
7The Intermediate Value Theorem and Implicit
Assumptions

7.1 Statement of the Teaching Problem

Effective communication, in the classroom and elsewhere, relies on shared under-
standing. Perhaps the simplest illustration is with vocabulary. When most people
hear the word “plane” they picture a machine that flies through the air. Yet, if
a student draws on that understanding while their geometry teacher discusses a
“plane,” very little that is said will be meaningful to the student. This so-called
semantic contamination occurs when everyday definitions interfere with properly
understanding mathematical definitions. While the confusion between airplanes and
Cartesian planes is not hard to remedy, there are more nuanced levels of semantic
contamination that can be amplified in the classroom and are more challenging to
address.

When we communicate about mathematical ideas, there is a dichotomy between
the rigorous language of formal definitions and the more intuitive type of discourse
that focuses on big picture properties and phenomena.1 Proving theorems requires
careful attention to formal definitions, but when most of us discuss a mathematical
concept like “function” or “continuity,” we are likely referring to the informal
collection of examples and ideas that are common from our experience. We may
not be thinking about the formal definition. This is especially true for students, and
the result is a type of semantic contamination that can go undiagnosed. Students
frequently make assumptions about mathematical concepts that stem from a mental
image that has built up over time. These assumptions tend to remain implicit in
communication; it’s hard to be explicit about assumptions of which you are not
aware.

1 Tall and Vinner [5] make a similar differentiation. They contrast a concept definition, by which
they mean a formal definition, with a concept image, by which they mean all the other interesting
things associated with that concept.
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Consider the following pedagogical situation:

Mr. Cai, a high school teacher, is illustrating the Intermediate Value Theorem
by locating zeros of functions. Using the example g(x) = x3 − 3x2 − 2x + 7,
Mr. Cai points out that since g(2) = −1 and g(3) = 1, the function must have
at least one zero between 2 and 3.

Later, as an “exit ticket,” students are asked for a short summary of the key
ideas. One student, Chrissy, submits the following response:

Okay, so if a function is less than 0 somewhere and greater than 0 somewhere else
then we know there will be a zero somewhere between them. So in general, if f (a) <
0 and f (b) > 0, then there is at least one zero in the interval (a, b).

Chrissy’s response in the exit ticket appears to be a positive reflection on the
lesson—she was able to capture some of the most salient ideas about the theorem.
On the other hand, assumptions left implicit can lead to problematic understandings
about the mathematics; TP.1 insists these be explicitly acknowledged and revisited.
One of the challenges of teaching is the ability to listen to students, interpret their
statements, hear potentially implicit assumptions, probe those assumptions, and
identify how to respond in order to further mathematical understanding.

Before moving on, think about how you, as a teacher, might respond to the
student. What comments might you make? What questions might you ask?

7.2 Connecting to Secondary Mathematics

7.2.1 Problematizing Teaching and the Pedagogical Situation

We problematize some potential responses to the student’s summary of the Interme-
diate Value Theorem (IVT).

A first reaction may be to commend the student. Overall, Chrissy has done a good
job summarizing key parts of the IVT. Several aspects are particularly noteworthy.
She has successfully generalized the essential ideas from the particular example.
This is especially evident from her use of symbolism, such as using ‘f (a) < 0,’ and
the interval ‘(a, b).’ The student has also noted the importance of the phrase “at least
one” zero and made sure to include it in her summary. This is a critical nuance of the
IVT. When f (a) < 0 and f (b) > 0, there could be multiple zeros in (a, b), but we
cannot be sure, so “at least one” is the most accurate claim. The student’s attention to
these details suggests she understands some important ideas about finding zeros and
merits a degree of validation from the teacher. But are there other aspects that should
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be considered? Are there any implicit assumptions or mathematical limitations in
the student’s statement that, according to TP.1, might need to be clarified?

In response to these questions, a second reaction could involve pointing out that a
completely correct answer needs to acknowledge the role of continuity. A function
must be continuous on the given interval to apply the IVT. A step function, for
example, could be less than 0 at one point, greater than 0 at another, and not have
any zeros in between because it “jumps” over the x-axis. In addition to affirmation, a
teacher should point out that the function has to be continuous on the interval (a, b)
to ensure there is a zero in that interval. Emphasizing this condition to the whole
class might also be worthwhile.

Having raised the issue of continuity, the teacher’s next job is to ferret out the
reason for the omission. What led to this missing component in Chrissy’s exit ticket
response? Perhaps she is not aware of the significant role of continuity in the IVT,
or maybe it was just a careless mistake. Falling somewhere between these two
scenarios is the possibility of a subtle form of semantic contamination in Chrissy’s
use of the term “function.” She might be using this term to reference something
different than what the teacher, or you as a reader, imagine. Based on the examples
she has seen, Chrissy may have been using “function” to mean “polynomials”; or
perhaps her mental picture of function only includes continuous ones and so the
term was implicitly referring to “continuous functions.” What students say and write
does not always align with what they understand. Interrogating students’ mistakes
to unearth their thinking requires asking, “What might the student be assuming in
order for this statement to be logical?” The answer frequently includes the existence
of implicit assumptions.

Praising Chrissy’s response may let a misunderstanding linger, and correcting
the response might not address the right misconception. Indeed, one of the things
we will see is that, in addition to continuity, there are other assumptions being made
about the IVT that are implicit in the student’s statement.

7.2.2 Defining Function

Before we consider the IVT further, let’s directly address any confusion about the
term “function.” Based on your own experiences, you probably have a particular
image for the concept of function. Before we present a formal definition, pause
to consider the different informal images you have for this concept. What do you
think about when you consider the notion of a function? What examples? What
properties? What pictures or words?

Definition A function f is a set of ordered pairs (x, y) such that each x is associ-
ated with a unique y. Specifically, f = {(x, y)|(x, y1), (x, y2) ∈ f implies y1 = y2}.
In this case, we write f (x) = y. The set of all x-values is the domain,
A = {x|(x, y) ∈ f }, and the set of all y-values is the range, f (A) = {y|(x, y) ∈ f }.
Any superset B ⊇ f (A) can be the codomain, and we write f : A → B.
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The definition above is similar to other definitions of function (e.g., Abbott’s [1]
Definition 1.2.3). The domain A and the co-domain B do not have to be sets of real
numbers. The domain could be the set of students in a class and B the set of desks.
A function f could be the set of ordered pairs (x, y) where student x sits in desk y.

With a set A (the domain) and a set B (a superset of the range) we could consider
different possible collections of ordered pairs (x, y) where x ∈ A and y ∈ B. The
full collection, known as the Cartesian product A×B, contains all possible ordered
pairs. Relative to these different possible collections, functions are a particular kind
of collection—one in which each x is associated with only one y. This property is
known as univalence. A second property associated with functions is totality, which
means every x ∈ A appears as the first coordinate at least once. In our previous
example, totality means that every student gets a desk; univalance means that no
student gets more than one. (It’s entirely possible, however, that two students share
the same desk.) Using this notation, another way to characterize a function is as a
subset of ordered pairs from A × B that is univalent and total on A.

Real analysis and much of secondary mathematics is focused on functions with
domains and ranges from the set of real numbers. The graph of such a function on the
Cartesian plane R×R is a useful representation of its set of ordered pairs. In fact, you
probably imagined particular graphs of functions as you thought about the concept
earlier. The formal definition of function is quite broad. Even when we restrict our
attention to real-valued functions, there is a wide array of surprising examples that
fulfill the defining criteria. Figure 7.1 depicts a range of examples that meet the
formal definition. Although you might be tempted to reject them based on your
preconceived notion of what a function should look like, the definition demands
they become part of your example space. Claims about functions must hold across
all possible examples, or be appropriately amended to apply to a particular subclass.

7.3 Connecting to Real Analysis

As we discussed in Chap. 5, conditional statements (A �⇒ B) have a condition
A and a consequence B; if condition A is met we necessarily have B as a
consequence. Conditions are the explicit assumptions required for a proposition to
hold, but precisely determining the conditions of a theorem can be a bit challenging.
Mathematics is a dense language where a lot can be conveyed in a few words and
symbols. Fully comprehending all the assumptions of a theorem requires careful
scrutiny of the notation to appreciate what is being articulated. It also involves
following through to see how the various assumptions are incorporated in the
proof. To illustrate the different steps and potential pitfalls in this process, let’s
take a detailed look at the Intermediate Value Theorem and a corollary we call the
Intermediate Zero Theorem.

Theorem (Intermediate Value Theorem) Let f : [a, b] → R be continuous. If
L is a real number satisfying f (a) < L < f (b) or f (a) > L > f (b), then there
exists a c ∈ (a, b) where f (c) = L.
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a) b) c)

d) e) f)

Fig. 7.1 Functions that are: (a) sets of discrete points; (b) defined by their graphs; (c) piece-
wise defined, and with “jumps”; (d) missing domain values, with vertical asymptotes; (e) missing
domain values, with holes, and arbitrarily close oscillations; and (f) defined but cannot be graphed

Theorem (Intermediate Zero Theorem) Let f : [a, b] → R be continuous. If
f (a) < 0 < f (b) or f (a) > 0 > f (b), then there exists a c ∈ (a, b) where
f (c) = 0.

The Intermediate Zero Theorem is the specific case of the Intermediate Value
Theorem when L = 0. This is the version relevant to the process of locating roots
of functions. We use the abbreviation IVT to refer to either statement, although it is
the second one we attend to more closely.

7.3.1 Differentiating Conditions in Statements

As a general rule, mathematicians try to avoid ambiguity and inefficiency. Every-
thing required should be explicitly stated, and everything explicitly stated should
be required. In terms of style, mathematicians lean toward brevity, saying what is
necessary in the fewest words needed. Because mathematical concepts build on each
other, phrases and concepts can include hidden implications. Unpacking the full
meaning of a mathematical statement involves reviewing the relevant definitions and
their implications as well as paying attention to the statement’s logical structure.

Turning our attention to the IVT, the first thing to point out is the inclusion of
continuity as a condition. Without it, the conclusion does not hold (see Fig. 7.2).
We should also acknowledge the phrase “there exists” in the theorem’s conclusion.
The existence of a value c does not preclude the possibility that there could be
more—existence and uniqueness are different questions. These two observations
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Fig. 7.2 A discontinuous
function f , defined on [1, 9],
with f (1) < 0 < f (9) but no
zeros in (1, 9)

about the IVT were raised in our earlier discussion of the teaching scenario. What
other aspects of the IVT might be interrogated?

A useful heuristic to better understand the conditions of a theorem is to ask
what happens if the conditions were changed or if parts were left out.2 Consider
the assumption, f (a) < 0 < f (b). As stated, it utilizes strict inequalities. What
happens if we change it to f (a) ≤ 0 ≤ f (b)? You might consider some possibilities
before moving on. One example to test would be when f (a) = 0 and f (b) > 0.
In this case, a line between (a, 0) and (b, f (b)) does not have any zeros in (a, b)

and so the conclusion would not hold. What if both endpoints were zero? In this
situation we might draw a sine curve that crosses the x-axis several times in the
interval, or a parabola with roots at a and b that has no zeros in the interval. This
latter example reinforces the prior observation that the IVT’s conclusion no longer
follows with the amended conditions. To fix this we could edit the conclusion to
assert the existence of a value c ∈ [a, b] instead of c ∈ (a, b). This puts us on
firm logical ground, but the cases when either f (a) or f (b) equal zero make the
conclusion of the IVT rather trivial. The takeaway of this experiment is that the use
of either strict or inclusive inequalities in the condition and the conclusion are no
coincidence—they are linked. And the strict inequalities yield the most appropriate
version of the IVT!

Let’s look more carefully at one other condition: f : [a, b] → R. There is
a component to this part of the hypothesis that is often overlooked; in particular,
it says the domain is a closed interval. What happens if we remove this part of
the condition, but keep everything else the same? Does the conclusion about the
existence of a zero still hold?

Question Let f (x) : A → R be continuous on its domain A, and let a and b be
points in the domain with a < b. If f (a) < 0 < f (b) or f (a) > 0 > f (b), is it
true f must have at least one zero in (a, b)?

2 Brown and Walter [3] describe this as the “what-if-not” strategy for problem posing.
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Fig. 7.3 A continuous
function
f : [1, 4) ∪ (4, 9] → R, with
f (1) < 0 < f (9), but no
zeros in (1, 9)

To answer the question, let’s think about whether it is possible to construct a
continuous function with, for example f (a) < 0 < f (b), but that has no zeros in
the interval (a, b). This requires us to stretch our image of a function. (The examples
in Fig. 7.1 might be a guide.) We also have to sharpen our understanding of what
it means to assert that a function is continuous over a given set A. In Chap. 6 we
learned that, according to the standard definition of continuity, a function such as
g(x) = 1

x
is continuous over its natural domain A = {x ∈ R : x 	= 0}. Likewise,

the related example f (x) = 2
x−4 depicted in Fig. 7.3 is continuous on the domain

A = [1, 4)∪(4, 9]. Note that f satisfies f (1) < 0 < f (9) but has no zeros in (1, 9).
This example shines a spotlight on a condition in the IVT that is subtly embedded
in the notation: the domain of the function must be a closed interval [a, b]. In our
example, f is continuous at every point in A and thus continuous on A, but f is
not defined at x = 4. Being defined at a point is a prerequisite for continuity at
that point; we need to distinguish between the two conditions and interrogate them
separately.

7.3.2 Use of Conditions in Proofs

Mathematical propositions are typically crafted so that all the conditions in the
hypothesis are required for the conclusion to follow. Granted, there are certainly
exceptions. Teachers and textbook authors sometimes include additional informa-
tion to make the statements more understandable to students; sometimes additional
conditions are added to simplify the proof. Generally-speaking, however, we should
presume that every condition is required for the proof to go forward—that the
conditions do not include unnecessary information.

Let’s consider the two particular conditions of the IVT we delineated in the
previous discussion: (i) f is defined on [a, b]; and (ii) f is continuous on [a, b].
Below is a standard proof of the IVT that uses the Nested Interval Property (see
Abbott [1] on pp. 138–139). As you read the proof, identify where each assumption
comes into play. At what point does the argument break down if f is not defined on
[a, b]? Where does it break down if f is not continuous on [a, b]?
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Fig. 7.4 With f not defined
on [a, b], the constructed
sequence of nested intervals
may stop

Proof We will consider the case when f (a) < 0 < f (b), and begin with the
interval I0 = [a, b]. At its midpoint, z, test the value of the function. If f (z) ≥ 0,
set a1 = a and b1 = z; if f (z) < 0, set a1 = z and b1 = b. This process can
be repeated on the new interval I1 = [a1, b1] to create I2 = [a2, b2]. Continuing
this procedure, we construct a sequence of nested intervals In = [an, bn] with the
property that f (an) < 0 and f (bn) ≥ 0 for every n. Because we are bisecting each
time, the length of each interval is half the length of the preceding one, which means
the lengths are converging to 0.

By the Nested Interval Property (Abbott’s Theorem 1.4.1), the intervals all
contain at least one point c. Because c belongs to every interval and the lengths
of the intervals tend to 0, the sequences of left- and right-hand endpoints both
approach c, meaning (an) → c and (bn) → c. Therefore, f (an) → f (c) and
f (bn) → f (c). By construction, we know that f (an) < 0 for every n and so
f (c) = lim f (an) ≤ 0 (see Theorem 2.3.4 in Abbott). Likewise, f (bn) ≥ 0 for
every n and so f (c) = lim f (bn) ≥ 0. Since f (c) ≤ 0 and f (c) ≥ 0, we know
f (c) = 0. ��

Let’s focus first on the condition that f is defined at every real number in [a, b].
Where does the argument fail without this assumption? We want to think specifically
about the values in the domain, and what it means for a function to be, or not
be, defined at a particular value. The argument entails constructing a sequence of
intervals I0, I1, I2, . . . where at each stage we evaluate the midpoint z to determine
the endpoints of the next interval. The problem occurs if z is not in the domain—if
we can’t compute f (z) then there is no way to generate the next interval. Figure 7.4
gives an example where this occurs. The first midpoint, z = 5, makes I1 = [1, 5];
the next midpoint, z = 3, makes I2 = [3, 5]; but the function is not defined at the
next midpoint, z = 4. Hitting this roadblock, the process stops. We are not able to
generate the sequence of intervals In which are required to produce the value of c
satisfying the conclusion of the theorem.

Where in this argument does the assumption of continuity on [a, b] come into
play? As long as f is defined at every real number in [a, b], the bisection algorithm
will result in an infinite sequence of intervals In. Nothing about this aspect of
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Fig. 7.5 With f defined but
not continuous on [a, b], the
sequence of function values
of the left-endpoints f (an)
does not necessarily approach
f (c)

the proof requires continuity. It is only toward the end of the proof, when we are
considering the sequences of left-endpoints and right-endpoints, that continuity is
needed. With a left-endpoint sequence (an) → c, it is the continuity of f that
allows us to conclude f (an) → f (c). The same is true of the right-endpoint
sequence (bn). The example in Fig. 7.5 shows how this process breaks down without
continuity. It illustrates that for a function with a jump discontinuity, the algorithm
in the proof successfully generates a sequence of nested intervals with a unique point
of intersection. In this example, the left-hand endpoint sequence (an) converges to
c = 4 as does the right-hand endpoint sequence (bn). Without continuity, however,
we are no longer guaranteed that f (an) and f (bn) both converge to f (c). For this
example, f (an) → −1 while f (bn) → 2; the limits are different and, notably, not
equal to 0.

7.4 Connecting to Secondary Teaching

In the initial teaching situation, the student provided a reasonable summary of
the IVT, but one that made some implicit assumptions about functions. In a
classroom context, we should not necessarily regard students’ implicit assumptions
to be wrong or unwarranted. Rather, we see them as an inherent part of the
learning process. It is the teacher’s responsibility to unearth these assumptions and
call attention to them (TP.1). In the scenario, the student’s statement is true for
polynomials because these functions are defined and continuous on R—polynomials
meet the conditions of the theorem. Details like these allow teachers to illuminate
the nuances of mathematical relationships and clarify why certain statements are
valid. Doing this in an effective way requires expanding the kinds of examples
available to students so that they understand the need for being explicit about the
relevant details.
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7.4.1 Implicit Assumptions in the Classroom

The Intermediate Value Theorem is frequently included as a topic of secondary
school mathematics. When working with the IVT, the function needs to be both
defined and continuous on the interval [a, b], and we want to ensure that students
understand both of these conditions. There cannot be “holes” in the domain, nor
“jumps” in the function.

Through no fault of their own, secondary mathematics students are especially
susceptible to making implicit assumptions about functions. At the university
level, mathematics students encounter discontinuous functions frequently enough
that they become an organic part of their example space. From this perspective,
the hypothesis of continuity in the IVT stands out as an explicit and necessary
requirement. From a secondary student’s perspective, it may feel as though there
is no need to specify that the function be continuous because all the functions they
work with are continuous. Adding the modifier “continuous” becomes optional if
every function is assumed to have this property already. To take another example, if
the term “pyramid” calls to mind only solids with square bases, why would a student
think there is a need to specify “square pyramid”? As teachers, we should consider
not only whether a student’s statement is valid in general, but whether it would be
valid under their implicit assumptions. If so, a good response should make clear that
the student’s statement is relatively correct, and then reveal the assumptions that
the student left unsaid (TP.1). Doing so might involve the teacher introducing an
example that does not conform to the missing assumptions, an instance of TP.2.

To make this concrete, let’s return to the original teaching scenario and consider
the following response:

The next time the class meets, Mr. Cai brings Chrissy’s exit ticket to their
attention. After discussing it, Mr. Cai concludes:

Chrissy’s description is a great way to generalize how the IVT works for polyno-
mials. This is true because polynomials are both defined and continuous on the real
numbers. Although we will primarily use the IVT with respect to polynomials, it is
important to note that the conclusions would not hold in all situations.

Mr. Cai then asks the class to come up with and graph examples of functions
that take on both positive and negative values but are not continuous, or not
defined, everywhere. Using their examples, he asks them to check whether
those examples always have a root between two values with opposite signs.

Teaching typically involves taking concepts apart in order to make the various
components clear, and then organizing those components into a useful order for
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Fig. 7.6 An IVT-based
argument for the existence of
acute, obtuse, and right
isosceles triangles

learning.3 This task of unpacking can be more difficult than it sounds. Not only
do teachers typically compress their own knowledge as they progress through more
advanced topics, but by its nature mathematics is a condensed discipline. Each word
and symbol in a statement like f : [a, b] → R may convey some detail that needs
to be fleshed out. As the notation and concepts become more familiar to us, we can
lose track of the different layers and forget what it feels like to be encountering the
ideas for the first time. Being attentive to this starts with paying attention to all of the
mathematical ideas expressed in a statement and anticipating where students might
reasonably make assumptions based on what they know. Teachers can then make
decisions about what needs elaboration before moving forward to order, structure,
and connect the individual pieces into a meaningful and coherent whole. Students’
notions of a concept can be refined, and further developed, only once their sense of
the concept has been expanded first.

7.4.2 Implicitly Assuming the IVT in Secondary Mathematics

To this point we have focused on the implicit assumptions students might make
about the hypothesis of the IVT, but it is not unusual in secondary school mathe-
matics classrooms for students to implicitly assume the entirety of the theorem. The
content of the IVT is so plausible that on occasion it can be unwittingly invoked
in the course of some other argument. Here is an example from a geometry class,
where the students were asked whether isosceles triangles can also be acute, right,
and obtuse triangles. A student in the class responds with the following argument
based on the drawing in Fig. 7.6:

I am thinking about the vertex of an isosceles triangle. If it is down low, the triangle would
have an obtuse angle, and if it is dragged further up along this center line, the angle would be
acute. So, somewhere in between, it must be exactly 90◦. Like, if the bottom angle is 120◦,
and the top 60◦, then 90◦ is right in the middle so it’s probably exactly halfway between
those two. So, yes, there are obtuse, acute, and right isosceles triangles.

3 Ball and Bass [2] describe this notion of unpacking; teachers need to be able to “deconstruct
[their] own mathematical knowledge into less polished and final form, where elemental compo-
nents are accessible and visible” (p. 98).
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Fig. 7.7 Continuity of the
function f (h) which assigns
an angle measure to each
height

Not everything in the student’s argument is correct, but the conclusion that a right
isosceles triangle exists somewhere in between the two examples depicted is indeed
true. The student’s reasoning implicitly draws on the IVT. Let’s think more about
why this is the case.

First, the student has observed an angle value of 120◦ at one location and an angle
value of 60◦ at another. This is akin to observing values f (a) = 120 at location a,
and f (b) = 60 at location b, where f is measuring the size of the angle. The student
then argues that, since 90◦ is between 120◦ and 60◦, there must be a triangle where
the 90◦ angle measure is attained. The student makes no mention of the IVT, or even
of a function f , but there is an unmistakable impression that the spirit of the IVT
is being invoked. Filling in the details to put this argument on solid ground requires
thinking a little more about the angle-measuring function f .

To define a proper domain for f , we focus on the perpendicular bisector from the
diagram in Fig. 7.6. This is the vertical line along which the student was mentally
“dragging” the central vertex, and we define the height h to be the distance from the
horizontal base to this imagined vertex. The values of h are the input values of our
function f (h), which we formally define to be the measure of the central angle of
the isosceles triangle with vertices A, B and height h.

If the base between A and B has length 1, then height a ≈ 0.28 yields
f (a) = 120 and height b ≈ 0.87 yields and f (b) = 60, which are the two depicted

in the figure from above. (The exact values are a = 1
2
√

3
and b =

√
3

2 ). This provides
the necessary raw material to properly apply the IVT. (See Fig. 7.7.) The function
f is defined for all values of h in the closed interval [a, b]. To convince ourselves
that f is continuous, we mentally drag the vertex up and down the perpendicular
bisector, just as the student did, and observe there are no jumps or holes. (For

a more rigorous argument, we can deduce f (h) = 2 arctan
(

1
2h

)
and appeal to

the continuity of the inverse trigonometric functions.) Since 120 > 90 > 60, a
straightforward application of the IVT confirms the existence of a height c where
f (c) = 90.

What the IVT does not tell us is how to compute the value of c. On this point,
the student’s hunch that c is “halfway between” a ≈ 0.28 and b ≈ 0.87 is off
the mark. The student seems to have made the additional implicit assumption that
f (h) is linear, which we can see from Fig. 7.7 is not the case. For what it’s worth,
f (c) = 90 when c = 0.5, which is in the interval [0.28, 0.87] but not at its midpoint.



Problems 105

Problems

7.1 Graph the function f (x) shown below, using any preferred technological tool:

f (x) =

⎧
⎪⎪⎨
⎪⎪⎩

2x x < 0
1
8x (x − 1)2 + x (x − 2) (x − 5) 0 ≤ x < 5

10 5 ≤ x

First, show that f (x) meets the conditions of the IVT on the interval [−1, 5].
Second, what range of values can you be certain that f (x) takes on due to the IVT?
Third, does f (x) take on any additional values on the interval [−1, 5]? If so, what
are they? How do you know? Fourth, how many zeros does the IVT guarantee f (x)

has on [−1, 5]? How many zeros does f (x) actually have on this interval? Which
zero(s) would the nested intervals process in the proof of the IVT find (beginning
with I0 = [−1, 5])?

7.2 The following multiple choice question was on a geometry test:

Quadrilateral ABCD is a rectangle, with diagonal AC. How do the quantities AC
AB

and AB
AD

compare? a) AC
AB

> AB
AD

; b) AC
AB

< AB
AD

; c) AC
AB

= AB
AD

; d) The relationship cannot be
determined from the given information. Justify your answer.

First, determine your answer to the question. Next, consider a student’s written
response: “The answer is (a) because AB

AD
< 1 < AC

AB
.” Discuss any assumptions

the student may be making about the situation. Under those assumptions is the
student’s statement valid? Last, describe how you would respond to the student as a
teacher, making explicit under what assumptions the student’s statement is correct
and providing examples that do not conform to those assumptions.

7.3 The following question was on a geometry test: “A triangle has side lengths of
3 and 4 units. What do you know about the third side length?” One student drew a
picture of a 3-4-5 right triangle, and wrote: “I know that a2 + b2 = c2. And 32 + 42

is equal to 52. The third side must be 5.” Discuss any assumptions that the student
may be making about the situation. Under those assumptions is the statement valid?
Then, describe for what concept the student’s “concept image” appears to be limited.
Discuss how you might push the student to expand their sense of that concept so that
they would recognize the limitation that arose from their implicit assumption.

7.4 A geometry class is learning about the surface area and volume of geometric
solids. The teacher provides the following formulas for the volume and surface area
of a regular polygonal pyramid—a pyramid with a regular n-gon as its base:
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• Vreg poly pyr = 1
3B

∗h, where B∗ is the area of the n-gon’s base, and h the height
of the pyramid

• SAreg poly pyr = B∗ + 1
2P

∗l, where B∗ is the area of the n-gon’s base, P ∗ the
perimeter of the n-gon, and l the slant height of the triangular face (the slant
height is the height of a triangular face of a pyramid—the length of the line
segment along a triangular face from the base to the apex of the pyramid).

The formulas given by the teacher for the volume and surface area of a pyramid
have some specific assumptions. What assumptions about pyramids are explicitly
included in the description of volume? In the description of surface area? Do either
of the descriptions about volume or surface area have any implicit assumptions
about pyramids—things unstated but assumed about pyramids for these formulas
to be valid? Discuss any implicit assumptions and how they would have an impact
on the pertinent formulas for volume or surface area.

7.5 A student is attempting to split a triangle XYZ into two equal-area pieces:

Well, I’m not sure if it is exactly in two equal pieces as I have drawn it. But I could adjust
the point (C) somewhere along that segment (YZ) and they would be.

How has the following student’s statement implicitly used the Intermediate Value
Theorem? Verify all necessary conditions of the IVT are met—it is okay to be
somewhat informal for continuity in this case. Discuss which mathematical ideas
you might make explicit to students, and how you might do so. [This exercise was
adapted from a classroom example in [4].]

7.6 For hourly workers, work after 40 h typically results in an overtime rate of 1.5
times the normal hourly rate. Suppose a student observes in this situation that at 30 h,
a worker would be earning an hourly rate of, say, $20, and at 50 h they would be
earning an hourly rate of $30. The student suggests that the worker must have been
earning an hourly rate of exactly $25 at some point. First, describe how the student’s
reasoning has implicitly assumed the IVT. Second, the student’s conclusion is false.
Describe what conditions of the IVT have not been met.

7.7 In this chapter it was useful for us to think about isolating conditions. Indeed,
identifying whether there were functions with a certain set of properties was
productive (e.g., a function f (x) : A → R that is continuous on its domain A,
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with f (a) < 0 < f (b), but has no zero in the interval (a, b)). In Exercise 4.4.8,
Abbott asks a similar kind of question: “Give an example of each of the following,
or provide a short argument for why the request is impossible. (a) A continuous
function defined on [0, 1] with range (0, 1). . . ” Questions such as these exemplify
what teaching principle? Explain your reasoning.

7.8 The Intermediate Value Theorem (IVT) is a statement about continuous
functions; namely, that if a function f is continuous on [a, b], then on that interval
the function will attain all values between f (a) and f (b). Abbott also defines what
he calls the Intermediate Value Property (IVP), in Definition 4.5.3 [1, p. 139].

A function f has the intermediate value property on an interval [a, b] if for all x < y in
[a, b] and all L between f (x) and f (y), it is always possible to find a point c ∈ (x, y)

where f (c) = L.

Think about these two statements in relation to TP.3, about exposing logic. Rephrase
the IVT to incorporate the IVP, and discuss any pertinent observations about the
various properties of functions in terms of logic.
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Turning the Tables

Reflecting on teaching from your learning in real analysis: TP.6

To reflect more on TP.6—seeking out and giving multiple explanations—we
include some additional commentary about the description and proof of the
Intermediate Value Theorem, as given in Abbott’s text.

The teaching principle advocates using multiple explanations for the same
phenomenon because some students may follow one explanation better than
another. As an example of this practice, after introducing the content of the
IVT, Abbott goes on to state a topological theorem about the preservation of
connected sets: “Let f : G → R be continuous. If E ⊆ G is connected,
then f (E) is connected as well” (Theorem 4.5.2). He then explains the IVT
is really just a special case of this theorem. In other words, there is a typical
analysis approach that accounts for the phenomenon in the IVT, but there is
also a topological approach that is more general. Here, we see TP.6 exemplified
in terms of providing two descriptions of an observed phenomenon. Describing
ideas in multiple ways—and from multiple mathematical domains—adds depth
to the mathematics being studied.

We see this teaching principle again in Abbott’s justification of the IVT
when he provides two different proofs (pp. 138–139). The one given in this
chapter is based on the Nested Interval Property, but Abbott gives another
that uses the Axiom of Completeness. For this second proof, Abbott defines
a set A = {x ∈ [a, b]|f (x) ≤ 0}. Because A is bounded, the Axiom of
Completeness asserts it must have a least upper bound, c. He then shows f (c)
must be equal to 0. The two proofs provide two different arguments for readers
to follow, creating opportunities for them to make connections across the two
approaches. Together, they provide a more comprehensive sense of the IVT
and why it is true. In the spirit of TP.6, Abbott’s text utilizes the pedagogical
approach of describing a phenomenon in multiple ways and justifying it in
multiple ways as well. Because of this approach, we have a richer sense not
only of what the IVT means, but why it is true.
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