
6Continuity and Definitions

6.1 Statement of the Teaching Problem

Definitions play a fundamental role in mathematics. Because mathematical objects
do not exist in a physical sense—they are abstract—definitions are necessary in
order for us to have a proper sense of the objects we are studying. In most aspects
of life, definitions are extracted from a collection of pre-existing examples so that
the definition flows from an attempt to describe the objects being defined. Perfect
precision is not typically a requirement. Debating whether a hot dog is a sandwich
or a stool is a chair illustrates that what constitutes a “sandwich” is pretty flexible
and there might not be a definition for “chair” at all. In the words of U.S. Supreme
Court Justice Potter Stewart, “I’ll know it when I see it” is usually good enough
for daily life. Not so in mathematics. While definitions in mathematics are often
extracted from a collection of examples, once they have been established they
become stipulative—the definition precisely bounds and specifies a concept so that
any object which meets the defining criteria is considered an example.1

Much work goes into the process of crafting definitions. It can be difficult to
generate a definition that unambiguously captures a specific set of objects—one that
extracts the most salient characteristics and matches our intentions and intuitions.
For example, the history of mathematics is full of different kinds of functions (e.g.,
polynomials, trigonometric functions, logarithms), but it was only in the last century
that mathematicians attempted to formulate a proper definition of “function,” and
there remains a range of options about how the definition should be phrased. (We
give a definition for this text in the next chapter.) In some cases, a function is defined
to be “a mapping relating a set of input values to a set of output values where each
input is related to exactly one output.” Another common definition is “a collection
of ordered pairs (x, y) where x comes from a set X, y comes from a set Y , and no

1 See Edwards and Ward [2] for further discussion about definitions in mathematics classrooms.
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74 6 Continuity and Definitions

two ordered pairs have the same first coordinate.” Is one better? Are they the same?
Is either an improvement over the intuitive idea that a function is just a formula that
relates x to y?

Whereas arguing about whether a hot dog is a sandwich is a harmless way to
pass the time, proving theorems about functions requires that there be no confusion
about what qualifies as a function. Once a definition is agreed upon, it becomes
the foundation for mathematical study. Intuition can still be a guide, but any
implications or properties that follow must flow logically from the definition.2

Unambiguous definitions are paramount to the deductive process of mathematics,
but they are not set in stone or handed down from on high. Crafting rigorous
definitions is a human endeavor and, as such, there is not always agreement on
what they should be.

Consider the following pedagogical situation:

Trapezoids have different definitions. Texas uses an exclusive definition:

1. A trapezoid is defined as a quadrilateral with exactly one pair of parallel
sides

New York uses an inclusive definition:

2. A trapezoid is defined as a quadrilateral with at least one pair of parallel
sides

Ms. Abara, a geometry teacher in Texas, has already taught her students
about different kinds of quadrilaterals when a new student named Lena arrives
from New York. After a few days, Ms. Abara senses that Lena disagrees with
the other students about whether or not certain quadrilaterals are trapezoids.
Ms. Abara is trying to figure out how best to resolve this issue with Lena, as
well as how to talk about isosceles trapezoids with the class. How might she
respond?

Having two definitions for a trapezoid is not necessarily problematic. Many
concepts are defined in multiple ways, and definitions that appear to be different can
sometimes turn out to be logically equivalent, meaning they specify the same set of
objects. For example, the two definitions for “function” given above are essentially
equivalent. The first uses less formal language than the second, but an object
deemed a function according to one would also be a function according to the other.
Two definitions being equivalent is not necessarily problematic in a classroom. A

2 The relationship between definition and theorem is not quite this uni-directional. The key point is
not necessarily about a chronological ordering, but a semantic one—theorems draw on definitions.
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textbook typically chooses one as the definition and explains how the other is a
consequence of the first, based on how the author wants the content to be structured.
However, two definitions are competing when they specify different sets of objects
for the same concept. This situation poses more of a challenge in teaching. How
definitions are stated can potentially clarify or obscure the mathematical objects
being studied. Moreover, the definition is the starting point, and so it determines
the properties and implications that follow and subsequent definitions all have to be
crafted with respect to the original choice.

Before moving on, think about which definition of trapezoid from the pedagog-
ical situation is most familiar. Are these two definitions equivalent or competing?
How would you define an isosceles trapezoid based on each definition? Which defi-
nition is better, in your opinion, and how does your choice reflect the characteristics
you value in a mathematical definition?

6.2 Connecting to Secondary Mathematics

6.2.1 Problematizing Teaching and the Pedagogical Situation

The two definitions for trapezoid are competing definitions because they specify
different sets of objects. We elaborate on why and problematize two ways a teacher
might respond to the issues in the pedagogical scenario.

One way to approach competing definitions is simply to pick one, assert it as
the correct definition, and reject the other. Although this would resolve the tension,
it seems odd to say that one state’s definition is “incorrect.” It would make more
sense to say that different state education boards make different choices, and in this
class we will use a particular definition. Moreover, declaring that one definition is
wrong misrepresents how definitions operate within mathematics. Such a response
does not convey the “human construct” nature of definitions. Some definitions are
more normative, or standard, and there is a temptation to declare less normative
definitions to be incorrect, but at some level they are not wrong, just different. They
designate a distinct set of objects for study. Simply opting for one definition over
the other misses an opportunity to highlight the stipulative nature of definitions in
mathematics. Once a definition is given, the collection of objects characterized by
that definition becomes the domain of study. Our personal opinion as to what objects
should qualify no longer matters. We have to adapt to consider all possible objects
that fulfill the definition, even if the resulting collection is different from what we
might have preferred or expected. In the teaching scenario, why the definitions
are competing has to do with how trapezoids relate to parallelograms; either no
parallelograms are trapezoids or all parallelograms are trapezoids.

The teacher’s response in the pedagogical situation also has implications for
how to define the concept of an isosceles trapezoid. This is a bit surprising. A first
impression is that what makes a trapezoid isosceles should be evident by applying
the criteria for isosceles to the objects designated by either definition of trapezoid.
The problem is that definitions for subsequent concepts build on earlier definitions,
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Fig. 6.1 Comparing the (a) exclusive and (b) inclusive definitions of trapezoid

and this causes some complications. Consider a standard definition for isosceles
trapezoid, given in Chap. 5, which asserts that “a trapezoid is isosceles if the
non-parallel opposing sides are congruent.” This definition assumes the exclusive
definition of trapezoid. The criterion for isosceles does not make sense if we have
two sets of parallel sides, which is a possibility in the inclusive definition. What do
we do if there are no non-parallel sides to consider?

Before reading on, think about how you might resolve the issue of defining an
isosceles trapezoid so that it makes sense for both definitions of trapezoid.

6.2.2 Trapezoids

The essential difference between the two definitions is the way trapezoids relate to
parallelograms. This is illustrated in the Venn diagram in Fig. 6.1.

The exclusive definition captures the intuitive idea that a trapezoid can be created
by slicing off the top of a triangle. By adopting this definition trapezoids are required
to have non-parallel sides and so parallelograms are not trapezoids. Categorizing in
this way, a quadrilateral with at least one set of parallel sides is either a trapezoid
or a parallelogram—it falls into one category or the other, but not both. They are
disjoint.

If we adopt the inclusive definition, though, trapezoids encompass parallelo-
grams. Parallelograms are a nested subset of trapezoids. In this categorization, every
parallelogram is simultaneously a trapezoid. Although this categorization might
feel unusual at first, it is a familiar way to structure definitions. “All squares are
rectangles but not all rectangles are squares” expresses the same type of nested
relationship. If we consider number sets, the natural numbers are a subset of the
integers, which are a subset of the rationals, and so on. With this nested structure, if a
property is true for the objects in a set, then it necessarily applies to a nested subset.
As an example, a trapezoid’s area is found by the formula Atrap = 1

2 (b1 + b2)h,
where b1 and b2 are the lengths of two of its parallel sides and h is the perpendicular
height between those sides. With the exclusive definition, it cannot be assumed that
this formula will also be true for the area of a parallelogram. But using the inclusive
definition, a parallelogram’s area must be given by the same formula. With the extra
condition b1 = b2 = b, the formula gives Apar = 1

2 (2b)h = bh, illustrating
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how nested categories can highlight connections between related objects and their
properties.

6.2.3 Isosceles Trapezoids

Defining an isosceles trapezoid as one in which “non-parallel opposing sides are
congruent” works well with the exclusive definition for trapezoid. It makes isosceles
trapezoids a proper subset of trapezoids (Fig. 6.2). Because parallelograms are not
trapezoids, there are no questions about whether a parallelogram is an isosceles
trapezoid.

This definition does not work well with the inclusive definition of trapezoid; it
does not resolve the question of whether a parallelogram is an isosceles trapezoid.
We consider two possibilities for defining an isosceles trapezoid in the inclusive
case.

As a starting point, we could try to adapt our current criterion for an isosceles
trapezoid to work with the exclusive definition. What happens if we drop the
“non-parallel” stipulation and rephrase the criterion as: “A trapezoid is isosceles
if it has a pair of opposing sides that are congruent.” For any quadrilateral that
qualifies as a trapezoid under the exclusive definition (i.e., a trapezoid that is
not a parallelogram), we get the same conclusion we did before. Meaning any
trapezoid that was previously classified as isosceles retains that designation with this
adapted criteria.3 So far so good. Now let’s see what happens when we move to the
inclusive definition and consider a trapezoid that is also a parallelogram. Notably,
our amended definition of isosceles is meaningful in this context since we can assign
a truth value to the existence of a pair of congruent opposing sides. Because every
parallelogram has (two) pairs of congruent opposing sides, all parallelograms are
isosceles trapezoids. In terms of our Venn diagram, this means we would add an
additional nested set to specify isosceles trapezoids with the inclusive definition
(see Fig. 6.3a).

But does this classification of isosceles trapezoids agree with what our intuition
tells us to expect? This is hard to say, and there are likely varying opinions on the
matter. Extending the notions of congruence and symmetry familiar from isosceles
triangles, though, we can make a list of several properties that we might naturally
associate with isosceles trapezoids:

3 If it is the parallel sides that were the ones congruent, it would be a parallelogram and hence not
a trapezoid.
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Fig. 6.3 Two approaches to defining isosceles trapezoids, with the inclusive definition of
trapezoid

• opposite sides congruent
• base angles congruent (i.e., a pair of consecutive angles that are congruent)
• a line of symmetry
• diagonals congruent

To explore the possible differences in these characterizations, let’s fashion
another possible definition of isosceles based on the second item in the list: “A
trapezoid is isosceles if it has a pair of consecutive angles (or base angles) that
are congruent.” Again, for any quadrilateral that qualifies as a trapezoid under the
exclusive definition (i.e., a trapezoid that is not a parallelogram), we get the same
conclusion we did with the original formulation. That is, we could prove a theorem
that says, “A trapezoid has a pair of non-parallel sides that are congruent if and
only if it has a pair of congruent consecutive angles.” But now using the inclusive
definition, where parallelograms are trapezoids, we need to consider which types
of parallelograms have a pair of congruent consecutive angles. Rectangles and
squares have pairs of congruent consecutive angles, but other parallelograms do
not. For consecutive angles of a parallelogram to be congruent, the sides need to
perpendicular. This approach to defining isosceles trapezoids, which is the more
normative approach with an inclusive definition of trapezoid, configures subsets of
quadrilaterals quite differently than before (Fig. 6.3b).

What intuition about isosceles trapezoids does this second definition capture?
Which definition feels like the “right” one in this inclusive context?

6.3 Connecting to Real Analysis

Continuous functions are a central point of study in an analysis course. Throughout
high school and university mathematics, the concept of continuity gets described
in ways that range from informal to excessively precise. Here, we consider four
definitions of continuity, some of which are likely familiar to you. The initial
question is whether the definitions are equivalent or competing. Do these definitions
classify the same set of functions as continuous? Be sure to consider atypical
functions as you sort through the four proposals.
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(Possible) Definition For each proposed definition we consider a real-valued
function f : A → R, where A is a subset of R.

1. The function f is continuous on A if its graph can be drawn without lifting up
one’s pencil.

2. The function f is continuous on A if for every c ∈ A, limx→c f (x) = f (c).
3. The function f is continuous on A if for every c ∈ A and ε > 0, there exists a

δ > 0 such that if |x − c| < δ (and x ∈ A) then |f (x) − f (c)| < ε.
4. The function f is continuous on A if limn→∞ f (xn) = f (c) for every sequence

(xn) (with xn ∈ A) that converges to some c ∈ A.

Most of us come to the table with a set of expectations for what continuity entails.
Polynomials are continuous; so are sine and cosine curves. Continuous functions
should not have holes or jumps. Which of these definitions capture our sense of
what continuity should be? Which functions are included and which are ruled out?
Are there stipulations in some of these definitions that might surprise us or push
against our intuition? Remembering the pitfalls we experienced defining isosceles
trapezoids, are there situations where the definitions don’t make sense? Is the given
criteria precise enough that it can be evaluated at all?

6.3.1 Considering Various Definitions of Continuity

To get a better sense of each of these four proposed definitions for continuity, let’s
try them out on some example functions.

Example Consider the function f depicted in the graph

Tasked with deciding whether f is continuous from just this graphical information,
Definition (1) feels like an appropriate and straightforward way to proceed. The
graph can be drawn without lifting up one’s pencil, so f appears to be continuous.
But how compelling is this argument?
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Fig. 6.4 Zoomed out graph
of f , discontinuous by
Definition (1)

This example illustrates a weakness in the first definition. Relying on a graph
for our definition of continuity is inherently limiting. There are functions that
cannot be graphed in a meaningful way. One example would be the discontinuous

Dirichlet function, g(x) =
{
1 : x ∈ Q

0 : x /∈ Q
. How can we apply Definition (1) when

g cannot be graphed? An example of an ungraphable function that is continuous
is the Weierstrass Function. Its progressively finer layers of oscillations outstrip
the resolution of any graphing device (the function has a self-replicating, fractal,
nature). Generally speaking, graphs are visual summaries—useful for our intuition
but, by their nature, incomplete. Unless the domain of a function is a finite set of
points, a graph can only provide a partial description. Returning to the function in
the graph above, suppose f (x) = 1.5x · �0.1x + 3� − 1 (for x ∈ R

+). Indeed,
this is what generated the graph of f . However, now look at a plot of this function,
zoomed out, in Fig. 6.4. By expanding the viewing window, we see that f has a
“jump.” This leads to the conclusion that f is discontinuous because we have to
pick up our pencil to draw it. The moral of this story is that Definition (1) has
some severe limitations—criteria based on a function’s graph is difficult to evaluate
consistently.

Example Consider the function g(x) = 1
x
depicted in the graph
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By Definition (1), g(x) would be discontinuous because drawing the graph
requires us to lift our pencil. The problem occurs at x = 0, but x = 0 is not
even in the domain of g! In this example, Definition (1) holds g accountable for
its behavior at a point where g is not even defined. Notably, the continuity of a
function is typically defined with respect to a specified domain A. In the previous
example, f had domain R

+. Although we judged f to be discontinuous, this was
due to the jump in the graph and not because it happened not to be defined for x ≤ 0.

This points to an interesting quality, and perhaps a counterintuitive implication,
of Definitions (2), (3), and (4). Each of these latter three definitions explicitly
requires us to investigate the behavior of the function in question at individual points
c ∈ A. Each definition is imbued with a particular way to define continuity at a point,
and defines a function to be “continuous on A” if it is continuous at each point of A.
The definitions do not consider what happens at points outside the intended domain.
For g(x) = 1/x, the natural choice for the domain is A = {x ∈ R : x �= 0},
and by Definitions (2), (3), and (4), it turns out that g is indeed continuous on A.
If we choose an arbitrary c �= 0, the specified criteria in (2), (3), or (4) is met at c

and therefore the function is continuous. (This requires some thought and you are
encouraged to pause and think about why this is true in each case.)

It may feel a bit strange to assert that g(x) = 1/x is continuous when it just looks
so discontinuous. This is an example of what it means to adopt a formal definition
and then live by all its stipulations. The feeling that g is not continuous, which arises
from a natural sympathy for the sentiments in Definition (1), must be set aside in
favor of the desire to structure our theory of continuity in a rigorous way. That
said, it is still the case that some calculus books refer to g as having an “infinite
discontinuity” at x = 0. One way to make that statement align with our formal
definitions is to add c = 0 to the domain of g. For instance, we could set g(0) = 0
so that A is now all of R. Setting c = 0 in Definition (2), we can observe g(0) �=
limx→0 g(x) because the limit does not exist. This implies g is no longer continuous.
Switching to the criteria in Definition (4) yields the same conclusion. Figure 6.5
depicts two sequences in the domain of g that both approach c = 0: (xn) from the
left and (zn) from the right. (Those sequences are depicted on the x-axis.) However,
the associated sequences g(xn) and g(zn) (depicted on the y-axis) diverge to infinity
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Fig. 6.5 The new function g

is not discontinuous at x = 0
by Definition (4)

rather than approach g(0) = 0. By Definition (4), g is no longer continuous when
its domain is expanded to include 0. (Definition (3) results in the same conclusion
as well.)

Example As a final example, consider the function

q(x) =
{ 1

2 |x − 1| + 1 : x ≥ 0
1 : x = −2

which has the following graph:

For q(x), we will consider continuity at two particular points of the domain. The
first is c = 0, which is an endpoint of part of the domain. To use Definition (2) we
need to consider the functional limit as x approaches 0. We know q(0) = 1.5, so
the question is whether limx→0 q(x) = 1.5. The answer hinges on the definition of
functional limit, and in particular whether it exists at an endpoint like c = 0. Using
the definition in Abbott [1] (4.2.1), we can confirm that everything checks out—the
functional limit exists and q is continuous at 0. In fact, q is continuous on the set
A = {x ∈ R : x ≥ 0}.

But what happens at the point c = −2? This is an isolated point of the domain of
q(x), and Abbott’s definition stipulates that functional limits can only be considered
at limit points, which c = −2 is not. This is significant. If we adopt Definition
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Fig. 6.6 The function q is
continuous at the isolated
point c = −2 using
Definition (3)

(2), then continuity requires that limx→−2 q(x) = q(−2) which is not true. The
functional limit is not defined and so using Definition (2) we get that q is not
continuous on this larger domain that includes the isolated point. This conclusion is
different from the one that emerges from adopting either Definition (3) or (4). The
logical structure of these latter two statements implies that functions are continuous
at isolated points of their domain. Definition (2) is thus a competing definition,
specifying a different set of functions to be continuous than from Definitions (3)
and (4), which turn out to be equivalent to each other.

To understand why these definitions are competing, look carefully at the wording
of Definition (3) as it relates to the isolated point c = −2, and note especially the
parenthetical reminder (x ∈ A). Given an arbitrary ε > 0, the definition requires us
to find a δ neighborhood centered at −2 such that all the points in this neighborhood
that are also in the domain have y-values within ε of q(−2) = 1. Choosing δ = 1
results in the neighborhood (−3,−1), and the only domain point contained in this
interval is c = −2. With no other x-values to worry about, we conclude that q is
continuous. (See Fig. 6.6.) Take a moment to confirm that Definition (4) is structured
in a similar way so that a function is determined to be continuous at any isolated
points of its domain.

6.3.2 Choosing a Definition

Exploring the examples in this section has revealed some of the strengths and
weakness, as well as the logical distinctions, that exist among our four proposed
definitions for continuity. From this more informed point of view, how might we
settle on the best choice to be our official definition?

Definition (1), although intuitively helpful, must be ruled out on the grounds
that it is simply too informal. A proper definition should precisely delineate a set
of mathematical objects, and it is not at all clear how to apply the statement in
Definition (1) to numerous functions we would like to categorize. As the first two
examples show, it can also lead to categorizations that are potentially contradictory.

Definition (2) is appropriately formal, but it categorizes any function with an
isolated point in its domain as discontinuous. This competes with Definition (3) (and
(4) as well) which is crafted so that isolated points turn out to be points of continuity.
How should we decide between these two options? On the one hand, we might
feel that isolated points don’t innately feel “continuous.” The graph of a function
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defined on the positive integers would amount to a sequence of disconnected dots
which is certainly a far cry from a graph that can be drawn without picking up a
pencil. This is a reasonable argument for adopting Definition (2), but there are other
considerations. The most significant is the way the chosen definition sets the stage
for the conclusions that follow. The study of continuous functions is connected to a
network of other ideas that are articulated in the theorems of analysis. Details aside,
many elegantly stated results such as “continuous functions restricted to compact
sets are uniformly continuous,” would become laden with awkward disclaimers
if we adopted Definition (2). Although it initially pushes against our intuition,
classifying functions to be continuous at isolated points turns out to be the more
organic way to build the larger theory.

This brings us to Definitions (3) and (4), which we’ve discussed are equivalent
(cf., Abbott’s proof of Theorem 4.3.2). Precisely the same set of functions meet
their respective criteria for continuity, and both criteria are used widely throughout
a course in analysis. This suggests we have a genuine choice to make; either could
serve as the definition for continuity and then we could prove the other as a theorem
to be used as needed. This choice between equivalent definitions means we could
use whichever one we found to be most appropriate for the course, the students, etc.
While this is true—and there are analysis textbooks that take both approaches—the
fact that two statements are logically equivalent does not mean they are equivalent
in every respect. There are other considerations, too. When building a mathematical
theory, there is an implied hierarchy between a definition and a theorem—definitions
are the more primitive foundation on which theorems are built. The distinction
is sometimes more art than science and making this distinction usually requires
looking forward to see what lies ahead. In the case of continuity, for example, the
ε−δ criterion in Definition (3) is most amenable to defining the concept of “uniform
continuity” referenced in the above result.

Settling on the right definition can be a deliberative and subtle process, but a
good sign that you are heading in the right direction is when there is an organic—
we might even say poetic—connection between the definition and the theorems that
follow. As the mathematician G.H. Hardy famously said, “Beauty is the first test!”

6.4 Connecting to Secondary Teaching

The takeaway from our discussion thus far is that, as teachers, we need to be
purposeful about the definitions and explanations we use with students. We have a
choice, and that choice has implications for the theorems and definitions that follow.
Returning to the competing trapezoid definitions from the beginning of the chapter,
the one we choose determines whether parallelograms are distinct from trapezoids
or whether they form a nested subset. This arrangement then leads to consequences
of its own, shaping the trajectory for the class.

Of our six teaching principles, TP.2 is the most pertinent to this discussion.
Whether it’s trapezoids, continuity, or some other concept, creating a range of
special cases is the best way to probe a proposed definition. This means constructing
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examples that meet the criteria in the definition as well as those that don’t. It also
means creating examples that fall near the boundary, barely qualifying as one of the
defined objects or falling just shy. These kinds of “near” or “minimal” examples are
especially valuable for marking out the scope of a proposed definition and getting a
head start on determining the kinds of theorems that it engenders.

6.4.1 Defining Isosceles Trapezoids

Two definitions for the same concept are logically different (i.e., competing) if they
specify distinct sets of objects. While many objects will meet the criteria of both def-
initions, objects that meet one criteria but not the other are the important cases that
separate the two definitions. For the two competing ways to define a trapezoid—the
exclusive and inclusive definitions—so-called “common” trapezoids with exactly
one pair of parallel sides fit both definitions while the set of parallelograms satisfies
only the inclusive definition. Illustrating the impact of TP.2, these examples shape
our understanding of the tension between the competing definitions and should be
at the forefront when we consider the best way to extend the theory of trapezoids
with additional definitions and theorems.

Consider the following continuation of the previous teaching scenario:

Ms. Abara gathers the class together and reviews the definition of trapezoid:

In our class, we have defined a trapezoid as a quadrilateral with exactly one pair of
parallel sides.

She continues by drawing attention to parallelograms and rectangles to
illustrate the key difference:

What this means is that trapezoids and parallelograms are separate. Parallelograms,
including rectangles, are not trapezoids according to the definition we are using.

She then introduces a new definition for isosceles trapezoids:

Isosceles trapezoids are essentially about symmetry. With our definition of trapezoid,
we could define them in terms of the non-parallel opposing sides being congruent.
But for class purposes, we will define them in terms of another symmetry: a trapezoid
is isosceles if the base angles are congruent.

Recognizing that her new student from New York was introduced to a competing
definition of trapezoid, Ms. Abara clarifies the definition used in her Texas-based
class and then gives an example to shed light on the difference. To define isosceles
trapezoids, the teacher focuses on “symmetry” as the essential feature and states
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that various definitions based on symmetry might be possible. Ultimately, Ms.
Abara defines an isosceles trapezoid in a manner that makes sense with either
definition of trapezoid. Although a system of definitions can build on one another,
using a definition that works equally well across multiple definitions is a worthy
consideration. Ms. Abara’s definition using congruence of base angles, rather than
congruence of two non-parallel opposing sides, is meaningful and effective for
either the inclusive or the exclusive definition of trapezoid. A related version of this
type of consideration that happens in a geometric context is whether a definition in
Euclidean geometry still makes sense in a non-Euclidean setting. Problem 6.8 asks
you to think about this issue.

The process of defining terms and generating examples is an important com-
ponent of students’ mathematical education. Students should also experience this
aspect of mathematics in an active way. As teachers, it is also important to engage
students in this process, recognizing them as independent thinkers capable of
refining their own definitions and appreciating the objects their definitions describe.

6.4.2 The Relationship Between Definitions and Theorems

If we choose the definition of isosceles trapezoid to be a trapezoid with congruent
base angles, the next logical step is to prove a theorem which states that the opposite
sides of an isosceles trapezoid are congruent as well. The definitions established by
the teacher lay out the logical trajectory for the class, which can have implications
for how students view the larger theory.

To appreciate how the definition-theorem relationship can impact student under-
standing, consider two possible ways we might choose to define a rectangle. A first
definition could be: “A rectangle is an equiangular quadrilateral.” It is important
to distinguish between what this definition explicitly assumes about rectangles and
what it logically implies. In this case, a rectangle is assumed to be a quadrilateral
with four congruent angles. This definition embeds rectangles as a subset of
quadrilaterals, but there is no mention yet of right angles or parallel sides. The fact
that all rectangles turn out to be parallelograms is a theorem that has to be proved
from the definition.4

A second definition could be: “A rectangle is a parallelogram with one right
angle.” Defining a rectangle in this way means we are nesting rectangles as a subset
of parallelograms, which is itself a subset of quadrilaterals. This is conceptually

4 ‘Equiang. Quad. 
⇒ Par.’: Through the construction of a diagonal, the four angles sum to the
interior angles of two triangles. In Euclidean geometry, this sum is two straight angles; a fourth
of two straight angles is a right angle, and so each angle is a right angle. This makes the same
side interior angles supplementary, which means both pairs of opposite sides are parallel. Hence, a
rectangle is a parallelogram—and with at least one right angle.
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different from from where we started before. In this case, being equiangular is not
part of the definition for rectangle but becomes a theorem we can prove.5

These two definitions are not competing—we get the same set of rectangles
with either one. So is one better than the other? Which criterion feels more
fundamental to the nature of rectangles? Or perhaps we should reject them both
in favor of asserting “a rectangle is a quadrilateral with four right angles.” This
latter statement is not as primitive as either of the other two proposed definitions—it
assumes more than is necessary to specify the same set of mathematical objects—
but there is an argument that this is what a rectangle really is. Without resolving this
debate here, we note that the proofs showing these three definitions are logically
equivalent utilize ideas specific to Euclidean geometry. In a non-Euclidean context
the definitions can lose their equivalence and start to compete, raising the stakes
considerably for deciding which one ought to be the definition of a rectangle to
begin with.

For many secondary topics there are a variety of definitions that can be chosen.
As teachers, it is important to think through these choices and the implications
for how the ideas would then progress. There are significant ramifications for
students that result from the different ways teachers sequence the definitions with
the theorems and properties that follow.

Problems

6.1 In the previous Chap. 5, we looked at several isosceles trapezoid statements.
There, we were assuming the exclusive definition of trapezoid. This chapter
introduced the inclusive definition. Look at several statements or theorems about
trapezoids from geometry. Determine the truth value of each, depending on which
of the two definitions of trapezoid is used. If possible, give two example theorems
that would be true under one definition but not true under the other.

6.2 Zero is an even number. However, students often suggest that zero is neither
even nor odd. Which of the following would still be true if all other integers (positive
and negative) except zero retain their even or odd status? Justify your response for
each statement.

1. even + even = even
2. odd + odd = even
3. even + odd = odd
4. even × even = even
5. odd × odd = odd
6. even × odd = even

5 ‘Par. One Rt. Angle 
⇒ Equiang. Quad.’: Because lines are parallel in a rectangle, and in
Euclidean geometry the same side interior angles are supplementary, this means another angle is a
right angle. By repetition, we can conclude the rectangle has four right angles, and so equiangular.



88 6 Continuity and Definitions

6.3 In geometry, the distance between a line and a point not on the line is defined as
the distance along a perpendicular line. In statistics, the distance between a line (of
best fit) and a point (not on the line) is defined as the distance along a vertical line.
Are these two definitions equivalent or competing definitions? If they are equivalent,
provide a justification. If they are competing, provide an example where they would
be different and, if possible, one where they would be the same. Then, discuss why
geometry and statistics might define the “distance” between two such points in the
way they do.

6.4 A class is asked to prove the following definitions of rectangle are equivalent:

1. A quadrilateral is a rectangle if it is a parallelogram with four right angles.
2. A quadrilateral is a rectangle if it is a parallelogram with one right angle.
3. A quadrilateral is a rectangle if it is a quadrilateral with four right angles.

One student submits: “Assume we have a quadrilateral ABCD that is a parallelo-
gram with four right angles. If we accept Definition (1), then we call it a rectangle.
But, obviously, if it has four right angles then it has one right angle, so it also
fulfills Definition (2). In addition, all parallelograms are quadrilaterals, so it also
fulfills Definition (3). Also, we know that adjacent angles of a parallelogram are
supplementary, meaning if there is one right angle in a parallelogram, then we
actually know that all four are right.” Respond to the following: (i) as the teacher,
how would you respond to the student’s written work?; (ii) discuss what, if any,
errors are present, and what, based on what the student has submitted, would still be
needed to complete the question.

6.5 Consider teaching a course in geometry. Give two different ways to structure
a sequence of definitions for special quadrilaterals: trapezoids, parallelograms,
rectangles, rhombuses, and kites. Give both a precise definition for each, as well as
the sequential order you would discuss them with students. Provide a justification
for each of the two possible approaches. Then, consider having to teach about area:
Which sequence of definitions do you think would be better, or worse, for teaching
students about area formulas for quadrilaterals? Explain your reasoning.

6.6 A common definition for the absolute value of a number is piece-wise: |x| = x

if x ≥ 0 and |x| = −x if x < 0. Think about whether this definition makes sense for
numbers, x, that are Natural numbers? Integers? Rational numbers? Real numbers?
Complex numbers? If the definition does not make sense for a number set, explain
why not. Now think about an alternate definition: |x| is the distance (measured in
the typical way) from the “origin” (0 on a number line, (0, 0) in the plane, etc.). For
which number sets would this definition make sense? Discuss which definition you
might use with a class of students? Why?

6.7 Think about how you would define the “perimeter” of a (2D) shape (an idea
we pick up on in Chap. 10). Compare and contrast the following two possible
definitions: (i) The perimeter of a shape is the sum of all the side lengths (on the
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edge that encloses it); (ii) The perimeter of a shape is the distance around the
edge that encloses it. Draw several different kinds of shapes studied in secondary
mathematics. Which definition would you use to “define” perimeter? Why? Even
though only one is being used as the definition, would the other description of
perimeter be discussed with students in any way? If so, how and when might it
be discussed?

6.8 In Euclidean geometry, we can define a rectangle in a variety of equivalent
ways. Consider the three possibilities below. Which of these definitions makes the
most sense in a non-Euclidean geometry context? (In non-Euclidean geometry, the
interior angle sum of a triangle does not have to be 180◦. Also, there might be
multiple lines through a point all parallel to a given line, or there could be no parallel
lines through this point that are parallel to the given line.) Explain your reasoning.

• A rectangle is a parallelogram with one right angle
• A rectangle is a quadrilateral with three right angles
• A rectangle is an equiangular quadrilateral

6.9 Consider the following two definitions for a real-valued function f defined on
domain A.

• An increasing function f : A → R is a function such that for x1, x2 ∈ A with
x1 < x2, f (x1) ≤ f (x2).

• A decreasing function f : A → R is a function such that for x1, x2 ∈ A with
x1 < x2, f (x1) ≥ f (x2).

If you can, sketch a function that is increasing but not decreasing. One that is
decreasing but not increasing. One that is both increasing and decreasing. One that
is neither increasing nor decreasing. Explain why your functions meet the required
specifications.

6.10 Consider Abbott’s Exercise 4.2.10, about the use of left- and right-hand limits
in introductory calculus:

Introductory calculus courses typically refer to the right-hand limit of a function as the limit
obtained by “letting x approach a from the right-hand side.”

(a) Give a proper definition in the style of Definition 4.2.1 for the right-hand and left-hand
limit statements:

lim
x→a+ f (x) = L and lim

x→a− f (x) = L

(b) Prove that limx→a f (x) = L if and only if both the right and left-hand limits equal L.

What purpose does part (b) of that exercise serve in terms of a calculus teacher’s
ability to only discuss functional limits as being in terms of right-hand and left-hand
limits? What teaching principle would you consider this example as illustrating?
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Turning the Tables

Reflecting on teaching from your learning in real analysis: TP.4

As another way of connecting to issues of teaching and learning, the “Turning
the Tables” sections scattered throughout the text provide additional commen-
tary on some of the ways our teaching principles are exemplified in learning
real analysis. Here, we consider TP.4: modeling more complex objects with
simpler ones.

Real analysis has many excellent examples of this principle. In Chap. 3,
we constructed sequences of rational numbers that converged to a real number.
In that example, real numbers with infinite and irregular decimal expansions
are being modeled, or approximated, by simpler rational numbers whose
decimal expansions terminate. In Chap. 9 we will discuss how the derivative
conceptualizes tangent lines as a sequence of secant lines, and in Chap. 12
we’ll see how the Riemann integral models the complex region under a curve
with a collection of simpler rectangles. These examples collectively illustrate
how complex mathematical theories such as a calculus are constructed out of
simpler building blocks and make a compelling case for how TP.4 can inform
our approach to teaching.

The nested definitions discussed in the present chapter reinforce the central
role of TP.4 in the way mathematics is structured. Here, we consider a particular
definition from real analysis. The sequential criterion for continuity—given
earlier as Definition (4)—states that a function f : A → R is continuous at
a point c ∈ A if, for every sequence (xn) in A converging to c, it follows
that f (xn) converges to f (c). In this characterization, continuity is being
defined in terms of sequences and limits of sequences—both concepts that
were previously defined. In this manner, the concept of continuous functions is
building on prior ideas. In the spirit of TP.4, we are conceptualizing continuous
functions—something relatively complex—by using the simpler device of
convergent sequences.

Constructing new concepts and definitions from previously-defined ones
is fundamental to how mathematics is organized. Although the primary and
more practical significance of TP.4 is best realized in specific examples such as
approximating real numbers with rational sequences, the hierarchical nesting
of concepts that characterizes mathematics showcases the broad relevance of
TP.4. Explicitly making connections to previous concepts as we introduce new
ones is a staple of good teaching and another point of connection to TP.4 in the
classroom.
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