 30,000. That is to say, having a larger vocabulary does not
guarantee a higher F1 score.

Table 6. Impact of different values of vocabulary size

Vocabulary size Detection Correction

DP DR DF CP CR CF

1K 0.886 0.585 0.705 0.771 0.509 0.613

10K 0.935 0.793 0.858 0.878 0.745 0.806

30K 0.931 0.813 0.868 0.874 0.763 0.815

50K 0.937 0.773 0.847 0.874 0.721 0.790
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4.6 Discussion

We observed that the proposed method is able to make more effective use of
context information than the N-gram method. When there are two or more
errors next to each other in a sentence, N-gram usually detects one and
leaves the others undetected. The proposed method, on the other hand, can
detect both of the errors. For example, there are 2 two errors in the sentence

(Prepare the contract to be signed). The
syllables and “sang” are incorrect and they should be written as

, which form a word meaning “ready”. The N-gram method only corrects
one syllable that is while the proposed method can correct both of them. It
is because the N-gram method relies on the context provided by nearby syllables,
specifically two syllables before and two syllables after the target.

We also found that the proposed method has three major types of false
detections. For statistics of errors, we sampled 100 false detections from the test
set. We noticed that 32% of errors are foreign words and acronym words, 28%
of errors are due to a lack of domain-specific knowledge, and the remaining 40%
of errors have no specific type.

Foreign words and acronym words are the first type of false detection. These
words are sometimes converted to Vietnamese syllables by the model. For exam-
ple, in the sentence (TH
has always approached clean grassland chain production), the acronym word
“TH” (a Vietnamese company) is converted to syllable. This indicates
that in order to make more reliable detections, the models must have a stronger
way to determine what the special syllables are.

The second type of false detection is due to a lack of domain-specific knowl-
edge. For example, in the sentence (Graph of
quadratic function). The model turned the word (Graph) into
(City). This happens due to the fact that the test set is inclined to scholarly
language while it is not much in the training data created from the news corpus.
This problem is still very challenging for the existing model to determine this
type of error.

5 Conclusions

In this paper, we propose a neural network approach for Vietnamese spelling
correction. Our method is powered by applying a deep learning subword-level
model based on Transformer. The technique of subword tokenization is gen-
eral and potentially useful for dealing with the out-of-vocabulary problem. The
Transformer model takes the sequence of subword tokens containing spelling
errors as the source and the corrected one as the target. Experimental results
on the realistic dataset show that our method outperforms the state-of-the-art
model using the N-gram method. For further research, we plan to extend the
Error Generator to capture more types of Vietnamese spelling errors and explore
pre-trained models such as multilingual BERT [5] to apply to this task.



VSEC: Transformer-Based Model for Vietnamese Spelling Correction 271

Acknowledgement. This work has been supported by Vietnam National University,
Hanoi (VNU), under Project No. QG.18.61.

References

1. Ahmad, F., Kondrak, G.: Learning a spelling error model from search query logs.
In: Proceedings of Human Language Technology Conference and Conference on
Empirical Methods in Natural Language Processing, pp. 955–962 (2005)
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Abstract. Finding ethical, platform-independent, computationally effi-
cient methods of adding contextual information to the hate speech detec-
tion task is difficult. Methods that rely only on the text for successful
classification are of extreme importance. Emotion information extracted
from text has been shown to be effective for sentiment analysis and thus
we hypothesize that it could have a potential for hate speech. In this
study, we propose several methods of introducing emotions into the task
of hate speech detection. Using an emotion lexicon, we counter-fitted pre-
trained word embeddings (Word2Vec, GloVe, FastText) and also gener-
ated a binary and a weighted emotional embedding vector. These were
used as features for classification on four publicly available hate speech
datasets. Our results and analysis demonstrate that the inclusion of emo-
tion information especially anger, sadness, disgust, fear are helpful for
hate speech detection.

Keywords: Hate speech detection · Emotion information · Emotion
lexicon · Text classification · Word embedding · Natural language
processing

1 Introduction

The detection of hateful speech (“language that attacks or diminishes, that incites
violence or hate against groups, based on specific characteristics”) on social media
platforms is an important task because the implications of the presence of hate
speech translate negatively to real life. The research community has mostly framed
this detection task as a text classification task, where given a sentence, a classifica-
tion model decides if it’s hateful or not depending on the sentences’ innate features.
Studies on feature extraction for hate speech detection have taken various forms,
from n-grams to word embeddings to language models [4,16,17].

In a lot of text classification tasks, word embeddings are a staple feature.
They are usually used as the first layer of a deep learning network. The word
embedding of choice differs depending on the designer’s preference or the task at
hand. Popular choices are Word2Vec (W2V) [20], Glove (GLV) [26] and FastText
(FT) [3]. The information learnt while creating these embeddings are transferred
c© Springer Nature Switzerland AG 2021
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to the downstream task under consideration. In recent years, there have been
some criticisms to the robustness of these embeddings for numerous downstream
tasks. For instance, in the sentiment analysis task which houses negative and pos-
itive sentiment polarities, pre-trained word embedding based on co-occurrence
and distributional theory might find it difficult to distinguish between synonyms
and antonyms (two paradigms that belong to the negative and positive classes
respectively). Therefore, some studies [10,25,32,34] have looked into various
ways of improving/counter-fitting/retro-fitting existing embeddings to better
suit specific downstream tasks with the help of external knowledge sources such
as a lexicon. Using an existing embedding instead of training one from scratch
is more computationally efficient, less time consuming and excellent for lack-of-
data domains. In [34], they use a synonym and antonym lexicon to counter-fit
the W2V embedding for the task of sentiment analysis. They coax synonymous
words in a word representation model to move closer to one another and antony-
mous words to move further away. Apart from lexical information, [10] used
demographic information for retrofitting embedding for increasing within-class
similarity.

It has been shown that hate speech is hard to detect without additional
contextual information [12]. However, these additional contextual information
are difficult to extract, can be platform dependent, or severely go against eth-
ical norms. Therefore, better sources of contextual information are required.
We hypothesise that emotion information could be an excellent source. This is
because, as has been shown in literature [1,2,8,19,30], emotions are pertinent
information that exists in and can be extracted from hateful text. However,
not all the emotion types are “hateful” emotions and thus have the potential to
negatively affect or be passive in improving the performance. In [1], they demon-
strated that tweets from suspended accounts showed more disgust, fear, sadness
emotions. Also, they showed that negative sentiment were higher in tweets that
were deemed neutral than tweets deemed hateful from active accounts. Thus,
the presence of negative sentiment does not always translate to “hateful” emo-
tions. Therefore, more investigations are needed in using emotions for the task
of detecting hate speech in text.

Hence, we propose and investigate the use of specific emotions without using
sentiment polarities for including emotion information into the hate speech detec-
tion task. The overall aim of this work is to demonstrate how the incorporation
of emotion information affects the task of hate speech detection. Specifically, we
design linguistic constraints to support the hypothesis and we compare the per-
formance of the proposed methods to the baselines (pre-trained regular embed-
dings [3,20,27] and existing studies in [8,19,31]. The specific goals of this work
are to:

– Propose new methods of incorporating emotion information into the task of
detecting textual hate speech and evaluate their performance on four hate
speech datasets.

– Design an appropriate emotion linguistic constraint for the embedding refine-
ment process.
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– Evaluate the impact of using particular “hateful” emotions for detecting hate
in text with and without a classification task.

– Compare the performance of using all eight emotions and sentiment polarities
to the performance of a reduced emotion set.

The rest of this paper is organized as follows: Sect. 2 provides a background
and an overview of related literature. Section 3 describes the proposed approaches
and methods. Section 4 discusses the chosen experiment design while Sect. 5
shows the results and analysis. Section 6 concludes the work and highlights lim-
itations and future plans.

2 Background and Related Work

Distributional word representations [3,20,26] are a very crucial aspect of a lot
of natural language processing tasks. These representations assume that simi-
lar words appear in the same context. This similarity could be a semantic or
relatedness similarity. Despite their success in many intrinsic and downstream
tasks, these representations are limited by the fact that they depend on co-
occurrence information which in turn conflates or confuses “semantic similarity”
and “conceptual association” [9]. This issue has been tackled by studies such
as [13]. A limitation that still persisted is the inability of these representations
to distinguish between synonyms and antonyms or more generally, words that
co-occur in texts and thus have similar context but have different relationships.
Hence, words will be considered as similar to their antonyms in these vector rep-
resentation spaces. To combat this, post-processing vector space specialization
methods [25,31–33], which aims to pull representations of desired words in one
group together and push undesired/unrelated words in the other group away
from themselves, were developed. These methods can be applied to an already
pre-trained embedding vectors.

Emotion information has been used in hateful and abusive language detection
studies in a few different ways. In [29], they used a multitask learning approach
to incorporate emotion into the abusive language detection. The abuse detection
task was the primary task and the emotion detection task was the auxiliary task.
No external lexicons were used. The study in [30] captured emotions for detect-
ing abusive language from emojis in the text. The study in [19] used the NRC
emotion lexicon [22]. They generated an 8-d representation which was added to
negative and positive sentiment polarity binary vector, anger emotion intensity
vector and other vectors to provide a 14-d feature. In [8], they used the NRC
emotion lexicon to generate a 10-d (positive and negative sentiment polarities
and Plutchik’s [28] eight emotion types) emotional vector which was used as
input into a logistic regression model. The study in [11] showed the effectiveness
of retro-fitting or counter-fitting while using domain specific embedding and a
sentiment lexicon. In our work, we used a pre-trained embeddings which we pos-
tulate is computationally less expensive as it does not require a domain specific
fine-tuning. Our method counter-fits pre-trained embeddings using only specific
emotions proven to be hate related. Also we do not use negative and positive
sentiment polarities.
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3 The Proposed Approach

Different methods of incorporating emotion information into pre-trained 300-
dimensional (300-d) distributed representations of words (word embeddings) -
Word2Vec, GloVe, FastText for hate speech detection are proposed and evalu-
ated. They can be divided into three major categories. The first category is the
counter-fitting method. Counter-fitting has been shown as a computationally
effective method of introducing external information into an embedding space.
The second category is a horizontal concatenation, which contrary to the first
category does not require additional training or refining of an embedding space
thus, is more computationally efficient. The third category exploits the power of
ensembles. This category offers the least amount of interaction between the pre-
trained embeddings and the emotion information. These are depicted in Fig. 1
and described in detail below.

(A) First, we counter-fit an existing pre-trained word embedding using an exter-
nal lexical resource. The counter-fitting technique is based on Mrkšićs’ [25]
model because it is closely related to our counter-fitting objective functions.
Generally, the aim of Mrkšićs’ model is to improve the capability of a vector
space representation of words’ semantic similarity inference by introducing
antonymy and synonymy constraints into the said space. It uses a three-
termed objective function which are Antonym Repel (pushes antonymous
word vectors away from each other), Synonym Attract (pushes known syn-
onymous words pairs closer) and Vector Space Preservation (preserves orig-
inal semantic information by bending the transformed vector space towards
the original). We refer the readers to [25] for more details.
The choice of the lexical resource depends on the purpose of the downstream
task. In this work, we use NRC emotion lexicon since the emotion informa-
tion is the key factor while carrying out the task of this paper, i.e. to harness
the emotions in text as pertinent contextual information for detecting hate-
ful speech. The NRC emotion lexicon created by [22] contains 14k English
words. Each word has at least one of the eight emotions from Plutchik’s [28]
model of basic emotions - joy, trust, fear, surprise, sadness, disgust, anger,
anticipation.
To create the linguistic constraints from the NRC emotion lexicon [22,23],
we select only words that have at least one indication to the presence of
either disgust, fear, anger and sadness emotion as opposed to the pre-trained
emotional embedding [31] that used all 8 emotions in the Plutchik’s emo-
tion model for counter-fitting. The emotion attract constraint contains word
pairs we intend to push together while the emotion repel constraint contains
word pairs we intend to push further apart. The emotion attract constraint
is represented by word pairs (wi, ei). Each word left in the lexicon after
dropping the “positive” emotion (joy, trust, surprise, anticipation) words,
will become wi and its corresponding emotion will make up the second part
of the word pair ei. For example; the word cry is associated with the emo-
tion sadness from the lexicon. The constraint will become (cry, sadness).
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Similarly, the emotion repel constraint word pairs are represented as (w
′
i,

ei), where w
′
i represents the antonym of wi generated from NLTK [14] pack-

age. For example; the antonym of the word cry is laugh, the constraint will
become (laugh, sadness). A single word can be associated with more than
one emotion. In cases like this, multiple constraints are created for that
word. For the emotion attract constraint, we created 4972 word pairs and
the emotion repel constraint we created 1972 word pairs. This discrepancy
is because not all words in the lexicon has its antonym present in the NLTK
package. This method is denoted as HateEmoEmb. This method tests the
performance of altering the pre-trained embedding with additional informa-
tion.

(B) Using the NRC emotion lexicon, we generate a binary 8-d embedding for
all the words present in the lexicon. Each dimension represents one of
Plutchik’s eight emotion. 1 represents an emotions’ presence and 0 rep-
resents its absence. This was concatenated with each of the 3 pre-trained
regular embeddings. This method is denoted as EmbConcat8Bin and will
be compared to method A since the pre-trained embeddings are not altered
here.

(C) Repeating the above but instead of a binary representation, we weight the
vector with the emotion intensity score derived from NRC emotion intensity
lexicon [21]. In this lexicon, each word and its emotion has a floating number
score ranging from 0 to 1. A score of 1 implies that the word conveys the
highest amount of that specific emotion while a 0 score implies that the
word conveys the lowest amount of the specific emotion. This 8-d embedding
was concatenated with each of the 3 pre-trained regular embedding. This is
method denoted as EmbConcat8Int and will be compared with method B
to determine if the binary information is more or less meaningful than the
intensity information.

(D) Then, we repeat EmbConcat8Bin but instead of concatenating with a pre-
trained embedding before feeding into the classification model, we feed the
emotion and the pre-trained word embedding independently into the model
in an ensemble manner. The emotional embeddings are fed into a dense
layer and the word embedding is fed into a BiLSTM layer. Their outputs
are then concatenated and fed into two more dense layers with the second
one being the final layer. This method is denoted this EmbEnsemble8Bin
and will be used to test the method of introducing the embedding into the
classification model i.e. before or after concatenation. It will be compared
with method B.

(E) Finally, we repeat EmbConcat8Int the same way as the EmbEnsemble8Bin
above. This method is denoted as EmbEnsemble8Int and tests the same
concept that method D does. It will be compared with method C.
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Fig. 1. Illustration showing proposed methods

4 Experiment Design

4.1 Description of Datasets

Hate speech datasets are often plagued with issues which will not be addressed
in this work, however, they have been discussed in-depth in [5,18]. The datasets
listed below are used as-is for this work with only basic pre-processing (removal
of hashtags, usernames, punctuation, and URLS with lower-casing and lemma-
tization).

1. Davidson1: Approximately 25k instances from Twitter in English were
labelled Hate, Offensive, or Neither hateful nor offensive [4]. It was made
publicly available in text format with no prior train-test split. We randomly
split it into Train/Validation/Test sets with ratio 70:15:15.

2. Founta2: Approximately 80k instances from Twitter in English were made
publicly available in TweetID format [6]. They were labelled Hateful, Abu-
sive, or Normal and Spam with no prior train-test split. After preprocess-
ing, we had about 15k sentences left. We also randomly split this data into
Train/Validation/Test sets with ratio 70:15:15.

3. HatEval3: The data for the task consists of 9000 tweets in English for train-
ing, 1000 for development. For Train set, Class 0 (Hate) has 5217 samples
while Class 1 (Non-Hate) has 3783 samples. For the Development Set, Class
0 (Hate) has 573 samples while Class 1 (Non-Hate) has 427 samples. It was

1 https://github.com/t-davidson/hate-speech-and-offensive-language.
2 https://dataverse.mpi-sws.org/dataset.xhtml?persistentId=doi:10.5072/FK2/

ZDTEMN.
3 https://competitions.codalab.org/competitions/19935.

https://github.com/t-davidson/hate-speech-and-offensive-language
https://dataverse.mpi-sws.org/dataset.xhtml?persistentId=doi:10.5072/FK2/ZDTEMN
https://dataverse.mpi-sws.org/dataset.xhtml?persistentId=doi:10.5072/FK2/ZDTEMN
https://competitions.codalab.org/competitions/19935
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curated to predict if a tweet is hateful or not hateful with a particular target
(women or immigrants). We randomly split the train set 85:15 to make a
validation set and used the development set as the test set.

4. Ethos4: This contains 998 comments from YouTube and Reddit in the dataset
labelled to either contain hate speech or not [24]. 565 comments are labelled as
non hateful while 433 comments are labelled as hateful. It has no prior train-
test split. We use 10-fold cross-validation here as was used in the original
paper.

5 Results

The classification results when the derived representations were input into a 1-
layer BiLSTM network are shown in Table 1. Each reported score is the average
of 30 independent runs except for Ethos dataset, where we report the 10 fold
cross-validated result. The value in superscript indicates the standard devia-
tion. We use Macro-F1 score for measuring performance because the datasets
(Davidson and Founta) are severely unbalanced. Each block in Table 1. contains
results for each specific word embedding (W2V, GLV, FT) and its counter-fitted,
concatenated or ensemble counterpart. Note that when we refer to pre-trained
embeddings (W2V, GLV, FT) collectively we use XWGF . Our experiments have
12 settings i.e. 3 pre-trained regular embeddings with 4 datasets. Overall, the
emotion-incorporated methods outperform the methods without emotion infor-
mation. This is a clear indication that an emotion incorporated representation
can improve the detection of hate speech.

For Davidson data, across all three embedding types and their derivatives,
method D outperforms. For Founta data, method D outperforms for W2V and
FT while method E outperforms for GLV. For HatEval, method B is the best for
W2V and FT respectively while method A outperformed for GLV. For Ethos,
method E outperformed for GLV and FT while method C outperformed for
W2V. Overall, method D had a superior performance for 5 out of 12 settings
followed by method E best performing for 3 out of 12 settings. Therefore, 8 out of
12 times, the best performance was by an ensemble of 8-d emotional embedding
and 300-d pre-trained embedding. Hence, the results suggest that the ensemble
method of incorporating emotion into this task has a higher impact than other
methods. The ρ-values from a Friedman test [7] with α = 0.05 for each block
are reported in italics in Table 1. This shows that there is a significant difference
between the methods for 6 out of 12 settings.

Previously, in Sect. 3, we highlighted the concept each one of our proposed
method was intended to test for. Here, we discuss the results of these tests using
the W2V section only for the four datasets. First, we compare methods A and
B. There is no consensus or significant difference between the two methods.
Therefore, we can conclude that altering the pre-trained embedding vectors and
concatenating emotional information to the pre-trained embedding both have a
similar prowess for this task. Next, we compare methods B and C. The results
4 https://github.com/intelligence-csd-auth-gr/Ethos-Hate-Speech-Dataset.

https://github.com/intelligence-csd-auth-gr/Ethos-Hate-Speech-Dataset
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Table 1. Classification results for 4 datasets using W2V, GLV and FT.
A: XWGF HateEmoEmb is the hate-only emotional embedding vectors, B:
XWGF EmbConcat8Bin is the pre-trained 300-d word embedding concatenated with
the 8-d binary emotional embedding from NRC lexicon, C: XWGF EmbConcat8Int
is the pre-trained 300-d word embedding concatenated with the 8-d intensity emo-
tional embedding from NRC lexicon, D: XWGF EmbEnsemble8Bin is the ensemble of
8-d emotion binary vector and 300-d embedding vector, E: XWGF EmbEnsemble8Int
is the ensemble of 8-d emotion intensity vector and 300-d embedding vector. XWGF

refers to the name of the pre-trained embedding of choice. ↑ represents a significant
difference in the block

DAVIDSON FOUNTA HATEVAL ETHOS

– Macro-F1 Macro-F1 Macro-F1 Macro-F1

W2V 0.70780.007 0.49940.008 0.72360.007 0.73080.055

A 0.67860.012 0.45420.025 0.72390.009 0.68270.052

B 0.69090.011 0.40760.013 0.72630.008 0.61530.076

C 0.69190.012 0.41500.019 0.71390.008 0.73760.057

D 0.73070.005 0.50680.011 0.72480.008 0.73210.072

E 0.72580.005 0.48010.027 0.72240.006 0.72420.051

ρ − value 0.0109↑ 0.0071↑ 0.2392 5.247e-5↑

GLV 0.72310.005 0.50390.007 0.72030.005 0.73140.066

A 0.68240.016 0.45440.024 0.73070.005 0.69420.051

B 0.68810.012 0.40390.030 0.72780.005 0.72760.060

C 0.68770.014 0.40810.017 0.72630.006 0.73970.053

D 0.72520.005 0.49300.013 0.71660.005 0.73290.058

E 0.72060.007 0.50500.012 0.71520.005 0.74720.044

ρ − value 0.0006↑ 0.1062 0.0007↑ 0.0001↑

FT 0.70280.009 0.47340.017 0.72860.007 0.70340.0431

A 0.67100.023 0.46500.017 0.72810.007 0.68100.028

B 0.70570.007 0.40760.013 0.73050.005 0.70300.045

C 0.70090.009 0.41080.012 0.71200.010 0.70210.054

D 0.72820.005 0.49390.021 0.72730.007 0.69860.052

E 0.72740.004 0.49140.014 0.72670.006 0.70600.041

ρ − value 0.1048 0.6320 0.8382 0.0052

show that the intensity information is more informative than the binary infor-
mation. However, the difference is not extremely significant and in the absence
of one, the other can be implemented without a considerable decline in perfor-
mance. For the method of introducing the embedding to the classification algo-
rithm, we compare methods B and D. The results indicate that the ensemble
method performs better than the concatenation method. This could be because
the two feature sets do not interact constructively. Hence, the methods that allow
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Table 2. Compare the best from our proposed methods (W2V) to AllEmoEmb (W2V)
[31]. superscript indicates which method produced that score.

DAVIDSON FOUNTA HATEVAL ETHOS

– Macro-F1 Macro-F1 Macro-F1 Macro-F1

Our Best(W2V) 0.7307 A 0.5068 A 0.7263 B 0.7376 C

AllEmoEmb(W2V) [31] 0.6894 0.4232 0.7210 0.7438

Table 3. Compare our proposed methods (W2V) with [8] on Fox News User Comments
Data.

A B C D E [8]

Macro-F1 0.458 0.604 0.613 0.612 0.614 0.600

each feature to be interpreted without interference from other features performs
better. This same pattern is also found while comparing methods C and E.

Next, we discuss the comparisons between the performance of our proposed
methods with methods in existing studies. The first study is [31] where they
counter-fit existing embeddings with emotion information using all of Plutchik’s
eight emotions. This was not tested on any downstream classification tasks,
therefore we apply the W2V pre-trained emotional embedding (AllEmoEmb)
from the study on the four datasets used previously. The results in Table 2 show
that our methods performs better in 3 out of 4 datasets.

The next study we compare with is [8] which proposes an ensemble of logistic
regression and bi-LSTM models for abusive text detection. The logistic regression
model contains word n-gram, an NRC emotion-based vector and a linguistic
inquiry and word count feature. We use their data (Fox News User Comments)
on our methods because it will provide a fairer comparison instead of attempting
to re-implement their method. The results are shown in Table 3. We input only
the comment part of their dataset into a bi-LSTM. We compare to their best
performing ensemble where their input included the comments, the title and the
username from the data. The results show that four of our methods (B, C, D,
E) outperform the method in [8] that ensembled two classification models.

Finally, we compare with the work in [19]. They design features using the
NRC lexicon for detecting hate speech. Because of some missing information such
as a stopword list, pre-defined bi-grams and tri-grams and a changing Hatebase
lexicon, we were unable to re-implement their proposed method for comparison.
However, the authors graciously shared their dataset, which is an older version
of the Davidson dataset containing 11273 samples. They informed us that they
down-sampled to the size of the hate class to get a subset of 2459 samples. We
used this subset on our methods for comparison. In their study, the authors
reported per class precision and recall. We use this to calculate the macro-F1 for
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Table 4. Compare our proposed methods (W2V) with [19] on a subset of Davidson
data.

A B C D E [19]

Macro-F1 0.77 0.80 0.78 0.63 0.80 0.77

their best performing results and compare with ours in Table 4. The results show
that 3 of our methods (B, C, E) outperform theirs while A performs comparably.

Overall, the size of the datasets and more importantly the imbalance in its
classes seem to affect, to a large extent, the performance of methods. To further
illustrate, for the original Davidson dataset (about 25k instances) the method
D is the best performing while for the Davidson subset (about 11k instances)
with an even further reduction in the hate class and hence, a further increase
in the imbalance ratio, method D is the least performing. Thus, it is difficult to
draw a stronger conclusion on which method(s) is unanimously the best choice.
Nevertheless, methods B, C, D and E are strong contenders.

5.1 Further Analysis on the Counter-Fitted Embeddings
(HateEmoEmb and AllEmoEmb)

In this analysis section, we attempt to analyse the embeddings without a classi-
fication task, in order to provide another viewpoint to the results. The analysis
looks into the HateEmoEmb and AllEmoEmb embeddings to further highlight
their performance and to compare them.

During the counter-fitting process, we noticed a vast reduction in the vocab-
ulary size of the resulting counter-fitted embedding. This occurrence was most
likely due to the small size of the linguistic constraint used. To demonstrate,
the original pre-trained W2V has a vocabulary size of approximately 400k while
the HateEmoEmb (W2V A/Ours) has a vocabulary size of approximately 79k.
Interestingly, they outperform or perform competitively with the much larger
vocabulary sized embeddings. The vocabulary sizes of the GLV and FT coun-
terparts also follow a similar trend. This further points to the usefulness of the
incorporated emotion information.

Analysing the embedding without a classification task (Table 5), we measure
the similarity between randomly selected words for the pre-trained embeddings,
the pre-trained emotion embedding (AllEmoEmb) and the hate emotion counter-
fitted embedding (HateEmoEmb) using cosine similarity. Words on the upper
half of the table are required to be closer to one another while words on the
lower half of the table are required to be far apart from one another. For cosine
similarity scores, the closer the score is to 1, the closer or more similar the
words are in the embedding vector space. From Table 5, it is clear that the
HateEmoEmb (W2V A/Ours) vectors have higher cosine similarity for the upper
half of the table and a lower cosine similarity for the lower half of the table across
all the embeddings. This demonstrates that this embedding successfully pushed
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the words associated with the emotions of interest closer together and their
unrelated words far apart even better than the W2V-based AllEmoEmb vector
space did. GLV and FT also follow a similar trend.

The next analysis without a classification task, involves t-distributed stochas-
tic neighbor embedding (tSNE) [15] plots of the embeddings. The plots shown in
Figs. 2, 3 and 4 (for W2V only) also support the results in Table 5. More specifi-
cally, we can see that the words related to “negative” emotions are mixed in with
the words related to the “positive” emotions for the original pre-trained embed-
dings. There is no clear divide. One interesting discovery was even though the
two sets of words were mixed, the words “disgust”, “fear”, “sadness”, “anger”
were close together. For the emotion counter-fitted embedding vector spaces,
the demarcation between the two sets of words becomes even clearer. For AllE-
moEmb (Fig. 3), there is a clear demarcation except one or two rouge words while
for the HateEmoEmb (Fig. 4), the demarcation is much more clearer. This shows
that the counter-fitting was successful in moving emotionally similar words closer
together in the embedding space. Contrary to the observation for the original
pre-trained embedding tSNEs, the words “disgust”, “fear”, “sadness”, “anger”
were not close together even though they were separate from the other set. GLV
and FT (not shown for space reasons) show consistent results too.

Table 5. Cosine Similarity Scores
for embedding vectors from W2V,
W2V AllEmoEmb [31], HateEmoEmb
(W2V A/Ours). We want the top half
to have a higher cosine similarity and
the bottom half to have a lower cosine
similarity. GLV and FT also follow a
similar trend

word1 word2 W2V [31] Ours

wound fear 0.032 0.010 0.940

horror disgust 0.428 0.412 0.953

idiotic anger 0.214 0.770 0.965

normal disgust 0.014 0.183 −0.041

unarmed fear 0.098 0.160 −0.062

flatter anger −0.017 0.101 −0.060
Fig. 2. Pre-trained Word Embedding
(W2V)
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Fig. 3. W2V AllEmoEmb [31] Fig. 4. HateEmoEmb (W2V A/Ours)

6 Conclusion

This study shows how the incorporation of emotion improves the performance
of the hate speech detection task. We proposed and evaluated many methods
of incorporation including counter-fitting, concatenation and ensembling. The
results show that the ensembling method is superior than the rest. Our further
analysis on the counter-fitted embedding also showed that using specific “hate-
ful” emotions (anger, fear, disgust, sadness) were more effective than using a host
of emotions. We also show that our tailor-made emotion linguistic constraint
was successful in including emotion information into the embedding during the
counter-fitting method. Additionally, due to the considerably smaller size of the
hate emotion embedding, it can be efficiently used in space-constraint situa-
tions, for example, in a real-life detection of online hate speech that requires fast
processing.

Words not present in the emotion lexicon we used will lack a representation
in our proposed solution and this is a limitation. Future studies will investigate
methods of alleviating the problem by either updating the un-represented words
during counter-fitting or increasing the coverage of the lexicon. Future endeavors
will also involve discovering other types of information that can serve as a source
of context for improving hate speech detection. Finally, note that this study used
only a shallow neural network and we believe that a deeper neural network design
might produce even better results.
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Abstract. Dependency-based models for the named entity recognition
(NER) task have shown promising results by capturing long-distance
relationships between words in a sentence. However, while existing mod-
els focus on the syntactic dependency between entities, we are unaware of
any work that considers semantic dependency. In this work, we study the
usefulness of semantic dependency information for NER. We propose a
NER model that is guided by semantic dependency graphs instead of syn-
tactic dependency trees. The extensive experiments illustrate the effec-
tiveness of the proposed model and the advantages of semantic depen-
dency over syntactic dependency for NER. Also, it shows correlations
between the NER performance and the semantic dependency annota-
tions qualities.

Keywords: Named entity recognition · Syntactic dependency ·
Semantic dependency · Graph neural network

1 Introduction

Named Entity Recognition is one of NLP tasks to recognize named entities from
texts belonging to pre-defined semantic types such as person, date, events, loca-
tion, etc. [21,23]. NER has attracted wide interest not only as a standalone task
of information extraction, but also as an essential semantic information extrac-
tion step for downstream Natural language processing(NLP) tasks such as entity
linking [25], entity relationship extraction [16], and semantic parsing [4].

Meanwhile, research in linguistic dependency theory shows that there exists
a subject-subordinate relationship between words, and such a dependency struc-
ture could also capture useful semantic information within sentences. Based on
such insight, there have been quite some research efforts in enhancing NER mod-
els through grammar dependency features, with several valuable features proposed
based on syntactic dependency structures [9,10,24]. As highlighted in [9], there is
a clear correlation between the entity types and the dependency relations, which
can enhance the prediction of named entities with various dependency types.
c© Springer Nature Switzerland AG 2021
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Fig. 1. Examples annotated with linguistic dependencies and named entities.

Figure 1 contains two sentences adapted from the SemEval-2015 task 18
English dataset (DM) [18], and it illustrates the relationship between language
dependency structures and named entity types. Some words or phrases in the
sentences are annotated with named entity types, such as ORG for organization
and CARDINAL for numerals that do not fall under another type [21]. Also, the
dependency relationship between words is expressed as labeled arcs. In particu-
lar, arcs in sentences ST1 and ST3 describe the syntactic dependency between
words, with tags such as nn for noun compound modifier and nsubj for a nom-
inal subject. On the other hand, the arcs in sentences ST2 and ST4 describe
the semantic dependency between words, with tags such as poss for possession
relations and part for measuring partitives(vague part-whole) relations.

There are several differences between syntactic and semantic dependency.
First, it is obvious that the arcs and the tags in these two types of dependency
convey different information. Secondly, as shown in the above example, syntactic
dependency (in ST1 and ST3) always forms a dependency tree, where each word
has only one head parent node. On the other hand, semantic dependency (in
Fig. 1 ST2 and ST4) is a directed acyclic graph (DAG). For instance, the word
seats in ST2 and ST4 has multiple head words three, Energy, seven, and
board. Thirdly, semantic dependency structure is often preserved under simple
rephrasing, whereas it is not the case for syntactic dependency. Note that ST3
and ST4 are rephrasing of ST1 and ST2, and hence the semantic dependency
graph is preserved from ST2 and ST4, but the syntactic dependency tree changes
from ST1 to ST3. This is an advantage of semantic dependency. Finally, each
word in a syntactic dependency tree (e.g., ST1 and ST3) has an arc, but it is
not the case for semantic dependency graphs (e.g., ST2 and ST4).
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The long-distance dependency has been found valuable for capturing non-
local structural information [5], and distributed hybrid representation deep learn-
ing models have been deployed to capture both syntactic and semantic features
of words. As discussed before, syntactic dependency has been applied to increase
the performance of NER, whereas we are unaware of any work on using seman-
tic dependency for NER. Hence, the usefulness of semantic dependency and the
complex long-distance interactions conveyed in such structures are unexplored,
and how to use such information to enhance the word embedding in NER remains
an open question.

In this work, we present the first study on leveraging semantic dependency for
NER to the best of our knowledge. The significant contributions are as follows.
We propose a BiLSTM-GCN-CRF model to capture the contextual information
and the long-distance semantic relationship between words for enhancing the
representation of the words for the NER task. Nevertheless, there is no exist-
ing NER dataset that contains semantic dependency annotations. Hence, we
apply existing semantic parsing models to predict semantic dependency relations
for OntoNotes 5.0 Chinese and English datasets [21], the CoNLL-2003 English
dataset [23]. Finally, our extensive experiments result on these corpora shows the
effectiveness of the proposed model and the advantage of semantic dependency
features over syntactic dependency for NER. Also, it shows correlations between
the NER performance and the semantic dependency annotations qualities.

2 Related Work

Existing works focus on learning distributed representations that capture seman-
tic and syntactic properties of words. Besides word-level (e.g., GloVe [19], Fast-
Text [26], ELMo [20]) and character-level [2] representations, additional informa-
tion is often incorporated into the representations before feeding them into con-
text encoding layers. For example, the BiLSTM-CRF model [8] uses four types
of features: spelling, context, and gazetteer features, as well as word embed-
dings. Some recent works make use of linguistic dependency information as an
additional feature [10,13]. Jie et al. [9] incorporate syntactic dependency struc-
tures to capture long-distance syntactic interactions between words. Aguilar et
al. [1] also consider syntactic tree structures with relative and global attentions,
and Nie et al. [17] incorporate syntactic information into neural models. These
approaches all make use of the syntactic dependency information, but have not
considered semantic dependency.

Syntactic and semantic dependency can be extracted by dependency pars-
ing, using bi-lexicalized dependency grammar [27]. Syntactic dependency pars-
ing reveals shallow semantic information in sentences [7]. In contrast, we could
regard semantic dependency parsing (SDP), based on dependency graph parsing,
as an extension of syntactic dependency parsing that characterizes more seman-
tic relations [18]. Hence, in this paper, we study NER models with semantic
dependency information.
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As we are unaware of any dataset with both human annotated named entities
and their semantic dependency, we need to obtain semantic dependency using
existing SDP models. Through comparing the performance of existing models
on SDP corpora, including the task 9 of SemEval 2016 [3], and the task 18
of SemEval 2015 [18], we selected two SDP models provided by NLP toolkits
HanLP1 and SuPar2.

3 Model

This section first briefly introduces the BiLSTM-CRF model [12], which is the
base for our model. Then we introduce our NER model Sem-BiLSTM-GCN-
CRF, which builds a GCN on top of the linear-chain structure in BiLSTM-CRF
to process complex semantic dependency graphs.

3.1 BiLSTM-CRF

The BiLSTM-CRF model turns the NER problem into a sequence labeling prob-
lem. For an input sequence x = x1, x2, . . . , xi, . . . , xn with n tokens, we need
to predict the corresponding label sequence y = y1, y2, . . . , yi, . . . , yn, defined
according to the BIO, IOBES or IOB tagging schemes [22]. The CRF [11] tags
the entity types, i.e., given x, scoring the label sequence y:

P (y | x) =
exp

(
score(x,y)

)

∑
y′ exp

(
score(x,y′)

)

The label prediction sequence has the highest output score [12], which means
the final prediction is the sequence y with the highest score in all output label
sequences. We can get the output score by summing the transitions score and
emissions score from the Bi-LSTM:

score(x,y) =
n−1∑

i=1

Tyi,yi+1 +
n∑

i=1

Ei,yi
,

where T is the transitions matrix with Tyi,yi+1 being the transition parameter
from yi to yi+1, and E is the emissions matrix obtained by the hidden layer
of the BiLSTM with Ei,yi

being the score of the label yi in the sentence’s i-th
position.

3.2 Sem-BiLSTM-GCN-CRF

To guide the BiLSTM-CRF model with semantic dependency information, we use
GCN to process such dependency graphs. Unlike [28], which uses only adjacency
matrices to capture dependency edges between words, our model also processes
1 HanLP: https://github.com/hankcs/HanLP.
2 SuPar: https://github.com/yzhangcs/parser.

https://github.com/hankcs/HanLP
https://github.com/yzhangcs/parser
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dependency tag information. GCN has also been considered in [9] to incorpo-
rate syntactic dependency information. Processing semantic dependency graphs
are more involved than syntactic ones, as the latter are tree-shaped, whereas the
former is not necessarily so. This is why using an MLP layer instead of GCN in
the model [9] improves its performance, as MLP is sufficient to capture depen-
dency trees, but it cannot handle multi-head relationships in semantic depen-
dency graphs. On the other hand, the dependency graphs need to be cleaned before
being input to the GCN. This is because some of the edges are often erroneous or
irrelevant, which is common in automatically constructed dependency graphs. To
address this issue, we employ the edge-wise gating parameters for specific depen-
dency relations. Hence, we use GCN with edge-wise gating for encoding semantic
dependency, and our model combines BiLSTM with directed GCN, using CRF as
the final layer. The architecture of our model Sem-BiLSTM-GCN-CRF is shown
in Fig. 2.3 To represent the input, each word is represented by the concatenation u
of the word embedding w, its context-based word vector v from ELMO [20], and
its character-based representation t from GloVe [19] for English and FastText [6]
for Chinese. That is, u = w ⊕ t ⊕ v. And then, the BiLSTM layer captures the
contextual information of in u.

Fig. 2. BiLSTM-GCN-CRF. Dashed connections mimic the dependency edges.

Following most of the implementation for context-based GCN [9,14,28], we
stack the GCN layer on top of LSTM to capture the semantic dependency rela-
tionship between the words to enrich the representation of words. As discussed
before, some semantic-dependency prediction models use directed acyclic graphs
3 The named entity tags use the BIO labeling scheme: B-LOC labels the beginning of a

location entity, I-LOC represents the inside word of the named entity, and O-LOCmeans
outside a named entity.
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(DAG) for dependency parsing. Thus in a dependency graph, each node (word)
may have more than one head node (word) (as shown in Fig. 1). Using GCN
allows our model to effectively capture global information and gives substantial
speedup as it does not involve recursive operations that are difficult to parallelize.
We treat the dependency graph as undirected and build a symmetric adjacency
matrix during the GCN update. The final GCN computation is formulated as:

h(l)
i = ReLU

( n∑

j=1

Aij(W
(l)
1 h(l−1)

j + W(l)
2 h(l−1)

j wrij + b(l−1)
rij )

)
(1)

where h(l)
i is the output vector at the i-th position in the l-th layer, Ai,j is

a value in the adjacency matrix A, and wrij is the weight of the dependency
relation ri,j . We use parameter matrix W1 for self connections and matrix W2

for dependency. For L layers of GCN in the model, h(L)
1 , . . . ,h(L)

n are the output
word representations. Finally, the last layer is CRF.

4 Experiment

We evaluate our model’s performance on commonly used datasets by comparing
it with the state-of-the-art NER models based on syntactic dependency infor-
mation and analyzing the behavior of our model in different configurations.

4.1 Datasets

There are datasets with human annotated named entities and their syntactic
dependency, including the Chinese and English OntoNotes 5.0 datasets [21].
We chose these datasets because they have syntactic dependency annotation, so
that we can compare our model with those using such information. Yet, we are
unaware of any open datasets of this type with annotated semantic dependency.
Hence, in our experiments, we had to use existing prediction models to generate
semantic dependency annotations. Besides OntoNotes 5.0, we also adopted the
CoNLL 2003 English dataset [23].

All of these datasets contain part-of-speech tags that can be used to gener-
ate semantic dependency annotations. For example, they are used as the input
feature of HanLP. Another toolkit SuPar is also used to generate the semantic
dependency tags for evaluating the effect of different semantic dependency infor-
mation (predicted by different models) on our performance. The English SDP
models of SuPar are trained on the DM, PAS, and PSD datasets from SemEval-
2015 task 18 [18], while Chinese models are trained on TEXT domain data of
corpora from SemEval-2016 Task 9 [3].

4.2 Experimental Setup

We used BiLSTM-CRF [12] as the baseline model, which incorporates either
syntactic or semantic dependency information. At the same time, we also feed
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syntactic dependency to our BiLSTM-GCN-CRF model, denoted Syn-BiLSTM-
GCN-CRF model, as another baseline for comparing the benefits of syntactic and
semantic dependency. In addition, we also compared our model to the DGLSTM-
CRF model [9], the state-of-the-art syntactic dependency NER model.

The system configurations are based on [9] and our parameter tunings. The
hidden layer size is set to 200 in the LSTM and GCN models. We use the
GloVe [19] with 100-d word embeddings for English text, and FastText [6] word
embeddings for Chinese text. ELMo [20] is used for both English and Chinese
texts in our experiments for deep contextualized word representations. Our mod-
els are optimized by mini-batch stochastic gradient descent, which learning rate
is 0.01. The L2 regularization parameter is 1e-8. We train for 300 epochs with a
clipping rate of 3.

4.3 Main Results

Our model are compared with existing models on the three datasets, OntoNotes
5.0 Chinese (OntoNotes CN), English (OntoNotes EN), and CoNLL-2003 English
(CoNLL). For each compared model, we used the numbers of LSTM/GCN layers
that gave the best performance; for instance, BiLSTM(2)-CRF has a 2 LSTM
layers and BiLSTM(1)-GCN(1)-CRF has 1 LSTM lay and 1 GCN layer. All
the inputs are concatenated with the ELMo representations. We used SuPar to
generate the semantic dependency tags. The Dependency column shows whether
dependency information is not included (-), or it is provided with the datasets
(gold), or it is generated. If the dependency is generated, we record the F1 score
of the generating models and the text corpus they are trained on4. Table 1 shows
the results, where those for BiLSTM-CRF and DGLSTM-CRF are from [9,12].

On all the three datasets, Sem-BiLSTM-GCN-CRF outperforms the base-
line BiLSTM-CRF and Syn-BiLSTM-GCN-CRF in most of the metrics. Note
that Sem-BiLSTM-GCN-CRF and Syn-BiLSTM-GCN-CRF have similar model
architecture, and the only difference is the type of dependency used. Also, on
OntoNotes CN and EN, Syn-BiLSTM-GCN-CRF uses dependency information
that comes from the datasets, where Sem-BiLSTM-GCN-CRF uses dependency
generates. Furthermore, on OntoNotes CN and CoNLL, the performance of Syn-
BiLSTM-GCN-CRF is not as good as BiLSTM-CRF, which shows the GCN
encoding of syntactic dependency may not always benefit the NER task. Hence,
overall it suggests the advantages of semantic dependency compared to syntactic
dependency in NER.

Compared to DGLSTM-CRF, Sem-BiLSTM-GCN-CRF achieves the state-
of-the-art recall performance on OntoNotes CN. Furthermore, while its perfor-
mance is closely after DGLSTM-CRF with “gold” dependency, it consistently
outperforms DGLSTM-CRF with generated dependency in all the other cases.

4 TEXT is the textbook corpus from SemEval-2016 Task 9, DM is the DELPH-IN
corpus from SemEval-2015 Task 18, PAS is the Enju corpus from SemEval-2015
Task 18, PSD is the Prague corpus from SemEval-2015 Task 18, and LAS is the
English Penn Treebank (PTB) corpus [15].
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Table 1. Comparison on OntoNotes 5.0 Chinese/English and CoNLL-2003 English.

Dataset Model (+ELMo) Dependency Prec. Rec. F1

OntoNotes CN BiLSTM(1)-CRF - 79.20 79.21 79.20

Syn-BiLSTM(1)-GCN(1)-CRF Gold 78.71 79.29 79.00

Sem-BiLSTM(1)-GCN(1)-CRF 80.41 (TEXT) 78.30 81.05 79.65

Sem-BiLSTM(1)-GCN(2)-CRF 79.10 80.60 79.84

DGLSTM(2)-CRF 89.28 - - 79.59

DGLSTM(2)-CRF Gold 78.86 81.00 79.92

OntoNotes EN BiLSTM(2)-CRF - 88.25 89.71 88.98

Syn-BiLSTM(1)-GCN(2)-CRF Gold 89.40 89.71 89.55

Sem-BiLSTM(1)-GCN(1)-CRF 92.32 (DM) 89.22 90.10 89.65

Sem-BiLSTM(1)-GCN(2)-CRF 88.78 89.90 89.34

Sem-BiLSTM(1)-GCN(1)-CRF 93.43 (PAS) 89.18 90.04 89.61

Sem-BiLSTM(1)-GCN(2)-CRF 88.98 89.77 89.37

Sem-BiLSTM(1)-GCN(1)-CRF 82.64 (PSD) 88.73 90.25 89.49

Sem-BiLSTM(1)-GCN(2)-CRF 88.00 89.10 88.55

DGLSTM(2)-CRF 94.89 - - 89.64

DGLSTM(2)-CRF Gold 89.59 90.17 89.88

CoNLL BiLSTM(2)-CRF - 92.10 92.30 92.20

Syn-BiLSTM(1)-GCN(1)-CRF 95.86 (LAS) 91.93 92.26 92.09

Sem-BiLSTM(1)-GCN(1)-CRF 92.32 (DM) 92.21 92.49 92.35

DGLSTM(2)-CRF 94.00 92.20 92.50 92.35

This shows the competitiveness of our model compared to DGLSTM-CRF on
generated dependency.

For the configurations of GCN layers, when it is increased from 1 to 2, in
most of the cases, the NER performance of our model decreases. Hence, it seems
GCN with a single layer is sufficient to capture the semantic dependency. We
have also evaluated our model jointly with syntactic and semantic dependency
features in a naive manner, which gave a suboptimal performance as compared
to the semantic based NER model. It is potentially due to the inequality of
the two types of information, as semantic dependency edges are often orders
of magnitude more than those syntactic ones. Hence, the syntactic dependency
information may not be effectively utilized. We leave the study of a joint model
as future work.

4.4 Effect of Dependency Quality

The previous set of experiments shows the difference between gold-standard and
predicted syntactic dependency in NER performance. To evaluate the impact
of the quality of semantic dependency on the NER performance, we used the
SuPar and Hanlp toolkits for comparison. As a result, semantic dependency tags
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with different accuracy, measured by their F1 scores, are generated for OntoNote
5.0 and ConLL-2003 datasets. Also, SuPar and Hanlp have different data pre-
processing methods, and their dataset segmentation sizes are different. Figure 3
shows the NER accuracy (NER F1 scores) of our model using semantic depen-
dency of various quality (dependency parsing F1 scores). A strong correlation
between the NER accuracy and dependency accuracy, which shows the potential
of our model with high-quality dependency annotations.

Fig. 3. Correlations between NER performance and semantic dependency quality.

5 Analysis

To further analyze why a NER model could benefit from semantic dependency
information, we show the heat maps in Fig. 4) on the named entity types and the
corresponding semantic dependency edges in the OntoNotes Chinese dataset.
The x-axis lists various semantic dependency annotations, the y-axis is the
named entity annotations, and each value shows the percentage (%) of semantic
dependency edges with annotation x associated with the named entity type y.

Figure 4(a) shows the correlation between the entity types and the prediction
of dependency relations on the OntoNotes Chinese test dataset. Specifically, each
entry denotes the percentage of the entities with a parent dependency with a
specific dependency relation. We can see that most of the entities relate to the
Desc, Nmod, Quan dependencies. Especially the dependency relationship Quan
(i.e., Quantity) have more than 80% of the entity type CARDINAL and 58% of the
entity type QUANTITY associated to it, which suggests the semantic correlations.
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(a) Heap map on training data. (b) Heap map on NER prediction.

Fig. 4. Correlations and Percentage between the entity types (y axis) and the of seman-
tic dependency relations (x axis) in the OntoNotes Chinese dataset. Columns with
percentage less than 5% are ignored for brevity.

We can see that Fig. 4(a) and Fig. 4(b) are similar in terms of density. More-
over, both of them show consistent relationships between the entity types and
the dependency relations. The comparison further illustrates that our model
effectively captures the relations between the named entities and the semantic
dependency.

6 Conclusion

Motivated by the relationships between semantic dependency graph and name
entities, we propose a BiLSTM-GCN-CRF model to encode semantic informa-
tion from the semantic dependency toolkits effectively and then enhanced the
word representations. Through extensive experiments on multiple corpora, the
proposed model effectively uses and captures the long-distance semantic depen-
dency relationships between the words for improving NER performance. Our
experiment analysis shows that NER benefits more from semantic dependency
relations than syntactic dependency based on the same model. In addition, we
find the high-quality dependency parsing will positively affect the improvement
of NER. We leave studying a multi-feature fusion mechanism of syntactic and
semantic of full dependencies for NER and other information extraction domains
as future work.
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Abstract. Distant supervision (DS) has been proposed to automatically
annotate data and achieved significant success in relation classification.
However, despite its efficiency, distant supervision often suffers from the
noisy labeling problem. To solve the problem, existing methods can be
divided into two major approaches: (1) Some works adopt multi-instance
learning (MIL) for relation classification to reduce the impact of noisy
data. However, they do not perform well at the sentence level. (2) Other
works focus on finding the noisy instances directly. They mainly use rein-
forcement learning to filter out the noisy instances. The key component
is the instance selector, which is used to select the correct instances from
the noisy data. However, current instance selectors usually use simple neu-
ral network models and initialize the models with random parameters,
which leads to limited improvement and slower convergence. In this paper,
we propose a novel instance selector to directly select the high-quality
instances from DS-generated data as the refined training data to improve
the performance of sentence-level relation classification. Specifically, the
instance selector consists of a machine reading comprehension (MRC) esti-
mator and an instance sampler. The MRC estimator is used to evaluate the
quality of the instances, and the instance sampler is used to select the high-
quality instances. Moreover, due to the lack of explicit knowledge about
which instances are mislabeled, we use reinforcement learning to train the
MRC estimator. Experiments show that our method achieves state-of-the-
art performance on two human-annotated NYT10 datasets. The source
code of this paper can be found in https://github.com/xubodhu/MRCRL.

1 Introduction

The task of relation classification (RC ) is to predict the semantic relation
between two entities from plain text. These relational facts are helpful for many
downstream applications, such as knowledge graph completion [18] and ques-
tion answering [2]. Recently, neural relation classification with minimal feature

This paper was supported by the National Natural Science Foundation of China
(61906035), Shanghai Sailing Program (19YF1402300) and National Natural Science
Foundation of China (61972081).

c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13032, pp. 299–310, 2021.
https://doi.org/10.1007/978-3-030-89363-7_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89363-7_23&domain=pdf
https://github.com/xubodhu/MRCRL
https://doi.org/10.1007/978-3-030-89363-7_23


300 B. Xu et al.

engineering has made a great success [4]. However, it heavily relies on a large
amount of annotation data, which is expensive and time-consuming.

To obtain large-scale annotated data, distant supervision has been proposed
to automatically annotate data from the knowledge base [11]. The basic idea
is that if two entities have a semantic relation in the knowledge base, then all
sentences containing the two entities can be labeled as this relation. Despite its
efficiency, distant supervision often suffers from the noisy labeling problem.

For example, given a fact (Bill Gates, place of birth, Seattle) in the
existing knowledge base. The sentence ‘Microsoft founder Bill Gates was born in
Seattle’ will be correctly labeled as the place of birth relation. While another
sentence, ‘Bill Gates moved into the house he bought in Seattle’ will be wrongly
labeled as the place of birth relation.

The existing methods to alleviate the noisy labeling problem can be divided
into two major approaches: (1) Some works adopt multi-instance learning (MIL)
for relation classification to reduce the impact of noisy data [5,9,16,20]. Multi-
instance learning is a form of supervised learning where a label is given to a bag
of instances, rather than a single instance [7]. In the context of relation classi-
fication, each entity pair defines a bag and the bag consists of all the sentences
mentioning the entity pair. The main idea is to select informative instances from
the bags. These methods perform well in bag-level relation classification but
perform poorly in sentence-level relation classification [3]. (2) Other works focus
on finding the noisy instances directly. They mainly use reinforcement learn-
ing [3,13] to filter out the noisy instances. The key component is the instance
selector, which is used to select the correct instances from the noisy data. For
example, [3] constructs a CNN-based instance selector for all relations, and [13]
constructs a binary CNN-based instance selector for each relation. However, cur-
rent instance selectors usually use simple neural network models and initialize
the models with random parameters, which leads to limited improvement and
slower convergence.

In this paper, we study how to directly select the high-quality instances
from DS-generated data to improve the performance of sentence-level relation
classification. Specifically, we propose a novel instance selector to select the high-
quality instances, which consists of a machine reading comprehension (MRC)
estimator and an instance sampler. The MRC estimator is used to evaluate the
quality of the instances, and the instance sampler is used to select the high-
quality instances.

Conventional MRC task aims to extract a correct span to answer the question
regarding a given context, which can be formalized as two multi-class classifi-
cation tasks, i.e., predicting the starting and ending positions of the answer
spans [8]. Unlike the conventional MRC model, we use the MRC estimator to
evaluate the quality of the instance. For example in Fig. 1, there are two DS-
generated instances with the same relational fact and different texts. For each
instance, we first use a template-based method to convert the relational fact into
a question and a candidate span. Then, we input the question, the candidate
span, and the context into the MRC estimator. The MRC estimator predicts the



Improving Sentence-Level Relation Classification 301

ID Text Head Entity Relation Tail Entity

1 Microsoft founder Bill Gates was born in Seattle. Bill Gates place_of_birth Seattle 

2 Bill Gates moved into the house he bought in Seattle. Bill Gates place_of_birth Seattle

ID Context Question Candidate Span

1 Microsoft founder Bill Gates was born in Seattle. Where is the birthplace of Bill Gates? Seattle

2 Bill Gates moved into the house he bought in Seattle. Where is the birthplace of Bill Gates? Seattle

MRC
Estimator

Instance
Sampler

ID Selection Vector 

1 1

2 0

ID Probability 

1 0.96

2 0.13

Fig. 1. An example of our instance selector selects the high-quality instances from DS-
generated data. An instance contains a relational fact (head entity, relation, tail entity)
and a text, and the text contains head entity and tail entity in the relational fact.

probability of the given candidate span as the correct answer. As shown in the
figure, the output probabilities of these two instances are 0.96 and 0.13, respec-
tively. We use the output probabilities as the quality of the two instances. After
that, we use the instance sampler to select the high-quality instances based on
their probabilities. Finally, only the first instance is selected for sentence-level
relation classification.

Moreover, due to the lack of explicit knowledge about which instances are
mislabeled, we use reinforcement learning to train the MRC estimator. Specifi-
cally, the instance selector selects some instances and uses the performance of the
relation classification model as feedback (or reward) to update the parameters
of the MRC estimator. The main contributions of this paper are as follows:

– Firstly, to the best of our knowledge, we are the first to use the machine
reading comprehension model to evaluate the quality of the instances.

– Secondly, due to the lack of explicit knowledge about which instances are
mislabeled, we use the reinforcement learning method to train the MRC esti-
mator.

– Finally, experiments conducted on two human-annotated NYT10 datasets
show that our instance selector can effectively select high-quality instances
from DS-generated data and learn better parameters for the MRC estimator
through reinforcement learning method.

2 Overview

In this section, we define our problem and introduce our framework.
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2.1 Problem Definition

Our goal is to construct a good instance selector to directly select the high-
quality instances from DS-generated data as the refined training data to improve
sentence-level relation classification. The task of instance selector is defined
as follows: Let DS be the DS-generated data, which contains N instances
{(hi, ri, ti, texti)}N

i=1. For each instance, texti is a text mentioning the entity
pair (hi, ti), and ri is a relation label produced by distant supervision. The goal
of the instance selector is to select some high-quality instances D from the DS-
generated data DS .

2.2 Framework

Data 
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MRC
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Instance
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1

0

0

1

Relation
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Reward
Function

Q
uestion
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Fig. 2. The Reinforcement Learning Framework for Training the Instance Selector.

Our reinforcement learning framework for training the instance selector is shown
in Fig. 2, which contains two main components, namely instance selector and
reward calculation module. The instance selector consists of an MRC estimator
and an instance sampler. The MRC estimator is used to evaluate the quality
of the instances, and the instance sampler is used to select the high-quality
instances. The reward calculation module is an indicator used to evaluate the
action of the selection, which consists of a relation classifier and a reward func-
tion. The relation classifier is trained on the selected instances, and the reward
function calculates the reward based on the performance of the relation classifier
on the validation set. The reward is served as a reinforcement signal to update
the parameters of the MRC estimator in the instance selector.
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3 Method

In this section, we first introduce the processing of the input data and then
describe each component in detail. Finally, we introduce how to train the frame-
work.

3.1 Data Processing

In order to use the MRC estimator to evaluate the quality of the instances, we
need to process the training instances into the input-form (question, context,
candidate span) of the MRC estimator.

Specifically, for each instance, we need to convert the data format from
(hi, ri, ti, texti) to (questioni, contexti, cspani). The process is as follows: we
first convert the texti into the contexti without any operation. Then we gener-
ate a question slot ((hi, ri, ?) or (?, ri, ti)) and its corresponding candidate span
cspani (ti or hi) from the relational fact (hi, ri, ti). For each question slot with
the same relation, we design a question template. Finally, we generate a natural
language question questioni based on the question template. Table 1 shows some
examples of the question slots and their corresponding question templates.

Table 1. Examples of some question slots and corresponding question templates.

Question slot Question template

(hi,/location/country/capital, ?) Where is the capital of hi?

(?,/location/location/contains, ti) Where does ti contain?

(hi,/people/person/nationality, ?) Where is the nationality of hi?

(hi,/people/person/place lived, ?) Where is the lived place of hi?

3.2 MRC Estimator

The MRC estimator is used to evaluate the quality of the instance. As shown in
Fig. 2, the MRC estimator mainly consists of a RoBERTa layer [10], two dense
layers, a multiplication operation, and a selection operation.

Specifically, for each processed instance (questioni, contexti, cspani), the
input xi of the RoBERTa layer is a pair of sequence with two different spe-
cial tokens: “〈s〉 questioni 〈/s〉 〈/s〉 contexti 〈/s〉”, and the output representation
of the context is Hi ∈ R

l×d, where l is the length of the contexti and d is the
vector dimension of the last layer of RoBERTa. Then, we use two dense layers to
predict the probability distributions of each token index being the start position
and end position of the answer given the question. The prediction process is as
follows:

Pstart
i = Softmax(HiWstart + bstart) (1)

Pend
i = Softmax(HiWend + bend) (2)
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where Wstart ∈ R
d×1 and Wend ∈ R

d×1 are the weights, bstart ∈ R and bend ∈ R

are the biases. Pstart
i ∈ R

l×1 and Pend
i ∈ R

l×1 are the probability distributions.
After that, we use a multiplication operation to calculate the probabilities of

all spans Pspan
i in the contexti. As shown in Eq. 3, the probability of each span

being the correct answer is equal to the probability of the start position of the
span multiplied by the probability of the end position of the span.

Pspan
i = Pstart

i (Pend
i )T , (3)

where Pspan
i ∈ R

l×l is the probability matrix. Finally, we use the selection
operation to obtain the probability of the given candidate span P cspan

i from
Pspan

i through the start index and end index of the given candidate span cspani.
The selection process is as follows: let Istart and Iend be the start index and the
end index of the given candidate span cspani in the contexti, the probability of
the given candidate span P cspan

i is the value of the Istart-th row and the Iend-th
column of Pspan

i . Finally, we use the probability P cspan
i as the quality of the

instance (hi, ri, ti, texti). The greater the probability, the higher the quality.

3.3 Instance Sampler

The instance sampler is used to select high-quality instances. In this paper, we
propose two sampling strategies. In the training phase, in order to encourage
exploration based on the uncertainty in the exponentially large selection space,
following [19], we use Bernoulli sampling to sample the instances. Each instance
will be selected with its probability, which is provided by the MRC estimator.
While in the prediction phase, we first sort the instances in descending order by
their probabilities and then select the top p% instances as high-quality instances.

3.4 Reward Calculation Module

The reward calculation module is an indicator used to evaluate the action of the
selection, which consists of a relation classifier and a reward function.

Relation classification has been widely studied in recent years [9,21]. In this
paper, we adopt the CNN architecture proposed by [3] for relation classifier,
which consists of an input layer, a convolution layer, a max-pooling layer, and
an output layer. We denote the relation classifier as fθ, where θ is the parameters.
Given a selected instance (hi′ , ri′ , ti′ , texti′), the input of the relation classifier is
zi′ = (hi′ , ti′ , texti′), and the output is the probability for all relations is p(r|zi′).
This can be briefly described as follows:

p(r|zi′) = fθ(zi′) (4)

We use the cross-entropy as the loss function [1], and use the stochastic
gradient descent (SGD) optimizer [17] to update the parameters θ according to
Eq. 5:

θ ← θ +
α

Brc

Brc∑

k=1

�θ log p(rk|zk), (5)
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where α is the learning rate of the relation classifier, Brc is the batch size for
training the relation classifier.

The reward function calculates the reward based on the performance of the
trained relation classifier on the validation set Dv = (zv, rv). Specifically, the
calculation of the reward R is as follows:

R = F1(fθ(zv), rv) − δ, (6)

where F1(fθ(zv), rv) is the micro averaged F1 score on the validation set. δ
is the moving average, which is used to improve the stability of reinforcement
learning based on policy gradient. We will explain how to calculate it in the
following subsection.

3.5 MRC Estimator Training

Finally, we introduce how to train the MRC estimator based on the reward. Sim-
ilar to [19], the training process of the MRC Estimator is shown in Algorithm 1.

Algorithm 1. The Training Process of MRC Estimator
Inputs: DS-generated data DS = {(hi, ri, ti, texti)}N

i=1 , batch size Bs and Brc, learn-
ing rate α and β, moving average window size T , validation set Dv.
Outputs: the MRC estimator gφ.

1: Initialize parameters φ for the MRC model gφ, and moving average δ = 0;
2: while until convergence do
3: Randomly sample a batch of instances DS

B = {(hj , rj , tj , textj)}Bs
j=1 from DS ;

4: {(questionj , contextj , cspanj)}Bs
j=1 = DataProcessing(DS

B);
5: for j = 1 to Bs do
6: Calculate probability P cspan

j = gφ(questionj , contextj , cspanj)
7: end for
8: Obtain selected instances DS

B′ from DS
B by using Bernoulli sampling

9: Initialize a relation classifier fθ, and use DS
B′ to learn θ according to Equation 5

10: Calculate reward R according to Equation 6
11: Update φ according to Equation 7;
12: Update δ according to Equation 9;
13: end while

We first initialize the parameters φ for the MRC estimator gφ and set the
moving average δ to 0. For each iteration, we randomly select a batch of instances
DS

B from DS , the batch size is Bs, and process the original data into the input
format of the MRC estimator. Then we use the MRC estimator to evaluate
the quality of each processed instance (questionj , contextj , cspanj) and obtain
selected instances DS

B′ from DS
B by using Bernoulli sampling. After that, we

initialize a relation classifier fθ with random parameters and use DS
B′ to learn

the parameters θ of the relation classifier according to Eq. 5. Then we calculate



306 B. Xu et al.

the reward R according to Eq. 6, and update the parameters φ of the MRC
estimator gφ as follows:

φ ← φ + β · R · �φ log πφ(DS
B , (s1, ..., sBs

)) (7)

πφ(DS
B , (s1, ..., sBs

)) =
Bs∏

j=1

(P cspan
j )sj · (1 − P cspan

j )1−sj , (8)

where πφ(DS
B , (s1, ..., sBs

)) is the probability that the selection vector (s1, ..., sBs
)

is selected based on gφ and sj = {0, 1} is an indicator variable, indicating whether
to select this instance. Finally, we update the moving average δ according to
Eq. 9.

δ ← T − 1
T

δ +
1
T

F1(fθ(zv, rv)) (9)

4 Experiment

In this section, we present the experimental results.

4.1 Dataset

We conducted experiments on the DS-generated NYT10 dataset [15], which is
widely used for bag-level relation classification. In this paper, we need to evaluate
the performance of selected instances on sentence-level relation classification.
Therefore, we decided to use the NYT10 training set as our training data, and
then use two human-annotated NYT10 test sets as our test data. We refer to
the two human-annotated datasets of NYT10 [15] as NYT-T1 [22] and NYT10-
T2 [12], respectively.

The original NYT10 training set contains 53 relations, one of which is the
special label NA, which means that the given entity pair does not belong to
the remaining 52 relations or has no relationship. However, the test data in the
two human-annotated datasets do not contain NA relation. Therefore, for a fair
comparison, we drop the NA relations in the training data. The statistics about
these datasets are listed in Table 2.

Table 2. Statistics of the datasets

Training data Test data

Source Relations Instances Source Relations Instances

NYT10 52 136,379 NYT-T1 22 5,202

NYT-T2 28 4,288

In our experiments, we follow the previous work [3] and use the accuracy
metric to evaluate the performance of sentence-level relation classification on
non-NA relations.
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4.2 Parameter Settings

We conduct all the experiments on NVIDIA GTX 2080 Ti GPUs. The parameter
settings of our framework are as follows.

For the MRC estimator, we use RoBERTa in our model1, which is pre-trained
in a large-scale reading comprehension dataset, SQuAD 2.0 [14]. It contains 12
layers of transformer blocks, 12 self-attention heads, and the hidden size of 768.
The batch size of the training instances is 5,120. The maximum length of the
input text is 132, the output size of the start dense layer and the end dense layer
are both 1. Other parameters in it are initialized with the pre-trained RoBERTa
model.

For the relation classifier, we use the same hyperparameter settings as in [3]
during training and testing. Specifically, the batch size is 4, the dimensions of
word embedding and position embedding are 50 and 5, respectively. The window
size of the convolutional layer is 3, the number of feature maps is 230. The
learning rate α of the relation classifier is 0.1.

For training the reinforcement learning framework, we randomly select 10%
from the NYT10 training data as the validation set. We use the adaptive moment
estimation (Adam) optimizer [6] to update the parameters of the MRC estimator,
and the learning rate β is 0.005. The moving window size T is 6.

4.3 Baselines

Our goal is to construct a good instance selector. In order to evaluate the quality
of the instance selector, we need to train the relation classifier with selected
instances and evaluate the performance of sentence-level relation classification
on the test set. To demonstrate the effect of our MRC-based instance selector
and the reinforcement learning training framework, we compare with several
instance selectors:

– DS. We train the relation classifier with the DS-generated training data.
– CNN-RL [3]. The state-of-the-art reinforcement learning denoising method

for relation classification, which constructs a CNN-based instance selector for
all relations. We adopt TensorFlow implementation2 in our experiment.

– CNNs-RL [13]. Another state-of-the-art reinforcement learning denoising
method for relation classification, which constructs a binary CNN-based
instance selector for each relation. We adopt PyTorch implementation3 in
our experiment.

– MRC-RL. Our MRC-based instance selector proposed in this paper.
– MRC-Static. A variant of our instance selector that using the initialize param-

eters of RoBERTa and without training.
– MRC-Non-Static. Another variant of our instance selector that using the ini-

tialize parameters of RoBERTa and fine-tuning the parameters by using the
DS-generated training data.

1 https://huggingface.co/deepset/roberta-base-squad2.
2 https://github.com/xuyanfu/TensorFlow RLRE.
3 https://github.com/Panda0406/Reinforcement-Learning-Distant-Supervision-RE.

https://huggingface.co/deepset/roberta-base-squad2
https://github.com/xuyanfu/TensorFlow_RLRE
https://github.com/Panda0406/Reinforcement-Learning-Distant-Supervision-RE
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4.4 Performance Comparison and Analysis

The instance sampler component is used to select the top p% instances with
the highest probabilities. In our experiments, we first compare the performance
of MRC-based methods under different p values, and then choose the optimal
sampling rate (90%) for each MRC-based method. Table 3 shows the performance
of different instance selectors on two human-annotated test data. The detailed
analysis is as follows.

Table 3. The performance of different instance selectors on two human-annotated test
data.

Test data DS CNN-RL CNNs-RL MRC-Static MRC-Non-Static MRC-RL

NYT10-T1 86.45 81.37 85.99 86.63 86.93 87.01

NYT10-T2 79.62 74.43 79.28 79.78 80.27 80.50

Firstly, we compare the MRC-based methods (MRC-Static, MRC-Non-Static,
and MRC-RL) with DS. From the table, we find that all the MRC-based methods
perform better than DS, which shows that the prior knowledge in the pre-trained
model (RoBERTa) used by the MRC estimator can be used to find high-quality
instances. This shows the effectiveness of the MRC estimator for the instance
selector.

Secondly, we compare MRC-RL with MRC-Static and MRC-Non-Static.
From the table, we find that MRC-Non-Static is better than MRC-Static, which
shows that fine-tuning is a good way to learn the parameters for the MRC esti-
mator. MRC-RL achieves the best performance, which shows that reinforcement
learning is a better way to learn the parameters.

Finally, we compare MRC-RL with CNN-RL and CNNs-RL. From the table,
we find that MRC-RL is better than CNN-RL and CNNs-RL, which indicates
that our MRC-based instance selector is better than other instance selectors.

5 Conclusion

In this paper, we propose a novel instance selector to directly select the high-
quality instances from DS-generated data as the refined training data to improve
the performance of sentence-level relation classification and use the reinforce-
ment learning method to train the instance selector. Experiments conducted on
two human-annotated NYT10 datasets show that our instance selector can effec-
tively select high-quality instances from DS-generated data and can learn better
parameters for the MRC estimator through the reinforcement learning method.
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labeled text. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML
PKDD 2010. LNCS (LNAI), vol. 6323, pp. 148–163. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15939-8 10

16. Surdeanu, M., Tibshirani, J., Nallapati, R., Manning, C.D.: Multi-instance multi-
label learning for relation extraction. In: Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, EMNLP-CoNLL 2012, 12–14 July 2012, Jeju Island, Korea,
pp. 455–465 (2012)

17. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initializa-
tion and momentum in deep learning. In: International Conference on Machine
Learning, pp. 1139–1147. PMLR (2013)

18. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating
on hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 28, pp. 1112–1119 (2014)

19. Yoon, J., Arik, S., Pfister, T.: Data valuation using reinforcement learning. In:
International Conference on Machine Learning, pp. 10842–10851. PMLR (2020)

20. Zeng, D., Liu, K., Chen, Y., Zhao, J.: Distant supervision for relation extraction via
piecewise convolutional neural networks. In: Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon,
Portugal, 17–21 September 2015, pp. 1753–1762 (2015)

21. Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J.: Relation classification via convo-
lutional deep neural network. In: COLING 2014, 25th International Conference
on Computational Linguistics, Proceedings of the Conference: Technical Papers,
23–29 August 2014, Dublin, Ireland, pp. 2335–2344 (2014)

22. Zhu, T., et al.: Towards accurate and consistent evaluation: a dataset for distantly-
supervised relation extraction. In: Proceedings of the 28th International Conference
on Computational Linguistics, pp. 6436–6447 (2020)

https://doi.org/10.1007/978-3-642-15939-8_10


Multi-modal and Multi-perspective
Machine Translation by Collecting

Diverse Alignments

Lin Li1(B), Turghun Tayir1, Kaixi Hu1, and Dong Zhou2

1 School of Computer and Artificial Intelligence, Wuhan University of Technology,
Wuhan, China

{cathylilin,hotpes,issac hkx}@whut.edu.cn
2 School of Computer Science and Engineering, Hunan University of Science

and Technology, Xiangtan, China
dongzhou@hnust.edu.cn

Abstract. Multi-modal machine translation (MMT) is one of the most
active research directions in the natural language processing. Recently,
Seq2Seq translation model with images shows promising performance in
enhancing translation quality. However, the existing technologies inad-
equately consider diverse multi-modal alignments when using different
ways of adding images. We observe that this diversity can produce dif-
ferentiated knowledge and further generates distinct translation outputs.
In order to address the above problem, this paper proposes a Multi-
perspective and Multi-modal Machine Translation Method by Collect-
ing Diverse Alignments (M3-CoDA) which introduces different granular-
ities of image features to the attention mechanism, aiming at forming
diverse implicit multi-modal alignments. Moreover, those implicit align-
ments will produce MMT results from different perspectives. This paper
further designs a sequence ensemble to aggregate multiple translation
results. The experimental results on the Multi30k dataset show that
our proposed method significantly improves translation quality compared
with several popular baselines in terms of BLEU.

Keywords: Multi-modal machine translation · Multi-perspective ·
Diverse alignments · Multi-modal attention

1 Introduction

With the increasingly close communication between different languages and
countries, machine translation (MT) has advantages over manual translation in
efficiency and cost. The development of computer technology such as deep learn-
ing provides promising solutions for the end-to-end model MT. In recent years,
multi-modal machine translation (MMT) can effectively use the image informa-
tion corresponding to the source text and improve the translation quality. One of
the most popular frameworks is so called Seq2Seq based on Transformer [8,22].
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Since text and image belong to different data modality, how to bridge the
modality gap between them is one of the challenges of MMT. In the transla-
tion task, if multi-modal alignment is performed as a latent intermediate step,
the task can usually be improved [3] and an effective way to address this is to
use attention [2]. The key problem is how to introduce images to enhance the
alignment. Adding extracted image features to the attention structure of Trans-
former is an effective way to improve multi-modal translation [11]. However, the
alignment of text and image is affected by the granularity of features, thus pro-
ducing diverse alignments. How to make good use of the diverse alignments is a
challenge for improving the performance of MMT.

To address the above problem, this paper proposes a Multi-perspective and
Multi-modal Machine Translation Method by Collecting Diverse Alignments
(M3-CoDA). Firstly, on the decoder of Transformer, a diverse alignments mod-
ule is designed to combine the output from encoder with one-dimensional global
features or two-dimensional local features of image to achieve diverse align-
ments. And then, multi-perspective probability distributions over vocabulary are
derived from diverse alignments, all of which will jointly take effect on the next-
step prediction. Finally, sequence ensemble is designed in the multi-perspective
module to improve the traditional way of directly fusing the probability outputs
from translated sentences, and further optimize the translation results.

In summary, this paper makes the following contributions:

– Our M3-CoDA method can produce diverse alignments and further output
multi-perspective translation results, thereby improving the quality of MMT.

– The diverse alignments module is proposed by considering the different fea-
tures granularity of images in the attention mechanism, so that the decoder
will be allowed to focus on different parts of image when generating each
successive word.

– The experimental results on the open multi-modal dataset Multi30k show that
our proposed method effectively improves the translation quality of baseline
in terms of BLEU.

2 Related Work

MMT aims to build translation models that can process and correlate informa-
tion from multiple modalities [1]. Caglayan et al. [5] have deeply discussed on
whether multi-modal information is helpful to MT. Their experimental results
show that the MMT model with image features is better than the text-only MT.
In addition, in order to select the optimal image representation layer, Caglayan
et al. studied the accuracy of different image features on the image classification
task, extracted features from each layer of ResNet-50 [10] and evaluated the
classification performance.

Caglayan et al. [4] have added image features to the head or tail of the
original text sequence, and a transformation matrix is used to address embedding
dimension mismatch between image and text. Helcl et al. [3] have introduced
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Fig. 1. The structure of our M3-CoDA. It contains three modules: image feature extrac-
tion module, diverse alignments module and multi-perspective ensemble module. Image
feature extraction module extracts two kinds of image features with different granular-
ity and outputs them to diverse alignments module to form diverse alignments. Diverse
alignments are input into the decoder of Transformer in the multi-perspective ensem-
ble module to generate multi-perspective translation results. Some detailed network
structures within the Transformer, like layer normalization, are omitted for clarity.

an additional layer of attention structure on the decoder end of Transformer to
receive image features as input. Grönroos et al. [8] have used the Gate mechanism
that applies image features to encoder or decoder to improve the ability of model
to understand ambiguous words and phrases, and achieved the best results in
English-German translation in WMT18. Kiros et al. [14] and Han et al. [9] have
improved the attention mechanism through coordinated representation learning.

The existing MMT approaches pay little attention on the diversity of multi-
modal alignments. What’s more, the results of different alignments of text and
image should be processed effectively. This paper proposes an end-to-end diverse
alignments MMT method from the aspects of attention mechanism, image fea-
ture extraction and sequence data prediction fusion, which provides a feasible
way for improving multi-modal translation quality.

3 Methodology

3.1 The Framework of Our M3-CoDA

The core idea of our M3-CoDA model is to embed a diverse alignments module
that aligns image and text features to improve the vectorized representation
quality of multi-modal information. This paper uses Transformer as the basic
network structure and designs three modules, namely image feature extraction
module, diverse alignments module and multi-perspective ensemble module. Its
overall structure is shown in Fig. 1.
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3.2 Image Feature Extraction Module

In order to study the impact of image features with different granularities on
translation performance, this paper refers to the work of Huang et al. [12] to
extract image features. The pre-trained VGG16 [18] is used to extract one-
dimensional (1D) global and two-dimensional (2D) local image features.

1D Global Features. As shown in the image feature extraction module in
Fig. 1, a 1 × 1 × 4096D vector is obtained through five VGG16 blocks and two
fully connected layers. Then the vector is averaged every 8 dimensions to generate
a 1 × 512D feature matrix. Finally, a 50× 512D feature matrix is obtained by
self-replication.

2D Local Features. As shown in the image feature extraction module of Fig. 1,
a 7 × 7 × 512D vector is obtained after three times of 512 convolution kernels and
one pooling layer. Then the vector is transformed into a 49× 512D matrix by
linear transformation, and zeros are added at the last row to make it a 50× 512D
feature matrix.

3.3 Diverse Alignments Module

Text and Image Representation. This paper fuses the text features from
the encoder and the image features from the image feature extraction module by
designing linear weighting in multi-modal attention. The text feature xt ∈ R

b×d

and the image feature xi ∈ R
b×d are linearly transformed into Wt · xt+bt and

Wi ·xi+bi, where b and d are the sentence length and embedding size, Wt,Wi, bt
and bi are the weights and biases of the linear transformation of text and image
features, respectively. Then they are sent to multi-modal attention for fusion.

Through linear transformation, the text and image features are mapped to
a common semantic space and effective semantic complementarity is realized,
and they satisfy the addition and subtraction operations. For example, an image
feature vector of a dog - a text feature vector of a dog + a text feature vector
of a cat = an image feature vector of a cat.

Diverse Alignments. In multi-modal works, alignment is defined as the rela-
tionship and correspondence between sub-components that find instances from
two or more modalities [3]. Attention mechanism allows models to learn align-
ments between different modalities such as image and text description [23]. As
shown in the middle block of Fig. 1, we use multi-modal attention to align text
and image features with different granularities and produce different alignments.
Attention function A and context vector C are calculated as follows:

A(Q,K, V ) = softmax

(
QKT

√
d

)
V (1)

C =
h∑

i=1

A
(
QWQ

i ,KWK
i , V WV

i

)
WO

i (2)
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where h is the number of attention heads, WQ
i ,WK

i , WV
i ∈ R

d×d and WO
i ∈

R
hd×d are trainable parameter matrices.

The input of multi-modal attention is as follows: Query matrix Q always
comes from the text cross-attention in the decoder. The Key matrix K always
contains both the linearly transformed text feature KT and image feature KV .
KV can be a 1D global image features K1D or a 2D local image features K2D.
Value matrix V is similar to K, the difference is that there are also cases where
V only includes text features VT . For the above Eqs. (1) and (2), the four input
forms shown below produce diverse alignments.

(1) when K includes the text features KT and the 1D global image features
K1D, and V only includes the text features VT , the corresponding attention
function A and context vector C are calculated as follows:

A (Q,KT + K1D, VT ) = softmax

(
Q (KT + K1D)T√

d

)
VT (3)

C =
h∑

i=1

A
[
QWQ

i , (KT + K1D)W (KT+K1D)
i , VTW

VT
i

]
WO

i (4)

(2) when K includes the text features KT and the 2D local image features K2D,
and V only includes the text features VT , A and C are calculated as follows:

A (Q,KT + K2D, VT ) = softmax

(
Q (KT + K2D)T√

d

)
VT (5)

C =
h∑

i=1

A
[
QWQ

i , (KT + K2D)W (KT+K2D)
i , VTW

VT
i

]
WO

i (6)

(3) when K includes the text features KT and the 1D global image features
K1D, and V also includes the text features VT and the 1D global image
features V1D, the corresponding A and C are calculated as follows:

A (Q,KT + K1D, VT + V1D) = softmax

(
Q (KT + K1D)T√

d

)
(VT + V1D)

(7)

C =
h∑

i=1

A
[
QWQ

i , (KT + K1D)W (KT+K1D)
i , (VT + V1D)W (VT+V1D)

i

]
WO

i

(8)
(4) when K includes the text features KT and the 2D local image features K2D,

and V also includes the text features VT and the 2D local image features
V2D, the corresponding A and C are calculated as follows:

A (Q,KT + K2D, VT + V2D) = softmax

(
Q (KT + K2D)T√

d

)
(VT + V2D)

(9)
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C =
h∑

i=1

A
[
QWQ

i , (KT + K2D)W (KT+K2D)
i , (VT + V2D)W (VT+V2D)

i

]
WO

i

(10)

3.4 Multi-perspective Ensemble Module

Recently, the idea of ensemble learning has appeared on the decoding side of
the model to improve the translation performance [17,21,25]. As shown in the
leftmost block of Fig. 1, this paper designs sequence ensemble in the multi-
perspective module to improve the different traditional results formed by diverse
alignments and further optimize the translation results.

Algorithm 1. Multi−perspective ensemble algorithm
Input: Model probability distribution tables are logits1, logits2, ..., logitsN. Maximum

length of sentence is MAX LEN
Output: Probability distribution table of fusion model
1: MAX LEN = 50; i = 1
2: for i<MAX LEN do
3: logits s = 0; n = 1
4: for n<N do
5: logits[i ][n] = decoder [n](logits[i-1])
6: logits s[i ] += logits[i ][n]
7: n++
8: logits[i ] = logits s[i ] / N
9: end for

10: i++
11: end for
12: return logits

Considering the different effects of different alignments on translation qual-
ity, we further calculate the average probability distribution inferred from sub-
models that input text and image information to obtain a new distribution
table [20]. The word corresponding to the maximum probability value in this
table is taken as the output word of our model. For example, the multi-
perspective ensemble process of the source language sentence “a boy stands
with three girls” is shown in Fig. 2. The four model prediction probabilities of
the first word are averaged to obtain a new probability distribution table, in
which the maximum probability corresponds to “ein”, so the translation result
of “a” in the current time series prediction is “ein”. Then re-input “ein” into the
decoders of the four models to get the translation result of the next word in the
same way, and repeat this process until the last word is predicted. The pseudo
code of multi-perspective ensemble is descripted in Algorithm 1.
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Fig. 2. Model fusion process. This figure shows the fusion of predicted values of the
first word in the four models.

3.5 Loss Function

In this paper, mean loss is used as the objective function in our model training.
The first step is to make a softmax calculation on the j-th source sentence word
prediction vector xj output by the model decoder, as shown in Eq. (11):

yj = softmaxt(xj) (11)

The second step is to use the vector yj and its standard answer representation
vector ýj to calculate cross-entropy, as shown in Eq. (12):

H(yj) = −
|J|∑
j=1

yj log(ýj) (12)

where |J | represents the dimension of the vector xj . The third step is to use
Eq. (13) to calculate mean loss:

mean loss =

∑L
j=1 H(yj) · is targetj∑L

j=1 is target
j

(13)

where L represents the length of the source sentence, this paper sets the sentence
length to 50, is target is a vector representing the actual length of the source
sentence, and is targetj is the j-th value of the vector. For example, there is
a source sentence with 35 words and its is target vector is (w1, w2, . . . , w35,
w36,. . . , w50), where w1, w2, . . . , w35 = 1, w36, . . . , w50 = 0.
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4 Experiment

4.1 Dataset and Evaluation Measure

Our experiments are conducted on the Multi30K dataset [7] which extends the
Flickr30k image captioning dataset [24]. Each image in the Multil30k dataset is
paired with an English description and the description is translated into German.
The size of the training, validation and test sets are 29000, 1014 and 1000 image-
source-target triplets respectively. BLEU [15] is the widely accepted measure
to evaluate the correspondence between machine translation and professional
human translation.

4.2 Experimental Setup and Parameter Setting

All the experiments in this paper are conducted on a commodity machine
equipped with NVIDIA TITAN Xp and 12G memory. For the text processing
like WMT181, words are used as the minimum segmentation unit with lower-
case and punctuation normalization, and finally a training vocabulary table for
English and German is obtained. In order not to block any words that appear
less frequently, the length of the sentence and the number of occurrences of each
word in the training set are set to 50 and 1, respectively.

The main network parameters of our method are as follows: Encoder and
decoder are 6 layers, multi-head is 8, embedding and hidden layer dimensions
are 512. Dropout and learning rates are 0.2 and 0.0001, and the filter size of feed-
forward neural network is 2048. The warm-up steps and epoch are set at 4000 and
30. Batch-size and label smoothing [19] are set to 32 and 0.1 respectively. The
Adam optimizer [13] is used for parameter optimization and the beam-search
strategy is used for prediction in the decoding stage.

4.3 Baselines

In the WMT18 MMT task competition, models with good translation perfor-
mance [6,8] works on optimizing the utilization of image features by the intro-
duced Gate Layer structure. In addition, Helcl et al. [11] set an attention unit
at the decoder, which gets the weighted sum of the image representation and a
layer of attention to the image feature is added between the self-attention layer
and the feedforward neural network in each decoder layer of Transformer. [9] is
the most recent work in the baselines.

4.4 Experimental Results

Performance Comparisons. Based on Transformer, this paper reproduces
the experimental results of decoder gate, decoder gate, decoder & decoder gate
in [8], double attentive decoder in [11], and CVSR [9], as listed in Table 1.

1 http://www.statmt.org/wmt18/multimodal-task.html.

http://www.statmt.org/wmt18/multimodal-task.html


Multi-modal and Multi-perspective MT by Collecting Diverse Alignments 319

Table 1. Comparisons with baselines

Model BLEU

Text-only Transformer [22] 30.28

Encoder gate [8] 30.01 ↓
Decoder gate [8] 29.98 ↓
Encoder-Decoder gate [8] 30.36 ↑
Double attentive decoder [11] 30.65 ↑
CVSR [9] 31.41 ↑
Ours 34.07 ↑

Table 2. Results of different diverse alignments experiment

Model number Model BLEU

1 Text-only Transformer 30.28

2 (K �= V ) + 1D global features 31.41 ↑
3 (K �= V ) + 2D local features 31.50 ↑
4 (K = V ) + 1D global features 30.96 ↑
5 (K = V ) + 2D local features 30.43 ↑

In Table 1, it can be found that, compared to the text-only neural MT model,
the multi-modal model fused with image is not always better. For example,
adding the gate structure after encoder or decoder [8] does not improve transla-
tion performance, and even the accuracy of the model is reduced.

For the multi-modal translation model based on the gate structure, the exper-
imental results show that adding a gate layer at both ends of decoder and decoder
at the same time (30.36) is better than adding one of them separately (30.01
and 29.98). The two gate structures can filter out some irrelevant information by
using image features at the decoder and decoder stages simultaneously, thereby
improving the accuracy of the model. In the CVSR method, a linear layer is
added on the decoder side to combine the image feature representation based on
collaborative learning, and a BLEU 31.41 is obtained.

Our M3-CoDA shows the best performance, and the BLEU score is 34.07.
Compared with latest CVSR (31.41), our M3-CoDA gains translation improve-
ment by introducing image features of different granularities and combines them
with the attention mechanism to form diverse alignments.

Results of Diverse Alignments. In Table 2, experiments 2 3 4 5 correspond
to the four alignments in Sect. 3.3, it is observed that our M3-CoDA with aligning
two different granular image features with text features has better translation
performance than the MT model based on text-only 1 . In our M3-CoDA, K
always includes the image features KV and text features KT . K �= V means that
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V only includes the encoder output VT , K = V means that V includes the
image features VV and text featuresVT .

Compared with the results of 2 and 3 , the model performance of 2D local
image features is better than that of 1D global features (31.50 vs 31.41), because
2D local image features extracted based on different channels can express deeper
semantic information, thereby increasing the effect of image features in the model
prediction stage. Compared with the experimental results of 4 and 5 , the model
performance of 2D local image features does not always have advantages. The
possible reason is that when both K and V include the image and text features
(K=V ), the effect of the text information in the multi-modal attention is reduced
to a certain extent.

Results of Multi-perspective Ensemble. As shown in Table 3, this paper
uses the multi-perspective ensemble method to fuse the experimental results of
the four models 2 3 4 5 produced by the diverse multi-modal alignments shown
in the previous section, and the four experiments are regarded as single models
of the fusion model.

Table 3. Results of multi-perspective ensemble

Ensemble Combination Number of models BLEU

Com-1 2 4 2 32.48

Com-2 3 5 2 32.14

Ours 2 3 4 5 4 34.07

Comparing the results of Com-1 and Com-2 in Table 3 and the experimental
results in Table 2, it is found that the effect of fusing two models with different
granularities is better than that of any single model. The fusion of the four
models achieves the best result (M3-CoDA) with BLEU 34.07, which is 18.18%
higher than the text-only baseline model, and the performance improvement
about 8–11% on a single MMT model. The main reason for the result of the
fusion model is greatly improved as shown in the Fig. 2. The translation result
of the current word “a” in Model4 is incorrect, but the correct result is obtained
after fusion with the other three models. The performance of the fusion model
can be improved by fusing different models with differences.

5 Conclusion and Future Work

This paper proposes the M3-CoDA MMT method, which can produce diverse
alignments and further output multi-perspective translation results, thereby
improving the quality of MT. Experiments results show that this method greatly
improved the translation quality of the existing translation methods. With more
pubic MMT datasets, future work can test the generation of the proposed
method.
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In the future, we plan to use a neural network with better performance such
as Faster R-CNN [16] to extract the region image features and align them with
their corresponding text word features. Meanwhile, since the main work of this
paper focuses on the decoder, we will try to study the encoder in the future.
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dation of China under Project No. 61876062.
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11. Helcl, J., Libovický, J., Varis, D.: CUNI system for the WMT18 multimodal trans-
lation task. In: WMT (shared task), pp. 616–623 (2018)

12. Huang, P., et al.: Attention-based multimodal neural machine translation. In: Pro-
ceedings of the First Conference on Machine Translation, WMT, pp. 639–645. The
Association for Computer Linguistics (2016)

13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
14. Kiros, R., Salakhutdinov, R., Zemel, R.S.: Unifying visual-semantic embeddings

with multimodal neural language models. CoRR abs/1411.2539 (2014)
15. Papineni, K., Roukos, S., Ward, T., Zhu, W.: BLEU: a method for automatic

evaluation of machine translation. In: ACL, pp. 311–318 (2002)
16. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object

detection with region proposal networks. In: NIPS, pp. 91–99 (2015)
17. Sennrich, R., Haddow, B., Birch, A.: Edinburgh neural machine translation systems

for WMT 16. In: WMT, pp. 371–376 (2016)
18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. In: ICLR (2015)
19. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-

tion architecture for computer vision. In: CVPR, pp. 2818–2826 (2016)



322 L. Li et al.

20. Tan, L., et al.: An empirical study on ensemble learning of multimodal machine
translation. In: BigMM, pp. 63–69 (2020)

21. Tan, Z., Wang, B., Hu, J., Chen, Y., Shi, X.: XMU neural machine translation
systems for WMT 17. In: WMT, pp. 400–404 (2017)

22. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)
23. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual

attention. In: ICML, vol. 37, pp. 2048–2057 (2015)
24. Young, P., Lai, A., Hodosh, M., Hockenmaier, J.: From image descriptions to visual

denotations: new similarity metrics for semantic inference over event descriptions.
Trans. Assoc. Comput. Linguistics 2, 67–78 (2014)

25. Zhou, L., Hu, W., Zhang, J., Zong, C.: Neural system combination for machine
translation. In: ACL, pp. 378–384 (2017)



Simplifying Paragraph-Level Question
Generation via Transformer Language

Models

Luis Enrico Lopez, Diane Kathryn Cruz, Jan Christian Blaise Cruz,
and Charibeth Cheng(B)

De La Salle University Manila, Taft Ave., Malate, 1004 Manila, Philippines
{luis lopez,diane cruz,jan christian cruz,charibeth.cheng}@dlsu.edu.ph

Abstract. Question Generation (QG) is an important task in Natural
Language Processing (NLP) that involves generating questions automat-
ically when given a context paragraph. While many techniques exist for
the task of QG, they employ complex model architectures, extensive fea-
tures, and additional mechanisms to boost model performance. In this
work, we show that transformer-based finetuning techniques can be used
to create robust question generation systems using only a single pretrained
language model, without the use of additional mechanisms, answer meta-
data, and extensive features. Our best model outperforms previous more
complex RNN-based Seq2Seq models, with an 8.62 and a 14.27 increase
in METEOR and ROUGE L scores, respectively. We show that it also
performs on par with Seq2Seq models that employ answer-awareness and
other special mechanisms, despite being only a single-model system. We
analyze how various factors affect the model’s performance, such as input
data formatting, the length of the context paragraphs, and the use of
answer-awareness. Lastly, we also look into the model’s failure modes and
identify possible reasons why the model fails.

Keywords: Question generation · Delimiters · Transformer networks

1 Introduction

Question Generation (QG) [13], while not as prominent as its sibling task Ques-
tion Answering (QA), still remains relevant in NLP. The ability to ask meaningful
questions is closely related to comprehension [9], making QG important in the
bigger picture of AI.

Over the years, many successful models for QG have been produced. Basic
Sequence-to-Sequence (Seq2Seq) models [5] provided early baselines, eventually
adding improvements such as: the use of linguistic features [18], introduction
of answer-awareness [2,17], application of Reinforcement Learning [16], and the
shift to Transformer [15] models to replace RNNs [2].
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While all of these techniques are robust, they all employ complex models,
extra features, and additional mechanisms that make them harder to train and
expensive to reproduce. In this work, we show that transformer-based finetuning
techniques can be used to create robust question generation systems using only
a single pretrained language model, without the use of additional mechanisms,
answer metadata, and extensive features.

We show that our method, albeit simpler, produces results on par with the
state-of-the-art. We benchmark standard language model finetuning on a refor-
matting of the SQuAD [12] v.1.1 dataset and evaluate generation performance
with standard language generation metrics. In addition, we perform a variety of
analyses in order to isolate performance indicators within our model and identify
its weaknesses and failure modes.

2 Methodology

2.1 Data Preparation

We train the QG model on version 1.1 of the Stanford Question Answering
Dataset (SQuAD) [12]. SQuAD contains context paragraphs, each with sets of
questions and corresponding answer spans related to the contents of these para-
graphs; in total, SQuAD contains more than 100,000 crowdsourced questions.
While originally intended for the task of question answering, previous works
on question generation [4,17] have repurposed SQuAD as a training and test
dataset, designating the questions as the target output rather than the answer
spans.

We then frame QG as a Language Modeling task. Each training example
consists of a context paragraph and its associated question(s) transformed into
a single continuous sequence with a delimiter in between. Training examples are
separated by the newline character \n. Figure 1 shows an example of a single
training example in this form.

Super Bowl 50 was an American football game to determine the champion of the National
Football League (NFL) for the 2015 season. The American Football Conference (AFC)
champion... [SEP] Which NFL team represented the AFC at Super Bowl 50?

Fig. 1. A sample training example with the ARTIFICIAL delimiter and the OQPL
format. The context, delimiter, and question are highlighted in red, green, and blue
respectively. (Color figure online)

Additionally, we experiment with two factors in reformatting the input data
this way: the delimiter used, and the representation method for multiple ques-
tions per context paragraph. Figure 2 illustrates the six data formats we use for
model training.
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Fig. 2. Data preparation pipeline for SQuAD.

Delimiters. We experiment with three different delimiting schemes: 1) ARTIFI-
CIAL, or a delimiter in the form of the token [SEP], 2) NATURAL-QUESTION,
or a delimiter in the form of the word Question, and 3) NATURAL-NUMBER,
or a delimiting scheme in the form of a numbered list, where each item is a
question.

The ARTIFICIAL delimiter was not present in the original model’s vocabu-
lary, and its weights are learned from scratch during the finetuning phase, while
the NATURAL delimiting schemes rely on token weights already learning during
the pretraining phase, thus making it possible for the model’s pretrained knowl-
edge to affect performance through these delimiters. Similar keywords have been
shown to be effective in invoking certain pretrained model behaviors (e.g. TL;DR:
for summarization), even in a zero-shot setting [11].

Questions Per Line. There can be several questions associated with a single
paragraph. We experiment with two ways to flatten this many-to-one relation-
ship in the formatted data:

All Questions Per Line (AQPL). A single training example consists of a context
paragraph with all of its associated questions placed immediately after it, sepa-
rated from one another with the selected delimiter. While this avoids duplication
of context and thus results in faster training time, it may potentially result in
the model no longer being able to attend to earlier tokens as its context window
moves further away from the beginning of the input paragraph.

One Question Per Line (OQPL). Each context paragraph is duplicated for each
of its associated questions, such that for a single training example, there is only
one context and one question. For many cases, this may alleviate the moving
context window problem raised with AQPL. However, this format does result in
a longer training time due to the duplicated contexts increasing the size of the
final formatted dataset.
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2.2 Experiments

We use the 124M parameter GPT-2, the smallest of the four available sizes, as
our base model. We then finetune six QG models, each using one of the data
format combinations enumerated in Sect. 2.1. Larger versions of GPT-2 was not
used in this study due to time and compute limitations.

Each model was trained for 3 epochs using the Adam optimizer [7] with a
learning rate of 5 × 10−4, linearly increasing the learning rate from 0 for the
first 10% of training steps, then linearly decaying afterward. We use GPT-2’s
full 1024 maximum sequence length and a batch size of 32.

For producing questions, we use the top-p nucleus sampling method [6] with
a value of p = 0.9 and a temperature of 0.6. Each generation loop stops either
when the model generates the newline character \n, or when the model generates
32 total tokens, signalling an infinite generation loop.

Similar to the work of [17], we perform automatic evaluation metrics such as
BLEU 1, BLEU 2, BLEU 3, BLEU 4 [10], ROUGE L [8] and METEOR [1]. We
used the evaluation package made by [14] to quantify the models’ performance.

3 Results and Discussion

The best performing model is the One Question Per Line (OQPL) model with
number delimiters, achieving the highest score for BLEU 2, BLEU 3, BLEU 4
and METEOR. For BLEU 1 and ROUGE L, the One Question Per Line (OQPL)
model with artificial delimiters performed the best. A summary of the finetuning
results can be found on Table 1.

Table 1. Model finetuning scores

Format Delimiter BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGE L

AQPL Artificial 54.83 30.13 15.72 7.31 20.53 43.88

Number 54.98 30.31 15.79 7.57 20.69 43.83

Question 55.03 30.46 16.20 7.74 20.71 44.039

OQPL Artificial 55.60 31.03 16.56 7.89 21.03 44.41

Number 55.51 31.17 16.79 8.27 21.2 44.38

Question 55.28 30.81 16.55 8.21 21.11 44.27

It is interesting to note, however, that the best OQPL models are on
average only 0.6917 points better than their corresponding All Questions Per
Line (AQPL) counterparts. We hypothesize that this is because not enough of
SQuAD’s context paragraphs combined with their questions are long enough
to cause the moving context window problem (refer to Sect. 2.1) to occur. This
means that the choice between data formatting (OQPL vs AQPL) only matters
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marginally, provided that the context length does not approach the maximum
sequence length of the model.

For further analysis, we also extracted post-finetuning features from the gen-
erated questions such as question length, paragraph context length, and longest
sub-sequence (between the paragraph context and generated question) on the
best performing model. These features yielded some interesting observations,
which we touch on in the following subsections.

3.1 Evaluating Context-Copying

From the initial results, we observe that a number of generated questions seem
to be simply pulled from the given context, with phrase order reversed. In order
to quantify how frequent this behavior is present in the model, we calculate the
longest common subsequence (LCS) between the generated questions and its
corresponding context paragraph.

We find that, on average, the model tends to take 6.25 tokens from the context
paragraph it was given. In cases where this happens, the generated questions tend
to be identification type questions (who/what/when/where), which comprise
91.67% of the total generated samples.

We hypothesize that the model learned this mode (context-copying) as its
most common generation style because of the frequency of identification type
questions in the training dataset. As we suspected, SQuAD contains 88.26%
identification type questions in the training set, which lends empirical evidence
to our hypothesis.

To diversify the model’s question generation style, we hypothesize that the
training dataset should also have a move diverse question style beyond simple
identification-type questions.

3.2 Failed Generations

We observe that 19 of the generated questions using SQuAD’s test set were
“non-questions” falling in two distinct categories: Generations where the last 3
words keep repeating, and; Generations where the question was cut prematurely.
Example generations from these two categories can be found on Table 2.

For the first category, we look at the model’s attention visualization for clues
on why the model repeatedly generates the same three words. A sample attention
visualization can be found in Fig. 3.

In all the failed generations falling under the first category, we find that
attention weights tend to be evenly distributed over a number of random posi-
tions as it generates the question. Instead of aiding the model to output the
best next token, attention ends up “confused,” providing noise to the model. We
hypothesize that this is due to either insufficient training or a problem with the
sampling mechanism.

In the second category, we surmise that the reason why the model cuts gener-
ation is simply because it reached the maximum generation length while copying
text from the context. This is a consequence of the model’s context-copy mech-
anism, which it learned as its most common generation mechanism.
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Table 2. Examples of failed generations from the best performing model’s failure
modes.

Case Question Context

1 What is a profession of the profession of

the profession of the profession of the

profession of the profession of the

profession of the profession of the

profession of the profession

Teaching may be carried out informally,

within the family, which is called

homeschooling, or in the wider

community. Formal teaching may be

carried out by paid professionals. Such
professionals enjoy a status in some
societies on a par with physicians,
lawyers, engineers, and accountants
(Chartered or CPA)

2 Which newspaper in the United States
defined Southern California as including
the seven counties of Los Angeles, San
Bernardino, Orange, Riverside, San
Diego, Ventura and Sant

In 1900, the Los Angeles Times defined
southern California as including “the
seven counties of Los Angeles, San
Bernardino, Orange, Riverside, San
Diego, Ventura and Santa Barbara.” In
1999, the Times added a newer
county–Imperial–to that list

Fig. 3. Sample attention visualization for generated outputs of failure mode 1. This
example shows the words and the attention values to those words when focusing on
the word “profession,” which is highlighted in red. (Color figure online)

3.3 Optimal Context Length

In order to understand the limits of the model’s robustness, we also look at
varying the length of the context paragraph, which we surmise is a performance
indicator for the model.

For every context paragraph in the test set with at least 30 sentences, we
perform the following:

1. The context is fed to the model to generate outputs.
2. The outputs are scored via BLEU, the results are logged.
3. We then sentence-split the context paragraph using SpaCy, removing the last

sentence, and reconstructing the now-modified context paragraph.
4. We repeat from step 1 until the modified context paragraph now only has

one sentence.

We remove entire sentences instead of reducing the number of words as this
interferes with how intact the information is in the context. The model should
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also be able to produce a question, disregarding performance, even with just
one sentence as a context paragraph. We also only test context paragraphs with
at most 30 sentences as, on average, this is the most that fit in GPT-2’s 1024
maximum sequence length restriction for inputs.

An example of the sentence reduction scheme is shown on Table 3.

Table 3. Sample context paragraph after sentence reduction generation, all of the
context in the figure above would be fed to the best performing model. The first
sentence, second sentence, third sentence, and fourth sentence highlighted in black,
blue, green, and red respectively

Sentence number Context

1 Proportionality is recognised one of the general principles of
European Union law by the European Court of Justice since the 1950s

2 Proportionality is recognised one of the general principles of
European Union law by the European Court of Justice since the
1950s. According to the general principle of proportionality the
lawfulness of an action depends on whether it was appropriate and
necessary to achieve the objectives legitimately pursued

3 Proportionality is recognised one of the general principles of
European Union law by the European Court of Justice since the
1950s. According to the general principle of proportionality the
lawfulness of an action depends on whether it was appropriate and
necessary to achieve the objectives legitimately pursued.When there
is a choice between several appropriate measures the least onerous
must be adopted, and any disadvantage caused must not be

disproportionate to the aims pursued

4 Proportionality is recognised one of the general principles of

European Union law by the European Court of Justice since the

1950s. According to the general principle of proportionality the
lawfulness of an action depends on whether it was appropriate and
necessary to achieve the objectives legitimately pursued. When there
is a choice between several appropriate measures the least onerous
must be adopted, and any disadvantage caused must not be
disproportionate to the aims pursued.The principle of proportionality
is also recognised in Article 5 of the EC Treaty, stating that” any
action by the Community shall not go beyond what is necessary to
achieve the objectives of this Treaty

From this analysis, we show that the optimal number of sentences in the
context is more or less 10. As the number of sentences increase from 1 to 10, we
see that the performance also increases. However, as we increase the number of
sentences in the context all the way to 30, the performance is shown to degrade.
A graph showing the BLEU scores in relation to the number of sentences in the
context paragraph is shown in Fig. 4.

We hypothesize that this is because the model needs to look at more informa-
tion in order to identify relevant attention positions as the number of sentences
increase. From an interpretative perspective, the performance degradation when
the number of sentences increase makes sense because there will be more possible
questions to produce from a longer context paragraph than a shorter one.
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Fig. 4. BLEU scores for each length

A short context paragraph will have a more apparent subject, which can be
directly used by the model’s context-copy mechanism in order to generate good
questions. On the other hand, if the model encounters a long context paragraph
where the subject is not apparent (or if the context paragraph has multiple
topics/subjects), the context-copy mechanism that the model usually employs
will have a hard time pinpointing exact attention positions from where it bases
its generated questions from.

Further analyzing the results, we see that BLEU 1 unsurprisingly degrades
the slowest as it only looks at unigram correspondence, while BLEU 4 degrades
the fastest, reaching a score of 0 as early as the 17 sentence mark.

From this analysis, we learn that a higher number of sentences in the context
paragraph will give the model more information to generate a question from, too
many sentences will confuse the model and cause its performance to degrade.

3.4 Answer-Awareness

Given that a number of well-performing previous studies on question generation
use answer-awareness, we also test if our single-transformer method will benefit
from this additional feature. Answer-awareness refers to the usage of the answer’s
position or the answer to the question itself, alongside the context paragraph,
as input to the model for question generation.

In order to test this, we employ a OQPL artificial-based formatting scheme,
marking the start position of the answer within the context with a special answer
start ([ANSS]) token, and marking the end of the answer with a special answer-
end ([ANSE]) token.

A sample input context paragraph with answer-awareness tokens can be
found in Fig. 5.
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Super Bowl 50 was an American football game to determine the champion of the National
Football League (NFL) for the 2015 season. The American Football Conference (AFC)
champion [ANSS] Denver Broncos [ANSE] defeated the National Football Conference (NFC)
champion Carolina Panthers 2410 to earn their third Super Bowl title. The game was
played on February 7, 2016, at Levi’s Stadium in the San Francisco Bay Area at Santa
Clara, California. As this was the 50th Super Bowl, the league emphasized the ”golden
anniversary” with various gold-themed initiatives, as well as temporarily suspending the
tradition of naming each Super Bowl game with Roman numerals (under which the game
would have been known as ”Super Bowl L”), so that the logo could prominently feature
the Arabic numerals 50. [SEP] Which NFL team represented the AFC at Super Bowl 50?

Fig. 5. A sample training example for answer-aware question generation training. The
marked answer span is highlighted in red. Uses the ARTIFICIAL delimiter and the
OQPL format. Text adapted from SQuAD dataset [12]. (Color figure online)

We then follow the same finetuning setup as the original OQPL artificial
model, evaluating on BLEU and ROUGE L scores. A summary of the finetuning
results for the answer-aware model can be found on Table 4.

Table 4. Summary of Answer-Aware finetuning results.

Model BLEU 1 BLEU 2 BLEU 3 BLEU 4 ROUGE L

OQPL Standard 55.60 31.03 16.56 7.89 44.41

OQPL Answer-Aware 36.07 18.83 10.95 6.40 39.80

From these results, we can see that the answer-aware models perform signif-
icantly worse in terms of BLEU score, and marginally worse than the standard
OQPL artificial model in terms of ROUGE L.

We surmise that this is because the model has no inherent idea what to do
with the answer-awareness information, and unlike true answer-aware models like
UniLM [2], no explicit mechanism that puts importance to the answer-awareness
is present in the model. While it is possible for the model to inherently learn to
attend to the answer information, this is not deterministic. An explicit, separate
mechanism to incorporate answer-awareness in order to help the model learn
the feature’s significance is still important to have. In the end, the model still
performs better without answer-awareness.

4 Related Literature

The most prevalent technique for question generation studies is the usage of a
sequence-to-sequence (Seq2Seq) model [2–4,17] in addition to a variety of other
features and mechanisms. Attention is also a widely used technique, used by
works that employ both standard RNN architectures and Transformer models
[2,17].

Other studies employ widely different techniques such as using a policy gra-
dient for reinforcement learning [16], various linguistic features [18], and answer
awareness [3,16–18].
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While most of these works produce robust results, they are complex (Seq2Seq
naturally using two neural networks instead of one) and use a lot of extra tech-
niques in order to boost performance. Our work, in comparison, simply uses a
single model (one transformer) instead of two in a Seq2Seq setup. It also uses a
simple finetuning setup, and does not use any extensive modifications or tech-
niques. However, it produces robust results that are on par with the state of the
art in question generation (Table 5).

Table 5. Previous Works with Paragraph Level Input

Model Answer BLEU 4 METEOR ROUGE L

Du et al. (2017) [4] – 12.28 16.62 39.75

Du et al. (2018) [3] � 15.16 19.12 –

Zhao et al. (2018) [17] (s2s+a) – 4.8 12.52 30.11

Zhao et al. (2018) [17] (s2s-a-at-mcp-gsa) � 16.38 20.25 44.48

Dong et al. (2019) [2] � 22.12 25.06 51.07

GPT2 + attention (ours) – 8.26 21.2 44.38

Our model outperforms prior RNN-based Seq2Seq works [3,4,17] in terms
of METEOR and ROUGE L score. It is worth noting that, in addition to a
more complex model setup, [17] uses other techniques such as a maxout pointer
mechanism and gated self attention mechanisms. Other previous work also use
answer awareness, using the positions of the answers in the paragraph, or the
answers themselves, as additional features for the model. Our transformer uses
none of these extra features, yet still achieves robust METEOR and ROUGE L
scores that outperform these studies.

Our model performs worse in terms of BLEU 4 and ROUGE L, and slightly
worse in terms of METEOR when compared with the recent UniLM work of [2].
It is important to note that [2] is also the only other work that uses a Transformer
for their question generation model. Their incorporation of an answer-awareness
mechanism, in addition to the multiple modes of finetuning on a Seq2Seq trans-
former produces the best results in recent literature.

While our model performs worse than UniLM, we note that UniLM uses a
Seq2Seq-based approach, necessitating the use of two separate Transformers: an
encoder and a decoder. In contrast, our model relies only on a single Transformer-
decoder-based language model, effectively halving model complexity. In addition,
our model does not require any sort of answer tagging, making it suitable for
situations where this information is not available in the input context. Our model
is smaller, less complex, and faster to operate, making it an ideal alternative for
a variety of use cases related to question generation.

5 Conclusion

Previous attempts at paragraph-level question generation have relied on several
additional features and techniques in order to produce state-of-the-art results.
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In this paper, we demonstrate that a simple single Transformer-based question
generation model is able to outperform more complex Seq2Seq methods without
the need for additional features, techniques, and training steps. For future work,
we plan to evaluate performance on more difficult datasets that pose “why” or
“how” questions as opposed to SQuAD’s factoid-only questions. We also look
towards training with larger model sizes and evaluating the cost-benefit of using
larger models as opposed to more efficient ones.
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Abstract. Graph Auto-Encoder(GAE) emerged as a powerful node
embedding method, has attracted extensive interests lately. GAE and
most of its extensions rely on a series of encoding layers to learn
effective node embeddings, while corresponding decoding layers trying
to recover the original features. Promising performances on challeng-
ing tasks have demonstrated GAE’s powerful ability of representation.
On the other hand, Subgraph Convolutional Networks(SCNs), as an
extension of Graph Convolutional Networks(GCNs), can aggregate both
tagged and local structural features in an artful way. In this paper, we
show that SCNs can be improved (AttSCNs) by an attention mecha-
nism to acquire better representational capability, which is competent
for the duty of encoder. Then we develop inversed AttSCNs and propose
a novel auto-encoder, i.e., Attention-Based Auto-Encoder(ABAE). This
architecture utilizes attention mechanism to get insight of the data. We
perform experiments on some challenging tasks to show the effective-
ness of our models. Moreover, we construct AttSCNs for Node Classifi-
cation. The results demonstrate that AttSCNs can produce considerable
embeddings. Furthermore, we launch Link Prediction task for the pro-
posed ABAE. Experimental results show that our ABAE has its fantastic
power and achieves state-of-the-art in Link Prediction.

Keywords: Subgraph Convolutional Networks · Graph
Auto-Encoder · Learning graph representation · Node embeddings

1 Introduction

Graphs are universal data structure in non-Euclidean space, thanks to their
powerful modeling capabilities. Among various challenging tasks in the graph
domain, learning node embeddings is a basic but crucial difficulty. It aims at
integrating existing features and topological structures, and forming effective
node representations. Consequently, the extracted representations can provide
support for downstream tasks while boosting the performance.

Several shallow embedding techniques like DeepWalk [1], Node2vec [2] were
earlier introduced. However, such methods have the shortcoming of enormous
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parameters to be optimized and fail to take both features and structural infor-
mation into consideration. To overcome these shortcomings, graph neural net-
works(GNNs) [3] have recently emerged. Readers can refer to [4] for a whole
review. These approaches can consider information diffusion using message pass-
ing. Nonetheless, some of them still face the offensive problems such as over-
smoothing.

Among these deep graph neural networks, Graph Auto-Encoder(GAE) and
Variation Graph Auto-Encoder(VGAE) [5] arose as excellent approaches to
achieve interpretable node embeddings. [6] developed Subgraph Convolutional
Neural Networks(SCNs) as a depth-based representation method of graph struc-
ture. This architecture captures both global topological structure and local con-
nection within graph in an ingenious way. However, though SCNs alleviate the
influences of the over-smoothing problem, there is still some unreasonableness
existing in the architecture. For more details, we will introduce them in Sect. 2.

In this paper, we first analyze the aforementioned models and give our com-
prehension. Then we develop AttSCNs with an attention mechanism to learn use-
ful information. Finally, we combine them with an inversed version throughout
encoder-decoder architecture and propose our ABAE model. Our contributions
are threefold.

– We analyse advantages and limitations of previous works, mainly about GAE
and SCNs.

– We develop the improved AttSCNs and Attention-Based Auto-Encoder,
which is able to capture structural features and local connectivity.

– We empirically evaluate the performance of our models and show that our
models are competitive even compared with other SOTA methods.

The rest of this paper is organized as follows. Section 2 illustrates the men-
tioned GAE and SCNs while analyzing these components. Section 3 proposed the
improved AttSCNs, which are proved to be more powerful for information aggre-
gation. Section 4 describes the inversed AttSCNs and gives the whole architecture
of our new ABAE model. Section 5 explores the performance of our models on
challenging tasks respectively and gives an experimental evaluation. Finally, we
conclude our works and discuss future work in Sect. 6.

2 Related Work

In this section, we will introduce GAE and SCNs and analyse their architectures
from a unique perspective. More specifically, G = (V,E) denotes graph, where
V denotes the set of vertices and E ⊆ V ×V denotes the set of edges. X ∈ R

N×d

is the feature matrix of the graph.

2.1 Graph Auto-Encoders

Graph Auto-Encoders transferred the encoder-decoder architecture to graph
domain, and achieved a great success. The encoding layers try to extract potent
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features while the decoding layers try to recover as much as possible signals
from the encoded vectors. [7] proved that even simple linear encoding layer
with an inner-product decoding layer can achieve compelling results for plain
graphs, which inspires us that the encoder-decoder architecture has a strong
potential to learn vast information. Meanwhile, when it comes to complicated
graphs, [8] and [11] suggest that decoder is also a significant component of
Auto-Encoders. Paired encoder and decoder [11] may contribute to prominent
progress for graph-based tasks.

Empirically paired encoder-decoder hold similar capabilities of encoding and
decoding. In this way, the more signal decoders recover, the more information
is packed into the representational vectors. This leads to a significant improve-
ment of the performance of the model. In this time the decoder can probably
strengthen the encoder intuitively.

2.2 Subgraph Convolutional Networks

Inspired by Graph Convolutional Networks [12], [6] proposed a novel model
QS-CNNs based on quantum-walk. This model first decomposes a graph into
a family of K-layer m-ary expansion trees for each unique vertex, then scans a
subgraph based window defined over an m-ary tree. The whole model can be
divided into three parts as follows.

Rank. QS-CNNs score each node with a quantum-based rank. The quantum-
walk method provides better efficiency. However, it may be too complicated and
our experiments show even degree rank can obtain similar effectiveness. So we
replace this ranking with sorted degree. In this regard, we call the model SCNs,
not QS-CNNs.

Construct. QS-CNNs establish subtrees for each vertex, which is crucial for
extracting structural features reflecting the local connectivity. The model uses
graph grafting and pruning to standardize the neighborhood subgraph for con-
structing an m-ary tree. Following this, the leaf nodes of each subtree are further
replaced by their own subtrees. Figure 1 shows the concrete reproduction.

Convolute. Sliding the fixed-size window over the subtrees. After several oper-
ations, the subtrees degenerate as the origin nodes. However, the sliding window
cannot distinguish the root with its child. In other words, if two nodes are linked
with the root, they have an equal status. Though the weight of filters are alter-
able, they may not be appropriate for every m-are tree. We will use an attention
mechanism to solve this problem.

In our perspective, SCNs can be considered as the limited expansion of
GCNs cause every root has a fixed number of children, and the networks benefit
from the tree-shape structure to alleviate the effect of over-smoothing. However,
although SCNs can effectively capture local connectivity, they still lose the latent
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Fig. 1. Graph grafting crops of excess nodes if the neighbor is larger than required and
graph pruning pads with dummy nodes if it is smaller than required. Concrete process
is shown in figure.

distant connectivity. Meanwhile, when combining with GAE [11], it seems that
the inversed SCNs do not make sense.

3 Proposed Improved AttSCNs

In this section, we first transform the convolutional process of SCNs into another
form, and further develop the improved AttSCNs.

3.1 Insight of Subgraph Convolution

In this subsection, we show that convolution in SCNs is another form on grid
data of node-wise method.

Given previous subtree T with height K and m-ary, note that T is a full
m-ary tree, so T has the node number of mK−1

m−1 while the non-leaf node number

is mK−1−1
m−1 . We can grade the nodes of T with 1, 2, ..., mK−1

m−1 . Here, each node
denotes a feature vector pnode ∈ R1×d where d is the dimension.

When preforming the convolutional operation, we first construct a node

matrix M ∈ R(m+1)×mK−1−1
m−1 . Each column of M indicates the root with its

children. See Fig. 2 for more details. Then the fixed-sized Conv1d filter can slide

the matrix and form the new matrix Mnew ∈ R1×mK−1−1
m−1 . After that, Mnew can

be realigned as a new subtree Tnew with height K − 1 and m-ary.
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Fig. 2. We translate subgraph convolution into another form. First construct node
matrix for a subtree. Then a Conv1d filter will slide over the matrix and reform a new
shrunken subtree.

In this way, it seems unreasonable as the filter weight is shared for each
column. Empirically different child nodes should have different status and con-
tribute different impact. Therefore, we consider to use an attention mechanism
to distinguish the filter weights.

3.2 Attention-Based SCNs

To address the shared weight problem, we employ the attention mechanism as
below.

Let c0 be one non-leaf node of one subtree, and c1, c2...cm be its child nodes.
Similar to [13], we can compute the attention coefficients between root and child
nodes as follows.

ej = a(Wc0,Wcj ) where j = 0, 1, 2, ...,m (1)

Here, a is a shared attentional mechanism a : R
d × R

d → R for computing
attention coefficients. To make coefficients easily comparable, we normalize them
using the softmax function.

αj = softmax(ej) =
exp(ej)

m∑

i=0

exp(ei)
where j = 0, 1, 2, ...,m (2)

Then the root can be updated as follows.

nnew = σ(
m∑

i=0

αiWci) (3)
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To learn hierarchical information for integration, we employ multi-head atten-
tion. Specifically, H independent attention execute as follows.

nnew = ‖Hh=1 σ(
m∑

i=0

αh
i W

hci) (4)

Hitherto, we successfully combine the root with its child nodes and generate a
new root. We show this process in Fig. 3. For each column of M , we perform this

process and obtain Mnew ∈ R1×mK−1−1
m−1 . After several attention-based convolu-

tions, a subtree will be converted into a node. This node contains more features
and structural connectivity, which can be considered as the node representations.

Fig. 3. The attention-based subgraph convolution. For each non-leaf node, we will
conduct attention-based subgraph convolution and form a new node which represents
the new embedding. Consequently, when we finish all the convolution, the whole subtree
will shrink with height K-1.

4 Attention-Based Auto-Encoder

With promising encoding capabilities, AttSCNs can probably take the duty of
encoder. Meanwhile, we should consider the paired decoder to boost encoder.
[11] uses 1 × 1 Conv to construct inversed SCNs, which may lead to structural
information loss. However, thanks to the exquisite construction, we can obtain
the inversed AttSCN by caching the attention coefficients.

4.1 Inversed AttSCNs

Reviewing the equations above, we find that W in Eq. 3 plays the role of linear
transformation, hence we can first perform this process. Given m + 1 nodes
c0, c1, ..., cm and the linear transfer parameters W , we can derive the new m+1
nodes by applying W to each node.

c′
i = Wci (5)
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Therefore, we can rewrite Eq. 3 in vector form as below.

nnew = σ(ACT ) (6)

Here, A = (α0, α1, ..., αm) denotes the attention coefficients vector and C =
(c′

0, c
′
1, ..., c′

m ) denotes the transformed signal for m + 1 nodes. We can cache A
for further computation.

In the inversed AttSCN, when we obtain nnew , we need inversed process to
acquire recovery with low loss. Therefore, we can obtain an approximate solution
by this equation. Here, Ag is pseudoinverse matrix.

C ′ = σ′(Ag nnew ) (7)

Because Ag can be computed by cached A, we can represent a node vector ascent
as a subtree T ′. After several similar operations, T ′ will grow as the same size
of the original subtree.

Mathematically, Ag is computed by applying a series of operations of AT and
A, and it costs too much time of at least O(n3), which is unaffordable. Therefore,
we try to find an approximate solution. As Ag is a transformation of AT , we set
Ag = σ(ATW ′) to accelerate the computation and mitigate the computational
burden. In this situation, the formula can be written as follows.

C ′ = σ′(ATW ′ nnew ) (8)

4.2 Proposed ABAE

After defining encoders and decoders, we compose these components and pro-
pose a novel architecture, i.e., Attention-Based Auto-Encoder. The total process
can be summarized as follows.

First, we construct subtrees for each vertex as mentioned above.
Second, the encoders perform attention-based subgraph convolution for each

subtree. The subtrees will shrink gradually which means information is aggre-
gated in steps. Ultimately the subtrees will degenerate as nodes and form the
final representations. Meanwhile, the encoders will give attention coefficients for
decoders’ computation.

Finally, the decoders take in the encoded nodes and help these nodes grow
as the same size of the original subtrees. Then, ABAE will compute the loss and
make optimization. Figure 4 illustrates the whole process.

Due to the superiority of the attention mechanism and auto-encoder archi-
tecture, our AttSCNs encoders can learn vast information from well-designed
subtree structure and give hierarchical representations. Meanwhile, inversed
AttSCNs have powerful decoding capabilities both theoretically and practically,
which contributes to the promising performance.
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Note that training process of our AttSCNs does not rely on the adjacency
matrix, which is used only in constructing, and this structure gives us a mass of
flexibility. When a node is dynamically added into the graph, we only need to
construct the subtree for the node and implement attention-based convolution.

Fig. 4. The whole process of ABAE. After constructing subtrees for each vertex, these
subtrees are input of our model. AttSCNs as encoders perform attention-based sub-
graph convolution and inversed AttSCNs as decoders perform recovery devolution.
After optimization, the ourput of last AttSCNs represents the node embeddings.

4.3 Loss of ABAE

In this section, we will determine the loss function used for optimization. Note
that decoder’s duty is to recover signals from node embeddings, therefore we
compute the loss between T and T ′. The process of reducing the loss is equivalent
to recover more signals, and expect more encoding capabilities. In this paper,
we choose MSELoss as below.

Loss1 =
∑

nodeNum

d∑

i=1

(Tnode,i − T ′
node,i) (9)

In Link Prediction task, we should add another part of loss for better per-
formance. We utilize the inner-product decoder to compute Apred : Apred =
σ(ZZT ). Where Z is the node embeddings output of the last AttSCNs and σ
denotes the sigmoid function. We use Apred to compute another CrossEntropy-
Loss with adjacency matrix A. This part of loss is described as follows.

Loss2 = BinaryCrossEntropyLoss(Apred, A) (10)

Along with loss shown in Eq. 9, we assign weights and use the loss to optimize
our ABAE.

loss = αLoss1 + βLoss2 (11)

Here, α and β are loss weighted hyperparameters for adjustment.
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5 Experiments

In this section, we evaluate the performance of our models, AttSCNs and
Attention-Based Auto-Encoder, and compare them with state-of-the-art meth-
ods. We choose three citation network datasets including Cora, CiteSeer and
Pubmed as benchmark. Concretely, we first construct AttSCNs for Node Clas-
sification task to prove their effectiveness. Then we perform ABAE methods on
Link Prediction and show its excellent performance. Finally, we use these results
to analyze our models. Our code is available at https://github.com/smart-lty/
ABAE.

5.1 Dataset Description

In this part, we briefly introduce the three datasets we will use in further eval-
uation. Specifically, these benchmarks are citation networks. These datasets are
composed of machine learning papers, and are very popular in recent years for
graph deep learning. Details are shown in Table 1.

Table 1. Details of Graph Benchmark

Datasets Nodes Edges Features Classes

Cora 2708 5409 1433 7

CiteSeer 3327 4732 3703 6

Pubmed 19717 44338 500 3

5.2 Node Classification with AttSCNs

First, we focus on Node Classification. We tackle this problem with simple
AttSCNs. This model simply constructs subtrees and implements attention-
based subgraph convolution without linear transformation. We compare this
model with a) some classical methods , including GCN [12], GAT [13], QS-
CNNs [6] and b) some latest powerful approaches including Graph U-Nets [14],
Graph-Bert [15], DifNet [16], NodeNet [17] and AS-GCN [18]. Note that, the
experimental results of these methods are reported from their original papers.
Total comparison is shown in Table 2.

For the evaluation, we adjust a number of hyperparameters to obtain the
best performance of each dataset. The dataset is randomly divided into three
parts of training, validation and testing set to evaluate the classification perfor-
mance. We evaluate prediction accuracy on a testing set of 300 examples, and
we choose a validation set of 300 examples from the same dataset. We take the
test accuracy as the final result. The parameters for the different datasets are
set as follows. a) for Cora: 3(K), 2(m), 0.145(learning rate), 64(hidden nums),
0.6(dropout), and 5(multi heads); b) for Citeseer: 3(K), 3(m), 0.045(learning
rate), 32(hidden nums), 0.7(dropout), and 5(multi heads); c) for Pubmed: 3(K),

https://github.com/smart-lty/ABAE
https://github.com/smart-lty/ABAE
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Table 2. Node Classification Accuracy(In % ± Standard Error)

Models Cora CiteSeer Pubmed

GCN 81.5 70.3 79.0

GAT 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3

QS-CNNs 85.95 ± 1.58 − 89.63 ± 1.67

g-U-nets 84.4 ± 0.6 73.2 ± 0.5 79.6 ± 0.2

Graph-BERT 84.3 71.2 79.3

DifNet 85.1 72.7 79.5

Nodenet 86.8 80.09 90.21

AS-GCN(full-supervised) 87.44 79.66 90.60

AttSCNs(ours) 88.7± 1.2 80.5± 0.7 87.0 ± 0.1

2(m), 0.0958(learning rate), 64(hidden nums), 0.2(dropout), and 1(multi heads).
From the experimental results we observe that our AttSCNs models perform
better on Cora and CiteSeer. When compared with classical methods and latest
methods, AttSCNs get better grades which shows its strong encoding ability. On
pubmed, we also obtain a result that have been greatly improved. The results
show that our model has certain research significance on node classification tasks.

It is distinct that our model performs better than QS-CNNs and a series of
classical methods. Meanwhile, our AttSCNs show great power in node aggrega-
tion area even compared with latest approaches. The results empirically demon-
strate the effectiveness of the proposed AttSCNs.

5.3 Link Prediction with AttSCN-Based Auto-Encoder

Moreover, we pay attention to Link Prediction task to evaluate our proposed
ABAE model. We compare our model with some SOTA approaches including
s-VGAE [19], sGraphite-VAE [20], GIC [21] and BANE [22] in citation network
datasets. We compare these models based on their ability to correctly classify
edges and non-edges, therefore we report AUC and AP scores for each model
on the test set. The comparison is shown in Table 3. For the evaluation, we
also conduct parameter optimization. We first split the dataset into validation
and testing sets, i.e., 10% for validation and 5% for test. We report the aver-
age accuracy of 100 experiments. We adjust a number of hyperparameters to
obtain the best performance of each dataset as below. a) for Cora: 2(K), 2(m),
0.0004(learning rate), 16(hidden nums), 0.1(dropout), and 5(multi heads); b)
for Citeseer: 2(K), 2(m), 0.005(learning rate), 64(hidden nums), 0.05(dropout),
and 8(multi heads); c) for Pubmed: 3(K), 2(m), 0.001(learning rate), 64(hidden
nums), 0.05(dropout), and 8(multi heads).

The result demonstrates that our ABAE achieves state-of-the-art for these
datasets and this strongly inspired us that ABAE has a strong potential in Link
Prediction.
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Table 3. Link Prediction with AUC and AP scores

Models Cora Citeseer Pubmed

AUC AP AUC AP AUC AP

s-VGAE 94.1± 0.1 94.1± 0.3 94.7± 0.2 95.2± 0.2 96.0± 0.1 96.0± 0.1

sG-VAE 93.7 93.5 94.1 95.4 94.8 96.3

GIC 93.5± 0.6 93.3± 0.7 97.0± 0.5 96.8± 0.5 94.8± 0.1 96.3± 0.1

BANE 93.5 − 95.59 − − −
AttSCNs(ours) 98.3± 0.3 98.5± 0.3 98.6± 0.3 98.4± 0.4 98.2± 0.1 98.2± 0.1

6 Conclusion and Future Work

Node Embedding is a universal difficulty lying in graph domain. With great
representations, we can solve many problems and get insight of graphs. In this
paper, we first improve SCNs and develop a powerful architecture, AttSCNs,
which is proved to have amazing capabilities for obtaining node embeddings.
Furthermore, we propose a novel model with encoder-decoder structure named
the ABAE. It achieves start-of-the-art than lastest link prediction methods. This
model has a strong potential in Link Prediction and it shows the advantages of
attention mechanism and auto-encoder architecture.

For future work, we can further improve the proposed ABAE model. First,
it is worthwhile trying combining other useful methods with our AttSCNs
and ABAE to tackle other challenging tasks e.g. Graph Classification. Second,
AttSCNs can be updated with advanced methods and we can take edge features
into consideration as well. Moreover, AttSCNs as effective encoding method may
be transplanted to other graph tasks. We believe that with detailed supplement,
our models can achieve better performance.
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Abstract. Convolutional Neural Networks (CNNs) are vulnerable to
adversarial attacks. By adding imperceptible perturbations to the input
images, adversarial attack methods can fool CNN models with a high
confidence. The main reason is that existing CNN models usually use
softmax-like linear classifiers. Recent researches indicate that Radial
Basis Function (RBF) network can effectively improve the nonlinearity
classification capability and demonstrates robustness against white-box
attacks, while data transformations can smooth the classification bound-
ary and show high efficacy for countering black-box attacks. We propose
to incorporate data transformations and RBF together to simultane-
ously enhance the robustness of CNNs against white-box and black-box
attacks. However, applying RBF to a very deep CNN will lead to a
difficult convergence during training, while data transformations might
reduce classification accuracy due to introducing noises. To solve these
issues, we further propose a deep supervision strategy and a novel dual
loss function. Experiments on two public available datasets demonstrate
that applying the proposed methods to the existing CNN models greatly
improve their abilities against adversarial attacks while keeping their
original recognition performance.

Keywords: RBF networks · Data transformations · Deep supervision

1 Introduction

In recent years, CNNs have recently achieved state-of-the-art performance in
many computer vision tasks, such as image classification [1,2], object detection
[3,4], and speech recognition [5,6]. However, it has been demonstrated that deep
learning methods can be easily fooled by small imperceptible perturbations in
the input images [7,8]. The main reason lies in the softmax-like linear classifiers
used by many deep-learning methods. While linear classifiers are very effective
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for classification, they force the model to assign high confidences to the regions
far from the decision boundary. Due to the vulnerability of linear classifiers,
an adversary can easily add some visually imperceptible changes into the input
images and migrate the perturbed images across the classification boundary.

In order to improve the non-linearity of a model, Goodfellow et al. [8] explored
a variety of methods, including shallow and deep RBF network. They used the
shallow RBF network to decrease the error rate on MNIST using adversarial
examples generated with the fast gradient sign method. Vidnerová et al. [9] also
demonstrated the robustness of the RBF unit against adversarial perturbations
for shallow CNNs. However, deploying a deep RBF network is still a challenging
problem due to the vanishing gradient problem during training. In addition, an
RBF network usually has a decreased generalization ability, which leads to its
low robustness against the black-box attacks. In this work, we use the black-box
attacks to denote the attacks generating adversarial samples without knowing
the architecture and the parameters of the target network, whereas the white-box
attacks knows both the architecture and the parameters of the target network.
On the other hand, we noticed that using input data transformation methods,
such as Gaussian noise injection (GNI) [10] and input feature squeezing (IFS)
[11], can destroy the adversarial perturbation structure to some extent, and such
defense strategy has a good effect in defending against black-box attack. Unfor-
tunately, the data transformation methods have poor efficacy against white-box
attacks. We therefore suggest increasing the robustness of the underlying net-
work by combining data transformation and RBF together.

Our contributions are as follows. First, we devise a novel dual loss func-
tion to overcome the vanishing gradient problem caused by deep RBF network.
Second, we propose to incorporate data transformation methods (i.e., GNI and
IFS) into the deep RBF network to simultaneously enhance the robustness of
the underlying networks against both white-box attacks and black-box attacks.
Third, in order to improve the accuracy of legitimate datasets and impose inter-
mediate features better, we also integrate deep supervision into the network.
Extensive experiments on two baseline networks, six attack methods and two
public datasets demonstrate that our proposed model can effectively defend the
adversarial examples generated by white-box attacks and black-box attacks.

2 Related Works

2.1 Attack Methods

Fast Gradient Sign Method (FGSM). Goodfellow et al. [8] proposed the
Fast Gradient Sign Method (FGSM) for crafting adversarial examples. FGSM
is an untargeted attack method and it uses the same attack strength at every
dimension. Let X be the input image, ytrue the target class of X and J (X, ytrue)
the cost used to train the neural network. FGSM generates the adversarial exam-
ple as follows

Xadv = X + εsign (∇XJ (X, ytrue)) , (1)

where ε is a hyper-parameter used to determine the perturbation size.



Adversarial Examples Defense via Combining Data Transformations 351

Basic Iterative Method (BIM). BIM [12] is an iterative variant of FGSM. By
applying iteratively FGSM multiple times with smaller steps β, BIM generates
the adversarial example as follows

Xadv
0 = X, Xadv

N+1 = clipX,ε

(
Xadv

N + βsign
(∇XJ

(
Xadv

N , ytrue

)))
, (2)

where clip() is used to clip pixel values of intermediate results after each step
to ensure that they are in an ε-neighbourhood of the original image. BIM was
found to produce superior results to fast gradient sign [12].

Carlini and Wagner’s Method (CW). The CW method [13] is an
optimization-based attack method with a high success rate and can craft tar-
geted or untargeted adversarial samples with very low distortions. CW has three
versions: CW0, CW2 and CW∞, which are based on �0 norm, �2 norm, and �∞
norm, respectively. The author point out that the untargeted CW2 version has
the best performance. In our paper, we select CW2 attack.

2.2 Defense Methods

Papernot et al. [14] provided a comprehensive summary of work on defending
against adversarial samples, grouping work into two broad categories: adver-
sarial training and gradient masking, which we discuss further below. Recently,
researchers [10,11] also contributed a third approach, transforming the input
data so that the model is not sensitive to small perturbations.

Defense via Data Transformation. Data transformation methods is a kind of
method to preprocess the input images before feeding them to a CNN, including
Gaussian noise injection (GNI) [10] and input feature squeezing (IFS) [11]. And
this kind of method can destroy the adversarial perturbation structure to some
extent.

Feature Squeezing. Xu et al. [11] observed that the feature input spaces are often
unnecessarily large, which provides large degrees of freedom for an adversary to
construct adversarial examples. To shrink the input space, Xu et al. [11] proposed
two feature squeezing methods: reducing the color bit depth of each pixel and
spatial smoothing. Due to its simplicity and efficacy against adversarial samples,
feature squeezing can be complementary to other defense methods.

Gaussian Noise Injection. In digital images, noise mainly come from the pro-
cess of image acquisition and transmission. In the space domain and frequency
domain, Gaussian noise (also known as normal noise) is commonly used in prac-
tice due to its mathematical ease of handling. Because perturbation has the char-
acteristics of extremely small, Gu and Rigazio [10] consider the Gaussian noise
can help move the adversarial examples input outside the network blind-spots
and smooth the classification boundary, which can be explained that the addition
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of Gaussian noise destroys the structure of adversarial perturbation. Experimen-
tal results also show that GNI can defend adversarial examples to some extent.
However, this method only has good defensive performance against black-box
attacks, but has poor defensive performance against white-box attacks. At the
same time, since adding the tiny perturbation, the model will have a impact on
the performance on the clean samples.

RBF Networks. RBF networks [15,16] are neural networks with one hidden
layer of RBF units and a linear output layer. An RBF unit means a neuron with
multiple real input X = (X1, · · ·,Xn) and a output y. The output y is computed
as:

y = ϕ
(
γ ‖X − C‖2

)
(3)

where ϕ: R→R is suitable activation function, C is the center for neurons. Typ-
ically Gaussian ϕ (Z) = exp

{−z2
}

and γ > 0 corresponds to the width of the
Gaussian. Thus the network computes the following function f :R → R:

f (X) =
h∑

i=1

ηiϕ (γi ‖ X − Ci ‖) , (4)

where ηi ∈ R is weight of the output of neuron, h is the number of neuron in
the hidden layer.

When RBF is combined with shallow CNN [9], the RBF unit can resist
perturbation effectively. However, applying RBF to a very deep CNN will lead
to a difficult convergence during training. The main reason is that the clustering
operations in RBF slow down the learning process.

3 Proposed Method

3.1 Network Design

In this section, we devise an defense model incorporating both data transforma-
tion and RBF to enhance the robustness of CNNs. The proposed network model
architecture is shown in Fig. 1.

In the proposed model, we first calculate the information entropy of the input
image. If the entropy is less than a certain threshold, feature squeezing [11] is
used to transform the image. Information entropy [17] measures the information
quantity contained in an image, and can be calculated as follows

H = −
∑

i

∑

j

Pi,j · log Pi,j . (5)

Gaussian noises are then added to the image to destroy the crafted adversar-
ial perturbation structure. Finally, we use the RBF layer to further mitigate
the problem of misclassification. Due to the nonlinearity characteristic of RBF,
adding an RBF layer after the softmax layer can correct the confidence caused



Adversarial Examples Defense via Combining Data Transformations 353

Fig. 1. Illustration of the proposed model. Blue dotted frame is the added RBF net-
work, while the red dotted frame is the supervision. (Color figure online)

by perturbation to some extent. Therefore, the distance between the sample and
the classification boundary can be further widened. Meanwhile, to enhance the
nonlinearity of the network classifier, we suggest stacking multiple RBF layers
after the softmax layer. In terms of the question that Gaussian noise injection
might reduce the classification accuracy on the clean image samples, we fur-
ther use deep supervision for the model. The intermediate supervision modules
adopt the similar configuration of the RBF network structure. Next, we discuss
the shallow and deep networks respectively.

For the shallow CNN, we consider adding one RBF network after the softmax
layer. In addition, the proposed model has no intermediate supervision since
the basic CNN network is shallow. More importantly, for the deep CNN, we
consider add some intermediate supervisions on CNN except adding Gaussian
noise and RBF networks. The supervision architectures are well-designed for
image classification task. The supervision select a feature map as the input,
and then use 1 × 1 convolution to compress features. After that, supervision
network flatten the feature map to a one-dimensional vector, and softmax is
used to map to a confidence vector. Finally the RBF are added to the end of
the supervision for classification. The interpretation of supervision structure and
position selection would be discussed in the Sect. 4.2.

3.2 Loss Function

For the shallow CNN, the loss function is based on cross-entropy. While more
noteworthy, for deep CNN, our experiments show that it is difficult for the net-
work to converge after the addition of RBF network to the deep network. We
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noticed that the deep RBF network converges slowly only because of introduc-
ing the RBF layer. In order to train the deep RBF model more effectively, we
combine the output of the basic network and the output of the RBF layer as
the weighted sum of the losses, which can effectively improve the convergence of
training process. So we propose a dual loss function for the deep network. The
loss function is defined as:

Lossoutput = ω · LossCE(fCNN (X) , Y ) + LossCE

(
Ŷ , Y

)
, (6)

Here, lossCE is the cross-entropy loss function, fCNN is the output of the basic
CNN and Ŷ is the final output of the model. The above loss enforces the con-
vergence rate and an inter-class separation using RBF in the output space. In
order to achieve a similar effect in the intermediate feature representations and
enhance the performance on clean samples, we include other auxiliary loss func-
tions Losssupervision along the depth of the deep networks, which act as compan-
ion objective function for the final loss. This is achieved by adding intermediate
supervisions after the defined network depth, which maps the features to a lower
dimension output, and is then used in the loss definition. And the number of
supervision can be determined according to the length of the network.

The structure of supervision is similar to the added part of the backbone
network. Therefore, the loss function of the supervision is the same as the loss
function Eq. (6). The loss function of the overall network is the sum of the final
network output loss and the supervised output loss, which can be expressed as
loss function Eq. (7).

Lossfinal = λ0 · Lossoutput +
m∑

i=1

λi · Losssupervisioni
, (7)

These functions avoid the difficult convergence problem and act as regularization
that encourage features belonging to the same class to come together and the
ones belonging to different classes to pushed apart.

4 Experiments

4.1 Experimental Setting

In this section, we report the results of several experiments on two public
datasets: MNIST [18] and CIFAR10 [19]. For the MNIST, we choose LeNet-
5 [18] as the baseline network. For the CIFAR10, we choose VGG16 [20] as the
baseline network.

Three untargeted attack methods, i.e., FGSM [8], BIM [12] and CW2 [13],
are selected to craft adversarial examples. The perturbation size ε of FGSM is
set to 0.3 on MNIST and set to 0.05 on CIFAR10. The two hyper-parameters
β and ε in BIM are set 0.1 and 0.3 on MNIST, and set to 0.01 and 0.03 on
CIFAR10. The information entropy H is set to 3.
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Six defense methods are chosen for comparison: (1) the RBF network
(CNN RBF) [9] where the number of the centers is set to 300; (2) a CNN
model using GNI with standard deviation 0.3 on MNIST and 0.05 on CIFAR10
(GNI CNN) [10]; (3) Adversarial training (AT) [8]: we train the LeNet-5 and
VGG16 models on clean and adversarial samples, which are generated by CW2;
(4) Feature Squeezing [11]; (5) Spatial smoothing [11]; (6) AuxBlocks [21].

In our experiments, we also set four types of test sets to compare defense
ability against black-box attacks: Clean, TestSet I, TestSet II and TestSet III.
In the defense experiments of LeNet-5 and VGG16, we first set the clean test
set images of the MNIST and CIFAR10 datasets as Clean test set, respectively.
Next, we generate adversarial examples test set by attacking three models (CNN,
CNN RBF, GNI CNN), which are set as TestSet I, TestSet II and TestSet III.
For the shallow CNN experiments, the CNN model represents LeNet-5, while for
the deep CNN experiments, the CNN model represents VGG16. The four test
set samples from MNIST and CIFAR10 are shown in Fig. 2.

Fig. 2. Set of legitimate and adversarial samples from MNIST and CIFAR10 datasets:
For each dataset, legitimate samples, which are correctly classified by CNNs, are found
on the leftmost column. Adversarial samples, which are misclassified by CNNs, are on
the next three columns.

4.2 Ablation Study

In view of the loss and supervision mentioned in Sect. 3, instinctively, there are
three questions need to be discussed. In this section, we discuss the ablation
experiments on VGG16 network, and since VGG16 only has 16 layers, we con-
sider adding one supervision for proposed model.

Different Values of ω. In this section, we carried out a series of experiments
to analyze the ω in proposed Eq. (6), and obtained the accuracy of the model
with different ω values on clean and adversarial samples. The specific results are
shown in Fig. 3. From the figure, we can observe that the value of 0.2 performs
better than other values in comprehensive defense effect on clean and adversarial
examples (generated by FGSM, BIM and CW). Thereby, we propose that ω
should not be too large and we choose the ω = 0.2 for the following experiment.
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Fig. 3. Accuracy on different values of ω under three white-box attacks.

Different Position of Supervision. Considering that the adversarial exam-
ples misclassification is due to high-dimensional linear operation, we set up a
simple structure to expand the feature graph, and then classify it through the
full connection layer and RBF network. The next problem worth exploring is
where supervision will have better defense effect. The instinct is that supervi-
sion at low layer is difficult to obtain better classification accuracy since the
shallow convolution layers can only obtain less feature information. Therefore,
we investigate the impact of our proposed supervision on different position. We
conduct the defense experiments on clean and adversarial samples based on dif-
ferent supervision locations. For VGG16 network, we choose the shallow layer,
the middle layer and the deep layer three representative positions to add super-
vision, which are after the fourth convolutional layer, the seventh convolutional
layer and the eleventh convolutional layer. Then we set to supervision1, super-
vision2 and supervision3 respectively. The super parameter λ0 and λ1 in Eq.
(7) are set 1. The specific results are shown in Table 1. Considering the compre-
hensive defense performance both on legitimate and adversarial examples, the
result proposes that the supervision3 is the better. Therefore, we propose that
low layers are not a wise election for an supervision position and we choose the
supervision3 for the following experiment.

Table 1. Defense accuracy (%) on different supervision position for VGG16 against
white-box FGSM attack on CIFAR10.

Clean FGSM
Supervision1 79.96 56.34
Supervision2 80.29 66.47
Supervision3 81.57 63.46
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Different Centers of RBF. Considering enhancing the nonlinear of the net-
work classifier, we choose to set the one RBF as a superposition of multiple RBF
networks. We conduct experiments based on VGG16 with two RBF networks and
three RBF networks, and the results show that the network defense effect with
two-layer RBF is better. On the analysis of the model with adding two RBF
networks, we thought that the center number should not be selected too small,
because of the cluster operation and linear mapping is a kind of operation similar
to kernel function mapping from low dimension to high dimension. Meanwhile,
the number of centers should not be too large, because the CIFAR10 dataset
has only 10 categories. Therefore, we made the contrast experiments under the
various attacks, according to two RBF layers selection of different number of
centers. Observing these curves in Fig. 4, we can confirm that accuracy is better
for comprehensive defense, when the parameter C is set 30.

Fig. 4. Accuracy on different values of RBF center under three white-box attacks.

At the same time, we also provide more acceptable evaluation measures for
classification such as precision, recall and F1 score. The defense results is dis-
played in Table 2. Due to the characteristic of two public datasets that the
uniform distribution of category data, we still take the accuracy as the main
evaluation standard in the next experimental results.

Table 2. Comparisons of different evaluation measures(%) against FGSM white-box
attack on CIFAR10.

Accuracy Precision Recall F1
CNN 21.58 21.18 20.47 20.82

CNN_RBF 55.38 58.67 56.4 57.51
GNI_CNN 19.48 18.77 17.93 18.34
Proposed 64.19 65.68 63.73 64.69
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4.3 Defense Results

In order to demonstrate the advantages of the proposed model with GNI and
RBF clearly, we carried out experiments on MNIST and CIFAR10 datasets. We
compare the defense ability for our proposed model and other defense strategies
against white-box and black-box attacks. For MNIST, since LeNet-5 is only has
5 layers, we consider adding only one RBF network without supervision. While
for CIFAR10, we choose use one supervision on VGG16.

Defense Against White-Box Attacks. In this section, we compare the
defense ability for our proposed model and other defense strategies against three
white-box attacks in Table 3.

Observing the data in Table 3, for MNIST, the proposed model has 91.00%
classification accuracy against FGSM white-box attack, which is better than
other compared defense strategies, and the classification accuracy against BIM
is improved by at least 5%. In the defense against CW attack, the proposed
model also has a better performance compared with other defense strategies.

For CIFAR10, we can deem that the proposed model has the optimal clas-
sification accuracy against FGSM, increasing 10%-40% compared other defense
strategies. And for defense against CW attack, the proposed model also has the
better classification accuracy except Spatial Smoothing and AuxBlocks, increas-
ing 10%-40% compared other defense strategies. However, for the defense against
BIM attack, accuracy of our proposed model is not obvious, which is needed to
study further. Therefore, the incorporated strategies can promote each other and
improve the defense ability against white-box attacks.

Defense Against Black-Box Attacks. Observing the data in Table 4, for
MNIST, the proposed model is better than other defense strategies against
FGSM and BIM attacks, increasing about 20%-40% compared to adversarial
training. Noteworthy, the best defense strategy is adversarial training in defense
against CW attack, which is because the part of training dataset are adver-
sarial examples generated by CW attack. However, the proposed model also
achieve similar effects to adversarial training. Moreover, the experiments results
show that the defense ability of proposed model is better than GNI CNN and
CNN RBF defense strategies against black-box attacks.

In terms of the defense performance against CW attack on MNIST dataset,
we consider that the proposed strategy achieve similar effects to adversarial
training, while this is not obvious from the results. Therefore, significant exper-
iments were conducted. We imposed paired t-tests to compare defense perfor-
mance of the two defense strategies. Specifically, we calculated the performance
difference according to the three test sets, and then test the hypothesis that the
performance of two defense strategies is similar according to the difference. We
calculate the mean μ and variance σ2 of the difference are 2.15 and 6.10, respec-
tively. When the significance α is 0.95, the variable τt is less than the critical
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Table 3. Comparisons of accuracy(%) against three white-box attacks on MNIST and
CIFAR10.

CNN 99.04 8.12 0.74 5.99 81.15 21.58 14.21 0.38
CNN_RBF 98.88 16.25 2.59 98.80 81.14 55.38 15.98 17.91
GNI_CNN 99.07 24.06 0.96 11.42 78.45 19.48 16.74 6.23

AT 99.06 23.74 1.03 10.97 83.62 20.78 16.94 0.88
Feature Squeezing 98.57 83.09 85.15 84.04 81.15 20.99 23.89 20.75
Spatial Smoothing 98.76 12.80 0.75 86.98 81.15 19.72 14.00 65.60

AuxBlocks 98.40 68.65 5.51 62.90 82.34 27.00 14.34 66.80
Proposed 98.72 91.00 89.86 98.70 81.57 64.19 15.27 41.44

CW

MNIST CIFAR10

Clean FGSM BIM CW Clean FGSM BIM

value tα
2 ,k−1, and the hypothesis cannot be rejected. The variable τt is computed

as τt =|
√

kμ
σ |, where k is the number of test sets.

Next, we compare the defense ability for our proposed model and other
defense strategies against black-box attacks on three type of test sets in Table 4.
For CIFAR10, we can deem that the proposed model has the better classifica-
tion accuracy against FGSM, which is significantly improved 5%–20% compared
with other defense strategies. For defense against BIM attack, the proposed has
obtained the optimal result on different adversarial examples. Like the MNIST
experiments, since we used the adversarial examples generated by CW attack
to train the VGG16 model, adversarial training has better performance in iden-

Table 4. Comparisons of accuracy (%) against three black-box attacks on MNIST and
CIFAR10.

TestSet CNN CNN_RBF GNI_CNN AT AuxBlocks Proposed
I – 39.87 68.63 56.92 52.69 95.15
II 60.65 – 85.39 69.16 40.97 96.66
III 47.66 45.32 – 48.35 47.46 93.65
I – 30.74 66.68 46.50 53.92 95.61
II 59.96 – 86.71 72.91 47.45 97.22
III 30.34 32.25 – 36.28 41.45 93.84
I – 94.70 96.92 98.56 76.63 97.41
II 99.04 – 99.09 99.07 79.29 98.72
III 87.96 86.93 – 95.47 70.88 90.50
I – 30.02 47.66 34.90 30.68 51.53
II 55.54 – 70.44 35.50 50.26 70.26
III 37.23 35.65 – 39.35 37.71 45.23
I – 23.71 52.73 49.76 33.14 66.46
II 27.58 – 54.36 52.52 30.50 66.45
III 28.75 26.72 – 53.27 38.45 55.27
I – 75.95 76.65 83.22 79.18 79.01
II 76.24 – 76.82 83.07 78.37 78.92
III 75.01 75.31 – 82.43 77.93 76.19

MNIST

FGSM

BIM

CW

CIFAR10

FGSM

BIM

CW
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tifying the adversarial examples. In addition, under the CW black-box attack,
the proposed model achieves the optimal defense accuracy except the adversarial
training model. Meanwhile, due to the high accuracy of CNN RBF against CW
black-box attack, the improvement of the proposed defense strategies is only
about 3%. Further research is needed to improve the defense ability against CW
attack.

5 Conclusion

In this paper, we propose a scalable defense strategy, which selects whether to
use feature squeezing according to the information entropy of the input image,
and then incorporate data transformations and RBF together to simultane-
ously enhance the robustness of CNNs against white-box attacks and black-box
attacks. However, applying RBF to a very deep CNN will lead to the vanishing
gradient problem during training, while data transformation might reduce clas-
sification accuracy due to introducing noises or squeezing the feature space. To
solve these issues, we further proposed a deep supervision strategy and a novel
dual loss function. Experiments on two public available datasets demonstrate
that applying the proposed methods to the existing CNN models greatly improve
their defense ability against adversarial attacks while keeping their recognition
performance on legitimate dataset.
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Abstract. Knowledge Tracing (KT) aims to analyze a student’s acqui-
sition of skills over time by examining the student’s performance on ques-
tions of those skills. In recent years, a recurrent neural network model
called deep knowledge tracing (DKT) has been proposed to handle the
knowledge tracing task and literature has shown that DKT generally
outperforms traditional methods. However, DKT and its variants often
lead to oscillation results on a skill’s state may due to it ignoring the
skill’s difficulty or the question’s difficulty. As a result, even when a
student performs well on a skill, the prediction of that skill’s mastery
level decreases instead, and vice versa. This is undesirable and unreason-
able because student’s performance is expected to transit gradually over
time. In this paper, we propose to learn the knowledge tracing model in
a “simple-to-difficult” process, leading to a method of Self-paced Deep
Knowledge Tracing (SPDKT). SPDKT learns the difficulty of per ques-
tion from the student’s responses to optimize the question’s order and
smooth the learning process. With mitigating the cause of oscillations,
SPDKT has the capability of robustness to the puzzling questions. The
experiments on real-world datasets show SPDKT achieves state-of-the-
art performance on question response prediction and reaches interesting
interpretations in education.

Keywords: Knowledge tracing · Self-paced learning · Deep learning ·
Personalized education

1 Introduction

Knowledge tracing (KT) is one of the key research areas for empowering person-
alized education and a fundamental part of intelligent tutoring systems [1,14]. It
is a task to model students’ mastery level of the knowledge components (KCs)
based on their historical learning trajectories, where KC is a generic term for
skill, concept, exercise, etc. With the estimated students’ knowledge state, teach-
ers or tutors can gain a better understanding of the attainment levels of their
students and can tailor the learning materials accordingly. Moreover, students
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may also take advantage of the learning analytics tools to come up with bet-
ter learning plans to deal with their weaknesses and maximize their learning
efficacy [2,3]. Many approaches have been developed to solve the KT problem,
such as using the hidden Markov model (HMM) in Bayesian knowledge trac-
ing (BKT) which applies hidden Markov models to learn each student’s guess,
slip, and learn probabilities for each skill [4]. The disadvantage of BKT model
is that it assumes the binary level of student mastery of skills and independence
of student interaction with question which is not consistent with the learning
process. Meanwhile, the large amount of data produced by a growing number
of online education platforms and recent advances of machine learning technol-
ogy provide us with unprecedented opportunities to build advanced models for
accurate knowledge tracing [5]. Deep Knowledge Tracing (DKT), a deep neural
networks model, has shown its superior performance in comparison with tra-
ditional knowledge tracing models [6]. More subsequent variants of the DKT
models [10,11,13] aimed at improving the accuracy of the prediction but failed to
explain for why students would answer this question correctly. However, DKT
and its successor algorithms produced unstable performance, with oscillating
predictions that sometimes went down after producing a correct answer. When
a student performs well in a learning task related to a skill si, the model’s pre-
dicted performance for the skill si may drop instead, which leads to a low predic-
tion accuracy. As depicted in Fig. 1, there are sudden surges and plunges in the
predicted performance of some skills across time-steps. For example, the proba-
bilities of correctly answering skill 2, skill 7 fluctuate when the student answers
skill 9 in the middle of the learning sequence. This is intuitively undesirable and
unreasonable as students’ knowledge state is expected to transit gradually over
time, but not to alternate between mastered and not-yet-mastered [7,8]. Chun-
Kit Yeung et.al address this problem by introducing regularization terms that
correspond to reconstruction and waviness to the loss function of the original
DKT model [9]. However, these regularization terms are complex and hard to
explain the meaning. In this paper, we introduce more simple term and also can
make learning process more smooth. To this end, in this paper, we propose a
deep model named Self-paced Deep Knowledge Tracing (SPDKT), which intro-
duce self-paced regularization term to the loss function of the DKT model. The
proposed method is based on the intuition that learning process of a student
generally starts with learning easier questions and then gradually takes more
complex questions into consideration. Difficulty of questions differs from student
to student. SPDKT visualizes the difficulty of the question for students and
explains why the student answered the wrong question. To our best knowledge,
question’s difficulty ranking is not given in advance, which makes it very chal-
lenging to measure them. Specifically, SPDKT reflects the easiness or difficulty
of the questions by assigning different weights to questions. The experiments
have been conducted on four public datasets to evaluate the performance of
SPDKT, which shows that SPDKT could get better performance through mod-
eling difficulty of questions in student learning process. Our major contributions
are: 1) First, we consider the difficulty feature of questions to model the learning
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skill 2

skill 9

skill 7

QuestionID

Question Attempted:           correct             wrong

Fig. 1. A student from the Math dataset is used to plot the heatmap illustrating the
oscillation problem in DKT. The label in the vertical dimension corresponds to the
skill tag. The label in the horizontal dimension refers to the input fed into the DKT
at each time-step. The color of heatmap indicates the predicted probability that the
student will answer next question correctly, i.e., p(at+1 = 1|qt+1 = si). The darker the
color, the higher the probability.

process of the student, which lead to a smooth knowledge tracing of the student.
2) Second, we propose a simple-to-difficult process algorithm of ranking the dif-
ficulty of questions for students automatically, which we dub Self-paced Deep
Knowledge Tracing (SPDKT). 3) Third, SPDKT incorporates the difficulty reg-
ularization into the DKT framework for enhancing the learning robustness of
DKT. Theoretical studies show that SPDKT converges to a stationary solution
and is robust to the noisy and confusing data. Experimental results on public
datasets demonstrate the effectiveness and robustness of the proposed method.

2 Related Work

2.1 Deep Knowledge Tracing

Deep knowledge tracing (DKT) which was first introduced by Piech et al. [6]
consists in performing knowledge tracing (KT) by means of neural networks.
DKT model outperforms logistic models in predicting the results of future exams.
DKT uses a long short-term memory networks (LSTM), a variant of recurrent
neural networks, to model student performance learning and uses large numbers
of artificial neurons for representing latent knowledge state along with a temporal
dynamic structure. LSTM allows a model to learn the latent knowledge state
from data. It is defined by the following equations:

ht = tanh (Whxxt + Whhht−1 + bh)
yt = σ (Wyhht + by) (1)

In DKT, both tahn and the sigmoid function are applied element wise and
parameterized by an input weight matrix Whx, recurrent weight matrix Whh,
initial state h0, and readout weight matrix Wyh. Biases for latent and readout
units are represented by bh and by.

However, DKT models only predict the correctness of the next question for
a student. It does not consider any educational features into models, which
makes the interpretation of such models a strenuous task [15,16]. Therefore,
in this paper, we consider the interaction between students and questions and
automatically find the difficulty of questions from the student response sequence.
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2.2 Self-Paced Learning

Humans and animals often learn from the examples which are not randomly
presented but organized in a meaningful order which gradually includes from easy
items with fewer concepts to complex items with more concepts. Inspired by this
principle, Bengio et.al. proposed a learning paradigm called curriculum including
samples from easy to complex for training so as to increase the entropy of training
samples [17]. Then, Kumar et.al. proposed a practical model named Self-paced
Learning (SPL) which embeds curriculum design as a regularization term into
the learning objective [18]. Due to its generality, the SPL theory has been widely
applied to various task, such as object tracking [19], image classification [20,22],
and multimedia event detection [21].

Inspired by the idea of SPL, we use SPL to improve the robustness of DKT
model by reassigning the weights of questions. In addition, SPL learns these
question records from easy to difficult, which could provide the interpretation of
question difficulty in knowledge tracing.

3 The Proposed Model

3.1 Problem Definition

Generally, KT is formulated as a supervised sequence learning problem that is to,
given a student’s records X = {(s1, a1) , (s2, a2) , . . . , (st−1, at−1)}, predict the
probability of correct response to a new question, i.e., P (at = 1|st,X). With this
KT framework, the time series data consist of student skill interaction sequences,
given by Xi =

{(
si

t, a
i
t

)}T

t=1
where si

t is the skill index attempted by the ith
student at discrete time step t, while ai

t ∈ {0, 1} is the assessment of the student’s
response, with 0 indicating an incorrect response and 1 indicating a correct
response.

3.2 SPDKT Model

The goal of SPDKT is to discover the difficulty of questions and achieve a high
prediction accuracy. We now introduce our proposed method SPDKT.

In order to model the difficulty of the question, we introduce a set of latent
variables v to represent the difficulties of questions. The object function of our
proposed SPDKT model is formulated as

min
w,v

E(w, v) =
n∑

i=1

vi�
t
i(w) + λtf(v; t) (2)

where �t
i = �

(
yT δ (st+1) , at+1

)
is the loss for given prediction of student i in t-th

iteration. δ (st+1) is the one-hot encoding of which question is answered at time
t + 1, at+1 represents the ground truth of question’s response, y represents the
predicted response of the question, w is the knowledge learning model param-
eters and � be binary cross entropy. In formula (2), f (v; t) is a SP-regularizer
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and v = [v1, ..., vn]T is the latent weight variable induced from f (v; t), and λ is
the age parameter.

Objective (2) of SPDKT in each step is to minimize a weighted loss together
with a self-paced regularizer. Without introduce vector v, the loss function is
directly minimized and outliers whose losses are usually very large are easy to be
paid more attention to. SPDKT overcomes this problem by considering student
noise data and assigning different weights v to the losses of training samples.
Therefore, the self-paced function should satisfy the following conditions:

lim
�→0

v(�, λ) = 1, lim
�→∞

v(�, λ) = 0 (3)

lim
λ→0

v(�, λ) ≤ 1, lim
λ→∞

v(�, λ) = 0 (4)

These two conditions ensure that v will always be zero when the loss is very large,
which means that the corresponding sample is very likely to be outlier [29]. The
large loss of student response data indicates that the question is difficulty to the
student. Thus, SPDKT can eliminate the negative influence of outliers in training
data to a large extent and improve the robustness of DKT. Figure 2 presents
the schematic diagram to illustrate SPDKT model. We adopt a majorization
minimization (MM) algorithm to learn the difficulty and the knowledge based on
formula (2). MM algorithms have been widely used in machine learning and aim
to convert a complicated optimization problem into an easy one by alternatively
iterating the majorization step and the minimization step [24]. We denote wt as
the model parameters in the t-th iteration of the MM algorithm.

(1) Difficulty Learning
The particular useful property is that SPDKT estimates the difficulty of ques-
tions, which can recommends proper questions to students to improve the
quality of online education.
SPDKT learns the difficulty of the question by solving the following problem:

E = v∗
i

(
λ; �i

(
wt

))
= arg min

vi∈[0,1]
vi�i

(
wt

)
+ λtf (vi; t) (5)

The self-paced function in Eq. (5) is λtf(v; t) = λt
(
1
2v2 − v

)
which is the

smooth function of learning continuous question’s difficulty. The Eq. (5) is a
convex function of v in [0,1] and thus the global minimum can be obtained
at ∇vE(v) = 0. We have

∂E
∂vi

= �i + λt(v − 1) = 0 (6)

The closed-form optimal solution for vi (i = 1, 2, ..., n) can be written as:

vi =

{
1 − �t

i

λt �t
i < λt

0 �t
i ≥ λ

(7)
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 Skill Difficulty Ranking

Student Learning Analysis

Self-paced Deep Knowledge Tracing (SPDKT)

Training Application

Fig. 2. The overview of SPDKT model.

From the Eq. (7), vi is decreasing with respect to �i and we have that
lim�i→0 vi = 1, lim�→∞ vi = 0. It indicates that the SPDKT model favors easy
samples because the easy samples have lower loss values and larger weights.
Finally, each individual vi increases with respect to λt in the closed-form solu-
tion in Eq. (7). In an extreme case, when λt approaches positive infinity, we
have lim�i→0 v = 1. Similarly, when λt approaches 0, we have lim�→∞ v = 0.
When the model “age” gets larger, it tends to incorporate more samples into
training.
(2) Knowledge Learning
Knowledge learning aims to calculate w by

wt+1 = arg min
w

n∑

i=1

vi�i

(
wt

)
(8)

Then the cost function of SPDKT is

wspdkt = arg min
w

n∑

i=1

vi�
(
yT δ (qt+1) , at+1

)
(9)

We chose the deep-learning based model to train w of function �. For a single
pattern, the two error functions have the following relationship:

Δw = −α
∂Ei

SPDKT

∂w

= −vi · α · ∂Ei
DL

∂w

(10)
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Algorithm 1. Self-paced Deep Knowledge Tracing
Input: Student Response Data D, parameter λ, iteration T
Output: Model Parameter W

1: Initialize w∗

2: for t = 1 to T do
3: while not converged do
4: Fix wt, update v∗ by:

v∗
i =

{
1 − lti

λt lti < λt

0 lti ≥ λ

5: Fix vt, update w∗ by:

Δw = −α
∂Ei

SPDKT

∂w

= −vi · α · ∂Ei
DL

∂w
6: Compute vt+1

7: End while.
8: Set w = w∗

9: End for

where w is the weights in a certain layer of the network, and α is the learning
rate. ESPDKT and EDL are the error function of the proposed SPDKT model
and loss function without self-paced vector, respectively. It is observed that
SPDKT modifies the sample weights to be viα by introducing the latent
weight variable v. It could be the reason why SPDKT is more robust. When
the samples are easy, the learning rates are high values and the network can
update the parameters in a large step. The samples have small learning rates
when the samples are difficult. With the small learning rates, the network is
able to update the parameters slowly for converging to a better value. The
details of SPDKT are summarized in Algorithm 1.

3.3 Theoretical Analysis

In this section, we provide some theoretical analysis of SPDKT to clarify the
reason why SPDKT is capable of performing robustness and can converge to a
stationary solution. In [23], Hao Li et al. have proved that

E
(
wt,vt

) ≤ E
(
wt−1,vt−1

)
(11)

where wt and vt indicate the values of w and v in the t-th iteration.
Obviously, the objective values decrease in every iteration in SPDKT algo-

rithm. Therefore Algorithm 1 can converge to a stationary solution.
The solving strategy on SPL exactly accords with a MM algorithm imple-

mented on a latent objective and the loss function contained in this latent
objective has a similar configuration with a non-convex regularized penalty. In
SPDKT, we obtain the solution v∗ as follows:

v∗ (
λt; �

)
= arg min

v
v� + λtf(v, t) (12)
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Table 1. AUC scores for each algorithm on four datasets. We see that SPDKT obtains
the higher results in each dataset.

Data sets AUC

ASSISment2009 ASSIStent2015 Statics2011 Math

DKT 74.1 72.5 77.0 80.6

DKVMV-CA 73.6 72.6 72.4 73.2

qDKT 76.2 77.0 83.4 83.5

SPDKT 83.4 85.2 86.4 85.5

We get the integrative function of v∗ (λ; �) calculated by Eq. (12) as:

Fλt(�) =
∫ �

0

v∗ (
λt; �

)
dl + c (13)

where c is a constant.
Now we calculate the latent losses with the linear soft weighting function as

follows:

Fλt(�) =
{− 1

2λ� �2 + � + c � < λ
c � ≥ λt (14)

Note that when λt = ∞, the latent loss Fλt (�) will degenerate to the original loss
�. There is an evident suppressing effect of Fλt (�) on large losses as compared
with the original loss function �. When � is larger than a certain threshold, Fλt (�)
will become a constant thereafter, which rationally explains why SPLDKT shows
good robustness to the noises. The difficulty samples with very large margins will
have constant SPLDKT losses and thus have no effect on the model training due
to their zero gradients. Corresponding to the original SPL model, these samples
with large losses will be with 0 importance weights vi, and thus have no effects
on the optimization of model parameters.

4 Experiment

In this section, we evaluate SPDKT model on four public datasets. To convince
our method, we compare with the related methods, i.e., Deep Knowledge Tracing
(DKT), Concept-Aware Deep Knowledge Tracing (DKVM-CA), and Question-
centric Deep knowledge Tracing (qDKT). All experiment codes are implemented
by Python and could be available at https://github.com/ypzhaang.

4.1 Data Sets

To evaluate performance, we consider four datasets for our experiments: ASSIST-
ments2009, ASSISTments2015, Statics 2011, and a dataset from AICFE—an
online learning platform.

https://github.com/ypzhaang
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ASSISTments20091. This dataset was gathered in the year 2009–2010 from
the ASSISTments platform. ASSISTments is an online tutoring platform that
evaluates students with prebuild problem sets. The “skill-builder” data set is a
large, standard benchmark [25]. Due to duplicated record issues [26], an updated
version was released and all previous results on the old data set were conducted
using the updated data set. 4,151 students answered 325,637 exercises along with
110 distinct exercise tags.

ASSISTments20152. This dataset is from ASSISTments, but gathered in the
year of 2015. ASSISTments2015 only contains student responses on 100 skill
builders with the highest number of student responses. After preprocessing
(removing the value of correct /∈ {0, 1}), this data set remains 683,801 effec-
tive records from 19,840 students. Each problem set in this data set has only
one associated skill. Although this data set has the largest number of records,
the average records for each student is also the lowest.

Statics20113. Statics is from a college-level engineering statics course with
189297 trials, 333 students and 1223 exercises tags, available from the PSLC
DataShop web site [27,28].

Math4. This dataset is from AICFE collecting K-12 stage student test. The Math
test data consists of 1499 students, 33 skills and total response data are 54285.

4.2 Comparison Methods

Our idea is to find the difficulty level of questions from student response data.
The baseline methods are DKT, DKVM-CA, and qDKT. The brief introduction
of these four methods shows following:

1) DKT: This model is the base model of KT research. This comparison is to
convince that our model improves the DKT performance [6]. 2) DKVMN-CA:
This method is based on dynamic key-value memory network which embeds the
question difficulty information into DKVMN [12,30]. 3) qDKT: This method
uses the new NLP algorithm to improve DKT performance, which leverages the
semantic of question text [31].

4.3 Student Performance Prediction

We measure the Area Under the Curve (AUC) to evaluate the prediction accu-
racy on each dataset. An AUC of 50% represents the score achievable by random
guess. A higher AUC score accounts for a better prediction performance. We

1 https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/
skill-builder-data-2009-2010.

2 https://sites.google.com/site/assistmentsdata/home/2015-assistments-skill-
builder-data.

3 https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507.
4 http://www.bnu-ai.cn/data.

https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/2015-assistments-skill-builder-data
https://sites.google.com/site/assistmentsdata/home/2015-assistments-skill-builder-data
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507
http://www.bnu-ai.cn/data
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Fig. 3. The AUC results of DKT and SPDKT.

divide 80% of data as training data and the remain as testing set on all datasets.
Then we compute the AUC of each method. We compare the SPDKT model with
the DKT, DKVMN-CA and qDKT. Results of the test AUC on all data sets are
shown in Table 1. As shown in Table 1, SPDKT gets the better AUC result than
others. On ASSISment2009, SPDKT achieves average test AUC of 83.4% which
is better than 74.1% for DKT. On other datasets, SPDKT also performs bet-
ter than DKT. Compared with other methods adding question information, like
DKVMN-CA and qDKT, SPDKT gets better AUC than these methods.

Moreover, the DKT model suffers severe overfitting, while our SPDKT model
does not confront with such a problem. As indicated in Fig. 3, we test on Math
dataset which is a small dataset. There is no huge gap between the training AUC
and testing AUC of SPDKT and AUC increase steady then converging a stable
solution.

In summary, SPDKT performs better than other methods across all the
datasets, in particular on the Statics20011 dataset whose number of distinct
questions is large. This result demonstrates that our SPDKT can model student
learning process well when the number of questions is very large.

4.4 Analysis Knowledge State of Student

Our SPDKT model demonstrates a smooth prediction transition notably. In
difficulty learning step, SPDKT selects the questions with similar difficulty to
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QuestionID

Question Attempted:           correct             wrong

Fig. 4. An example of a student’s changing knowledge state on three skills. Skills are
marked in different colors on the left side.

Fig. 5. Visualization case of a student’s difficulty of skills.

train. This process avoids most of skill’s mastery level decreasing when a student
answers a question wrongly.

Figure 4 shows an example of depicting a student’s three changing skills. The
first column represents the initial state of each skill before the student answers
any question. From the Fig. 4, student’s skill mastery level transforms smoothly.
For example, when student answers the first question correctly, the knowledge
state of the skill 2 increase and the last four questions incorrectly, the knowledge
state of the skill 2 decrease; when student answers the sixth question incorrectly,
the knowledge state of the skill 9 decrease. After answering thirty-six questions,
the student is shown to fail to understand the skill 2.

4.5 Analysis Difficult of Skills

Our SPDKT model has the power to discover the difficulty of skills using the
paced weight v. This section provides the results of analyzing difficulty of skills
on Math dataset. According to the weight v, we visualize a student’s skills diffi-
culty rank. Figure 5 gives the knowledge skills that different questions are corre-
sponding to. As indicated in Fig. 5, SPDKT analyses the difficulty of each ques-
tion of student s1 and then computes mean value of the difficulty of skills. From
Fig. 5, we obtain some useful suggestions for student s1, for instance, practising
“Linear Equations in One Variable” first. The exercises involved in “Geometry”
and “Rational Number” skills can recommend later.

According to all students analysis, we obtained the difficulty level of 33 skills
as shown in Fig. 6. From Fig. 6, The red box could arrive at several useful con-
clusions. “Linear Equations in One Variable” is easier than “Quadratic Equation
in One Variable”, and “Linear Function” is easier than “Quadratic Function”.
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6  rational number
9  real number
1  line segment
7  integral expressions
2  geometry
4  intersecting lines
3  sampling and data analysis
5  Angle

26  Axial Symmetry
30  Solving Right Triangle

18  Pythagorean theorem
10  Rectangular Coordinate System
11  Parallel Lines

20  Congruent Triangles
21  Straightedge and Compass    
      Construction
22   Right Triangle
23   Isosceles Triangle

27   Parallelogram

14   Factorization
15   Multiplication of Integral 
       Expression
16   Triangle

19   Fraction 
33   Circle
32   Similar Triangles  
31   Relation among Variables

Simple

Difficult

6

9

1

7

...

...

12

20

...

...

33

32

31

8  Linear Equations in One Variable

29  Application of Quadratic  
      Equation in One Variable

13  Quadratic Radical Equation

12  System of Linear Inequalities in 
      One Variable

25   Linear Function

24   Quadratic Function

28   Inverse Proportionality Function

17   Quadratic Radical Equation

Fig. 6. Visualization of 33 skills difficulty in Math dataset. The skill difficulty is ranked
along the direction of the arrow.

5 Discussion and Conclusion

In this paper, we propose a new learning-based method of student model-
ing, called Self-paced Deep Knowledge Tracing (SPDKT) in education. Recent
researches mostly attempt to define the difficulty to the DKT model, such as
leveraging NLP models to mine the question text and then using item response
theory (IRT) models to estimate the question’s difficulty. However, IRT model
has strong condition assumption. SPDKT incorporates the difficulty feature
of questions and then makes the learning process smooth by adding the SP-
regularizer. Therefore, three particularly interesting novel properties of our new
model are that (1) it does not need prior expert annotations (it can learn dif-
ficulty of skills in its own) by incorporating SP-regularization into DKT model
and (2) it makes the learning process more smooth and it could discover each
student’s different levels of these skills to achieve personalized education. (3)
it improves the robustness of DKT with assigning different weights of samples.
Experiment results show SPDKT achieves sate-of-the-art performance on sev-
eral datasets. In future works, more student learning features could be considered
to improve the prediction accuracy and novel methods might be developed to
improve the interpretability of DKT models.
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Abstract. Taking into account the problem of the redundant struc-
ture and excessive parameters in the current crowd counting network,
we propose an end-to-end encoder-decoder architecture called Accurate
and Real-time Network (ARNet) for high-accuracy and real-time crowd
counting. The encoder adopts lightweight SqueezeNet as the backbone
network to extract multi-level features, the decoder can integrate con-
textual information to enhance the semantic representation capabili-
ties of low-level features. In addition, we design the Parameter-Sharing
Context-Aware Module (PSCAM) and the Mask Density Generator
(MDG). Without adding excessive parameters, the PSCAM can cap-
ture the global context by applying multiple dilated convolutional layers
with the same convolution parameters and different dilation rates. The
MDG based on multi-task learning can generate accurate density maps
by introducing semantic segmentation to suppress background interfer-
ence. Extensive experiments on four benchmark crowd datasets, which
indicate our ARNet can achieve the optimal trade-off between counting
accuracy and computation efficiency.

Keywords: Crowd counting · Counting accuracy · Computation
efficiency

1 Introduction

The crowd counting task, which aims to obtain the global counts from the image,
plays an important role in crowd monitoring, public safety, emergency evacuation
and other fields. With the rapid development of deep learning and convolutional
neural networks (CNN), networks based on density regression have gradually
replaced traditional methods based on handcrafted features in the field of crowd
counting, and have attracted widespread attention from researchers. The value
of each pixel in the density map reflects the density of the corresponding area
in the image, and estimated people count can be obtained by accumulating the
values of all pixels.

Early networks [1,2] apply the basic CNN layers to construct counting net-
works, but their simple structure design resulted in poor counting performance.
Some networks with deeper structures are proposed in order to adapt to the
c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13032, pp. 376–389, 2021.
https://doi.org/10.1007/978-3-030-89363-7_29
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complexity of the scene. CSRNet [3] utilizes dilated convolution layers to expand
the receptive field while maintaining the resolution as a backend network. CAN
[4] adaptively encode the scale of the contextual information required to accu-
rately predict crowd density, which can compensate for perspective distortion.
Although the counting performance is improved, the redundant structure and
parameters limit their application in the real world.

In order to ensure qualifications of accuracy and speed in counting tasks, as
well as the application conditions that can be deployed in mobile or embed-
ded systems. In our work, we propose a lightweight structure for real-time
crowd counting, named ARNet. ARNet based on an encoder-decoder frame-
work can generate high-resolution density estimation maps. The encoder adopts
lightweight SqueezeNet [5] as the backbone for extracting multi-level features;
the decoder can strengthen the semantic representation capabilities of low-level
features. In addition, the Parameter-Sharing Context-Aware Module (PSCAM)
is designed for capturing global contexts without adding excessive parameters,
the Mask Density Generator (MDG) is proposed to suppress the background
interference problem in the process of regressing the density maps. Due to the
reasonable network structure, ARNet can achieve the requirements of accuracy
and real-time simultaneously.

In summary, the key contributions of this work are as follows:

1. We propose a novel lightweight encoder-decoder architecture named ARNet,
which can achieve the optimal trade-off between counting accuracy and com-
putation efficiency.

2. We establish PSCAM and MDG to alleviate the problem of context omission
and background interference in the lightweight counting network.

3. Various experiments are conducted on four challenging datasets, the results
show that ARNet can achieve the best trade-off between counting accuracy
and efficiency compared to recent technologies.

The rest of this paper is organized as follows. Firstly, we briefly review the
related work in Sect. 2. Secondly, we introduce various modules and loss functions
in the ARNet in Sect. 3. Afterward, we discuss the specific implementation details
of the experiments in Sect. 4. Then, the performance comparison between our
approach and the state-of-the-art method is presented in Sect. 5, we also verify
the effectiveness of various modules in this section. Finally, we conclude the
paper in Sect. 6.

2 Related Work

2.1 Crowd Counting and Density Estimation

Early counting methods are usually detection-based [6,7], which apply sliding
window detectors to identify pedestrians and count the number. Some object
detectors [8,9] based on deep learning can achieve excellent detection accuracy
in sparse scenes. However, their counting performance is limited by the scene,
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and it is difficult to apply in the situation of dense crowds. The regression-
based method [10,11] has been proposed to directly learn the mapping from
an image patch to count, which can alleviate the above problems. Firstly, they
usually extract features including texture and gradient; then some regression
techniques such as linear regression and Gaussian mixture regression are used
to learn the mapping function of crowd counting. However, the regression-based
method cannot perceive the spatial distribution of the population, and it was
gradually replaced by the CNN-based density estimation approaches.

The CNN-based density estimation approaches can be divided into multi-
column methods and single-column methods according to the network archi-
tecture. The multi-column method [1,2] can capture multi-scale information by
applying sub-column networks with different receiving fields, which can effec-
tively deal with the problem of the scale variation. However, its further develop-
ment has been restricted due to problems such as training difficulty and param-
eter redundancy. Different from the structure of the multi-column method, the
single-column method [3,4] usually adopts a single and deeper CNN. Due to
their architectural simplicity and training efficiency, the single-column network
architecture has received more and more attention in recent years.

2.2 Lightweight Networks

It is a research hotspot that how can achieve the optimal balance between accu-
racy and performance by tuning neural model architectures in the field of deep
learning. The SqueezeNet [5] composed of several fire modules achieve AlexNet-
level [12] accuracy based on the bottleneck approach. Depthwise separable con-
volution was proposed in MobileNetv1 [13], which uses between 8 to 9 times
less computation than standard convolutions at only a small reduction in accu-
racy. ShuffleNet [14] can achieve higher efficiency than MobileNetV1 by applying
group convolution and channel shuffle. MobileNetV2 [15] based on the inverted
residual structure with liner bottleneck can reach high performance effective
and efficient. In addition, the network compression approaches and the Neural
architecture search (NAS) are also applied to the design of lightweight networks.

3 Proposed Method

As shown in Fig. 1, the fundamental idea of our approach is to deploy an end-to-
end CNN-based model to generate density estimation maps, which can achieve
the optimal trade-off between counting accuracy and computation efficiency. The
network architecture of ARNet will be discussed in Sect. 3.1; the loss function of
the ARNet will be analyzed in Sect. 3.2.

3.1 Network Architecture

The proposed ARNet consists of four components: Encoder, Parameter-Sharing
Context-Aware Module (PSCAM), Decoder and Mask Density Generator
(MDG).
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Fig. 1. The architecture of our propose network. C2–C4 represents the feature maps
generated by the encoder, P2–P4 represents the feature maps processed by the decoder,
D2–D4 represents the density estimation maps.

Encoder. As we mentioned earlier, the counting model requires a sufficiently
deep structure to cope with the complexity of the scene. Although VGG [16]
can be applied as the backbone to extract in-depth feature information, its huge
parameters amount consume more terminal memory and computing resources
in the mobile systems, making it difficult to achieve the real-time requirements
of counting. Therefore, we apply the lightweight pre-trained SqueezeNet as the
encoder to extract multi-level features. On the one hand, the Fire module in
SqueezeNet is composed of a squeezed convolutional layer and an expanded
convolutional layer, which can significantly reduce parameters and calculations.
On the other hand, the SqueezeNet pre-trained on the ImageNet can overcome
overfitting caused by images insufficiency of crowd datasets.

Parameter-Sharing Context-Aware Module. Moreover, we add an addi-
tional Parameter-Sharing Context-Aware Module (PSCAM) at the end of
encoder to capture global contextual features. As shown in Fig. 2, the feature
map is first divided into four sub-feature maps with the same channel dimension,
and then fed into the dilated convolutional layer with different expansion rates to
obtain contextual information in multiple receptive fields, the four sub-feature
maps are concatenated in the final stage. It is worth noting that the dilated
convolutional layer we designed achieves the parameter sharing of the filters,
only slightly different in the expansion rate. This design of parameter-sharing
not only avoids an obvious increase in the parameters amount, but also prevents
network overfitting. We select the features C2, C3 generated by Fire4 and Fire8
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of the SqueezeNet, and the contextual features C4 generated by PSCAM as the
input of our subsequent decoder.

Input Feature

Conv-
(C/4,C/4,3×3,1)

Conv-
(C/4,C/4,3×3,3)

Conv-
(C/4,C/4,3×3,5)

Conv-
(C/4,C/4,3×3,7)

Concat

Output Feature

Split

Parameter-Sharing

Fig. 2. The architecture of Parameter-Sharing Context-Aware Module (PSCAM), the
convolutional layer’s parameters are denoted as “Conv-(number of filters, number of
input channels, kernel size, dilation rate)”.

Decoder. The crowd density estimation map generated by the crowd counting
network in real-world applications needs to contain two measures: high count-
ing accuracy and detailed spatial distribution. However, each sub-features of the
encoder can not meet those measures simultaneously due to the imbalance of spa-
tial and semantic information in feature maps of different levels. The low-level
features have rich spatial information yet lack semantic information due to their
small receptive fields, and vice versa. So we introduce the Feature Pyramid Net-
work [17] structure to the decoder for developing a top-down architecture with
lateral connections for building high-level semantic feature maps of all scales.
Formally, the feature map generated by the decoder can be described as:

Pi =
{

Ci, i = 4
f(Ci + up(Pi+1)), i = 2, 3 (1)

where up() denotes up-sampling by a factor of 2× via bilinear interpolation. f
represents the convolution operation on each merged map used to generate the
final feature map for reducing the aliasing effect of upsampling.

Mask Density Generator. The task-related prediction network composed of
several convolutional layers was often adopted by the previous counting network
for regressing density maps. This simple density generator is susceptible to back-
ground interference factors, which results in more faint bright pixels appearing in
the background regions. To deal with this problem, we design the Mask Density
Generator (MDG) [18] as the back-end prediction network. It can be seen from
Fig. 3 that MDG consists of two sub-prediction modules named the Semantic-
Aware module (SAM) and the Density-Aware Module (DAM). The SAM can
achieve full-pixel foreground-background semantic segmentation from the crowd
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image, and provide relevant attention masks to DAM. The DAM is exploited to
generate rough density maps, which are multiplied by attention masks from SAM
to obtain individual foreground or background density maps. The density maps
of foreground and background are summed pixel-wise to give the final density
map. Based on the concept of weight-sharing, we perform density map predic-
tion on all levels of features by adopting a single MDG, which not only forces
the middle layer of the network to learn task-related features, but also enhances
the robustness of the network. After MDG processing, a series of density maps
with different resolutions D2–D4 are obtained.

Feature

ReLU
ReLU

ReLU
So

m
ax

DAM

 Conv-(64,128,3)

 Conv- (2,64,3)

 Conv-(128,128,3)

 Conv- (64,128,1)

 Conv- (2,64,3)

SAM

Mask

Density map

Fig. 3. The architecture of the Mask Density Generator (MDG), the convolutional
layer’s parameters are denoted as “Conv-(number of filters, number of input channels,
kernel size)”

3.2 Loss Functions

The network we designed can generate foreground-background masks and den-
sity estimation maps at each level layers, so that multiple losses can be applied to
each intermediate output under distributed supervision. The propagation flow
originating from each distributed supervision will aggregates into the overall
gradient flow during the backpropagation process, so that the gradient disap-
pearance can be avoided.

The loss function distributed at each layer is a combination of classification
loss and regression loss. As shown in Fig. 3, the loss of the density map gen-
erated by the MDG is calculated by applying the Euclidean distance between
the estimated map and the ground-truth density map, the classification loss of
the mask generated by the SAM is calculated by applying the cross-entropy
between the predicted foreground-background mask and the ground-truth label.
Let M i (Xj ;Θ) and Ci

sm (Xj ;Θ) denote the estimated density map and pre-
dicted foreground-background mask generated by the i-th layer of ARNet with
the parameter Θ, respectively, Xj represents the input image. The classification
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loss function Li
ce and the density map estimation loss function Li

mse of i-th layer
are defined as follows:

Li
mse(Θ) =

1
N

N∑
j=1

∥∥M i (Xj ;Θ) − M i
j

∥∥2

2
(2)

Li
ce(Θ) = − 1

N

N∑
j=1

yi
j log

(
Ci

sm (Xj ;Θ)
)

(3)

L =
∑

i∈{2,3,4}

(Li
mse(Θ) + γ × Li

ce(Θ)
)

(4)

where N is the number of training samples, yi
j and M i

j represent the ground-truth
label in the one-hot form and the ground-truth density map for image Xj after
average pooling, which is conducted over a 2i × 2i pixel window, respectively.
γ is a ratio factor that aims to balance the two tasks, γ is set to 1 after cross-
validation. Equation (4) is used as the overall loss function in the training phase.

4 Implementation Details

4.1 Ground Truth Generation

The ground truth density map is generated by blurring each head annotation
with a normalized 2D Gaussian kernel. Supposing there is a head annotation
at pixel xi in a labeled crowd image, it can be formalized as a unit impulse
function δ(x−xi). Hence, the ground truth density map F (x) can be calculated
as follows:

F (x) =
N∑

i=1

δ(x − xi) ∗ Gσ(x) (5)

where, N is the number of people and x denotes two dimensional coordinates of
a pixel at the head location. The sum of all pixel values gives the crowd count
of the input image. In our experiments, we use a fixed spread Gaussian kernel
with σ = 15 to generate density maps.

In particular, the ground truth segmentation map of the SAM is generated
based on the threshold applied to the corresponding ground truth density map
due to the lack of precise labels. It is sufficient for the rough pixel classification of
backgrounds and crowds, since we focus on density map estimation and mainly
employ classification for auxiliary learning. The ground-truth label map can be
generated by the following formula:

yi(x) =
{

0, api[F (x)] = 0
1, api[F (x)] �= 0 (6)

where, yi(x) denotes the value of position x in ground truth label at i-th layer;
api is the average pooling, which is conducted over a 2i × 2i pixel window. The
digital label 0 and 1 represent the background and foreground, respectively.
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4.2 Data Augmentation

Firstly, We augment the training data by cropping nine image patches at random
locations in one image, each image patch is one-fourth of the size of the original
image. Then, we crop fixed-size image patches of 256 × 256 pixels at random
locations in each image patch. Finally, we apply the following data augmenta-
tion methods to the image: (1) Horizontal flip; (2) Gamma transformation; (3)
Grayscale processing; (4) Switch RGB channels; (5) Add Gaussian noise. This
data augmentation strategy is extremely important for the counting networks,
especially for networks trained on small-scale datasets.

4.3 Training Process and Inference Process

The backbone network is initialized from a pre-trained SqueezeNet and the rest
convolutional layers are initialized by a Gaussian distribution with the mean of
0 and the standard deviation of 0.01. The Adam algorithm is used to optimize
the model and the network is trained with the batch size of 16. We multiply the
density map by a magnification factor of 100 according to Gao’s proposal [19].
The neural network could get faster convergence and achieve lower estimation
error, this can also balance the classification loss and the density map estimation
loss. The implementation of our method is based on the PyTorch framework.

Since the network we designed is a fully convolutional network, images of any
size can be input in the inference stage. It’s worth noting that we can reduce
Flops by 8.9% in the inference stage by turning off the prediction of density map
on feature maps P2 and P3, because it only provides gradient flow in the training
stage.

4.4 Counting Performance Evaluation Metrics

Following some previous works [20], we mainly adopt three metrics to evalu-
ate the counting performance, which are Mean Absolute Error (MAE), Mean
Squared Error (MSE) and mean Normalized Absolute Error (NAE). They can
be formulated as follows:

MAE =
1
N

N∑
i=1

|ci − ĉi| (7)

MSE =

√√√√ 1
N

N∑
i=1

|ci − ĉi|2 (8)

NAE =
1
N

N∑
i=1

|ci − ĉi|
ci

(9)

where N is the number of images in the test set. ĉi is the estimated count and ci

is the corresponding actual count. Moreover, MAE is an indicator for evaluating
the accuracy of predicted crowd counts and MSE demonstrates the robustness
of the estimated counts.
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5 Experiments

5.1 Datasets

It is prone to overfit the data due to the smaller scales of ShanghaiTech [1]
and UCF-QNRF datasets [11], so we conduct experiments on the two large-scale
datasets: JHU-CROWD++ [21] and NWPU-Crowd [20]. Compared with the
above small-scale datasets, they have more complex environmental scene trans-
formations, which can be more effective in holistically evaluating the accuracy
and robustness of crowd counting networks.

ShanghaiTech. The ShanghaiTech dataset is divided into two parts: Part A
(SHT A) and Part B (SHT B). SHT A contains 482 images randomly crawled
from the Internet. The training set has 300 images and the testing set has 182
images. SHT B contains 716 images taken from the busy streets of the metropoli-
tan areas in Shanghai. The training set has 400 images, and the testing set has
316 images. The density of SHT A is higher than SHT B, and the density varies
significantly.

UCF-QNRF. The UCF-QNRF contains 1.25 million humans marked with dot
annotations and consists of 1,535 crowd images with wider a variety of scenes
containing the most diverse set of viewpoints, densities and lighting variations.
We use 1,201 images for training and 334 images for testing.

JHU-CROWD++. A new large-scale unconstrained dataset named JHU-
CROWD++ introduced by Sindagi et al. with a total of 4,372 images (containing
1,515,005 head annotations). The dataset is split into train, val and test sets,
which contain 2722, 500 and 1600 images respectively.

NWPU-Crowd. NWPU-Crowd is the most challenging crowd counting
datasets at present, which requires our network to have extremely high perfor-
mance. It consists of 5,109 images and a total of 2,133,375 annotated heads with
dots and frames. For fair evaluation, an online evaluation benchmark website
was developed to allow researchers to submit their estimation results.

Figure 4 shows the samples of crowd datasets and their corresponding density
maps estimated by our ARNet together with ground truth maps. It can be seen
that ARNet shows strong robustness to deal with the variation of crowd density
levels, but the counting accuracy of the high-density level is still inferior to that
of the low-density level.

5.2 Results and Analysis

In this section, we conduct three comparative experiments (counting perfor-
mance, calculation efficiency, and component composition) to verify the effec-
tiveness of the model.

Comparison of Counting Performance: In this section, we evaluate our app-
roach against currently reported methods on four benchmark datasets. Table 1
indicates that ARNet can achieve the lowest counting error in small-scale
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GT:1615
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Fig. 4. Results of the proposed model on datesset. The first column: SHT A dataset;
the second column: SHT B dataset; the third column: UCF-QNRF dataset; the fourth
column: JHU-CROWD++ dataset; the last column: NWPU-Crowd dataset.

Table 1. Performance comparison with State-of-the-art methods on the ShanghaiTech
and the UCF-QNRF datatsets.

Dtaset SHT A SHT B UCF-QNRF

Method MAE MSE MAE MSE MAE MSE

MCNN [1] 110.2 173.2 26.4 41.3 277 426

CMTL [22] 101.3 152.4 20.0 31.1 252 514

Switch-CNN [2] 90.4 135.0 21.6 33.4 228 445

CSRNet [3] 68.2 115.0 10.6 16.0 – –

SANet [23] 67.0 104.5 8.4 13.6 – –

CAN [4] 62.3 100.0 7.8 12.2 107 183

BL [24] 62.8 101.8 7.7 12.7 88.7 154.8

S-DCNet [25] 58.3 95.0 6.7 10.7 104.4 176.1

1/4-CSRNet + SKT [26] 71.6 114.4 7.5 11.7 144.4 234.6

PaDNet [27] 59.2 98.1 8.1 12.2 96.5 170.2

MobileCount [28] 98.6 162.9 9.1 15.1 137.8 238.2

SACCN [29] 59.2 98.0 6.8 10.5 96.1 167.8

ARNet 62.5 101.4 7.5 12.6 111.0 207.9

datasets compared to lightweight models (MCNN, CMTL, Switch-CNN, SANet,
1/4-CSRNet + SKT, MobileCount), and has a 12.7% MAE improvement for
the SHT A dataset compared with the second-best approach, 1/4-CSRNet +
SKT. Moreover, ARNet also shows competitive counting performance compared
with depth models on small-scale datasets. It can be seen in Table 2 that ARNet
can show better accuracy and robustness of the estimated counts on large-scale
datasets.
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Table 2. Performance comparison with State-of-the-art methods on the JHU-
CROWD++ and the NWPU-Crowd test sets.

Dtaset JHU-CROWD++ NWPU-Crowd

Method MAE MSE MAE MSE NAE

MCNN [1] 188.9 483.4 232.5 714.6 1.063

CMTL [22] 157.8 490.4 – – –

CSRNet [3] 85.9 309.2 121.3 387.8 0.604

SANet [23] 91.1 320.4 190.6 491.4 0.991

SCAR [30] – – 110.0 485.3 0.288

CAN [4] 100.1 314.0 106.3 386.5 0.295

BL [24] 75.0 297.9 105.4 454.2 0.203

SFCN [31] 77.5 297.6 105.7 424.1 0.254

ARNet 78.2 276.8 89.3 332.8 0.222

Comparison of Computation Efficiency: The critical goal of this work is
to achieve model efficiency, so we compare our method with the existing crowd
counting models on inference efficiency for verifying its superiority. In Table 3,
we compare ARNet with state-of-the-art methods on the following indicators:
MAE, MSE, Params (number of parameters), Flops and FPS. The execution
code is computed on RTX 2080 GPU, the size of input image is 1024 × 768 and
the batch size is 8.

Although the number of parameters of MCNN is the smallest, it shows the
largest counting error due to its simple network structure. SANet can improve
the representation ability of features by employing scale aggregation modules,
but such fragmented operators severely reduce the degree of parallelism and
prolongs the inference time. MobileCount shows extremely short inference time,
yet it do not perform well in counting performance. Compared with CSRNet
and CAN, our proposed model shows better counting performance and only has
about 10% of the parameters. In general, ASNet can achieve the best trade-off
between counting accuracy and computation efficiency.

Ablation Experiment for Component Composition: We analyze the effects
of different components of ARNet on SHT A dataset in the following four aspects:

1. Baseline: The proposed baseline consists of two components: the encoder-
decoder network and the simple density generator.

2. Baseline + PSCAM: In this configuration, we only embed PSCAM on the
baseline to verify the performance improvement by capturing the global con-
text.

3. Baseline + MDG: In this configuration, we only replace simple density gen-
erator with MDG to verify performance improvement by suppressing image
background interference.

4. ARNet: In this configuration, we embed PSCAM and DHN on the baseline
simultaneously to verify the overall performance improvement.
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Table 3. The comparison of our proposed method with state-of-the-arts in terms of
Params(MB), FLOPs(G), inference Time(ms) and FPS.

Methods MAE MSE Params FLOPs Time FPS

MCNN [1] 26.4 26.4 0.13 21.32 10.08 99.2

CMTL [22] 20.0 31.1 2.46 95.70 22.11 45.2

MobileCount [28] 9.1 15.1 3.34 6.32 4.88 204.9

SANet [23] 8.4 13.6 1.39 71.54 24.74 40.3

CSRNet [3] 10.6 16.0 16.26 325.34 48.71 20.5

CAN [4] 7.8 12.2 18.10 218.20 57.01 17.5

ARNet 7.5 12.6 1.77 36.20 10.25 97.6

Table 4. The effects of different components in ARNet on the SHT A dataset.

Method MAE MSE

Baseline 71.82 114.68

Baseline + PSCAM 68.00 110.82

Baseline + MDG 65.25 105.38

ARNet 62.54 101.42

The results of these experiments are shown in Table 4. It can be found that
the worst MAE and MSE are obtained on the baseline network. The PSCAM and
MDG we designed can achieve certain performance improvements. When they
are embedded simultaneously, ARNet can obtain the lowest MAE and MSE,
compared to the baseline network, the counting performance has increased by
12.9%.

6 Conclusion

In this paper, we propose a novel end-to-end encoder-decoder framework called
ARNet for high-accuracy and real-time crowd counting. Specifically, the encoder
can extract multi-level features by applying SqueezeNet as backbone and the
decoder is able to enhance semantic context representation capabilities. In addi-
tion, the Parameter-Sharing Context-Aware Module (PSCAM) can capture con-
text information to improve the robustness of the network without significantly
increasing the number of parameters, the Mask Density Generator (MDG) based
on multi-task learning can regress accurate density map by suppressing back-
ground interference. Meanwhile, the loss calculation under the distributed super-
vision can avoid the disappearance of gradients and urge the network to generate
high-resolution density estimation maps. Extensive experiments conducted on
four benchmark datasets indicated that ARNet can achieve the optimal trade-
off between counting accuracy and computation efficiency.
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Abstract. Recommendation models based on rating behavior often fail
to properly deal with the problem of data sparsity, resulting in the cold-
start phenomenon, which limits the recommendation effect. A model
based on user behavior and semantics can better describe user prefer-
ences and item features to improve the performance of a recommender
system, but is usually shallow and ignores deep features between the user
and item. This paper proposes a deep neural network and self-attention
mechanism (DSAM) model to solve these problems. The DSAM model
introduces a two-way LSTM unit and a self-attention mechanism, com-
bined with a large-scale pretrained BERT model to mine deep nonlinear
features and hidden vectors in user comment information and perform
score prediction. In comparative experiments carried out on the Amazon
product dataset, the error of DSAM prediction results was lower than
that of a reference group, and the average error was reduced by 4%.

Keywords: Deep learning · Cold start · Preliminary training · Rating
matrix

1 Introduction

The rapid development of the internet has exponentially increased the amount
of data, bringing about information overload and a sharp drop in information
quality and utilization. As an effective tool to alleviate information overload, the
recommendation system came into being, and has been widely used in the fields
of financial investment [1], online education, e-commerce [2], and medical treat-
ment [3,13]. A recommendation system filters data through information process-
ing and data analysis to obtain user preferences and find their favorite products.
How to provide high-quality recommendation services is the most important
problem.

The most widely used recommendation model is based on collaborative fil-
tering, which groups based on preference and recommends products with sim-
ilar characteristics. Collaborative filtering can approximately partition implicit
semantics and neighborhood-based methods. Algorithms based on matrix fac-
torization can well solve the implicit semantic model, and have received much
c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13032, pp. 390–402, 2021.
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attention. The most common include the neural factorization machine (NFM)
[4,14], deep factorization machine (DFM) [5], and latent factor model (LFM)
[6]. Although matrix-based decomposition collaborative algorithms can find the
correlation characteristics between hidden factors, the recommendation quality
cannot be improved due to the sparseness of the score data.

Extracting the information from the review text to alleviate the sparsity of
the scoring matrix is the most effective solution [7,11], and diversified informa-
tion fusion is also a popular research direction. Comment text data contain rich
and valuable information. Users have very different evaluations and likes of the
same item. Therefore, comment information can better portray user preferences.

Deep learning technology has been applied in various industries [10]. Due to
its strong learning and anti-interference abilities, it has performed well in rec-
ommendation systems. Many recommendation algorithms are integrated with
deep nonlinear network structures. For example, DeepCoNN [8] has a bidirec-
tional nerve section. One network is used to train users’ comments, and the
other learns the corresponding features from the items. Experiments showed
that DeepCoNN performed better than the traditional recommendation model.
DeepCoNN uses a CNN encoding method whose convolution kernel has a fixed
value, resulting in the loss of long-distance features. DeepCoNN considers that
the contribution of each comment to the user is the same, which is not necessarily
the case. To further distinguish the contribution of each comment will continue
to improve the recommendation effect. To solve the above problems, our paper
proposed a deep neural network and self-attention mechanism (DSAM) based
on deep neural networks and self-attention mechanisms.

The main contributions of this article are as follows.

(1) A deep DSAM recommendation model is proposed, which fuses the review
text and scoring matrix. Owing to the integration of comment text data, the
phenomenon of data cold-start is effectively alleviated, and the user’s deep
preferences and advanced features of items can be better learned, thereby
ameliorating the accuracy of the model.

(2) The BERT model is used instead of traditional pre-training to overcome
the problem of polysemous words in the text. The BiLSTM unit and self-
attention mechanism are introduced to effectively capture contextual con-
nections so that the model can more accurately understand the semantic
and emotional characteristics of comments and mine the deep connections
between users, items, and ratings to enhance the recommendation effect.

(3) We conduct comparative experiments on Amazon datasets and analyze the
performance of mainstream recommendation models. The root mean square
error (RMSE) obtained from the experiment is lower, which demonstrates
that the DSAM model is feasible, has better recommendation quality, and
alleviates the problem of data sparsity.
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2 DSAM Model

2.1 Problem and Symbol Definition

The traditional latent factor model (LFM) algorithm only relies on the U − I
rating matrix, ignoring rich semantic and emotional information in the review
text. The review information has deeply hidden features that cannot be expressed
by the rating, and the text is often unstructured, bringing difficulty to processing.

The comment text is rich in user semantic information, which can be com-
bined with the evaluation matrix to capture deeply hidden characteristics of
users and items. The fusion of deep features can enhance the interpretability
of the model and overcome data sparsity. The BERT-BiLSTM model can be
combined to process unstructured text and extract deep semantic features.

Assume that a dataset T is composed of N tuples (u, i, wui, rui), each rep-
resenting user comment wui and corresponding rating information rui of item i.
The DSAM model uses this information to obtain the predicted score r̂ui and
minimize the error between this value and the real score rui. Table 1 lists the
symbols and operations.

Table 1. Symbols

Symbol Description

wui user u comment text on review item i

rui user u rating of item i

Nu user neural network

Ni item neural network

d maximum comment set

U deep features of user

I deep features of item

Ubert user comments implicitly

Ibert item comments implicitly

Ru user preference

Ri item preference

LFMu user latent vector

LFMi item latent vector

� add operation

⊗ interactive operations involving multiplication and addition

⊕ vector superposition operation

Y predicted value

S scoring matrix
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2.2 DSAM Model Structure

We structure of the proposed DSAM model is shown in Fig. 1 The model has
three modules: characteristic fusion, LFM matrix decomposition, and feature
extraction based on BERT and BiLSTM. The text processing module obtains the
semantic representation of the input text through the BERT pretraining layer,
obtains the vector representation of each word in the sentence, and transmits
these to the BiLSTM layer for further semantic coding to obtain user and item
comment trait vectors Ru and Ri. We obtain the hidden vectors LFMu and
LFMi of U−I through the matrix decomposition module. In the fusion layer, Ru

and Ri are fused to obtain the user’s and item’s deep traits U and I, respectively.
The prediction score is gained by the full connection layer.

Fig. 1. DASM model

Feature Extraction Module Based on BERT and BiLSTM. The text
processing module is shown in Fig. 2 The input layer contains two parallel neural
networks Nu and Ni, to process user and item information, respectively. After
entering the item and user comment data, the data are modeled through Nu,
Ni, and the input is mapped to the corresponding word vector sequence through
the BERT model,

hi = hforward ⊕ hbackward (1)
where hi represents the hidden state of Ubert or Ibert, and the hidden state of
the BiLSTM unit can be represented by {h1, h2, . . . , hd}.
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Fig. 2. BERT-BiLSTM model

Matrix Decomposition Module Based on LFM. The latent factor model
(LFM) is a kind of latent semantic analysis technology that was first used in
data mining, and it has recently been applied to recommendation and prediction.
Assuming m users and n items, hidden factor l in the LFM model, and initial
score matrix S, the correlation degree of each user and item to each hidden factor
can be expressed as

qu = (qu1 , qu2 , qu3 ..., qul
) (2)

pi = (pi1 , pi2 , pi3 ..., pil) (3)

The implicit vector matrices Q and P , consisting of all relevance vectors qu and
pi of users and products, can be used to express the initial score as

Sm×n = Qm×lPl×n (4)

where Qm×l is the user latent vector LFMu, and Pl×n is the item’s hidden
feature, LFMi.

Feature Fusion Module. In the first module layer, the deep nonlinear features
Ru and Ri of the review text are obtained through Bert-BiLSTM and the self-
attention mechanism. In the second module, the hidden features LFMu and
LFMi of users and items are obtained through LMF matrix decomposition.
The trait fusion module combines the deep and hidden features in the review
text and predicts the score. Inspired by DeepCoNN and factorization machine
[11,15], the low-order hidden features LFMu and LFMi can interact with first-
order features to obtain high-order features. First-order features corresponding
to users and items are respectively calculated as

U1 = Ru � LFMu (5)
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I1 = Ri � LFMi (6)

where � represents the addition operation of vectors Ru and LFMu whose
dimensions are both l.

Ru, Ri, LFMu, and LFMu are spliced into first-order features U1 and I1,
and second-order features are calculated using the idea of a FM. The quadratic
term can be changed to improve calculation efficiency:

n∑

i=1

n∑

j=i+1

〈vi, vj〉xixj =
1
2

k∑

f=1

((
n∑

i=1

vi,fxi)2 −
n∑

i=1

vi,f
2xi

2) (7)

We decompose xi into an l-dimensional vector vi xi and calculate the second-
order features as

U2 =
1
2

k∑

f=1

((
∑

i=1

vi,fxi)2 −
n∑

i=1

vi,f
2xi

2) (8)

The first-order features U2 and I2 contain all of the information of the quadratic
term results, and the first- and second-order features can be fully mined through
the fully connected layer. We obtain the first-order features U1, I1 and second-
order features U2, I2, and continue to merge them to obtain the deep high-level
features of users and items.

U = U1 ⊕ U2 (9)

I = I1 ⊕ I2 (10)

Score Prediction. Linear regression is performed on the depth characteristics
and related parameters of the fusion layer in the fully connected layer to obtain
the scoring prediction formula,

Y = W ∗ (U ⊗ I) + bu + bi + µ (11)

where ⊗ denotes the phase operation of the corresponding elements of the depth
feature vector, W is the weight of the FC layer, bu is the user offset, bi is the
item offset, and µ is the global offset. If there are new users and only bu and
U are 0, the DSAM model can still be trained with other parameters, making
full use of the score and comment text for learning to further reduce prediction
error and avoid the cold-start phenomenon.

To model users and products and then score predictions is actually a regres-
sion problem, and the objective function is a square loss function,

L =
∑

u,i∈T

(r̂ui − rui)2 (12)

where T is a sample in the training set, r̂ui is the predicted score, and rui is
the true score. Adaptive moment estimation is used to optimize the objective
function, which can automatically adjust the learning rate, speed up convergence,
and simplify model learning. The learning process of the DSAM model is as
follows.
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(1) The user and item rating and review data are preprocessed to obtain the
user and product review dataset, and feature extraction is performed with
BERT-BiLSTM to form a vector matrix to obtain the hidden features of the
review text.

(2) LMF technology is used to decompose the scoring data and add bias items.
(3) The obtained features are merged in the fusion layer to form the deep fea-

tures of users and products.
(4) Training is performed according to the loss function, and the result of previ-

ous Training is reconstructed into a scoring matrix and then recommended.

3 Experiment

3.1 Dataset

An Amazon review dataset was selected to verify the effectiveness and accuracy
of the DSAM model. The dataset includes user information, ratings, comments,
and the timestamp of an item.

Three sub-category datasets with different topics and sizes were selected:
Movies and TV (MT), Digital Music (DM), and Toys and Games (TG). MT has
the largest data volume, and DM the smallest. We needed to use four features:
user number, product number, user’s product rating, and user’s comment infor-
mation on the product. The statistical results are shown in Table 2.
Although there are many users and goods, the number of goods purchased by
users is only a small fraction of the total. Therefore, it is necessary to calculate
statistics on commodity rating data, whose results are shown in Table 3.
After preprocessing, the sparseness of the scoring data was very large. Exper-
iments showed that the fusion of review information can effectively alleviate
sparsity to further improve the accuracy of scoring prediction.

Table 2. Dataset information

Data Users Items Samples Average word count

MT 231096 84017 2173892 2161.38

DM 14538 9362 139781 2161.38

TG 209516 121191 1720971 1646.92

Average 151716 71523 692711 1514.93

Table 3. Commodity score statistical results

Data Less than 10 Less than 20 Less than 30

MT 0.514 0.683 0.727

DM 0.499 0.639 0.695

TG 0.603 0.738 0.833

Average 0.538 0.687 0.751
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The model was evaluated by the RMSE, whose smaller value indicates a
more accurate prediction, and which is calculated as

RMSE =

√√√√ 1
N

N∑

i=1

(rui − r̂ui)2 (13)

where N is the total number of samples, rui is the true score, and r̂ul is the
predicted score.

3.2 Comparative Experiment

This article sets up this experiment for two purposes. First, it is verified whether
the combination of review text and scoring matrix can effectively alleviate the
adverse effects of data sparseness. The second is to compare the DSAM combined
with the review text to verify that the DSAM model described in this article
can further reduce the error by fusing deep features.

We compared the DSAM model with five prediction models, as shown in
Table 4. LFM [6], SVD++ [9], and DeepCoNN [8] are discussed above. HFT
inputs comment information and fuses the obtained text topic with the hidden
factor obtained by matrix decomposition. The author proves through experi-
ments that the item feature topic distribution is more accurate than the predic-
tion produced by the user topic distribution. CDL [12] combined the Bayesian
formula of PMF based on collaborative deep learning, and verified the excellent
ability of the CDL model on three datasets.

Table 4. Prediction model

Model Use scoring matrix Use comment text Use deep learning algorithms

LFM True False False

SVD++ True False False

DeepCoNN True True True

HFT True True False

CDL True True True

DSAM True True True

3.3 Experimental Detailed Settings

The dataset was randomly divided into 70% for training, 20% for validation,
and 10% for testing. Arguments were confirmed on the verification set, and the
capability of the model was evaluated on the test set. Comparison models such
as LFM and SVD++ used grid search to determine the number of hidden factors
and regular term coefficients. Parameters of DeepCoNN, CDL, HFT, and other
models were adjusted according to the corresponding literature to obtain the best
performance, and other environmental factors were as consistent as possible.
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The proposed DSAM model has many parameters, and it was necessary to
experiment with parameter sensitivity on datasets such as MT and DM, with
results as shown in Fig. 3 We concluded that DSAM, when combined with the
score and comment text, performed best when the number of hidden factors was
16. The errors of LFM and SVD++ gradually increased with the number of
hidden factors. We believe this is because too many parameters caused overfit-
ting. After the parameter sensitivity experiment, the model combined with deep
learning could be concluded to be more stable than the model based on matrix
factorization, and it was hard to conclude that there was overfitting. To prevent
overfitting, a dropout unit was added in the learning process. The experimental
results of exploring the influence of different dropout ratios on the model are
shown in Fig. 4 From the results, it can be determined that the model performs
best when the dropout is set to 0.5 in the MT dataset, because overfitting is
alleviated and the generalization ability of the model is improved.

(a) MT Dataset (b) DM Dataset

Fig. 3. Influence of hidden factors on RMSE

(a) MT Dataset (b) DM Dataset

Fig. 4. Effect of dropout ratio on model
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HFT, DeepCoNN, and CDL performed more stably on the MT dataset than
on the DM dataset, because MT had simpler semantics and larger data volume,
and DM had insufficient samples to learn stable parameters. As the dropout ratio
increased, the performance of all of the models decreased to varying degrees,
which is consistent with the previous statement that models with matrix decom-
position are more likely to produce overfitting.

3.4 Experimental Analysis

The model performance was optimized to the extent possible according to the
parameter comparison experiment. The word vector dimension of DSAM and
DeepCoNN was set at 300, the dimension of attention weight was set at 400, and
the model parameters were adjusted according to the corresponding literature
to form a control group. Experiments were performed on the DM, MT, and TG
datasets, where D L, D C, and D D represent the RMSE improvement rates of
DSAM relative to LFM, CDL, and DeepCoNN, respectively, as shown in Table 5.
The following conclusions can be drawn from Table 5.

(1) Traditional models such as LFM and SVD++, which only rely on scoring
data, are not as effective as models based on review text, such as Deep-
CoNN, HFT, CDL, and DSAM. Information in the review text can effec-
tively improve the expressiveness of hidden factors.

(2) In models that introduce the scoring matrix and review text, the error accu-
racy of CDL and DSAM is less than that of HFT. We believe that the
dropout and batch normalization in CDL and DSAM mainly alleviate over-
fitting. Traditional models can only learn shallow linear features, while deep
learning-based models can effectively learn deep nonlinear features to further
improve accuracy.

Table 5. RMSE results

Model MT DM TG

LFM 0.898 0.922 0.971

SVD++ 0.895 0.914 0.972

HFT 0.894 0.897 0.967

DeepCoNN 0.892 0.898 0.959

CDL 0.857 0.877 0.879

DSAM 0.799 0.804 0.833

D D 4.02% 3.05% 3.12%

D C 2.24% 1.96% 2.12%
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(3) DSAM performed best in the experiments on three datasets. In terms of
RMSE parameters, it is about 3.05% 4.02% relative to DeepCoNN, and
1.92% 3.05% relative to CDL. The RMSE improvement rate shows that
the DSAM model can more fully extract the deep and advanced features
between users and items compared with models that only rely on review text
and deep learning (DeepCoNN). Unlike DCL, DSAM uses pretrained BERT
to deal with static word vector problems and combines two-way long- and
short-term memory neural networks to generalize comment data. In short,
in-depth recommendations that integrate ratings and review text perform
better.

To verify the ability of DSAM to deal with cold-start problems, we constructed
user and commodity models and conducted model cold-start experiments on the
DM and MT datasets. We constructed a cold-start dataset based on user-item
modeling, and conducted comparative experiments on DSAM and LFM, with
results as shown in Fig. 5 The Y-axis represents the difference between the RMSE
of the DSAM and LFM models, where a positive number indicates that DSAM
performs better. As the number of samples increases, the advantages of DSAM
slowly decay. When the number of training samples is 5, the curve is still positive,
indicating that DSAM can better alleviate the cold-start phenomenon than LFM.
We constructed a cold-start dataset based on user-item modeling, and conducted
comparative experiments on DSAM and LFM, with results as shown in Fig. 5 The
Y-axis represents the difference between the RMSE of the DSAM and LFM mod-
els, where a positive number indicates that DSAM performs better. As the number
of samples increases, the advantages of DSAM slowly decay. When the number of
training samples is 5, the curve is still positive, indicating that DSAM can better
alleviate the cold-start phenomenon than LFM.

(a) DM Dataset (b) MT Dataset

Fig. 5. Cold-start experiment results

4 Conclusion

We proposed a DSAM prediction model based on deep learning and fusion of
comment text.
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DSAM can extract the deeply hidden characteristics of users and items from
the rating matrix and review text, and fuse the first- and second-order features to
obtain high-order features. Comparative experiments showed that the method
and model in this article can effectively reduce the prediction error. Related
experiments were carried out for the cold-start phenomenon, and through com-
parison with the LFM model, it was confirmed that the DSAM model fused with
the scoring matrix and review text can more effectively deal with this problem.
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Abstract. With the rapid development of convolutional neural net-
works, many CNN-based methods have emerged and made promising
progress in the field of crowd counting. However, dealing with extremely
scale variation remains a challenging but attractive issue. In this paper,
we propose an innovative Gated Cascade Multi-scale Network (GCM-
Net) to tackle with the issue by taking full advantage of the represen-
tation of multi-scale features in a multi-level network. First of all, we
implement such an idea by obtaining rich contextual information with
a multi-scale contextual information enhancement module. Then, con-
sidering the pixel-level image detail information that is lost during the
successive feature extraction process, we propose a hopping cascade mod-
ule to refine this detail information. However, naively refining all the
detail information is sub-optimal. Therefore, a gated information selec-
tion delivery module is designed to adaptively control the delivery of
information between multi-level features. Combined with our proposed
module, our method can effectively generate high-quality crowd density
maps. The superiority of our method over current methods is demon-
strated through extensive experiments on four challenging datasets.

Keywords: Crowd counting · Hopping cascade · Gated information ·
Multi-scale feature · Deep learning

1 Introduction

Crowd counting based on computer vision aims at generating high-quality den-
sity maps of crowd scenes, thereby calculating the total number of the crowd. It
is widely used in public safety and video surveillance. What’s more, the proposed
methods for crowd counting can be extended to other fields with similar tasks,
including traffic control, agricultural monitoring, and cell counting.

With the rapid growth of deep learning, many CNN-based methods have
made amazing improvements in crowd counting. However, crowd counting is
still a difficult task due to the complexity of the scenes, especially the large scale
variation (Fig. 1).
c© Springer Nature Switzerland AG 2021
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Fig. 1. Scale variation in crowd scenes.

In recent years, numerous methods have been proposed to tackle with the
problem of scale variation. MCNN [31] uses filters with different sizes to solve
the size variation of the human head. CSRNet [12] adopts dilated convolutions
as the back-end part to extract deeper features by expanding the receptive fields.
Kang et al. [11] propose an adaptive fusion feature pyramid to handle multiple
scales. CAN [14] combines multiple receptive fields with different sizes and learns
the correct context for each image location.

Although above methods have achieved better performance, there are still
some deficiencies to be improved. On the one hand, the crowd scene has large
scale variations in size, shape, and location, and using a simple multi-column
structure does not effectively extract multi-scale contextual information. On the
other hand, features captured by earlier layers in the deep network contain less
semantic information, so naively cascading multi-level features in the network
does not effectively solve large scale variation.

To this end, we introduce an innovative deep learning framework named
Gated Cascade Multi-scale Network (GCMNet) to take full advantage of the
representation of multi-scale features. The architecture of GCMNet is shown
in Fig. 2. To perform more comprehensive multi-scale representations and over-
come the drawbacks of multi-branch structure, we design a multi-scale contextual
information enhancement module to capture the global context. We employ four
parallel convolutional layers with different filter sizes and combine the features
generated by these convolutions. By doing this, the representation capability of
the network is greatly improved. In addition, with the successive feature extrac-
tion process, a large amount of detail information is lost, so we have integrated
various pixel-level detail through a hopping cascade module, thus ensuring the
completion of multi-level feature fusion. Furthermore, the utilization of hopping
cascade module to integrate multi-level features does not weight the importance
of the information contained therein. While a gated information selection deliv-
ery module is adopted, we can determine the turn-on and turn-off of information
in multi-level features to perform adaptive and effective delivery of useful infor-
mation.
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In summary, the main contributions of our work are as follows:

– We design a multi-scale contextual information enhancement module with
multiple different sizes of convolutional filters to extract multi-scale contex-
tual information.

– We put forward a hopping cascade module that cascades multi-level features
to reconstruct pixel-level image detail.

– We propose a gated information selection delivery module to adaptively con-
trol information delivery between multi-level features.

Count：184.1*
MCIEM

Input

Predicted Density

Ground Truth

Count：184.1* *

Conv(1x)

Input

RES RES RES

Up-conv 2x2
Max pool 2x2 Message passing

CNN feature stream
RES Residual Block

* Gated Func on

Encoder

Decoder

GISDM

Fig. 2. The overall framework of our GCMNet.

2 Related Works

In recent years, significant improvements have been achieved in crowd counting
from traditional methods [3,7] to CNN-based methods [9,28]. In this paper,
we mainly focus on three categories of CNN-based methods: multi-scale feature
extraction methods, multi-level feature fusion methods, and feature-wise gated
convolution methods.

2.1 Multi-scale Feature Extraction Methods

This kind of method aims to address the scale variation in crowd counting with
multi-scale contextual information. Zhang et al. [31] propose a multi-column
convolutional neural network to extract multi-scale features. Similarly, Sam et al.
[20] put forward the Switching-CNN, which uses the density variation to improve
the accuracy and localization of crowd counting. Cao et al. propose the SANet
[1] for extracting multi-scale features based on the Inception architecture of
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encoders. ADCrowdNet [13] combines multi-scale deformable convolution with
an attention mechanism to construct a cascade framework. Jiang et al. [10]
design a grid coding network that captures multi-scale features by integrating
multiple decoding paths. In addition, the spatial pyramid pooling (SPP) [5]
uses pooling layers with different sizes to extract multi-scale feature maps and
finally aggregates them into a fixed-length vector, thus improving robustness and
accuracy. Therefore, it is widely used in SCNet [26], PaDNet [25], and CAN [14]
for extracting multi-scale features.

In this paper, we utilize four parallel convolutional layers to extract multi-
scale features and fuse features to improve the redundancy arising from the
multi-branch structure.

2.2 Multi-level Feature Fusion Methods

Several recent works for complex and intensive prediction tasks have demon-
strated that features from multiple layers are favorable to produce better results.
Deeply encoded features contain semantic information of the object, while shal-
lowly encoded features conserve more spatially detailed information. Several
studies on crowd counting [15,23,31] have attempted to use features from multi-
level convolutional neural networks for more accurate information extraction.
Many studies [15,31] predict the independent results of each stage and finally
fuse them to obtain multi-scale information. Sindagi et al. [23] introduce a multi-
level bottom-top and top-bottom fusion method to combine shallower informa-
tion with deeper information.

Different from the above methods, we propose a hopping cascade module to
perform multi-level feature fusion with hopping cascade, thereby the pixel-level
image details lost during extraction can be regained.

2.3 Feature-Wise Gated Convolution Methods

The introduction of gating mechanisms in convolutions has also been extensively
studied in language, vision, and speech. Dauphin et al. [2] effectively reduce
gradient dispersion by using linear gating units and also retain the ability to
be nonlinear. Oord et al. [18] employ a selected-pass mechanism to improve
performance and convergence speed. Yu et al. [29] propose an end-to-end gated
evolution-based generative image restoration system to improve the restoration
of free-form masks and user-guided inputs. WaveNet [17] applies gated activation
units to audio sequences to simulate audio signals and obtains better results.

In this study, we propose a gated information selection delivery module to
adaptively control the information delivery between multi-level features during
the hopping cascade.

3 Proposed Algorithm

In this section, we will outline the overall framework of our GCMNet and give
a detailed introduction of the theory to realize each module.
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3.1 Overview of Network Architecture

The overall framework is shown in Fig. 2. Following the practice of most previous
work, we adopt VGG-16 [22] as the backbone network and choose the first five
stages (Layer1 − Layer5) of the pre-trained VGG-16 to generate the hopping
features at five levels, which are represented as F e = {fe

i , i = 1, . . . , 5}. After
Layer5, we add the Multi-scale Contextual Information Enhancement Module
(MCIEM) consisting of multiple convolutional layers with different sizes of filters
to capture global context information. Afterwards, to reconstruct the pixel-level
image detail information that is lost in the successive feature extraction, we
propose the hopping cascade module to cascade the hopping features F e with
the upsampling features F d = {fd

i , i = 1, . . . , 5} generated by upsampling oper-
ations. Moreover, we design the Gated Information Selection Delivery Module
(GISDM) to control the delivery of the pixel-level image detail information in
F e with the aim of effectively integrating the multi-level features in the cascade
process.

3.2 Multi-scale Contextual Information Enhancement Module

It is observed that the output features fused by using parallel convolution con-
tain more image details than the features generated by successive convolution
operations. Therefore, we come up with the MCIEM to capture global context
information. The module consists of four parallel convolutional layers with filters
of different sizes k ∈ {3, 7, 11, 15} and four max-pooling layers. The details of
the MCIEM is given in Fig. 3.

M
ax Pooling

256
256

256
256

1024

3 7 11 15

Fig. 3. Details of MCIEM.

Firstly, the multi-level features fe
5 extracted by the backbone network are

taken as the input to the MCIEM. Then the four parallel convolutions with the
receptive field of 3 × 3, 7 × 7, 11 × 11, and 15 × 15 are used to extract multi-
scale features. Finally, these features are fed into a 2 × 2 max-pooling layer and
then fused together to extract more comprehensive contextual features. With
the MCIEM, multi-scale features can encode richer contextual information.
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3.3 Hopping Cascade

Though MCIEM can extract effective contextual information through multi-
scale features, some pixel-level image detail information is lost in this extraction
process. Therefore, we introduce the hopping cascade module to reconstruct the
lost pixel-level image detail information.

Specifically, after the MCIEM, we choose the H1 − H5 with 32-fold bilinear
upsampling operations to generate upsampling features F d = {fd

i , i = 1, . . . , 5}.
Meanwhile, the lost pixel-level image detail information is reconstructed by cas-
cading F e with F d. Our cascade module takes the hopping features fe

3 , fe
4 , fe

5

and upsampling features fd
3 , fd

4 , fd
5 as input. The cascade process is implemented

by the following equation.

Hi = ReLU(Conv(fe
i ; θ)) + ReLU(Conv(fd

i ; θ)) (1)

where Conv(∗; θ) is a convolutional layer with parameter θ = {W, b}, ReLU() is
an activation function. fe

i is parallel to the multi-level feature fd
i and they have

the same size.

3.4 Gated Information Selection Delivery Module

The pixel-level image detail information is reconstructed with the hopping cas-
cade module, but not all of the pixel-level detail information contributes to the
realization of accurate crowd counting. Therefore, we propose the GISDM to
deliver this information from adaptive selection, which consists of a residual
block and a gated function, as shown in Fig. 4.

Conv 1x1

Conv 1x1

BN RELU

Conv 3x3

BN BN RELU

Conv 1x1

BN 

RELU GF+
Gated Func on

Fig. 4. Details of GISDM.

In our implementation, we feed the hopping features into a residual block to
improve the representation ability of hopping features, which is expressed as Gi:

Gi = Res(ReLU(Conv(fe
i ; θ)) (2)

where Res(∗) represents the residual block.
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Additionally, we introduce the gated function to further calibrate this infor-
mation and achieve adaptive delivery of pixel-level detail information instead of
indiscriminately delivering all information among multi-level features. The gated
function is essentially a convolutional layer with sigmoid activation in the range
of [0, 1]. Let GF (x; θ) denotes the gated function:

GF (x; θ) = Sig(Conv(x; θ)) (3)

where Sig() represents sigmoid function, Conv(x; θ) is a 1×1 convolutional layer
of channels with x.

With the gated function, Gi can be rewritten as:

Gi = GF (Gi; θ) ⊗ Res(ReLU(Conv(fe
i ; θ))) (4)

where ⊗ represents an element-wise product.
Therefore, the Hi is summarized as:

Hi = Conv(Gi; θ) + ReLU(Conv(fd
i ; θ)) (5)

where Gi is the updated features after performing the GISDM.

4 Experiments

In this section, we first give the description of the four widely used datasets and
the implementation settings. Additionally, we compare our method with state-
of-the-art methods by evaluating counting performance and density map quality.
Finally, we perform an extensive ablation study to demonstrate the effectiveness
of each component of our method.

4.1 Datasets

ShanghaiTech Dataset [31]. The ShanghaiTech dataset is composed of Part
A and Part B datasets. Part A dataset includes 482 images, which are randomly
crawled from the Internet and represent highly crowded scenes. It is divided into
the training sets and test sets. Part B dataset is acquired from the surveillance
cameras of commercial streets, representing relatively sparse scenes, with 400
images in the training sets and 316 images in the test sets.

UCF CCF 50 Dataset [7]. The UCF CCF 50 dataset is full of challenges. The
training sample is limited and it only collects 50 annotated images of complex
scenes from the Internet. These images have a large number of different people,
ranging from 94 to 4543. There are a total of 63,974 head annotations, with an
average of 1,280 per image.

UCF-QNRF Dataset [8]. The dataset contains 1535 high-resolution images
with 1,251,642 head annotations, which has more head annotations than the
previous datasets. The number of people in each image varies from 49 to 12,865.
And the training and test sets have 1,201 and 334 images, respectively.
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WorldExpo’10 Dataset [30]. This dataset includes 1,132 annotated video
sequences collected from 103 different scenes captured by 108 surveillance cam-
eras at the 2010 Shanghai World Expo. There are 3,980 annotated frames with
a total of 199,923 annotated pedestrians, of which 3,380 annotated frames are
used for model training and the other 600 frames are used for model testing.

4.2 Settings

Ground Truth Generation. We generate ground truth density maps following
the same theory as in MCNN [31]. We use a normalized Gaussian kernel to blur
each human head annotation thus generating the ground truth density maps
F (x).

F (x) =
N∑

i=1

δ(x − xi) × Gσi
(x), with σi = βdi (6)

where N represents the number of people in the image, x is the position of
the pixel in the image, xi represents the labeled position of the ith individual,
δ(x−xi) denotes a head annotation at pixel xi, Gσi

represents a Gaussian kernel
with standard deviation σi, and di represents the average distance between xi

and its nearest k heads. In our implementation, we set β = 0.3 and σi = 3.

Evaluation Metrics. To evaluate the performance of our method, we adopt
the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), which
are denoted as Eq. (7) and Eq. (8), respectively.

MAE =
1
N

N∑

i=1

|CES
i − CGT

i | (7)

RMSE =

√√√√ 1
N

N∑

i=1

(CES
i − CGT

i )2 (8)

where N is the total number of the test images, CES
i and CGT

i are the estimated
and ground-truth counts of the ith image, respectively.

MAE and RMSE determine the accuracy and the robustness of the crowd
counting, respectively. The lower their values, the better performance of the
count results.

In addition, the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
(SSIM) in images are exploited to evaluate the quality of the output density
maps.

The PSNR is defined as:

PSNR = 10 × log10(
MAX2

I

MSE
) (9)

where MAXI is the maximum possible pixel value of the images.
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SSIM(x, y) =
(2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ2
x + σ2

y + C2)
(10)

where μx and μy denote the mean values of images x and y, respectively. σx and
σy denote the variance of images x and y, respectively. σxy is the covariance of
images x and y. C1 and C2 are two constants and defined as:

{
C1 = (K1 × L)2

C2 = (K2 × L)2
(11)

where K1 = 0.01, K2 = 0.03, L = 255.
PSNR essentially represents the error between the corresponding pixels. The

higher its value, the better the quality of the density map. SSIM measures the
similarity between the predicted density map and the ground truth in terms of
brightness, contrast and structure. The higher its value, the smaller the image
distortion.

Implementation Details. We utilize the pre-trained VGG-16 to initialize the
parameters of the first five stages of our model, and parameters of the other
convolutional layers are initialized randomly using a Gaussian distribution with
δ = 0.01. Both upsampling and downsampling operations are simulated using
bilinear interpolation. We use Adam optimizer to train our network for 200
epochs, and the learning rate is initially set to 1e−5. And the network is trained
by minimizing the Euclidean distance between the estimated density map and
the ground truth. The loss function is defined as:

L(Θ) =
1

2N

N∑

i=1

||F (Xi;Θ) − Di||22 (12)

where N is the number of training images, Xi is the ith input image, F (Xi;Θ)
denotes the estimated density map, Di represents the ground truth density map.

4.3 Comparisons with the State-of-the-Art

ShanghaiTech. We compare our method with several state-of-the-art methods
and the comparison results are listed in Table 1. On Part A, our method obtains
the MAE improvement by 4.28% and RMSE improvement by 4.46% compared
to the second-best result. On Part B, our method achieves the MAE and RMSE
improvements by 4.31% and 4.61%, respectively, compared to the second-best
result.

UCF CC 50. The UCF CC 50 dataset has a huge challenge and we evaluate
our method according to 5-fold cross-validation [12]. As shown in Table 1, we
compare our method with the current state-of-the-art methods. Our method
has a very significant improvement, with MAE and RMSE improved by 18.57%
and 18.69%, respectively, compared to the latest CFANet method. Despite the
limited training samples, our method converges well in this dataset.
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Table 1. Comparisons of GCMNet and state-of-the-art methods on three datasets.

Dataset Part A Part B UCF CC 50 UCF-QNRF

Method MAE RMSE MAE RMSE MAE RMSE MAE RMSE

MCNN [30] 110.2 173.2 26.4 41.3 377.6 509.1 277.0 426.0

CSRNet [12] 68.2 115.0 10.6 16.0 266.1 397.5 120.3 208.5

TEDNet [10] 64.2 109.1 8.2 12.8 249.4 354.5 113 188

BL [16] 62.8 101.8 7.7 12.7 229.3 308.2 88.7 154.8

ASNet [9] 57.78 90.13 – – 174.84 251.63 91.59 159.71

AMSNet [6] 56.7 93.4 6.7 10.2 208.4 297.3 101.8 163.2

AMRNet [15] 61.59 98.36 7.02 11.00 184.0 265.8 86.6 152.2

CFANet [19] 56.1 89.6 6.5 10.2 203.6 287.3 89.0 152.3

GCMNet(ours) 53.7 85.6 6.22 9.73 165.8 233.6 84.7 148.1

UCF-QNRF. Table 1 shows the MAE and RMSE of our method as well as the
state-of-the-art methods on UCF-QNRF dataset. The proposed method is com-
pared with eight methods. It can be observed that the proposed method is able
to yield the best performance on this dataset. The MAE exceeds the second-best
method by 2.19% and RMSE improves over the second-best method by 2.69%.

WorldExpo’10. Our method is compared with six state-of-the-art methods.
In Table 2, we give the comparison results of MAE for each scene. Our proposed
method obtains the best performance in scene 1 (sparse crowd S1), scene 4 (dense
crowd S4). Moreover, the best average MAE performance is also achieved.

Table 2. Comparisons of GCMNet and state-of-the-art methods on WorldExpo’10.

Dataset WorldExpo’10

Method S1 S2 S3 S4 S5 Ave

TEDNet [10] 2.3 10.1 11.3 13.8 2.6 8.0

ADCrowdNet [13] 1.6 13.2 8.7 10.6 2.6 7.3

CAN [14] 2.9 12.0 10.0 7.9 4.3 7.4

PGCNet [27] 2.5 12.7 8.4 13.7 3.2 8.1

RPNet [28] 2.4 10.2 9.7 11.5 3.8 8.2

ASNet [9] 2.22 10.11 8.89 7.14 4.84 6.64

GCMNet (ours) 1.43 10.22 8.47 7.04 2.84 6.00

In this section, we first conduct experiments on four datasets and then com-
pare our model quantitatively with several state-of-the-art methods. It is clearly
seen from the results that our method achieves the best performance on Shang-
haiTech, UCF CC 50 and UCF-QNRF datasets, and outperforms some of the
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Fig. 5. Sample results of the GCMNet on ShanghaiTech dataset. The first row shows
the samples of the input image. The second row shows the ground truth for each sample
while the third row presents the density map generated by GCMNet. The number in
each density map denotes the count number.

current state-of-the-art methods on WorldExpo’10 dataset. And the predicted
density maps on ShanghaiTech dataset is also given and compared with the
ground truth, as shown in Fig. 5. It can be obviously seen from the figures that
our method is advanced for crowd counting in different scenes. Regardless of
highly crowded or sparse crowd counting scenes, we effectively address the scale
variation in crowd counting. Our method effectively uses multi-scale features for
accurate crowd counting.

4.4 Comparison of Density Map Quality

In this section, we compare our method with other representative methods:
MCNN, CP-CNN, CSRNet, CFF and SCAR in PSNR and SSIM.

Table 3. Comparisons of PSNR and SSIM of GCMNet and representative methods
on ShanghaiTech Part A.

Method PSNR SSIM

MCNN [31] 21.4 0.52

CP-CNN [24] 21.72 0.72

CSRNet [12] 23.79 0.76

CFF [21] 25.4 0.78

SCAR [4] 23.93 0.81

GCMNet(ours) 28.66 0.84

As shown in Table 3, our GCMNet achieves the highest SSIM and PSNR. In
particular, we get PSNR of 28.66 and SSIM of 0.84 on ShanghaiTech Part A
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dataset. Compared with SCAR, the PSNR and SSIM are improved by 19.77%
and 3.70%, respectively. The results show that our method has a significant
advantage in generating high-quality density maps.

4.5 Ablation Study

In this section, we conduct ablation study on ShanghaiTech dataset to verify the
effectiveness of each module in our network and analyze the impact of different
network combinations on the counting performance.

Table 4. Results of ablation study on ShanghaiTech Part A and Part B datasets.

Dataset Part A Part B

Configuration MAE RMSE MAE RMSE

VGG-16 78.3 120.1 18.3 22.9

VGG-16+MCIEM 66.8 102.3 14.7 17.9

VGG-16+MCIEM+Hopping Cascade 57.1 90.7 8.5 11.6

VGG-16+MCIEM+Hopping Cascade+GISDM 53.7 88.6 6.22 9.73

We use four different combinations to test our model:

(1) VGG-16: VGG-16 first 13-layer network with 32-fold upsampling operations
at the end.

(2) VGG-16+MCIEM: VGG-16 first 13-layer network with MCIEM for extract-
ing multi-scale contextual information and 32-fold upsampling operations at
the end.

(3) VGG-16+MCIEM+Hopping Cascade: VGG-16 first 13-layer network with
MCIEM for extracting multi-scale contextual information and hopping cas-
cade module for cascading the hopping features fe

3 , fe
4 , fe

5 with the upsam-
pling features fd

3 , fd
4 , fd

5 .
(4) VGG-16+MCIEM+Hopping Cascade+GISDM: our proposed method.

We give the experimental results of ablation study in Table 4. It can be seen
that directly using VGG-16 for feature extraction does not necessarily yield the
best performance. After injecting MCIEM into the network for multi-scale fea-
ture extraction, the counting error is greatly reduced compared to the previous
stage. Further improvements are made by adding the hopping cascade module,
and the results show that, as with MCIEM, the performance of the model is sub-
stantially improved and the counting error is substantially reduced. Finally, the
embedded GISDM adaptively performs information delivery, which further opti-
mizes the effect of crowd counting. In conclusion, our proposed final model achieves
the best performance and further accuracy in estimating the crowd. Each of the
structures added to our model is effective and complementary to each other. The
counting results are significantly better in the case of both high-density and low-
density scenes. Figure 6 gives the stage density maps of the ShanghaiTech Part B
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dataset during the ablation study, and it is observed that our final model improves
on the previous missing (yellow circles) and redundant (red circles) counts, effec-
tively addressing the problem of scale variation. Our model achieves accurate den-
sity estimation and produces high-quality density maps.
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(a) (b) (c) (d) (e) (f)

Fig. 6. Stage results of ablation study on ShanghaiTech Part B dataset. (a) Input
image, (b) Ground Truth, (c) Baseline (VGG-16), (d) VGG-16+MCIEM, (e) VGG-
16+MCIEM+Hopping Cascade, (f) Ours. The number in each density map denotes
the count number. The yellow and red circles label the missing and redundant counts
of the Baseline method, respectively.

5 Conclusion

This paper proposes a novel end-to-end Gated Cascade Multi-scale Network
(GCMNet), which effectively solves the problem of rapid scale variation in crowd
counting. With the MCIEM, our GCMNet can capture global context at multiple
scales. Then we introduce a hopping cascade module to make full use of the pixel-
level image detail information. Subsequently, we design a GISDM to selectively
integrate multi-level features by adaptively delivering valid information. Finally,
the multi-level features are used to generate the final density maps. Extensive
experimental results on four datasets show that our GCMNet is superior under
different evaluation metrics. In the future, we will explore better methods to
perform multi-scale feature extraction and effective integration of multi- level
features.
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Abstract. Detecting anomalies in human monitoring is an important
task in many real-world applications. In addition to typical anomalies
of objects or actions which have never been observed before, there are
also anomalous combinations where we need to consider the relations
of items. Existing methods for visual anomaly detection predominantly
rely on global level comparisons for computing anomaly scores without
focusing on local differences or relations. Some anomalous combination
detection methods usually need labels to obtain good context models,
which is not suitable for human monitoring task as being aware of all
possible anomalies beforehand is usually impossible. As one of our base-
lines, there is also a clustering-based method which can detect anoma-
lous combinations of two overlapping regions. However, we consider a
more general situation that the regions do not necessarily overlap and
propose a different way to detect anomalies. Specifically, we propose a
self-supervised learning method, Generative Inpainting-based Anomaly
Detection (GIAD), to detect not only typical anomalies but also anoma-
lous combinations. The proposed method employs unmasked areas in
the salient regions and the information around them (contextual infor-
mation) with a designed local and global inpainting loss for recovering
masked areas in the regions so as to detect anomalies. We also propose
a novel attention-based Gaussian weighting anomaly score by consider-
ing the importance of each salient region. Experimental evaluations on
two real-world datasets demonstrate that our method outperforms the
baselines by 6.07%–21.46% on AUC scores.

Keywords: Anomaly detection · Generative inpainting · Gaussian
weighting anomaly score · Human monitoring · Self-supervised learning

1 Introduction

Human monitoring, especially that of human’s activities or behaviors, has drawn
attention in many research fields [1–3]. Detecting anomalies from human’s activ-
ities is one of the most fundamental and yet important areas for surveillance [4],
healthcare [5], and so on in artificial intelligence. However, due to the rareness
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(a) Normal examples (b) Abnormal examples

Fig. 1. Several examples with salient regions generated by Densecap [20]. The red
rectangles show the anomalous parts or their combinations. The left image in (b) is
considered as an anomalous combination between playing with a phone (action) and
the current environment (a working area), though we observe such an action in another
place (a resting area) which is considered as normal in the training set. For the right
image in (b), a man holding a teddy bear could be anomalous if he never held it in the
training set. (A woman held it in the training set instead, which is shown at the right
in (a).) The right images in (a) and (b) are from [18]. (Color figure online)

of anomalies, an anomaly detection problem is usually seen as one-class classi-
fication in which only normal data is accessible to learn an anomaly detection
model [6].

Lots of efforts have been made for one-class anomaly detection, and the idea
of reconstructing normal training data is a commonly used strategy [6–8]. The
abnormal data is expected to have a high reconstruction error during the test
phase. With the development of generative adversarial networks (GANs) [9],
recent methods [10–13] employ adversarial training, which enhances the data
regeneration quality [14], for better anomaly detection systems.

Despite their favorable performance, existing methods for visual anomaly
detection [10–13,15] predominantly rely on global level comparisons for com-
puting anomaly scores without focusing on local differences or relations of
items. They are effective in detecting single-region anomalies. Here, single-region
anomalies represent actions or objects, which are usually a part of images and are
never observed in the training set. However, in real-world applications, although
some actions or objects have already been observed, they might not be expected
to appear in their current scenes or have relations with other items in the scenes
[16–18]. In this paper, we define such typical situations as anomalous combina-
tions. It is also important to detect this kind of anomalies in real-world applica-
tions, such as developing an intelligent mobile robot which monitors at different
places [11,18,19].

There are two main challenges to detect anomalous combinations. The first
one is that the discriminative parts can only occupy small portions of the image.
See the left example in Fig. 1 (b) and the captions. The reason to recognize this
image as anomalous is the phone in the man’s hand in such an environment,
which only occupies a small part (about 30×30 pixels) of the image. The second
one is that to detect anomalous combinations we need to consider the contextual
information around items. Current context models [16,21] which detect anoma-
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lous combinations need accurate labels for items in the images. This requirement
deviates from the setting of one-class anomaly detection. Although splitting an
image into many patches is a commonly used strategy [6,11,13], these methods
still cannot detect anomalous combinations because they cannot capture the
contextual information of items.

A recent method [18] explored dual process theory [22] with an incremental
clustering method, which can detect anomalous combinations of two overlapping
regions. However, in this paper, we explore more general combination anomalies,
where overlapping is a special case. Also, we propose a different way to detect
the mentioned anomalies.

More specifically, inspired by the recent progress of inpainting [14,23,24],
which recovers the missing parts from the contextual information of known pix-
els, we propose a self-supervised learning method, Generative Inpainting-based
Anomaly Detection (GIAD), to detect not only the single-region anomalies but
also the anomalous combinations for human monitoring. The key idea of our
method is that the items in either single-region anomalies or anomalous combi-
nations cannot be recovered to their original shapes if we mask them because
they have conflicts with their contextual information (contextual violations). On
the other hand, inpainting the non-anomalous items is not hampered, since we
train our network with only anomaly-free data. To achieve this goal, we mask
salient regions generated by Densecap [20] in the images and recover them with a
local and global similarity loss. We propose a novel anomaly score function based
on an attention mechanism and a multivariate normal distribution to adjust the
contribution of each region in the score.

In summary, the contributions of our paper are as follows.

– We partially mask the salient regions in an image and recover the missing
parts with a local and global similarity loss. This approach focuses on not
only the entire image but also the salient regions for better reconstruction,
so as to well detect anomalies.

– Given the similarities of multiple salient regions within an image, we explore
an attention-based Gaussian weighting anomaly score to allocate different
weights for each region.

– We show that our proposed method GIAD outperforms all baselines on two
real-world datasets, which contain not only single-region anomalies but also
anomalous combinations, in terms of several evaluation metrics.

2 Related Work

Our work is related to generative reconstruction and anomalous combination
detection. Thus, we introduce related works from the two aspects.

2.1 Generative Reconstruction Approaches

The assumption of detecting anomalies based on generative reconstruction is
that normal data instances can be better reconstructed than anomalies from a
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latent space [8]. For example, [10,12,25] compute the reconstruction errors of the
inputs and the corresponding outputs to predict whether images are anomalous.

Kimura et al. [26] proposed a self-supervised masking method which specifi-
cally focuses on the discriminative parts of the images to enable robust anomaly
detection. They used the discriminator’s class activation maps for improving
robustness against the background noise.

However, the above methods compute the reconstruction error at the image
(global) level, which cannot always guarantee a large reconstruction error for
anomalies and tend to make false negatives when the anomalies occupy only
small portions of the image [8,27]. A commonly used setting is to split an image
into many patches with a sliding window [6,11,13]. However, it assumes no
relation between patches, which is not suitable for detecting anomalous combi-
nations.

With the development of inpainting techniques [14,23,24], which aim to fill
missing pixels of an image with contextual information from known areas, there
are also some research to detect anomalies based on inpainting recent years.
Nguyen et al. [28] proposed to generate a coarse heatmap using image inpainting
for region-based anomaly detection. They adversarially trained a deep convolu-
tional network to locate and inpaint missing brain regions. The network will
fail to reconstruct unhealthy data that it has not observed in training. Vitjan
et al. [29] also considered anomaly detection as a self-supervised reconstruction-
by-inpainting problem by employing a convolutional encoder-decoder structure,
which reconstructs the missing parts with masks of multi-scales. However, their
smoothing operation results in blurry inpainting results. It can overlook anoma-
lies which occupy only a small part of the image. Thus, based on Structural
Similarity Index Measure [30], we propose a local and global similarity loss,
which focuses on not only the entire image but also its local parts.

2.2 Anomalous Combinations Detection

Anomalous combinations detection, sometimes referred to out-of-context detec-
tion [16,21], considers the relations between items in images. Choi et al. [21]
proposed a graphical model which integrates different sources of contextual infor-
mation and computes the probability of each item’s presence and the likelihood
of each detection being correct. Oh et al. [16] proposed a model using fully-
connected conditional random fields to integrate the contextual information such
as the co-occurrence and the geometric relationships between objects. However,
these methods need labels to obtain the normal relations between objects at the
training phase. For the purpose of one-class anomaly detection and human mon-
itoring, this setting is unrealistic. Fadjrimiratno et al. [18] proposed a real-time
autonomous mobile robot based on “Fast and Slow Thinking” from the dual
process theory [22] with an incremental clustering method, which can detect not
only single-region anomalies but also an anomaly of a pair of overlapping regions.
Compared with their approach, we consider more general combination anomalies
in which the regions do not necessarily overlap each other, and we also explore a
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Fig. 2. Overview of our method. Top right: the generative inpainting network with
global and local discriminators. The generator contains a coarse network and a refine-
ment network, which has the same structure in [23] except we use gated convolution
because the partial mask is irregular. We also design an adaptive local discriminator
for predicting whether each salient region is real or fake. Bottom left: Gaussian local
region weighting from an attention map. (Color figure online.)

different way to detect anomalous combinations by recovering the missing parts
in salient regions with inpainting and a new anomaly score function.

3 Methodology

3.1 Problem Formulation

We target at detecting whether an input image is abnormal by considering its
salient areas and the contextual information around them. The input dataset
D is composed of a training set Dtra = {(I1, y1), . . . , (In, yn)} and a test set
Dtst = {(I∗

1, y
∗
1), . . . , (I

∗
m, y∗

m)}, where Dtra ∩Dtst = ∅. y and y∗ are the labels to
the corresponding inputs. In the case of a one-class anomaly detection problem,
Dtra contains only normal images yi = 0, i = 1, 2, . . . , n, and Dtst contains both
normal and abnormal images y∗ ∈ {0, 1}. Here, 0 and 1 represent the class labels
of normal and abnormal images, respectively. The goal is to train a network with
samples in Dtra to detect the anomalies in Dtst.

We predict whether an image I∗
j , j = 1, 2, . . . , m, is abnormal by combining

the inpainting results of its k most salient regions R∗
j = {R∗

j1,R
∗
j2, . . .R

∗
jk}

in the image. Salient region R∗
jt is obtained by a pre-trained dense captioning

model, such as Densecap [20], and have the form of (x∗
jt, y

∗
jt, w

∗
jt, h

∗
jt), where x∗

jt

and y∗
jt represent the coordinates of the top-left vertex, while w∗

jt and h∗
jt are

the width and the height, respectively.
Following [18,19], we consider three kinds of anomalies which are single-

region anomalies, background-region anomalies, and dual-region anomalies.
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– A single-region anomaly is an object or an action which has never been
observed in the training set. Such an anomaly only occupies a part of the
image and has been tackled in many previous works [10,11,13,15].

– A background-region anomaly is an action or object which is not supposed
to be in its current environment, such as the left image in Fig. 1 (a). The action
in the red rectangle never takes place in this environment, but we observe it
in another environment in the training set.

– A dual-region anomaly is a kind of anomaly which is composed of a pair of
image regions. It refers to the items in the two regions which are not supposed
to appear at the same time, e.g., the right image in Fig. 1 (b).

The last two are considered as kinds of anomalous combinations, since we cannot
determine whether there is an anomaly from just one region.

The performance of our method is evaluated in terms of Receiver Operator
Characteristic Curve (ROC), that plots the true positive rate (TPR) against
the false positive rate (FPR) at various threshold settings, Area Under Curve
(AUC) score, accuracy, recall, and precision.

3.2 Local Salient Region and Global Similarity Loss

As shown in many inpainting tasks [23,24], the result of inpainting a totally
masked object will be prone to removing the object instead of recovering it. Thus,
for our purpose of detecting anomalies from the inputs and the corresponding
inpainting results, we use partial masks which randomly keeps some areas visible
in a salient region to recover the masked areas.

Given a partial mask M shown in Fig. 2, where white (value equals 1) means
the area that needs to be inpainted and black (value equals 0) is the unmasked
area, the input is defined as

Iin = I � (1 − M) ⊗ M, (1)

where I is the raw image, � and ⊗ represent element-wise multiplication and
concatenation operation, respectively.

Let I′ be a coarse result and I′′ be a final inpainting result, where (I′, I′′) =
G(Iin), and G represents the generator. Although �2-loss is widely used in recon-
struction tasks [10,11,13], it correlates poorly with image quality as perceived
by a human observer and it assumes that each pixel is independent [31]. As
suggested in [31,32], a combination loss of �1 and SSIM (Structural Similarity
Index Measure) function [30] helps reconstruct images better, which is defined
as

Lmix(I, Î) = α(1 − SSIM(I, Î)) + (1 − α)||I − Î||1, (2)

where Î is the reconstructed image. α is a trade-off hyperparameter that controls
the relative importance of the two items.

Typical inpainting methods usually consider the global loss only and utilize
�1- or �2-loss on the entire image. In our task of detecting anomalies from salient
regions, we need to pay more attention to the inpainting results of the regions
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because we obtain a local anomaly score for each region. Thus, other than the
improved global similarity loss Lglobal,

Lglobal = EI,I′,I′′ [Lmix(I, I′) + Lmix(I, I′′)], (3)

we also consider a local salient region loss Llocal of a salient region in the image,

Llocal = ER,R′,R′′ [Lmix(R,R′) + Lmix(R,R′′)], (4)

where R,R′,R′′ represent the corresponding region in the raw, coarse, and final
inpainting images given the region coordinates, respectively. The final similarity
loss is the summation of the above two loss functions.

L = Lglobal + Llocal. (5)

3.3 Attention-Based Gaussian Weighting Anomaly Score

During the test phase, each salient region is masked and then inpainted by our
trained network. For the single-region anomalies or the anomalous combinations,
there exist contextual violations. Thus, some of the salient regions cannot be
recovered well because we train our inpainting network with only normal data.
In order to determine the contribution of each salient region in the final anomaly
score, we propose an attention-based Gaussian weighting anomaly score function.

Take Fig. 3 (a) as an example. Only the red rectangle contains anomalous
action and we expect that it can contribute more to the final anomaly score than
other normal regions. Hence, we propose a novel way to calculate the anomaly
score of an image with these regions. Given the jth image I∗

j , which contains k
regions, in the test set, we calculate the local anomaly score Ajt, t = 1, 2, . . . , k,
of each region R∗

jt by Lmix:

Ajt = Lmix(R∗
jt,R

∗′′
jt ), (6)

where R∗′′
jt is the final inpainting result of the tth region R∗

jt.
Given the multivariate normal distribution function

p(x|µ,Σ) =
1

√
(2π)d |Σ| exp(−1

2
(x − µ)TΣ−1(x − µ)), (7)

we allocate different weights for different regions by taking the coordinates of
the center of a region as the input.

Since the most salient region is not at a fixed position, we propose a biased
mean vector for Eq. 7 to determine the region with the highest weight accord-
ing to the attention mechanism. As shown in Fig. 3, we first obtain the center
position Cjt = (xjt, yjt) of each region R∗

jt. Then the highest activation point
Tj = (xj , yj) is obtained from an attention map which is generated by a com-
monly used approach named Grad-CAM [33] from an intermediate layer in the
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(a) (b) (c)

Fig. 3. Overview of selecting mean vector µ for Gaussian function. (a) Image with
several regions. (b) Attention map. (c) The position with the highest activation score
(marked as a blue dot), the nearest region (marked as a red rectangle) to the blue dot,
and the center (marked as a red dot) of the region. (Color figure online)

Table 1. Statistics of the two datasets.

Robotic+ HAM

Training Test Training Test

Normal 5114 416 11777 466

Abnormal 0 28 0 34

global discriminator. We select the closest region center Cjtmin to Tj by Euclidean
distance d(·, ·) as the mean vector µ = Cjtmin in the Gaussian function, where

tmin = arg min
t∈{1,2,...,k}

d(Tj , Cjt). (8)

The weight γjt = p(Cjt|Cjtmin
,Σ) of R∗

jt is calculated by its center position
given Eq. 7. The final anomaly score Âj for I∗

j

Âj =
k∑

t=1

γjt
∑k

t=1 γjt
Ajt. (9)

4 Experiments

4.1 Datasets

To evaluate our proposed method GIAD, we conduct experiments on two human
monitoring datasets which are both taken by an autonomous robot. The statistics
of the two datasets are shown in Table 1 and several examples are shown in Fig. 4.

Robotic+ Dataset. This dataset is an extension of a previous robotic dataset
which was introduced in [19]. It contains 4768 training and 358 test images
including 15 abnormal images that only include single-region anomalies. We add
some background-region anomalies, examples of which are shown in the two
rightmost columns in Fig. 4 (a), to this dataset. Such a kind of anomalies need
to take both the actions and the environment into consideration. The dataset
has 346 and 86 additional training and test samples, respectively.
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(a) Robotic+ (b) HAM

Fig. 4. Examples of the Robotic+ dataset and the HAM dataset [18]. The examples
in the top row and bottom row are normal and anomalous, respectively. In (a), the
leftmost column contains samples from the original Robotic dataset [19], where holding
an umbrella is an unseen action in the training set. The two rightmost columns in (a)
are several added samples in the Robotic+ dataset. Playing with a cellphone or sleeping
is abnormal when the man is in this environment (a working area), but normal when he
is in another environment (see the top middle sample). In the HAM dataset, the man
holding a teddy bear or a handbag, which belongs to another person in the training
set, is considered as anomalous.

HAM Dataset. The samples in HAM (Human Activities Monitoring) dataset
[18] are taken at several designated positions in a room to monitor human activ-
ities and find anomalies. It contains 11777 training and 500 test samples. In
addition to the single-region anomalies, it also contains dual-region anomalies,
e.g., holding a teddy bear or a bag belonging to another person, and playing
with a basketball in a room.

4.2 Experimental Setup

Following [18,19], we use a pre-trained Densecap [20] as the saliency region
extractor and set k = 10 as the number of detected regions for each image.
For stable GAN training, we adopt spectral normalization and hinge loss as
the adversarial loss [34]. We optimize L and the adversarial loss by Adam [35]
optimizer with an initial learning rate 2×10−3, β1 = 0.5, and β2 = 0.999, which
are common settings used in previous works [10,25,34]. The hyperparameter α
in the Lmix loss function was set to 0.85, which is the same setting in [31,32].
We implemented our approach using the Pytorch1 framework and Python on
Ubuntu 20.04 equipped with an NVIDIA RTX TITAN GPU and an i9-7900X
CPU.

As the baselines, we compare our approach GIAD with GAN-based methods,
including a variant of Lawson’s work [11] named FA-GAN [36], GANomaly [10],
and skip-GANomaly [25].2 We also compare a state-of-the-art inpainting-based

1 https://pytorch.org/.
2 The codes of GANomaly and skip-GANomaly are from the official implementations

on Github.

https://pytorch.org/
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(a) Robotic+ (b) HAM

Fig. 5. ROC curves and AUCs on the two datasets.

anomaly detection approach RIAD [29].3 All the networks are trained for 500
epochs by resizing the inputs to 256 × 256. Moreover, we take two region-based
approaches as our baselines, which are named AIRD [19] (Anomalous Image
Region Detection) and FSTAD [18] (Fast-and-Slow-Thinking Anomaly Detection)
here. For the last two methods, an anomalous image is defined as an image which
contains at least one anomalous region [18]. For the baseline methods, we keep the
hyperparameter values as suggested in their original papers.

4.3 Results and Analysis

As shown in Fig. 5, we first examine the performance of our proposed method
by comparing the baselines through ROC curves and AUCs. According to the
previous experiments [36], FA-GAN and GANomaly achieve AUC scores of 1.0
and 0.967 on the original Robotic dataset, respectively. The AUC scores drop
8.06% and 6.79% for the two methods on the Robotic+ dataset, which shows
the additional samples are more challenging. Both plots in Fig. 5 show that our
method consistently outperforms the baselines. The AUC scores of GIAD are
0.9779 and 0.9272 on the two datasets, which correspond to 6.36%–21.46% and
6.07%–19.73% improvements over the baseline methods, respectively. Table 2
shows the numbers of the false negative and the false positive samples, as well
as those of several evaluation metrics. From Table 2, we see that our method can
suppress the numbers of both false negatives and false positives compared with
the other methods on both datasets.

The top row in Fig. 6 shows a true positive example in the Robotic+ dataset
by our method but overlooked by other baselines except FSTAD. Note that in

3 https://github.com/plutoyuxie/Reconstruction-by-inpainting-for-visual-anomaly-
detection.

https://github.com/plutoyuxie/Reconstruction-by-inpainting-for-visual-anomaly-detection
https://github.com/plutoyuxie/Reconstruction-by-inpainting-for-visual-anomaly-detection
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Table 2. Number of false negatives (FN) and false positives (FP), as well as results in
terms of several evaluation metrics.

Robotic+ HAM

FN FP Accuracy Recall Precision FN FP Accuracy Recall Precision

FA-GAN 13 16 0.93 0.54 0.48 12 75 0.82 0.65 0.23

GANomaly 15 14 0.93 0.46 0.48 9 75 0.83 0.74 0.25

skip-GANomaly 16 43 0.87 0.43 0.22 20 92 0.78 0.41 0.13

RIAD 14 25 0.91 0.50 0.36 9 80 0.82 0.74 0.24

AIRD 12 69 0.82 0.57 0.19 14 88 0.80 0.59 0.19

FSTAD 13 65 0.82 0.54 0.19 7 76 0.83 0.79 0.26

GIAD 5 10 0.97 0.82 0.70 2 50 0.90 0.94 0.39

the training phase, we observe the man is working at his computer in such an
environment and playing with his cellphone in a different environment (a rest-
ing area). Compared with other samples in this scenario, playing a cellphone
only occupies a small area (about 30 × 30 pixels), which can be seen as a small
abnormal action in this environment. We see that FA-GAN and GANomaly can
reconstruct the background well but fail in the area of the man holding a cell-
phone. The two methods make wrong predictions because the high-level features
in CNNs tend to neglect details of small regions. For skip-GANomaly, due to
its use of U-net structure, the output can combine the low-level features of the
input for better reconstruction, which results in false negative predictions. The
result of RIAD is blurry due to its use of �2-loss and the smoothing operation,
which results in a relatively low anomaly score. This example is also overlooked
by AIRD because it assumes that each region is independent and cannot detect
such combinations. Our method obtains the position with the highest activation
score, which is marked as a blue dot in (f), and the red rectangle, which is the
nearest region to the blue dot and is used to compute the center of the Gaussian
weight.

We also show another abnormal example in the HAM dataset detected by
our method in the bottom row in Fig. 6. The woman touches the basketball and
she never did it in the training set. Although the reconstructed images by FA-
GAN and GANomaly look blurry, the anomaly scores of these images are much
smaller than those of the abnormal samples.4 That is because they calculate
the anomaly score of the latent vectors. Small changes at latent vectors may not
yield a large anomaly score in the two methods, but they can produce significant
visual differences. The evidence can be also found in [36].

Figure 7 shows abnormal examples in the two datasets, which are overlooked
by our method.5 When predicting these examples, the attention maps provide
wrong positions, which mislead the Gaussian weighting function. Thus, although
the anomalous regions (marked as red rectangles) are assigned relatively high
anomaly scores in the two examples, the weights of the two regions are small,

4 The other two region-based methods successfully detect this example.
5 The two examples are detected by FSTAD only.
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Fig. 6. Examples of the anomalies in the Robotic+ (top row) and HAM (bottom row)
datasets. Our method successfully detects these examples. (a) Original inputs. (b)-
(e) are reconstructed images by FA-GAN, GANomaly, skip-GANomaly, and RIAD,
respectively. (f) Attention maps. (g) The positions with the highest activation scores
(marked as blue dots) and the nearest regions (marked as red rectangles). (h) The
inpainting results from the images obtained by masking the regions in (g). (Color
figure online)

(a) An example from Robotic+ (b) An example from HAM

Fig. 7. False negative examples with our method in the Robotic+ (a) and the HAM
datasets (b). The leftmost image in (a) is the input, and the middle one is the attention
map. The rightmost image in (a) shows the position with the highest activation score
(marked as a blue dot), the nearest region (marked as a green rectangle), and an
anomalous region (marked as a red rectangle). (Color figure online)

which makes the final anomaly score of these examples much smaller than other
abnormal examples.

Previous methods [6,11,13] usually detect small anomalies in real-world sce-
narios by splitting an image into many patches with a sliding window. To see
whether our approach still outperforms the three GAN-based baselines which
use such a setting, we explore two different sizes of the sliding window for them.
Note that these sliding windows are larger enough to cover the combinations of
objects in images. Table 3 shows the results of the three GAN-based baselines.
We see that although the three GAN-based baselines have different degrees of
improvement on AUC scores with the sliding windows, our method still out-
performs them. The reason lies in the fact that although the size of the sliding
window increases, there is still no relation between patches available. For exam-
ple, they still cannot detect the examples in Fig. 6.
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Table 3. Comparisons of AUC scores. For the three GAN-based baselines, we take two
different settings of the sliding window which are determined by the size of anomalies.
A ‘70p-20s’ represents the sliding window has the size of 70 × 70 pixels and the step
size of 20 pixels.

FA-GAN GANomaly skip-GANomaly RIAD AIRD FSTAD GAID

Image-level 70p-20s 140p-20s Image-level 70p-20s 140p-20s Image-level 70p-20s 140p-20s

Robotic+ 0.919 0.936 0.919 0.901 0.918 0.939 0.860 0.880 0.908 0.890 0.805 0.849 0.978

HAM 0.866 0.887 0.884 0.873 0.880 0.873 0.774 0.806 0.832 0.864 0.816 0.874 0.927

5 Conclusion

In this paper, we proposed a generative inpainting-based model to detect both
single-region anomalies and anomalous combinations in human monitoring tasks.
By utilizing inpainting, the model is capable of making use of contextual infor-
mation of known areas in each salient region to reconstruct the missing parts.
Moreover, we explore an attention-based Gaussian weighting anomaly score to
allocate different importance weights for salient regions according to the atten-
tion map from the discriminator to obtain the final anomaly score. Experiments
on two real-world robotic datasets show the superiority of our proposed method
compared with other baselines in terms of detecting unseen anomalies or small
anomalies, as well as anomalous combinations.

The limitation is that the Gaussian center could not be accurate if the back-
ground is different from the previous observations, which makes the discriminator
generate misleading attention maps. Our future work will explore a more robust
discriminator with additional pretext tasks, e.g. rotation task, to learn feature
representations for better localization of the Gaussian center.
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12. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-
AnoGAN: fast unsupervised anomaly detection with generative adversarial net-
works. Med. Image Anal. 54, 30–44 (2019)

13. Sabokrou, M., Khalooei, M., Fathy, M., Adeli, E.: Adversarially learned one-class
classifier for novelty detection. In: Proceedings of CVPR, pp. 3379–3388 (2018)

14. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context
encoders: feature learning by inpainting. In: Proceedings of CVPR, pp. 2536–2544
(2016)
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Abstract. Identifying the geographic location of online social media
users, also known as User Geolocation (UG), plays an essential part in
many Internet application services. One main challenge is the scarcity of
users’ public geographic information. To overcome it, most works focus
on user geolocation prediction with posts and interactions on social
media. However, they do not consider the distinction of variant social
connections, which may impair the performance of the UG models. To
address this issue, we propose a multi-view model, Heterogeneous graph
Attention networks for user Geolocation (HAG), which introduces the
attention mechanism to mine valuable cues in social networks and text
contexts jointly. In the network module, we creatively apply a heteroge-
neous graph to model various social interactions and introduce a hetero-
geneous graph attention network to learn network structure information.
In the text module, we propose a context attention network to extract
geo-related text information. Extensive experiments conducted on three
Twitter datasets show that HAG achieves state-of-the-art performance
compared to strong baselines.

Keywords: User geolocation · Heterogeneous graph · Attention
mechanism

1 Introduction

As one of the social media users’ attributes, geographic location has become
crucial information for many online application services, such as event detection
[23] and location-based recommendation [3]. Despite the broad applications of
users’ locations, user geolocation remains challenging due to the scarce and noisy
clues in publicly available information. For example, the data on Twitter shows
that only 5% of users provide the coordinates of their home in profile [6], and
1% of tweets are geotagged [5]. Therefore, it is a burning question to predict the
locations of users on social media.

Users’ public information on social media, e.g., published posts and social
interactions, provides clues to UG. Early works focus on mining location clues
in user media posts, such as location-related words and language habits. Rep-
resentative text-based methods include word distribution comparison [22,33]
c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13032, pp. 433–447, 2021.
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and location indicative words extraction [13,20]. In addition, social networks
extracted from social interactions can also reveal the distance between users.
Most network-based methods utilize label propagation or node embedding [8,30]
to process network structure data. More recently, hybrid methods [10,21] absorb
both advantages of the previous two to improve further performance, fusing text
and network features to infer users’ location.

Previous work has achieved promising results thanks to well-designed mod-
els; however, there remain some shortcomings. The dominant approaches [21,36]
simply treat various types of interaction in social networks as the same, without
distinguishing the importance of varied social connections. Such simplification
ignores the correlation of different types of social interaction and may impair per-
formance. Besides, during text processing, commonly used indicative words [13]
and bag-of-words features [20] can not sufficiently capture the overall semantics
of given textual content. Further, static embedding methods, such as doc2vec
[10], are tricky to capture users’ location-related language habits.

To address the above problems, we propose a multi-view model for UG. First,
to finely handle the various types of social connections, our method applies a
heterogeneous social graph to represent social interactions between users and
employs a heterogeneous graph attention network (HAN) [32] to learn user net-
work embedding. Next, inspired by the superiority of recurrent neural network
(RNN) on modeling overall context semantics, we adopt a context attention net-
work (CAN) that combines RNN with the attention mechanism to obtain the
context embedding. Finally, a geolocation prediction layer combines the above
two embeddings to identify the locations of social media users.

The main contributions of our work are summarized as follows:

– We utilize heterogeneous graphs to model social interaction with considering
the difference of varied connections and apply HAN to learn user node repre-
sentations. To the best of our knowledge, it is the first attempt to distinguish
the importance of different social interactions for UG.

– We adopt CAN to dynamically learn features of context semantics instead of
traditional static representations, in which the use of attention mechanisms
is beneficial to capture user location-related language habits.

– Experimental results on three real Twitter datasets show that our model
consistently outperforms all baselines in all evaluation metrics.

2 Related Work

2.1 User Geolocation

According to different types of users’ social media information used to make
predictions, we can roughly divide most existing works into three paradigms.

Text-Based Approach. The first text-based method uses place name detection
and heuristic algorithms to determine the geographic scope of web pages [9].
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After that, plenty of text-based methods have been proposed for geo-locating
online users. The word distribution model identifies users’ location by comparing
the similarity of the word distribution between the target text and the label
text [22,33]. An alternative approach predicts users’ locations by searching for
location indicative words [13]. Subsequently, bag-of-words models such as TF-
IDF [15] and LDA [4] are widely used in text feature extraction [19,20]. Although
the text-based approach has achieved some success, problems such as noisy text
and limited text are still troublesome.

Network-Based Approach. Backstrom et al. [1] apply the maximum likeli-
hood method to estimate the users’ locations and report that the possibility of
friend relation decreases monotonously with distance. In addition to reciprocal
friendships, social interactions such as mention and repost can also reveal the
distance between users [16]. In a social network constructed by user interactions,
methods such as label propagation [8] and node embedding [30] are used to pre-
dict users’ locations. Generally, network-based approaches provide a new clue
for UG. However, this line of approaches still performs unsatisfactorily because
isolated users cannot benefit from network information.

Hybrid Approach. Combing text and network can effectively solve the dis-
advantages mentioned above. Therefore, most recent works utilize deep learning
techniques to integrate various user characteristics related to geographic loca-
tion. For example, Do et al. [10] fuse features of TF-IDF, doc2vec, and node2vec
to infer users’ locations. In addition to text and network features, more user
meta-data such as time zone, profile location can be aggregated for prediction
through attention mechanisms [14]. Further, graph neural networks have made
remarkable achievements in processing non-euclidean spatial data. So graph con-
volutional networks (GCN) and graph attention networks are widely used to
leverage multiple views of user data [21,36].

2.2 Heterogeneous Graph Neural Network

Heterogeneous graph neural networks (HGNN) aim to deal with heterogeneous
graphs, which have multiple types of nodes or edges [11]. One of the early
attempts to model heterogeneous graphs is the relation graph convolutional net-
work [24], which focuses on multiple relational graphs. In addition, heterogeneous
graph neural network [35] adopts bidirectional LSTM to aggregate the features
of different types of nodes. To improve the performance and interpretability of
HGNN, the heterogeneous graph attention network (HAN) [32] incorporates the
attention mechanism to model the importance of each meta-path-defined edge.
Inspired by their work, we conduct the first attempt to construct a heteroge-
neous graph representing different social interactions and adopt HAN to model
the heterogeneous graph.
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3 Preliminary

In this section, we formally describe the UG task. Before that, we define a
heterogeneous graph, meta-path, and meta-path-based neighbors as follows.

Definition 1 (Heterogeneous Graph [26]). A heterogeneous graph is a graph
that consists of multiple types of nodes or edges. The formal representation of a
heterogeneous graph is G = (V, E), where the node-set V and the edge-set E are
associated with the node type mapping function φ : V −→ A and the edge type
mapping function ψ : E −→ R. A and R represent the set of node types and
edge types, where |A| + |R| > 2.

Example 1. A heterogeneous graph G = (V, E) on the Twitter social net-
work consists of user nodes V and various social connections E such as
mention, retweet, and reply. In this case, we have A = {User} and R =
{Mention,Retweet,Reply}.

Definition 2 (Meta-path [27]). A meta-path is defined as a path composed of
a series relations between various nodes. The formal description is Φ = A1

R1−→
A2

R2−→ · · · Rl−→ Al+1, where A ∈ A and R ∈ R.

Example 2 Interactions between users in Twitter social networks can be repre-
sented by various meta-paths, such as User Retweet−→ User and User Mention−→ User.

Definition 3 (Meta-path-based Neighbors [35]). Meta-path-based neigh-
bors NΦ

v is a set of nodes connected with node v through a meta-path Φ.

In summary, we give the formal definition of the problem as follows. Suppose
we have a set of social media users V and each user v ∈ V has a set of media
posts Tv = {t1, t2, . . . , tN} published by v. We extract social interactions (such
as mention and retweet) between users from posts to construct a heterogeneous
graph G = (V, E) with different types of edges. Based on the posts and social
interactions, our task aims to predict the geographic locations of users.

4 Approach

In this section, we propose the heterogeneous graph attention network for user
geolocation (HAG). As shown in Fig. 1, the HAG model consists of three parts:
heterogeneous graph attention network, context attention network, and geoloca-
tion prediction. In detail, the first two parts generate network embeddings and
context embeddings, respectively, and the last part aggregates these two embed-
dings for prediction. Next, we start with the construction of a heterogeneous
graph and follow with a detailed introduction of the above three components.
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Fig. 1. The framework of HAG.

4.1 Heterogeneous Graph Construction

We extract interactions from users’ tweets to construct a heterogeneous graph
G = (V, E). The heterogeneous graph treats users as nodes and various inter-
actions as different types of edges. Specifically, if one mentions another or both
mention the third user, the two user nodes will be connected by a bidirectional
mention (M) edge, and the same deal for the retweet (R) relation. In addition,
we add all types of self-loops to each node. Figure 2(a) provides an illustrative
example. Note that although USERA retweets the tweet that mentions USERC

(in the form of @USERC), a mention relation is not linked between USERA and
USERC. Instead, we treat this mention operation as only a social interaction
between USERC and the original author USERB. According to the above pro-
cessing, we generate a heterogeneous graph of the social network as Fig. 2(b).
Further, if a user is mentioned or retweeted by more than k users, the user is
treated as a ‘celebrity’ [19]. We filter out all ‘celebrity’ nodes to reduce net-
work edges with low geolocation utility. In the constructed heterogeneous graph,
the mention and retweet interaction between users can also be represented by
meta-paths U

M−→ U and U
R−→ U , respectively.

4.2 Heterogeneous Graph Attention Network

We adopt HAN to model a heterogeneous graph G = (V, E) for learning the
network structure information. Specifically, given a set of user nodes V paired
with their published posts T , we regard a user’s posts as one user document
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Fig. 2. An illustrative example of heterogeneous graph construction.

and adopt the Scikit-Learn library [17] to extract the TF-IDF matrix X for
all user documents. Then, considering a user node v ∈ V, we take the feature
vector xv ∈ X of the user v’s document as the initial node features. After that,
a node-level attention layer generates the node-level features based on different
meta-paths by joint modeling the information from meta-path-based neighbors.
The learned features are then fed into a semantic-level attention layer to generate
the user network embeddings.

Node-Level Attention. Since there is only one type of node in our heteroge-
neous graph, we adopt a share matrix Wx to learn hidden node features x̃v:

x̃v = Wx · xv. (1)

Then, we perform self-attention [28] on the nodes to model the correlations
between users. Specifically, for a pair of users (v, u) linked by a meta-path Φ, we
compute the attention coefficient eΦ

vu to measure the influence strength of user
u to user v:

eΦ
vu = σ(aT

Φ · [x̃v‖x̃u]), (2)

where ‖ denotes the concatenate operation of the vector, aΦ is the node-level
attention vector of meta-path Φ, and σ(·) represents a nonlinear activation func-
tion (LeakyReLU(·) in our experiments). To convert the coefficients into node-
level attention scores αΦ

vu, we normalize the attention coefficients by softmax
function:

αΦ
vu =

exp(eΦ
vu)

∑
u∈NΦ

v
exp(eΦ

vu)
, (3)
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where NΦ
v denotes the meta-path-based neighbors of user v. Next, we aggregate

the hidden features of the neighbor nodes based on node-level attention scores:

zΦ
v = σ(

∑

u∈NΦ
v

αΦ
vu · x̃u), (4)

where zΦ
v denotes the node-level embedding of user v.

We further apply a multi-head attention mechanism to attend to node-level
information from different representation subspaces jointly. Specifically, we con-
catenate K independent learned embeddings generated by different akΦ and Wk

x

as follows:

zΦ
v =

K

‖
k=1

σ(
∑

u∈NΦ
v

αΦ,k
vu · x̃k

u). (5)

After that, we can learn all nodes’ node-level embeddings {ZΦ1 ,ZΦ2 , . . . ,ZΦL}
for different meta-paths {Φ1,Φ2, . . . ,ΦL}.

Semantic-Level Attention. Given the node-level embeddings {ZΦ1 ,ZΦ2 , . . . ,
ZΦL}, we first apply a fully connected layer to learn hidden representations of
ZΦi

for each meta-path Φi. Then, to measure the importance of meta-path Φi,
we calculate the correlation coefficients between the hidden representations and
the semantic-level attention vectors qz and average them to get the importance
coefficients wΦi

as follows:

wΦi
=

1
|V|

∑

v∈V
qT
z · tanh(Wz · zΦi

v + bz), (6)

where Wz is the weight matrix and bz is the bias vector. Next, we normalize
the importance coefficients of meta-path to obtain the semantic-level attention
score βΦi

as:

βΦi
=

exp(wΦi
)

∑L
i=1 exp(wΦi

)
, (7)

where L is the number of meta-paths. Next, the semantic attention scores are
used to obtain network embeddings Z as follows:

Z =
L∑

i=1

βΦi
· ZΦi

. (8)

To learn information of higher-order neighbors, we stack several HAN layers to
learn the final network embedding vector zv of user v.

4.3 Context Attention Network

In addition to social interaction, we also extract geo-related text information by
incorporating a context attention network to enhance our model performance.
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In detail, given the published posts T = {t1, t2, . . . , tN} of a user, our CAN first
applies the post encoder to obtain the representation of each post independently.
Then a text encoder jointly learns the final context representation by aggregating
all post embeddings.

Post Encoder. Considering the superiority of GRU [2] in learning contextual
information compared to static embedding methods, we adopt bidirectional GRU
(Bi-GRU) to learn the latent representation of each word. In practice, given
a post t = {w1, w2, . . . , wM}, we first adopt GloVe’s Twitter vectors [18] to
obtain word embeddings {w1,w2, . . . ,wM}. After that, Bi-GRU takes the word
embeddings as input to generate the hidden states of each word, represented by
the following formula:

H = GRU(w1,w2, . . . ,wM ), (9)

where H = {h1,h2, . . . ,hM} denotes the contextual representation of each word,
which concatenates the forward and backward hidden states.

To distinguish the contribution of different words to geo-related features,
we introduce a word-level attention vector qw and aggregate the contextual
representations of these words to generate the post embedding s as follows:

ci = qT
w · tanh(Ww · hi + bw), (10)

γi =
exp(ci)

∑M
i=1 exp(ci)

, (11)

s =
M∑

i=1

γi · hi, (12)

where Ww and bw are the weight matrix and the bias vector, respectively. We
compute the correlation coefficients ci to represent the importance of each word
and adopt a softmax function to get the normalized attention score γi.

Text Encoder. Considering the differences in the location-related clues
between posts, we use the attention mechanism to measure the contribution
of each post to user geolocation. In practice, given the posts embeddings
{s1, s2, . . . , sN} of user v, we adopt a post-level attention vector qs to learn
the weight of posts and aggregate those posts embeddings to obtain the final
context embedding dv:

oi = qT
s · tanh(Ws · si + bs), (13)

δi =
exp(oi)

∑N
i=1 exp(oi)

, (14)

dv =
N∑

i=1

δi · si, (15)

where Ws denotes the weight matrix and bs is the bias vector.
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4.4 Geolocation Prediction

To combine the features extracted from user texts and social interactions, we
transform these features into the same feature space and then fuse network
embedding zv with context embedding dv to obtain the hybrid feature vector.
Next, we adopt a multilayer perceptron (MLP) to predict the probability ŷv:

ŷv = Softmax(MLP(Mz · zv ⊕ Md · dv)), (16)

where ⊕ denotes the element-wise sum operator, Mz and Md are the mapping
matrix. The element ŷvi ∈ ŷv represents a user’s predicted probability of being
located at the region i, and the region with the maximum probability is the final
predicted region.

Finally, towards learning and optimization of the model, we employ cross-
entropy to calculate the loss for classification as follows:

Loss = −
∑

v∈Vlabel

∑

i

yvi · log(ŷvi), (17)

where Vlabel is a set of nodes with geotags, and yvi represents the probability
that the actual location of the user v belongs to the region i.

5 Experiment

5.1 Dataset

To evaluate the effectiveness of our method, we conduct experiments on three
popular Twitter datasets: GeoText [12], Twitter-US [22], and Twitter-World
[13]. All these datasets are pre-partitioned into training, development, and test
sets. Social media users in these datasets contain their published posts, also
tagged with their location in the form of latitude and longitude. Our experi-
ments only use the raw data in these Twitter datasets. To treat the UG task as
a classification task, we discretize the geographic coordinates of training users
into small regions through the k-d tree [22] method. Considering the unbalanced
distribution of users in a region, we choose the centroid of all training users’
coordinates in the region as the coordinates it represents. For the input of our
model, we lowercase each of the tweets, remove stop words and extract inter-
actions between users from tweets. Table 1 reports some quantitative statistics
on users, tweets, mention interactions, retweet interactions (removing repeated
interactions), and region classes to display these datasets visually.

Table 1. Statistics of datasets.

Dataset Users Tweets Mentions Retweets Classes Train Dev Test

GeoText 9,475 377,504 168,911 63,687 129 5,685 1,895 1,895

Twitter-US 449,200 38,036,187 7,168,829 959,276 256 429,650 10,000 10,000

Twitter-World 1,386,766 13,350,229 4,382,850 229,942 930 1,366,766 10,000 10,000
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5.2 Baseline

We compare our model with following user geolocation approaches:

1. HierLR [34]: A text-based hierarchical classification model that adopts logis-
tic regression (LR) models at each node in a hierarchical grid.

2. MLP4Geo [20]: A text-based model that extracts the TF-IDF features of
the text as the input of simple MLP.

3. MADCEL [19]: A network-based model that performs label propagation on
a weighted network.

4. GCN-LP [21]: A network-based model that utilizes the graph convolutional
networks to convolve one-hot encoding of neighbors.

5. MADCEL-LR [19]: A hybrid method that adopts a l1 regularised LR model
to predict textual labels for isolated users before label propagation.

6. GCN [21]: A multi-view geolocation model based on GCN, which extracts
the bag-of-words feature of the text as input.

7. MENET [10]: A multi-entry model that fuses textual information (TF-IDF
and doc2vec), social network (node2vec), and metadata (timestamp).

5.3 Metrics

To evaluate the quality of the model, we utilize the Haversine formula [25] to
calculate the error measured in kilometers between the predicted coordinate ĉ
and the real coordinate c, and adopt three distance-based metrics as follows:

1. Acc@161: The accuracy of location prediction within 161 kilometers or 100
miles from the actual location:

acc161 =
1

|Vtest|
∑

v∈Vtest

[Haversine(ĉv, cv) ≤ 161], (18)

where Vtest represents a set of test-set users.
2. Mean: The average of the errors in prediction:

mean =
1

|Vtest|
∑

v∈Vtest

Haversine(ĉv, cv). (19)

3. Median: The median of the errors in prediction:

median = median({Haversine(ĉv, cv), c ∈ Vtest}). (20)

5.4 Implementation

We implement HAG under the PyTorch framework and run it on four GeForce
GTX 3090 graphics cards. In the heterogeneous graph construction, ‘Celebrity
Threshold’ is set to {5, 15, 5} for different datasets, and the set of meta-paths is
{U

R−→ U,U
M−→ U}. The heterogeneous graph attention network with two layers
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is implemented by Deep Graph Library [31], and the hidden state dimension is
{64, 128, 192} for different datasets. The number of graph attention heads is
searched in {2, 4, 8, 16}. Moreover, in the context attention network, we set the
Bi-GRU hidden dimension to {50, 100, 200} for different datasets. All activation
functions are ELU(·) [7]. For training, we use the Adam optimizer with the
learning rate 1.0 × 10−3, and the ‘patience’ of the early stopping method is 25.

5.5 Result

Performance Comparison. Table 2 reports the performance of all models on
the three datasets, and the best performances are shown in bold. Compared
with network-based methods, two text-based methods HierLR and MLP4Geo,
underperform a lot on the GeoText and Twitter-World datasets, indicating that
social interaction is more valuable than textual post for user geolocation. The
main reason is the limited geo-related cues and noisy text in social media posts.
It is worth noting that the text-based methods have competitive performance
on the Twitter-Us dataset, which may be due to the sufficient number of tweets
in this dataset. In addition, All hybrid methods achieve a considerable perfor-
mance improvement as compared to network-based methods. Such improvement
shows that jointly incorporating the textual information and interactions benefits
the UG task. As shown, our model HAG consistently outperforms all baselines,
including those hybrid approaches, in all evaluation metrics. We attribute the
superiority of our model to the use of the heterogeneous graph attention network
and context attention network, which help to distinguish the influence of varied
interactions and dynamically extract geo-related cues from textual posts.

Table 2. Twitter user geolocation prediction performance.

Method GeoText Twitter-Us Twitter-World

Acc@161 Mean Median Acc@161 Mean Median Acc@161 Mean Median

Text-Based

HierLR – – – 48% 656 191 31.3% 1669 509

MLP4Geo 38% 844 389 54% 554 120 34% 1456 415

Net-Based

MADCEL 58% 586 60 54% 705 116 45% 2525 279

GCN-LP 58% 576 56 53% 653 126 45% 2357 279

Hybrid

MADCEL-LR 59% 581 57 60% 529 78 53% 1403 111

GCN 60% 546 45 65% 485 71 54% 1130 108

MENET 62% 532 32 66% 433 45 53% 1044 118

HAG (Ours) 63.4% 518 32 70% 371 39 59% 825 53
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Ablation Study. To examine the contributions of different components, we con-
duct an ablation study by comparing our full model with three variants. The first
two remove the heterogeneous graph attention network and the context attention
network, respectively. The last variant (denoted as GAT) utilizes a homogeneous
graph to represent the social interactions between users and replaces HAN with
the multi-head graph attention network [29] to model network structure data.
Experimental results on the two datasets (GeoText and Twitter-Us) are shown
in Table 3. We find that the heterogeneous graph attention network is essential,
and the combination of text and network features is beneficial to improve per-
formance. Moreover, compared with GAT, the proposed HAG achieves higher
scores on all datasets because it deeply analyzes the influence of different social
interactions for the UG task.

Table 3. Ablation study of HAG on GeoText and Twitter-US.

Method GeoText Twitter-Us

Acc@161 Mean Median Acc@161 Mean Median

HAG 63.4% 518 32 70% 371 39

w/o HAN 41% 843 411 49% 577 132

w/o CAN 59% 546 45 60% 478 94

GAT 62% 533 39 67% 421 47

Analysis. To better understand the influence of neighbors and interactions on
user geolocation prediction, we conduct an in-depth analysis of node-level atten-
tion and semantic-level attention. First, we take the user U6702 in the GeoText
dataset as an example. In the meta-path U

R−→ U , the attention value between
U6702 and its neighbors can be calculated through node-level attention, as shown
in Fig. 3(a). It is obvious that neighbors with the same geotag as U6702 have
higher attention scores, which verifies that the closer neighboring users are more
critical to U6702’s location prediction. Besides, taking the GeoText dataset as an
illustration, we report the Acc@161 scores of the single meta-path models and
the corresponding attention scores in Fig. 3(b). The single meta-path model of
U

M−→ U outperforms that of U
R−→ U , which may be due to the sufficient men-

tion edges. Further, since there may be many mention edges with low geolocation
utility, the attention value of U

M−→ U is lower than that of U
R−→ U .
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Fig. 3. In-depth analysis of node-level attention and semantic-level attention.

6 Conclusion

In this paper, we propose a multi-view user geolocation framework, HAG, which
combines network features and textual features. On the one hand, through the
heterogeneous graph attention network, our model can distinguish different types
of social interactions. On the other hand, the context attention network filters
out the noise in the text information, thereby extracting features related to geo-
graphic location. Extensive experiments on three Twitter datasets verify the
superiority of our method. In the future, we plan to apply more user character-
istic data such as user metadata to further improve performance.
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Abstract. With the development of artificial intelligence technology,
optimizing the performance of deep neural network model has become
a hot issue in the field of scientific research. Learning rate is one of
the most important hyper-parameters for model optimization. In recent
years, some learning rate algorithms with cycle mechanism have been
proposed. Most of them adopt warm restart and cycle mechanism to
make the learning rate value cyclically change between two boundary
values and prove their effectiveness by practicing in image classification
task. In order to further improve the performance of neural network
model and prove the effectiveness in different training task, the paper
proposes a novel learning rate schedule called hyperbolic tangent polyno-
mial parity cyclic learning rate (HTPPC), which adopts cycle mechanism
and combines the advantages of warm restart and polynomial decay. In
addition, the performance of HTPPC is demonstrated on image classifi-
cation and object detection tasks.

Keywords: Deep neural network · Learning rate · Warm restart ·
Cycle mechanism

1 Introduction

In recent years, there have been abundant research results on deep neural net-
works. It has been successfully applied in many fields such as video detec-
tion, image classification, object detection, face recognition, text translation and
driverless cars [9]. Many scholars are dedicated to studying how to optimize neu-
ral networks to improve the performance of the model.

Learning rate [29] is one of the most important hyper-parameters that affects
model convergence [18]. The neural network model forms a loss function accord-
ing to the internal parameters. The convergence of model depends on the mini-
mization of the loss function.

At present, Gradient Descent [4] is the most commonly used optimization
strategy in model training, which is used to update parameter in the neural net-
work model to minimize the loss function. In the process of parameter updating,
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the learning rate determines updating pace, thus affecting the effect of minimiz-
ing the loss function greatly [2,28]. Therefore, choosing an appropriate learning
rate schedule is extremely important for model training [6].

In order to improve the performance of neural network model, this paper pro-
poses a novel algorithm called hyperbolic tangent polynomial parity cyclic learn-
ing rate (HTPPC). It adopts the shape of hyperbolic tangent function (tanh) and
polynomial function to divide the learning rate rise and fall periods. At the same
time, the method adopts the way of odd-even high-low cycle, sets two cycle max-
imums. Through the high and low alternating learning rate value, saddle point
and local minimum are better crossed, which improves the generalization abil-
ity and effective capacity of the model. Although the current popular adaptive
learning rate algorithm can automatically adjust learning rate of each iteration
through complex and precise calculations, existing studies have proved that the
final result is usually worse than the cyclic methods [12,16].

This article demonstrated the effectiveness of HTPPC on the CIFAR-10 and
CIFAR-100 datasets [10] with image classification model such as ResNet50 [10],
Vgg16 [24], GoogleNetv2 [26], MobileNetv2 [23] and the Pascal Voc dataset [27]
with object detection model such as ShuffleNetV2-YOLOv3 [17,21].

2 Related Work

Initially, monotonic decay learning rate such as exponential decay learning
rate [1] and piecewise decay learning rate (Piecewise Decay LR) were widely
used in the training of advanced DNN architecture [5]. Through a lot of experi-
ments and attempts, attenuation of learning rate can improve the performance of
model, but it will result in a slower training speed. In order to effectively improve
convergence speed and accuracy of the model, some non-traditional learning rate
methods have been proposed in recent years.

In 2016, Loshchilov et al. proposed the stochastic gradient descent method
with warm restart [15]. This method no longer monotonically decays learning
rate, but initializes learning rate to a preset value after a period of interval, and
then gradually decays.

Inspired by the method, Leslie N. Smith proposed cyclical learning rate
(CLR) in 2017, which makes learning rate increase and decrease periodically
within two reasonable learning rate boundary values [25]. It is proved that the
increase and decrease of learning rate are effective in the overall training, which
can make the model jump out of the local minimum point and saddle point
during the training process.

In 2019, Purnendu Mishra et al. proposed polynomial learning rate policy
with warm restart (poly with restart) [19]. Learning rate is initialized to a certain
value in each cycle and performed polynomial decays. Experiments prove that
the combination of warm restart and polynomial decay is effective in improving
the accuracy of the model.

In 2020, a scholar proposed trapezoidal decay cyclic learning rate (TDL) [14],
the learning rate of each cycle rises linearly, keeps a fixed value and then declines
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linearly. Research has shown that keeping a stationary maximum value of each
learning rate cycle can help improve accuracy.

The above learning rates with cyclic mechanism are only practiced in image
classification task. In the article, the effectiveness of HTPPC is demonstrated on
image classification and object detection tasks, and further improve the training
effect of the model. HTPPC combines the characteristics of cyclic mechanism,
stationary value and polynomial decay. It is effective improved classification
accuracy and convergence speed.

3 Hyperbolic Tangent Polynomial Parity Cyclic Learning
Rate (HTPPC)

This section introduces a novel learning rate method called hyperbolic tangent
polynomial parity cyclic learning rate.

3.1 The HTPPC

According to the analysis of random matrix theory and neural network theory, an
important reason that makes it difficult to optimize neural networks is that there
are a large number of saddle points in high-dimensional non-convex optimization
problems [3]. The saddle point is usually surrounded by a plane with the same
error value and the plane is different in size, which makes it difficult for SGD
algorithm to escape from saddle point. The core idea of HTPPC is to consider
the problems of saddle points and local minimum points in the parameter space.

As Rong Ge discussed, adding occasional random noise to the gradient helps
to escape from saddle points. [7]. A lot of work has shown that for non-convex
optimization, the inherent noise helps in convergence. When interference noise
no longer has enough power to escape the saddle point, learning rate can be
increased to enhance the effect of the noise [8]. The method is similar to the
effect of Eq. (1) as follow:

wt+1 = wt − η · �f(wt) + ε, (1)

Where ε is a noise parameter. The parameters of each training sample are
updated by stochastic gradient descent, and each execution is updated once [22].
The formula of updating parameters w is:

wt+1 = wt − η · �f(wt), (2)

where η represents learning rate, �f(wt) as a gradient function. HTTPC studied
in this paper uses momentum optimizer [20]. Stochastic gradient descent not
only increases the speed in the direction of the gradient, but also increases noise
interference, μ determines the size of the inertia:

zt+1 = μ · zt + �f(wt) (3)

wt+1 = wt − η · zt+1. (4)
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That is equivalent to subtracting an η · μ · zt from the original formula:

wt+1 = wt − η · �f(wt) − η · μ · zt, (5)

where zt represents direction and size of the last update, η · μ · zt is equivalent
to the noise parameter ε in Eq. (1).

During the training process, there are a large number of different saddle
points in the high-dimensional non-convex function, and the flat area near the
saddle point is not uniform in size. In this paper, we consider changing the
maximum cycle range to increase the randomness. Through the experimental
comparison, the effect of setting maximum value randomly is worse than setting
two best maximum values.

Therefore, our method sets two optimal maximum values in the cycle period.
In the odd period, learning rate value of this method is in a larger range. In the
even period, it is in a smaller range. Through alternating high and low trans-
formations, the model is more effective to jump out of different local minimums
and cross gradient flat areas of different areas.

Another reason why HTPPC works is that, by following the “LR parity range
determination” method in Sect. 3.2, three most suitable learning rate values are
selected. It is likely that near optimal learning rates will be used throughout
training [25].

Fig. 1. Hyperbolic tangent polynomial parity cyclic learning rate

In addition to the alternating cycle method, the rising of HTPPC accounts for
2/3 of each cycle, and the curve is a deformed hyperbolic tangent function. The
shape characteristics of this function enables HTPPC to have a small learning
rate at the beginning, then rise rapidly, and maintain a gentle upward trend
when it is close to the maximum value. The decline of HTPPC accounts for
the last 1/3 of each cycle, and the curve adopts polynomial decay. It can adapt
to different network models through adjustable deformation parameters [19].
Figure 1 shows the model of HTPPC.
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The steps of the hyperbolic tangent polynomial parity cyclic learning rate
algorithm are as follows:

(1) Set the parameters for model training: the maximum boundary of the odd
period Lodd, the maximum boundary of the even period Leven, the mini-
mum boundary Lmin. Number of epochs per cycle is s, and cur controls the
curvature of learning rate. Polynomial decay shape parameter is power.

(2) Determine the number of cycles: we get the current epochs Te by integrated
function. g indicates the current cycle, which is calculated by Te and s, the
formula is as follows:

g = Te%s. (6)

(3) Divide the period range: o indicates a node of two-thirds of a cycle, which is
calculated by g and s. a and b control the rise and fall of functions in each
cycle. When HTPPC is in the rise phase, a is 1 and b is 0. When HTPPC is
in the declined phase, a is 0 and b is 1.

o = (3 · g)/(2 · s) (7)

a = |o − 1| (8)

b = o. (9)

(4) Determine the parity period: p is a parameter for controlling the parity
period, it will alternate between 0 and 1 depending on the number of cycles,
the value of p is 1 for odd cycles and 0 for even cycles.

p = (1 + g)%2. (10)

(5) Calculation the learning rate: when p is 1, the learning rate formula is Eq.
(11), and when p is 0, the learning rate formula is Eq. (12).

ηJ = (Lodd − Lmin) ·
(
a ·

(
tanh( 3·cur·g

s −3)

2·tanh(cur) + 1
2

)
+ b · (−3·g

s + 3
)power

)
+ Lmin

(11)
ηO = (Leven − Lmin) ·

(
a ·

(
tanh( 3·cur·g

s −3)

2·tanh(cur) + 1
2

)
+ b · (−3·g

s + 3
)power

)
+ Lmin.

(12)

These parameters (g, o, a, b and p) are parameters in the algorithm, not
hyper-parameters for tuning. The learning rate algorithm with cycle mechanism
realizes the loop transformation of learning rate η between the minimum learning
rate boundary Lmin and two maximum learning rate boundary Leven and Lodd.

3.2 LR Parity Range Determination

Leslie N. Smith introduced the “LR range test” method [25] in CLR to estimate
the maximum and minimum boundaries of the learning rate. On the basis of this
method, we propose the “LR parity range measurement” method to determine
the three boundary lines of alternating parity. Before formal training, we contin-
uously increase the learning rate from a minimum in a few epochs or iterations.
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As learning rate continues to increase, the accuracy rate begins to rise. After
a period of time, the increase in accuracy begins to decrease and jitter. Usu-
ally after the accuracy rate begins to fall, if the learning rate increases a little
bit, the accuracy rate will increase slightly or more. Therefore, the maximum
value of even period (even lr) is corresponding learning rate when accuracy rate
drops for the first time, and the minimum value (base lr) is 1/4 of even lr,
with three decimal places. The maximum value of odd period (odd lr) is corre-
sponding learning rate when accuracy rate drops for the second time. Compared
with the “LR range test” method, the “LR parity range measurement” method
has more accurate boundary determination. For other deep learning training
tasks, accuracy can be changed to corresponding evaluation index. For example,
ShuffleNetV2-YOLOv3 object detection model in the experiment in Sect. 4.3, the
accuracy rate can be changed to mAP to determine learning rate loop range.

Fig. 2. Resnet50 LR range test; classification accuracy as a function of increasing
learning rate for 8 epochs (LR parity range measurement).

Figure 2 shows an example of making this type of run with the CIFAR-10
dataset. When lr = 0.006 the model accuracy rate drops for the first time, so set
even lr = 0.006, base lr = even lr/4 ≈ 0.001. Then accuracy rate drops for the
second time at lr = 0.008, so set odd lr = 0.008. When using a new model or
dataset, this method can quickly confirm the three changing ranges of learning
rate.

3.3 Cycle Period Stepsize

The stepsize refers to the number of epochs contained in each cycle. Experiments
show that running for 4 or more cycles will achieve even better performance.
Moreover, it is best to stop training at the end of a cycle, which is when the
learning rate is at its minimum [25].
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3.4 Curvature Parameter and Polynomial Shape Parameter

Fig. 3. An illustrations of the effect of different values of cur and power on the learning
rate curve for HTTP.

The curvature parameter cur and the polynomial decay parameter power control
the shape of learning rate decay, as shown in Fig. 3. The larger cur, the more
smooth areas before and after hyperbolic tangent function. cur and power make
learning rate change more flexible in the cycle. According to experimental results
are shown in Table 1. When cur is 3 and power is 0.9, the model could learn
faster and the accuracy rate could be higher. Therefore, all experiments in this
paper adopt this combination.

Table 1. Experimental results of HTPPC with multiple parameter training CIFAR-10
dataset on Resnet50.

Network Parameter Accuracy

Resnet50 cur = 3, power= 0.3 78.71

cur = 3, power= 0.6 78.76

cur = 3, power= 0.9 80.10

cur = 5, power= 0.3 78.87

cur = 5, power= 0.6 78.78

cur = 5, power= 0.9 78.01

4 Experiments

In this section, we train CIFAR-10 and CIFAR-100 datasets with image classifi-
cation networks. And we train Pascal Voc dataset with object detection network.
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HTPPC is compared with other learning rate methods by training results. All
the experiments have been performed on Baidu AI Studio artificial intelligence
training platform with NVIDIA Tesla V100 32 GB GPU and PaddlePaddle2.0.2
backend.

4.1 Dataset

The CIFAR-10 [10]and CIFAR-100 [10]are composed of 10 categories and 100
categories respectively, including 60000 images. Among them, 50000 images are
used for training and 10000 images are used for testing. Each image is a 32× 32
color image.

The Pascal VOC dataset [27]is a set of standardized and excellent dataset
for image recognition and classification. The paper uses the union of the training
verification sets of VOC2007 and VOC2012 as training set, which contains 16,551
images, and the labeled objects include 20 categories. It uses 4592 pictures of
VOC2007 testset for testing.

Table 2. Parameter setting of HTPPC on CIFAR-10 dataset

Network base lr even lr odd lr

Resnet50 0.001 0.005 0.008

Vgg16 0.001 0.006 0.007

GoogleNetv2 0.003 0.015 0.019

MobileNetv2 0.001 0.005 0.009

Table 3. Parameter setting of HTPPC on CIFAR-100 dataset

Network base lr even lr odd lr

Resnet50 0.001 0.007 0.014

Vgg16 0.005 0.023 0.028

GoogleNetv2 0.004 0.016 0.02

MobileNetv2 0.001 0.005 0.007

4.2 Experiment on CIFAR-10 and CIFAR-100

In this section, We train CIFAR-10 and CIFAR-100 datasets with different learn-
ing rate schedulers, such as HTPPC, constant learning rate (constant LR), Piece-
wise Decay LR, CLR, poly with restart, TDL and Adam [13]. The network are
trained by SGD with momentum 0.9, using L2 regularization with 0.001, batch
size is 128. For data enhancement, we fill 4 pixels as padding, then randomly
cut each picture to 32 × 32, then adjust the picture size to 96 × 96, and finally
perform horizontal flip and random angle flip.
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The stepsize of learning rate with cycle mechanism is 40 epochs. Set Leven,
Lodd and Lmin of HTPPC through “LR parity range determination” mentioned
in 3.2. More parameter settings are shown in Table 2 and Table 3; the maximum
and minimum values of CLR, TDL and poly with restart in different networks are
min lr and even lr in Table 2 and Table 3. For Piecewise Decay LR, the initial
learning rate is 0.01, and it is decayed by 0.5 times after 50 epochs. For poly
with restart, we set power = 0.9. For constant LR and Adam, the learning rate
is 0.001. All training are trained for 200 epochs, each epoch has 391 iterations.

Fig. 4. Test accuracy on MobileNetv2 with different learning rate schemes: constant
LR (black line), CLR (green line), TDL (skyblue line), Piecewise Decay LR (blue line),
Adam (orange line), poly with restart (purple line) and our approach (red line). (Color
figure online)

Observing the accuracy curve in Fig. 4, although HTPPC learning rate is not
as high as Adam in the initial stage, but it has shown a clear advantage in the
later stage of training. When training to 80 epochs, HTPPC reached 69.70%
accuracy, and the accuracy of adaptive learning rate Adam was only 63.15%.
Compared with other learning rates with circular mechanism, it also has obvious
advantages. After training is completed, the highest accuracy of HTPPC reaches
69.70%, which is higher than other learning rate with cycle mechanism, 0.87%
higher than CLR, 16.36% higher than poly with restart, and 1.82% higher than
TDL.

In order to prove the general effectiveness of HTPPC in image classifica-
tion task. The experiment is based on different network models to compare the
above seven learning rate methods. The specific experimental results are shown
in Table 4. We conclude that HTPPC algorithm performs well in these net-
work models. Especially when using MobileNetv2 network training, the highest
accuracy rate is significantly greater than other learning rates. The highest test
accuracy can reach 92.14% on CIFAR-10 and 69.70% on CIFAR-100.
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Table 4. Test average accuracy of 3 runs on CIFAR-10 and CIFAR-100 datasets with
multiple networks

Network Method CIFAR-10 CIFAR-100

Resnet50 constant LR 84.11 53.67

Piecewise Decay LR 92.57 64.26

poly with restart 91.57 66.96

CLR 92.06 69.18

TDL 92.13 69.13

Adam 86.16 67.68

HTPPC(Ours) 92.66 70.38

Vgg16 constant LR 69.67 35.78

Piecewise Decay LR 85.73 50.56

poly with restart 86.62 55.04

CLR 91.82 69.66

TDL 91.15 69.09

Adam 85.71 61.23

HTPPC(Ours) 92.66 72.75

GoogleNetv2 constant LR 78.82 46.51

Piecewise Decay LR 90.15 61.76

poly with restart 90.20 60.75

CLR 89.78 63.88

TDL 89.81 63.67

Adam 86.37 50.99

HTPPC(Ours) 90.39 64.40

MobileNetv2 constant LR 73.76 37.27

Piecewise Decay LR 86.43 57.27

poly with restart 86.60 58.34

CLR 90.03 68.19

TDL 90.57 67.88

Adam 87.73 63.15

HTPPC(Ours) 92.14 69.70

4.3 Experiment on Pascal VOC

In this section, we train Pascal VOC dataset with ShuffleNetV2-YOLOv3 net-
work. We compare different learning rates by the evaluation index mean average
precision (mAP) of the object detection model [11]. ShuffleNetV2-YOLOv3 uses
YOLOv3 as the main framework and replaces backbone network with Shuf-
fleNetv2 to improve performance of network. Compared with original YOLOv3
prediction, the prediction speed can be increased by 10 ms∼20 ms, and the model
size is less than one-eighth of the original [17,21].
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Table 5. Parameter setting of HTPPC learning rate on Pascal VOC dataset

base lr even lr odd lr size

0.002 0.01 0.013 25

The network are trained by SGD with momentum 0.9, using L2 regularization
with 0.00005, batch size is 16. For image data enhancement, it performs random
adjustment of image brightness, random cropping, random expansion and ran-
dom flip. Leven, Lodd and Lminof HTPPC are shown in Table 5. Lmax = 0.01,
Lmin = 0.002 of CLR and TDL, and the cycle period is 25 epochs. For constant
LR and Adam, the learning rate is 0.001. For Piecewise Decay LR, the initial
learning rate is 0.01, and it is decayed by 0.5 times after 25 epochs. All training
are trained for 100 epochs, each epoch has 1034 iterations.

Fig. 5. The mAP on ShuffleNetV2-YOLOv3 with different learning rate schemes: con-
stant LR (black line), CLR (green line), TDL (skyblue line), Piecewise Decay LR (blue
line), Adam (orange line) and our approach (red line) (Color figure online)

Figure 5 shows the experimental result. Observing the mAP curve in the
figure, it is obvious that the mAP value of HTPPC is higher than other learning
rates. At 25 epochs, HTPPC reached 36.99%. At the same time, the mAP of
Piecewise Decay LR reached 29.13%, constant LR was 10.69%, CLR was 36.18%
and TDL was 35.03%.

The final data result is shown in Table 6. From the table, we can draw that
the highest mAP value of HTPPC can reach 60.47%, it is higher than CLR
2.66% and higher than TDL 0.39%. Therefore, compared with the other five
learning rate algorithms, the ShuffleNetV2-YOLOv3 object detection network
with HTPPC algorithm has better object detection performance.
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Table 6. The mAP of different learning rate schemes test on Pascal VOC dataset

Network Method Accuracy

ShuffleNetV2-YOLOv3 constant LR 45.21

Piecewise Decay LR 57.60

Adam 52.59

CLR 57.81

TDL 60.08

HTPPC(Ours) 60.47

4.4 Conclusion

this paper proposes hyperbolic tangent polynomial parity cyclic learning rate,
it can better overcome large number of saddle points on the surface of high-
dimensional non-convex loss function and improve training effect of the deep
learning model. HTPPC combines the advantages of cyclic learning rate, trape-
zoidal learning rate and polynomial decay learning rate, and proposes a novel
alternating parity decay method. Experiments on the image classification model
and object detection model prove the effectiveness of HTPPC. Future work
includes practicing more parameter combinations of HTPPC algorithm and try-
ing more different deep learning model training tasks.
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Abstract. Image super-resolution is important in many fields, such as
surveillance and remote sensing. However, infrared (IR) images normally
have low resolution since the optical equipment is relatively expensive.
Recently, deep learning methods have dominated image super-resolution
and achieved remarkable performance on visible images; however, IR
images have received less attention. IR images have fewer patterns, and
hence, it is difficult for deep neural networks (DNNs) to learn diverse
features from IR images. In this paper, we present a framework that
employs heterogeneous convolution and adversarial training, namely, het-
erogeneous kernel-based super-resolution Wasserstein GAN (HetSRW-
GAN), for IR image super-resolution. The HetSRWGAN algorithm is
a lightweight GAN architecture that applies a plug-and-play heteroge-
neous kernel-based residual block. Moreover, a novel loss function that
employs image gradients is adopted, which can be applied to an arbitrary
model. The proposed HetSRWGAN achieves consistently better perfor-
mance in both qualitative and quantitative evaluations. According to the
experimental results, the whole training process is more stable.

Keywords: Super-resolution · Infrared image · Image processing ·
Heterogeneous kernel-based convolution · Generative adversarial
networks

1 Introduction

Image super-resolution (SR) reconstruction is a very active topic in computer
vision as it offers the promise of overcoming some of the limitations of low-cost
imaging sensors. Infrared (IR) image super-resolution plays an important role
in the military and medical fields and many other areas of vision research. A
major problem with IR thermal imaging is that IR images are normally low
resolution since the size and precision of IR sensors can be limited. Image super-
resolution is a promising and low-cost way to improve the resolution and quality
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of IR images. Generally, image super-resolution methods based on deep learn-
ing can be classified into two categories, namely, models based on generative
adversarial networks (GANs) [16,20] and models based on deep neural networks
(DNNs) [5,6,8,12,18,21,26,27], both of which have achieved satisfying results
on visible images. These methods can achieve a good peak signal-to-noise ratio
(PSNR). However, they do not consider the visual characteristics of the human
eye. The human eye is more sensitive to contrast differences with a lower spatial
frequency. The sensitivity of the human eye to differences in brightness contrast
is higher than its sensitivity to color, and the perception of a region by the
human eye is affected by the surrounding areas. Situations in which the results
of the evaluation are inconsistent with the subjective feeling of a viewer therefore
often occur. We recommend using the structural similarity index (SSIM). The
learning-based SISR algorithm learns a mapping between low-resolution (LR)
and high-resolution (HR) image patches. The prior knowledge used is either
explicit or implicit, depending upon the learning strategy. The super-resolution
convolutional neural network (SRCNN) [4] algorithm introduced deep learning
methods to SISR. A faster model, the faster super-resolution convolutional neu-
ral network (FSRCNN) [6], improved upon the SRCNN model and has also been
applied to SISR. The efficient subpixel convolutional neural network (ESPCN)
algorithm [21] and information multi-distillation network (IMDN) [12] were also
proposed to further improve the computational efficiency. A significant advance
in the generation of visually pleasing results is the super-resolution generative
adversarial network (SRGAN) [16]. A large number of SR methods have been
presented, most of which are designed for natural images. Fewer methods have
been designed for infrared images. GANs provide a powerful framework for gener-
ating plausible-looking natural images. However, they have problems with insta-
bility [11,25]. Wasserstein generative adversarial networks (WGAN) [1] was pro-
posed as a solution to this problem. Given the issues that there are few infrared
image features and that super-resolution reconstruction is difficult, the building
units of the neural network and the loss functions that provide better constraints
each play an important role in improving the performance of the GAN.

In this paper, we propose a novel approach for infrared image super-
resolution. We revisited the key components of SRGAN and improved the model
in two ways. First, we improved the network structure by introducing the hetero-
geneous kernel-based residual block, which has fewer parameters than previous
algorithms, and it is easier to train. HetConv enables multiscale extraction of
image features by combining convolutional kernels of different sizes. Second, we
developed an improved loss function: the gradient cosine similarity loss function.
The traditional loss function does not consider the characteristics of infrared
images, and the gradient cosine similarity loss function takes the image gra-
dient as an important feature for better-supervised training. The experimental
datasets are publicly available [10], and the experimental effects can be validated.

The remainder of this paper is organized as follows. The related works are
presented in Sect. 2. We describe the HetSRWGAN architecture and the gradi-
ent cosine similarity loss function in Sect. 3. A quantitative evaluation of new
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datasets, as well as visual illustrations, is provided in Sect. 4. The paper con-
cludes with a conclusion in Sect. 5.

2 Related Works

2.1 Generative Adversarial Networks

Generative adversarial networks [7] were proposed by Goodfellow, based on game
theory. In a pioneering work, C. Ledig et al. [16] used SRGAN to learn the map-
ping from LR to HR images in an end-to-end manner, achieving performance
superior to that of previous work. A low-resolution image ILR is input to a gen-
erator network to generate the reconstructed image ISR, while a discriminator
network takes the high-resolution images IHR and ISR as input to determine
which is the real image and which is the reconstructed image.

2.2 HetConv: Heterogeneous Kernel-Based Convolutions

The heterogeneous kernel-based convolutions algorithm was proposed by Praven-
dra Singh [22]. Pravendra Singh et al. presented a novel deep learning architec-
ture in which the convolution operation uses heterogeneous kernels. Compared
to standard convolution operations, the proposed HetConv reduces the number
of calculations (FLOPs) and parameters while still maintaining the presentation
efficiency. HetConv is especially different from the depthwise convolutional filter
used to perform depthwise convolution (DWC) [3], the pointwise convolutional
filter used to perform pointwise convolution (PWC) [24] and the groupwise con-
volutional filter used to perform groupwise convolution (GWC) [15]. In HetConv,
a variable P is used to control how much of the normal convolution kernel is
retained in the operation. In addition, the total reduction is R for K × K ker-
nels. The number of calculations of HetConv is compared with that of the normal
convolution, as shown in Eq. 1.

RHetConv =
1
P

+
(1 − 1/P )

K2
(1)

According to the characteristics of the heterogeneous kernel-based convolutions,
we used a skip connection when designing the generator network structure. The
HetSRWGAN structure is shown in Fig. 1.

3 HetSRWGAN

3.1 HetSRWGAN Architecture

Our main goal was to improve the overall visual performance of SR. In this
section, we describe our improved network architecture. The main difference
between the GAN and WGAN [1] is that the sigmoid function and batch nor-
malization (BN) [13] layer of the discriminator network are removed. The entire
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Fig. 1. Architecture of heterogeneous kernel-based super-resolution Wasserstein GAN
with the corresponding kernel size (k), number of feature maps (n), stride (s) for each
convolutional layer, padding (p) and number of the normal convolution kernel (P ) (Best
viewed in color). (Color figure online)

neural network is stabilized by gradient punishment [1]. It has been shown that
removing the BN layer improves performance and reduces complexity [18,25].
Further, the removal of the BN layer contributes to improving the robustness
of the network and reduces the computational complexity and memory con-
sumption. We replaced the original basic block with a heterogeneous kernel-
based residual block (HetResidual block), which includes HetConv, as depicted
in Sect. 3.2. The HetResidual block is the basic network building unit. This block
requires fewer parameters than the original basic block, improves network per-
formance, and reduces computational complexity. More parameters may lead to
a higher probability of mode collapse [11,25], so reducing the total number of
parameters is beneficial. For the discriminator network, we deepened the net-
work structure and experimentally demonstrated that this modification improves
image quality. The detailed experimental results are given in Sect. 4. According
to the characteristics of the heterogeneous kernel-based convolutions, we used a
skip connection when designing the generator network structure.

3.2 Heterogeneous Kernel-Based Residual Block

Kaiming He et al. [9] first proposed the residual block structure and solved
some of the problems caused by deep neural networks by introducing a skip
connection and combination. The heterogeneous kernel-based residual block is
shown in detail in Fig. 2. The relevant formula is analyzed as follows:

yi = h (xi) + F (xi,Wi) (2)
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Fig. 2. Architecture of heterogeneous kernel-based residual block.

xi+1 = F (xi,Wi) + h (xi) (3)

where F stands for the heterogeneous kernel-based residual block processing.
Since h (xl) is an identity map, Eq. 3 can be derived:

xi+1 = F (xi,Wi) + xi (4)

3.3 Gradient Cosine Similarity Loss Function

To make the reconstructed image ISR obtained from the generator network closer
to the high-resolution image IHR, it is necessary to provide a neural network loss
function with effective constraints. We chose the spatial gradient of the image
as the feature that measures the similarity between two images. When there is
an edge in the image, there must be a high gradient value. Conversely, when
there is a relatively smooth region in an image, the gray value changes little,
and the corresponding gradient is also small. Using the gradient as a feature not
only captures contours, images, and some texture information but also further
weakens the effects of lighting. The gradient of an image at a pixel point (x, y)
is a vector with direction and size. Gx is the gradient of I in direction X, and
Gy is the gradient of I in direction Y direction. The gradient vector v can be
expressed as Eq. 5.

v = [Gx ,Gy ]T (5)

The infrared images in the dataset are RGB images, which are three-channel
images [2]. The gradient between the high-resolution three-channel image IHR

and the super-resolution reconstructed three-channel image ISR can be expressed
as Eqs. 6 and 7.

IHR
G =

(
IHR
Gr

, IHR
Gg

, IHR
Gb

)
(6)
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Algorithm 1. Gradient Cosine Similarity Loss Function
Input: ISR , IHR

Output: Gradient Cosine Similarity

1: Infrared images can be processed into RGB images [2].
2: while not convergent do

3: IHR −→
(
IHR
Gr

, IHR
Gg

, IHR
Gb

)

4: ISR −→
(
ISR
Gr

, ISR
Gg

, ISR
Gb

)
� Gradient matrix.

5: X
′
=

[
IHR
Gr

, IHR
Gg

, IHR
Gb

]
1×m

6: Y
′
=

[
ISR
Gr

, ISR
Gg

, ISR
Gb

]
1×m

� Matrix compression.

7: Fcos

(
X

′
,Y

′)
= X

′ ·Y′T

‖X
′‖·‖Y

′‖ � Cosine similarity.

8: return Fcos

(
X

′
,Y

′)

ISR
G =

(
IHR
Gr

, IHR
Gg

, IHR
Gb

)
(7)

IHR
G indicates the gradient vector of the high-resolution image. The subscript

of Gg indicates the green channel of the high-resolution image. Other subscripts
indicate different image channels of red and blue. For super-resolution recon-
structed images ISR, the subscript indicates the same. We use the cosine simi-
larity to measure the similarity between these two vectors, as shown in Eq. 8.

cossim(X,Y) =
X · Y

‖X‖ · ‖Y‖ (8)

X and Y represent two matrices that can be multiplied by points. The high-
resolution image gradient IHR

G and the SR image gradient ISR
G can be calculated

according to Algorithm 1.
We calculate the cosine similarity by stretching the two matrices into a one-

dimensional vector. Likewise, the similarity between the high-resolution image
gradient IHR

G and the SR image gradient ISR
G can be calculated according to

Algorithm 1. The generator loss function of the SRGAN and WGAN includes
content loss and adversarial loss. The generator loss function of HetSRWGAN
is shown in Eq. 9:

LossSR = lSR
X + λlSR

Gen + μ (1 − Fcos) (9)

where lSR
X and lSR

Gen represent the content loss and adversarial loss, respec-
tively.
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Table 1. Quantitative evaluation of SR algorithms: Average PSNR/SSIM for scale
factors ×4. SRGAN1 has model collaps.

Algorithm Params ↓ FLOPs ↓ PSNR/dB ↑ SSIM ↑
fusionA-22 fusionC-22 fusionA-22 fusionC-22

HetSRWGAN(Ours) 0.496M 0.095G 30.302 31.987 0.858 0.883

SRMD [27] 1.552M 0.063G 33.210 33.850 0.834 0.852

IMDN [12] 0.893M 91.70G 29.725 30.057 0.735 0.751

DPSR [26] 2.995M 0.052G 32.692 31.662 0.825 0.810

DBPN [8] 10.41M 0.106G 17.438 17.934 0.816 0.842

SRWGAN 0.956M 0.132G 28.319 28.520 0.799 0.805

SRGAN1 [16] 0.956M 0.132G 5.150 30.444 0.278 0.871

SRCNN [5] 0.148M 0.182M 29.437 30.170 0.754 0.789

FSRCNN [6] 0.013M 0.077M 30.624 31.094 0.797 0.822

ESPCN [21] 0.061M 0.001G 30.814 31.607 0.789 0.819

4 Experiments and Evaluations

4.1 Training Details

Following SRGAN, all experiments were performed with a scaling factor of (4,
applied to the 2× 2 image) between LR and HR images. We used the PSNR
and structural similarity index (SSIM) to evaluate the reconstructed images.
Super-resolved images were generated using the reference methods, including
SRMD, IMDN, DPSR, DBPN, SRCNN, FSRCNN, ESPCN, SRGAN, and super-
resolution Wasserstein GAN (SRWGAN). The generator was trained using the
loss function presented in Eq. 9 with λ = 0.001 and μ = 0.001. The learning
rate was set to 0.0001. We observed that a larger batch size benefits training a
deeper network. We set the batch size to 64. For optimization, we used Adam
[14] with β1 = 0.9 in the generator. For the WGAN, we used the Asynchronous
SGD (ASGD) [19] in the discriminator. We implemented our models with the
PyTorch framework and trained them using NVIDIA TITAN X (Pascal) GPUs.

For training, we primarily used the CVC-09: FIR Sequence Pedestrian
Dataset [23]. In CVC-09, a sequence is composed of two sets of images, the
day and night sets, a designation which refers to the time of day at which they
were acquired. The first set contains 5990 frames, the second set contains 5081
frames, and each sequence was divided into training and testing sets. We per-
formed experiments on two datasets, namely, fusionA-22 and fusionC-22, which
contain images obtained by fusing infrared and visible light, using the meth-
ods of literature [17] and literature [28], respectively [10]. An image after the
fusion of IR and visible light images will have better visual quality, and it will
be easier to distinguish details such as characters in the image. The fused image
also maintains significant information from the infrared image but makes the
performance of the algorithm more easily visualized.
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Fig. 3. (a): Changes of loss function with the number of iterations on the dataset
CVC-09-1K (b): CVC-09-1K Dataset Training Average PSNR, (c): CVC-09-1K Dataset
Training Average SSIM

4.2 Performance of the Final Networks

We compared the performance of three different super-resolution reconstruction
algorithms based on generative adversarial networks. Since the GAN cannot sim-
ply use the loss function to judge the network training situation, we selected the
image after the end of each batch of training to calculate the PSNR and SSIM
values. When there are too many model parameters, mode collapse will occur. As
the number of iterations increased, SRWGAN was more robust. SRGAN experi-
ences mode collapse. Although the SRWGAN introduces gradient punishment to
solve the problem that the network cannot be trained in the later stages, using
cross-entropy as a loss function requires considerable time to adjust parameters
and still cannot guarantee the stability of the model. Therefore, the loss function
will have a negative value, which will cause the curve to be discontinuous. There
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Fig. 4. Time efficiency comparison of all reconstruction methods. The same colour
means the same method. The horizontal axis represents the time required for one
training session, and the vertical axis represents an objective indicator after the model
converges.

was no situation where convergence or instability was not possible. The results
are shown in Fig. 3.

The total number of parameters for HetSRWGAN was reduced by 496657
compared to that for SRGAN, a reduction of 52% (Table 1). The significantly
reduced total number of parameters helps to reduce the computational complex-
ity of the model and improve robustness.

The SRMD model obtains better performance based on the PSNR; however,
it has a large number of parameters, resulting in long training and inference
times and greater memory consumption (Table 1, Fig. 4). The objective evalua-
tion indices of the average PSNR and average SSIM were calculated. DNNs have
a good effect in reconstructing visible images, but because of the features of
single-frame infrared images with few features and high redundancy, the recon-
struction effect is not good (Table 1).

SRGAN does not provide control of the generation process, and there is mode
collapse (see Fig. 1). The new loss function and HetResidual block make the
models faster to train and converge. The HetSRWGAN takes 24 s to train each
batch, and the average SSIM is 0.858 and 0.883 (see Table 1). Compared with
other methods, HetSRWGAN has the best time efficiency and average SSIM.
Figure 5 shows the reconstructions produced by different algorithms.

Figure 5 shows that our proposed HetSRWGAN outperformed previous
approaches in both sharpness and amount of detail. Previous GAN-based meth-
ods sometimes introduce artifacts. For example, SRGAN adds noise to the entire
image. HetSRWGAN removes these artifacts and produces natural results.
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Fig. 5. Super-resolution image reconstruction effect comparison schematic diagram.
From left to right: original HR image, HetSRWGAN, SRGAN, ESPCN, FSRCNN,
SRCNN, SRWGAN, IMDN, Corresponding PSNR and SSIM are shown below the
figure. Red indicates the best. [×4 upscaling] (Color figure online)

5 Conclusions

Our proposed HetSRWGAN method can be well used for infrared image super-
resolution reconstruction. We proposed a novel architecture composed of several
heterogeneous kernel-based residual blocks without BN layers. A gradient cosine
similarity loss function was developed, which can provide stronger supervision
of image details, such as edges, and the reconstructed high-resolution images
contain more details and realistic textures.
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Abstract. Due to the large domain shift and the discriminative feature learning
with unlabeled datasets, unsupervised domain adaptation (UDA) for person re-
identification (re-ID) still remains a challenging task. Some current methods adopt
a clustering-based strategy to assign pseudo labels to the unlabeled samples in
target domains for classification. However, the rich knowledge of the model in
different training stages is not fully utilized in those methods and the pseudo
labels generated by clustering algorithms inevitably contain noise, which would
limit the performance of re-ID models. To tackle this problem, a Knowledge
CompensationNetworkwithDivisible feature learning (KCND) is proposed in this
paper, which aggregates the past-to-present knowledge of models from training
samples for discriminative feature learning and resists the label noise produced
by clustering. Also, a novel compensation-guided softened loss is developed to
enhance the generalization and robustness of re-ID models. Our experimental
results on large-scale datasets (Market-1501, DukeMTMC-reID and MSMT17)
have demonstrated the performance ofKCND is better than othermethods in terms
of the mAP and CMC accuracy.

Keywords: Person re-identification · Unsupervised domain adaptation ·
Knowledge Compensation Network · Divisible feature learning

1 Introduction

Person re-identification (re-ID) aims at matching the images of an individual from one
camera with the images captured by other different cameras. Although supervised re-
ID methods have achieved great results, they heavily rely on manual labeled data and
would result in performance drops while applied to new domains. Unsupervised domain
adaptation (UDA) transfers the learned knowledge from a labeled source dataset to an
unlabeled target dataset, so it provides a cost-effective solution for cross-domain re-ID
applications and becomes an attractive research topic. Due to the domain diversities
between different datasets and the unknown person identities in the target domain, it is
challengeable for solving the problem of cross-domain unsupervised person re-ID.
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Most of the existing UDA methods for person re-ID tasks focus on the feature dis-
tribution alignment [1, 2], image-style transformation based on GAN [3–5], and the
clustering with fine-tuning methods [6–10]. They adopt a two-stage training approach,
training themodel in the labeled source domain to initialize parameters and then transfer-
ring the pre-trained model to the unlabeled target domain for retraining and fine-tuning.
Pseudo labels are generated in the target domain by clustering methods to obtain a
new labeled dataset, which is used for supervised retraining. However, the label noise
generated by clustering and the feature variations caused by domain shift are not well
processed in existing methods, limiting the performance of re-ID models.

To effectively overcome the problems mentioned above, in this paper a Knowledge
Compensation Network with Divisible feature learning (KCND) is proposed for unsu-
pervised domain adaptive person re-identification. The network aggregates the past-
to-present knowledge of models from training samples to perform the cross-camera
divisible features learning.

KCND mainly consists of three parts as follows.

(1) Knowledge Compensation Network (KCN). KCN is constructed by a novel app-
roach named Self-ensembling Knowledge Compensation Learning (SKCL). It pre-
serves the weights information of multiple previous networks and combines the
complementary knowledge between the models to the next stage. In KCN, soft
pseudo labels are generated to alleviate the shortcomings of hard pseudo labels,
so that to resist the label noise generated by clustering. As shown in Fig. 1, soft
pseudo labels consist of the soft-decision elementswhich can provide discriminative
information from reference samples during the training.

Fig. 1. The generations of the hard and soft pseudo labels. The images with the same color box
belong to an identical person, and the left and right parts show the predictions of re-ID models by
using the hard and soft pseudo labels respectively.

(2) Divisible Feature Learning (DFL). To deal with the feature variations caused
by domain shift and mine the potential similarities and discriminative features
of unlabeled samples through KCN, we divide the extracted feature maps of all
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samples in the target domain and group them into different parts. And we propose
an outliers-aware clustering to assign pseudo labels to unlabeled target samples.

(3) Compensation-guided Softened Loss (CSL). To better utilize the divisible dis-
criminative features and perform the training with the soft and hard pseudo labels
jointly, a compensation-guided softened loss is designed, which can enhance the
discrimination capability of the proposed re-ID models.

The contributions of this paper are summarized as:

• A novel Knowledge Compensation Network with Divisible feature learning (KCND)
is proposed for cross-domain person re-ID task. The past-to-present knowledge of
models is creatively aggregated for divisible feature learning and the negative impact
of the label noise is reduced simultaneously.

• A compensation-guided softened loss is designed for exploring the potential sim-
ilarities and discriminative information of reference samples, reducing the feature
variations caused by domain shift and enhancing the robustness and generalization of
person re-ID models.

• The proposed method achieves the superior performance over other methods in terms
of the mAP and CMC accuracy on Market1501, DukeMTMC-reID and MSMT17
datasets.

2 Related Work

There are three main categories of UDAmethods for person re-ID, including the feature
distribution alignmentmethod, the image-style transformationmethod and the clustering
with fine-tuning method.

2.1 Feature Distribution Alignment Methods

DMLI [1] dynamically aligned the local information between two domains with no
extra supervision and then developed AlignedReID++ to improve the performance of
global features. [2] developed a camera-aware domain adaptation method to reduce the
distribution discrepancy and create discriminative information.

2.2 Image-Style Transformation Methods

PTGAN[12] andSPGAN[3] handled thedomaingapproblemby transforming the image
style of source datasets to match that of target datasets while maintaining the original
person identities. SBSGAN [4] addressed the background shift problem by generating
images with suppressed backgrounds. But the retrieval performances of these methods
based on GAN deeply relied on the image generation quality, and they did not explore
the complex relations between different samples in the target domain.
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2.3 Clustering with Fine-Tuning Methods

SSG [6] and CVSE [13] combined global-local features of samples and assigned pseudo
labels to the unlabeled dataset by clustering algorithms for classification. But the pseudo
labels generated by the clustering contain noise, which is not well processed in those
methods. MMT [7] and NRMT [9] both adopted a dual-model mutual training strategy
by supervising each other to resist the noise of pseudo labels. However, the difference
between the two networks would gradually reduce during the training process, and the
mutual supervision would be equal to the single network training. DCML [14] designed
two metrics to explore credible training samples. However, the threshold adaptive with
the credibility of samples is hard to define and DCML simply considered the central and
dense samples are credible for training, resulting in the loss of information.

Fig. 2. An illustration of the proposed KCND. The learned style-transferred model is used to
generate cross-camera samples and then initialize the CNN model. Different data streams can be
distinguished by colors. As shown in the green dotted box, SKCL preserves theweights knowledge
of multiple previous networks and aggregates them to the next stage. DFL is designed by dividing
the feature maps of all samples and grouping them into different parts. The compensation-guided
softened loss is developed to better utilize the soft pseudo labels and explore the discriminative
information of reference samples.

3 Proposed Method

A novel Knowledge Compensation Network with Divisible feature learning (KCND) is
proposed for unsupervised domain adaptive person re-ID. KCND is shown in Fig. 2. The
complementary knowledge between the models is fully utilized to mine discriminative
features and resist the label noise produced by clustering, improving the robustness and
generalization of re-IDmodels. Also a compensation-guided softened loss is designed to
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provide effective guidance for our network. KCND adopts a two-stage training scheme,
including the supervised learning in source domains and the unsupervised adaptation to
target domains. The labeled source dataset is denoted as Ds = {Xs,Ys}, which has Ns

samples with Ps unique identities. Xs and Ys denote the sample images and the identity
labels. Each sample xs in Xs is associated with an identity ys in Ys. The target dataset
Dt = {Xt} consists of Nt samples, and the identity label of each image xt on the target
dataset Dt is unknown.

3.1 Cross-Camera Data Augmentation (CDA)

In order to reduce the image style variations caused by different cameras, we treat each
camera as a new domain with different styles to train cycleGAN [15] following [16]. In
this manner, the training set is augmented to a combination of the original images and the
style-transferred images. Since each style-transferred image preserves the content of its
original image, the new sample is considered to be the same identity as the original image.
This allows us to leverage the style-transferred images as well as their associated labels
to pre-train the re-IDmodels. As shown in Fig. 3, assuming that training dataset contains
K cameras, for images taken by any camera, we use the learned model to augment K-1
images,which have different camera styles butmaintain the original identity information.

Fig. 3. Examples of style-transferred images in Market-1501.

3.2 Supervised Learning in the Source Domain

In the source domain, a deep neural network modelM parameterized by θ trained with
cross-entropy loss and hard-batch triplet loss is regarded as the baseline in this paper.We
adopt ResNet-50 [17] pre-trained on ImageNet [18] as our backbone. f

(
xis|θ

)
denotes

the feature representation of a sample xis and pj
(
xis|θ

)
is the predicted probability of it

belonging to the identity j. The cross entropy loss with label smoothing is:

Ls,id (θ) = − 1

Ns

Ns∑

i=1

Ps∑

j=1

qjlogpj
(
xis|θ

)
(1)
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where qj = 1 − ε + ε
Ps

if j = yis, otherwise qj = ε
Ps
. ε is set as 0.1 following [19]. The

triplet loss is defined as

Ls,tri(θ) = 1

Ns

∑Ns

i=1

[
m + max‖f

(
xis|θ

)
− f

(
xi+s |θ

)
‖
2
− min‖f

(
xis|θ

)
− f

(
xi−s |θ

)
‖
2

]

(2)

where xi+s and xi−s are the hardest positive and negative samples of the anchor xis. ‖ • ‖2
denotes the L2 distance. m is a margin parameter set to 0.5. The overall loss function in
the source domain is calculated as

Ls(θ) = Ls,id (θ) + Ls,tri(θ) (3)

3.3 Knowledge Compensation Network in the Target Domain

As shown in Fig. 2, in order to build KCN, we propose a novel approach named Self-
ensambling Knowledge Compensation Learning (SKCL), which extends the baseline
model by taking into account the knowledge ofmultiple previous networks and exploring
the temporal information of models from past to present.

In each training iteration, the images in target domain are fed toM parameterized by
θ to predict the classification predictions p

(
xit |θ

)
and the feature representations f

(
xit |θ

)
.

KCN preserves the complementary weights information between the models to generate
reliable soft pseudo labels. The KCN in current iteration T is denoted asN (T )(�T )with
parameters {�T }. The updating of KCN is defined as

N (T)(�T) �
∑T−1

i=0
λiN (i)(�i) (4)

�T =
∑T−1

i=0
λi�i (5)

where
∑T−1

i=0 λi = 1, and λi ∈ [0, 1] denote the knowledge weights momentum. The
initial KCN parameters are defined as �0 = θ .

3.4 Divisible Feature Learning with Outliers-Aware Clustering

In order tomine the discriminative information fromdivisible features ofKCN,we divide
the feature maps of all samples on the target dataset and group them into three different
parts: whole bodies, upper and lower parts following SSG [6]. We adopt DBSCAN [11]
on each part to obtain a series of clusters. DBSCAN is a density-based clusteringmethod,
which assigns pseudo labels for samples in high-density area and regards samples in
low-density area as outliers.

Most of the existing pseudo-label-based methods adopted DBSCAN for clustering
but simply discarded the outliers from being used for training, limiting the performance
of re-ID models. Such outliers might actually be difficult to identify but they contain
valuable information. Toovercome this problem,wepropose an outliers-aware clustering
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Fig. 4. Outliers-aware clustering.

to further improveDBSCAN. In our experiments,we assignpseudo labels for eachoutlier
according to its nearest neighbor after clustering as shown in Fig. 4.

By assigning the pseudo labels ỹt = {
ỹwholet , ỹuppert , ỹlowert

}
to each sample xt in Xt ,

we can pair each person with different pseudo labels. As a result, we establish a new
dataset with pseudo labels, which can be used for normally supervised training.

3.5 Compensation-Guided Softened Loss for Domain Adaptation

By using KCN, the probability for sample xit is predicted as p
(
xit |�T

)
, and the feature

representation is f
(
xit |�T

)
.

In order to provide effective guidance to KCND with the soft pseudo labels, a novel
compensation-guided softened loss is designed as follows for optimizing {θ,�}:

LCSL(θ |�) = 1

Nt

Nt∑

i=1

[
Ki

t(�T)logKi
t(θ) +

(
1 − Ki

t(�T)
)
log(1 − Ki

t(θ))
]

− 1

Nt

Nt∑

i=1

p
(
xit |�T

)
logp

(
xit |θ

)
(6)

where Ki
t(�T ) is the soft refined label generated by KCN and Ki

t(θ) is as

Ki
t(θ) =

exp
(
‖f (xit |θ

) − f
(
xi−t |θ

)
‖
)

exp
(
‖f (xit |θ

) − f
(
xi+t |θ

)
‖
)

+ exp
(
‖f (xit |θ

) − f
(
xi−t |θ

)
‖
) (7)

3.6 Overall Loss and Algorithm

To learn the stable and discriminative knowledge, we joint hard and soft pseudo labels
together to optimize our network. The identity loss in target domains is defined as cross
entropy with label smoothing mentioned in Sec. III (B), as

Lid (θ) = − 1

Nt

Nt∑

i=1

Pt∑

j=1

qjlogpj
(
xit |θ

)
(8)
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where qj = 1 − ε + ε
Pt

if j = ỹit , otherwise qj = ε
Pt
. The softmax triplet loss is defined

as

Ltri(θ) = 1

Nt

Nt∑

i=1

logKi
t(θ) (9)

The overall loss function Loverall is formulated as

Loverall =
∑split_num

k=0
Lk(θ |�) (10)

Lk(θ |�) = αLkid (θ) + βLktri(θ) + (1 − β)LkCSL(θ |�) (11)

where α and β are the weighting parameters, split_num denotes the number of divided
parts.

Algorithm 1 shows the detailed training procedure of the proposed KCND.

Algorithm 1 Knowledge Compensation Network with Divisible Feature Learning
Input: 
Output: Fine-tuned model parameters { }.
Procedure:
1. Initialize pre-trained weights { } by optimizing with Eq. 3 on 
2. for each epoch do
3. Extract features by KCN on :
4. Divide the feature maps of all samples on and group them into three different parts 

5.     Generate hard pseudo labels of each sample by   
clustering algorithms.

6.     for each mini-batch do
7.   Generate soft pseudo labels on stage :

8.   Jointly update by the gradient descent of the objective function Eq. 10
9.  Update KCN with parameters following Eq. 4.
10.   end for
11. end for

4 Experiments and Analysis

4.1 Implementation Details

Our implementation is based on PyTorch platform. ADAM optimizer is used for opti-
mizing with a weight decay 0.0005. For both of the source domain pre-training and the
target domain fine-tuning, each mini-batch contains 64 person images of 16 identities.
Input images are resized to 256 × 128. Random flipping, random cropping and random
erasing are adopted as data augmentation during the training process.
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Stage 1: Pre-training in the Source Domain. We pre-train a style-transferred model
to generate cross-camera samples and then initialize the baseline on the source dataset
as described in Sect. 3.1 and Sect. 3.2. The initial learning rate is 0.00035 and decreased
to 1/10 of its previous value on the 40th and 70th epochs in total 80 epochs. Given the
mini-batch of images, network parameters are updated by optimizing Eq. 3.

Stage 2: Adaptation with KCND in the Target Domain. For unsupervised domain
adaptation in the target dataset, the learning rate is fixed to 0.00035 for overall 40
epochs. In each epoch, the number of training iteration is set to 400. We adopt DBSCAN
[11] for clustering and eps is fixed to 0.6 when training with MSMT17 [12] dataset. The
network is updated by optimizing Eq. 11 with α = 0.5, β = 0.5.

4.2 Datasets and Evaluation Metrics

We evaluate KCND on three widely used person re-ID datasets: Market-1501 [20],
DukeMTMC-reID [21] and MSMT17 [12]. Market-1501 consists of 32668 annotated
images of 1501 identities. DukeMTMC-reID contains 16522 images of 702 identities
for training, and the remaining images are for testing. MSMT17 is a large-scale dataset
consisting of 126441 bounding boxes of 4101 identities.

Evaluation Metrics: In our experiment, the Cumulative Matching Characteristic
(CMC)curve and themeanaverageprecision (mAP) are used for performance evaluation.
All results in this paper are under the single-query setting.

4.3 Ablation Experiments

We evaluate each component of our proposed KCND method by ablation experiments
on Duke-to-Market (D → M) and Market-to-Duke (M → D). The results are shown in
Table 1. “Base” denotes the baseline model introduced in Sect. 3.2.

Effectiveness of KCN. From Table 1, “Base + KCN (w/o LCSL)” outperforms “Base
(Lid & Ltri)” on both datasets. Without KCN, the mAP drops from 64.1% to 58.2% on
D → M and 54.8% to 49.6% on M → D. Experimental results shows that the KCN
well utilizes the knowledge of models from training samples and generate reliable soft
pseudo labels in the target domain simultaneously.

Effectiveness of CSL. We train the KCNwith/without CSL respectively to validate the
effectiveness of CSL. As shown in Table 1, without CSL, distinct drops of 9.4% in mAP
and 7.4% in top-1 accuracy are observed for D → M and 8.5% in mAP and 7.6% in
top-1 accuracy are observed forM→D. CSL effectively involves the soft refined pseudo
labels for training and enhances the discrimination capability of re-ID models.

Effectiveness of DFL. As shown in Table 1, the mAP drops from 77.8% to 73.5% on D
→ M and 66.5% to 63.3% on M → D without DFL. It means DFL makes contributions
to mining the potential similarities of unlabeled samples including inliers and outliers
from global to local features, reducing the feature variations caused by domain shift.
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Effectiveness of CDA. As shown in Table 1, the mAP drops from 79.6% to 77.8% on
D → M and 67.7% to 66.5% on M → D without CDA. Therefore, our cross-camera
data augmentation helps to increase the sample diversity to learn more discriminative
features and reduces the impact of camera-variance.

Analysis of Loss Weights. α and β are hyper parameters which are used to trade off the
effect between identity loss, triplet loss and temporal-guided softened loss. We evaluate
the impact of α and β respectively, which are sampled from {0.3, 0.4, 0.5, 0.6, 0.7, 0.8},
on the task of D → M. The results are shown in Fig. 5 (a) and Fig. 5 (b). We observe the
best result is obtained when α and β are both set to about 0.5. Note that large or small
value of α and β would limit the improvement of performance.

Table 1. Ablation studies of our proposed KCND method on Duke-to-Market and Market-to-
Duke tasks.

Methods Duke → Market

mAP top-1 mAP top-10

Supervised model 81.3 93.0 97.5 98.5

Direct Transfer 28.4 56.1 72.8 79.5

Base (Lid & Ltri) 58.2 81.4 90.6 93.0

Base + KCN (w/o LCSL) 64.1 82.6 92.3 94.8

Base + KCN (w LCSL) 73.5 90.0 96.3 97.7

Base + KCN + DFL 77.8 91.2 97.4 98.4

Base + KCN + DFL + CDA 79.6 92.7 97.5 98.4

Methods Maket → Duke

mAP top-1 top-5 top-10

Supervised model 70.4 84.9 91.6 93.9

Direct Transfer 26.7 42.5 58.2 64.4

Base (Lid & Ltri) 49.6 67.8 81.2 85.0

Base + KCN(w/o LCSL) 54.8 69.2 82.7 86.5

Base + KCN (w LCSL) 63.3 76.8 87.4 91.7

Base + KCN + DFL 66.5 80.2 89.1 92.2

Base + KCN + DFL + CDA 67.7 81.3 89.8 92.8
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(a)                                                                         (b)

Fig. 5. Analysis of loss weights. (a) The impact of α while fixing β to 0.5. (b) The impact of β

while fixing α to 0.5.

4.4 Comparison with the State-of-the-Art Methods

We compare KCND with state-of-the-art methods on four domain adaptation tasks:
Duke-to-Market, Market-to-Duke, Duke-to-MSMT and Market-to-MSMT. Table 2
shows the results. We almost achieve fully supervised performances with no annotation
and post-processing technique.

Feature Distribution Alignment Methods. Our KCNDoutperforms the feature align-
ment unsupervised re-IDmodels [22–24]. The reason lies in that our network effectively
exploits the past-to-present knowledge of models for cross-camera divisible feature
learning and performs the training with the soft and hard pseudo labels jointly, taking
advantage of the soft pseudo labels to explore the discriminative information of reference
samples across domains.

Image-Style Transformation Methods. Image-style transfer methods [3, 5, 25] based
on GAN deeply relied on the images generation quality and did not explore the relations
between different samples in target domain. Our network can achieve better performance
than GAN-based methods, indicating its efficient use of unlabeled samples.

Clustering-Based Methods. These methods [6, 10, 24, 26] assign the pseudo labels to
the unlabeled target datasets by clustering algorithms, but the pseudo labels inevitably
contain the noise, which is not be well processed, and it will affect the final performance
of re-ID models. The mutual supervision training strategy is used to reduce the negative
impact of label noise in existing methods (MMT and NRMT). But actually, it quickly
converges to a consensus which leads to a local minimum and it gradually becomes equal
to single network training due to the bias reduction between two networks, limiting the
improvement of performance. DCML simply considered the central and dense samples
are credible for training, resulting in the loss of feature information. As shown in Table 2,
KCND could achieve better results compared with those methods. Because KCND takes
advantage of the complementary knowledge between the models of different training
stages for divisible feature learning and the outliers-aware clustering used in KCND can
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Table 2. Comparisons with other methods on Market-1501, DukeMTMC-reID and MSMT17.

Methods Publication DukeMTMC-reID → Market1501 Market1501 → DukeMTMC-reID

mAP top-1 top-5 top-10 mAP top-1 top-5 top-10

TJ-AIDL [25] CVPR 26.5 58.2 74.8 81.1 23.0 44.3 59.6 65.0

SPGAN [3] CVPR 22.8 51.5 70.1 76.8 22.3 41.1 56.6 63.0

ECN [22] CVPR 43.0 75.1 87.6 91.6 40.4 63.3 75.8 80.4

MAR [23] CVPR 40.0 67.7 81.9 87.3 48.0 67.1 79.8 84.2

SSG [6] ICCV 58.3 80.0 90.0 92.4 53.4 73.0 80.6 83.2

PAST [24] ICCV 54.6 78.4 – – 54.3 72.4 – –

pMR-SADA [8] CVPR 59.8 83.0 91.8 94.1 55.8 74.5 85.3 88.7

AD-Cluster [5] CVPR 68.3 86.7 94.4 96.5 54.1 72.6 82.5 85.5

NRMT [9] ECCV 71.7 87.8 94.6 96.5 62.2 77.8 86.9 89.5

DG-Net++ [10] ECCV 61.7 82.1 90.2 92.7 63.8 78.9 87.8 90.4

JVTC [26] ECCV 61.1 83.8 93.0 95.2 56.2 75.0 85.1 88.2

MMT [7] ICLR 71.2 87.7 94.9 96.9 63.1 76.8 88.0 92.2

DCML [14] ECCV 72.3 88.2 94.9 96.4 63.5 79.3 86.7 89.5

KCND (Ours) 79.6 92.7 97.5 98.4 67.7 81.3 89.8 92.8

Methods Publication DukeMTMC-reID → MSMT17 Market1501 → MSMT17

mAP top-1 top-5 top-10 mAP top-1 top-5 top-10

ECN [22] CVPR 10.2 30.2 41.5 46.8 8.5 25.3 36.3 42.1

SSG [6] ICCV 13.3 32.2 – 51.2 13.2 31.6 – 49.6

MMT [7] ICLR 23.3 50.1 63.9 69.8 22.9 49.2 63.1 68.8

DG-Net++ [10] ECCV 22.1 48.8 60.9 65.9 22.1 48.4 60.9 66.1

NRMT [9] ECCV 20.6 45.2 57.8 63.3 19.8 43.7 56.5 62.2

KCND (Ours) 27.5 55.4 69.0 74.3 25.3 51.6 64.3 69.7

efficiently include the valuable information of outliers, demonstrating the effectiveness
of our proposed network.

5 Conclusion

In this paper, a Knowledge Compensation Network with Divisible feature learning
(KCND) is proposed to tackle the problem that the noise of pseudo labels generated
by clustering limits the performance of re-ID models. In KCND the past-to-present
knowledge of models is aggregated for cross-camera discriminative feature learning and
the soft pseudo labels is generated to resist the label noise. Also, a novel compensation-
guided softened loss is developed to enhance the generalization and robustness of re-ID
models. The experimental results have demonstrated the effectiveness of the proposed
method and show that KCND can achieve higher mAP and CMC accuracy than other
methods.
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Abstract. User preference modeling is an essential task for online rec-
ommender systems. Recently, methods have been applied to model short-
term user preferences within a short-term period. These approaches use
recent user behavior as the context to determine the current short-
term preferences. However, we argue that short-term user preferences
are related to more complex contexts, e.g., the seasons or the time of the
day. Furthermore, we make the hypothesis that short-term preferences of
a user is actually a joint effect of his/her stable long-term preferences and
the context-aware impact. Therefore, we propose LoCo-VAE, a unified
model of this joint effect with Variational Auto-Encoder (VAE) based
strategies. First, we utilize a Multilayer Perceptron(MLP) to capture
long-term user preferences. Second, we improve the traditional VAE by
distributing user interactions with respect to different contexts to intro-
duce the context-aware impact. Finally, the long-term preferences and
context-aware impact are combined with a joint generative training pro-
cess to generate the embedding of short-term user preferences. Experi-
ments on real-world datasets of Amazon consumption and music selection
demonstrate the superiority of our model compare with state-of-the-art
methods in recommendation system.
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1 Introduction

The recommendation systems are gaining more and more attention and have
been broadly utilized in a variety of areas such as online shopping and music.
Recommendation systems can provide a personalized user experience by filtering
out irrelevant information and selecting a subset of items to maximize the users’
satisfaction. Therefore, accurately modeling user preferences is essential to the
recommendation systems. Two modeling methods of user preferences are most
popular nowadays: static modeling and dynamic modeling. Static modeling aims
to learn users’ long-term preferences which are presumed to be static or change
slightly. Collaborative Filtering (CF) [1] is a classical recommendation technique
that is often applied to model static user preferences. CF captures user prefer-
ences by finding the latent spaces to encode the user-item interaction matrix
which can predict users’ preferences. Deep learning models further improve the
idea of collaborative filtering, e.g., Variational Autoencoders (VAEs), and have
led to substantial progress in the past years, mainly due to their superior ability
to capture non-linear user-item relationships [9,13,17]. Instead of modeling users’
static preferences with the aforementioned models, temporal-based recommen-
dation focuses on modeling users’ dynamic short-term preferences. Recurrent
Neural Networks (RNN) and its variants [2,14,27] are popular approaches in
temporal-based recommendation models which to capture the temporal evolu-
tion of users’ preferences over time.

Current temporal-based models, as the mainstream of modeling users’ short-
term preferences, pay more attention to the transfer between items among a
sequence of interactions. However, there are still other factors determining users’
short-term interests. Besides the sequential influence of previous items, it has
been proved that the relevance of user behavior is highly contextual and short-
term preferences depend, such as, on the time of the day or emotion [21], e.g.,
in the field of music consumption.

At the very beginning of our investigation, we also explored Beauty, a sub-
category of the Amazon dataset1, and defined context as season. We find clear
evidence that, for all users, short-term interactions sharing the same context
(e.g., transaction happening in Summer) are more similar to each other than
interactions from a different context. On the other hand, for a given user, his/her
long-term preference is relatively stable, e.g., prefer to specific brand or type.
As a result of these two facts, to ensure high user satisfaction, the short-term
preference of each user is actually a joint effect of his/her long-term preference
and specific context, which is the main hypothesis of this work. Although there
have been some attempts at context awareness, they either see context as supple-
mentary to sequence recommendation [4,14] or put it in a factorization machine
that requires multiple contextual information [3,26], without emphasizing the
combining of long-term preferences and contexts.

Motivated by these observations and subsequent hypotheses, we strive to
model the users’ short-term preferences with a joint embedding strategy. The

1 http://snap.stanford.edu/data/amazon/.

http://snap.stanford.edu/data/amazon/
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strategy proposes to represent users’ short-term preferences by combing person-
alized long-term preferences and contextual information. We focus on two key
problems: long-term preferences modeling and context-aware short-term pref-
erences modeling. Long-term preferences modeling focuses on the specific and
stable preferences of each user. Context-aware short-term preferences modeling
focuses on integrating the long-term preferences and specific context informa-
tion. The general idea is that users’ short-term preferences are the results of
fluctuations caused by context on the basis of their stable (long-term) prefer-
ences. For example, a user who likes Taylor Swift may listen to her different
styles of songs at different time of the day or in different moods.

Fig. 1. The overview of our framework. The upper parts correspond to the long-term
preferences encoder and the bottom parts correspond to the context-aware impact
encoder. The representations of long-term preferences and context-aware impact are
combined to get short-term preferences z

(k)
u . Circles marked with numbers represent

items, which is the input of the encoder. Items are divided into k categories marked
with different colors according to the context-aware impact of interaction with the user.

To this end, in this work, we propose a novel recommendation model based
on VAE [10] for better context-aware modeling of users’ short-term preferences,
which is motivated by Zhao [17] who improved VAE for capturing the prefer-
ence of a user regarding the different concepts. We name our model LoCo-VAE ,
which is short for Long-term and Context-aware preference incorporated VAE
model for recommendation system. In LoCo-VAE, the long-term preference of a
specific user is achieved from his/her behavior records in all contexts and short-
term preference is achieved by separately learning the preference of this user from
each context. In detail, the prior distribution of all contexts is set as a Gaussian
distribution whose mean is the user’s long-term preference, rather than a user-
agnostic standard Gaussian prior. Through variational analysis, we model users’
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short-term preferences with context-aware preferences as the posterior distribu-
tion and separate long-term preferences from relative entropy penalties, which
allows the long-term and context-aware impact to learn simultaneously. This
modeling choice leads to representations in an accurate latent space encoding
both users’ long-term as well as contextual preferences. As users’ preferences
tend to be dynamic according to the context, harnessing the above information
is promising to improve recommendation performance. Our main contributions
are summarized as follows:

– We propose LoCo-VAE, which is an unified framework modeling context-
aware short-term user preferences as a joint effect of long-term user prefer-
ences and specific context impact.

– We incorporate priors based on users’ long-term preferences in the latent
VAE space and fine-tune the short-term preferences along with the context
impact. Specifically, we use an MLP to obtain long-term preferences, and
context-aware preferences are obtained from the variational distribution.

– We experimentally examine the rationality of modeling users’ context-aware
short-term preferences and verify the effectiveness of proposed LoCo-VAE by
extensive experimental evaluation on two real-world datasets.

2 Related Work

2.1 General Recommendation Systems

General recommendation systems usually model users’ static long-term prefer-
ences which reflect their’ inherent characteristics. Collaborative Filtering (CF)
[1] is the most popular idea in general recommendation. CF with implicit feed-
back is usually treated as a Top-k item recommendation task, whose goal is to
recommend a list of items that users may be interested in [20]. Early CF based
works mostly rely on matrix factorization techniques [7,22] to learn latent fea-
tures of users and items. In recent years, due to the ability of deep learning
techniques to learn salient representations, deep learning based methods have
been widely applied in recommendation systems. For example, NCF [5] learns
a model with non-linear interactions between the latent factors of users and
items rather than direct inner product. Autoencoder-based methods [13,16,25]
have also been proposed for recommendation systems. MacridVAE [17] learns
disentangled representations from user behavior by inferring the high-level con-
cept associated with user preference. Although current general recommendation
systems have been widely used in practice, few of these methods take contex-
tual information into consideration, which is essential to further performance
improvement.
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2.2 Recommendation Systems Based on User Dynamic Preference

To solve the problem of static user preference modeling in general recommen-
dation systems, researchers proposed to model users’ dynamic preferences. The
earlier work on applying this idea can be traced back to DIVA[19], decision-
theoretic agent for recommending movies that distinguishing between a user’s
general taste in movies and his immediate interests. Later recommendation sys-
tems that model users’ dynamic preferences focus on the transition process of the
state. For example, the factorized personalized Markov chains (FPMC) [23] com-
bined matrix factorization with one-order Markov chain to capture the influence
of the last behavior towards the next one. Recently, RNN and its variants are
introduced to model dynamic preference. In this direction, Time-LSTM [29] pro-
poses time gates to model time intervals with the goal of capturing both users’
long-term and short-term Preferences. SLi-Rec [27] leverages RNN structures
for modeling users’ short-term preference, and further proposes an attention-
based adaptive fusion schema to dynamically combine users’ both short-term
and long-term preference. MA-GNN [15] proposes a memory augmented graph
neural network to capture both the long and short-term user preferences and
they apply a graph neural network to model the item contextual information
within a short-term period. As mentioned above, current dynamic preferences
oriented recommendation systems only consider the sequential temporal feature
of the preference, instead of understanding the relation between the complex
contextual information and short-term preference.

2.3 Context-Aware Recommendation Systems

To introduce the context information into recommendation systems, point-of-
interest (POI) based models are proposed as the main approaches in context-
aware recommendation [11,12,28]. POI based recommendation is different from
item recommendation and is more sensitive to geographic location. There are also
other context-aware recommendation approaches of products, music and books.
For example, CA-RNN [14] employs adaptive context-specific input matrices
and adaptive context-specific transition matrices to improve conventional RNN
models. The adaptive context-specific input matrices capture the context where
user behaviors happen. CoSeRNN [4] focused on the dynamic influences of con-
text and learns preference vector based on past consumption history and current
context while not apply it into the recommendation system.

3 Methodology

3.1 Notations and Problem Formulation

We assume that a set of N users can interact with the set of M items.(e.g.,
users purchase products or listen to music) in K contexts. We consider learning
with implicit feedback, where the user-item interaction is binary. Specifically,
x
(k)
ui = 1 indicates that the interaction of user u with item i in the kth context
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is observed, whereas xui = 0 means there is no record of such interaction. For
convenience, we use x

(k)
u = {x

(k)
ui : x

(k)
ui = 1} to represent the items adopted by

user u in context k. xu = [x(1)
u ,x

(2)
u , · · · ,x

(k)
u ] ∈ N

K×M is the input matrix. Our
goal is to suggest top-k items preferred by u in context k.

3.2 Model of LoCo-VAE

Overall Framework. Our framework of LoCo-VAE is presented in Fig. 1. To
provide a clear view of our model, we first interpret from the perspective of
an autoencoder before derivation. The long-term and context-aware preference
is captured by the encoders in the upper and lower parts of Fig. 1, respectively.
The decoder takes the combination of the two distributions as input and outputs
the probability distribution of the user on item set in the corresponding context.

We start our model by proposing a generative model as VAEs usually do. For
a user u in context k, our generative model starts by sampling a d-dimensional
latent representation z

(k)
u as context-aware short-term preference from a Gaus-

sian prior distribution. The latent representation z
(k)
u is then transformed via

a non-linear function gψ(·) ∈ RM parametrized by ψ to produce a probability
distribution over M items:

p(z(k)u ) = N (μu, diag(σ2
u)),

pψ(x(k)
u ) = gψ(z(k)u ),

(1)

where μu ∈ Rd and diag(σ2
u) ∈ Rd×d denotes the mean and deviation vector

of the Gaussian distribution, respectively. As we assume a user’s short-term
preference is based on the stable long-term preference, coupled with the role of
context zsk

u , μu is assumed to be the user u’s long-term preference zl
u ∈ Rd. And

the impact of context is fine-tuned by the deviation of the distribution.

Variational Inference. In order to optimize the parameters, we need to max-
imize p(x(k)

u ), which can be rewritten according to the Bayesian formula as:

ln[pψ(x(k)
u )] = Ez[ln

pψ(x(k)
u |z(k)u )p(z(k)u )

p(z(k)u |x(k)
u )

], (2)

where pψ(x(k)
u |z(k)u ) is the distribution over M items in context k, and gψ(·)

can be reached by a neural network to estimate how much a user in the
given context is interested in items. To approximate the intractable poste-
rior distribution p(x(k)

u |z(k)u ), we resort to variational inference [8]. Variational
inference approximates (x(k)

u |z(k)u ) with a variational distribution q(z(k)u ) =
N (μ(k)

u , diag{(σ(k)
u )2}). Following the VAE paradigm [10,13,24], we replace the

individual variational parameters {μ
(k)
u , (σ(k)

u )
2} with a data-dependent function

and set the variational distribution as following:

qφ(z(k)u |x(k)
u ) = N (μφ(x(k)

u ), diag{σ2
φ(x(k)

u )}), (3)
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where φ is the parameter of the function fφ(x(k)
u ) ≡ [μφ(x(k)

u ), σφ(x(k)
u )] ∈ R

2d

that maps x
(k)
u to the mean and standard deviation vectors.

After the variational inference, we can further rewrite formula (2) as:

ln[pψ,φ(x(k)
u )] ≥ Ez[lnpψ(x(k)

u |z(k)u )] − DKL(qφ(z(k)u |x(k)
u )||p(z(k)u )), (4)

where KL is Kullback-Leibler divergence distance measuring the difference
between the distribution qφ(z(k)u |x(k)

u ) and the Gaussian distribution p(z(k)u ). We
define context-aware preference of user u in context k as zsk

u , and p(zsk
u ) =

N (0, diag(σ2
u)). Since

DKL(qφ(zsk
u |x(k)

u )||p(zsk
u )) ≡ DKL(qφ(z(k)u |x(k)

u )||p(z(k)u )),

equation (4) is finally transformed into:

ln[pψ,φ(x(k)
u )] ≥ Ez[lnpψ(x(k)

u |z(k)u )] − DKL(qφ(zsk
u |x(k)

u )||p(zsk
u )). (5)

This lower bound, commonly called evidence lower bound (ELBO), is maximized
to learn the parameters of ψ and φ.

Context-Aware Modeling. The latent representation zsk
u is a context-aware

preference separated from short-term preference. We map the input x
(k)
u to the

mean and standard deviation vectors of the variational distribution qφ(zsk
u |x(k)

u )
through the function fφ(x(k)

u ), which is obtained through a Multilayer Percep-
tron(MLP). And zsk

u is sampled from Gaussian distribution qφ(zsk
u |x(k)

u ) via re-
parameterization trick [10].

Long-Term Modeling. Unlike Giannis [9] who obtains the prior distribution
in advance, we put it in our model so that the long-term preferences can be
optimized with context-aware preferences at the same time. We just apply an
MLP which shares a similar construction with the encoder of CDAE [25] with
user-specific nodes in the input layer and hidden layer to get zl

u, transforming
the input into a latent representation with the same dimension as z

(k)
u through

a function zl
u = f l

θ(x
l
u), where xl

u = Σkx
(k)
u .

The two distributions of context-aware and long-term preferences are com-
bined into short-term preferences z

(k)
u , which are input into the decoder in the

right part of Fig. 1. The decoder outputs the probability distribution of the user
on item set in the corresponding context. We choose k items with the high-
est probability as the recommendation results. In practice, the long-term and
context-aware preference encoders share parameters (θ can be replaced φ), which
can effectively alleviate overfitting.

3.3 Objective Function

We optimize the learnable parameters by maximizing the ELBO from Eq. 5,
which can be viewed from another perspective: the first part can be understood
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as reconstruction loss, while the second part is regularization. From this per-
spective, we make a trade-off between the two parts just like Liang [13] does.
Finally, our objective function becomes:

L(xu;φ, ψ) =
1
K

Σk{Ez[lnpψ(x(k)
u |z(k)u )] − β · DKL(qφ(zsk

u |x(k)
u )||p(zsk

u ))}. (6)

4 Experiments

4.1 Datasets

According to common sense, the user’s listening style and purchase of beauty prod-
ucts can be affected by time, which is also proven by Hansen [21] and Sect. 5.1.
We conducted our experiments on two largescale user-item datasets from vari-
ous domains. Specifically, we used the Million Musical Tweets dataset (MMTD)2,
and Amazon consumption dataset3. Amazon dataset is a public dataset containing
product reviews and metadata from Amazon consumption records, which is widely
used as benchmark dataset in recommendation system study. In the experiments,
we chose the subcategory of Beauty from Amazon dataset, considering the influ-
ence of contexts. MMTD is a largescale source of microblog-based music listening
histories that includes temporal and other contextual information. In both Beauty
and MMTD datasets, the feature of time was chosen as the context information
and divided into seasons and different periods of the day, respectively. Other con-
texts can also be chosen as long as they count.

We binarized the two datasets by keeping ratings of four or higher while only
keeping users who have listened or purchased at least five items. Table 1 sum-
marizes the statistics of both datasets after preprocessing. We split all users into
training, validation and test sets. We train the proposed models and baselines
using the entire click history of the training users. To evaluate, we take part in
the click history from held-out (validation and test) users to learn the necessary
user-level representations for the model and then compute metrics by looking at
how well each model ranks the rest of the unseen click history from the held-out
users. In the last row of Table 1, we list the number of held-out users (we use the
same number of users for validation and test). For each held-out user, we ran-
domly choose 80% of the click history as the “fold-in” set to learn the necessary
user-level representation and report metrics on the remaining click history.

4.2 Baselines

We compare the performance of proposed LoCo-VAE model with the following
state-of-the-art collaborative filtering models and auto-encoder based methods.

Weighted Matrix Factorization (WMF) [6]. WMF is a linear low-rank
matrix factorization model. We train WMF with alternating least squares. We

2 http://www.cp.jku.at/datasets/MMTD/.
3 http://snap.stanford.edu/data/amazon/.

http://www.cp.jku.at/datasets/MMTD/
http://snap.stanford.edu/data/amazon/
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Table 1. Statistics of the datasets.

Dataset Beauty MMTD

# Users 35,931 34,051

# Items 95,313 111,629

# Interactions 0.3M 0.8M

Density 0.009% 0.021%

# Held-out users 3000 3000

Fig. 2. Visualization of the similarity between the users’ preferences of different types
of context. In this case, we calculate the similarity between the Beauty consumption
records (i.e., user preference) of different seasons (i.e., types of context). A more positive
number (i.e., darker red) indicates higher similarity. (Color figure online)

set the weights on all the 0’s to 1 and tune the weights on all the 1’s in the click
matrix among {2, 5, 10, 30, 50, 100} by evaluating recall@10 on validation user.

Neural Collaborative Filtering (NCF) [5]. NCF explores non-linear inter-
actions (via a neural network) between the user and item latent factors. We used
the hybrid NeuCF model which gives the best performance in [5]. We selected
the latent representation dimension K over {64, 128, 256} by examining the
validation recall@10.

Multinomial-Denoising Autoencoder (Mult-DAE) [17]. Mult-DAE aug-
ments the standard denoising auto-encoder by replacing the loss function as
multinomial likelihood. We search the hidden layer dimension K among {100,
200, 300, 600}, as well as the regularization parameter λ in (0,1).

Multinomial-Variational Autoencoder (Mult-VAE) [17]. Mult-VAE is a
generative model with a multinomial likelihood function parameterized by neu-
ral network. We set the hidden layer and penalty β by searching for the best
recall@10 on validation users.



496 J. Liu et al.

4.3 Metrics

To evaluate the performance of models, we use two ranking-based metrics:
Hit Ratio (HR@R) and Normalized Discounted cumulative gain(NDCG@R). In
order to compare proposed LoCo-VAE model with other baselines, for each pos-
itive item in the test set we pair it with 99 sampled items that the user has
not interacted with as negative items. For each user, both metrics compare the
predicted rank of sampled negative items and the positive item with their true
rank. HR@R measures whether the Top-R predicted items hit the positive item
and NDCG@R gives a higher score when the positive item ranks higher.

4.4 Parameter Settings

We set the latent representation dimension d = 100 and the MLP with a hid-
den layer whose dimension is 200. We tuned β by Hyperopt [9] and choose 0.5
finally. All the hyper-parameters of our baselines are also tuned by Hyperopt.
For learning LoCo-VAE, we used the Adam optimizer with a learning rate of
0.001 as well as a batch size of 500 users.

5 Results and Analysis

5.1 Exploratory Analysis

In order to demonstrate the rationality of our main hypothesis, i.e., users’ short-
term preferences are a joint effect of long-term preferences and specific context,
we investigated the influence of context on the Beauty dataset. we embedded
user-item interaction records in a latent semantic space using the word2vec con-
tinuous bag-of-word model [18] on user-generated reviews. In short, we learn
a 100-dimensional real-valued unit-norm embedding of each interaction by cal-
culating the mean of the review embeddings. We randomly select two sets of
interactions, each with 400 records. These 400 records consist of 100 records for
each season. The similarity between the two sets is obtained by simply com-
puting cosine similarity between their embeddings. Figure 2 displays the results
in the form of a heatmap. The positive diagonal with a dark red denotes that
records sharing the same context are indeed more similar than records in other
contexts. This result highlights our hypothesis that user interactions with the
same context do share some similarities. In addition, a similar conclusion in the
field of music is also reached by Hansen [4].

5.2 Performance Comparison

Table 2 presents the performance of the proposed LoCo-VAE model with the
compared methods in terms of two evaluation metrics at three accuracy levels.
The boldface font denotes the winner in that column. For the sake of clarity, the
last row of Table 2 also shows the relative improvements achieved by our LoCo-
VAE over the baselines. As we can see, LoCo-VAE’s relative improvement for
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Table 2. The performance metrics of the compared methods. The boldface font denotes
the winner in that column. The row ‘Impv’ indicates the relative performance gain of
our LoCo-VAE compared to the best results among baselines.

Dataset Method HR@10 HR@5 HR@1 NDCG@10 NDCG@5

Beauty WMF 0.4565 0.3707 0.2316 0.3316 0.3039

NCF 0.5366 0.4426 0.2525 0.3833 0.3530

Mult-DAE 0.6675 0.5912 0.3716 0.5142 0.4895

Mult-VAE 0.7020 0.6021 0.3711 0.5260 0.4938

LoCo-VAE 0.6999 0.6079 0.3936 0.5369 0.5071

Impv% −0.30% 0.96% 6.06% 9.48% 2.69%

MMTD WMF 0.7021 0.6341 0.4666 0.5777 0.5557

NCF 0.7654 0.6939 0.4474 0.6020 0.5787

Mult-DAE 0.8499 0.7683 0.4888 0.6665 0.6401

Mult-VAE 0.8509 0.7690 0.5001 0.6712 0.6445

LoCo-VAE 0.8525 0.7720 0.5236 0.6842 0.6580

Impv% 0.19% 0.39% 4.70% 1.94% 2.09%

NDCG is higher than that for HR, which indicates our model can predict user
preferences more accurately to maximize their satisfaction. Besides, LoCo-VAE’s
overall relative improvement on Beauty is higher than that on MMTD, while the
former’s data is more sparse, illustrating our superiority on sparse datasets.

Generally speaking, with one exception, LoCo-VAE outperforms compared
methods on all datasets for all metrics. The improvement of LoCo-VAE over
these baselines is supposed to be attributed to two aspects:

(1) In the real world, users interact with the recommendation in different con-
texts, and they adaptively make behavioral choices based on the context at
the time. Correspondingly, even the same user’s interest will vary with dif-
ferent interaction contexts. That is, some music is more likely listened to by
users at noon while others are to be played at night. By combining long-term
preferences with short-term preferences acted upon by context, LoCo-VAE
achieves better performance than those baselines without considering the
context;

(2) LoCo-VAE models long-term preferences via an encoder that is trained with
context-aware preferences, which is capable of capturing users’ short-term
preferences in the extinct context.

5.3 Case Study

To validate the second aspect, i.e., LoCo-VAE is capable of capturing users’
short-term preferences via context-aware long-term preferences, we randomly
sample two users and list their recommended items in the context of noon and
night by our model for better understanding, as depicted in Fig. 3.
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(a) Items recommended by Loco-VAE
for user A at noon.

(b) Items recommended by Loco-VAE
for user B at noon.

(c) Items recommended by Loco-VAE for
user A at night.

(d) Items recommended by Loco-VAE
for user B at night.

Fig. 3. Two examples randomly sampled from held-out users. For each user, we choose
items recommended by the proposed LoCo-VAE in the context of noon and night. For
each user, LoCo-VAE tends to recommend soothing music at night, while the rhythm
is stronger at noon, which reflects the context-aware impact of each user’s short-term
interests. The overall recommended music styles of the two users are also different. For
user B, LoCo-VAE tends to recommend vigorous music, which reflects the difference
in their long-term preference.

By comparing recommended music styles of the same user in two different
contexts, we found that LoCo-VAE tends to recommend soothing music at night,
while the rhythm is stronger at noon, which reflects the context-aware impact of
each user’s short-term preferences. In addition, the overall recommended music
styles of the two users are also different. For user B, LoCo-VAE tends to recom-
mend vigorous music, which reflects the difference in their long-term preference.
This case study not only demonstrates LoCo-VAE’s advantage in making a more
accurate recommendation but also reveals our advantage in the interpretability
of recommendation, which is all benefit from modeling short-term preferences as
the joint effect of long-term preferences and context-aware impact.

6 Conclusion

In this work, we consider the task of learning short-term user preferences by
combing contextual information with long-term user preferences. To this end,
from real-world Amazon consumption datasets, we first verify the essential
hypothesis that short-term user preference is a joint effect of long-term pref-
erence and specific context.

Driven by this finding, we propose a novel model named LoCo-VAE. LoCo-
VAE extends Variational Autoencoders (VAEs) based recommendation model
by replacing the standard Gaussian prior with user-dependent priors. The user-
dependent priors are defined as long-term preferences and are obtained from
user-item interactions. Using this approach, we map users into a latent vector
space, which encodes both long-term interests and context-aware preferences.
Experiments on Amazon consumption datasets and Musical Tweets datasets
show that our proposed LoCo-VAE model achieves the best performance among
state-of-the-art baselines.
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Abstract. Deep-learning based salient object detection methods achieve
great improvements. However, there are still problems existing in the pre-
dictions, such as blurry boundary and inaccurate location, which is mainly
caused by inadequate feature extraction and integration. In this paper,
we propose a Multi-scale Edge-based U-shape Network (MEUN) to inte-
grate various features at different scales to achieve better performance. To
extract more useful information for boundary prediction, U-shape Edge
Network modules are embedded in each decoder units. Besides, the addi-
tional down-sampling module alleviates the location inaccuracy. Experi-
mental results on four benchmark datasets demonstrate the validity and
reliability of the proposed method. Multi-scale Edge-based U-shape Net-
work also shows its superiority when compared with 15 state-of-the-art
salient object detection methods.

Keywords: Salient object detection · Multi-scale feature · Edge-based

1 Introduction

Saliency Object Detection (SOD) is a significant branch of computer vision.
It is involved in plenty of computer vision tasks, such as video summarization
[15], visual object tracking [1], semantic segmentation [29]. The salient object is
defined as one or more objects that are the most attractive in an image. Saliency
Object Detection aims to segment the object with its boundary and background
accurately. It can be viewed as a binary classification task to assign foreground
pixels to saliency and background pixels to non-saliency.

At the very beginning, SOD models mainly depend on manual features such
as texture, color and global contrast [17]. Until 2015, the sudden rise of neural
network sets off a wave of wind in the SOD and even the whole field of computer
vision. Most scholars turned their attention to neural network models with a
great capacity to extract multi-level and multi-scale information, especially after
the Fully Convolutional Neural Network (FCN) [14] was proposed.

Although SOD models with convolution neural networks (CNNs) achieved
remarkable achievements in recent years, there are still two main problems to be
solved. First, predictions around the boundary areas are prone to make mistakes.
c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13032, pp. 501–514, 2021.
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Besides, the background and foreground have high similarities in some images,
making the models confused about object location. These problems are virtually
triggered by improper multi-scale feature integration and information loss.

In the past years, most researches are devoted to improving the border region
of salient objects, for example, adding some edge information to the framework
[2,31], utilizing top local features to refine the saliency map via multiple cycles [5]
or raising the weight of edge pixel error punishment in loss function [4]. Recently,
a few articles start to refocus on the accuracy of the overall positioning of salient
objects [27].

Inspired by these articles, we propose a Multi-scale Edge-based U-shape
Network (MEUN), which improves the object location and boundary predic-
tion by additional down-sampling and edge complement. As known, the fea-
tures extracted from shallow layers usually have high resolution with abundant
detailed information. If these features could be fully utilized in the network, the
prediction performance around the saliency borders will be greatly promoted.
The features drawn from the deep layers contain rich global textual clues. How-
ever, too many straight down-sampling operations will lead the features to lose
detailed information and influence the prediction of boundary areas. If we sim-
ply up-sample the down-sampled features to the size of inputs, the prediction
must be too coarse to meet the requirements of SOD nowadays. So we design
our module with the encoder-decoder structure called “U-shape Network” [18].
The outputs of each unit in the encoder are transmitted to corresponding unit
in the decoder to supply some shallow details for the deep global semantic fea-
tures. Such a solution could alleviate the problems mentioned above. Besides,
we designed the U-shape edge network (UEN) block and the additional down-
sampling module (ADM) to further explore the fine details at the bottom sides
and the semantic information at the top sides, separately.

In general, to improve the accuracy of the object location and the details
of the object boundary, our method properly extracts and merges features from
the deep layers and the shallow layers. The main contributions are summarized
as following three points:

• We propose the U-shape edge network (UEN) block to fuse the edge informa-
tion and features extracted by the backbone. Based on the originally advan-
tageous U-shape structure, this module could efficiently add boundary infor-
mation so that the boundary prediction of saliency maps can be improved.

• An additional down-sampling module (ADM) is designed to further extract
useful global structural information. It makes the network proposed going
deeper than other networks, so our method can obtain a more accurate
saliency object position.

• We build an efficient framework to fully combine and fuse edge information,
detailed information and semantic clues. Many experiments are conducted
to illustrate the validity of our algorithm and this model could surpass most
models on four large-scale salient object detection datasets.
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2 Related Work

Because our method designs a novel multi-scale feature integration U-shape Net-
work based on edge information, this part briefly includes three aspects of works,
U-shape models, edge-fused models and multi-scale feature aggregation models.

U-Net Based. U-shape network is a variant of Fully Convolutional Networks
and is widely used in image segmentation and saliency object detection. This
structure has a strong capacity to make the features from different modules
interact with each other. It was first proposed in [20] for biomedical image seg-
mentation in 2015. Recently, many saliency models adopt U-structure to obtain
multi-scale features and efficient aggregation. Zhou et al. [33] design a module
based on U-Net, in which an attention mechanism is taken to jointly enhance the
quality of salient masks and reduce the consumption of memory resources. Qin
et al. [18] design a two-level nested U-structure without using any pre-trained
backbones from image classification. Although these models take advantage of
the U-structure, there are still some limitations. For example, U2Net [18] is
extremely complex with a large number of parameters up to 176.3 M.

Edge Based. Boundary prediction accuracy is always a problem that most
models cannot deal with well. In recent years, edge information is found to be
a valuable complement to the salient boundary prediction. EGNet [31] is design
to explicitly model complementary salient object information and salient edge
information within the network to preserve the salient object boundaries. To
supplement semantics and make networks focus on object boundaries, Cen et al.
[2] introduce an edge-region complementary strategy and an edge-focused loss
function to predict salient maps with clear boundaries accurately. Li et al. [11]
propose an edge information-guided hierarchical feature fusion network. Zhou
et al. [32] designed a multi-stage and dual-path network to jointly learn the
salient edges and regions, in which the region branch network and edge branch
network can interactively learn from each other. These methods improve the
boundary prediction of the salient object to some extent, but the overall posi-
tioning lacks novel improvement.

Multi-scale Feature Aggregation Based. The problems mentioned above
are also partly caused by inappropriate aggregation and fusion. Thus, many
articles looked for more efficient and effective methods to aggregate low-level
features with detailed information and high-level features with semantic clues.
Feng et al. [8] employ a Dilated Convolutional Pyramid Pooling (DCPP) module
to generate a coarse prediction based on global contextual knowledge. In MINet
[16], the aggregate interaction module can efficiently utilize the features from
adjacent layers through mutual learning, while the self-interaction module makes
the network adaptively extract multi-scale information from data and better
deal with scale variation. Li et al. [10] present a residual refinement network
with semantic context features, including a global attention module, a multi-
receptive block module, and a recurrent residual module. These methods are
mainly innovative in feature extraction and fusion, but they do not explore
features with more possibilities.
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3 Methodology

In this section, the proposed model is discussed in detail. The whole method
is further separated into four parts. In the first part, we give an overview of
the network architecture. Then we introduce the U-shape edge network block
and the additional down-sampling module. Finally, the use of loss function is
explained clearly.

3.1 Overview

Figure 1 presents the overall framework, mainly containing the UENs and ADM.
The encoder could adopt any common backbone as its encoder, such as ResNet50
[9]. The backbone is divided into five groups according to the size of output fea-
tures. One group’s output is transmitted to the next group and the module with
the corresponding scale in the decoder. We suppose that detailed supplement is
not enough for promoting edge prediction, so edge information is introduced as a
complement for better performance. Firstly, it should be clear that what kind of
edge is needed. The background prediction will be disturbed by the background
edges marked as saliency. Because in a saliency map, background pixels should
be marked as non-salient. To avoid the disturbance from background edges, a
salient edge ground truth is used to supervise the edge map generation. The edge

Fig. 1. The overview of the architecture.
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features are down-sampled to different scales of the branches. Then processed
edge feature is inputted into the UENs.

We also design an Additional Down-sampling Module (ADM) to mine more
semantic clues with larger and wider receptive field, which can help locate accu-
rately and precisely. We build the MEUNetwork based on ResNet-50. The final
output of ResNet-50 is at 7 × 7 scale, so ADM down-samples the input feature
map by a factor of two. Then, the output of ADM is transmitted to the decoder
along with the features from the backbone. The decoder consists of five U-shape
edge networks (UEN), and the UENs are connected from the bottom up. The
input of the module at the bottom is the element-wise addition of FeatureADM

and Featureb5. It can be formulated as

Input5 = Conv− 23×3 (Conv− 23×3 (Featureb5) + FeatureADM ) , (1)

in which Input5 denotes the input of the UEN at the bottom. Conv−23×3 is two
sets of one 3 × 3 convolutional layer followed by the batch normalization and
ReLU activation, which is used as the basic convolutional unit in this network.
FeatureADM and Featureb5 are the output of fifth group filters in the encoder
and ADM, respectively. The input of other UEN blocks can be written as

Inputi = Conv−23×3 (Conv−23×3 (Featurebi) + Edgesal) , i = 1, 2, 3, 4 (2)

Inputi is the input of the ith UEN block. Featurebi represents the output of the
ith block in the encoder and Edgesal denotes the edge supplement. It needs to
mention that the outputs with different channels from the backbone are squeezed
to 128 channels by a 1 × 1 convolution for the reduction of parameters. Besides,
to achieve the best balance between efficiency and quality, edge feature and
features in ADM and UENs are all set as 128 channels.

Besides being sent to the next module, the output of each UEN is used to
generate a saliency map through two 3×3 convolution layers. Each intermediate
prediction is up-sampled to the size of the original image for supervision. In the
decoder, the deepest features at 7 × 7 scale are restored step by step. Compared
with other predictions, the last prediction with the highest resolution is the
closest to what we want. The final output of the model is the fusion of all the
intermediate predictions integrated by convolutional layers. Of course, this step
could be skipped because the last saliency map of the decoder is good enough
to be the final result.

3.2 UEN Module

Figure 2 shows the overview of different UEN modules, including the UEN 5
and the UEN A. DilatedConvi in Fig. 2 denotes the atrous convolution layer
with dilation rate i. The 3 × 3 convolutional layer is heavily used inside this
module. Except for the first convolutional layer, each convolutional layer is fol-
lowed by a down-sampling by a factor of two. In this way, richer information
with a global view can be extracted at different scales. We determine the down-
sampling times in an UEN i (i = 4, 5) according to the scale of the input feature.
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(a) UEN 5 (b) UEN A

Fig. 2. The structures of UEN5 and UEN A.

If the input is large enough, such as 112 × 112, we could down-sample for three
times. However, if the input itself is small, excessive down-sampling is redundant
and unreasonable. In this situation, two down-sampling operations are enough.
For smaller scales, such as 7 × 7, the module discards the down-sampling. More
specifically, we remove the pooling layers and change the original convolutional
layer into a dilated convolutional layer. The structure shown in Fig. 2 (a) is
the specific settings of UEN 5. Compared to UEN 5, UEN 4 reduces a down-
sampling operation and an up-sampling operation followed by a convolutional
layer, respectively. After the encoder, a dilated convolutional layer is followed by
the batch normalization and ReLU activation function. Here, the input of each
convolutional layer is an aggregation of two features. One is the output from
the last convolution. The other one is the feature transmitted from the encoder.
Here, the two features are aggregated by concatenating. Unlike UEN i, in Fig. 2
(b), there are three dilated convolution branches in UEN A with different dila-
tion rates to extract semantic features with different receptive fields. Kernels of
the three branches are all 3 × 3 and dilation rates are 1, 2, 4. The final convolu-
tion output FeatureUEN is conducted as the output of this module. The input
size of each UEN block and the type used in each stage are present in Table 1.

3.3 Additional Down-Sampling Module

In some scenarios of SOD, some salient areas are quite similar to the non-salient
areas around them, for example, the salient object and the reflection of itself in
the mirror. This problem leads to that sometimes models will treat these easily-
confused un-salient regions as salient regions. The purpose of the Additional
Down-sampling Module is to explore more global semantic clues as much as pos-
sible to assist the model position accurately and eliminate misleading regions.
The structure of ADM is shown in Fig. 3. The input is down-sampled after two
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Table 1. Input size and the UEN version of each stage in backbone.

Stage Input size The type of UEN

Stage1 112 × 112 UEN 5

Stage2 56 × 56 UEN 4

Stage3 28 × 28 UEN 4

Stage4 14 × 14 UEN A

Stage5 7 × 7 UEN A

convolutional layers. It is reasonable to infer that the more non-zero pixels in
a channel, the more information contained. On the contrary, if a channel has
comparatively more zero pixels than other channels, we suppose the informa-
tion content is inadequate. The global average pooling is followed by two fully
connected layers to calculate the amount of information in each channel. Each
element in the processed vector corresponds to a channel of the down-sampled
feature. The down-sampled feature is multiplied by the vector in channel-wise
to make a channel enhancement. As a result, the weights of these channels lack-
ing information are weakened and the others are highlighted. The strengthened
FeatureADM is used as the final output of ADM.

Fig. 3. The structure of ADM.

3.4 Loss Function

Our algorithm supervises five outputs of the model, among which one output is
the edge saliency map. Since there is no ground truth of the saliency object edge
in the training set, it is necessary to generate the edge labels first. We calculate
the gradient for each pixel of the original label. Then, multiply the gradient by
itself to get the new value of each pixel:

Sedge = d2x + d2y (3)

Sedge is the edge ground truth wanted. dx and dy are the gradient values of the
pixel in the x-direction and y-direction, respectively. Finally, the non-zero pixels
are set as one and then multiply by 255. The edge saliency map is supervised
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by the edge ground truth generated in this way. The edge loss inspired by [2] is
written as:

Edge Loss = −
∑

e∈E+

log Pr (en = 1 | W ) −
∑

e∈E−
log Pr (en = 0 | W ) (4)

en represents the pixels in the edge prediction map, and W represents the parame-
ters in the model. Pr (en = 1 | W ) means the probability that the pixel en is calcu-
lated as salient edge. E+ indicates the salient edge pixel set, while E− is a set that
contains all of the pixels except salient edge pixels. Original labels supervise those
intermediate saliency maps. For better performance, this method introduces two
kinds of loss functions: BCE Loss and IoU Loss. BCE Loss is widely used in the
training process of binary classifiers. The function is written as:

BCE Loss = −
∑

(x,y)

[g(x, y) log p(x, y) + (1 − g(x, y) log(1 − p(x, y)))], (5)

where g(x, y) ∈ [0, 1] is the ground truth label of the pixel (x, y) and p(x, y) ∈
[0, 1] is the predicted probability of being salient object. IoU Loss is joint to
highlight the prediction error around the salient object boundary. As mentioned
before, one of the difficulties in saliency object detection is that the prediction
error frequently occurs in the object boundary area, which makes the prediction
edge ambiguous and leads to error and missed detection. If the saliency map
fails to align with the ground truth, the unaligned part will pay the penalty. The
addition of IoU Loss can help the model to correct errors in this specified area.
The function is denoted as

suminter =
∑

yi∈I

yi, I = Sal map � Ground Truth, (6)

sumunion =
∑

yj∈J

yj , J = Sal map + Ground Truth, (7)

IoU Loss =
(

1 − suminter + 1
sumunion − suminter + 1

)
× 1

H × W
(8)

in which H is the height of Sal map while W is the width. In the experiment,
we found that the lower resolution of a saliency map, the more inaccurate the
result is. If the losses of all saliency map are given the same weight, it will lead to
instability and influence the model performance. Saliency maps generated from
deep layers should be weakened with lower weight, so the coefficient is reduced
by two. The whole loss function could be written as

Lall = Ledge + BCE−Lossunited + IoU Lossunited

+
5∑

i=1

1
2i−1

(BCE Lossi + IoU Lossi)
(9)

BCE−Lossunited + IoU Lossunited is the loss of united saliency maps.
BCE−Lossi + IoU Lossi is the loss of the ith intermediate saliency map. The
lager i is, the closer the saliency map is to the bottom.
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4 Experiment

4.1 Experimental Setting

Datasets and Implementation Details. The model is trained on the DUTS-
TR with 10553 images. In detail, we trained the model using the SGD optimizer
with initial learning rate 3e-5, 0.9 momentum, 5e-4 weight decay, and batch size
16. Because the ResNet-50 parameters are pre-trained on ImageNet, the learning
rate of this part is a tenth of the randomly initialized parts which is set as 3e-5.
Then, the trained model is tested on five datasets, including DUTS-TE with
5019 images, DUT-OMROM with 5168 images, HKU-IS with 4447 images and
ECSSD with 1000 images.

Metrics. We comprehensively evaluate the model with four metrics widely
used in SOD, including mean F-measure (mF ), mean absolute error (MAE),
structure-measure (Sm) and enhanced-alignment measure (Em). Mean F-
measure is the average of F-measures, which is calculated as:

Fβ =

(
1 + β2

) × Precision × Recall

β2 × Precision + Recall
(10)

β2 is usually set as 0.3 to put more emphasis on precision [21]. Mean absolute
error is the average of each pixel’s absolute error in predictions. Before calcula-
tion, each pixel is normalized to [0, 1], and MAE is calculated as

MAE =
1

H × W

H∑

i=1

W∑

j=1

|P (i, j) − G(i, j)| (11)

H and W is the height and width of the saliency map. P (i, j) is the prediction
at location (i, j). G(i, j) denotes the value at location (i, j) in the ground truth.
S-measure is a metric proposed to evaluate the structural similarity between the
prediction and the corresponding ground truth. S-measure is formulated as

S = αSo + (1 − α)Sr, (12)

where So represents the object-oriented structural similarity while Sr represents
the region-oriented structural similarity. α is set to 0.5, the same as in [6]. E-
measure [7] is widely used in SOD as well.

E =
1

W × H

w∑

x=1

h∑

y=1

φFM(i, j) (13)

where φFM(i, j) is the enhanced alignment matrix. E-measure considers the
performance of both the global average of image and local pixel when evaluating
the model.
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4.2 Ablation Study

In general, there is no need to down-sample the feature at 7 × 7 scale because it
has a sufficiently large receptive field. However, the experiment results in Table 2
is somewhat counterintuitive. It shows that there is still some different global
semantic information waiting to be discovered. The version for comparison is
a U-shaped vanilla model, which is trained with the initial learning rate 10−4.
Here we use the same learning rate to train the parameters in the backbone
and modules designed in our method. The rise of MAE, mF , Sm and Em
reflects ADM’s reliability and validity. Figure 4 shows the comparison of visual-
ized results between the vanilla network with and without ADM. UENs generate
multi-scale features on account of the input level and integrate the features with
edge information, which guides the model to pay attention to the boundary areas.
The experimental data also reveals that the UENs make greater improvements
in various aspects.

Fig. 4. Comparison of predictions between the vanilla network with and without ADM.

Table 2. Comparison of networks with and without the proposed modules, ADM and
UENs. Base: a U-structure network with usual U-shape modules.

Datasets DUTS-TE DUT-OMROM

Base +ADM +UENs mF ↑ MAE ↓ Sm ↑ Em ↑ mF ↑ MAE ↓ Sm ↑ Em ↑
� 0.851 0.038 0.894 0.901 0.772 0.065 0.839 0.859

� � 0.860 0.035 0.898 0.907 0.778 0.059 0.843 0.870

� � � 0.870 0.031 0.904 0.917 0.790 0.052 0.851 0.881

4.3 Comparison with Other State-of-the-Art Methods

A large number of experiments are conducted to convince the validity of our app-
roach. To make a clear comparison with other state-of-the-art (SOTA) methods,
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we list all the results in Table 3. There are 15 SOTA methods proposed in the
past three years, namely, BMPM [30], RAS [3], PiCANet [13], R3Net [5], BAS-
Net [19], PoolNet [12], TDBU [22], PAGE [23], F3Net [24], CPD [28], EGNet
[31], MLMSNet [26], U2Net [18], MINet [16], LDF [25]. For a fair comparison, all
of the compared saliency maps are provided or generated from released models
by the authors. The evaluation codes are all the same. As shown in Table 3 and
Fig. 5, our algorithm surpasses most of the methods.

Table 3. Quantitative comparison with state-of-the-art methods on five datasets. The
best results are highlighted in bold. The best and the second best results are highlighted
in red and green respectively.

Datasets DUTS-TE ECSSD DUT-OMROM HKU-IS

Metrics mF MAE Sm Em mF MAE Sm Em mF MAE Sm Em mF MAE Sm Em

BMPM [30] .745 .049 .862 .860 .868 .044 .911 .914 .692 .064 .809 .837 .871 .038 .907 .937

RAS [3] .751 .059 .839 .861 .889 .059 .893 .914 .713 .062 .814 .846 .874 .045 .888 .931

R3Net [5] .785 .057 .834 .867 .914 .040 .910 .929 .747 .063 .815 .850 .893 .036 .895 .939

PiCANet [13] .749 .051 .867 .852 .885 .044 .917 .910 .710 .065 .835 .834 .870 .039 .908 .934

MLMSNet [26] .799 .045 .856 .882 .914 .038 .911 .925 .735 .056 .817 .846 .892 .034 .901 .945

PAGE [23] .777 .051 .854 .869 .906 .042 .912 .920 .736 .066 .824 .853 .882 .037 .903 .940

CPD [28] .805 .043 .869 .886 .917 .037 .918 .925 .747 .056 .825 .866 .891 .034 .905 .944

BASNet [19] .756 .048 .866 .884 .880 .037 .916 .921 .756 .056 .836 .869 .895 .032 .909 .946

F3Net [24] .840 .035 .888 .902 .925 .033 .924 .927 .766 .053 .838 .870 .840 .062 .855 .859

PoolNet [12] .799 .040 .879 .881 .910 .042 .917 .921 .739 .055 .832 .858 .885 .032 - .941

TDBU [22] .767 .048 .865 .879 .880 .040 .918 .922 .739 .059 .837 .854 .878 .038 .907 .942

EGNet [31] .815 .039 .875 .891 .920 .041 .918 .927 .755 .052 .818 .867 .898 .031 .918 .948

U2Net [18] .792 .044 .861 .886 .892 .033 .928 .924 .761 .054 .847 .871 .896 .031 .916 .948

MINet [16] .828 .037 .884 .917 .924 .033 .925 .953 .756 .055 .833 .873 .908 .028 .920 .961

LDF[25] .855 .034 .892 .910 .930 .034 .924 .925 .773 .051 .838 .873 .914 .027 .919 .954

Ours .870 .031 .904 .917 .936 .028 .934 .929 .790 .052 .851 .881 .917 .026 .925 .956

Quantitative Comparison. Table 3 shows the quantitative evaluation results
of the SOTA methods mentioned above and our model in terms of mF , MAE,
Sm, and Em. The proposed method consistently performs better than all the
competitors across four metrics on four datasets. In terms of Em, our method
achieves the second best overall performance, which is slightly inferior to MINet.
It is worth noting that MEUNet achieves the best performance in terms of the
mean F-measure and structure quality evaluation Sm.

Qualitative Comparison. Figure 5 shows the visual comparison between our
model and other SOTA methods. The first column is the images and the second
column is the corresponding ground truths. Our result is in the third column. It
can be observed that our method could locate the salient object accurately and
segment the foreground and background around the boundary areas precisely.
Predictions in rows 1, 2 and 3 reveal the abilities of the models to deal with
detailed extraction, and other lines indicate the location ability. The method
proposed in this article is good at keeping as much detail as possible with sharp
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Fig. 5. Visual comparison of the previous SOTA methods and our method denoted as
‘Ours’.

edges. For example, the legs of the bee in the first picture are clearly present in
its prediction, and the snake is continuous and complete only on our map. We
suppose that the detail retention ability ascribes to the UENs and the location
ability owes to the ADM. In addition to this, the artful structural design allows
the features from different layers to complement each other and fuse properly.
Our model achieves the best in terms of the overall effect.

5 Conclusion

In this paper, we present a Multi-scale Edge-based U-shape Network with both
enhanced high-level semantic features and low-level detail information for SOD.
The central architecture of our network is a U-shape encoder-decoder structure
which mainly consists of UENs and ADM. The UEN is an outstanding evolution
of U-Net, and it contains multi-scale features with rich information and edge
information that could assist boundary prediction. ADM can help the network
to discover semantic clues from a more global view. Besides, we employ some
tricks to improve the performance of the model. For example, the edge saliency
map is supervised by salient edges to suppress the edges from the background.
The fusion of the parallel four saliency maps is outputed as the final result.
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Abstract. Time-series Anomaly Detection has important applications,
such as credit card fraud detection and machine fault detection. Anomaly
detection based on the generative model generally detect samples with
high reconstruction errors as anomalies. However, some anomalies may
get low reconstruction errors, as they can also be well reconstructed due
to the strong generalization ability of the model. To ensure the high
reconstruction error of anomalies, we propose a novel anomaly detection
algorithm named RAN (Reconstruct Anomalies to Normal) based on
the Autoencoder. We try to force the reconstruction samples of both
normal samples and anomaly samples obey the distribution of normal
samples, then the difference between normal sample and its reconstruc-
tion sample is small while the difference between anomaly sample and
its reconstruction sample is large, and higher reconstruction error for
anomaly samples is guaranteed. The Autoencoder constructed by 1D-
FCN with different kernel sizes is utilized to extract richer features of
time-series data. Imitated anomaly samples are feed to the model to pro-
vide more information about anomalies. Then, constraints in the latent
space and original data space are added to control the reconstruction
process. Extensive experiments on real-life time-series datasets also show
that RAN outperforms some state-of-art algorithms.

Keywords: Anomaly detection · Time-series data · Autoencoder ·
Reconstruction error · Imitated anomaly samples

1 Introduction

Anomaly detection in time series has been studied in many fields and has practical
applications. For example, electrocardiograms anomaly detection can indicate the
health status of the heart [6], financial transaction data anomaly detection can
detect credit card fraud [1], and network anomaly detection can protect the system
from attacks [21]. Since anomalies have different types and labeling real-life data
is usually difficult, anomaly detection algorithms are generally unsupervised.
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Traditional unsupervised anomaly detection algorithms generally use differ-
ent data-structures to represent data, then calculates the similarity between data
objects as anomaly scores. However, most of these algorithms may lose impor-
tant information in dimension reduction and suffer from the curse of dimension
in similarity calculation [22,31]. As the volume and complexity of time-series
data grow, deep-learning methods are proposed for anomaly detection, which
concluded in [4]. These methods extract features automatically and calculate
anomaly scores based on the extracted features.

Recently, deep-learning anomaly detection algorithms based on generative
models have been extensively studied [12,26,29,32], which claim normal samples
can be well reconstructed and anomaly samples can not. Then input samples with
high reconstruction error are tend to be detected as anomalies. However, this state-
ment is not rigorous and may lead to the omission of anomalies. The Generative
Model will model the distribution of training samples rather than the training
sample itself, and the strong generalization ability enables it to reconstruct some
anomaly samples containing similar features with the training samples. Observa-
tions of image reconstruction are also shown in Fig. 1 of [23]: model trained with
digit 8 can also reconstruct digit 1, 5, 6 and 9, which lead to the low reconstruc-
tion error of anomalies. In real life time-series data set, as shown in Fig. 1, some
anomaly samples also has similar distribution with normal samples, and they may
be well reconstructed. On the other hand, anomaly samples have not been seen
by the model before and its reconstruction process is uncertain, so the high recon-
struction error of anomaly samples is also not guaranteed.

Fig. 1. Distribution of the first dimension in normal samples and anomalies.

Based on the above observation, it is significant to additionally control the
reconstruction process of anomaly data when detecting anomalies based on the
reconstruction error. In this paper, we proposed a new algorithm named RAN
for time-series anomaly detection. The target of RAN is to ensure higher recon-
struction error for anomaly samples, which is achieved by forcing the reconstruc-
tion samples of anomaly samples to be similar with normal samples. Firstly, imi-
tated anomaly samples are introduced to provide information of anomalies for
model training. Secondly, we specially design the model to control the reconstruc-
tion process of anomalies. The Autoencoder constructed by 1D-FCN is utilized
to extract richer information from time-series data, and it is also combined with
a discriminator to construct the adversary network. Then, we add constraints
in both the original data space and latent space of the Autoencoder to control
the reconstruction process. In the latent space of Autoencoder, latent vectors



Reconstruct Anomaly to Normal 517

of anomaly samples are constrained to be close to these of normal samples. In
original data space, the Autoencoder is forced to generate reconstruction sam-
ples which obey the distribution of normal samples, when adversarially trained
with the discriminator. Then the difference between anomaly samples and the
corresponding reconstruction samples is large, and high reconstruction error for
anomaly samples is guaranteed.

Extensive experiments on different types of time-series data sets from UCR
Repository [7], BIDMC database [2,8] and MIT-BIH datasets [19] show that
(i) RAN can detect meaningful anomalies and get overall good performance in
terms of AUC-ROC. (ii) RAN can generate eligible reconstructions and better
control the reconstruction process of anomalies. (iii) RAN can provide more
distinguishable reconstruction errors for anomaly detection.

The remainder of this paper is organized as follows. Related work is briefly
introduced in Sect. 2. Then, the details of the proposed anomaly detection algo-
rithm RAN is described in Sect. 3. Experimental results and analysis are shown
in Sect. 4. Finally, we conclude this paper in Sect. 5.

2 Related Work

2.1 Traditional Anomaly Detection Methods

Traditional machine learning anomaly detection algorithms generally use dif-
ferent data structures to represent data, then calculate distance, density, or
other statistic values based on the representation to calculate anomaly scores.
Distance-based algorithms [25,27,30] detects samples far away from other sam-
ples as anomalies. They represent time series by sequences or symbol sequences
with reduced dimensions such as Piecewise Aggregate Approximation (PAA) [11]
and Symbolic Aggregate Approximation (SAX) [13]. Extended SAX(ESAX) [16]
adds two new points max and min in each time series to generate SAX series
for anomaly detection, But the calculation of pair-wise distance between subse-
quences usually lead to high computational cost. Density-based algorithms detect
samples with low density as anomalies such as Local Outlier Factor (LOF) [3]
and Relative Density-based Outlier Score (RDOS) [28], but the performance is
restricted with the number of neighborhoods. Interval [25] is based on the data
interval and each subsequence’s boundary probability to calculate the anomaly
score, but it may lose the sequential trend information as it only pays atten-
tion to the interval information and probability of points falls into data inter-
val. Piecewise Aggregate Pattern Representation (PAPR) [24] add point feature
and dispersion feature based on PAA to construct the statistical characteristics
matrix for each subsequence and then use Random Walk [20] to calculate the
anomaly score. However, PAPR consumes too much time, since it contains the
iterative optimization process. Isolation Forest(iForest) [15] constructs isolation
trees to represent data and detects samples with short average path lengths
as anomalies. But it may loses time-order information when selecting the data
attributes randomly. There are also algorithms [20,24] that apply the hidden
Markov model to detect samples with low probability as anomalies, but they
also consumes lots of time for the iteration process.
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2.2 Deep-Learning Anomaly Detection Methods

As the volume and dimension of data grow, deep-learning algorithms are pro-
posed for anomaly detection. Most of these algorithms are based on the gen-
erative model and detect samples with high reconstruction error as anomalies.
AnoGAN [26] is the first work that applies GAN for image anomaly detec-
tion, which uses normal data to train the model and calculate errors from the
trained generator and discriminator as anomaly scores. To reduce the test time of
AnoGAN, [29] build ALAD upon bi-directional GANs and added an encoder net-
work that maps data samples to latent variables z. Then, ALAD tries to learn the
distribution of the normal data so that pG (x) =

∫
pG (x|z) pZ (x|z) dz. Autoen-

coder (AE) has also been applied in anomaly detection in some researches. [10]
first, apply AE for anomaly detection and use reconstruction error to detect the
anomaly. Considering that the reduced low-dimension space of AE is unable to
preserve essential information, [32] proposed DAGMM by combining AE with
a Gaussian Mixture Model (GMM) and adopting the joint training strategy.
To mitigate the drawback that AE sometimes can also reconstruct anomalies
well, [9] proposed MemAE which equipped the AE with a memory module to
strengthen the reconstruction error of anomalies.

There are also anomaly detection algorithms based on LSTM to handle time-
series data. LSTM-AD [18] trained the model with normal samples, and the
prediction error is used to model a multivariate Gaussian distribution to evaluate
anomaly degree. [17] proposed LSTM-ED by constructing the Autoencoder with
LSTM units, which combines the advantages of LSTM and AE.

3 Proposed Method: RAN

This section firstly describes the time-series anomaly detection problem and
present some symbols used later, then the proposed method RAN is introduced
in detail.

3.1 Problem Description

Considering that anomalies always have different and uncertain lengths, it is
more practical to first detect anomaly subsequences and then take a more
detailed examination by experts under most circumstances.

Assuming we have the training data set Xnor = {X0,X1, . . . , Xn−1} ,Xi =
{xi,0, xi,1, . . . , xi,m−1}, which contains n normal subsequences. The test data
set is Xtest = {X0,X1, . . . , Xt−1} ,Xj = {xj,0, xj,1, . . . , xj,m−1}, which contains
normal subsequences and anomaly subsequences. The task is to output proper
anomaly scores for all subsequences in Xtest and detect these anomaly subse-
quences.

3.2 Imitate Anomaly Subsequences

According to [5], anomalies can be classified into point anomalies, contextual
anomalies, and collective anomalies. It is worth noting that point anomalies
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can occur in any data set and in most time-series anomaly detection scenar-
ios, anomalies in the anomaly subsequence are usually consisting of small part
anomaly points rather than the whole.

Based on the above observation, we imitate the anomaly subsequence based
on the normal subsequence by corrupting some normal data points. Firstly, we set
the corrupt level and randomly select some column indexes of the subsequence to
get the index set R. Then, considering most normalized time series have Gaussian
distribution [14], we calculate the corresponding anomaly data value based on
the tail of Gaussian distribution to replace the normal data points and obtain
the imitated anomaly subsequence. The pseudo-code is shown in Algorithm 1.

Algorithm 1. Imitate anomaly subsequences
Input: Xnor: the training data set which contains normal subsequences
Parameter: c: corrupt level, n: number of subsequences in Xnor, m: length of the
subsequence
Output: Ximi = {anoX0, anoX1, . . . anoXn − 1}
anoXi = {anoxi,0, anoxi,1, . . . , anoxi,m−1}
1: for i = 0 : n − 1 do
2: R = randomly select c ∗ m indexes of [0, 1, . . . m − 1]
3: for r in R do
4: ur = 1

n
∗ ∑n

i xi,r (xi,r ∈ Xnor)

5: σr =
√

1
n

∗ ∑n
i (xi,r − ur) (xi,r ∈ Xnor)

6: anoxi,r = ur + 4 ∗ σr (anoxi,r ∈ Ximi)
7: end for
8: for r not in R do
9: anoxi,r = xi,r (xi,r ∈ Xnor, anoxi,r ∈ Ximi)

10: end for
11: end for
12: return Ximi

3.3 Reconstruct Anomalies to Normal

To best utilize the reconstruction error for anomaly detection, we aim to min-
imize the reconstruction error of the normal samples and maximize this of
anomaly samples as possible. The key sight of RAN is to ensure the recon-
struction samples obey the distribution of normal samples, which means recon-
structing normal samples as well as possible and forcing the reconstruction of
anomaly samples obey the distribution of normal samples at the same time. In
this way, the difference between reconstruction samples and normal samples are
small while the difference between reconstruction samples and anomaly samples
are large, then higher reconstruction error for anomaly samples is guaranteed.

The structure of our model is shown in Fig. 2. Xnor is the normal subse-
quences we have, and Ximi is the imitated anomaly subsequences generated in
Sect. 3.2. Z is the latent vector of Xnor, and Zimi is the latent vector of Ximi
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in the latent space. Xrec is the reconstruction data generated by the decoder.
More details about each component of the model are as follows.

DecoderEncoder

fake

AE Dx

real

Fig. 2. The structure of the proposed model.

Autoencoder. Autoencoder(AE) is the combination of encoder and decoder,
which extracts features of training samples automatically. AE also acts as the
generator when combined with the discriminator Dx in the adversarial network.

Encoder. To broaden the vision of the model, we also feed the imitated anomaly
subsequences Ximi to the encoder. Then we can get the corresponding latent rep-
resentation Zimi. Latent vector is significant for generating the eligible recon-
struction, so we minimize the latent vector error Zerror as possible to ensure the
latent vector of anomalies consistent with this of normal samples.

Since the encoder is important for generating a good representation in latent-
space, we specially design the structure of the encoder to extract better features
for time-series data. Considering that data points combined with neighbors can
contain more information, we use the 1D-FCN as shown in Fig. 3 to construct
the encoder and set different kernel sizes in different layers. The encoder contains
four convolutional layers with kernel size of 3, 5, 7, 9.

feature maps

Input subsequence
Latent vector

1D convolutional Kernel with different size

slide

Fig. 3. 1D-FCN to extract the combined information with neighbors.
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Decoder. Corresponding to the encoder, we use the 1D deconvolutional neural
network to construct it. We use the decoder to generate the reconstruction Xrec

from the latent representation Zimi. The reasons why not use both Z and Zimi

are: 1) we minimize the error Zerror between them during the training process;
2) we also force the reconstruction of Ximi to have the same distribution with
normal samples in the adversarial training, and it will indirectly force Zimi have
the same distribution with Z.

Dx. To ensure the reconstruction samples obey the distribution of normal sam-
ples, we add the discriminator Dx after AE to construct an adversary network.
The decoder contains four deconvolutional layers with kernel size of 9, 7, 5, 3. Dx
will output a probability to indicate how real the input sample is. Adversarial
learning can force the generator to generate data which obey the distribution
of training data. In the adversarial training process, we hope the discriminator
to recognize reconstruction samples as fake, the output of Dx(Xrec) is forced to
approach 0; we also hope the discriminator to recognize normal samples as real,
so the output of Dx(Xnor) is forced to approach 1.

Loss Function. The aims of AE are: 1) for normal samples, learning a good
representation in the latent space and generating good reconstructions in the
original data space; 2) for anomaly samples, learning a representation as normal
in the latent space and then generating reconstructions which obey the distri-
bution of normal samples in the original data space. We apply constraints both
on latent space and the original data space to achieve these.

The loss function for AE in the training process is as Eq. (1). The weight λ
was chosen based on the quality of reconstruction. Zerror is the loss between Z
and Zimi in the latent space, and genloss is the loss in the original space.

LAE = λ ∗ Zerror + genloss (1)

Zerror = Z − Zimi (2)

genloss = EXimi∼Pi
[log (1 − Dx(AE(Ximi)))] (3)

The loss function for Dx in the adversarial training procedure is as Eq. (4).
Dx treats normal samples Xnor as real and treats the reconstruction samples
Xrec as fake.

LDx = −(EXnor∼PX
[log (Dx(Xnor))] + EXrec∼PXr

[log (1 − Dx(Xrec))]) (4)

The pseudo-code of the proposed method RAN is shown in Algorithm 2.

Anomaly Detection. We use Eq. (5) to calculate anomaly scores based on
reconstruction errors. Higher anomaly score indicates higher possibility to be
anomaly subsequences.

Ano Scorei =
rec errors[i] − Min(rec errors)

Max(rec errors) − Min(rec errors)
(5)
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4 Experiments

In this section, we first introduce data sets used in the experiment, then apply our
algorithm RAN and several baseline anomaly detection algorithms to compare
and analyze their performances. We also carried the ablation study to verify the
effectiveness of each component in RAN.

Algorithm 2. Reconstruct anomalies to normal: RAN
Input: Xnor: the training set containing normal subsequences, Ximi : the imitated
anomaly subsequences, Xtest : the test set
Parameter: N
Output: rec errors

1: Training phase:
2: for epoch 1 to N do
3: input Xnor and Ximi into AE
4: get the latent vector Z and Zimi , get output Xrec

5: Discriminator Dx update:
6: LDx ← Dx(Xrec, 0) + Dx(Xnor, 1)
7: Back-propagate LDx and change Dx
8: keep Dx fixed
9: Generator AE update:

10: Zerror = Z − Zimi

11: genloss = Dx(Xrec, 1)
12: LAE = λ ∗ Zerror + genloss

13: Back-propagate LAE and change AE.
14: end for
15: Testing phase:
16: for Xi in Xtest do
17: keep model fixed
18: Xi rec = AE(Xi)
19: rec errors[i] = Xi rec − Xi

20: end for

4.1 Experiments Setup

Data Sets. As shown in Table 1, four different types of time-series data are
selected from the UCR Time Series Repository, MIT-BIH data sets, and BIDMC
database to test the performance of these algorithms. In ECG data, each sub-
sequence traces the electrical activity recorded during one heartbeat. Anoma-
lies in ECG200 are heart attacks due to prolonged cardiac ischemia. Data in
BIDMC chf07 are collected from a patient who has severe congestive heart fail-
ure. Anomalies in MIT-BIH220 are atrial premature beats. Anomalies in MIT-
BIH221 are premature ventricular contraction beats. Anomalies in MIT-BIH210
contains four types of abnormal beats (a, V, F, E): atrial premature beats, pre-
mature ventricular contraction beats, the fusion of ventricular and normal beats,
and ventricular escape beats. Sensor data are collected from different sensors and
divided into subsequences. Motion data is obtained according to the center of
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mass of the action. For image data, the contours of these images are extracted
and mapped into a one-dimensional sequence from the center. There are several
classes in some data sets, and considering that in real life the types of anomalies
are often uncertain, we select one class as normal data and randomly select some
samples from the other classes as anomaly data.

Experimental Setup. To verify the effectiveness of RAN, we compare it with
several baseline methods. For traditional anomaly detection algorithms, we select
ESAX, SAX TD, Interval, RDOS, PAPR, and iForest. We also use some deep-
learning anomaly detection algorithms, including AnoGAN, DAGMM, ALAD,
MemAE, LSTMAD, and LSTMED. We implemented experiments on the com-
puter server with 10 core CPUs, 3.3 GHz, 64 bits operating system. All codes
are built in Python 3.7.

Table 1. The description of time-series data sets

No. Data sets Seq num Seq length Ano rate Types

1 ECG200 200 96 33.50% ECG

2 BIDMC chf07 5000 140 41.62% ECG

3 MIT-BIH210 2649 207 8.57% ECG

4 MIT-BIH220 2047 292 4.59% ECG

5 MIT-BIH221 2426 191 16.32% ECG

6 Lighting2 121 637 39.66% Sensor

7 MoteStrain 1272 84 46.14% Sensor

8 SonyAIBORobotSurfaceII 980 65 38.36% Sensor

9 StarLightCurves 427 1024 35.59% Sensor

10 ToeSegmentation2 166 343 25.30% Motion

11 GunPointAgeSpan 339 150 32.74% Motion

12 UWaveGestureLibraryX 950 315 41.16% Motion

13 DistalPhalanxOutlineCorrect 876 80 38.47% Image

14 HandOutlines 1370 2709 36.13% Image

15 DiatomSizeReduction 142 345 30.99% Image

Performance Evaluation Method. Since most anomaly detection algorithms
calculate anomaly scores to detect anomalies, we use the Area Under Receiver
Operating Characteristic Curve (AUC-ROC) to have a comprehensive evaluation
of these algorithms. In anomaly detection, higher AUC-ROC indicates higher
ability for the algorithm to distinguish anomaly data and normal data.

4.2 Comparison with State-of-the-Art Algorithms

Experimental results of the proposed algorithm and other algorithms are
recorded in Table 2, and the best AUC-ROC are highlighted in bold font.
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From Table 2, we can find that: 1) RAN outperform other algorithms in
most data sets (8/15), which verifies the ability of RAN to detect anomalies for
different types of time-series data; 2) MemAE obtains the second-best perfor-
mance (5/15), which equips autoencoder with a memory module to mitigate the
drawback of AE that it sometimes reconstructs the anomalies well. And it also
reflects the importance of reconstructing anomalies to normal for reconstruction-
based anomaly detection models. 3) Compare to non-deep-learning algorithms,
deep-learning algorithms can get overall better performance due to their com-
plex networks to extract more deep features, and they are more appropriate to
process complex data.

4.3 Analysis of Performance

Effectiveness to Detect Anomalies. We use the MIT-BIH210 from MIT-
BIH Database to show that our algorithm can detect true anomalies. The MIT-
BIH210 data set contains five types of heartbeats, of which one type (N) is normal
heartbeats and other types (a, V, F, E) are anomaly heartbeats annotated by
experts.

Table 2. AUC-ROC of different algorithms

No. TSAX SAX TD Interval RDOS PAPR iForest DAGMM LSTMAD LSTMED AnoGAN ALAD MemAE RAN∗

1 0.688 0.590 0.549 0.638 0.760 0.854 0.657 0.869 0.873 0.734 0.652 0.864 0.907

2 0.638 0.595 0.546 0.507 0.825 0.695 0.963 0.951 0.970 0.891 0.934 0.943 0.983

3 0.727 0.602 0.949 0.619 0.945 0.983 0.983 0.975 0.991 0.848 0.979 0.986 0.988

4 0.593 0.650 0.509 0.537 0.889 0.999 0.996 1.000 0.999 0.999 0.999 1.000 1.000

5 0.970 0.507 0.518 0.504 0.962 0.911 0.979 0.914 0.976 0.958 0.980 0.988 0.999

6 0.745 0.526 0.662 0.608 0.619 0.766 0.603 0.734 0.777 0.641 0.642 0.858 0.732

7 0.543 0.580 0.543 0.578 0.659 0.766 0.784 0.759 0.786 0.707 0.821 0.938 0.923

8 0.651 0.605 0.525 0.533 0.521 0.794 0.861 0.963 0.965 0.642 0.700 0.874 0.928

9 0.939 0.962 0.557 0.536 0.621 0.740 0.882 0.972 0.972 1.000 1.000 1.000 1.000

10 0.549 0.758 0.702 0.766 0.777 0.784 0.766 0.586 0.622 0.539 0.510 0.507 0.608

11 0.835 0.784 0.537 0.569 0.695 0.901 0.895 0.825 0.874 0.733 0.866 0.565 0.934

12 0.622 0.706 0.534 0.612 0.557 0.908 0.852 0.755 0.852 0.671 0.900 0.904 0.927

13 0.517 0.579 0.520 0.747 0.624 0.767 0.787 0.755 0.767 0.560 0.613 0.717 0.642

14 0.548 0.538 0.577 0.699 0.728 0.786 0.661 0.903 0.916 0.576 0.891 0.845 0.863

15 0.536 0.702 0.824 0.589 0.967 0.940 0.896 1.000 1.000 1.000 1.000 1.000 1.000

A fragment of experiment results is shown in Fig. 4, curve in blue color rep-
resents normal subsequence, curve in yellow color represents anomalous sub-
sequences and curve in red color represents the reconstructed subsequences of
anomalous subsequences. The first row is test subsequences. The second row is
the corresponding reconstructions, and the third row is the corresponding recon-
struction errors. From these three subgraphs, we can find that RAN reconstruct
the normal subsequences well and ensure the reconstruction of anomaly subse-
quences be similar to normal subsequences. In the third row, reconstruction
errors of anomaly subsequences are higher than this of normal subsequences,
and anomalies can be detected more easily.
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Fig. 4. A fragment of the experiment results from MIT-BIH210.

Ability to Control the Reconstruction Process of Anomalies. To see
whether our model can effectively control the reconstruction process of anoma-
lies, we also draw the histogram distribution of original data, reconstruction
data, and latent vector.

As shown in Fig. 5, different color represents normal and anomaly. The first
row is the distribution of original samples. We can find that distributions of these
two data sets are different, and distributions of normal samples and anomaly sam-
ples also vary greatly. The second row is the corresponding reconstructions. Recon-
structions of anomaly samples are very close to the distribution of normal samples,
which prove that the model can ensure the reconstruction of anomaly samples obey
the distribution of normal samples. The third row is the distributions of corre-
sponding latent vectors. We can find that distributions of latent vectors of both
normal and anomaly samples tend to be similar after the transformation of the
encoder, which also proves the effectiveness of latent constraint in our model.

Original data

Reconstruction data

Latent vector

(a) ECG200

Original data

Reconstruction data

Latent vector

(b) MIT-BIH210

Fig. 5. Histogram distribution of original data, reconstruction data, and latent vector
from (a) ECG200 (b) MIT-BIH210. Different color represents normal and anomaly
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4.4 Ablation Study

We also carried the ablation study to verify the effectiveness of each component
of the proposed model. We compare RAN with the following variants.

– AE: AE is the standard autoencoder. We only use the normal subsequences
for model training, and the MSE of normal subsequences X and the corre-
sponding reconstruction Xrec is used as the loss function.

– AE-FCN: AE-FCN is the AE constructed by 1D-FCN, and it is used to
verify the effectiveness of the 1D-FCN. We only use the normal subsequences
for model training, and the loss function is the same as AE.

– LAE-FCN: LAE-FCN is the latent-constrained AE-FCN which also con-
strains the latent vectors of imitated anomaly subsequences and normal sub-
sequences. We introduce the imitated anomaly subsequences in the training
phase and add the MSE between Zimi and Z in the loss function of AE-FCN.

– RAN: RAN is the proposed method which further constructs the adversarial
network in the original data space, and it is used to verify the effectiveness
of the original data space constraint component. Except for the loss function
of LAE-FCN, we also use the adversarial loss for model training.

The AUC-ROC results of the ablation study are shown in Table 3. AE-FCN
outperforms or equals to AE in most data sets (12/15), which verify the effec-
tiveness of the 1D-FCN to extract richer features from time-series data. Recon-
struction results of AE and AE-FCN are also shown in Fig. 6, the first row is
part of the original time series data from MIT-BIH210. In the second row, AE
can not reconstruct two crests well, and the reconstruction marked by the circle

Table 3. AUC-ROC of ablation study

No Dataset RAN* LAE-FCN AE-FCN AE

1 ECG200 0.907 0.862 0.894 0.833

2 BIDMC chf07 0.983 0.950 0.945 0.979

3 MITBIH210 0.988 0.986 0.983 0.984

4 MITBIH220 1.000 0.999 1.000 1.000

5 MITBI221 0.999 0.994 0.990 0.991

6 Lighting2 0.732 0.606 0.761 0.699

7 MoteStrain 0.923 0.903 0.889 0.768

8 SonyAIBORobotSurfaceII 0.928 0.896 0.902 0.960

9 StarLightCurves 1.000 0.996 1.000 0.970

10 ToeSegmentation2 0.608 0.508 0.579 0.513

11 GunPointAgeSpan 0.934 0.530 0.511 0.784

12 UwaveGestureLibraryX 0.927 0.916 0.924 0.881

13 DiatalphalanxOutlineCorrect 0.642 0.730 0.764 0.795

14 HandOutlines 0.863 0.877 0.873 0.907

15 DiatomSizeReduction 1.000 1.000 1.000 1.000
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AE

AE-FCN

Original data

Fig. 6. Original data and the corresponding reconstructions from AE and AE-FCN.

is fuzzy. In the third row, AE-FCN can better reconstruct the first crest, which
also verify the effectiveness of 1D-FCN to extract richer shape information. The
proposed method RAN out performance other variants in almost all datasets
and gets overall good performance, which indicates that the imitated anomaly
subsequences introduced in the training phase and constraints added in both
latent space and original data space greatly improve the model performance.

5 Conclusion

In this paper, a novel anomaly detection algorithm RAN is proposed based
on the idea of reconstructing anomalies to normal. To mitigate the drawback
that some anomaly samples has low reconstruction error and may be miss out,
we additionally control the reconstruction process of anomalies to improve their
reconstruction errors. Firstly, imitated anomaly samples are feed into the model
to provide more information about anomalies. Secondly, the Autoencoder con-
structed by 1D-FCN is utilized to extract richer temporal information from time-
series data, and we constrain both the latent space and original data space of the
model to control the reconstruction process. In the latent space, the difference
between the latent vector of normal samples and this of the imitated anomaly
samples is minimized, which guides the encoder to learn robust features and gen-
erate similar latent vectors. In the original space, the discriminator is equipped
after the Autoencoder and force the reconstructions to obey the distribution
of normal samples through adversarial learning. Finally, the difference between
anomaly samples and reconstructions will be large and high reconstruction error
for anomaly samples is guaranteed.

Experimental results on diverse types of time-series data sets also show
that our algorithm RAN can detect meaningful anomalies and generate bet-
ter anomaly scores to distinguish than other algorithms. In terms of AUC-ROC,
RAN also outperforms other algorithms on most data sets. The ablation study
also shows that each component of RAN is meaningful and effective to improve
the model performance.
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There are also other approaches to generate potential anomalies such as
using the density function. We will try more anomaly generation approaches
and experiment to compare their improvements for anomaly detection in the
future work.
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Abstract. Recently, in order to address the unsupervised domain adap-
tation (UDA) problem, extensive studies have been proposed to achieve
transferrable models. Among them, the most prevalent method is adver-
sarial domain adaptation, which can shorten the distance between the
source domain and the target domain. Although adversarial learning is
very effective, it still leads to the instability of the network and the
drawbacks of confusing category information. In this paper, we propose
a Robust Ensembling Network (REN) for UDA, which applies a robust
time ensembling teacher network to learn global information for domain
transfer. Specifically, REN mainly includes a teacher network and a stu-
dent network, which performs standard domain adaptation training and
updates weights of the teacher network. In addition, we also propose a
dual-network conditional adversarial loss to improve the ability of the
discriminator. Finally, for the purpose of improving the basic ability of
the student network, we utilize the consistency constraint to balance the
error between the student network and the teacher network. Extensive
experimental results on several UDA datasets have demonstrated the
effectiveness of our model by comparing with other state-of-the-art UDA
algorithms.

Keywords: Unsupervised domain adaptation · Adversarial learning ·
Time ensembling

1 Introduction

In recent years, deep neural networks have played a particularly critical role
in the face of many computer vision tasks, such as image classification [12],
object detection [22], semantic segmentation [3] and so on. However, training a
perfect neural network demands a large amount of data and corresponding data
labeling, which is very time-consuming and expensive. When facing a new task
or a new dataset, the previously trained model may exhibit poor performance
due to the domain shift. We hope to use available network and data to complete
the target task through knowledge transfer, where domain adaptation methods
are needed. The problem that domain adaptation figures out is how to adapt the
model trained in the source domain with rich labels to the target domain with
c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13032, pp. 530–543, 2021.
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Fig. 1. Comparison between previous adversarial domain training method and ours.
(a): Before domain adaptation, the data distribution of the source domain and the
target domain are quite different. (b): The adversarial domain training method aligns
the source domain and the target domain by a domain discriminator, and make them
as close as possible to each other, which causes the confusion of the category infor-
mation. (c): Our model uses the time ensembling algorithm to obtain a more stable
network with the consistency constraint, which effectively avoids the distribution of
data samples near the category decision boundary.

sparse labels, and minimize the negative transfer. Besides, UDA means that we
only have annotations on the source domain data, without the target domain.

Due to the rapid development of deep learning, many approaches of deep
domain adaptation have sprung up [6,16,20]. Among them, many methods try
to map the source domain and target domain features into a high-dimensional
space, and then perform feature alignment in this space for the reduction of
domain shift. The feature alignment method generally uses Maximum Mean
Discrepancy (MMD) [2] or its improved versions. Subsequently, as a result of the
bloom of Generative Adversarial Networks (GAN) [10], the concept of adversarial
learning has also been widely employed to domain adaptation. In this way, the
domain bias between the source domain and the target domain can be effectively
reduced by adversarial learning.

The previous UDA methods such as feature alignment, adversarial learning,
or clustering methods to generate pseudo-labels for the target domain have been
relatively mature, whereas most methods rely on the features or the predictions
obtained during the network training process with loss constraint. However, it is
assumed that the network with the poor generalization ability itself is unstable
during the training process due to the insufficient data, which can cause greater
errors in the distribution of the source and target domain features extracted by
the network, and may eventually result in disappointing performance and poor
robustness of the network. Therefore, it is particularly significant to train a more
stable network. In addition, the main popular methods often use adversarial learn-
ing. Although adversarial learning can effectively shorten the distance between the
source domain and the target domain, it can also confuse the category information
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between the domains. As shown in Fig. 1, the source domain and target domain
samples get closer to each other in the process of adversarial learning, but they
also become closer to the decision line, resulting in inaccurate classification. Conse-
quently, we propose a more robust network, and decrease misclassification through
consistency constraint.

In this paper, we explore a robust ensembling network for UDA, which cap-
tures more information-rich global features through a more stable model to
achieve domain transfer. Specifically, a basic student network is applied for reg-
ular domain adaptation training, and then another ensembling teacher network
is applied. The weight of the teacher network is the time series ensembling of
the basic student network weights, so that the teacher network not only becames
more stable, but also has more global information. The ensembling teacher net-
work is adopted to reversely guide the basic student network to enhance the
accuracy of its intra-domain classification. Besides, the instance feature is com-
bined with the prediction of the ensembling teacher network and student network
as a new condition for the domain discriminator, thereby adversarially decreas-
ing the difference between domains. The main contribution points of this article
are:

• This paper proposes a robust ensembling network for UDA, which can reduce
the prediction error caused by network fluctuations during the training pro-
cess. The features and predictions obtained by network during training will
be more stable with more global information, and more conducive to domain
transfer.

• We employ the predictions of the ensembling teacher network to reversely
constrain the basic student network to raise the stability of the basic student
network. Besides, we use the new predictions to constitute dual-network con-
ditional adversarial loss and effectively alleviate the phenomenon of negative
transfer.

• The proposed network is better than its baseline CDAN [15], and it presents
a competitive result on the various UDA datasets.

2 Related Work

UDA has been widely studied in computer vision mainly for classification and
detection tasks. In the era of deep neural networks, the main idea of domain
adaptation is to learn domain invariant features between the source and target
domain. Among them, several methods exploit MMD [2] and its kernel variants to
minimize the difference in feature distribution. With the rise of neural networks,
[9] attempts to introduce MMD as a regularization method to minimize the
distribution mismatch between the source and target domain in the latent space.
In addition to considering the adaptive algorithm of multi-feature representation,
[29] also provides an improved conditional maximum mean error.
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Recently, adversarial learning-based methods exert a tremendous fascination
to bridge the gap between the source domain and the target domain. GAN [10]
is motivated by the idea of two-play game in game theory. Adversarial training
is the process in which the generator and the discriminator compete against
each other. Adversarial learning is firstly applied to domain adaptation in [8].
Its core idea is to adopt the discriminator to learn domain invariant features. A
more general framework is proposed by [27] for adversarial domain adaptation.
The author of [15] is motivated by [19] and proposes to align category labels
by using the joint distribution of features and predictions. Inspired by [1,24]
applies the Wasserstein GAN measurement to domain adaptation, and proposes
Wasserstein distance guided representation learning.

Semi-supervised learning uses both labeled data and unlabeled data during
training. The domain adaptation problem is similar to semi-supervised learning
in the strict sense, but the source domain and target domain have domain shift
due to various image capture devices, environmental changes, and different styles.
Initially, the application of a time series ensembling is proposed by [13], which
adopts the average of the current model prediction results and the historical
prediction results to calculate the mean square error. Different from historically
weighted sum of model predictions in [13,26] uses weighted exponential moving
average (EMA) on the weight of the student model. Temporal Ensembling [13]
is applied by [7] to the domain adaptation problem, and data augmentation is
implemented to increase the generalization ability of the model. The prediction
results of time ensembling is utilized as pseudo-labels to cluster and align the
feature spaces of the source domain and the target domain in [5].

With the current adversarial domain adaptation methods, the network tends
to overlap the source domain and target domain’s category distributions dur-
ing adversarial training, resulting in poor classification results. However, the
consistency constraint of semi-supervised learning can just constrain sample dis-
tribution and decrease classification errors. In addition, most of the current semi-
supervised learning methods in domain adaptation exploit pseudo-label methods,
but the wrong pseudo-label may mislead the training of the network. Moreover,
most of the previous methods only adopt prediction ensembling methods, and
there are few researches on the model ensembling of [26]. Therefore, based on
CDAN [15], we propose an UDA method of robust ensembling model.

3 Methodology

This part we mainly provide the specific steps of the method proposed in this
article. First we introduce the overall structure of the method in this article;
then we dive deep into the loss function of each part; finally we examines the
total loss function of the network.

3.1 Overview

In the UDA problem, the labeled source domain is denoted as Ds =
{(xs

i , y
s
i )}Ns

i=0, where Ns represents the number of samples with labels in the
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Fig. 2. Overview of the proposed REN model. It principally comprises a student net-
work, a teacher network and a domain discriminator. Both the student network and the
teacher network consist of a feature extractor and a classifier. The source and target
domain samples are delivered to the student network at the same time to extract fea-
tures, and the weight of the teacher network is the ensembling of the student network’s
weights in time series. Then, the predictions of the student and the teacher network
are ensembled and multiplied with the features of the student network to form a dual-
network conditional adversarial loss. Finally, the classification results of the two models
are considered together for consistency loss.

source domain, and the unlabeled target domain is denoted as Dt =
{(

xt
j

)}Nt

j=0
,

where Nt represents the number of samples without labels in the target domain
[21]. The source domain and target domain samples conform to the joint distri-
bution Ps (Xs, Y s) and Qt (Xt, Y t) respectively, and P �= Q. Our goal is to train
a deep neural network F : Xt → Y t using source domain data with labels and
target domain data, which can accurately predict target domain samples while
minimizing domain shift.

As shown in Fig. 2, our model mainly includes two networks, a student net-
work and a teacher network, and a domain discriminator D. Each network has
a feature extractor F and a classifier C. Given a picture x, the correspond-
ing feature vector f = F (x) ∈ R

d is obtained through the feature extractor
F , where d represents the feature dimension, and the corresponding prediction
result p = C (f) ∈ R

c is obtained through the classifier C, where c represents the
total number of classes [8]. According to [8], the adversarial domain adaptation
method can be expressed as optimizing the following minimum and maximum
problem:

min
F,C

max
D

Lc(F,C) − λdLd(F,D), (1)

Lc(F,C) = −E(xs,ys)∼(Xs,Ys)

Ns∑

n=1

[
1[n=ys] log [C (F (xs))]

]
, (2)
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Ld(F,D) = −Exs∼Ps
log [D (fs)] − Ext∼Qt

log [1 − D (ft)] �, (3)

Among them, Lc (F,C) is the standard supervised classification task, which uses
only the cross-entropy loss of labeled source domain data. The domain discrim-
inator D is a two-classifier D : R

d → [0, 1], which predicts whether the data
comes from the source domain or the target domain.

3.2 Robust Ensembling Network

The previous domain adaptation adversarial methods are limited to some extent
due to the problem that the model is unrobust caused by adversarial learning.
Although adversarial learning effectively narrows the distribution of the source
and target domains, it also confuses category information. The semi-supervised
learning method is mainly dedicated to finding the optimal classification decision
line. The key of these methods is to enhance the training model with unlabeled
data and cluster data points of different labels with perturbations.

We believe that semi-supervised learning and domain adaptation have some-
thing in common. Both semi-supervised learning and UDA are limited to the
fact that part of the data is not labeled, which makes their solutions intersect.
The only difference is that there is a distribution difference between the source
domain and the target domain in UDA, so semi-supervised learning methods
can be applied to enhance the robustness of the model and raise model predic-
tion accuracy. The main method used in this paper is the mean teacher method,
which contains a student network and a teacher network. The student network
is trained normally, and the weight update of the teacher network is integrated
by the time of the weight of the student network, and the update method is
exponential moving average (EMA):

θ′
n = αθθ

′
n−1 + (1 − αθ) θn, (4)

Among them, θn represents the weight of the student model during the n-th
training, θ′

n represents the weight of the teacher model during the n-th training,
and αθ is the smoothing coefficient hyperparameter of the network parameter.

3.3 Dual-Network Conditional Adversarial Learning

The previous adversarial learning is generally limited to the labels without the
target domain, so CDAN [15] proposes to jointly consider the feature represen-
tation and the prediction result of the classifier in the discriminator part. CDAN
believes that the outer product of the feature representation and the prediction
result can affect the feature representation, so a discriminator shared by the
source domain and the target domain is used to align this conditional feature
representation. The general conditional adversarial loss are as follows:

Lcon
d (F,D) = −Exs Ps

log [D (fs, ps)] − Ext Qt
log [1 − D (ft, pt)]. (5)

This conditional adversarial loss generally utilizes the feature fs and predic-
tion ps of the source domain, and also exploits the feature ft and prediction pt
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of the target domain. However, the features and predictions that this adversarial
loss mainly relies on are not stable, and the two may have numerical deviations
during the network training process, which will eventually lead to the poor effect
of adversarial learning. The dual network proposed in this article can effectively
avoid this problem. The student network performs standard domain adaptation
adversarial learning, while the update of the teacher network is provided by the
student network. The update method is the former time ensembling, so that
the teacher network integrates the student network in time series, and the net-
work structure is more stable and robust. In addition to the student’s condition
adversarial loss, the prediction of the teacher network is also applied as another
condition.

Lstu
d (Fstu,D) = − Exs Ps

log
[
D

(
fstu

s , p̂stu
s

)]

− Ext Qt
log

[
1 − D

(
fstu

t , p̂stu
t

)]
,

(6)

Ltea
d (Fstu,D) = − Exs Ps

log
[
D

(
fstu

s , p̂tea
s

)]

− Ext Qt
log

[
1 − D

(
fstu

t , p̂tea
t

)]
,

(7)

p̂n = (1 − αp) p̂n−1 + αppn, (8)

Among them, pn represents the prediction of the student or teacher model dur-
ing the n-th training, p̂n represents the ensembling prediction during the n-th
training and αp is the smoothing coefficient hyperparameter. The prediction of
the student network and the teacher network performs an EMA operation to pro-
mote the stability of the prediction. In this way, with global student predictions
and global teacher predictions, the network can learn more reliable conditional
and transferable information in the process of adversarial learning.

3.4 Consistency Constraint

The student network provides weights for the teacher network, just as student
asks the teacher in the classroom, so the teacher needs to answer the student’s
questions to help the student. Therefore, the teacher network needs to assist the
student network, and the method of assistance is to adopt consistency constraint.
The core idea of consistency constraint is to perturb high-dimensional data so
that it tends to be consistent in the feature space. In other words, we hope that in
the process of dimensionality reduction, multiple high-dimensional data can be
compressed into a low-dimensional point, so that the feature distribution in the
feature space is more compact, which is conducive to the model learning more
accurate classification decision lines. We mainly utilize the L2 norm between the
student model and the teacher model as the consistency loss.

Lcon = ‖Cstu (Fstu (x)) − Ctea (Ftea (x))‖2 . (9)
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3.5 Total Loss Function

In this part, we introduce the total loss function:

Lall = Lc + λstu
d Lstu

d + λtea
d Ltea

d + γLcon, (10)

Therefore, the final total loss function is as described above, and it mainly
includes four parts: the supervised classification loss Lc of source domain, a stu-
dent network adversarial loss Lstu

d , a teacher network adversarial loss Ltea
d and

finally the consistency loss Lcon between the student network and the teacher
network. Among them, λstu

d and λstu
d are the hyperparameters of student adver-

sarial loss and teacher adversarial loss, and their role is to control the importance
of the two in adversarial training. γ is the relative weight that controls the con-
sistency constraint.

4 Experiment

4.1 Experimental Setting

Datasets.Office-31 [23] contains 31 classes and 4,110 images collected from three
different domains: Amazon Website (A) with 2817 images, Web Camera (W) with
498 images and Digital SLR Camera (D) with 795 images. By permuting the three
domains, we obtain six transfer tasks: A→ W, D→ W, W → D, A → D, D→ A and
W → A. ImageCLEF-DA [17] is a dataset created by the ImageCLEF2014 domain
adaptation competition. We follow the guidelines of [14] and select 3 sub-domains
of Caltech-256 (C), ImageNet ILSVRC 2012 (I) and Pascal VOC 2012 (P), which
have 12 common categories. There are six UDA tasks to be evaluated. Office-Home
[28] is another more challenging dataset for visual domain adaptation. It mainly
includes four dissimilar subdomains, namely Artistic images (Ar), ClipArt (Ca),
Product images (Pr) and Real-World images (Re). There are 15500 images in 65
different categories. They are all pictures under office and home settings, which
constitute a total of 12 domain adaptation tasks.

Comparisons. We compare the REN model with other state-of-the-art meth-
ods: (1) ResNet-50 [11]. (2) Domain Adversarial Neural Network(DANN) [8]. (3)
Adversarial Discriminative Domain Adaptation (ADDA) [27]. (4) Deep transfer
learning with joint adaptation networks (JAN) [17] (5)Conditional Domain Adver-
sarial Network (CDAN) [15]. (6) Cluster Alignment with a Teacher for Unsuper-
vised Domain Adaptation (CAT) [5]. (7) Towards Discriminability and Diversity:
Batch Nuclear-norm Maximization under Label Insufficient Situations (BNM) [4].

Implementation Details. The method proposed in this paper is mainly imple-
mented on the Pytorch framework. For a fair comparison, we apply the same net-
work structure in each experiment. We utilize ResNet50 pre-trained on ImageNet
without the final fully connected layer as the feature extractor. We adopt all the
labeled data in the source domain and all the unlabeled data in the target domain.
We apply the SGD optimizer with a momentum of 0.9, the batch size is 32, and the
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dimension of the bottleneck layer is set to 256. We adopt the learning rate anneal-
ing strategy as [8]: the learning rate is adjusted by ηp = η0(1 + αp)−β , where p is
the training progress changing from 0 to 1, and η0 = 0.01, α = 10, β = 0.75 are
optimized by the importance-weighted cross-validation [25]. In the testing phase,
we mainly choose the more stable teacher model for testing.

4.2 Results

Table 1 shows the UDA results of the six transfer tasks of the Office-31 dataset. We
can observe that the performance of the REN method in this paper is much better
than all the previous methods on most tasks. It is worth noting that our method
REN is not only on simple transfer tasks, such as D→ W and W→ D, with superior
performance, reaching almost 100% accuracy, but also on tasks that are difficult
to transfer due to unbalanced samples, such as D→ A and W→ A, which have
achieved superior results. The main reason for the success of our model is that we
have introduced a more robust time ensembling teacher model. The adversarial
training of the student model and the teacher model effectively solves the domain
offset and enhances the predictive ability of the model.

Table 1. Accuracy (%) on Office-31 for UDA (ResNet-50)

Method A → W D → W W → D A → D D → A W → A Avg

ResNet-50 [11] 68.4 96.7 99.3 68.9 62.5 60.7 76.1

DANN [8] 82.0 96.9 99.1 79.7 68.2 67.4 82.2

ADDA [27] 86.2 96.2 98.4 77.8 69.5 68.9 82.9

JAN [17] 86.0 96.7 99.7 85.1 69.2 70.7 84.6

CDAN [15] 93.1 98.2 100.0 89.8 70.1 68.0 86.6

CDAN+E [15] 94.1 98.6 100.0 92.9 71.0 69.3 87.7

CAT [5] 94.4 98.0 100.0 90.8 72.2 70.2 87.6

BNM [4] 92.8 98.8 100.0 92.9 73.5 73.8 88.6

REN (Ours) 95.0 99.2 100.0 94.6 74.1 74.8 89.6

The results of the six transfer tasks of the ImageCLEF-DA dataset are
shown in Table 2. Although the number of images in each subdomain in the
ImageCLEF-DA dataset is similar, it is still challenging for the transfer task
because of the images from various scenarios. Compared to ResNet-50, which
only utilizes source domain samples for fine-tuning, the above-mentioned domain
adaptation method achieves significant effect. Compared with other methods, the
method in this article has achieved significant improvement. The CAT method
also adopts the idea of semi-supervised learning, but it only adopts the Pi-model
[13] prediction ensembling method, and we utilize model ensembling, which is
more effective. This also proves that the student-teacher model of REN can learn
more transferable features.
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Table 2. Accuracy (%) on ImageCLEF-DA for UDA (ResNet-50)

Method I → P P → I I → C C → I C → P P → C Avg

ResNet-50 [11] 74.8 83.9 91.5 78.0 65.5 91.2 80.7

DANN [8] 75.0 86.0 96.2 87.0 74.3 91.5 85.0

JAN [17] 76.8 88.0 94.7 89.5 74.2 91.7 85.8

CDAN [15] 76.7 90.6 97.0 90.5 74.5 93.5 87.1

CDAN+E [15] 77.7 90.7 97.7 91.3 74.2 94.3 87.7

CAT [5] 77.2 91.0 95.5 91.3 75.3 93.6 87.3

REN (Ours) 79.8 93.3 97.3 91.5 76.8 94.8 88.9

Table 3. Accuracy (%) on Office-Home for UDA (ResNet-50)

Method Ar Ar Ar Cl Cl Cl Pr Pr Pr Rw Rw Rw Avg

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Cl Pr Rw Ar Pr Rw Ar Cl Rw Ar Cl Pr

ResNet-50 [11] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DANN [8] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

JAN [17] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

CDAN [15] 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8

CDAN+E [15] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

BNM[4] 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9

REN (Ours) 54.4 73.6 77.4 61.6 71.1 71.7 61.0 52.2 78.8 73.1 59.4 83.5 68.2

Table 3 shows the results of 12 transfer tasks on the Office-Home dataset. Dif-
ferent from the first two datasets, there are more categories in the Office-Home
dataset, thus leads to the methods which perform well on the Office-31 dataset may
have performance degradation on the Office-Home dataset. Although the method
in this paper only has the best effect on 5 transfer tasks, the average accuracy is
even better than BNM method. The main reason for this is that the sample size of
some categories in Office-Home is extremely unbalanced. For example, the Ruler
class in the Art subdomain has only 15 pictures, while the Bottle class has 99 pic-
tures. The main problem that the BNM method solves is this kind of imbalance.
Though the method in this paper does not focus on the imbalance of the dataset,
due to the stability of the dual network and the ensembling teacher network, the
final classification result is not much different from that of BNM. In addition, our
method is more effective on difficult tasks such as Ar → Cl, Pr→ Cl and Rw→ Cl,
which are improved by 2.1%, 2.7% and 5.8% respectively than BNM. The above
experiments prove the effectiveness of our method.

4.3 Ablation Study and Visualization

Table 4 presents ablation experiments on Office-31 dataset based on CDAN.
In this table, we denote performing in mean teacher model ensembling as“M”,
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Table 4. Accuracy (%) in ablation experiments for REN based on CDAN on Office-31

Method A → W D → W W → D A → D D → A W → A Avg

CDAN 93.1 98.2 100.0 89.8 70.1 68.0 86.6

CDAN+M 93.3 98.9 100.0 92.7 71.5 73.0 88.3

CDAN+M+D 94.8 99.0 100.0 93.7 72.2 74.5 89.0

CDAN+M+D+C(REN) 95.0 99.2 100.0 94.6 74.1 74.8 89.6

dual-network conditional adversarial loss as “D” and consistency constraint as
“C”. On Office-31, CDAN+M outperforms CDAN by 1.7%. In addition, com-
pared with CDAN, CDAN+M+D and CDAN+M+D+C improve its accuracy
by 2.4%, 3%, indicating the effectiveness of our method.

(a) WA (Office-31) (b) PI (ImageCLEF-DA)

Fig. 3. Comparison of stability of CDAN, student network and teacher network of our
model REN. Obviously, the blue line (teacher network) is much smoother and more
stable than the red line (student network). (Color figure online)

In order to demonstrate the stability of the method in the training process,
we present the results of the classification accuracy of different training processes
in Fig. 3. The graph on the left shows the experimental results of task W→ A
(Office-31), and the right presents the results of task P→ I (ImageCLEF-DA).
We can find that the accuracy of both the student network and the teacher net-
work in this article is much higher than the result of CDAN. By observing Fig. 3
carefully, we can find that the accuracy curve of the teacher network has less
fluctuations than the student network, and the accuracy has also been improved
compared with CDAN. In addition, the reason why the accuracy of the stu-
dent network is also excellent is that the consistency constraint of the teacher
network promotes the improvement of the prediction result of the student net-
work. Therefore, according to the curve comparison between CDAN and Teacher
Network(Ours), our method has less fluctuation and more stability.

In addition, compared to CDAN, our method is composed of student network
and teacher network. It can be seen from Table 5 that the parameters of our
method is twice that of CDAN during training, and the training time is relatively
longer.
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Table 5. Comparison of parameters with CDAN in the training phase on Office-31(12k
epoches)

Method Params Time

CDAN 24M 1.3 h

REN (Ours) 48M 1.8 h

4.4 Ablation Study and Visualization

(a) Before training (b) CDAN (c) REN

(d) Before training (e) CDAN (f) REN

Fig. 4. The t-SNE visualization of A → W(Office-31). (a) (b) (c)represent category
information and each color denotes a class. (d) (e) (f) Red circles are the source samples
while blue circles are the target samples. (Color figure online)

To present the process of domain adaptation training more intuitively, we uti-
lize the t-distribution Stochastic Neighbour Embedding (t-SNE) [18] method
to visualize the low-dimensional changes of features before and after adapta-
tion in Fig. 4. We implement one task, namely A → W (Office-31) to perform
these experiments. Obviously, before training, the spatial distribution of the
source domain and target domain features is completely different. This indicates
that the distribution contains no discernible intrinsic structure. Although after
CDAN, most of data has been aggregated, there are still some classes indistin-
guishable. But after our method, the feature distribution shows a clear clustered
structure. The cluster centers of the distribution are closer than before, and
the degree of dispersion is more similar. This means that our method greatly
improves the distribution in the feature space.
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5 Conclusion

We propose a robust ensembling network for UDA based on model time ensem-
bling and consistency constraint. It solves the negative transfer problem of target
domain samples, which is close to the edge of the decision line due to adversar-
ial learning. At the same time, the dual-network conditional adversarial loss
proposed in this paper effectively decreases the instability in the adversarial
learning process, and enables the network to learn more global transferable fea-
tures. All-round experiments illustrate that our method is superior to the current
mainstream methods on various domain adaptation datasets.
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Abstract. This paper proposes a novel model for predicting subgraphs
in dynamic graphs, an extension of traditional link prediction. This pro-
posed end-to-end model learns a mapping from the subgraph structures
in the current snapshot to the subgraph structures in the next snapshot
directly, i.e., edge existence among multiple nodes in the subgraph. A new
mechanism named cross-attention with a twin-tower module is designed
to integrate node attribute information and topology information collab-
oratively for learning subgraph evolution. We compare our model with
several state-of-the-art methods for subgraph prediction and subgraph
pattern prediction in multiple real-world homogeneous and heteroge-
neous dynamic graphs, respectively. Experimental results demonstrate
that our model outperforms other models in these two tasks, with a gain
increase from 5.02% to 10.88%.

Keywords: Subgraph prediction · Graph neural networks ·
Heterogeneous network · Graph attention

1 Introduction

An essential part of network analysis is network evolution analysis [1,4,27], espe-
cially subgraph evolution analysis, such as the purchase intention of a group
of users in user-product networks. However, previous subgraph research stud-
ies [2,5,29] rarely focus on the subgraph prediction problem in subgraph evo-
lution analysis: predicting future connectivity within a subgraph in dynamic
graphs.

An intuitive approach for subgraph prediction is a two-stage scheme, includ-
ing a node embedding method and traditional link prediction. Firstly, a node
embedding method [9,18] generates low-dimensional vector representations of
nodes. Then, the edge existence of k(k−1)

2 edges in a k-node subgraph is inde-
pendently predictable through traditional link prediction.

However, there are two limitations to this approach. First, traditional link
prediction typically requires users to specify or learn a global threshold from
data to determine the existence of edges rather than adaptively adjusting the
threshold for different local subgraphs. Second, higher-order structures [3,22],
such as network function blocks [28], are ignored. Due to higher-order struc-
tures, edges in networks are not independent, i.e., an edge’s establishment or
c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13032, pp. 544–558, 2021.
https://doi.org/10.1007/978-3-030-89363-7_41
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disappearance may depend on both the similarity between two nodes and their
adjacent edges [22]. Subgraph pattern neural networks (SPNN) [15] uses a joint
prediction mechanism to solve the edge dependency limitation. However, SPNN
focuses on the subgraph pattern prediction problem, which requires both sub-
graph patterns predefined by humans and subgraphs with a fixed size. Therefore,
we design a new method for the subgraph prediction to solve both limitations.

Besides the global threshold and edge dependency limitations, previous
research studies on subgraphs predefine [15] or ignore [2,5,29] the collabora-
tive relationship between node attribute information and topology information,
e.g., extracting important information from node attributes and topologies sep-
arately, and concatenating their representations at last [2]. However, important
topology information may also be based on node attribute information, and
critical node attribute information may also be related to topology information,
which means we cannot deal with them separately. For instance, many topology
structures in subgraphs are more important than other topology structures for
subgraph evolution due to their specific node attributes, such as meta-path [26]
and local structures with high-connection nodes [10]. Similarly, nodes with higher
topology centrality in subgraphs are more critical than other nodes in subgraph
evolution [13]. Although previous research studies can predefine the collaborative
relationship artificially, the real collaborative relationship changes with graphs
and only a part of this relationship (e.g., only the relationship between 3-nodes)
is covered by the predefined relationship. Therefore, we propose a new method
that integrates node attribute information and topology information to extract
essential data features for subgraph evolution without human participation.

This paper proposes a novel end-to-end Subgraph Prediction Attention
Network (SPAN) model to learn a mapping from subgraph structures in the
current snapshot to subgraph structures in the next snapshot. For the global
threshold limitation, we introduce an end-to-end learning mechanism to avoid
the global threshold. We also use a joint prediction mechanism [3,15] to solve the
edge dependency limitation. Furthermore, we develop a twin-tower module with
the cross-attention mechanism to extract important data features for subgraph
evolution by considering the collaborative relationship between node attribute
information and topology information. Our main contributions are summarized
as follows:

– We propose a new model, named SPAN, for subgraph prediction and a variant
named SPAN-H for subgraph pattern prediction. To the best of our knowl-
edge, SPAN is the first end-to-end model designed to predict the evolution of
arbitrary size subgraphs.

– We propose a new mechanism named cross-attention with a twin-tower mod-
ule for solving the collaborative limitation.

– Experimental results demonstrate that our method is more effective and scal-
able than state-of-the-art subgraph prediction and subgraph pattern predic-
tion methods.
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2 Related Work

Previous methods based on node embeddings and traditional link prediction can
be divided into static graph embedding methods and dynamic graph embedding
methods. Static graph embedding methods [8,9,12,24,25] are not designed for
dynamic graphs, predicting the future connectivity of subgraphs solely based on
the current snapshot. In contrast, dynamic graph embedding methods [16,30,31]
predict subgraphs’ future connectivity based on current and previous snapshots.
Recently, with the massive success of the attention mechanism in temporal infor-
mation extraction, some attention-based dynamic graph embedding methods
have been proposed [18,20].

Dynamic subgraph prediction methods focus on the dynamic evolution of
subgraphs, which involves higher-order structures with multiple nodes. Previ-
ous dynamic subgraph prediction methods are limited, such as edge dependency
limitation and global threshold limitation. Higher-order link prediction [3] and
SPNN [15] overcome the edge dependency limitation by jointly predicting the
connection between multiple nodes. Nevertheless, these methods still have some
restrictions, such as human-predefined fixed-sized subgraphs and subgraph evo-
lution patterns. Compared with previous methods, our method overcomes these
two limitations and removes these restrictions using a more powerful model and
new mechanisms. We also identify a new collaborative limitation that the collab-
orative relationship between node attribute information and topology informa-
tion on subgraph evolution, which has been ignored or predefined by humans in
previous subgraph research. We address this new limitation using a new mech-
anism named cross-attention.

3 Proposed Method

Our method is composed of a Bayesian subgraph sampling algorithm and SPAN.
Bayesian subgraph sampling is responsible for generating subgraphs, and SPAN
model is used for the subgraph prediction of dynamic graphs.

3.1 Bayesian Subgraph Sampling

Given a dynamic graph Γ with T snapshots {G1, ..., GT }, Gt = (Vt, Et) is a
continuous-time graph (i.e., one snapshot), Vt is a node set with node attributes
and Et is an edge set with weights. A subgraph St = (V s

t , Es
t ) is a subset of

the snapshot Gt, such that V s
t ⊆ Vt and Es

t = {(u, v)|u ∈ V s
t , v ∈ V s

t , and
(u, v) ∈ Et}. Bayesian subgraph sampling aims to sample a series of subgraph
evolution pairs (St, St+1), ... from Γ .

First, we randomly choose a snapshot Gt = (Vt, Et). Second, we sample a
node v from Gt randomly, initialize the subgraph V s

t = {v} and determine the
number of nodes n sampled from a uniform distribution between 3 and k (the
maximum size of subgraphs). Third, we randomly select a node vi from V s

t with
the probability 1 − α for connected subgraphs or randomly select a node vj in
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Vt/V s
t with the probability α (α = 0.01) for disconnected subgraphs. For vi, we

randomly select an adjacent node vj with the transfer probability p(vj |vi) to
expand the subgraph. Motivated by the Bayesian network theory, the transfer
probability p(vj |vi) can be computed as

Fig. 1. The architecture of SPAN/SPAH-H with one subgraph as an example.

p(vj |vi) =
wj,i∑

(vk,vi)∈Et
wk,i

, (1)

where wj,i is the weight of an edge (vj , vi) for weighted graphs, and wj,i = 1
for unweighted graphs. For vj , we add this node to the subgraph as a random
jump operation. Repeat this node expansion process until the number of nodes
in V s

t reaches n to generate a subgraph. Finally, according to the node set V s
t , we

sample St from the current snapshot Gt. St+1 can be constructed via V s
t+1 = V s

t

and Es
t+1 = {(u, v)|u ∈ V s

t+1, v ∈ V s
t+1, and (u, v) ∈ Et+1} to compose an

evolution pair of subgraphs (St, St+1).
Repeating Bayesian subgraph sampling, we obtain sufficient connected/

disconnected subgraph evolution pairs. In addition, the Bayesian network the-
ory minimizes the probability that nodes with many links to the subgraph (i.e.,
nodes having significant influence over the subgraph) are not included in the
subgraph.

3.2 Subgraph Prediction

Given a k-node subgraph St = (V s
t , Es

t ) in the snapshot Gt (t ∈ [1, T − 1]), the
goal of subgraph prediction is to predict the structure of the subgraph St+1 =
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(V s
t+1, E

s
t+1) in Gt+1, where V s

t = V s
t+1. Therefore, we propose an end-to-end

subgraph pattern/structure prediction model named SPAN.
As shown in Fig. 1, the architecture of SPAN has two inputs Y ∈ Rk×D

and C ∈ Rk×D, where D is the dimension of the embedding space. For each
pair of subgraphs (St, St+1), we consider the structure of St and St+1 as the
source and target language, respectively. Thus, we flatten the subgraph as a
node sequence using the sampling order of nodes during Bayesian subgraph
sampling. Each node can be assigned a dense embedding vector to encode its
information. All embedding vectors of the entire graph are stored in a latent
matrix. The first input Y of SPAN is the nodes’ self-information in the subgraph
by extracting the corresponding embedding vectors ys from the latent matrix and
constructing a set Y = (y1, ..., yk). In detail, the latent matrix represents the
graph’s node attribute information, Y represents the subgraph’s node attribute
information, and yi represents the node embedding vector of the ith node in the
subgraph, which can be initialized with the degree information of this node in
the current snapshot. If the number of nodes n in St is less than k, we can use
zero padding for yi, i ∈ [n + 1, k]. The second input C of SPAN is the nodes’
context information, generated by combining a Bayesian attention layer with the
latent matrix to generate inner attention representations C = (c1, ..., ck) = PY ,
where P ∈ Rk×k is the Bayesian attention matrix. Intuitively, the second input
represents the topological information of the subgraph. We combine all paths
(topology information) from node vi to node vj in St as a Bayesian network Si,j ;
thus, we can compute the joint probability of Si,j as the attention score of node
i to node j as follows:

Pi,j =
∏

vk∈Si,j

p(vk|parents(vk)). (2)

Based on two inputs Y and C, we design a twin-tower module to synchronously
encode the global node attribute information and topology information to gener-
ate the intermediate representations M b

y and M b
c ∈ Rk×D. Each tower is stacked

by b identical attention-based blocks (A-Block). The output of each layer is
the input of the next layer. Based on M b

y and M b
c , we design different predic-

tion modules for subgraph prediction (SPAN) and subgraph pattern prediction
(SPAN-H).

Attention-Based Block. Each attention-based block has three layers: a self-
attention layer, a cross-attention layer and a feed-forward layer. A simple self-
attention (SA) operation has an input Y representing query, key and value as

SA(Y ) = softmax(
Y Y T

√
D

)Y. (3)

However, it is difficult for the self-attention mechanism to integrate all dimen-
sional information about queries, keys, and values. Therefore, motivated by the
transformer structure [23], we apply the multi-head attention mechanism to our
model for integrating all information. Multi-head attention (MA) [23], composed
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of h linear projection modules with the same structure, enables the model to
focus on different representation subspaces at different positions. Also, because
of the collaborative relationship between node attribute information and topol-
ogy information, they cannot be treated separately. Node attribute information
can facilitate the extraction of essential topology information, and topology infor-
mation can help extract essential node attribute information for subgraph pre-
diction. For example, nodes with high-connection attributes (high-degree nodes)
play a more important role than nodes with low-connections, i.e., local topol-
ogy structures with high-connection attributes in subgraphs have faster evolution
speed worth more attention [10]. Nodes with similar attributes may have different
effects on subgraph evolution due to different subgraph topologies. For instance,
nodes with high topology centrality in subgraphs usually have a stronger influ-
ence than other nodes on subgraph evolution [13]. If we extract essential topol-
ogy information only based on topologies for subgraph evolution, data features
of some important topology structures (e.g., meta-path, local structures with
high-connection nodes) will be unidentified and lost. The same thing happens
with existing methods that extract important node attribute information for
subgraph evolution only based on node attribute information. Similarly, as the
complex collaborative relationship between node attribute and topology infor-
mation varies with graphs and node number of subgraphs, it could not be prede-
fined fully by humans. For example, according to the collaborative relationship,
SPNN [15] defines some important structures artificially and pays more atten-
tion to the data features of these structures, but these predefined structures
are incomplete, e.g., excluding the local structures with more than four nodes
and high-connection nodes. Therefore, we propose a variant of MA named cross-
attention to extract important data features based on topology information and
node attribute information and include it in A-Block. The formula of the atten-
tion block with the cross-attention layer can be described as follows.

First, the formula of MA is

MA(Y ) = Concat(head1, ..., headh)W o, (4)

headi = Attention(Y WQ
i , Y WK

i , Y WV
i ), (5)

where W o ∈ RhD×D, WQ
i ∈ RD×D, WK

i ∈ RD×D and WV
i ∈ RD×D are the

linear projection weight matrices. To approximate a more complex similarity
function, each multi-head attention layer is concatenated with a feed-forward
layer, which has the same dimension of input and output with the multi-head
attention layer as follows:

FFN(x) = Max(0, xW1 + b1)W2 + b2. (6)

Thus, each attention block with the cross-attention layer in the left tower is

M i+1
y = FFN(MA(M i

c ,M
i
c , SA(M i

y))), (7)

where M i
c ∈ Rk×D is the i-th output from the other tower, M0

c = C and M0
y = Y .

Similarly, each block in the right tower is

M i+1
c = FFN(MA(M i

y,M
i
y, SA(M i

c))). (8)
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To improve convergence, we add normalization and residual sum after each layer
in the attention-based block.

SPAN. We use multi-sigmoid as the final activation function to predict existence
probabilities of edges in the subgraph as follows:

MSt

f = MultiSigmoid(M b
y(M b

c )T ). (9)

Since this paper focuses on subgraph prediction of undirected graphs, the pre-
diction matrix, i.e., the adjacency matrix, should be symmetric. We enforce
this symmetry by the average of the prediction matrix and its transposition as

Mf =
M

St
f +M

St
f

T

2 . Finally, we employ the cross entropy as the loss function as
follows:

L =
∑

St∈Ŝt

∑

i,j

A
St+1
i,j logMSt

fi,j
+ (1 − A

St+1
i,j )log(1 − MSt

fi,j
), (10)

where ASt+1 ∈ Rk×k is the adjacency matrix of St+1 and Ŝt is the set of sampled
subgraphs in the current snapshot.

SPAN-H. We develop SPAN-H for subgraph pattern prediction in heteroge-
neous networks. Heterogeneous networks have more abundant node attributes,
and subgraph pattern prediction is not the same as subgraph prediction. There-
fore, we make two modifications for SPAN. First, we increase the dimensions of
the original node embedding vectors to encode abundant node attribute informa-
tion. Second, subgraph pattern prediction requires embedding vectors for sub-
graphs. Therefore, we employ a weighted attention layer and a concatenation
operation to replace the multi-sigmoid layer in SPAN, as shown in Fig. 1. The
weighted attention layer can be computed by

MSt
wy =

∑

v∈St

αvM
b
yv

, (11)

MSt
wc =

∑

v∈St

βvM
b
cv , (12)

where M b
yv

and M b
cv are the attention information of node v in the output of the

last A-Block, as shown in Fig. 1. The attention score is computed by

αv =
e〈Mb

yv
,
∑

u∈St
Mb

cu
〉

∑
r∈St

e〈Mb
yr

,
∑

u∈St
Mb

cu
〉 , (13)

βv =
e〈Mb

cv
,
∑

u∈St
Mb

yu
〉

∑
r∈St

e〈Mb
cr

,
∑

u∈St
Mb

yu
〉 . (14)

Then, the final output is MSt

h = Sigmoid([MSt
wy|MSt

wc]W
s),

L =
∑

St∈Ŝt

BSt+1 logMSt

h + (1 − BSt+1)log(1 − MSt

h ), (15)
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Table 1. Statistics of dynamic graphs. |V | = number of nodes; |E| = number of
temporal edges; |T | = number of days.

Dataset V E T

ia-facebook 46,952 876,993 1,591

soc-epinions 131,828 841,372 944

sx-askubuntu 159,316 964,437 2,047

sx-superuser 194,085 1,443,339 2,426

wiki-talk 1,140,149 7,833,140 2,268

where W s ∈ R2D×1 is the linear projection weight matrix as a classifier,
and Mh ∈ [0, 1] is the probability of the predefined subgraph pattern. Thus,
the loss function becomes where BSt+1 ∈ {0, 1} is a binary value for indicat-
ing whether the subgraph pattern exists in the next snapshot. In summary,
we introduce essential mechanisms for the three main limitations in subgraph
prediction: twin-tower module with the cross-attention mechanism for the col-
laborative limitation, joint prediction for the edge dependency limitation, and
end-to-end learning for the global threshold limitation.

4 Experiments

We evaluate our models on two tasks: subgraph prediction and subgraph pattern
prediction. Subgraph prediction focuses on general subgraphs, whereas subgraph
pattern prediction focuses on the evolution of the predefined relationship between
nodes in subgraphs. The experiments were conducted on a machine with Intel
i7 8700K (CPU) and RTX2070. We use Adam optimizer [11] to train our model,
and the initial learning rate is 0.005. In addition, all experiments were repeated
ten times, and the average performance of each method is reported.

4.1 Subgraph Prediction

The subgraph prediction task evaluates the ability to capture the evolution of
subgraphs in discrete-time dynamic graphs with multiple snapshots. Therefore,
multiple snapshots are set as model inputs to predict the next snapshot in this
task. As shown in Table 1, we use five public datasets from Network Reposi-
tory [19] for subgraph prediction. We split the dynamic graph into ten equal
parts based on timestamps and construct ten snapshots for each dataset. The
first nine snapshots are the training dataset, and the last snapshot is used for
testing.

The hyperparameters in our method are set as D = 128, k = 10, and
b = 6, which will be discussed in Sect. 4.4. We select four state-of-the-art
dynamic embedding methods as the baseline methods, including EvolveGCN [18],
Dyngraph2vec [6], DynamicTriad [30], and DynGEM [7]. For EvolveGCN,
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Table 2. AUC scores of subgraph prediction (D = 128, k = 10, b = 6).

Dataset DynamicTriad DynGEM Dyngraph2vec EvolveGCN SPAN Gain

ia-facebook 0.833 0.753 0.771 0.785 0.921 10.56%

soc-epinions 0.778 0.723 0.791 0.804 0.869 8.08%

sx-askubuntu 0.816 0.811 0.844 0.841 0.908 7.58%

sx-superuser 0.871 0.856 0.884 0.896 0.941 5.02%

wiki-talk OOM OOM OOM OOM 0.943 –

Table 3. Parameter statistics of different methods (D = 128, k = 10, b = 6).

Dataset DynamicTriad DynGEM Dyngraph2vec EvolveGCN SPAN

ia-facebook 15,776,259 500,212,854 72,184,652 61,527 4,248,800

soc-epinions 44,294,931 948,889,485 M199,583,528 26,175,567 9,001,464

sx-askubuntu 53,530,563 1,067,104,722 240,843,016 18,225,525 10,540,792

sx-superuser 65,212,947 1,213,544,964 293,031,285 80,957,922 12,487,856

wiki-talk OOM OOM OOM OOM 65,467,440 -

EvolveGCN-H is selected for comparison because it uses the GRU mechanism with
better convergence. According to the suggestions in [18], we specify the number
of GCN layers as two and set the learning rate interval as [0.0001, 0.1]. For Dyn-
graph2vec, we use the AERNN version because it has higher accuracy than the
default version. In addition, we set the look back size as l = 1, 2, 3 and other
hyperparameters as suggested at [6]. For DynamicTriad [30], we set hyperparam-
eters β1 ∈ {0.1, 1, 10} and β2 ∈ {0.1, 1, 10} alternatively to achieve the best
performance. For DynGEM, we set the initial sizes of autoencoders as [500, 300],
α ∈ [10−6, 10−5], β ∈ [2, 5], v1 ∈ [10−6, 10−4], v2 ∈ [10−5, 10−2] as suggested
in [7]. We iteratively train SPAN via learning subgraph prediction in adjacent
snapshots in chronological order, and other node embedding methods learn node
embeddings for each snapshot. In testing, SPAN predicts the subgraphs in G10

based on G9 directly, and other node embedding methods use the node embed-
dings of G9 to predict links separately in these sampled subgraphs in G10.

Table 2 lists the AUC scores of the subgraph prediction task. SPAN outper-
forms other state-of-the-art dynamic methods with an improvement from 5.02%
to 10.56%. The method for calculating gain is the same as described in [16]: (the
accuracy of our method - the highest accuracy of other methods)/the highest
accuracy of other methods. According to Table 2, in our experiment, previous
methods fail to predict subgraphs for large dynamic graphs (more than 1 million
nodes) due to out-of-memory (OOM) in our experiment environment. As shown
in Table 3, the number of parameters in SPAN is lower than other methods and
increases linearly with the graph size. The main reason is that SPAN can learn
a subgraph with arbitrary size each time and is memory efficient compared to
other methods based on the adjacency matrix of all snapshots or graphs.
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Table 4. AUC scores of subgraph pattern prediction (D = 128, b = 6).

Dataset SPNN HAN HGT SPAN SPAN-H Gain

email-eu 0.872 0.859 0.876 0.885 0.941 7.42%

DBLP 0.838 0.816 0.834 0.861 0.889 6.09%

mathoverflow 0.855 0.831 0.840 0.877 0.915 7.01%

4.2 Subgraph Pattern Prediction

Subgraph pattern prediction predicts that the subgraph would be transformed
into a predefined subgraph pattern in a period of time. According to the task
definition [15], we select three real-world heterogeneous dynamic graphs for this
task. The email network Email-eu [14] is constructed using emails from a large
European research institution, comprising 986 staff members, 50,572 emails, and
42 departments. The sampled subgraph has four staff members (k = 4), and at
least two staff work in different departments in the subgraph. The subgraph
pattern is the communication between different departments, i.e., the connec-
tivity between staff members in different departments. DBLP [21] is a scien-
tific paper co-author network with timestamps, including different entity types:
14,376 papers, 14,475 authors, 8,920 topics and 20 venues. We predict the evo-
lution of 3-node subgraphs (author, topic, and venue), i.e., whether an author
will publish in a venue and on a topic that the author has not published in the
current snapshot. Mathoverflow [17] is a temporal network collected from the
same website, including 24,818 users and 506,550 interactions, such as answers
to questions, comments to questions, and comments to answers. The subgraph
pattern is whether four users will interact more frequently over a period (k = 4),
i.e., whether there will be more edges of 4-node subgraphs in a period.

The evolution that transforms the subgraph into a predefined subgraph pat-
tern may involve establishing multiple edges at different times, implying that
this evolution may include multiple intermediate states in multiple discrete snap-
shots. However, we cannot ensure the appearance or nonappearance of subgraph
patterns based on these intermediate states. Thus, to avoid these intermediate
states, we discuss the appearance or nonappearance of subgraph patterns in a
continuous-time rather than dividing the time into multiple snapshots. We divide
each dynamic graph into two continuous-time graphs. The first continuous-time
graph is constructed using the first 70% edges for training, and the second is con-
structed using the last 30% edges for testing. We sample subgraphs from the first
continuous-time graph and train the model by predicting subgraph patterns in
the first continuous-time graph. In testing, we predict subgraph patterns in the
second continuous-time graph based on subgraphs in the first continuous-time
graph.

We compare three state-of-the-art methods, namely, SPNN [15], HAN [25],
and HGT [9], with SPAN-H in the subgraph pattern prediction task. SPNN is
designed for subgraph pattern prediction based on limited and predefined sub-
graph patterns. HAN and HGT are based on the attention and graph convolution
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mechanisms to learn node embeddings for heterogeneous networks. We generate
subgraph embeddings for HAN and HGT by averaging node embeddings and
predicting subgraph pattern evolution using subgraph embeddings. We also set
D = 128 and other hyperparameters, as suggested [9,15,25]. Table 4 shows the
AUC scores of subgraph pattern prediction on three heterogeneous networks, and
that SPAN-H achieves the best performance increasing from 6.09% to 7.42%,
compared to other methods. The proposed model can learn the evolution of
subgraphs in heterogeneous dynamic graphs more effectively. Compared with
previous methods, SPAN-H completely learns the existing subgraph patterns
from data and uses a twin-tower module with the cross-attention mechanism to
capture the evolution of subgraphs based on diverse information.

4.3 Model Analysis

Our model achieves the best performance on both subgraph prediction and sub-
graph pattern prediction tasks. We attribute this benefit to some new mecha-
nisms, such as Bayesian attention, the twin-tower module and the cross-attention
mechanism. In this section, we discuss how these mechanisms gradually improve
our model. As shown in Fig. 2, we design four models for comparative analysis
on the subgraph pattern prediction task using the same dataset in Sect. 4.2. As
shown in Fig. 2, model 1 only uses node attribute information, model 2 uses con-
text information (the fusion of node attribute information and topology informa-
tion generated by Bayesian attention), model 3 extends the tower module based
on model 2, and model 4 extends model 3 with cross-attention. The reason for
choosing this task is that heterogeneous networks have rich subgraph patterns
and have numerous practical applications. Figure 3 shows the results of the four
models.

As shown in Fig. 3, model 2 outperforms model 1, which means the node
attribute information and topology information both play a significant role in
subgraph evolution.

In addition, model 3 outperforms model 2 because node attribute information
will become fuzzy during the Bayesian attention process in model 2 even though
context information can be regarded as the fusion of node attribute information
and topology information. Figure 3 also shows that model 4 achieves higher accu-
racy and faster convergence speed than model 3. The benefit is attributable to the
cross-attention mechanism. Important topology information or node attribute
information may also be related to each other in subgraph evolution. The cross-
attention mechanism integrates topology information and node attribute infor-
mation to extract important features rather than isolated extraction, enabling
our method to avoid feature loss.

4.4 Hyperparameter Analysis

We discuss the significant hyperparameters of subgraph sampling and model
learning, respectively. For subgraph sampling, the maximum node size of
subgraphs is k even though subgraphs can be generated with an arbitrary size
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Fig. 2. Model architectures for comparison: (a) model 1 using only node attribute
information, (b) model 2 using only context information, (c) model 3 using both con-
text information and node attribute information, (d) model 4 using a cross-attention
mechanism to fuse node and context information in multi-level.

Fig. 3. The loss curves (a) and AUC score curves (b) of four models over epochs. These
curves are averaged across three datasets in subgraph pattern prediction.

Fig. 4. (a), (c), and (d) are the AUC scores of discrete-time subgraph prediction for
different settings on hyperparameters k, D and b; (b) is the training time of SPAN
with different k (minutes).
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(≤ k) in the subgraph sampling process. Figure 4(a) illustrates that smaller sub-
graphs can be learned better than larger subgraphs because the evolution pace
of bigger subgraphs becomes larger, and effectively predicting these subgraphs is
difficult. The number of nodes also affects the training time. We set the hyperpa-
rameters (D = 128 and b = 6) to evaluate the training time of SPAN. Figure 4(b)
shows that the training time increases with k and is almost linear with the sub-
graph size. For model learning, the dimension of node embedding vectors in
the latent matrix is D, and Fig. 4(c) demonstrates performance changes with
different D. Our model’s number of attention-based blocks is b, and the stacking
of multiple blocks is used to learn the complex function for subgraph evolution.
Figure 4(d) shows that the model’s performance is generally proportional to b,
as fewer blocks would be under-fitted. Since the model’s performance increases
gradually when b > 6, we set the hyperparameter b = 6 to reduce the number
of parameters and avoid overfitting.

5 Conclusion

In this study, we propose a novel end-to-end model for subgraph prediction in
dynamic graphs. We evaluate our model by comparing it with several state-of-
the-art methods, including node embedding-based methods and graph neural
network-based methods in dynamic graphs with two tasks: subgraph prediction
and subgraph pattern prediction. Experimental results demonstrate that our
model can achieve substantial gains, from 5.02% to 10.88%.
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Abstract. This paper proposes a one-shot voice conversion (VC) solu-
tion. In many one-shot voice conversion solutions (e.g., Auto-encoder-
based VC methods), performances have dramatically been improved due
to instance normalization and adaptive instance normalization. However,
one-shot voice conversion fluency is still lacking, and the similarity is not
good enough. This paper introduces the weight adaptive instance normal-
ization strategy to improve the naturalness and similarity of one-shot voice
conversion. Experimental results prove that under the VCTK data set, the
MOS score of our proposed model, weight adaptive instance normalization
voice conversion (WINVC), reaches 3.97 with five scales, and the SMOS
reaches 3.31 with four scales. Besides, WINVC can achieve a MOS score of
3.44 and a SMOS score of 3.11 respectively for one-shot voice conversion
under a small data set of 80 speakers with 5 pieces of utterances per person.

Keywords: One-shot voice conversion · Generative adversarial
networks (GANs) · Weight adaptive instance normalization

1 Introduction

Voice conversion aims to preserve the source voice content information while
replacing the non-content information in the voice with the target speaker.
It has attracted many researchers for its potential applications in security [1],
medicine [2], entertainment [3] and education [4].

There are two types of VC, parallel and non-parallel. Due to the difficulty and
expensiveness of parallel data collection, several methods based on parallel data,
such as the gaussian mixture model (GMM) [5], dynamic time warping (DTW) [6],
and deep neural network (DNN) [7], are not particularly effective solutions. In

c© Springer Nature Switzerland AG 2021
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Fig. 1. Comparison of source, target, and converted mel-spectrograms.

order to overcome this limitation, the phonetic posteriorgrams(PPG) based mod-
els [8], generative adversarial network (StarGAN) based models [9,10], and varia-
tional auto-encoder (VAE) based models [11] are adopted to solve the problem of
non-parallel VC. These methods get rid of the dependence on parallel data. How-
ever, when dealing with unseen speakers, a long time adaptation process or a large
amount of data is required.

One-shot voice conversion [12–14] and zero-shot voice conversion [15,16] solve
the unseen speaker problem. They convert the source voice to an unseen speaker’s
voice by referring to only a few target utterances. Moreover, neither the source
nor the target utterances appear in the training set during the training phase.
They require the model to have a solid ability to separate content information
from non-content information in the voice.

Due to the development of the normalization strategy, the performance of the
one-shot voice conversion task has been improved. There are two mainstream
frameworks for better one-shot VC in recent years, including the auto-encoder
based one [12,15] and the vector quantization (VQ) based one [13,14]. [15] uses
the batch normalization (BN) [17] strategy to implement the one-shot voice
conversion successfully. In [13,14], the instance normalization (IN) [18] strat-
egy is adopted. Compared with the BN strategy used in [15], IN normalizes
each input object separately to improve one-shot voice conversion quality. More-
over, AdaINVC [12] innovatively adopts the adaptive instance normalization
(AdaIN) [19] strategy. The AdaIN strategy significantly improves the one-shot
voice conversion and achieves an improved similarity. Nevertheless, it is chal-
lenging to disentangle speaker information and content information through an
unsupervised learning method. Moreover, researchers are helpless if the similar-
ity of converted speech is unsatisfying.

In this paper, we propose a weight adaptive instance normalization (WIN)
voice conversion system for one-shot VC. The model framework bases on
StarGAN-VC2 [10] because it has good effectiveness and convenience, and the
model structure is improved. We use the speaker encoder jointly trained with the
generator to extract the non-linguistic information of the target speaker. Under
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the VCTK [20] data set, we compare the WINVC with AdaINVC. The mel-
spectrograms (Fig. 1) show that WINVC performs better in content intelligibil-
ity and retention, and subjective evaluations show that WINVC achieves bet-
ter results than AdaINVC on the one-shot voice conversion task. Furthermore,
WINVC achieves a competitive one-shot voice conversion performance under the
extreme training conditions of using only 80 speakers with 5 utterances per per-
son. In addition, we apply the WIN [21] strategy to AdaINVC, and experimental
results show that AdaINVC’s one-shot performance has been improved.

To summarize, we list the core contributions of this paper as follows:

1. We design a new model WINVC based on the WIN strategy and StarGAN-
VC2. It outperforms the state-of-the-art (SOTA) model AdaINVC naturally
and similarly on one-shot voice conversion tasks under non-parallel data.

2. Furthermore, WINVC can perform competitive one-shot voice conversion
results even with small amount of data.

3. We also apply the WIN strategy to the previous SOTA model AdaINVC and
significantly improves its performance.

4. We use the jointly trained speaker encoder as the non-linguistic information
extractor and employ the speaker embedding cycle loss to help the model
perform the one-shot VC task better.

2 StarGAN-VC/VC2

This section reviews two previous StarGAN-based voice conversion models:
StarGAN-VC [9] and StarGAN-VC2 [10]. As shown in Fig. 2, StarGAN-VC uses
the StarGAN [22] model for voice conversion, which includes three modules:
a generator (G), a discriminator (D) and a domain classifier (C). G takes
an acoustic feature sequence x ∈ R with an arbitrary attribute and a target
attribute label c as the inputs, and generates an acoustic feature sequence,

ŷ = G(x, c) (1)

D is designed to produce a probability D(y, c) that an input y is a real speech
feature whereas C is designed to produce class probabilities pC (c | y) of y.

Fig. 2. The architecture of StarGAN-VC.
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2.1 Training Objectives

StarGAN-VC/VC2 includes adversarial loss [23], cycle consistency loss [24], and
identity mapping loss [25]. StarGAN-VC2 deletes classification loss [26] and
updates the BN strategy to the CIN strategy. These loss functions are as follows.

Adversarial loss is

LD
adv(D) = − Ec∼p(c),y∼p(y|c)[log D(y, c)]

− Ex∼p(x),c∼p(c)[log(1 − D(G(x, c), c))],
(2)

LG
adv(G) = −Ex∼p(x),c∼p(c)[log D(G(x, c), c)]. (3)

Cycle-consistency loss is to preserve the composition in conversion, which
is presented as follows:

Lcyc (G) = Ec′∼p(c),x∼p(x|c′),c∼p(c) [‖G (G(x, c), c′) − x‖] . (4)

Identity-mapping loss is to facilitate input preservation, which is presented
as follows:

Lid(G) = Ec′∼p(c),x∼p(x|c′) [‖G (x, c′) − x‖] . (5)

Classification loss is to force the generated data to be similar to the target
speaker’s, which has been abandoned in StarGAN-VC2:

LC
cls(C) = −Ec∼p(c),y∼p(y|c) [log pC(c | y)] , (6)

LG
cls(G) = −Ex∼p(x),c∼p(c) [log pC(c | G(x, c))] . (7)

To summarize, the full objectives of StarGAN-VC to be minimized with
respect to G, D and C are given as:

LG(G) =LG
adv(G) + λclsLG

cls(G) + λcycLcyc(G) + λidLid(G), (8)

LD(D) = LD
adv(D), (9)

LC(C) = LC
adv(C). (10)

2.2 Generator Architectures

In order to improve voice quality, the StarGAN-VC2 model removes the domain
classifier module. StarGAN-VC uses the BN [17] strategy, and StarGAN-VC2
uses the CIN [27] strategy instead.

Given an input batch x ∈ RBCHW , BN(x) normalizes the mean and standard
deviations for the individual feature channel:

BN(x) = γsingle

(
x − μ(x)batch

σ(x)batch

)
+ βsingle, (11)
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where γ, β ∈ RC are affine parameters learned from data. μ (x), σ (x) ∈ RC

are the mean and standard deviations, computed across batch size and spatial
dimensions independently for each feature channel.

[13] and [14] employ the IN [18] strategy of image style conversion to achieve
a better one-shot voice conversion performance.

IN(x) = γsingle

(
x − μ(x)sample

σ(x)sample

)
+ βsingle, (12)

where x is the input feature. γ and β form a single set of affine parameters learned
from data. μ and σ are computed across spatial dimensions independently for
each channel and each sample.

StarGAN-VC2 [10] uses the conditional instance normalization (CIN) [27]
strategy, as shown in Eq. (13), where γ (exy) and β (exy) are domain-specific
scales and bias parameters that allow transforming the modulation in a domain-
specific manner. exy is selected depending on both the source domain code ex
and the target domain code ey.

CIN(x, exy) = γstyles (exy)
(

x − μ(x)sample

σ(x)sample

)
+ βstyles (exy) , (13)

exy = concat ([ex, ey]) . (14)

3 The Proposed Model

3.1 Workflow

Fig. 3. The workflow diagram of the proposed model

This section introduces the various modules and implementation details of our
proposed model1. The entire workflow is shown in Fig. 3, consisting of a Gen-
erator, a Discriminator, and a Speaker Encoder, where MUX means randomly
sending source real data or converted fake data to Discriminator.
1 Further details may be found in our implementation code:

https://github.com/One-Shot-Voice-Conversion-with-WIN/WINVC.

https://github.com/One-Shot-Voice-Conversion-with-WIN/WINVC
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3.2 The Generator with Weight Adaptive Instance Norm

Fig. 4. The module details of G. In input, output, and res-block layers, B, C, T, H and
E represent batch, channel, the number of frames, the hidden size and the embedding
size of speaker embedding respectively. In each convolution layer, k, c, and s denote the
kernel size, the number of channels and stride, respectively. IN, GLU, Cat and WIN
indicate instance normalization, gated linear unit, concatenating and the proposed
weight adaptive instance normalization.

As shown in Fig. 4, the generator is composed of 1D-convolution, which includes
three parts: up-sampling, bottleneck resblocks, and down-sampling. Unlike
StarGAN-VC2, our upsampling and downsampling both use the 1D-convolution
structure and IN strategy. In the first convolutional layer of upsampling, we use
eight different convolution kernel sizes (respectively [1, 1, 3, 3, 5, 5, 7, 7]) with
1D-convolution, and finally, concatenate all the 1D-convolution results along the
channel dimension. The number of channels of the feature is changed from 80 to
a hidden-size of 256. There are nine resblocks in total, all of which composed of
WIN modules. The activation function used is gated linear units (GLU).

We propose a new normalization strategy, WIN, into the generator’s res-
blocks. Next, we first introduce AdaIN briefly, and then propose WIN.

Adaptive Instance Normalization. AdaINVC adopts the AdaIN strategy,
a particular case of instance normalization, which makes a simple extension
to CIN. AdaINVC uses a speaker encoder to extract the speaker embedding
ey = E(y), making it possible to exploit rich information in speaker embedding.
The speaker embedding controls the scaling and bias variables of AdaIN. Unlike
BN, IN, or CIN, AdaIN has no learnable affine parameters. Instead, it adaptively
computes the affine parameters from the style input ey.

AdaIN(x, ey) = σ(ey)
(

x − μ(x)sample

σ(x)sample

)
+ μ(ey). (15)
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In Eq. (15), x is a content input to the operator, and ey is the speaker embed-
ding. μ(x) and σ(x) are the mean and the standard deviations of the feature x
across time. σ(ey) and μ(ey) are adaptive linear functions. AdaIN (Eq. 15) per-
forms standard modulation on feature x first, and then uses the adaptive scaling
and bias variables, obtained according to the speaker embedding, to perform
standard normalization on the features, and finally achieves the integration of
feature x and speaker embedding.

Weight Adaptive Instance Normalization. To improve the data efficiency
of one-shot voice conversion task, we propose the WIN [21] strategy in the bot-
tleneck blocks of the generator, which was initially proposed for image style
transfer tasks. Figure 5 illustrates the architectur of WIN [21] module:

Fig. 5. The architecture of the WIN module.

w′
ijk(wijk, ey) = γi(ey) ∗ wijk + βi(ey) (16)

σj =
√∑

i,k

w′
ijk

2
(17)

WIN(wijk, ey) = w′
ijk/

√∑
i,k

w′
ijk

2 + ε (18)

In Eq. (16), w and w′ are the original and modulated weights, i denotes
the ith input feature map, and j and k enumerate the output feature maps and
spatial footprint of the convolution, respectively. ey is target speaker embedding.
In Eq. (17), σj is the standard deviation of modulated weights. In Eq. (18), ε is
a small constant to avoid numerical issues.

Different from AdaIN, the demodulation strategy of WIN (Eq. 18) is related
to weight normalization [28]. The modulation (Eq. 16) and demodulation (Eq. 18)
strategies perform as a part of reparameterizing the weight tensor w. In Eq. (16),
γi(ey) and βi(ey) are two affine transformations applied to speaker embedding ey
corresponding to the ith input feature map, which generate style-dependent scal-
ing and the bias variables. Then they are applied to normalize the convolution
weight wijk, and finally get the intermediate variables w′

ijk. In Eq. (18), we demod-
ulate it again into the convolution weights, which is now embedding related.
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The WIN strategy in our proposed WINVC model shows a better one-shot
voice conversion performance than the state-of-the-art model AdaINVC. Also,
we replace AdaIN with WIN in the baseline AdaINVC. The subjective evalu-
ation shows that WIN enables AdaINVC to achieve a better MOS score and
SMOS score, indicating better voice quality and better similarity. Furthermore,
the objective evaluation shows that WIN helps AdaINVC get higher speaker
verification accuracy.

3.3 The Speaker Encoder and the Discriminator

Fig. 6. The architecture of the speaker encoder.

The architecture of the speaker encoder is shown in Fig. 6, which adopts a full
1D-convolution form and uses the LeakyRelu activation function after each con-
volution layer. And it uses a statistic pooling layer as in the xvector [29]. We
pass the pool results through a linear function to generate a speaker embedding.
Further more, we use a speaker embedding cycle loss (Eq. 19) to help model get
better similarity:

Lspkcyc = cos (E (xt) , E (G (xs, E (xt)))) , (19)

where E is the speaker encoder, xs and xt denote the source feature and target
feature.

Fig. 7. The module details of D. LeakyRelu indicate LeakyRelu activation. spk id and
Num spks denote the speaker attribute label and the number of speakers used.
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The discriminator structure is shown in Fig. 7, which introduces Patch-
GAN [30] which uses convolution in each layer to reduce parameters and stabilize
GAN training. After the last 2D-convolution, the data size obtained is [Batch,
num speakers]. Finally, by specifying the target speaker attribute, the evaluation
result of real or fake probability is obtained.

3.4 Training Objectives

We use the speaker encoder to extract the non-linguistic information of the tar-
get speaker, which is jointly trained with the generator G. And then send the
extracted speaker embedding to the generator. G generates the voice conver-
sion result, which is then judged by the discriminator D. In the one-shot stage,
AdaINVC, together with most unsupervised models, is helpless if the converted
speech’s similarity is not satisfactory. However, our model can further improve
the similarity of the existing results.

In our proposed model, there are four training objectives: adversarial loss
(Eq. 2, 3), cycle consistency loss (Eq. 4), identity loss (Eq. 5), and speaker embed-
ding cycle loss (Eq. 19). The adversarial loss, cycle consistency loss and iden-
tity loss are consistent with the corresponding formulas in StarGAN-VC2. The
speaker embedding cycle loss is used to calculate the cosine similarity between
the converted voice and the ground truth target voice.

Full objective: The full objective is written as

LD = −Lt−adv, (20)

LG = λadvLt−adv + λspkcycLspkcyc + λcycLcyc + λidLid. (21)

where D and G are optimized by minimizing LD and LG respectively.

4 Experiments

4.1 Datasets

Our experiments are conducted on the VCTK English data set. All selected
training utterances are longer than 256 frames. And we use third-party pre-
trained Parallel WaveGAN [31]2 as vocoder for all comparison models. For the
one-shot voice conversion experiment, we use a training dataset of 80 speakers
with all utterances, another dataset of 10 unseen speakers, including 5 men and
5 women for unseen-to-unseen one-shot voice conversion. In addition, to further
improve the similarity on the existing results, we take an adaption stage, with
only one utterance each is used to adapt the pretrained model quickly, and the
objective evaluation (Fig. 11) show that the similarity can quickly upgrade within
5,000 iterations. For a fair comparison, we make the training set of AdaINVC
also contain the 10 unseen speakers with one utterance each. In the end, among
the 10 one-shot speakers, we use their other voice data to complete the unseen-
to-unseen one-shot voice conversion experiments.
2 https://github.com/kan-bayashi/ParallelWaveGAN.

https://github.com/kan-bayashi/ParallelWaveGAN
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4.2 Training Details

The learning rates of G and D are 2e-4 and 1e-4, respectively. The batch size
is 8, and the minimum length of the training data is 256 frames. The values of
λid, λcyc, λadv and λspkcyc are 2, 4, 1 and 5. The WIN convolution kernel size
is 3. The number of training iterations is 100k, with the training converging in
10 h on a single 1080ti. The further adaption stage can be converged within half
hour with 5k iterations.

4.3 Subjective Evaluations

We analyze the performance3 differences among the ground truth VCTK utter-
ances (Target), our proposed model trained with (80 speakers × all utterances)
and adapted with another (10 speakers × 1 utterance) (WINV C), the pro-
posed model trained with (80 speakers × 5 utterances) and adapted with another
(10 speakers × 1 utterance) (WINV C5), the baseline model trained with (80
speakers × all utterances + 10 speakers × 1 utterance) (AdaINV C), and the
baseline model replaces AdaIN strategy with WIN strategy and is also trained
with (80 speakers × all + 10 speakers × 1 utterance) (AdaINV C W ).

We conduct mean opinion score (MOS) tests, similarity mean opinion score
(SMOS) tests, and ABX tests. The target ground truth utterances (Target)
are used as anchor samples. Evaluation utterances are selected based on gender
combination for each model. Each gender combination includes 2 pairs of speak-
ers. Each pair of speakers have 20 utterances. Each model is evaluated with
4 × 2 × 20 = 160 utterances. Each utterance is evaluated once. All subjective
tests are evaluated with 13 participants.

MOS. As shown in Fig. 8, “F” means “female”, “M” means “male”. For exam-
ple, “F-M” denotes that female source voice is converted into male target voice,
and so on. “Target” means the ground truth voice of corresponding target
speaker. In the subjective naturalness test (MOS), WINVC achieves the high-
est MOS scores. WINVC5 trained with few data can also achieve a competitive
results. In addition, the MOS score of AdaINVC W is higher than AdaINVC,
which indicates that the WIN strategy can indeed make AdaINVC achieve more
natural results.

SMOS. Figure 9 shows the similarity SMOS. WINVC achieves the highest
SMOS scores, WINVC5 can also achieve competitive results. The scores of
WINVC and WINVC5 are very close, and all outperform AdaINVC, which
denotes that WINVC5 with low resource of training data can also achieve nice
similarity. And AdaINVC W also performs better than AdaINVC, this indicates
that the WIN strategy can indeed make AdaINVC achieve better similarity
results.
3 For more details, please refer to the website:

https://one-shot-voice-conversion-with-win.github.io.

https://one-shot-voice-conversion-with-win.github.io
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Fig. 8. Naturalness results for baseline model and our proposed WINVC model with
95% confidence intervals.

Fig. 9. Naturalness results for baseline model and our proposed WINVC model with
95% confidence intervals.

Fig. 10. The ABX test between WINVC and AdaINVC from the aspects of naturalness
and similarity.

The ABX Test. As shown in Fig. 10, in the ABX tests, participants need to
choose better voice conversion results for the samples of WINVC and AdaINVC
from two aspects: similarity and naturalness. From the results, we can conclude
that WINVC achieves significant results compared to AdaINVC. Together with
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the results of MOS and SMOS, which indicate that WIN strategy can indeed
enhance the performance AdaINVC, and WINVC can perform better one-shot
voice conversion task than AdaINVC from both naturalness and similarity.

4.4 Objective Evaluations

Fig. 11. Comparison of speaker verification accuracy between WINVC and AdaINVC.
For better similarity comparison, one unseen utterance of each unseen speaker is used
for quick adaption.

The Speaker Verification Accuracy. We use speaker verification accuracy
as objective metrics. The speaker verification accuracy measures whether the
transferred voice belongs to the target speaker. For fair comparison, we used
a xvector [29] pretrained with all data of VCTK to verify the speaker identity
from the converted voices. As shown in Fig. 11, the verification accuracy of our
model is obviously higher than that of AdaINVC after quick adaption with 5,000
iterations. Further more, WINVC5 trained with only 5 utterances each speaker,
and achieve competitive accuracy as well. After replacing the AdaIN strategy in
AdaINVC with the WIN strategy, AdaINVC W achieved better similarity than
AdaINVC.

Disentanglement Discussion. In addition to the speaker verification accuracy
comparison with AdaINVC, we conduct a t-SNE [32] visualization of the latent
spaces of the WINVC model. As shown in Fig. 12, speaker embeddings from the
same speaker are well clustered, and speaker embeddings from different speakers
separate in a clean manner. The clear pattern indicates our speaker encoder can
verify the speakers’ identity from the voice samples.
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Fig. 12. t-SNE visualization for speaker embeddings of WINVC. The embeddings are
extracted from the voice samples of 10 different one-shot speakers. 3,000 embeddings
for each person.

5 Conclusions

In this paper, we proposed a novel WIN strategy. In addition, we proposed
a WINVC model to perform one-shot voice conversion under the condition of
multi-speaker non-parallel data, which achieved significant results. Furthermore,
even with a smaller amount of training data, it has achieved a better performance
from subjective and objective evaluations than the baseline model, which trained
with a larger amount of training data. Besides, with the help of the WIN strategy,
the baseline model also performed better. Based on this work, the cross-lingual
one-shot voice conversion can be further studied in the future.
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Abstract. Recently, Graph Neural Network (GNN) has been proved to
be an efficient technique to solve the problem of graph-structured data,
and many graph-based methods of recommendation have shown notice-
ably good performances. However, many approaches use pure GNN layers
as the encoder of the nodes, which we think may limit the performance
of the model. In this paper, we propose Fusion Graph Convolutional
Collaborative Filtering (FGC-CF) which uses DeepWalk and graph con-
volutional layers to be the encoder of nodes to enhance the capability of
the node encoder. For better modeling the similarity of user and item, we
involve the local inference of the ESIM [3] to obtain the user representa-
tions by considering the interacted items, and the item representations
by considering the interacted users. We conduct experiments on four
datasets and the results not only show the remarkable performance of
FGC-CF but also prove the necessity of using DeepWalk and ESIM local
inference technologies.

Keywords: Collaborative filtering · Graph convolutional network ·
DeepWalk · Convolutional network · Local inference

1 Introduction

Traditional collaborative filtering algorithms assume that nodes are independent
of each other or try to calculate similar nodes for each node through a certain
similarity measure, and regard nodes with higher similarity as neighbors. The
first method ignores the similarity between the features of neighboring nodes,
while the second method considers similar nodes but has high complexity and the
reasonableness of the similarity measure has become an important determinant
of algorithm performance. The graph neural network uses the adjacency matrix
to represent the graph and uses the spectral domain or spatial domain method
to aggregate the neighborhood of the nodes, by treating the graph as a signal
based on the graph theory. It reduces the complexity of the algorithm on the
one hand, and on the other hand, it enhances The rationality of the features of
neighboring nodes.

Therefore, a mainstream approach is to treat users and items as graph nodes,
and their interactions are constructed as graph signals, and graph neural network
c© Springer Nature Switzerland AG 2021
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algorithms are used to aggregate adjacent nodes, thereby introducing adjacent
node features in the learning process. [13] used multi-layer GNN to aggregate the
high-order neighbor node features of nodes, and trained the embedded vector
representations of users and items respectively, and achieved good results on
multiple data sets. [1] proposed GC-MC, a graph auto-encoder framework based
on distinguishable messages transmitted on two-way interactive graphs. This
method treats the interaction between users and items as two-way bipartite
graphs. The graph convolutional layer constructs an auto-encoder to separately
encode the features of the users and the items and then combines the probabilities
of different score levels to predict the user’s score for a specific item through a
weighted summation. [4] analyzed the relationship and characteristics of the
two types of graphs in the recommendation system-homogeneous graphs and
heterogeneous graphs, and considered the problem that researchers usually use
only a single type of the graphs to solve their problems, and proposed GCN4RS
that combines the interaction of the vertices of the homogeneous graph and the
heterogeneous graph.

However, most researches based on graph neural network algorithms only
focus on the performance of models with a single structure of neural networks
after graph layers, which ignores the factor of similarity between user and item.
Additionally, we think combining the network embedding approaches and GCN
layers as the encoder of nodes can further improve the performance of the model.

In this paper, we propose a Fusion Graph Convolutional Collaborative Filter-
ing (FGC-CF) framework. After trying to train the node vector representations
through DeepWalk and GCN layers, we use one-dimensional convolutional neural
network and the ESIM local inference module to extract the interactive features
between the vectors, thereby improving the recommendation performance.

We make the following contributions in this paper:

– We propose a new collaborative filtering framework FGC-CF which uses
DeepWalk and GCN to obtain the embedded representations and then com-
bines CNN and ESIM local inference modules to get the rating prediction.

– We conduct experiments on the four datasets, which show the state-of-the-art
performance of FGC-CF on three of them.

– We conduct extensive experiments to prove the necessity of the DeepWalk
embedding and ESIM local inference.

The rest of this paper is organized as follows. The background, including the
problem description and related works, are given in Sect. 2. The proposed FGC-
CF approach is depicted in Sect. 3. Section 4 presents the experiment design,
results, and analysis. The paper is concluded in Sect. 5.

2 Related Works

Our work lies in the intersection between the network embedding and the graph-
based collaborative filtering. Therefore, we mainly review the most related works
in the two areas in this section.
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2.1 Network Embedding

Network embedding aims to learn latent representations of nodes in the network.
[10] proposed the first network embedding method called DeepWalk, which uses
the word embedding model like Skip-gram. [12] developed LINE, which con-
strains the neighborhood to be nodes 1 to 2 hops away from the center. [5]
extended DeepWalk with the BFS and DFS strategies in the process of random
walk.

2.2 Graph-Based Collaborative Filtering

The recommend problem can be formulated as a link prediction problem. The
users and items can be regarded as nodes in a bipartite graph, in which the
edges denote the interactions between the users and items. [1] proposed a frame-
work that encodes the nodes by a graph convolutional encoder and uses bilinear
decoder to reconstruct the rating matrix. [14] developed a new approach that
extracts the latent components of the graph which denote the latent purchasing
motivation. [13] uses multiple embedding propagation layers to model the high-
order connectivity in the user-item graph. [2] used GCN layers and RNNs to
model the dynamics of user’s preference which gives the model powerful capa-
bility to learn the time-dependent factors. Many approaches reviewed in this
section use a single type of network after the graph-based layers. In this work,
we attempt to combine the node embedding algorithm, CNN, and ESIM local
inference techniques with the aim of learning the similarity between user and
item embeddings.

3 The Proposed Method

3.1 Overview

Figure 1 shows the overall structure of the FGC-CF model. We can see that the
model takes the user-item interaction bipartite graph as input. First, learning
to initialize the embedded representation of users and items through DeepWalk
embedded representation, and then we use GCN layers as the node aggrega-
tion part. Specifically, the embedded representations of users are aggregated
with the embedded representation of items that have been interacted, and the
embedded representations of items are aggregated with the users who interact
with them. After the L-layer graph convolution, they respectively enter the con-
volution module and the ESIM local inference module to extract the interactive
features, and finally, we concatenate the outputs of the two modules to obtain
the final prediction score through the linear output layer.

3.2 Graph Encoder

User-Item Interactive Bipartite Graph. When considering the recommen-
dation problem from the perspective of a graph, the most important question
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Fig. 1. The structure of the Fusion Graph Convolutional Collaborative Filtering(FGC-
CF), which consists of the Graph Encoder, Decomposer, and Predicter.

is how to represent the interaction between the users and the items. In this
paper, we treat the interaction between users and items as edges in an undi-
rected weighted graph, and ignore the heterogeneity between users and items,
and treat them as the same type of nodes. We define the bipartite graph as

G = {V, ε,R} (1)

where V represents the user and item nodes, and R contains the rating level
{1,. . . , R}. For this graph, we use an adjacency matrix A to denote it, which is
defined as follows

A[u, i] =

{
1 rating[u, i] ≥ threshold

−1 rating[u, i] < threshold
(2)

The rating [u, i] represents the rating of user u on item i. When the rating is
greater than the threshold, we think that u likes item i, so the nodes tend to
be adjacent, otherwise, u hates item i, and the two tend to deviate. The nodes
in the graph have a feature matrix M = [m1,m2, . . . ,mN ]T ∈ R

N×dm

, where N
represents the number of nodes and dm represents the dimension of the node
feature.

DeepWalk Algorithm. Before sending the bipartite graph to the model for
training, we consider initializing the embedded representation of each node
through the DeepWalk algorithm. We still assume that users and items in the
graph belong to the same type of node. SkipGram is the classic Skip-Gram algo-
rithm [8], which will not be explained here, and the specific parameter settings
will be explained in the experiment part. According to the Skip-Gram algorithm,
for each path wvi

∈ W established by a random walk, each node vi ∈ wvi
has

an optimized objective function as follows:

min
Φ

− log Pr({vi−ω, . . . , vi, . . . , vi+ω}|Φ(vi)}) (3)
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Algorithm 1. DeepWalk algorithm of FGC-CF
Input: Graph G = {V, ε, R}; Window size ω; Embedding size dm; Walks per vertex γ;

Walk length t; Negative sample number negative
Output: Matrix of vertex representations Φ ∈ RN×dm

1: Initialization:Sample Φ from UN×dm

2: for eachvi ∈ V do
3: for i = 0 to γ do
4: wvi = RandomWalk(G, vi, t)
5: W.append (wvi)
6: end for
7: end for
8: SkipGram(Φ, W, ω, negative)

Graph Convolutional Layer. After obtaining Φ, we hope to further aggregate
and extract the features of the node and its neighborhood through the GCN
layer. We define the Laplacian matrix of the graph as

L = D−0.5 (A + I) D−0.5 ∈ RN×N (4)

where D ∈ RN×N is the degree matrix of the adjacency matrix A, and I ∈ RN×N

is the identity matrix. Next, we focus on the transformation of the embedded
representations of user u and item i in the GCN layer.

In the above-defined graph, it can be found that those that directly interact
with user nodes are all item nodes, and those who directly interact with item
nodes are all user nodes. Therefore, the aggregation process can be expressed as
follows:

Φagg(u) = Aggregate({u, i1, . . . , in|∀in ∈ V & (u, in) ∈ ε}) (5)

Φagg(i) = Aggregate({i, u1, . . . , un|∀un ∈ V & (un, i) ∈ ε}) (6)

Assuming that the number of GCN layers is Lg, although in the previous article
we assumed that users and items belong to the same type of nodes, in actual
situations, the features of users and items are very different. Therefore, for each
layer l, we use different shared weights for users and items. The embedded rep-
resentations of u and i can be expressed as:

Emb(l)u = σ(l)
u

(
Φagg(u)W

(l)
u + b(l)u

)
(7)

Emb
(l)
i = σ

(l)
i

(
Φagg(i)W

(l)
i + b

(l)
i

)
(8)

where σ represents the nonlinear activation function, W represents the weight
of the transformation, and b represents the bias. Then for the Lg layer GCN,
the complete embedded representations of u and i are finally obtained as

Embu = [Φu||Emb(1)u || . . . ||Emb(Lg)
u ] (9)

Embi = [Φi||Emb
(1)
i || . . . ||Emb

(Lg)
i ] (10)
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3.3 Decomposer

Convolutional Neural Network. We use a convolutional neural network to
further extract the features of the encoded users and items. Since the encoded
features are all one-dimensional sequences, we use one-dimensional convolutions
for feature extraction respectively. Since the handlings of users and items are
symmetrical, we only use the feature of user u as an example for derivation.
Assuming that the feature of user u is Embu, the feature obtained after convo-
lution is expressed as:

Convu = AvgPool (Conv1D2,u (AvgPool (Conv1D1,u (Embu)))) (11)

After obtaining the convolution features, we expand and concatenate the features
of u and i.

Convu,i = [Flatten (Convu) ||Flatten (Convi)] (12)

After that, the interaction between the two features is modeled through a
linear layer, and the output of the module is calculated as follows:

Convdenseu,i = σ (Convu,iWConvdense + bConvdense) (13)

ESIM Local Inference. The design of this module is inspired by the ESIM
model in [3], and the local inference mechanism is introduced to model the
interaction between u and i. For Embu and Embi, we use the vector inner
product method to construct the transformation matrix e ∈ Rdm×dm , where

emn = Embu,m × Embi,n (14)

Embu,m represents the m-th element on the vector Embu. Based on the matrix
e, we can select the part of Embu that is relevant to the user and use it to
represent the user, and vice versa. But before that, we need to normalize the
transformation matrix. Using the softmax function here, we can get the corre-
sponding representation of u and i.

˜Embu,m =
dm∑
n=1

exp (emn)∑dm

n=1 exp (emn)
EmbT

i,n (15)

˜Embi,n =
dm∑

m=1

exp (emn)∑dm

m=1 exp (emn)
EmbT

u,m (16)

Through the formulas above, the correlation between the users and items can
be expressed. This idea coincides with the method of aggregating item nodes’
features to represent user’s features in the GCN layers we mentioned earlier.
Next, we construct another feature based on the representation we just obtained
by subtracting Embu and ˜Embu element by element. Based on all the features
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constructed above, we respectively perform concatenate operations on user u
and item i as follows:

Esimu =
[
Embu||˜Embu||Embu − ˜Embu

]
(17)

Esimi =
[
Embi||˜Embi||Embi − ˜Embi

]
(18)

Then we get the output of this module through linear layers:

Esimu,i = σ (Dropout (σ ((Esimu| |Esimi) W1 + b1)) W2 + b2) (19)

3.4 Predictor

After getting the final output of each module (like, Convdenseu,i, Esimu,i), we
concatenate them and get the final rating prediction r̂u,i through the linear layer.
We use the Mean Square Error(MSE) as the objective function.

FeatureConv Esim = [Convdenseu,i||Esimu,i] (20)

r̂u,i = σ (FeatureConv EsimWpredict + bpredict) (21)

4 Experiments

We conduct experiments on four real datasets, and evaluate our proposed model.
We answer the following questions:

– Q1: How does FGC-CF perform compared with the state-of-the-art collabo-
rative filtering algorithms?

– Q2: Does the DeepWalk embedding method we use have better representation
capabilities than the simple embedding method?

– Q3: How do the ESIM local inference module and the 1D-Convolutional mod-
ule affect FGC-CF?.

4.1 Experimental Settings

Datasets. We conduct experiments on four public data sets:

– Movielen-100K(ml-100k): A widely used dataset to measure the perfor-
mance of recommendation models. It contains a total of 100,000 rating records
for 943 users and 1682 movies.

– Movielen-1M(ml-1m): An extension of the ml-100k dataset, with more
users, movies, and rating records, including a total of 1,000,000 rating records
for 6,040 users and 3,883 movies.

– Amazon: A widely used dataset with 65,170 rating records for 1000 users
and 1000 items.

– Yelp2018: A dataset contains 30, 838 ratings from 1, 286 users to 2,614
business.

For ml-100k, Amazon, and Yelp2018, we randomly select 80% of the dataset
as the training set and the remaining 20% as the test set. For the ml-1m dataset,
we randomly select 90% as the training set and 10% as the test set.
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Baselines. We compare FGC-CF with some state-of-the-art methods, which
can be divided into three categories, namely matrix factorization, self-encoding-
based models, and graph convolution-based collaborative filtering models. The
matrix factorization models include: PMF [9], BiasSVD [6], LLORMA [7]. Auto-
encoding models include: AUTOREC [11], CF-NADE [15]. Collaborative filter-
ing models based on graph convolution include: GC-MC [1], MCCF [14]. In
addition, it should be noted that for the AUTOREC model, we select the exper-
imental scores obtained by its item-based variant I-AUTOREC as a representa-
tive, because the scores obtained by I-AUTOREC are better than the item-based
variant U-AUTOREC.

Implementation. In the DeepWalk part, we consider changing the number of
walks γ of each node in the range of {10,20,40,60}, the length of random walk
path t in the range of {10,20,30,40}. We change the size of window ω changes
within the range of {2,4,6,15}, the negative sample number changes within the
range of {5,10,20,30}. We vary the dimension of the embeddings dm within the
range of {16,32,64,128}. In the neural network part, we consider that all the
dense layers use the LeakyRelu activation function, while the one-dimensional
convolutional layer uses the Relu activation function. We change the slope k of
LeakyRelu within the range of {0.3,0.1,0.05,0.01}, and the ratio of dropout layer
dr changes in the range of {0.1, 0.3, 0.5, 0.7}. We randomly initialize the weights
and bias with a uniform distribution. For model training, we consider changing
batch size in the range of {64,128,256,512,1024}, and varying the learning rate r
in range{0.005,0.001,0.0005,0.0001}. We set threshold as 3. We use Adam as the
optimizer, and the commonly used root mean square error (RMSE) is used as the
evaluation metric for models’ performance. We adapt a five-fold cross-validation
method and finally use the average result.

4.2 Performance Comparison(Q1)

We compare the performance of the models in each data set. Table 1 shows the
performance of all models on different data sets.

Table 1. Performance comparison of rating prediction, RMSE is the evaluation matric.

Baselines PMF BiasSVD LLORMA AUTOREC CF-NADE GC-MC MCCF FGC-CF

Yelp2018 0.3967 0.3902 0.3890 0.3817 0.3857 0.3850 0.3806 0.3307

Amazon 0.9339 0.9028 0.9019 0.9213 0.8987 0.8946 0.8876 0.8844

ml-100k 0.9638 0.9257 0.9313 0.9435 0.9229 0.9145 0.9070 0.8932

ml-1m 0.883 0.845 0.833 0.831 0.829 0.832 – 0.832
∗The performances of the baselines on Yelp2018, Amazon and ml-100k are taken from [14].
The performances on ml-1m are taken from [1].

We have the following observations: (1) The FGC-CF model we propose
outperforms all the baselines on Yelp, Amazon, and ml-100k datasets, and the
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performance of FGC-CF on the ml-1m dataset is comparable to GC-MC. (2) Our
model’s performance on the Yelp dataset has a great improvement compared to
the baselines. The reason may be that the Yelp dataset is quite sparse, and most
of the ratings are 1 or 2. In our proposed model, the relationships between nodes
with ratings less than 3 have unique representations in the adjacency matrix,
which enables the model to learn more effectively about whether a user likes an
item. (3)It shows that the graph neural network models on many datasets have
better performance than other models, especially when the scales of the datasets
are not very large. But for large datasets, the self-encoding models seem to have
very powerful performances, but this type of model requires a lot of hardware
resources to support when it is running. The larger the dataset, the greater the
space consumption required. And it may take a long time. In comparison, the
graph neural network models can obtain performances close to the self-encoding
models with less time and hardware consumption.

4.3 Effect of DeepWalk(Q2)

The Effect on Performance. In terms of model parameters, we set dm to 64,
the slope k of LeakyRelu to 0.1, and dr to 0.5. For DeepWalk, we set the window
size ω to 6, the walking path length t to 20, and the number of walks γ to 20,
The negative sample number negative is 10, the learning rate is set to 0.0001,
and the batch size is set to 512. The performance of the model before and after
DeepWalk is calculated as follows:

Table 2. Performance comparison of FGC-CF with or without DeepWalk

Datasets FGC-CF(without DeepWalk) FGC-CF(full)

ml-100k 0.9198 0.8932

Amazon 0.8914 0.8844

It can be seen that the DeepWalk approach has greatly improved the per-
formance of the model. We think that the main reason for the improvement is
that the DeepWalk algorithm learns the correlation between nodes in advance,
and the learned representation makes the nodes with strong connections closer
in space.

Visualization of DeepWalk Embeddings. To confirm our conjecture, we
selected the Embedding representation obtained by DeepWalk training on the
ml-100k dataset and performed a two-dimensional visualization. Take the user
numbered 846 (u846) as an example. After 0, 5, 15, 20 rounds of training, the
node spatial position relationship is shown in Fig. 2. It can be seen that after
multiple epochs of training, the nodes associated with u846 Have a closer spatial
relationship.
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4.4 Effects of ESIM Local Inference

ESIM local inference module is also an important part of FGC-CF. We conduct
experiments on ml-100k and amazon datasets to evaluate how it affects the
performance of the model, with the same parameter settings as 3.3. In Table 3,
we find that FGC-CF has a good performance without the ESIM module, but
it becomes better with ESIM, which shows that ESIM local inference is helpful.

Table 3. Performance comparison of FGC-CF with or without ESIM local inference

Datasets FGC-CF(without ESIM) FGC-CF(full)

ml-100k 0.9056 0.8932

Amazon 0.8866 0.8844

Fig. 2. Embedding visualizations after different epochs, the green dot denotes u846,
the blue dots denote the items that are not interacted by u846, and the orange ones
are those that u846 interacts with. (Color figure online)

5 Conclusions and Future Works

We propose a novel collaborative filtering model called Fusion Graph Convo-
lutional Collaborative Filtering(FGC-CF). The idea of FGC-CF is to encode
the features of users and items by DeepWalk and GCN layers, then the edges
are decomposed by the combination of one-dimensional convolutional module
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and ESIM local reference module. The experiments we conducted show that
our method outperforms the baselines on 3 datasets. It can be seen that we
just involve the classic network embedding method DeepWalk into the graph
encoder. In the future, we will try to explore more effective approaches based on
FGC-CF.

Acknowledgments. We thank the anonymous reviewers for their contribution to the
publication of this paper.
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Abstract. Multi-label classification refers to the supervised learning
problem where an instance may be associated with multiple labels. It
is well known that exploiting label correlations is important for multi-
label learning. Existing approaches typically assume that the distribu-
tion of classes is balanced. In many real-world applications, multi-label
datasets with imbalanced class distributions occur frequently, which may
make various multi-label learning methods ineffective. Since the existing
multi-label learning algorithms pay less attention to the problem of cor-
relation with imbalanced label sets, this paper proposed a Multi-Label
learning model by exploiting Imbalanced Label Correlations (ML-ILC).
ML-ILC uses graph convolution neural network to learn the correlation
between labels. At the same time, we suggest that the regularization
of minority classes is stronger than that of frequent classes, which can
improve the generalization error of minority classes. To investigate the
performance of the proposed multi-label learning model, we considered
two benchmark datasets including VOC2007 and COCO. The proposed
method successfully achieved better classification performance compared
to the state-of-the-art compression methods.

Keywords: Multi-label learning · Imbalanced class distributions ·
Label correlation

1 Introduction

Nowadays, the explosive growth of online content such as images and videos has
made developing classification system a very challenging problem. Such a new
classification system is usually required to assign multiple labels to one single
instance [30]. Multi-label classification has many application scenarios such as
computer vision [9,33], text classification [9], bioinformatics [21], network mining
[1], information retrieval [15], label recommendation [27] and medical diagnosis
[21]. For example, for the image classification task, the goal of multi-label learn-
ing is to assign many semantic labels to one image based on its content. In
recent years, some large-scale hand-labeled datasets have been established, such
as MS-COCO [13] and PASCAL VOC [6]. Compared with single-label classifi-
cation task, multi-label learning methods [18,20,24] are more complex due to
the combinatorial nature of the output space, but more practical in real-world
applications.
c© Springer Nature Switzerland AG 2021
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In multi-label learning, with the increase of the number of label categories,
the number of possible label sets predicted by the instance will increase expo-
nentially. For example, in multi-label learning, if the label space has 20 label cat-
egories, the possible set of instances of labels will exceed 1 million (that is, 220).
In order to solve this problem, existing algorithms mainly study the relation-
ship between labels [19]. The original multi-label models are essentially limited
by ignoring the complex topology structure between objects. This makes many
researchers realize the importance of label relevance research. Order-free Recur-
rent Neural Network (RNN) [4] is proposed for image multi-label classification
which uniquely integrated and learned of visual attention and long short term
memory layers. The Spatial Regularization Network (SRN) [32] can learn the
attention maps of all labels, and mine the potential relationship between labels
through the learnable convolution. It combined the regularization classification
results and the ResNet-101 network [8] classification results. The RNN-Attention
model [23] recorded the image and extracted the response image of the last-layer
feature and the spatial transformation layer located in the “attention region” in
each cycle. The Regional Latent Semantic Dependencies (RLSD) model [29] can
effectively capture the latent semantic dependencies at the regional level. How-
ever, these methods are essentially limited by ignoring the complex topology
structure between objects. This makes many experts and scholars realize the
importance of label relevance research.

Fig. 1. The imbalanced distribution of categories in multi-label datasets.

ML-GCN models [5,22] are proposed to use GCN to propagate information
among multiple labels to learn the interdependence of each image label. Since
the number of some categories may be far more than that of other categories.
As shown in Fig. 1, the distribution of classes is imbalanced in VOC 2007 and
MS-COCO datasets, which may lead to the deterioration of the performance of
most classification methods [7].

Class imbalance has been regarded as a fundamental threat to the perfor-
mance of multi-label learning algorithms. In order to deal with class imbalance in
the context of multi-label data, the first approach is to use resampling technique
[3], which is applied to the preprocessing step and is independent of the specific
multi-label learning algorithm that is subsequently applied to the data. Another
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group of methods focuses on multi-label learning methods to deal directly with
category imbalance [11,14,25,28,31]. They are mainly used to solve the problem
of class imbalance, and they are suitable for datasets with extracted features,
such as Birds, CAL500. While they are not designed for the multiple labels with
the original images and do not consider the imbalanced label correlations.

Fig. 2. Overall framework of our ML-ILC model for multi-label image recognition.

Based on the problems in the above multi-label learning, we proposed a
learning Multi-Label model that explores the Imbalanced Label Correlations
(ML-ILC). The overall framework of our approach is shown in Fig. 2, which is
composed of three main modules, i.e., image representation learning, GCN based
classifier learning and multi-label distribution aware margin learning. Specifi-
cally, we represent each node of the graph as word embeddings of the label, and
use GCN to directly map these label embeddings into a set of interdependent
classifiers, which can be directly applied to an image feature for classification.
And we suggest that the weights of minority classes and frequent classes are dif-
ferent, so we propose to use multi-label distribution aware margin loss to solve
the problem of class imbalance.

The main contributions of this work can be summarized as follows:

– ML-ILC explicitly describes the correlation between labels based on a re-
weighted scheme to create an effective label correlation matrix to guide infor-
mation propagation among the nodes in GCN.

– ML-ILC introduces the multi-label distribution aware margin loss functions
to solve the problem of class imbalance in the multi-label problem.
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– Experiments have been conducted on two benchmark multi-label image recog-
nition datasets by comparing ML-ILC with existing methods. The numerical
results demonstrate the effectiveness and efficiency of ML-ILC.

2 Approach

In this section, we will introduce the details of model that considers the imbal-
anced label correlations for multi-label image classification.

We first define the goal of the task in this paper. Let the training dataset be
{(xi,yi)}N

i=1 = {X,Y }, where X ∈ R
N×μ indicates a set of N labeled instances

in the μ-dimensional space. The matrix Y ∈ R
N×C is the multi-label matrix,

where C denotes the numbers of categories. The multi-label classification task
aims to find a mapping function from X to Y , and then we predict the multi-
label vector for the unlabeled test dataset Ẋ.

2.1 Image Representation Learning

For each image x, through the fcnn(·) function we can obtain feature representa-
tion with the last convolution. Then, we employ the second-order pooling with
fpooling(·) to obtain the visual-level feature x̂ ∈ R

D for better exploiting the
correlation among different channels:

x̂ = fpooling(fcnn(x; θcnn), θpooling) (1)

where θcnn and θpooling indicate the parameters in the convolution and the pool-
ing process respectively.

We can use any CNN basis model to learn the features of the image, but
the difference is that the pooling layer uses global covariance pooling fpooling(·).
Li et al. [12] proposed to replace the first-order global average pooling with a
second-order or even high-order statistical method. The practice of global covari-
ance pooling is to select the value that can represent the data distribution of
the feature map by calculating the covariance matrix (second-order information)
of the feature map. Compared with global average pooling, second-order pool-
ing takes more account of the relationship between channels and has stronger
representation capability.

2.2 Graph Convolutional Network

Traditional CNN-based multi-label methods do not consider the correlation
between the labels. We build the graph structure based on two parts. One is the
word embedding H̄ to represent C labels with d-dimensional word vector. The
other part represent the relationship between different labels with C × C adja-
cency matrices M̂ . We use stacked GCNs where each GCN layer takes the node
representations from previous layer as inputs and outputs new node representa-
tions. For the last layer of GCN, the output is Ĥ ∈ R

C×D with D denoting the
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dimensionality of the image representation. Then we can learn inter-dependent
object classifiers, i.e., Ĥ = {hi}C

i=1, from label representations via a GCN based
mapping function. By applying the learned classifiers to image representations,
we can obtain the predicted scores as

ŷ = Ĥx̂ (2)

The basic idea of graph convolution is to update the node representation
by propagating information between nodes. Unlike standard convolutions that
operate on local Euclidean structures in an image, the goal of GCN [10] is to learn
a function fgcn(·, ·) on a graph G, which takes feature descriptions H l ∈ R

C×d for
(l = 0, · · · , P ) and the corresponding correlation matrix M̂ ∈ R

C×C as inputs
(where C denotes the number of nodes and d indicates the dimensionality of
node features), and updates the node features as H l+1 ∈ R

C×d′
. Every GCN

layer can be written as a non-linear function by

H l+1 = fgcn(H l,M̂) (3)

After employing the convolutional operation, fgcn(·, ·) can be represented as

H l+1 = ogcn(M̂norH
lW l) (4)

where W l ∈ R
d×d′

is a to be learned transformation matrix and M̂nor ∈ R
C×C

is the normalized version of correlation matrix M̂ , and ogcn(·) denotes a non-
linear operation, which is acted by LeakyReLU in our experiments. In our model,
for the first layer, the input is the H0 = H̄ ∈ R

C×d matrix, where d is the
dimensionality of the label-level word embedding which are already pre-trained.
Then the relationship between each node will learn form M̂ . For the last layer,
the output is HP = Ĥ ∈ R

C×D with D denoting the dimensionality of the image
representation. Thus, we can learn and model the complex inter-relationships of
the nodes by stacking multiple GCN layers.

Inspired by [5], we construct the correlation matrix M̂ in a data-driven way.

M̂ij =

{
p/

∑C
j=1
i�=j

M̄ij , if i �= j

1 − p, if i = j
(5)

where M̂ is the re-weighted correlation matrix, M̄ is the binary correla-
tion matrix, and p determines the weights assigned to a node itself and other
correlated nodes.

2.3 Multi-label Distribution Aware Margin Loss

We assume that the ground truth label of an image is yi ∈ R
C , where y

(c)
i = {0, 1}

denotes whether label c appears in the image or not. Let(xi,yi) be an example
and ŷi be the output of the model f . For simplicity, we use z

(c)
i = ŷ

(c)
i to denote

the c-th output of the model for the c-th class.
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Similar to previous work [2], we define the training margin for class c as:

γc = min
i∈Sc

γ (xi,yi) = min
i∈Sc

(z(c)i − max
j �=c

z
(j)
i ) (6)

where Sc =
{

i : y
(c)
i = 1

}
represent the sample index corresponding to class

c. We hope to improve the generalization error of minority classes by encouraging
the minority classes to have larger margins. For multiple classification, as derived
in [2], the optimal trade-off is γc ∝ n

−1/4
c where nc is the sample size of the c-th

class. Therefore, we also enforce a class-dependent margin for multiple classes of
the form

γc =
T

n
1/4
c

(7)

Here T is a hyper-parameter to be tuned. Therefore, by extending the traditional
multi-label loss function, ML-ILC adopts the following Multi-Label Distribution
Aware Margin loss function to better solve the problem of class imbalance.

L((xi,yi); f) = −
C∑

c=1

[y(c)
i log(

ez
(c)
i −Δc

ez
(c)
i −Δc +

∑
j �=c e

z
(j)
i

)

+ (1 − y
(c)
i )log(1 − ez

(c)
i −Δc

ez
(c)
i −Δc +

∑
j �=c e

z
(j)
i

)]

(8)

where Δc =
T

n
1/4
c

for c ∈ {1, ..., C} (9)

This loss replaces the traditional multi-label classification loss during training
and can regularize the minority classes more strongly than the frequent classes.
Therefore we can improve the generalization error of minority classes without
sacrificing the model’s ability to fit the frequent classes.

3 Experiments

In this section, we first introduce some algorithms for comparison and evaluation
metrics. Then we describe the implementation details. And finally we introduce
two benchmark multi-label image recognition datasets, i.e., MS-COCO [13] and
VOC 2007 [6] and show the empirical results on these two datasets.

3.1 Algorithms for Comparison and Evaluation Metrics

In this part, we will firstly introduce some algorithms for comparison, and then
we show the evaluation metrics.
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DataSets. PASCAL Visual Object Classes Challenge (VOC 2007) [6] is a pop-
ular dataset for multi-label recognition. It contains 9,963 images from 20 object
categories, which is divided into train, val and test sets. Following [23], we use
the trainval set to train our model, and evaluate the recognition performance
on the test set. Microsoft COCO [13] is a widely used benchmark for multi-
label image recognition. It contains 81,636 images as the training set and 39,946
images as the test set. The objects are categorized into 80 classes with about 2.9
object labels per image.

To comprehensively evaluate the performance of ML-ILC, a total of two
benchmark multi-label datasets have been collected for experimental studies.
For each multi-label data set X, N and C represent the number of examples
and classes. In addition, several multi-label statistics [17] are further used to
characterize properties of X. LCard(X) is the label cardinality which measures
the average number of relevant labels per example. LDen(X) is the label density
which normalizes label cardinality by the total number of class labels. DL(X)
is the distinct label sets which measures the number of distinct relevant label
set. PDL(X) is the proportion of distinct label sets which normalizes distinct
label sets by the number of examples. The level of class-imbalance on X can
be characterized by the average imbalance ratio ImRmean, the minimum imbal-
ance ratio ImRmin, and the maximum imbalance ratio ImRmax across the label
space. Table 1 summarizes characteristics of the experimental datasets.

Table 1. Characteristics of the benchmark multi-label datasets.

Dataset N C LCard LDen DL PDL ImRmin ImRmax ImRmean

VOC 2007 9,963 20 1.437 0.072 251 0.025 1.377 50.092 18.558

MS-COCO 121,582 80 2.899 0.036 24,336 0.200 1.219 11051.9 343.38

Compared Algorithms. We compare our method with the standard training
and several state-of-the-art techniques that have been widely adopted on multi-
label datasets.

– ResNet-101 [8] is used to be the feature extraction backbone, which is pre-
trained on ImageNet.

– VeryDeep [18] has smaller convolution kernels, smaller pooling kernels, deeper
layers and full connection convolution.

– HCP [24] is a flexible deep CNN infrastructure based on Hypotheses-CNN-
Pooling, which combines the results of different CNNs into one final result.

– Order-free RNN [4] integrates attention and LSTM models, which jointly
learns the labels of interest and their co-occurrences.

– SRN [32] is Spatial Regularization Network, which generates attention maps
for all labels and captures the underlying relations between them via learnable
convolutions.
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– RNN-Attention [23] obtains attention regions corresponding to multiple
semantic annotations, and obtains the global context dependence of these
regions.

– RLSD [29] includes a fully convolutional localization architecture to localize
the regions that may contain multiple highly-dependent labels.

– ML-GCN [5] uses GCN to map the label representation to an interdependent
object classifier.

– CNN-RNN [20] is mainly divided into two parts: CNN for extracting seman-
tic information, and RNN for establishing label relationship and label depen-
dency.

Evaluation Metrics. A comprehensive study of evaluation metrics for multi-
label classification is presented in [26], and also following conventional settings
[20,32], we employ macro/micro precision, macro/micro recall, macro/micro F1-
measure, and Mean Average Precision (mAP) for performance comparison. For
precision/recall/F1-measure, if the estimated label confidences for any label are
greater than 0.5, the labels are predicted as positive. Macro precision (denoted
as “CP”) is evaluated by averaging per-class precisions, while micro precision
(denoted as “OP”) is an overall measure which counts true predictions for
all images over all classes. Similarly, we can also evaluate macro/micro recall
(“CR”/“OR”) and macro/micro F1-measure (“CF1”/“OF1”). For fair compar-
isons, we also report the results of top-3 labels. In addition, loss value is also one
of our evaluation indicators.

3.2 Implementation Details

The ML-ILC network consists of two GCN layers with output dimensionality of
512 and 1024, respectively. For label representations, we adopt 300-dimensional
GloVe [16] trained on the Wikipedia dataset. For the categories whose names
contain multiple words, we obtain the label representation as average of embed-
ding for all words. Following [5], we set τ to be 0.4 and p to be 0.2. In the image
representation learning branch, we adopt LeakyReLU with the negatives lope
of 0.2 as the non-linear activation function, which leads to faster convergence
in experiments. We adopt ResNet-101 [8] as the feature extraction backbone,
which is pre-trained on ImageNet.

3.3 Comparisons with State-of-the Art Methods

Results on VOC 2007 Dataset. The results of VOC 2007 are presented in
Table 2. In order to compare with other state-of-the-art methods, we report the
results of average precision (AP) and mean average precision (mAP) in Table 2.
Concretely, the proposed ML-ILC obtains 94.2% mAP, which outperforms state-
of-the-art by 1%.

As can be seen from the Table 2, it is about 0.6% higher than the current best
algorithm in the category of “aero”, 1.6% higher than the current best algorithm
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in the category of “bottle”, and 1.7% higher than the current best algorithm in
the category of “table”. In terms of accuracy of most minority classes, the ML-
ILC is superior to other methods. Obviously, especially for minority classes, the
proposed ML-ILC gives better results. More details of minority classes are shown
in Fig. 3.

Table 2. Comparisons of AP and mAP (%) on VOC 2007 dataset.

Methods Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table

CNN-RNN 96.7 83.1 94.2 92.8 61.2 82.1 89.1 94.2 64.2 83.6 70.0

RLSD 96.4 92.7 93.8 94.1 71.2 92.5 94.2 95.7 74.3 90.0 74.2

VeryDeep 98.9 95.0 96.8 95.4 69.7 90.4 93.5 96.0 74.2 86.6 87.8

HCP 98.6 97.1 98.0 95.6 75.3 94.7 95.8 97.3 73.1 90.2 80.0

RNN-Attention 98.6 97.4 96.3 96.2 75.2 92.4 96.5 97.1 76.5 92.0 87.7

ML-GCN 98.6 94.6 97.7 97.1 84.9 89.5 96.0 96.8 86.1 95.4 87.9

ML-ILC(Ours) 99.2 95.3 98.0 96.9 86.5 93.7 96.4 97.7 88.5 94.9 90.9

Methods Dog Horse Motor Person Plant Sheep Sofa Train Tv mAP↑
CNN-RNN 92.4 91.7 84.2 93.7 59.8 93.2 75.3 99.7 78.6 84.0

RLSD 95.4 96.2 92.1 97.9 66.9 93.5 73.7 97.5 87.6 88.5

VeryDeep 96.0 96.3 93.1 97.2 70.0 92.1 80.3 98.1 87.0 89.7

HCP 97.3 96.1 94.9 96.3 78.3 94.7 76.2 97.9 91.5 90.9

RNN-Attention 96.8 97.5 93.8 98.5 81.6 93.7 82.8 98.6 89.3 91.9

ML-GCN 97.3 98.2 94.0 98.3 86.2 91.9 87.6 97.6 89.9 93.2

ML-ILC(Ours) 93.6 97.6 97.1 99.1 87.8 93.9 90.3 95.5 92.1 94.2

Fig. 3. Performance on minority classes on the VOC 2007 dataset.

Results on MS-COCO Dataset. Table 3 shows the experimental results on
MS-COCO. The performance of ML-ILC is almost the best because the MS-
COCO dataset has 80 classes, while Voc2007 has only 20 classes. The data sample
points of MS-COCO are also more than Voc2007, and the data imbalance is more



594 S. Gu et al.

obvious, so using the Multi-Label Distribution Aware Margin Loss to solve the
class imbalance can provide a more significant performance improvement.

ML-ILC improved mAP by 83.5% and reduced the loss to 0.0756. The exper-
imental results show that it is effective to use the GCN to obtain the label
correlation and to improve the traditional loss function into the Multi-Label
Distribution Aware Margin Loss function on the MS-COCO dataset.

Table 3. Comparisons of state-of-the art methods on MS-COCO dataset.

Methods All Top-3

loss↓ mAP↑ CP↑ CR↑ CF1↑ OP↑ OR↑ OF1↑
ResNet-101 – 77.3 84.1 59.4 69.7 89.1 62.8 73.6

CNN-RNN – 61.2 66.0 55.6 60.4 69.2 66.4 67.8

RNN-Attention – – 79.1 58.7 67.4 84.0 63.0 72.0

Order-Free RNN – – 71.6 54.8 62.1 74.2 62.2 67.7

SRN – 77.1 85.5 58.8 67.4 87.4 62.5 75.2

ML-GCN 0.0812 82.1 87.5 64.2 73.4 83.1 60.7 69.5

ML-ILC(Ours) 0.0756 83.5 83.2 71.3 76.8 86.2 77.1 81.4

4 Conclusion

In this paper, we made an attempt to take full consideration of correlation infor-
mation lying in the label space and class imbalance for effective multi-label image
recognition. To this end, we propose a learning multi-label model that considers
both correlation and class imbalance. The learning model uses graph convolu-
tion neural network to learn the correlation between labels. At the same time,
we suggest that the regularization of imbalanced classes, which can improve the
generalization error of minority classes. The numerical results demonstrate the
effectiveness and efficiency of ML-ILC. In future, we will investigate to model
more sophisticated correlation between feature and label for potential improve-
ment.
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Abstract. More recently, with the development of deep learning and the expan-
sion of its applications, deep learning became the targets of attackers. Researchers
found that adversarial perturbations have excellent efficiency for attacking deep
neural network. The adversarial examples that are crafted by adding tiny and
imperceptible perturbations to modify pixels can make the classifier output wrong
results with high confidence. This demonstrates the vulnerability of deep neural
network. In this paper, we proposes a method to defend the adversarial attack,
reducing output distortion owing to the attack. The proposed method, called ran-
dom sparsity defense, is a combination of whitening and random sparsity. The
method increases randomness in sparsity-based defense and weakens the adverse
effects of randomness through whitening. Experimental results onMNIST dataset
show that the proposed random sparsity defense can resist attack well and has a
good ability to correct classification results.

Keywords: Adversarial attack · Sparse representation · Random · Whitening

1 Introduction

As the development of deep learning, it is widely used in various fields such as medical
treatment [1], military [2] and multimedia [3] et.al. However, the vulnerability of deep
learning algorithm under attack brings many security risks, common attack methods
include data poisoning [4], model inversion attack [5], membership inference attack [6]
and adversarial attack [13–15]. These attack algorithms not only expose the vulnerability
of deep learning model, but also threaten the security and reliability of deep learning
model in practical application. Especially, recent developments of adversarial attack
attracted much attention, which brings great challenges to the security of deep learning
model. Adversarial attack is to design the attack algorithm which could cause a certain
disturbance to input sample, thenmakes the classification network produce predict errors
on input sample.

Since Szegedy andGoodfellow et al. [7] discovered the vulnerability of deep learning
networks to small adversarial disturbances in 2012, adversarial attacks and defenses
have developed by leaps and bounds. The classical defense methods include adversarial
training [8], defensive distillation [9] and pixel deflecting [10]. Adversarial training
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uses clean examples and adversarial examples to train the network, then strengthen the
robustness of network. Adversarial training needs to produce adversarial examples in
every iteration of training. Thus, it causes the problems of high computing costs and long
training time. Defensive distillation trains the initial deep neural network according to
the original sample X and the label Y, and obtains probability distribution. Then, the
output of the first part is taken as the label of original sample X, sample X trains a
distillation network with the same structure and the same distillation temperature to
obtain the new probability distribution. Finally, the whole network is used to classify
or predict, which is an effective defense against adversarial attack. For pixel deflecting,
PixelCN is an input conversion defense method that reconstructs adversarial examples
to fit the distribution of training images.

In this paper, we proposed the random sparsity defense to improve the performance
of original sparsity-based defense. Sparsity-based defense has been proved that it is
a provable defense method and has enough reliability and verifiability [12]. It can be
applied to various classifier network architecture and has good generalization ability.
Sparsity-based defense represents the input samples exactly with less eigenvectors, so
as to reduce redundant information. In addition, as we all know that randomization is
a wonderful way to defend adversarial attack. In order to enhance the ability of deep
neural network and weaken adversarial effect into random effect, we add randomness on
the basis of sparsity-based defense, which makes the ability of defending attack better.

We organize this paper as follows. Section 2 states the classical attack algorithm,
used to evaluate the proposed method. Section 3 presents the proposed preprocessing
method of whitening and random sparsity. The performance of the proposed method is
evaluated in Sect. 4, Sect. 5 summarizes the paper.

2 Adversarial Threat

In this section, we introduce the adversarial attack algorithms which is used in experi-
ment. All of these algorithms proceed from image gradient and produce image perturb
to affect the classification results.

Fast Gradient Sign Method (FGSM) and Iteration Fast Gradient Sign Method (I-
FGSM). Goodfellow et.al proposed FGSM attack in [8]. The algorithm along with the
direction of gradient sign executes gradient update once. The gradient perturb can be
represented as,

ρ =∈ sign(∇xJ ((θ, x, y)) (1)

where ∈ is the step size, ∇xJ (·) calculates the gradient operator of cost function around
the current values of model parameters θ , x and y, θ represents the network parameters,
x is the input image, y is the truth label of x, sign(·) denotes sign function.

The I-FGSM attack is derived from FGSM with multiple iterations. The image after
I-FGSM [13] attack can be represented as

X adv
0 = X , (2)
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X adv
N+1 = ClipX∈

{
X adv
N + αsign

(
∇X J

(
X adv
N , ytrue

))}
(3)

where X adv
0 denotes the initial input image, X adv

N+1 is the adversarial sample generated
after N + 1 iteration, ytrue denotes the truth lable, the function ClipX∈{·} performs per-
pixel clipping of the image, this function replaces the overflow value with boundary
value in calculation, and the changed value of each pixel in each step is α. Usually,
α = 1. The function J

(
X adv
N , ytrue

)
is used to calculate the cross entropy cost of neural

network between X adv
N and ytrue.

LocallyLinearAttack and IterativeLocallyLinearAttack. Locally linear attackwas
proposed to test defense effect by Soorya et.al in [11, 12]. Iterative locally linear attack
is the iterative version of locally linear attack. Locally linear attack takes advantage of
the weakness of linear network and enlarges image disturbance in linear part of network,
thus increasing the success probability of attack. The adversary can turn off the nonlinear
of softmax layer, since its goal is simply to the output value of the t-th neuron greater
than the target output value (except i = t, t represents the category value of input image).
Therefore, the adversary can consider L-1 binary classification problems, and solve for
disturbance which try to maximize yi �= yt for each i �= t. We apply locally linear attack
and its iterative version to the test of our proposed defense method. After figuring out
the distortion of each pairs, the following formula describes how adversary applied the
attack budgets to the largest distortion pairs,

max
i,e

yi(x + e) − yt(x + e), s.t. ||e||∞ ≤∈, · (4)

where yi denotes the output value of the i-th neuron, yt denotes the output value of the
t-th neuron, x is input image, e means adversarial disturbance.

Momentum Iterative Fast Gradient Sign Method (MI-FGSM). The MI-FGSM
attack proposed by Dong et al. [14] is similar to I-FGSMwith the application of momen-
tum method. Momentum method is an algorithm to accelerate gradient descent by accu-
mulating velocity vector along the gradient direction of loss function during iteration.
MI-FGSM integrates momentum with I-FGSM to update stably and avoid generating
the local value of difference. MI-FGSM is defined as follows,

gm+1 = gm + ∇L(xm, yc; θ)

||∇L(xm, yc; θ)||1
, (5)

xm+1 = clip∈(xm + α.sign(gm+1)) (6)

where gm+1 is the gradient of the (m+ 1)-th iteration, xm is the adversarial image afterm
iteration attack, yc denotes the label of clean image,∇L(xm, yc; θ) calculates the gradient
operator of loss function around the values of network parameters θ , xm and yc, clip∈(·)
is clipping function, sign(·) is sign function.
Projected Gradient Decent (PGD). The PGD attack [15] is an iterative attack that
applies FGSM for m iterations with small step size α. It controls adversarial examples
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through clipping the disturbance within specified range, so that the new adversarial
sample can still stay in the ∈ neighborhood of x. PGD is the strongest first-order attack
algorithm, it can be described as

x
′
t+1 =

∏
x+S

(
x

′
t − α · sign(∇(losst(x)))

)
(7)

where x
′
t denotes the image of the clean example after iterative attacking with t times.∏

x+S(·) presents projection to S, the allowable disturbance is in the sphere with x as
the center and l∞ as the radius, and ∇(losst(x)) is the gradient of misclassification loss
of input image x.

3 Proposed Method

3.1 Random Sparsity

Sparse representations uses less linear combination of basis signal to represent most of
original signal or all of it [16, 17]. Assume that we use aM ×N matrix to express dataset
X , each row indicates an example and each column represents an attribute. Generally
speaking, the matrix is dense in which most elements are not zero. The meaning of
sparse representations is to find a coefficient matrix A(k × n) and a dictionary matrix B
(m × k), so that B×A can restore the dataset X as much as possible and A is as sparse as
possible. In this hypothesis, A is the sparse representations of X . The most important two
steps of sparse representations are obtaining dictionary and sparse coding of samples.
There are two ways to obtain dictionary. One is using predefined dictionary, for example
wavelet dictionary, DCTdictionary and curvelet dictionary etc. Another one is dictionary
learning which is obtained by training and learning a large number of data similar to the
target data. Themethods of dictionary learning includeMODalgorithm [18], generalized
PCA [19] algorithm and K-SVD algorithm [20]. K-SVD is widely used among them.
In this paper, we use a predefined over-complete dictionary. Over-complete dictionary
consists of vectors that can form the original image, and its dimension is greater than
the original image dimension. The second step of sparse coding aimed to find the most
suitable sparse coefficient in the obtained dictionary to make sample as close as possible
to original sample. Sparse representations makes it easier to obtain the information
contained in image and makes further efforts to process the image.

In this paper, we aim to improve the robustness of the network by taking advantage of
the randomization method [22] which has been proven to be effective against adversarial
attack. The proposed method maps the feature vector of image to wavelet basis�. Then,
it selects K values randomly in the wavelet with low frequency domain of input samples
and sets them to zero, instead of selectingK values lower than the threshold value as zero.
The selection of K value is related to the signal-to-noise ratio, and the specific formula
analysis is described in detail in [12]. The purpose of randomization is to make the range
of sparse valueswider and retain theK coefficients largest inmagnitude, so as to eliminate
the adversarial disturbance better. At the same time, the application of randomization
can convert the confrontation effect generated by adversarial attack on input sample into
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random effect to a certain extent, which is conducive to the implementation of defense
strategy. The random sparsity algorithm is described as follows:

Algorithm  1 Random Sparsity
1: Input: A batch of image Set X, the sparsity level , the attack disturbance 
, the dimentional of inputs 
2: Map the feature vector of image to wavelet domain as orthonormal basis 

Compute sparsity 
Obtain random seed 
Choose a paragraph with length behind index and set the value of this 
segment to zero

3: Map the vector on wavelet domain to natural domain
4: Output: The image set after process

Figure 1 shows the work procedure of our defense model. The proposed defense
model consists of random sparsity-based preprocessing and a classifier model. In Fig. 1,
HK (·) is the processing function of random sparse representation,Ψ T denotes the results
of mapping image to wavelet basis,Ψ denotes orthonormal basis whereX can be random
K-sparse represented.

Fig. 1. The diagram of the proposed method. It consists of two sections. One is random sparsity
defense, another one is classifier.

3.2 Whitening

Whitening [21] is to centralize data by removing mean value. According to convex
optimization theory and related knowledge of data distribution, whitening conforms to
the data distribution law, and it is easier to obtain the generalization effect after training.
Therefore, whitening becomes one of the common data preprocessing methods. In this
paper, we use whitening to obtain the constant information contained in image which
is not affected by outside world. The purpose of whitening is to remove the redundant
information of input data. Whitening can make different features have the same scale.
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In this way, it reduces the correlation among image features when learning parameters
with the gradient descent method, so that different features have different influence on
parameter.

Whitening includes two steps: 1) project the dataset onto the eigenvectors. This is
equivalent to rotate dataset so that the correlation between features has been affected. 2)
normalize the eigenvectors to make the variance of whole dataset be one. This is done by
dividing each component with the square root of its eigenvalue. The way of whitening
is to change the average pixel value to zero and change the variance of image to one.
We need calculate the average value W and variance of original image, then transform
each pixel value of the original image, the formulation can be written as

W = x − μ

stddev
, (8)

stddev = max

(
σ,

1.0√
N

)
, (9)

where x denotes image matrix, μ is the average value, stddev is the variance of input
data x, σ denotes the variance of all image pixel, N is the number of image samples.

3.3 Combination of Random Sparsity and Whitening

Although randomsparsity can resist adversarial turbulence through randommechanisms,
it also may destroy the important feature information of input image. So we use whiten-
ing pretreatment method to reduce the poor impact of random sparsity.Whiteningmakes
image features less correlated with one another, thus ensures the effectiveness of whole
image features when some features are destroyed. First, we whiten the adversarial exam-
ple. Then, we make a random sparse representation of the adversarial image. Finally, we
input the processed image into classification network. We expect that the opposability of
image can be obviously weakened after the above steps. In addition, owing to whitening
plays an auxiliary role, we call this combination method as random sparsity defense in
this paper.

Fig. 2. (a) is clean image, (b) is adversarial image under FGSM attack, (c) is image with random
sparsity defense under FGSM attack.

Figure 2 shows the image effect without attack and under FGSM attack. (a) is clean
image, (b) is adversarial image under FGSMattack, and (c) is imagewith randomsparsity
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defense under FGSM attack. Through the comparison between Fig. 2 (a) and (b), we
find that the image disturbance increases greatly after FGSM attack. We can see from
Fig. 2 that the last two images with random sparsity defense reduces the disturbance in
adversarial image and makes it close to the clean image.

4 Experiments

4.1 Steup

We use two kinds of CNN on the MNIST dataset to evaluate the effectiveness of our
proposed method. In experiment, we test binary-classification via a two-layer CNN and
test multi-classification via a four-layer CNN. For random sparsity representation, we
use Cohen-Debauchies-Feauveau 9/7 wavelet [23] and Generalized Coiflets wavelet
[24] as dictionary. We mainly evaluate the proposed approach with six attacks, i.e.,
FGSM, locally linear attack, iterative locally linear attack, I-FGSM, MI-FGSM, PGD,
respectively.We also compare the proposed random sparsity defensewith existing sparse
defense method.

4.2 Comparison

Table 1 reports on binary classification accuracies for two-layer CNN where the attacks
use ε = 0.2 and ρ = 3% that is same as the setting in [12]. As shown in Table 1, we can
see that the proposed random sparsity defense greatly improve classification precision,
and the classification precision of random sparsity defense is about 4% higher than
that of sparsity-based defense method. It demonstrated the robustness of the proposed
method. In addition, we can see that the efficiency of iterative attack (iterative locally
linear attack) is higher than that of one-step attack (locally linear attack). Meanwhile,
we found that the proposed method not only maintains the robustness of network, but
also further improves the classification accuracy on clean image.

Table 1. Binary classification accuracies for two-layer CNN, with ∈= 0.2 for attacks and ρ =
0.03 for defense.

Attack Defence

No
defense

Sparsity-based defense Proposed
method

No attack 99.36 99.28 99.31

Locally linear attack 29.91 92.07 95.69

Iterative locally linear attack 23.28 91.16 95.42

For binary-classification, we use Peak Signal-to-Noise Ratio (PSNR) index to mea-
sure the quality of images in quantitative analysis. Figure 3 shows comparison results
of sparsity-based defense and random sparsity defense. In Fig. 3, the top right corner
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indicates better PSNR and prediction accuracy. As shown in Fig. 3, we can see that the
proposed random sparsity defense achieves the highest PSNR and better classification
accuracy under locally linear attack and iterative locally linear attack.

Fig. 3. The PSNR of locally linear (∈= 0.2) and iterative locally linear (∈= 0.2) attack after
sparsity-based defense and random sparsity defense, respectively. The closer to the upper right
corner the better.

Table 2. Multiclass classification accuracies for 4-layer CNN, with ∈= 0.2 for attacks and ρ =
3.5% for defense.

Attack Defense

No
defense

Sparsity-based defense Proposed
Method

FGSM 28.43 85.35 89.72

Locally linear attack 42.01 82.03 94.44

Iterative locally linear attack 7.36 76.04 93.70

I-FGSM 6.34 74.85 94.07

MI-FGSM 6.99 74.67 93.94

PGD 5.12 64.5 93.64

In order to carry out the comparative experiment, we set the parameters of attack as
∈= 0.2 and ρ = 3.5%, which are the same as the experimental in [6]. Table 2 reports on
multiclass classification accuracies for 4-layer CNN. Through the horizontal comparison
of table data, we can see that the proposed random sparsity defense greatly improves
the classification accuracy of adversarial examples in neural network, and the overall
defense effect of the proposed random sparsity defense method is better than sparsity-
based defense method. The proposed random sparsity defense achieves the best effect
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in local linear attack, and improves the classification accuracy to 94.44%. From results
in Table 2, we also can see that random sparsity defense increases accuracy from 5.12%
without defense to 93.64% in the worst-case scenario.

In Fig. 4, we choose the first one of each digit label images to illustrates the effect of
input image after various processing. Figure 4 (a) is clean images without attack and (b)
is adversarial images on FGSM attack with ∈= 0.2. Figure 4 (c) is the heatmap images
of adversarial inputs which blue signs perturbation and pink signs original clean pixel.
We use Fig. 4 (d) to show the images that random sparsity defense effectively purified,
and (e) is the heatmap of purified images. From the comparison of Fig. 4 (a) and (b), we
can see that there are extremely apparent image perturbations in Fig. 4 (b). Comparing
the two heatmaps (Fig. 4 (c) and Fig. 4 (e)) before and after defensive treatment, we find
our defense remove most of disturbance and has bad defense effect in few images due
to the randomness.

Fig. 4. Qualitative comparison of input transformations on FGSM attack.

5 Conclusion

This paper proposes a random sparsity defensemethod that is the combination of whiten-
ing and random sparsity. As shown through our experiments on MNIST dataset, the ran-
dom sparsity defense not only reduces the adverse impact of defense on natural images,
but also reduces the effectiveness of adversarial disturbance when adversary attempting
to fool the model. In contrast to the sparse-based frontend defense, experiment results
demonstrate that the proposed random sparsitymechanism can bemore effective to resist
adversarial attacks. We show that the primary reason that the random sparsity defense
can further improve the accuracy of classification networks against disturbances is due
to randomization somewhat helps in decreasing the transferability of the adversarial
attacks.
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We consider that there are a great deal of work for further research. Developing more
sparse generation models to expand the application of our method, and there is still room
for improvement in the sparse dictionary we use. It is crucial to developmore universally
and reliable defense models for practical applications.
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