
4Algebraic Limit Theorems and Error
Accumulation

4.1 Statement of the Teaching Problem

Students sometimes have to work with numbers whose decimal expansions do
not terminate. To make such numbers manageable, they often round these values.
(Although sometimes these are truncated and not rounded values, the issues are the
same and we use the term rounded throughout the chapter.) For instance, the decimal
expansion of 4

√
5 is 8.9442719099 . . ., but students often round to write this as 8.94.

In general, students feel more comfortable working with values they regard to be
“numbers”—like the counting numbers or short decimal representations, whereas
they feel less comfortable with expressions like 4

√
5 or long strings of decimals.

This is understandable. Decimal notation is familiar and ubiquitous, and rounded
values are easy to operate with and to record.

There are many instances when teachers actually want students to round, but at
what point in a computation is rounding most appropriate? A general rule is that
students should round at the end of a computation, but what goes wrong when
students round in the middle? Often very little.

Consider the following pedagogical situation:

A student, Adrian, sets up and solves the equation,

sin(59◦) = x

4
√

5

by showing the following work:

0.85 = x

8.94
, so x = 0.85 · 8.94 = 7.59.

(continued)
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The teacher, Mr. Lee, walks around the room and observes the student’s work.
Mr. Lee tells Adrian:

Remember, do not round in the middle of the problem—wait until the end.

Adrian objects to this remark:

Well, my answer is basically the same as Veronica’s. She got 7.67, and she rounded
only at the end. I finished faster and I understand my way better anyway.

Mr. Lee’s advice is sound—it is generally better not to use approximated values
in calculations if you are able to use more precise ones. In this sense, the teacher
has responded fairly by pointing out that rounding should occur at the end. But the
student offers two counterarguments: the difference compared to the actual answer
is relatively small, and his solution method was faster to compute and easier for him
to understand. These counterarguments are legitimate; there is a need to balance
demands for accuracy with other practical concerns. While Adrian’s approach holds
up in this case, there are mathematical constraints around the utility of his approach
(TP.1). So how does a teacher respond? Are there effective ways to illustrate that
the student’s approach might be problematic in the general case? What are some
practical ways to respond to this sort of reasonable push-back from students?

Before moving on, think about how you, as a teacher, might respond to the
student in this pedagogical situation.

4.2 Connecting to Secondary Mathematics

4.2.1 Problematizing Teaching and the Pedagogical Situation

In this section, we problematize three potential responses to the student regarding
the issue of rounding.

One possible response would be to agree with the student—to regard the issue of
when to round as not problematic. An argument for this response could be made
in relation to the teacher’s mathematical aims. Perhaps the goal of the problem
is solving equations, for which the student’s work demonstrates good algebraic
reasoning. Multiplying both sides of the equation by the same value produces
an approximate solution for x. The student’s solution in this case demonstrates
understanding of the intended mathematics. A drawback of this approach is that
“attending to precision” is part of mathematical practice (e.g., [2]). Because a more
precise answer exists it should probably be used. The geometric context of this
particular example also comes into play: when solving for missing side lengths
of a right triangle, students can check their results through other relationships
such as the Pythagorean Theorem. Too much imprecision could lead to inaccurate
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conclusions. Furthermore, even in an algebraic context such rounding might be
undesirable. Imagine a student who solves the equation 7/3 = x

6/7 using the
decimal approximations 2.33 = x

0.85 , and obtains an answer of 1.9805 rather than
2. Such instances highlight the advantages of encouraging students to work with
less-preferred representations of numbers like fractions. They also draw attention to
the need to understand how the impact of rounding early on in a computation affects
the end result.

A second response is to declare the student’s solution incorrect and mandate that
students avoid rounding until the end of their computations. In some ways, this
simplifies the situation. It provides clear expectations for students, which can be
good in teaching. However, in this case, the rule is presented arbitrarily and without
an accompanying reason. To practice TP.5 means to avoid giving rules without
providing an explanation. Any consequences given for not adhering to this rule may
also feel artificial given the close proximity of Adrian’s answer to Veronica’s.

A third possible response would be to superimpose a real-world context onto the
issue of rounding. A teacher might claim that in designing a spaceship even very
small errors in the real world can have tremendously negative consequences. The
response here focuses on making the modest discrepancy in the answer “feel” more
consequential. Yet, this line of reasoning still has challenges. This argument relies
on convincing students that small errors can have large effects in applied settings,
but students might be skeptical. They could insist that being off by a few tenths is
not problematic in most situations; or they might say that while this would be true
of an engineer designing spaceships, they are not engineers designing spaceships
but students in a mathematics class. Perhaps the more important point is that such
a response still does not illuminate the fact that rounding can result in very large
errors—it only tries to make small errors feel large. In this sense, the response only
partially addresses the student’s counterargument.

4.2.2 Approximation and Error Accumulation

A rounded number is an approximation. This means we can think of error as we did
in Chap. 3. In particular, if aappr is a rounded approximation of a number a then we
can consider both the actual error, eappr, defined by

eappr = ∣
∣aappr − a

∣
∣

and the potential error or error-bound, e, which satisfies

∣
∣aappr − a

∣
∣ < e.

Recall from Chap. 3 that the inequality
∣
∣aappr − a

∣
∣ < e, can be understood with

two different referents. We might use a as the referent point, in which case the
statement gives us the locus of points on the number line where aappr is located; or
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we might use aappr as the referent point, in which case it tells us the range of values
where a is located. Both are depicted below.

Because the potential error e is a bound on the actual error eappr, there are many
possible values for e but only one for eappr. It also means a value for e tends to
be more readily accessible than one for eappr. As an example, the potential error
of a rounded decimal approximation can be computed from the number of decimal
places—0.3 approximates the fraction 1

3 to the tenths place, meaning we can use

e = 0.1. (Note that this is indeed an upper bound for eappr =
∣
∣
∣0.3 − 1

3

∣
∣
∣ = 1

30 .)

Likewise, 3.14 approximates π to the hundredths place, meaning we can use e =
0.01, which produces the bound 3.13 < π < 3.15. (Here, eappr is the irrational
number π − 3.14.)

In this chapter we consider not just individual approximations, as we did in
Chap. 3, but what happens when we operate on approximated values. We consider
how the error in the initial approximations accumulates, or changes, when the
approximations are algebraically combined. To continue the above example, let
a = π and b = 1

3 . Using the notation ea for the error-bound of a, we see that aappr =
3.14 comes with error-bound ea = 0.01. For b = 1

3 , the approximation bappr = 0.3
has error-bound eb = 0.1. What happens when we use these approximations to
compute the sum π + 1

3 ≈ 3.14 + 0.3 = 3.43? How far off could this approximated
sum, 3.43, be from π + 1

3 ? The potential error inequalities |3.14 − π | < 0.01 and
∣
∣
∣0.3 − 1

3

∣
∣
∣ < 0.1 can be arranged as

π − 0.01 < 3.14 < π + 0.01

1
3 − 0.1 < 0.3 < 1

3 + 0.1

and summing yields
(

π + 1
3

)

− 0.11 < 3.43 <
(

π + 1
3

)

+ 0.11.

The approximate sum 3.43 must be within 0.11 of the actual sum. That is, the new
potential error that results from adding two approximations is no worse than the
sum of the initial potential errors, 0.01 + 0.1 = 0.11. The addition of approximated
values can be visualized as a linear transformation on a number line.

If ea is the radius of the interval centered at a and eb is the radius of the interval
centered at b, then the interval centered at a + b has radius ea + eb.
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The same kinds of questions arise if we operate on approximations in other ways,
such as subtracting, multiplying, or dividing them. To capture this idea of error
accumulation more generally we give the following definition:

Definition For approximations aappr of a and bappr of b, each having potential
errors ea and eb, error accumulation refers to the new potential error ea⊕b that
results from doing some operation (⊕) to aappr and bappr.

Returning to the teaching scenario where the student solved for x by computing
x = 0.85 · 8.94 = 7.59, we can reframe the student’s work as one of multiplying
two approximated values. The potential error for both approximations (ea and eb) is
0.01. But what about the computed product, 7.59? What is its potential error (ea·b)?
The actual answer, a little less than 7.67, suggests this new error has to be at least
0.07. Is there a way to calculate this error-bound from the potential errors for each
factor? Is there a general method for calculating the error accumulation that results
from other kinds of algebraic combinations?

It is to these issues that we turn next.

4.3 Connecting to Real Analysis

To connect this discussion to a real analysis course we return to the analogy
introduced in Chap. 3 between the potential error inequality

∣
∣aappr − a

∣
∣ < ea

and the expression |an − a| < ε which appears in the definition for convergent
sequences. For a sequence (an) = (a1, a2, a3, . . .) that converges to a, we imagine
the terms an getting closer to a as n gets large. For our purposes we want to think of
each an in the sequence as an approximation of a (i.e., aapprn ), so that the expression
|an − a| < ε can be interpreted to say that the approximation an has error-bound ε.

To study how error accumulates when we algebraically combine approximations,
it turns out we can use the theorems from analysis that explain what happens when
we algebraically combine convergent sequences.

4.3.1 The Algebraic Limit Theorem for sequences

The Algebraic Limit Theorem for sequences asserts what happens to convergent
sequences when we add, multiply, or divide them (cf., Theorem 2.3.3 in Abbott
[1]):

Theorem (Algebraic Limit Theorem) Let lim an = a and lim bn = b. Then,

1. lim (c · an) = c · a, for all c ∈ R

2. lim (an + bn) = a + b

3. lim (an · bn) = a · b

4. lim (an/bn) = a/b, provided b �= 0.
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The Algebraic Limit Theorem confirms that, when algebraically combining
convergent sequences, things go as we might expect. For instance, if (an) converges
to a and (bn) converges to b, then the new multiplied sequence (anbn) converges
to ab. The agenda of the real analysis proof is showing that the potential error
of the new combined sequence can be made arbitrarily small. We do not provide
the proofs (they can be found in Abbott’s Theorem 2.3.3.), but we do list the
four key inequalities that form the cornerstone for the proofs of each part of the
Algebraic Limit Theorem. The numbering below corresponds to the numbering in
the statement of the theorem:

1. |can − ca| ≤ |c| · |an − a|
2. |(an + bn) − (a + b)| ≤ |an − a| + |bn − b|
3. |(an · bn) − (a · b)| ≤ |bn| |an − a| + |a| |bn − b|
4. For N1 sufficiently large such that, for all n ≥ N1, bn is closer to b than to 0,

then:
∣
∣
∣

1
bn

− 1
b

∣
∣
∣ ≤ 2

|b|2 · |bn − b|.

(Note inequality (4) is really about the reciprocal 1/bn rather than the quotient
an/bn.) These inequalities are central to proving the algebraically combined
sequences converge to their respective limits, but they can also be adapted to our
particular agenda of estimating the error accumulation of combined approximations.
Each inequality is true for every term in the corresponding sequence, so if we
suppose an and bn are our approximations aappr and bappr, then these statements
tell us something about error accumulation when aappr and bappr are combined in
each way.

4.3.2 Implications for Error Accumulation

Take a look at each of the four inequality statements.
The left-hand side of the inequalities all have a similar form—the difference

between an operated-on approximation and its theoretical value (e.g., |can − ca|). In
fact, they are all statements about potential error in our operated-on approximations.
In particular, they indicate the accumulated error in the operated-on approximation
is no worse than the expression on the right-hand side. The expressions on the right-
hand are all in terms of the initial error of each approximation, |an −a| and |bn −b|.
That is, we can interpret each inequality as a statement about how initial errors
accumulate when operating on approximations.

Claim For approximations aappr of a and bappr of b, each having potential errors ea
and eb:

1. the error accumulation of the scalar product caappr is no worse than initial error
scaled by |c|; i.e., eca = |c|ea,
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2. the error accumulation of the sum aappr + bappr is no worse than the sum of the
initial errors; i.e., ea+b = ea + eb,

3. the error accumulation of the product aappr · bappr is no worse than the sum of
the initial error of a scaled by |bappr| and the initial error of b scaled by |a|; i.e.,
eab = |bappr|ea + |a|eb,

4. the error accumulation of the reciprocal 1
bappr

is no worse than the initial error

scaled by 2
|b|2 ; i.e., e1/b = 2

|b|2 eb.

Re-read each inequality statement and the corresponding inequality statement
from Sect. 4.3.1 and convince yourself that they mean the same thing. We will refer
to these claims as “rules” for error accumulation. Notably, the sum rule arrived at
in statement (2) aligns with the conclusions we found previously. Statement (4)
is about the reciprocal; but by writing aappr

bappr
as aappr · 1

bappr
, Problem 4.6 asks you

to derive the corresponding quotient rule. And Problem 4.7 asks you to consider
how some of these rules about error accumulation might be simplified under further
assumptions.

To get a better sense of these rules let’s return to our previous example.

Example Suppose we approximate π with 3.14 and 1
3 with 0.3. How much

potential error is there in: (i) 5 · 3.14; (ii) 3.14 · 0.3; (iii) 1
3.14 ; (iv) 0.3

3.14 ?

The rules provide a bound for how error potentially accumulates when operating
on approximated values. For (i), 5 · 3.14 = 15.7 is an approximation for 5π . The
scalar product rule in (1) states that the potential error is no worse than |5| · 0.01 =
0.05—i.e., that 15.7 is within ±0.05 of 5π . This is sensible. The rule says error
potentially accumulates up to five times the original error, or e5a = 5 · ea.

For (ii), 3.14 · 0.3 = 0.942 is an approximation for 1
3π . From the product rule in

(3), the potential error is no worse than

|3.14| · 0.1 + |1/3| · 0.01 ≈ 0.3173.

For comparison, the actual error in this case is about 0.1052. Note the use
of one approximated value, 3.14, and one theoretical value, 1/3, in the error
accumulation calculation above. If a theoretical value for, say, a is not available
we can overestimate it with |aappr| + ea.1 In most cases, the errors of the initial
approximations (ea and eb) are relatively small compared to the approximations
(aappr and bappr) and so swapping theoretical values for approximated ones in
the rules causes very little change to our error estimates. This means that when
multiplying two approximated numbers, as a rule of thumb the error of the product
accumulates by approximately |a| times the error in b plus |b| times the error in a.

1 In general, we can replace statement (3) in the claim with the more conservative estimate, eab =
|bappr|ea + (|aappr| + ea)eb.
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For (iii), the reciprocal of an approximation, 1
3.14 ≈ 0.31847, has a potential

error no worse than 2
|π |2 · 0.01 ≈ 0.002. Here, the error has gotten smaller because

it was scaled by 2
|π |2 , which is a value between 0 and 1.2

Lastly, for (iv), 0.3/3.14 = 0.3 · 1
3.14 ≈ 0.0955 approximates 1

3π
. Combining the

product and the reciprocal rules, we can estimate the error in the quotient as

(∣
∣
∣

1
3.14

∣
∣
∣ · 0.1

)

+
(∣
∣
∣

1
3

∣
∣
∣ · 2

|π |2 · 0.01
)

≈ 0.0325.

4.3.3 Visualizing the Potential Error Inequality for Products

In a proper proof of the Algebraic Limit Theorem, the primary conclusion is that
although error accumulates, it does not do so uncontrollably. Even though operating
on sequences might increase the error, the potential error at each stage is bounded
by some knowable combination of the original errors. This means we can go out far
enough in the new operated-on sequence so that the accumulated error is arbitrarily
small (since we know the original errors become arbitrarily small). The theorem
tells us that accumulated error converges to zero as n increases in the sequence. In
the context of our discussions about approximations, we have borrowed the parts of
the proof that tell us how the errors interact when approximations are operated upon
and fashioned them into rules for error accumulation.

The derivation of the four inequalities that underlie our accumulation rules all
make use of the triangle inequality. They are not especially difficult (see Abbott,
Sect. 2.3), but the product statement (3) appears a bit mysterious. The product
accumulation rule eab = |bappr|ea + |a|eb is based on the inequality

|aapprbappr − ab| ≤ |bappr||aappr − a| + |a||bappr − b|.

To visualize this inequality consider the area model in Fig. 4.1. The products
aapprbappr and ab appear as the areas of two large shaded rectangles. The absolute
value of their difference |aapprbappr − ab| is, at most, the area of what’s left of these
two rectangles when we remove their intersection. In the figure, this remaining area
appears as the tall thin rectangle on the right with dimensions bappr × (aappr − a)

and the long thin rectangle across the top with dimensions a × (bappr − b). The fact
that the sum of these two areas is an upper bound for |aapprbappr − ab| verifies the
original inequality statement.

2 If we do not have an exact value for |b|, we can use the more conservative estimate, e1/b =
2

(|bappr |−eb)2 eb.
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Fig. 4.1 Area model for the
products ab and aapprbappr

4.4 Connecting to Secondary Teaching

In the initial teaching situation, the student’s use of approximated values is not
intrinsically problematic, and the teacher’s advice of not rounding until the end is
also sound. The student’s reasonable counterarguments in the scenario emphasize
that teachers should be prepared to give justifications for their advice. Simply
stating a rule—“Remember, do not round in the middle of the problem, wait until
the end”—without any sort of mathematical justification runs contrary to TP.5. A
response to the student in this teaching situation can be informed by the insights
from the real analysis proofs of the Algebraic Limit Theorem.

4.4.1 Applying Principles of Error Accumulation to Design
Problems

In the original problem, the student substituted rounded values for sin (59◦) and
4
√

5 with a potential error of 0.01 for both approximations. Using these two values,
the student solved the equation by multiplying them. The student’s answer of 7.59
was reasonably close to the actual answer of about 7.67. The product rule from
this chapter can be used to calculate the potential error accumulated in the student’s
calculation. Specifically, the error in the student’s approximated answer is no worse
than 0.85 · 0.01 + 4

√
5 · 0.01 ≈ 0.098, which is about 10 times the initial error.

Although it is useful to determine the potential error in the student’s answer, we
regard it as more important to think about how the teacher might apply the ideas
about error accumulation to respond to the student. Rather than simply telling the
student the error could get big, it would be more beneficial to construct another
problem for the student—one that demonstrates that rounding early in a computation
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can result in a relatively large error. Proceeding in this way is aligned with TP.2,
using special cases to illustrate mathematical ideas.

Consider the following continuation of the teaching situation:

Mr. Lee responds to Adrian: “I would like you to try your rounding approach
on the following problem:

sin (59◦) = x

360
√

5

Tell me, how close is your answer this time?”

The changes that have been made to the problem appear to be minor, but they
make an important difference. The student’s approach presumed the potential error
in both approximations to be the same; i.e., ea = eb = e. With this assumption, the
error accumulation for a product simplifies: the original error e will accumulate
by no more than a factor of (|a| + |bappr|). That is to say, the initial potential
error of 0.01 will grow approximately by a factor of the sum of the two values
being multiplied. The seemingly minor change of replacing 4

√
5 with 360

√
5 in

the calculation is pedagogically-motivated—it is meant to increase the accumulated
error. By changing the values in the equation, the potential error in solving for x in
this new equation grows by a factor of (0.85 + 360

√
5) ≈ 805.83, which is 800

times the original error! An initial rounding to the hundredths place could result
in an error of more than 8. (Alternately, Mr. Lee could edit the equation to use
tan (59◦) since, unlike sine, the tangent function is not bounded.) In fact, Adrian’s
error in this new problem would be about 5.77—a difference most students would
regard as non-trivial.

This example can be adapted to a wide class of problems. Students invoke
decimal approximations when solving other equations with rational coefficients,
such as 2

7x = 60 6
7 . Solving for x in this example involves the quotient of two

approximations. As is evident from the reciprocal and product accumulation rules,
larger values for a or smaller values for b result in increased potential errors. This
particular example has both. So the actual error ends up being 400 times the original
error (presuming a student has rounded both numbers to the same number of decimal
places)—a large error indeed!

In these examples, we have applied the rules for error accumulation to construct
new problems, intentionally adjusting the values being approximated so as to
increase the potential error accumulation in the solution. This is an example of
“using a special case to illustrate a mathematical idea” (TP.2). We have designed
an exercise to illustrate that using rounded values instead of actual values can lead
to large errors. Special cases are important in mathematics, and they also serve a
pedagogical purpose. In this case we wanted to convince a student their rounding
approach could be problematic. Our example does not communicate to the student
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precisely when rounding leads to large errors—that’s a heavier lift that requires
engaging the ideas in the real analysis proofs—but it does supply a cautionary
warning that rounding can be problematic.

The student’s approach to rounding has some limitations, and the various
constructed exercises discussed are designed specifically to reinforce the teacher’s
maxim to not round until the end of the problem. TP.5 suggests that teachers
avoid giving rules without an accompanying mathematical explanation. In this
scenario, the explanation takes the form of an exercise rather than a verbal
justification. Observing the large errors that accumulate in the constructed exercises
is a compelling piece of evidence in favor of the teacher’s advice and may in
fact be more convincing than any words the teacher could say. Providing students
opportunities to experience ideas and not just have them explained is an important
part of teaching.

As a final comment, we address the question of how the more advanced content
of real analysis relates to the daily reality of teaching secondary school mathematics.
In this chapter we have seen how the proofs for the various parts of the Algebraic
Limit Theorem contain insights for understanding the nature of error accumulation.
Knowledge of the ideas from the proofs empowers a teacher to engage student
questions and counterarguments about the efficacy of approximations with carefully
crafted examples designed to illuminate certain pitfalls. The constructed examples
showcase a teacher applying ideas learned in real analysis to respond to a student
but in a way that does not involve an exposition of more advanced concepts. This
suggests that real analysis can be an impactful subject for teachers in ways that
do not amount to teaching gifted secondary students proofs for results like the
Algebraic Limit Theorem. Despite its formal reputation, analysis represents a body
of ideas that can reveal new insights about day to day issues that arise in teaching.

4.4.2 The Tip of the Iceberg

Throughout this chapter we have focused on potential error rather than actual
error. This is the more useful and appropriate point of focus. The fact that we
are approximating suggests that there is some uncertainty in the theoretical value
being approximated. This means the actual error is not typically known—or even
knowable. Our rules for error accumulation are based on overestimates, or worst-
case scenarios, so it is certainly possible that actual errors might decrease even as our
potential error calculations increase. For example, rounding 1

3 + 2
3 gives 0.33+0.67,

where each approximation has an error but the sum is perfect. In this case, it helps to
give the actual error a signed direction. When we add, the actual errors cancel out;
the potential error estimates of course do not. The triangle inequality—which is at
the root of all our error accumulation rules—is an equality if and only if the errors
have the same sign. This explains in part why the actual accumulated error is likely
to be smaller than the potential accumulated error. The mix of positive and negative
terms results in some cancellation that yields a better than expected approximation.
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The calculation of the potential error meanwhile assumes the worst case where the
errors stack up in one direction.

Another factor contributing to an inflated accumulated error estimate is an
overestimate in the original error. Taking the rounded value of 3.14 as our estimate
of π , we have been using e = 0.01 as our error-bound but the actual error is closer
to 0.00159. Generally speaking, if our initial error-bounds are close to the actual
errors, and all the actual errors have the same sign, then the error accumulation
formulas tend to give values close to the actual error of the final computation.

Another direction for further investigation is how errors behave in cases beyond
the scope of the Algebraic Limit Theorem. The error accumulation rules developed
in this chapter apply to the scalar product, sum, product, and quotient. From these
we could derive a rule for what happens to our error when we square a2

appr or cube

a3
appr an approximation. New tools are required, however, to sort our how error

accumulates when we take the square root
√

aappr or apply a function like sin (aappr)

or tan (aappr). These sorts of questions are studied in depth in courses on numerical
analysis, but preliminary error estimates can be derived from ideas in a real analysis
course (and the theorems about continuity in particular).

This chapter is just the tip of the iceberg in terms of understanding error
accumulation from approximations.

Problems

4.1 A student approximates 12/7 as 1.714, and 7/6 as 1.167. Use the initial
potential errors (0.001 for each), and the rules about error accumulation in this
chapter, to determine a bound for the potential error if the student used those
approximations to compute: (i) 12

7 + 7
6 ; (ii) 12

7 · 7
6 ; and (iii) 12

7 ÷ 7
6 . What is the

actual error in each case?

4.2 In an algebra class, students are solving for the roots of the quadratic, f (x) =
x2 − 2x − 27. Students use the quadratic formula to find the roots to be at x = 1 ±
2
√

7, and then evaluate the quadratic formula using their calculator. The calculator
uses an approximation for

√
7 that is accurate to eight decimal places—i.e., the

potential error in the calculator’s approximation is 0.00000001. How much error
could be introduced in the calculator’s evaluation of the roots of the quadratic?

4.3 During class, a teacher recommends that students approximate π with the
value 3.14 for computations. Describe a specific situation in secondary mathematics
where such an approximation might lead to a large error.

4.4 (i) Design a problem of the form Ax + B = C, with A,B,C ∈ R, to be
given to the students as a multiple choice item, for which a student using the “round
to the nearest hundredth” approach would almost certainly select the incorrect
choice. (Your problem should include the multiple choice options.) (ii) Assuming
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the potential error is e = 0.01 for any decimal approximation, provide an analysis
of the potential error introduced in solving the equation with rounded values. (iii)
Provide an analysis of the actual error for the solution with rounded values in
comparison to the theoretical solution, x = C−B

A
. Discuss your multiple choice

options in relation to this error.

4.5 A teacher gives a question in class that involves determining the perimeter and
the area of a rectangle where the side lengths are

√
75 and

√
362. The teacher

writes on her answer key (rounding at the end), P = 55.37 and A = 164.77.
A student’s calculator shows

√
75 = 8.660254038, and

√
362 = 19.02629759.

If the student approximates these two numbers before making the perimeter and
area computations—presume the student is simply “truncating” throughout the
problem—use your knowledge of how error accumulates to determine the degree of
accuracy that would be required for the student to get the same answer as the teacher.
That is, should the student’s original rounding for the square roots be accurate to the
tenths, hundredths, thousandths, etc.? Explain whether the requisite accuracy level
differs between the perimeter and area problems, and why.

4.6 Use the fact that aappr
bappr

= aappr · 1
bappr

to determine a general rule for how error
accumulates for a quotient of two approximations. You will need to combine how
error accumulates for both reciprocals and products.

4.7 Suppose we make some additional assumptions about our approximations: (i)
the theoretical values (and their approximations) are positive (a, b, aappr, bappr >

0); (ii) the initial potential errors are the same (ea = eb = e); and (iii) aappr < a

and bappr < b (our approximations are under-approximations—such as truncating a
decimal expansion). These three assumptions simplify some of the rules about error
accumulation. (i) For products, we had eab = |bappr|ea+|a|eb. With these additional
assumptions, what is the new claim about the error accumulation of a product? (ii)

In the reciprocal inequality, we have:
∣
∣
∣

1
bappr

− 1
b

∣
∣
∣ = 1

|b||bappr| ·
∣
∣bappr − b

∣
∣. With these

additional assumptions, what is the new claim about reciprocals? (Note: you should
no longer have a ‘2’ in the numerator.) (iii) Building on (ii), with these additional
assumptions, what is the new claim about the error accumulation of a quotient?

4.8 Suppose we allow our actual errors to be signed (positive or negative). That is,
we define aappr = a + eappra and bappr = b + eapprb . Use substitution to show the
product aappr · bappr has an error of

(

aeapprb + bappreappra
)

from ab, and relate this
to the product rule in Sect. 4.3.2.

4.9 In Exercise 2.3.7 in Abbott’s text, he asks for students to “give an example” (or
argue that such a request is impossible) of, for example, “sequences (xn) and (yn),
which both diverge, but whose sum (xn + yn) converges.” Indeed, in many sections,
Abbott uses exercises similar to this. Describe what teaching principle you believe
is exemplified in these exercises, and explain your reasoning.
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4.10 Chapter 2 in Abbott’s text is broadly about defining and understanding
sequences. But at the beginning of the chapter (Sect. 2.1), and then later at the
end of the chapter (Sect. 2.7), Abbott explicitly talks about infinite series. In the
introduction to the chapter, Abbott uses an example: 1− 1

2+ 1
3− 1

4 . . .. Then, he states,
“The crucial question is whether or not properties of addition and equality that are
well understood for finite sums remain valid when applied to infinite objects such as
[the example]” (p. 40). Describe what teaching principle you believe is exemplified
in his text.
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