
Internet of Things

Gagangeet Singh Aujla
Sahil Garg
Kuljeet Kaur
Biplab Sikdar Editors

Software
Defined
Internet
of Everything

Internet of Things

Technology, Communications and Computing

Series Editors

Giancarlo Fortino, Rende (CS), Italy
Antonio Liotta, Edinburgh Napier University, School of Computing, Edinburgh,
UK

The series Internet of Things - Technologies, Communications and Computing
publishes new developments and advances in the various areas of the different
facets of the Internet of Things.

The intent is to cover technology (smart devices, wireless sensors, systems),
communications (networks and protocols) and computing (theory, middleware and
applications) of the Internet of Things, as embedded in the fields of engineering,
computer science, life sciences, as well as the methodologies behind them. The
series contains monographs, lecture notes and edited volumes in the Internet of
Things research and development area, spanning the areas of wireless sensor
networks, autonomic networking, network protocol, agent-based computing,
artificial intelligence, self organizing systems, multi-sensor data fusion, smart
objects, and hybrid intelligent systems.

** Indexing: Internet of Things is covered by Scopus and Ei-Compendex **

More information about this series at http://www.springer.com/series/11636

http://www.springer.com/series/11636

Gagangeet Singh Aujla • Sahil Garg
Kuljeet Kaur • Biplab Sikdar
Editors

Software Defined Internet
of Everything

Editors
Gagangeet Singh Aujla
Department of Computer Science
Durham University
Durham, UK

Sahil Garg
École de Technologie Supérieure
(Université du Québec)
Montreal, QC, Canada

Kuljeet Kaur
Département de génie électrique
École de Technologie Supérieure
(Université du Québec)
Montreal, QC, Canada

Biplab Sikdar
Department of Electrical and Computer
Engineering
National University of Singapore
Singapore, Singapore

ISSN 2199-1073 ISSN 2199-1081 (electronic)
Internet of Things
ISBN 978-3-030-89327-9 ISBN 978-3-030-89328-6 (eBook)
https://doi.org/10.1007/978-3-030-89328-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-89328-6

Foreword

Research and development efforts in Software Defined Networks (SDNs) have
continued to increase in popularity over recent years, providing the ability to
improve network management, support fine-grained control of network elements,
enable high speed data exchange and provide the basis for network scalability.
Initially, SDN was expected to replace the static architecture of “traditional”
decentralized networks by the use of a centralized approach, enabling support for
more complex network usage and management. This separation and decoupling
of control logic and data path/forwarding logic has also been facilitated with a
parallel increase in interest in machine learning and AI, with availability of specialist
hardware platforms that can be used to execute ML/AI algorithms. An SDN
controller remains a major component in such a decoupled network environment,
with significant number of implementations now available, ranging from C++
(NOX) to Java (Floodlight, Beacon, OpenDayLight, ONOS) and Python (POX,
Ryu). Although the OpenFlow protocol was a key standard and implementation
initially, a number of other vendors have adapted the approach within their
own products—e.g. Cisco Systems’ Open Network Environment, VMWare NSX,
Juniper Network’s OpenContrail, VortiQa from NSX semiconductors and Nicira’s
network virtualization platform. Compatibility of these with OpenFlow varies.

The integration of programmable networks within wider smart cities and Indus-
trial Internet of things environments also opens up a number of possibilities—from
more active management of assets within such environments to more effec-
tive mechanisms to provide protection against cyberattacks (from DDoS to ran-
somware). Combining SDN with virtual network functions also offers possibilities
to support user-supported functions and combining these with services used to
manage the network core.

This book brings together a number of chapters that address both core concepts
and emerging themes in SDN technologies, systems and applications. It provides
a useful reference for those new to the area to get a better insight into this
rapidly developing area, but also provides more in-depth material for those who
already make use of SDN approaches in their work. The “Internet of Everything”
perspective adopted in this book enables a wider consideration of SDN and

v

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89328-6_0&domain=pdf

vi Foreword

programmable network technologies, supporting aspects such as backup/recovery
policies, load balancing and traffic filtering. It is also useful to see that coverage
includes both data centre-based adoption of SDN along with use of these in edge
computing.

It is also good to see the editors of this book originating from three different
regions in the world: Canada, Singapore and the UK. I am certain that this
geographic spread of research context and background will also provide a more
holistic perspective on this emerging area.

Professor of Performance Engineering Omer F. Rana
School of Computer Science and Informatics
Cardiff University, UK
July 2021

Preface

Nowadays, the global landscape is shifting towards a digitized and autonomous
cyber-physical world. Internet of Things (IoT) came up as a revolution and overtook
the entire global landscape with its presence in almost every sector like smart cities,
smart grids, and intelligent transportation. Even more, the technological revolution
moved to the machines and systems also, converting them into intelligent commutes
that can take real-time decisions and communicate with each other forming an
Internet of Systems/Machines. Now, in the above global revolution, we have come
up with a new paradigm called the Internet of Everything wherein anything that
becomes a part has sufficient computing and communication resources. In such
an environment where everything can communicate with each other based on the
application requirement, the data generated, and data transmitted, is so huge that it
cannot be handled by traditional network infrastructure with the same efficiency.
The traditional networking based on the TCP/IP model has limitations such as
tightly coupled planes, distributed architecture, manual configuration, inconsistent
network policies, fallibility, security, and inability to scale. In traditional networks,
the control and the packet forwarding parts are integrated at the same place and
embedded on the hardware devices. The strongly coupled nature makes it difficult
to modify the network policies. Moreover, the distributed architecture is vulnerable
to various types of security threats. So, it becomes extremely complicated to
troubleshoot the network. Next comes the difficulty to maintain consistency while
modifying the network policies. With a substantial increase in the workloads in
smart applications, the demand for the increased bandwidth is also expected. The
traditional networking domain is statically arranged in such a manner that the
growing bandwidth demands of the IT infrastructure end up in the redesigning of
the complete topology.

To overcome these issues of traditional networks, a prominent technology named
Software Defined Networking (SDN), which works on the ideas of Open Flow
architecture, is being widely deployed in different network domains. It is logically
centralized software capable of controlling the entire network. It advocates the
concept of software-based networking and can be termed as a “softwarization"
solution that provides network programmability. It solves the issues of the tradi-

vii

viii Preface

tional network architecture to accommodate the increased workloads of modern
networking. SDN architecture provides better services to manage enterprise, wide
area, and data center networks. The control (or network brain) and the data
forwarding plane are decoupled in SDN architecture. So, the forwarding nodes
become control-free and perform only packet forwarding functionality. Rather than
manual configurations of all the network devices by an administrator, SDN allows
program-based software control to automate the tasks and increases the flexibility in
modifying the network policies dynamically. Another feature of SDN architecture is
its centralized architecture which helps to assign, modify, and audit policies with a
global network view. These centralized policies are used for routing, maintaining
consistency among physical and virtual workloads, load balancing, and global
monitoring of the entire network.

The current advances in the industry require an adaptable and dynamic network
architecture that provides global visibility and does not require manual reconfig-
uration. As Industry 4.0 empowers the connected factories and everything, so a
restricted policy or limited functionality-oriented network architecture will create a
bottleneck in front of the modern era vision of connected things. Thus, SDN can be
a suitable solution for handling massive data generated in the Internet of Everything
applications. These applications cover almost every domain where networking is
partially or fully required, so the future of this area is bright. The current level
of research and literature in this area of focus is limited to specific and smaller
segments, so this book provides an understanding of the applicability of SDN in a
wide range of applications that drive their life’s routine. This book provides ample
knowledge and a roadmap for academia, researchers, and industry functioning in
this area. This book provides a comprehensive discussion on some key topics related
to the usage or deployment of SDN in the Internet of Everything applications (like
data centers, edge-cloud computing, vehicular networks, healthcare, smart cities).
It discusses diverse solutions to overcome the challenges of conventional network
binding in various Internet of Everything applications where there is a strong need
for an adaptive, agile, and flexible network backbone. This book showcases different
deployment models, algorithms, and implementations related to the usage of SDN
in the Internet of Everything applications along with the pros and cons of the
same. Even more, this book provides deep insights into the architecture of SDN
specifically about the layered architecture and different network planes, logical
interfaces, and programmable operations. The need for network virtualization and
the deployment models for network function virtualization is also a part of this book
with an aim towards the design of interoperable network architectures by researchers
in the future.

This book is divided into five parts. The first part provides the background
about the Internet of Everything and the smart city’s ecosystem. The second
part focuses on SDN, including the challenges of traditional networks and the
development of programmable networks. This part also covers the SDN deployment
models, protocols, APIs, layers, network policies, load balancing techniques, and
energy optimization approaches. This part ends up with a brief discussion on
network function virtualization. The third part discusses the applications of SDN

Preface ix

in cloud computing, specifically in data centers and the edge-cloud ecosystem.
The associated technologies, design challenges, underlying architectures, and future
challenges are discussed. The fourth part entails the security and trust solutions for
SDN. The last part provides the application use cases of SDN concerning various
problems like high-speed road networks and image processing in industrial IoT.

Durham, UK Gagangeet Singh Aujla

Montreal, QC, Canada Sahil Garg

Montreal, QC, Canada Kuljeet Kaur

Singapore, Singapore Biplab Sikdar
June 2021

Contents

Part I Internet of Everything and Smart City

1 Internet of Everything: Background and Challenges 3
Rajan Kumar Dudeja, Rasmeet Singh Bali, and Gagangeet Singh
Aujla

2 Smart Cities, Connected World, and Internet of Things 17
Rafael S. Salles and Paulo F. Ribeiro

Part II Software-Defined Networking

3 Challenges of Traditional Networks and Development of
Programmable Networks . 37
Fanglin Liu, Godfrey Kibalya, S. V. N. Santhosh Kumar, and Peiying
Zhang

4 Architecture and Deployment Models-SDN Protocols, APIs,
and Layers, Applications and Implementations . 63
Bhawana Rudra and Thanmayee S.

5 Network Policies in Software Defined Internet of Everything 79
Rashid Amin, Mudassar Hussain, and Muhammad Bilal

6 Analysis of Load Balancing Techniques in Software-Defined
Networking . 97
Gurpinder Singh, Amritpal Singh, and Rohit Bajaj

7 Analysis of Energy Optimization Approaches in Internet of
Everything: An SDN Prospective . 119
Gurpinder Singh, Amritpal Singh, and Rohit Bajaj

8 Network Function Virtualization . 135
Haotong Cao

xi

xii Contents

Part III Application of Software-Defined Networking in Cloud
Computing

9 Prospective on Technical Considerations for Edge–Cloud
Cooperation Using Software-Defined Networking . 147
Amritpal Singh, Rasmeet Singh Bali, and Gagangeet Singh Aujla

10 Software-Defined Networking in Data Centers . 177
Priyanka Kamboj and Sujata Pal

11 QoS-Aware Dynamic FlowManagement in Software-Defined
Data Center Networks . 205
Ayan Mondal and Sudip Misra

Part IV Security and Trust Applications for Software-Defined
Networking

12 Trusted Mechanism Using Artificial Neural Networks in
Healthcare Software-Defined Networks . 225
Geetanjali Rathee

13 Stealthy Verification Mechanism to Defend SDN Against
Topology Poisoning . 235
Bakht Zamin Khan, Anwar Ghani, Imran Khan, Muazzam Ali Khan,
and Muhammad Bilal

14 Implementation of Protection Protocols for Security Threats
in SDN . 247
Amanpreet Singh Dhanoa

Part V Application Use Cases of Software-Defined Networking

15 SDVN-Based Smart Data Dissemination Model for
High-Speed Road Networks . 259
Deepanshu Garg, Neeraj Garg, Rasmeet Singh Bali, and Shubham
Rawat

16 Advanced Deep Learning for Image Processing in Industrial
Internet of Things Under Software-Defined Network 271
Zhihan Lv, Liang Qiao, Jingyi Wu, and Haibin Lv

Index . 295

Contributors

Rashid Amin University of Engineering and Technology, Taxila, Pakistan

Gagangeet Singh Aujla Department of Computer Science, Durham University,
Durham, UK

Rohit Bajaj Department of Computer Science and Engineering, Chandigarh Uni-
versity, Mohali, India

Rasmeet Singh Bali Department of Computer Science and Engineering, Chandi-
garh University, Mohali, India

Muhammad Bilal Department of Computer Engineering, Hankuk University of
Foreign Studies, Yongin-si, Gyeonggi-do, South Korea

Haotong Cao Jiangsu Key Laboratory of Wireless Communications, Nanjing
University of Posts and Telecommunications Nanjing, Nanjing, China
Department of Computing, The Hong Kong Polytechnic University, Hong Kong
SAR, China

Amanpreet Singh Dhanoa Department of Computer Science and Engineering,
Chandigarh University, Mohali, India

Rajan Kumar Dudeja Department of Computer Science and Engineering,
Chandigarh University, Mohali, India

Deepanshu Garg Department of Computer Science and Engineering, Chandigarh
University, Mohali, India

Neeraj Garg Department of Computer Science and Engineering, Chandigarh
University, Mohali, India

Anwar Ghani Department of Computer Science & Software Engineering, Interna-
tional Islamic University Islamabad, Islamabad, Pakistan

Mudassar Hussain University of Wah,Wah Cantt, Pakistan

xiii

xiv Contributors

Priyanka Kamboj Department of Computer Science and Engineering, Indian
Institute of Technology Ropar, Punjab, India

Godfrey Kibalya Department of Network Engineering, Universitat, Politecnica de
Catalunya, Barcelona, Spain

Bakht Zamin Khan Department of Computer Science & Software Engineering,
International Islamic University Islamabad, Islamabad, Pakistan

Imran Khan Department of Computer Science & Software Engineering, Interna-
tional Islamic University Islamabad, Islamabad, Pakistan

Muazzam Ali Khan Department of Computer Science, Quaid-e-Azam University,
Islamabad, Pakistan

S. V. N. Santhosh Kumar School of Information Technology and Engineering,
Vellore Institute of Technology, Vellore, India

Fanglin Liu College of Computer Science and Technology, China University of
Petroleum (East China), Qingdao, PR China

Haibin Lv North China Sea Offshore Engineering Survey Institute, Ministry of
Natural Resources NorthSea Bureau, Qingdao, China

Zhihan Lv College of Computer Science and Technology, Qingdao University,
Qingdao, China

Sudip Misra Department of Computer Science and Engineering, Indian Institute
of Technology Kharagpur, Kharagpur, India

Ayan Mondal Department of Computer Science, University of Rennes 1, INRIA,
CNRS, IRISA, Rennes, France

Sujata Pal Department of Computer Science and Engineering, Indian Institute of
Technology Ropar, Punjab, India

Liang Qiao College of Computer Science and Technology, Qingdao University,
Qingdao, China

Geetanjali Rathee Department of Computer Science and Engineering, Netaji
Subhas University of Technology, New Delhi, India

Shubham Rawat Department of Computer Science and Engineering, Chandigarh
University, Mohali, India

Paulo F. Ribeiro Institute of Electrical and Energy Systems, Federal University of
Itajuba, Itajuba, Brazil

Bhawana Rudra Department of Information Technology, National Institute of
Technology, Mangalore, Karnataka, India

Thanmayee S. Department of Information Technology, National Institute of Tech-
nology, Mangalore, Karnataka, India

Contributors xv

Rafael S. Salles Institute of Electrical and Energy Systems, Federal University of
Itajuba, Itajuba, Brazil

Amritpal Singh Department of Computer Science and Engineering, Chandigarh
University, Mohali, India

Gurpinder Singh Department of Computer Science and Engineering, Chandigarh
University, Mohali, India

Jingyi Wu College of Computer Science and Technology, Qingdao University,
Qingdao, China

Peiying Zhang College of Computer Science and Technology, China University of
Petroleum (East China), Qingdao, PR China

Part I
Internet of Everything and Smart City

Chapter 1
Internet of Everything: Background
and Challenges

Rajan Kumar Dudeja, Rasmeet Singh Bali, and Gagangeet Singh Aujla

1.1 Introduction

The exponential growth in fields of embedded systems and their computing and
communication power leads to the generation of a new era of Internet Technologies.
It leads to the generation of the field named the Internet of Things (IoT). The
term was first given by Kevin Aston in 1999. IoT is a collection of objects called
Things that have sensing capability. These objects also have limited computational
power. They can communicate the sensed data using standard protocols. The data
on network could be used for further processing and analysis purposes. In simple
terms, it is a network of smart objects having sensing and computational capacity.
With the advancement in embedded technologies, the production capacity of these
smart objects has increased exponentially. Along with its production, the digital
transformation era has brought about huge demand for IoT based application. As
per an estimate [1], there were 5.8 billion IoT endpoints were there in the market
and the demand continues to surge in coming years.

1.1.1 Working of IoT

IoT works on a principle of Connect, Communicate, Compute, and Action. It
consists of various IoT sensors that connect through wired or wireless manner to the
Internet through a gateway node. Sensors measure the state of the environment and

R. K. Dudeja · R. S. Bali
Department of Computer Science and Engineering, Chandigarh University, Mohali, India

G. S. Aujla (�)
Department of Computer Science, Durham University, Durham, UK

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. S. Aujla et al. (eds.), Software Defined Internet of Everything, Technology,
Communications and Computing, https://doi.org/10.1007/978-3-030-89328-6_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89328-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-89328-6_1

4 R. K. Dudeja et al.

Fig. 1.1 Working of Internet of Things

other measurements and communicate data to the Internet cloud. The Internet uses
its huge computational power to perform the required processing on the received
data and converts it into useful information. The end-user through the interface
application analyzes the information and performs action accordingly [2].

For example, smart homes may have a temperature sensor and air conditioner
relay switch connected to IoT controller using standard IoT procedure. It is further
connected to the Internet that receives the sensor data. Homeowner acting as
end-user continuously monitors the temperature of his home and gives a remote
command to control air conditioner as and when required. Figure 1.1 describes
the complete working of IoT. It consists of four basic components for its complete
working procedure. Following are the description of the components.

1.1.1.1 Sensors

The sensors are electronic components having sense and digital measurement
capabilities. These are fitted into the devices called smart objects. A smart object
is an electronic component that consists of one or more sensors to monitor
the surrounding environmental conditions such as mobile phone. A smart object
consists of multiple sensors like an accelerometer, camera, and location tracker.
These sensors are majorly playing the role of collecting the data. These objects
are working in large number of fields such as healthcare, agriculture, medicine,
manufacturing, logistics delivery, smart home, smart cities, etc. Figure 1.2 shows
some prominent application areas that employ the IoT for more effective operating.
These objects are continuously measuring the surrounding environmental conditions
and generate data regularly. This leads to the generation of a huge volume of

1 Internet of Everything: Background and Challenges 5

Fig. 1.2 Smart objects used in Internet of Things

data. As the smart objects work in different application areas, the data generated
by them are multidisciplinary. These objects are further connected to a controller
device called the IoT Gateway node. So the huge volume of multidisciplinary
data is also communicated to cloud or edge through gateway node in certain IoT
architectures [2].

1.1.1.2 Gateway Node

The gateway node acts as an entry/exit point for IoT devices with the rest of the
network. The devices are connected to gateway nodes using standard IoT protocols.
It plays a major role of communicating the data. It uses standard protocols like
Bluetooth, Wi-Fi, 6LoWPAN, Zigbee, RF Link, Z wave, etc. These protocols

6 R. K. Dudeja et al.

work on the different capacity for parameters like topology, range, bandwidth,
power consumption, bit rate, etc. The other techniques like RFID and NFC are
used for connecting IoT objects. Table 1.1 depicts these parameters for different
protocols. Based on a comparison of protocols, different techniques are used to
connect different IoT objects. The gateway node has to support multiple ports having
different mechanisms if they have to connect multiple functional devices. Other than
connecting devices, it connects to the Internet on the other side using standard IP-
based protocols.

In an ideal scenario, gateway node transfers the multifunctional data received
from connected devices. The huge volume of data generated by the sensors is
transferred to the Internet cloud through these gateways. But with the evolution
of new paradigms like edge and fog computing, there are gateway nodes that
provide additional computational power other than connectivity of smart objects [3].
Handling of this huge volume of data by sensors at source end has been receiving
a lot of attention from the research community. This has also led to development of
intelligent system that can be integrated with traditional gateway nodes to achieve
efficient information dissemination. In such integrated scenarios compute along with
communication of data is performed [4].

1.1.1.3 Data Processing and Analysis

The Data transmitted from sensors through gateways should be received by the
devices having enough computational power. Since the amount of data is very
large and also multidimensional, it requires intelligent systems that can process
the data. The application running on IoT based systems is basically processing the
data and converting it into useful information. The data processing techniques have
to perform a number of basic functions like denoising of data, feature extraction
from data, data fusion, and data aggregation. These processing techniques should
be lightweight to implement so that these functions are performed efficiently. The
requirement for the type of processing algorithm depends upon the nature of data
generated by sensors. The resulted processed data turns out to be information for
further course of actions [5].

The resulted information can be analyzed using various Artificial Intelligence
(AI) based techniques. It also employs the other techniques like machine learning
and deep learning to analyze the data without human involvement. The output
produced by above intelligent techniques should be able to produce the correct and
useful information required for decision-making and knowledge generation [6]. The
decision-making process then results in certain values that are then converted into
some physical actions performed by actuators. This knowledge is also stored for
further behavioral study of the sensor. The above-discussed process could also get
elaborated by Fig. 1.3

The data processing and analysis are generally performed on cloud-centric
applications. This leads to generation of huge amount of data on networks that
needs to be transferred from the gateway to the cloud. With the advancement in

1 Internet of Everything: Background and Challenges 7

Ta
bl
e
1.
1

In
te
rn
et
of

T
hi
ng
s
pr
ot
oc
ol
s

St
an
da
rd

B
lu
et
oo

th
B
lu
et
oo
th

4.
0
IE

Z
ig
be
e

W
i-
fi

6L
oW

PA
N

R
F
lin

k
Z
w
av
e

IE
E
E
Sp

ec
.

IE
E
E
80
2.
15
.1

IE
E
E
80
2.
15
.4

IE
E
E
80
2.
15
.4

IE
E
E
80
2.
11

a/
b/
g/
n

IE
E
E

80
2.
15
.4
-2
00
6

IE
E
E
C
95
.1
-2
00
5

Z
-w

av
e

al
lia

nc
e

To
po
lo
gy

St
ar

St
ar

M
es
h,

St
ar
,T

re
e

St
ar

M
es
h,

St
ar

–
M
es
h

B
an
dw

id
th

1
M
bp
s

1
M
bp
s

25
0
K
bp
s

U
p
to

54
M
bp
s

25
0
K
bp
s

18
M
H
z

90
0
M
H
z

Po
w
er

co
ns
um

pt
io
n

V
er
y
lo
w

V
er
y
lo
w

V
er
y
lo
w

L
ow

V
er
y
lo
w

V
er
y
lo
w

V
er
y
lo
w

M
ax
.d

at
a
ra
te

(M
bi
ts
/s
)

0.
72

5–
10

0.
25

54
80
0(
Su

b-
G
H
z)

1
96
00

bi
ts
or

40
kb

its

R
an
ge

≤3
0m

5–
10

m
10
–3
00

m
4–
20

m
80
0
m

≤
3m

30
m

Sp
ec
tr
um

2.
4
G
H
z

2.
4
G
H
z

2.
4
G
H
z

2.
4–
5
G
H
z

2.
4
G
H
z

2.
4
G
H
z

2.
4
G
H
z

C
ha
nn
el
ba
nd
w
id
th

1
M
H
z

24
00
–2
48
0
M
H
z

0.
3/
0.
6
M
H
z,
2

M
H
z

22
M
H
z

86
8–
86
8.
6
M
H
z

(E
U
),
90
2–
92
8

M
H
z
(N

A
),

24
00
–2
48
3.
5

M
H
z
(W

W
)

–
86
8
M
H
z

8 R. K. Dudeja et al.

Fig. 1.3 Data processing and analysis

the computing field, edge/fog computing has also been integrated with traditional
IoT. They support lightweight data processing and analysis at the source end. This
results in an efficient architecture where huge processing is performed on devices
connected with sensors results in the transfer of only the required data to the cloud.
There is lots of research going in fields on cloud/edge/fog interplay that results in
the selection of data processing and analysis at the required end [7, 8].

1.1.1.4 End-User

IoT users are receiving the information through the application interface. There
are several different categories for each user. These categories include expert users
like healthcare experts, doctors, weather forecasters, engineers, and data scientists.
These experts get the analyzed data and perform an action accordingly thereby
helping to improve their productivity. The other categories of users are generic
persons such as family members, friends, and community services. They have access
to data generated by the sensor that they can monitor regularly like a person keeping
his home under camera surveillance. The last category includes emergency services
like ambulance, fire fighters, and police. These users will get activated by emergency
events relevant to their respective domains [9, 10].

1.1.2 Internet of Everything

The key components of IoT are the objects that can form the communication chan-
nel. The evolution of distributed computing helps in grater processing capabilities

1 Internet of Everything: Background and Challenges 9

Fig. 1.4 Evolution of Internet of Everything

at the distributed end. The gaining trend of distributed computing has also resulted
in emergence of a new field. This leads to the generation of a new Internet era called
the Internet of Everything (IoE). The term was first used by Cisco in 2013 [11]. The
field is also a result of further advancements in dynamic information handling at
the source end. The integration of Fog and Edge computing results in decentralized
processing capacity, providing increased computing power for these kinds of hybrid
IoE networks. The primary aim of IoE is to connect anything with the Internet with
enough information provided at right time in this digitally driven modern era [12].
Figure 1.4 shows the evolution of IoE from machine-to-machine communication
through IoT.

As an intelligent network of people and objects, the scope of IoE is exponentially
increasing in multidisciplinary domains across the globe. It is the fusion of advance-
ments in technologies in multiple fields like Information technology, environmental,
and biotechnology. It has emerged as the main player for future market growth. The
overall growth in IoE will lead to millions of internetworked devices that could
result in having increased processing capacity, intelligent decision-making, and
improved sensing capacity. This has resulted in development of specialized products
based on IoE for organizations that are helping them in improving their operations.
It also impacts the interaction methods with the physical environment [13].

IoE can be considered as much broader system than IoT. It is considered to
be a superset of IoT along with its variants like Internet of Drone, Internet of
Healthcare. It evolves from machine-to-machine communication that is prevalent
in IoT to people and people to machine communication formats. The evolvement
of IoE results in a better network having better capacity to turn information into
actions. It gives rise to new and exciting opportunities with richer experiences for
individuals and organizations. It evolves from one pillar called things in IoT to four
pillars called People, Process, Data, and Things. IoE is primarily concerned with
bringing these pillars in an efficient manner. In simple terms, IoE can be thought as
an intelligent network of People, Process, Data, and Things. Figure 1.5 shows the
all four components and communication among them in IoE [14].

• People: IoE is responsible for making connections among the peoples in a more
effective and relevant manner. The people are the main concern to interact with
the Internet.

• Process: It consists of an efficient collection of processes that converts the col-
lected information into the appropriate actions. It delivers accurate information
to the concerned person or object at the appropriate time.

10 R. K. Dudeja et al.

Fig. 1.5 Internet of Everything components

• Data: The data is generated during interaction with objects and peoples in
multiple forms. There is a requirement of efficient processing and handling
of data that could further support the decision-making process and knowledge
generation.

• Things: These are physical objects having sensing and processing capabilities
connected to the Internet. These could also be termed as smart objects.

Recently a broad spectrum of application domains has undergone revolutionary
changes globally and produced exciting opportunities due to IoE. IoE has seen the
evolution from a smart application in IoT to connecting applications with the user
in a much more efficient manner. For example, in smart vehicle management and
smart healthcare based IoE systems are helping to connect roads with hospitals
for real-time monitoring to save lives. It integrates the people with objects and
intelligent processes more efficiently and efficiently such as connecting homes for
more comfortable living, connecting food and peoples in supply chain management,
and connecting elderly population and their monitoring with healthcare experts. In
general, applications of IoE have touched a number of different domains such as
healthcare, digital transformation, home automation, energy conservation, security,

1 Internet of Everything: Background and Challenges 11

information exchange and communication, and environmental monitoring[15].
Some of its major applications domains have been discussed in later sections.

1.2 Applications of Internet of Everything

The IoE is touching all aspects of life and it has numerous applications in all of
domains . Some of the applications are discussed below.

• Smart Healthcare: In the healthcare support, IoE has significant application
ranging from in-hospital support to smart wearable devices. There are IoE
based techniques available for diagnosis purpose for various diseases. It also has
application to assist patients for their regular activities like assisting Alzheimer
patients. There are also trackers like smart watch to keep track of routine health
related parameters like blood pressure, distance covered [16].

• Smart Home: The IoE based number of equipment are into the market that are
related to household things. These devices are making a home connected with
Internet. These devices can operate autonomously according to environment like
air conditioner will get automatically on/off based on set temperature. Other than
this there are basic electronic things in house like fan, fridge, washing machine,
TV, lights that have to operate autonomously [17].

• Smart City: The IoE has huge potential to develop the infrastructure in more
organized and efficient manner. There are applications available to upgrade a city
to smart city. These applications could help in smart garbage collection, smart
parking system, and smart street lights [18].

• Smart Vehicular Technology: There are vehicles equipped with sensors and
connected with internet are making the drive more safer and comfortable. Even
there are vehicles in development process that can run on roads without driver
support. The vehicles can use numerous sensor that can help them in judgment
of road conditions and traffic [19].

• Smart Industry: IOE has brings a revolutionary change in Industry like man-
ufacturing, food and logistics, and packaging. It brings a new era of sensor
fitted robots that can replace the humans in the factories. They can work more
efficiently and accurately than the human beings. IoE based systems are also
used for delivery of logistics in lesser time like Drones [8].

• Smart Agriculture: This is one of the major applications of IoE for agriculture
based countries. It helps the farmers to check their soil moisture and other
parameters digitally on regular basis. It also helps in developing latest equipment
that can help the farmer to grow and sell their crops [20].

12 R. K. Dudeja et al.

1.3 Challenges of Internet of Everything

With the growth in the field of IoE and to meet expectations of people and
organizations, a number of opportunities have opened up in domains like research
and business. However, this also brings some huge challenges along with it in its
implementation at a large scale. These challenges are discussed below.

• Device Security: It is one of the major concerns for the IoE field. As it encourages
the decentralization of each process, we need security at the device level.
There are still some design challenges available with many embedded devices.
These make them more vulnerable to many security threats. This needs to be
incorporated by manufacturers. Other than this, the increase in the computational
capacity of devices makes them available for many processes and data for
computational purposes. This makes the devices more vulnerable. It leads to
attracting several cyberattacks. This points to the need for the generation of a
mechanism to provide the security at device level [21].

• Data Security: As the data generated by the devices are multidimensional, the
requirement for encryptions or any other data security techniques is also different
for the type of data streams. The continuous data generation by the objects leads
to the generation of a huge volume of multidimensional data. It gives rise to
the need for computational mechanisms that are capable enough to provide data
security when they are executed them on source end devices. These mechanisms
should also be based on lightweight techniques as well as apply data security at
the fog level along with other hierarchical levels of computing [21].

• Scalability: The data generated by the objects are continuously increasing with
time frame. The cloud or edge devices that are going to process and analyze
the data should be scalable. There is enough buffer support available with these
computing paradigms to support the large volume of data. There should be
flexibility to add a new device that generates data with new parameters that does
not hamper the computing and analysis process for that data [22].

• Privacy Issues: As IoE is touching each domain of personal as well as
professional life of a humans, maintaining privacy of data is a major concern.
This is especially true for the fields such as healthcare and other domains that
manage personalized data. The data generated by the sensors attached to the
patient like blood pressure, heartbeat, etc. are critical. So there is the requirement
of an efficient privacy policy for such type of healthcare data [22].

• Need of Standards: The goal of IoE is to connect anything with the Internet which
leads to connecting different types of devices with the Internet. There is also the
decentralization of processes to control the overall mechanism. This brings a
new challenge in creating the standards to govern the full mechanisms. These
standards should be developed by some well-established organizations or open
communities. The standards should find the solution to streamline the various
protocols and techniques used at the central level as well as distributed level to
control the various process involved in implementation as well communication
of all objects [23].

1 Internet of Everything: Background and Challenges 13

• Device Heterogeneity: The aim of IoE to connect anything to the Internet will
bring a challenge to connect devices having different operating methods to
connect. The working method to generate the data by different types of devices
like electrical, electrochemical, and electromagnetic is different [23].

• Compatibility Issues: There are many heterogeneous devices available in market
and the basic connecting mechanism of each of the devices is different. For
example, creating an intelligent home system requires different types of IoE
devices, based on disparate technologies like Bluetooth, Zigbee, Z-wave, etc.
To incorporate these devices with each other on common platforms lead to the
generation of huge compatibility issues [24].

• Bandwidth Issues : As the size of the market going to increase exponentially, the
number of devices is also going to increase. The data transfer by these devices is
also huge. Like there is the option to continuous live streaming of video camera
of smart home on the mobile phone. These kinds of applications lead to huge
bandwidth requirements at the network level to transfer this volume of data.

• Intelligent Analysis: The aim of this digital transformation is to ease life with an
intelligent decision-making system without human involvement. For the same,
there is the requirement of intelligent data analysis techniques deployed on any of
the computing platforms. The accuracy of the decision-making depends upon the
intelligence of the data analysis techniques. these techniques should be enough
capable to handle the unpredictable behaviors of objects that are generating the
data [25].

• Cloud-Edge-Fog Interplay:As the decentralization of work is increasing in fields
like IoE, still many mechanisms need to be handled at a centralized level. Other
than this, the availability of computational power at different platforms is not
homogeneous. So there should be a smart selection of platforms like cloud, edge,
or fog for specific data for its analysis and process to its execution [26].

• Authentication Mechanism: As the number of devices is going to increase
exponentially, the authentication of such a huge number of devices from different
manufacturers is a challenging task. Other than its number, the devices are
also heterogeneous. This leads to a requirement of a standard authentication
mechanism to tackle the above-discussed issues [24].

1.4 Conclusion

The advancement in embedded technologies has brought about a new era of smart
devices that communicate and connect with Internet. Internet of Things has been one
of the main technologies that has emerged as a result of this advancement. The inte-
gration of distributed computing and decentralization of processing capabilities has
resulted in further development of Internet of Things field. However, heterogeneity
of devices and application has been a major bottleneck in adaptability of Internet
of Things. This leads to development of a new field called Internet of Things that
connects people, process, data, and things in effective and efficient manner. With

14 R. K. Dudeja et al.

its evolvement and applicability in number of vital domains also brings number of
challenges. Efficient handling of huge amount of multidimensional data generated
by heterogeneous devices as well as need of standard process and protocols to
define Internet of Everything are the major challenges. There is also a need to tackle
security at device level as well as data level. So this chapter has discussed the above
challenges and highlighted their importance for future models of IoE.

References

1. Ande, R., Adebisi, B., Hammoudeh, M., & Saleem, J. (2020). Internet of things: Evolution and
technologies from a security perspective. Sustainable Cities and Society, 54, 101728.

2. Xia, F., Yang, L. T., Wang, L., & Vinel, A. (2012). Internet of things. International Journal of
Communication Systems, 25(9), 1101.

3. Aujla, G. S., & Jindal, A. (2020). A decoupled blockchain approach for edge-envisioned IoT-
based healthcare monitoring. IEEE Journal on Selected Areas in Communications, 39, 491–
499.

4. Zhu, Q., Wang, R., Chen, Q., Liu, Y., & Qin, W. (2010). IoT gateway: Bridgingwireless sensor
networks into internet of things, in 2010 IEEE/IFIP International Conference on Embedded
and Ubiquitous Computing (pp. 347–352). Piscataway: IEEE.

5. Krishnamurthi, R., Kumar, A., Gopinathan, D., Nayyar, A., & Qureshi, B. (2020). An overview
of IoT sensor data processing, fusion, and analysis techniques. Sensors, 20(21), 6076.

6. Kaur, K., Garg, S., Aujla, G. S., Kumar, N., Rodrigues, J. J., & Guizani, M. (2018). Edge
computing in the industrial internet of things environment: Software-defined-networks-based
edge-cloud interplay. IEEE Communications Magazine, 56(2), 44–51.

7. Chaudhary, R., Aujla, G. S., Kumar, N., & Zeadally, S. (2018). Lattice-based public key
cryptosystem for internet of things environment: Challenges and solutions. IEEE Internet of
Things Journal, 6(3), 4897–4909.

8. Singh, A., Aujla, G. S., Garg, S., Kaddoum, G., & Singh, G. (2019). Deep-learning-based SDN
model for internet of things: An incremental tensor train approach. IEEE Internet of Things
Journal, 7(7), 6302–6311.

9. Singh, P., Bali, R. S., Kumar, N., Das, A. K., Vinel, A., & Yang, L. T. (2018). Secure healthcare
data dissemination using vehicle relay networks. IEEE Internet of Things Journal, 5(5), 3733–
3746.

10. Chhabra, S., Bali, R. S., & Kumar, N. (2015). Dynamic vehicle ontology based routing for
VANETs. Procedia Computer Science, 57, 789–797.

11. Balfour, R. E. (2015). Building the “internet of everything” (IoE) for first responders, in 2015
long island systems, applications and technology (pp. 1–6). Piscataway: IEEE.

12. Miraz, M. H., Ali, M., Excell, P. S., & Picking, R. (2015). A review on internet of things (IoT),
internet of everything (IoE) and internet of nano things (IoNT), in 2015 internet technologies
and applications (ITA) (pp. 219–224). Piscataway: IEEE.

13. Jara, A. J., Ladid, L., & Gómez-Skarmeta, A. F. (2013). The internet of everything through
ipv6: An analysis of challenges, solutions and opportunities. Journal of Wireless Mobile
Networks, Ubiquitous Computing, and Dependable Applications, 4(3), 97–118.

14. Hussain, F. (2017). Internet of everything, in Internet of things (pp. 1–11). Berlin: Springer.
15. Fan, X., Liu, X., Hu, W., Zhong, C., & Lu, J. (2019). Advances in the development of power

supplies for the internet of everything. InfoMat, 1(2), 130–139.
16. Sharma, S., Dudeja, R. K., Aujla, G. S., Bali, R. S., & Kumar, N. (2020). DeTrAs: Deep

learning-based healthcare framework for IoT-based assistance of Alzheimer patients, in Neural
Computing and Applications (pp. 1–13). Berlin: Springer.

1 Internet of Everything: Background and Challenges 15

17. Kaur, N., & Kumar, R. (2016). Hybrid topology control based on clock synchronization in
wireless sensor network. Indian Journal of Science and Technology, 9, 31.

18. Singh, I., & Kumar, R. (2018). Mutual authentication technique for detection of malicious
nodes in wireless sensor networks. International Journal of Engineering & Technology, 7(2),
118–121.

19. Bali, R. S., Kumar, N., & Rodrigues, J. J. (2014). An intelligent clustering algorithm for
VANETs, in 2014 International Conference on Connected Vehicles and Expo (ICCVE) (pp.
974–979). Piscataway: IEEE.

20. Walter, A., Finger, R., Huber, R., & Buchmann, N. (2017). Opinion: Smart farming is key
to developing sustainable agriculture, in Proceedings of the National Academy of Sciences,
114(24), 6148–6150.

21. Zhang, Z.-K., Cho, M. C. Y., Wang, C.-W., Hsu, C.-W., Chen, C.-K., & Shieh, S. (2014).
IoT security: Ongoing challenges and research opportunities, in 2014 IEEE 7th International
Conference on Service-Oriented Computing and Applications (pp. 230–234). Piscataway:
IEEE.

22. Chen, S., Xu, H., Liu, D., Hu, B., &Wang, H. (2014). A vision of IoT: Applications, challenges,
and opportunities with China perspective. IEEE Internet of Things Journal, 1(4), 349–359.

23. Lee, I., & Lee, K. (2015). The internet of things (IoT): Applications, investments, and
challenges for enterprises. Business Horizons, 58(4), 431–440.

24. Van Kranenburg, R., & Bassi, A. (2012). IoT challenges. Communications in Mobile Comput-
ing, 1(1), 1–5.

25. Shekhar, Y., Dagur, E., Mishra, S., & Sankaranarayanan, S. (2017). Intelligent IoT based
automated irrigation system. International Journal of Applied Engineering Research, 12(18),
7306–7320.

26. Wang, W., Wang, Q., & Sohraby, K. (2016). Multimedia sensing as a service (MSAAS):
Exploring resource saving potentials of at cloud-edge IoT and fogs. IEEE Internet of Things
Journal, 4(2), 487–495.

Chapter 2
Smart Cities, Connected World, and
Internet of Things

Rafael S. Salles and Paulo F. Ribeiro

2.1 Introduction

The world has undergone constant transformations in several society areas, char-
acterized by a wide digitalization and modernization. Urban environments play
a vital role in this process, as these spaces contain concentrations of population,
activities, services, and technological advances. More efforts are being made to
create models of cities that can adequately absorb cutting-edge technologies and
solutions combined with well-being and sustainability [6]. This concern with the
quality of life and the environment is a consequence of the problems created so
far, such as emission of greenhouse gases, global warming, energy poverty, social
inequality in urban centers, among other issues. Those are being faced by new
concepts that are linked to a more modern and connected world.

Smart cities are based on this attempt to incorporate different aspects through a
technological and holistic perspective [20]. The development of smart cities is sup-
ported by the revolution and massive penetration of information and communication
technology (ICT), computerization and automation of urban infrastructures. These
technologies play a critical factor in this city model’s success. With the increase
in applications aimed at networked devices, increased use of sensing, applications
demand greater importance of information within this giant data flow in urban
centers. In this way, it is possible to observe that initiatives and applications based
on the internet and ICTs are increasingly emerging in a connected city, focused on
modern solutions based on the latest technology and cutting-edge software [25].

The organizational structure that incorporates this concept of smart brings a
direction in technological advances, mainly the network structure formed in urban

R. S. Salles (�) · P. F. Ribeiro
Institute of Electrical and Energy Systems, Federal University of Itajuba, Itajuba, Brazil
e-mail: sallesrds@gmail.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. S. Aujla et al. (eds.), Software Defined Internet of Everything, Technology,
Communications and Computing, https://doi.org/10.1007/978-3-030-89328-6_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89328-6_2&domain=pdf
mailto:sallesrds@gmail.com
https://doi.org/10.1007/978-3-030-89328-6_2

18 R. S. Salles and P. F. Ribeiro

spaces, with innovation in the use of the internet in different infrastructures.
It is an effect that culminates in the various components of a city inserted in
this context. That includes applications aimed at smart grids, intelligent mobility,
universal public health, transparent and people-centered governance, effective and
sustainable management of resources and waste, in addition to crucial points such
as education, safety, and economy. Such applications focused on a connected world
approach are characterized by the protagonism of information, data management,
and communication between smart devices through ICTs. That is why the Internet of
Things (IoT) emerges as a solution that encompasses all these concepts and allows
the establishment of these advances to strengthen smart cities [3]. Below are some
established definitions that describe the main concept behind the smart cities.

• “A city well performing in a forward-looking way in economy, people, gov-
ernance, mobility, environment, and living, built on the smart combination of
endowments and activities of self-decisive, independent, and aware citizens.
Smart city refers to implementation of intelligent solutions that allow modern
cities to enhance the quality of citizens’ services” [17];

• “Smart cities connect the physical infrastructure, the IT infrastructure, the social
infrastructure, and the business infrastructure to leverage the city’s collective
intelligence” [18];

• “Smart Cities initiatives try to improve urban performance by using data,
information, and ICTs to provide more efficient services, monitor and optimize
existing infrastructure, increase collaboration among different economic actors,
and encourage innovative business models in private and public sectors” [27];

• “A city is smart when investments in human and social capital, traditional
infrastructure, and disruptive technologies fuel sustainable economic growth
and high quality of life, with a wise management of natural resources, through
participatory governance” [12];

• “Smart cities can be defined as a technologically advanced and modernized
territory with a specific intellectual ability that deals with different social,
technical, economic aspects of growth based on smart computing methods to
develop robust infrastructures and services” [31].

The wide-scale use of sensor technology creates huge volumes of data that smart
systems can use to optimize the use of infrastructure and resources. The IoT refers to
the enormous implementation of advanced sensors and wireless communication in
all kinds of physical objects [12]. In this era of transformations, the connected world
allows connections between people, things, devices, applications, and processes.
IoT tracking is a modern evolution of the internet that allows massive numbers
of devices to connect and interact with people and machines in a networked
environment [23]. In addition to supporting these important aspects, it also brings
greater flexibility and reliability to the systems, providing adequate solutions to
face the complexity that the advances of intelligent cities bring. The IoT is one of
the critical elements of smart sustainable cities’ ICT infrastructure as an emerging
urban development approach due to its great potential to advance environmental

2 Smart Cities, Connected World, and Internet of Things 19

sustainability, which is associated with big data analytics and becoming more
important in many urban domains [8].

This technological sphere is completed with diverse applications and disrup-
tive technologies such as renewable energy sources, electric vehicles, artificial
intelligence (AI) applied to different segments, green technologies, cybersecurity
innovations, and many others. These are the results of this evolution applied to
smart cities’ infrastructures, mainly the so-called critical ones. With the increase
in complexity with these various interconnected systems, these technologies help
overcome technical barriers and promote the possibility of creating an atmosphere
geared towards innovation, sustainability, cooperation, education, and research.

Therefore, this chapter will explore the main concepts of smart cities. It will also
address the technological aspects, the holistic and social side, the infrastructures,
and how IoT provides these urban spaces’ evolution. Lastly, some initiatives that
are already being put in place to improve life quality in some cities will be pointed
out.

2.2 Smart City Integrated Perspective

The integrated perspective about the smart cities with respect to different factors is
comprehensively discussed in this section.

2.2.1 Smart City Overview

Given the starting point of contextualization and definitions raised about smart
cities, it is possible to delve into important aspects for understanding the phe-
nomenon as a whole. Smart cities’ inherent complexity can be divided into
three main aspects: technology, governance, and community. These are interlaced
to promote a dynamic system that supports an increase in the performance of
infrastructure and well-being through disruptive technologies. Philosophical con-
siderations are also crucial for a complete vision with a sustainable and balanced
development [32, 40]. From this set, it is possible to establish a development where
the population and all stakeholders appropriate a modern city’s benefits. Figure 2.1
illustrates the complexity division of smart cities.

These complexities go back to the objectives, challenges, and the role of
each attribute of this system. It is complex because it is necessary to adapt
several subsystems to provide a profitable integration that promotes a modern and
sustainable city’s basic requirement. The literature reports several key components
that constitute a smart city. Some of these components, such as smart people, smart
economy, smart governance, smart mobility, smart environment, and smart living,
are great to describe the features as a role.

20 R. S. Salles and P. F. Ribeiro

Fig. 2.1 Smart city complexity aspects

The concept of “Smart People” addresses an attempt to modify how citizens
interact with services, with the public and private sectors, and with the community,
for a more connected way through information and technologies. For this to happen,
there must be a framework that promotes individuals’ social and digital inclusion so
that there is effective participation of the population, which is the biggest beneficiary
of the whole process. People in smart cities should connect and communicate with
each other to interact online and share physical space with users [38, 39]. Smart
people should not only interact with each other via services, but they should also
provide data for these services [22]. This data could be critical for decision making
and planning by smart city agents, like traffic information, infrastructure expansion,
programmable events, services improvements, etc.

Another important point regarding this component is the promotion of intelligent
methods in the educational process, which should generate more opportunities,
training, professional qualification, and a solid education plan at different levels.
It benefits all sectors of society, as qualified and adequately educated citizens make
the city develop intelligently. Cities cannot achieve smartness without creativity,
education, knowledge, and learning [2]. Within this context, as already mentioned,
inclusion plays a significant role. Combined with technological development and
advances in infrastructure, it is also necessary that urban centers promote social
inclusion, as there is no intelligence in a city with social inequality [35].

2 Smart Cities, Connected World, and Internet of Things 21

“Smart Economy” refers to initiatives and measures to improve the city’s
local economy, making it strong, making it attractive for innovation and start-
ups, making it attractive for investors and new businesses, and creating a business
ecosystem and competitiveness. The use of technology in this field must permeate
through alternatives that reduce costs and increase productivity, feed the universe
of discourse in the economic sector with valuable information with ICTs, promote
sustainability for the commercial and industrial segments, and create more jobs.

“Smart Governance” is about changing how the government interacts and
connects with stakeholders in a city context. Government actions should reconsider
the quality, impact, and scope of services for citizens and civil society organizations.
Traditionally governance is “as regimes of laws, administrative rules, judicial
rulings, and practices that constrain, prescribe, and enable government activity,
where such activity is broadly defined as the production and delivery of publicly
supported goods and services” [26]. With the widespread of ICTs, all governance
activities which are based on technology are also “Smart Governance” [2]. It
improves innovative policies that use information, technology, and business model
to serve the city better.

Another point that must be considered is transparency. Within the context of
smart cities, public institutions in government must promote data transparency
and access to information. It encourages greater participation and accountability
concerning society, in addition to inhibiting corruption and political irresponsibility.
With data and information available, it is possible to study different ways to apply
methods and research to promote better services.

The “Smart Mobility” corresponds to the effort to improve urban transport’s
performance and quality by adopting innovative mobility solutions, intelligent
mobility management, and investment in infrastructure. Managing traffic networks
and congestion has been one of the major challenges facing agents in large
urban centers. The use of technology and IoT appears as a viable solution for
implementation by the monitoring centers. An urban transport network that contains
several options and modes, both public and private, will present a more excellent
resource to mitigate traffic and mobility problems. Therefore, the smart city must
also promote new forms of transport, especially sustainable ones. Some examples
are electric vehicles, self-driving cars, shared vehicles (bicycles, scooters, car-
sharing, etc.), and infrastructure expansion measures, such as special roads, cycle
paths, among others. Every investment and program must contain a people-centered
directive to improve people’s flow and community mobility.

Focused on the environment, the “Smart Environment” is concerned with better
use of resources and sustainability. The city must act on environmental infrastruc-
tures like waterways, sewers, and green spaces, and it should also be based on using
natural and green energy resources to increase sustainability [10]. For example,
electric power systems also go through a transformation phenomenon called smart
grids, which seeks to make the system more reliable, sustainable, and robust through
ICTs, automation, and renewable energy sources. Another essential point is basic
sanitation and waste treatment, which increasingly needs to be managed and used
correctly through services that use the technological potential to improve these

22 R. S. Salles and P. F. Ribeiro

Fig. 2.2 Smart city key components

critical infrastructures. The smart city’s objectives are to reduce waste production,
control pollution, reduce greenhouse gas emissions, energy efficiency, and ensure
water quality and availability.

Lastly, “Smart Living” is focused on improving citizens’ quality of life, whether
residents or visitors. Smart buildings for education, tourism, healthcare, and public
safety comprise the framework. The promotion of civic engagement and the use of
IoT-based technologies drive the improvement of individuals’ practice in different
areas [22]. Public safety is a big concern, for example, affecting the growing
urbanization in developing countries [1]. In addition to ensuring that these essential
services are served, smart cities must also promote solutions and initiatives that
improve the community’s daily life. Figure 2.2 illustrates the smart city components,
highlighting the key points.

2.2.2 Smart Cities Goals and Barriers

The approach of smart cities is shaped by the concepts mentioned above, which
allows to detail and highlight some objectives of this proposal to transform urban
centers. The focus developed in smart cities is to familiarize the union between
the technological environment and the citizen’s interfaces with the city so that
innovative solutions are generated. Among the objectives of this development is:

2 Smart Cities, Connected World, and Internet of Things 23

• Focus on Citizen: improvement on inclusiveness, services, and life quality for
people;

• Resilience and Robustness of Infrastructure: Modernization of critical infras-
tructures through IoT, ICT, automation, data processing, etc. Thus increasing
performance, efficiency, and also resilient to catastrophes and crises;

• Huge data processing: The potential to process and direct data and information
in real-time to feed the universe of services discourse, support in city operations,
within a context of immersion of data with huge volumes of information.

• Optimization of Energy and Resources: Increased energy efficiency, develop-
ment of smart electrical networks, use of renewable energy sources, measures for
decarbonization, waste management, sustainability as priority, and a guarantee of
a recycling level;

• Promote development: Create a favorable environment for research and devel-
opment, innovation, economic competitiveness, and modernization of different
sectors.

• Connected Applications: Use of smart applications in the urban environment,
greater user participation in services and processes, AI use to improve experi-
ences, and transparency.

The objectives alone refer to the benefits generated by this intelligent approach.
However, a series of challenges arises regarding the complexity of this set of con-
cepts and practices described. It is also important to highlight that every evolution,
social, and technological transformation, with disruptive structures, is accompanied
by barriers and roadmaps. The barriers placed in the face of advancement are
associated with a concern with changes and losses in jobs, security and data privacy,
rampant innovation, social reality in different regions, scarcity of resources, etc.
Some reports [12, 24] describe these challenges well, which are illustrated in
Fig. 2.3.

It is important to affirm that several municipalities in the world have already
reached or are searching for the status of smart cities. Despite the difficulties,
these cities serve as an example of leadership in the subject for emerging cities.
Also, several solutions appear and are used to mitigate barriers and increase cities’
performance, mainly based on technologies.

2.2.3 Digitalization and Connected World

The connected, digitized, and computerized world is a powerful feature of smart
cities as has been highlighted so far. It is noticeable that this is the character
that underlies the smart city concept and even brings technical feasibility to this
proposed approach. In this context of connection, some technologies are driving
development and have a significant role in guaranteeing the objectives and aspects
mentioned in the previous sections.

24 R. S. Salles and P. F. Ribeiro

Fig. 2.3 Smart city challenges and barriers

In smart cities, IoT is presented as a tool that provides many particular services
that give low-level support to citizens’ different applications [28]. This already
points out something important within these systems, precisely the variability of
devices, equipment, or computers connecting to the same network. These networks
are composed of heterogeneous connection loops, communicating through common
technologies and protocols, with specific standards. IoT could be explained as a
paradigm that allows things to communicate in people’s environment through the
Internet as if they were computers [34]. Or as objects such as devices, sensors,
actuators, and smartphones capable of interacting with each other and cooperating
with smart elements to achieve common goals [44]. It is part of this concept
that physical objects along with cutting-edge sensors and connectivity transform
into smart components and generate a massive amount of data/information. The
IoT basis technology implemented at the physical layer is Wireless Sensor Net-
works. But other technologies, such as Power Line Communications, Bluetooth
Low Energy, Radio Frequency Identification (RFID), Digital Enhanced Cordless
Telecommunications, Ultra-Wide Bandwidth, and Near Field Communication, are
also substantial for IoT applications [41].

In this panorama of increasing the amount of data circulating in the urban
environment, Big Data emerges to address solutions precisely to deal with this
massive flow. Big data are large and complex datasets that new technologies are
necessary before we can use to their full potential [19]. In the document at [14, 45],
some key features to define Big Data are listed. The first aspect that can highlight
is that machine data production is larger than traditional formats. A smart meter or
industrial equipment can produce terabytes in minutes. The second feature is speed,
which means that the analysis and treatment transfer solutions must be significantly
fast to ensure consistent performance with the smart model. The variety of data types

2 Smart Cities, Connected World, and Internet of Things 25

Fig. 2.4 Sensor as services model

is another crucial point, and platforms or applications must be prepared to meet the
different types of data possible in intelligent and computerized systems. Finally, the
value attribute is presented to differentiate the information in the datasets, that is, in
a large universe of data, which are actually representative for a given purpose.

The use of sensors as services also complements these technological biases of
the connected city, which may say that the sensor mesh is the glue that unites
these different points, parallel with ICTs. Each device connected in a smart city can
contain several sensors measuring different variables simultaneously. The sensor
as services model is described in some literature [11, 29], and it consists of four
conceptual layers: sensors and sensor owners, sensor publishers, extended service
providers, and sensor data consumers. Figure 2.4 illustrates this model arrangement.

26 R. S. Salles and P. F. Ribeiro

Table 2.1 Core aspects for Cybersecurity Frameworka

Core Description

Digital trust platform A platform that allows reliable untied connections and manages
identities and relationships within the connected system. This approach
should help cities to identify, authenticate and authorize people and
devices through security mechanisms.

Privacy-by-design It is a concept that aims to protect people’s privacy through the
insertion of these concepts in the design process of technologies,
processes, and infrastructure.

Cyberthreat
intelligence and
analysis platform

A platform that identifies the aspects that improve the treatment of data
to increase performance. Using AI techniques, this platform can
provide high performance from less explicit parameters and better feed
the universe of discourse in planning and decision making.

Cyber response and
resiliency

It is about being prepared for cyberattacks. It also includes developing a
cybernetic investigation resource to inform the identification, treatment,
containment, and prevention of organized attacks on different smart city
systems.

Cyber competencies
and awareness
program

This core is about the need for skilled cybersecurity labor. The
organizations should maintain concern with training, programs, and
task forces, including restructuring traditional teams and infrastructures.

aSource: Adapted from “Making smart cities cybersecure” report, 2019 [13]

In this connected world of smart cities, with such complexity and massive
information exchange, the cybersecurity concern is growing. The number of devices
connected in a network or cloud, with internet access, means that there is more
access point, increasing the vulnerability. As pointed out in the challenges section,
there is a concern with the misuse of private or security data or even criminal inva-
sions to attack critical infrastructures. It is necessary to spare no effort to structure a
framework to solve cybernetic risks to guarantee confidentiality, integrity, reliability,
safety, and robustness. It also includes the use of standards, protocols, regulatory
policies aimed at greater cybernetic security. In the technical report prepared by
Deloitte [13], the primary nuclei for a cybersecurity approach are detailed. Table 2.1
shows the detail described on Deloitte for each vacancy.

These commented aspects form the critical points of the digitized and connected
world of smart cities. In this way, it is possible to understand better how the IoT
provides technological and social development in urban spaces.

2.3 IoT Enabling Smart Cities

When observing the entire panorama of smart cities, it is noticeable that technolog-
ical development and the connected framework are enablers of the smart proposal’s
objectives and benefits. With IoT as a backbone, smart cities can use information
resources at a high level of integration and interoperability to provide key urban

2 Smart Cities, Connected World, and Internet of Things 27

development elements [23]. IoT’s influence leads to a new era of applications and
services, and the key components are sensors, mobile phones, RFID tags, etc. [7].

Combining different types of devices with smart devices and ICs, mainly wireless
communication, the possibility of new applications and solutions based on adaptive
systems, cloud intelligent systems, and innovative products and services in different
areas is created. One of the disruptive effects of the IoT is the fusion of information
technology with other technologies, like consumer technology, medical devices,
or vehicles [12]. It allows the people and things to be interconnected anytime,
anywhere, anyplace, anything, and anytime using any pathway or any service [33].

Among the various areas with applications for IoT, the following can be
highlighted in the context of smart cities:

1. Smart Grid: Electrical Power grids have also undergone transitions and modern-
ization to a more sustainable and robust format. The smart grid uses innovative
technologies such as intelligent and autonomous controllers, advanced software
for data management, and two-way communications between power utilities
and consumers to create an automated and distributed advanced energy delivery
network [15, 21]. IoT has shown to be a key technology and with outstanding
suitability for applications to face the challenges. In addition to supporting
the expansion of distributed generation, mainly with the increase in renewable
sources penetration, smart meters and advanced monitoring and communication
technologies bring many benefits. Such as demand response programs, high
network performance management, greater participation of the consumer in oper-
ation, increase in energy efficiency, and increase in power systems’ reliability in
general.

2. Environment Monitoring: Concern about climate change means that organi-
zations and governments are continually monitoring these environment factors.
Smart cities use a range of sensors to collect climatic data and various parts of
the urban space to assess pollution, air quality and observe climatic disturbances.
Through IoT, these sensors bring a range of information that feeds the universe
of research discourse and applications associated with entities that promote
sustainability and combat problems related to the environment.

3. Smart Water Supply: The IoT is applied to the network of sensors and smart
meters to monitor the network of water supply within cities. With this, it is
possible to increase the performance of the supply operation, more leak detection,
reduce water waste, and help the correct and efficient use of this resource together
with better consumption management.

4. Waste Management System: One important feature in waste management is
environmental sustainability [9]. The use of IoT is in the implantation of sensors
in garbage bins. This way, the collection centers, and recycling entities can
have information on the waste. It can assist in directing recycling, selective and
efficient collectors, better management of the collection and the staff involved,
and re-education of the population about waste disposal.

5. Smart Traffic: Strategy widely used in large urban centers and smart cities
consists of adaptive traffic management, provided with real-time data and

28 R. S. Salles and P. F. Ribeiro

information through traffic sensors and cameras [5]. The objective is to avoid
congestion and also improve urban mobility [4]. These devices can also help
manage public transport and bring forecasts or aid in decision making for
planning. The advances lead to communication between vehicles and information
derived from them, which can also increase the range of applications and increase
urban traffic performance.

6. Smart Parking: The implementation of IoT in this area consists of monitoring
parking spaces, so that city users have access to information about parking
location and available spots, in addition to benefits such as greater ease for online
payments. It is a significant bottleneck in municipalities, especially in large
centers. I also offer re-education and an intelligent solution to avoid traditional
measures such as fines-only control.

7. Smart Healthcare: Intelligent medical treatment involves the use of devices
that provide information on patients in real-time and monitor hospital beds and
organize the care structure. A Wireless Body Area Network, which is based on a
low-cost wireless sensor network technology, could benefit patient monitoring
systems in hospitals, residential, and work environments [30]. The sensors
have the capability of measuring blood flow, respiratory rate, blood pressure,
blood PH, body temperature, among others, which are collected and analyzed
by remote servers [43]. Citizens of smart cities can benefit from personalized
treatment, better medical care, disease prevention, improved prescription of
medicines, etc.

8. Smart Factory: This concept is widespread as Industria 4.0, and it is the
information revolution within the industrial environment of several segments.
Through IoT, the phenomenon involves a de-verticalization of the means of
production. The information is not contained only in the field of management but
extends to the factory floor. It allows better management of resources, allocation
of employees, reliability, and security. Advanced ICT solutions in all industry
layers allow a more excellent and better exchange of information, characterized
by equipment and intelligent devices. For example, a flow control valve in the
field traditionally is only a final control element. However, in Industry 4.0, it
may also have another role based on the information generated by intelligent
valves that have smart control embedded, health monitoring, data management
for providing valuable data for the company.

Figure 2.5 illustrates the roles of the IoT in enabling smart cities. These concepts
are of paramount importance to understand how Software-Defined Networks is a
solution in IoT and the connected world due to its complexity. Software-Defined
Networking (SDN) emerges as one of the noteworthy forms of networking concepts,
which helps in lubricating a convenient and efficient network control flow that
facilitates the cost of investment, which avails a considerable number of users [36].
SDN can be used as the overlay for the implementation of IoT into the real world
[7]. It will be discussed intensely further in this book.

2 Smart Cities, Connected World, and Internet of Things 29

Fig. 2.5 IoT applications for smart cities

2.4 Case Studies

Some case studies will exemplify how smart cities, the IoT, and the connected world
are developing in real municipalities to consolidate the concepts discussed in this
chapter. This visualization is important to indicate that certain places in the world
are reaching important status and with applications that impact society.

• Harnessing City Data—Singapore [42]: Singapore has used data and infor-
mation to improve services and create economic value. Several applications are
benefiting from this approach, with emphasis on the health area. The city-state
has an elderly population that needs assistance to have an independent life and
quality of care. ConnectedLife is an example of an application in the healthcare
industry. By combining medical-grade sensor technology, and cutting-edge AI,
the ConnectedLife solution facilitates early detection and intervention of various
common chronic conditions. It enables continuous monitoring and personalized

30 R. S. Salles and P. F. Ribeiro

treatment to improve the quality of life and clinical outcomes of people living
with chronic conditions. Real-time information and insurance companies with
better data and allows families to protect their elderly members.

• Water-Conscious Urban Development—Fukuoka, Japan [16, 42]: Use of
IoT and ICT for water supply programs. The city has developed a system that
can monitor and control the water flow and supply pressure employing specific
sensors. It helps in identifying intervention of water leaks. The information
generated by the sensors makes it possible, based on more faithful models, to
reconnect forecasts of water demand and effective distribution in the supply. It is
also possible to observe a re-education process to not spare efforts for efficient
water management.

• Cubes for Smart Recycling—Seoul, South Korea [37]: In one of the world’s
largest urban areas, there was a problem with the frequency of garbage collection
and insufficient public waste bins. Presenting overflow of waste bins and also low
recycling rates. In partnership with the Ecube Labs company, they installed 85
Clean Cubes for common and recyclable waste in the city center to resolve the
issues. With this, they were able to monitor the status and level of filling of the
Clean Cubes in real-time and observe and report the efficiency of the collection
in the capital. As a result, there was also an improvement in the performance
of route management for collection. The associated benefits are eliminating
overflow of waste bins, 66% reduction in the frequency of collection, cleaner
public areas, and reduction of collection costs by 83%.

• Using data to predict and mitigate floods—Calgary, Canada [37]: The city
of Calgary is experiencing seasonal flood problems, and these events are regular
but unpredictable. Seasonal floods usually bring water quality issues and can
also cause costly damage, around millions of dollars. The first players in this
type of service to contain this problem did not directly access the data, which
slowed the response time and increased costs. The solution was to use and expand
Plant Information (PI) systems that collect upstream river flows and rainfall
data. The PI system also allows for a high-performance report of water quality.
And the front line for responses to these types of events began to access data
and information directly. The problems were mitigated, thus presenting high
performance in forecasting, response, and monitoring.

• Envision Charlotte’s Smart Energy Now—Charlotte, USA [37]: The city of
Charlotte, approximately in 2016, was looking for an expansion and a boost
in urban growth and development. As a result, the challenges of large cities’
evolution arise, which even come up against energy consumption. With that,
Duke Energy invited Verizon Wireless to run an innovative project focused on
educating office workers about changes in habits and ways of working that
can collectively impact energy use in the city. Envision’s smart grid captured
information from 61 buildings using smart meters. This information fed into the
program’s central office and also provided payment for the individual buildings.
Thus were raised tools and directions in the use of energy, such as: turning off
unused lights, adjusting thermostats for different situations, and reducing hours
with the light-on. Envision Charlotte has reduced energy consumption by 8.4%,

2 Smart Cities, Connected World, and Internet of Things 31

an estimated USD 10 million in savings. The case study also spurred other
similar programs serving different pillars, such as water consumption and waste
management.

Thus, the chapter concludes the contextualization of smart cities in the context of
the IoT and the connected world, going through all the key points and ending with
examples that illustrate the application of contexts in different regions.

References

1. An, J., Le Gall, F., Kim, J., Yun, J., Hwang, J., Bauer, M., ... Song, J. (2019). Toward global
IoT-enabled smart cities interworking using adaptive semantic adapter. IEEE Internet of Things
Journal, 6(3), 5753–5765.

2. Arroub, A., Zahi, B., Sabir, E., and Sadik, M. (2016, October). A literature review on Smart
Cities: Paradigms, opportunities and open problems. In 2016 International Conference on
Wireless Networks and Mobile Communications (WINCOM) (pp. 180–186). New York: IEEE.

3. Aujla, G. S., & Jindal, A. (2020). A decoupled blockchain approach for edge-envisioned IoT-
based healthcare monitoring. IEEE Journal on Selected Areas in Communications, 39(2), 491–
499.

4. Aujla, G. S., Jindal, A., & Kumar, N. (2018). EVaaS: Electric vehicle-as-a-service for energy
trading in SDN-enabled smart transportation system. Computer Networks, 143, 247–262.

5. Aujla, G. S., Kumar, N., Singh, M., & Zomaya, A. Y. (2019). Energy trading with dynamic
pricing for electric vehicles in a smart city environment. Journal of Parallel and Distributed
Computing, 127, 169–183.

6. Aujla, G. S. S., Kumar, N., Garg, S., Kaur, K., & Ranjan, R. (2019). EDCSuS: Sustainable
edge data centers as a service in SDN-enabled vehicular environment. IEEE Transactions on
Sustainable Computing. https://doi.org/10.1109/TSUSC.2019.2907110

7. Babbar, H., & Rani, S. (2020). Software-defined networking framework securing internet of
things. In Integration of WSN and IoT for Smart Cities (pp. 1–14). Cham: Springer.

8. Bibri, S. E. (2018). The IoT for smart sustainable cities of the future: An analytical framework
for sensor-based big data applications for environmental sustainability. Sustainable cities and
society, 38, 230–253.

9. Bogatinoska, D. C., Malekian, R., Trengoska, J., & Nyako, W. A. (2016, May). Advanced
sensing and internet of things in smart cities. In 2016 39th International Convention on
Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp.
632–637). New York: IEEE.

10. Campbell, T. (2009). Learning cities: Knowledge, capacity and competitiveness. Habitat
International, 33(2), 195–201.

11. Chamoso, P., González-Briones, A., Rodríguez, S., & Corchado, J. M. (2018). Tendencies of
technologies and platforms in smart cities: a state-of-the-art review. In Wireless Communica-
tions and Mobile Computing (Vol 2018).

12. Deloitte (2015). Smart Cities: How rapid advances in technology are reshaping our economy
and society. Deloitte, 1, 1–86. https://www2.deloitte.com/tr/en/pages/public-sector/articles/
smart-cities.html

13. Deloitte (2019).Making Smart Cities Cybersecurity, Deloitte Center for Government Insights.
https://www2.deloitte.com/us/en/insights/focus/smart-city/making-smart-cities-cyber-secure.
html

14. Dijcks, J. P. (2012). Oracle: Big Data for the Enterprise. Oracle White Paper, 16.
15. Fang, X., Misra, S., Xue, G., & Yang, D. (2011). Smart grid—The new and improved power

grid: A survey. IEEE Communications Surveys and Tutorials, 14(4), 944–980.

https://doi.org/10.1109/TSUSC.2019.2907110
https://www2.deloitte.com/tr/en/pages/public-sector/articles/smart-cities.html
https://www2.deloitte.com/tr/en/pages/public-sector/articles/smart-cities.html
https://www2.deloitte.com/us/en/insights/focus/smart-city/making-smart-cities-cyber-secure.html
https://www2.deloitte.com/us/en/insights/focus/smart-city/making-smart-cities-cyber-secure.html

32 R. S. Salles and P. F. Ribeiro

16. Fukuoka City Government (2014). Fukuoka City Visit and Training, Fukuoka City
Government. http://www.city.fukuoka.lg.jp/data/open/cnt/3/19077/1/00guideenglishall.
pdf?20161109140138

17. Giffinger, R., Fertner, C., Kramar, H., &Meijers, E. (2007). City-ranking of European medium-
sized cities. Centre of Regional Science, Vienna UT, 1–12.

18. Harrison, C., Eckman, B., Hamilton, R., Hartswick, P., Kalagnanam, J., Paraszczak, J., &
Williams, P. (2010). Foundations for smarter cities. IBM Journal of Research and Development,
54(4), 1–16.

19. Jessen, J. (2015). How to Create a Smart City? Co-Creation of a Smart City with Citizens
(Doctoral dissertation, Master Thesis, Eindhoven University, Holland. http://www.digitalbydel.
dk/wp-content/uploads/2015/01/MA_Guenter_final.pdf)

20. Jindal, A., Aujla, G. S., Kumar, N., Prodan, R., & Obaidat, M. S. (2018, December). DRUMS:
Demand response management in a smart city using deep learning and SVR. In 2018 IEEE
Global Communications Conference (GLOBECOM) (pp. 1–6). New York: IEEE.

21. Jindal, A., Aujla, G. S., Kumar, N., & Villari, M. (2019). GUARDIAN: Blockchain-based
secure demand response management in smart grid system. IEEE Transactions on Services
Computing, 13(4), 613–624.

22. Kirimtat, A., Krejcar, O., Kertesz, A., and Tasgetiren, M. F. (2020). Future trends and current
state of smart city concepts: A survey. IEEE Access, 8, 86448–86467.

23. KPMG, (2019). Internet of Things in Smart Cities. KPMG, https://assets.kpmg/content/dam/
kpmg/in/pdf/2019/05/urban-transformation-smart-cities-iot.pdf

24. KPMG (2020), Smart Cities – Adoption of Future Technologies, KPMG, 1-24, https://
worldengineeringday.net/wp-content/uploads/2020/03/Smart-City-IOT-WFEO-Version-1.pdf

25. Kumar, N., Aujla, G. S., Das, A. K., & Conti, M. (2019). ECCAuth: A secure authentication
protocol for demand response management in a smart grid system. IEEE Transactions on
Industrial Informatics, 15(12), 6572–6582.

26. Lynn Jr, L. E., Heinrich, C. J., & Hill, C. J. (2000). Studying governance and public
management: Challenges and prospects. Journal of Public Administration Research and
Theory, 10(2), 233–262.

27. Marsal-Llacuna, M. L., Colomer-Llinàs, J., & Meléndez-Frigola, J. (2015). Lessons in urban
monitoring taken from sustainable and livable cities to better address the Smart Cities initiative.
Technological Forecasting and Social Change, 90, 611–622.

28. Minerva, R., Biru, A., & Rotondi, D. (2015). Towards a definition of the Internet of Things
(IoT). IEEE Internet Initiative, 1(1), 1–86.

29. Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Sensing as a service
model for smart cities supported by internet of things. Transactions on Emerging Telecommu-
nications Technologies, 25(1), 81–93.

30. Poon, C. C., Zhang, Y. T., & Bao, S. D. (2006). A novel biometrics method to secure wireless
body area sensor networks for telemedicine and m-health. IEEE Communications Magazine,
44(4), 73–81.

31. Rana, N. P., Luthra, S., Mangla, S. K., Islam, R., Roderick, S., & Dwivedi, Y. K. (2019).
Barriers to the development of smart cities in Indian context. Information Systems Frontiers,
21(3), 503–525.

32. Ribeiro, P. F., Polinder, H., & Verkerk, M. J. (2012). Planning and designing smart grids:
Philosophical considerations. IEEE Technology and Society Magazine, 31(3), 34–43.

33. Sahoo, K. S., Sahoo, B., & Panda, A. (2015, December). A secured SDN framework for IoT.
In 2015 International Conference on Man and Machine Interfacing (MAMI) (pp. 1–4). New
York: IEEE.

34. Said, O., & Masud, M. (2013). Towards Internet of Things: Survey and future vision.
International Journal of Computer Networks, 5(1), 1–17.

35. Salles, R. S., de Souza, A. Z., Ribeiro, P. F. Exploratory research of social aspects for Smart
City development in Itajubá. In 2020 IEEE International Smart Cities Conference (ISC2) (pp.
1–8). New York: IEEE.

http://www.city.fukuoka.lg.jp/data/open/cnt/3/19077/1/00guideenglishall.pdf?20161109140138
http://www.city.fukuoka.lg.jp/data/open/cnt/3/19077/1/00guideenglishall.pdf?20161109140138
http://www.digitalbydel.dk/wp-content/uploads/2015/01/MA_Guenter_final.pdf
http://www.digitalbydel.dk/wp-content/uploads/2015/01/MA_Guenter_final.pdf
https://assets.kpmg/content/dam/kpmg/in/pdf/2019/05/urban-transformation-smart-cities-iot.pdf
https://assets.kpmg/content/dam/kpmg/in/pdf/2019/05/urban-transformation-smart-cities-iot.pdf
https://worldengineeringday.net/wp-content/uploads/2020/03/Smart-City-IOT-WFEO-Version-1.pdf
https://worldengineeringday.net/wp-content/uploads/2020/03/Smart-City-IOT-WFEO-Version-1.pdf

2 Smart Cities, Connected World, and Internet of Things 33

36. Sezer, S., Scott-Hayward, S., Chouhan, P. K., Fraser, B., Lake, D., Finnegan, J., ... Rao, N.
(2013). Are we ready for SDN? Implementation challenges for software-defined networks.
IEEE Communications Magazine, 51(7), 36–43.

37. Smart City Council (2021). Examples and Case Studies. https://smartcitiescouncil.com/smart-
cities-information-center/examples-and-case-studies

38. Sproull, L., & Patterson, J. F. (2004). Making information cities livable. Communications of
the ACM, 47(2), 33–37.

39. Sun, J., & Poole, M. S. (2010). Beyond connection: Situated wireless communities. Communi-
cations of the ACM, 53(6), 121–125.

40. Verkerk, M. J., Ribeiro, P. F., Basden, A., & Hoogland, J. (2018). An explorative philosophical
study of envisaging the electrical energy infrastructure of the future. Philosophia Reformata,
83(1), 90–110.

41. O. Vermesan & P. Friess (Eds.) (2013). Internet of things: Converging technologies for smart
environments and integrated ecosystems. Denmark: River Publishers.

42. World Economic Forum - Global Future Council on Cities and Urbanization (2020), Smart at
Scale: Cities to Watch - 25 Case Studies, World Economic Forum.

43. Zeadally, B. H. R. K. S., & Khoukhi, A. F. L. (2017). Internet of Things (IoT) Technologies for
Smart Cities. https://doi.org/10.1109/ISTAFRICA.2016.7530575

44. Zheng, J., Simplot-Ryl, D., Bisdikian, C., & Mouftah, H. T. (2011). The Internet of Things
[Guest Editorial]. IEEE Communications Magazine, 49(11), 30–31.

45. Zikopoulos, P., & Eaton, C. (2011). Understanding big data: Analytics for enterprise class
Hadoop and streaming data. New York: McGraw-Hill Osborne Media.

https://smartcitiescouncil.com/smart-cities-information-center/examples-and-case-studies
https://smartcitiescouncil.com/smart-cities-information-center/examples-and-case-studies
https://doi.org/10.1109/ISTAFRICA.2016.7530575

Part II
Software-Defined Networking

Chapter 3
Challenges of Traditional Networks and
Development of Programmable Networks

Fanglin Liu, Godfrey Kibalya, S. V. N. Santhosh Kumar, and Peiying Zhang

3.1 Introduction

The increasing development of science and technology is gradually changing our
lives. Among them, the most closely connected with people’s lives is the Internet
[18, 20]. The emergence and development of the Internet has not only subverted
the traditional media industry but also has a revolutionary impact on the basic
structure and standards of the entire society and economy [8, 19]. The Internet is the
abbreviation of Computer Interactive Network, which is a huge network formed by
the series connection between the network and the network [15, 22]. These networks
are connected by a set of common protocols to form a logically single and huge
global network. Computer network is the foundation of the information society. It
connects multiple computer systems that are scattered in different locations and have
independent functions with communication equipment and lines, communicates
with each other under the support of network protocols and software, and finally
realizes the sharing of network resources and real-time interaction of information
[13, 14, 24]. However, although the existing design principles of simple and easy
access to the Internet have brought convenience to its development, it exposes

F. Liu · P. Zhang (�)
College of Computer Science and Technology, China University of Petroleum (East China),
Qingdao, P.R. China
e-mail: 1556447740@qq.com; zhangpeiying@upc.edu.cn

G. Kibalya
Department of Network Engineering, Universitat, Politecnica de Catalunya, Barcelona, Spain
e-mail: Godfrey.mirondo.kibalya@upc.edu

S. V. N. Santhosh Kumar
School of Information Technology and Engineering, Vellore Institute of Technology, Vellore,
India
e-mail: anthoshkumar.svn@vit.ac.in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. S. Aujla et al. (eds.), Software Defined Internet of Everything, Technology,
Communications and Computing, https://doi.org/10.1007/978-3-030-89328-6_3

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89328-6_3&domain=pdf
mailto:1556447740@qq.com
mailto:zhangpeiying@upc.edu.cn
mailto:Godfrey.mirondo.kibalya@upc.edu
mailto:anthoshkumar.svn@vit.ac.in
https://doi.org/10.1007/978-3-030-89328-6_3

38 F. Liu et al.

inherent drawbacks in the face of massive data transmission requirements and large-
scale business application environments [10, 23, 25]. For example, in a traditional
network architecture, in order to meet a specific application requirement, it usually
needs to include a large number of hardware devices. However, a noteworthy
problem is that network devices produced by different manufacturers usually
require different ways to debug and configure, and the command-line debugging
interfaces used to manage the devices are also different. Therefore, in a network
that mixes equipment from multiple different vendors, managing and deploying
the network is a very big challenge [12, 16]. Moreover, in a typical distributed
architecture, information is transmitted between devices in the form of a “baton,”
which will lead to the emergence of redundant data traffic. In addition, with the
development of various technologies, the volume of network traffic continues to
increase, and the volume of the network gradually increases, which leads to the
gradual increase of the time for transmitting information between nodes, which
is obviously not reasonable. In addition, the inability to perform intelligent flow
control and visualized network status monitoring based on network conditions is
also a problem that hinders further development.

In general, the problems that the traditional network architecture may face can
be summarized as follows: (1) The traditional network lacks a global concept and
cannot control traffic from a macro level; (2) The traditional network structure is
difficult to deploy and manage; (3) The way of information exchange between
current routing equipment will cause unnecessary bandwidth occupation. In general,
the core problem is that there is a contradiction between the diverse and changeable
network upper-layer applications and business needs and the current stable and rigid
traditional network architecture, and an appropriate solution is urgently needed [27–
31, 34, 36, 38]. Based on the above problems, Software-Defined Network (SDN) is
a better solution [5, 6]. The predecessor of SDN was a project called Ethane, which
allowed network administrators to easily define security control strategies based on
network traffic through a centralized controller [3]. In addition, by applying these
security policies to network devices, the security control of node communication in
the entire network is realized. Based on the inspiration of this project, the concept
of OpenFlow was born. In this concept, the switch does not have an independent
computing center but only has the forwarding function, and all path calculations,
security policies, and other tasks are all done by the controller [9]. Generally
speaking, SDN is not a specific technology, but an idea and a framework. As long as
the hardware in the network can be managed and controlled through centralized
software, and the network has programmability, and the control and forwarding
levels in the hardware devices are separated, the network can be considered an
SDN network [4, 21]. Therefore, SDN in the narrow sense refers to software-
defined networking, while the concept of SDN in the broad sense has extensions
in more areas [1]. In general, SDN has the following three advantages: (1) SDN
can change the tightly coupled architecture of applications and networks under
traditional networks and improve the level of network resource pooling; (2) SDN
networks can realize automatic network deployment and configuration and support
rapid business launches and flexible expansion; (3) By introducing programmable

3 Challenges of Traditional Networks and Development of Programmable Networks 39

features, automated network services and protocol scheduling can be realized
[11, 17, 26]. At present, the market share of SDN is increasing year by year, and
the trend is improving, and it has applications in many fields. However, due to some
known challenges, although some feasible solutions are slowly available, SDN is
still far from large-scale deployment [2, 7]. These challenges include some technical
challenges and non-technical challenges, which will be analyzed in detail later.

Starting from the traditional Internet architecture, this article first reviews the
development history of the Internet and hardware devices in the network and gives
examples of four common network architectures to analyze and summarize the
problems existing in the traditional Internet architecture. Secondly, we introduced
the future network architecture-SDN, including determining the definition of SDN,
analyzing the necessity of its emergence and the advantages of the architecture,
explaining the core technologies it includes, and analyzing the changes and
development of the industrial chain under the influence of the architecture. In
addition, we further introduced its feasible application scenarios and introduced
some existing solutions to reflect the advantages of the SDN architecture compared
with the traditional architecture. Finally, we analyzed and summarized the threats
and challenges that the SDN architecture may face and looked forward to its
future development. This article comprehensively introduces and compares the
advantages and disadvantages of the two different architectures and analyzes them
with examples, which can lay the foundation for the follow-up research of SDN.

3.2 Traditional Network Architecture

This section discusses the evolution and architecture of network.

3.2.1 Internet Development History

In the 1960s, the US Department of Defense decided to study a distributed command
system, the core value of which is that even if several nodes are destroyed, other
nodes can still maintain communication. In 1966, Robert Taylor, the third director
of IPTO, believed that a compatible protocol should be established to allow all
terminals to communicate with each other. In the same year, the new communication
network project (named ARPANET) completed the internal project, and since then,
the entire project was actually initiated. In the first phase of the project, a network
of four nodes was established, and its geographic location is shown in Table 3.1.

The packet switching technology is adopted between the four nodes, and they
are connected through a special IMP device and a communication line with a rate
of 50kbps. Among them, the role of IMP includes connection, scheduling, and
management and is generally regarded as the prototype of a router. Two years later,
the original communication protocol, also known as the Network Control Protocol

40 F. Liu et al.

Table 3.1 The table of the geographic location of the four nodes

Node Place Host OS

Node 1 Network Measurement Center, UCLA SDS
SIGMA 7

SEX

Node 2 The Network Information Center at SRI SDS 940 Genie

Node 3 The Culler-Fried Interactive Mathematics Center at the UCSB IBM
360/75

OS/MVT

Node 4 The School of Computing at UTAH DEC PDP
- 10

Tenex

(NCP), was born. However, with the continuous increase of network nodes, it has
brought a lot of pressure to the NCP protocol, and further optimization is urgently
needed. For this reason, in the end, a stable (fourth generation) TCP/IP protocol was
born under continuous development and gradually became the mainstream.

In the next phase, ARPANET was replaced by NSFnet and became the con-
nection between the new supercomputer research centers, and its speed was more
than 25 times that of the ARPANET network. In the late 1980s, the number of
computers connected to NSFnet far exceeded ARPANET. Therefore, in the early
1990s, ARPANET was formally dismantled. Then, concepts and technologies such
as the World Wide Web, Hypertext Transfer Protocol (HTTP), Hypertext Markup
Language (HTML), and web browsers were proposed and developed. Since then,
the Internet has truly has become the global Internet and has begun to enter people’s
lives.

The development of the network is inseparable from the upgrade of hardware.
With the appearance of personal computers, smart phones, and the development
of mobile communication technology, the Internet has gradually entered a new
stage of development, namely the era of mobile Internet. Mobile Internet is the
product of the integration of mobile and Internet, inheriting the advantages of
mobile anytime, anywhere, portable and Internet open, sharing, and interactive.
It is a new generation of open telecommunications infrastructure network with
high-quality telecommunications services. Compared with the traditional Internet,
the mobile Internet emphasizes that it can be used anytime, anywhere and can
access the Internet and use application services in a high-speed mobile state.
Mobile Internet related technologies are generally divided into three parts, namely
mobile Internet terminal technology, mobile Internet communication technology,
and mobile Internet application technology. The advantages of mobile Internet,
such as interactivity, portability, privacy, positioning, and entertainment, have led
to rapid growth in people’s demand for the Internet. At this stage, user experience
has gradually become the supreme pursuit of the development of terminal oper-
ating systems. In addition, with the rapid development of mobile communication
technology, unlike the previous technologies that only provide bandwidth mobile
communication between people, 5G, as a mobile communication system for the
needs of human information society after 2020, will penetrate more Fields, such as
the Internet of Things, industrial networks, medical and rescue, transportation, etc.,
to achieve a comprehensive interconnection of all things. Therefore, in the future,

3 Challenges of Traditional Networks and Development of Programmable Networks 41

the Internet will penetrate into all areas of social life and will be more closely related
to people’s lives.

3.2.2 Equipment Development History

Network cable, network card, and protocol cable are the three elements that make
up the smallest unit network. Among them, the network cable provides the physical
medium, carries the bit stream and electrical signals, the network card performs
data processing, and the protocol cable can realize data analysis, addressing, flow
control, etc. in the communication process. However, once the distance between the
terminals is too far, exceeding the upper limit of the physical transmission distance
of the network cable, data will begin to be lost. For this reason, a repeater is born.
The repeater can relay and amplify information, and its appearance enables long-
distance transmission between devices. After that, considering the limitation of the
repeater interface, in order to solve the problem that it could not realize the long-
distance data communication between multiple hosts, the hub was born. The hub
can be described as a multi-interface repeater. Data received from any interface can
be transmitted to all other interfaces by flooding.

However, because the hub cannot identify the addressing information and upper-
layer content of the data packet, it cannot isolate the end host. This will lead to a
reduction in bandwidth utilization if multiple hosts are in the same collision domain.
Based on this problem, the bridge provides a solution. The bridge is a link layer
product. By recording the MAC address of the terminal host and generating a MAC
table, the data flow between the hosts can be forwarded on this basis. The bridge can
isolate the conflict domain, and because the data between different interfaces will
not conflict with each other, this will improve the bandwidth utilization. However,
the limited interface of the bridge made its ability to isolate network conflicts
relatively limited, so the switch was born. The switch has been extended and
upgraded on the basis of the network bridge. Compared with the network bridge,
it has several main advantages, such as: (1) The number of interfaces is more
dense, and the bandwidth utilization rate is greatly improved. (2) Adopt dedicated
ASIC hardware chip to realize high-speed forwarding. (3) Not only can the conflict
domain be isolated, but also the broadcast domain can be isolated through VLAN.
On the basis of the switch, in order to solve the long-distance wide area network
communication problem, the router was born.

The router has the function of judging the network address and selecting the
IP path. It can construct a flexible link system in multiple network environments,
and link each subnet through different data packets and media access methods. In
addition, in order to solve the shortcomings of limited communication, wireless
AC/AP came into being. And, in order to further improve network security and
performance, firewalls and flow control devices were born. To sum up, in order to
achieve different goals and solve different problems, there are a large number of
different types of devices in the network. In the next section, we will introduce

42 F. Liu et al.

Fig. 3.1 The diagram of a typical home network architecture

several common network architectures and analyze the architectures, technologies
used, and the equipment involved.

3.2.3 Typical Architecture

The typical network architecture is discussed in the subsequent sections.

3.2.3.1 Home Network

Figure 3.1 shows a typical home network that provides WiFi hotspot access through
a wireless router and connects to the external network through a router, which
usually includes a wireless router. The technologies used include WiFi, NAT,
PPPOE, DHCP, etc.

3.2.3.2 Campus Network

Figure 3.2 shows the most common campus network architectures such as large
and medium-sized enterprise networks or campus networks, which usually use
access layer, aggregation, core layer three-layer architecture, and dual-core network.
According to different needs, it is usually divided into user area, internal server,

3 Challenges of Traditional Networks and Development of Programmable Networks 43

Fig. 3.2 The diagram of a typical campus network architecture

external service area, management area, Internet area, etc., and they are connected
and isolated through core switches and firewalls. In addition, the Internet uses multi-
outlet connections, dial-up and NAT through routers, and load balancing through
flow control products.

In the campus network architecture, the core layer usually does not include any
processing of data packets/frames, because this will reduce the speed of packet
switching. The main function of the core layer is to provide high-speed connections
between the various convergence layer devices in the campus network. The function
of the convergence layer is to define the boundaries of the network, and the
processing of data packets/frames is also completed at this layer. In addition, in
the campus network environment, the access layer usually includes the following
functions: shared bandwidth; exchange bandwidth; MAC layer filtering; and micro-
segmentation. This type of architecture usually includes routers, switches, wireless
AC/AP, firewalls, load balancers, and servers. The technologies involved usually
include VLAN, TRUNK, MSTP, HSRP/VRRP, Etherchannel, WLAN, NAI, ACL,
SNMP, etc.

3.2.3.3 Government Affairs Network

The government network usually includes the government, electric power, public
security, etc., adopts the metropolitan area network architecture, and is designed

44 F. Liu et al.

through MPLS technology. Different regions and cities are connected to the CE
through the convergent PE and divided into different VRFs. The core equipment
acts as a P/PE for high-speed forwarding. In addition, VRF is used to isolate access
between different regions and cities. When it is necessary to access the Internet,
government extranet, servers, etc., moderate mutual visits can be achieved through
the design of RD/RT. The equipment it contains usually includes routers, switches,
load balancers, firewalls, intrusion prevention, DDOS attack prevention equipment,
etc. And the technologies involved usually include VLAN, TRUNK, OSPF, BGP,
MPLS, QoS, AVL, NAT, SNMP, and security.

3.2.3.4 Data Center Network

In traditional large-scale data centers, the network is usually a three-tier structure,
including the access layer, the convergence layer, and the core layer. The access
layer is sometimes called Edge Layer. Access switches are usually located at the
top of the rack, so they are also called ToR (Top of Rack) switches, and they
are physically connected to the server. Aggregation Layer is sometimes called
Distribution Layer. The aggregation switch connects to the Access switch and
provides other services, such as firewall, SSL offload, intrusion detection, network
analysis, etc. The core switch of the Core Layer provides high-speed forwarding for
packets entering and leaving the data center and provides connectivity for multiple
aggregation layers. The core switch provides a flexible L3 routing network that
usually provides the entire network. In addition, in the early data centers, most of
the traffic was north-south traffic. However, with the development of technology,
the content and form of data have also changed. For example, most of the traffic
in a traditional data center is communication between clients and servers. However,
with the gradual rise of technologies such as distributed computing and big data,
some applications will generate a large amount of traffic between servers in the data
center. Therefore, the east-west traffic is increasing significantly. In addition, the
software-defined data center requires that the computing storage network of the data
center can be software-defined, while the traditional three-tier network architecture
did not consider SDN at the beginning of the design. In general, technological
development requires new data centers to have smaller over-subscription and needs
to provide higher east-west traffic bandwidth and support for SDN. In addition, the
largest data center corresponds to the network equipment with the largest volume
and the highest performance. Not all network equipment vendors can provide
equipment of this scale, and the corresponding capital costs and operation and
maintenance costs are also high. Therefore, the use of traditional three-tier network
architecture makes enterprises face the dilemma of cost and scalability. This means
that we need a new way to resolve this contradiction.

3 Challenges of Traditional Networks and Development of Programmable Networks 45

3.2.4 Conclusion of Issues

The life cycle of a network system usually includes four stages: demand investi-
gation, planning and design, deployment and implementation, and operation and
maintenance. Based on this cycle, a huge network architecture has now been
formed, effectively realizing multiple applications between people and people
and data, which has played an important role in promoting economic and social
development. However, with the vigorous rise of technologies such as big data,
cloud computing, Internet of Things, and mobile Internet, Internet applications are
becoming increasingly diversified and business volumes are increasing. Therefore,
the current network architecture is gradually unable to meet the demand, and the
existing problems are becoming more prominent. For example, (1) The traditional
network lacks a global concept and cannot control traffic from a macro perspective.
Each router calculates the next hop according to its own dynamic routing protocol,
but due to the lack of a global concept, it will cause a lot of waste of resources;
(2) Due to many network equipment manufacturers, equipment types, inconsistent
control commands, etc., the traditional network structure is difficult to deploy and
manage; (3) The current information exchange between routing devices is carried
out layer by layer, which will cause unnecessary bandwidth occupation. In general,
the core problem is that there is a contradiction between the diverse and changeable
upper-layer applications and business needs of the network and the current stable
and rigid traditional network architecture, and an appropriate solution is urgently
needed, as shown in Fig. 3.3.

3.3 SDN Network Architecture

3.3.1 Development Path

In 2007, Dr. Martin Casado, a member of the Clean Slate project team led by
Professor Nick McKeown of Stanford University, proposed a solution and network
architecture for decoupling the control plane and the data forwarding plane, which
is considered to be the prototype of today’s SDN technology. In 2008, Professor
Nick McKeown and others published a paper “OpenFlow: Enabling Innovation in
Campus Networks” at the SIGCOMM conference, and first proposed the OpenFlow
protocol based on the SDN architecture. In the same year, his team released
the first open source SDN controller NOX-Classic. In 2011, Internet companies
such as Google, Facebook, and Yahoo initiated the establishment of the Open
Networking Foundation (ONF) to promote the standardization and development of
SDN architecture and technology. In 2013, network vendors such as Cisco, Juniper,
Broadcom, and IBM initiated the open source platform project OpenDaylight
(ODL), with the goal of launching a universal enterprise-level SDN controller. In
2014, ONOS was born. Facebook openly released the details of the Wedge switch

46 F. Liu et al.

Fig. 3.3 The diagram of
problems in the traditional
network architecture

design in the OCP project, and the white box switch became the main theme of the
year. Cavium acquired SDN startup Xpliant, and Broadcom released the OF-DPA
framework compatible with the OpenFlow protocol. In 2015, ONF released an open
source SDN project community, and SD-WAN became the second mature SDN
application market. The integration of SDN and NFV has become a trend, and this
year is a hot year for NFV. In 2016, SDN startups VeloCloud, Plexxi, Cumulus, and
BigSwitch received a new round of financing, IEEE held the NFV-SDN conference,
and the research on network programming language received the focus of academic
circles. The SDN-IoT academic seminar was successfully held.

Since then, with the increase in attention, research is no longer limited to the
traditional narrow SDN, and more and more projects tend to move from the original
narrow SDN to the broad SDN. That is, it supports rich southbound protocols, which
can realize flexible programmability and flexible deployment, as well as intelligent
analysis and scheduling. Broad SDN has more powerful vitality, especially with
the rapid development of cloud computing and big data. In the future, SDN-based
cloud network integration will become one of the main demands of the development
of SDN, a new generation of data centers and backbone network infrastructure.

3 Challenges of Traditional Networks and Development of Programmable Networks 47

Fig. 3.4 The diagram of problems in the basic architecture of SDN

Refactoring and how to better support applications will be an important area of
SDN development.

3.3.2 Definition and Architecture

The core idea of SDN is to separate the control plane and the data plane and use
a centralized controller to complete the programmable tasks of the network. The
controller interacts with the upper-layer application and the lower layer forwarding
device through the northbound interface and the southbound interface protocol,
respectively. It is this characteristic of separation (decoupling) of centralized
control and data control that SDN has powerful programmability. This powerful
programmability enables the network to be truly defined by software, which in
turn makes network operation, maintenance, management, and scheduling easier.
At the same time, in order to enable SDN to achieve large-scale deployment, it
is necessary to support the collaboration between multiple controllers through the
east-west interface protocol. Figure 3.4 shows the basic architecture of SDN.

In the SDN architecture, the control plane centrally controls the network
equipment through the control-forward communication interface. This part of the
traffic occurs between the controller and the network equipment, independent of
the data traffic generated by the communication between the terminals. In addition,
the network device generates a forwarding table by receiving the control signaling

48 F. Liu et al.

Fig. 3.5 The diagram of data forwarding process between devices

and determines the processing method of the traffic accordingly. Therefore, in this
mode, it is no longer necessary to use a complex distributed network protocol for
data forwarding, as shown in Fig. 3.5.

3.3.3 Core Technology and Advantages

3.3.3.1 Core Technology

The SDN architecture includes four planes and two interfaces, as shown below:

1. Data plane: It consists of several network elements, and each network element
can contain one or more SDN Datapaths. Each SDN Datapath is a logical
network device. It has no control capability and is only used to forward and
process data. It logically represents all or part of the physical resources. An
SDNDatapath includes three parts: control data plane interface agent, forwarding
engine table, and processing function.

2. Control plane: The SDN controller is a logically centralized entity. It is mainly
responsible for two tasks. One is to convert SDN application layer requests to

3 Challenges of Traditional Networks and Development of Programmable Networks 49

SDN Datapath, and the other is to provide SDN applications with an abstract
model of the underlying network (which can be states, events). An SDN
controller includes three parts: northbound interface agent, SDN control logic,
and control data plane interface driver. The SDN controller is only required to
be logically complete, so it can be composed of multiple controller instances
or a hierarchical controller cluster; geographically speaking, it can be that all
controller instances are in the same location, or it can be Multiple instances are
scattered in different locations.

3. Application plane: This plane consists of several SDN applications. It can
interact with the SDN controller through the northbound interface, that is, these
applications can submit the requested network behavior to the controller in a
programmable manner. An SDN application can contain multiple northbound
interface drivers (using multiple different northbound APIs). In addition, SDN
applications can also abstract and encapsulate their own functions to provide a
northbound proxy interface to the outside, and the encapsulated interface forms
a more advanced northbound interface.

4. Management plane: Responsible for a series of static tasks, which are more
suitable for implementation outside the application, control, and data planes,
such as configuring network elements, specifying SDN Datapath controllers,
and at the same time defining the SDN controller and the control scope of SDN
application.

5. SDN control data plane interface (CDPI): SDN CDPI is the interface between the
control plane and the data plane. The main functions it provides include: control
of all forwarding behaviors, device performance inquiries, statistical reports, and
event notifications.

6. SDN Northbound Interface (NBI) SDN NBI is a series of interfaces between the
application plane and the control plane. It is mainly responsible for providing an
abstract network view and enabling applications to directly control the behavior
of the network, which includes abstraction of the network and functions from
different layers.

3.3.3.2 The Main Advantages

The emergence of SDN has promoted the transformation of traditional network
construction and operation methods, which will effectively improve the service
efficiency of cloud service providers, Internet applications, and cloud enterprises,
and reduces the cost and complexity of operation and maintenance. The main
advantages of SDN can be summarized as the following four:

1. The SDN architecture allows application development, cloud service provision,
and network service teams to collaborate on a common platform. In addition, the
open interface can provide users with self-service capabilities, which will greatly
reduce the time spent on manual processes.

50 F. Liu et al.

2. With the help of SDN, data centers, cloud providers, and network providers will
significantly improve efficiency in many areas. SDN can provide centralized and
visualized operation and maintenance of network resource usage, and elastically
expand resources when resource usage is high or there are sudden business
needs. In addition, when the resource utilization rate is low, idle resources can be
released, thereby improving the overall utilization of resources.

3. Combined with the open interface API, the centralized control of SDN and
the unified strategy deployment method makes end-to-end application guar-
antee possible. The original connection-oriented IP network is upgraded to a
connection-oriented network service, which can increase new SLA services such
as end-to-end application delay and resource availability.

4. Based on the SDN architecture, end users or application providers can customize
and adjust network resources according to their needs and can pay according
to actual use, and what you see is what you get; data centers or cloud service
providers can simplify network deployment The complexity of the network
improves the utilization of network resources and reduces the proportion of
network costs; network service providers can provide new network connection
services, iteratively design new network operation models, and attract and
increase potential customers.

In general, the introduction of SDN is not only a promotion of technological
development but also an inevitable trend to replace traditional networks. It will bring
changes that cannot be underestimated in the communication circle, the Internet
circle, and the IT circle.

3.3.4 Industry Chain Analysis

At present, the SDN industry chain can be temporarily divided into six camps, as
follows:

1. Traditional equipment vendors: Because the switch function is simple and
homogeneous under the SDN architecture, it lacks market value. Therefore, for
traditional equipment vendors, the emergence of SDN will make their current
dominant position face huge challenges. At the same time, since SDN represents
the inevitable trend of network virtualization, traditional equipment vendors
cannot refuse or avoid it. Therefore, they often adopt the “walking on two
legs” approach: on the one hand, they closely follow the development of SDN
by acquiring SDN startups and upgrading their original equipment; on the
other hand, they actively launch their own SDN strategy and try to use the
existing dominant position to grasp the dominant power of SDN development
and integrate it into the existing network architecture.

2. Startups: For startups headed by Nicira (VMware) and Big Switch, the emer-
gence of SDN has created a rare opportunity for them to subvert Cisco’s dom-
inance and enter the network equipment industry. In order to save development

3 Challenges of Traditional Networks and Development of Programmable Networks 51

costs and enhance versatility at the same time, they are active promoters in the
development of a common SDN architecture based on the OpenFlow protocol.
At present, these companies are mainly focusing on combining OpenFlow and
virtualization technology in a certain field to provide customers with network
virtualization solutions.

3. IT service provider: The emergence of SDN also allows IT service providers
such as IBM and Hewlett-Packard to see the possibility of entering the network
equipment industry and creating new business models. Therefore, they are
basically the same as startups in their attitude towards SDN. The difference
is that IT service providers also use customized hardware equipment and self-
developed SDN operating system to quickly provide a full set of solutions to
seize the market space of traditional network equipment manufacturers.

4. Chip manufacturers: Since the SDN architecture has changed the traditional traf-
fic processing method, standardized SDN equipment requires a new generation
of SDN-oriented communication switching chips. At present, major international
chip manufacturers are actively introducing network processing chip solutions
that implement SDN.

5. Internet content providers: For Internet content providers such as Google,
Facebook, and Tencent, they pay more attention to the tight coupling between
applications and network control brought about by the openness of SDN. If the
northbound interface of the SDN controller is fully opened, the Internet company
will indirectly gain the dominance of network control, thereby enabling it to
integrate the operation and maintenance of its own application network with the
operation and maintenance of the underlying transmission network.

6. Operator: Compared with Internet companies, operators are more cautious about
SDN. On the one hand, some related technologies are not yet mature enough;
on the other hand, although the introduction of SDN may reduce the cost
of operators, it may also weaken their profit margins. Therefore, at present,
operators are mainly exploring and experimenting with SDN in their data centers.

3.4 Application Scenario Analysis

3.4.1 Application of SDN in Data Center Network

In recent years, with the rapid development of the Internet, more and more
applications and data have been concentrated in cloud data centers for processing.
Nearly two-thirds of the world’s total workload will be processed in the cloud, and
data centers will become the source or destination of most Internet traffic. Among
all the traffic generated by the data center, internal traffic accounted for 76% of the
total traffic in the data center, mainly for data exchange between storage and virtual
machines. Therefore, the future Internet will be a network with cloud computing
data centers as its core.

52 F. Liu et al.

Table 3.2 The table of the respective functions and requirements of the five-layer network

Level Functional Requirements

Network 1 The interconnection network between
VMs of the same server

The access switch can perceive the
virtual machine situation in the server

Network 2 The interconnection network between
VM and storage

The business network and storage
network need to be integrated

Network 3 The interconnection network between
different servers within the DC site

Non-blocking network, support virtual
machine drift and network configuration
migration, and high horizontal expansion
capability

Network 4 The interconnection network between
servers across DCs

Support virtual machine drift

Network 5 The interconnection network between
DC and Client

According to business needs, build a
proprietary virtual transport network

Under this trend, the data center has entered the peak of development. However,
the traditional data center network architecture has become increasingly difficult to
meet the needs of market development. As mentioned in the previous section, in a
traditional data center, each business occupies resources independently of each other
and has no resource mobility requirements. The internal traffic of the data center
is basically north-south. Therefore, each business network is physically isolated,
self-contained, and cannot be reused. The network built in this way has limited
scalability and can only be replaced vertically but cannot be extended horizontally.
In order to solve the problem of low resource utilization, virtualization technology
was created. The data center is mainly composed of three types of resources:
computing, storage, and network. At present, only network resources have not
yet been virtualized, which has become a bottleneck restricting the efficiency
improvement of data centers. According to different communication subjects, the
data center network can be divided into five layers. Communication between
different subjects has different requirements for the network, as shown in Table 3.2.

According to Table 3.2, the current data center network usage requirements can
be summarized as follows: (1) Non-blocking network, and possesses approximately
unlimited high scalability; (2) Able to perceive virtual machines, and support
the drift of virtual machines within a single data center and between multiple
data centers, and ensure that related network policies are migrated accordingly;
(3) Support multi-service and multi-tenant. On the same physical network, freely
construct a business network according to business requirements and ensure network
security; (4) Unified network operation and maintenance, highly automated, and
intelligent management.

In order to meet the above requirements, a variety of technical solutions have
emerged, such as Trill and SPB technologies, which are mainly aimed at multi-
path forwarding and flexible deployment requirements of data centers. However,
this technology has problems such as low link utilization, poor network stability,
and complicated deployment of Layer 3 paths. In addition, the introduction of
EVB technology meets the needs of virtual machine deployment and migration but

3 Challenges of Traditional Networks and Development of Programmable Networks 53

Fig. 3.6 The diagram of the future data center network deployment plan based on SDN

cannot meet the needs of centralized management, multi-path forwarding, virtual
multi-tenancy, and IaaS in the data center. On top of this, NVGRE technology uses
GRE encapsulation to achieve virtual multi-tenancy, but the considerations are still
not comprehensive enough. It can be seen that the current mainstream data center
network technology is mainly designed for a specific requirement of the data center,
and there is still room for improvement.

In contrast, the SDN architecture has the characteristics of separation of for-
warding and control, centralized control logic, network virtualization, and open
network capabilities. Therefore, SDN technology can better meet the requirements
of centralized management of data center networks, flexible multi-path forwarding,
virtual machine deployment, and intelligent migration. The future data center
network deployment plan based on SDN is shown in Fig. 3.6.

Among them, the architecture in this solution is mainly composed of three
parts, namely the SDN controller, the VM manager, and the DC manager. Among
them, the SDN controller is mainly used to implement centralized management and
control of network devices, and the VM manager is mainly used to implement VM
management, including creation, deployment, and migration. The DC manager is
used to achieve overall coordination and control. In general, separation of control
and forwarding, centralized logic control, and open network programming API are
regarded as the three main characteristics of SDN that distinguish it from traditional
network technologies. It is these characteristics that enable SDN to well meet the
needs of data center networks.

54 F. Liu et al.

Fig. 3.7 The diagram of application of SDN in telecom operator network

3.4.2 Application of SDN in Government and Enterprise
Networks

There are many types of services in government and enterprise networks, and the
functions and types of network equipment are complex, which require high network
security. Moreover, in this environment, the need for centralized management
and control is even more urgent. In addition, there is also a certain demand for
network flexibility and customization. However, after the network in the traditional
architecture is deployed and launched, if the business requirements change, it is
very cumbersome to re-modify the network device configuration. With the gradual
development of the Internet, it can no longer meet the needs. However, SDN
makes up for this very well. As shown in Fig. 3.7, on the basis of resource support
provided by the SDN software and hardware providers, the SDN controller performs
unified management, planning, and operation of resources. This method realizes
not only centralized control but also the needs of network service providers in an
open platform. It can be seen that the software-defined model significantly reduces
the difficulty of network maintenance, shortens the network deployment cycle,
and saves operation and maintenance costs. Moreover, with the help of existing
network resources, by transforming traditional application development service
providers into SDN service providers, it is also effective, feasible, and beneficial
to provide large government enterprises with exclusive SDN network construction
and maintenance services.

SDN strips out complex business functions, which not only reduces equipment
hardware costs but also makes enterprise networks more simplified and clearer. At
the same time, the logical concentration of SDN control can realize the centralized
management and control of the enterprise network, the centralized deployment
and management of enterprise security policies, and the flexible customization of
network functions in the controller or upper-layer application to better meet the
needs of the enterprise network.

3 Challenges of Traditional Networks and Development of Programmable Networks 55

3.4.3 Application of SDN in Telecom Operator Network

The separation of forwarding and control of SDN can effectively realize the
gradual integration of equipment and reduce the cost of equipment hardware. In
addition, the centralized feature page of SDN’s control logic can gradually realize
centralized management and global optimization of the network and effectively
improve operational efficiency. In addition, providing end-to-end network services
is also conducive to the intelligent and open development of telecom operators’
networks, and the development of richer network services can increase revenue.

Nowadays, both NTT and Deutsche Telekom have begun to test deployment
of SDN. NTT has set up test environments in Japan and the United States, while
Deutsche Telekom has tried to use SDN in cloud data center, wireless, and fixed
access environments. However, because SDN technology is not yet mature enough,
the degree of standardization is not high enough. In addition, the management issues
of a wide range of network equipment, the security and stability issues of ultra-
large-scale SDN controllers, the coordination and interoperability issues of multiple
vendors, and the coordination and docking issues of different network levels or
standards all need to be resolved as soon as possible. Therefore, the current large-
scale application of SDN technology in telecom operator networks is still difficult
to achieve, but it can be gradually used in local networks or specific application
scenarios, such as mobile backhaul network scenarios, packet and optical network
collaboration scenarios, etc.

3.4.4 Application of SDN in Network Virtualization
Technology

Network virtualization is an important network technology that can virtualize
multiple isolated virtual networks on a physical network, so that different users
can use independent network resource slices, thereby improving network resource
utilization and realizing network flexibility [32, 33, 35, 37, 39–41]. The emergence
of SDN makes the realization of network virtualization more flexible and efficient.
At the same time, network virtualization has also become a heavyweight application
in the SDN architecture.

It should be noted that SDN is not equivalent to network virtualization. SDN
is a centralized control architecture, while network virtualization is a network
technology. Traditional network virtualization requires manual configuration (such
as VLAN) one by one, with high efficiency and low cost. In today’s DC scenarios, in
order to achieve rapid and flexible deployment and dynamic adjustment, automated
deployment solutions must be used. The emergence of SDN has brought new solu-
tions to network virtualization. Through the separation of forwarding and control,
the deployment of automated services has been realized, and the deployment time
of services has been significantly shortened.

56 F. Liu et al.

Generally speaking, network virtualization through SDN includes the following
four parts:

1. Network virtualization platform: an agent between the control plane and the data
plane to realize the creation and management of virtual networks.

2. Network resource virtualization: including topology virtualization, node virtual-
ization, and link resource virtualization.

3. Network isolation: including control plane isolation (so that tenant controllers do
not affect each other), and data plane isolation (isolation of nodes’ CPU, flow
table, link bandwidth and other resources).

4. Address isolation: ensure that tenants can use any address space to achieve
address isolation, mainly through address mapping. In a physical network, by
using different physical addresses, address isolation can be achieved.

SDN changes the control mode of the traditional network architecture and divides
the network into a control plane and a data plane. The network management
authority is handed over to the controller software of the control layer, and
commands are uniformly issued to the data layer devices through the OpenFlow
transmission channel. Data layer equipment only relies on control layer commands
to forward data packets. Due to the openness of SDN, third parties can also develop
corresponding applications and place them in the control layer, which can make the
deployment of network resources more flexible. In contrast, network administrators
only need to issue commands to data layer devices through the controller, without
logging in to the devices one by one, which saves labor costs and improves
efficiency. It can be said that SDN technology has greatly promoted the development
of network virtualization.

3.5 Future and Challenges

3.5.1 Existing Challenges

3.5.1.1 Security Issues

Today, when network security is receiving increasing attention, SDN technology
cannot actually meet this demand. For traditional router switch firewalls, the
operating system is a highly embedded Unix system, which has passed various
tests and tests by manufacturers to ensure its security. Despite this, equipment is
still not secure enough. For example, many manufacturers regularly release security
patches or risk warnings for network equipment. However, when SDN really arrives,
security issues will rely more on application-level prevention. Therefore, if the SDN
controller as the core of the network greatly enriches the open interfaces for network
customization, it also opens more doors for illegal access and malicious attacks.
Therefore, the existence of the SDN controller may expose the network to more
security risks.

3 Challenges of Traditional Networks and Development of Programmable Networks 57

3.5.1.2 Standardization Issues

At present, ONF only defines the southbound interface between the controller and
the switch, but has not yet defined the interface between the controllers and the
northbound interface that the controller opens to applications. The reason is that
the organization believes that it is too early to standardize these interfaces and
may stifle innovation in key components of the network infrastructure. But this
has undoubtedly increased the difficulty of intercommunication among devices of
various manufacturers and has delayed the commercialization of SDN to a certain
extent.

3.5.1.3 Performance Issues

Under the SDN architecture, the controller needs to formulate an optimized routing
strategy for each flow. The computational pressure can be imagined, and this
pressure will increase geometrically as the number of control network elements
increases. In addition, because different applications will establish different logical
networks in the SDN system, each application will hinder each other’s func-
tions, and resource competition will be very fierce. From the perspective of the
development history of computer programs, in order to coordinate the operation
of various programs and improve resource utilization efficiency, the complexity
and computational complexity of resource allocation algorithms often increase
exponentially, which may become a system bottleneck. At the same time, in order
to achieve the programmability of the network, applications will be given a lot of
control over the environment, which can easily lead to system crashes. Therefore,
how to strike a balance between software complexity and computing efficiency is a
major challenge facing SDN.

3.5.2 Future Development

With the continuous development and transformation of science and technology,
the current SDN technology has become a hot technology leading the network
transformation. Many companies in the world have also made in-depth research and
predictions on the commercial process of SDN. In the future, narrow SDNwill move
towards broad SDN, and broad SDN has more powerful vitality, especially with
the rapid development of cloud computing and big data, cloud-network integration
based on SDN will become one of the main demands of the development of
SDN, a new generation of data restructuring of the center and backbone network
infrastructure and how to better support applications will be important areas for the
development of SDN. In addition, SDN may simplify the exchange of traffic in the
data center, thereby enabling traffic to be routed and forwarded more efficiently.
SDN allows traffic processing policies to follow virtual machines and containers, so

58 F. Liu et al.

that this information can be moved within the data center to minimize traffic and
deal with bandwidth bottlenecks.

In addition, the main experience in the development of SDN in the past two
years has been continuous attempts to integrate commercial deployment of its
applications, mostly in the field of data centers. Most large-scale and ultra-large-
scale data centers have adopted flat architecture, SDN and storage management,
and adopted SDN / NFV (Network Function Virtualization), and they are developing
very rapidly. By 2021, more than two-thirds of data centers will adopt SDN in whole
or in part. As part of the traffic in the data center, SDN/NFV is already transmitting
23% of the data, which will increase to 44% by 2021. SDN technology will
gradually develop towards network infrastructure and will experience a long process
of change and development. However, due to the traditional SDN technology
deployment problems such as complex management, long configuration cycles,
difficult business migration, low quality, reliability, etc., in the future development,
the problems existing in the SDN architecture should also be solved one by one.

3.6 Conclusion

With the joint development of multiple technologies, the Internet has become
inseparable from people’s lives. However, although the existing distributed network
architecture has the advantages of anti-attack, simple, and easy access, it still
exposes some problems in the face of massive data transmission needs. For example,
network devices produced by different manufacturers usually require different ways
to debug and configure. Therefore, it is a very big challenge to manage and deploy
a network with multiple devices. In addition, with the increase in QoS and security
requirements, the inability to customize network services according to customer
needs, and the inability to perform intelligent flow control and status supervision
based on network conditions are also problems that hinder further development.
In addition, the current way of information exchange between routing devices will
also cause unnecessary bandwidth occupation. Based on the above problems, the
introduction of SDN architecture is a better solution. In general, SDN architecture
has the following three advantages: (1) SDN can change the tightly coupled
architecture of applications and networks under traditional networks and improve
the level of network resource pooling; (2) SDN networks can realize automatic
network deployment and configuration, and support fast business Go online and
expand flexibly; (3) By introducing programmable features, automated network
services and protocol orchestration can be realized. At present, the market share
of SDN is increasing year by year, and the trend is improving.

This article analyzes and summarizes the problems existing in the traditional
Internet architecture by giving examples of four common network architectures.
Secondly, we introduced the SDN architecture and analyzed its necessity and
advantages of the architecture. And, we further introduced its feasible application
scenarios and existing solutions. Finally, we analyzed and summarized the threats

3 Challenges of Traditional Networks and Development of Programmable Networks 59

and challenges that the SDN architecture may face, laying the foundation for the
follow-up research of SDN.

Acknowledgments This work is partially supported by the Major Scientific and Technological
Projects of CNPC under Grant ZD2019-183-006, partially supported by Shandong Provincial Nat-
ural Science Foundation under Grant ZR2020MF006, and partially supported by “the Fundamental
Research Funds for the Central Universities” of China University of Petroleum (East China) under
Grant 20CX05017A.

References

1. Aujla, G. S., & Kumar, N. (2018). SDN-based energy management scheme for sustainability
of data centers: An analysis on renewable energy sources and electric vehicles participation.
Journal of Parallel and Distributed Computing, 117, 228–245.

2. Aujla, G. S., Jindal, A., Kumar, N., & Singh, M. (2016). SDN-based data center energy
management system using res and electric vehicles. In 2016 IEEE Global Communications
Conference (GLOBECOM) (pp. 1–6).

3. Aujla, G. S., Chaudhary, R., Kumar, N., Kumar, R., & Rodrigues, J. J. P. C. (2018). An
ensembled scheme for QoS-aware traffic flow management in software defined networks. In
2018 IEEE International Conference on Communications (ICC) (pp. 1–7). IEEE.

4. Aujla, G. S., Jindal, A., & Kumar, N. (2018). EVaaS: Electric vehicle-as-a-service for energy
trading in SDN-enabled smart transportation system. Computer Networks, 143, 247–262.

5. Aujla, G. S., Chaudhary, R., Kaur, K., Garg, S., Kumar, N., & Ranjan, R. (2018). SAFE:
SDN-assisted framework for edge–cloud interplay in secure healthcare ecosystem. IEEE
Transactions on Industrial Informatics, 15(1), 469-480.

6. Aujla, G. S. S., Kumar, N., Garg, S., Kaur, K., & Ranjan, R. (2019). EDCSuS: Sustainable
edge data centers as a service in SDN-enabled vehicular environment. IEEE Transactions on
Sustainable Computing, 1–1.

7. Aujla, G. S., Singh, A., & Kumar, N. (2020). Adaptflow: Adaptive flow forwarding scheme
for software-defined industrial networks. IEEE Internet of Things Journal, 7(7), 5843–5851.

8. Aujla, G. S., Singh, A., Singh, M., Sharma, S., Kumar, N., & Choo, K. R. (2020). Blocked:
Blockchain-based secure data processing framework in edge envisioned v2x environment.
IEEE Transactions on Vehicular Technology, 69(6), 5850–5863.

9. Aujla, G. S., Singh, M., Bose, A., Kumar, N., Han, G., & Buyya, R. (2020). Blocksdn:
Blockchain-as-a-service for software defined networking in smart city applications. IEEE
Network, 34(2), 83-91.

10. Budhiraja, I., Kumar, N., Tyagi, S., Tanwar, S., & Obaidat, M. S. (2020). URJA: Usage jammer
as a resource allocation for secure transmission in a CR-NOMA-based 5g Femtocell system.
IEEE Systems Journal, 1–10.

11. Garg, S., Singh, A., Aujla, G. S., Kaur, S., Batra, S., & Kumar, N. (2020). A probabilistic data
structures-based anomaly detection scheme for software-defined internet of vehicles. IEEE
Transactions on Intelligent Transportation Systems, 1–10.

12. Kumar, N., & Kumar, M. (2015). Closely spacified wide dual-band microstrip band pass
filter using coupled stepped-impedance resonators. In 2015 2nd International Conference on
Electronics and Communication Systems (ICECS) (pp. 865–867).

13. Kumar, N., & Tripathi, M. M. (2017). Evaluation of effectiveness of ANN for feature selection
based electricity price forecasting. In 2017 International Conference on Emerging Trends in
Computing and Communication Technologies (ICETCCT) (pp. 1–5).

14. Kumar, N., Chilamkurti, N., Zeadally, S., & Jeong, Y. (2014). Achieving quality of service
(QoS) using resource allocation and adaptive scheduling in cloud computing with grid support.
The Computer Journal, 57(2), 281–290.

60 F. Liu et al.

15. Kumar, N., Vinoy, K. J., & Gopalakrishnan, S. (2018). Improved well-conditioned model
order reduction method based on multilevel Krylov subspaces. IEEE Microwave and Wireless
Components Letters, 28(12), 1065–1067.

16. Neeraj, N., Naresh, M., Yadav, A. K., &Mathew, L. (2019). Effect of statcom on integration of
renewable energy generation with the main grid. In 2019 Innovations in Power and Advanced
Computing Technologies (i-PACT) (vol. 1, pp. 1–5).

17. Singh, A., Aujla, G. S., & Bali, R. S. (2020). Intent-based network for data dissemination in
software-defined vehicular edge computing. IEEE Transactions on Intelligent Transportation
Systems, 1–9.

18. Singh, A., Aujla, G. S., Singh Bali, R., Chahal, P. K., & Singh, M. (2020). A self organised
workload classification and scheduling approach in IoT-edge-cloud ecosystem. In 2020 IEEE
92nd Vehicular Technology Conference (VTC2020-Fall) (pp. 1–5).

19. Singh, M., Aujla, G. S., & Bali, R. S. (2020). A deep learning-based blockchain mechanism
for secure internet of drones environment. IEEE Transactions on Intelligent Transportation
Systems, 1–10.

20. Singh, P., Kaur, A., Aujla, G. S., Batth, R. S., & Kanhere, S. (2020). Daas: Dew computing
as a service for intelligent intrusion detection in edge-of-things ecosystem. IEEE Internet of
Things Journal, 1–1.

21. Singh, A., Batra, S., Aujla, G. S., Kumar, N., & Yang, L. T. (2020). BloomStore: dynamic
bloom-filter-based secure rule-space management scheme in SDN. IEEE Transactions on
Industrial Informatics, 16(10), 6252–6262. https://doi.org/10.1109/TII.2020.2966708.

22. Sood, K., Karmakar, K. K., Varadharajan, V., Kumar, N., Xiang, Y., & Yu, S. (2021). Plug-
in over plug-in (pop) evaluation in heterogeneous 5g enabled networks and beyond. IEEE
Network, 1–7.

23. Vangala, A., Bera, B., Saha, S., Das, A. K., Kumar, N., & Park, Y. H. (2020). Blockchain-
enabled certificate-based authentication for vehicle accident detection and notification in
intelligent transportation systems. IEEE Sensors Journal, 1–1.

24. Vangala, A., Das, A. K., Kumar, N., & Alazab, M. (2020). Smart secure sensing for IoT-based
agriculture: Blockchain perspective. IEEE Sensors Journal, 1–1.

25. Verma, G. K., Kumar, N., Gope, P., Singh, B. B., & Singh, H. (2021). Scbs: A short certificate-
based signature scheme with efficient aggregation for industrial internet of things environment.
IEEE Internet of Things Journal, 1–1.

26. Wen, Z., Garg, S., Aujla, G. S. S., Alwasel, K., Puthal, D., Dustdar, S., Zomaya, A. Y., &
Rajan, R. (2020). Running industrial workflow applications in a software-defined multi-cloud
environment using green energy aware scheduling algorithm. IEEE Transactions on Industrial
Informatics, 1–1.

27. Zhang, P., Zhang, Z., & Zhang, W. (2013). An approach of semantic similarity by combining
HowNet and Cilin. In 2013 IEEE International Conference on Green Computing and
Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing
(pp. 1638–1643).

28. Zhang, P., Yao, H., & Liu, Y. (2016). Virtual network embedding based on the degree and
clustering coefficient information. IEEE Access, 4, 8572–8580.

29. Zhang, P., Wu, S., Wang, M., Yao, H., & Liu, Y. (2018). Topology based reliable virtual
network embedding from a QoE perspective. China Communications, 15(10), 38–50.

30. Zhang, P., Yao, H., & Liu, Y. (2018). Virtual network embedding based on computing, network,
and storage resource constraints. IEEE Internet of Things Journal, 5(5), 3298–3304.

31. Zhang, P., Huang, X., & Li, M. (2019). Disease prediction and early intervention system based
on symptom similarity analysis. IEEE Access, 7, 176484–176494.

32. Zhang, P., Hong, Y., Pang, X., & Jiang, C. (2020). VNE-HPSO: Virtual network embedding
algorithm based on hybrid particle swarm optimization. IEEE Access, 8, 213389–213400.

33. Zhang, P., Li, C., & Wang, C. (2020). Smarttext: Learning to generate harmonious textual
layout over natural image. In 2020 IEEE International Conference on Multimedia and Expo
(ICME) (pp. 1–6).

https://doi.org/10.1109/TII.2020.2966708

3 Challenges of Traditional Networks and Development of Programmable Networks 61

34. Zhang, P., Pang, X., Bi, Y., Yao, H., Pan, H., & Kumar, N. (2020). Dscd: Delay sensitive
cross-domain virtual network embedding algorithm. IEEE Transactions on Network Science
and Engineering, 7(4), 2913–2925.

35. Zhang, P., Pang, X., Kumar, N., Aujla, G. S., & Cao, H. (2020). A reliable data-transmission
mechanism using blockchain in edge computing scenarios. IEEE Internet of Things Journal,
1–1.

36. Zhang, P., Wang, C., Aujla, G. S., Kumar, N., & Guizani, M. (2020). IoV scenario:
Implementation of a bandwidth aware algorithm in wireless network communication mode.
IEEE Transactions on Vehicular Technology, 69(12), 15774–15785.

37. Zhang, P., Wang, C., Aujla, G. S., & Pang, X. (2020). A node probability-based reinforcement
learning framework for virtual network embedding. In 2020 IEEE 21st International
Symposium on “AWorld of Wireless, Mobile andMultimedia Networks” (WoWMoM) (pp. 421–
426).

38. Zhang, P., Wang, C., Jiang, C., & Benslimane, A. (2020). Security-aware virtual network
embedding algorithm based on reinforcement learning. IEEE Transactions on Network Science
and Engineering, 1–1.

39. Zhang, P., Huang, X., Wang, Y., Jiang, C., He, S., & Wang, H. (2021). Semantic similarity
computing model based on multi model fine-grained nonlinear fusion. IEEE Access, 9, 8433–
8443.

40. Zhang, P., Jiang, C., Pang, X., & Qian, Y. (2021). Stec-IoT: A security tactic by virtualizing
edge computing on IoT. IEEE Internet of Things Journal, 8(4), 2459–2467.

41. Zhang, P., Li, C., &Wang, C. (2021). Viscode: Embedding information in visualization images
using encoder-decoder network. IEEE Transactions on Visualization and Computer Graphics,
27(2), 326–336.

Chapter 4
Architecture and Deployment
Models-SDN Protocols, APIs, and Layers,
Applications and Implementations

Bhawana Rudra and Thanmayee S.

4.1 Introduction

SDN has emerged recently as it addresses the lack of programmability issues in the
existing network and promotes network management [6, 35]. The programmable
term is used to make the network management and the reconfiguration concept as
simple. This allows the encapsulation of the wider ideas by focusing on different
planes and achieving the goal for various means. The concept of Programmability
emerged in the mid-90s, when the Internet was successful for its use by users all
over the world. As the spread was large, experts were interested to experiment
with new ideas and protocols that can provide various services [8, 23, 36]. For the
support of wide networks, the support for the specific protocols was important for
the better outputs without vendor interoperability. The modification of the control
logic in the network devices is not possible, restricting the evolution of the network
[9, 17, 37, 45]. Many researchers have focused to find open, flexible, extensible, and
programmable network devices. OpenSignaling (OpenSig) and Active Networking
were the two initiatives that were developed for handling the underlying hardware
issues and provide an open interface for the control and management of the network
[12, 41, 42]. Open Signaling was emerged in 1995 by focusing on the concept of
programmability in the networks. The main idea is to separate the control plane and
data plane in the network allowing the open interfaces to interact between them. It is
easy to control and program the switches remotely, making the entire network into
a distributed platform by simplifying the deployment of new services. Towards the
direction of research, Tempest framework allowed multiple switches to control and
manage the multiple partitions of the switch, allowing multiple architectures to run

B. Rudra (�) · Thanmayee S.
Department of Information Technology, National Institute of Technology, Mangalore, Karnataka,
India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. S. Aujla et al. (eds.), Software Defined Internet of Everything, Technology,
Communications and Computing, https://doi.org/10.1007/978-3-030-89328-6_4

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89328-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-89328-6_4

64 B. Rudra and Thanmayee S.

over the physical ATM network [1, 10, 14]. This gave much freedom to the network
operators to define the Unified control architecture by controlling the requirements
of future services provided by the network.

Another architecture that came into existence was DCAN (Devolved Control
of ATM networks) [14]. The main focus was to control and manage the network
switches and assign the work to the external workstations. The networks are
distributed inherently, allocate resources across the network to provide QoS.
Minimalistic protocols like OpenFlow were designed to manage the communication
between the network and the management entity. This allows to add the functionality
of synchronization streams in the management domain. The main goal was to
develop programmable networks and promote innovations. The network nodes
are introduced through network APIs and allow network providers to actively
participate in controlling the nodes by executing some arbitrary code. This allowed
the development of customized services along with dynamic configuration at run
time. This architecture consists of a three layer stack on the active nodes. The bottom
layer is on an operating system (NodeOS) which multiplexes the communication
between the nodes. The next layer is the execution environment and allows the
writing environment for the active network applications like ANTS [43], PLAN
[21]. At the top layer, the applications that are actively executed where the code was
developed by the network providers.

The demand for more flexible and dynamic services allows us to add more
new features into the network. Two models fall into this category and they are
Capsule model and Programmable switch model. In the capsule model, the code
is included in the data packets itself. In the switch model, the code is executed
at the network nodes through out-of-band mechanism. Capsule model allows for
more innovation and is associated with active networking as it offers a different
approach for network management and provides a simple installation for the new
data plane across the network paths [16, 29, 31]. The concept of various approaches
was envisioned for the programmable networks that can allow innovation and
open networking experimental environments. None of them was successful and not
widespread due to the lack of compelling problems. Out of all these, OpenSignaling
and Active networking were not successful as they focused on the wrong user
group [31, 40]. One more reason behind the programmable network failure is due
to their focus on innovative architectures, models and not concentrating on the
issues like security and performance of the network. Although there are many
theoretical advantages, the reasons like network performance and security did not
allow for adoption into the network. The attempts were clearly defined that the
networks can be perceived towards the research ideas for the development of
flexible programmable architectures. These shortcomings have high significance
and addressed the deficiencies and paved a path to the development of the accepted
path of SDN [5, 24, 39, 44].

4 Architecture and Deployment Models-SDN Protocols, APIs, and Layers,. . . 65

4.2 SDN Architecture

In the traditional network architecture shown in Fig. 4.1, SDN Architecture
comprises two major components: Control Plane and Data Plane. The control plane
is where the decisions about traffic flow take place. The data plane is where the
forwarding of traffic takes place and is bound together in the underlying network
devices. The data plane is also called the forwarding plane. The decision about
forwarding happens at the network switches based on their configured routing
tables. Any update to the control plane requires the network engineer/administrator
to program the network switches individually with required network policies. This
results in a monotonous job that can be impractical in some applications, for

APPLICATIONS

NETWORK DEVICES

Control Plane

Data Plane

Control Plane

Data Plane

Control Plane

Data Plane

Fig. 4.1 Traditional network architecture

66 B. Rudra and Thanmayee S.

Control Plane

Data Plane

Data Plane

Data Plane

Application Layer

Business Applications and
network management
system

Control Layer

SDN control software responsible for
network related control such as
programming packet forwarding policies

Infrastructure Layer

Network Devices (switches and
routers) responsible for packet
forwarding

Fig. 4.2 SDN architecture

example, IoT environments [15, 20, 27, 34]. To waive away the challenges involved
in traditional network architecture, SDN has plotted down a captivating technique;
that is, SDN separates the control plane and data plane illustrated in Fig. 4.2.
Thus, the system that makes decisions about where the traffic has to flow and is
separated from the system that actually forwards traffic to the desired destination.
This introduces flexibility, manageability, adaptability, scalability, agility features as
an added advantage for IoT network management [2, 11, 19, 22].

Infrastructure Layer
It is the lowest layer in the SDN architecture. It comprises switching devices. These
devices are interconnected to form a network. They could be connected through a
wired or wireless transmission media. It is important to make switching devices
operate efficiently and also make good utilization of transmission media at the
Infrastructure layer. This will result in improved performance of the Infrastructure
layer. Switching devices have a control plane and data plane. In the data plane,
the switching devices perform data forwarding with the help of its processors.
Some of the examples of network processors include XLP processor family
(MIPS64 architecture) from Broadcom, XScale processor (ARM architecture)
from Intel, NP-x NPUs from EZChip, PowerQUICC Communications Processors

4 Architecture and Deployment Models-SDN Protocols, APIs, and Layers,. . . 67

(Power architecture) from freescale, NFP series processors (ARM architecture)
from Netronome, Xelerated HX family from Marvell, OCTEON series processors
(MIPS64 architecture) form Cavium and general purpose CPUs from Intel and
AMD. The responsibility of the control plane is to receive rules such as packet
forwarding rules from the control layer and link it with the rules in the data link
layer. It then stores this rule in the local memory. This new design for switching
devices shows how the operations of these devices have been simplified to gain
advantages in various application areas [20, 21, 38].

There are wide varieties of transmission media that are used to connect the
switching devices. There can be wired connection or wireless connections, resulting
in heterogeneous connectivity between the devices. Each transmission media
will have their own characteristics and thus there must be specific configuration
and management technologies. These technologies must be integrated with SDN
controllers in order to have good control over the network. Software Defined
Radio is one of the advanced wireless transmission technologies. It allows software
controlled wireless transmission. Thus it is easy to integrate SDR and SDN.
Another well known transmission media is Optical Fiber which is known for its
high capacity and low power consumption. The technology, called Reconfigurable
Optical Add/Drop Multiplexers (ROADMs), enables the integration of optical fiber
connectivity technology into SDN control planes [20, 21, 38].

Control Layer
Control Layer connects the application layer and the infrastructure layer. Its working
principle or strategy can directly affect the overall SDN network performance. It
provides an abstract view of the network infrastructure. It simplifies the task of
applying custom policies/protocols on the network hardware. The network operating
system (NOX) controller is the most common controller that is used widely. SDN
controllers have to do network controlling and network monitoring [28, 30]. It is
responsible to translate the application policy into the infrastructure layer’s packet
forwarding rules. As we can see in Fig. 4.2 that SDN controller is having interfaces
with the application layer and the infrastructure layer. The interface between the
controller and the interface is called south-bound interface. This interface collects
network status, updates rules for packet forwarding at the switching devices in the
infrastructure layer. The interface between controller and application layer is called
north-bound interface. It helps in providing an overall view of the network status. It
takes policies defined in high-level languages from the application layer and uses it
to define rules at the infrastructure layer. This basically translates the requirements
of any SDN applications into packet forwarding rules [3, 4, 20, 21, 38].

4.3 SDN Protocols

The SDN concept was emerged in 2005, when the experts came up with a 4D
approach for network control. Later, Ethane architecture was developed to control
the network using centralized policies for the control flow of routing. Ethane

68 B. Rudra and Thanmayee S.

switches were used to forward the packets from controller to the destination based
on the instructions. DATALOG language was used to design the policies based on
the security. An experiment was conducted by installing the Ethane in the Stanford
computer science lab to serve 300 systems and for a small business of 30 systems
This was to derive the working of the network management and proved that a single
controller can handle 10,000 flow requests per second for small business and set
of distributed controllers can be deployed for larger topologies [8, 18, 32, 33, 39].
Ethane is not suitable for the present traditional networks techniques as it requires
to know about the users and the nodes along with the control over the routing.
These limitations were addressed by NOX by allowing access to the source and
destination for each and every event that occurs. This architecture will allow to
build a scalable network with flexible control as it uses the intermediate granularity
in the flow [19, 31, 39].

4.4 Principles of SDN Architecture

SDN applications can be network aware or we can say as the network application
aware. Traditional applications describe the network requirements indirectly for the
implementation by involving the several processing steps to negotiate and support
the execution of the applications based on policy controls. They will not support
the dynamic user requirements like throughput, delay, or availability [7, 13, 31]. In
this, the network service providers will not trust the users for traffic markings for
the priority based packet headers. So in order to overcome this, some networks will
try to support the user requirements by incurring some additional cost which may
lead to misclassification. These networks do not allow the user to know about the
information and the state of the network SDN will allow the user to specify the need
in a trusted environment which can be monitored. SDN applications can monitor and
adapt accordingly [25, 26, 40]. The use of controllers will allow the summarization
of the network state and translates the requirements towards the lower level rules.
Logically centralized SDN is distributed for the corporation between the physical
controllers to achieve better performance, scalability, and reliability. The control
decisions are up-to-date on a global view instead of on each distributed network
so that the behavior should not change in network hops. Control plane acts as a
single centralized network operating system for scheduling and solving the resource
conflicts [2, 11, 26, 31].

The controller will control the Data paths with limited capabilities by not
competing with other control elements that simplify the scheduling of the jobs and
resource allocation. The SDN networks will run with network resource utilization
based on the complex and follow the specified policies based on the information
model that is defined by OpenFlow. In the traditional network architecture, the
control plane, where the decisions about traffic flow take place, and the data plane
also called a forwarding plane, where the forwarding of traffic takes place, are

4 Architecture and Deployment Models-SDN Protocols, APIs, and Layers,. . . 69

bound together in the underlying network devices. The decision about forwarding
happens at the network switches based on their configured routing tables. Any
update to the control plane requires the network engineer/administrator to program
the network switches individually with required network policies. This results in
a monotonous job that can be impractical in an IoT environment. To waive away
the challenges involved in traditional network architecture, SDN has plotted down
a captivating technique; that is, SDN separates the control plane and data plane.
Thus, the system that makes decisions about where the traffic has to flow and is
separated from the system that actually forwards traffic to the desired destination.
This introduces flexibility, manageability, adaptability, scalability, agility features
as an added advantage for IoT network management. In the near future SDN is
expected to become a crucial part of IoT the agile and flexible architecture that it
provides [18, 20, 21, 44].

4.5 SDN Tools and Languages

Various tools and languages were being used to implement and monitor the archi-
tecture of SDN. Many focused on the platform like Onix for the implementation of
the controllers in distributed networks and its management. Veriflow is capable of
finding the errors in the application rules by avoiding the disruption of the network
performance. Routeflow is another routing architecture that was designed based
on the SDN concepts, used to provide the interaction between hardware and the
open source routing stacks. This paved a path for the migration towards SDN from
Traditional IP. Later, physical SDN prototypes were introduced which paved a path
for the SDN innovation like Mininet. It is a virtual emulator that allows any SDN
prototype evaluation. If the evaluation is positive, the SDN services are deployed for
the general and research purpose else again the prototypes are developed and tested.
Mininets performance is poor at high loads and its lightweight virtualization is also
not suitable. Another design is Frenetic, high-level programming for OpenFlow
architecture. It uses the SQL syntax for the queries, stream processing language,
and a specific language for packet forwarding. These three languages will make the
programmers task as simple by allowing them to produce the high-level forwarding
policies. It addresses some issues related to consistency and synchronization
between the arrival of the packet time and the installation of the rule time. It consists
of two abstraction levels, i.e., one for traffic control and the other for installation of
the rules in the switches. Other programming languages like ProceraNettle came
into existence for the reactive programming and facilitate the management of the
network along the event-driven networks. A list of simulators and emulators like
Mininet, NS-3, and so on that are supported by for the real time experiments are as
follows [18, 33, 39].

70 B. Rudra and Thanmayee S.

Mininet
It is based on the OF protocol which runs the end hosts, routers, and related links
on the Linux kernel using a lightweight virtual network. The components present in
Mininet act as real network components and allow us to check possible bandwidth,
node connectivity, and deepest nodes along with speed. It supports various tools and
real view of the network traffic. This is being used by researchers and developers due
to its easy interaction with the network using API and CLI features and also allows
for the development of the various real hardware. This is mainly used because it
is fast, supporting, allowing packet forwarding, running real programs available on
laptops, servers, open source and active. It does not allow huge amounts of data in
a single system, support OF controllers, support only Linux platform, NAT is out of
box, shares host file system and virtual time notion absence.

NS-3
It is a simulator suited for research and educators. The library is split into
modules. The OF is switchNet which acts as a switch. The objects present in
NS-3 implement the flow table for the packets received, give a connection, and
behave like a controller as in SDN. DropController and Learning Controller are
the two controllers which are available in the package. This allows the addition
of new protocols, distance between real and simulated networks reduced with the
integration and customizable simulator. The disadvantages of this simulator are loss
of models, creation of interfacing topology, and loss of visible capability.

EstiNet
This is a simulator and an emulator that support OF and switches. In the simulation
of EstiNet, POX, NOX, and so on controllers act as SDN controllers. Controllers
will run on external machines in emulation mode. It allows the controller with a
dedicated hardware using an Ethernet cable resulting in remote controlling of the
device. The other advantages include accuracy, repetitions, fast, and scalability. This
allows “Kernel-reentering simulation Methodology” for testing whether the novelty
of the controller programs by the researcher is effective and simple to adopt or not.

4.6 SDN Benefits and Application Domains

The inheritance of the decoupling of the control plane and data plane will offer a
great control over the network with the help of programming. This combined feature
can benefit the system by improving the configuration, performance and encourage
the innovation for the network architecture and its operations. SDN allows a
real time centralized control due to its ability to fetch the status of the network
instantaneously as well the user defined policies. This helps in network optimization
thus allows improving the network performance. SDN offers the platforms for the
innovations and experimentation of the new techniques for the network design and
has the ability to define the isolated network which is virtual through a control plane
[40, 44].

4 Architecture and Deployment Models-SDN Protocols, APIs, and Layers,. . . 71

Enhanced Configuration
Configuration plays a major role when the new equipment is added to the existing
network which is required to achieve the coherent network operations. Manual
processing is required at a certain level due to the heterogeneity of the device
manufacturers and also the interface configuration. The manual processing is prone
to errors and tedious as well it requires some troubleshoot for the configuration
errors. The unification of the control plane will allow all kinds of network devices,
which include switches, routers, firewalls, and load balancers, to configure network
devices from a single point of failure automatically. The entire program can
be configured and optimized dynamically based on network status. Performance
Improvement: The key objective is to maximize the utilization of the network
infrastructure. The existence of various technologies and the stakeholders in the
network optimization of the network is a difficult task. The approaches which are
available focus on performance optimizations of subnets for the quality experience
of the user towards the network services. This optimization will be performed
based on the local information of the network. SDN provides the optimization
globally as it allows the centralized control with the global network along with
a feedback control that has the information which is being exchanged within the
layers of the architecture. With the centralized algorithms, the optimizations issues
are manageable. It can deal with traffic scheduling, end-to-end congestion, energy
efficient operations, and Quality of service which can be easily deployed and tested
for effectiveness in the network.

Encourage Innovation
The architecture must be able to continue the evolution of the network applications
in terms of innovation rather than only to predict the requirements of the future. The
main problem will arise due to the proprietary hardware used in the conventional
networks widely. When new services are developed, tested on separate testbed
rather than on the network, it will not provide confidence for the adoption of
the technology by the industry. The community like PlanetLab and GENI was
enabled for experiments, those efforts did not solve the issue completely. SDN
provides a programmable network by enabling the platform for innovation in terms
of new revenue generation, deployment of new ideas, flexibility, and so on. This
architecture provides a clear separation between the virtual and real environment.

SDN Applications
SDN is applied in a wide range of networks which includes Data centers, WLANs
and heterogeneous networks, Optical Networks, Cellular and Internet of Things [18,
19, 31, 33, 40].

Data Centers
Data centers need to scaleup for the support of servers and the virtual machines
that exist in the entire large network. From the network point of view, scaling up
of these devices is an issue. The forwarding table size will increase as the number
of servers increases, raising the requirement of sophisticated forwarding devices.
With this increment of devices, traffic management and policy enforcement will

72 B. Rudra and Thanmayee S.

become critical as data centers need to achieve high levels of performance. With
careful design and configuration, the aforementioned requirements can be met in the
traditional networks. In most of the cases this will be achieved using the preferred
routes and by placing the middleboxes at choke points on the physical network.
This concept will be contradictory for the requirement of scalability as the manual
configuration will lead to error prone as the network size increases and it will not be
able to adapt to the application requirements. The aforementioned gaps were filled
with SDN with the help of decoupling concept which made the forwarding of the
services from device to device much simpler. The control logic was delegated to one
control entity which is centralized by allowing the dynamic management of the flow
of packets, balance of the traffic, and allocation of the resources by adjusting the
data center operations. This concept will increase the performance of the network
and eliminate the concept of middleboxes in the network.

Cellular Networks
There is an increase in the rise of cellular devices from the decade and pushed
cellular networks to their limits. The interest of integrating the SDN into the cellular
networks raised the development of 3G and 4G communications which we are
using today. The main issue with the cellular architecture was the centralized data
flow, allowing the traffic through specialized equipment with multiple network
functions from the routing and billing increasing the architectural cost because
of the complexity of the devices. The cell size tends to become small in order
to cover the demands of the ever increasing traffic over the network. This leads
to the interference in the neighboring base stations, rendering the allocation of
the resources statistically no longer adequate. SDN in cellular networks will solve
some of the aforementioned deficiencies. The decoupling of the control plane and
data plane introduces the centralized controller which has a complete view of the
network thus allowing equipment to be simpler by recusing the architectural cost.
The operations like routing, mobility management, policy enforcement are assigned
to various cooperating controllers by making them more flexible and manageable.
The centralized controller simplifies the various operations of the load as well as
the noise management and does not require any direct interaction and coordination
among the base stations. Controller makes the decision and instructs the dataplane to
operate for various services. Introducing the virtual operators using SDN is simple
and easy into the telecommunication market. Providers will be responsible for the
management of the flow of the subscribers and the controllers without paying extra
amounts.

4.7 Research Challenges

SDN is a promising technology for the communication between the IT and
cloud providers and its enterprises; some challenges are still unsolved like the
performance of the cloud in the wireless networks, security challenges raised due

4 Architecture and Deployment Models-SDN Protocols, APIs, and Layers,. . . 73

to the introduction of the programmable concept. The dynamics of the network will
change with the attacks like DDoS, spam, Malware, phishing, and so on which need
to be addressed for the development of secure SDN. Mobile networks are more
vulnerable as the broadcast channels allow the eavesdropping and injection attack.
The common challenges that arise with the SDN are listed below [7, 13].

1. Reliability: Network topologies need to be configured intelligently for the
prevention of the errors by increasing the network availability that may occur
manually. There is a possibility of single point failure because of brain-split
problem. Networks need to be routed to alternative nodes when the network
devices fail for the flow of continuation. Controller will be responsible for the
failure of the entire network in the absence of a stand-by-controller. To overcome
this issue, many organizations have come forward with many solutions like
the implementation of the multipaths for the reroute of the traffic towards the
active links, support of various technologies like Virtual Router Redundancy
Protocol (VRRP), Multi-Chassis Link Aggregation Group (MC-LAG) for the
development of network availability. The concept of clustering has emerged in
order to overcome the network failure with the help of stand by controllers.
Memory synchronization needs to be maintained between the active and stand
by controllers. Many have proved that the centralized controller concept will
interrupt the traffic flow in the network and may lead to network failure. Many
have suggested various solutions but still the problem exists as a research
challenge.

2. Scalability: SDN is distinguished with traditional networks with the decoupling
of the data plane and control plane from the architecture. The planes can
evolve independently until unless APIs are connecting them. The changes are
accelerated in the control plan with the help of the centralized view of the
network. Although SDN supports decoupling, it has its own disadvantages like
standard APIS need to be defined which may arise the scalability issue. It has
been noted that the number of switches in the network increases along with the
end hosts then the controller will become a key bottleneck to be considered.
When the bandwidth is increased, the end users will increase and more requests
will be queued towards the controller which will fail to handle. The flow-setup
process contains some limitations that lead to scalability issues. SDN network
causes limited visibility of the traffic which does not allow troubleshooting on
this platform. When the network team will find the network slowdown, they will
immediately reschedule the backup.

3. Performance under Latency Constraints: SDN performance is measured on flow-
setup time and the number of flows that occurs per second where the controller
can handle. The flow setup will be proactive and reactive whereas the proactive
will occur before the packet arrival, so the switch will understand how to deal
with it. This will help in removing the limit of the number of flows per second
which will be handled by the controller. Reactive mode will come into existence
when the packet arriving the switch does not match with the existing entries of the
flow table. Here, the controller will decide how to process the packet and those

74 B. Rudra and Thanmayee S.

related instructions will be cached onto that switch. This will consume more time
compared to the proactive mode as it is the sum of the time taken to process at the
controller and the updation of the switch about the change of flow. This reactive
mode will introduce an overhead that can be used to limit network scalability and
introduce the flow-setup delay. Many experts have suggested solutions but still
remain an issue. Some solutions based on DevoFlow and McNettle architectures
are used to overcome this issue.

4. Use of Low-level Interfaces between the controller and Network Device:
Although Network management is made easy with the help of simple interfaces
and the control applications which determines the high-level network policies.
The SDN has to translate these policies to low-level configurations present on
the switch. The current available controllers support the event-driven model,
imperative. When the network packet flows, the interfaces will react to the
arrival of the packet and for the link status updates with the installation or the
uninstallation of the individual packet processing rules specified in the low-level
interfaces along with rule-by-rule and switch by switch. The programmers
continuously need to uninstall or install the policies which will affect the
future events which will be monitored by the controller. The interfaces need
to coordinate continuously between the multiple asynchronous events to perform
a simple task. This will increase the burden on the controller and may generate
time-absorption issues and may slow down the entire network. Solutions were
suggested based on a high-level programming language that contains operators
which can allow or deny the flows maintaining QoS.

5. Controller Placement Problem: This problem arises from the decoupling of the
control and data plane to the flow-setup latency towards the reliability, fault
tolerance to the performance of the system. We can consider an example of delay
due to the use of wide area networks (WANs), availability limit of the network.
The practical implications with this are from the software design, which affects
the controller’s response towards the events in the real time. This even includes
the network topology and the number of controllers required for the smooth
communication.

6. Security: The studies performed by the IT professional on the security challenges
are the lack of integration with the available technologies that are unable to poke
around each and every packet. The controller vulnerability will increase with the
increase of intelligence of the controllers. Once the hacker or the attacker gains
the controller access, they can damage part or full network. The SDN has to
incorporate the authentication and authorization services for the various classes
of the network administrators. The system should be able to alert the network
providers in case of sudden attack and limit the communication of the controller.

SDN is a promising technology but lacks the standard policies. The current
architecture still lacks the standard topology, delay, and loss of packets in the
network. It does not even support horizontal communications among the nodes and
collaborating devices. It still has experience with the absence of OpenFlow drivers
and a standard high-level programming language. The other concerns include

4 Architecture and Deployment Models-SDN Protocols, APIs, and Layers,. . . 75

interoperability, performance and privacy concerns, and lack of technical experts
for the support. It gained popularity due to the proposed prototypes, development of
the tools and a particular language for the OpenFlow and for Controllers along with
the Cloud computing networks [25, 26, 31, 40].

References

1. Alsmadi, I., Alazzam, I., & Akour, M. (2017). A systematic literature review on software-
defined networking. In 2021 International Conference on Information Technology (ICIT).
https://doi.org/10.1007/978-3-319-44257-0_14

2. Aujla, G. S., & Kumar, N. (2018). SDN-based energy management scheme for sustainability
of data centers: An analysis on renewable energy sources and electric vehicles participation.
Journal of Parallel and Distributed Computing, 117, 228–245.

3. Aujla, G. S., Jindal, A., Kumar, N., & Singh, M. (2016). SDN-based data center energy
management system using RES and electric vehicles. In 2016 IEEE Global Communications
Conference (GLOBECOM) (pp. 1–6). New York: IEEE.

4. Aujla, G. S., Jindal, A., & Kumar, N. (2018). EVaaS: Electric vehicle-as-a-service for energy
trading in SDN-enabled smart transportation system. Computer Networks, 143, 247–262.

5. Aujla, G. S., Chaudhary, R., Kumar, N., Kumar, R., & Rodrigues, J. J. (2018). An ensembled
scheme for QoS-aware traffic flow management in software defined networks. In 2018 IEEE
International Conference on Communications (ICC) (pp. 1–7). New York: IEEE.

6. Aujla, G. S, Singh, A., & Kumar, N. (2019). Adaptflow: Adaptive flow forwarding scheme for
software-defined industrial networks. IEEE Internet of Things Journal, 7(7), 5843–5851.

7. Braun, W., & Menth, M. (2014). Software-defined networking using OpenFlow: Protocols,
applications and architectural design choices. Future Internet 2014, 6, 302–336.

8. Cabaj, K., Wytrȩbowicz, J., Kuklinski, S., Radziszewski, P., & Dinh, K. (2014). SDN
Architecture Impact on Network Security. https://doi.org/10.15439/2014F473

9. Cai, Z., Cox, A. L., Ng, T. S. E. (2010). Maestro: A System for Scalable OpenFlow Control,
Rice University Technical Report TR10-08, December 2010.

10. Cai, Z., Cox, A. L., & Ng, T. S. E. (2011). Maestro: Balancing Fairness, Latency, and
Throughput in the OpenFlow Control Plane. Rice University Technical Report TR11-07,
December 2011.

11. Cao, H., Wu, S., Aujla, G. S., Wang, Q., Yang, L., & Zhu, H. (2019). Dynamic embedding
and quality of service-driven adjustment for cloud networks. IEEE Transactions on Industrial
Informatics, 16(2), 1406–1416.

12. Campbell, A. T., et al. (1999). Open signaling for ATM, internet and mobile networks
(OPENSIG’98). ACM SIGCOMM Computer Communication Review, 29(1), 97–108.

13. Conti, M., Chong, S., Fdida, S., Jia, W., Karl, H., Lin, Y., Mähönen, P., Maier, M., Molva, R.,
Uhlig, S., & Zukerman, M. (2011). Research challenges towards the Future Internet. Computer
Communications 2011, 34(18), 2115–2134.

14. Devolved Control of ATMNetworks (2013). Available from http://www.cl.cam.ac.uk/research/
srg/netos/old-projects/dcan/

15. Feghali, A., Kilany, R., & Chamoun, M. (2015). SDN security problems and solutions
analysis. In 2015 International Conference on Protocol Engineering (ICPE) and International
Conference on New Technologies of Distributed Systems (NTDS), Paris, 2015 (pp. 1–5). https://
doi.org/10.1109/NOTERE.2015.7293514.

16. Fei, H., Hao, Q., & Bao, K. (2013). A Survey on software-defined network (SDN) and
OpenFlow: From concept to implementation. IEEE Communications Surveys & Tutorials,
16(4), 2181–2206 (2013)

https://doi.org/10.1007/978-3-319-44257-0_14
https://doi.org/10.15439/2014F473
http://www.cl.cam.ac.uk/research/srg/netos/old-projects/dcan/
http://www.cl.cam.ac.uk/research/srg/netos/old-projects/dcan/
https://doi.org/10.1109/NOTERE.2015.7293514
https://doi.org/10.1109/NOTERE.2015.7293514

76 B. Rudra and Thanmayee S.

17. Ferro, G. (2012). OpenFlow and software-defined networking. http://etherealmind.com/
software-defined-networking-openflow-so-farand-so-future/.

18. Foster, N., Freedman, M. J., Harrison, R., Rexford, J., Meola, M. L., & Walker, D. (2010).
Frenetic: A highlevel language for OpenFlow networks. In Proceedings of the Workshop on
Programmable Routers for Extensible Services of Tomorrow (PRESTO ’10), Philadelphia, PA
(2010) (article no. 6)

19. Foster, N., Harrison, R., Freedman, M. J., Monsanto, C., Rexford, J., Story, A., & Walker, D.
(2011). Frenetic: A network programming language. In ACM SIGPLAN Notices—ICFP ’11
(Vol. 46, pp. 279–291).

20. Hakiri, A., Gokhale, A., Berthou, P., Schmidt, D. C., & Gayraud, T. (2014). Software-defined
networking: Challenges and research opportunities for Future Internet. Computer Networks,
75(Part A), 453–471. ISSN:1389-1286.

21. Hicks, M., et al. (1998). PLAN: A packet language for active networks. ACM SIGPLAN
Notices, 34(1), 86–93 (1998).

22. Hu, F. (2014). Network innovation through OpenFlow and SDN: Principles and design. Boca
Raton: CRC Press (2014). http://dx.doi.org/10.1201/b16521

23. Jammal, M., Singh, T., Shami, A., Asal, R., & Li, Y. (2014). Software-defined networking:
State of the Art and research challenges. Computer Networks, 72. https://doi.org/10.1016/j.
comnet.2014.07.004

24. Kim, E.-D., Lee, S.-I., Choi, Y., Shin, M.-K., & Kim, H.-J. (2014). A flow entry management
scheme for reducing controller overhead. In 2014 16th International Conference on Advanced
Communication Technology (ICACT) (pp. 754–757).

25. King, D., Rotsos, C., Aguado, A., & Georgalas, N. (2016). The Software Defined Transport
Network: Fundamentals, Findings and Futures. https://doi.org/10.1109/ICTON.2016.7550669

26. Khan, S., Shah, M., Khan, O., & Wahab Ahmed, A. (2017). Software Defined Network (SDN)
Based Internet of Things (IoT): A Road Ahead (pp. 1–8). https://doi.org/10.1145/3102304.
3102319

27. Kreutz, D., Ramos, F. M. V., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S., & Uhlig,
S. (2015). Software-defined networking: A comprehensive survey. Proceedings of the IEEE,
103(1), 14–76.

28. L. Foundation, Opendaylight: An Open Source Community and Meritocracy for Software-
Defined Networking. A Linux Foundation Collaborative Project (April 2013).

29. Lara, A., Kolasani, A., & Ramamurthy, B. (2014). Network innovation using OpenFlow: A
survey. IEEE Communications Surveys & Tutorials, 16(1), 493–512 (2014). First Quarter.

30. Liu, D., & Deng, H. (2013). Mobility Support in Software Defined Networking, Tech. Rep.
31. Marina, M. K., & Kontovasilis, K. (2015). Software Defined Networking Concepts. 19 June

2015 https://doi.org/10.1002/9781118900253.ch3
32. Monsanto, C., Reich, J., Foster, N., Rexford, J., & Walker, D. (2013). Composing software-

defined networks. In Proceedings of the 10th USENIX Symposium on Networked Systems
Design and Implementation.

33. NSDI’13 (2013). Proceedings of the 10th USENIX conference on Networked Systems Design
and Implementation (NSDI ’13), Lombard, IL (pp. 1–14).

34. Nunes, B. A. A., Mendonca, M., Nguyen, X.-N., Obraczka, K., & Turletti, T. (2014). A survey
of software-defined networking: Past, present, and future of programmable networks. IEEE
Communications Surveys and Tutorials, 16(3), 1617–1634.

35. Open Network Foundation (2013). SDN Architecture Overview, version 1.0.
36. OpenFlow Components, http://archive.openflow.org/wp/openflowcomponents/,2011
37. Rexford, J. (2012). Software-defined networking. COS 461: Computer networks lecture. http://

www.cs.princeton.edu/courses/archive/spring12/cos461/docs/lec24-sdn.pdf
38. Rowshanrad, S., Namvarasl, S., Abdi, V., Hajizadeh, M., & Keshtgary, M. (2014). A survey

on SDN, the future of networking. Journal of Advanced Computer Science and Technology, 3,
232–248. https://doi.org/10.14419/jacst.v3i2.3754

http://etherealmind.com/software-defined-networking-openflow-so-farand-so-future/
http://etherealmind.com/software-defined-networking-openflow-so-farand-so-future/
http://dx.doi.org/10.1201/b16521
https://doi.org/10.1016/j.comnet.2014.07.004
https://doi.org/10.1016/j.comnet.2014.07.004
https://doi.org/10.1109/ICTON.2016.7550669
https://doi.org/10.1145/3102304.3102319
https://doi.org/10.1145/3102304.3102319
https://doi.org/10.1002/9781118900253.ch3
http://archive.openflow.org/wp/openflowcomponents/,2011
http://www.cs.princeton.edu/courses/archive/spring12/cos461/docs/lec24-sdn.pdf
http://www.cs.princeton.edu/courses/archive/spring12/cos461/docs/lec24-sdn.pdf
https://doi.org/10.14419/jacst.v3i2.3754

4 Architecture and Deployment Models-SDN Protocols, APIs, and Layers,. . . 77

39. Sezer, S., Scott-Hayward, S., Chouhan, P. K., Fraser, B., Lake, D., Finnegan, J., Viljoen, N.,
Miller, M., & Rao, N. (2013). Are we ready for SDN? Implementation challenges for software-
defined networks. IEEE Communications Magazine, 2013, 36–43.

40. Singh, S., & Jha, R. K. (2017). A survey on software defined networking: Architecture for
next generation network. Journal of Network and Systems Management, 25, 321–374 (2017).
https://doi.org/10.1007/s10922-016-9393-9

41. Tennenhouse, D. L., et al. (1997). A survey of active network research. IEEE Communications
Magazine, 35(1), 80–86.

42. Van der Merwe, J. E., et al. (1998). The tempest—A practical framework for network
programmability. IEEE Network, 12(3), 20–28.

43. Wetherall, D. J., Guttag, J. V., & Tennenhouse, D. L. (1998). ANTS: A toolkit for building
and dynamically deploying network protocols. In IEEE Open Architectures and Network
Programming (pp. 117–129).

44. Xia, W., Wen, Y., Foh, C. H., Niyato, D., & Xie, H. (2015). A survey on software-defined
networking. In IEEE Communications Surveys and Tutorials (Vol. 17, no. 1) (pp. 27–51).
Firstquarter 2015. https://doi.org/10.1109/COMST.2014.2330903

45. Yeganeh, S.H., Tootoonchian, A., & Ganjali, Y. (2013). On scalability of software-defined
networking. IEEE Communications Magazine, 51(2), 136–141.

https://doi.org/10.1007/s10922-016-9393-9
https://doi.org/10.1109/COMST.2014.2330903

Chapter 5
Network Policies in Software Defined
Internet of Everything

Rashid Amin, Mudassar Hussain, and Muhammad Bilal

5.1 Introduction

Software Defined Network [5, 8, 9] is an emerging concept that has been deployed
in various domains. There are several mechanisms for network policy management
that exist in the literature [6].

5.1.1 What are the Network Policies?

Network policies are the set of rules which instruct network devices to function as
per requirements of users, applications, and/or organizations. The network managers
implement these policies to restrict/allow specific communication to a certain
resource or group of users. The correct implementation of network policies helps
to protect the integrity, confidentiality, and availability of precious data while pro-
viding efficient and effective access to information systems. The scope the network
policies depend upon the category of networks, i.e., Local Area Network (LAN),
Metropolitan Area Network (MAN), and Wide area Network (WAN). Network
policies in LAN consist of a collection of goals for an organization regarding
rules for users/administrators and system/management requirements to achieve a

R. Amin (�)
University of Engineering and Technology, Taxila, Pakistan

M. Hussain
University of Wah, Wah Cantt, Pakistan

M. Bilal
Department of Computer Engineering, Hankuk University of Foreign Studies,
Yongin-si, Gyeonggi-do, South Korea
e-mail: mbilal@hufs.ac.kr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. S. Aujla et al. (eds.), Software Defined Internet of Everything, Technology,
Communications and Computing, https://doi.org/10.1007/978-3-030-89328-6_5

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89328-6_5&domain=pdf
mailto:mbilal@hufs.ac.kr
https://doi.org/10.1007/978-3-030-89328-6_5

80 R. Amin et al.

certain access level. Network policy is a “living document” that is continuously
updated as per the requirements of users or evolution in technology [38]. In this
way, the network policy can be configured that assigns users to a Virtual Local Area
Network (VLAN). When VLANs are configured by using internetworking devices,
e.g., routers, switches, bridges, etc., then the network policy restricts communication
between different VLAN users or severs. Moreover, VLANs help to cluster multiple
network resources logically which is quite beneficial to design , implement, and
manage networks. Similarly, all remote access to the MAN and WAN shall be
authenticated, logged, and restricted to minimize the risk to the valuable assets.
The access control in this case normally implemented by using layer 3 or layer 4
devices, for example, routers and firewalls.

Internet of Everything (IoE) is the superset of Internet of Things (IoT) introduced
by Cisco and is appeared as an innovation in IoT. In IoE, people, processes, data,
and things are being connected to the Internet that comprises the wider concepts
in the field of connectivity. So, this connection would be producing a massive
data volume. There are wide application areas of IoE and such kind of networks
can be implemented in healthcare, construction, factories, agriculture, logistics,
etc. It enables network connectivity between diverse kind of devices for automatic
processing without human intervention. Recently, the efforts are being carried out
to interconnect IoE infrastructure and cloud computing platforms. It is increasing
the complexity of networks which results in various security problems. In such
environment, where there are involved numerous actors for data communication, the
implementation of policies for an effective data flow is quite difficult to implement
[22].

In traditional computer networks, the routers/firewalls are configured based on
network policies to filter network traffic. Although, these networks are broadly
adopted, however, these are complex and hard to manage due to the distributed
nature where network control and management are implemented in every device
[13]. In addition, network policy implementation in these networks is also quite
tedious and often takes weeks to months to translate and configure the policies at
the networking devices. The network policies are sequential collection of permit
and deny conditions that state a router or firewall to forward/permit packets or
drop/deny. The data communication is controlled by the routing protocols or by
installing network policies on the interfaces of internetworking devices. In addition,
the network policies are configured manually using device specific commands.
Moreover, the network policies are normally implemented based on destination
IP addresses or in tuple form that comprises source IP, destination IP addresses,
ports, and protocol. The below Access List 112 shows that the network traffic
from network 192.168.12.0 is allowed for communication to network 10.10.1.0
and otherwise denied. Similarly, Access List 122 shows that TCP traffic for telnet
application is allowed from host 192.168.13.1 to host 10.10.1.2.

Access List 112 Permit IP 192.168.12.0 0.0.0.255 10.10.1.0 0.0.0.255
Access List 112 Deny IP Any
Access List 122 Permit TCP Host 192.168.13.1 Host 10.10.1.2 Eq Telnet

5 Network Policies in Software Defined Internet of Everything 81

Fig. 5.1 Network policy implementation in SDN

Software Defined Networking (SDN) [3, 18, 33, 37, 45] is an emerging network
architecture which helps to solve limitations of traditional networking by separating
data plane from network control and management planes of forwarding devices.
In SDN, the network policies are configured at the control plane which computes
best path between source and destination for data flow as shown in Fig. 5.1. Based
on specified network policies, the controller computes flow rules and installs at the
switches along the path between source and destination.

For example, a network policy based on destination IP address is represented
via pyretic language [35] as (Match (Switch = SW1) and Match (Dest_IP =
‘192.168.1.3’) >> FWD(2)). This policy states that when a packet is received at
Switch-1 (SW1) whose destination IP address is 192.168.1.3 will be forwarded to
Port 2 of switch-1. Similarly, a complex network policy that is expressed as Employ-
ees (Faculty and Staff) has access to the Servers via Transmission Control Protocol
(TCP) and Destination Port Numbers 20, 25, 80. This policy is more complex than
the destination IP address based policy, as it includes multiple parameters, like
Source Employees, Destination Servers, Protocol TCP, Port Numbers 20, 25, 80.
Such policies are implemented at the central controller which computes best path
between source and destination in addition to installing flow rules at the along the
best path as per policy. This centralized policy implementation mechanism helps to
reduce complexity and network management in SDN.

82 R. Amin et al.

5.1.2 Role and Importance of Network Policies

The network policies in communication networks play a vital role with respect to
the effective flow of data between a valid source and destination. A communication
network in which network policies are implemented can be automated more easily
and can react quicker in case of any change in the policies of an organization. In such
networks the internetworking devices, users, and applications need to follow the
instruction from defined network policies. In IoEs, the access privileges are provided
to all stakeholders, i.e., users, devices, and applications and updated as networks
expand. The access rights enable users to perform certain actions and can get more
access to the information resources. In this way, more devices, users, applications
can be added in the network for information exchange. In addition, network policies
help to implement access control to the resources in order to protect the sensitive
data. It helps to provide consistent services and make performance dependable
and verifiable. The following are very important benefits of implementing network
policies in communication networks, such as, IoTs and IoEs.

5.1.2.1 Business Intent and Agility

Network policies are building block of any organization and implemented in a way
to reflect the business intent to achieve the desired business outcomes. The policies
are implemented at the internetworking equipment for accessing a certain data and
without implementation of policies, the organizations fail to deliver the output in an
optimal way.

5.1.2.2 Consistent Services

The well implemented network policies offer consistent services throughout the
network and provide seamless mobility, fault tolerance, and predictable data
delivery. So, the users and things can access the network resources remotely without
affecting the access privileges while maintaining quality of services [7].

5.1.2.3 Network Automation

Network automation is the process in which internetworking devices are configured
by implementing security and management policies. It helps to increase network
performance and efficiency. Network virtualization is often helpful to automate
communication networks.

5 Network Policies in Software Defined Internet of Everything 83

5.1.2.4 Performance Monitoring

Performance monitoring is an important aspect which reveals that the implementa-
tion of policies, goals, and metrics are meeting the organization requirements or not
[15]. It helps to measure the network performance and ensures that the policies are
meeting the goals and objectives of an organization.

5.1.2.5 Network Security

With policies in place, any violations can be easier to detect. Security is more easily
enforced, threats more quickly contained, and risk rapidly reduced with security-
related policies [10, 11, 16].

5.2 Types of Network Policies for IoE

There are several types of network policies, i.e., access control, load balancing,
archiving, failover, quality of service, traffic engineering, etc. [47]. Some common
network policies are depicted in Fig. 5.2. Since network policies specify how the
network must function in different circumstances, there is no set list of policies
[17, 54]. A network’s policies depend on what is necessary to achieve business
objectives. These network policies manage different types of services, applications,
and tasks in the IoE network.

Fig. 5.2 Type of network policies in IoE

84 R. Amin et al.

5.2.1 Security and Access Control

This policy determines when a user or object can join the network and what services
they can access. Since data and application protection is based on access and
security policies, they may be the most critical types of policies.

5.2.2 Application and QoS

These policies determine the relative priority of different applications and how
traffic can be prioritized for each. Hackers can gain access to your networking
environment from any computer or software product you use. As a result, it is
important to keep all systems up to date and fixed in order to avoid cyberattackers
from manipulating bugs to gain access to confidential data [28]. The mixture of
hardware, applications, and best practices you use to track problems and close holes
in your protection coverage are referred to as application security and it enhances
the QOS.

5.2.3 Traffic Routing and Service Insertion

These policies specify how traffic from specific groups of users or hosts, such
as guest traffic, can be routed via a firewall and other security modules. Routing
protection guarantees that the routing protocol is working properly . It involves
putting in place mechanisms to ensure that state modifications on devices and
network elements are monitored, whether they are dependent on external or internal
inputs (physical security of the device itself and parameters maintained by the
device, including, e.g., clock) [51].

5.2.4 IP-Based Versus Group- or Role-Based

Policies may be specified at the IP address or function stage. Role-based policies
are more complex, flexible, and easy to automate, and they promote consumer
and system mobility. IP-based policies are inflexible, do not scale, and are ideally
tailored to a stable climate.

A network that adheres to the well-defined policy will quickly fulfill the market
requirements for which it was built. The network cannot be set up to deliver
optimally without specific targets, and its efficiency cannot be calculated without
priorities. Network policies can also be classified as follows:

5 Network Policies in Software Defined Internet of Everything 85

5.2.5 Standard Usage Policy

Employees who request access to a network must sign a nondisclosure document
prior to being given access. They have to promise not to use it for non-work-related
purposes, such as sharing copyrighted content, watching pornography, or social
networking. The arrangement is referred to as an Appropriate Usage Policy [46]. It
relieves the company from worry over responsibility for the network use. The result
is that an organization may legitimately terminate anyone who uses the network for
work-related reasons but only with a prior warning about what will occur.

5.2.6 Disaster Recovery Policy

There is a possibility that both of the networks would go down in flames. This may
be anything from a building containing a network on fire or flooding to malicious
destruction caused by an intruder or a dissatisfied employee. When a tragedy strikes,
an organization’s network must be restored as soon as possible or risk going out of
business [14]. A disaster management strategy is a written plan that seeks to get
administrators in a company to think ahead of what they intend to do in the case of
a disaster. Companies would realize what to do easily and calmly in the case of a
major situation if they plan accordingly to prepare for the worst.

5.2.7 Backup Policy

In all moments, all information is at risk because of a number of reasons; an
intruder or a dissatisfied employee can erase data, a fire may occur, data may be
compromised by software or an update, a piece of machinery such as a hard disc
may malfunction, an earthquake or other natural catastrophe may occur, or a device
containing data may be stolen, and so on. Regular backups are conducted to ensure
the data can be retrieved [30].

5.2.8 Archiving Policy

One does not like to keep all the files on the system, however, may not be able to
erase them. For example, after a year group graduate, you no longer need to have
them on the school’s admin system. It is doubtful that the tax office would use these
reports again because the corporation has done with them (companies have to keep
tax records for seven years by law). After a plane accident, they would have to
consult the archives for parts [55]. They do not want to know the latest machine

86 R. Amin et al.

specifications but might want to include them in the future. So, in all these cases,
archiving policies help to manage the entire system smoothly.

5.2.9 Failover Policy

In the event that the system fails, businesses often have replacement systems for
essential network infrastructure. If the first system fails, these replacement systems
are programmed to start automatically [31]. It shows that the IoE network is
not having some “down period.” “Down time” happens anytime a corporation is
reluctant to use the network, considering the reality that it is vital to its activities.
When an IoE network was offline for even a few hours, it might cost them
thousands, if not millions, of pounds. Servers and routers are common examples
of infrastructure that is duplicated in this way [39]. A written protocol is known as
a Failover policy, which specifies which items of equipment can be duplicated, how
they will be set up, and how long customers can anticipate downtime to be, among
other things.

5.3 Automation of Network Policies

The automation of network policies is extremely important to increase the network
performance. The high-level programming languages, such as, Pyretic [35], Frenetic
[19], and Maple [53] help to specify these policies as per the application environ-
ment. These languages provide parallel and sequential composition operators for
effective implementation of policies. These help to implement multiple policies
via composition operators to process network packets in series or parallel. These
languages provide network programmers a platform where they can build network
applications based of network policies to test the behavior of whole network.

In [24, 25], the problem of changing or modifying the network policies at
controller is discussed in SDN. This changing or modification of network policies
leads to packet violations due to already installed flow rules at switches. They solve
this problem by detecting network policy change with the help of matrices and
multi-attributed graphs. After detection of policy change the proposed approaches
detect policy conflicts/overlapping and the conflicting flow rules are deleted from
the switches. In addition, the controller computes best path and new flow rules
which are cached at controller and installed along the path. In this way the proposed
approaches automate network policy change which improves network performance
and efficiency. In research work [52], the authors detect irregularities in the network
policies before the implementation in the network. It means that the anomalies are
fixed before the installation of flow rules at switches. To achieve the desired goal,
the forwarding policies are formally represented and set of anomalies are detected

5 Network Policies in Software Defined Internet of Everything 87

against set of flow rules for the respective policies. In addition, it also provides
provision for network administrators to specify their own anomalies.

In [43], SDN based proactive flow rules installation approach is proposed for
efficient communication in Internet of Things (IoT). It resolves the problem of flow
installation delay as well as congestion due to packet-in messages. This saves energy
and other potential resources of network nodes. The results reveal that the proposed
mechanism reduces congestion between controller and network nodes and reduces
average flow rule installation delay by 90%. In SDN, flow rules are installed in
switches on the basis of exact matching [43] or wildcard-based matching [34]. The
wildcard-based matching improves reusability of flow rules and reduces packet-in
messages. This improves scalability both at data and control planes. However, in
case of exact matching almost every flow passing the switch will generate a packet-
in message to the controller which exhausts precious resources. To resolve this
problem, some researchers suggest using load balancing mechanism by installing
proactive flow rules on multiple switches [36] or reactive caching flow rules in each
switch. In [56], SDN based wildcard rule caching mechanism namely CAching
in Buckets (CAB) is proposed for efficient flow rules placement during network
policy implementation process. It suggests partitioning the field space into logical
structures called “buckets” and cache buckets along with all the associated flow
rules. The CAB helps to solve the flow rule dependency problem with quite less
overhead. In addition, it significantly reduces flow setup time, saves bandwidth and
flow setup requests. There are different other research works which are helpful
to debug networks [1, 32] and ensure network consistency [42]. These are quite
effective to automate network policies as during automation; network consistency is
really important, and testing/debugging ensures efficient implementation process.

5.4 Network Policies in SDN

SDN is a networking model in which a single software program called a controller
dictates the actual network activity. SDN transforms network equipment into basic
packet forwarding devices (data plane), with the controller operating as the “brain”
or control logic (control plane) [57] . As opposed to traditional network approaches,
this paradigm change has many advantages. First, utilizing a software program to
bring innovative concepts into the network management is far simpler than using
a preset series of commands in proprietary network devices because the software
is far easier to modify and control. Second, SDN introduces the advantages of a
centralized approach to network design over distributed management: instead of
needing to customize all network equipment separately to alter network behavior,
operators may make networkwide traffic forwarding policies in a theoretically single
location, the dispatcher, who has global awareness of the network state.

Network policies are defined and implemented in an enterprise network for
achieving better network management, ensuring network security and access to
resources [44]. In a traditional network, network policies are implemented on

88 R. Amin et al.

devices interfaces using low-level commands as follows, (i) all switches are
identified where network policies are to be implemented. (ii) Then the respective
interfaces of switches are selected manually and policies are configured using
specific commands. Moreover, these network device control and management
commands vary from one forwarding device manufacturing company to another. For
example, to check the current device configurations, HP uses command as display
current-configuration, Cisco uses command show running-config, and Juniper uses
command as show configuration/display set. Variation of these commands creates
many problems for the network administrator and requires skills according to
multiple operating systems to smoothly manage the entire network.

In an SDN network, network policies are implemented at the controller, and
according to these policies, the controller installs rules on the switches and IoE
devices. However, there is a need to identify the switches where the policies are
to be implemented [4]. For example, creating a network policy that does not allow
traffic from a source node to the destination on router “R3”, it can be done in pyretic
language as follows: match(switch = R3, inport = 2, srcip =′ 10.0.1.1′)[drop]
In addition to this, high-level names can be added to the corresponding ranges
of end-user IP addresses, a communication application, protocols, and/or port
number, as shown below. match(Faculty, LMS, T CP, 20)[Permit] NOX SDN
controller provides the following format for policy implementation: Install <

switch, pattern, priority, timeout, actions >. The above command deploys a
network policy by specifying pattern, priority, timeout, and actions. This informa-
tion is passed to the flow table of an OpenFlow switch. There are three attributes
in the OpenDayLight controller: i.e., Type, ID, Permissions (actions) for a network
policy. Type refers to the user or group for which NETWORK is being created, ID
is the unique identity of the user and Permissions are the operations/actions to be
performed.

5.5 Conflict and Overlapping Among the Network Policies

The network policies need to be composed in an effective manner to avoid conflicts
and overlapping. The conflicts and overlapping in network policy implementation
process normally occur due to the misconfiguration within a single policy or
between policies in different devices. To avoid such conflicts, the in-depth under-
standing of the causes of these conflicts, automated inspection of policy rules and
minimum manual implementation is desired.

Consider an example of three network policies (P1, P2, P3) and discuss conflicts
and overlapping in these policies. It is noted that in IoEs and IOTs, where there
are different kinds of devices, tenants, and connectivity parameters, such conflicts
and overlapping may increase. In SDN based networking environment where these
policies are configured at control plane are explained below:

5 Network Policies in Software Defined Internet of Everything 89

Policy 1 (P1) states that:
Faculty can communicate with Learning Management System (LMS) Server
through TCP Port
Policy 2 (P2) states that:
Employees (Faculty and Management) can communicate with Servers through
TCP Ports 20, 25, 80
Policy 3 (P3) states that:
Faculty and Management can communicate with each other through
TCP Ports 20, 25, 80, 587, 993
The network policies (P1, P2, P3) in tuple form are represented below:
P1 = “Faculty, LMS, TCP, 20, Permit”
P2 = “Employees, Servers, TCP, (20, 25, 80), Permit”
P3 = “Faculty, Management, TCP, (20, 25, 80, 587, 993), Permit”

The policies P1 and P2 have conflict with each other because P1 says that only
Faculty is permitted to communicate with LMS Server and others access is denied.
However, policy P2 states that Employees can communicate with all Servers. So,
there is a conflict in network policies (P1 and P2), because P1 is denying access of
Management to LMS and policy P2 is permitting access of all Employees including
Management to all servers which also includes LMS as well. In addition there is
an overlapping in network policies (P1 and P2), as P1 is permitting access to LMS
through TCP Port 20 and P2 states that Employees can access LMS including all
Servers through TCP Ports 20, 25, 80 in which access of Faculty to LMS is again
permitted, because Employees also include Faculty. The third policy P3, however,
has no conflict and no overlapping. These policies can be correctly implemented
with the help of human operator who can manually compose these policies into a
composite policy. This composition can be done through any programming language
in IF-THEN-ELSE program as follows:

If_Match (SOURCE = “Faculty”, DESTINATION = “LMS”, PROTOCOL =
“TCP”, PORT = 20)

PERMIT
Else If_match (DESTINATION = “LMS”)

DENY
Else If_Match (SOURCE = “Employees”, DESTINATION = “Servers”, PROTO-
COL = “TCP”, PORT = “20,25,80”)

PERMIT
Else If_Match (SOURCE = “Faculty”, DESTINATION =”Management”, PROTO-
COL = “TCP”, PORT = “20,25,80,587,993”)

PERMIT

These network policies can also be sketched with the help of Policy Whiteboard-
ing and Set Operator [29] which is shown in Fig. 5.3. It shows that Faculty is part
of Employees and LMS is part of Servers. So, Faculty is subset of Employees and
LMS is subset of Servers.

90 R. Amin et al.

Fig. 5.3 Network policy whiteboarding

Fig. 5.4 Graph composition of network policies

The network policies (P1, P2, P3) can be composed correctly with the help
of graph composition as shown in Fig. 5.4. It presents that the faculty can
communicate with LMS server via TCP port 20. We can observe that because there
is no relationship between Management and LMS, so graph composition reflects
exclusive access of faculty to LMS which is the intent of network policy P1. In

5 Network Policies in Software Defined Internet of Everything 91

addition, the remaining Servers excluding LMS are represented by Difference (‘-’)
Set Operator that allows desired communication of Servers with the Employees as
well as the Faculty.

It means that graph composition is quite helpful to present conflict free network
policies and play a vital role in automatic policy composition process. Policy Graph
Abstraction (PGA) [41] presents a very interesting research work that helps users to
easily specify and implement conflict free network policies automatically. With the
help of PGA, users, tenants, admins, and applications can produce network policies
as graphs which are forwarded to the graph composer through a PGA User Interface
(UI) that can collect further information from external sources for the effective
policy implementation. Afterwards, the graph composer offers conflict free graph
by fixing all Errors.

5.6 Network Policies Optimization

A large number of network policies, i.e., monitoring, load balancing, routing,
security, are deployed in the IoE to manage and control the devices. Network
policies optimization is a set of best practices used to improve network performance.
A variety of algorithms and techniques can monitor and improve network perfor-
mance, such as: global load balancing, minimize latency, packet loss monitoring,
bandwidth management, etc. For the efficient functioning of IoE networks, a
variety of network management strategies, i.e., data management, routing, network
mobility, heterogeneous node interoperability, and data protection, become crucial
concerns.

An IoE network has strategic design objectives; policy execution is typically
broken down into several parts in the form of policy artifacts. Each policy object
handles a particular form of setup, such as IPsec for all machines, or fine-tunes
a policy for a specific category of individuals, such as setting the network proxy
server for all salespeople. As the decision management system progresses, the
policy to manage gets more complex [21]. Administrators must configure with
a range of configurations in current networks, including access control, program
installation, device choice, and so on. As a result, creating a comprehensive strategy
that covers anything is difficult, if not impossible. Instead, constructing decomposed
and specialized regulation artifacts is far more achievable, enabling the management
burden to be spread among several managers.

While today’s IoE policy management systems still depend on the definition and
incorporation of policy artifacts, this methodology has a range of drawbacks: (1)
When several options are open, conflict mediation is a process that decides the
final policy. While this is a general policy management problem, it is especially
important to use policy artifacts since policy setups in separate objects that conflict,
necessitating a resolution method. (2) When many objects work together to achieve
a policy design objective, a transactional update is required. Such objects must be
changed atomically without disclosing intermediate states to reflect a design shift.

92 R. Amin et al.

Some analysis [49, 50] has centered on business networks in particular. They
use the oversimplified “divide-and-conquer” approach, and network architecture
is performed step by stage. Although these studies have an advanced state of the
art in systematic network architecture, their models may result in overly complex
configurations. Zhang et al. [58] investigate how to build effective, shared data
structures for multiple packet filters, such as the HyperCuts decision tree. They
discovered various important factors that can impact the efficiency of the mutual
HyperCuts trees they created. Delignated is an innovative solution to clustering
packet filters into joint HyperCuts decision trees. Memory use can be significantly
decreased by allowing several packet filters to share HyperCuts decision trees,
according to the assessment using both actual and synthetic packet filters.

5.6.1 Detection and Settlement of Policy Variations

Policy disagreement is a common phenomenon that involves all policy languages.
According to [48], there are two kinds of policy disputes: intra-policy conflicts and
inter-policy conflicts, with the former being exacerbated by an ill-defined policy and
the latter by several rules being implemented, resulting in contradictory behavior.
When the requirements of two or more laws are fulfilled simultaneously, but policy
compliance cannot conduct their acts in these policies at the same time [40], an
intra-policy dispute arises. For example, in an access management situation, one
application policy accepts the access request and the other rejects it. These two
policies cause intra-policy tension. Furthermore, an inter-policy dispute occurs
when two or more relevant regulations produce opposing configuration commands
and mechanisms for networked devices. The opposing policies in the inter-policy
dispute situation do not conflict objectively, but they do conflict when allocated to
framework elements at run time [23].

As a consequence, there are two approaches to resolving this problem: the first
is to prevent setting competing rules for a network or device in advance, which is
a static strategy of avoiding intra-policy conflicts; the second is to select a result
or merge different outcomes when the policy deployment encounters disagreement
results at run time. This is a complex approach for dealing with intra-policy and
inter-policy disputes. The first proposal, above all, could immediately detect policy
clashes. To this end, proposals should take the shape of a formal phrase or be
able to be converted into one. ASL, for example, is a first-order logic language
[20], while PDL can be converted into logic programs indirectly . When in logical
representation, techniques for dispute checking that have already been established
in this field can be conveniently extended. Policymakers may prevent setting
competing rules by changing policy requirements and/or behavior before adding
policies to the mechanism using this dispute detection [27].

5 Network Policies in Software Defined Internet of Everything 93

5.6.2 Fine-Tuning of Goal Policies

High-level policies, which are mainly goal policies from the usage case perspective,
and low-level policies, which are mostly action policies, are the two types of
network policies. To finally realize management in action policy-driven processes,
a mapping is needed to delegate behavior to specific artifacts and machines [2].
However, in goal policy-driven schemes, an additional refining phase is required
before mapping into the actual framework components. A Target policy does not
have detailed instructions as low-level system behavior, so the goal policy must be
simplified to low-level ones about how to achieve the aim. Goal policy refinement’s
key challenges include determining how to dynamically extract low-level policies
from a high-level policy and ensuring that they are compatible with the initial high-
level policy [26]. Two foundations are needed to address these issues: a formal
foundation for both the structure and the policy model and several refinement
techniques to align the target priorities and concrete system behaviors.

Bandara et al. [12] propose a policy refinement strategy focused on the EC and
goal-based criteria elaboration (Event Calculus). This approach aims to minimize
high-level Goal policies to low-level Goal policies, which can then be mapped to
concrete framework components. First and foremost, the UML-modeled framework
should be converted into EC, a standardized language for representing the system.
Abductive logic is then used to refine high-level objectives to low-level organi-
zational policies, picking suitable methods to elaborate operations goals. Finally,
the device artifacts are delegated to these operations for enforcement. It is worth
noting that the term “strategy” applies to the process through which a device will
accomplish a certain objective. Abductive logic may be used to infer methods
because both the scheme and the target have a structured definition.

5.7 Conclusion

Network policies play a vital role in communication networks to implement access
control. In traditional networking as the network expands in size then administration
and management challenges also increase with the increase in complexity. However,
SDN offers a promising approach to resolve these challenges by implementing
network policies at the central controller. In this chapter, we have discussed network
policies in detail along with the types, roles, and importance in IoTs and IoEs.
In addition, we discussed the network policies with respect to the automation and
implementation of conflict free polices. Finally, we discuss optimization of network
policies for effective communication in IoTs and IoEs.

94 R. Amin et al.

References

1. Al-Shaer, E., & Al-Haj, S. (2010). Flowchecker: Configuration analysis and verification of
federated openflow infrastructures. In Proceedings of the 3rd ACM Workshop on Assurable
and Usable Security Configuration (pp. 37–44), 2010.

2. Alvarez-Campana, M., López, G., Vázquez, E., Villagrá, V. A., & Berrocal, J. (2017). Smart
CEI moncloa: An IoT-based platform for people flow and environmental monitoring on a smart
university campus. Sensors, 17(12), 2856.

3. Alvizu, R., Maier, G., Kukreja, N., Pattavina, A., Morro, R., Capello, A., & Cavazzoni,
C. (2017). Comprehensive survey on T-SDN: Software-defined networking for transport
networks. IEEE Communications Surveys & Tutorials, 19(4), 2232–2283.

4. Amin, R., Shah, N., Shah, B., & Alfandi, O. (2016). Auto-configuration of ACL policy in case
of topology change in hybrid SDN. IEEE Access, 4, 9437–9450.

5. Amin, R., Reisslein, M., & Shah, N. (2018). Hybrid SDN networks: A survey of existing
approaches. IEEE Communications Surveys & Tutorials, 20(4), 3259–3306.

6. Amin, R., Shah, N., & Mehmood, W. (2019). Enforcing optimal ACL policies using k-partite
graph in hybrid SDN. Electronics, 8(6), 604.

7. Aujla, G. S., Chaudhary, R., Kumar, N., Kumar, R., & Rodrigues, J. J. P. C. (2018). An
ensembled scheme for QoS-aware traffic flow management in software defined networks. In
2018 IEEE International Conference on Communications (ICC) (pp. 1–7). New York: IEEE.

8. Aujla, G. S., Singh, A., & Kumar, N. (2019). Adaptflow: Adaptive flow forwarding scheme for
software-defined industrial networks. IEEE Internet of Things Journal, 7(7), 5843–5851.

9. Aujla, G. S., Kumar, N., Garg, S., Kaur, K., & Ranjan, R. (2019). EDCSuS: Sustainable
edge data centers as a service in SDN-enabled vehicular environment. IEEE Transactions on
Sustainable Computing. https://doi.org/10.1109/TSUSC.2019.2907110

10. Aujla, G. S., Singh, A., Singh, M., Sharma, S., Kumar, N., & Choo, K.-K. R. (2020). Blocked:
Blockchain-based secure data processing framework in edge envisioned v2x environment.
IEEE Transactions on Vehicular Technology, 69(6), 5850–5863.

11. Aujla, G. S., Singh, M., Bose, A., Kumar, N., Han, G., & Buyya, R. (2020). Blocksdn:
Blockchain-as-a-service for software defined networking in smart city applications. IEEE
Network, 34(2), 83–91.

12. Bandara, A. K., Lupu, E. C., Moffett, J., & Russo, A. (2004). A goal-based approach to
policy refinement. In Proceedings of the Fifth IEEE International Workshop on Policies for
Distributed Systems and Networks, 2004. POLICY 2004 (pp. 229–239). New York: IEEE.

13. Benson, T., Akella, A., & Maltz, D. A. (2009). Unraveling the complexity of network
management. In NSDI (pp. 335–348).

14. Berke, P., Cooper, J., Aminto, M., Grabich, S., & Horney, J. (2014). Adaptive planning for
disaster recovery and resiliency: An evaluation of 87 local recovery plans in eight states.
Journal of the American Planning Association, 80(4), 310–323.

15. Cao, H., Wu, S., Aujla, G. S., Wang, Q., Yang, L., & Zhu, H. (2019). Dynamic embedding
and quality of service-driven adjustment for cloud networks. IEEE Transactions on Industrial
Informatics, 16(2), 1406–1416 (2019)

16. Cisco (2010). What is network policy? Available at https://www.cisco.com/c/en/us/solutions/
enterprise-networks/what-is-network-policy.html (2021/03/10)

17. Damianou, N., Bandara, A., Sloman, M., & Lupu, E. (2002). A survey of policy specification
approaches. Department of Computing, Imperial College of Science Technology and
Medicine, London (Vol. 3, pp. 142–156).

18. Feamster, N., Rexford, J., & Zegura, E. (2014). The road to SDN: An intellectual history of
programmable networks. ACM SIGCOMM Computer Communication Review, 44(2), 87–98.

19. Foster, N., Harrison, R., Freedman, M. J., Monsanto, C., Rexford, J., Story, A., & Walker, D.
(2011). Frenetic: A network programming language. ACM Sigplan Notices, 46(9), 279–291.

20. Gabillon, A., Gallier, R., & Bruno, E. (2020). Access controls for IoT networks. SN Computer
Science, 1(1), 1–13.

https://doi.org/10.1109/TSUSC.2019.2907110
https://www.cisco.com/c/en/us/solutions/enterprise-networks/what-is-network-policy.html
https://www.cisco.com/c/en/us/solutions/enterprise-networks/what-is-network-policy.html

5 Network Policies in Software Defined Internet of Everything 95

21. Gusmeroli, S., Piccione, S., & Rotondi, D. (2013). A capability-based security approach to
manage access control in the internet of things. Mathematical and Computer Modelling, 58(5–
6), 1189–1205.

22. Hameed, S., Khan, F. I., & Hameed, B. (2019). Understanding security requirements
and challenges in internet of things (IoT): A review. Journal of Computer Networks and
Communications, 2019, 2019. https://doi.org/10.1155/2019/9629381

23. Huang, D., Chowdhary, A., & Pisharody, S. (2018). Software-Defined networking and security:
From theory to practice. Boca Raton: CRC Press.

24. Hussain, M., & Shah, N. (2018). Automatic rule installation in case of policy change in
software defined networks. Telecommunication Systems, 68(3), 461–477 (2018)

25. Hussain, M., Shah, N., & Tahir, A. (2019). Graph-based policy change detection and
implementation in SDN. Electronics, 8(10), 1136.

26. Keoh, S. L., Kumar, S. S., & Tschofenig, H. (2014). Securing the internet of things: A
standardization perspective. IEEE Internet of things Journal, 1(3), 265–275.

27. Kolar, M., Fernandez-Gago, C., & Lopez, J. (2018). Policy languages and their suitability for
trust negotiation. In IFIP Annual Conference on Data and Applications Security and Privacy
(pp. 69–84). New York: Springer.

28. Kreibich, C., Handley, M., & Paxson, V. (2001). Network intrusion detection: Evasion, traffic
normalization, and end-to-end protocol semantics. In Proceedings of the USENIX Security
Symposium, Vol. 2001.

29. Lee, J., Kang, J.-M., Prakash, C., Banerjee, S., Turner, Y., Akella, A., Clark, C., Ma, Y.,
Sharma, P., & Zhang, Y. (2015). Network policy whiteboarding and composition. In
Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication
(pp. 373–374).

30. Levitin, G., Xing, L., Zhai, Q., & Dai, Y. (2015). Optimization of full versus incremental
periodic backup policy. IEEE Transactions on Dependable and Secure Computing, 13(6),
644–656.

31. Li, D., Wang, S., Zhu, K., & Xia, S. (2017). A survey of network update in SDN. Frontiers of
Computer Science, 11(1), 4–12.

32. Mai, H., Khurshid, A., Agarwal, R., Caesar, M., Godfrey, P. B., & King, S. T. (2011).
Debugging the data plane with anteater. ACM SIGCOMM Computer Communication Review,
41(4), 290–301.

33. McKeown, N. (2011). How SDN will shape networking. Open Networking Summit.
34. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker,

S., & Turner, J. (2008). Openflow: Enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2), 69–74 (2008)

35. Monsanto, C., Reich, J., Foster, N., Rexford, J., & Walker, D. (2013). Composing software
defined networks. In 10th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 13) (pp. 1–13).

36. Moshref, M., Yu, M., Sharma, A., & Govindan, R. (2013). Scalable rule management for data
centers. In 10th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 13) (pp. 157–170).

37. Mousa, M., Bahaa-Eldin, A. M., & Sobh, M. (2016). Software defined networking concepts
and challenges. In 2016 11th International Conference on Computer Engineering & Systems
(ICCES) (pp. 79–90). New York: IEEE.

38. Paquet, C. (2012). Implementing Cisco IOS Network Security (IINS 640-554) Foundation
Learning Guide: Imp Cisco IOS Netw Sec F _c2. Indianapolis: Cisco Press.

39. Pashkov, V., Shalimov, A., & Smeliansky, R. (2014). Controller failover for SDN enterprise
networks. In 2014 International Science and Technology Conference (Modern Networking
Technologies)(MoNeTeC) (pp. 1–6). New York: IEEE.

40. Pisharody, S. (2017). Policy conflict management in distributed SDN environments. PhD thesis,
Arizona State University, 2017.

https://doi.org/10.1155/2019/9629381

96 R. Amin et al.

41. Prakash, C., Lee, J., Turner, Y., Kang, J.-M., Akella, A., Banerjee, S., Clark, C., Ma, Y.,
Sharma, P., & Zhang, Y. (2015). PGA: Using graphs to express and automatically reconcile
network policies. ACM SIGCOMM Computer Communication Review, 45(4), 29–42 (2015).

42. Reitblatt, M., Foster, N., Rexford, J., Schlesinger, C., & Walker, D. (2012). Abstractions for
network update. ACM SIGCOMM Computer Communication Review, 42(4), 323–334.

43. Sanabria-Russo, L., Alonso-Zarate, J., & Verikoukis, C. (2018). SDN-based pro-active flow
installation mechanism for delay reduction in IoT. In 2018 IEEE Global Communications
Conference (GLOBECOM) (pp. 1–6). New York: IEEE.

44. Sezer, S., Scott-Hayward, S., Chouhan, P. K., Fraser, B., Lake, D., Finnegan, J., Viljoen, N.,
Miller, M., & Rao, N. (2013). Are we ready for SDN? Implementation challenges for software-
defined networks. IEEE Communications Magazine, 51(7), 36–43.

45. Shenker, S., Casado, M., Koponen, T., McKeown, N., et al. (2011). The future of networking,
and the past of protocols. Open Networking Summit, 20, 1–30.

46. Stephen, B., & Petropoulakis, L. (2007). The design and implementation of an agent-based
framework for acceptable usage policy monitoring and enforcement. Journal of Network and
Computer Applications, 30(2), 445–465.

47. Stone, G. N., Lundy, B., & Xie, G. G. (2001). Network policy languages: A survey and a new
approach. IEEE Network, 15(1), 10–21.

48. Strassner, J., & Schleimer, S. (1998). Policy framework definition language. draft-ietf-policy-
framework-pfdl-00. txt.

49. Sun, X., Rao, S. G., & Xie, G. G. (2012). Modeling complexity of enterprise routing design.
In Proceedings of the 8th International Conference on Emerging Networking Experiments and
Technologies (pp. 85–96).

50. Sun, X., Sung, Y.-W., Krothapalli, S. D., & Rao, S. G. (2010). A systematic approach for
evolving vlan designs. In 2010 Proceedings IEEE INFOCOM (pp. 1–9). New York: IEEE.

51. Tsao, T., Alexander, R., Dohler, M., Daza, V., Lozano, A., & Richardson, M. (2015). A security
threat analysis for the routing protocol for low-power and lossy networks (RPLS). RFC 7416
(Informational), Internet Engineering Task Force.

52. Valenza, F., Spinoso, S., & Sisto, R. (2019). Formally specifying and checking policies and
anomalies in service function chaining. Journal of Network and Computer Applications, 146,
102419.

53. Voellmy, A., Wang, J., Yang, Y. R., Ford, B., & Hudak, P. (2013). Maple: Simplifying SDN
programming using algorithmic policies. ACM SIGCOMM Computer Communication Review,
43(4), 87–98.

54. Wang, B., & Liu, K. J. R. (2010). Advances in cognitive radio networks: A survey. IEEE
Journal of Selected Topics in Signal Processing, 5(1), 5–23.

55. Whitlock, M. C., Bronstein, J. L., Bruna, E. M., Ellison, A. M., Fox, C. W., McPeek, M. A.,
Moore, A. J., Noor, M. A. F., Rausher, M. D., Rieseberg, L. H., et al. (2016). A balanced data
archiving policy for long-term studies. Trends in Ecology & Evolution, 31(2), 84–85.

56. Yan, B., Xu, Y., Xing, H., Xi, K., & Chao, H. J. (2014). Cab: A reactive wildcard rule caching
system for software-defined networks. In Proceedings of the Third Workshop on Hot Topics in
Software Defined Networking (pp. 163–168).

57. Yan, Q., Yu, F. R., Gong, Q., & Li, J. (2015). Software-defined networking (SDN) and
distributed denial of service (DDOS) attacks in cloud computing environments: A survey, some
research issues, and challenges. IEEE Communications Surveys & Tutorials, 18(1), 602–622.

58. Zhang, B., & Ng, T. E. (2010) On constructing efficient shared decision trees for multiple
packet filters. In 2010 Proceedings IEEE INFOCOM (pp. 1–9). New York: IEEE.

Chapter 6
Analysis of Load Balancing Techniques
in Software-Defined Networking

Gurpinder Singh, Amritpal Singh, and Rohit Bajaj

6.1 Introduction

To introduce the needs of the current and future architecture for the computer
network-like high speed routing, centralized control of the network, managing QoS,
end-to-end user connectivity, load balancing, centralized security control, cloud
computing, a concept has been introduced as by name of SDN [1–3]. SDN is
a simple concept that is used to separate the control group from the forwarding
group of networking devices. This feature allows separation of control plane (e.g.,
SDN controller) on computer platforms from network equipment software (e.g.,
switches/routers) [4, 5]. Another feather in the cap is that it is providing security
to the main SDN controller of the network because forwarding a packet is only
controlled by the network equipment and all controlling commands of the network
are written on SDN controller plane. This chapter is written to discuss the various
load balancing and routing techniques of SDN to optimize the available resources
in an efficient manner [6].

6.2 Software-Defined Network

The configured network consist of various routers, switches, mainframe computers,
servers, and other components to establish communication. Basically, the routers
and switches are backbone of the computer network. These components are used for
end-to-end user communication, routing the data with maximum quality of service.

G. Singh · A. Singh (�) · R. Bajaj
Department of Computer Science and Engineering, Chandigarh University, Mohali, India
e-mail: amritpal.cse@cumail.in; rohitbajaj.cse@cumail.in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. S. Aujla et al. (eds.), Software Defined Internet of Everything, Technology,
Communications and Computing, https://doi.org/10.1007/978-3-030-89328-6_6

97

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89328-6_6&domain=pdf
mailto:amritpal.cse@cumail.in
mailto:rohitbajaj.cse@cumail.in
https://doi.org/10.1007/978-3-030-89328-6_6

98 G. Singh et al.

Fig. 6.1 Architecture of Software-Defined Networking (SDN)

However, all these devices are placed over the different geographical locations and
act independently to establish the communication. Therefore, the maintenance of
such kind of the network is quite difficult without centralized control because each
device is making its decision according to their environment without considering
the whole network. Therefore, a new concept is introduced, i.e., SDN to control the
network traffic. A centralized software-defined control unit is connected to all the
available network devices as shown in Fig. 6.1.

As the block diagram depicts, the whole network is divided into two planes. The
first part is the control plane, which is a centralized unit to change, configure, and
manage the network via software. The second plane is the data plane, which acts as
per the directions directed by the control plane and forwarding the data accordingly.
Most of the routers act as a forwarding device, and however, the routing decisions
are made by SDN controller [7]. The various interfaces of the network are discussed
below:

• Northbound Interface: It provides an interface between the SDN controller
and the various executing applications. Applications can be used by the end
users to control the network; however, the issue with the approach is lack of
standardization. Therefore, it is called as API-based network.

• Southbound Interface: This interface helps to communicate with the lower
defined layers, i.e., forwarding layer via different protocols, e.g., OpenFlow and
Network Configuration Protocol. The defined protocols are used to instruct the
forwarding plane with the help of various commands of the SDN controller.

6 Analysis of Load Balancing Techniques in Software-Defined Networking 99

• Eastbound Interface: It is used to connect conventional IP networks with
the SDN-enabled networks. By using this interface, the SDN domain can
communicate to the routing protocol through the messages for different activities.

• Westbound Interface: This interface provisioned the SDN controller to com-
municate with different configured domain controllers in the network for better
performance and data exchange in the geo-distributed environment [8–10].

6.2.1 Types of Software-Defined Network

Typically, three types of Software-Defined Network architecture are used. All the
different categorized SDN architectures are defined as per their functionality as
compared to the existing network devices. The existing devices cannot replace at
once with the SDN controllers due to the compatibility issues of the network. In the
below section, the various architectures of the SDN controllers are highlighted with
proper details.

6.2.1.1 Centralized SDN

The working of the centralized Software-Defined Network (SDN) is clear by its
name only as one Software-Defined Network controller is used to manage all
networking devices in the network. It is the model of Open Networking Foundation
(ONF) that uses OpenFlow protocol for instructing the forwarding or data plane
devices. It is very easy to manage as all the instructions are flowing from one
point/controller as shown in Fig. 6.2.

The centralized SDN collects all the networking information from all the
configured network devices for efficient load balancing, routing, fault tolerance, and
security. However, there are few disadvantages of using this category of architecture
as discussed below:

• Frequent Updation: All the networking devices are connected to the centralized
network controller, and therefore, for smooth functionality of the network, an
abrupt updation at each connected devices is required.

• Simplicity Comes at a Greater Cost: A single controller manages the entire
network, and therefore, a larger storage space, computation power, and extra
energy are required. An extra cost is required to scale up the network; otherwise,
the entire network can be crashed.

• Introducing New Flow Entry: During updation of the new entry in the flow
table, the following steps are followed:

1. PACKET_IN message forwarded to the controller.
2. New flow rule generated by the controller.
3. PACKET_OUT message updation on each connected switch in the network.

100 G. Singh et al.

Fig. 6.2 Architecture of Centralized Software-Defined Networking (CSDN)

The abovementioned steps will be followed for each entry, and it will be time
consuming for the bigger networks [8, 11].

6.2.1.2 Distributed SDN

In case of Distributed Software-Defined Network (SDN), more than one Software-
Defined Network controllers is connected to manage all the configured networking
devices in the network. This kind of architecture is more reactive than centralized
controller because for each domain there is a dedicated Software-Defined Network
controller, and in the similar manner, there are numerous of domain controllers
connected to each other as shown in Fig. 6.3.

There can be more than two Software-Defined Network controllers for two
domains, and it can be more than two as per the requirements. The Distributed
Software-Defined Network quickly updates the changes and makes the network
more robust in nature. There are three scenarios of distributed SDN: the first one
is parallelism between different switches to send the packets to the controller. The
second one is used when synchronization is required between the controllers of
different domains. The third scenario is used where at-least two layers are present,
the controllers are at the second layer containing different switches/devices as one
domain, and other domains also exist at the other layer. At the first layer, controllers
of different domains are connected to the dedicated centralized controller [8, 12].

The main disadvantages of Distributed Software-Defined Networking (DSDN)
are discussed below:

6 Analysis of Load Balancing Techniques in Software-Defined Networking 101

Fig. 6.3 Architecture of Distributed Software-Defined Networking (DSDN)

• Consistency for Global View: The network is not controlled by a single
controller, and therefore, the knowledge of the entire network is required to make
the network consistent.

• Synchronization at Regular Intervals: All the configured controllers required
synchronization with each other to update the information of each and every
connected device to make the network more robust.

6.2.1.3 Hybrid SDN

Hybrid SDN architecture is the combination of traditional infrastructure and SDN-
enabled network and communicates together to manage the entire network. As
shown in Fig. 6.4, devices of the traditional and SDN-enabled network of data and
control planes are visible. The devices of both of the networks conditionally com-
municate with each other. The SDN-enabled and traditional network switches are
present at the data plane, and they can communicate with each other without any bar
with the help of LLDP (link layer discovery protocol), etc. of a traditional switch.
Communication at the control plane is feasible by considering the advertisements
of OSPF (open shortest path first) in order to discover the network topology or to
improve the routing performance by SDN controller [13–16].

102 G. Singh et al.

Fig. 6.4 Architecture of Hybrid Software-Defined Networking (DSDN)

6.3 Techniques for Load Balancing in Software-Defined
Network

Software-Defined Networking framework is used to manage the network traffic in an
efficient manner by using the programmable interface. However, a heavy workload
can be noticed on some of the resources available in the network, resulting into
usage of extra energy and delay. To overcome this issue, a framework is required to
balance the workload on the available nodes in the network. In the following section,
the techniques used to manage the workload on the nodes are discussed.

6.3.1 Balance the Load by Filtering the Load Based on TCP
and UDP [17]

This approach filters the incoming traffic by identifying the header of the used
protocol like, TCP or UDP. The proposed algorithm captures the incoming packets
and then analyzes the type of protocol, i.e., TCP or UDP. If the packet is using
TCP protocol, it is forwarded to the CT (TCP load balancer controller) and discards
the flow of UDP protocol. Furthermore, if the packet belongs to the UDP, then it
is forwarded to the CU (UDP load balancer controller) and discards the flow of
TCP. The controller follows the standard policies, and they can use the reverse path
to avoid the congestion situation. The TCP and UDP controllers also have backup

6 Analysis of Load Balancing Techniques in Software-Defined Networking 103

or secondary controllers in case of failure. The ARP_REQ packets are forwarded
from secondary to primary controllers and receive ARP_REP for aliveness after a
specified interval of time. The secondary controller can act as primary controller
when the attempt time fail (Maxf) is greater than the specified timeout of fail
(N). Despite the failure of primary, the active controller uses ARP_SYN to send
ARP_REQ to check the availability and health of non-available controller. At the
end, the collected flow is forwarded to the back-end servers for reliability purpose.

6.3.2 Stable the Network by Shifting the Workload from
Overloaded Controller to the Underloaded Controllers
[18]

This approach is used whenever a controller is at idle state and it receives the
data flow events from the overloaded controller without migration of the switches.
However, in a situation where the processing time is more than the threshold time
to relieve the overloaded controller, the switches of the overloaded controller are
migrated to the underloaded controller. In the case of heavy traffic, the cooperation
between controllers is the best option rather to migrate the switches for handling
the temporary traffic. The idle controller usually considers the nearby controller as
a target; however, if the nearby controller is not accepting the steal request, then it
is forwarded to the second nearby controller and this iteration continues for three
times. After the third attempt, the controller recalculates the status of its resources
and then decides whether to go for stealing or not. The flowchart of flow-stealing
method is shown in Fig. 6.5.

The switch migration is the case when cooperation between controllers are not
able to handle the load, each controller has its network region containing a number
of switches, and regions are further divided into zones, a subset of switches of
region without intersection. The subsets of the switches (zones) are configured for
alternative controllers near to the zone. The region that belongs to the overloaded
controller is named as overloaded region (OR). If a switch in the zone is overloaded,
it is migrated to alternate controller by considering the minimum distance condition.
The unique thread is created to serve each switch in the controller. In case of
overloading scenario in a zone, more than one thread in a controller can be
overloaded. Each overloaded switch is considered as per the maximum hit time
condition. The list of zones is collected by considering the numbers of hits in
each zone and arranged in the ascending order. A zone with maximum hit time
is prioritized and selected for migrating the load of the switch to the alternative
controller, and the same process continues as per the stored list. Following are the
three conditions in case of switch migration.

∑

iεPk

ai <= cT , ∀kεZ, (6.1)

104 G. Singh et al.

Fig. 6.5 Flowchart of flow-stealing method

∑

iεPk

bi <= mT , ∀kεZ, (6.2)

diT <= distanceMax, ∀iεPk,∀kεZ, (6.3)

where ai is the computing requirement of ith switch, bi is the memory requirement
of ith switch, cT is the computing resources for T th controller, mT is the memory
resources for T th controller, diT is the distance between ith switch and T th
controller, Pk is the migrated switches in kth zone, and distanceMax is the
maximum allowed distance between a switch and a controller.

6.3.3 Balancing of Load by Authentication, Monitoring Load,
and Switch Migration [19]

This approach consist of three layers, cooperative, controllers, network region
consist of different switches as shown in Fig. 6.6.

Authentication module of the cooperative platform is used to secure the con-
trollers from hacking with the help of hash function. The hash function key is shared

6 Analysis of Load Balancing Techniques in Software-Defined Networking 105

Fig. 6.6 Architecture of load by authentication, monitoring load, and switch migration

Fig. 6.7 Flowchart of data collection approach

with all the controllers and cooperative platforms. To authenticate, each sender
controller is verified by the cooperative platform. The sender controller generates
a unique hash message and forwards the message to the cooperative platform. The
cooperative platform generates hash from the same message and compared it with
the received hash message for authentication. The data collection module stores
the load information of each controller from packet-in message received by the
controller. The time interval for collection of load information depends upon the
traffic’s frequency. If the traffic is normal, then the time interval may be longer.
However, in case of heavy traffic, lesser time interval can be observed as shown in
Fig. 6.7.

Load balancing and recovery is done by migration of switch of overloaded
controller to alternate controller. The pseudo-code of load balancing algorithm is
shown in Fig. 6.8.

106 G. Singh et al.

Fig. 6.8 Pseudo-code of load balancing algorithm

Fig. 6.9 Architecture of scalable network

6.3.4 Different Services Provided by Supervisor Controller to
Local Controller for Load Sharing in Scalable Network
[20]

This approach discussed about scalable network with uneven load. The supervisor
controller which acts as an SDN controller for data collection of the routes leads to
other controller’s network and some other services. Afterward, there are different
area controllers for different switches used to handle the packets from the switches.
The controllers attached to the supervisor controller except area controllers are
contributory controllers to handle the specific services and connected with the
eastbound API and westbound API to the supervisor controller as shown in Fig. 6.9.

Initially, the supervisor controller starts by pre-deciding the number of specific
services of the contributory controllers. This collected information is installed

6 Analysis of Load Balancing Techniques in Software-Defined Networking 107

on each area controller with the id of contributory controllers. To initiate the
communication, a new packet is created and forwarded to the area controller. The
packet is matched with the flow table entries for further action, and in case no entry
is matched, PACKET _IN message is forwarded to the supervisor controller and
then to a particular contributory controller to create new flow entry. The supervisor
controller does not open the packet as unique id of the contributory controller, which
is mentioned on the header of the packet. In another scenario, same new entry packet
is created and forwarded to the area controller and to the supervisor. It is handled
by supervisor, and the entry is stored in the flow table for further reference. In case,
the threshold value crosses the handling request capacity of supervisor, and then it
activates the contributory controllers for load balancing.

6.3.5 Load Balancing by Making Cluster of Controller by
Super Controller [21]

It contains three layers, an extended version of two-tier architecture. The super
controller is at the top layer and other controllers are placed into a different cluster.
To collect and manage the data/load of all the clusters, super controller uses cluster
vector for each cluster to get address of every controller in the cluster. The cluster
vector provides the facility to the controllers in the cluster to share their load
with respective controller. To migrate the load among various controllers, all the
controllers are synchronized to know the status of the underloaded and overloaded
controllers, and accordingly the load is migrated from overloaded to underloaded
controllers. A super controller (SC) handles the load among all the controllers in
the cluster. The master controllers share the cluster load of each controller to the
super controller, and by using the details, the SC decides the master controller.
Parallelly, the master controller handles the process of load balancing in the cluster.
The super controller handles the load balancing in clusters by collecting the data:
(i) minimum differences in the load of clusters are considered as a target and (ii)
minimum distance is considered between the controllers in the cluster to reduce the
traffic transfer time in case of overloaded nodes. The process of master controller
is known as reassignment where load balancing is done in the cluster by sharing
load of different switches under the controllers in the cluster. Y is the matrix used
by SC to gather information about placement of each controller in which cluster
Cj represents the controller where j =1,2,3. . . and Gi represents the cluster where
i=1,2,3. . .

Y (t)ij =
{
0 : Cj ε Gi

1 : else

The above equation represents that if Cj belongs to the Gi , then 0, else 1.
Calculation of Cluster’s Load Difference:

108 G. Singh et al.

Load of cluster [θ(t)i] = Sum of controllers’ average load

M∑

j=1

l(t)jY (t)ij (6.4)

Difference between a cluster load and other clusters’ load [Avg]

M∑

j=1

l(t)j/k (6.5)

Distance:

ϑ(t)j = |θ(t)l − Avg| (6.6)

Total load difference between clusters’ load:

δ(t) =
∑

i

= 1kϑ(t)i/K (6.7)

Calculation of Distance Between Controllers in a Cluster The distance between
the controllers needs to be minimum to reduce the data travel time in case of
overloading, and the group of switches needs to be connected with the nearby
controller. The maximal distance between the controllers in the same cluster
(compare to all clusters) is given by η(t).

maxDistance[η(t) = maxl<=c<=kmaxl<=i,j<=MdijY (t)ic], (6.8)

where c is the cluster number and i and j are the controllers in the c cluster.
η(t) needs to be minimal but not too narrow, i.e., minMaxDistance (Cnt). If the
distance is too narrow, then the selection of alternate controller is a difficult scenario.
To avoid such situation, an offset value is added to the calculated distance.

Cnt = maxDistance + offset. (6.9)

6.3.6 Lighten Up the Overloaded Controller by Migration of
the Switches to Lightly Load by Broadcasting Load
Between Controllers [22]

This approach is used to migrate the load of the switches of the overloaded controller
to the underloaded controllers. The controllers communicate with each other after a
regular interval of time to collect the load information. The main components of the
approach are discussed in the following sections:

6 Analysis of Load Balancing Techniques in Software-Defined Networking 109

Fig. 6.10 Flowchart of load broadcasting

1. Load Measurement Component: Measurement of each controller’s Load in
network (CLi).

2. Load Broadcast Component: Broadcasting of load to the different controllers
in the network as shown in Fig. 6.10.

3. Load Balancing Component: Used to evaluate the different load balancing
conditions under various load balancing scenarios in the network as shown in
Fig. 6.11.

4. LoadMigration Component:Used to migrate the load of the switch from heavy
loaded controller to lightly loaded controller as shown in Fig. 6.12. The migration
of Sk from Ci to Cj , where SkεSCi , CiεHLC and CjεLLC

The flowchart of migration of Sk from Ci to Cj is shown in Fig. 6.13. The
migration approach reduce the bandwidth utilization and traffic frequency as the
migration of the load of various switches saturating the network by migrating the
load of the controllers.

5. Link Reset Component: It is used to reset the link from (Sk , Cj) to (Sk , Ci) after
completing the migration of the overloaded data. This process usually starts at a
particular time in a day, and if the network is still overloaded, then the process of
reset is postponed till the network is not stable.

6.3.7 Tenant Controllers Are Finding Best Paths by
Calculating the Maximum Throughput [23]

This approach uses network hypervisor (NH) for dividing the network into multiple
virtual isolated networks that plays an important role between the tenant controllers
and physical switches where NH acts as a controller to physical switches and
switches to the virtual networks. Whenever a physical switch receives any request
and the flow entry is not available in the flow table, then it is forwarded to the
NH. The NH translates the address to virtual address and sends it to the tenant

110 G. Singh et al.

Fig. 6.11 Flowchart of load balancing

Fig. 6.12 Flowchart of load migration

controller of SDN. The tenant controller finds a suitable path by using the virtual
switches and reverts back to the NH. The NH translates the path to physical address
and forwards it to the physical switch. This process helps the tenant controller to
achieve the required bandwidth to connect the required virtual switch. It is followed
by calculating the path/paths of required throughput and finalizing the path/paths
accordingly. The above discussed steps are explained as follows:

1. Selection of the path according to the requirement of throughput by calculating
the bandwidth:

a. LinkManager and Throughput RequirementManager: The main purpose
of the link manager is to collect the information of maximum allocated
bandwidth to the physical links, the tenant controllers, and the switches. SDN
usually collects the information when the switches are activated in the network

6 Analysis of Load Balancing Techniques in Software-Defined Networking 111

Fig. 6.13 Flowchart of migration of Sk from Ci to Cj

through their ports. The purpose of the throughput requirement manager is to
note down the throughput requirement of the tenant and store the same in the
forms of tables using hashing method.

b. Path Extractor: After getting route from the tenant controller, it is used to
create new path. If the flow entry is already exist in the flow table rules
otherwise send the message to the controller. After finalizing the path, it is
shared with the throughput requirement manager.

c. Throughput Allocator: After getting the main path from the tenant using
path extractor, it calculates the remaining capacity of the path (CR). If the
calculated path satisfy the requirements, finalized as a main path otherwise
sub-paths created by other tenants from the main path is deallocated and the
complete main path is available for the tenants. Still, the main path is not
able to satisfy the new requests of the tenant, and the path splitting task is
activated to divide the traffic of tenant through different created paths to fulfill
the requirement.

2. Path Splitting: This method is used to handle the incoming traffic from various
end devices. In this approach, the rule of flow for traffic is divided into three
categories.

a. Ingress Rule: The incoming traffic is controlled by directing the flow from
one in-port to multiple out-ports.

b. Egress Rule: The traffic is controlled by forwarding the flow from multiple
in-ports to a single out-port.

c. Core Rule: This rule is used not to change or split the flow of traffic, and it
acts as intermediate rules of flow of Ingress and Egress. It worked with the
flow from single in-port to single out-port.

The flowchart to define the flow and group rules in case of splitting the traffic to
main path (MP) and sub-path (SP) is shown in Fig. 6.14:

112 G. Singh et al.

Fig. 6.14 Flowchart of splitting main path (MP) and sub-path (SP)

6.3.8 Balance the Flow of User’s Load by a Different Method
of Sharing Resources [24]

In SDN-enabled network, the main purpose is to handle the user requests in
an efficient manner to improve the processing of the network. An efficient load
balancing and high traffic in the network can be managed by transmitting the user
requests to the pool of servers according to their requirements. In this approach, a
load balancer (OpenFlow Switch) is used with the controller of the SDN. The load
balancer has virtual IP address that helps to reroute the traffic of a different user
to various connected servers. The user forwards the request to the load balancer,
further, it check the flow table to direct the request as per the flow rule with the help
of the request header. If the flow entry is not matched as per the load balancer’s
entry, then, the request is forwarded to the controller to create a path between the
user and the server. The load balancer mostly uses two methods to send the request:
random and round robin. The flowchart of both the methods is shown in Figs. 6.15
and 6.16.

6 Analysis of Load Balancing Techniques in Software-Defined Networking 113

Fig. 6.15 Flowchart of random method

Fig. 6.16 Flowchart of round-robin method

The controller selects one of the available servers from the cluster of servers.
The round-robin approach uses the circular method, i.e., the request containing the
load of each client is forwarded to the server one by one, e.g., if there are four
clients and two servers, then, the first client request is sent to server_1, the second
client’s request to the server_2, the third client’s request to the server_1, and the
forth client’s request to the server_2 (servers 1 and 2 are of the same specification).
In this manner, the load of the different devices is balanced among the different
connected devices.

6.3.9 Finding Best Path by Considering Bandwidth and Delay
for Cloud Data Centers [18]

The load balancing mechanism is used to manage the traffic of the source and
destination data centers. The flowchart of the modules is shown in Fig. 6.17.

114 G. Singh et al.

Fig. 6.17 Flowchart of modules of approach

Fig. 6.18 Flowchart of flow demand

1. Network Discovery: This module is managed by the SDN controller to calculate
the shortest path (m) without any loop and fat-tree topology. The SDN creates
two tables; the first table contains m shortest path, and the second contains path
except m. Both tables help to provide the links at the time of failure of network
links.

2. Flow Demand: This module creates fat-free topologies. The source (Sr) and
destinations (Dest) are used to configure links the by following intermediate
devices and lead to the point of convergence, as explained in the form of
flowchart in Fig. 6.18.

3. Network Monitoring: This module is used to calculate the bandwidth and link
delay between the source and the destination. The bandwidth and delay are
calculated to evaluate the load to avoid all the congestion.

Latency = Source’s Latency − Destination’s Latency (6.10)

Netlatency = ReplayDelay − Latency (6.11)

Maximum Link Delay = (RequestDelay + Netlatency)/2. (6.12)

6 Analysis of Load Balancing Techniques in Software-Defined Networking 115

Table 6.1 Notations table

Notation Description

n Number of controllers

LB Load balancing threshold value

FL Floating parameters

CPi Load of controllers (i = 1, 2, 3. . .)

m Ratio between AVG CP and MAX CP

SPJ Packet-in produced by switches connected to the controller

T Starting time of load data collection

t Time interval

numi Packet-in received by each controller (i = 1, 2,. . .)

CPTi Average rate of packet-in received by each controller in the last collection (i = 1,
2,..)

F Average data fluctuation

w Packet-in receiving rate to control the message flows by controller

M & K Number of controllers & Number of clusters

Cj j th controller

l(t)j Load of controller at average flow of request at the j th controller/second in t

time intervals

P Capacity of a controller to handle a number of requests/second

dij Minimum numbers of hops/hop at a distance between Ci and Cj

Sj Set of switches (j = 1, 2, 3 m)

SCi Set of switches to ith controller

SLi Load of ith switch

CLi Load of ith controllers

PLi Previous load of ith controllers

BTi Base threshold of an ith controller

LLC Lightly loaded controller [C/HLC]

dik Shortest distance between Ci and Sk

D Maximum allowable distance between migrated switch and alternate controller

4. Rescheduling: This module comes into existence after collecting the details
from the abovementioned three modules.

The notations used throughout the chapter are summarized in Table 6.1.

6.4 Conclusion and Future Work

The goal of this chapter is to highlight the use of various SDN networks as per
their requirements. The increase in workload is the major concern in this pandemic
period. To handle this, a centralized controller is required to manage the workload
in an efficient manner. The distribution of the workload on the various nodes is

116 G. Singh et al.

uneven due to lack of intelligent load distribution techniques. To balance the load
on the various nodes, the different load balancing approaches are discussed in
the SDN-enabled environment. The load balancing approaches are discussed with
the flowchart to improve the readability. The optimal path selection methods are
highlighted to avoid the congestion in the network.

References

1. Aujla, G. S., Chaudhary, R., Kaur, K., Garg, S., Kumar, N., & Ranjan, R. (2018). SAFE:
SDN-assisted framework for edge-cloud interplay in secure healthcare ecosystem. IEEE
Transactions on Industrial Informatics, 15(1), 469–480.

2. Aujla, G. S., Singh, A., & Kumar, N. (2019). Adaptflow: Adaptive flow forwarding scheme for
software-defined industrial networks. IEEE Internet of Things Journal, 4(7):5843–5851.

3. Aujla, G. S., Chaudhary, R., Kumar, N., Rodrigues, J. J., & Vinel, A. (2017). Data offloading in
5g-enabled software-defined vehicular networks: A Stackelberg-game-based approach. IEEE
Communications Magazine, 55(8), 100–108.

4. Aujla, G. S., Singh, M., Bose, A., Kumar, N., Han, G., & Buyya, R. (2020). BlockSDN:
Blockchain-as-a-service for software defined networking in smart city applications. IEEE
Network, 34(2), 83–91.

5. Aujla, G. S., Chaudhary, R., Kumar, N., Kumar, R., & Rodrigues, J. J. (2018). An ensembled
scheme for QoS-aware traffic flow management in software defined networks. In 2018 IEEE
International Conference on Communications (ICC) (pp. 1–7). IEEE.

6. Aujla, G. S., Kumar, N., Garg, S., Kaur, K., & Ranjan, R. (2019). EDCSuS: sustainable
edge data centers as a service in SDN-enabled vehicular environment. IEEE Transactions on
Sustainable Computing.

7. Singh, A., Aujla, G. S., Garg, S., Kaddoum, G., & Singh, G. (2019). Deep-learning-based SDN
model for Internet of Things: An incremental tensor train approach. IEEE Internet of Things
Journal, 7(7), 6302–6311.

8. Aujla, G. S., Jindal, A., Kumar, N., & Singh, M. (2016). SDN-based data center energy
management system using RES and electric vehicles. In 2016 IEEE Global Communications
Conference (GLOBECOM) (pp. 1-6). IEEE.

9. Latif, Z., Sharif, K., Li, F., Karim, M. M., & Wang, Y. (2019). A comprehensive survey of
interface protocols for software defined networks, pp. 1–30.

10. Aujla, G. S., & Kumar, N. (2018). SDN-based energy management scheme for sustainability
of data centers: An analysis on renewable energy sources and electric vehicles participation.
Journal of Parallel and Distributed Computing, 117, 228-245.

11. Maaloul, R., Taktak, R., Chaari, L., & Cousin, B. (2018). Energy-aware routing in carrier-grade
Ethernet using SDN approach. IEEE Transactions on Green Communications and Networking,
2(3), 844–858. https://doi.org/10.1109/TGCN.2018.2832658.

12. Aujla, G. S., Jindal, A., & Kumar, N. (2018). EVaaS: Electric vehicle-as-a-service for energy
trading in SDN-enabled smart transportation system. Computer Networks, 143, 247–262.

13. Ren, C., Bai, S., Wang, Y., & Li, Y. (2020). Achieving near-optimal traffic engineering using
a distributed algorithm in hybrid SDN. IEEE Access, 8, 29111–29124. https://doi.org/10.1109/
ACCESS.2020.2972103.

14. Amin, R., Reisslein, M., & Shah, N. (2018). Hybrid SDN networks: A survey of existing
approaches. IEEE Communications Surveys & Tutorials, 20(4), 3259–3306. https://doi.org/10.
1109/COMST.2018.2837161.

15. Montevecchi, F. (2017). Analysis and Optimization of Hybrid Software-Defined Networks.

https://doi.org/10.1109/TGCN.2018.2832658
https://doi.org/10.1109/ACCESS.2020.2972103
https://doi.org/10.1109/ACCESS.2020.2972103
https://doi.org/10.1109/COMST.2018.2837161
https://doi.org/10.1109/COMST.2018.2837161

6 Analysis of Load Balancing Techniques in Software-Defined Networking 117

16. Lee, A., Wang, X., Nguyen, H., & Ra, I. (2018). A hybrid software defined networking
architecture for next-generation IoTs. KSII Transactions on Internet and Information Systems,
12(2), 932–945. https://doi.org/10.3837/tiis.2018.02.024.

17. Gasmelseed, H., & Ramar, R. (2019). Traffic pattern-based load-balancing algorithm in
software-defined network using distributed controllers. International Journal of Communica-
tion Systems, 32(17), 1–14. https://doi.org/10.1002/dac.3841.

18. Song, P., Liu, Y., Liu, T., & Qian, D. (2017). Flow Stealer: lightweight load balancing by
stealing flows in distributed SDN controllers. Science China Information Sciences, 60(3), 1–
16. https://doi.org/10.1007/s11432-016-0333-0.

19. Zhong, H., Sheng, J., Xu, Y., & Cui, J. (2019). SCPLBS: a smart cooperative platform for
load balancing and security on SDN distributed controllers. Peer-to-Peer Networking and
Applications, 12(2), 440–451. https://doi.org/10.1007/s12083-017-0605-1.

20. Nayyer, A., Sharma, A. K., & Awasthi, L. K. (2019). Laman: A supervisor controller based
scalable framework for software defined networks. Computer Networks, 159, 125–134. https://
doi.org/10.1016/j.comnet.2019.05.003.

21. Sufiev, H., Haddad, Y., Barenboim, L., & Soler, J. (2019). Dynamic SDN controller load
balancing. Future Internet, 11(3), 1–21. https://doi.org/10.3390/fi11030075.

22. Priyadarsini, M., Mukherjee, J. C., Bera, P., Kumar, S., Jakaria, A. H. M., & Rahman,
M. A. (2019). An adaptive load balancing scheme for software-defined network controllers.
Computer Networks, 164, 106918. https://doi.org/10.1016/j.comnet.2019.106918.

23. Jin, H., Yang, G., Yu, B. Y., & Yoo, C. (2019). TALON: Tenant throughput allocation
through traffic load-balancing in virtualized software-defined networks. In 2019 International
Conference on Information Networking (ICOIN), (vol. 2019-Jan, pp. 233–238). https://doi.org/
10.1109/ICOIN.2019.8717976.

24. Jadhav, K. A., Mulla, M. M., & Narayan, D. G. (2020). An efficient load balancing mechanism
in software defined networks. In Proc. - 2020 12th Int. Conf. Comput. Intell. Commun.
Networks, CICN 2020 (pp. 116–122). https://doi.org/10.1109/CICN49253.2020.9242601.

25. Kadim, U. N., & Mohammed, I. J. (2020). A hybrid software defined networking-based load
balancing and scheduling mechanism for cloud data centers. Journal Of Southwest Jiaotong
University, 55(3), 1–8.

https://doi.org/10.3837/tiis.2018.02.024
https://doi.org/10.1002/dac.3841
https://doi.org/10.1007/s11432-016-0333-0
https://doi.org/10.1007/s12083-017-0605-1
https://doi.org/10.1016/j.comnet.2019.05.003
https://doi.org/10.1016/j.comnet.2019.05.003
https://doi.org/10.3390/fi11030075
https://doi.org/10.1016/j.comnet.2019.106918
https://doi.org/10.1109/ICOIN.2019.8717976
https://doi.org/10.1109/ICOIN.2019.8717976
https://doi.org/10.1109/CICN49253.2020.9242601

Chapter 7
Analysis of Energy Optimization
Approaches in Internet of Everything: An
SDN Prospective

Gurpinder Singh, Amritpal Singh, and Rohit Bajaj

7.1 Introduction

The Internet of Things (IoT) concept has been used from 1999 to provide efficient
communication between different connected devices through the Internet connec-
tivity. Medical, Industry, Sports and Social Networking fields are availing several
benefits using IoT with the support of networking solutions. Numerous devices
are connected with one another using different technologies, like, IoT (Internet of
Things), Global Positioning System (GPS), etc. It has been estimated in one of the
surveys that by 2025, around 75 billion devices are expected to be connected with
the web services [1]. With the increase in the number of connected devices, an
evolution in IoT can be observed in the form of Internet of Everything (IoE), which
includes people, devices and storage. The revolutionary change from Internet of
Things to Internet of Everything is shown in Fig. 7.1. The numerous sensors/devices
and people are connected via Internet, generating an abundant amount of data
for processing, storage or transmission using networking solutions. IoT devices
forward a huge amount of data at various geographical locations for processing.
To handle this elephant-like data, an abundance of energy is required to process the
forwarded data from connected IoT devices. There is a need to provide the required
amount of energy to the processing nodes; otherwise, the nodes can crash and the
agreed service-level agreement (SLA) can be affected. To manage the workload, an
energy-efficient and latency-free approach is required to meet the requirements of
the end users by using the existing infrastructure. A revolutionary approach of the
networking, i.e., software-defined network, is introduced to manage the network in
an efficient manner to maintain the QoS and reduce the energy level as compared

G. Singh · A. Singh (�) · R. Bajaj
Department of Computer Science and Engineering, Chandigarh University, Mohali, India
e-mail: amritpal.cse@cumail.in; rohitbajaj.cse@cumail.in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. S. Aujla et al. (eds.), Software Defined Internet of Everything, Technology,
Communications and Computing, https://doi.org/10.1007/978-3-030-89328-6_7

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89328-6_7&domain=pdf
mailto:amritpal.cse@cumail.in
mailto:rohitbajaj.cse@cumail.in
https://doi.org/10.1007/978-3-030-89328-6_7

120 G. Singh et al.

Fig. 7.1 Internet of Things to Internet of Everything

to the traditional networking approaches. The incorporation of IoE/IoT and SDN
using cloud/fog computing platform provides a maximum throughput and latency-
free platform for data transmission and processing. The incorporated platform is the
requirement of today’s scenario to connect everything via Internet to maintain the
QoS [2–6].

7.1.1 Applications and Types of IoT

The concept of IoT is used in every aspect of life by connecting to the Internet using
various IoT devices [1, 7]. The types of IoT are highlighted in Fig. 7.2.

1. End User IoT: Each digital device that is used by different users to monitor and
control things in the house is called end user IoT, e.g., digital watches, health
monitoring devices, smart houses, etc.

2. Infrastructure IoT: In organizations and educational institutions, numerous
infrastructure IoT devices are configured to manage the resources efficiently,
e.g., smart cities traffic management, garbage disposal, CCTV data, healthcare
system, patient information, accommodation availability, environmental studies
to check the level of pollutants, biodiversity in particular areas, are the various
tasks managed by IoT.

3. Industrial IoT: The IoT devices are configured to manage the resources effi-
ciently at various organizations and educational institutions. Traffic management
in smart cities, garbage disposal, CCTV data, healthcare system, patient infor-
mation, accommodation availability, environmental studies to check the level of
pollutants, and biodiversity in particular areas are the various tasks managed by
IoT.

4. Emergencies and Defense Structure: The emergency scenarios like natural
disasters can be tackled by using various sensors connected to the Internet.

7 Analysis of Energy Optimization Approaches in Internet of Everything: An. . . 121

Fig. 7.2 Categories of IoT

The collected data are filtered and further used to predict any disaster in the
environment. The defense sector also benefited from the IoT-enabled sensors by
collecting real-time data with the help of drones, surveillance sensors, planes and
battle machines for effective decision-making.

The application areas and types are not limited as any device connected to the
internet is considered in the same category. The industrial IoT type requires large
computational power, storage and networking capabilities to monitor and process
the data generated from the various IoT sensors, automation and robotics devices
and wearable devices. To handle the large amount of data, the concept of Big
Data Analytics is used by following the approach of Concentric Computing Model
(CCM) via cloud infrastructure as shown in Fig. 7.3. The benefits of the used
approach are bandwidth utilization, security, less energy consumption, resource
optimization and economical for industries. The steps used by the approach are
discussed below:

1. Sensing Systems: Industrial IoT is configured with heterogeneous nature of
sensors to collect the data. It also incorporated normal sensors like temperature,
pressure measuring sensors. The configured devices generate a huge amount
of data, and later the data are monitored and processed for effective decision-
making in the industry.

2. Outer Gateway Processors: They are the servers configured for various applica-
tions, edge nodes along with the networking devices that are one hop away from
the sensors. The main principle of this method is to reduce and filter the data as
per the format of the input data for different processors. This method helps to
control the flow of data in the network and reduce the consumption of energy by
using less bandwidth.

3. Inner Gateway Processors: The servers at this level are integrated for computa-
tional power, and they are two to four hops apart from the sensors and considered
as cloudlets. This method can reduce the latency and provide demanded services
to the end users.

122 G. Singh et al.

Fig. 7.3 Steps of concentric computing model

4. Outer Central Processor: To manage and process the data at large scale, powerful
resources are required. To provide the limitless services to the end users, cloud
platform is required. The computing nature servers are used to manage the data,
route data between different cloud infrastructures and control the mechanism of
services.

5. Inner Central Processor: This infrastructure is used to provide processing,
storage and networking services to the large stream of data. The distance of the
infrastructure is farthest from the IIoT. The data flow at this level is handled by
one or more cloud platforms.

7.2 Software-Defined Networking

In this digital era, numerous service providers are trying to meet the requirements
of the end users due to the configuration of a large number of IoT devices. To
fulfill the requirements of the configured devices, various networking and other
related services are required, e.g., storage, processing power, networking services,
etc. [8, 9]. The management policies of the different services changed according
to the geographical location of the end users. The service providers can meet
their requirements in two manners like economically or virtually. Considering the
economical factor, the service provider gets the network services on rent basis and
in another way scales in and scales out the services as per the requirements of the
end users. To achieve this, software-defined network (SDN) provides an interface
to manage the configured devices in the network through the centralized controller
[10–13].

The controller can be used as an individual unit to manage the network traffic at
a specific scenario and can be used as a cluster of different controllers to provide
the services in the cloud environment [14]. The detailed three-layered architecture

7 Analysis of Energy Optimization Approaches in Internet of Everything: An. . . 123

Fig. 7.4 SDN architecture for IoT devices

of the SDN approach, management, controller, and data layer and IoT devices is
shown in Fig. 7.4.

All the configured IoT devices, like networking devices (switches, storage space
and Virtual machines), are residing at the data layer and are monitored/managed
by the management layer via APIs using hypervisor configured on the controller
by using the network operating system to handle the network from single point
of control. Hence, this approach can reduce the energy consumption along with
economically beneficial for service provider [15–17].

The different managing and monitoring policies are directed by the controller
to the connected devices. Whenever, a device is connected to the network, the
health and monitoring activities are managed by the controller, e.g., energy level.
The threshold value of the energy consumption of the various connected devices is
adjusted by the controller. If the energy level of any device/node recorded lesser
than the threshold value, then the alternate device is considered for defined role
under the guidance of the controller. This approach is extended for security purpose
according to the behaviour of the configured node, if the communicated node is not
able to prove its authenticity, pushed to the blacklist for further actions. Overall, this
approach improves the reliability of the system by avoiding the congestion of the
network [18–20].

124 G. Singh et al.

7.3 Analysis of Various Energy-Efficient Techniques
in SDN-Based Environment

The energy-efficient approaches are divided into three categories as depicted in
Fig. 7.5. The analysis of various energy-efficient approaches is highlighted in detail
to identify the major findings of the different authors and is discussed below:

Due to an increase in the number of the IoT-based devices/sensors and an
introduction of new application during this pandemic period, the workload manifold
has been observed in the network. By using the standard resource allocation
mechanism, the allocation of the resources to the requests generated by various
end users is not justifiable. It can be seen that few nodes are above the threshold
value (overloaded), and the rest of the nodes are almost free. Due to this reason,
overloaded nodes require more energy to process and manage the workload. In
other way, every time same path (port) will be selected to forward the incoming
traffic from one node to another node, resulting into bottleneck in the network.
To reconfigure/rerun the nodes, an extra amount of energy is required to restart
all the nodes in the network. The load of controller is measured by the rate of
packets transmitted by the switches to the controller, queries generated for flow
table and round trip time between the switches and the controller. The load of
each node is monitored by the centralized controller, and whenever the load of the
certain node exceeds the limit of threshold set by centralized controller, immediately
load balancing process comes into existence. To avoid the congestion, firstly, the
overloaded path is identified on the particular switch. Onwards, alternative paths to
reach the same destination are identified to reduce the load on the same port. In
case the identified path goes through different controllers in the network, then, a
switch is targeted whose load is less than or equal to half of the difference of the
load of the overloaded controller and target controller. This mechanism is named as
Dynamic Load Balancing using Alternate Path (DALBP). The approach to shift the
stream of data on another path consumes less energy during processing the workload
as compared to transmitting the switch [21]. Hence, this approach integrates the
edge platform to handle a large amount of data to provide with Quality of Service.
This approach can be enhanced by using software-defined networking by providing
various benefits over traditional networking [22].

Fig. 7.5 Energy-efficient approaches

7 Analysis of Energy Optimization Approaches in Internet of Everything: An. . . 125

Conventional networking approaches are not able to handle the heavy workload,
resulting into degradation of Quality of Service in IoT-based scenarios. Despite
the traditional networking approach, flow establishment between devices can be
provided by software-defined network by utilizing minimum devices and selected
ports of the devices according to the rate of flow of data. In case the flow rate is
minimal, use only minimal nodes and put other nodes on sleep mode. SDN-enabled
network can monitor and control the devices to make the network more energy-
efficient. The approach used to achieve the defined objective is Green Abstraction
Layer (GAL), which is integrated with the controller for optimization of energy at
different levels. Onwards, the current state of each network device is measured,
and accordingly the entries are updated into the flow table. The health of the
connected nodes is monitored at regular intervals of time to check the level of energy
consumption. In the second approach, an extended version of the fair share route
selection method, named as exclusive routing, is used to manage the data flow in the
network. The proposed approach is able to minimize the load on the switches, and
however, the 55% resources of the switches are used. To handle the over utilization
of the resources of the switches, an exclusive routing approach is introduced to
manage the active and suspended flow on priority basis. For every incoming flow,
the controller checks the free paths from the flow table entries to send the active
flow over the network; otherwise, it checks alternate paths with suspended flow with
priority value less than the current calculated value and forwards the current flow on
the selected path. In case more than one condition is available to forward the flow,
then, the controller checks the available of the switches to constitute a path. Though
the provided solution is not suitable for the current flow, therefore, the flow is shifted
to the suspended list. In another approach, the routing is processed to turn off the
active devices to select the shortest path from the pool of paths except deactivated
paths. The approach is extended by selecting the active paths with minimum active
nodes as compared to other available paths. In a similar manner, the rule placement
and TCAM-based energy-aware concept is used for optimal utilization of little
memory of the switches. The heuristic method is used to select the suitable route
by considering the link parameters. One port is selected to consider as a default port
to handle the requests without installation of rules multiple times, and further low
traffic on paths is diverted to other active ports to put the ports on sleep mode for
optimal utilization of the energy [23].

Energy consumption can be reduced by incorporating the SDN platform in the
existing network for intelligent decision-making. The multiple-layered architecture
(control plane and data plane) of SDN helped the system to segregate the data
for effective decision-making. One reason is that in the case of SDN, the control
plane and data plane/forwarding plane are used to manage the network. The devices
(switches and routers) considered in the category of data plane/forwarding plane
and all the controlling functions (like change, update and manage the network
topologies) are managed by the controller via different applications. In case of
traditional networking, the decision-making is done by the single device which may
be the cause of congestion in the network. It has been proved by the authors that
in a topology of three routers and five switches, the total energy consumption by

126 G. Singh et al.

the network devices as compared to the traditional network is 6974W. In SDN-
enabled network, considering the same topology, the energy consumption is 1500W.
Therefore, it is clear that the difference of energy consumption in both cases is
5474W [24].

The major contributors of the energy consumption are data processing, data
forwarding, etc. The mobility issues in the mobile network and change in the
services from one node to another are the major concerns of workload overloading
on the nodes. To overcome the problem, SDN architecture with root switch can be
used to update the location of the users by directly interacting with them. There is a
mobile terminal (user) that moves in the cluster or from one cluster to another. Every
cluster has its own location to manage to avoid the overloading of workload. In the
SDN architecture, the main components are first hop switch (receive packets from
the sender, i.e., mobile terminal), root switch (receive packet from first hop switch
to establish route), controller (used to create new entries for particular sender), leaf
switch (forward the packets to the receiver) and intermediate switch (send packets
from source to destination). In the root-based approach, the packet is forwarded
from mobile terminal to the first hop switch, onwards the packet to the root switch.
The root switch matches the packet for suitable path selection with route table and
forwards the packet to the next hop switch, if the path of the packet is identified
successfully; otherwise, it forwards the packet to the controller for necessary action.
Furthermore, the controller processes the header of packet, updates the route table
by selecting a suitable path that leads to the destination and installs the new entry to
intermediate switches and sends packet to the next hop switch. In this manner, the
packet reaches to the destination by following the intermediate switches and leaf
switch [25].

In resource sharing approaches like IoT and Big Data applications, data centre
networks by using cloud infrastructure can provide virtual resources at a minimum
cost. An elephant-like data is generated by various devices that affect the QoS. The
SDN manages the workload in an efficient manner with the help of control plane
by using either a single controller or multiple controllers as per the size of the
network. To achieve the fault tolerance at various data centres, mirror controller
is used. In case of scalable network, adequate numbers of switches are handled by
one controller and follow the same approach for other switches to avoid overloading
on different nodes. To reduce the latency in the network, the distance between the
controller and switches needs to be minimum. The problem of energy consumption
in data centre networks is divided into three sections as in Fig. 7.6.

In the first scenario, the cloud-based data centres required to run all the times
to fulfill the requirements of the clients; however, an ample amount of energy
is consumed for this purpose. In the second scenario, there is a restriction on
the number of controllers to minimize the energy consumption. The numbers of
controllers are decided according to the load on the switches and the load threshold
value of each controller. In the third scenario, the main focus is to manage the QoS
parameters (fault tolerance, route optimization throughput, energy consumption,
etc.) in the network using management/control plane policies at the controller. The
solution of all problems is provided in the following sections:

7 Analysis of Energy Optimization Approaches in Internet of Everything: An. . . 127

Fig. 7.6 Energy consumption problem

• Use the multi-core processors at data centre networks to process applications in
a parallel manner.

• Controllers that consume lesser energy can be used frequently to process the
network. The controllers with lesser frequency of processor can also save energy.
Another way for the reduction of energy consumption is to relax the load of the
controllers by shifting the flow to other controllers [26].

The data processing and other activities related to the management of the data are
configured at virtual machines via cloud environment for various applications like
IoT, Big Data and virtual resource optimization by organizations, etc. The QoS
and energy optimization are the promising parameters that need to be considered
to increase the performance of the network. Mostly, the overloading of the virtual
machines is managed by transmitting the load of overloaded one to other machine
using cold and hot data transfer approaches. The cold migration approach is one
of the safest approach in terms of cost during turn off the Virtual machine then
transmitting the data that causes delay in the network. The hot migration approach
is complex but helps to reduce the processing time by transmitting the data in
different chunks to handle the dirty pages during active and inactive mode of the
machine. The dynamic flow approach can be considered for migration of data that
is suitable for hot migration approach but may be used for cold migration approach.
The migration time (T) for the hot approach is as follows:

T = M ∗
⎡

⎢⎣

(
1 − R

L

)n(
1 − R

L

)

L

⎤

⎥⎦ , (7.1)

where M is the memory size of the virtual machine, L is the available bandwidth,
R is the frequency of produced dirty pages and n is the number of pre-copy stages.

The dynamic flow algorithm for data migration between source and destination
virtual machines (VMs) with the help of their IPs starts by retrieving the topology
table from SDN controller. The extracted information from the topology table and
the shortest path between the source and destination VMs are selected by using
breadth-first search algorithm. In the cloud environment, the network configuration
settings between the data centres do not change frequently, and the shortest path

128 G. Singh et al.

between the various VMs pair is calculated initially and use as per requirement.
Furthermore, the shortest path is selected according to the maximum availability of
the bandwidth during processing the workload along with the link of the path which
could provide maximum byte rate of flow (frequently used). To find the shortest path
according to the flow rate of the VM migration, the flow rate of the VM migration
is deducted from the link flow rate where the value of the flow rate is equal to the
byte rate. The calculated value is compared with the link of the maximum byte rate,
and the link with more value as compared to the link’s byte rate is selected. In the
last stage, the shortest path with link’s byte rate, i.e., less than or equal to the path’s
maximum residual bandwidth, is selected [27].

The wireless body area networks are frequently adopted in the area of medical,
sports, industrial research, etc. Therefore, the sensors are connected to the body of
the host and transmit the data via nodes. Each node is connected to the multiple
sensors. The main objective of this type of network is to enable communication
between the nodes by considering the QoS in terms of SNR (source-to-noise
ratio), numbers of hops and energy level using infrastructure of software-defined
networking. The process starts with node which is trying to send data. If the
flow entries (route) are available and updated in the node memory, then data can
be transferred or otherwise forwarded to the controller by route request (RREQ)
message for further action and policies. The other condition concerned to the flow
entries could be used when the route has one or more deactivated nodes, in that case
route request (RREQ) message is being sent to the controller for alternate route.
Whenever the controllers receive the RREQ, it broadcasts the topology request
message (TREQ) to all the nodes of the network and collects the information related
to QoS from different nodes (related to their neighbours and itself) in the form of
message name topology response message (TREQ) and updates the information
of the topology. In the next stage, the best shortest path is calculated along with
reserve in case of failure and stores all the collected details for further use. The
Dijkstra algorithm with fuzzy logic approach is considered to maintain the QoS.
Then, the route reply message is generated by the controller against the route
request of node to clarify the suggested route. The energy-efficient and SDN-
enabled routing algorithm is used for wireless body area networks (ESR-W) to
achieve the mentioned objectives [28].

Fog computing is the best platform to optimize the utilization of the resources
in the network. The configured devices can be of heterogeneous nature and get the
benefits of the characteristics of the fog computing platform as shown in Fig. 7.7.

A novel approach of SDN-based fog computing is another milestone to manage
the network pragmatically by using the defined APIs, e.g., topology management,
energy optimization, security at control level and services of fog computing are
at data plane. The fog computing services are managed by cooperative and non-
cooperative approaches along with the methodology of selection of appropriate
servers on the platform. The name clears the functionality of the cooperative fog
computing as it starts communicating the nodes as one is overloaded and the other
one is underloaded. The non-coopertive fog computing servers communicate with
each other, further, the devices/users wait in the queue for the servers to acquire the

7 Analysis of Energy Optimization Approaches in Internet of Everything: An. . . 129

Fig. 7.7 SDN-based fog computing approach

resources. This approach reduces the complexity during load migration from one
server to other in the cost of delay. At last, the cooperative approach balances the
load by optimizing the resource with less power consumption as compared to the
non-cooperative approach. The servers in the fog computing platform are selected
on the basis of geographical distance. The server near to the user will serve the first
as per the requirements. In case the resources are not available, then queuing policies
are used considering different QoS parameters, e.g. FIFO, fair/weighted fair queue,
priority queue, etc. [29].

The IoT-based platform incorporated with SDN provides the flexibility to
manage the network centrally. The generated traffic from the various IoT devices
is the major reason of network congestion. Usually, HTTP is used for transfer-
ring the messages between devices via Internet, but Message Queue Telemetry
Transport (MQTT) protocol can provide better result as compared to HTTP in
terms of load and energy consumption. The Raspberry pi 3 is considered as host
(broker/publisher) for MQTT and connected to IoT devices/sensors, e.g., bulb to
provide communication between publisher and subscriber. Despite using the client–
server architecture of HTTP, the publisher–subscriber approach of MQTT provides
the independent environment between the connected devices. The ON message is
communicated by subscriber to Raspberry pi 3 which is directly connected to the
bulb. The result of this scenario using MQTT and HTTP represents that MQTT is
delivering less bytes/min as compared to HTTP by consuming less energy [30].

A comparative analysis of energy-efficient approaches in SDN-enabled environ-
ment is provided in Table 7.1.

130 G. Singh et al.

Table 7.1 Analysis of various energy-efficient approaches in SDN-enabled environment

Authors Approach Description

Abbas Yazdinejad
et al. [18]

Policy to send packets
based on the energy level

This approach is being used to handle
communication of packets by considering
the energy level of each node

Suchismita Rout
and S. P. Nayak
[21]

This approach is being
used to find the alternate
path when the existing path
is overloaded while using
the SDN to transfer stream
of data

Dynamic Load Balancing using Alternate
Path (DALBP) is used to find the
overloaded path by accessing the
information of controller. Controller
frequently uses the shortest path to
transfer data, which is the reason of
overload. To overcome this problem,
DALBP uses alternate path to balance the
network by utilizing most of the resources

Mamdouh
Alenezi, 2018

Architecture of IoT
network by using cloud
computing resource
utilization approach and
using SDN

IoT devices like networking devices,
storage spaces and computational
resources are monitored and managed
using SDN by cloud infrastructure

Muhammad
Habib ur Rehman
et al. [22]

Managing and processing
large stream of data as Big
Data of Industrial IoT
(IIoT) by getting help of
cloud and fog computing

Limited resource requirement is handled
in IIoT by the concept of fog and for
computational power at large is provided
by cloud infrastructure

Péter András Agg
and Z. C.
Johanyák [23]

Energy saving methods of
SDN

Green abstraction layer, executive routing
and route placement approaches for
energy optimization

Suada Hadzovic
et al. [24]

Comparing traditional
network approach with
SDN for energy
consumption

Use SDN’s devices instead of traditional
network’s devices. Comparison shows
reduction in energy consumption while
using SDN

Nurul Hazrina
Shahba binti
Mohammad
Shah-run, 2018

Location awareness of
mobile nodes and route
management for newly
connected nodes by SDN
for power efficiency

Root switch is added to SDN
infrastructure for this approach

Tadeu F. Oliveira
and L. F. Q.
Silveria [26]

Effectively spread the
controller in the network to
handle load and consume
less energy

Multiprocessors core for parallel
processing and use controllers which need
less energy along with flow migration
between controllers in case of overloading

Adel Nadjaran
Toosi, 2018

The method of transferring
instance of virtual machine
(VM) from one server to
other VM using SDN
network by installing
different flow paths
between servers and handle
other network parameters

It uses dynamic data flow method for
scheduling the VMs by effectively using
the bandwidth available and decreasing
migrate time

(continued)

7 Analysis of Energy Optimization Approaches in Internet of Everything: An. . . 131

Table 7.1 (continued)

Authors Approach Description

Murtaza Cicioğlu
and A. Çalhan
[28]

Effective routing approach
(ESR-W) by using SDN for
wireless body area network
by optimizing energy
consumption

Routing method using Dijkstra with fuzzy
logic by following SNR (source-to-noise
ratio), numbers of hops and energy level

Adnan
Akhunzada et al.
[29]

Fog computing using SDN
for handling user’s data

Cooperative and non-cooperative
approaches by selecting suitable fog
server for comparing energy consumption
along with response and processing time
where cooperative outperforms than other

Meenaxi M
Raikar, 2020

IoT model using SDN by
using Message Queue
Telemetry Transport

Compare scenario by using HTTP and
MQTT and find that MQTT is better in
case of less load producing and energy
consuming

7.4 Conclusion

In the IoT-based environment, numerous sensors with limited battery power are
configured. Due to limited power, energy consumption is the major issue that needs
to tackle. SDN-enabled platform can manage the network traffic in an efficient
manner and can be the reason of reduction in energy consumption during processing
the workload. The increased energy utilization can be a reason in the degradation
of QoS in terms of different services provided to the end users. In this chapter,
various SDN-based approaches are discussed with proper facts and figured to handle
the increased rate of energy consumption in the network. In future, the analysis of
various energy-efficient approaches can help identify the gaps, and a novel approach
can be introduced to minimize the effect of energy utilization in the network.

References

1. Patel, K. K., & Patel, S. M. (2016). Internet of things-IOT: Definition, characteristics,
architecture, enabling technologies, application and future challenges. International Journal
of Engineering Science and Computing, 6(5), 6123–6131.

2. Peng, S.-L., Pal, S., & Huang, L. (2019). Principles of internet of things (IoT) ecosystem:
Insight paradigm (Vol. 174).

3. Shrutika, M., Tripathi, A. R., Singh, R. S., & Priyanshu, M. (2021) Design and implementation
of internet of everything’s business platform ecosystem.

4. Kumar, R. (2021). Future of Internet of Everything (IoE). International Research Journal of
Computer Science (IRJCS), 08(04), 84–92.

5. Hassan Shakib, K., & Faiza Neha, F. (2021). A study for taking an approach in industrial IoT
based solution. Journal of Physics: Conference Series, 1831(1). https://doi.org/10.1088/1742-
6596/1831/1/012007

https://doi.org/10.1088/1742-6596/1831/1/012007
https://doi.org/10.1088/1742-6596/1831/1/012007

132 G. Singh et al.

6. Nitnaware, P., & Nimbarte, M. (2021). IoT Based Smart City Mangement Using IAS: A survey.
Journal of University of Shanghai for Science and Technology, 23(4), 117–122.

7. Srinivasan, C. R., Rajesh, B., Saikalyan, P., Premsagar, K., & Yadav, E. S. (2019). A review on
the different types of internet of things (IoT). Journal of Advanced Research in Dynamical and
Control Systems, 11(1), 154–158 (2019)

8. Aujla, G. S., & Kumar, N. (2018). MEnSuS: An efficient scheme for energy management with
sustainability of cloud data centers in edge–cloud environment. Future Generation Computer
Systems, 86, 1279–1300.

9. Aujla, G. S., Garg, S., Batra, S., Kumar, N., You, I., & Sharma, V. (2019). DROpS: A demand
response optimization scheme in SDN-enabled smart energy ecosystem. Information Sciences,
476, 453–473.

10. Singh, M., Aujla, G. S., Singh, A., Kumar, N., & Garg, S. (2020). Deep-learning-based
blockchain framework for secure software-defined industrial networks. IEEE Transactions on
Industrial Informatics, 17(1), 606–616.

11. Garg, S., Singh, A., Aujla, G. S., Kaur, S., Batra, S., & Kumar, N. (2020). A probabilistic data
structures-based anomaly detection scheme for software-defined internet of vehicles. IEEE
Transactions on Intelligent Transportation Systems, 22, 3557–3566.

12. Singh, A., Aujla, G. S., Garg, S., Kaddoum, G., & Singh, G. (2019). Deep-learning-based SDN
model for internet of things: An incremental tensor train approach. IEEE Internet of Things
Journal, 7(7), 6302–6311.

13. Ranjan, R., Thakur, I. S., Aujla, G. S., Kumar, N., & Zomaya, A. Y. (2020). Energy-efficient
workflow scheduling using container-based virtualization in software-defined data centers.
IEEE Transactions on Industrial Informatics, 16(12), 7646–7657.

14. Aujla, G. S., Kumar, N., Garg, S., Kaur, K., & Ranjan, R. (2019). EDCSuS: Sustainable
edge data centers as a service in SDN-enabled vehicular environment. IEEE Transactions on
Sustainable Computing.

15. Alenezi, M., Almustafa, K., & Meerja, K. A. (2019). Cloud based SDN and NFV architectures
for IoT infrastructure. Egyptian Informatics Journal, 20(1), 1–10. https://doi.org/10.1016/j.eij.
2018.03.004

16. Singh, A., Batra, S., Aujla, G. S., Kumar, N., & Yang, L. T. (2020). BloomStore: dynamic
bloom-filter-based secure rule-space management scheme in SDN. IEEE Transactions on
Industrial Informatics, 16(10), 6252–6262.

17. Singh, A., Aujla, G. S., & Bali, R. S. (2021). Container-based load balancing for energy effi-
ciency in software-defined edge computing environment. Sustainable Computing: Informatics
and Systems 30, 100463.

18. Yazdinejad, A., Parizi, R. M., Dehghantanha, A., Zhang, Q., & Choo, K. K. R. (2020). An
energy-efficient SDN controller architecture for IoT networks with blockchain-based security.
IEEE Transactions on Services Computing, 13(4), 625–638. https://doi.org/10.1109/TSC.2020.
2966970

19. Wen, Z., Garg, S., Aujla, G. S., Alwasel, K., Puthal, D., Dustdar, S., Zomaya, A. Y., &
Rajan, R. (2020). Running industrial workflow applications in a software-defined multi-cloud
environment using green energy aware scheduling algorithm. IEEE Transactions on Industrial
Informatics, 17, 5645–5656.

20. Aujla, G. S., Singh, A., & Kumar, N. (2019). Adaptflow: Adaptive flow forwarding scheme for
software-defined industrial networks. IEEE Internet of Things Journal, 7(7), 5843–5851.

21. Rout, S., & Nayak, S. P. (2020). Energy minimization technique in SDN using efficient routing
policy. Journal of Xi’an University of Architecture & Technology. XII(Iv), 3512–3519.

22. Rehman, M. H. U., Ahmed, E., Yaqoob, I., Hashem, I. A. T., Imran, M., & Ahmad, S.
(2018). Big data analytics in industrial IoT using a concentric computing model. IEEE
Communications Magazine, 56(2), 37–43. https://doi.org/10.1109/MCOM.2018.1700632

23. Agg, P. A., & Johanyák, Z. C. (2021). Energy savings in SDN networks. Gradus, 8(1), 205–
210.

https://doi.org/10.1016/j.eij.2018.03.004
https://doi.org/10.1016/j.eij.2018.03.004
https://doi.org/10.1109/TSC.2020.2966970
https://doi.org/10.1109/TSC.2020.2966970
https://doi.org/10.1109/MCOM.2018.1700632

7 Analysis of Energy Optimization Approaches in Internet of Everything: An. . . 133

24. Hadzovic, S., Seremet, I., Mrdovic, S., & Causevic, S. (2020). Reduction of energy con-
sumption based on replacement of routers with SDN switches. In: 2020 24th International
Conference on Information Technology IT , 2020, February (pp. 14–17). https://doi.org/10.
1109/IT48810.2020.9070464

25. Shahrun, N. H. S. B. M., Mohammed, A. F. Y., Ramlie, R., Shah Newaz, S. H., & Wan, A. T.
(2018). An energy efficient mobility management mechanism in software defined networking
(SDN). In 2018 International Conference on Computer, Control, Electrical, and Electronics
Engineering ICCCEEE (pp. 1–6). https://doi.org/10.1109/ICCCEEE.2018.8515818

26. Oliveira, T. F., & Silveria, L. F. Q. (2019). Distributed SDN controllers optimization for energy
saving. In 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC)
(pp. 86–89). https://doi.org/10.1109/FMEC.2019.8795343

27. Nadjaran Toosi, A., & Buyya, R. (2019). Acinonyx: Dynamic flow scheduling for virtual
machine migration in SDN-enabled clouds. In 2018 IEEE International Conference on Parallel
& Distributed Processing with Applications, Ubiquitous Computing & Communications, Big
Data & Cloud Computing, Social Computing & Networking, Sustainable Computing &
Communications (pp. 886–894). https://doi.org/10.1109/BDCloud.2018.00131

28. Cicioğlu, M., & Çalhan, A. (2020). Energy-efficient and SDN-enabled routing algorithm for
wireless body area network. Computer and Communications, 160, 228–239. https://doi.org/10.
1016/j.comcom.2020.06.003

29. Akhunzada, A., & Sherali, Z. (2021). Power and performance efficient SDN-enabled fog
architecture. arXiv preprint arXiv:2105.14607

30. Raikar, M. M., Meena, S. M., &Mulla, M. M. (2020). Software defined internet of things using
lightweight protocol. Procedia Computer Science, 171(2019), 1409–1418. https://doi.org/10.
1016/j.procs.2020.04.151

https://doi.org/10.1109/IT48810.2020.9070464
https://doi.org/10.1109/IT48810.2020.9070464
https://doi.org/10.1109/ICCCEEE.2018.8515818
https://doi.org/10.1109/FMEC.2019.8795343
https://doi.org/10.1109/BDCloud.2018.00131
https://doi.org/10.1016/j.comcom.2020.06.003
https://doi.org/10.1016/j.comcom.2020.06.003
https://doi.org/10.1016/j.procs.2020.04.151
https://doi.org/10.1016/j.procs.2020.04.151

Chapter 8
Network Function Virtualization

Haotong Cao

8.1 What Is Network Function Virtualization

Network function virtualization, abbreviated as NFV [1], is an emerging network
technology for the next generation network. NFV enables network functions,
usually implemented in software, to run on top of the general-purpose hardware.
In addition, NFV can build many types of network equipment, such as servers,
switches, and storage, into a data center (DC) network [2]. That is to say, dedicated
hardware, such as the middleboxes, can be virtualized into virtual network functions
(VNFs). These VNFs can be managed and operated to implement a specific service,
in the way of software.

8.2 NFV Architecture and Model

The high-level overview of the NFV architecture [3] is shown in Fig. 8.1. Generally
speaking, the NFV architecture is made up of three main components: NFV
infrastructure (NFVI), virtual network functions (VNFs), and NFV management
and orchestration (MANO).

With respect to the NFVI, it includes the virtualization layer (hypervisor, con-
tainer management system, such as Docker, and vSwitch) and physical resources,
such as COTS servers, switches, storage devices, etc. NFVI can be seen as a general

H. Cao (�)
Jiangsu Key Laboratory of Wireless Communications, Nanjing University of Posts and
Telecommunications Nanjing, Nanjing, China

Department of Computing, The Hong Kong Polytechnic University, Hong Kong SAR, China
e-mail: haotong.cao@polyu.edu.hk

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. S. Aujla et al. (eds.), Software Defined Internet of Everything, Technology,
Communications and Computing, https://doi.org/10.1007/978-3-030-89328-6_8

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89328-6_8&domain=pdf
mailto:haotong.cao@polyu.edu.hk
https://doi.org/10.1007/978-3-030-89328-6_8

136 H. Cao

VNF 1 VNF 2 VNF 4VNF 3

Vitualization Layer

Computing

Hardware

Storage

Hardware

Network

Hardware

Virtual

Computing

Resources

Virtual

Storage

Resources

Virtual

Network

Resources

EMS 1 EMS 2 EMS 3 EMS 4

NFV MANO

OSS/BSS

Orchestrator

Managers

Virtualized

Infrastructure

Manager
Hardware resources

VNF

NFVI

Service, VNF and

Infrastructure

Description

Fig. 8.1 High-level overview of NFV architecture

virtualization layer. All virtual resources should be in a unified and shared resource
pool. In the resource pool, certain VNFs will run on top of it.

With respect to the VNFs, they refer to specific virtual network functions, such
as the firewall function. These specific functions can constitute the network service,
such as the remote video. VNFs are software that is usually deployed in virtual
machines, containers, or bare-metal physical machines using the infrastructure
provided by NFVI. Compared with VNF, traditional hardware-based network
elements can be called as PNF. VNF and PNF can be networked separately or
combined to form another so-called service chain to provide end-to-end (E2E)
network services required in specific scenarios [4].

With respect to the NFV MANO, it aims at providing the overall management
and orchestration of NFV. MANO is also connected to OSS/BSS upward. MANO
is usually composed of NFVO (NFV orchestrator), VNFM (VNF manager), and

8 Network Function Virtualization 137

VIM (virtualized infrastructure manager). The original meaning of orchestration is
an orchestra. While in the NFV architecture, all components must have a certain
choreography effect. All VNFs, PNFs, and other various resources can only be
properly choreographed so as to do the right thing at the right time. NFVI is
managed by VIM. VIM controls the allocation of virtual resources of VNF, such as
virtual computing, virtual storage, and virtual network. Both OpenStack and virtual
machine can be used as VIM. The OpenStack is open source while the latter is
commercial. VNFM manages the life cycle of VNF, such as online and offline,
status monitoring, image onboard. VNFM is based on VNFD (VNF description)
to manage VNF. NFVO has the function of managing the life cycle of NS (network
service, network business) and coordinating the management of NS life cycle. In
addition, VNFM can coordinate the management of VNF life cycle. The life circle
needs to be supported by the VNF manager VNFM. VNFM can coordinate the
management of various resources of NFVI so as to ensure the optimal configuration
of various resources and connections required. Onboard new network business,
VNF forwarding table, VNF package, and NFVO run based on the NSD (network
service description). NSD usually includes the service chaining, NFV description,
and performance goal.

The future evolution of NFV will undergo two main stages [2, 3]: Initial Stage
and Advanced Stage. In the Initial Stage, NFV will be used as a new method
of implementing traditional services. NFV mainly aims at completing the one-
to-one conversion of the traditional software execution environment based on
dedicated hardware into a dedicated virtualization environment based on general-
purpose hardware VMs. In the Advance Stage, NFV will be used as a new
method to implement new services. It includes decomposing VNFs into micro-
services and even single-function VNFs, then recombining them, using container
technology to slice a single VM into smaller containers, and implementing software-
programmable data models.

8.3 NFV Applications and Implementations

This part firstly talks about the benefits of NFV applications. With adopting NFV
technology, service providers can deploy network functions on top of standard
hardware instead of deploying dedicated hardware. In addition, the network func-
tions can be fully virtualized. That is to say, multiple functions can run on the
corresponding servers. This means that the required physical hardware is reduced as
much as possible. More required resources can be integrated so as to reduce physical
space consumption and overall costs [3].

NFV allows service providers to run VNFs on different servers flexibly or move
VNFs as needed when service requirements change. This approach can speed up
the delivery of services and applications by service providers. For example, if a
customer requests a new network function, he (she) can start a new virtual machine
to handle the request. When the function is no longer needed, this virtual machine

138 H. Cao

[4] can be replaced. This is also a low-risk way to test the value of potential new
services.

As discussed above, service providers can earn benefits by doing NFV appli-
cations. However, some key flaws exist in NFV, limiting NFV implementations.
The first key flaw is the high software maintenance cost. The second flaw is that the
integration of NFV is not streamlined enough. Although NFV can eliminate the need
of proprietary hardware, it will only transfer proprietary hardware from different
vendors to proprietary software from different vendors. Therefore, the deployment
of NFV is difficult to manage and very complicated. Due to the complex types of
equipment [4], the chaotic combination and the lack of general and conventional
ways are impossible to manage them on a large scale. NFV cannot provide scalable
and automated capabilities. In order to make matters worse, many software licenses
are attached to the mixed dedicated software package, which causes the above-
mentioned cost problem.

In general, the lack of standardization, complex and incoherent deployment mod-
els, and high deployment cost restrict the NFV applications and implementations.

8.4 Resource Allocation in NFV-Enabled Networks

Multiple technical issues exist in NFV. One key technical issue is the resource
allocation problem in NFV (RA-NFV) [5–7]. In NFV, the virtual network service
(NS) is modeled as an ordered set of chained virtual network functions (VNFs), also
called as service function chain (SFC). The SFC is required to be deployed into the
physical network efficiently. During the deployment, the specific function orders and
resource demands (e.g. computing, storage resource) of the SFC must be fulfilled.
In the NFV-enabled networks, the RA-NFV is called as SFC [6, 7] problem.

Researchers from the academia and industry have paid much effort so as to push
SFC research ahead [7–9]. According to [5], SFC problem is usually conducted in
four stages: SFC description (SFC-D), SFC composition (SFC-C), SFC embedding
(SFC-E), and SFC scheduling (SFC-S). With respect to the first two stages, the
industry is mainly responsible for developing NS description languages and VNF
concatenating methods. With respect to the last two stages, the academia mainly
focuses on proposing and developing SFC embedding and scheduling algorithms.
The SFC embedding and scheduling issues are researched in this chapter.

Since the optimal SFC embedding and scheduling solution [10–19] are required
to be achieved, the chapter concentrates on researching this optimal solution.

In the first place, it is the introduction of model for SFC problem. The model
for SFC embedding and scheduling research consists of two sub-models: physical
network model and SFC model.

In NFV-enabled networks, the underlying physical network must support the
virtualization scheme. That is to say, the network functions and resources of
networks are fully virtualized and isolated. The physical network is modeled
by undirected weighted graph [20] PNetwork = (PNode, PLink). PNode

8 Network Function Virtualization 139

represents the physical nodes set, while PLink represents the physical links set.
With respect to certain physical node MP in PNode, specific functions that run
on it can be represented by Func1(MP), Func2(MP), and so on. Take note that
Func1() refers to one specific network function, such as firewall. NAT network
function can be represented by Func2(). With respect to resources of MP , the
computing Computing(MP) and storage resources Storage(MP) are considered
in this chapter. In addition, the node deployment (deployment) time of MP is
represented by Deploy(MP), revealing the scheduling delay of embedding one
virtual node ontoMP . With respect to certain one physical linkMNP , its bandwidth
is represented by Band(MNP). In this chapter, the link deployment time that can
serve as the SFC scheduling delay is not considered. In addition, the spectrum and
backhaul resource are not taken into account in this chapter.

In NFV research, multiple NSs are usually requested and arrive independently.
Hence, there will exist multiple NSs. Each NS is represented by SFC. With
respect to ith SFC, it can be modeled by using directed weighted graph SFCV

i =
(V NFsV

i , V LinksV
i). V NFsV

i and |V NFsV
i | represent the VNF set and a number

of VNFs, respectively. With respect to j th VNF in SFCV
i , it is labeled by V NFV

ij .

As usual, each VNF in its SFC just has one specific function demand. The V NFV
ij

is selected as the example. V NFV
ij needs the Func1() function, thus labeling as

Func1(V NFV
ij). With respect to the resource demands of V NFV

ij , the computing

Computing(V NFV
ij) and storage resources Storage(V NFV

ij) are considered in
this chapter. In addition, the maximum allowed node deployment (scheduling)
time of V NFV

ij is represented by MaxDeploy(V NFV
ij). In this chapter, the total

deployment time of SFC to represent its QoS performance is considered. When a
service is requested, implementing and deploying the service quickly will enhance
the user experience. With respect to certain one virtual link V NFV

ij V NFV
i(j+1), its

required bandwidth is represented by Band(V NFV
ij V NFV

i(j+1)). In addition, ith

SFC has its maximum allowed waiting time MaxWait (SFCV
i). That means the

SFCV
i must be embedded and scheduled successfully within MaxWait (SFCV

i).
In order to assist readers to understand model for SFC embedding and schedul-

ing, Fig. 8.2 is plotted. Figure 8.2 consists of one physical network and one SFC.
Physical attributes (functions and resources) and virtual attributes (functions and
resources) are highlighted. The deployment time attributes that play a vital role in
SFC rescheduling example description are plotted, as well. The network scale of
physical work is set to be small in Fig. 8.2, having six physical nodes. The initial
SFC deployment results are plotted, as well: V NF1 embedded onto B, V NF2
embedded onto C, and V NF3 embedded onto D. V NF1V NF2 is embedded
onto BC, while V NF2V NF3 is embedded onto CD. In Fig. 8.2, the function and
resources demands of the SFC are fulfilled successfully.

In the second place, it is the formulation details of exact and optimal SFC
embedding and scheduling algorithm (SFC-Optimal). The SFC-Optimal is based
on the known integer linear programming (ILP) [21, 22] method, which is widely
accepted as the optimal approach in virtual resource allocation era [5].

140 H. Cao

B C

A D

F E

Physical Network

SFC Example

VN

F1

VN

F2

VN

F3

(15, 10)

(12, 13)

(8, 8)

(5) (5)

(90, 89)

(80, 89)

(80, 78) (85, 81)

(85, 99)

(95, 100)

(65)

(75)
(65)

(70)

(83)

(81)

(Func1)
(Func2)

(Func3)

(Func1, Func2,

Func4)
(Func2, Func4)

(Func1, Func2,

Func3)

(Func1, Func2,

Func3, Func 4)

(Func2, Func3,

Func4)

(Func1, Func2,

Func3)

(Computing, Storage)

(Link Bandwidth)

(Deployment

Time (s))

(Func1, ,Func

4)
(3(s))

(2(s))
(1(s))

(3(s))

(1(s))

(3(s))
(1(s))

(3(s))

(2(s))

Virtual Link

Physical Link

Physical

Node

VNF

Fig. 8.2 Resource allocation model for NFV-enabled networks

Firstly, two kinds of binary variables are defined. The first type of binary
variables is X , indicating the relationship between virtual nodes and physical nodes.
The other type of binary variables is Y , indicating the relationship between virtual
links between physical paths (links).

Secondly, it is the objective function. In this chapter, the aim is minimizing
the consumed physical resources for accommodating one SFC (e.g., ith SFC
SFCV

i). This is in accordance with the goal of TSP. Minimizing the consumed
resources enables to leave more space for accommodating more virtual networks,
thus improving the profit in the long run. The objective function of SFC-Optimal is
formulated in Expression 8.1. With respect to other objects, such as balancing the
network loading, it can be realized by setting the proper objective functions.

Obj : Cost
(
SFCV

i

)
=

α(cost) ·
∑

V NFV
ij ∈V NFsV

i

Computing
(
V NFV

ij

)

+ β(cost) ·
∑

V NFV
ij ∈V NFsV

i

Storage
(
V NFV

ij

)

+ γ (cost) ·
∑

V NFV
ij V NFV

i(j+1)∈V LinksV
i

∑

pathP ∈PathP

Num
pathP

V NFV
ij V NFV

i(j+1)
· Band(

V NFV
ij V NFV

i(j+1)

)
(8.1)

8 Network Function Virtualization 141

where Num
pathP

V NFV
ij V NFV

i(j+1)
records the number of physical links in the selected

physical path that accommodates the virtual link V NFV
ij V NFV

i(j+1). α(cost),
β(cost), and γ (cost) are three different kinds of weighting factors. This weighting
method aims at balancing different types of virtual resources.

Thirdly, it is the constraints that must be fulfilled, while the service provider tries
to accommodate the ith SFCV

i , ranging from Expressions 8.2 to 8.8.

∀V NFV
ij ∈ V NFsV

i ,
∑

PNode

X
V NFV

ij

MP = 1 (8.2)

where Expression 8.2 aims at ensuring each virtual NF in the virtual SFC embedded
onto only one physical node.

∀MP ∈ PNode,
∑

V NFsV
i

X
V NFV

ij

MP ≤ 1 (8.3)

where Expression 8.3 aims at ensuring that at least one virtual NF is embedded onto
one corresponding physical node while doing the SFC embedding and scheduling.
In both Expressions 8.22 and 8.3, the relationship between each virtual NF and each
physical node can be achieved.

∀V NFV
ij V NFV

i(j+1), ∃pathP ∈ PathP ,

∑

pathP

(
Y

V NFV
ij V NFV

i(j+1)

pathP

)
= 1 (8.4)

where Expression 8.4 indicates that there must exist one isolated physical path
pathP for accommodating the virtual link V NFV

ij V NFV
i(j+1). Take note that two

end nodes (NFs) of virtual link V NFV
ij V NFV

i(j+1) are embedded onto correspond-
ing physical nodes ahead.

∀V NFV
ij ∈ V NFsV

i ,
∑

MP

X
V NFV

ij

MP · Computing
(
V NFV

ij

)

≤ Computing
(
MP

)
(8.5)

∀V NFV
ij ∈ V NFsV

i ,
∑

MP

X
V NFV

ij

MP · Storage
(
V NFV

ij

)

≤ Storage
(
MP

)
(8.6)

142 H. Cao

∀V NFV
ij ∈ V NFsV

i ,
∑

MP

X
V NFV

ij

MP · Deploy
(
MP

)

≤ MaxDeploy
(
V NFV

ij

)
(8.7)

where Expressions 8.5, 8.6, and 8.7 indicate the VNF constraint (e.g., V NFV
ij).

When certain physical node accommodates the VNF, the physical node must reserve
enough computing and storage resources for accommodating the VNF. In addition,
its deployment time must be within the maximum allowed deployment time of
V NFV

ij .

∀V NFV
ij V NFV

i(j+1) ∈ V LinksV
i , ∃pathP ∈ PathP ,

∑

pathP

Y
V NFV

ij V NFV
i(j+1)

pathP · Band
(
V NFV

ij V NFV
i(j+1)

)

≤ Band
(
pathP

)
(8.8)

where Expression 8.8 indicates that the accommodated physical path pathP must
have available bandwidth resource for accommodating the embedded virtual link
V NFV

ij V NFV
i(j+1).

After formulating the integer linear programming model of SFC-Optimal, service
provider can use the professional optimization software tool, such as GPLK [23], to
achieve the optimal SFC embedding and scheduling of SFCV

i . However, the fact
that the programming model method has the flaw of high time complexity. The
complexity of directly solving ILP model is usually approaching the exponential
level [24]. When the network scale is large, no matter physical or virtual, the number
of binary variables increases, thus further increasing the time complexity. That is
why the heuristics and the meta-heuristics [25, 26] are fully developed in SFC
research.

References

1. Giordani, M., Polese, M., Mezzavilla, M., Rangan, S., & Zorzi, M. (2020). Toward 6G
networks: Use cases and technologies. IEEE Communications Magazine, 58(3), 55–61 (2020).

2. ETSI GS NFV 002 V1.2.1:Network functions virtualisation (NFV); Architectural framework
(2014).

3. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015–2020,
White Paper, Cisco (2016).

4. You, X., Wang, C., Huang, J., Gao, X., Zhang, Z., Wang, M., Huang, Y., Zhang, C., Jiang, Y.,
Wang, J., Zhu, M., Sheng, B., Wang, D., Pan, Z., Zhu, P., Yang, Y., Liu, Z., Zhang, P., Tao, X.,

8 Network Function Virtualization 143

et al. (2021). Towards 6G wireless communication networks: vision, enabling technologies,
and new paradigm shifts. Science China Information Sciences, 64(1), 110301 (2021).

5. Mijumbi, R., Serrat, J., Gorricho, J., Bouten, N., Turck, F., & Boutaba, R. (2016). Network
function virtualization: State-of-the-art and research challenges. IEEE Communications Sur-
veys and Tutorials, 18(1), 236–262.

6. Herrera, J. G., & Botero, J. F. (2016). Resource allocation in NFV: A comprehensive survey.
IEEE Transactions on Network and Service Management, 13(3), 518–532.

7. Mirjalily, G., & Luo, Z. (2018). Optimal network function virtualization and service function
chaining: A survey. Chinese Journal of Electronics, 27(4), 704–717.

8. Cao, H., Wu, S., Hu, Y., Li, Y., & Yang, L. (2019). A survey of embedding algorithms for
virtual network embedding. China Communications, 16(12), 1–33 (2019).

9. Davalos, E. J., & Baran, B. (2018). A survey on algorithmic aspects of virtual optical network
embedding for cloud networks. IEEE Access, 6(1), 20893–20906.

10. Yu, M., Yi, Y., Rexford, J., & Chiang, M. (2008). Rethinking virtual network embedding:
Substrate support for path splitting and migration. SIGCOMM Computer Communication
Review, 38(2), 17–29.

11. Cao, H., Yang, L., & Zhu, H. (2018). Novel node-ranking approach and multiple topology
attributes-based embedding algorithm for single-domain virtual network embedding. IEEE
Internet of Things Journal, 5(1), 108–120.

12. Cao, H., Wu, S., Hu, Y., Mann, R., Liu, Y., Yang, L., & Zhu, H. (2020). An efficient energy
cost and mapping revenue strategy for inter-domain NFV-enabled networks. IEEE Internet of
Things Journal, 7(7), 5723–5736.

13. Huu, T., Mohan, P., & Gurusamy, M. (2019). Service chain embedding for diversified 5G slices
with virtual network fu6ction slicing. IEEE Communications Letters, 23(5), 826–829.

14. Zhong, X., Wang, Y., & Qiu, X. (2018). Service function chain orchestration across multiple
clouds. China Communications, 15(10), 99–116.

15. Liu, J., Lu, W., Zhou, F., Lu, P., & Zhu, Z. (2017). On dynamic service function chain
deployment and readjustment. IEEE Transactions on Network and Service Management, 14(3),
543–553.

16. Fu, X., Yu, F., Wang, J., Qi, Q., & Liao, J. (2019). Service function chain embedding for NFV-
enabled IoT based on deep reinforcement learning. IEEE Communications Magazine, 57(9),
102–108.

17. Fu, X., Yu, F. R., Wang, J., Qi, Q., & Liao, J. (2020). Dynamic service function chain
embedding for NFV-enabled IoT: A deep reinforcement learning approach. IEEE Transactions
on Wireless Communications, 19(1), 507–519.

18. Liu, S., Cai, Z., Xu, H., & Xu, M. (2015). Towards security-aware virtual network embedding.
Computer Networks, 91(11), 151–163.

19. Besiktas, C., Gozupek, D., Ulas, A., & Lokman, E. (2017). Secure virtual network embedding
with flexible bandwidth-based revenue maximization. Computer Networks, 93(1), 89–98.

20. Newman, M. (2010). Networks: An introduction. Oxford, UK: Oxford University Press.
21. Cormen, T. H., Stein, C., Rivest, R., & Leiserson, C. (2001). Introduction to algorithms (2nd

ed). McGraw-Hill Higher Education.
22. Cao, H., Hu, Y., & Yang, L. (2021). Towards intelligent virtual resource allocation in UAVs-

assisted 5G networks. Computer Networks, 185, 107660.
23. GLPK [EB/OL]. [2021-03-08]. Available: http://www.gnu.org/software/glpk/.
24. Cao, H., Hu, S., & Yang, L. (2016). New functions added to ALEVIN for evaluating virtual net-

work embedding. In 2016 IEEE International Conference on Computer and Communications
(pp. 2411–2414).

25. IBM ILOG Optimization Products [EB/OL]. [2021-03-08]. Available:
www=01.ibm.com/software/websphere/products/optimization

26. Cao, H., Du, J., Zhao, H., Luo, D., Kumar, N., Yang, L., & Yu, F. (2021). Resource-ability
assisted service function chain embedding and scheduling for 6G networks with virtualization.
IEEE Transactions on Vehicular Technology, 70(99), 1–14.

https://www.gnu.org/software/glpk/
http://www.ibm.com/software/websphere/products/optimization

Part III
Application of Software-Defined
Networking in Cloud Computing

Chapter 9
Prospective on Technical Considerations
for Edge–Cloud Cooperation Using
Software-Defined Networking

Amritpal Singh, Rasmeet Singh Bali, and Gagangeet Singh Aujla

9.1 Introduction

In our daily life, many devices are connected wirelessly with the other devices
using radio frequency identification (RFID), Electronic Product Code (EPC), Global
Positioning System (GPS) and mobile devices using sensors, embedded devices, and
cloud. It has been estimated that by 2025, 75 billion devices will be connected to
the web to access the services [64]. This inflation in connected devices introduced
one technology, known as Internet of Things (IoT) [48]. According to a survey,
93% of organizations adopted IoT platform, 80% of companies moved toward IoT
technology, and 90% of vehicles connected with the IoT platform in 2020 [64]. IoT
can be integrated with a different application as shown in Fig. 9.1. The different
versions of IoT are discussed below:

• Consumer IoT: In this, numerous devices are connected to the Internet, like home
assistant appliances and voice recognition devices.

• Commercial IoT: Different applications including healthcare services and
vehicle-to-vehicle communication services are considered under this category.

• Industrial Internet of Things (IIoT): It considered smart agriculture appliances
and industrial big data services.

• Infrastructure IoT: It included smart cities sensors and user-friendly applica-
tions.

A. Singh · R. S. Bali
Department of Computer Science and Engineering, Chandigarh University, Mohali, India
e-mail: amritpal.cse@cumail.in

G. S. Aujla (�)
Department of Computer Science, Durham University, Durham, UK

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. S. Aujla et al. (eds.), Software Defined Internet of Everything, Technology,
Communications and Computing, https://doi.org/10.1007/978-3-030-89328-6_9

147

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89328-6_9&domain=pdf
mailto:amritpal.cse@cumail.in
https://doi.org/10.1007/978-3-030-89328-6_9

148 A. Singh et al.

Fig. 9.1 Different versions of IoT

IoT contribution can be analyzed in different eras in daily routine, like ambient
intelligence, smart homes, and smart cites. The major issue during configuration
of IoT devices is data privacy and security. In this concern, many infrastructure
organizations, like CISCO, AT&T, IBM, Intel, etc., introduced new intelligent
devices to handle the data. The most commonly used architectures based on different
operations in IoT are mentioned below [53]:

• Event-Based Architecture: The operational data are collected and analyzed for
particular applications in this category.

• Time-Based Architecture: In this category, the data are collected in a specified
interval of time from certain devices.

In our daily routine, IoT platform is used for regularly used applications for
specific tasks. A scenario integrating various applications is shown in Fig. 9.2, where
different sensors are configured in the smart city to collect the data. The collected

9 Prospective on Technical Considerations for Edge–Cloud Cooperation. . . 149

Fig. 9.2 Smart city

data are analyzed and further used to administer the city services and resources
[9]. In the similar manner, the data from people, buildings, and other devices
are analyzed to manage the transportation system, hospitals, smart organizations,
agriculture, banking, libraries, and other services. The defined concept helps to
improve the efficiency of the operations related to the citizens of the city. The
generated information is used by the administrator officials to communicate with
the citizens of the smart city to manage the effective usage of the infrastructure and
services.

According to a survey [22], 90% of organizations are using cloud services for
various routine activities. Cloud computing provides hardware- and software-based
services to the end users through Internet. The services offered by the cloud service
provider are highlighted below:

• Software-as-a-Service (SAAS): Instead to install software on your personal
systems, the required software can be used by the client on the basis of pay-
per-use module.

150 A. Singh et al.

Fig. 9.3 Percentage increase in cloud services

• Infrastructure-as-a-Service (IAAS): On-demand storage and network usage are
provided in this service to the end clients.

• Platform-as-a-Service (PAAS): Provide platform to run the applications as per
requirement.

During this pandemic period, the increase in cloud services by various organizations
is shown in Fig. 9.3. The improved flexibility and reliability in the cloud services
increase the popularity in organizations and academia. However, with the increase
in demand of IoT sensors, there is an abrupt inflation in the usage of cloud services.
With the increase in the workload on the cloud, the different challenges that need to
be addressed are mentioned below:

• Lack of resources: Organizations rely on cloud resources for storage and even
computational power to process their workloads. This leads to an increase in
the load on cloud resources that may further lead to a scarcity of the required
resources.

• Latency: Cloud servers are deployed at a remote location at far-off locations
across the globe. So, the round trip delay between the end users and the remote
cloud services often leads to degradation in the performance.

• Degradation in QoS: With the increase in the latency, the agreement of the
service provider with the user to provide continuous service hampers.

• Interoperability: In case of cloud computing, the application running on one
platform can incorporate the services from another platform using web services
only. However, developing such type of platform is very complex and cannot
handle the interoperability of the services.

9 Prospective on Technical Considerations for Edge–Cloud Cooperation. . . 151

• Computing performance:Very high bandwidth is required to process the requests
of the users. However, with an increase in the workload, the bandwidth is divided
resulting into degradation in the computing performance.

9.2 Edge Computing

The IoT devices collect the data at local networks, and after monitoring the data,
again, it is required at the same local network to make further decisions. However,
it is not efficient to send the data to the centralized servers to process the data, as
it increases the latency in the network. A solution is provided in the form of “Edge
Computing” to process the data near the ground rather to forward it to the located
servers [6]. Edge devices are located closer to the location of the IoT devices in
contrast to the cloud data centers (located at remote locations) in order to provide
improved availability and scalability [13, 55]. The evolution of the computing
architecture is shown in Fig. 9.4.

There are applications in the IoT platform that require quick response from the
data centers, and the other application may require to upload large workload on
the network to process the task. Cloud computing is not a compatible solution
for certain scenarios. Thus, real-time applications (like smart vehicles, intelligent
transportation systems, etc.) require a suitable platform (like edge computing)
that is delay sensitive in nature. Therefore, the cloud computing environment
does not provide required QoS to such applications. The basic architecture of

Fig. 9.4 Evolution of computing architecture

152 A. Singh et al.

Fig. 9.5 Edge computing architecture in IoT

the edge computing considering IoT platform is shown in Fig. 9.5. The device
having a sufficient computational power and required storage space, like mobiles,
routers, gateway, etc., can be considered as edge device. The benefits of using edge
computing platform as compared to cloud computing are mentioned below:

• Better computing and network communication: As the computation devices are
near to the IoT devices, improve the response time and minimize the latency
in the network. The approach is more effective in a scenario considering large
workload to process.

• Improved QoS: As per the priority or sensitivity of the task, it can be processed
either on edge devices or on cloud platform to maintain the QoS between service
provider and end user.

• Interoperability between modern devices and end users: It is easier to switch the
application from one platform to another using edge devices or merge another
platform to the executing task to maintain the service-level agreement (SLA).

• More reliable approach: The edge computing platform is more reliable even with
low bandwidth and during migration of services from one edge device to another.

9 Prospective on Technical Considerations for Edge–Cloud Cooperation. . . 153

Cloud computing is an efficient approach to process the data having huge
computing processing power. However, the QoS is not maintained by the cloud data
centers and does not meet the required standards in terms of latency and breakage
of Internet connection due to requirement of high bandwidth. Edge computing is
the solution of all the challenges, as it processes the task near to the end users [11].
Due to close in the proximity of the edge devices, it reduces the level of bandwidth
requirement to process the task. Firstly, a task is recommended to the edge devices
for processing; if the required resources are not available, then it is forwarded to
the cloud platform. Before forwarding the workload to the cloud, a preprocessing is
done at the edge devices to improve the quality and reduce the overall response time
of the task. It is recommended to compress the workload on the edge platform before
forwarding to the cloud to reduce the size of the workload, resulting into reduction
in the level of bandwidth to upload the data to the destination servers. If the data
are analyzed at the edge level, only the required information is further passed to
the cloud to improve the efficiency of task. The architecture of edge computing
considering IoT devices and cloud platform is shown in Fig. 9.5. It is clear from
the figure that latency is reduced with the closeness of the edge devices to the IoT
devices and computation power is increased as the request is forwarded to the cloud
platform. For the clarity of the concept, the intercommunication between different
layers is highlighted in the figure.

9.2.1 Technical Challenges for Edge Computing

In this platform, data from various end users are forwarded to the layer with
availability of the resources for processing. The generic scheme is not efficient to
handle all the heterogeneous requests from the end users, and it is very difficult to
design an adoptable approach for efficient data handling. Following are the various
challenges of the edge computing:

• Generic purpose computing: As the resources at the edge level are very
restricted, therefore, computing is very generic at the platform. The platform
is not efficient to handle heavy workload and only specific applications are
processed.

• Discovery of edge nodes: The location of the edge devices is not static, every
time there is a need to discover the edge devices for processing the tasks. To
discover the edge devices, additional energy and time are required for the same.

• Partitioning and task offloading: The resources on the edge devices are
restricted, and therefore, it is required to partition the incoming task into different
available edge nodes for processing. Data offloading from one edge node to
another is not an energy-efficient approach. Additional time is required during
migrating the data from one edge node to another.

• Security measure: The selected edge nodes are selected randomly in the generic
scenario, and security is the major concern in this approach. As authentication of

154 A. Singh et al.

the edge nodes still requires more energy and time, therefore, it is not a viable
approach to implement in the proposed platform.

• Network congestion: The escalation in the number of IoT devices deployed
across different applications overloads the network resources and thus leads
towards the congestion in the network. A controller is required to handle the
congestion in the network for smooth processing of the allocated tasks.

9.3 Software-Defined Networking

In order to handle the defined computing scenario, a solution is required to dominate
all the mentioned challenges of the edge computing. Software-defined networking
(SDN) is a required solution for programmable network deployment and an efficient
network management [7, 12]. Due to an increase in the user demand and use of
IoT devices (in smart cities, smart transportation system, smart medical system,
smart buildings, etc.), the need of an intelligent network management approach
becomes essential to maintain the QoS committed to the end users. SDN provides
a programmable interface to manage the communication between the deployed
controller and configured devices on data plane. By using this interface, the
available resources are proactively managed and can be extended by controller
as per the requirement [70]. The SDN platform comprises different planes, which
helps the service provider to handle and upgrade the configuration of the resources
dynamically as per the requirement. The SDN controllers are configured centrally,
all the available resources at the specific network are accessed, and accordingly,
the network traffic can be managed. The centralized management approach of SDN
can decrease the implementation complexities of the edge computing platform and
improve the resource management scheme.

If at a certain instance, the requested resources are not available at the edge nodes,
then, the workload needs to be shifted toward cloud platform for processing. The
edge device can forward the workload from the same port, resulting into an increase
in congestion in the network. Therefore, an intelligent device is required to control
the traffic on the network. SDN directs the traffic to choose the suitable port for
workload forwarding to reach the destination device. To make communication with
the available devices in the network, OpenFlow switch protocol is used by the SDN
controller [47].

9.3.1 Architecture

The standard architecture of the SDN platform includes three basic layers, i.e., data,
control, and application layers. The detailed discussion on each layer depicted in
Fig. 9.6 is mentioned below:

9 Prospective on Technical Considerations for Edge–Cloud Cooperation. . . 155

Fig. 9.6 SDN layer-wise
architecture

• Infrastructure Layer: The lowest layer in the architecture of SDN contains
various infrastructural devices to build a network, mainly switching devices (like
routers and switches). To connect the various infrastructural devices, different
transmission media are used as per the requirement of the organizations.

• Control Layer: This is the middle layer that provides communication between
the infrastructure layer and the application layer. The centralized controller is
considered as the brain of the SDN-enabled network that forwards the traffic
intelligently in the network.

• Application layer: This layer is the upper most layer, and the applications are
privileged to access global network view of the network and direct the changes
in the policies in the network to the SDN-enabled layer.

The incoming traffic is managed intelligently by the centralized controller by
configuring defined policies as per the end user. The following installation modes
are used in the controller:

• Proactive Mode: In this mode, the flow policies are configured on the available
switches in the data plane layer to manage the incoming traffic/packets in
the network. It makes the network to direct the incoming traffic without the
involvement of the controller.

156 A. Singh et al.

• Reactive Mode: In this mode, if a new packet arrives in the network, firstly,
it matches with the flow tables to forward it in a proper channel; otherwise,
PACKET-IN message is forwarded to the controller to make a new flow entry for
a particular packet, and PACKET-OUT message is updated on each data plane
switch flow table for further use.

• Hybrid Mode: This mode is the combination of the Proactive mode and Reactive
mode to make the network more intelligent and flexible.

In case of SDN, OpenFlow switches are used for forwarding the traffic from
source to destination. It comprises three main components, including flow tables,
OpenFlow protocol to set policies, and secure communication channel. Flow tables
keep the policies, and accordingly the incoming traffic is directed. They are updated
on each OpenFlow switch to improve the efficiency of the configured topology. In
flow table, three attribute values are stored, like “Rule,” “Action,” and “Status.” The
header information of each packet is defined in the Rule attribute, the directions to
forward the certain traffic are defined in the Action attribute, and the current status
of the traffic is defined in the Status attribute.

9.4 SDN-Edge Cooperation

The problems identified in the cloud platform related to the response time and
degradation in QoS, and the problems in the edge computing platform can be solved
by using a centralized controlling mechanism in the distributed environment. The
barriers in the performance of the edge computing platform can be removed by using
the programmable interface provided by the SDN in the network. The SDN interface
is transparent to the end user and can manage the data flow, service orchestration,
and other mandatory services.

9.4.1 Architecture

The architecture of the SDN-IoT-Edge-enabled is highlighted in Fig. 9.7. The
architecture comprises of different layers, like Infrastructure Layer, Edge Layer,
Control Layer, and finally Application Layer. At Infrastructure Layer, various IoT
devices request for the different services as per the behavior of the task. The
requested services list is forwarded to the edge layer for offloading, and further this
layer is managed by the controller configured at control layer to handle the network
traffic efficiently. The motivation of the SDN-IoT-Edge-enabled architecture is from
the limited resource constraints at the IoT devices. An inflation in the number of
the IoT devices has been observed, and therefore, an intelligent and manageable
platform is required to handle the network traffic more efficiently from source to
destination.

9 Prospective on Technical Considerations for Edge–Cloud Cooperation. . . 157

Fig. 9.7 SDN-IoT-Edge
architecture

9.4.2 A Real Scenario of SDN-IoT-Edge Architecture

Let us consider an example of SDN-enabled edge computing system in daily life
scenario. The use of SDN-enabled network in various fields is discussed with
prospective to edge computing platform. A complete model with all the basic
components of the SDN-enabled network is highlighted in Fig. 9.8. In the defined
model, cloudlets are used in the edge computing technology. Cloudlets are defined
as small-scale mobility-enhanced data centers available at the edge devices. These
cloudlets are able to process the services requested by the end users that are close
to the ground as compared to the cloud data centers. The cloudlets are distributed
at various locations and are connected through the OpenFlow-enabled switches
to provide services. The configured switches are controlled by the centralized
controller (SDN) to provide communication in the network protocols like OF-

158 A. Singh et al.

Fig. 9.8 SDN-IoT-Edge example

Config [52]. The controller receives the requests from the end users, and according
to the defined policies the traffic is managed. The services at the northbound
provide the feedback periodically to the controller after analyzing the behavior of
the incoming traffic.

9.4.3 Benefits of Using SDN-IoT-Edge Platform

An inflation in the network traffic can be observed with the increase in the number of
IoT devices and requests from the end users. The challenge of constraint resources
can be managed by using the edge-enabled platform to provide the services at the
edge of the Internet and by integrating the centralized SDN controller to manage
the network more intelligently. Various components in the SDN-IoT-Edge platform
have their own benefits in the network. A proper discussion on the requirements and
benefits is discussed below:

• Management of IoT-Edge platform using SDN: The management of network
traffic is one of the core responsibilities of the service provider to maintain the
QoS [15]. The intelligent devices are required to forward, manage, and control
the incoming traffic in the network to overcome the network delay. There might
be a case where load balancing in the network is at higher stake, and therefore, an

9 Prospective on Technical Considerations for Edge–Cloud Cooperation. . . 159

intelligent load balancing device is required. The solution of the abovementioned
issues is provided by the SDN controller to control the IoT-Edge platform.

• IoT-Edge authentication: With the increase of workload, a concept is required
to segregate the workload on different machines, and inter-operability is required
to make communication among all the allocated machines. While allocating the
workload on various machines, it is required to authenticate the systems in the
edge environment. An authenticated and trusted approach is the demand of the
network to guarantee the genuineness of the connected machines to provide
services to the end user. SDN provides an interface to manage the network and
the connected devices to ensure the authenticity centrally.

• Inter-operability among heterogeneous platform:With the potential increase in
the size of the organizations, the infrastructure cost also inflated. To optimize
the cost, inter-operability among the configured systems also escalated. While
managing the dependency among various systems, it raised the complexity in
the infrastructure. SDN is the one solution to reduce the complexity in the
infrastructure by providing the centralized infrastructure with defined policies
as per the end user requirements.

• Workload dispersion: In standard networks, the requests of the end users are
forwarded to the cloud data centers to process the tasks, and the result is returned
to the respective user. This mentioned scenario, resulting into the elephant-like
traffic in the network. To reduce the network congestion, initially workload is
preprocessed at the edge devices. There is a requirement of data dissemination
to reduce the energy consumption and bandwidth consumption to process the
workload. SDN has the report of all connected devices in the network, and by
using this, the raised workload can be dispersed among the available devices in
the network [7].

• Latency minimization: A different nature of workload is generated from the
data plane (like real-time data, video streaming, etc.), and they need response
without any delay in the response time. Again, security is the major issue
during transmission of data from source to destination, and it increases the
level of complexity in the infrastructure, resulting into an increase in latency in
the network. Applications, like self-driven cars, smart organizations, and real-
time applications, require services with no delay. Therefore, a fault-tolerant
infrastructure is required to reduce the overhead in the network.

• Flexibility in SDN-IoT-Edge platform: The standard networks are not able to
configure virtualization, and therefore, integration of new technologies is not
possible. The network programmable property nature of the SDN enhances the
dynamic configuration of the services on the distributed devices.

• Preprocessing on edge devices: The workload is increasing with the configura-
tion of smart devices in different fields. This bulk amount of workload creates
overhead and congestion in the network. Therefore, a layer is required to filter
the workload to reduce the level of energy utilization and latency in the network.
The workload generated at data plane is preprocessed at the edge layer before
forwarding to the cloud data centers.

160 A. Singh et al.

9.5 Technical Requirements of SDN-Edge vs Energy
Efficiency

A constant communication is required between the IoT devices and edge platform
to manage the incoming traffic in the network [9, 10]. Following are the services
that are required by the SDN-IoT-edge architecture to maintain the QoS:

• Discovery of services: The requested services have different nature, and accord-
ingly there is a need to discover the data centers at different locations to provide
the required resources. SDN handles the network centrally, and it has the details
of all the available resources in the network. Therefore, SDN can help to identify
the required resources to process the service by the end users.

• Service and data migration: There might be limited resources at various
cloudlets, and therefore, there is a need to migrate the services or data to the
different cloudlets to maintain the QoS. The defined model decides the migrated
cloudlets as per the requested services and locations.

• Resource provision: With the enhancement in the technology and resource
constraint at IoT devices, a platform is required to provide the resources at
all times. Edge devices provide the service near to the end users to improve
the efficiency of the configured network. Cloud platform is an abundance of
resources, and applications that can tolerate latency can request the resources
from the cloud directly.

• Lightweight algorithms for workload processing: The lightweight algorithms
are required to process the incoming workload to improve the throughput of
the platform with a limited number of resources. As it is already clear that IoT
devices and edge platform are short of resources, an approach is required to
optimize the utilization of the resources to provide QoS to the end user.

• Energy-efficient platform: With the inflation in workload, more filtration and
preprocessing are required at the edge level to improve the efficiency of the task.
The level of energy consumption is also increased at a great extent, and therefore
an energy-efficient approach is required to optimize the use of resources.

• Pay-per-use module for edge devices: As cloud services work with pay-per-
use module, similarly, standards are required to build a model for edge devices.
Applications that are sensitive with the latency can avail the services from the
edge devices; however, no policies are defined for the payment of the used
resources at edge nodes.

• One-point failure: The benefits of the SDN-enabled network are already dis-
cussed. However, the key challenge of the SDN-IoT-Edge platform is one-point
failure, which can degrade the performance of the configured network. To over-
come this challenge, distributed controllers are required rather than centralized
ones to build fault-tolerant networks.

9 Prospective on Technical Considerations for Edge–Cloud Cooperation. . . 161

9.6 Stat of the Art

In the last few years, the authors proposed numerous load balancing approaches
to minimize the overhead on the DCs. In the current scenario, the major focus
of the service providers, like Facebook, Google, Amazon, Apple, and Microsoft,
concentrates toward the proposal of energy efficient DCs [1]. As per global survey
report [25], the major contribution for energy consumption in the DCs is cooling and
power provision servers. It can be noticed from the energy consumption breakup
that 43% is the energy consumption during power supply to the servers and cooling
the servers as shown in Fig. 9.9 [20]. The consumption of energy by the servers is
minimal when compared with cooling and powering the systems, i.e., 11%, and a
minute energy is used by the network for communication among the end devices.

In the same prospective, Fig. 9.10 highlights the classification of various existing
approaches for energy management of DCs. On the basis of the abovementioned
taxonomy, the reviews and discussions based on the proposed research are illustrated
in the below sections.

9.6.1 Cloud Computing

The main contribution to design an optimal solution for energy management of
DCs is to minimize the energy consumption. The key factors to reduce the energy
consumption by distributed DCs are analyzed first. In this direction, Dayarathna et
al. [20] recommended that energy modeling is a major parameter to develop energy-
efficient DCs. The authors studied numerous approaches related to the energy
efficiency of DCs. When a thorough study was done on energy consumption, it
has been observed that consumption is at different levels (hardware, server, and
system). There is a need to explore the levels of the energy consumption to propose

Fig. 9.9 Energy
consumption breakup for a
particular DC

162 A. Singh et al.

Fig. 9.10 Classification of existing proposals

an optimal solution. The consumption of energy at various levels, like servers,
processors, memory, storage, network, and software, is considered below.

The productive work is done by the servers available at various DCs. To process
the various tasks, a large amount of energy is consumed by the servers. For example,
Roy et al. [57] suggested an efficient model which focused on the components of
the server as central processing unit (CPU) and memory. Other authors, Jain et al.
[31], discussed a model by bifurcating the total energy consumption into data and
instruction of CPU and memory. In a similar manner, Tudor et al. [65] suggested a
conflux approach considering the above discussed power models with input/output
metrics. In a similar direction, Ge et al. [23] segregated the power model into
different components, like CPU, memory, etc., of the system. In the same direction,
Warkozek et al. [71] divided the operation of the CPU into two parts, the energy
consumption by the CPU for self-running application (virtual machine manager)
and the other part to consume the energy for providing services to the end users.
The power profile of different tasks was analyzed by Jaintilal et al. [30] to check the
dependency of the processor and consumption of energy.

Along with the CPU, the Memory is a major participant toward energy con-
sumption from the last few years. According to a survey, Memory stands second
in terms of energy consumption in different servers [19]. In a similar way, Malladi
et al. [46] proposed a power model considering the energy consumption by the
memory in a server. In the proposed model, the requested memory stream was
considered as a Poison process, and the energy consumption during power on
and power down of the server was depleted. Including CPU and memory, storage
systems contribute a hefty consumption of energy for permanent storage of the
data. In storage system, hard disk drive (HDD) is the major contributor of energy
consumer [33]. In a similar direction [74], the power consumption during storage
on HDD is divided into two classes: (1) static and (2) dynamic. Considering the
infrastructure of the network, optical fiber is installed for communication among

9 Prospective on Technical Considerations for Edge–Cloud Cooperation. . . 163

Table 9.1 Energy models considering CPU, servers, memory, and storage systems

Authors Considered area Description

Ahn et al. [3] Routers Energy utilization based on the packet size and type of the
link used

Daya et al. [20] Energy model Discussed that energy is the major consideration to
develop energy-efficient DCs

Heller et al. [24] Network links Focused on the rate of energy consumption by a link

Lewis et al. [37] Memory
utilization

The rate of energy consumption is proportional to the
number of read/write operations

Mohan et al. [49] Solid state drive
(SSD)

Introduced an analytical energy model, i.e., FlashPower
used for two types of memory chip variants named as
single-level cell and two-bit multi-level cell

Roy et al. [57] Server Highlighted the consumption of energy including CPU
and memory

Heddeghem et al.
[66]

Optical type
network

Considered static and dynamic energy consumption in the
network

Vishwanath et al.
[68]

Entire network Energy consumption by all devices configured in the
network

Yao et al. [72] CPU utilization Energy utilization during performing various operations

Zhang et al. [74] Hard disk (HDD) Energy consumption is divided into two classes, i.e.,
dynamic and static

the servers. The energy consumption by the optical based network is minimal and
provides high throughput. In this direction, Heddeghem et al. [66] discussed the
energy consumption at different layers of an optical network. Table 9.1 highlights
the power models for CPU, servers, memory, storage systems, and network.

9.6.2 Edge Computing

With an increase in the number of IoT devices, the workload generated by these
devices also increased, thereby increasing the load on the existing resources and
infrastructure to a great extent. To forward the generated workload on the designated
data centers, the end users have to spend more in terms of energy and latency in the
network. Therefore, a terminology is required to optimize the energy consumption
and reduce the level of latency in the network. “Edge computing,” a new paradigm,
is introduced to overcome the said issues to maintain the QoS between the
service provider and the end users. A number of researchers are focusing on the
collaboration of IoT with edge platform to reduce the level of energy consumption.
Figure 9.11 shows the number of publications considering IoT and IoT cooperating
with the edge platform.

It can be clearly observed from the figure that the publications cooperating IoT
and edge platform are more in trend in the recent years. In a similar direction, a
unique bio-inspired clustering algorithm was introduced by Agbehadji et al. [2]

164 A. Singh et al.

Fig. 9.11 Year-wise publications of IoT and IoT cooperating with edge platform [27]

to reduce the energy consumption in IoT-Edge envisioned platform. A trade-off
between the network latency and energy consumption to process the workload
was defined by Cui et al. [18]. The authors considered it into a constrained
multi-objective optimization problem and introduced an identical solution by using
Nondominated Sorting Genetic Algorithm (NSGA-II). The performance of the
proposed scheme was enhanced by integrating problem-specific encoding scheme.
In the same manner, Zhan et al. [73] studied unmanned aerial vehicle (UAV) energy
optimization issue without considering the pre-determined completion time. The
authors decoupled the optimization algorithm into two portions using successive
convex approximation (SCA)-based algorithms. Another energy saving approach
was proposed by Sodhro et al. [62]. The authors considered the execution time of
various sensors and time taken to process in IoT devices using forward central
dynamic and available approach (FCDAA). A system model was designed to
evaluate the energy consumption in IoT devices, and an AI-based edge-IoT platform
was introduced to reduce the energy consumption during processing the tasks.

The authors, named Zhang et al. [75], discussed different computation strategies
for terminal devices. In the first approach, the authors defined a scenario where a
terminal device can compute the tasks by itself. In the second approach, terminal
devices can forward the task to the unmanned aerial vehicle for processing, and
in the final case, the tasks can be forwarded to the access points using unmanned
aerial vehicle by terminal devices. The authors proposed an optimized solution to

9 Prospective on Technical Considerations for Edge–Cloud Cooperation. . . 165

reduce the overall energy consumption in all the defined scenarios. The window-
based rate control algorithm was proposed by Sodhro et al. [61] considering the
required network parameters to enhance the medical Quality of Service. The authors
considered peak-to-mean ratio, standard deviation, delay, and jitter to check and
improve the efficiency of the network. In a similar manner, Sitton et al. [60]
discussed the benefits of edge computing in terms of real-time data processing and
energy efficiency. The authors introduced Edge-IoT and social computing platform
to optimize the energy usage in smart cities and smart devices.

The authors, Li et al. [38], integrated deep learning approach with the IoT-
Edge platform to reduce the gap between the multilayered architecture. In the
same manner, Liu et al. [42] highlighted the long-term energy efficiency problem
using IoT-Edge platform. The authors incorporated reinforcement method to make
the IoT-Edge platform more intelligent to manage the incoming workload in the
network. The authors, Li et al. [40], discussed unmanned aerial vehicle used
as cloudlets to store and process the tasks forwarded by the end users. The
energy efficiency was improved by using nonconvex fractional programming, the
Dinkelbach algorithm, and the successive convex approximation (SCA) approach.
Liu et al. [41] proposed a triple-layer architecture, named edge device plane,
edge server plane, and cloud server plane, to optimize the energy consumption
in the network. To reduce the complexity due to heterogeneity nature of different
devices, tensor-based model was composed. In the similar direction, Chen et al. [17]
studied energy-efficient workload offloading scheme in mobile edge computing. The
authors introduced stochastic optimization approach and proposed a novel stochastic
optimization techniques (EEDOA) to optimize the energy consumption.

Table 9.2 summarizes the existing approaches for IoT-Edge platform.

9.6.3 SDN

The benefits of using IoT-Edge platform are highlighted in the abovementioned
section, including reduction in latency, improvement in QoS, etc. The IoT-Edge
platform is suitable for small networks, and however, with the increase in the
number of devices, the traffic level is also increased, resulting into congestion in
the network. Therefore, it becomes difficult to manage the configured infrastructure
with the standard policies. Therefore, a platform is required to manage the network
traffic intelligently for smooth processing of the incoming workload. To handle
all the abovementioned issues, researchers start proposing new techniques using
software-defined networking platform. The year-wise consideration of the SDN
platform is also highlighted in Fig. 9.12.

In the similar direction, Sezer et al. [58] discussed the importance of energy
efficiency and security in the daily networks. The authors used the dynamic
network functionality of SDN approach to improve to handle the elephant-like
traffic. The authors, named Rawat et al. [56], surveyed the various techniques
used to propose an energy-efficient platform in heterogeneous network using

166 A. Singh et al.

Table 9.2 Comparison analysis of existing approaches for IoT-Edge platform

Authors 1 2 3 4 5 6 7 8 9 10

Agbehadji et al.
[2]

Clustering approach was used to
optimize the energy consumption

� � × × × � � × ×

Cui et al. [18] Introduced an identical solution for
energy optimization using
Nondominated Sorting Genetic
Algorithm (NSGA-II)

� � × × × � � × ×

Zhan et al. [73] Decoupled the optimization algorithm
into two portions using Successive
Convex Approximation (SCA)-based
algorithms

� � × × � � × × ×

Sodhro et al. [62] AI-based edge-IoT platform was
introduced to reduce the energy
consumption during processing the
tasks

� � × × � × × × ×

Li et al. [38] Integrated deep learning approach with
the IoT-Edge platform to reduce the gap
between the multilayered architecture

� � × × × × × × �

Zhang et al. [75] An optimized solution to reduce the
overall energy consumption in all the
available scenarios

� � × × � � × × ×

Liu et al. [42] Incorporated reinforcement method to
make the IoT-Edge platform more
intelligent to manage the incoming
workload in the network

� � × � � × × × �

Sodhro et al. [61] Considering the required network
parameters to enhance the medical
Quality of Service

� � × � × � × × ×

Sitton et al. [60] Introduced edge-IoT and social
computing platform to optimize the
energy usage in smart cities and smart
devices

� � × × � × × × ×

Li et al. [40] Using nonconvex fractional
programming, the Dinkelbach
algorithm, and successive convex
approximation (SCA) approach

� � × × � × × × ×

Liu et al. [41] Proposed a triple-layer architecture,
named edge device plane, edge server
plane, and cloud server plane, to
optimize the energy consumption in the
network

� � × � � × × × ×

1: Description, 2: IoT + Edge, 3: Energy optimization, 4: Storage management, 5: Network
management, 6: Workload management, 7: QoS, 8: Latency , 9: Virtualization, 10: Deep learning
approach

9 Prospective on Technical Considerations for Edge–Cloud Cooperation. . . 167

Fig. 9.12 Year-wise publications considering SDN platform [29]

SDN architecture. The authors focused on network security, energy efficiency, and
network virtualization concept. In the similar way, Jammal et al. [32] highlighted
the benefits of SDN platform in different environments, like data centers, enabled
networks, and Network-as-a-Service. The authors also focused on the various
challenges using the SDN platform in terms of scalability, reliability, and security.
Focusing on the same concept, Zhu et al. [77] highlighted the overflow of energy
consumption even when there is no traffic in the network. Therefore, the authors
discussed the routing strategies considering energy efficiency as one of the major
parameters during processing the tasks. Considering SDN architecture, Hsieh et al.
[26] proposed mobile edge computing environment using Container-as-a-Service
platform. The proposed IoT gateway reduces the network latency and improved
the overall network efficiency. In the similar way, Dorsch et al. [21] combined the
SDN platform with the Multi-Agent System to control the energy consumption and
handle the overloaded network and voltage stability in the network. The authors
configured a control agent to make direct connection with the SDN controller to
define the overall demand of the end users. The authors, Ranjan et al. [54], proposed
container-based virtualization to develop an energy-efficient scheme for scheduling
the resources in data centers. Container-based platform provides an interface to
allocate the resources as per the requirement. To access the available servers in the
developed infrastructure, doubly linked list was used to enhance the scalability.

168 A. Singh et al.

In the similar direction, Son et al. [63] studied various techniques of energy
optimization in distributed data centers, traffic system, virtualized networks, and
security. Ma et al. [45], proposed a load balancing approach in the SDN-enabled
environment to control the energy flow in the platform using various planes.
The lower plane collects the details of all the available resources and upper
layer to optimize the resources, resulting into avoidance of network bottleneck.
Moving ahead in the same direction, Zinner et al. [78] introduced a dynamic and
requirement-based resource allocation to various applications controlled by SDN-
enabled network. Kobo et al. [36] discussed the importance of software-defined
wireless sensor network (SDWSN) approach in wireless sensor networks. In this
work, the authors highlighted the issues of wireless network with prospective to
energy utilization and memory usage to process the workload. The authors proved
that the SDN-enabled network can control the wireless network in an efficient
manner to reduce the overall cost of the network.

To proceed in similar direction, Buyya et al. [14] defined architectural framework
and benefits of programmable behavior of the SDN-enabled network in the dis-
tributed environment. In this work, the authors focused on the resource scheduling
and provisioning to reduce the overall cost and maintain the service level agreement
between service provider and end users. In another work, Morabito et al. [50]
integrated two technologies to make the platform more intelligent. The authors
considered container-based virtualization and SDN-enabled controller to configure
an energy-efficient network. Cardoso et al. [16] proposed a scheme to activate
the on-demand resources for end users using containerization controlled by SDN-
enabled network. In another work, Zhao et al. [76] proposed a scheme to separate
the coupling property in the control plane and data plane layer to control and
increase the security during usage of the network resources. In a similar way, Kobo
et al. [35] focused on software-defined wireless sensor networks and provide a
fragmentation-based control system in distributed environment to control the energy
utilization. The authors configured two level controllers, first architecture contained
local controller and the other considered global controller to minimize the gap
between the resource elements and the controllers. Violettas et al. [67] achieved
Routing over Low Power and Lossy Networks (RPL) by using software-defined
networking (SDN) to improve the efficiency of the network. The authors focused
on routing control strategies for dynamic re-configuration of the network and link-
coloring technique for point-to-point communication in mobile networks.

Table 9.3 summarizes the existing approaches for SDN-enabled networks.

9.6.4 SDN-Edge Cooperation

The edge devices are close to the end devices and provide services with an
efficient manner and without any delay. According to the available resources at
edge platform, the specific application can be processed there only, and there is
no need to forward the requests to the centralized static data centers at cloud

9 Prospective on Technical Considerations for Edge–Cloud Cooperation. . . 169

Table 9.3 Comparative analysis of existing approaches for SDN-enabled networks

Authors 1 2 3 4 5 6 7 8 9 10 11

Sezer et al.
[58]

Discussed the dynamic network
functionality of SDN approach to
improve the handle the elephant-like
traffic

� � × × � � × × × ×

Rawat et al.
[56]

Surveyed the various techniques used to
propose an energy-efficient platform in
heterogeneous network using SDN
architecture

� � � � × × � × × ×

Jammal et al.
[32]

Highlighted the benefits of SDN
platform in different environments, like
data centers, enabled networks, and
Network-as-a-Service

� � � � � × × × × ×

Zhu et al. [77] Discussed the routing strategies
considering energy-efficiency as one of
the major parameters during processing
the tasks

� � � � � × × × × ×

Hsieh et al.
[26]

Proposed mobile edge computing
environment using
Container-as-a-Service platform

� � � × � � × × × �

Dorsch et al.
[21]

Configured a control agent to make
direct connection with the SDN
controller to define the overall demand
of the end users

� � � � � × × × � ×

Ranjan et al.
[54]

Proposed container-based virtualization
to develop an energy-efficient scheme
for scheduling the resources in data
centers

� � � × � × � × × �

Son et al. [63] Studied various techniques of energy
optimization in distributed data centers,
traffic system, virtualized networks, and
security

� � � × � � � × × ×

Ma et al. [45] Proposed a load balancing approach in
the SDN-enabled environment to
control the energy flow in the platform
using various planes

� � � × � × × × × ×

1: Description, 2: SDN, 3: Energy efficiency, 4: Resource utilization, 5: Cost saving, 6: Workload
management, 7: QoS, 8: Virtualization, 9: Deep learning approach, 10: Gamemodel, 11: Container-
as-a-Service (CoaaS)

layer, resulting into reduction in latency and energy consumption during pushing
the workload onto the cloud layer. However, with the scalability of IoT devices,
there is an abrupt increase in the traffic and can create congestion in the network.
Therefore, a platform is required to control the traffic in an efficient manner to make
an acceptable platform for the end users. By using the programmed and centrally
controlled interface of the SDN, the configured network can work more intelligently
and efficiently by optimizing the available resources. To increase the efficiency

170 A. Singh et al.

Fig. 9.13 Year-wise
publications of SDN-Edge
cooperation [28]

and manage the incoming traffic of the network, SDN can be cooperated with
edge platform, known as “SDN-Edge cooperation” platform.Many researchers start
proposing various energy-efficient schemes considering “SDN-Edge” platform, and
the count is highlighted in Fig. 9.13.

In the similar direction, Aujla et al. [8] discussed that in edge–cloud environment,
there was a massive data migration, resulting into increase in computation cost. To
overcome the highlighted issue, the authors proposed an efficient workload slicing
scheme to manage the elephant-like data in the network using centralized controller,
i.e., “SDN”. In this work, the authors handled inter-datacenter data migration using
SDN to develop an energy-efficient platform. The authors, Sharma et al. [59],
highlighted the issue of intensive real-time data analysis at various data centers. To
handle this issue, the authors introduced a SoftEdgeNet model using SDN-enabled
network integrated with blockchain concept to improve the security concerns. The
authors also proposed an algorithm for data flow and resource allocation for resource
management. In another work, Liu et al. [43] introduced orchestrate data as a service
approach and to eliminate the data redundancy, and a data aggregation scheme was
integrated with the standard methods. To make the network more responsive, the
architecture was divided into three layers, namely data center layer, middle routing
layer, and vehicle network layer. In the same way, Munoz et al. [51] discussed that
collection and storage of large scale of information on the cloud was not a feasible
solution to maintain the integrity of the data. Therefore, the authors introduced a
scalable and energy-efficient solution by disseminate the data into edge layer and
cloud layer. In the work, the authors made efficient and dynamically configuration
of the available resources. The authors, Kaur et al. [34], highlighted the congestion
problem in the network due to a large number of migrations in the edge and
cloud devices. To manage the network traffic, authors introduced SDN-enabled
programmable and scalable paradigm. In the work, the authors proposed multi-
objective evolutionary algorithm based on Tchebycheff decomposition to manage
the data flow in the network. Assefa et al. [5] introduced a novel classification and
a comprehensive solution using SDN-enabled network to categorize the incoming

9 Prospective on Technical Considerations for Edge–Cloud Cooperation. . . 171

Table 9.4 Comparative analysis of existing approaches for SDN-Edge cooperative network

Authors Description 1 2 3 4 5 6 7 8 9 10

Aujla et al. [8] Proposed an efficient workload slicing
scheme to manage the elephant-like
data in the network using centralized
controller

� � � � × × × × � �

Sharma et al.
[59]

Introduced a SoftEdgeNet model using
SDN-enabled network integrated with
blockchain concept to improve the
security concerns

� � � � × × × × � �

Liu et al. [43] Introduced orchestrate data as a service
approach and to eliminate the data
redundancy

� � � � × × × × × ×

Munoz et al. [51] Introduced a scalable and
energy-efficient solution by disseminate
the data into edge layer and cloud layer

� � � � × × × × × ×

Kaur et al. [34] Highlighted the congestion problem in
the network due to a large number of
migrations in the edge and cloud
devices

� � � � × × × × � �

Assefa et al. [5] Introduced a novel classification and
comprehensive solution using
SDN-enabled network to categorize the
incoming traffic into different classes

� � � � × � × × × �

Aujla et al. [13] Proposed EDCSuS: Sustainable EDC
as a service framework in SDN-enabled
network

� � � � × × × � �

Li et al. [39] Introduced an adaptive transmission
model by cooperating SDN with edge
envisioned devices in Industrial Internet
of Things (IIoT)

� � � � × � × × × �

Alnoman et al.
[4]

Introduced an energy-efficient approach
by configuring SDN-enabled network
to switch ON/OFF the edge nodes as
per the requirement of the end users

� � � � × × × × � �

Lv et al. [44] Proposed mobile edge computing
(MEC) framework integrating with
SDN and network function
virtualization (NFV)

� � � � × × × × � �

1: SDN, 2: Edge computing, 3:Energy efficiency, 4: Resource utilization, 5: Game model, 6: Deep
learning approach, 7: Container-as-a-Service (CoaaS), 8: Caching model, 9: SLA, 10: Latency
consideration

traffic into different classes. The authors provided an energy-efficient optimization
model by using objective function, sensitive parameters for defined models.

In a similar manner, Aujla et al. [13] highlighted the sensitive data requirements
like low latency and higher bandwidth to maintain the QoS. To handle the issue,
the authors proposed EDCSuS: Sustainable EDC as a service framework in SDN-
enabled network. In this work, the authors configured SDN platform for intelligently

172 A. Singh et al.

handling the traffic flow and direct the optimal path for the same. The authors
integrated Stackelberg game model for efficient resource allocation to the end
users, and finally, a cooperative model was used for resource utilization to improve
the efficiency of the proposed scheme. The authors, Li et al. [39], introduced an
adaptive transmission model by cooperating SDN with edge envisioned devices in
Industrial Internet of Things (IIoT). The authors classified the incoming requests
into two categories as per the priority of the task, i.e., ordinary and emergent
stream. Furthermore, the authors proposed an efficient approach to select an optimal
path for the incoming traffic to avoid the overhead in the network. Alnoman et al.
[4] introduced an energy-efficient approach by configuring SDN-enabled network
to switch ON/OFF the edge nodes as per the requirement of the end users. The
authors designed the topology by using the M/M/k queuing model, and a load
balancing approach was used for optimal utilization of the available resources in
the network. In the same direction, Lv et al. [44] discussed the service migration
platform to balance the load among various devices to provide the QoS to the end
users. Furthermore, the authors proposed mobile edge computing (MEC) framework
integrating with SDN and network function virtualization (NFV). Wang et al.
[69] proposed an energy-efficient routing approach on control plane for optimal
resource utilization. The authors used heuristic algorithm at control plane to select
the optimal route for incoming traffic. Furthermore, the authors integrated multi-
objective evolutionary approach for best route selection. Table 9.4 summarizes
various SDN-Edge cooperative energy management schemes.

9.7 Conclusion

In this chapter, the benefits and challenges of the IoT-Cloud platform have been
discussed with required facts. Afterward, the layered architecture of the edge
platform has been highlighted with pros and cons of the same. The challenges of the
edge platform are handled by the SDN to avoid the congestion in the network. In the
end, to define the benefits of the SDN envisioned platform, edge–cloud cooperation
platform has been discussed with layered architecture, and the complete analysis
has been highlighted considering the standard techniques.

References

1. 12 Green Data Centers Worth Emulating. Accessed February 2016.
2. Agbehadji, I. E., Frimpong, S. O., Millham, R. C., Fong, S. J., & Jung, J. J. (2020). Intelligent

energy optimization for advanced IoT analytics edge computing on wireless sensor networks.
International Journal of Distributed Sensor Networks, 16(7), 1550147720908772.

3. Ahn, J., & Park, H.-S. (2014). Measurement and modeling the power consumption of router
interface. In 16th International Conference on Advanced Communication Technology (pp.
860–863). IEEE.

9 Prospective on Technical Considerations for Edge–Cloud Cooperation. . . 173

4. Alnoman, A., & Anpalagan, A. (2019). A SDN-assisted energy saving scheme for cooperative
edge computing networks. In 2019 IEEE Global Communications Conference (GLOBECOM)
(pp. 1–6). IEEE.

5. Assefa, B. G., & Özkasap, Ö. (2019). A survey of energy efficiency in SDN: Software-based
methods and optimization models. Journal of Network and Computer Applications, 137, 127–
143.

6. Aujla, G. S., & Kumar, N. (2018). MEnSuS: An efficient scheme for energy management with
sustainability of cloud data centers in edge–cloud environment. Future Generation Computer
Systems, 86, 1279–1300.

7. Aujla, G. S., Jindal, A., Kumar, N., & Singh, M. (2016). SDN-based data center energy
management system using RES and electric vehicles. In 2016 IEEE Global Communications
Conference (GLOBECOM) (pp. 1–6). IEEE.

8. Aujla, G. S., Kumar, N., Zomaya, A. Y., & Ranjan, R. (2017). Optimal decision making for
big data processing at edge-cloud environment: An SDN perspective. IEEE Transactions on
Industrial Informatics, 14(2), 778–789.

9. Aujla, G. S., Jindal, A., & Kumar, N. (2018, October 9). EVaaS: Electric Vehicle-as-a-Service
for energy trading in SDN-enabled smart transportation system.Computer Networks, 143, 247–
262.

10. Aujla, G. S., Chaudhary, R., Kaur, K., Garg, S., Kumar, N., & Ranjan, R. (2018). SAFE:
SDN-assisted framework for edge–cloud interplay in secure healthcare ecosystem. IEEE
Transactions on Industrial Informatics, 15(1), 469–480.

11. Aujla, G. S., Chaudhary, R., Kumar, N., Kumar, R., & Rodrigues, J. J. P. C. (2018). An
ensembled scheme for QoS-aware traffic flow management in software defined networks. In
2018 IEEE International Conference on Communications (ICC) (pp. 1–7). IEEE.

12. Aujla, G. S., Singh, A., & Kumar, N. (2019). Adaptflow: Adaptive flow forwarding scheme for
software-defined industrial networks. IEEE Internet of Things Journal, 7(7), 5843–5851.

13. Aujla, G. S. S., Kumar, N., Garg, S., Kaur, K., & Ranjan, R. (2019) EDCSuS: Sustainable
edge data centers as a service in SDN-enabled vehicular environment. IEEE Transactions on
Sustainable Computing. https://doi.org/10.1109/TSUSC.2019.2907110

14. Buyya, R., & Son, J. (2018). Software-defined multi-cloud computing: A vision, architectural
elements, and future directions. In International Conference on Computational Science and Its
Applications (pp. 3–18). Springer.

15. Cao, H., Wu, S., Aujla, G. S., Wang, Q., Yang, L., & Zhu, H. (2019). Dynamic embedding
and quality of service-driven adjustment for cloud networks. IEEE Transactions on Industrial
Informatics, 16(2), 1406–1416.

16. Cardoso, P., Moura, J., & Marinheiro, R. (2020). A software-defined solution for managing
fog computing resources in sensor networks. Preprint, arXiv:2003.11999.

17. Chen, Y., Zhang, N., Zhang, Y., Chen, X., Wu, W., & Shen, X. S. (2019). Energy efficient
dynamic offloading in mobile edge computing for internet of things. IEEE Transactions on
Cloud Computing. https://doi.org/10.1109/TCC.2019.2898657

18. Cui, L., Xu, C., Yang, S., Huang, J. Z., Li, J., Wang, X., Ming, Z., & Lu, N. (2018). Joint
optimization of energy consumption and latency in mobile edge computing for internet of
things. IEEE Internet of Things Journal, 6(3), 4791–4803.

19. Yuventi, J., & Roshan M. (2013). A critical analysis of Power Usage Effectiveness and its use
in communicating data center energy consumption. Energy and Buildings 64, 90–94.

20. Dayarathna, M., Wen, Y., & Fan, R. (2016). Data center energy consumption modeling: A
survey. IEEE Communications Surveys Tutorials, 18(1), 732–794.

21. Dorsch, N., Kurtz, F., Dalhues, S., Robitzky, L., Häger, U., &Wietfeld, C. (2016). Intertwined:
Software-defined communication networks for multi-agent system-based smart grid control.
In 2016 IEEE international conference on smart grid communications (SmartGridComm) (pp.
254–259). IEEE.

22. Galov, N. (2020, November 24). 25 must-know cloud computing statistics in 2020.
23. Ge, R., Feng, X., & Cameron, K. W. (2009). Modeling and evaluating energy-performance

efficiency of parallel processing on multicore based power aware systems. In 2009 IEEE
International Symposium on Parallel & Distributed Processing (pp. 1–8). IEEE.

https://doi.org/10.1109/TSUSC.2019.2907110
https://doi.org/10.1109/TCC.2019.2898657

174 A. Singh et al.

24. Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P., Banerjee, S., &
McKeown, N. (2010). Elastictree: Saving energy in data center networks. In Nsdi (Vol. 10, pp.
249–264).

25. How much energy do data centers really use?, March 17, 2020.
26. Hsieh, H.-C., Lee, C.-S., & Chen, J.-L. (2018). Mobile edge computing platform with

container-based virtualization technology for IoT applications. Wireless Personal Commu-
nications, 102(1), 527–542.

27. IEEE Xplore. IoT and IoT-edge.
28. IEEE Xplore. SDN-edge cooperation.
29. IEEE Xplore. Software defined networking.
30. Jaiantilal, A., Jiang, Y., & Mishra, S. (2010). Modeling CPU energy consumption for energy

efficient scheduling. In Proceedings of the 1st Workshop on Green Computing (pp. 10–15).
31. Jain, R., Molnar, D., & Ramzan, Z. (2005). Towards understanding algorithmic factors affect-

ing energy consumption: Switching complexity, randomness, and preliminary experiments. In
Proceedings of the 2005 Joint Workshop on Foundations of Mobile Computing (pp. 70–79).

32. Jammal, M., Singh, T., Shami, A., Asal, R., & Li, Y. (2014). Software defined networking:
State of the art and research challenges. Computer Networks, 72, 74–98.

33. Kansal, A., Zhao, F., Liu, J., Kothari, N., & Bhattacharya, A. A. (2010). Virtual machine power
metering and provisioning. In Proceedings of the 1st ACM Symposium on Cloud Computing
(pp. 39–50).

34. Kaur, K., Garg, S., Aujla, G. S., Kumar, N., Rodrigues, J. J. P. C., & Guizani, M. (2018). Edge
computing in the industrial internet of things environment: Software-defined-networks-based
edge-cloud interplay. IEEE Communications Magazine, 56(2), 44–51.

35. Kobo, H. I., & Abu-Mahfouz, A. M. (2019). A distributed control system for software defined
wireless sensor networks through containerisation. In 2019 International Multidisciplinary
Information Technology and Engineering Conference (IMITEC) (pp. 1–6). IEEE.

36. Kobo, H. I., Hancke, G. P., & Abu-Mahfouz, A. M. (2017). Towards a distributed control sys-
tem for software defined wireless sensor networks. In IECON 2017-43rd Annual Conference
of the IEEE Industrial Electronics Society (pp. 6125–6130). IEEE.

37. Lewis, A. W., Tzeng, N.-F., & Ghosh, S. (2012). Runtime energy consumption estimation
for server workloads based on chaotic time-series approximation. ACM Transactions on
Architecture and Code Optimization (TACO), 9(3), 1–26.

38. Li, H., Ota, K., & Dong, M. (2018). Learning IoT in edge: Deep learning for the internet of
things with edge computing. IEEE Network, 32(1), 96–101.

39. Li, X., Li, D., Wan, J., Liu, C., & Imran, M. (2018). Adaptive transmission optimization in
SDN-based industrial internet of things with edge computing. IEEE Internet of Things Journal,
5(3), 1351–1360.

40. Li, M., Cheng, N., Gao, J., Wang, Y., Zhao, L., & Shen, X. (2020). Energy-efficient UAV-
assisted mobile edge computing: Resource allocation and trajectory optimization. IEEE
Transactions on Vehicular Technology, 69(3), 3424–3438.

41. Liu, H., Yang, L. T., Lin, M., Yin, D., & Guo, Y. (2018). A tensor-based holistic edge
computing optimization framework for internet of things. IEEE Network, 32(1), 88–95.

42. Liu, Y., Yang, C., Jiang, L., Xie, S., & Zhang, Y. (2019). Intelligent edge computing for
IoT-based energy management in smart cities. IEEE Network, 33(2), 111–117.

43. Liu, Y., Zeng, Z., Liu, X., Zhu, X., & Bhuiyan, Md. Z. A. (2019). A novel load balancing
and low response delay framework for edge-cloud network based on SDN. IEEE Internet of
Things Journal, 7, 5922–5933.

44. Lv, Z., & Xiu, W. (2019). Interaction of edge-cloud computing based on SDN and NFV for
next generation IoT. IEEE Internet of Things Journal, 7(7), 5706–5712.

45. Ma, Y.-W., Chen, J.-L., Tsai, Y.-H., Cheng, K.-H., & Hung, W.-C. (2017). Load-balancing
multiple controllers mechanism for software-defined networking. Wireless Personal Commu-
nications, 94(4), 3549–3574.

9 Prospective on Technical Considerations for Edge–Cloud Cooperation. . . 175

46. Malladi, K. T., Shaeffer, I., Gopalakrishnan, L., Lo, D., Lee, B. C., & Horowitz, M. (2012).
Rethinking dram power modes for energy proportionality. In 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture (pp. 131–142). IEEE.

47. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker,
S., & Turner, J. (2008). Openflow: Enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2), 69–74.

48. Miazi, Md. N. S., Erasmus, Z., Razzaque, Md. A., Zennaro, M., & Bagula, A. (2016). Enabling
the internet of things in developing countries: Opportunities and challenges. In 2016 5th
International Conference on Informatics, Electronics and Vision (ICIEV) (pp. 564–569). IEEE.

49. Mohan, V., Bunker, T., Grupp, L., Gurumurthi, S., Stan, M. R., & Swanson, S. (2013).
Modeling power consumption of NAND flash memories using flashpower. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 32(7), 1031–1044.

50. Morabito, R., & Beijar, N. (2017). A framework based on SDN and containers for dynamic
service chains on IoT gateways. In Proceedings of the Workshop on Hot Topics in Container
Networking and Networked Systems (pp. 42–47).

51. Muñoz, R., Vilalta, R., Yoshikane, N., Casellas, R., Martínez, R., Tsuritani, T., & Morita, I.
(2018). Integration of IoT, transport SDN, and edge/cloud computing for dynamic distribution
of IoT analytics and efficient use of network resources. Journal of Lightwave Technology,
36(7), 1420–1428.

52. Open Networking Foundation (2016, October). Of-Config.
53. Rafique, W., Qi, L., Yaqoob, I., Imran, M., Rasool, R. ur., & Dou, W. (2020). Complementing

IoT services through software defined networking and edge computing: A comprehensive
survey. IEEE Communications Surveys & Tutorials, 22(3), 1761–1804.

54. Ranjan, R., Thakur, I., Aujla, G. S., Kumar, N., & Zomaya, A. Y. (2020). Energy-efficient
workflow scheduling using container based virtualization in software defined data centers.
IEEE Transactions on Industrial Informatics, 16(12), 7646–7657.

55. Rao, T. V. N., Khan, A., Maschendra, M., & Kumar, M. K. (2015). A paradigm shift from cloud
to fog computing. International Journal of Science, Engineering and Computer Technology,
5(11), 385.

56. Rawat, D. B., & Reddy, S. R. (2016). Software defined networking architecture, security and
energy efficiency: A survey. IEEE Communications Surveys & Tutorials, 19(1), 325–346.

57. Roy, S., Rudra, A., & Verma, A. (2013). An energy complexity model for algorithms. In 4th
Conference on Innovations in Theoretical Computer Science (pp. 283–304). ACM.

58. Sezer, S., Scott-Hayward, S, Chouhan, P. K., Fraser, B., Lake, D., Finnegan, J., Viljoen, N.,
Miller, M., & Rao, N. (2013). Are we ready for SDN? Implementation challenges for software-
defined networks. IEEE Communications Magazine, 51(7), 36–43.

59. Sharma, P. K., Rathore, S., Jeong, Y.-S., & Park, J. H. (2018). SoftEdgeNet: SDN based
energy-efficient distributed network architecture for edge computing. IEEE Communications
Magazine, 56(12), 104–111.

60. Sittón-Candanedo, I., Alonso, R. S., García, Ó., Muñoz, L., & Rodríguez-González, S. (2019).
Edge computing, IoT and social computing in smart energy scenarios. Sensors, 19(15), 3353.

61. Sodhro, A. H., Luo, Z., Sangaiah, A. K., & Baik, S. W. (2019). Mobile edge computing based
QoS optimization in medical healthcare applications. International Journal of Information
Management, 45, 308–318.

62. Sodhro, A. H., Pirbhulal, S., & de Albuquerque, V. H. C. (2019). Artificial intelligence-driven
mechanism for edge computing-based industrial applications. IEEE Transactions on Industrial
Informatics, 15(7), 4235–4243.

63. Son, J., & Buyya, R. (2018). A taxonomy of software-defined networking (SDN)-enabled
cloud computing. ACM Computing Surveys (CSUR), 51(3), 1–36.

64. The IoT rundown for 2020: Stats, risks, and solutions, January 13, 2020.
65. Tudor, B. M., & Teo, Y. M. (2013). On understanding the energy consumption of arm-based

multicore servers. In Proceedings of the ACM SIGMETRICS/International Conference on
Measurement and Modeling of Computer Systems (pp. 267–278).

176 A. Singh et al.

66. Van Heddeghem, W., Idzikowski, F., Vereecken, W., Colle, D., Pickavet, M., & Demeester,
P. (2012). Power consumption modeling in optical multilayer networks. Photonic Network
Communications, 24(2), 86–102.

67. Violettas, G., Petridou, S., & Mamatas, L. (2019). Evolutionary software defined networking-
inspired routing control strategies for the internet of things. IEEE Access, 7, 132173–132192.

68. Vishwanath, A., Hinton, K., Ayre, R. W. A., & Tucker, R. S. (2014). Modeling energy
consumption in high-capacity routers and switches. IEEE Journal on Selected Areas in
Communications, 32(8), 1524–1532.

69. Wang, J., Chen, X., Phillips, C., & Yan, Y. (2015). Energy efficiency with QoS control in
dynamic optical networks with SDN enabled integrated control plane. Computer Networks,
78, 57–67.

70. Wang, L., Li, Q., Sinnott, R., Jiang, Y., & Wu, J. (2018). An intelligent rule management
scheme for software defined networking. Computer Networks, 144, 77–88.

71. Warkozek, G., Drayer, E., Debusschere, V., & Bacha, S. (2012). A new approach to model
energy consumption of servers in data centers. In 2012 IEEE International Conference on
Industrial Technology (pp. 211–216). IEEE.

72. Yao, Y., Huang, L., Sharma, A. B., Golubchik, L., & Neely, M. J. (2012). Power cost reduction
in distributed data centers: A two-time-scale approach for delay tolerant workloads. IEEE
Transactions on Parallel and Distributed Systems, 25(1), 200–211.

73. Zhan, C., Hu, H., Sui, X., Liu, Z., & Niyato, D. (2020). Completion time and energy
optimization in UAV-enabled mobile edge computing system. IEEE Internet of Things Journal,
7(8), 7808–7822.

74. Zhang, Y., Gurumurthi, S., & Stan, M. R. (2007). Soda: Sensitivity based optimization of disk
architecture. In Proceedings of the 44th Annual Design Automation Conference (pp. 865–870).

75. Zhang, T., Xu, Y., Loo, J., Yang, D., & Xiao, L. (2019). Joint computation and communication
design for UAV-assisted mobile edge computing in IoT. IEEE Transactions on Industrial
Informatics, 16(8), 5505–5516.

76. Zhao, Y., Li, Y., Zhang, X., Geng, G., Zhang, W., & Sun, Y. (2019). A survey of networking
applications applying the software defined networking concept based on machine learning.
IEEE Access, 7, 95385–95405.

77. Zhu, H., Liao, X., de Laat, C., & Grosso, P. (2016). Joint flow routing-scheduling for
energy efficient software defined data center networks: A prototype of energy-aware network
management platform. Journal of Network and Computer Applications, 63, 110–124.

78. Zinner, T., Jarschel, M., Blenk, A., Wamser, F., & Kellerer, W. (2014). Dynamic application-
aware resource management using software-defined networking: Implementation prospects
and challenges. In 2014 IEEE Network Operations and Management Symposium (NOMS)
(pp. 1–6). IEEE.

Chapter 10
Software-Defined Networking in Data
Centers

Priyanka Kamboj and Sujata Pal

10.1 Introduction

In the past years, cloud computing has attained huge attention as it processes a
large volume of data by using various computing cluster servers. Earlier web servers
were maintained by organizations at their place, but today many organizations are
hosting their web services on the cloud, as their infrastructure is not adequate to
meet the growing application’s needs. The major reasons for enterprises to shift
toward cloud computing because of its various characteristics that include economic
factors, scalability, security, rapid elasticity, and manageability. Further, the different
interaction mediums like social networking sites (such as Facebook, Instagram,
Twitter), the Internet of things, and research are generating a tremendous amount
of data each day [19, 20]. Due to a large-scale increase in cloud services and to
support scalability, the need for data centers has emerged [5, 17].

With the increase in real-time streaming applications, it demands high-speed
access networks with fast computation and storage. Traditional networking of
its complex architecture is inadequate to find optimal routing paths for these
applications. However, the data center network (DCN) does not comply with real-
time application demands and needs traffic monitoring to measure traffic loads.
Therefore, cloud service providers are adopting SDN technology in data centers
for effective traffic management.

SDN has gained attention because of the network programming paradigm
[6, 8, 35]. SDN detaches the data from the control plane to build and program
network architecture flexibly. Due to centralized control in SDN, it easily facilitates
transmission, processing, and storage of cloud applications [20]. Thus, we can say

P. Kamboj · S. Pal (�)
Department of Computer Science and Engineering, Indian Institute of Technology Ropar, Punjab,
India
e-mail: 2018csz0003@iitrpr.ac.in; sujata@iitrpr.ac.in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. S. Aujla et al. (eds.), Software Defined Internet of Everything, Technology,
Communications and Computing, https://doi.org/10.1007/978-3-030-89328-6_10

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89328-6_10&domain=pdf
mailto:2018csz0003@iitrpr.ac.in
mailto:sujata@iitrpr.ac.in
https://doi.org/10.1007/978-3-030-89328-6_10

178 P. Kamboj and S. Pal

that combining cloud data centers and SDN enables efficient, scalable, dynamic, and
cost-effective platforms to support application deployments.

In this chapter, we highlight the challenges of data centers and the importance
of SDN. The chapter discusses the different routing and traffic engineering schemes
in data centers and how they manage network traffic for better resource utilization.
Section 10.2 presents the building blocks of SDN and its applications. Section 10.3
introduces cloud computing, its different service models, the importance of DCNs,
and its various challenges. Section 10.4 shows SDN in cloud data centers for flow
management, resource management, and energy management. This chapter empha-
sizes by presenting a unified view by combining technologies: cloud computing
and SDN. We wind up the chapter in Sect. 10.5 with a short description of SDN
that performs traffic engineering and energy-aware routing. SDN provides efficient
utilization of network resources and minimizes power consumption in DCNs. At
last, we have given references for various research articles and papers on SDN and
cloud data centers.

10.1.1 Software-Defined Networking: An Overview

SDN is a rising concept that has lighten the interest of researchers toward program-
ming network devices. It has gathered the interest of network researchers to build
and manage the network more innovatively and flexibly. SDN improves the network
performance and avoids the pitfalls of present Internet architecture [45].

With the growing number of mobile devices and advancements, in-network
service’s trends become complex to reconsider the current Internet architecture.
It has become difficult to effectively design and administer the present network
architecture because of its static nature. The coupling of the control layer (takes
decisions of traffic management) and the data layer (consists of network elements
for packet forwarding) [39]. It becomes a tedious, complex, and error-prone task
for network administrators to manually configure the network and apply access
control policies to the network devices. As the world is becoming network centric,
organizations need modern ways to add more flexibility to the network architecture.
SDN achieves the above functionality by decoupling the control and data functions
due to centralized network architecture [7, 35, 45].

SDN is a new technology that manages and controls the complete network with
the centralized logical entity [35, 45]. Due to its agile nature, it allows network
administrators to adjust traffic flows in the network. It also introduces the concept of
virtualization of network functions to perform load balancing and traffic forwarding
using standard architectures having generalized hardware in place of proprietary
hardware and software [39]. SDN enables enterprises to simplify the design and
management of network infrastructure. SDN also eliminates the need to understand
different protocol standards as it uses open standards or APIs.

The Open Networking Foundation (ONF) gives network operator’s privilege to
build and expand SDN in dynamic, secure, flexible, and cost-effective networks.

10 Software-Defined Networking in Data Centers 179

It uses open APIs that comply with changing business objectives or landscape
[42]. Besides, SDN abstraction effectively implements applications such as routing,
bandwidth management, security, quality of service, access control policies, and
traffic engineering to meet the end-user requirements. Additionally, SDN leverages
IT to monitor and alter network functions in real time and scales down its burden to
deploy new applications in a few hours or days, while weeks or months are required
today.

OpenFlow is the primitive interface used for communications between the
control and the data plane in SDN [42]. OpenFlow identifies network traffic flows
using the flow table entries that are configured either statically or dynamically at the
SDN controller. The traffic flows are configured on a per-flow basis. It also enables
the network to adapt to the real-time fluctuations in the traffic patterns of end-
user applications. The SDN architecture addresses the change in the business needs
and reduces the operational costs of enterprises. The SDN architecture is shown in
Fig. 10.1.

1. Data layer: The forwarding layer or the data layer comprises network elements
like the OpenFlow switches for packet forwarding. The data layer communicates
with the controller layer using Southbound APIs such as OpenFlow, Open Virtual
Switch Database (OVSDB).

2. Controller layer: The controller layer consists of one or more controllers
for forwarding the data traffic. The controller receives and sends OpenFlow
messages between the network switches and the controller. This layer performs
communication with the application layer using Northbound APIs.

3. Application layer: This layer performs control functions according to the
end-user requirements. Applications such as routing, security, monitoring, and
topology discovery are deployed on the controller to monitor network resources.
The topology discovery module discovers the network topology using the Link
Layer Discovery Protocol (LLDP) [2]. This module provides the information
to the monitoring module. The monitoring module periodically monitors the
throughput, link delay of the links to gain the network status.

10.1.2 SDN Building Blocks

As mentioned earlier, the SDN provides an abstraction to the network by separating
the control from the data plane, thus simplifies the network management. In this
section, we will have an in-depth discussion of the building blocks of the SDN
architecture.

180 P. Kamboj and S. Pal

Fig. 10.1 System architecture

10.1.2.1 SDN Switches

The network infrastructure is an essential part of the network architecture. The
data layer or bottom layer consists of the network devices that encapsulate all
the functionalities to operate the network. These devices are known as network
switches or routers, which constitute the forwarding tables to route the traffic flows.
These devices store forwarding rules in their ternary content-addressable memory
(TCAM) that is a costly hardware, size is limited, and also it requires high energy
consumption [55]. Each network device has limited TCAM and thus can only store
hundreds or thousands of flow rule entries. However, the changing traffic demands
due to the increasing number of devices generates tremendous forwarding rules.
Therefore, a shortage of TCAM affects the rule placement in SDN.

The OpenFlow switches comprise two main components: flow and group table.
We will discuss the flow table in detail where each of its entry has three main parts:
(1) matching rule details in a packet, (2) actions set that matches on packet header,
and (3) counter for packet statistics update. Further, the OpenFlow-based forwarding
devices maintain a pipeline of flow tables as shown in Fig. 10.2. A path through a
pipeline of flow tables inside the forwarding device defines how the packet will be
handled [55]. The lookup process begins as a new packet arrives with the first flow

10 Software-Defined Networking in Data Centers 181

Fig. 10.2 OpenFlow-enabled devices and flow table in OpenFlow switches [35]

Table 10.1 Flow table components in OpenFlow

Match fields Priority Counters Instructions Timeouts Cookies

table in the forwarding device. The header fields of the incoming packet match the
entries in the flow table of the switches. The controller takes action to forward or
discard packets on the desired port. If the header fields do not match the entries in
the flow table, it results in a table miss. Thus, the switch forwards the incoming
packet to the controller. Now, we will briefly discuss the flow table and group table
entries.

Flow Table The entries in the flow table consist of the matched entities (or fields),
priority, counter, instructions, timeouts, and cookies as shown in Table 10.1.

• Match fields: This field comprises ingress port, Ethernet source, a destination
address, packet headers, and metadata laid out by preceding flow tables.

• Priority: This field indicates the matching precedence of the header fields of the
flow entries.

• Instructions: This field contains actions set for packet forwarding.
• Timeout: It represents the time-to-live for a packet before its expiry.
• Cookie: It represents an identifier defined by the controller for flow entry.

The instructions in a flow table contain actions that include packet forwarding,
modification, and pipeline processing. Finally, the controller decides to add, drop,
and delete the flow table’s flow entries. There exist various methods to delete the
entries from the flow table. First, the controller can explicitly request to remove the
entry. Second, a flow expiry approach exists at the switch that deletes entries from
the table after either the hard timeout expires or the entry does not match within a
certain period.

Group Table A group table comprises four group entries: group identifier, group
type, counter, and action buckets, which is shown in Table 10.2.

• Group identifier: It is an unsigned integer of 32 bits that uniquely provides the
identification to the group entry.

182 P. Kamboj and S. Pal

Table 10.2 Group entry components present in the group table

Group identifier Group type Counter Action buckets

• Group type: This field facilitates to signify the semantics of a group.
• Counters: The value of counters is updated as the group handles the packet.
• Action buckets: It represents the ordered list of actions in the bucket where each

bucket comprises actions to be taken along with its parameters.

10.1.2.2 SDN Controllers

The network operating system has a responsibility to manage the network resources
and communicates with the applications deployed on the controller. The controller
acts as a logical entity and is known as brain of the network. It manages traffic
flows to enhance network management and simplifies to administer application
performance. The central entity controls architecture, and policy enforcement at the
network devices has become easy for the network administrator.

The controller receives the Packet-In messages from the switches and takes
actions such as add, modify, or drop as Packet-Out messages. The logical entity
controller regulates all the switches. There are several open-source options for
SDN controllers such as NOX, POX, Floodlight, OpenDaylight, OpenContrail, etc.
Although with advantages, the centralized approach suffers from the single point
of failure. This drawback gives rise to the attacks that are the Distributed Denial of
Service (DDoS) attacks. Therefore, to overcome these issues, multiple controllers
are connected to a switch, and the controller is used to handle such failures through
backup paths. Hence, all the controllers need to maintain consistency to avoid
discrepancies for the proper functioning of applications.

Another significant issue with SDN controllers is managing the incoming traffic
in the network. The decisions of routing the traffic have an impact on network
performance. Traffic management is an essential subject that dynamically monitors
network performance to analyze and regulate data transmission. Policy enforcement
by the controller on the network devices has affected traffic management [45]. It
has found that the number of devices over the Internet using various applications is
thriving each day at an alarming rate.

The increase in applications such as online gaming, surveillance, and video
conferencing results in abundant data generation. Today, these multimedia appli-
cations demand an underlying architecture to give responses to user requests in
real time. However, existing Internet architecture is not flexible and even scalable
to adapt to changes in traffic patterns. It has become a constraint for the network
administrator to provide QoS that ensures performance guarantees by ensuring
bandwidth, delay, and packet loss to applications. Therefore, highly scalable and
efficient network management enhances resource utilization based on the end-user
application demand.

10 Software-Defined Networking in Data Centers 183

To develop QoS policy management, the Internet Engineering Task Force (IETF)
has come up with several QoS models—Integrated Services (IntServ) [15] and
Differentiated Services (DiffServ) [14], but neither was successful and globally
established. In DiffServ, the “class” of a packet is directly marked in the packet. It
is a scalable mechanism that classifies and manages network traffic to provide QoS.
However, IntServ uses “resource reservations” to maintain QoS for real-time traffic
applications. Both IntServ and DiffServ fail to provide a global view of resources in
the current Internet architecture.

10.2 SDN Applications

SDN builds the groundwork for scalable, flexible, and programmable networks. The
controller defines new ways to handle the traffic flows in the network. The flow rules
are installed in the flow table of the switches. The centralized network architecture
motivates the novel applications to program network functions. Thus, SDN has
become applicable in various networking domains such as cloud computing, the
Internet of things, data centers, cellular networks, wide area networks (WANs),
optical networks, etc. In this section, we will briefly discuss the major application
domains.

10.2.1 Internet of Things

In simple terms, in the Internet of things (IoT) technology, people, devices (such
as mobile phones, laptops, cars, sensors) are connected to the Internet to form the
network. With the rapid increment in the devices, an enormous amount of data is
getting generated. The data set tends to grow as more information is being collected
and gathered from sensors, mobile devices, microphones, and other devices. The
management and control of billions of connected objects is a complex task in the
traditional Internet architecture.

SDN supports vendor independence due to the separation of the control from the
data plane. Therefore, IoT leverages the benefits of SDN for supporting multiple
technologies. SDN introduces programmability to the network devices to forward
and control traffic flows in IoT architecture. SDN facilitates data transmission,
resource allocation, energy management, and mobility management, which meets
the growing user’s needs in IoT.

184 P. Kamboj and S. Pal

10.2.2 Home Networks

Despite advancements in the transmission medium to offer high-speed services,
network bandwidth always remains a limited resource. Internet service provider
(ISP) serves users with limited bandwidth using a best-effort approach. We know
that the best-effort service does not give any assurance of data delivery and data
quality. Further, ISP provides services to several users in the local vicinity to
simplify bandwidth allocation. Consequently, the users do not get the desired
service, and their data quality is affected as they get the shared bandwidth from
the resource pool.

Nowadays, SDN can be of great use in home networks. With SDN, ISP can
enable dynamic bandwidth allocation by acknowledging the users to control their
bandwidth consumption and generate revenue [46]. ISP can monitor the bandwidth
usage of the users and assign or reassign the bandwidth as per the user demand in a
local area network. For example, the user can request ISP for additional bandwidth
for a finite time and pay according to the consumed bandwidth.

10.2.3 Cellular Networks

With the onset of mobile devices, cellular networks have become vital commu-
nication systems. The cellular networks support numerous applications with the
advancement in the wide range of technologies like the Internet of things (IoT), self-
driving cars, and Industry 4.0. The rapid upsurge in mobile devices with different
application requirements has driven cellular networks to their limit. The increasing
demands to improve the network performance of cellular devices have forced the
operators to think about the current network architecture.

SDN plays an important role in satisfying the application requirements to solve
the issues in cellular networks [38]. Initially, SDN decouples control functions
from the data plane in the network architecture. The controller acts as a centralized
logical entity for managing network resources and thus reduces infrastructure and
operational costs. Additionally, SDN provides key functionalities needed in the
core network (CN) of the cellular networks. Using SDN, it has become easy and
flexible to manage routing, mobility, policy enforcement, resource allocation, and
real-time monitoring in cellular networks. However, the SDN controller instructs
the forwarding layer (comprising base stations) for traffic routing and simplifies
its operation. It reduces load and interference during the coordination of the base
stations.

10 Software-Defined Networking in Data Centers 185

10.2.4 Optical Networks

Optical networks play a significant role in today’s network as it provides fast and
high transmission capability. It is a form of communication that uses signals in the
form of light to exchange information. It uses optical fiber cable to communicate
from one end point to another in various telecommunications networks. The
communication mainly depends on optical amplifiers, LEDs, and lasers to transmit
the information across metropolitan, regional areas through the optical fiber cable.

High bandwidth during data transmission achieved using packet switching
characteristics through wavelength channels has posed various challenges in optical
networks [59]. SDN provides network programmability to monitor and control
network infrastructure. Additionally, SDN controls physical layer components
of optical communication. The optical transmitters or receivers (also known as
transponders or transceivers) transmit or receive the optical signals using SDN.

10.3 Cloud Computing and Challenges

Since the past decade, cloud services have become a famous computing model
that processes a large volume of data by utilizing computing server clusters.
Conventionally, every organization used to maintain web servers and email servers
at their site. But, on a large scale, they do not meet the growing needs of applications.
One of the most popular services provided by the cloud is web hosting, as it
helps the small enterprises who cannot maintain their servers because of cost
factors. Furthermore, most enterprises shift toward cloud services due to scalability,
economic factors, manageability, and security [49]. Cloud also stores documents
such as images, videos, and files, and the user can share them with another end user.
Therefore, the cloud helps to provide storage, computation, and infrastructure based
on the application’s needs. The users find cloud services to be reliable, efficient, and
secure in their use.

10.3.1 Cloud Computing and Service Models

Cloud computing is known today for its five most essential characteristics. These
are as follows:

• On-demand self-service: The organizations have the provision to use the
resources such as computation, storage space, and virtual machines as per the
application’s needs. The organizations can use web interfaces to interact to have
provision or de-provision of the services as per their requirements.

• Resource pooling: By resource pooling, it represents that the resources are
shared within the customers using multi-tenancy. The resources—physical or

186 P. Kamboj and S. Pal

virtual—are assigned or released dynamically based on the customer’s demands.
The resources can be storage space, memory, computation, and network band-
width. The customer will not know the exact location of the provision of
resources.

• Broad network access: The cloud provides network access capability to users
to connect and use the cloud services from anywhere and any time. The user can
access the data from or upload data to the cloud using any thick or thin client
mediums (such as mobile phones, laptops, tablets) and Internet connection.

• Rapid elasticity: It allows the scalable provisioning of resources automatically
to the users. The cloud providers can allocate or deallocate the resources based on
user requests. The user can very easily and quickly scale or descale the resources
as per their demands. It helps the users in their cost savings.

• Measured service: Cloud providers optimize the use of resources by using
metering capabilities based on the type of service. The cloud service providers
monitor resource usage and provide transparency to the customers. The organi-
zations use Pay As You Go model that states that the users have to pay based on
the actual consumption of the services.

Cloud computing offers various services using the different models: Infras-
tructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a
Service (SaaS). Each higher-level model provides an abstraction to the lower-level
models. The users use different client mediums (such as mobile phones, laptops,
workstations), and the enterprises can access the cloud services via the Internet
as shown in Fig. 10.3. The architecture represents the high-level abstraction of
interaction between the users and enterprises using the cloud data center. Now, we
will briefly discuss the above models as follows:

• Infrastructure as a Service (IaaS): The cloud provider provides computation,
storage, and network to the enterprises. IaaS provides physical machines or
workstations, virtual machines (VMs), and resources to the users from data
centers. The user either owns or manages the applications running on the
infrastructure and pays according to its usage.

• Platform as a Service (PaaS): It provides components like middleware, the
operating system to develop and test customer applications. This service provides
the environment for customers without buying or maintaining the hardware or
software to run their business applications. One of the famous examples of this
service is web hosting. The customers pay for the service based on the usage of
the platform.

• Software as a Service (SaaS): It provides software services that are hosted by
the cloud provider as per the need of the customers. The customers do not have
to buy the licenses for the software to use it. The users can very easily access the
software over the Internet based on its subscription.

Nowadays, cloud providers find it challenging to meet the proliferation of web
services for different business customers. The cloud providers offer various service
classes to the users based on their needs. Furthermore, the infrastructure of cloud

10 Software-Defined Networking in Data Centers 187

Fig. 10.3 Architecture of
cloud computing

providers may not always be sufficient for all types of application needs. However, it
is to note that there arises the need for data centers to offer flexibility and scalability
to provide cloud services on a large scale. Thus, data center networks should have
ease of management with the scalability issues and also be fault tolerant.

10.3.2 Data Center Networks

The data center provides a better understanding of its requirements to address the
increase in cloud demands. It acts as a physical entity used by the organizations
to house their applications and critical data. The data center design is based
on a densely packed frame of workstations to provide computation and storage
facilities to host and share the business-critical applications. The data center’s main

188 P. Kamboj and S. Pal

Fig. 10.4 A tree structure-based data center network’s topology

components comprise routers, switches, storage systems, servers, firewalls, and
delivery controllers. Over time, these data centers have served to host a large amount
of computation power to the applications in just a single room. The data centers
offer web hosting, SaaS, PaaS, and social networking services to form the network
backbone. Virtualization is the key factor that is broadly used in the cloud data
centers to provide different services and efficiently achieve scalability, flexibility,
and resource allocation [34]. Moreover, virtualization effectively manages proper
resource utilization and results in cost savings of power consumption and hardware.
The several reasons that lead to the increase in usage of virtualization are:

• scalability and flexibility
• load balancing
• hardware coupling
• to ease the backup, recovery, and migration tasks
• to run and operate legacy applications on new operating systems
• large cost savings

The data center networks (DCNs) play a vital role as it connects resources of
data centers. The DCN architecture is based on the layered approach that aims to
improve flexibility, scalability, resiliency, and performance [63]. The DCNs have a
tree structure as shown in Fig. 10.4. The fat-tree DCN architecture comprises three
tiers—core, edge, and aggregation switches. In the bottom layer, end or physical
hosts connect with the switches at the Top-of-Rack (TOR). The switches in the
TOR layer connect with the edge switches. Further, the edge switches on every row
interact with the aggregation switches. The aggregation switches perform the traffic

10 Software-Defined Networking in Data Centers 189

aggregation of the data received from the edge switches. At last, the aggregation
switches communicate with single or multiple switches at the core layer. The core-
tier switches have a responsibility to interconnect intranetworks.

10.3.3 Challenges in Data Center Networks

With the increase in data center applications, it results in massive data sets. Real-
time streaming of data creates high demands on the physical infrastructure for its
computation and storage. Thus, a large amount of data streaming requires high-
speed access to low-latency networks. With the expansion in operating systems,
servers, and applications, data center management in real time has become compli-
cated.

Today, the deployment of hundreds of virtual machines (VMs) in data centers has
introduced new scalability challenges [12]. The DCNs find ways to how millions
of VMs connect to thousands of servers. It is through the sharing of computing
resources among multiple tenants, and hence it becomes uncertain to attain security.
Further, the migration of applications between the VMs imposes novel mobility
threats.

The tremendous increase in the devices puts pressure on the servers for delivery
in service for the user applications. However, traffic management has become a
critical concern in DCNs for better performance of network functions. In traditional
data center architecture, with the expansion in the network, the manual configuration
of the DCNs is a challenging task for the network administrators. Additionally, with
the upsurge in several devices, it becomes extensively difficult to operate DCNs
properly and hence cannot adapt to the dynamic end-user application requirements.

Today, modern data centers are facing challenges due to the scale of user requests
and the deployment of thousands of VMs. It includes recovery from failure, data
security, multi-tenant environment, traffic management, and energy management.
Now we will give an overview of some of the challenges of the data centers. These
are as follows:

• Failure Recovery:
The data centers have a fundamental role in the economic and operational

impact of cloud computing. With the virtualization in the cloud, the resource
pool sharing among multiple clients is prone to failures and faults. Today, scale
in data centers has become a critical task to recover from a failure and also leads
to further ramifications of recovery decisions as the size grows. A small fault or
dispossession in services in the cloud environment leads to severe economic and
functional impacts.

Google announced a financial loss of 20% to get the response time with an
additional delay of 500ms in an experiment [24]. Similarly, Amazon mentioned
a 10% reduction in sales because of an additional delay of 100ms in their
search result [24]. In another incident, a minor network failure in O2, a well-

190 P. Kamboj and S. Pal

known cellular service provider, affected seven million customers in only 3 days
[13]. Besides, due to core switch failure in the network of Blackberry troubled
millions of people to access the Internet as it lost its connectivity for 3 days [13].
Additionally, due to the distributed protocols in the current network architecture,
it turns difficult to predict network behavior. The cloud environment should be
robust to deliver QoS to meet the service-level agreement (SLA) requirements
signed between the user and cloud provider despite any software or hardware
failure. Any violation in SLA by the cloud may result in enormous financial and
reputation loss. Therefore to ensure failure resiliency in a cloud environment is
of vital importance. Moreover, the cloud data centers need proper functioning to
deliver QoS even in the existence of failures.

• Multi-tenancy:
Previously, we discussed that multiple individuals share resources like storage

space, computation, and network in the data centers. The challenge arises how
to isolate and separate the individuals from one another. It is necessary for
the organizations that provide a multi-tenant environment to differentiate the
resources that have been assigned and belong to an individual client. Even in
network traffic, the data packets should be segregated and insulated for different
clients. This requirement is necessary to provide security as well as to guarantee
QoS for the applications.

• Traffic management:
Traffic management in today’s DCNs is a vital area of concern. In a multi-

tenant environment, resources such as network, computation, and storage space
are shared among multiple clients to run the applications. It enforces the cloud
service provider to monitor network traffic to optimize resource utilization.
Therefore, it has become essential to measure traffic loads and take suitable
actions to route traffic flows.

Now coming toward the state-of-the-art, link-state technology is used for route
calculation in the traditional networks. Each switch builds up a forwarding table
to direct traffic between the sources and the destinations in the network. The paths
taken by packets in a flow are determined by numerous protocols like shortest
path routing algorithm, spanning tree, and multipath routing. The shortest path
routing algorithm is used for path computation of the packets, not always finding
the optimal path since it does not consider vital factors like traffic load.

We can say that the increase in real-time traffic has gained a lot of attention
to traffic management in data centers. Therefore, cloud service providers need to
find novel ways to monitor and control traffic flows in the network.

10.3.4 SDN in Data Center Networks

We can say that SDN offers many advantages to fill the previously mentioned
gaps in the data centers. SDN controller makes optimal routing decisions for traffic
forwarding in the network. The controller regulates the respective forwarding tables

10 Software-Defined Networking in Data Centers 191

Fig. 10.5 Example: interfaces of a software-defined network [31]

in network devices to have control over routing. The SouthBound Interface is used
for interaction between the control and data layer in SDN as shown in Fig. 10.5. The
traditional network architecture suffers from interoperability issue, whereas, on the
other hand, open interfaces in SDN allow the network to reach its full functionality
[31].

The controller acts as a centralized logical entity, which helps to simplify the
traffic management in the DCNs. SDN dynamically manages traffic flows and
performs traffic load balancing, resource allocation, and bandwidth provisioning
in data centers. It also improves network performance by adjusting the resources
according to the application needs in the data centers [3].

The various cloud providers such as Apple, Google, and Microsoft serve their
services to the customers using data centers that are distributed worldwide. Even
with the rise in demand for the services, the data centers achieve traffic exchange
between the interdata centers. Thus, SDN’s global network view leverages to carry
out centralized traffic and optimizes the use of network resources. Both Microsoft
and Google have developed SDN in their data centers and also published their
systems’ technicalities.

SDN offers many advantages as compared to the traditional networks that create
interests in the industry. SDN is a way to simplify network management or to
develop commercial solutions. One of the most popular use cases of SDN adoption
is in Google production networks. In Google networks, SDN is used to connect
its data centers over the wide-area network (WAN) and is Known as B4 [30]. It
is one of the prime and largest developments of SDN and OpenFlow. B4 carries
a large amount of traffic than Google’s WAN. In particular, the custom switches
are managed and controlled by OpenFlow in B4. Further, B4 can scale to fit
application demands efficiently and adapts network behavior to respond to failures.

192 P. Kamboj and S. Pal

The centralized traffic engineering (TE) solution enables the SDN controller to
reallocate the bandwidth based on application demands and reroutes the traffic in
case of link failures.

The second use case of SDN adoption is software-driven WAN (SWAN) [28]
from Microsoft, which is a TE solution proposed to carry a significant amount
of traffic. The objective of SWAN is to meet policy rules to give preference to
high-priority traffic along with providing fairness among the same service class.
SDN’s global view helps to assign bandwidth to different paths in the network.
Further, the fine-grained control of traffic in SDN enforces bandwidth utilization on
an application basis [43]. Consequently, the overprovisioning of resources reduced
as SWAN decides the amount of traffic a service class can forward and configures
the data plane accordingly.

Other giant companies such as Facebook and Amazon are planning to build their
network infrastructure using SDN principles. The various networking companies
such as Cisco, Hewlett Packard (HP), VMware, Juniper, and Big Switch have also
shown keen interest in SDN to provide commercial solutions for their enterprises.

10.4 Routing and Traffic Engineering in Data Center
Networks

As per the discussion, we know that SDN uses a centralized approach that simplifies
traffic management in the network. The flow table at switches allows us to have fine-
grain level granularity. The granularity level depends on the size of the switch flow
table and how the controller wishes to enforce its control on the traffic flows. The
flow entries in a flow table are placed either in reactive or proactive manner. In the
reactive approach, the incoming first packet of traffic flows comes and the switch
sends it to the controller. The controller communicates with the switches to enter
the flow entries of the incoming packets in the flow table. However, in the proactive
approach, the flow entries are computed by the controller and entered in switches
timely. In addition, it ignores the flow setup time, and flow entries are inserted based
on wildcard rules. Further, in case of connection loss between switch and controller,
traffic moves independently in the network.

In this context, OpenFlow adopts two main routing options: flow based and
aggregated. In flow-based routing, the controller sets up during every flow individu-
ally packet header details that exactly match with the flow table entries. If any flow
rule entries do not match the forwarding device’s flow table, the packet is forwarded
to the controller and the flow entries are installed in the flow table of the routed
path. This method fits for fine-grain control only if switches have adequate capacity
to store all entries. However, ingress traffic at OpenFlow switches is increasing
and occurring frequently. It creates the overhead at the controller side and becomes
difficult to process all the requests. This routing approach does not fit for increasing
traffic flows.

10 Software-Defined Networking in Data Centers 193

Table 10.3 Example of flow
entries in the switch flow
table

Entry Source Destination Action

1 0111 0000 To forward on Port 1

2 0111 0110 To forward on Port 2

3 1111 0110 To forward on Port 2

4 1100 1010 To forward on Port 1

5 $$$$ $$$$ Drop entry

Table 10.4 Example of
aggregated flow entries

Entry Source Destination Action

1 $111 0000 To forward on Port 1

2 0111 0110 To forward on Port 2

3 1111 0110 To forward on Port 2

5 $$$$ $$$$ Drop entry

The flow table implemented using TCAM memory is expensive and has high
energy consumption. A large number of flow rules need to be placed in the flow
table with the increase in traffic flows. As the network devices fit with small TCAM,
they can store only limited flow entries. However, we can say that the flow entries
get reduced in the switch flow table using an aggregated routing approach [68]. For
example, there can be a single entry for different traffic flows in OpenFlow switches
belonging to the same or particular IP prefix destination. The flow entries aggregate
at OpenFlow switches and associate a single path for a set of flows. For instance,
Table 10.3 shows the switch flow table entries. Similarly, in Table 10.4 flow entries
1 and 4 are aggregated in the flow table. The “$” in Table 10.3 represents a single
digit (0 or 1) in a specific position. The “$$$$” in Table 10.4 represents any four
digits (0 or 1) in the table.

10.4.1 Flow Management in Data Center Networks

SDN controller has control over all the routing and traffic forwarding decisions.
The network should prioritize business traffic over other applications. For example,
traffic from applications such as online gaming, v2x, virtual reality, and audio
streaming has higher priority than the best-effort traffic. These applications have
stringent requirements for latency, bandwidth, and QoS. A study [33] determines
that congestion was observed in 86% of data center links due to immense requests
arrived for large flows. Nowadays, the classification and scheduling of flows have
become substantial to utilize the available bandwidth in DCNs.

Several studies have categorized the traffic flows in data centers into two types:
elephant (long-lived) and mice flow [3, 18, 40]. With SDN-based data centers, the
controller has to choose an optimal path for individual traffic flow. Generally, the
controller computes the shortest path for forwarding traffic flows. But the end-to-
end path may have congestion in the links that result in delay, jitter, and packet loss.

194 P. Kamboj and S. Pal

Thus, a solution is required to distribute and route the traffic flows on different paths
based on their bandwidth requirements [18]. Therefore, bandwidth requirement has
become a constraint to satisfy the QoS guarantee in the network. Further, the SDN
controller has to take into account various network parameters for routing decisions.

Some of the applications in DCNs demand higher throughput in elephant flows,
while delay-sensitive applications require lower latency [73]. The DCNs experience
congestion due to an imbalance in the distribution of the traffic flows in the network.
Therefore, some of the links are under-utilized, which leads to an upsurge in link
latency and low resource utilization. Thus, reducing link congestion of DCNs and
ensuring QoS guarantee are critical issues for cloud service providers. Therefore,
we can say that dynamic flow management has vital importance in data centers to
enhance QoS for the user applications [70].

10.4.2 Traffic Engineering in Data Center Networks

Traffic engineering (TE) has shown an advanced development to measure and
manage network traffic. TE states that network operators handle numerous data
flows in the network [26]. TE regulates network traffic to have better utilization of
network resources [53]. The objectives of TE include traffic load balancing, control
congestion, and minimizing network utilization.

The traditional TE approaches include IP-based TE and multi-protocol label
switching (MPLS). The IP-based technology optimizes the routing algorithm to
avoid network congestion by adjusting the traffic flows on multiple paths [25]. For
instance, this approach uses the Open Shortest Path First (OSPF) routing algorithm
and concept of link weights to compute multiple shortest routing paths to balance the
traffic load [22]. This technology suffers from many drawbacks: (1) while using the
concept of link weights in OSPF, it fails to split the traffic in a suitable proportion, so
network resources are not utilized; and (2) as the link weights in topology change,
the routing protocol takes a lot of time to converge to a novel state, which causes
congestion, packet loss, and delay in the network.

To avoid the issues in IP-based TE, different researchers proposed a new
method for sending the packets usingMulti-Protocol Label Switching (MPLS) [56].
However, the MPLS routing technique is considered very complicated and creates
difficulty for DCNs to satisfy the growing application demands. We have discussed
that in the traditional networks, fine-grain control over traffic is difficult to achieve.
Therefore, there is a need to develop a network architecture to solve the above
problems. Many organizations have shown keen interest in SDN as it decouples
network functions to introduce flexibility in architecture. TE can be applied easily
to SDN switches as it modifies flow tables in switches [1]. With SDN, traffic flows
dynamically change in data centers for easy management of workload.

The traffic engineering system architecture shown in Fig. 10.6 comprises three
main components: data center network (DCN), controller, and traffic engineering
manager. The DCN’s architecture uses layered approach and consists of the core,

10 Software-Defined Networking in Data Centers 195

Fig. 10.6 Traffic engineering system architecture

aggregation, and edge switches. The DCN’s switches send the status information
to the controller using the SouthBound interface such as OpenFlow. The controller
collects and aggregates all the information received from the switches. The traffic
engineering manager takes all the aggregated information to make TE decisions and
sends the notification to the controller [26]. Therefore, traffic engineering plays an
essential role in reducing latency and balancing the traffic load in the network.

10.4.3 Load Balancing in Data Center Networks

The load balancing at the switch uses a routing scheme known as Equal-Cost
Multipath (ECMP), which adopts hashing techniques to split the traffic flows onto
multiple paths [47]. ECMP moves the traffic flow along the paths based on a
hash value computed from the packet headers [29]. In the example of per-Flow
technique, it balances the traffic load among multiple paths with an equal cost.
ECMP routing scheme faces congestion if a collision occurs at hash value, which
results in forwarding flows to the same port.

196 P. Kamboj and S. Pal

Fig. 10.7 DIFANE flow management architecture [69]

To address the bottleneck of the ECMP routing scheme, the researchers have
proposed various methods. Hedera [3] used flow scheduling scheme in data centers
for multi-stage switch topology. It gathers flow information from the network
and computes nonconflicting paths for the traffic flows. By the global view, the
scheduling system can see the bottleneck in paths and instruct the switches to reroute
the traffic flows accordingly. However, Mahout [21] is a traffic management system
that identifies the incoming flow as elephant flow. It deploys an in-band mechanism
to manage traffic flows between end hosts and the controller. Thus, it notifies the
controller about elephant flows and computes the routing paths.

Another approach used in switch load balancing is known as wildcard rule flow
forwarding. This approach suffers from latency issues due to the presence of a single
centralized controller. We will highlight some other proposed approaches to address
these latency issues. DevoFlow [44] scheme was designed to place the flow rules
at the OpenFlow switch to minimize the interaction with the controller. With this
approach, the controller can easily monitor and detect the elephant flows.

Furthermore, ReWiFlow [52] restricts the class of Openflow wildcard rules to
make it simple to use and overcome the previously defined issues. It reduces
programming complexity and manages the group of flows without loss in perfor-
mance. However, in the DIFANE [69] architecture the data plane switches use
wildcard rules. In this architecture, the controller allocates the switch rules known
as “authority switches” when rule-matching does not occur at ingress switches as
shown in Fig. 10.7. The controller divides the rule by the use of a partitioning
algorithm across authority switches. Further, the switches take action based on the
packet-matching occurs in the flow table.

We have already stated that SDN simplifies traffic management by separating
control functions in the network. Thus, we can say that SDN-based load balancing

10 Software-Defined Networking in Data Centers 197

helps to deal with congestion and optimize link utilization in DCNs. SDN also helps
to distribute traffic load on multiple paths and efficiently handles the workload in
data centers.

10.4.4 Resource Management in Data Center Networks

The resource management in DCNs is found to be a crucial factor in cloud com-
puting. The resource requirements of cloud applications are drastically changing
in cloud data centers. Therefore, it is essential to maintain data center resources
to meet the SLA of different business applications. Some of the SLAs for the
desired cloud applications are response time, failure recovery, security, maintenance
time, and data loss [20]. Moreover, the technology drift toward cloud and big data
applications has created a lot of pressure on DCNs to enhance cloud services for
the users by improving flexibility, performance, and security. SDN greatly benefits
big data applications in different aspects that involve data delivery, scheduling, data
processing, and resource utilization.

Today, SDN-enabled data centers are widely applicable in big data applications.
An SDN-based OpenFlow bandwidth provisioning method for big data applications
is proposed [32]. Bandwidth provisioning is a necessary component to isolate
and separate the traffic flows of different users or service classes. The controller
aggregates information from the network switches to maintain and update the flow
table to allocate bandwidth for traffic flows. The switches receive the updates to run
the scheduling algorithm to allocate the bandwidth for big data applications. Hence,
resource allocation is done efficiently and reduces the power consumption in data
centers.

We can state that bandwidth has become one of the crucial resources as
shared between multiple network applications. Therefore, ensuring fairness among
different traffic flows along with QoS is also an important criterion for a network
manager [11]. The absence of a fairness policy leads to unfair allocation of resources
and traffic distribution in a network. Substantial work has been proposed for optimal
resource allocation [16] and to support different kinds of fairness in resource
allocation that mainly includes max–min fairness [41] and proportional fairness
[36].

The aim of resource allocation is to attain better SLAs between cloud service
providers and users. The resource allocation strategy plays an important role that
motivates clients to access the cloud services or make them reluctant to use their
services [51]. Thus, the SDN controller efficiently handles resource assignments
in virtual machines as per the user’s requests between the data centers. Further,
SDN also minimizes the cost incurred by the service provider while satisfying the
user’s requests. Hence, resource management is necessary to improve bandwidth
utilization and to guarantee QoS in a network.

198 P. Kamboj and S. Pal

10.4.5 Energy Management in Data Center Networks

The DCNs allow enterprises to interact with the outside world and is called the
“backbone” for an enterprise. In data centers, requests can arrive at any period, so
it becomes necessary for the devices to function 24*7 to provide services to the
customers. The devices need a large amount of energy to function, thus lead to an
increase in the total power consumption cost in the data center. Additionally, in data
centers resources are found to be underutilized about 30–40% of the time [54, 71].

Energy efficiency is the primary area of interest in modern data centers because
of environmental factors. The inflation in energy cost is an immense threat to cloud
providers as it leads to an increase in Total Cost of Ownership (TCO) and a reduction
in Return of Investment (ROI) [10]. Further, high energy consumption causes carbon
emission that leads to environmental damage. Consequently, it is challenging to
reduce power consumption in DCNs. The high computation servers and storage are
required to process user requests and respond within a fixed time [10].

In the recent past, different multimedia applications using cloud services are
growing each day. Therefore, researchers have proposed several methods to maxi-
mize energy efficiency through traffic aggregation and scheduling. We have already
discussed the aggregation routing methods in Sect. 10.3. In this method [37, 50, 67]
the aggregated traffic is sent onto a few switch ports, whereas idle ports of switches
are kept in turn-off mode to save power [65]. Further, several schemes of power
saving have been proposed that leverages Energy-Efficient Routing (EER) strategy
that includes EAR [50] and ElasticTree [27]. The main idea behind EER is to
perform bandwidth scheduling along with flow consolidation to transmit flows only
on a subset of links to decrease energy consumption.

One of the main challenges of energy efficiency is the consumption of energy in
networks [4]. This problem creates difficulty in the traditional network architecture
because of its limited flexibility. SDN treats the network as a logical entity to support
enterprises to program, automate, and control data centers. Thus, SDN attempts to
solve this problem by adjusting energy consumption proportionate to the amount of
traffic.

Now, we will discuss the energy-efficient routing techniques that mainly include
energy saving at links and switches. Several methods exist in the state-of-the-art for
energy-aware routing in SDN. Some of the methods focus on energy consumption
on links [58, 62, 72], whereas others focus on switches [60, 61]. In addition, the
queue-based techniques to determine per-port energy requirement have also been
considered in [48, 57, 61, 66, 72]. Further, a few experiments show that distributing
the traffic flows on underutilized links results in more power saving than turning off
the links [23]. But this approach does not apply to all cases.

The controller in the OpenFlow network splits traffic flows onto multiple paths
based on the incoming traffic volume. The multipath flow routing using the SDN-
based network is more effective than traditional DCN architecture [3]. Besides,
bandwidth utilization is improved if traffic splits on multiple paths. A distributed
power-saving mathematical model for large-scale SDN-based DCNs is developed,

10 Software-Defined Networking in Data Centers 199

which uses characteristics to optimize energy efficiency [64]. In this model, an
EER routing algorithm is used for intradomain traffic flows and power saving
using multiple controller architecture. Further, “green cloud computing” considers
achieving resource utilization as it efficiently manages the data center’s resources
by minimizing energy consumption.

We can say that SDN achieves energy-efficient routing in cloud data centers.
SDN technology not only minimizes energy consumption but also considers that
network performance should not have deteriorated in data centers. We know that we
have constrained energy resources and may not be easily attainable in the future [9].
Therefore, it becomes a concern to save the energy consumption of data centers.

10.5 Conclusions

In this chapter, we presented an outline of software-defined networking (SDN) and
cloud computing. In particular, we discuss the basic building blocks of SDN and its
various applications in different domains. Next, we have given an overview of cloud
computing and its various characteristics and service models. Subsequently, we
talked about the data center network (DCN), its different challenges that have arisen
due to the increase in data center applications, and how SDN plays an important role
in overcoming the challenges in data centers.

We then discussed different routing and traffic engineering schemes in DCNs,
how they manage network traffic to meet application QoS requirements, and
resource management. We also presented an overview of various proposed methods
of how resources are managed using SDN in DCNs. Furthermore, energy manage-
ment issues and SDN-based energy-efficient routing methods have been taken into
account to minimize power consumption in DCNs.

References

1. Agarwal, S., Kodialam, M., & Lakshman, T. V. (2013). Traffic engineering in software defined
networks. In Proceedings IEEE INFOCOM (pp. 2211–2219). Piscataway: IEEE.

2. Akyildiz, I. F., Lee, A., Wang, P., Luo, M., & Chou, W. (2014). A roadmap for traffic
engineering in SDN-OpenFlow networks. Computer Networks, 71, 1–30.

3. Al-Fares, M., Radhakrishnan, S., Raghavan, B., Huang, N., & Vahdat, A. (2010). Hedera:
Dynamic flow scheduling for data center networks. In Nsdi (vol. 10, pp. 89–92).

4. Assefa, B. G., & Özkasap, Ö. (2020). RESDN: A novel metric and method for energy
efficient routing in software defined networks. IEEE Transactions on Network and Service
Management, 17 (2):736–749.

5. Aujla, G. S., Chaudhary, R., Kumar, N., Kumar, R., & Rodrigues, J. J. P. C. (2018). An
ensembled scheme for QoS-aware traffic flow management in software defined networks. In
2018 IEEE International Conference on Communications (ICC), (pp. 1–7). Piscataway: IEEE.

6. Aujla, G. S., Jindal, A., Kumar, N., & Singh, M. (2016). SDN-based data center energy
management system using res and electric vehicles. In 2016 IEEE Global Communications
Conference (GLOBECOM) (pp. 1–6). Piscataway: IEEE.

200 P. Kamboj and S. Pal

7. Aujla, G. S., & Kumar, N. (2018). SDN-based energy management scheme for sustainability
of data centers: An analysis on renewable energy sources and electric vehicles participation.
Journal of Parallel and Distributed Computing, 117, 228–245.

8. Aujla, G. S., Singh, A., & Kumar, N. (2019). AdaptFlow: Adaptive flow forwarding scheme
for software-defined industrial networks. IEEE Internet of Things Journal, 7(7), 5843–5851.

9. Bahrami, S., Wong, V. W. S., & Huang, J. (2018). Data center demand response in deregulated
electricity markets. IEEE Transactions on Smart Grid, 10(3), 2820–2832.

10. Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation heuristics
for efficient management of data centers for cloud computing. Future Generation Computer
Systems, 28(5), 755–768.

11. Bhaumik, S., & Chakraborty, S. (2018). Hierarchical two dimensional queuing: A scalable
approach for traffic shaping using software defined networking. In 4th IEEE Conference on
Network Softwarization and Workshops (NetSoft) (pp. 150–158). Piscataway: IEEE.

12. Bilal, K., Malik, S. U. r. R., Khan, S. U., & Zomaya, A. Y. (2014). Trends and challenges in
cloud datacenters. IEEE Cloud Computing, 1(1), 10–20 (2014).

13. Bilal, K., Manzano, M., Khan, S. U., Calle, E., Li, K., & Zomaya, A. Y. (2013). On the
characterization of the structural robustness of data center networks. IEEE Transactions on
Cloud Computing, 1(1), 1–1.

14. Black, D. L., Wang, Z., Carlson, M. A., Weiss, W., Davies, E. B., & Blake, S. L. (1998).
An Architecture for Differentiated Services. RFC 2475. https://doi.org/10.17487/RFC2475,
https://rfc-editor.org/rfc/rfc2475.txt

15. Braden, R. T., Clark, D. D. D., & Shenker, S. (1994). Integrated Services in the Internet
Architecture: an Overview. RFC 1633, https://doi.org/10.17487/RFC1633, https://rfc-editor.
org/rfc/rfc1633.txt
RFC1633: Integrated services in the internet architecture: an overview.

16. Bui, N., Malanchini, I., & Widmer, J. (2015). Anticipatory admission control and resource
allocation for media streaming in mobile networks. In Proceedings of the 18th ACM
International Conference on Modeling, Analysis and Simulation of Wireless and Mobile
Systems (pp. 255–262).

17. Cao, H., Wu, S., Aujla, G. S., Wang, Q., Yang, L., & Zhu, H. (2019). Dynamic embedding
and quality of service-driven adjustment for cloud networks. IEEE Transactions on Industrial
Informatics, 16(2), 1406–1416.

18. Chao, S.-C., Lin, K. C.-J., & Chen, M.-S. (2016). Flow classification for software-defined data
centers using stream mining. IEEE Transactions on Services Computing, 12(1), 105–116.

19. Chaudhary, R., Aujla, G. S., Kumar, N., & Zeadally, S. (2018). Lattice-based public key
cryptosystem for internet of things environment: Challenges and solutions. IEEE Internet of
Things Journal, 6(3), 4897–4909.

20. Cui, L., Yu, F. R., & Yan, Q. (2016). When big data meets software-defined networking: SDN
for big data and big data for SDN. IEEE Network, 30(1), 58–65.

21. Curtis, A. R., Kim, W., & Yalagandula, P. (2011). Mahout: Low-overhead datacenter traffic
management using end-host-based elephant detection. In Proceedings IEEE INFOCOM (pp.
1629–1637). Piscataway: IEEE.

22. Fortz, B., & Thorup, M. (2000). Internet traffic engineering by optimizing OSPF weights. In
Proceedings IEEE INFOCOM. Conference on Computer Communications. Nineteenth Annual
Joint Conference of the IEEE Computer and Communications Societies) (vol. 2, pp. 519–528).
Piscataway: IEEE.

23. Garroppo, R., Nencioni, G., Tavanti, L., & Scutella, M. G. (2013). Does traffic consolidation
always lead to network energy savings? IEEE Communications Letters, 17(9), 1852–1855.

24. Greenberg, A., Hamilton, J., Maltz, D. A., & Patel, P. (2008). The cost of a cloud: Research
problems in data center networks. ACM SIGCOMM Computer Communication Review, 39,
68–73.

25. Han, G., Jiang, J., Bao, N., Wan, L., & Guizani, M. (2015). Routing protocols for underwater
wireless sensor networks. IEEE Communications Magazine, 53(11), 72–78.

https://doi.org/10.17487/RFC2475
https://rfc-editor.org/rfc/rfc2475.txt
https://doi.org/10.17487/RFC1633
https://rfc-editor.org/rfc/rfc1633.txt
https://rfc-editor.org/rfc/rfc1633.txt

10 Software-Defined Networking in Data Centers 201

26. Han, Y., Seo, S.-s., Li, J., Hyun, J., Yoo, J.-H., & Hong, J. W.-K. (2014). Software defined
networking-based traffic engineering for data center networks. In The 16th Asia-Pacific
Network Operations and Management Symposium (pp. 1–6). Piscataway: IEEE.

27. Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P., Banerjee, S., &
McKeown, N. (2010). ElasticTree: Saving energy in data center networks. In Nsdi (vol. 10)
(pp. 249–264).

28. Hong, C.-Y., Kandula, S., Mahajan, R., Zhang, M., Gill, V., Nanduri, M., & Wattenhofer, R.
(2013). Achieving high utilization with software-driven WAN. In Proceedings of the ACM
SIGCOMM Conference on SIGCOMM (pp. 15–26).

29. Hopps, C. (2000). Rfc2992: Analysis of an equal-cost multi-path algorithm.
30. Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S., Wanderer, J.,

Zhou, J., Zhu, M., Zolla, J., Hölzle, U., Stuart, S., Vahdat, A. M. (2013). B4: Experience
with a globally-deployed software defined WAN. ACM SIGCOMM Computer Communication
Review, 43(4), 3–14.

31. Jarschel, M., Zinner, T., Hoßfeld, T., Tran-Gia, P., & Kellerer, W. (2014). Interfaces, attributes,
and use cases: A compass for SDN. IEEE Communications Magazine, 52(6), 210–217.

32. Jin, H., Pan, D., Liu, J., & Pissinou, N. (2012). OpenFlow-based flow-level bandwidth
provisioning for CICQ switches. IEEE Transactions on Computers, 62(9), 1799–1812.

33. Kandula, S., Sengupta, S., Greenberg, A., Patel, P., & Chaiken, R. (2009). The nature of
data center traffic: Measurements & analysis. In Proceedings of the 9th ACM SIGCOMM
Conference on Internet Measurement (pp. 202–208).

34. Kant, K. (2009). Data center evolution: A tutorial on state of the art, issues, and challenges.
Computer Networks, 53(17), 2939–2965.

35. Kreutz, D., Ramos, F. M. V., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S., & Uhlig,
S. (2014). Software-defined networking: A comprehensive survey. Proceedings of the IEEE,
103(1), 14–76.

36. La, R. J., & Anantharam, V. (2002). Utility-based rate control in the Internet for elastic traffic.
IEEE/ACM Transactions On Networking, 10(2), 272–286.

37. Li, D., Yu, Y., He, W., Zheng, K., & He, B. (2014). Willow: Saving data center network energy
for network-limited flows. IEEE Transactions on Parallel and Distributed Systems, 26(9),
2610–2620.

38. Li, L. E., Mao, Z. M., & Rexford, J. (2012). Toward software-defined cellular networks. In
European Workshop on Software Defined Networking (pp. 7–12). IEEE.

39. Li, Y., & Chen, M. (2015). Software-defined network function virtualization: A survey. IEEE
Access, 3, 2542–2553.

40. Liu, J., Li, J., Shou, G., Hu, Y., Guo, Z., & Dai, W. (2014). SDN based load balancing
mechanism for elephant flow in data center networks. In International Symposium on Wireless
Personal Multimedia Communications (pp. 486–490). IEEE.

41. Marbach, P. (2002). Priority service and max-min fairness. In Proceedings. Twenty-First
Annual Joint Conference of the IEEE Computer and Communications Societies (vol. 1, pp.
266–275). IEEE.

42. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker,
S., & Turner, J. (2008). OpenFlow: enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2), 69–74.

43. Michel, O., & Keller, E. (2017). SDN in wide-area networks: A survey. In Fourth International
Conference on Software Defined Systems (pp. 37–42). IEEE.

44. Mogul, J. C., Tourrilhes, J., Yalagandula, P., Sharma, P., Curtis, A. R., & Banerjee, S. (2010).
DevoFlow: Cost-effective flow management for high performance enterprise networks. In
Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks (pp. 1–60).

45. Nunes, B. A. A., Mendonca, M., Nguyen, X.-N., Obraczka, K., & Turletti, T. (2014). A survey
of software-defined networking: Past, present, and future of programmable networks. IEEE
Communications Surveys & Tutorials, 16(3), 1617–1634.

202 P. Kamboj and S. Pal

46. Oktian, Y. E., Witanto, E. N., Kumi, S., & Lee, S.-G. (2019). ISP network bandwidth
management: Using blockchain and SDN. In International Conference on Information and
Communication Technology Convergence (pp. 1330–1335). IEEE.

47. Rhamdani, F., Suwastika, N. A., & Nugroho, M. A. (2018). Equal-cost multipath routing in
data center network based on software defined network. In 6th International Conference on
Information and Communication Technology (ICoICT) (pp. 222–226). IEEE.

48. Riekstin, A. C., Januário, G. C., Rodrigues, B. B., Nascimento, V. T., Carvalho, T. C. M. B.,
& Meirosu, C. (2016). Orchestration of energy efficiency capabilities in networks. Journal of
Network and Computer Applications, 59, 74–87.

49. Rimal, B. P., Choi, E., & Lumb, I. (2009). A taxonomy and survey of cloud computing systems.
In Fifth International Joint Conference on INC, IMS and IDC (pp. 44–51). IEEE.

50. Shang, Y., Li, D., & Xu, M. (2010). Energy-aware routing in data center network. In
Proceedings of the First ACM SIGCOMM Workshop on Green Networking (pp. 1–8).

51. Sharkh, M. A., Jammal, M., Shami, A., & Ouda, A. (2013). Resource allocation in a network-
based cloud computing environment: design challenges. IEEE Communications Magazine,
51(11), 46–52.

52. Shirali-Shahreza, S., & Ganjali, Y. (2015). ReWiFlow: Restricted wildcard OpenFlow rules.
ACM SIGCOMM Computer Communication Review, 45(5), 29–35.

53. Shu, Z., Wan, J., Lin, J., Wang, S., Li, D., Rho, S., & Yang, C. (2016). Traffic engineering in
software-defined networking: Measurement and management. IEEE Access, 4, 3246–3256.

54. Staessens, D., Sharma, S., Colle, D., Pickavet, M., & Demeester, P. (2011). Software
defined networking: Meeting carrier grade requirements. In 18th IEEE Workshop on Local
& Metropolitan Area Networks (LANMAN) (pp. 1–6). IEEE.

55. Sun, Y., & Kim, M. S. (2010). Tree-based minimization of TCAM entries for packet
classification. In 7th IEEE Consumer Communications and Networking Conference (pp. 1–
5). IEEE.

56. Swallow, G. (1999). MPLS advantages for traffic engineering. IEEE Communications
Magazine, 37(12), 54–57.

57. Tajiki, M. M., Salsano, S., Chiaraviglio, L., Shojafar, M., & Akbari, B. (2018). Joint energy
efficient and QoS-aware path allocation and VNF placement for service function chaining.
IEEE Transactions on Network and Service Management, 16(1), 374–388.

58. Thanh, N. H., Nam, P. N., Truong, T.-H., Hung, N. T., Doanh, L. K., & Pries, R. (2012).
Enabling experiments for energy-efficient data center networks on OpenFlow-based platform.
In Fourth International Conference on Communications and Electronics (pp. 239–244). IEEE.

59. Thyagaturu, A. S., Mercian, A., McGarry, M. P., Reisslein, M., & Kellerer, W. (2016). Software
defined optical networks (SDONs): A comprehensive survey. IEEE Communications Surveys
& Tutorials, 18(4), 2738–2786.

60. Vasić, N., Bhurat, P., Novaković, D., Canini, M., Shekhar, S., & Kostić, D. (2011). Identifying
and using energy-critical paths. In Proceedings of the Seventh Conference on emerging
Networking Experiments and Technologies (pp. 1–12).

61. Vu, T. H., Luc, V. C., Quan, N. T., Thanh, N. H., & Nam, P. N. (2015). Energy saving for
OpenFlow switch on the NetFPGA platform based on queue engineering. SpringerPlus, 4(1),
64.

62. Wang, X., Yao, Y., Wang, X., Lu, K., & Cao, Q. (2012). CARPO: Correlation-aware power
optimization in data center networks. In Proceedings IEEE INFOCOM (pp. 1125–1133). IEEE.

63. Xia, W., Zhao, P., Wen, Y., & Xie, H. (2016). A survey on data center networking (DCN):
Infrastructure and operations. IEEE Communications Surveys & Tutorials, 19(1), 640–656.

64. Xie, K., Huang, X., Hao, S., & Ma, M. (2018). Distributed power saving for large-scale
software-defined data center networks. IEEE Access, 6, 5897–5909.

65. Xu, G., Dai, B., Huang, B., & Yang, J. (2015). Bandwidth-aware energy efficient routing with
SDN in data center networks. In IEEE 17th International Conference on High Performance
Computing and Communications, IEEE 7th International Symposium on Cyberspace Safety
and Security, and IEEE 12th International Conference on Embedded Software and Systems
(pp. 766–771). IEEE.

10 Software-Defined Networking in Data Centers 203

66. Xu, G., Dai, B., Huang, B., Yang, J., & Wen, S. (2017). Bandwidth-aware energy efficient
flow scheduling with SDN in data center networks. Future Generation Computer Systems, 68,
163–174.

67. Yang, Y., Xu, M., & Li, Q. (2014). Towards fast rerouting-based energy efficient routing.
Computer Networks, 70, 1–15.

68. Yoshioka, K., Hirata, K., &Yamamoto, M. (2017). Routing method with flow entry aggregation
for software-defined networking. In International Conference on Information Networking (pp.
157–162). IEEE.

69. Yu, M., Rexford, J., Freedman, M. J., & Wang, J. (2010). Scalable flow-based networking with
DIFANE. ACM SIGCOMM Computer Communication Review, 40(4), 351–362.

70. Zakia, U., & Yedder, H. B. (2017). Dynamic load balancing in SDN-based data center net-
works. In 8th IEEE Annual Information Technology, Electronics and Mobile Communication
Conference (pp. 242–247). IEEE.

71. Zhou, L., Bhuyan, L. N., & Ramakrishnan, K. K. (2019). DREAM: Distributed energy-aware
traffic management for data center networks. In Proceedings of the Tenth ACM International
Conference on Future Energy Systems (pp. 273–284).

72. Zhu, H., Liao, X., de Laat, C., & Grosso, P. (2016). Joint flow routing-scheduling for
energy efficient software defined data center networks: A prototype of energy-aware network
management platform. Journal of Network and Computer Applications, 63, 110–124.

73. Zhu, J., Jiang, X., Yu, Y., Jin, G., Chen, H., Li, X., & Qu, L. (2020). An efficient priority-driven
congestion control algorithm for data center networks. China Communications, 17(6), 37–50.

Chapter 11
QoS-Aware Dynamic Flow Management
in Software-Defined Data Center
Networks

Ayan Mondal and Sudip Misra

11.1 Introduction

With technological advancement, the Internet of things (IoT) devices are capable of
generating a huge amount of data, which are to be stored in data centers or managed
by the backbone of the data center networks (DCNs) [4, 9]. Additionally, these IoT
devices are heterogeneous in terms of computation and memory capacity [37]. As
a result, these devices are capable of handling heterogeneous applications in terms
of datarate requirements. To handle these heterogeneous applications, we envision
using the fat-tree architecture-based DCN, which enables to reduce the single point
failure. On the other hand, we consider that software-defined networking (SDN) is
one of the promising technologies which can enable the fat-tree DCN for balanced
data traffic in the presence of heterogeneous applications. In SDN, due to having
a centralized overview of the network, the network failures also can be reduced
[7, 8, 10]. However, in the existing literature, the heterogeneity of the flows while
designing the schemes for software-defined DCNs is not considered.

Software-defined DCN is an integrating architecture of fat-tree DCN, which
follows a hierarchical architecture, and SDN. We envision that instead of having
a single controller for the overall network, each pod has a dedicated controller in
addition to the centralized controller. Thereby, it reduces the load on the centralized
controller and also helps in the efficient management of the network. In the existing
literature, researchers focused on designing schemes, viz. [22, 35] for the data

A. Mondal (�)
Department of Computer Science, University of Rennes 1, INRIA, CNRS, IRISA, Rennes, France
e-mail: ayan.mondal@irisa.fr

S. Misra
Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur,
Kharagpur, India
e-mail: smisra@cse.iitkgp.ac.in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. S. Aujla et al. (eds.), Software Defined Internet of Everything, Technology,
Communications and Computing, https://doi.org/10.1007/978-3-030-89328-6_11

205

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89328-6_11&domain=pdf
mailto:ayan.mondal@irisa.fr
mailto:smisra@cse.iitkgp.ac.in
https://doi.org/10.1007/978-3-030-89328-6_11

206 A. Mondal and S. Misra

management and flow rule placement. However, none of these schemes considers
the presence of heterogeneous flows in the network. Additionally, few works, viz.
[6, 27], focused on managing the heterogeneous flows in SDN. However, these
works are capable of providing a local solution and cannot ensure balanced traffic
distribution globally. On the other hand, few data transmission schemes, viz. [25],
for DCN are proposed by the researchers. However, none of the schemes considers
the heterogeneity among the switches and the presence of SDN architecture.
Therefore, we argue that we need a design of an efficient data flow management
scheme for software-defined DCN while considering the quality of service (QoS)
parameters such as per-flow throughput and delay, and overall network throughput
and delay [5, 11].

In this work, we design a QoS-aware flowmanagement scheme, named FASCES,
for software-defined DCN to ensure that heterogeneous applications generated by
the IoT devices are served efficiently while allocating the network resources dynam-
ically for each application. We use a single-leader-multiple-followers Stackelberg
game to design the scheme—FASCES. In FASCES, each controller acts as the
leader and decides the flow rule association among the incoming flows and the
available switches. On the other hand, the IoT applications are considered to be
the followers in FASCES. These followers aim to achieve a high datarate while
satisfying a delay bound, which depends on the type of applications. To summarize,
the contributions of this chapter are as follows:

1. We design a dynamic flow management scheme, named FASCES, for software-
defined DCN in the presence of mobile IoT devices, while ensuring high QoS in
terms of throughput and delay.

2. We use a single-leader-multiple-follower Stackelberg game to design the inter-
actions between the IoT applications and the controllers. We also evaluate
the existence of the Stackelberg equilibrium for FASCES. Using FASCES, we
eventually obtain an optimal distribution of flows in the software-defined DCN
and optimal datarate of the IoT applications.

3. We evaluate the performance of FASCES in terms of per-flow throughput and
delay, and overall network throughput and delay, while comparing with the
existing schemes.

The rest of the chapter is organized as follows. In Sect. 11.2, we briefly present
the related works in the area of resource management in SDN as well DCN and
identified the lacuna in the existing works. The system model and the proposed
FASCES scheme are described in Sects. 11.3 and 11.4, respectively. Thereafter, we
analyze the performance of FASCES in Sect. 11.5 while comparing with the existing
schemes through simulation. Finally, we conclude the chapter while citing a few
future directions in Sect. 11.6.

11 QoS-Aware Dynamic Flow Management in Software-Defined Data Center. . . 207

11.2 Related Works

In this section, we survey the related literature on traffic engineering schemes for
DCNs and SDNs in detail. The existing literature related to traffic engineering
of SD-DCNs is divided into two categories—resource management in SDNs and
DCNs.

Resource Management in SDNs
In the existing literature, Bera et al. [13] studied different aspects of resource
allocation in SDN for IoT. Saha et al. [35] proposed a flow-rule aggregation scheme
for SDN, while focusing on the problem of over-subscription. The authors used
a key-based aggregation policy to reduce the number of flow rules. In another
work, Maity et al. [22] proposed a tensor-based flow-rule aggregation scheme in
SDN. Sadeh et al. [33] designed a flow-traffic aware rule placement scheme while
reducing the usage of TCAM space. On the other hand, an optimal multipath flow
management scheme is proposed by Rottenstreich et al. [32] while considering
network heterogeneity in terms of network path in SDN. Mondal et al. [28] modeled
a data traffic management scheme while considering that the data volume associated
with the flows is known a priori. An SDN-based network storage scheme is proposed
by Wang et al.[42] in the absence of any physical storage. For reducing the usage
of oversubscribed buffer, Li et al. [21] suggested not to store the entire packet at the
switch but only the packet header. Hayes et al. [20] studied the traffic-classification
in SDN. In another work, Saha et al. [34] proposed a QoS-aware routing scheme for
SDN, while maximizing end-to-end delay and considered different types of flows in
terms of delay- and loss-sensitivity. Bera et al. [12] studied a mobility-aware SDN
and attempted to maximize the overall network performance.

Having a centralized overview of the network in SDN, controller can reduce the
packet drop and delay while ensuring efficient data traffic management [1]. Tseng
et al. [40] designed a scheme for ensuring path stability in hybrid SDN. In this
work, initially, the paths are calculated distributively and locally while reducing
the computational complexity. Thereafter, the paths are re-evaluated centrally to
ensure high stability. Misra and Bera [23] proposed a task offloading scheme for
an SDN-based fog network. The authors minimized the delay in task offloading
and computation while selecting the optimal number of fog nodes. Singh et al. [38]
proposed a hash-based flow-table to reduce the flow-table lookups. In another work,
Aujla et al. [5] proposed a traffic flow management scheme in SDN. Moreover, a
traffic engineering scheme is proposed by Moradi et al. [30] for SDN-based ISP
networks in the presence of heterogeneous links and switches. A fair resource
allocation scheme is designed by Allybokus et al. [3] in multipath SDN. Sanvito
et al. [36] also proposed a flow-table reconfiguration scheme, while considering
overlapping data flow paths.

Resource Management in DCNs
In existing literature, researchers studied Fat-tree DCNs [2, 19]. The different
challenges of DCN such as generation, processing, and storage of data are studied

208 A. Mondal and S. Misra

by Chen et al. [18] in the presence of various applications such as social networks,
healthcare, smart grid, and managing enterprises. Similarly, Chakraborty et al.
designed schemes for provisioning sensor-based services in data center networks
while considering economic aspect [14, 16] and resource orchestration [15, 24, 26].
A network selection scheme for multimedia data delivery in ad-hoc networks
proposed by Trestian et al. [39]. Moreover, the optimal server positioning scheme is
proposed by Paul et al. [31] while minimizing the maintenance cost.

Synthesis
Based on the study of the existing works, we observe that a few schemes are pro-
posed for data traffic management in SDN as well as DCN. However, the researchers
have not considered the presence of heterogeneous applications and switches in the
existing literature. Additionally, efficient management of heterogeneous data traffic
in software-defined DCNwhile ensuring optimized QoS in terms of high throughput
and low delay is one of the important aspects which needs to be addressed.

11.3 System Model

We consider an SDN-enabled Fat-Tree architecture of DCN [25]. A general fat-tree
architecture is composed of three layers—edge, aggregation, and core layers, which
enables reducing the bottleneck in transmission as well as is capable of handling the
single point failures. Additionally, we consider a multi-tier SDN, where there is a
dedicated SDN controller for each pod at the aggregation layer. The switches at the
aggregation layer are connected with the switches at the core layers. We consider
that the switches at the core layer are managed by a single controller. Moreover,
in this work, we consider that the IoT devices at the edge layer are mobile and
are connected to the switches at the aggregation layer through the access points.
The system architecture is depicted in Fig. 11.1. The IoT devices are capable of
executing heterogeneous applications having different datarate.

Each application an of IoT devices n ∈ N , where N is the set of IoT devices at
the edge layer, denotes a separate flow1 and has a datarate ra and connected with
a switch s. These switches at the aggregation layers, where the set of switches is
denoted by S2, are connected with the set of switches at the core layer, which is
denoted by S1. We consider that each switch at the aggregation and core layers is
heterogeneous in terms of bandwidth and TCAM. Furthermore, in addition to the
IoT devices, we also consider the presence of servers at the edge layer.

To achieve a high throughput with an optimal delay, we need to ensure a balanced
data traffic in the network. Considering that each switch s has a limited capacity of
Bs and there are As set of flows associated with switch s, where ∀s ∈ S1 ∪ S2, the
following constraint needs to be satisfied:

1 For the rest of the chapter, we use an to denote flow or application a generated from IoT device
n, synonymously.

11 QoS-Aware Dynamic Flow Management in Software-Defined Data Center. . . 209

Fig. 11.1 Schematic diagram of software-defined fat-tree DCN

Bs ≤
∑

an∈As

ra (11.1)

On the other hand, each application an has a delay threshold dth
a . Hence, while

allocating the flows to the switches, the following constraint also needs to be
satisfied.

210 A. Mondal and S. Misra

dth
a ≤

∑

s∈Pa

ds
a (11.2)

where Pa denotes the set of switches associated with the flow an; and ds
a represent

the delay at switch s for handling flow an. We consider that for handling each flow,
the switches follow first-in-first-out (FIFO) scheduling and require a fixed duration

. Hence, for processing a single packet, we get:

ds
a =

∑

s∈Pa

∑

an∈As

 (11.3)

Additionally, due to limited TCAM, the maximum number of flows can be
handled by each switch s is denoted byMs and must satisfy the following constraint:

Ms ≥ |As | (11.4)

Hence, to serve a high number of flows, the controllers can request to reduce the
associated datarate for each application an, however, each IoT device n needs to
ensure that minimum datarate rmin

a is achieved, i.e., ra ≥ rmin
a .

11.4 FASCES: QoS-Aware Dynamic Flow Management
Scheme

We propose a single-leader-multiple-followers Stackelberg game for studying the
interaction between the IoT applications and the controllers in software-defined data
center networks. The Stackelberg game is a non-cooperative game that deals with
the interaction among the leaders and followers. In FASCES, the controller acts as
the leader, and the IoT application act as the followers. In this work, the controllers
at the aggregation layer deal with the IoT applications directly. However, the
controller at the core layer needs to interact with the controllers at the aggregation
layer. Hence, the decision of each leader at the aggregation layer is always
influenced by the decision of the controllers at the core layer. In the proposed game,
the leaders aim to maximize their utility values while maximizing the bandwidth
utilization with optimal delay and maximizing the number of applications served.
On the other hand, the followers aim to maximize their utility while obtaining a high
datarate with less delay. Therefore, the components of FASCES are as follows:

1. Each controller acts as the leader. The utility of each controller at the aggregation
layer is influenced by the decision of the controller at the core layer. The
decision of the controllers is executed by the switches, hence the switches are
not considered active players in the proposed game.

11 QoS-Aware Dynamic Flow Management in Software-Defined Data Center. . . 211

2. Each IoT application acts as the follower and decides the required datarate. The
maximum datarate can be achieved by each application depends on the hosted
IoT device.

3. The IoT applications run for a finite duration which is not known a priori.

11.4.1 Single-Leader-Multiple-Followers Stackelberg Game:
The Justification

The proposed system comprising of the fat-tree DCN and the SDN follows a
hierarchical architecture. The different entities, such as the controllers and IoT
applications, are non-cooperative and aim to maximize their payoff values. This
results in a “oligopolistic market” scenario [17]. On the other hand, Stackelberg
game is the most suitable game-theoretic approach to model a hierarchical system
with non-cooperative players. Hence, we propose to use the single-leader-multiple-
followers Stackelberg game for designing the FASCES scheme.

11.4.2 Game Formulation

To model the game-theoretic interactions in FASCES, we design two utility
functions for the controllers and the IoT applications, which are discussed as
follows.

Utility Function of Each IoT Application
The utility function Ua(·) of each IoT application signifies the satisfaction of the
end-users in data transmission. Each application an needs to finalize an optimal
datarate r∗

a to ensure that the associated flow rule is active. Considering that each
switch s ∈ Pa handles As set of applications, the optimal datarate of flow r∗

a

depends on r∗−a , where r∗−a = As \ {an}. This is because the IoT applications
are non-cooperative. Therefore, the utility function Ua(ra, r−a, As, Pa) of each IoT
application an of IoT device n needs to satisfy the following constraints:

1. Each IoT device aims to achieve the maximum datarate rmax
a , where ra ≤ rmax

a .
Therefore, the utility function Ua(ra, r−a, As, Pa) is a non-decreasing function.
Mathematically,

∂Ua(ra, r−a, As, Pa)

∂ra
≥ 0 (11.5)

2. The payoff value of Ua(ra, r−a, As, Pa) decreases on increasing the
datarate beyond the optimal value. Therefore, in the marginal condition,
Ua(ra, r−a, As, Pa) is considered to be a non-increasing function. Mathemati-
cally,

212 A. Mondal and S. Misra

∂2Ua(ra, r−a, As, Pa)

∂(ra)2
< 0 (11.6)

3. With the increase in the number of applications, i.e., |As | managed by each
switch s, the probability of flow rule replacement increases. Hence, the payoff
of the utility function Ua(ra, r−a, As, Pa) decreases with the increase in |As |.
Mathematically,

∂Ua(ra, r−a, As, Pa)

∂|As | < 0, ∀s ∈ Pa (11.7)

Therefore, motivated by the work of Tushar et al. [41], in FASCES, the utility
function Ua(ra, r−a, As, Pa) of IoT application an is represented as follows:

Ua(ra, r−a, As, Pa) = rmax
a ra −

(
rmin
a

rmax
a

)
ra

2 − ra

∑
s∈Pa

|As |
|Pa| (11.8)

In FASCES, each IoT application aims to maximize the payoff ofUa(ra, r−a, As,

Pa), while deciding an optimal datarate. Mathematically,

raUa(ra, r−a, As, Pa) (11.9)

while satisfying the constraints mentioned in Eqs. (11.1) and (11.2).

Utility Function of Each Controller
The utility function Bc(ra, r−a, As) of each controller c signifies the utilization of
the switch capacity Bs . The controllers aim to maximize the set of applications
served as well as maximize the bandwidth allocated to each application or flow.
Therefore, the utility function Bc(ra, r−a, As) of each controller c needs to satisfy
the following constraints:

1. Each controller tries to allocate high bandwidth possible to ensure high utilization
of its capacity. Mathematically,

∂Bc(ra, r−a, As)

∂ra
≥ 0 (11.10)

2. The overall objective of the controllers is to accommodate high number of flows,
while satisfying the physical limitations of the switches. Mathematically,

∂Bc(ra, r−a, As, Pa)

∂|As | > 0 (11.11)

Therefore, we design the utility function Bc(ra, r−a, As) of each controller c as
follows:

11 QoS-Aware Dynamic Flow Management in Software-Defined Data Center. . . 213

∑
ra,As

Bc(ra, r−a, As) (11.12)

Each controller c aims to maximize the payoff ofBc(ra, r−a, As)while satisfying
the constraints in Eqs. (11.1) and (11.4).

11.4.3 Existence of Equilibrium

In this section, we evaluate the existence of the Stackelberg equilibrium, defined in
Definition 11.4.3, for FASCES in Theorem 11.4.3.

In FASCES, the Stackelberg equilibrium is denoted as a tuple of 〈r∗
a , A∗

s 〉, where
r∗
a and A∗

s represent the optimal datarate for application an and the optimal set of
flows associated with switch s ∈ S1 ∪ S2. The equilibrium condition also needs to
satisfy the following constraints:

Ua(r
∗
a , r∗−a, A

∗
s , P

∗
a) ≥ Ua(ra, r

∗−a, A
∗
s , P

∗
a) (11.13)

Bc(r
∗
a , r∗−a, A

∗
s) ≥ Bc(r

∗
a , r∗−a, As) (11.14)

Given an optimal set of flows A∗
s for each switch s ∈ Pa , a Stackelberg

equilibrium exists for each IoT application an.

Proof The cumulative payoff obtained by the applications As associated with
switch s is represented as follows:

U s(·) =
∑

an∈As

Ua(ra, r−a, As, Pa) (11.15)

By considering the Karush–Kuhn–Tucker (KKT) conditions [29] on U s(·), we
get:

Ls = U s(·) + λ1(Bs −
∑

an∈As

ra) +
∑

an∈As

λa
2(d

th
a −

∑

s∈Pa

ds
a) (11.16)

where λ1 and λa
2 are the Lagrangian multipliers. By taking the derivative of Ls , we

obtain the Hessian matrix ∇2Ls is as follows:

214 A. Mondal and S. Misra

∇2Ls =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− rmin
1

rmax
1

· · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · − rmin
a

rmax
a

· · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · − rmin|As |
rmax|As |

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.17)

We observe that the obtained Hessian matrix is a negative diagonal matrix.
Hence, we conclude that there exists at least one Stackelberg equilibrium in
FASCES. �

11.4.4 Proposed Workflow

To obtain the optimal distribution of flows, FASCES follows the workflow as
shown in Fig. 11.2. Initially, each application informs about their minimum datarate
requirement to the controllers. On receiving the set of applications to be served, the
controllers allocate the flows optimally among the available switches at aggregation
and core layers. Thereafter, the controllers inform the path associated with each flow
to the IoT devices, and these devices try to find an optimal value of the datarate can
be achieved while interacting with the controllers.

11.5 Performance Evaluation

In this section, the performance of FASCES is analyzed through simulation with
varying the number of heterogeneous IoT applications. We simulated using the
MATLAB simulation platform considering a terrain of 10 × 10 m2 [25]. The
deployment of switches follows a grid pattern. On the other hand, IoT devices are
deployed randomly and follow random waypoint mobility model[25]. We consider
that there are 2 pods at the aggregation layer, where each pod is comprised of 4
switches and 2 switches at the core layer. We considered that the IoT applications
generate data in chunk having size 800Mb, as shown in Table 11.1. We consider the
datarate requirement distribution of IoT applications, as presented in Table 11.2.

The performance of FASCES is evaluated while comparing two of the existing
schemes—data flow management in SDN (FlowMan) [27] and data broadcasting
in fat-tree DCN (D2B) [25]. In FlowMan, the authors proposed a Nash bargaining
game-based data traffic management scheme for SDN. However, while allocating
resources, the authors only considered the flows within one-hop neighbors. In other
words, FlowMan is capable of ensuring a local optimum which is not sufficient for

11 QoS-Aware Dynamic Flow Management in Software-Defined Data Center. . . 215

Fig. 11.2 Workflow of FASCES

a network with heterogeneous switches. On the other hand, in D2B, the authors
proposed a Stackelberg game-based data broadcasting scheme for DCN. However,
in D2B, only a single IoT source is considered. Additionally, the switches are
homogeneous and traditional without having any limitation on the set of applications
that can be handled by each switch. Using FASCES, we address these lacunae in the
existing literature while ensuring balanced data traffic in the network.

216 A. Mondal and S. Misra

Table 11.1 Simulation parameters

Parameter Value

Number of applications 1000–5000

Maximum datarate of IoT applications 128–5000Kbps

Velocity of IoT devices 6–10m/s

Maximum capacity of each switches 5–10Gbps

Chunk of data generated by each IoT applications 500–2000

Table 11.2 Maximum
datarate distribution [25]

Maximum datarate (Kbps) IoT applications (%)

5000 15

1000 25

1000 25

384 40

128 20

 0

 0.25

 0.5

 0.75

 1

1000 2500 5000

(b)
Number of Applications

 0

 0.25

 0.5

 0.75

 1

1000 2500 5000

(a)

N
et

w
or

k
D

el
ay

(N

or
m

al
iz

ed
)

Number of Applications

 0

 0.25

 0.5

 0.75

 1

1000 2500 5000

(c)

N
et

w
or

k
D

el
ay

(N

or
m

al
iz

ed
)

Number of Applications

 FASCES FlowMan D2B

Fig. 11.3 Per-flow throughput. (a) Velocity = 6m/s. (b) Velocity = 8m/s. (c) Velocity = 10m/s

We evaluate the performance of FASCES based on the following parameters—
(1) per-flow throughput, (2) per-flow delay, (3) network throughput, (4) network
delay, and (5) set of serviced IoT applications.

Figure 11.3 depicts that with the increase in the number of applications, the per-
flow throughput increases 15.37–26.91% using FASCES than using FlowMan and
D2B. However, with the increase in the velocity of IoT devices, the throughput
decreases as the applications need to be associated with new switches very often
and a few packets get dropped due to the delay constraint. On the other hand, the
delay for each flow also reduces by 27.78–36.67% using FASCES than that of using
FlowMan and D2B, as depicted in Fig. 11.4. Additionally, we observe that with the
increase in the number of applications, the increase in delay is not significant using
FASCES.

11 QoS-Aware Dynamic Flow Management in Software-Defined Data Center. . . 217

 0

 0.25

 0.5

 0.75

 1

1000 2500 5000

(b)
Number of Applications

 0

 0.25

 0.5

 0.75

 1

1000 2500 5000

(a)

Pe
r-

Fl
ow

 D
el

ay

(N
or

m
al

iz
ed

)

Number of Applications

 0

 0.25

 0.5

 0.75

 1

1000 2500 5000

(c)

Pe
r-

Fl
ow

 D
el

ay

(N
or

m
al

iz
ed

)

Number of Applications

 FASCES FlowMan D2B

Fig. 11.4 Per-flow delay. (a) Velocity = 6m/s. (b) Velocity = 8m/s. (c) Velocity = 10m/s

 0

 0.25

 0.5

 0.75

 1

1000 2500 5000

(b)
Number of Applications

 0

 0.25

 0.5

 0.75

 1

1000 2500 5000

(a)

N
et

w
or

k
D

el
ay

(N

or
m

al
iz

ed
)

Number of Applications

 0

 0.25

 0.5

 0.75

 1

1000 2500 5000

(c)

N
et

w
or

k
D

el
ay

(N

or
m

al
iz

ed
)

Number of Applications

 FASCES FlowMan D2B

Fig. 11.5 Network delay. (a) Velocity = 6m/s. (b) Velocity = 8m/s. (c) Velocity = 10m/s

Similarly, we observe that the network delay decreases by 16.67–19.45% and
the network throughput increases by 16.67–19.45% using FASCES than using
FlowMan and D2B, as depicted in Figs. 11.5 and 11.6, respectively. This is because
the flows are distributed efficiently among the switches at the aggregation and core
layers while ensuring efficient utilization of link capacity and TCAM space.

Furthermore, from Fig. 11.7, we observe that FASCES is capable of serving all
the applications with efficient data traffic distribution. However, with the increase in
the number of applications, FASCES cannot serve 100% application due to physical

218 A. Mondal and S. Misra

 0

 0.25

 0.5

 0.75

 1

1000 2500 5000

(b)
Number of Applications

 0

 0.25

 0.5

 0.75

 1

1000 2500 5000

(a)

N
et

w
or

k
T

hr
ou

gh
pu

t
(N

or
m

al
iz

ed
)

Number of Applications

 0

 0.25

 0.5

 0.75

 1

1000 2500 5000

(c)

N
et

w
or

k
T

hr
ou

gh
pu

t
(N

or
m

al
iz

ed
)

Number of Applications

 FASCES FlowMan D2B

Fig. 11.6 Network throughput. (a) Velocity = 6m/s. (b) Velocity = 8m/s. (c) Velocity = 10m/s

 0

 0.25

 0.5

 0.75

 1

1000 2500 5000

(b)
Number of Applications

 0

 0.25

 0.5

 0.75

 1

1000 2500 5000

(a)

Se
rv

er
d

Io
T

A

pl
ic

at
io

ns

(N
or

m
al

iz
ed

)

Number of Applications

 0

 0.25

 0.5

 0.75

 1

1000 2500 5000

(c)

Se
rv

er
d

Io
T

A

pl
ic

at
io

ns

(N
or

m
al

iz
ed

)

Number of Applications

 FASCES FlowMan D2B

Fig. 11.7 Serviced IoT applications. (a) Velocity = 6m/s. (b) Velocity = 8m/s. (c) Velocity =
10m/s

limitations of the system. Using FASCES, we yield a 4.56–16.67% increase in
serviced application than using FlowMan and D2B.

11.6 Conclusion

In this work, we proposed a data traffic management scheme, named FASCES,
and modeled the interaction between the controllers and the SDN switches using a

11 QoS-Aware Dynamic Flow Management in Software-Defined Data Center. . . 219

single-leader-multiple-followers Stackelberg game. FASCES is capable of ensuring
balanced data traffic in the presence of heterogeneous IoT flows and SDN switches.
We observed that FASCES reduces the per-flow delay as well as network delay at
least by 27.78 and 16.67%, respectively while ensuring an increase in both per-flow
throughput and network throughput. Through simulation, we yield that FASCES
ensures efficient flow distribution in software-defined DCN.

In future, this work can be extended while designing data traffic management for
the recursive architectures of DCN such as B-Cube and DCell. Additionally, we can
also explore this work while considering a multi-tier controller structure for each
layer in fat-tree DCN. Moreover, this work also can be extended while considering
the link and switch failure in software-defined DCN.

References

1. Agarwal, S., Kodialam, M., & Lakshman, T. V. (2013). Traffic engineering in software defined
networks, in Proceedings of IEEE INFOCOM (pp. 1–9). https://doi.org/10.1109/infcom.2013.
6567024

2. Al-Fares, M., Loukissas, A., & Vahdat, A. (2008). A scalable, commodity data center network
architecture, in Proceedings of ACM SIGCOMM Conference on Data Communication (pp. 63–
74). New York: ACM. http://doi.acm.org/10.1145/1402958.1402967

3. Allybokus, Z., Avrachenkov, K., Leguay, J., & Maggi, L. (2018). Multi-path alpha-fair
resource allocation at scale in distributed software-defined networks. IEEE Journal on Selected
Areas in Communications, 36(12), 2655–2666. https://doi.org/10.1109/JSAC.2018.2871293

4. Aujla, G. S., Chaudhary, R., Kaur, K., Garg, S., Kumar, N., & Ranjan, R. (2018). SAFE:
SDN-assisted framework for edge–cloud interplay in secure healthcare ecosystem. IEEE
Transactions on Industrial Informatics, 15(1), 469–480.

5. Aujla, G. S., Chaudhary, R., Kumar, N., Kumar, R., & Rodrigues, J. J. P. C. (2018). An
ensembled scheme for QoS-aware traffic flow management in software defined networks, in
2018 IEEE International Conference on Communications (ICC) (pp. 1–7). Piscataway: IEEE.
https://doi.org/10.1109/ICC.2018.8422596

6. Aujla, G. S., Chaudhary, R., Kumar, N., Rodrigues, & J. J., Vinel, A. (2017). Data offloading in
5g-enabled software-defined vehicular networks: A Stackelberg-game-based approach. IEEE
Communications Magazine, 55(8), 100–108.

7. Aujla, G. S., Garg, S., Batra, S., Kumar, N., You, I., & Sharma, V. (2019). DROpS: A demand
response optimization scheme in SDN-enabled smart energy ecosystem. Information Sciences,
476, 453–473.

8. Aujla, G. S., Jindal, A., & Kumar, N. (2018). EVaaS: Electric vehicle-as-a-service for energy
trading in SDN-enabled smart transportation system. Computer Networks, 143, 247–262.

9. Aujla, G. S. S., Kumar, N., Garg, S., Kaur, K., & Ranjan, R. (2019). EDCSuS: Sustainable
edge data centers as a service in SDN-enabled vehicular environment. IEEE Transactions
on Sustainable Computing (pp. 1–14). Early Access. https://doi.org/10.1109/TSUSC.2019.
2907110

10. Aujla, G. S., Singh, M., Bose, A., Ku mar, N., Han, G., & Buyya, R. (2020). BlockSDN:
Blockchain-as-a-service for software defined networking in smart city applications. IEEE
Network, 34(2), 83–91.

11. Aujla, G. S., Singh, A., & Kumar, N. (2019). Adaptflow: Adaptive flow forwarding scheme for
software-defined industrial networks. IEEE Internet of Things Journal, 7(7), 5843–5851.

https://doi.org/10.1109/infcom.2013.6567024
https://doi.org/10.1109/infcom.2013.6567024
http://doi.acm.org/10.1145/1402958.1402967
https://doi.org/10.1109/JSAC.2018.2871293
https://doi.org/10.1109/ICC.2018.8422596
https://doi.org/10.1109/TSUSC.2019.2907110
https://doi.org/10.1109/TSUSC.2019.2907110

220 A. Mondal and S. Misra

12. Bera, S., Misra, S., & Obaidat, M. S. (2016). Mobility-aware flow-table implementation in
software-defined IoT, in Proceedings of IEEE GLOBECOM (pp. 1–6). https://doi.org/10.1109/
GLOCOM.2016.7841995

13. Bera, S., Misra, S., & Vasilakos, A. V. (2017). Software-defined networking for internet of
things: A survey. IEEE Internet of Things Journal 4(6), 1994–2008.

14. Chakraborty, A., Misra, S., & Mondal, A. (2020). QoS-aware dynamic cost management
scheme for sensors-as-a-service. IEEE Transactions on Services Computing, Early Access,
1–12 (2020). https://doi.org/10.1109/TSC.2020.3011495

15. Chakraborty, A., Misra, S., Mondal, A., & Obaidat, M. S. (2020). Sensorch: QoS-aware
resource orchestration for provisioning sensors-as-a-service, in ICC 2020 - 2020 IEEE Inter-
national Conference on Communications (ICC) (pp. 1–6). https://doi.org/10.1109/ICC40277.
2020.9148621

16. Chakraborty, A., Mondal, A., & Misra, S. (2018). Cache-enabled sensor-cloud: The economic
facet, in 2018 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6.
https://doi.org/10.1109/WCNC.2018.8377069

17. Chakraborty, A., Mondal, A., Roy, A., & Misra, S. (2018). Dynamic trust enforcing pricing
scheme for sensors-as-a-service in sensor-cloud infrastructure. IEEE Transactions on Services
Computing, 14(5), pp. 1345–1356. Early Access. https://doi.org/10.1109/TSC.2018.2873763

18. Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications,
19(2), 171–209. https://doi.org/10.1007/s11036-013-0489-0

19. Guo, Z., & Yang, Y. (2013). Multicast fat-tree data center networks with bounded link
oversubscription, in Proceedings of IEEE INFOCOM (pp. 350–354). https://doi.org/10.1109/
INFCOM.2013.6566793

20. Hayes, M., Ng, B., Pekar, A., & Seah, W. K. G.: (2018). Scalable architecture for SDN
traffic classification. IEEE Systems Journal, 12, 3203–3214. https://doi.org/10.1109/JSYST.
2017.2690259

21. Li, F., Cao, J., Wang, X., Sun, Y., Pan, T., & Liu, X. (2017). Adopting SDN switch buffer:
Benefits analysis and mechanism design, in Proceedings of IEEE International Conference
on Distributed Computing Systems (ICDCS) (pp. 2171–2176). https://doi.org/10.1109/ICDCS.
2017.255

22. Maity, I., Mondal, A., Misra, S., & Mandal, C. (2019). Tensor-based rule-space management
system in SDN. IEEE Systems Journal, 13(4), 3921–3928.

23. Misra, S., & Bera, S. (2020). Soft-VAN: Mobility-aware task offloading in software-defined
vehicular network. IEEE Transactions on Vehicular Technology, 69(2), 2071–2078.

24. Misra, S., & Chakraborty, A. (2019). QoS-aware dispersed dynamic mapping of virtual sensors
in sensor-cloud. IEEE Transactions on Services Computing (pp. 1–12). Early Access. https://
doi.org/10.1109/TSC.2019.2917447

25. Misra, S., Mondal, A., & Khajjayam, S. (2019). Dynamic big-data broadcast in fat-tree data
center networks with mobile IoT devices. IEEE Systems Journal, 13(3), 2898–2905. https://
doi.org/10.1109/JSYST.2019.2899754

26. Misra, S., Schober, R., & Chakraborty, A. (2020). Race: Qoi-aware strategic resource allocation
for provisioning Se-aaS. IEEE Transactions on Services Computing, 1–12 (2020). https://doi.
org/10.1109/TSC.2020.3001078

27. Mondal, A., & Misra, S. (2020). Flowman: QoS-aware dynamic data flow management in
software-defined networks. IEEE Journal on Selected Areas in Communications, 38(7), 1366–
1373. https://doi.org/10.1109/JSAC.2020.2999682

28. Mondal, A., Misra, S., & Chakraborty, A. (2018). TROD: Throughput-optimal dynamic
data traffic management in software-defined networks, in Proceedings of IEEE Globecom
Workshops (pp. 1–6). https://doi.org/10.1109/GLOCOMW.2018.8644398

29. Mondal, A., Misra, S., & Obaidat, M. S. (2017). Distributed home energy management system
with storage in smart grid using game theory. IEEE Systems Journal, 11(3), 1857–1866. https://
doi.org/10.1109/JSYST.2015.2421941

https://doi.org/10.1109/GLOCOM.2016.7841995
https://doi.org/10.1109/GLOCOM.2016.7841995
https://doi.org/10.1109/TSC.2020.3011495
https://doi.org/10.1109/ICC40277.2020.9148621
https://doi.org/10.1109/ICC40277.2020.9148621
https://doi.org/10.1109/WCNC.2018.8377069
https://doi.org/10.1109/TSC.2018.2873763
https://doi.org/10.1007/s11036-013-0489-0
https://doi.org/10.1109/INFCOM.2013.6566793
https://doi.org/10.1109/INFCOM.2013.6566793
https://doi.org/10.1109/JSYST.2017.2690259
https://doi.org/10.1109/JSYST.2017.2690259
https://doi.org/10.1109/ICDCS.2017.255
https://doi.org/10.1109/ICDCS.2017.255
https://doi.org/10.1109/TSC.2019.2917447
https://doi.org/10.1109/TSC.2019.2917447
https://doi.org/10.1109/JSYST.2019.2899754
https://doi.org/10.1109/JSYST.2019.2899754
https://doi.org/10.1109/TSC.2020.3001078
https://doi.org/10.1109/TSC.2020.3001078
https://doi.org/10.1109/JSAC.2020.2999682
https://doi.org/10.1109/GLOCOMW.2018.8644398
https://doi.org/10.1109/JSYST.2015.2421941
https://doi.org/10.1109/JSYST.2015.2421941

11 QoS-Aware Dynamic Flow Management in Software-Defined Data Center. . . 221

30. Moradi, M., Zhang, Y., Morley Mao, Z., & Manghirmalani, R. (2018). Dragon: Scalable,
flexible, and efficient traffic engineering in software defined ISP networks. IEEE Journal on
Selected Areas in Communications, 36(12), 2744–2756. https://doi.org/10.1109/JSAC.2018.
2871312

31. Paul, D., Zhong, W. D., & Bose, S. K. (2017). Demand response in data centers through energy-
efficient scheduling and simple incentivization. IEEE Systems Journal, 11(2), 613–624. https://
doi.org/10.1109/JSYST.2015.2476357

32. Rottenstreich, O., Kanizo, Y., Kaplan, H., & Rexford, J. (2018). Accurate traffic splitting
on SDN switches. IEEE Journal on Selected Areas in Communications 36(10), 2190–2201.
https://doi.org/10.1109/JSAC.2018.2869949

33. Sadeh, Y., Rottenstreich, O., Barkan, A., Kanizo, Y., & Kaplan, H. (2019). Optimal represen-
tations of a traffic distribution in switch memories, in Proceedings of IEEE INFOCOM (pp.
2035–2043). https://doi.org/10.1109/infocom.2019.8737645

34. Saha, N., Bera, S., & Misra, S. (2018). Sway: Traffic-aware QoS routing in software-defined
IoT. IEEE Transactions on Emerging Topics in Computing, 9, 390–401.

35. Saha, N., Misra, S., & Bera, S. (2018). QoS-aware adaptive flow-rule aggregation in software-
defined IoT, in Proceedings of IEEE Global Communications Conference (GLOBECOM) (pp.
206–212).

36. Sanvito, D., Filippini, I., Capone, A., Paris, S., & Leguay, J. (2018). Adaptive robust traffic
engineering in software defined networks, in Proceedings of IFIP Networking and Workshops
(pp. 1–9). https://doi.org/10.23919/ifipnetworking.2018.8696406

37. Singh, A., Aujla, G. S., Garg, S., Kaddoum, G., & Singh, G. (2019). Deep-learning-based SDN
model for Internet of Things: An incremental tensor train approach. IEEE Internet of Things
Journal 7(7), 6302–6311.

38. Singh, A., Batra, S., Aujla, G. S. S., Kumar, N., & Yang, L. T. (2020). BloomStore: Dynamic
bloom filter-based secure rule-space management scheme in SDN. IEEE Transactions on
Industrial Informatics pp. 1–11 (2020). https://doi.org/10.1109/TII.2020.2966708

39. Trestian, R., Ormond, O., & Muntean, G. M. (2014). Enhanced power-friendly access
network selection strategy for multimedia delivery over heterogeneous wireless networks.
IEEE Transactions on Broadcasting, 60(1), 85–101.

40. Tseng, S. H., Tang, A., Choudhury, G. L., & Tse, S. (2019). Routing stability in hybrid
software-defined networks. IEEE/ACM Transactions on Networking, 27(2), 790–804. https://
doi.org/10.1109/tnet.2019.2900199

41. Tushar, W., Saad, W., Poor, H. V., & Smith, D. B. (2012). Economics of electric vehicle
charging: A game theoretic approach. IEEE Transactions on Smart Grid, 3(4), 1767–1778.
https://doi.org/10.1109/TSG.2012.2211901

42. Wang, M. H., Chi, P. W., Guo, J. W., & Lei, C. L. (2016). SDN storage: A stream-based storage
system over software-defined networks, in Proceedings of IEEE INFOCOM Workshops (pp.
598–599). https://doi.org/10.1109/INFCOMW.2016.7562146

https://doi.org/10.1109/JSAC.2018.2871312
https://doi.org/10.1109/JSAC.2018.2871312
https://doi.org/10.1109/JSYST.2015.2476357
https://doi.org/10.1109/JSYST.2015.2476357
https://doi.org/10.1109/JSAC.2018.2869949
https://doi.org/10.1109/infocom.2019.8737645
https://doi.org/10.23919/ifipnetworking.2018.8696406
https://doi.org/10.1109/TII.2020.2966708
https://doi.org/10.1109/tnet.2019.2900199
https://doi.org/10.1109/tnet.2019.2900199
https://doi.org/10.1109/TSG.2012.2211901
https://doi.org/10.1109/INFCOMW.2016.7562146

Part IV
Security and Trust Applications for

Software-Defined Networking

Chapter 12
Trusted Mechanism Using Artificial
Neural Networks in Healthcare
Software-Defined Networks

Geetanjali Rathee

12.1 Introduction

Software-Defined Networks (SDN) is an architecture which provides the network
to behave intelligent and automated programmed and controlled using software
applications [4, 5, 7]. The SDN enables the network to behave holistically and
consistently regard-less of their technique. It provides centralized controlling using
software applications by implementing common SDN layers. In addition, SDN
provides abstracting of data plans by supporting the control plane isolation from
logical separations running at the network top using three different components
such as SDN applications, SDN controller, and SDN networking services consisting
of three different layers like infrastructure, control, and application layer. Along
with a centralized and automatic controlled system, SDN is vulnerable to many
security threats and issues such as (1) incomplete encryption where intruders may
sometimes access the information and modify it for their own benefits. Attackers
may manipulate the network by compromising some of the communicating nodes
by taking data plane and control plane on its own. The most severe threats in SDN
are denial-of-service, man-in-middle, and data alteration threats. Therefore, it is
needed to propose some security resilient mechanisms for SDN while transferring
the information in any IoT based applications such as healthcare systems. The
involvement of intelligent analyzing devices (IoT devices) in traditional healthcare
schemes improved the overall management and processing of huge amount of
information in an efficient and standardized way [2, 3]. The online storage systems
such as cloud services may further reduce the storage overhead and computation
of large data generated by smart devices. Though, embedding of IoT devices in

G. Rathee (�)
Department of Computer Science and Engineering, Netaji Subhas University of Technology,
New Delhi, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. S. Aujla et al. (eds.), Software Defined Internet of Everything, Technology,
Communications and Computing, https://doi.org/10.1007/978-3-030-89328-6_12

225

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89328-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-89328-6_12

226 G. Rathee

various applications provides several benefits to the modern era, however, the
organizations are afraid to fully adopt this technique in current scenarios [9, 11, 15].
The involvement of intruders may not only affect the network performance but
also degrade the overall budget of the company. The intruder’s aim in network
system is to compromise the legal nodes by forging their identity for their own
benefits. In case of healthcare systems, intruders may drastically affect the overall
performance of network in several ways. During the recording of patient’s history,
manufacturing of medicines, patient’s medical records details can be easily forged
by the intruders after compromising the legitimate IoT devices and continuously
track their communication step. In order to fully adopt the smart technique by
various organizations, it is needed to make a system very secure and efficient.
Though researchers have proposed various cryptographic and hypothetical scenar-
ios, however, the amount of time and cost required legitimate the system may
further encourage the researchers to propose new security schemes [17–19]. Along
with several success stories in various biomedical fields, the Artificial Intelligence
(AI) assistance can be considered as a medium to conduct remote automation
of activities. The integration of AI technique with smart devices in healthcare
applications may further improve the managing and immediate services in the
network. The AI-based learning has been widely integrated in medical scenarios for
its unprecedented performance still the lack of reliable data sets to analyze malicious
activities of smart devices is researched at its early stages.

12.1.1 Contribution

The aim of this paper is to propose a secure and trusted communication mechanism
by identifying malicious behavior of nodes in healthcare systems. The proposed
mechanism generated an Artificial Neural Network (ANN) to process the inputs
from various devices. The generated output of ANN determines the legitimacy of
each node by analyzing their certain behavior. Further, a back propagation (BP)
algorithm is used that is responsible to generate an error free categorization of
devices in healthcare mechanisms. Further, the potential contribution of the paper is
discussed as follows:

• A trusted and secure ANN network is proposed where the devices category by
ANN is computed by analyzing their previous communication behavior.

• The BP algorithm is further used to improve the secrecy of system by generating
an error free computation.

• The proposed mechanism is analyzed over several numerical results against
conventional approach.

The remaining structure of the paper is organized as follows. The number of
security techniques proposed by several scientists/authors is discussed in section
two [6, 14]. The ANN with BP algorithm is used to ensure a secure communication
and error free categorization of smart devices in section three. Further, section four

12 Trusted Mechanism Using Artificial Neural Networks in Healthcare. . . 227

illustrates the verification of proposed phenomenon over various security measures
such as identification of trusted smart nodes and data alteration against conventional
mechanism. Finally, section five discusses the conclusion along with its future
directions.

12.2 Related Work

Trusted based schemes can be defined as one of the most promising security
schemes in various applications. This section discussed various security techniques
proposed by various scientists/researchers. Meng et al. [16] have focused on
identification of insider threats by surveying the stakeholders from 12 different
healthcare centers. The authors have developed a trusted mechanism using Bayesian
rules based on survey outcomes and searched the malicious nodes in healthcare
environments. The simulated result demonstrated the effectiveness and feasibility
of proposed mechanism for identifying the malicious activity of the nodes.

In addition, the authors claimed the identification of malicious devices much
faster as compared to existing schemes. Table 12.1 depicts a latest literature survey

Table 12.1 Literature survey on security schemes in Healthcare SDN

Authors Techniques Mechanism

Meng et al.
[16]

A trusted mechanism using
Bayesian rules

The simulated result demonstrated the
effectiveness and feasibility of proposed
mechanism for identifying the malicious
activity of the nodes.

Jiang et al.
[13]

Two blind signature symptom
matching schemes

The authors do not rely on any trusted third
party that can be realized for ensuring an
energy efficient privacy mechanism.

Alduailij et
al. [1]

developed the updated version
of opponent virtual machine

The authors have illustrated and developed
various healthcare applications for
monitoring the wellness and medical
conditions in the network.

Wu et al.
[20]

Fuzzy logic for evaluating and
defining the trusts

The authors have offered set of rules for
reasoning and analyzing the rules with a
certain level of uncertainty.

Hirtan et al
[10]

Blockchain based mechanism in
healthcare

The proposed mechanism involved public
and private chains to protect the
confidentiality of data.

Iqbal et al.
[12]

Introduction of software-defined
networks

The core issue is highlighted by unifying the
stakeholders with few outcomes on network
based security scheme.

Geng et al.
[8]

Security framework by
constructing the SDN

The authors have proposed various security
schemes to overcome the anti-tamper,
anti-forge, anti-replay, and anti-wormhole
issues.

228 G. Rathee

on security schemes in various applications. Jiang et al. [13] have proposed two
blind signature symptom matching schemes. In addition, the authors have achieved
coarse-grained and fine grained matching approaches for realizing the privacy
preserving in healthcare networks. The authors do not rely on any trusted third party
that can be realized for ensuring an energy efficient privacy mechanism. Further, a
comprehensive evaluation scheme is demonstrated to identify the practicality of the
proposed phenomenon. Alduailij et al. [1] have validated and developed the updated
version of opponent virtual machine that is capable of supporting and diversion
various sets of applications. The authors have illustrated and developed various
healthcare applications for monitoring the wellness and medical conditions in the
network. Wu et al. [20] have introduced a fuzzy logic for evaluating and defining
the trusts by providing formal representations of rules. The authors have offered set
of rules for reasoning and analyzing the rules with a certain level of uncertainty.
Applications of proposed model along with pervasive computing provided a novel
scheme to handle the trust management for pervasive and federated networks. Hirtan
et al. [10] have pro-posed a blockchain based mechanism in healthcare where the
information is analyzed and shared among medical clinics, hospitals, and research
institutes defined by patients. The proposed mechanism involved public and private
chains to protect the confidentiality of data. The proposed scheme is developed
over hyperledger platform to validate the results against amount of time required
to detect the malicious activity. Iqbal et al. [12] have illustrated the introduction of
software-defined networks along with its deployment models such as de-centralized
and centralized mechanism. In addition, the authors have illustrated a secure IoT
based SDN mechanisms by deter-mining its overview. Further, the core issue is
highlighted by unifying the stakeholders with few outcomes on network based
security scheme. The authors have also discussed some future directions of security
needs in IoT based SDN. Geng et al. [8] have proposed a security framework
by constructing the SDN using network architecture. The authors have proposed
various security schemes to overcome the anti-tamper, anti-forge, anti-replay, and
anti-wormhole issues. In addition, the authors have focused on various multi-service
and anti-replay security modules. Further, an NS2 simulator is analyzed to validate
the superiority of proposed scheme over end-to-end delay, packet deliver ratio, and
overhead metrics.

12.3 Proposed Approach

An ANN is defined as a computational mechanism inspired by various neurons
based on biological neural network concept. The neurons are generally defined
as the smallest cells that our brains made of. It is determined as an assortment
of billions of neurons considered as the base for modeling an AI in terms of
architecture designing and operations performed. The ANN is a mathematical model
for performing the non-linear function, data classification and regression approach.

12 Trusted Mechanism Using Artificial Neural Networks in Healthcare. . . 229

Fig. 12.1 Multi-layered ANN architecture

It is capable in generating the robotic decision modeling through multi-layered
perceptron.

The depicted Fig. 12.1 represents a multi-layered ANN architecture having input,
middle, and output layer. The network consists of n number of outputs, hm number
of hidden layers, and ix number of input nodes as expressed in Eq. (12.1).

pq(t) =
hm∑

p=1

W 2
qrF (.)

∑

a=1

ixW
1
pqpr(t)

0 + b1p,where, 1 <= q <= n (12.1)

where wpq and wqr represents the weight connection among input, hidden, and
output layer, respectively. F(.) defines the activation function which is considered as
sigmoid function.

Further, the number of values in wqr and wpq is determined through an
appropriate mechanism such as previous history behavior and BP. The BP algorithm
is generally used to generate an optimal value with an error-correction rule to
accurately categorize the smart devices according to their malicious behaviors.

12.3.1 Back Propagation (BP) Algorithm

BP is gradient descent method to generate derivation values by updating the weights
of learning parameters. It is a steepest method where weights between hidden qth
layer and pth input layers are according to Eq. (12.2).

wpq(t) = wpq(t − 1) + δwpq(t)

230 G. Rathee

bq(t) = bq(t − 1) + δbq(t)

In addition, the increments δbq(t) and δwpq(t) are illustrated as:

δwpq(t) = ηwhq(t)hp(t) + awpq(t − 1)

δbq(t) = ηbpq(t) + abδbq(t − 1) (12.2)

where w and b are defined as weights and threshold parameters, respectively. In
addition, ab and aw are momentum constants which represent the changes in earlier
metrics upon movement of directions in metric space. Further, ηb and ηw determine
learning values with hq (t) error signals propagation to the entire network. Since,
the output layer activation function is linear; therefore the error signal is computed
as Eq. (12.3).

hq(t) = qr(t) − q
′
r (t) (12.3)

where qr (t) is defined as expected output. However, the neurons at hidden layer are
represented at Eq. (12.4) as:

hq(t) = F
′
(hp(t))w2

qr (t − 1) (12.4)

Where, F
′
(hp(t)) denotes the first derivation function of F(hp(t)) with respect

to hp(t). Further, the number of attributes considered for analyzing the devices
category according to their behavior is detailed as:

• Node’s activation rate: It is defined as the amount of time a node remains active
inside the network to attract its neighboring nodes. The node having malicious
nature will be more active with respect to remaining nodes.

• Previous history interaction: The malicious behavior of a node can be further
analyzed by checking its previous communication history in the network.

12.4 Performance Evaluation

In order to validate the proposed phenomenon against conventional approach that
categorized the behavior of each node using cryptographic scheme, a synthesized
dataset is created. The proposed phenomenon is analyzed using BP scheme against
various security measures. Table 12.2 represents the analysis of simulated results
with their mentioned values.

The security measured used to analyze the proposed phenomenon is discussed as
follows:

12 Trusted Mechanism Using Artificial Neural Networks in Healthcare. . . 231

Table 12.2 Simulation
metrics

S. no. Traditional approach Blockchain approach

1 Number of nodes 100

2 Network area 500 × 500

3 Node’s behavior Ideal, malicious

4 Algorithm BP, ANN

20

18

16

14

12

10

8

6

4

2

0

10 20 30 40

Proposed Approach

Basic Approach

50

Number of loT Nodes

Id
en

ti
fi

ca
ti

o
n

 o
f

Tr
u

st
ed

 N
o

d
es

60 70 80 90 100

Fig. 12.2 Identification of trusted nodes (%)

• Identification of trusted nodes: It is defined as the number of node’s identified as
legitimate while analyzing their communication behavior.

• Message alteration: The information tried to be altered by the intruders upon
transmitting among devices. It is considered as one of the significant parameters
to detect the behavior of a node.

12.4.1 Results and Discussion

Before categorizing the IoT devices, the classification algorithm is analyzed using
two statistical measures as accuracy and timely. The accurate analysis of a system
within significant time may recognize the efficiency of a mechanism.

Figure 12.2 represents the identification of trusted nodes over proposed and
baseline method. The result shows the outperformance of proposed phenomenon
because of its accurate decision making and less delay using neural and BP algo-
rithms. Further, the data tried to alter by the proposed phenomenon is represented
in Fig. 12.3. The number of compromised nodes may try to forge the data and
do some modifications for their own benefits. In case of proposed approach, the

232 G. Rathee

Fig. 12.3 Altered data (%)

1

12

10

8

6

A
lt

er
ed

 D
at

a
(%

)

4

2

0

2 3 4 5 6 7 8 9 10

Proposed Approach

Basic Approach

Number of loT Nodes

data alteration rate is very less because of error-propagation scheme called BP as
compared to existing approach.

12.5 Conclusion

This paper goal is to categorize the smart devices according to their communica-
tional behavior using ANN and BP schemes. The proposed mechanism determines
the behavior of a node by analyzing its previous history and active nature in the
network. Further, to speed up the analysis process and efficiently categorize the
node’s behavior according to ANN can be analyzed through back propagation
schemes. The simulated simulation results validate the proposed phenomenon as
compared to existing scheme. Further, the dynamic pattern of attacks categorized
by malicious nodes during the communication process can be further traced using
various security measures. The dynamic analysis of patterns behavior can be
reported in future research.

References

1. Alduailij, M. A., & Lilien, L. T. (2015). A collaborative healthcare application based on
opportunistic resource utilization networks with OVM primitives, in IEEE 2015 International
Conference on Collaboration Technologies and Systems (CTS) (pp. 426–433).

2. Aujla, G. S., Chaudhary, R., Kumar, N., Kumar, R., & Rodrigues, J. J. (2018). An ensembled
scheme for QoS-aware traffic flow management in software defined networks, in 2018 IEEE
International Conference on Communications (ICC) (pp. 1–7). Piscataway: IEEE.

3. Aujla, G. S., & Jindal, A. (2020). A decoupled blockchain approach for edge-envisioned IoT-
based healthcare monitoring. IEEE Journal on Selected Areas in Communications, 39(2), 491–
499.

12 Trusted Mechanism Using Artificial Neural Networks in Healthcare. . . 233

4. Aujla, G. S., Jindal, A., Kumar, N., & Singh, M. (2016). SDN-based data center energy
management system using RES and electric vehicles, in 2016 IEEE Global Communications
Conference (GLOBECOM) (pp. 1–6). Piscataway: IEEE.

5. Aujla, G. S., Kumar, N., Garg, S., Kaur, K., & Ranjan, R. (2019). EDCSuS: Sustainable
edge data centers as a service in SDN-enabled vehicular environment. IEEE Transactions on
Sustainable Computing.

6. Aujla, G. S., Singh, M., Bose, A., Kumar, N., Han, G., & Buyya, R. (2020). BlockSDN:
Blockchain-as-a-service for software defined networking in smart city applications. IEEE
Network, 34(2), 83–91.

7. Aujla, G. S., Singh, A., & Kumar, N. (2019). Adaptflow: Adaptive flow forwarding scheme for
software-defined industrial networks. IEEE Internet of Things Journal, 7(7), 5843–5851.

8. Geng, R., Wang, R., & Liu, R. (2018). A software defined networking-oriented security scheme
for vehicle networks. IEEE Access, 6, 58195–58203.

9. Graupe, D. (2013). Principles of artificial neural networks (vol. 7). Singapore: World
Scientific.

10. Hirtan, L., Krawiec, P., Dobre, P., & Batalla, J. M. (2019). Blockchain-based approach for
e-health data access management with privacy protection, in 2019 IEEE 24th International
Work-shop on Computer Aided Modeling and Design of Communication Links and Networks
(CAMAD) (pp. 1–7).

11. Holzinger, A., Langs, G., Denk, H., Zatloukal, K., & Müller, H. (2019). Causability and
explainability of artificial intelligence in medicine. Data Mining and Knowledge Discovery,
9(4), 1312–1321.

12. Iqbal, W., Abbas, H., Daneshmand, M., Rauf, B., & Bangash, Y. A. (2020). An in-depth
analysis of IoT security requirements, challenges, and their countermeasures via software-
defined security. IEEE Internet of Things Journal, 7(10), 10250–10276.

13. Jiang, S., Duan, M., & Wang, L. (2018). Toward privacy-preserving symptoms matching in
SDN-based mobile healthcare social networks. IEEE Internet of Things Journal, 5(3), 1379–
1388.

14. Jindal, A., Aujla, G. S., Kumar, N., & Villari, M. (2019). GUARDIAN: Blockchain-based
secure demand response management in smart grid system. IEEE Transactions on Services
Computing, 13(4), 613–24.

15. Lelcuk, A., Groskop, M., Yehuda, D., Yotam, B. E. N. (2017). U.S. Patent No. 9,825,928.
Washington: U.S. Patent and Trademark Office.

16. Meng, W., Choo, K. R. R., Furnell, S., Vasilakos, A. V., & Probst, C. W. (2018). Towards
Bayesian-based trust management for insider attacks in healthcare software-defined networks.
IEEE Transactions on Network and Service Management, 15(2), 761–773.

17. Meneghello, F., Calore, M., Zucchetto, D., Polese, M., & Zanella, A. (2019). IoT: Internet
of threats? A survey of practical security vulnerabilities in real IoT devices. IEEE Internet of
Things Journal, 6(5), pp. 8182–8201.

18. Mitchell, R., Michalski, J., & Carbonell, T. (2013). An artificial intelligence approach. Berlin:
Springer.

19. Rathee, G., Sharma, A., Kumar, R., Ahmad, F., & Iqbal, R. (2020). A trust management scheme
to secure mobile information centric networks. Computer Communications, 151, 66–75.

20. Wu, Z., & Weaver, A. C. (2006). Application of fuzzy logic in federated trust management for
perva-sive computing, in IEEE 30th Annual International Computer Software and Applications
Conference (COMPSAC’06) (vol. 2, pp. 215–222).

Chapter 13
Stealthy Verification Mechanism to
Defend SDN Against Topology Poisoning

Bakht Zamin Khan, Anwar Ghani, Imran Khan, Muazzam Ali Khan,
and Muhammad Bilal

13.1 Introduction

Traditional computer networks control plane and data plane are highly coupled.
Each plane has its own and fixed functionalities. Thus the whole architecture
is highly decentralized. Due to the decentralize nature it is difficult to extend
and modify network functionalities at run time. SDN has recently emerged as a
new network paradigm which decouples both control plane and data plane. SDNs
offer better network resource utilization, control, and management with minimal
operating cost [7, 9, 18, 21, 30]. Due to the simplicity and added features it got
attention in both academia and industry [17]. With centralized management SDN
simplifies network management and monitoring more easily and precisely. The
underlying network switches in the data plane ensure forwarding of packets to the
destination switches and provide their current status to the controller.

SDN controllers are responsible for the integrity, accuracy, and credibility of
the network topology. Network topology information is not use only for flow
table construction, data forwarding but is also essential for the efficient utilization
of network resources [5, 15]. Topology discovery mechanism mainly provides

B. Z. Khan · A. Ghani · I. Khan
Department of Computer Science & Software Engineering, International Islamic University
Islamabad, Islamabad, Pakistan
e-mail: bakht.phdcs172@iiu.edu.pk; anwar.ghani@iiu.edu.pk; imran.khan@iiu.edu.pk

M. A. Khan
Department of Computer Sciences, Quaid-e-Azam University, Islamabad, Pakistan
e-mail: muazzam.khattak@qau.edu.pk

M. Bilal (�)
Department of Computer Engineering, Hankuk University of Foreign Studies, Yongin-si,
Gyeonggi-do, South Korea
e-mail: mbilal@hufs.ac.kr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. S. Aujla et al. (eds.), Software Defined Internet of Everything, Technology,
Communications and Computing, https://doi.org/10.1007/978-3-030-89328-6_13

235

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89328-6_13&domain=pdf
mailto:bakht.phdcs172@iiu.edu.pk
mailto:anwar.ghani@iiu.edu.pk
mailto:imran.khan@iiu.edu.pk
mailto:muazzam.khattak@qau.edu.pk
mailto:mbilal@hufs.ac.kr
https://doi.org/10.1007/978-3-030-89328-6_13

236 B. Z. Khan et al.

two key services, i.e., host tracking service and link discovery service [21, 28].
Due to lack of authentication mechanism, SDN controller cannot validate the
legitimacy of the received network topology information including hosts, switches,
and connecting links between network nodes. If an attacker performs malicious
activity and fabricates the network information. Consequently, the SDN controller
will get poisoned once it received the falsify topology information. By executing
topology poisoning attacks the attacker can easily diverts the intended traffic to a
malicious gateway or to black-hole to launch denial of services to the upper layer
applications [16, 20]. Maintaining of correct global view of the network topology
and identification of malicious activity is the two mainstream activities to be ensure
by SDN controllers [15].

Currently, OpenFlow Topology Discovery Protocol is used for SDN topology
discovery information by all well-known controllers (Floodlight, OpenDayLight,
Maestro, NOX, Rue, etc.) [16, 23]. Current implementation of OFDP is vulnerable
to two topology poisoning attacks, i.e., Host Hijacking and Link Fabrication attacks.
These two type of attacks are unique to SDN environment, which can cause man-
in-the-middle or Denial of Service (DOS) attacks [4, 8, 10, 14, 16, 20]. Host
hijacking attack injects fake host-generated packets in the network to blur the
controller that the generating host is being migrated to new location. Whereas link
fabrication attack announces a new malicious link in the network. By doing this the
attacker diverts the traffic to itself and network segments may suffer from denial of
service attack [19]. OpenFlow protocol [20] is the default communication protocol
widely used for communication between SDN switches and controllers. For smooth
operation of SDN and seamless provision of services at application layer, OpenFlow
implements TopoGuard [16] which significantly improves and secures the topology
discovery mechanism. An OF controller collects the whole network’s topology
information to form a global and shared view of the network. This global view is
used to ensure smooth and efficient networks operations [15]. Most services in the
application plane like routing, policy, live migration, virtualization, optimization,
etc. are highly dependent on the network topology information constructed and
monitored by the SDN controllers. Therefore, the correctness of the topology
information has critical importance [16, 20]. Maintaining of correct global view of
the network topology and identification of malicious activity is the two mainstream
activities to be ensured by SDN controllers [6, 15]. Figure 13.1 shows the structure
of SDN architecture.

To overcome the gape, we proposed a light weight Enhanced Stealthy Probing-
based Verification (ESPV) mechanism which fulfill the shortcoming of the existing
technique and provide a suitable solution for large data center networks as well
as resource limited networks. The contribution of our paper is summarized as
follows:

• A parametrized framework that considers other network parameters also
• A new topology verification mechanism based on SPV is proposed, which is

verified to cope with two loopholes
• Implementation and verification of the proposed scheme
• Through analysis of results for large 7 data center networks

13 Stealthy Verification Mechanism to Defend SDN Against Topology Poisoning 237

SDN Structure

Management

Plane

Control

Plane

Data

Plane

Network --

Applications
Access Control Load Balancing

--

SDN ---

Controller

Topology

Discovery

Routing

Service

--

SDN Switches

Northbound Interface

Southbound Interface (OpenFlow)

Fig. 13.1 SDN structure

Sect. 13.2 discusses related work on SDN security and feasibility of SDN anti-
topology poisoning techniques. Section 13.3 includes the problem statement and
Sect. 13.4 illustrates the proposed scheme. Section 13.5 is about implementation
and results are discussed in Sect. 13.6. Section 13.7 concludes the paper along with
future challenges.

13.2 Related Work

To protect SDN infrastructure from topology poisoning attacks and to verify
the legitimacy of topology information several authentication mechanisms are
developed. But due to their simplicity, open source authentication method and
nature of authentication mechanism that follow a predictable pattern an attacker
can evade the controller. In literature various types of techniques have already
been proposed to prevent SDN enable networks for two kinds of attacks. In [2],
mitigation technique is proposed to avoid link fabrication attack. The proposed
method adds a Message Authentication Code (MAC) to each Link Layer Discovery

238 B. Z. Khan et al.

Protocol (LLDP) to validate each topology discovery packet’s integrity. Network
flow graphs are used by Dhawan et al. [13] to detect malicious traffic which
cross the learned acceptable level of graph patterns. Hong et al. [16] implement
a real time low-overhead defensive technique, which add some minor changes to
the topology discovery protocol of OpenFlow controller, called TopoGuard. The
technique provides effective way and high performance against the two types of
attacks. However, TopoGuard has limitation of formal verification for the host
that are migrating to new location. If attacker modifies his/her method of attack
he/she may easily evade the SDN controller. The proposed scheme in [3] uses
an active SPV approach for identifying malicious host and fake link established
by a compromised switch. This technique improved the identification mechanism,
however, due to its probing mechanism it may face scalability and bandwidth
consumption issues in case of large enterprise networks. Furthermore, in resource
constraint network like Wireless Sensor Networks (WSNs) the probe packets may
consume precious network bandwidth causing delay and loss of network resources.

13.3 Problem Statement

Maintaining of correct global view of the network topology and identification of
malicious activity are the two mainstream activities to be ensure by SDN controllers.
The SPV technique [3] sufficiently improved the identification mechanism, how-
ever, due to its probing mechanism it faces scalability and bandwidth consumption
issues in case of large enterprise networks. Furthermore, in resource constraint
network including Wireless Sensor Networks (WSNs) the probe packets may
consume precious network bandwidth causing delay and loss of precious network
resources.

13.4 Proposed Solution

The proposed solution is based on a light weight Enhanced Stealthy Probing-
based Verification (ESPV) mechanism which fulfill the shortcoming of the existing
technique and provide a suitable solution for large networks as well as resource
limited networks. The proposed solution includes to validate a newly added link
by using stealthy probing packet generation technique and to trigger the probing
packets only in the network segment from where the controller receives the topology
change packets. Thus, the probing packets are only initiated when the topology
change update messages are being received by the controller.

13 Stealthy Verification Mechanism to Defend SDN Against Topology Poisoning 239

13.4.1 Methodology

The proposed scheme is implemented and illustrated in Link Verification and
malicious node identification as Algorithms 1 and 2 depicted as below.

Algorithm 1 New link verification
Require: Topology_Update_newlink
Ensure: Updates_Topology
1: Check new_triggered_link_update
2: Function topo_update_check(network_segment)
3: if ID �= 1 then

4: DSTi,J ← Pi,j (d) ← piGiGj ∧2

(4π)2d2

5: end if
6: if 0 < DSTi,j < DSTtr then
7: push i to StackCNs.Top
8: StackCNs.T op ← StackCNs.T op + 1
9: end if

Algorithm 2 Example calculation of CNs for each node in the network
Require: Topology_view
Ensure: triggered_topolog_updates
1: Check new_triggered_link_update
2: StackCNs.top← 0
3: if ID �= 1 then

4: DSTi,J ← Pi,j (d) ← piGiGj ∧2

(4π)2d2

5: end if
6: if 0 < DSTi,j < DSTtr then
7: push i to StackCNs.Top
8: StackCNs.T op ← StackCNs.T op + 1
9: end if

Similar to the proposed work in [2, 11, 20, 21, 27], we assume that an attacker
may compromise one or more hosts or network switches connected to each other
in SDN. The attacker can send forged information of topology change message
by using one of the compromised hosts. By receiving this information SDN’s
controller modifies communication flows of the network nodes. The intruder can
distinguish control traffic and user traffic. He can sniff the control packets, modify
them accordingly, and re-transmit them in the network to perform his malicious
task. The attacker can also compromise the controller due to its vulnerabilities but
we assume that the SDN controller is secure against any attack and the channels
between data switches and SDN controller are trusted. Consequently, the attacker
attempts to isolate probing traffic from the normal traffic by their patterns. We also
assume that the probing packets will be only initiated when the topology change

240 B. Z. Khan et al.

messages are received by the controller. The probing packets will be only flooded
after some specified time of interval to reduce the bandwidth consumption in large
enterprise and resource constrained wireless sensor networks.

13.5 Implementation

The proposed scheme is implemented by using two widely used open source tools
for simulating SDNs. SDN’s controller is implemented in OpenDayLigh (ODL) [12]
which is an open source platform for simulating and controlling large scale SDNs
[24]. Data plane switches, based on OpenFlow protocol, are implemented by using
Mininet network emulator [22, 31]. To compare and analyze the proposed and base
scheme proposed in [3], implementation parameters like type of SDN controller,
network topology, number of data switches, communication links, and virtual
machines are kept near similar. The performances of both schemes are compared
in terms of processing power, memory usage, and time required to identify any
malicious link or network node. To examine the accuracy and performance of
proposed scheme, 5000 links were established among all network nodes.

13.5.1 Software-Defined Network Setup

SDN controllers keep centralized global view the network topology to ensure
service accessibility to upper layer. SDN controller is implemented by using Open-
DayLight (ODL). ODL Carbon release including a virtual machine running Linux
Ubuntu Server 16.04 operating system with two Intel(R) E3-1271 v3 CPUs and
6 GB of processing memory. Data switches are programmed to forward packets as
per instructions of the controller and send relevant information to the controller back
for different operations performed by the controller, like updating and maintaining
of topological view. Link Layer Discovery Protocol (LLDP) Ethernet (0x88cc)
standard is used as network topology discovery mechanism. LLDP discovers newly
added switches and their placement in the SDN topology. To replicate the data plane
switches, Mininet 2.2.1 on Linux virtual machine running Ubuntu 16.4 Server with
two Intel(R) X eon (R) E3-1271 v3 and 6 GB of RAM were used. Latest version of
OpenFlow v1.3 is used for software based open vSwitchs [29] switches.

13.5.2 ESPV Implementation

Most modules of ESPV are implemented in Java. Open source packet generation
tool Scapy [26] is used for generation and manipulation of probing packets. The
scheme is implemented in both single-threading and multi-threading modes to

13 Stealthy Verification Mechanism to Defend SDN Against Topology Poisoning 241

analyze the performance of link verification mechanism in both methods. Both
schemes are simulated for large enterprise data center networks only, having huge
network traffic.

13.5.3 Network Topology

The Fate-tree topology [1] is used for simulating the data plane that is a network
architecture widely used for implementation of large data center [25]. The topology
or size of network depends upon the network switches used at access level to connect
end user systems and servers. To examine the performance of proposed scheme,
the number of data plane switches is increased gradually from five to 45. In small
topology there is one core, two aggregate switches, and two access level switches.
The largest topology has eight core switches, 12 aggregate switches, and 25 access
switches. The access switches can connect up to 600 servers which comply large
size data center requirements.

13.6 Results and Analysis

13.6.1 Performance Analysis

In performance analysis the time required to verify each newly established links is
analyzed for both schemes. The scheme proposed in [3] verifies each link of entire
topology. While our proposed scheme only verifies the network segment where new
link is established. Due to working methodology the proposed scheme significantly
reduces the amount of processing required to verify new links, and thus the number
of probing packets is significantly reduced. Thus overall performance of the system
is improved. The obtained results as shown in Figs. 13.2 and 13.3 show the time
required in milliseconds to verify a newly established links between two network
nodes in both single-threading and multi-threading modes. While increasing the
number of switches from 4 to 45 with a maximum of 106 connecting links among
data plane switches, average verification time to verify each link was 86ms. The
proposed scheme significantly reduces the time required to verify a new link and
most near to real time behavior. Figure 13.3 shows verification of a group of links
by increasing the number of switches from four to 45 data plane switches. In second
case the time taken to verify a set of links is 19.1 s. By applying multi-threading it
decreases the time interval to 8.2 s.

Now the proposed scheme is applied to the segment from where the topology
change messages were triggered and received by the SDN’s controller. By dividing
the network topology in segments the proposed scheme only takes 9.3ms in single-
threading and 3.3 s in case of multi-threading with same number of network links

242 B. Z. Khan et al.

Fig. 13.2 Single-threading 200

150

100

50

Ti
m

e
(in

 M
ill

is
ec

on
ds

)

0
5 10 15 20

Of Switches

SPV ESPV

25 30 35 40 45

Fig. 13.3 Multi-threading

SPV ESPV

5
0

50

100

150

200

10 15 20 25

Of Switches

30 35 40 45

Ti
m

e
(in

 M
ill

is
ec

on
ds

)

and switches as shown in Figs. 13.4 and 13.5. The results indicate significant
improvement as compared to the scheme proposed in [3]. The proposed scheme
produces linear results in case of increasing the number of data switches and
their connecting links. By limiting the probing packets to the time based and
by propagating the probing packets in specific network segment form where the
topology changes messages received by SDN controller. Our proposed scheme
significantly reduces the number of probing packets, results to avoid congestion of
probing packets in heavy traffic data centers. This phenomenon also consumes less
processing power, memory usage and communication bandwidth, make it candidate
scheme for resource constraints networks.

13.6.2 Resource Consumption by ESPV Scheme

The second part of ESPV performance is the amount of resources required to
execute complete process of verification mechanism. CPU processing, memory con-
sumption, and communication bandwidth parameters are analyzed and compared.
Figure 13.6 shows the CPU consumption for the experiments. The proposed scheme
only consumes 33% of CPU, reasonably reduce the CPU consumption as compared
to the previous scheme and make our proposed solution suitable to be used in

13 Stealthy Verification Mechanism to Defend SDN Against Topology Poisoning 243

Fig. 13.4 Single-threading 50

40

30

20

10

Ti
m

e
(in

 M
ill

is
ec

on
ds

)

0
5 10 15 20

Of Switches

SPV ESPV

25 30 35 40 45

Fig. 13.5 Multi-threading

5

16
14
12
10

8
6
4
2
0Ti

m
e

(in
 M

ill
is

ec
on

ds
)

10 15 20

Of Switches

SPV ESPV

25 30 35 40 45

Fig. 13.6 CPU usage

5

60

C
P

U
 U

sa
ge

 (
%

)

50

40

30

20

10

0
10 15 20

Of Switches

SPV ESPV

25 30 35 40 45

WSNs. Figure 13.7 shows the memory consumption for the experiments. Due to
the segmented verification mechanism it consumes 42% less memory of the scheme
proposed in [3]. The proposed scheme produced better results in large enterprise
networks and data centers due to its verification methodology. The results indicate
that proposed scheme is more scalable solution for large data center network. Due to
less resource requirements the proposed scheme can be used as a candidate topology
verification mechanism in resource limited networks.

244 B. Z. Khan et al.

Fig. 13.7 Memory usage

5

2

1.5

1

M
em

or
y

U
sa

ge
 (

%
)

0.5

0
10 15 20

Of Switches

SPV ESPV

25 30 35 40 45

Table 13.1 Details of experimental results with real SDN/cloud topology

Results SDN/cloud mesh Mininet fat-tree Mininet fat-tree [ESPV]

All links verification time (MT) 13.2052 s 10.6406 s 10.1031s

All links verification time (ST) 134.147 s 26.1725 s 25.5471 s

Single links verification time (ST) 100.306 s 94.8919 s 94.3245

CPU consumption (ST) 8.50294% 18.79099% 11.56421%

Memory consumption (ST) 1.81817% 1.81003% 1.23144%

13.6.3 Applicability of ESPV in Real SDN Cloud Topology

The performance of proposed scheme is also measured on real SDN topology.
OpenStak [25] cloud is one of the largest communication platforms that provides
different virtual network services. OpenStak scenario comprised of 23 communi-
cation nodes and each node consists of OpenFlow communication switches and
thousands of virtual machines. All 22 computing nodes are connected to each other
in a mesh topology with a total of 241 communication links. Table 13.1 illustrates
the comparison the proposed scheme results and real topology results. The results
of our proposed scheme indicate better results and applicability in large networks.

13.7 Conclusion and Future Work

Recently identified vulnerabilities in Open Flow Discovery Protocol reveal that
malicious hosts or switches can poison global view of the network topology and
an intruder can launch man-in-the-middle or denial of service attacks. Existing
solutions are based on passive approach which work only for known attacks types.
The scheme in [3] sufficiently improved the identification mechanism, however, due
to its probing mechanism it may face scalability and bandwidth consumption issues
in case of large enterprise networks and resource limited networks. The results of our
proposed scheme indicate that ESPV is the more scalable and suitable solution to

13 Stealthy Verification Mechanism to Defend SDN Against Topology Poisoning 245

detect and identify the fake links or malicious network hosts in both type networks.
It significantly reduces the probing traffic to consume less bandwidth and identify
malicious host in real time . In future the proposed scheme will be implemented and
evaluated in resource constrained networks.

References

1. Al-Fares, M., Loukissas, A., & Vahdat, A. (2008). A scalable, commodity data center network
architecture. ACM SIGCOMM Computer Communication Review, 38(4), 63–74.

2. Alharbi, T., Portmann, T., & Pakzad, F. (2015). The (in) security of topology discovery in
software defined networks, in 2015 IEEE 40th Conference on Local Computer Networks (LCN)
(pp. 502–505). Piscataway: IEEE.

3. Alimohammadifar, A., Majumdar, S., Madi, T., Jarraya, Y., Pourzandi, M., Wang, L., & Deb-
babi, M. (2018). Stealthy probing-based verification (SPV): An active approach to defending
software defined networks against topology poisoning attacks, in European Symposium on
Research in Computer Security (pp. 463–484). Berlin: Springer.

4. Aryan, R., Yazidi, R., Engelstad, P. E., & Kure, Ø. (2017). A general formalism for defining
and detecting openflow rule anomalies, in 2017 IEEE 42nd Conference on Local Networks
(LCN) (pp. 426–434). Piscataway: IEEE.

5. Aujla, G. S., Chaudhary, R., Kumar, N., Kumar, R., & Rodrigues, J. J. P. C. (2018). An
ensembled scheme for QoS-aware traffic flow management in software defined networks, in
2018 IEEE International Conference on Communications (ICC) (pp. 1–7). Piscataway: IEEE.

6. Aujla, G. S., & Kumar, N. (2018). SDN-based energy management scheme for sustainability
of data centers: An analysis on renewable energy sources and electric vehicles participation.
Journal of Parallel and Distributed Computing, 117, 228–245.

7. Aujla, G. S. S., Kumar, N., Garg, S., Kaur, K., & Ranjan, R. (2019). EDCSuS: Sustainable
edge data centers as a service in SDN-enabled vehicular environment. IEEE Transactions on
Sustainable Computing, IEEE. https://doi.org/10.1109/TSUSC.2019.2907110

8. Aujla, G. Singh, S., M., Bose, A., Kumar, N., Han, G., & Buyya, R. (2020). BlockSDN:
Blockchain-as-a-service for software defined networking in smart city applications. IEEE
Network, 34(2), 83–91.

9. Aujla, G. S., Singh, A., & Kumar, A. (2019). Adaptflow: Adaptive flow forwarding scheme for
software-defined industrial networks. IEEE Internet of Things Journal, 7(7), 5843–5851.

10. Aujla, G. S., Singh, A., Singh, M., Sharma, S., Kumar, N., & Choo, K.-K. R. (2020). Blocked:
Blockchain-based secure data processing framework in edge envisioned v2x environment.
IEEE Transactions on Vehicular Technology, 69(6), 5850–5863.

11. Azzouni, A., Trang, N. T. M., Boutaba, R., & Pujolle, G. (2017). Limitations of openflow
topology discovery protocol, in 2017 16th Annual Mediterranean Ad Hoc Networking Work-
shop (Med-Hoc-Net) (pp. 1–3). Piscataway: IEEE.

12. Badotra, S., & Singh, J. (2017). Open daylight as a controller for software defined networking.
International Journal of Advanced Research in Computer Science, 8(5), 1105–1111.

13. Dhawan, M., Poddar, R., Mahajan, K., & Mann, K. (2015). Sphinx: Detecting security attacks
in software-defined networks, in Network and Distributed System Security (NDSS) (vol. 15, pp.
8–11).

14. Fei, Y., Zhu, H., Wu, X., Fang, H., & Qin, S. (2018). Comparative modelling and verification
of pthreads and dthreads. Journal of Software: Evolution and Process, 30(3), e1919.

15. Gude, N., Koponen, T., Pettit, T., Pfaff, B., Casado, M., McKeown, N., & Shenker, S. (2008).
NOX: Towards an operating system for networks. ACM SIGCOMM Computer Communication
Review, 38(3), 105–110.

https://doi.org/10.1109/TSUSC.2019.2907110

246 B. Z. Khan et al.

16. Hong, S., Xu, L., Wang, L., & Gu, G. (2015). Poisoning network visibility in software-defined
networks: New attacks and countermeasures, in Network and Distributed System Security
(NDSS) (vol. 15, pp. 8–11).

17. Huang, X., Shi, P., Liu, Y., & Xu, Y. (2020). Towards trusted and efficient SDN topology
discovery: A lightweight topology verification scheme. Computer Networks, 170, 107119.

18. Jarraya, Y., Madi, Y., & Debbabi, M. (2014). A survey and a layered taxonomy of software-
defined networking. IEEE Communications Surveys & Tutorials, 16(4), 1955–1980.

19. Jindal, A., Aujla, G. S., Kumar, N., & Villari, M. (2019). Guardian: Blockchain-based
secure demand response management in smart grid system. IEEE Transactions on Services
Computing, 13(4), 613–624.

20. Khan, S., Gani, A., Wahab, A. W. A., Guizani, M., & Khan, M. K. (2016). Topology discovery
in software defined networks: Threats, taxonomy, and state-of-the-art. IEEE Communications
Surveys & Tutorials, 19(1), 303–324.

21. Kreutz, D., Ramos, F. M. V., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S., & Uhlig,
S. (2014). Software-defined networking: A comprehensive survey. Proceedings of the IEEE,
103(1), 14–76.

22. Lantz, B., Heller, B., & McKeown, N. (2010). A network in a laptop: Rapid prototyping
for software-defined networks, in Proceedings of the 9th ACM SIGCOMM Workshop on Hot
Topics in Networks (pp. 1–6).

23. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker,
S., & Turner, J. (2008). Openflow: Enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2), 69–74.

24. Medved, J., Varga, R., Tkacik, A., & Gray, K. (2014). Opendaylight: Towards a model-driven
SDN controller architecture, in Proceeding of IEEE International Symposium on a World of
Wireless, Mobile and Multimedia Networks 2014 (pp. 1–6). Piscataway: IEEE.

25. Open source software for creating private and public clouds (2017). http://www.openstack.org/
26. Scapy: Packet manipulation program (2017). http://www.secdev.org/projects/scapy/
27. Thanh Bui, T. (2015). ‘Analysis of topology poisoning attacks in software-defined networking’,

KTH, School of Information and Communication Technology (ICT). Dissertation.
28. ur Rasool, R., Wang, H., Ashraf, U., Ahmed, K., Anwar, Z., & Rafique, W. (2020). A survey

of link flooding attacks in software defined network ecosystems. Journal of Network and
Computer Applications, 172, 102803.

29. Open vSwitch (2016). Production quality, multilayer open virtual switch. http://openvswitch.
org/

30. Xia, W., Wen, Y., Foh, C. H., Niyato, D., & Xie, H. (2014). A survey on software-defined
networking. IEEE Communications Surveys & Tutorials, 17(1), 27–51.

31. Xia, W., Zhao, P., Wen, Y., & Xie, H. (2016). A survey on data center networking (DCN):
Infrastructure and operations. IEEE Communications Surveys & Tutorials, 19(1), 640–656.

http://www.openstack.org/
http://www.secdev.org/projects/scapy/
http://openvswitch.org/
http://openvswitch.org/

Chapter 14
Implementation of Protection Protocols
for Security Threats in SDN

Amanpreet Singh Dhanoa

14.1 Introduction

Traditional computer networks used dedicated devices like routers, switches, etc. to
manage the network payload. Software-defined network (SDN) generates and main-
tains the traffic using application programs virtually. Using virtualization, helps the
organizations to create a single physical network from the different virtual networks
and create single virtual networks where it connects the devices on the different
physical networks [1, 2]. According to the researchers, due to centralization, lots of
attacks are detected during the transmission of packets. Some packets are identified
but some not. With software-defined networking, administrators work through
central locations to configure network services and allocate virtual resources to
make real-time changes. This allows network administrators to optimize the flow of
data on the network and prioritize applications that require the highest availability
[3–6].

SDN provides visibility to the whole network, and it defines more clarity on
security threats. Using smart devices connected to the Internet, SDN has obvious
advantages over traditional networks. An administrator creates different spaces for
high-security devices, and if these devices are infected, then immediately isolated
all the infected devices to secure the other devices as well as the network in which
the devices are connected [7–9]. The structure of SDN architecture using OpenFlow
is shown in Fig. 14.1.

A. S. Dhanoa (�)
Department of Computer Science and Engineering, Chandigarh University, Mohali, India
e-mail: amanpreete7280@cumail.in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. S. Aujla et al. (eds.), Software Defined Internet of Everything, Technology,
Communications and Computing, https://doi.org/10.1007/978-3-030-89328-6_14

247

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89328-6_14&domain=pdf
mailto:amanpreete7280@cumail.in
https://doi.org/10.1007/978-3-030-89328-6_14

248 A. S. Dhanoa

Fig. 14.1 SDN structure using OpenFlow [10]

14.2 Security Issues

The main aim of this chapter is to protect the data plane and control plane from
hidden attacks like [11–13]:

Forwarding device attacks: Network traffic can be divided using routers or
switches, causing intruders to launch denial of service (DoS) attacks, resulting
in network outage or failure [14].

14 Implementation of Protection Protocols for Security Threats in SDN 249

Threats to the control plane: Using a central controller, the problem that occurs
in the network will cause to the failure of the central controller. The solution to
resolve this issue is to use a horizontal or hierarchical controller distribution.

Communication channel vulnerabilities: OpenFlow protocol of SDN south-
bound APIs uses TLS to ensure the security of data control channel com-
munication, but it is disabled by management and vulnerable to attacks from
intermediaries, so it is not secure for the channel safety.

Fake traffic: This is generated by the non-malicious attackers or faulty devices
or DoS attacks to consume resources on the forwarding device or controller.
Authenticity: It is the entity of the network that is the entities that claim. The
authenticity of forwarding equipment on SDWN networks is like traditional
networks; it can hamper network performance.

Confidentiality: It prevents the information from being leaked to unauthorized
users. If data is not guaranteed, then malicious users can use the information or
data on the network.

Availability: It provides the access to authorized users to access the data,
equipment, and services at any time.

Open programmable API: The openness of the API makes vulnerabilities more
transparent to attackers.

The main concern of security is to maintain integrity, availability, and confiden-
tiality, but some attacks affected these three parameters as shown in Table 14.1.

Attacks in SDN Control Layer DDoS Attacks: When the unauthorized users
generate the request to access the data, then it is difficult to control that as a
central data controller. These attacks increase the risk of network failure. The control
layer uses the methods to maintain the flow control including attacking controller,
northbound API, southbound API, westbound API, or eastbound API. For example,
different applications use different flow rules it creates conflicts for the control plane
may lead to DDoS attacks. In SDN operations, the data plane is not able to handle
the arrival of new packets. So, the data plane sends the request to the control plane
to maintain the flow. If the new flow does not match with the flow table, then two
options are used to handling such kinds of problems: either the complete packet
or a portion of the packet is transmitted to the controller to resolve the query. The

Table 14.1 Comparison of drone delivery cases

Threats Effected SDN layer Availability Confidentiality Integrity

Distributed
DoS attack

Control and data ×

DoS attack Control and data ×
Man-in-the
middle

Control, data, link between control
and data

× ×

Eavesdropping
Application

Control and data ×

250 A. S. Dhanoa

more packets consume the more bandwidth while sending the complete packet to
the controller [15].

Infrastructure Layer DDoS Attacks The two mechanisms create DDoS attacks
at the infrastructure layer: attack the switch or attack the southbound API. For
example, in the first mechanism, only the header information of the packet is passed
to the controller, and the data of the packet is stored in the memory of the node
itself until the table of flow does not return the value. In such a case, it makes it
easy for an authorized person to change the flow rule by generating the known and
unknown flows on the node by performing a DoS attack. The attackers sending lots
of unknown packets create the bottleneck and overload the switch memory. It makes
it difficult to maintain the normal data flows and violating the flow rules. It makes
the SDN flow very complex and causes packet flooding: lots of packets are to be
sent to the controller by the attackers, it is meant for invisible packets and uses
all the resources of the control plane. This flow creates an unpredictable state for
the controller. Control message operation: It provides communication between the
control plane and the data plane. Attackers modify the control messages like change
table flooding, switch spoofing, and malformed control messages [16].

OpenFlow enables the network controller to determine the path of network
packets through the switch network. The controller is different from the switch.
Compared with the use of access control lists (ACLs) and routing protocols, this
separation of control and forwarding allows for more complex traffic management.
In addition, OpenFlow allows the use of a single open protocol to remotely
manage switches from different vendors, usually each vendor has its own interface
and proprietary scripting language. OpenFlow can remotely manage the message
forwarding table of Layer 3 switches, add, modify, and delete message matching
rules and actions. In this way, the controller can make routing decisions periodically
or temporarily. It converts the decisions into rules and actions. The controller
implements the rules in the flow table of the switch and compares it with the
actual forwarding packets. The data packets that do not match with the switch table
can be forwarded to the controller. The controller takes a decision to modify the
existing flow table rules on one or more switches or implement new rules to prevent
structured traffic flow between the switch and the controller [17, 18].

14.3 Related Work

The protection of SDN layers is more important, but due to a centralized network, it
is more difficult to provide direct security to the layers of SDN and the devices
attached to the network. To protect the layers of SDN, several mechanisms are
developed, but some attacks are not identified due to the simplicity of these
mechanisms [19, 20]. These mechanisms are useful for the authentication to validate
each topology discovery packet’s integrity. The new scheme proposed in this
chapter is the FRESCO framework. The FRESCO framework is providing a new

14 Implementation of Protection Protocols for Security Threats in SDN 251

development environment for security applications. It works with the protocol
of SDN like OpenFlow that is used to separate the data plane and the control
plane. It provides a set of 7 new intelligent security actions, for example, block,
deny, allow, redirect, quarantine. The FRESCO works with the application layer
of SDN where all the protocols are generated. It divides the application layer into
two segments: development environment and resource controller. The development
environment takes a link from the sender and checks the validation of that link
using the programmable code for that and sends it to the receiver if that link or
request is valid. The FRESCO also generates a database to encrypt the value or
data using a key. It creates the modules for the database in the form of pairs.
The development environment creates a FRESCO script that defines the interface
between the modules that connect each module with another module [21, 22].
FRESCO Script:

Syntax

• Case(tag((#(on(load)((#(on(return)((
• Class: type of module
• Load: module data
• Return: module value
• Variable: define some parameters
• Occurrence: Activate module
• Activity: perform activity

Input_Resource((1)(1)((
((((Class:(Resource(
((((Occurrence:(ADD(
((((Load:(destination_output
((((Return:(Resource_output
((((Variable:(23(
((((activity:(=(

14.4 Problem Statement

Security is the main concern in today’s technical era to the identification of
malicious activity during the communication between two same and different
modules. The FRESCO is one of the most useful techniques to protect the protocols
of SDN through which the identification is to be done. Other methods are taking
more bandwidth to implement the security.

252 A. S. Dhanoa

14.5 Proposed Solution

The proposed solution is based on the previous mechanism which does not fulfill
the security requirements, and FRESCO creates the security application in the
application layer to protect the protocols. It works on the TCP protocol of the
application layer. It encrypts the port number of protocols using the unique key.

14.6 Implementation

The proposed solution is implemented by using the FRESCO technique for
protocols as shown in Figs. 14.2 and 14.3. It works with the OpenFlow protocol,
which is itself an OpenFlow application. It provides the implementation and
composition methods to detect modules. It operates on NOX version 0.1.5 using
OpenFlow 1.1.0 protocol. The NOX source code provides the FRESCO SEK, which
is implemented as an extension that reaches 1160 lines of C++ code.

Fig. 14.2 Operational scenario [23]

14 Implementation of Protection Protocols for Security Threats in SDN 253

Fig. 14.3 Threshold-based scan detection [23]

def Unit_start(input_dis, parameter_list):

FRES_FDataBase = input_dis[‘FR_FDataBase’]

FRES_action = in_dis[‘FRES_action’]

FRES_input = input_dis[‘FRES_input’]

FRES_dir_dis =

FRES_dir_dis[‘output’] = [0]

FREs_dir_dis[‘Event’] = Default

if variable_name[0] == FRES_load[0]:

return = 1

else:

return = 0

FRES_dir_dis[‘output’]. ADD(output)

return FRES_dirt_dis

254 A. S. Dhanoa

14.7 Conclusion

Securing the protocols of SDN using OpenFlow application of FRESCO, creating
and implementing mechanism of security for protocols is an important challenge.
We present an application of NOX such as the FRESCO framework for such
kinds of complex problems. The FRESCO architecture works with the NOX
OpenFlow controller and writes program using FRESCO scripting language. We
use the FRESCO enforcement kernel to produce possible flow rules that secure the
network packets as threats are detected. Over these mechanisms, FRESCO produces
minimum overhead, and the scripting language takes a few lines of code to fast the
process of detecting threats in a minimal span of time and also disable the fake links.
It provides a powerful framework for the security of protocols.

References

1. Aujla, G. S., Singh, A., & Kumar, N. (2019, November 4). Adaptflow: Adaptive flow
forwarding scheme for software-defined industrial networks. IEEE Internet of Things Journal,
7(7), 5843–5851.

2. Aujla, G. S., Garg, S., Batra, S., Kumar, N., You, I., & Sharma, V. (2019). DROpS: A demand
response optimization scheme in SDN-enabled smart energy ecosystem. Information Sciences,
476, 453–473.

3. Hussein, A., Chadad, L., Adalian, N., Chehab, A., Elhajj, I. H., & Kayssi, A. (2020). Software-
Defined Networking (SDN): The security review. Journal of Cyber Security Technology, 4(1),
1–66.

4. Coughlin, M. (2014). A Survey of SDN Security Research. University of Colorado Boulder.
5. Jose, T., & Kurian, J. (2015, December). Survey on SDN security mechanisms. International

Journal of Computer Applications, 132(14), 0975-8887.
6. Iqbal, M., Iqbal, F., Mohsin, F., Rizwan, M., & Ahmad, F. (2019). Security issues in Software

Defined Networking (SDN): Risks, challenges and potential solutions. (IJACSA) International
Journal of Advanced Computer Science and Applications, 10(10), 298–303.

7. Shin, S., Porras, P., Yegneswaran, V., Fong, M., Gu, G., & Tyson, M. (2013, February).
FRESCO: Modular composable security services for software-defined networks. In 20th
Annual Network & Distributed System Security Symposium.

8. Mehdi, S. A., Khalid, J., & Khayam, S. A. (2011). Revisiting traffic anomaly detection using
software defined networking. In Proceedings of Recent Advances in Intrusion Detection.

9. Robertson, S., Alexander, S., Micallef, J., Pucci, J., Tanis, J., & Macera, A. (2015). CINDAM:
Customized information networks for deception and attack mitigation. In IEEE International
Conference on Self-Adaptive and Self-Organizing Systems Workshops (SASOW), London,
United Kingdom (pp. 114–119).

10. https://opennetworking.org/sdn-definition/
11. Lara, A., & Ramamurthy, B. (2016). Opensec: Policy-based security using software-defined

networking. IEEE Transactions on Network and Service Management, 13(1), 30–42.
12. Sahay, R., Blanc, G., Zhang, Z., Toumi, K., & Debar, H. (2017). Adaptive policy-driven

attack mitigation in SDN. In Proceedings of the 1st International Workshop on Security and
Dependability of Multi-Domain Infrastructures, Belgrade, Serbia (p. 1).

13. Karmakar, K. K., Varadharajan, V., & Tupakula, U. (2017). Mitigating attacks in software
defined network (SDN). In Fourth International Conference On Software Defined Systems
(SDS), Valencia, Spain (pp. 112–117).

https://opennetworking.org/sdn-definition/

14 Implementation of Protection Protocols for Security Threats in SDN 255

14. Aujla, G. S., Singh, M., Bose, A., Kumar, N., Han, G., & Buyya, R. (2020). BlockSDN:
Blockchain-as-a-service for software defined networking in smart city applications. IEEE
Network, 34(2), 83–91.

15. Chen, X., Yu, S. (2016). CIPA: A collaborative intrusion prevention architecture for pro-
grammable network and SDN. Computers & Security, 58, 1–19.

16. Feamster, N., Rexford, J., & Zegura, E. (2013, December). The road to SDN. ACM Queue,
11(12), 20–40.

17. Kreutz, D., Ramos, F. M., & Verissimo, P. (2013). Towards secure and dependable software-
defined networks. In Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking HotSDN ’13 (p. 55).

18. Braga, R., Mota, E., & Passito, P. (2010). Lightweight DDoS Flooding attack detection using
NOX/OpenFlow. In IEEE Local Computer Network Conference (pp. 408-415). IEEE.

19. Aujla, G. S., Chaudhary, R., Kaur, K., Garg, S., Kumar, N., & Ranjan, R. (2018). SAFE:
SDN-assisted framework for edge–cloud interplay in secure healthcare ecosystem. IEEE
Transactions on Industrial Informatics, 15(1), 469–480.

20. Singh, M., Aujla, G. S., Singh, A., Kumar, N., & Garg, S. (2020). Deep-learning-based
blockchain framework for secure software-defined industrial networks. IEEE Transactions on
Industrial Informatics, 17(1), 606–616.

21. Scott-Hayward, S., O’Callaghan, G., & Sezer, S. (2013). SDN security: A survey. In 2013 IEEE
SDN For Future Networks and Services (SDN4FNS) (pp. 1–7). IEEE.

22. Kreutz, D., Ramos, F. M. V., & Verissimo, P. (2013, August). Towards secure and dependable
software defined networks. In Proceedings of the Second ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking (pp. 55–60).

23. https://www.ndss-symposium.org/wp-content/uploads/2017/09/Presentation07_2.pdf

https://www.ndss-symposium.org/wp-content/uploads/2017/09/Presentation07_2.pdf

Part V
Application Use Cases of

Software-Defined Networking

Chapter 15
SDVN-Based Smart Data Dissemination
Model for High-Speed Road Networks

Deepanshu Garg, Neeraj Garg, Rasmeet Singh Bali, and Shubham Rawat

15.1 Introduction

One of the major concerns in road travel is the increasing number of road accidents
happening all over the world on the roads. This has been a matter of growing concern
among the governments, researchers and automotive industry. There have been
increasing researches being conducted in the community to address this concern
[1]. There are a number of reasons that can be attributed to accidents. One primary
reason is the development of high-speed road networks that are being constructed
to reduce the travel time and vehicles capable of moving at high speeds along
these road networks of expressways. Since the drivers are expected to maintain a
minimum speed while they are driving on the expressway, a sudden reduction in
speed of any vehicle may result in a large number of high-speed crashes due to
reduced reaction time available with drivers of the following vehicles. Therefore,
whenever a vehicle breaks due to some unavoidable reasons, there must be a
mechanism to let the following vehicles know about the breaks applied by the car
that is ahead. The development of such an early warning system for high-speed
vehicles that move on expressways can help in eliminating accidents caused by
sudden breaking of any vehicle [2–4].

Although Vehicular Ad Hoc Networks (VANETs) have been around for a long
time and one of their primary objectives is to avoid road accidents, manage traffic
in an efficient way and ensure road safety from multiple aspects, they have not
been able to achieve the above goal [5]. In fact, this problem has increased due
to increased vehicle speeds, and it is expected that an effective solution has to be
developed especially for automated vehicles of future [6–9]. The Software-Defined
Vehicular Network (SDVN) is expected to play a key role in identifying the probable

D. Garg · N. Garg · R. S. Bali (�) · S. Rawat
Department of Computer Science and Engineering, Chandigarh University, Mohali, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. S. Aujla et al. (eds.), Software Defined Internet of Everything, Technology,
Communications and Computing, https://doi.org/10.1007/978-3-030-89328-6_15

259

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89328-6_15&domain=pdf
https://doi.org/10.1007/978-3-030-89328-6_15

260 D. Garg et al.

collision and generating alert messages to the target vehicles. SDVN is based on
Software-Defined Network with primary focus around VANET. SDVN offers a
range of key benefits as compared to traditional networks in terms of efficient
network utilization, routing and better control and management of complete network
from a centralized control plane. The traditional network has data and forwarding
plane and control plane on each of the network node that is generally a router. This
leads to unpredictability in deciding about the availability of a vehicular node due
to its high mobility. Also, in case a node goes out of the network, it has to be
rectified with a lot of effort. Similarly, in case some patch has to be applied on
all the networks, this will lead to another pain point for the network administrator
or maintainer. These availability issues and other control-related issues can be
addressed easily with SDVNs in most of the situations.

The SDVN can be split into different components viz. control plane, data plane
and management plane. The responsibility of control plane is to control the network
nodes at two levels. One is centralized controller that will control at the level of Road
Side Units (RSUs) and another controller that is the Road Side Software-Defined
Controller can control the network nodes at the level of vehicles. This allows the
flexibility that is required in case of fast moving vehicles moving in and out of
the VANET. The main responsibility of the data plane is to forward the data to the
node suggested by SDN controller. The responsibility of the management plane is
to monitor, configure and maintain the state of the network nodes. The high-level
architecture of SDVN is shown in Fig. 15.1.

In this chapter, we propose a prototype that leverages the recent advances in the
field of SDVN so as to control network of RSUs. This model will continuously
monitor every vehicle on the expressway and identify any vehicle that shows a
varying behaviour such as running at a lower speed than the recommended speed
or if a vehicle has stopped at a point suddenly. After identification of such vehicles,
the proposed system will generate warning alerts to the vehicles coming towards
them through SDVN-based infrastructure. This chapter has also listed down the
considerations for high availability and robustness of the system. This chapter is
structured into four main sections. Section 15.2 uncovers the literature review. In
Sect. 15.3 of this book chapter, the proposed model is presented. This section has a
couple of sub-sections with the first sub-section focusing on different components of
the proposed system. Section 15.3 details out the various steps in the working model,
and the various types of services which can be provided by the proposed model are
covered in this section. Section 15.4 presents a case study about implementation
of the proposed system. Finally, towards the end, the conclusion along with future
directions is presented.

15.2 Literature Review

Bhatia et al. [10] have proposed a hierarchical Software-Defined Network (SDN)-
based architectural framework for VANET with support of network virtualization,
which would make the deployment of a particular VANET flexible in time, space

15 SDVN-Based Smart Data Dissemination Model for High-Speed Road Networks 261

Fig. 15.1 Software-Defined Vehicular Network

and the type of services offered by it. They have introduced the concept of virtual
private VANETs to support multi-tenancy in VANET. This will allow a VANET
service provider to deploy its services over a single physical infrastructure, probably
owned by a third party, quickly in a cost effective manner and in isolation to the other
services running on the same infrastructure but owned by different service providers.
Liuwei et al. [11] proposed a novel accurate and SDN-based fine-grained traffic
measurement approach to obtain comprehensive traffic in vehicular communication
network. Zhang et al. [12] have proposed a novel SDFC-VeNET architecture which
leverages the concept of SDN and fog computing. Based on the SDFC-VeNET
architecture, mobility management and resource allocation are analysed. Truong
et al. [13] have proposed combining VANET architecture with fog computing as a
prospective solution to address many difficulties in deployment and management
because of poor connectivity, less scalability, less flexibility and less intelligence.

262 D. Garg et al.

Sony et al. [14] proposed a Smart Ranking-based Data Offloading (SRDO)
algorithm for selecting an RSU and to improve the Quality of Service. In SRDO
algorithm, Q-Learning is utilized for RSU selection. This algorithm is modelled in
Software-Defined Network controller to deal with the problem of choosing the RSU
in an intelligent way for data offloading. An architecture by Rehman and Kapoor
[15] is proposed to introduce hierarchical distributions of controllers where the main
controller on the top tier is distributed over the region and at bottom tier some RSUs
are selected as local controllers, which keep localized global view of network, where
the main controller on the top tier is responsible for operating local controllers at
the bottom tier and local controllers are responsible for transferring data among
RSUs and vehicles. Bhatia et al. [16] have combined the flexibility, scalability and
adaptability leveraged by the SDVN architecture along with the machine learning
algorithms to model the traffic flow efficiently.

A VANETmonitoring system to provide a resilient and efficient routing for better
services for communication between vehicles is proposed by Kalokhe et al. [17].
It also provided the secure channels between the SDN controller and the network
devices for reliable communication. Zhao et al. [18] proposed a new software-
defined routing method, namely, Novel Adaptive Routing and Switching Scheme
(NARSS), deployed in the controller. This adaptive method can dynamically select
routing schemes for a specific traffic scenario. The authors presented a method for
collecting road network information to describe traffic condition and extracted the
feature data used to generate the routing scheme switching model. The authors also
trained the feature data through an artificial neural network with high training speed
and accuracy. Finally, the model was used as a basis for establishing the NARSS
and deploying it in the controller.

A three-level routing hierarchy in improved Software-Defined VANET architec-
ture based on Mobile Edge Computing (MEC) to improve routing performance
and enrich the data transmission mode for the VANET is proposed by Xuefeng
et al. [19]. Moreover, it can be applied to almost all VANET protocols, enabling
protocol-independent forwarding. Besides, this improved architecture can coordi-
nate different edge devices to timely adjust the service delivery strategy under
the predictive correction from controllers, providing high-bandwidth and low-delay
transmission for Internet of Vehicles. Additionally, MEC technology is introduced
to perform local control, leveraging the storage and computing capabilities of edge
devices to reduce the processing pressure of the controller. Sanagavarapu et al.
[20] have attempted to address the efficiency of SDN’s performance in multi-cloud
environments by proposing SDPredictNet, a Recurrent Neural Network framework
deployed on the SDNController that can predict the traffic in the network and update
flow tables of the higher layer switches to perform routing based on the perceived
bottlenecks in the network. Kaihan et al. [21] have proposed a traffic state prediction
method based on Hidden Markov Model and then choose different routing methods
according to different traffic states.

Wahid et al. [22] in their paper have proposed the use of Global Positioning
System-based floating car data to develop a server communication reduction policy
which can help in providing a solution to the perpetual problem of traffic congestion

15 SDVN-Based Smart Data Dissemination Model for High-Speed Road Networks 263

in large urban areas. Khatri et al. [23] have presented and explored the possibility of
using machine learning algorithms to address safety, communication and traffic-
related issues in VANET systems. Maad et al. [24] in their review paper have
discussed the techniques for traffic monitoring along with the concept of early
incidents detection so as to address some key issues such as collision, drone
navigation, and less computational and communicational overheads.

Kumar et al. [25] proposed the collision-free drone-based movement strategies
for road traffic monitoring using Software-Defined Networking. Nama et al. [26]
have compiled the review of various tools and techniques to collect traffic data
along with machine learning algorithms being applied in the field of modern ways of
addressing traffic dilemmas. Emna et al. [27] have introduced the smart city concept
and presented a general overview of research that focuses on leveraging the benefits
of Software-Defined Networking in specific application domains of smart cities.
Paranjothi et al. [28] presented a general architecture of vehicular communication
in urban and highway environment as well as a state-of-the-art survey of recent
congestion detection and control techniques.

15.3 The Proposed System Model

Although there are numerous data transmission techniques that have been proposed
for vehicular networks, the proposed system emphasizes on providing an efficient
communication network along with low network overhead for a high-speed vehic-
ular network by using various services of SDN controller. The proposed system
utilizes the inherent properties of SDN for taking the decisions smartly according
to the requirement of the user. In this section, system model for data transmission
system within the vehicles is discussed along with the various services provided
by the centralized controller. In the network model shown in Fig. 15.2, there are
a certain number of vehicles, RSUs, RSU controllers and base stations that are
connected together for achieving fast data transmission for the underlying vehicular
nodes. All the RSU controllers are connected to the centralized controller of SDN
for the smart data transmission as shown in Fig. 15.2.

The whole systemmodel follows a centralized strategy for data transmission with
a centralized SDN controller acting as the logical hub of the system. Each RSU
in the network is responsible for transmitting information received through RSU
controller to the high-speed vehicles that are within its communication range, and
these RSUs are connected together for creating a captive network that continuously
monitor vehicles moving on the expressway. These controllers are also used for load
balancing on the centralized controller so as to provide fast responses to the high-
speed vehicles. It also uses the capabilities of SDN to provide multiple services
to end users and can also support on-demand services. The system model assumes
that each vehicle is equipped with a Global Positioning System (GPS) technology
so as to accurately determine the location of the vehicles. Each vehicle sends its
current information to the base stations such as position, direction, source and

264 D. Garg et al.

Fig. 15.2 Network Architecture for Data Dissemination in Proposed Model

destination address along with its current speed with the help of RSUs. Figure 15.2
illustrates the network architecture of the proposed model along with the positioning
of components and their relationships. All the tasks performed by each component
of the network are also depicted in Fig. 15.2 and are discussed below in detail.

SDNController This is the core part of the proposed network model as each task of
the system would be performed under the supervision of the SDN controller. Traffic
data management, routing, network utilization, data transmission and all other
decisions regarding smart transmission would be taken by the SDN controller only.
It also helps in creating global view of vehicular network and collects all information
of the participating entity that can also be integrated with standard applications. This
controller also defines the policies, such as privacy laws, computing resources and
required memory.

Road Side Unit SDN Controller (RSUC) RSUCs are the controllers with SDN
controller capabilities that are managed by the centralized SDN controller. They
are required to perform routing within their respective coverage areas based on
information received from the base station that can cover multiple RSUs under their
network coverage. RSUC communicates with RSUs and base stations via wireless
communication and the OpenFlow protocol.

Road Side Unit/Base Station RSUs and base stations are network points with
capabilities such as collecting data and transmitting data to RSUC. These are
managed through the Road Side Unit SDN controller.

Vehicles Here, we will assume that each vehicular node is equipped with an on-
board unit to transmit data in both vehicle-to-vehicle and vehicle-to-infrastructure
communication modes, and these are the components of data plane. For establishing

15 SDVN-Based Smart Data Dissemination Model for High-Speed Road Networks 265

communication with network entities, different technologies have been employed in
the proposed system.

Communication Devices Vehicle-to-infrastructure communications and vehicle-
to-vehicle communications are primarily implemented through IEEE 802.11.x-
based wireless communication protocols. For implementing vehicle-to-base station-
based communication, a number of different remote wireless communication
mechanisms such as cellular-based 4G, cellular-based 5G, wimax or LTE can be
utilized. Communications between SDN, RSUC, RSU and BS controllers come into
the category of broadband and high-speed connections.

15.3.1 Working Model

The whole process of network model would take place in the following steps that
are shown in Fig. 15.3.

Step I When an autonomous vehicle enters on an expressway, it will need to
confirm its identity through the SDN controller. The controller keeps a record of all
registered vehicles and verifies the identity of that vehicle and its registration status.
If the vehicle is not registered, then firstly it would transmit a beacon message to
RSU through RSU controller that contains its identity for registering that vehicle by
providing a unique key. After this, the vehicle will be validated and register in SDN
database. Once the registration has been done, that vehicle does not need register
again for that expressway as well as other expressways in the same geographical

Fig. 15.3 Schematic Description of Data Dissemination in High Speed Road Networks

266 D. Garg et al.

area as all these expressways maintain a centralized repository containing vehicle
details. All previously registered vehicles would be provided a unique key that will
be used for validating their identity, while they are moving on the expressway.

Step II In the second phase, each vehicle that is the part of the network will be
monitored by the RSUs. Parameters like vehicle speed, location and the direction
of movement of every vehicle will be periodically transmitted through beacon
messages and updated in the SDN storage for further use.

Step III The system maintains threshold values for validating the condition of
vehicles. There would be minimal or maximal threshold values that will be used
for validating the parameters of vehicles. A minimal threshold value would be set
depending on the road conditions on the express highway, and whenever the speed of
any vehicle falls below this threshold value, then an alert message will be generated
by the closest RSU controller for that particular vehicle. To ward against false alerts,
a timer would be activated for re-verification of the vehicle speed. After time out,
if the vehicle speed comes back to its normal value, then no further action would
be initiated. However, if the speed is still below threshold, then the RSU would
broadcast an alert message that would then be forwarded to all nearby vehicles.
This process would be cascaded to all the RSUs so that every vehicle travelling in
that direction can reduce its speed as they approach the halted vehicle.

Step IV Simultaneously, a Service Required message will be generated by the RSU
controller that will be received by the closest service vehicle in the vicinity of halted
vehicle for providing emergency assistance. This Service Required message will
also contain a message type to indicate the type of emergency for which service
is required. The service vehicle will then initiate appropriate action at its end. For
example, in the case of an accident, if the vehicle reports to RSU controller through
RSU, then an SDN controller would take the decision and provide assistance to the
vehicle. Furthermore, backward cascading message about accident will be sent to
all vehicles for avoiding further accidents.

By following the above steps based on SDVN-based infrastructure, the system
will be able to provide timely alerts to vehicles travelling through the expressway.
By using SDN-based infrastructure, this process is also able to reduce the overhead
on the centralized controller as well as to provide various services to the vehicles
which are discussed in the next section. Another facet that can be accounted for is
the economic overheads. As most of these expressways already use some payment
mechanisms at the time of entry, an additional small cost can be added to account for
the cost of required infrastructure required for setting up the SDVN-based captive
network. The system will also provide a number of useful services to the users.
Some of the prominent services that can be offered by this system are as follows.

15 SDVN-Based Smart Data Dissemination Model for High-Speed Road Networks 267

15.3.2 Types of Services Provided by the Centralized Controller

There are various types of services provided by the SDN controller, and these
services are achieved by the vehicles through RSUs or RSU controllers. Depending
on the speed or request sent by the vehicle, decision would be taken by the
centralized controller, and then service would be provided. The various types of
services which we are considering are discussed below

Emergency Services In the case of an accident, emergency service would be
provided to the vehicles for providing assistance through the SDN controller.

Repair Services Repair service would be provided in the case if there would be
any technical problem occurring in some vehicle while travelling on the express
highway. In such a case, RSU controller would supervise the arrival of service
vehicle.

Fuel Services If a car is about to run out of fuel on the way, then it can send a
request to the centralized controller through RSUs, and the vehicle can be guided to
the closest fuel pump or charging point available on the expressway.

Network Services If the cellular network of passengers travelling inside the car is
not working, then the users can use high-speed network services by connecting to
the SDN servers. The passengers can also extend their available network bandwidth
in case they want higher bandwidth for some application that they are using.

Entertainment Services If two cars want to share data between each other, they
can easily do so by using the fast network provided by SDN. These services can
also be used for sharing any type of infotainment such as downloading multimedia
applications. For availing such applications, cars can be connected using the SDN
network of SDVN system.

15.4 Case Study: On-Demand Network Service for
High-Speed Vehicles

To handle the network requirements of vehicles on the expressway, the proposed
system will provide support for utilizing the available bandwidth of SDVN. This
on-demand network service can be used to enhance the bandwidth for the vehicles.
By utilizing this service, vehicles can avail an additional network bandwidth for
running various applications. By leveraging the control plane in SDN, the system
can effectively collect and maintain individual vehicle status and also service
their network requirements in a logically centralized way, which would not be
achievable in a conventional network. In actual fact, control plane stores each
vehicle’s information provided by the RSU controllers for taking the decisions like
switching and routing.

268 D. Garg et al.

Fig. 15.4 High bandwidth request scenario

To service the on-demand network requirements, we assume that some of the
vehicles travelling on expressway are trying to download or upload a large amount
of data as shown in Fig. 15.4. But because of relatively slow network connection
and high speed of vehicles, they are unable to do so.

These vehicles will send a request packet to RSU to extend the network
bandwidth for availing high-speed network. This request is forwarded to SDN by
using the RSU controller. After analysing the speed and location of the vehicle,
the SDN will provide a list of customized services that are available to the vehicle
through the RSU controller. The user can choose the network services according to
his/her need, for example, uploading and downloading speed required, time period
for which data requires. After choosing the services, this request will be further
processed by an SDN controller. The SDN controller will send this data along with
parameters of network service, which are the speed of data and amount of data to the
RSU controller. The RSU controller will then send a message specifying the details
for the same by taking the location and speed of the vehicle into account. The RSU
will also calculate the total usage and other accounting information of the user once
the service has been availed.

15.5 Conclusion

With the aim to propose smart data communication model for high-speed vehicles,
this proposed system presents a data communication scheme based on the SDN
paradigm by combining the RSU and the RSU controllers in order to efficiently

15 SDVN-Based Smart Data Dissemination Model for High-Speed Road Networks 269

support the vehicle requirements on express highways. The whole model works
under the supervision of a centralized SDN controller to improve the efficiency and
reliability of vehicular networks for high-speed vehicles. Along with providing a
safe journey through the expressway, the proposed system also provides a number of
other services for vehicles moving in high speed through the network. By effectively
utilizing this system, the vehicle users can avail both comfortable and safe road
transport that are the two primary objectives of the Intelligent Transportation
System. We are now working on integrating each of these services and evaluating
them so as to provide benefit of the proposed architecture while also developing a
holistic service framework for high-speed roads and future automated vehicles.

References

1. Bali, R. S., Kumar, N., & Rodrigues, J. J. P. C. (2014). An intelligent clustering algorithm for
VANETs. In 2014 International Conference on Connected Vehicles and Expo (ICCVE) (pp.
974–979). IEEE.

2. Jindal, A., Aujla, G. S., Kumar, N., Chaudhary, R., Obaidat, M. S., & You, I. (2018). SeDaTiVe:
SDN-enabled deep learning architecture for network traffic control in vehicular cyber-physical
systems. IEEE Network, 32(6), 66–73.

3. Aujla, G. S., Jindal, A., & Kumar, N. (2018). EVaaS: Electric vehicle-as-a-service for energy
trading in SDN-enabled smart transportation system. Computer Networks, 143, 247–262.

4. Gulati, A., Aujla, G. S., Chaudhary, R., Kumar, N., & Obaidat, M. S. (2018, May). Deep
learning-based content centric data dissemination scheme for internet of vehicles. In 2018 IEEE
International Conference on Communications (ICC) (pp. 1–6). IEEE.

5. Bali, R. S., & Kumar, N. (2016). Learning automata-assisted predictive clustering approach for
vehicular cyber-physical system. Computers & Electrical Engineering, 52, 82–97.

6. Gulati, A., Aujla, G. S., Chaudhary, R., Kumar, N., Obaidat, M., & Benslimane, A. (2019).
Dilse: Lattice-based secure and dependable data dissemination scheme for social internet of
vehicles. IEEE Transactions on Dependable and Secure Computing. https://doi.org/10.1109/
TDSC.2019.2953841

7. Garg, S., Singh, A., Aujla, G. S., Kaur, S., Batra, S., & Kumar, N. (2020). A probabilistic data
structures-based anomaly detection scheme for software-defined Internet of vehicles. IEEE
Transactions on Intelligent Transportation Systems, 22(6), 3557–3566.

8. Aujla, G. S., Singh, A., Singh, M., Sharma, S., Kumar, N., & Choo, K. K. R. (2020). BloCkEd:
Blockchain-based secure data processing framework in edge envisioned V2X environment.
IEEE Transactions on Vehicular Technology, 69(6), 5850–5863.

9. Singh, A., Aujla, G. S., & Bali, R. S. (2020). Intent-based network for data dissemination in
software-defined vehicular edge computing. IEEE Transactions on Intelligent Transportation
Systems, 22(8), 5310–5318.

10. Bhatia, A., Haribabu, K., Gupta, K., & Sahu, A. (2018). Realization of flexible and scalable
VANETs through SDN and virtualization. In 2018 International Conference on Information
Networking (ICOIN) (pp. 280–282). IEEE.

11. Huo, L., et al. (2019). A SDN-based fine-grained measurement and modeling approach to
vehicular communication network traffic. International Journal of Communication Systems.
https://doi.org/10.1002/dac.4092

12. Zhang, Y., Zhang, H., Long, K., Zheng, Q., & Xie, X. (2018). Software-defined and fog-
computing-based next generation vehicular networks. IEEE Communications Magazine, 56(9),
34–41.

https://doi.org/10.1109/TDSC.2019.2953841
https://doi.org/10.1109/TDSC.2019.2953841
https://doi.org/10.1002/dac.4092

270 D. Garg et al.

13. Truong, N. B., Lee, G. M., & Ghamri-Doudane, Y. (2015). Software defined networking-based
vehicular adhoc network with fog computing. In 2015 IFIP/IEEE International Symposium on
Integrated Network Management (IM) (pp. 1202–1207). IEEE.

14. Guntuka, S., Shakshuki, E. M., Yasar, A., & Gharrad, H. (2020). Vehicular data offloading by
road-side units using intelligent software defined network. Procedia Computer Science, 177,
151–161.

15. Rehman, S., & Kapoor, N. (2019). A review on delay efficient architecture for Software
Defined Vehicular Networks (SDVN). In 2019 6th International Conference on Computing
for Sustainable Global Development (INDIACom) (pp. 1094–1100). IEEE.

16. Bhatia, J., Dave, R., Bhayani, H., Tanwar, S., & Nayyar, A. (2020). SDN-based real-time urban
traffic analysis in VANET environment. Computer Communications, 149, 162–175.

17. Kalokhe, K. N., Park, Y., & Chang, S.-Y. (2018). Resilient SDN-based communication
in vehicular network. In International Conference on Wireless Algorithms, Systems, and
Applications (pp. 865–873). Cham: Springer.

18. Zhao, L., Zhao, W., Al-Dubai, A., & Min, G. (2019). A novel adaptive routing and switching
scheme for software-defined vehicular networks. In ICC 2019-2019 IEEE International
Conference on Communications (ICC) (pp. 1–6). IEEE.

19. Ji, X., Xu, W., Zhang, C., & Liu, B. (2020). A three-level routing hierarchy in improved
SDN-MEC-VANET architecture. In 2020 IEEE Wireless Communications and Networking
Conference (WCNC) (pp. 1–7). IEEE.

20. Sanagavarapu, S., & Sridhar, S. (2021). SDPredictNet-a topology based SDN neural routing
framework with traffic prediction analysis. In 2021 IEEE 11th Annual Computing and
Communication Workshop and Conference (CCWC) (pp. 0264–0272). IEEE.

21. Gao, K., Ding, X., Xu, J., Yang, F., & Zhao, C. (2020). HMM-based traffic state prediction
and adaptive routing method in VANETs. In International Conference on Collaborative
Computing: Networking, Applications and Worksharing (pp. 236–252). Cham: Springer.

22. Wahid, A., Rao, A. C. S., & Goel, D. (2019). Server communication reduction for GPS-based
floating car data traffic congestion detection method. In Integrated Intelligent Computing,
Communication and Security (pp. 415–425). Singapore: Springer.

23. Khatri, S., Vachhani, H., Shah, S., Bhatia, J., Chaturvedi, M., Tanwar, S., & Kumar, N.
(2021). Machine learning models and techniques for VANET based traffic management:
Implementation issues and challenges. Peer-to-Peer Networking and Applications, 14(3),
1778–1805.

24. Hamdi, M. M., Audah, L., Rashid, S. A., & Al Shareeda, M. (2020). Techniques of early inci-
dent detection and traffic monitoring centre in VANETs: A review. Journal of Communications,
15(12), 896–904.

25. Kumar, A., Krishnamurthi, R., Nayyar, A., Luhach, A. K., Khan, M. S., & Singh, A. (2021).
A novel Software-Defined Drone Network (SDDN)-based collision avoidance strategies for
on-road traffic monitoring and management. Vehicular Communications, 28, 100313.

26. Nama, M., Nath, A., Bechra, N., Bhatia, J., Tanwar, S., Chaturvedi, M., & Sadoun, B. (2021).
Machine learning-based traffic scheduling techniques for intelligent transportation system:
Opportunities and challenges. International Journal of Communication Systems, 34(9), e4814.

27. Rbii, E., & Jemili, I. (2020). Leveraging SDN for smart city applications support. In
International Workshop on Distributed Computing for Emerging Smart Networks (pp. 95–119).
Cham: Springer.

28. Paranjothi, A., Khan, M. S., & Zeadally, S. (2020). A survey on congestion detection and
control in connected vehicles. Ad Hoc Networks, 108, 102277.

Chapter 16
Advanced Deep Learning for Image
Processing in Industrial Internet of
Things Under Software-Defined Network

Zhihan Lv, Liang Qiao, Jingyi Wu, and Haibin Lv

16.1 Introduction

The rapid development of Internet of Things (IoT) has built a new digital world.
According to statistics, the global expenditure of IoT in 2019 has exceeded 745
billion US dollars and is expected to reach 1 trillion US dollars in 2022 [1, 2]. As
the basis and premise of modernization, the highly developed industrial society is
an important symbol of modernization. Hence, industrial Internet of Things (IIoT)
has become one of the main development directions of IoT technology in the
future. IIoT contains hundreds of millions of industrial devices. Even the smallest
devices can be connected, monitored, and tracked, share the status data of each
device, and communicate with other devices. Then, all the acquired data can be
collected and analyzed to improve the efficiency of business process [3]. At present,
IIoT has gradually become a research hotspot in manufacturing, general industry,
transportation, and other fields. It can help better understanding the operation of the
production line and predicting the maintenance time of industrial equipment in time,
thus reducing the unexpected downtime [4–6]. Traditional network architecture
cannot meet the management requirements of many sensor nodes in IIoT, and
the software-defined network (SDN), a new network architecture, provides a new
possibility.

The popularity of IIoT devices marks the progress of technology. IIoT based
on network sensor and cloud resource technology provides two-way movement of
local and remote assets between enterprises and business partners [7]. IoT hardware

Z. Lv (�) · L. Qiao · J. Wu
College of Computer Science and Technology, Qingdao University, Qingdao, China

H. Lv
North China Sea Offshore Engineering Survey Institute, Ministry of Natural Resources NorthSea
Bureau, Qingdao, China

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. S. Aujla et al. (eds.), Software Defined Internet of Everything, Technology,
Communications and Computing, https://doi.org/10.1007/978-3-030-89328-6_16

271

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89328-6_16&domain=pdf
https://doi.org/10.1007/978-3-030-89328-6_16

272 Z. Lv et al.

and software can generate valuable operation data in the “industry 4.0” era, which
can be applied to mechanical pistons, bearings, and other small parts, as well as
drilling, mining, and other large-scale systems. In IIoT, the support of machine
vision technology is indispensable in all aspects of transportation, supply chain
management, material processing, and security [8]. As a key intelligent technology,
image processing in machine vision can complete higher level conscious decision-
making through higher level image recognition. Image processing is not only
necessary for inspection but also helps locating and training industrial robot system.
Based on the application of image processing system, more and newer efficient
business models will appear in the “industry 4.0” era [9, 10].

Image processing is an important branch of machine vision. In recent years, it
has been widely used in the field of security camera in IIoT to improve the image
quality and avoid the influence of defects in the image on the image analysis. As
an important branch of machine learning, deep learning can obtain multilevel image
feature information directly from the original image through unsupervised learning.
In the field of image processing of IIoT, deep learning also contributes to solving
some abstract concepts and selecting useful feature information.

The dynamic computing framework is constructed based on SDN. The connec-
tion between hosts is realized through virtual switch, and all hosts are controlled
by the controller of SDN. The dynamic computing framework sends instructions
through the controller to realize the interaction between the control layer and
the data layer of SDN. To sum up, image processing technology based on deep
learning has been widely concerned, but there are rare studies on applying advanced
deep learning in IIoT devices and industrial defect identification. Thus, the image
processing technology in IIoT is analyzed, and the application of deep learning
technology in image processing is explored, thereby improving the effectiveness
of data acquisition and fault diagnosis in IIoT.

16.2 Related Works

In addition to realizing intelligent life, IoT has also made remarkable development
in the industrial field. In the primary stage of modern industrial development, some
scholars have explored the challenges faced by the development of IIoT. Zhang et
al. [11] held that a large amount of data generated by IIoT is very valuable for
understanding the operation status of basic equipment and proposed a method of
analyzing the operation status of equipment based on sensor data. In addition, they
established a prediction model of the operation status of equipment, designed a deep
neural network (DNN) model of the operation data prediction of equipment, and
improved the prediction accuracy through system feature engineering and optimal
super parameter search [11]. Sisinni et al. [12] found that compared with the wire-
less industry, IIoT usually requires less throughput for applications, and the capacity
of each node can be greatly released. Meantime, there are higher requirements for
the performance of IIoT hardware, such as latency, energy efficiency, and reliability
[12].

16 Advanced Deep Learning for Image Processing in Industrial Internet of. . . 273

To effectively supervise the equipment and process level of IIoT, the application
of image processing technology in IIoT has gradually become a research hotspot.
Liu et al. [6] studied the image compression and transmission technology in the
image processing system of IIoT. Based on the deep perception and local image
characteristics and taking the image quality evaluation index (QAM) as the standard,
they proposed an automatic perceptual evaluation of the image quality received by
the terminal display device in the environment of IoT. This is of great significance
for the prediction of equipment failure of IIoT [6]. He et al. [13] applied deep
learning to single image processing and proposed a new DNN to infer image
accuracy by effectively fusing the middle-level information of fixed focus data set
[13]. Artusi et al. [14] proposed a line monitoring based on deep learning and image
processing technology for industrial pantograph slide and a method of surface defect
detection and recognition. Moreover, they analyzed the method of equipment wear
edge based on image processing technology and verified that the image processing
had a higher evaluation accuracy in equipment wear prediction [14].

In summary, the image processing technology based on deep learning has been
applied in many fields, such as medicine, industry, and manufacturing. However,
regarding IoT, especially in the environment of IIoT, the studies on image processing
technology are still in its infancy. The application of deep learning technology in
image processing of IIoT is explored here, and then the equipment and processing
technology in industrial production is effectively supervised, providing convenient
and powerful guarantee for industrial production.

16.3 Method

16.3.1 Architecture and Key Technologies of IIoT

IoT is changing the way people interact with things around them, and it has a great
influence on the industry. The emergence of IIoT connects all industrial assets,
including machines, control systems, information systems, and business processes
[15]. A large amount of data is collected to provide analysis solutions to achieve the
best industrial operation. Hence, IIoT affects the entire industrial value chain, which
is the inevitable requirement of intelligent manufacturing [16]. IIoT can be regarded
as a subset of “Industrial Internet,” and sensing is its basic feature, thus realizing
industrial operation in industrial management.

IIoT covers the field of industrial communication technology for machine-to-
machine (M2M) and automation applications, enabling people to better understand
the industrial production process and achieve efficient and sustainable production.
Through the application of the new generation technology concept, the industrial
Internet realizes the intelligent cooperation of massive industrial entities, thus
changing the future industrial infrastructure of industrial production form [17–19].
Based on IIoT, different types of industrial entities and even the entire industrial

274 Z. Lv et al.

Fig. 16.1 System architecture of IIoT

network are managed and controlled, and the industrial role and social resources
are effectively integrated to further realize the intelligent development of industrial
entities.

The architecture of IIoT can be divided into three layers: physical layer,
communication layer, and application layer, as shown in Fig. 16.1. The physical
layer is composed of widely deployed physical devices, including sensors, actuators,
manufacturing equipment, facility utilities, and other industrial manufacturing
and automation-related objects. The communication layer is the integration of
many communication networks, including wireless sensor and actuator networks
(WSANs), 5G, M2M, SDN, and others, which is responsible for supporting the con-
nectivity between sensors and actuators. The application layer of IIoT is composed
of a series of industrial applications, such as intelligent factory and intelligent supply
chain [20]. It realizes real-time monitoring and effective management of industrial
production through sensors and actuators.

IIoT is a special field based on IoT, so the key technologies of IIoT mainly
include identification and tracking technology, communication technology, network
technology, and service management technology. Among them, the identification
and tracking technology includes intelligent sensors, radio frequency identification
(RFID) technology, and barcode. RFID system has the ability of identification
and tracking. It can be combined with wireless sensor network (WSN) to further
promote the realization of industrial services and create the IoT application more
suitable for industrial environment. For communication technology, gateway can
promote the communication between various devices on the network and can also be
used to deal with the complex nodes involved in the communication on the network
[21]. As the devices in the industrial Internet usually have different communication

16 Advanced Deep Learning for Image Processing in Industrial Internet of. . . 275

and computing capabilities, the cross-layer protocol of wireless network needs to be
modified properly before it is applied to the industrial internet, thus better using the
Internet for information exchange and data communication.

16.3.2 Dynamic Computing Framework of SDN-Based IIoT

The core of SDN is to divide the whole network into control layer and data
forwarding layer. The controller in the control layer realizes all decision-making
and scheduling, while the switch and other network devices in the data forwarding
layer are only responsible for executing the tasks determined by the control layer.

In the actual deployment, SDN software switch is implemented through Open
Switch, and its advantages mainly include open forwarding function, standard
interface support, and programmable expansion and control. The control of network
is realized by SDN controller Open Day Light. Its advantages include supporting
many south interface protocols and north interface protocols, which can meet the
requirements of network control in dynamic computing framework. The Docker
container is utilized to achieve the separation of computing functions, and applica-
tions and dependent environments can be packaged into an independent image.

The transmission configuration generated by the dynamic configuration module
is used to coordinate the transmission and calculation process of various devices
and is the core of the whole dynamic transmission framework. The computing
configuration generated by the dynamic computing module is used to coordinate the
transmission and calculation process of various devices and is the core of the whole
dynamic transmission framework, which is realized by Json here. There are three
important parts in the computing configuration: the transfer module, the computing
function, and the transfer statistics. In the dynamic computing framework, not only
the server in the cloud can run the algorithm to perform the calculation, but the edge
host and the middle SDN switch as the starting point can also do this. Thus, the
users can choose one of the data acquisition modules, the virtual switch module,
and the result processing modules to perform the calculation. Because the execution
modules selected in the computing configuration are different, the devices used are
also different, and the performance of each transfer will be different. This requires
the dynamic computing framework to automatically count the important data in the
process of transmission and calculation, so that users can view it in time after the
transfer process.

16.3.3 Application of Software-Defined Internet of Everything

Smart city cloud platform requires the network of data center to provide tenants
with relatively independent network of autonomous opening, configuration, and
management. In Metropolitan Area Network (MAN) and Backbone Network, edge

276 Z. Lv et al.

control equipment is the core control unit of user and service access. Based on the
SDN technology, the functions of edge access control equipment can be promoted
to MAN controller, and the flexible and fast deployment of services can be realized
by virtualization. The SDN network controller supports the autonomous discovery
and registration of various remote devices and supports maintaining the connection
between the remote node and the master node. The edge access control device only
needs to realize the physical resource configuration of user access, which greatly
reduces the burden of the edge control device and improves the utilization rate of
network devices. SDN’s forwarding and control are separated, and the controllers
are deployed in a centralized way. It can collect the traffic demand among various
services in the data center, carry out unified calculation and scheduling, realize the
flexible allocation of bandwidth, optimize the network to the greatest extent, and
improve the utilization of network resources. For the present stage, SDN technology
needs to evolve to access devices closer to the bottom layer for the present stage.
It needs to be compatible with more devices and protocols, so that more and more
front-end detectors can be managed and controlled by network/software.

Home is not only the smallest part of each city but also the smallest node of smart
city. Smart home is the carrier of home, which is the application and embodiment
of the concept and technology of smart city at the home level. Based on the SDN
technology, the network strategy is adjusted on the Internet, so many smart home
users have realized the project research and application of differentiated IPTV
service. SDN technology is used to realize the policy scheduling of IP Internet
network elements. The ability of network equipment carrying high-definition IPTV
service is deeply mined and flexibly used. The access control template of broadband
remote access server (BRAS) carrying high-definition IPTV service is designed and
deployed. When the service is triggered, the remote service management platform
(control layer) directly sends the differentiated change of authorization (COA)
policy to the BRAS device (forwarding layer) reference policy control template.
According to the user differentiated control policy, BRAS realizes the service access
control and differentiated dynamic QoS scheduling on the network to achieve the
service control and forwarding, thereby realizing the differentiated IPTV product
service function.

SDN-based IIoT heralds a new wave of modernization. In many industries,
customers and internal stakeholders demand to achieve more progress in produc-
tivity, management, security, and flexibility. Figure 16.2 shows a typical factory
where services and workloads are more information technology centric (such as
factory data center) and gradually become operational technology centric (such
as factory machines) as they move down the hierarchy. Software-defined resource
allocation and management is gaining momentum in the fog paradigm because it
enables factory operators to better adapt to future needs. From the perspective of
network, this will be transformed into using SDN to realize the virtual network
function of the whole factory. The wireless combination of “5G + wireless cluster
+ Wi-Fi” is used to solve the problems of wide coverage, discrete distribution,
and extensive connection of mass industrial equipment. The remote monitoring
and diagnosis, remote guidance, and operation safety behavior analysis of mass

16 Advanced Deep Learning for Image Processing in Industrial Internet of. . . 277

Fig. 16.2 The architecture of
smart factory based on
software-defined IoT

industrial equipment are realized, making the scene of unmanned railway water
transportation and unmanned driving lifting realized.

16.3.4 Image Processing System for Machine Vision of IIoT

Modern industry has realized automation, which takes the place of traditional
manpower as the main productivity, and puts forward higher requirements for

278 Z. Lv et al.

Fig. 16.3 Structure of IIoT monitoring system

production management personnel [22]. The powerful monitoring system of IIoT
can realize the supervision of the real-time status of production equipment and its
operation and statistics of real-time data information. Figure 16.3 shows the system
structure.

As the automation is improved, industrial imaging and machine vision appli-
cations are becoming more popular in industrial control to support the power to
improve productivity. To increase efficiency, the image processing system must run
at a high speed to ensure that the average time between each new unit’s start of
production is as short as possible. At present, there are high-resolution cameras on
the market, which can record high-definition data and support the imaging of the
very fine details of the components on the production line [23]. The performance
of image processing is very important due to the high-speed transmission of higher
quality image using Gigabit Ethernet.

16 Advanced Deep Learning for Image Processing in Industrial Internet of. . . 279

It is very important to reflect the flexibility of industrial image processing
through key algorithms in IIoT hardware, especially for different types of industrial
equipment components, which need to focus on some visual features [24]. For
example, the inspection of the circuit board after the assembly of the equipment is
usually to detect the fracture and extrusion in the weld bead, indicating the possible
failure source. Through image edge detection and pattern matching to identify areas
of interest, each module will perform a complete inspection task according to its
own set of image processing programs. Image processing is not only necessary
for inspection but also helps to locate and train robot system. The machine vision
detection system uses Charge Coupled Device (CCD) or Complementary Metal
Oxide Semiconductor (CMOS) camera to convert the detected object into image
signal, which is transmitted to the special image processing system [25]. According
to the pixel distribution, brightness, color, and other information, it is transformed
into digital signal. The image processing system performs various operations on
these signals to extract the characteristics of the object, such as quantity, size,
position, and volume [26]. Then, according to the preset permissibility and other
conditions output results, the automatic recognition function is realized. In the
process of mass repetitive industrial production, the detection method using machine
vision image processing can greatly improve the efficiency and automation of
production. Figure 16.4 shows the application of image processing technology based
on machine vision in IIoT.

The image processing system based on deep learning realizes the remote moni-
toring of the basic process of industrial production, avoids the trouble of manually
visiting the production site, and brings users a good experience. Additionally,

Fig. 16.4 Application of image processing technology based on machine vision in IIoT

280 Z. Lv et al.

through the early warning function and automatic processing function, the safety
of equipment operation is greatly improved, and the work efficiency is improved.
The device can communicate with the server and transmit the real-time status of the
device to the server through the network, and the server can store the device status
data in the database. In the later stage, the historical information can be obtained by
accessing the data.

16.3.5 Image Processing Technology Based on Deep Learning

As an important branch of machine learning, deep learning can obtain multilevel
image feature information directly by unsupervised learning from the original image
and simulating the representation of multilevel features in the data by using multiple
nonlinear transformation framework [27, 28]. At present, the spatial adaptive image
smoothing algorithm based on unsupervised learning has been successfully applied
to a series of visual applications, such as image detail enhancement, texture removal,
and image processing, and Fig. 16.5 shows the specific process.

The image smoothing aims to reduce the interference of unimportant image
details and keep the subject of image structure clear and complete. The energy
function can be expressed as

E = Ed + λf gEf + �egEe, (16.1)

where Ed represents data item, Ef is smooth item, Ee indicates the edge reserved
item of the picture, and λf λg are balanced weights. The data item measures the
color difference between the output and the input images. The data item in the red,
green, and blue color space (RGB) can be expressed as

Fig. 16.5 Image smoothing process based on unsupervised learning

16 Advanced Deep Learning for Image Processing in Industrial Internet of. . . 281

Ed = 1

N

N∑

1=1

∣∣∣
∣∣∣Ti − Ii

∣∣∣
∣∣∣
2

2
, (16.2)

where N is the total number of pixels, and i is the pixel index.
In the process of image smoothing, some important edges may be weakened, so

it is necessary to retain the important pixel information. The edge response form of
an image can be defined as the sum of the local gradient amplitude of the image:

Ei(I) =
∑

j∈N(i)

∣∣∣
∑

c

(Ii,c − Ij,c)

∣∣∣, (16.3)

where N(i) represents the neighborhood of point i, and c is the color channel of
input image I . Supposing that the binary mapping is B, Bi = 1 is the important
edge point and Bi = 0 is the unimportant edge point. The edge reservation term can
be expressed as

Ee = 1

Ne

N∑

i=1

Bi g

∣∣∣
∣∣∣Ei(T) − Ei(I)

∣∣∣
∣∣∣
2

2
(16.4)

Ne =
N∑

i=1

Bi, (16.5)

where Ne represents the sum of important edge points, and I and T suggest the
input image and the output smooth image, respectively.

To delete the unimportant details of the image, the smoothing item can control
the degree of smoothing by punishing the color difference between adjacent pixels:

Ef = 1

Ne

N∑

i=1

∑

j∈Nh(i)

wi,j g

∣∣∣Ti − Tj

∣∣∣
pi

, (16.6)

where Nh(i) is the adjacent pixel of the current pixel, wi,j indicates the weight of

the pixel pair, and
∣∣∣Ti − Tj

∣∣∣
pi

represents the norm of the smoothing item. wi,j is

the Gaussian weight on the color domain and the spatial domain, expressed as the
following equations:

wr
i,j = exp(−

∑
c(Ii,c − Ij,c)

2

2σ 2
r

), (16.7)

ws
i,j = exp(− (xi − xj)

2 + (yi − yj)
2

2σ 2
s

), (16.8)

282 Z. Lv et al.

Fig. 16.6 System flowchart of edge learning algorithm

where σr represents the standard deviation calculated by the Gaussian kernel in the
color domain, and σs means the standard deviation calculated by the Gaussian kernel
in the space domain.

When dealing with edge-sensitive tasks, the edge detection imageEt of the target
image I t is learned by convolution neural network (CNN). The implementation
process of CNN network includes the following: first, convert images into matrices.
Each matrix is loaded with corresponding pixel values of different colors and then
input into the computer. Second, make data regularization, convolution operation,
activation, pooling, full connection, and other calculation operations after complet-
ing the preliminary image processing operations, and each convolution is equivalent
to a process of extracting basic image graphics. Figure 16.6 shows the system flow
of edge learning algorithm, edge learning convolution neural network (E-CNN).

• Step 1: filtering. Edge detection algorithm is mainly based on the first and second
derivatives of image intensity, and the filter is used to improve the performance
of edge detector. Therefore, there is a trade-off between edge enhancement and
noise reduction.

16 Advanced Deep Learning for Image Processing in Industrial Internet of. . . 283

• Step 2: enhancement. The basis of edge enhancement is to determine the change
value of the neighborhood intensity of each point in the image. The enhancement
algorithm can highlight the points with significant changes in the neighborhood
intensity value.

• Step 3: detection. There are many points with relatively large gradient amplitude
in the image, and these points are not all edges in a specific application field, so
some methods are used to determine which points are edge points.

• Step 4: positioning. If an application scenario needs to determine the edge
position, the position of the edge can be estimated on the sub-pixel resolution,
and the orientation of the edge can also be estimated.

E-CNN can be approximated by the following function f :

Et = f (IS, ES). (16.9)

To solve the problem of color attenuation in deep network training, the calibration
process of output image color information can be expressed as follows:

Sc arg minSc

∣∣∣
∣∣∣IS

c − Sc.I
t
c

∣∣∣
∣∣∣
2

2
(16.10)

I t
c ← ScgI t

c . (16.11)

The subnet is trained by minimizing the mean square error (MSE) of the predicted
image and the target image. The difference between the loss function of the image
edge prediction and the gradient of the minimized MSE is expressed as Eqs. 16.12
and 16.13, respectively,

lE(θ) =
∣∣∣
∣∣∣Et − Et∗

∣∣∣
∣∣∣
2

2
(16.12)

lI (θ) = α

∣∣∣
∣∣∣I t − I t∗

∣∣∣
∣∣∣
2

2
+ β

∣∣∣
∣∣∣∇xI

t − ∇xI
t∗

∣∣∣
∣∣∣
1
+

∣∣∣
∣∣∣∇yI

t − ∇yI
t∗

∣∣∣
∣∣∣
1
, (16.13)

where * represents the true value. In the joint training stage, the whole network is
trained by minimizing the loss.

l(θ) = lI (θ) + γ lE(θ) (16.14)

When two subnetworks are trained, the learning rate is set to 0.01 in the initial
iteration, and then the value is reduced to 0.001 to tune the network.

The loss function is optimized by gradient descent algorithm in DNN. The whole
network is trained by unsupervised learning. DNN implicitly learns the optimization
process, and it only needs a feed-forward propagation to predict the smooth image,
without redundant optimization steps.

284 Z. Lv et al.

16.4 Simulation Experiment

Natural images in Pascal Visual Object Classes (VOC) data set are selected for
training [29]. To evaluate the performance of deep learning algorithm, the images in
Pascal VOC data set are randomly selected to filter to produce true value labels.
The synthetic damaged image is taken as the input and the clear natural image
as the target image. DNN is used to simulate several image smoothing methods:
the weighted least square (WLS) method, relative total variation (RTV), and L0
smoothing [30]. Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM)
are selected as evaluation indexes.

On this basis, the image processing method based on deep learning is applied
to the detection of welding defects in industrial production, further proving the
effectiveness of this method in practical application. The data set adopts the welding
seam ray image in the open database GDX-ray and cuts it into 32×32 image blocks
with different defects as the learning sample data set. Texture is an important feature
in image pattern recognition. In this experiment, feature vectors are obtained when
the distance is 1, 2, and 3, and the Haralick feature is composed of the feature vectors
in series. To more accurately compare the performance of various features, three
data sets (RUS, ROS, and SMOTE) are selected to compare the Haralick features,
directional gradient histogram (HOG) features, deep learning features based on
stack sparse automatic encoder (SSAE), and deep CNN (DCNN) proposed. As the
texture is formed by the gray distribution in the spatial position repeatedly, there
will be a certain gray relationship between two pixels in the image space, that is,
the spatial correlation characteristics of the gray level in the image. HOG feature is
a feature descriptor for object detection in computer vision and image processing.
It constructs the feature by calculating and counting the histogram of the gradient
direction of the local region of the image, and the image and shape of the local
object can be well described by the density distribution of gradient or edge.

The evaluation indexes are the classification accuracy and average accuracy
(ACCR) of crack (CR), lack of penetration (LOP), no fusion (ND), pore (PO), and
slag inclusion (SI) [31]. To further analyze the feasibility of applying migration
learning in the recognition and classification of weld image defect, experiments
are conducted on three data sets to explore the performance of the classic AlexNet
and Visual Geometry Group-16 (VGG16) models in weld image classification. The
model in this section inherits the lower level of these classical models, changes
the top three layers, and changes the classification category to 5. Enlarge the input
image block to the appropriate size to adapt to the input of the model. For example,
for the AlexNet model, the size of the image block is enlarged to 225 × 225 × 3
(the original image is a gray image, and the values on the three channels are set to be
the same). The experiment runs on a single GPU, with 4 cycles and 1380 iterations.
Figure 16.7 shows the effect sketch of weld image defect.

16 Advanced Deep Learning for Image Processing in Industrial Internet of. . . 285

Fig. 16.7 Effect sketch of weld image defect

16.5 Results and Discussion

16.5.1 Comparison of Image Smoothing Technologies Based
on Deep Learning

To evaluate the performance of the algorithm based on DNN, a network is trained
separately for each filter’s single parameter value, and the performance of the
network is evaluated with PSNR and SSIM as the indicators. Figures 16.8 and 16.9
show the results. The RTV algorithm based on deep learning achieves better results
in PSNR and SSIM indicators, which indicates that the visual results of RTV
algorithm under the framework of deep learning can present better visual effect
whether in a single parameter value mode or a random parameter value mode.

For each image filter, the deep learning algorithm only needs a joint training
network. Even if different filters are used for different image processing and their
implementation details are different, the deep learning algorithm can still learn all
the filters, thus verifying the stability of the algorithm.

286 Z. Lv et al.

Fig. 16.8 PSNR of different algorithms based on deep learning

Fig. 16.9 SSIM of different algorithms based on deep learning

Figures 16.10 and 16.11 show the visual results based on the deep learning
algorithm. The analysis suggests that the single network trained by the algorithm
for continuous random parameters can predict high-quality images with different

16 Advanced Deep Learning for Image Processing in Industrial Internet of. . . 287

Fig. 16.10 PSNR of image restoration trained by a single parameter value and a random parameter
value

Fig. 16.11 SSIM of image restoration trained by a single parameter value and a random parameter
value

288 Z. Lv et al.

smoothing intensities. Taking the clear image as the true value and the damaged
image as the input, the effectiveness of the deep learning algorithm in more
extensive image processing tasks is further verified.

16.5.2 Classification Effect of Image Processing on Welding
Defects in Industrial Production

Figures 16.12, 16.13, and 16.14 show the comparison of the classification accuracy
of the three data sets by the five features. Under any balanced data method, the
deep features extracted by SSAE, DCNN1, and DCNN2 deep networks show better
classification ability. It is proved that the image processing method based on deep
learning proposed is effective for the classification of welding defects in industrial
production.

In SMOTE data set, DCNN2 has the strongest classification ability, and the
classification accuracy can reach 97.5%. However, in RUS data set, the classification
accuracy of DCNN1 and DCNN2 is 75–80%, which is significantly lower than that
of SSAE (87.9%). This shows that the depth of DCNN will affect the classification
ability of features, but DCNN proposed is not suitable for small sample training data
set. In addition, the classification accuracy of different types of defects is obviously
different. Among them, the pore defect type is easier to identify than other defect
types, and the crack defect image is most difficult to identify. Furthermore, the

Fig. 16.12 Comparison of classification accuracy on RUS data set

16 Advanced Deep Learning for Image Processing in Industrial Internet of. . . 289

Fig. 16.13 Comparison of classification accuracy on ROS data set

Fig. 16.14 Comparison of classification accuracy on SMOTE data set

classification accuracy of AlexNet, VGG16 model, and DCNN model proposed is
compared on three kinds of data sets, and Figs. 16.15, 16.16, and 16.17 show the
results.

290 Z. Lv et al.

Fig. 16.15 Classification accuracy of different models in RUS data set

Fig. 16.16 Classification accuracy of different models in ROS data set

16 Advanced Deep Learning for Image Processing in Industrial Internet of. . . 291

Fig. 16.17 Classification accuracy of different models in SMOTE data set

Figures 16.15, 16.16, and 16.17 suggest that the migration learning of AlexNet
and VGG16 models is also feasible in the classification of industrial weld defect.
The DCNN model proposed is simple in structure and fast in operation, while the
AlexNet and VGG16models have better training effect on large data sets. In general,
migration learning can also achieve good results in small sample data sets. DCNN
trained by image pre-training can be applied to weld image defect classification,
which is suitable for processing modern industrial images.

Transfer learning uses the existing knowledge to solve the existing problems.
Both VGG16 and AlexNet models are trained on big data sets, so it is not necessary
to use too many weld image block samples for training in theory. In the case of
missing tag data, the model pre-trained by natural image can be used to learn the
features of weld image. It shows that although the contents of weld image and
natural image are different, there are similar expressions in the underlying features.

16.6 Conclusions

With the rise of modern industry, IIoT further optimizes the industrial production
process and production efficiency and uses intelligent terminals with perception
ability and mobile communication networks and other technologies in all aspects of
industrial production and management. Image processing based on machine vision
can achieve higher level consciousness decision-making through higher level image

292 Z. Lv et al.

recognition, which is very essential for the inspection in the industrial production
process. The image processing technology based on deep learning is explored to
improve the level of industrial management through image processing technology in
the process of production and processing. The present work designs and implements
a dynamic computing framework based on SDN. Open Switch is used as virtual
switch and Open Day Light as controller, and an SDN environment that can be
deployed in the factory environment is built.

The image processing system of IIoT machine vision application is explored,
the application of deep learning in IIoT image processing is analyzed, and the deep
learning algorithm is evaluated by simulation experiment. It is found that the deep
learning algorithm is effective in a wider range of image processing tasks, and
the image processing method based on the deep learning proposed is effective in
the image classification of industrial production welding defects. However, in the
process of image processing based on deep learning, the parameters of each layer
of convolution network need to be extracted and learned separately. Learning such a
large number of convolution parameters is also a great burden for network training.
Therefore, a method needs to be explored in the future, which can reduce the
network storage space and speed up the network training by learning the convolution
parameters of one layer alone. This study provides a convenient and powerful
guarantee for the effective supervision of equipment and processing technology in
industrial production. However, only the industrial welding process is focused on,
and the other common processing methods such as cutting and smelting need further
deep analysis, which will be the main research direction in the future.

References

1. Zeng, L., Li, E., Zhou, Z., et al. (2019). Boomerang: On-demand cooperative deep neural
network inference for edge intelligence on the industrial Internet of Things. IEEE Network,
33(5), 96–103.

2. Molanes, R. F., Amarasinghe, K., Rodriguez-Andina, J., et al. (2018). Deep learning and
reconfigurable platforms in the Internet of Things: Challenges and opportunities in algorithms
and hardware. IEEE Industrial Electronics Magazine, 12(2), 36–49.

3. Liu, M., Yu, F. R., Teng, Y., et al. (2019). Performance optimization for blockchain-enabled
industrial Internet of Things (IIoT) systems: A deep reinforcement learning approach. IEEE
Transactions on Industrial Informatics, 15(6), 3559–3570.

4. He, Y., Guo, J., & Zheng, X. (2018). From surveillance to digital twin: Challenges and
recent advances of signal processing for industrial Internet of Things. IEEE Signal Processing
Magazine, 35(5), 120–129.

5. Li, L., Ota, K., & Dong, M. (2018). Deep learning for smart industry: Efficient manufacture
inspection system with fog computing. IEEE Transactions on Industrial Informatics, 14(10),
4665–4673.

6. Liu, X., Sun, C., Kang, K., et al. (2016). Joint 3-D image quality assessment metric by using
image view and depth information over the networking in IoT. IEEE Systems Journal, 10(3),
1203–1213.

7. Lyu, L., Bezdek, J. C., He, X., et al. (2019). Fog-embedded deep learning for the Internet of
Things. IEEE Transactions on Industrial Informatics, 15(7), 4206–4215.

16 Advanced Deep Learning for Image Processing in Industrial Internet of. . . 293

8. Yan, Q., Huang, W., Luo, X., et al. (2018). A multi-level DDoS mitigation framework for the
industrial Internet of Things. IEEE Communications Magazine, 56(2), 30–36.

9. Li, P., Chen, Z., Yang, L. T., et al. (2018). An incremental deep convolutional computation
model for feature learning on industrial big data. IEEE Transactions on Industrial Informatics,
15(3), 1341–1349.

10. Yan, H., Wan, J., Zhang, C., et al. (2018). Industrial big data analytics for prediction of
remaining useful life based on deep learning. IEEE Access, 6, 17190–17197.

11. Zhang, W., Guo, W., Liu, X., et al. (2018). LSTM-based analysis of industrial IoT equipment.
IEEE Access, 6, 23551–23560.

12. Sisinni, E., Saifullah, A., Han, S., et al. (2018). Industrial Internet of Things: Challenges,
opportunities, and directions. IEEE Transactions on Industrial Informatics, 14(11), 4724–
4734.

13. He, L., Wang, G., & Hu, Z. (2018). Learning depth from single images with deep neural
network embedding focal length. IEEE Transactions on Image Processing, 27(9), 4676–4689.

14. Artusi, A., Banterle, F., Carra, F., et al. (2019). Efficient evaluation of image quality via deep-
learning approximation of perceptual metrics. IEEE Transactions on Image Processing, 29,
1843–1855.

15. Gonzalez-Manzano, L., Fuentes, J. M. D., & Ribagorda, A. (2019). Leveraging user-related
Internet of Things for continuous authentication: A survey. ACM Computing Surveys (CSUR),
52(3), 1–38.

16. Zhang, S., Yao, L., Sun, A., et al. (2019). Deep learning based recommender system: A survey
and new perspectives. ACM Computing Surveys (CSUR), 52(1), 1–38.

17. Ioannidou, A., Chatzilari, E., Nikolopoulos, S., et al. (2017). Deep learning advances in
computer vision with 3d data: A survey. ACM Computing Surveys (CSUR), 50(2), 1–38.

18. Sha, L. T., Xiao, F., Huang, H. P., et al. (2019). Catching escapers: A detection method for
advanced persistent escapers in industry Internet of Things based on Identity-based Broadcast
Encryption (IBBE). ACM Transactions on Embedded Computing Systems (TECS), 18(3), 1–25.

19. Li, B., Qin, Y., Yuan, B., et al. (2019). Neural network classifiers using a hardware-based
approximate activation function with a hybrid stochastic multiplier. ACM Journal on Emerging
Technologies in Computing Systems (JETC), 15(1), 1–21.

20. Ludwig, T., Boden, A., & Pipek, V. (2017). 3D printers as sociable technologies: Taking
appropriation infrastructures to the Internet of Things. ACM Transactions on Computer-Human
Interaction (TOCHI), 24(2), 1–28.

21. Stolpe, M. (2016). The Internet of Things: Opportunities and challenges for distributed data
analysis. ACM SIGKDD Explorations Newsletter, 18(1), 15–34.

22. Yan, Q., Huang, W., Luo, X., et al. (2018). A multi-level DDoS mitigation framework for the
industrial Internet of Things. IEEE Communications Magazine, 56(2), 30–36.

23. Koroniotis, N., Moustafa, N., & Sitnikova, E. (2019). Forensics and deep learning mechanisms
for botnets in Internet of Things: A survey of challenges and solutions. IEEE Access, 7, 61764–
61785.

24. Aazam, M., Harras, K. A., & Zeadally S. (2019). Fog computing for 5G tactile industrial
Internet of Things: QoE-aware resource allocation model. IEEE Transactions on Industrial
Informatics, 15(5), 3085–3092.

25. Azmoodeh, A., Dehghantanha, A., & Choo, K. K. R. (2018). Robust malware detection for
internet of (battlefield) things devices using deep eigenspace learning. IEEE Transactions on
Sustainable Computing, 4(1), 88–95.

26. Zhu, Q., Chen, Z., & Soh, Y. C. (2018). A novel semisupervised deep learning method for
human activity recognition. IEEE Transactions on Industrial Informatics, 15(7), 3821–3830.

27. Choo, K. K. R., Gritzalis, S., & Park, J. H. (2018). Cryptographic solutions for industrial
Internet-of-Things: Research challenges and opportunities. IEEE Transactions on Industrial
Informatics, 14(8), 3567–3569.

28. Jindal, A., Aujla, G. S., Kumar, N., et al. (2018). SeDaTiVe: SDN-enabled deep learning
architecture for network traffic control in vehicular cyber-physical systems. IEEE Network,
32(6), 66–73.

294 Z. Lv et al.

29. Li, G., Wu, J., Li, J., et al. (2018). Service popularity-based smart resources partitioning for fog
computing-enabled industrial Internet of Things. IEEE Transactions on Industrial Informatics,
14(10), 4702–4711.

30. Yang, X., Wang, H., Liu, K., et al. (2019). Minimax and WLS designs of digital FIR filters
using SOCP for aliasing errors reduction in BI-DAC. IEEE Access, 7, 11722–11735.

31. Zhu, J., Ge, Z., & Song, Z. (2017). Distributed parallel PCA for modeling and monitoring of
large-scale plant-wide processes with big data. IEEE Transactions on Industrial Informatics,
13(4), 1877–1885.

Index

A
Abductive logic, 93
Active networking, 63
Adaptive transmission model, 172
Address isolation, 56
Aggregated routing approach, 193
Agility, 82
AI-based learning, 226
Architecture

SDN-edge cooperation, 156, 157
software-defined networking, 154–156

Archiving policy, 85–86
ARP_REQ packets, 103
ARPANET network, 40
Artificial Intelligence (AI), 6, 226
Artificial Neural Networks (ANN), SDN,

226
altered data, 232
back propagation (BP) algorithm, 229–230
computational mechanism, 228
contribution, 226–227
fuzzy logic, 227
literature survey on, 227
multi-layered ANN architecture,

229
performance evaluation, 230–231
security framework, 228
simulation metrics, 231
trusted based schemes, 227
trusted nodes, identification of, 231

Aston, Kevin, 3
Authentication, 104, 105
Authority switches, 196
Automation, of network policies, 86–87

B
B4 carries, 191
Back propagation (BP) algorithm, 226,

229–230
Backup policy, 85
Bandwidth provisioning, 197
Bayesian rule, 227
Big Data, 197

analytics, 121
applications, 126

Big Switch, 50
Bio-inspired clustering algorithm,

163
Blockchain based mechanism, 228
Broad network access, 186
Broadband remote access server (BRAS),

276
Business intent, 82

C
CAching in Buckets (CAB), 87
Capsule model, 64
Central processing unit (CPU), 162–163
Centralized Software-Defined Network

(CSDN), 99–100
Centralized traffic engineering, 191–192
Chip manufacturers, 51
Cisco, 9, 80, 88
Classification effect on welding defects

ROS data set, 289, 290
RUS data set, 288, 290
SMOTE data set, 289, 291

Cloud computing, 161–163

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. S. Aujla et al. (eds.), Software Defined Internet of Everything, Technology,
Communications and Computing, https://doi.org/10.1007/978-3-030-89328-6

295

https://doi.org/10.1007/978-3-030-89328-6

296 Index

Cloud computing, SDN
and service models, 185–187
challenges in data center networks,

189–190
data center networks, 187–192

Cloudlets, 157
Cold migration approach, 127
Commercial IoT, 147
Complementary Metal Oxide Semiconductor

(CMOS) camera, 279
Computer Interactive Network, 37
Concentric Computing Model (CCM), 121,

122
Consistent services, 82
Consumer IoT, 147
Container-as-a-Service platform, 167
Core rule, 111

D
Data center network (DCN), 126, 128, 177,

178
challenges in, 189–190
fat-tree architecture, 208–210
SDN in, 190–192
software-defined networking, 187–192

energy management in, 198–199
flow management, 193–194
load balancing in, 195–196
resource management in, 197
traffic engineering in, 194–195

Data processing and analysis, 6–8
DCAN, 64
Deep learning approach, 165
Deep neural network (DNN) model, 272
Destination Port Numbers, 81
Deutsche Telekom, 55
DevoFlow scheme, 196
DIFANE architecture, 196
Differentiated Services (DiffServ), 183
Digitalization, 17
Dijkstra algorithm, 128
Dinkelbach algorithm, 165
Disaster recovery policy, 85
Distributed Denial of Service (DDoS) attacks,

182
Distributed Software-Defined Networking

(DSDN), 100–101
Divide-and-conquer approach, 92
Dynamic computing framework, 272
Dynamic Load Balancing using Alternate Path

(DALBP), 124, 130

E
EAR, 198
EDCSuS, 171
Edge computing, 151–153, 163–165

technical challenges for, 153–154
Edge–cloud cooperation

edge computing, 151–154
IoT, different versions of, 148
SDN-edge cooperation, 156

architecture, 156, 157
benefits of, 158–159
real scenario of, 157–158
vs. energy efficiency, technical

requirements of, 160
smart city, 149
software-defined networking, 154–156
state of the art, 161

cloud computing, 161–163
edge computing, 163–165
IoT-Edge platform, approaches for, 166
SDN, 165–168
SDN-edge cooperation, 168–172

Egress rule, 111
ElasticTree, 198
Electronic Product Code (EPC), 147
Elephant flow, 196
End-to-end (E2E) network services, 136
End-user, 8
Energy-efficient approaches

Big Data applications, 126
categories, 124
cloud-based data centres, 126
cold migration approach, 127
energy consumption problem, 126–127
exclusive routing, 125
GAL, 125
HTTP, 129
in SDN-enabled environment, 130–131
MQTT, 129
rule placement and TCAM-based

energy-aware concept, 125
virtual machines, 127–128

Energy-efficient optimization model, 171
Energy-efficient platform, 160
Energy-Efficient Routing (EER) strategy, 198
Enhanced Stealthy Probing based Verification

(ESPV) mechanism, 236, 238,
240–244

Equal-Cost Multipath (ECMP), 195
EstiNet, 70
Event-based architecture, 148
Exclusive routing, 125

Index 297

F
Failover policy, 86
Failure recovery, 189–190
FASCES

components of, 211–212
FlowMan and D2B, 216
game-theoretic interactions

existence of equilibrium, 213–214
proposed workflow, 214
utility function of each controller,

212–213
utility function of each IoT application,

211–212
network delay, 217
network throughput, 218
oligopolistic market scenario, 211
per-flow delay, 217
performance evaluation, 214–218
serviced IoT applications, 218
simulation parameters, 216
Stackelberg equilibrium, 206
Stackelberg game, 211
workflow of, 215

Fat-Tree architecture of DCN, 208, 209
Fine-grain control, 192
Flow demand flowchart, 114
Flow table, 181
Flow-based routing, 192
Flow-stealing method flowchart, 103, 104
Fog computing, 128
Forward central dynamic and available

approach (FCDAA), 164
Frenetic, 86
FRESCO

framework, 250–251
implementation, 252–253
problem statement, 251
proposed solution, 252

G
Gateway node, 5–6
Global Positioning System (GPS), 119, 147
Goal policy, 93
Google production networks, 191
Green Abstraction Layer (GAL), 125
Green cloud computing, 199
Group table, 181–182

H
Hard disk drive (HDD), 162
Healthcare software-defined networks, ANN,

225

altered data, 232
back propagation (BP) algorithm, 229–230
computational mechanism, 228
contribution, 226–227
fuzzy logic, 227
literature survey on, 227
multi-layered ANN architecture, 229
performance evaluation, 230–231
security framework, 228
simulation metrics, 231
trusted based schemes, 227
trusted nodes, identification of, 231

High-level goal policies, 93
Hybrid Software-Defined Networking

(HSDN), 101–102
HyperCuts decision tree, 92
Hypertext Markup Language (HTML),

40
Hypertext Transfer Protocol (HTTP), 40, 129,

131

I
IF-THEN-ELSE program, 89
Image processing system, IIoT

deep learning, 280–283
edge learning algorithm, 282
on machine vision, 279
system structure, 278
unsupervised learning, 280
welding defects (see Classification effect

on welding defects)
Image smoothing technologies based on deep

learning
PSNR, 286, 287
SSIM, 286, 287

Industrial Internet of Things (IIoT), 120, 122,
130, 147, 172

BRAS device, 276
dynamic configuration module, 275
image processing system

deep learning, 280–283
edge learning algorithm, 282
on machine vision, 279
system structure, 278
unsupervised learning, 280
welding defects, 288–291

IPTV service, 276
key technologies, 274
MAN controller, 276
RFID system, 274
SDN technology, 276–2777
simulation experiment, 284–285
system architecture, 274

298 Index

Information and communication technology
(ICT), 17, 18

Infrastructure as a Service (IaaS), 150, 186
Infrastructure IoT, 147
Ingress rule, 111
Inner central processor, 122
Inner gateway processors, 121
Integer linear programming (ILP) method, 139
Integrated Services (IntServ), 183
Internet content providers, 51
Internet Engineering Task Force (IETF), 183
Internet of Everything (IoE)

applications of, 11
authentication mechanism, 13
bandwidth issues, 13
cloud-edge-fog interplay, 13
compatibility issues, 13
data security, 12
device heterogeneity, 13
device security, 12
intelligent analysis, 13
internetworked devices, 9
need of standards, 12
people, process, data, and things, 9–10
privacy issues, 12
scalability, 12

Internet of Things (IoT), 147
adaptability of, 13
categories, 121
change from IoT to IoE, 199
emergencies and defense structure,

120–121
end user IoT, 120
industrial IoT, 120
infrastructure IoT, 120
protocols, 7
SDN architecture for, 122–123
service-level agreement, 119
working of, 3–4

data processing and analysis, 6–8
end-user, 8
gateway node, 5–6
sensors, 4–5

Internet service provider (ISP), 184
IoT-Edge authentication, 159
IT service provider, 51

L
Latency minimization, 159
Learning Management System (LMS), 89–91
Lightweight algorithms, 160
Link Layer Discovery Protocol (LLDP), 101,

179, 238, 239

Load balancing techniques, SDN
architecture of, 98
centralized SDN, 99–100
data collection approach flowchart, 105
distributed SDN, 100–101
eastbound interface, 99
filtering load based on TCP and UDP,

102–103
flow demand flowchart, 114
flow-stealing method flowchart, 103, 104
future work, 115–116
hybrid SDN, 101–102
in data center networks, 195–197
load broadcasting, 109
load by authentication, monitoring load,

and switch migration, 104–105
migration of switches to lightly load

by broadcasting load between
controllers, 108–109

modules of approach flowchart, 114
northbound interface, 98
overloaded controller, 103
pseudo-code of load balancing algorithm,

106
random method flowchart, 113
round-robin method flowchart, 113
routing protocol, 97–99, 101
scalable network, 106
southbound interface, 98
splitting main path and sub-path, 112
super controller, 107–108
supervisor controller to local controller for

load sharing, 106–107
tenant controllers, 109–111
underloaded controller, 103
westbound interface, 99

Load broadcasting, 109
Local Area Network (LAN), 79
Low-level goal policies, 93

M
M/M/k queuing model, 172
Mahout, 196
Maple, 86
Memory, 162
Message Authentication Code (MAC), 238
Message Queue Telemetry Transport (MQTT),

129
Metropolitan Area Network (MAN), 79, 80,

275, 276
Mininet, 70
Mobile edge computing (MEC) framework,

172

Index 299

Modernization, 17
Monitoring load, 105
Multi-Agent System, 167
Multi-layered ANN architecture, 229
Multi-protocol label switching (MPLS), 194
Multi-tenancy, 190

N
Network automation, 82
Network Control Protocol, 39
Network function virtualization (NFV), 172

applications, 137, 138
architecture, 135–136
definition, 135
implementations, 137, 138
RA-NFV

multiple NSs, 139
physical network, 138–139
SFC composition, 138
SFC description, 138
SFC embedding, 138
SFC embedding and scheduling, 138,

141, 142
SFC-Optimal, 139–140

Network hypervisor (NH), 109–110
Network isolation, 56
Network policies

application and QoS, 84
archiving policy, 85–86
automation of, 86–87
backup policy, 85
business intent and agility, 82
consistent services, 82
definition, 79
disaster recovery policy, 85
failover policy, 86
graph composition of, 90, 91
implementation, 80
in SDN, 81, 87–88
IoE optimization

detection and settlement of policy
variations, 92

fine-tuning of goal policies, 93
HyperCuts decision trees, 92
policy management systems, 91
strategic design objectives, 91

IP-based versus group-or role-based policy,
84

LAN, 79
MAN, 79, 80
network automation, 82
performance monitoring, 83
routers/firewalls, 80

security, 83
security and access control, 84
service insertion, 84
Set Operator, 89, 91
standard usage policy, 85
traffic routing, 84
types, 83
VLAN, 80
WAN, 79, 80
whiteboarding, 89, 90

Network resource virtualization, 56
Network switches, 180
Network virtualization platform, 56
NFV infrastructure (NFVI), 135
NFV management and orchestration (MANO),

135, 136
NFV orchestrator (NFVO), 136
Nicira, 50
NodeOS, 64
Non-coopertive fog computing, 128
Nondominated Sorting Genetic Algorithm

(NSGA-II), 164
NS-3, 70
NS2 simulator, 228
NTT, 55
NVGRE technology, 53

O
On-demand self-service, 185
One-point failure, 160
Online storage systems, 225
Open Networking Foundation (ONF), 45, 99,

178–179
Open shortest path first (OSPF), 101, 194
OpenDaylight (ODL), 45
OpenDayLight controller, 88
OpenFlow, 179, 194, 196, 198

protocol, 98, 99, 156, 157
switches, 88, 112, 154, 156, 179–181, 192,

193, 196
OpenFlow Topology Discovery Protocol, 236
OpenFlow-enabled switches, 154, 156, 157
OpenSignaling (OpenSig), 63
Operator, 51
Outer central processor, 122
Outer gateway processors, 121
Overloaded controller, 103

P
Packet switching technology, 39
Packet-In messages, 107, 182
Packet-Out messages, 182

300 Index

Path splitting, 111–112
Pay As You Go model, 186
Pay-per-use module, 160
Per-Flow technique, 195
Performance monitoring, 83
Platform as a Service (PaaS), 150, 186
Policy disagreement, 92
Policy enforcement, 182
Policy Graph Abstraction (PGA), 91
Programmability, 63
Programmable switch model, 64
Pseudo-code of load balancing algorithm, 106
Pyretic, 86
Pyretic language, 81

Q
QoS, 64, 152, 153
QoS-aware flow management scheme, 206
Quality evaluation index (QAM), 273
Quality of Service, 179

R
Radio frequency identification (RFID), 147,

274
Random method flowchart, 113
Rapid elasticity, 186
Raspberry pi 3, 129
Reactive/proactive manner, 192
Resource allocation in NFV (RA-NFV)

multiple NSs, 139
physical network, 138–139
SFC composition, 138
SFC description, 138
SFC embedding, 138
SFC embedding and scheduling, 138, 141,

142
SFC-Optimal, 139–140

Resource pooling, 185–186
Return of Investment (ROI), 198
Root-based approach, 126
Round-robin method flowchart, 113
Route request (RREQ) message, 128
Routers, 180
Routing over Low Power and Lossy Networks

(RPL), 168

S
Scalable network, 106
SDN-based fog computing approach, 128–129
SDN-based OpenFlow bandwidth provisioning

method, 197

SDN-edge cooperation, 156, 168–172
architecture, 156, 157
benefits of, 158–159
energy management schemes, 172
real scenario of, 157–158

SDN-IoT-edge platform, 159
Secure ANN network, 226
Security issues, SDN controllers

availability, 249
communication channel vulnerabilities,

249
confidentiality, 249
drone delivery cases, 249
fake traffic, 249
forwarding device attacks, 248
FRESCO works (See FRESCO)
infrastructure layer DDoS attacks, 250
open programmable API, 249
threats to control plane, 249

Sensing systems, 121
Sensors, 4–5
Service function chain (SFC), 138–142
Service-level agreement (SLA), 119, 152, 190,

197
SFC composition (SFC-C), 138
SFC description (SFC-D), 138
SFC embedding(SFC-E), 138
SFC scheduling (SFC-S), 138
Smart agriculture, 11
Smart cities, 11

Calgary, Canada, 30
Charlotte, USA, 30–31
complexity aspects, 20
components, 22
defined, 18
digitalization, 23–26
Fukuoka, Japan, 30
goals and barriers, 22–23
individuals social and digital inclusion, 20
information and communication technology

(ICT), 17
IoT enabling smart cities

environment monitoring, 27
smart factory, 28
smart grid, 27
smart healthcare, 28
smart parking, 28
smart traffic, 27–28
smart water supply, 27
waste management system, 27

Seoul, South Korea, 30
Singapore, 29–30
technology, governance, and community,

19

Index 301

Smart economy, 21
Smart environment, 21
Smart governance, 21
Smart healthcare, 11
Smart homes, 11
Smart industry, 11
Smart mobility, 21
Smart vehicular technology, 11
SoftEdgeNet model, 170
Software as a Service (SaaS), 149, 186
Software-defined DCN

bandwidth and TCAM, 208
fat-tree DCN, 205, 209
first-in-first-out (FIFO) scheduling, 210
quality of service (QoS), 206
resource management in DCNs, 207–208
resource management in SDNs, 207
synthesis, 208

Software-defined network (SDN), 37,
154–156, 165–168, 177

advantages, 49–50
ANN in, 225

altered data, 232
back propagation (BP) algorithm,

229–230
computational mechanism, 228
contribution, 226–227
fuzzy logic, 227
literature survey on, 227
multi-layered architecture, 229
performance evaluation, 230–231
security framework, 228
simulation metrics, 231
trusted based schemes, 227
trusted nodes, identification of,

231
applications, 183

cellular networks, 184
home networks, 184
Internet of things, 183
optical networks, 185

benefits and application domains
cellular networks, 72
data centers, 71–72
encourage innovation, 71
enhanced configuration, 71

building blocks, 179
controllers, 182–183
switches, 180–182

cloud computing and challenges, 185
and service models, 185–187
challenges in data center networks,

189–190
data center networks, 187–192

control layer, 67
control plane, 65
controller placement problem,

74
core technology, 48–49
data center networks, 192–193

energy management in, 198–199
flow management, 193–194
load balancing in, 195–196
resource management in, 197
traffic engineering in, 194–195

data plane, 65
defined, 47–48
development path, 45–47
in data center network, 51–54
in government and enterprise networks,

54
in network virtualization technology, 55–56
in telecom operator network, 55
industry chain analysis, 50–51
infrastructure layer, 66–67
Internet architecture, 178
latency constraints, 73–74
low-level interfaces, 74
Open Networking Foundation, 178–179
performance issues, 57
principles of, 68–69
protocols, 67–68
reliability, 73
scalability, 73
security, 74
security issues, 56
standardization issues, 57
technology, 178
tools and languages, 69–70

Software-defined network (SDN) controllers
architecture, 236, 237
cloud topology, 244
communication flows, 239
ESPV mechanism, 236, 238
implementation

data switches, 240
ESPV, 240–241
network topology, 241
ODL, 240

LLDP, 238, 239
MAC, 238
network topology, 235
OpenFlow Topology Discovery Protocol,

236
performance analysis

multi-threading, 242
proposed scheme, 241
single-threading, 242

302 Index

Software-defined network (SDN)
controllers (cont.)

problem statement, 238
resource consumption, ESPV

CPU usage, 243
memory usage, 244
multiple-threading, 243
single-threading, 243

security issues
availability, 249
communication channel vulnerabilities,

249
confidentiality, 249
drone delivery cases, 249
fake traffic, 249
forwarding device attacks, 248
FRESCO works (See FRESCO)
infrastructure layer DDoS attacks,

250
open programmable API, 249
threats to control plane, 249

structure using OpenFlow, 248
TopoGuard, 236, 238
Wireless Sensor Networks (WSNs), 238

Software-defined wireless sensor network
(SDWSN) approach, 168

Software-driven WAN (SWAN), 192
Source-to-noise ratio (SNR), 128
SouthBound interface, 195
Stackelberg equilibrium, 206
Stackelberg game model, 172, 210
Standard usage policy, 85
Startups, 50
Storage systems, 162
Successive convex approximation (SCA)

approach, 164, 165
Super controller (SC), 107–108
Switch migration, 103–105

T
Taylor, Robert, 39
TCP protocol, 102
Telnet, 80
Temperature sensor and air conditioner relay

switch, 4
Tempest framework, 63

Tenant controllers, 109–111
Ternary content-addressable memory (TCAM),

180, 193
Time-based architecture, 148
TopoGuard, 236, 238
Topology response message (TREQ), 128
Total Cost of Ownership (TCO), 198
Traditional equipment vendors, 50
Traditional network

campus network, 42–43
data center network, 44
equipment development history, 41–42
government affairs network, 43–44
home network, 42
Internet development history, 39–41

Traffic engineering (TE), 191–192
in data center networks, 194–195

Transmission Control Protocol (TCP), 81
Trusted based schemes, 227

U
UDP protocol, 102
Underloaded controller, 103
Unmanned aerial vehicle (UAV) energy, 164
Urban environments, 17
User Interface (UI), 91

V
Virtual machines (VMs), 127, 130, 183
Virtual network functions (VNFs), 135, 136,

138
Virtualization, 188
Virtualized infrastructure manager (VIM), 137

W
Water-conscious urban development, 30
Weld image defect, 285
Whiteboarding, 89, 90
Wide area Network (WAN), 79, 80
WiFi hotspot, 42
Wildcard rule flow forwarding, 196
Wireless Sensor Networks (WSNs), 238
Workload dispersion, 159
World Wide Web, 40

	Foreword
	Preface
	Contents
	Contributors
	Part I Internet of Everything and Smart City
	1 Internet of Everything: Background and Challenges
	1.1 Introduction
	1.1.1 Working of IoT
	1.1.1.1 Sensors
	1.1.1.2 Gateway Node
	1.1.1.3 Data Processing and Analysis
	1.1.1.4 End-User

	1.1.2 Internet of Everything

	1.2 Applications of Internet of Everything
	1.3 Challenges of Internet of Everything
	1.4 Conclusion
	References

	2 Smart Cities, Connected World, and Internet of Things
	2.1 Introduction
	2.2 Smart City Integrated Perspective
	2.2.1 Smart City Overview
	2.2.2 Smart Cities Goals and Barriers
	2.2.3 Digitalization and Connected World

	2.3 IoT Enabling Smart Cities
	2.4 Case Studies
	References

	Part II Software-Defined Networking
	3 Challenges of Traditional Networks and Development of Programmable Networks
	3.1 Introduction
	3.2 Traditional Network Architecture
	3.2.1 Internet Development History
	3.2.2 Equipment Development History
	3.2.3 Typical Architecture
	3.2.3.1 Home Network
	3.2.3.2 Campus Network
	3.2.3.3 Government Affairs Network
	3.2.3.4 Data Center Network

	3.2.4 Conclusion of Issues

	3.3 SDN Network Architecture
	3.3.1 Development Path
	3.3.2 Definition and Architecture
	3.3.3 Core Technology and Advantages
	3.3.3.1 Core Technology
	3.3.3.2 The Main Advantages

	3.3.4 Industry Chain Analysis

	3.4 Application Scenario Analysis
	3.4.1 Application of SDN in Data Center Network
	3.4.2 Application of SDN in Government and Enterprise Networks
	3.4.3 Application of SDN in Telecom Operator Network
	3.4.4 Application of SDN in Network Virtualization Technology

	3.5 Future and Challenges
	3.5.1 Existing Challenges
	3.5.1.1 Security Issues
	3.5.1.2 Standardization Issues
	3.5.1.3 Performance Issues

	3.5.2 Future Development

	3.6 Conclusion
	References

	4 Architecture and Deployment Models-SDN Protocols, APIs, and Layers, Applications and Implementations
	4.1 Introduction
	4.2 SDN Architecture
	4.3 SDN Protocols
	4.4 Principles of SDN Architecture
	4.5 SDN Tools and Languages
	4.6 SDN Benefits and Application Domains
	4.7 Research Challenges
	References

	5 Network Policies in Software Defined Internet of Everything
	5.1 Introduction
	5.1.1 What are the Network Policies?
	5.1.2 Role and Importance of Network Policies
	5.1.2.1 Business Intent and Agility
	5.1.2.2 Consistent Services
	5.1.2.3 Network Automation
	5.1.2.4 Performance Monitoring
	5.1.2.5 Network Security

	5.2 Types of Network Policies for IoE
	5.2.1 Security and Access Control
	5.2.2 Application and QoS
	5.2.3 Traffic Routing and Service Insertion
	5.2.4 IP-Based Versus Group- or Role-Based
	5.2.5 Standard Usage Policy
	5.2.6 Disaster Recovery Policy
	5.2.7 Backup Policy
	5.2.8 Archiving Policy
	5.2.9 Failover Policy

	5.3 Automation of Network Policies
	5.4 Network Policies in SDN
	5.5 Conflict and Overlapping Among the Network Policies
	5.6 Network Policies Optimization
	5.6.1 Detection and Settlement of Policy Variations
	5.6.2 Fine-Tuning of Goal Policies

	5.7 Conclusion
	References

	6 Analysis of Load Balancing Techniques in Software-Defined Networking
	6.1 Introduction
	6.2 Software-Defined Network
	6.2.1 Types of Software-Defined Network
	6.2.1.1 Centralized SDN
	6.2.1.2 Distributed SDN
	6.2.1.3 Hybrid SDN

	6.3 Techniques for Load Balancing in Software-Defined Network
	6.3.1 Balance the Load by Filtering the Load Based on TCP and UDP 6:10
	6.3.2 Stable the Network by Shifting the Workload from Overloaded Controller to the Underloaded Controllers 6:11
	6.3.3 Balancing of Load by Authentication, Monitoring Load, and Switch Migration 6:12
	6.3.4 Different Services Provided by Supervisor Controller to Local Controller for Load Sharing in Scalable Network 6:13
	6.3.5 Load Balancing by Making Cluster of Controller by Super Controller 6:14
	6.3.6 Lighten Up the Overloaded Controller by Migration of the Switches to Lightly Load by Broadcasting Load Between Controllers 6:15
	6.3.7 Tenant Controllers Are Finding Best Paths by Calculating the Maximum Throughput 6:16
	6.3.8 Balance the Flow of User's Load by a Different Method of Sharing Resources 6:17
	6.3.9 Finding Best Path by Considering Bandwidth and Delay for Cloud Data Centers 6:11

	6.4 Conclusion and Future Work
	References

	7 Analysis of Energy Optimization Approaches in Internet of Everything: An SDN Prospective
	7.1 Introduction
	7.1.1 Applications and Types of IoT

	7.2 Software-Defined Networking
	7.3 Analysis of Various Energy-Efficient Techniques in SDN-Based Environment
	7.4 Conclusion
	References

	8 Network Function Virtualization
	8.1 What Is Network Function Virtualization
	8.2 NFV Architecture and Model
	8.3 NFV Applications and Implementations
	8.4 Resource Allocation in NFV-Enabled Networks
	References

	Part III Application of Software-Defined Networking in Cloud Computing
	9 Prospective on Technical Considerations for Edge–Cloud Cooperation Using Software-Defined Networking
	9.1 Introduction
	9.2 Edge Computing
	9.2.1 Technical Challenges for Edge Computing

	9.3 Software-Defined Networking
	9.3.1 Architecture

	9.4 SDN-Edge Cooperation
	9.4.1 Architecture
	9.4.2 A Real Scenario of SDN-IoT-Edge Architecture
	9.4.3 Benefits of Using SDN-IoT-Edge Platform

	9.5 Technical Requirements of SDN-Edge vs Energy Efficiency
	9.6 Stat of the Art
	9.6.1 Cloud Computing
	9.6.2 Edge Computing
	9.6.3 SDN
	9.6.4 SDN-Edge Cooperation

	9.7 Conclusion
	References

	10 Software-Defined Networking in Data Centers
	10.1 Introduction
	10.1.1 Software-Defined Networking: An Overview
	10.1.2 SDN Building Blocks
	10.1.2.1 SDN Switches
	10.1.2.2 SDN Controllers

	10.2 SDN Applications
	10.2.1 Internet of Things
	10.2.2 Home Networks
	10.2.3 Cellular Networks
	10.2.4 Optical Networks

	10.3 Cloud Computing and Challenges
	10.3.1 Cloud Computing and Service Models
	10.3.2 Data Center Networks
	10.3.3 Challenges in Data Center Networks
	10.3.4 SDN in Data Center Networks

	10.4 Routing and Traffic Engineering in Data Center Networks
	10.4.1 Flow Management in Data Center Networks
	10.4.2 Traffic Engineering in Data Center Networks
	10.4.3 Load Balancing in Data Center Networks
	10.4.4 Resource Management in Data Center Networks
	10.4.5 Energy Management in Data Center Networks

	10.5 Conclusions
	References

	11 QoS-Aware Dynamic Flow Management in Software-Defined Data Center Networks
	11.1 Introduction
	11.2 Related Works
	11.3 System Model
	11.4 FASCES: QoS-Aware Dynamic Flow Management Scheme
	11.4.1 Single-Leader-Multiple-Followers Stackelberg Game: The Justification
	11.4.2 Game Formulation
	11.4.3 Existence of Equilibrium
	11.4.4 Proposed Workflow

	11.5 Performance Evaluation
	11.6 Conclusion
	References

	Part IV Security and Trust Applications for Software-Defined Networking
	12 Trusted Mechanism Using Artificial Neural Networks in Healthcare Software-Defined Networks
	12.1 Introduction
	12.1.1 Contribution

	12.2 Related Work
	12.3 Proposed Approach
	12.3.1 Back Propagation (BP) Algorithm

	12.4 Performance Evaluation
	12.4.1 Results and Discussion

	12.5 Conclusion
	References

	13 Stealthy Verification Mechanism to Defend SDN Against Topology Poisoning
	13.1 Introduction
	13.2 Related Work
	13.3 Problem Statement
	13.4 Proposed Solution
	13.4.1 Methodology

	13.5 Implementation
	13.5.1 Software-Defined Network Setup
	13.5.2 ESPV Implementation
	13.5.3 Network Topology

	13.6 Results and Analysis
	13.6.1 Performance Analysis
	13.6.2 Resource Consumption by ESPV Scheme
	13.6.3 Applicability of ESPV in Real SDN Cloud Topology

	13.7 Conclusion and Future Work
	References

	14 Implementation of Protection Protocols for Security Threats in SDN
	14.1 Introduction
	14.2 Security Issues
	14.3 Related Work
	14.4 Problem Statement
	14.5 Proposed Solution
	14.6 Implementation
	14.7 Conclusion
	References

	Part V Application Use Cases of Software-Defined Networking
	15 SDVN-Based Smart Data Dissemination Model for High-Speed Road Networks
	15.1 Introduction
	15.2 Literature Review
	15.3 The Proposed System Model
	15.3.1 Working Model
	15.3.2 Types of Services Provided by the Centralized Controller

	15.4 Case Study: On-Demand Network Service for High-Speed Vehicles
	15.5 Conclusion
	References

	16 Advanced Deep Learning for Image Processing in Industrial Internet of Things Under Software-Defined Network
	16.1 Introduction
	16.2 Related Works
	16.3 Method
	16.3.1 Architecture and Key Technologies of IIoT
	16.3.2 Dynamic Computing Framework of SDN-Based IIoT
	16.3.3 Application of Software-Defined Internet of Everything
	16.3.4 Image Processing System for Machine Vision of IIoT
	16.3.5 Image Processing Technology Based on Deep Learning

	16.4 Simulation Experiment
	16.5 Results and Discussion
	16.5.1 Comparison of Image Smoothing Technologies Based on Deep Learning
	16.5.2 Classification Effect of Image Processing on Welding Defects in Industrial Production

	16.6 Conclusions
	References

	Index

