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Abstract. We focus on the following question about Gathering of n
autonomous, mobile robots in the Euclidean plane: Is it possible to solve
Gathering of robots that do not agree on their coordinate systems (dis-
oriented) and see other robots only up to a constant distance (limited
visibility) in linear time? Up to now, such a result is only known for
robots on a two-dimensional grid [1,8]. We answer the question pos-
itively for robots that are connected in one closed chain (like [1]), i.e.,
every robot is connected to exactly two other robots, and the connections
form a cycle. We show that these robots can be gathered by asynchronous
robots (Async) in Θ (n) epochs assuming the LUMI model [12] that
equips the robots with locally visible lights like in [1,8]. The lights are
used to initiate and perform so-called runs along the chain, which are
essential for the linear runtime. Starting of runs is done by determin-
ing locally unique robots (based on geometric shapes of neighborhoods).
In contrast to the grid [1], this is not possible in every configuration
in the Euclidean plane. Based on the theory of isogonal polygons by
Grünbaum [18], we identify the class of isogonal configurations in which,
due to a high symmetry, no locally unique robots can be identified. Our
solution consists of two algorithms that might be executed in parallel:
The first one gathers isogonal configurations without any lights. The sec-
ond one works for non-isogonal configurations; it is based on the concept
of runs using a constant number of lights.

1 Introduction

The Gathering problem is one of the most studied and fundamental prob-
lems in the research area of distributed computing by mobile robots. Gath-

ering requires a set of initially scattered point-shaped robots to meet at the
same (not predefined) position. This problem has been studied under several
different robot and time models, all having in common that the capabilities
of the individual robots are very restricted. The central questions among all
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models are: Which capabilities of robots are needed to solve Gathering and
how do these capabilities influence the runtime? One popular and well-studied
model is the OBLOT model [15]. Its fundamental features are that the robots
are autonomous, identical and anonymous (externally and internally identical),
homogeneous (all robots execute the same algorithm), silent (no direct communi-
cation) and oblivious (no persistent memory). Additionally, the robots operate in
discrete Look-Compute-Move cycles (rounds). Each cycle consists of three phases:
first, robots take snapshots of their environment; afterward, they compute a tar-
get point and finally move there. The cycles of the robots can either be fully
synchronous (Fsync), semi-synchronous (Ssync) or completely asynchronous
(Async). Time is measured in epochs, i.e., the smallest number of rounds such
that each robot has completed its cycle at least once. Another emerging model is
the LUMI model [12,16] – it coincides in most parts with the OBLOT model.
However, it does not demand the robots to be oblivious and silent. Instead, the
robots are equipped with locally visible lights that are persistent. These lights
can be used to communicate state information to local neighbors.

While it is nowadays well understood under which capabilities Gather-

ing is possible, much less is known concerning how the capabilities influence
the runtime. The best known algorithm in the Euclidean plane considering dis-
oriented robots with limited visibility and the OBLOT model is the Go-To-

The-Center (GTC) algorithm that requires Θ(n2) rounds under the Fsync

scheduler [11]. It is conjectured that the runtime is optimal for the given robot
model. The Ω(n2) lower bound of GTC examines an initial configuration where
the robots form a regular polygon with neighboring robots having a constant
distance, the viewing radius. It is shown that GTC takes Ω(n2) rounds until
the robots start seeing more robots than their initial neighbors. This gives rise
to a slightly different connectivity model, the closed chain [1]. Each robot has
two direct chain neighbors it can distinguish, and the chain connections form
a cycle in a closed chain. A robot can always see a constant number of chain
neighbors in each direction along the chain. Based on the observations above, it
can be seen that GTC has a runtime of Θ(n2) for closed chains. Hence, it is also
still open whether closed chains of disoriented robots with limited visibility can
be gathered in linear time in the Euclidean plane. For robots that are located
on a two-dimensional grid, the picture is different: a linear time algorithm for
closed chains exists [1]. The algorithm is based on (at least) two main concepts:
the distinction of connectivity range and viewing range and a locally sequen-
tial movement called run implemented with the help of the LUMI model. It is
assumed that the distance between two direct neighbors in the chain is at most 1
(the connectivity range), but the robots can see the next 11 (the viewing range)
robots in each direction along the chain. The larger viewing range significantly
enhances the local views of the robots and is a commonly used tool in the context
of efficient Gathering algorithms, see, e.g., [1,8,24].

The second central concept behind the grid algorithm is the notion of a run
(initially introduced in [22]). A run is a visible state (realized with lights) that
is swapped along the chain and allows the robot with the state to move. In
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most rounds, Ω(n) runs are active, essential for the linear runtime. To start
runs, locally unique robots – based on geometric shapes of neighborhoods –
are determined. Therefore, the grid algorithm [1] benefits from an ever-present
asymmetry of non-final configurations on the grid such that robots can always be
identified to start runs (the “most symmetric” configuration w.r.t. the local views
of the robots is the square). In the Euclidean plane, the picture is fundamentally
different since classes of (non-final) configurations exist where every robot has
the same view. The most obvious example is a configuration in which robots are
located on the vertices of a regular polygon.

We show that closed chains of disoriented robots with limited visibility in
the Euclidean plane can be gathered in linear time assuming the LUMI model.
Our solution combines two algorithms: the first algorithm uses the notion of
a run and identifies locally unique robots to start runs. The movement opera-
tions of robots with runs are inspired by [22], an algorithm for shortening open
chains of robots in the Euclidean plane. In our model, and contrast to [22], runs
might have different movement directions along the chain. The different direc-
tions introduce the additional challenge to handle runs with opposite movement
directions located at direct neighbors. Another new challenge (compared to [22])
is to prevent runs from cycling multiple times around the chain. The second algo-
rithm considers all configurations for which the concept of runs is not applicable
due to the absence of locally unique robots. Based on the theory of isogonal
polygons by Grünbaum [18], we characterize isogonal configurations in which no
locally unique robots exist. With the help of the characterization, we introduce
an algorithm that gathers isogonal configurations in linear time without using
any light. We then demonstrate that running both algorithms in parallel, i.e.,
robots whose neighborhood fulfills the criterion of being an isogonal configura-
tion, execute the algorithm for isogonal configurations while all others execute
the asymmetric algorithm, solves Gathering in linear time.

Related Work: Much research is devoted to Gathering in various settings,
mostly combined with an unbounded viewing radius. Due to space constraints,
we focus on results that deal with the runtime of Gathering algorithms. For a
comprehensive overview of models, algorithms, and analyses, we refer the reader
to the recent survey [14]. Additionally, see [13,17,23,26] for practical applications
of robot chains and [1,7,10,20,22,25,27] for more algorithmic results about robot
chain problems.

In the OBLOT model, there is the GTC algorithm [2] that solves Gath-

ering of disoriented robots with local visibility in Θ
(
n2

)
rounds assuming the

Fsync scheduler [11]. The same runtime can be achieved for robots located on
a two-dimensional grid [4]. It is conjectured that both algorithms are asymp-
totically optimal and thus, Ω

(
n2

)
is also a lower bound for any algorithm that

solves Gathering in this model. The only proven non-trivial lower bound is
Ω(D2

G), where DG denotes the diameter of the initial visibility graph [19]. How-
ever, this bound only holds for comparably small diameters DG ∈ Θ(

√
log n).

Faster runtimes could only be achieved in a continuous time model (see [21]
for an overview), or by assuming agreement on one or two axes of the local



32 J. Castenow et al.

coordinate systems or considering the LUMI model. In [24], an algorithm with
runtime Θ (DE) (Async) for robots in the Euclidean plane assuming one-axis
agreement in the OBLOT model is introduced. DE denotes the initial config-
uration’s Euclidean diameter (the largest distance between any pair of robots).
Assuming disoriented robots, the algorithms that achieve a runtime of o(n2)
are developed under the LUMI model and assume robots that are located on
a two-dimensional grid: There exist two algorithms having an asymptotically
optimal runtime of O (n); one algorithm for closed chains [1] and another one
for arbitrary (connected) swarms [8].

Our Contribution: In this work, we give the first asymptotically optimal
algorithm, called CCH, that solves Gathering of disoriented robots in the
Euclidean plane. More precisely, we show that a closed chain of disoriented robots
with limited visibility located in the Euclidean plane can be gathered in O (n)
epochs assuming the LUMI model with a constant number of lights and the
Async scheduler. The number of epochs is asymptotically optimal since if the
initial configuration forms a straight line with direct neighbors at a maximal
distance, at least Ω(n) epochs are required by any algorithm.

Our algorithm assumes that direct chain neighbors are in distance at most 1
(the connectivity range is 1), and robots can always see the positions of 4 robots
in each direction along the chain (the viewing range is 4). The viewing range
of 4 is a significant improvement over the linear time Gathering algorithm for
closed chains of robots on a grid that uses a viewing range of 11 [1].

The visible lights help to exploit asymmetries in the chain to identify locally
unique robots that generate runs. We characterize the class of isogonal configura-
tions based on the theory of isogonal polygons by Grünbaum [18] and show that
no locally unique robots exist in these configurations, in contrast to every other
configuration. We believe that this characterization is of independent interest as
highly symmetric configurations often cause a large runtime. For instance the
lower bound of GTC holds for an isogonal configuration [11].

Our approach combines two algorithms into one: An algorithm inspired by
[1,22] that gathers non-isogonal configurations in linear time using visible lights
and another algorithm for isogonal configurations without using any lights. Note
that there might be cases in which both algorithms are executed in parallel due
to the limited visibility. An additional rule ensures that both algorithms can be
interleaved without hindering each other.

In this version of the paper, we introduce CCH for the Fsync scheduler.
Due to space constraints, the two-step synchronization procedure (mainly based
on existing results [3,9]) to make the algorithm work under the Async scheduler
while maintaining the runtime of Θ(n) epochs can be found in the full version [6].

2 Model and Notation

Time Model: Robots operate in discrete LCM (Look, Compute, Move) cycles.
Each robot takes a snapshot of its neighborhood during Look, computes a target
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point in Compute, and moves to this point in Move. We assume a rigid move-
ment, robots always reach their target points during Move. A scheduler controls
the timing of the executions of the LCM cycles: The cycles can be fully syn-
chronous (Fsync), or only a subset of all robots participate (Ssync). Addi-
tionally, the cycles can be asynchronous (Async). The executions of the Ssync
and Async schedulers are always fair: All robots execute their cycles infinitely
often. The Ssync and Async schedulers are called to be k-fair if, between any
two successive cycles of a robot, every other robot is activated at most k times.
Time is measured in epochs, i.e., the smallest number of rounds until each robot
processed at least one complete LCM cycle.

Robot Model: We consider n robots r0, . . . , rn−1 located in R
2. Each robot

occupies a single point, and there can be multiple robots in the same location.
Moreover, the robots are connected in a closed chain topology: Each robot ri has
two direct neighbors: ri−1 and ri+1 (mod n). The connectivity range is assumed
to be 1, i.e., two direct neighbors are allowed to have a distance of at most 1. The
robots are disoriented and thus do not agree on any axis of their local coordinate
systems, and the latter can be arbitrarily rotated and inverted. However, the
robots agree on unit distance and can measure distances precisely. Except for
their direct neighbors, each robot can see the positions of 4 predecessors and
successors along the chain. Moreover, we assume the LUMI model: Each robot
is equipped with a constant number of lights �1, . . . , �k with color sets C1, . . . , Ck

and at every point in time each light can have a single color out of its color set
(later on, we use names like �r).1

Notation: Let pi(t) be the position of ri in round t in a global coordinate
system (not known to the robots) and d(pi(t), pj(t)) = ‖pi(t) − pj(t)‖. Further-
more, let ui(t) = pi(t) − pi−1(t) be the vector pointing from robot ri−1 to ri

in round t. The length of the chain is defined as L(t) :=
∑n−1

i=0 ‖ui(t)‖. The
angle created by anchoring ui+1(t) at the terminal point of ui(t) is denoted by
αi(t) = �(ui(t), ui+1(t)) ∈ [0, π], sgni (αi(t)) ∈ {−1, 0, 1} denotes the orientation
of αi(t) from ri’s point of view and sgn(αi(t)) denotes the orientation in a global
coordinate system. Ni(t) denotes the neighborhood of a robot. Throughout the
algorithm’s execution, two robots may merge and continue to behave as a single
robot. For simplicity, ri+1 represents the first robot with an index larger i that
has not yet merged with ri (ri−1 analogously).

3 Basics

This section explains the basics behind the two sub-algorithms that are part
of the CCH. In Sect. 3.1 we characterize isogonal configurations. Section 3.2
explains the basic idea of the asymmetric algorithm: the notion of runs and
the movement operations induced by them. The Fsync scheduler is considered.
1 In the classical LUMI model [12] each robot is equipped with a single light and

color set. Our assumption of multiple lights and color sets can be transferred to the

classical setting by choosing a single light with a color set of size at most 2
∑k

i=1 |Ci|.
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3.1 Isogonal Configurations

There are some configurations in which every robot locally has the same view.
We classify these as the isogonal configurations. The most prominent example
is a configuration where robots are located on the vertices of a regular polygon.
However, there are more such configurations. Intuitively, a configuration is isog-
onal if all angles αi(t) have the same size and orientation and either all vectors
ui(t) have the same length, or there are two alternating vector lengths. More for-
mally, for some round t, the set of all vectors ui(t) describes a polygon denoted
as the configuration polygon of round t. A configuration is then called an isogonal
configuration in case its configuration polygon is isogonal. Grünbaum classified
the isogonal polygons as follows [18]: A polygon P is isogonal iff for each pair
of vertices there is a symmetry of P that maps the first onto the second [18].
Examples of such polygons can be seen in Figs. 1 and 2. The set of isogonal poly-
gons consists of the regular stars and polygons that can be obtained from them
by a small translation of the vertices [18]. A regular star {n/d} (n, d ∈ N, d ≤ n)
is constructed as follows: Consider a circle C and fix an arbitrary radius R of
C. Place n points A1, . . . , An such that Aj is placed on C and forms an angle of
2πd/n ·j with R and connect Aj to Aj+1 mod n by a segment. A configuration is
called a regular star configuration, in case the configuration polygon is a regular
star [18].

For odd n, every isogonal polygon is a regular star. For even n, isogonal
polygons that are not regular stars can be constructed as follows: Take any
regular star {n/d} based on the circle C of radius R. Choose a parameter 0 <
t < n/2 and locate the vertex Aj such that its angle to R is 2π/n·(j ·d+(−1)j ·t).
Choosing t = n

2 yields the polygon {n/d} again. Larger values for t obtain the
same polygons as in the interval [0, n

2 ] [18].

Fig. 1. An isogonal configuration that
has two alternating vector lengths and
all angles are equal with n = 12.

Fig. 2. An isogonal configuration of
which the polygon is a star configura-
tion with n = 7.

3.2 Sequential Movement with Run-States

A run-state (introduced first in [22]) is a light that is passed along the chain in
a fixed direction associated to it. Robots with a run-state perform a movement
operation while robots without do not. The movement is sequentialized in a way
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that in round t the robot ri executes a movement operation (and neither ri−1

nor ri+1), the robot ri+1 in round t+1 and so on (cf. Fig. 3). The movement of a
run-state along the chain is denoted as a run. For ease of description, we use the
term run (instead of run-state) for the rest of the paper. Due to the sequential
passing of runs, any moving robot does not have to consider the movements
of its direct neighbors since it knows that these do not change their positions.
There is one exception: two runs with opposite directions might be located at
two neighboring robots. In this case, the two robots move simultaneously. A run
can be implemented with two lights: �r and �p. The light �r indicates that a
robot has a run in the current round, and �p is active if a robot had a run in
the last round. Thus, each run keeps a fixed direction along the chain; robots
that have not activated the light �p and see one neighbor with an active light �r

will take over the run in the next round by activating �r. After completing the
movement based on the run, �r is switched off, and �p is activated such that the
robot does not take over the same run in the next round. We use the following
notation to speak about runs. For a robot ri, run(ri, t) = true if ri has a run
in round t. Additionally, run(Ni(t)) = {rj ∈ Ni(t)| run(rj , t) = true}. Let κ
denote an arbitrary run. r(κ, t) denotes the robot that has run κ in round t.

Movement Operations Based on Runs: To preserve the connectivity of the
chain, CCH ensures that at most two directly neighboring robots move in the
same round. This is done by allowing the existence of only two patterns of runs
at neighboring robots: Either ri and neither ri−1 nor ri+1 has a run (isolated
run) or ri and ri+1 have runs heading in each other’s direction while ri−1 and
ri+2 do not have runs (joint run-pair). All other patterns, especially sequences
of length at least 3 of neighboring robots having runs, are prohibited.

For robots with a run, there are three kinds of movement operations, the
merge, the shorten and the hop. The purpose of the merge is to reduce the
number of robots in the chain. It is executed by a robot ri if its direct neighbors
have a distance of at most 1. In this case, ri is not necessary for the connectivity
of the chain and can be safely removed. Removing ri means that it moves to the
position of its next neighbor in the direction of the run, the robots merge their
neighborhoods, and both continue to behave as a single robot. The execution
of a merge stops a run. The goal of a shorten is to reduce L(t) by moving to
the midpoint between the direct neighbors. After executing a shorten, the run
stops. In case no significant progress can be made locally, a hop is executed.
The purpose of a hop is to exchange two neighboring vectors in the chain. By
this, each run is associated with a run-vector. The vector is swapped along the
chain until it finds a position at which a merge or a shorten can be executed. For
each of the three operations, there is also a joint one (joint hop, joint shorten
and joint merge), which is a similar operation executed by a joint run-pair. We
continue with introducing the formal definitions of all movement operations.
For the ease of notation, we assume for an isolated run κ that r(κ, t) = ri and
r(κ, t + 1) = ri+1.

(Joint) Hop: Consider the isolated run κ. If ri executes a hop, pi(t + 1) =
pi+1(t) − ui(t). The run continues in its direction. A joint hop is a similar
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operation executed by a joint run-pair κ1 and κ2 located at robots ri and ri+1.
The new positions are pi(t+1) = pi−1(t)+ui+2(t) and pi+1(t+1) = pi+2(t)−ui(t).
Both runs continue in their directions and skip the next robot, i.e., in round t+1,
r (κ1, t + 1) = ri+2 and r (κ2, t + 1) = ri−1. See Fig. 4 for a visualization.

Fig. 3. A run at ri in round t is passed
along the chain.

Fig. 4. Visualization of a hop (above) and
a joint hop (below).

(Joint) Shorten: In the shorten, a robot ri with an isolated run moves to the
midpoint between its direct neighbors: pi(t + 1) = 1

2 · pi−1(t) + 1
2 · pi+1(t). The

run stops. In a joint shorten executed by two robots ri and ri+1 with a joint run-
pair, the vector v(t) = pi+2(t) − pi−1(t) is subdivided into three parts of equal
length. The new positions are pi(t + 1) = pi−1(t) + 1

3 · v(t) and pi+1(t + 1) =
pi+2(t)− 1

3 ·v(t). Both runs are stopped after executing a joint shorten. See Fig. 5
for a visualization of both operations.

Fig. 5. Visualization of a shorten
(above) and a joint shorten (below).

Fig. 6. Visualization of a merge
(above) and a joint merge (below).

(Joint) Merge: If ri executes a merge, it moves to pi+1(t). Afterward, the
robots ri and ri+1 merge such that their neighborhoods are identical, and they
continue to behave like a single robot. In the joint merge, the robots ri and ri+1

both move to 1
2pi(t) + 1

2pi+1(t). The robots merge there such that they behave
as a single robot in the future. All runs that participate in a (joint) merge are
immediately stopped (Fig. 6).

4 Closed-Chain-Hopper

Next, we present the Closed-Chain-Hopper (CCH) algorithm under the
Fsync scheduler in detail. Our approach consists of two algorithms – one
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for asymmetric configurations (Sect. 4.2) and one for isogonal configurations
(Sect. 4.3). All robots with an isogonal neighborhood move according to the sym-
metric algorithm. Other robots follow the asymmetric algorithm. To present the
algorithm in the most comprehensible way, we use an incremental description. For
the sake of completeness, a pseudocode can be found in the full version [6].

4.1 Intuition About the Asymmetric Algorithm

While Sect. 3.2 has already discussed the purpose of the individual movement
operations, we add some intuition about how to handle runs in general.

Generation of Runs: In non-isogonal configurations, we identify robots that
are regarding their local neighborhood geometrically unique. These robots are
assigned an init-state (implemented with a light �init) allowing them to regularly
generate new runs. The algorithm always ensures that at most two neighboring
robots have an init-state to maintain the connectivity of the chain. Additionally,
a robot ri with an init-state only generates a new run in case no other run is
present in its neighborhood.

Stopping of Runs After at Most n Rounds: For the linear runtime of the
CCH algorithm, each run must stop after at most n rounds since otherwise the
run could cycle multiple times around the chain and hinder other robots with
init-states to generate new runs that potentially lead to progress. The following
ideas are used to ensure this behavior. Robots with init-states generate two runs
at the same time: one run heading in each direction of the chain. Additionally, the
robot with the init-state moves to the midpoint between its two direct neighbors
before generating the runs. As a consequence, both runs start with opposite run-
vectors. Furthermore, a hop is only executed if the angle between two neighboring
vectors is larger than 7/8π. Now suppose that the robot starting the two runs
lies in the origin of a global coordinate system, and after moving to the midpoint,
one of its neighbors lies on the positive x-axis while the other one lies on the
negative x-axis. The angle of 7/8π ensures that the run that starts along the
positive x-axis can only move to the right in case of a (joint) hop while the other
run can only move to the left. Hence, the two runs cannot meet each other again,
and at least one run must stop via a (joint) merge or a (joint) shorten. See Fig. 7
for a visualization. Observe that a threshold of π

2 would be sufficient to ensure
that only one run stops.

Fig. 7. Two runs generated by ri with opposite run-vectors. Due to the threshold of
7/8π, the run at ri−1 can only execute a hop if ri−2 is positioned to the left of ri−1

(mirrored for ri+1).
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A larger threshold is needed to guarantee that the second run stops after at
most n rounds. Suppose the first run (w.l.o.g. the run that moves to the left)
stops at the robot ri. The algorithm needs to ensure that ri cannot move to
the right of the second run to ensure that the second run also stops. For this,
the threshold of 7/8π is crucial as well as an additional rule to ensure that the
chain structure cannot change significantly because of (joint) merges. The rule
is defined as follows: Each run that leads to a (joint) merge stops all runs in its
neighborhood. Additionally, for a constant number of rounds also no new run
is generated in this neighborhood. This way, it is ensured that not too many
(joint) merges occur during n rounds to guarantee also the second run to stop.

4.2 Asymmetric Algorithm in Detail

The asymmetric algorithm consists of two parts: The generation of new runs and
the movement depending on such a run. We start by explaining the movement
depending on runs. Assume that the number of robots in the chain is at least 6
and consider an isolated run κ in round t with r(κ, t) = ri and r(κ, t + 1) = ri+1.
Then, ri moves as described in Fig. 8. Given a joint run-pair at robots ri and
ri+1, the robots ri and ri+1 move according to Fig. 9. If the number of robots in
the chain is at most 5 (robots can detect this since they can see 4 robots in each
direction), the robots move towards the center of the smallest enclosing circle
of their neighborhood while ensuring connectivity. More precisely, the robots
execute GTC which ensures Gathering after O(1) rounds [11].

1. If d(pi−1(t), pi+1(t)) ≤ 1, ri: merge.

2. If d(pi(t), pi+2(t)) ≤ 1, ri: Pass the
run to ri+1.

3. If αi(t) ≤ 7/8π, ri: shorten.
4. Otherwise, ri: hop.

Fig. 8. Movement of isolated runs.

1. If d(pi−1(t), pi+2(t)) < 2, both: joint
merge.

2. If αi(t) ≤ 7/8π both: joint
and αi+1(t) ≤ 7/8π shorten

3. If αi(t) ≤ 7/8π, ri: shorten.
4. If αi+1(t) ≤ 7/8π, ri+1: shorten.
5. If �(ui(t), −ui+2(t)) ≤ 7/8π. both: joint

shorten.
6. Otherwise, both: joint

hop.

Fig. 9. Movement of joint run-pairs.

Where to Start Runs? New runs are created by robots with init-states (real-
ized with a light �init). We say init(ri) = true if ri has an init-state. Moreover,
init(Ni(t)) = {rj ∈ Ni(t) | init(rj) = true}. To generate new init-states, we aim
at discovering structures in the chain that are asymmetric. When the surround-
ing robots observe such a structure, the robot closest to the structure is assigned
an init-state. Our rules ensure that at most two neighboring robots have an
init-state to keep the distance between runs (essential for maintaining the con-
nectivity). A robot ri only tries to assign itself a init-state if init(Ni(t)) = ∅.
There are three sources of asymmetry in the chain: Sizes of angles, orientations
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of angles, and lengths of vectors. For each source of asymmetry, we introduce
a set of patterns. The next class of patterns is only checked if a complete sym-
metry regarding the previous pattern is identified. More precisely, a robot only
checks orientation patterns if all angles αi(t) in its neighborhood are identical.
Similarly, a robot only checks vector length patterns if all angles in its neighbor-
hood have the same size and orientation. Whenever a pattern holds, the robot
observing the pattern assigns itself an init-state if there is no other robot already
assigned an init-state in its neighborhood. If two direct neighbors are assigned
an init-state, they fulfill the same type of pattern and form a joint init-state
together. For better readability, we omit the time parameter t, e.g., we write ui

instead of ui(t).

Angle Patterns: A robot ri is assigned an init-state if either αi−1(t) > αi(t) ≤
αi+1(t) or αi−1(t) ≥ αi(t) < αi+1(t) (Fig. 10).

−1 +1
( )

Fig. 10. A configuration in which ri
fulfills the first Angle Pattern, i.e., αi(t)
is a local minimum.

+1

−1
−2

Fig. 11. A configuration in which ri
(and also ri−1) fulfills the first Vector
Length Pattern, i.e., the length of ui(t)
is a local minimum.

Orientation Patterns: A robot ri gets an init-state if one of the following
patterns is fulfilled.

1. ri is between three angles that have a different orientation than αi(t):
sgni(αi−1(t)) = sgni(αi+1(t)) = sgni(αi+2(t)) �= sgni(αi(t))
or sgni(αi−2(t)) = sgni(αi−1(t)) = sgni(αi+1(t)) �= sgni(αi(t)) (Fig. 12).

2. ri borders a sequence of at least two angles with the same orientation next to
a sequence of at least three angles with the same orientation: sgni(αi−1(t)) =
sgni(αi(t)) �= sgni(αi+1(t)) = sgni(αi+2(t)) = sgni(αi+3(t)) or sgni(αi+1(t))
= sgni(αi(t)) �= sgni(αi−1(t)) = sgni(αi−2(t)) = sgni(αi−3(t)) (Fig. 13).2

2 Observe that the viewing range of 4 is based on this pattern: to identify the angles
αi+3(t) and αi−3(t), ri needs to be able to see ri−4 and ri+4.
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−1 +1 +2

Fig. 12. A configuration in which ri
fulfills the first Orientation Pattern.

−1

+1 +2
+3

Fig. 13. A configuration in which ri
fulfills the second Orientation Pattern.

Vector Length Patterns: In the patterns, the term locally minimal occurs.
‖ui‖ is locally minimal means that all other vectors that can be seen by ri are
either larger or have the same length.

1. The robot is located at a locally minimal vector next to two succeeding larger
vectors, i.e., ‖ui‖ is locally minimal and ‖ui−1‖ > ‖ui‖ < ‖ui+1‖ and
‖ui‖ < ‖ui+2‖ or ‖ui+1‖ is locally minimal and ‖ui‖ > ‖ui+1‖ < ‖ui+2‖
and ‖ui+1‖ < ‖ui+3‖ (Fig. 11).

2. The robot is at the boundary of a sequence of at least two locally minimal
vectors, i.e., ‖ui−1‖ = ‖ui‖ < ‖ui+1‖ or ‖ui‖ > ‖ui+1‖ = ‖ui+2‖.

How to Start Runs? Robots with (joint) init-states try every 9 rounds
(counted with a light �c) to start new runs. A robot ri with init(ri) = true
only starts a new run if run(Ni(t)) = ∅ to ensure sufficient distance between
runs. The constant 9 is chosen to ensure that a robot (potentially) observes
different runs in its neighborhoods each time it tries to start a new run. Addi-
tionally, ri only starts new runs provided d(pi−1(t), pi+1(t)) > 1. Otherwise, it
executes a merge. Given d(pi−1(t), pi+1(t)) > 1, ri generates two new runs at its
direct neighbors with opposite directions as follows: ri executes a shorten and
generates two new runs κ1 and κ2 with r(κ1, t+1) = ri+1 and r(κ2, t+1) = ri−1.
Two robots ri and ri+1 with a joint init-state proceed similarly: given d(pi−1(t),
pi+2(t)) ≤ 2, they directly execute a joint merge. Otherwise ri and ri+1 execute
a joint shorten and induce two new runs at their direct neighbors with opposite
direction.

Blocking of Robots After (Joint) Merges: Suppose the robot ri (and ri+1)
executes a merge (a joint merge). All runs in the neighborhood of ri (and ri+1)
are immediately stopped and all robots in Ni(t) do not start any further runs
within the next 4 rounds (the robots are blocked, counted with a light �block).
Special care has to be taken of init-states. Suppose that a robot ri executes
a merge into the direction of ri+1 while having an init-state. The init-state is
handled as follows: In case init(ri+2) = false and ri+2 does not execute a merge
in the same round and init(ri+3) = true, the init-state of ri is passed to ri+1.
Otherwise, the state is removed.
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4.3 Symmetric Algorithm

A robot ri moves according to the symmetric algorithm if its neighborhood is
isogonal, i.e., all αi(t) in its neighborhood have the same size and orientation,
either all vectors ui(t) have the same length or have two alternating lengths,
init(Ni(t)) = ∅ and run(Ni(t)) = ∅. Then, ri performs one of the two following
symmetrical operations. In case all vectors ui(t) have the same length, it performs
a bisector-operation. The purpose of the bisector-operation is to move all robots
towards the center of the circle surrounding the isogonal polygon described by
the configuration. Otherwise, the robot executes a star-operation. The goal of
the star-operation is to transform an isogonal configuration with two alternat-
ing vector lengths into a regular star configuration such that bisector-operations
are applied afterward. More formally, in the bisector-operation, a robot ri com-
putes the angle bisector of vectors pointing to its direct neighbors (bisecting the
angle of size less than π) and jumps to the point p on the bisector such that
d(pi−1(t), p) = d(pi+1(t), p) = 1. If d(pi(t), p) > 1

5 , the robot moves only a
distance of 1

5 towards p. Additionally, the star-operation works as follows: Let
C be the circle induced by ri’s neighborhood and R its radius. If the diameter
of C has a length of at most 2, ri jumps to the midpoint of C. Otherwise, the
robot ri observes the two circular arcs Lα = α · R and Lβ = β · R connecting
itself to its direct neighbors. The angles α and β are the corresponding central
angles measured from the radius Ri connecting ri to the midpoint of C. W.l.o.g.
assume Lα < Lβ . ri jumps to the point on Lβ such that Lα is enlarged by
R · ((β − α)/4).

4.4 Combination of the Algorithms

Intuitively, suppose some robots follow the asymmetric algorithm while others
execute the symmetric algorithm. In that case, there are borders at which a
robot ri executes the symmetric algorithm while its direct neighbor does not
move at all (since ri moves according to the symmetric algorithm, the direct
neighbor cannot have a run). At these borders, it can happen that the length
of the chain increases. To prevent this from happening too often, we make use
of an additional visible light �sy. Robots that move according to the symmetric
algorithm store this via activating �sy. If any robot detects in the next round that
�sy is activated, but its local neighborhood does not fulfill the criterion of being
an isogonal configuration, it concludes that the chain is not entirely isogonal.
The robot rc closest to the asymmetry is assigned an init-state to ensure that
this does not occur again. As a consequence, rc and all robots that can see rc

will not execute the symmetric algorithm again until rc executes a (joint) merge.
Hence, this case can occur at most n times (for more details, see [6]).

4.5 Analysis Sketch

This section contains the analysis outline for proving the main theorem (Theorem
1) of the CCH algorithm. The proofs can be found in [6].
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Theorem 1. The CCH-algorithm gathers a closed chain of disoriented robots
with a connectivity range of 1 and viewing range of 4 in Θ(n) rounds.

One of the crucial properties for the correctness of the CCH-algorithm is
that it maintains the connectivity of the chain.

Lemma 1. In every round t, the configuration is connected.

The asymmetric algorithm depends on the generation of runs. We prove that
in every asymmetric configuration, at least one pattern is fulfilled.

Lemma 2. A configuration without any init-state in round t becomes either
isogonal or at least one init-state exists in round t + 1.

The following is the key lemma of the asymmetric algorithm: Every run
started at robot ri will never visit ri again in the future. See Sect. 4.1 for an
intuition.

Lemma 3. A run does not visit the same robot twice.

Next, we count the number of required runs to gather all robots. There can
be at most n − 1 (joint) merges. To count the number of (joint) shortens, one
can see that a (joint) shorten either decreases L(t) by a constant or a vector of
length less than 1

2 has a length of at least 1
2 afterward. Both cases occur at most

a linear number of times.

Lemma 4. At most 143n runs are required to gather all robots.

Additionally, we prove that a sufficient number of runs is generated by apply-
ing a witness argument. Consider an init-state. After 9 rounds, this state either
creates a new run or waits since a run is in its neighborhood. This way, we can
count each 9 rounds a new run: Either the robot with the init-state starts a new
run or waits because of a different run. Roughly said, we can prove that in k
rounds ≈ k

9 runs exist. This holds until the init-state is removed due to a (joint)
merge. Afterward, we continue counting at the next init-state in the direction of
the run causing the (joint) merge.

Lemma 5. A configuration that does not become isogonal gathers in O(n)
rounds.

The first step of the symmetric algorithm transforms an isogonal configura-
tion into a regular star configuration.

Lemma 6. Given an isogonal configuration with two alternating vector lengths
in round t, the configuration is a regular star configuration in round t + 1.

To prove a linear runtime for regular star configurations, we analyze the
runtime for the regular polygon {n/1}. In all other regular star configurations,
inner angles are smaller, and the robots can move farther towards the center of
the surrounding circle.

Lemma 7. Regular star configurations gather in at most 30n rounds.
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5 Concluding Remarks

For Gathering of disoriented robots with limited visibility, still, no non-trivial
lower runtime bound for oblivious robots is known. A slight exception might be
the bound of [19] (see related work), which, however, only holds for comparably
small diameters. We conjecture that the linear runtime of the CCH is only
possible due to the visible lights, and thus, quadratic lower bounds hold for
the oblivious case. However, proving a general lower bound seems to be quite
challenging and is left for future research. Additionally, it is still open whether the
result can be transferred to robot swarms without a chain topology. The main
idea would be to apply the CCH algorithm to the boundaries of the swarm,
which form cycles. First attempts show that this approach has problems with
maintaining the connectivity to inner robots that are not part of a boundary.
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