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Abstract. The search-type problem of evacuating 2 robots in the wireless
model from the (Euclidean) unit disk was first introduced and studied by
Czyzowicz et al. [DISC’2014]. Since then, the problem has seen a long list of
follow-up results pertaining to variations as well as to upper and lower bound
improvements. All established results in the area study this 2-dimensional
search-type problem in the Euclidean metric space where the search space,
i.e. the unit disk, enjoys significant (metric) symmetries.

We initiate and study the problem of evacuating 2 robots in the wireless
model from �p unit disks, p ∈ [1,∞), where in particular robots’ moves are
measured in the underlying metric space. To the best of our knowledge, this
is the first study of a search-type problem with mobile agents in more general
metric spaces. The problem is particularly challenging since even the circum-
ference of the �p unit disks have been the subject of technical studies. In our
main result, and after identifying and utilizing the very few symmetries of �p
unit disks, we design optimal evacuation algorithms that varywith p. Ourmain
technical contributions are two-fold. First, in our upper bound results, we pro-
vide (nearly) closed formulae for theworst case cost of our algorithms. Second,
and most importantly, our lower bounds’ arguments reduce to a novel obser-
vation in convex geometry which analyzes trade-offs between arc and chord
lengths of �p unit disks as the endpoints of the arcs (chords) change position
around the perimeter of the disk, which we believe is interesting in its own
right. Part of our argument pertaining to the latter property relies on a com-
puter assisted numerical verification that can be done for non-extreme values
of p.

Keywords: Search · Evacuation ·Wireless model · �p metric space · Convex
and computational geometry

1 Introduction

In the realm of mobile agent computing, search-type problems are concerned with
the design of searchers’ (robots’) trajectories in some known search space to locate a
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hidden object. Single searcher problems have been introduced and studied as early
as the 60’s by the mathematics community [11,12], and later in the late 80’s and
early 90’s by the theoretical computer science community [8]. The previously stud-
ied variations focused mainly on the type of search domain, e.g. line or plane or a
graph, and the type of computation, e.g. deterministic or randomized. Since search
was also conducted primarily by single searchers, termination was defined as the
first time the searcher hit the hidden object. In the last decade with the advent of
robotics, search-type problems have been rejuvenated within the theoretical com-
puter science community, which is now concerned with novel variations including
the number of searchers (mobile agents), the communication model, e.g. face-to-
face or wireless, and robots’ specifications, e.g. speeds or faults, including crash-
faults or byzantine faults. As a result of the multi-searcher setup, termination cri-
teria are now subject to variations too, and these include the number or the type of
searchers that need to reach the hidden item (for a more extended discussion with
proper citations, see Sect. 1.1).

One of the most studied search domains, along with the line, is that of a circle,
or a disk. In a typical search-type problem in the disk, the hidden item is located on
the perimeter of the unit circle, and searchers start in its center. Depending on the
variation considered, and combining all specs mentioned above, a number of inge-
nious search trajectories have been considered, often with counter-intuitive prop-
erties. Alongside the hunt for upper bounds (as the objective is always to minimize
some form of cost, e.g. time or traversed space or energy) comes also the study of
lower bounds, which are traditionally much more challenging to prove (and which
rarely match the best known positive results).

Search on the unbounded plane as well as in other 2-dimensional domains, e.g.
triangles or squares, has been considered too, giving rise to a long list of treatments,
often with fewer tight (optimal) results. While the list of variations for searching on
the plane keeps growing, there is one attribute that is common to all previous results
where robots’ trajectories lie in R2, which is the underlying Euclidean metric space.
In other words, distances and trajectory lengths are all measured with respect to the
Euclidean �2 norm. Not only the underlying geometric space is well understood, but
it also enjoys symmetries, and admits standard and elementary analytic tools from
trigonometry, calculus, and analytic geometry.

We deviate from previous results, and to the best of our knowledge, we initiate
the study of a search-type problem with mobile agents in R2 where the underlying
metric space is induced by any �p norm, p ≥ 1. The problem is particularly challeng-
ing since even “highly symmetric” shapes, such as the unit circle, enjoy fewer sym-
metries in non-Euclidean spaces. Even more, robot trajectories are measured with
respect to the underlying metric, giving rise to technical mathematical expressions
for measuring the performance of an algorithm. In particular, we consider the prob-
lem of reaching (evacuating from) a hidden object (the exit) placed on the perime-
ter of the �p unit circle. Our unit-speed searchers start from the center of the circle,
placed at the origin of the Cartesian plane R2, and are controlled by a centralized
algorithm that allows them to communicate their findings instantaneously. Termi-
nation is determined by the moment that the last searcher reaches the exit, and the
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performance analysis is evaluated against a deterministic worst case adversary. For
this problem we provide optimal evacuation algorithms. Apart from the novelty of
the problem, our contributions pertain to (a) a technical analysis of search (opti-
mal) algorithms that have to vary with p, giving rise to our upper bounds, and to (b)
an involved geometric argument that also uses, to the best of our knowledge, a novel
observation on convex geometry that relates a given �p unit circle’s arcs to its chords,
giving rise to our matching lower bounds.

1.1 RelatedWork

Our contributionsmake progress in Search-Theory, a term that was coined after sev-
eral decades of celebrated results in the area, and which have been summarized
in books [3,5,6,53]. The main focus in that area pertains to the study of (optimal)
searchers’ strategies who compete against (possibly hidden) hider(s) in some search
domain. An even wider family of similar problems relates to exploration [4], terrain
mapping, [48], and hide-and-seek and pursuit-evasion [49].

The traditional problem of searching with one robot on the line [8] has been gen-
eralized with respect to the number of searchers, the type of searchers, the search
domain, and the objective, among others. When there aremultiple searchers and the
objective is that all of them reach the hidden object, the problem is called an evacua-
tion problem, with the first treatments dating back to over a decade ago [10,35]. The
evacuation problem that we study is a generalization of a problem introduced by
Czyzowicz et al. [21] and that was solved optimally. In that problem, a hidden item is
placed on the (Euclidean) unit disk, and is to be reached by two searchers that com-
municate their findings instantaneously (wireless model). Variations of the problem
with multiple searchers, as well as of another communication model (face-to-face)
was considered too, giving rise to a series of follow-up papers [15,25,32]. Searching
the boundary of the disc is also relevant to so-called Ruckle-type games, and closely
related to our problem is a variation mentioned in [9] as an open problem, in which
the underlying metric space is any �p-induced space, p ≥ 1, as in our work.

The search domain of the unit circle that we consider is maybe one of the most
well studied, together with the line [18]. Other topologies that have been consid-
ered includemulti-rays [16], triangles [20,27], and graphs [7,14]. Search for a hidden
object on an unbounded planewas studied in [47], later in [34,46], andmore recently
in [1,33].

Search and evacuation problems with faulty robots have been studied in [22,
39,50] and with probabilistically faulty robots in [13]. Variations pertaining to the
searcher’s speeds appeared in [36,38] (immobile agents), in [45] (speed bounds)
and in [26] (terrain dependent speeds). Search for multiple exits was considered
in [28,51], while variation of searching with advice appeared in [41]. Some variations
of the objective include the so-called priority evacuation problem [23,30] and its
generalization of weighted searchers [40]. Randomized search strategies have been
considered in [11,12] and later in [42] for the line, and more recently in [19] for the
disk. Finally, turning costs have been studied in [31] and an objective of minimizing
a notion pertaining to energy (instead of time) was studied in [29,44], just to name
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a few of the developments related to our problem. The reader may also see recent
survey [24] that elaborates more on selected topics.

1.2 High Level of New Contributions andMotivation

The algorithmic problem of searching in arbitrary metric spaces has a long his-
tory [17], but the focus has been mainly touching on database management. In our
work, we extend results of a search-type problem in mobile agent computing first
appeared in [21]. More specifically, we provide optimal algorithms for the search-
type problem of evacuating two robots in the wireless model from the �p unit disk,
for p ≥ 1 (previously considered only for the Euclidean space p = 2). The novelty of
our results is multi-fold. First, to the best of our knowledge, this is the first result in
mobile agent computing in which a search problem is studied and optimally solved
in �p metric spaces. Second, both our upper and lower bound arguments rely on
technical arguments. Third, part of our lower bound argument relies on an interest-
ing property of unit circles in convex geometry, which we believe is interesting in its
own right.

The algorithm we prove to be optimal for our evacuation problem is very sim-
ple, but it is one among infinitely many natural options one has to consider for the
underlying problem (one for eachdeployment point of the searchers).Which of them
is optimal is far from obvious, and the proof of optimality is, as we indicate, quite
technical.

Part of the technical difficulty of our arguments arises from the implicit integral
expression of arc lengths of �p circles. Still, by invoking the Fundamental Theorem of
Calculus we determine the worst case placement of the hidden object for our algo-
rithms. Another significant challenge of our search problem pertains to the limited
symmetries of the unit circle in the underlying metric space. As a result, it is not sur-
prising that the behaviour of the provably optimal algorithm does depend on p, with
p = 2 serving as a threshold value for deciding which among two types of special
algorithms is optimal. Indeed, consider an arbitrary contiguous arc of some fixed
length of the �p unit circle with endpoints A,B . In the Euclidean space, i.e. when
p = 2, the length of the corresponding chord is invariant of the locations of A,B . In
contrast, for the unit circle hosted in any other �p space, the slope of the chord AB
does determine its length. The relation to search and evacuation is that the arc cor-
responds to a subset of the search domain which is already searched, and points A,B
are the locations of the searchers when the exit is reported. Since searchers operate
in the wireless model in our problem (hence one searcher will move directly to the
other searcher when the hidden object is found), their trajectories are calculated so
that their �p distance is the minimum possible for the same elapsed search time.

Coming back to the �p unit disks, we show an interesting property whichmay be
of independent interest (and which we did not find in the current literature). More
specifically, and in part using computer assisted numerical calculations for a wide
range of values of p, we show that for any arc of fixed length, the placement of its
endpoint A,B that minimizes the �p length of chord AB is when AB is parallel to the
y = 0 or x = 0 lines, for p ≤ 2, and when AB is parallel to the y = x or y =−x lines for
p ≥ 2. The previous fact is coupled by a technical extension of a result first sketched
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in [21], according to which at a high level, as long as searchers have left any part of
the unit circle of cumulative length α unexplored (not necessarily contiguous), then
there are at least two unexplored points of arc distance at least α.

All omitted proofs from this extended abstract can be found in the full version of
the paper [37].

2 ProblemDefinition, Notation and Nomenclature

For a vector x = (x1,x2) ∈ R2, we denote by ‖x‖p the vector’s �p norm, i.e. ‖x‖p =
(|x1|p +|x2|p )1/p . The �p unit circle is defined as Cp := {

x ∈R2 : ‖x‖p = 1
}
, see also

Fig. 2a for an illustration. We equip R2 with the metric dp induced by the �p norm,
i.e. for x, y ∈ R2 we write dp (x, y) =

∥
∥x− y

∥
∥
p . Similarly, if r : [0,1] �→ R2 is an injec-

tive and continuously differentiable function, it’s �p length is defined as μp (r ) :=∫1
0

∥
∥r ′(t )

∥
∥
p dt . As a result, a unit speed robot can traverse r ([0,1]) in metric space

(R2,dp ) in time μp (r ).
We proceed with a formal definition of our search-type problem. In problem

WEp (Wireless Evacuation in �p space, p ≥ 1), two unit-speed robots start at the
center of a unit circle Cp placed at the origin of the metric space (R2,dp ). Robots
can move anywhere in the metric space, and they operate according to a central-
ized algorithm. An exit is a point P on the perimeter of Cp . An evacuation algorithm
A consists of robots trajectories, either of which may depend on the placement of
P only after at least one of the robots passes through P (wireless model).1 For each
exit P , we define the evacuation cost of the algorithm as the first instance that the
last robot reaches P . The cost of algorithm A is defined as the supremum, over all
placements P of the exit, of the evacuation time of A with exit placement P . Finally,
the optimal evacuation cost of WEp is defined as the infimum, over all evacuation
algorithms A, of the cost of A.

Next we show that Cp has 4 axes of symmetry (and of course C2 has infinitely
many, i.e. any line ax+by = 0,a,b ∈R).

Lemma 1. Lines y = 0,x = 0, y = x, y = −x are all axes of symmetry of Cp . Moreover,
the center of Cp is its point of symmetry.

Proof. Reflection of point P = (a,b) across lines y = 0,x = 0, y = x, y =−x give points
P1 = (a,−b),P2 = (−a,b),P3 = (b,a),P4 = (−b,−a), respectively. It is easy to see that
setting ‖P‖p = 1 implies that ‖Pi‖p = 1, i = 1,2,3,4.

1 An underlying assumption is also that robots can distinguish points (x, y) by their coor-
dinates, and they can move between them at will. As a byproduct, robots have a sense of
orientation. This specification was notmentioned explicitly before for the Euclidean space,
since all arguments were invariant under rotations (which is not the case any more). How-
ever, even in the �2 case this specification was silently assumed by fixing the cost of the
optimal offline algorithm to 1 (a searcher that knows the location of the exit goes directly
there), hence all previous results were performing competitive analysis by just doing worst
case analysis.
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We use the generalized trigonometric functions sinp (·),cosp (·), as in [52], which
are defined as sinp (φ) := sin(φ)/Np (φ), cosp (φ) := cos(φ)/Np (φ), where Np (φ) :=(|sin(φ)|p +|cos(φ)|p)1/p . By introducing ρp (φ) :=

(
cosp (φ),sinp (φ)

)
, which is injec-

tive and continuously differentiable function in each of the 4 quadrants, we have the
following convenient parametric description of the �p unit circle; Cp = {ρp (φ) : φ ∈
[0,2π)}. In particular, set Q1 = [0,π/2),Q2 = [π/2,π),Q3 = [π,3π/2),Q4 = [3π/2,2π),
and define for eachU ⊆Cp it’s length (measure) as

μp (U )=
4∑

i=1

∫

t∈Qi :ρp (t )∈U

∥
∥
∥ρ′

p (t )
∥
∥
∥
p
dt .

It is easy to see that μp (·) is indeed a measure, hence it satisfies the principle of
inclusion-exclusion overCp . Also, by Lemma 1 it is immediate that for everyU ⊆Cp ,

and forU = {ρp (t+π) : ρ(t ) ∈U }, we have that μp (U )=μp (U ) (both observations will
be used later in Lemma 7). As a corollary of the same lemma, we also formalize the
following observation.

Lemma 2. For any φ ∈ {k ·π/4 : k = 0,1,2,3,4} and θ ∈ [0,π], let U+ = {ρp (φ+ t ) : t ∈
[0,θ]} andU− = {ρp (φ− t ) : t ∈ [0,θ]}. Then, we have that μp (U+)=μp (U−).

The perimeter of the �p unit circle can be computed as

μp (Cp )=
4∑

i=1

∫

Qi

∥
∥
∥ρ′

p (t )
∥
∥
∥
p
dt = 4

∫π/2

0

∥
∥
∥ρ′

p (t )
∥
∥
∥
p
dt := 2πp .

By Lemma 2, we also have
∫π/2
0

∥
∥
∥ρ′

p (t )
∥
∥
∥
p
dt = 2

∫π/4
0

∥
∥
∥ρ′

p (t )
∥
∥
∥
p
dt = πp/2. Clearly

μ2(C2)/2 = π2 = π = 3.14159. . ., while the rest of the values of πp , for p ≥ 1, do
not have known number representation, in general. However, it is easy to see that
π1 = π∞ = 4. More generally we have that πp = πq whenever p,q ≥ 1 satisfy
1/p+1/q = 1 [43]. As expected,π2 =π is also theminimumvalue ofπp , over p ≥ 1 [2],
see also Fig. 2b for the behavior of πp .

For every φ,θ ∈ [0,2π), let A = ρ(φ),B = ρ(φ+ θ) be two points on the �p unit

circle. The chord AB is defined as the line segment with endpoints A,B . From the

previous discussion we have μp

(
AB

)
= dp (A,B). The arc �AB is defined as the curve

{ρ(φ + t ) : t ∈ [0,θ]}, hence arcs identified by their endpoints are read counter-

clockwise. The length of the same arc is computed as μp

(
�AB

)
.

Finally, the arc distance of two points A,B ∈ Cp is defined as 
dp (A,B) :=
min

{
μp

(
�AB

)
,μp

(
�BA

)}
, which can be shown to be a metric. By definition, it follows

that 
dp (A,B) ∈ [0,πp ].
Next we present an alternative parameterization of the �p unit circle that will be

convenient for some of our proofs. We define

rp (s) :=
(
−s,(1−|s|p)1/p)

, (1)

and we observe that rp (s) ∈ Cp , for every s ∈ [−1,1]. It is easy to see that as s ranges
from−1 to 1, we traverse the upper 2 quadrants of the unit circle with the same direc-
tion as ρp (t ), when t ranges from 0 to π. Moreover, for every t ∈ [0,π], there exists
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unique s = s(t ), with s ∈ [−1,1] such that ρp (t )= rp (s), and s(t ) strictly increasing in
t with s(0)=−1, s(π/4)=−2−1/p , s(π/2)= 0, s(3π/4)= 2−1/p and s(π)= 1.

3 Algorithms for Evacuating 2 Robots in �p Spaces

First we present a family of algorithms Wireless-Searchp (φ) for evacuating 2 robots
from the �p unit circle Cp . The family is parameterized by φ ∈ R, see also Fig. 4a for
two examples, AlgorithmWireless-Search1.5(0) andWireless-Search3(π/4).

Algorithm 1.Wireless-Searchp (φ)

1: Both robots move to point ρp (φ).
2: Robots follow trajectories ρp (φ± t ), t ≥ 0, till the exit is found and communicated.
3: Finder stays put, and non-finder moves to finder’s location along the shortest chord (line

segment).

Our goal is to prove the following.

Theorem 1
For all p ∈ [1,2], AlgorithmWireless-Searchp(0) is optimal.
For all p ∈ [2,∞), AlgorithmWireless-Searchp(π/4) is optimal.

Figure 4b depicts the performance of our algorithms as p ≥ 1 varies. Our analysis is
formal, however we do rely on computer-assisted numerical calculations to verify
certain analytical properties in convex geometry (see proof of Lemma 5 on page 14,
and proof of Lemma9 onpage 9) that effectively contribute a part of our lower bound
argument for bounded values of p, as well as p =∞. For large values of p, e.g. p ≥
1000, where numerical verification is of limited help, we provide provable upper and
lower bounds that differ by less than 0.042%, multiplicatively (or less than 0.0021,
additively).

Recall that as φ ranges in [0,2π), then ρp (φ) ranges over the perimeter of Cp . In
particular, for any execution of Algorithm 1, the exit will be reported at some point
ρp (φ± t ), where t ∈ [0,π]. Since in the last step of the algorithm, the non-finder has
to traverse the line segment defined by the locations of robots when the exit is found,
wemay assume without loss of generality that the exit is always found at some point
ρp (φ± t ), where t ∈ [0,π], say by robot #1. Note that even though Algorithm 1 is well
defined for all [0,2π) (in fact all reals), due to Lemma 1 it is enough to restrict to
φ ∈ [0,π/4].

In the remaining of this section, we denote by Ep,φ(τ) the evacuation time of
AlgorithmWireless-Searchp (φ), given that the exit is reported after robots have spent
time τ searching in parallel. We also denote by δp,φ(τ) the distance of the two robots
at the samemoment, assuming that no exit has been reported previously. Hence,

Ep,φ(τ)= 1+τ+δp,φ(τ). (2)
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Since μp (Cp )= 2πp and the two robots search in parallel, an exit will be reported for
some τ ∈ [0,πp ]. Hence, the worst case evacuation time Ep,φ of Algorithm Wireless-
Searchp (φ) is given by2

Ep,φ := max
τ∈[0,πp ]

Ep,φ(τ).

3.1 Worst Case Analysis of AlgorithmWireless-Searchp (φ)

It is important to stress that parameter t in the description of robots’ trajectories
in Algorithm Wireless-Searchp (φ) does not represent the total elapsed search time.
Even more, and for an arbitrary value of φ, it is not true that robots occupy points
ρp (φ± t ) simultaneously. To see why, recall that from the moment robots deploy to
point ρp (φ), they need time α1,2(φ, t ) := μp

({
ρp (φ± s) : s ∈ [0, t ]

})
in order to reach

points ρp (φ± t ). Moreover,α1(φ, t ) �=α2(φ, t ), unlessφ= k ·π/4 for some k = 0,1,2,3,
as per Lemma 2. We summarize our observation with a lemma.

Lemma 3. Let φ ∈ {0,π/4}, and consider an execution of Algorithm 1. When one robot
is located at point ρp (φ+t ), for some t ∈ [−π,π], then the other robot is located ρp (φ−
t ), and in particular α1(φ, t )=α2(φ, t ).

Now we provide worst case analysis of two Algorithms for two special cases of
metric spaces. The proof is a warm-up for the more advanced argument we employ
later to analyze arbitrary metric spaces.

Lemma 4. E1,0 = E∞,π/4 = 5.

Proof. First we study AlgorithmWireless-Search1(0) for evacuating 2 robots from the
�1 unit disk. By (2), if the exit is reported after time τ of parallel search, then E1,0(τ)=
1+τ+δ1,0(τ). Note thatπ1 = 4, so the exit is reported no later than parallel search time
4. First we argue that E1,0(τ) is increasing for τ ∈ [0,2]. Indeed, in that time window
robot #1 is moving from point (1,0) to point (0,1) along trajectory (1−τ/2,τ/2) (note
that this parameterization induces speed 1 movement). By Lemma 3, robot #2 at the
same time is at point (1− τ/2,−τ/2). It follows that δ1,0(τ) = τ, so indeed E1,0(τ) is
increasing for τ ∈ [0,2]. Finally we show that E1,0(τ)= 5, for all τ ∈ [2,4]. Indeed, note
that for the latter timewindow, robot #1moves from point (0,1) to point (−1,0) along
trajectory (−(τ−2)/2,1−(τ−2)/2). By Lemma 3, robot #2 at the same time is at point
(−(τ−2)/2,−1+ (τ−2)/2). It follows that δ1,0(τ) = |− (τ−2)/2+ (τ−2)/2| + |1− (τ−
2)/2+1− (τ−2)/2| = 4−τ, and hence E1,0(τ)= 1+τ+δ1,0(τ)= 5, as wanted.

Next we study Algorithm Wireless-Search∞(π/4) for evacuating 2 robots from
the �∞ unit disk. By (2), if the exit is reported after time τ of parallel search, then
E∞,π/4(τ) = 1+τ+δ∞,π/4(τ). As before, π∞ = 4, so the exit is reported no later than
parallel search time 4.We show again thatE∞,π/4(τ) is increasing for τ ∈ [0,2]. Indeed,
in that time window robot #1 is moving from point (1,1) to point (−1,1) along trajec-
tory (1−τ,1) (note that this induces speed 1movement). By Lemma 3, robot #2 at the

2 For arbitrary algorithms one should define the cost as the supremum over all exit place-
ments. Since in AlgorithmWireless-Searchp (φ) the searched space remains contiguous and
its boundaries keep expanding with time, the maximum always exists.
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same time is at point (1,1−τ). It follows that δ∞,π/4(τ)=max{|1−τ−1|, |1−1+τ|}= τ,
so indeed E∞,π/4(τ) is increasing for τ ∈ [0,2]. Finally we show that E∞,π/4(τ)= 5, for
all τ ∈ [2,4]. Indeed, note that for the latter time window, robot #1 moves from point
(−1,1) to point (−1,−1) along trajectory (−1,1− (τ−2)). By Lemma 3, robot #2 at the
same time is at point (1− (τ− 2),−1). It follows that δ∞,π/4(τ) = max{| − 1− 1+ (τ−
2)|, |1− (τ−2)+1|}= 4−τ, and hence E∞,π/4(τ)= 1+τ+δ∞,π/4(τ)= 5, as wanted.

It is interesting to see that the algorithms of Lemma 4 outperform algorithms
with different choices of φ. For example, it is easy to see that E1,π/4 ≥ 6. Indeed,
note that Algorithm Wireless-Search1(π/4) deploys robots at point (1/2,1/2). Robot
reaches point (0,1) after 1 unit of time, and it reaches point (−1,0) after an additional
2 units of time. The other robot is then at point (0,−1), at an �1 distance of 2. So, the
placement of the exit at point (−1,0) induces cost 1+1+2+2= 6. A similar argument
shows that E∞,0 ≥ 6 too.

We conclude this section with a summary of our positive results, introducing at
the same time some useful notation.

Theorem 2. Let wp be the unique root to equation wp +1= 2(1−w)p , and define

sp :=
⎧
⎨

⎩

(
(2p −1)

1
p−1 +1

)−1/p
, p ∈ (1,2]

(
wp/(p−1)

p +1
)−1/p

, p ∈ (2,∞).

For every p ∈ (1,2], the placement of the exit inducing worst case cost for Algorithm
Wireless-Searchp(0) results in the total explored portion of Cp with measure

e−p :=πp +2
∫sp

0

(
zp

2−p (
1− zp

)1−p +1
)1/p

dz.

Also, when the exit is reported, robots are at distance γ−p := 2(1− spp )
1/p .

For every p ∈ [2,∞), the placement of the exit inducing worst case cost for Algo-
rithmWireless-Searchp(π/4) results in the total explored portion of Cp with measure

e+p :=πp +2
∫sp

2−1/p

(
zp

2−p (
1− zp

)1−p +1
)1/p

dz.

Also, when the exit is reported, robots are at distance γ+p := 21/p
((
1− spp

)1/p + sp
)
.

We also set ep (and γp) to be equal to e−p (and γ−p ) if p ≤ 2, and equal to e+p (and
γ+p ) if p > 2, and in particular ep ∈ (πp ,2πp ].

Quantities ep ,γp , and some of their properties are depicted in Figs. 3a, 3b, and
discussed in Sect. 4. One can also verify that limp→2− e−p = limp→2+ e

+
p = 4π/3, and

that limp→2− γ
−
p = limp→2+ γ

+
p = �

3. In order to justify that indeed ep ∈ (πp ,2πp ],
recall that by robots’ positions during the first πp/2 search time (after robots reach
perimeter in time 1) is an increasing function. Since the rate of change of time is
constant (it remains strictly increasing) for the duration of the algorithm, it follows
that the evacuation cost of our algorithms remains increasing till some additional
search time. Since robots search in parallel and in different parts of Cp , and since
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ep is the measure of the combined explored portion of the unit circle, it follows that
for ep > 2πp/2= πp . At the same time, the unit circle has circumference 2πp , hence
ep ≤ 2πp .

In other words, γ−p is the length of chord with endpoints on Cp , p ∈ (1,2], defin-
ing an arc of length e−p . Similarly, γ+p is the length of a chord with endpoints on Cp ,
p ∈ (2,∞), defining an arc of length e+p . Unlike the Euclidean unit disks, in �p unit
disks, arc and chord lengths are not invariant under rotation. In other words, arbi-
trary chords of length γ−p ,γ+p do not necessarily correspond to arcs of length e−p ,
and e+p , respectively, and vice versa. The claim extends also to the �1,�∞ spaces.
For a simple example, consider points A = ρ1(π/4) = (1/2,1/2),B = ρ1(3π/4) =
(−1/2,1/2),C = ρ1(0) = (1,0),D = ρ1(π/2) = (0,1). It is easy to see that dp (A,B) = 1

and dp (C ,D)= 2, while 
dp (A,B)= 
dp (C ,D)=π1/2= 2, in other words two arcs of the
same length identify chords of different length. We are motivated to introduce the
following definition.

Definition 1. For every p ∈ [1,∞), and for every u ∈ [0,2πp ), we define

Lp (u) := min
A,B∈Cp

{
‖A−B‖p : μp

(
�AB

)
=u

}
.

In other words Lp (u) is the length of the shortest line segment (chord) with end-
points in Cp at arc distance u (and corresponding to an arc of measure u), and
hence Lp (u) = Lp (2πp −u) for every u ∈ (0,2πp ). As a special example, note that
L2(u)= 2sin(u/2), as well asLp (πp )= 2, for all p ∈ [1,∞).

Lemma 5. For every p ∈ (1,∞), functionLp (u) is increasing in u ∈ [0,πp ].

The intuition behind Lemma 5 is summarized in the following proof sketch.
Assuming, for the sake of contradiction, that the lemma is false, there must exist an
interval of arc lengths, and some p ≥ 1 for whichLp (u) is strictly decreasing. By first-
order continuity of ‖A−B‖p , and in the same interval of arc-lengths, chord ‖A−B‖p
must be decreasing in μp

(
�AB

)
even when points A,B are conditioned to define a

line with a fixed slope (instead of admitting a slope thatminimizes the chord length).
However, the last statement gives a contradiction. Indeed, consider points A,B ,A′,B ′

such that 
dp (A,B) = u,
dp (A′,B ′) = u′, with u < u′ ≤ πp . It should be intuitive that
dp (A,B)≤ dp (A′,B)≤ dp (A′,B ′).

For fixed values of p, Lemma 5 can also be verified with confidence of at least
6 significant digits in MATHEMATICA. Due to precision limitations, the values of
p cannot be too small, neither too big, even though a modified working precision
can handle more values of p. With standard working precision, any p in the range
between 1.001 and 45 can be handled within a few seconds. As we argue later, for
large values of p, Lemma 5 bears less significance, since in that casewe have an alter-
native way to prove the (near) optimality of algorithms Wireless-Searchp (φ), as per
Theorem 1. Next we provide a visual analysis of functionLp that effectively justifies
Lemma 5, see Fig. 1.
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Fig. 1. Figures depict Lp (u) for various values of p and for u ∈ [0,πp ]. Left-hand side figure
shows increasing functionLp (u) for p ∈ (1,2]. Right-hand side figure shows increasing func-
tionLp (u) for p ∈ [2,10]. Recall thatL2(u)= 2sin(u/2),Lp (πp )= 2, for all p ∈ [1,∞), as well
as that π1 =π∞ = 4 and πp < 4 for p ∈ (1,∞).

4 Visualization of Key Concepts and Results

In this section we provide visualizations of some key concepts, along with visualiza-
tions of our results. The Figures are referenced in various places in our manuscript
but we provide self-contained descriptions.

(a) (b)

Fig. 2. (a) Unit circles Cp , for p = 1,1.3,2,5,∞, induced by the �p norm. Circles are nested,
starting from p = 1 for the inner diamond-shaped circle, moving monotonically to p =∞ for
the outer square-shaped circle. (b) The behavior of πp as p ranges from 1 up to ∞, where
π1 =π∞ = 4 and π2 =π is the smallest value of πp .

Figures 3a and 3b depict quantities pertaining to algorithm Wireless-Searchp (φ)
(where φ = 0, if p ∈ [1,2) and φ = π/4, if p ∈ (2,∞)) for the placement of the hid-
den exit inducing the worst case cost. Moreover Fig. 3a depicts quantities ep/2,γp ,
as per Theorem 2. In particular, for each p, quantity ep/2 is the time a searcher
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has spent searching the perimeter of Cp till the hidden exit is found (in the worst
case). Therefore, ep represents the portion of the perimeter that has been explored
till the exit is found. Quantity γp is the distance of the two robots at the moment the
hidden exit is found so that the total cost of the algorithm is 1+ ep/2+γp . By [21]
we know that e2 = 4π/3 and γ2 =

�
3. Our numerical calculations also indicate that

limp→1 ep = 12/5, limp→1γp = 8/5, and limp→∞ ep = limp→∞γp = 2.
Figure 3b depicts quantities ep/2πp , which equals the explored portion of the

unit circleCp , relative to its circumference, of AlgorithmWireless-Searchp (φ) (where
φ = 0, if p ∈ [1,2) and φ = π/4, if p ∈ (2,∞)) when the worst case cost inducing
exit is found. By [21] we know that e2/2π2 = (4π/3)/2π = 2/3. Interestingly, quantity
ep/2πp is maximized when p = 2, that is in the Euclidean plane searchers explore
the majority of the circle before the exit is found, for the placement of the exit
inducing worst case cost. Also, numerically we obtain that limp→1 ep/2πp = 3/5, and
limp→∞ ep/2πp = 1/2. The reader should contrast the limit valuations with Lemma 4
according which in both cases p = 1,∞ the cost of our search algorithms is con-
stant and equal to 5 for all placements of the exit that are found from the moment
searchers have explored half the unit circle and till the entire circle is explored.

(a) (b)

Fig. 3. (a) Perimeter search time ep/2 and distance γp between searchers whenworst case cost
inducing exit is found as a function of p, see also Theorem 2. (b) Explored portion ep/2πp as
a function of p.

Figure 4b shows the worst case performance analysis of Algorithm Wireless-
Searchp (φ) (where φ = 0, if p ∈ [1,2)), which is also optimal for problem WEp . As
per Lemma 4, the evacuation cost is 5 for p = 1 and p =∞. The smallest (worst case)
evacuation cost when p ∈ [1,2] is 4.7544 and is attained at p ≈ 1.5328. The smallest
(worst case) evacuation cost when p ∈ [2,∞] is 4.7784 and is attained at p ≈ 2.6930.
As per [21], the cost is 1+�

3+2π/3≈ 4.82644 for the Euclidean case p = 2.

5 Lower Bounds and the Proof of Theorem 1

First we prove a weak lower bound that holds for all �p spaces, p ≥ 1 (see also Fig. 2b
for a visualization of πp ).
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(a) (b)

Fig. 4. (a) Figure depicts robots’ trajectories for algorithmsWireless-Search1.5(0) andWireless-
Search3(π/4). The inner unit circle corresponds to p = 1.5 and the outer to p = 3. (b) Blue
curve depicts the worst case evacuation cost of Algorithm Wireless-Searchp (φ), where φ = 0,
if p ∈ [1,2), as a function of p . Yellow line (constant function) is the optimal evacuation cost
in the Euclidean metric space.

Lemma 6. For every p ∈ [1,∞), the optimal evacuation cost of WEp is at least 1+πp .

Proof. The circumference ofCp has length 2πp . Two unit speed robots can reach the
perimeter of Cp in time at least 1. Since they are searching in parallel, in additional
time πp − ε, they can only search at most 2πp − 2ε measure of the circumference.
Hence, there exists an unexplored point P . Placing the exit at P shows that the evac-
uation time is at least 1+πp −2ε, for every ε> 0.

In particular, recall thatπ1 =π∞ = 4, and hence no evacuation algorithm for WE1

and WE∞ has cost less than 5. As a corollary, we obtain that Algorithms Wireless-
Search1(0) and Wireless-Search∞(π/4) are optimal, hence proving the special cases
p = 1,∞ of Theorem 1. The remaining cases require a highly technical treatment.

The following is a generalization of a result first proved in [21] for the Euclidean
metric space (see Lemma 5 in the Appendix of the corresponding conference ver-
sion). The more general proof is very similar.

Lemma 7. For every V ⊆Cp , with μp (V ) ∈ (0,πp ], and for every small ε> 0, there exist

A,B ∈V with 
dp (A,B)≥μp (V )−ε.

Proof. For the sake of contradiction, consider someV ⊆Cp , withμp (V ) ∈ (0,πp ], and
some small ε > 0, such no two points both in V have arc distance at least μp (V )− ε.
Below we denote the latter quantity by u, and note that u ∈ (0,πp ), as well as that

μp (V )= u+ε> u. We also denote by V � the set Cp \V . The argument below is com-
plemented by Fig. 5.

Since V is non-empty, we consider some arbitrary A ∈ V . We define the set of
antipodal points of V

N := {B ∈Cp : ∃C ∈V ,
dp (B ,C )=πp }
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Fig. 5.An abstract �p unit circle, for some p ≥ 1, depicted as a Euclidean unit circle for simplic-

ity. On the left we depict points A,A,A−,A+,A′,A′′,T,R. On the right we keep only the points

relevant to our final argument, and add also points A′′−,A′+,A
′
,A

′′
.

Note that N ∩V = � as otherwise we have a contradiction, i.e. two points in V with
arc distance πp > u = μp (V )− ε. In particular, we conclude that N ⊆ V �, and hence
by Lemma 1 we have μp (N )=μp (V )= u+ε.

Let A be the point antipodal to A, i.e. 
dp (A,A) = πp . Next, consider points
A−,A+ ∈ Cp at anti-clockwise and clockwise arc distance u from A, that is

dp (A,A−) = 
dp (A+,A) = u. All points in �A+A− are by definition at arc distance at

least u from A. In particular, A ∈ �A+A− and A− ∈ �AA,A+ ∈ �AA. We conclude that
V ∩ �A+A− = �, as otherwise we have A ∈ V together with some point in V ∩ �A+A−
make two points with arc distance at least u. Note that this implies also that �A+A− ⊆
V �.

Consider now the minimal, inclusion-wise, arc �TR ⊆V �, containing �A+A−. Such
arc exists because A−,A+ ∈ �A+A− ⊆ V �. In particular, since A ∈ V , we have that R ∈
�A−A and T ∈ �AA+.

For some arbitrarily small δ > 0, with δ < min{u,ε/2}, let A′,A′′ ∈ V such that

d(RA′) = d(A′′T ) = δ. Such points A′,A′′ exist, as otherwise �TR would not be mini-
mal. Clearly, we have A′ ∈�RA and A′′ ∈ 
AT .

Since A′ ∈ �RA ⊆ �AA, its antipodal point A
′
lies in �AA. Similarly, since A′′ ∈ 
AT ⊆

�AA, its antipodal point A
′′
lies in �AA. Finally, we consider point A′′− at clockwise

arc distance u from A′′, and point A′+ at anti-clockwise distance u from A′, that is

d(A′′−,A′′)= 
d(A′,A′+)= u. We observe that A′′− ∈ �

A
′′
A and A′+ ∈ �

AA
′
.

Recall that A′′ ∈V , hence
�
A
′′
A′′− ⊆V c , as otherwise any point in

�
A
′′
A′′−∩V together

with A′, at arc distance at least u, would give a contradiction. Similarly, since A′ ∈V ,

hence
�
A′+A

′ ⊆V c , as otherwise any point in
�
A′+A

′∩V togetherwith A′′, at arc distance
at least u, would give a contradiction.

Lastly, abbreviate
�
A
′′
A,

�
A′+A

′
by X ,Y , respectively. Note that μp (X ) = μp (

�
A
′′
A′′ \

�A′′−A′′) = μp (
�
A
′′
A′′) − μp (�A′′−A′′) = πp − u. Similarly, μp (Y ) = μp (

�
A′A′

\ �A′A′+) =
μp (

�
A′A′

)−μp (�A′A′+) = πp −u. Recall that A′′− ∈ �
A
′′
A and A′+ ∈ �

AA
′
, and hence sets
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X ,Y intersect either at point A or have empty intersection. As a result μp (X ∩Y )= 0,
as well as μp (N ∩X ∩Y )= 0.

Recall that μp (�RA′)=μp (�A′′T )= δ, and so by Lemma 1we also have μp (X ∩N )=
μp (Y ∩N )= δ. But then, using inclusion-exclusion for measure μp , we have

μp (N ∪X ∪Y )=μp (N )+μp (X )+μp (Y )−μp (N ∩X )−μp (N ∩Y )−μp (X ∩Y )+μp (N ∩X ∩Y )

= u+ε+π−u+π−u−δ−δ−0+0

= 2πp −u+ε−2δ

> 2πp −u

> 2πp −μp (V )

=μp (V
�).

Hence μp (N ∪ X ∪Y ) > μp (V �). On the other hand, recall that N ,X ,Y ⊆ V �, hence
N ∪X ∪Y ⊆V �, hence μp (N ∪X ∪Y )≤μp (V �), which is a contradiction.

We are now ready to prove a general lower bound forWEp whichwe further quan-
tify later.

Lemma 8. For every p ∈ (1,∞), the optimal evacuation cost of WEp is at least 1+
ep/2+Lp (ep ).

Proof. Consider an arbitrary evacuation algorithmA . We show that the cost ofA is
at least 1+ep +Lp (ep ). By Theorem 2, we have that ep ∈ (πp ,2πp ]. Let ε> 0 be small
enough, were in particular ε< ep −πp . We let evacuation algorithmA run till robots
have explored exactly ep −ε part of Cp .

The two unit speed robots need time 1 to reach the perimeter of Cp . Since more-
over they (can) search in parallel (possibly different parts of the unit circle), they need
an additional time at least (ep − ε)/2 in order to explore measure ep − ε. The unex-
plored portion V of Cp has therefore measure u := 2πp − (ep −ε), where u ∈ (0,πp ).

By Lemma 7, there are two points A,B ∈V that are at an arc distance v ≥ u− ε=
2πp−ep . By definition, both points A,B are unexplored.We let algorithmA run even
more and till the moment any one of the points A,B is visited by some robot, and we
place the exit at the other point (even if points are visited simultaneously), hence
algorithmA needs an additional time dp (A,B) to terminate, for a total cost at least
1+ep/2−ε/2+dp (A,B). But then, note that dp (A,B)≥Lp (v)≥Lp (2πp−ep ), where
the first inequality is due Definition 1 and the second inequality due to Lemma 5,
and the claim follows by recalling thatLp (2πp −ep )=Lp (ep ).

Recall that, for every p ∈ (1,∞), the evacuation algorithms we have provided for
WEp have cost 1+ep/2+γp . At the same time, Lemma 8 implies that no evacuation
algorithm has cost less than 1+ ep/2+Lp (ep ). So, the optimality of our algorithms,
that is, the proof of Theorem 1, is implied directly by the following lemma, which is
verified numerically.

Lemma 9. For every p ∈ (1,∞), we haveLp (ep )= γp .
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6 Discussion

We provided tight upper and lower bounds for the evacuation problem of two
searchers in the wireless model from the unit circle in �p metric spaces, p ≥ 1. This is
just a starting point of revisitingwell studied search and evacuation problems in gen-
eral metric spaces that do not enjoy the symmetry of the Euclidean space. In light of
the technicalities involved in the current manuscript, we anticipate that the pursuit
of the aforementioned open problems will also give rise to new insights in convex
geometry and computational geometry.
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