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Preface

These three-volume proceedings contain the papers presented at the 18th Pacific Rim
International Conference on Artificial Intelligence (PRICAI 2021) held virtually during
November 8–12, 2021, in Hanoi, Vietnam.

PRICAI, which was inaugurated in Tokyo in 1990, started out as a biennial inter-
national conference concentrating on artificial intelligence (AI) theories, technologies,
and applications in the areas of social and economic importance for Pacific Rim
countries. It provides a common forum for researchers and practitioners in various
branches of AI to exchange new ideas and share experience and expertise. Since then,
the conference has grown, both in participation and scope, to be a premier international
AI event for all major Pacific Rim nations as well as countries from all around the
world. In 2018, the PRICAI Steering Committee decided to hold PRICAI on an annual
basis starting from 2019.

This year, we received an overwhelming number of 382 submissions to both the
Main track (365 submissions) and the Industry special track (17 submissions). This
number was impressive considering that for the first time PRICAI was being held
virtually during a global pandemic situation. All submissions were reviewed and
evaluated with the same highest quality standard through a double-blind review pro-
cess. Each paper received at least two reviews, in most cases three, and in some cases
up to four. During the review process, discussions among the Program Committee
(PC) members in charge were carried out before recommendations were made, and
when necessary, additional reviews were sourced. Finally, the conference and program
co-chairs read the reviews and comments and made a final calibration for differences
among individual reviewer scores in light of the overall decisions. The entire Program
Committee (including PC members, external reviewers, and co-chairs) expended
tremendous effort to ensure fairness and consistency in the paper selection process.
Eventually, we accepted 92 regular papers and 28 short papers for oral presentation.
This gives a regular paper acceptance rate of 24.08% and an overall acceptance rate of
31.41%.

The technical program consisted of three tutorials and the main conference program.
The three tutorials covered hot topics in AI from “Collaborative Learning and Opti-
mization” and “Mechanism Design Powered by Social Interactions” to “Towards
Hyperdemocary: AI-enabled Crowd Consensus Making and Its Real-World Societal
Experiments”. All regular and short papers were orally presented over four days in
parallel and in topical program sessions. We were honored to have keynote presen-
tations by four distinguished researchers in the field of AI whose contributions have
crossed discipline boundaries: Mohammad Bennamoun (University of Western
Australia, Australia), Johan van Benthem (University of Amsterdam, The Netherlands;
Stanford University, USA; and Tsinghua University, China), Virginia Dignum (Umeå
University, Sweden), and Yutaka Matsuo (University of Tokyo, Japan). We were
grateful to them for sharing their insights on their latest research with us.



The success of PRICAI 2021 would not be possible without the effort and support of
numerous people from all over the world. First, we would like to thank the authors, PC
members, and external reviewers for their time and efforts spent in making PRICAI
2021 a successful and enjoyable conference. We are also thankful to various fellow
members of the conference committee, without whose support and hard work PRICAI
2021 could not have been successful:

– Advisory Board: Hideyuki Nakashima, Abdul Sattar, and Dickson Lukose
– Industry Chair: Shiyou Qian
– Local/Virtual Organizing Chairs: Sankalp Khanna and Adila Alfa Krisnadhi
– Tutorial Chair: Guandong Xu
– Web and Publicity Chair: Md Khaled Ben Islam
– Workshop Chair: Dengji Zhao

We gratefully acknowledge the organizational support of several institutions
including Data61/CSIRO (Australia), Tsinghua University (China), MIMOS Berhad
(Malaysia), Thammasat University (Thailand), and Griffith University (Australia).

Finally, we thank Springer, Ronan Nugent (Editorial Director, Computer Science
Proceedings), and Anna Kramer (Assistant Editor, Computer Science Proceedings) for
their assistance in publishing the PRICAI 2021 proceedings as three volumes of its
Lecture Notes in Artificial Intelligence series.

November 2021 Duc Nghia Pham
Thanaruk Theeramunkong

Guido Governatori
Fenrong Liu
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Abstract. Recent trends focus on incentivizing consumers to reduce
their demand consumption during peak hours for sustainable demand
response. To minimize the loss, the distributor companies should target
the right set of consumers and demand the right amount of electricity
reductions. Almost all the existing algorithms focus on demanding sin-
gle unit reductions from the selected consumers and thus have limited
practical applicability. Even for single unit reductions, none of the work
provides a polynomial time constant approximation factor algorithm to
minimize the loss to the distributor company. This paper proposes a novel
bounded integer min-knapsack algorithm (MinKPDR) and shows that
the algorithm, while allowing for multiple unit reduction, also optimizes
the loss to the distributor company within a factor of two (multiplica-
tive) and a problem dependant additive constant. The loss is a function
of the cost of buying the electricity from the market, costs incurred by
the consumers, and compliance probabilities of the consumers. When
the compliance probabilities of the consumers are not known, the prob-
lem can be formulated as a combinatorial multi-armed bandit (CMAB)
problem. Existing CMAB algorithms fail to work in this setting due
to the non-monotonicity of a reward function and time varying opti-
mal sets. We propose a novel algorithm (Twin-MinKPDR-CB) to learn
these compliance probabilities efficiently. Twin-MinKPDR-CB works for
non-monotone reward functions, bounded min-knapsack constraints, and
time-varying optimal sets. We theoretically show that Twin-MinKPDR-
CB achieves sub-linear regret of O(log T ) with T being the number of
rounds for which demand response is run.

1 Introduction

A Smart Grid is an electricity network that enables power exchange between the
source of electricity generation and its users. One of the major problems that
the smart grid faces is a high peak load to average load ratio. Thus, a robust
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grid requires a lot more safety measures to handle this high ratio. Instead, the
best solution would be to shift part of peak load to off-peak hours. Towards this,
one can make the smart grid learn human behavior intelligibly and use it to
implement informed decisions about the production/consumption of electricity
via a demand response program (DR). The demand response makes users more
capable of monitoring and accessing ways to handle shortfall or excess electricity
and time-varying grid conditions leading to efficient use of the resources and
reducing the cost of infrastructure which in turn helps sustainability. There are
many ways in which a distribution company (DC) can implement a demand
response program. The popular one being introducing dynamic pricing by DC
based on the supply shortage. The anticipation is that the consumers will shift
their electricity loads to lower-priced – non-peaked hours whenever possible, thus
reducing the peak demand. However, the consumers may not well understand
such a scheme, leading to inefficiency in the system.

This paper considers a DR program where a DC asks the consumers to
voluntarily optimize their electricity consumption by offering certain incentives
[14,16,17,23] to a group of consumers. For a profitable DR, DC should select
an optimal subset of consumers along with an allocation vector depicting the
number of electricity unit reduction it is going to ask the selected consumers.
The optimal subset and the allocation vector also depends on the shortage of
electricity DC faces. Every consumer has a certain value associated with every
unit (KWh) of electricity at that time and expects a compensation equivalent to
this valuation for reducing the load. Additionally, each consumer has a limit to
the amount of electricity it can reduce. Due to external stochastic factors such
as climate change, uncertainty in renewable energy resources at consumers’ end,
or a sudden increase in workload, there is a certain probability with which the
consumer can reduce the electricity. We refer to such probability as compliance
probability (CP) and is typically unknown to the consumers. The DC’s goal is
thus to minimize (i) the expected loss, which is a function of the cost of buying
the electricity from the market, which in turn depends upon unknown CPs, and
(ii) the cost incurred for compensating the consumers via the demand-response
program.

Typically, the costs due to shortage or surplus of electricity are quadratic
in nature [15,23], thus leading to a quadratic optimization problem with inte-
ger constraints. A greedy optimal approach was proposed in [15] to solve the
quadratic problem but does not consider the compensation cost to the consumers
in the objective function. When these costs are added, the objective function is a
non-monotone, supermodular function which in general is hard to optimize up to
any approximate guarantees [23]. A greedy algorithm without any approximation
guarantees was provided in [23]. Further, all the above approaches work towards
solving single-unit reduction problem where each consumer is allowed to reduce
only single unit of electricity at a given time. Almost no attempts have been
made towards the multi-unit reduction problem except in [7] which proposed
a mixed integer linear programming approach with no polynomial time opti-
mal or approximate algorithm. By exploiting the heterogeneity in the consumer
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base, multiple units reduction provides more flexibility to the DC and ensures
cost effective allocation. In this work, we introduce a novel transformation of
the problem to the bounded min knapsack framework for demand response,
MinKPDR and prove its equivalence up to an additional problem dependent
constant factor. The bounded min-knapsack problem is a well studied problem
with 2−approximate polynomial algorithms. Thus, MinKPDR framework not
only helps us in obtaining polynomial time algorithm with approximate guaran-
tees but also enables us an easy extension to multi-unit reduction case.

When CPs of the consumers are not known, they can be learnt using combi-
natorial multi-armed bandits (CMAB) algorithm by selecting different subsets of
consumers at different rounds [14,15]. The existing combinatorial MAB (CMAB)
literature [5] heavily relies on two assumptions: (i) The reward function is mono-
tone in terms of the stochastic rewards (compliance probabilities in our case),
and (ii) The optimal set is fixed over a period of time. The first assumption does
not hold even for a single unit reduction case and since the amount of shortage
of electricity varies over time, the optimal set changes every time thus violating
the second assumption. Typically, if one has monotone reward functions, upper
confidence bound (UCB) based algorithms work well in practice. Non-monotone
reward function necessitates the design of a novel MAB algorithm. Towards
this, we propose an ingenious combination of UCB and LCB (lower confidence
bounds) to learn CPs in demand-response. Basically, we solve the problem twice,
once with UCB in constraints and its twin problem – the same problem with LCB
in constraints and opt for a solution better out of these two. We call the learning
version of MinKPDR as Twin-MinKPDR-CB. We prove that Twin-MinKPDR-
CB achieves sub-linear regret of O(log T ) to learn CPs, with T being the number
of rounds for which demand response is run. In summary, the following are our
contributions.

– Transforming the optimization problem to a bounded integer min-knapsack
problem and proving its equivalence up to an additional problem dependent
constant factor.

– Proposing a novel combinatorial MAB algorithm Twin-MinKPDR-CB that
solves TWIN problems every round to determine optimal set in the round
and works with non-monotone reward function, along with the bounded min-
knapsack constraints, and time varying optimal sets.

– Theoretically bounding the regret of Twin-MinKPDR-CB as O(log T ), where
T is the number of rounds for which the demand response is run.

2 Related Work

Popular demand response methods such as time-of-day tariff [2,12,21,22], real-
time pricing [4], critical peak pricing [20,25], direct load control [11] and demand
bidding [3] are generally too complex and are not well understood by the con-
sumers. Instead of dynamic pricing for the electricity market, many works pro-
posed different simpler and efficient incentive mechanisms to provide the offers
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to the consumers to incentivize them to reduce the electricity by their own [14–
18,23]. The main challenge towards designing these mechanisms is to select the
right subset of consumers and ask for the right amount of reductions from these
consumers which is generally a hard problem. Optimal allocation of reductions
units amongst the consumers is very important as it affects the efficiency of
the proposed mechanism significantly. All the above works consider single unit
reduction only and do not provide any polynomial time algorithm with good
approximation guarantees that minimizes the loss to the distributor company.
This paper provides a polynomial time algorithm for multi-unit reduction case
with good approximation guarantees.

The most general works towards designing combinatorial MABs [5,6] assume
the monotonicity on the reward function which fails to exist in our setting due
to the quadratic nature of the loss function. The max-knapsack version [1] or the
general concave reward function [24] seems to be a special version of our problem
but in their framework, the concavity of the reward function and constraints are
defined over a complete time period T , whereas in our case we have a non-
monotone concave reward function each time. Hence these methods cannot be
extended to the setting with time varying optimal sets. Further, in a typical
CMAB framework, an arm is pulled only once at a given round whereas a multi-
unit case requires pulling multiple instances of the arms at each round – we refer
to it as duplicating arms. The closest work to duplicate arm setting considers a
simple linear and monotone reward function [9].

Min-knapsack constraint problem further looks similar to assured accuracy
bandit (AAB) framework [13] for a single unit case. AAB will lead to high regret
in this setting because it aims to satisfy the constraint at each time which is not
required in our setting. Further, the reward function in [13] was independent
of stochastic parameters (CPs) as opposed to quadratic in our case. A general
demand response model considered in [7] works with multi-unit reductions under
the budget constraint on the number of consumers that can be selected at each
round. However, a mixed integer linear programming (MILP) approach was pro-
posed with no polynomial time optimal or approximate algorithm to solve the
same.

3 Mathematical Model

There are N = {1, 2, . . . , n} consumers available for the demand response to
whom a distributor company (DC) is distributing the electricity. Each consumer
i has three quantities associated with them, ki representing maximum units
that the consumer i can reduce, ci representing the compensation cost per unit
reduction, and pi denoting the probability of reducing one unit of electricity also
known as compliance probability (CP). The DC asks the consumers to report
their compensation cost ci and maximum units of reduction ki to participate in
the demand response. If a consumer successfully reduces one electricity unit, he
receives the offer of ci per unit reduction. Thus, it is always beneficial for the
consumer to reduce the electricity to the maximum units that he can. However,
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due to uncertainties at consumers’ end such as failing to generate the expected
electricity (renewable resources at consumers end), a consumer may not be able
to reduce the required electricity units. This uncertainty is depicted by the quan-
tity pi which denotes the probability of reducing one unit of electricity.

There are two possibilities in which these uncertainties can be taken care of.
One is to impose the penalties to the consumers in case they commit to reduce the
consumption but they fail to reduce the committed reduction [16,17]. However,
such penalties may disincentivize the consumers to participate in the demand
response. Instead, we would like to design a demand response that subsumes
these uncertainties in the optimization problem itself. Therefore, our goal is not
only to select the consumers who have a lower cost of reducing the electricity but
at the same time should also have a higher probability of reducing the electricity
once committed for the demand response. Thus, apart from minimizing the costs,
the demand response would minimize the variance to weed out the consumers
with low CPs.

At each round t, a distributor company encounters a shortage of Et �=
0 and the goal is to select an allocation vector of reduction units xt =
(x1,t, x2,t, . . . , xn,t) where xi,t represents the amount of electricity units asked
from a consumer i at time t to reduce. Let St and |St| be the set and num-
ber of consumers who are asked to reduce at least one unit of electricity i.e.
St = {i|xi,t > 0}. At the round t, whatever shortage the distributor company
faces, it would have to buy from the market and the cost of buying the electricity
from the market leads to quadratic loss [13,15]. Even if a consumer i is asked
to reduce xi,t units of electricity at time t, due to uncertainties involved, the
actual units of electricity reduced will be a random variable. Let Xi,t denote the
actual units of electricity that consumer i reduces at time t. If the allocation
vector at time t is xt, then the cost of buying the electricity from the market is
proportional to: Mt(xt) =

(∑
i∈St

Xi,t − Et

)2.
We assume that if the consumer i is asked to reduce xi,t units than he/she

reduces each unit independently with probability pi. Hence, Xi,t is a binomial
random variable with parameters (xi,t, pi) such that 0 ≤ xi,t ≤ ki. Let C rep-
resents the cost to buy the electricity from the market then the final expected
loss EL(xt) at round t is given as the sum of the loss incurred due to buying
electricity from the market and the expected compensation to the agents, i.e.

EL(xt) = E

⎡
⎣CMt(xt) +

∑
i∈St

Xi,tci

⎤
⎦ = CEMt(xt) +

∑
i∈St

pixi,tci

= CE

⎡
⎣(

∑
i∈St

Yi,t)
2

⎤
⎦ +

∑
i∈St

pixi,tci = Cvar(
∑
i∈St

Yi,t) + C(E[
∑
i∈St

Yi,t])
2 +

∑
i∈St

pixi,tci

(Yi,t = Xi,t − Et/|St|)

= C

⎛
⎝ ∑

i∈St

xi,tpi − Et
⎞
⎠

2

+ C
∑
i∈St

xi,tpi(1− pi) +
∑
i∈St

xi,tpici (1)

The goal is to select an allocation vector xt so as to minimize EL(xt). Let cmax

denote the maximum cost that any consumer incurs for a single unit of electricity
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i.e. cmax = maxi ci, we assume that the distributor company will always prefer
to ask the consumers to reduce the electricity as opposed to buying from the
electricity market i.e. C ≥ cmax.

MinKPDR for Single Unit Reduction

For a better understanding of the novel transformation to the min-knapsack
problem, let us first consider a simple setting with ki = 1 ∀i. The optimization
problem becomes choosing a subset St to minimize EL(St) which is given as:

C

(
∑

i∈St

pi − Et

)2

+ C
∑

i∈St

pi(1 − pi) +
∑

i∈St

pici (2)

Even though this problem is a significantly easier version of the original multi-
unit version, it is still a minimization of a super-modular, non-monotone function
[23]. It has been shown that it is impossible to approximate an arbitrary super-
modular non-monotone function up to a constant factor [19]. A greedy algorithm
achieving a local optimal solution was proposed in [23]. However, the global
solution can be very far from the local optima. Further, their method could not
be extended to the multi-unit case. By exploiting the assumption of C ≥ cmax,
we provide a novel framework by drawing an interesting relation from the min-
knapsack problem for which a 2-approximate greedy algorithm exists [8]. With
known CPs, our min-knapsack algorithm for demand response (MinKPDR) for
single unit reduction works as follows. At round t, if

∑n
i=1 pi ≤ Et then return

St = N otherwise return St by solving the following:

min
St

∑

i∈St

{Cpi(1 − pi) + pici} s.t.
∑

i∈St

pi ≥ Et (3)

3.1 Approximation Ratio of MinKPDR

We now prove that there is no significant difference in solving the minimum
knapsack problem as oppose to the original problem. This is an interesting result
because it proves that the seemingly hard problem can be converted to a well
known problem for which greedy algorithms with a good approximate ratio exists
such as 2-approximate algorithm proposed in [8].

Let us denote ε∗
t and εt as the difference between shortage of electricity

and the total reduction by the consumers from the optimal set S∗
t to Eq. (2)

and optimal set S̃t to Eq. (3) respectively i.e. ε∗
t = Et − ∑

i∈S∗
t

pi and εt =
Et − ∑

i∈S̃t
pi. We begin with following bounds on ε∗

t and εt.

Lemma 1. If S̃t �= N then −1 < εt < 0.

Proof. If εt < −1, then MinKPDR algorithm can drop at least one consumer
from S̃t and can strictly reduce the objective function in Eq. (3).
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Lemma 2. If ε∗
t > 0 then either ε∗

t < 1 or S∗
t = N .

Proof. If ε∗
t > 1 and S∗

t �= N then ∃k /∈ S∗
t , thus:

EL(S∗
t ) − EL(S∗

t ∪ {k}) = Cε∗2
t − C(pk − ε∗

t )
2 − Cpk(1 − pk) − cpk

= −Cp2k + 2Cε∗
t pk − Cpk + Cp2k − ckpk > 0

(c ≤ C, ε∗
t > 1)

Leading to the contradiction that S∗
t is the optimal set.

Theorem 1. Let S̃t be the selected set from solving Eq. (3) and S∗
t be the optimal

set from solving Eq. (2). Then EL(S̃t) ≤ EL(S∗
t ) + 4C + 1.

Proof. Let g(S̃t) represent the objective function value of Eq. (3). If ε∗
t ≤ 0

then g(S̃t) ≤ g(S∗
t ). When ε∗

t > 0 and S∗
t �= N then let Snew = S∗

t ∪ Sext be
the set such that

∑
i∈Snew

pi ≥ Et and Sext includes minimum number of such
consumers. If such a set is not possible, Snew = N . From Lemma 2, ε∗

t < 1
and thus

∑
i∈Sext

pi ≤ 2. The reason is we are at max one unit short and we
cannot overshoot much since pi < 1 ∀i. g(Snew)−g(S∗

t ) = C
∑

i∈Sext
pi(1−pi)+

∑
i∈Sext

pici ≤ 4C. Further, if
∑

i∈S∗
t

pi < Et and S∗
t = N , then g(S∗

t ) = g(S̃t).
Thus, g(S̃t) ≤ g(S∗

t ) + 4C. We now have following two cases:

Case 1: S̃t �= N : From Lemma 1, EL(S̃t) = g(S̃t) + ε2t ≤ g(S∗
t ) + 4C + 1 ≤

EL(S∗
t ) + 4C + 1.

Case 2: S̃t = N : In this case, εt < ε∗
t . Thus, EL(S̃t) = g(N) + ε2t ≤ g(S∗

t ) +
4C + ε∗2

t ≤ EL(S∗
t ) + 4C.

Note: If the selected set St is α−approx solution to Eq. (3), then EL(St) ≤
g(St) + 1 ≤ αg(S̃t) + 1 ≤ α(g(S∗

t ) + 4C + 1) + 1.

MinKPDR for Multi-unit Reduction
For multi-unit case, at each round t, the algorithm outputs xt = {x1,t, . . . , xn,t}
so as to minimize:

C

(
∑

i∈St

xi,tpi − Et

)2

+ C
∑

i∈St

xi,tpi(1 − pi) +
∑

i∈St

xi,tpici s.t. 0 ≤ xi,t ≤ ki

(4)
At any round t, if

∑n
i=1 kipi < Et then xt = {k1, k2, . . . , kn} else solve the

following:

min
xt

C
∑

i∈St

xi,tpi(1 − pi) +
∑

i∈St

xi,tpici s.t.
∑

i∈St

xi,tpi ≥ Et and 0 ≤ xi,t ≤ ki ∀i

(5)
This is the bounded min-knapsack problem where instead of one instance, ki

instances of the item i are available. Thus, any min-knapsack algorithm can be
used to solve its bounded version with same approximation factor but maybe
with an increased complexity. Further, the following theorem follows the exact
same steps as the proof of Theorem 1.
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Theorem 2. Let x̃t be the optimal allocation vector to Eq. (5) and x∗
t be the

allocation vector to Eq. (4). Then EL(x̃t) ≤ EL(x∗
t ) + 4C + 1.

4 Multi-armed Bandit Setting for Unknown CPs

When the compliance probabilities of the consumers are not known, these have
to be learnt over a period of time. The problem can be formulated as the com-
binatorial multi-armed bandit problem (CMAB), where at each round a subset
of arms (consumers) need to be selected and the reward (amount of electricity
reduced) from these arms are observed. We first note that the existing CMAB
algorithms will not work in our setting due to the following reasons:

1. All the UCB based algorithms [5,6] assume monotonicity on stochastic param-
eters (CP) which is not the case here (Lemma 3)

2. The naive algorithms such as epsilon-greedy or Thompson sampling algorithm
do not work with constraints.

Lemma 3. The multi-unit loss function in Eq. (4) is not monotone in terms of
compliance probabilities.

Proof. This can be proved by using a counter example, let us take 2 agents with
p1 = 0.6;x1,t = 2; p2 = 0.3;x2,t = 0;Et = 1; p′

1 = 0.9; p′
2 = 0.3; p′′

1 = 0.3; p′′
2 =

0.3. For C = 11, c1 = 1, we have, Ep(xt) ≤ Ep′′(xt) and Ep(xt) ≤ Ep′(xt).

4.1 Regret Definition

Since finding the optimal allocation is hard, we define the regret at round t as the
difference in the cost of the allocation vector xt returned by our algorithm with
unknown CPs and the cost of the allocation vector x̃t obtained by MinKPDR
with known CPs i.e. Rt(xt) = EL(xt) − EL(x̃t).

4.2 Proposed MAB Algorithm: Twin-MinKPDR-CB

Under monotonicity assumption, existing algorithms [5,6] use Upper confidence
bound (UCB) based algorithm that work on the principle of optimism in the
face of uncertainty. Twin-MinKPDR-CB (Algorithm 1) uses both UCB and
lower confidence bound (LCB) to intelligently select the allocation vector. Let
us denote p̂+i,t = p̂i,t +

√
2 ln t
ni(t)

and p̂−
i,t = p̂i,t −

√
2 ln t
ni(t)

as UCB and LCB on CPs
respectively. Here, p̂i,t is the estimated value of CP which denote the fraction
of units of electricity reduced to the units of electricity reduction allotted to
the consumer i till round t. And ni(t) denotes the number of units allocated to
consumer i till round t. The algorithm starts with allocating the complete set at
first round and initializing the bounds on p̂+i,t (with upper bound as 1) and p̂−

i,t

(with lower bound as 0). The following two twin problems are solved at round t:
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Algorithm 1: Twin-MinKPDR-CB
Input: {c1, c2, ...cn}, {k1, k2, ...kn}, Number of Rounds T.
Output: Allocations in each round x1,x2, ...xT

1. x1 = {k1, k2, ...kn} Make offer of full amount of electricity they can reduce to
get initial estimate of CPs. i.e ni(1) = ki ∀i.
2. for t ← 2 : T do

Observe the values of Dt and Xi,t−1 i.e actual amount reduced by i at t− 1.

Update p̂i =
∑t−1

t′=1
Xi,t′

ni(t−1)
, p̂+i = p̂i +

√
2 ln t

ni(t−1)
and p̂−

i = p̂i −
√

2 ln t
ni(t−1)

.

Solve for x+
t , x−

t from (6) and (7) and substitute in (8) and (9) to obtain
EL

p̂+t
(x+

t ) and EL
p̂−
t

(x−
t ) respectively.

if EL
p̂+t

(x+
t ) < EL

p̂−
t

(x−
t ) then

xt = x+
t , p̃ = p+i

else
xt = x−

t , p̃ = p−
i

min
x+
t

C
∑

i∈S+
t

x+
i,tp̂

−
i,t(1 − p̂+i,t) +

∑

i∈S+
t

x+
i,tp̂

−
i,tci s.t.

∑

i∈S+
t

x+
i,tp̂

+
i,t ≥ Et (6)

min
x−
t

C
∑

i∈S−
t

x−
i,tp̂

−
i,t(1 − p̂+i,t) +

∑

i∈S−
t

x−
i,tp̂

−
i,tci s.t.

∑

i∈S−
t

x−
i,tp̂

−
i,t ≥ Et (7)

Let x+
t and x−

t be the allocated vectors by solving Eqs. (6) and (7) respectively.
The expected loss functions will be:

ELp̂+
t
(x+

t ) = C

⎛

⎝
∑

i∈S+
t

x+
i,tp̂

+
i − Et

⎞

⎠

2

+C
∑

i∈S+
t

x+
i,tp̂

−
i (1− p̂+i )+

∑

i∈S+
t

x+
i,tp̂

−
i ci (8)

ELp̂−
t
(x−

t ) = C

⎛

⎝
∑

i∈S−
t

x−
i,tp̂

−
i − Et

⎞

⎠

2

+C
∑

i∈S+
t

x−
i,tp̂

−
i (1− p̂+i )+

∑

i∈S+
t

x−
i,tp̂

−
i ci (9)

Let ELp̃(xt) be the minimum loss from the above two equations i.e. ELp̃(xt) =
min{ELp̂+

t
(x+

t ),ELp̂−
t
(x−

t )} and p̃ = argminp̂+
t ,p̂−

t
{ELp̂+

t
(x+

t ),ELp̂−
t
(x−

t )}.
Then, Twin-MinKPDR-CB simply returns xt.

4.3 Regret of Twin-MinKPDR-CB:

In order to bound the regret, we need two properties monotonicity and the
bounded smoothness property that we prove next.
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Lemma 4. Let ELp(xt) be the expected loss function of xt with true CP vector
p. Then, ELp̃(xt) ≤ ELp(xt).

Proof. From Hoeffding’s inequality, for each i, p̂−
i,t ≤ pi ≤ p̂+i,t with probability

1 − 2t−2. Thus, ∀i,∀xt, with probability 1 − 2nt−2, we have:
∑

i∈St

xi,tp̂
−
i,t − Et ≤

∑

i∈St

xi,tpi − Et ≤
∑

i

xi,tp̂
+
i,t − Et

∑

i

xi,tp̂
−
i,t(1 − p̂+i,t) ≤

∑

i

xi,tpi(1 − pi) and
∑

i

xi,tp̂
−
i,tci ≤

∑

i

xi,tpici

Thus, ELp̃(xt) ≤ ELp(xt).

Lemma 5. Bounded Smoothness Property: Consider any two CP vectors
p = {p1, p2, . . . , pn} and p′ = {p′

1, p
′
2, . . . , p

′
n}, then |ELp(xt) − ELp′(xt)| ≤ f(δ)

if |pi − p′
i| ≤ δ ∀i where f is a strictly increasing and invertible function.

Proof. Let K =
∑

i ki ≥ ∑
i∈St

ki ≥ ∑
i∈St

xi,t We have:

|
∑

i∈St

xi,tpici −
∑

i∈St

xi,tp
′
ici| ≤ δ

∑

i∈St

xi,tci ≤ KCδ

|
∑

i∈St

xi,tpi(1 − pi) −
∑

i∈St

xi,tp
′
i(1 − p′

i)| ≤
∑

i∈St

xi,t|pi − p′
i|(1 + |pi + p′

i|) ≤ 3Kδ

∣
∣
∣
∣
∣
∣

(
∑

i∈St

xi,tpi − Et

)2

−
(

∑

i∈St

xi,tp
′
i − Et

)2
∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∑

i∈St

xi,tpi +
∑

i∈St

xi,tp
′
i

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∑

i∈St

xi,tpi −
∑

i∈St

xi,tp
′
i

∣
∣
∣
∣
∣
≤ 2K2δ

Thus,
|ELp(x) − ELp′(x)| ≤ f(δ) = (4CK + 2CK2)δ (10)

Even when we have these two properties, the regret bound proof cannot
follow the proof provided in [6] as the optimal set in our setting varies each
time as opposed to a fixed optimal set. Another important difference is that
the optimal as well as the selected set by the algorithm can be an empty set.
We define an allocation xt as suboptimal when EL(xt) > EL(x̃t). Recall that
x̃t is the allocation vector obtained by MinKPDR with known CPs. Let Ti,t

be the number of times consumer i is allocated atleast one unit of electricity
reduction till time t. We maintain the counters Ni,t ≤ Ti,t for all consumers in
the following way. We initialize the Ni,1 = 1 ∀i after the first round since the
allocation happens to all the consumers. At any round t if a suboptimal allocation
is chosen, we increment Ni,t of a consumer i by one where i is chosen such that
xi,t > 0 and i = arg minj{Nj,t|xj,t > 0}. If many such consumers exists, we pick
one such random i. We now show that for each sub-optimal allocation (including
no allocation), the counter of exactly one consumer is incremented everytime.
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Fig. 1. Loss comparison of MinKPDR

Lemma 6. If xi,t = 0 ∀i then x̃i,t = 0 ∀i

Proof. xi,t = 0 ∀i then ELp̃(xt) = CE2
t ≤ ELp̃(x̃t) ≤ ELp(x̃t) =⇒ x̃i,t = 0 ∀i.

Here first inequality is due to the optimization problem solved by MinKPDR
and second inequality is due to Lemma 4.

Now, let Δ = min{ELp(xt) − ELp(x̃t)|ELp(xt) > ELp(x̃t)} and lt = 8 ln t
(f−1(Δ))2 .

Let Emax = maxt{Et}, then the maximum regret at any round t is upperbounded
by Emax and the expected regret is bounded by: E[

∑n
i=1 Ni,T ]CE2

max.

Theorem 3. The regret of the algorithm is bounded by
(

8 lnT
(f−1(Δ))2 +

π2

3 + 1
)
nCE2

max

Proof. The following steps are similar to [6]:

n∑

i=1

Ni,T − n(lT + 1) =

T∑

n+1

I(xt �= x̃t) − nlT ≤
T∑

t=n+1

n∑

i=1

I(xt �= x̃t, Ni,t > Ni,t−1, Ni,t−1 > lT )

≤
T∑

t=n+1

n∑

i=1

I(xt �= x
∗
t , Ni,t > Ni,t−1, Ni,t−1 > lt) =

T∑

t=n+1

I(xt �= x̃t, ∀i : xi,t > 0, Ti,t−1 > lt)

When Ti,t−1 > lt ∀i, from Hoeffding’s bound we have:

P
(|p̂+i,t − pi| > f−1(Δ)

) ≤ P

(

|p̂+i,t − pi| ≥ 2

√
2 ln t

Ti,t−1

)

≤ 2t−2

P
(|p̂−

i,t − pi| > f−1(Δ)
) ≤ P

(

|p̂−
i,t − pi| ≥ 2

√
2 ln t

Ti,t−1

)

≤ 2t−2

Thus with probability 1 − 2nt−2, ELp(xt) < ELp̃(xt) + Δ ≤ ELp̃(x̃t) + Δ ≤
ELp(x̃t) + Δ Here, the first inequality comes from the Bounded smoothness
property, second from the definition of xt, and third from Lemma 4. Thus,
leading to the contradiction to the definition of Δ. Thus, the expected regret is
bounded by

(
n(lT + 1) +

∑T
t=1

2n
t2

)
CE2

max ≤
(

8 lnT
(f−1(Δ))2 + π2

3 + 1
)

nCE2
max.
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From Lemma 5, f−1(Δ) ∝ K2, thus leading O(n5) regret. This upper bound
is attributed to the fact that although we are pulling several instances of arm
i at one instance, we are incrementing the counter Ni,t only once. However, we
can see from the simulation section, the regret turns out to be quadratic in n.

5 Simulation Results

The goal of the simulation-based experiments is two-fold, (i) to study the effi-
cacy of MinKPDR as compared to bruteforce and GLS in an offline setting, and
(ii) Validate our theoretical results about regret. To compare our algorithms, we
take two benchmark algorithms, first the brute force algorithm that considers
all possible subsets (hence takes exponential time) and second, the GLS algo-
rithm [23] having a time complexity of O(n log n), with n being the number of
consumers. We use greedy algorithm [8] to obtain the solution of the minknap-
sack problem for both MinKPDR and Twin-MinKPDR-CB algorithms which
has time complexity of O(n log n). Further, note that the GLS algorithm does
not have any approximate guarantees and does not work in multi-unit reduction
case.

Fig. 2. Regret comparison of Twin-MinKPDR-CB

Setting: For each consumer i, CPs pi and compensation costs ciboth ∼ U [0, 1].
The value of C is kept as 3 (except in Fig. (1a)) and for Figs. (1a, 2a) the value
of n is fixed at 10. The maximum units of reduction ki by any consumer i is
generated randomly from 1 to 5. The demand shortage Et ∼ U [1, K

4 ] with K
being sum of maximum reductions from all the consumers.

Comparison of MinKPDR for Offline Setting: Figure (1a) compares the worst-
case loss function of MinKPDR and the optimal algorithm over 500 samples.
As can be seen from the figure that the loss differences between the opti-
mal one and MinKPDR are very close and always less than 4C + 1. Further,
MinKPDR algorithm performed 20 times faster as compared to the optimal
algorithm which is implemented using mixed-integer linear programming solver
Gurobi [10]. Figure (1b) compare the worst-case loss over 500 samples for the
GLS and MinKPDR. Since GLS works only for a single unit, the figure is gener-
ated by implementing MinKPDR for single unit reduction case. It clearly shows
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the MinKPDR algorithm outperforming the GLS algorithm. Note that the GLS
algorithm works only for single unit reduction with no approximation guarantees
whereas MinKPDR works for multi-unit reduction with theoretical approximate
guarantees.

Comparison of Twin-MinKPDR-CB for Online Setting: Figures (2a) and (2b)
represent the average cumulative regret over 100 runs obtained by Twin-
MinKPDR-CB versus the number of rounds and number of consumers respec-
tively. Once the allocation vector is generated by Twin-MinKPDR-CB, the
actual amount of electricity reduced by customer is generated as binomial ran-
dom variable for every round. For Figure (2b), the cumulative regret is computed
with respect to the solution obtained by solving the bounded min-knapsack prob-
lem for T = 104 rounds. We get logarithmic regret in terms of T and quadratic
regret in terms of n.

6 Conclusion

The paper presented a novel min-knapsack framework that can be used to min-
imize the loss to the distributor company. Most of the existing work consid-
ered only single unit reduction, which does not fully optimize the distributor
company’s loss function. The proposed novel transformation to min-knapsack
allowed an easy extension to multi-unit reduction. When unknown uncertainties
are involved a novel combinatorial multiarmed bandit Twin-MinKPDR-CB algo-
rithm is proposed that achieves sub-linear regret and works for non-monotone
reward function, non-convex constraints, and time-varying optimal set. A com-
binatorial MAB algorithm for general non-monotone reward function is strongly
required as these functions exist in many other settings such as resource alloca-
tion, influence maximization, etc. We believe that our novel Twin technique of
combining UCB and LCB will be extremely beneficial for other settings involving
such non-monotone reward functions with knapsack constraints.
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Abstract. Civic crowdfunding (CC) is a popular medium for raising
funds for public projects from interested agents. With Blockchains gain-
ing traction, we can implement CC reliably and transparently with smart
contracts (SCs). The fundamental challenge in CC is free-riding. PPR,
the proposal by Zubrickas [21] of giving refund bonus to the contribu-
tors when the project is not provisioned, has attractive properties. As
observed by Chandra et al. [6], PPR incentivizes the agents to defer their
contribution until the deadline, i.e., a race condition. For this, their pro-
posal, PPS, considers temporal aspects of a contribution. However, PPS
is computationally complex and expensive to implement as an SC. In
this work, we identify essential properties a refund bonus scheme must
satisfy to curb free-riding while avoiding the race condition. We prove
Contribution Monotonicity and Time Monotonicity as sufficient condi-
tions for this. We show that if a unique equilibrium is desirable, these
conditions are also necessary. We propose three refund bonus schemes
satisfying these conditions leading to three novel mechanisms for CC -
PPRG, PPRE, and PPRP. We show that PPRG is the most cost-effective
when deployed as an SC. We prove that under certain modest assump-
tions, in PPRG, the project is funded at equilibrium.

Keywords: Civic crowdfunding · Refund bonus schemes · Nash
equilibrium

1 Introduction

Crowdfunding is the practice of raising funds for a project through voluntary con-
tributions from a large pool of interested participants and is an active research
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area [2,3,7,15,18]. For private projects, specific reward schemes incentivize the
participants to contribute towards crowdfunding. Using crowdfunding to raise
funds for public (non-excludable) projects1, however, introduces the free-riding
problem. Observe that we cannot exclude non-contributing participants from
enjoying the benefits of the public project. Thus, strategic participants, hence-
forth agents, may not contribute. If we can address this challenge, “civic” crowd-
funding (CC), i.e., crowdfunding of public projects, can lead to greater demo-
cratic participation. It also contributes to citizens’ empowerment by increasing
their well-being by solving societal issues collectively. Thus, this paper focuses
on solving the challenge of free-riding in CC.

With the advancement of the blockchain technology, smart contracts (SC)
now allow for the deployment of such CC projects. A smart contract is a com-
puter protocol intended to digitally facilitate, verify, or enforce the negotiation
or performance of a contract [16]. Since a crowdfunding project as an SC is on
a trusted, publicly distributed ledger, it is open and auditable. This property
makes the agents’ contributions and the execution of the payments transparent
and anonymous. Besides, there is no need for any centralized, trusted third party,
which reduces the cost of setting up the project. WeiFund [19] and Starbase [17]
are examples of decentralized crowdfunding platforms on public blockchains like
Ethereum.

Traditionally, a social planner uses the voluntary contribution mechanism
with a provision point, provision point mechanism (PPM) [4]. The social planner
sets up a target amount, namely the provision point. If the net contribution by
the agents crosses this point, the social planner executes the project. We call
this as provisioning of the project. Likewise, the project is said to be under-
provisioned, if the net contribution does not exceed the provision point. In the
case of under-provisioning, the planner returns the contributions. PPM has a
long history of applications, but consists of several inefficient equilibria [4,14].

Zubrickas proposes Provision Point mechanism with Refund (PPR), which
introduces an additional refund bonus to be paid to the contributing agents.
This refund is paid along with each agent’s contribution, in the case of under-
provisioning of the project [21]. This incentive induces a simultaneous move
game in PPR, in which the project is provisioned at equilibrium. Chandra
et al. [6] observe that PPR may fail in online settings (e.g., Internet-based plat-
forms [11,12]) since, in such a setting, an agent can observe the current amount
of funds raised. Hence, in online settings, strategic agents in PPR would choose
to defer their contributions until the end to check the possibility of free-riding
and contribute only in anticipation of a refund bonus. Such deference leads to a
scenario where every strategic agent competes for a refund bonus at the dead-
line. We refer to this scenario as a race condition. As the agents can observe the
contributions’ history in online settings, it induces a sequential game. Thus, we
refer to such settings as sequential settings.

1 For example, the crowdfunding of the Wooden Pedestrian Bridge in Rotterdam:
https://www.archdaily.com/770488/the-luchtsingel-zus.

https://www.archdaily.com/770488/the-luchtsingel-zus
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Provision Point Mechanism with Securities. (PPS) [6] introduces a class of mech-
anisms using complex prediction markets [1]. These markets incentivize an agent
to contribute as soon as it arrives, thus avoiding the race condition. The chal-
lenge with the practical implementation of sophisticated mechanisms such as
PPS is that as it uses complex prediction markets, it is difficult to explain to a
layperson and computationally expensive to implement, primarily as an SC.

The introduction of the refund bonus is vital in these mechanisms as it incen-
tivizes agents to contribute, thus avoiding free-riding. Consequently, we focus on
provision point mechanisms with a refund bonus. Our primary goal is to abstract
out conditions that refund bonus schemes should satisfy to avoid free-riding and
the race condition. We believe that such a characterization would further make
it easier to explore simpler and computationally efficient CC mechanisms.

Towards this, we introduce, Contribution Monotonicity (CM) and Time
Monotonicity (TM). Contribution monotonicity states that an agent’s refund
should increase with an increase in its contribution. Further, time monotonic-
ity states that an agent’s refund should decrease if it delays its contribution.
We prove these two conditions are sufficient to provision a public project via
crowdfunding in a sequential setting at equilibrium and avoid the race condition
(Theorem 1). We also prove that TM and weak CM are also necessary, under
certain assumptions on equilibrium behavior (Theorem 2).

With these theoretical results on CM and TM, we propose three elegant
refund bonus schemes that satisfy CM and TM. These schemes are straight-
forward to explain to a layperson and are computationally efficient to imple-
ment as an SC. With these three schemes, we design novel mechanisms for CC,
namely Provision Point mechanism with Refund through Geometric Progression
(PPRG); Provision Point mechanism with Refund based on Exponential function
(PPRE), and Provision Point mechanism with Refund based on Polynomial func-
tion (PPRP). We analyze the cost-effectiveness of these mechanisms and PPS
when deployed as SCs and show that PPRG is significantly more cost-effective,
i.e., PPRG requires the least amount of capital to set up.

We omit proofs of some of the results presented in this paper. The formal
proofs are available in the extended version [10].

2 Preliminaries

We focus on Civic Crowdfunding (CC) which involves provisioning of projects
without coercion where agents arrive over time and not simultaneously, i.e.,
CC in a sequential setting. We assume that agents are aware of the history of
contributions, i.e., the provision point and the total amount remaining towards
the project’s provision at any time. However, the agents have no information
regarding the number of agents yet to arrive or the agents’ sequence. Ours is
the first attempt at providing a general theory for refund bonuses in CC to
the best of our knowledge. Thus, we also assume that agents do not have any
other information regarding the project. This information can be arbitrarily
anything. E.g., an agent may deviate from its strategy if it knows about spiteful
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contributions and related corruption. Thus, unlike [8,9], every agent’s belief is
symmetric towards the project’s provision [4,6,21].

2.1 Model

A social planner (SP) proposes crowdfunding a public project P on a web-
based crowdfunding platform; we are dealing with sequential settings. SP seeks
voluntary contributions towards it. The proposal specifies a target amount H
necessary for the project to be provisioned, referred to as the provision point.
It also specifies deadline (T ) by which the funds need to be raised. If the target
amount is not achieved by the deadline, the project is not provisioned, i.e., the
project is under-provisioned. In the case of under-provisioning, the SP returns
the contributions.

A set of agents N = {1, 2, . . . , n} are interested in the crowdfunding of P .
An Agent i ∈ N has value θi ≥ 0 if the project is provisioned. It arrives at time
yi to the project, observes its valuation (θi) for it as well as the net contribution
till yi. However, no agent has knowledge about any other agent’s arrival or their
contributions towards the project.

Agent i may decide to contribute xi ≥ 0 at time ti, such that yi ≤ ti ≤ T ,
towards its provision. Let ϑ =

∑i=n
i=1 θi be the total valuation, and C =

∑i=n
i=1 xi

be the sum of the contributions for the project. We denote ht as the amount
that remains to be funded at time t.

A project is provisioned if C ≥ H and under-provisioned if C < H, at the
end of deadline T . SP keeps a budget B aside to be distributed as a refund bonus
among the contributors if the project is under-provisioned. This setup induces a
game among the agents as the agents may now contribute to getting a fraction
of the budget B in anticipation that the project may be under-provisioned.

Towards this, let σ = (σ1, . . . , σn) be the vector of strategy profile of every
agent where Agent i’s strategy consists of the tuple σi = (xi, ti), such that
xi ∈ [0, θi] is its voluntary contribution to the project at time ti ∈ [yi, T ]. We
use the subscript −i to represent vectors without Agent i. The payoff for an
Agent i with valuation θi for the project, when all the agents play the strategy
profile σ is πi(σ; θi). Note that, in this work, we assume that every agent only
contributes once to the project. We justify this assumption while providing the
strategies for the agents (Sect. 5). We leave it for future study to explore the
effect of splitting of an agent’s contribution to the project’s provision and its
payoff.

Let IX be an indicator random variable that takes the value 1 if X is true
and 0 otherwise. Further, let R : σ → Rn denote the refund bonus scheme. Then
the payoff structure for a provision point mechanism with a refund bonus scheme
R(·) and budget B, for every Agent i contributing xi and at time ti, will be

πi(σ; θi) = IC≥H(θi − xi) + IC<H (Ri(σ)) , (1)

where Ri(σ) is the share of refund bonus for Agent i as per R(σ) such that
R(σ) = (R1(σ), . . . , Rn(σ)). We use R(·) to denote a refund bonus scheme and
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Ri(·) to denote Agent i’s share of the refund bonus as per R(·) whenever the
inputs are obvious.

Important Game-Theoretic Definitions. We require the following definitions for
the understanding of the results presented in this paper.

Definition 1 (Pure Strategy Nash Equilibrium (PSNE)). A strategy pro-
file σ∗ = (σ∗

1 , . . . , σ
∗
n) is said to be a Pure Strategy Nash equilibrium (PSNE) if

for every Agent i, it maximizes the payoff πi(σ∗; θi) i.e., ∀i ∈ N ,

πi(σ∗
i , σ∗

−i; θi) ≥ πi(σi, σ
∗
−i; θi) ∀σi,∀θi.

The strategy profile for the Nash Equilibrium is helpful in a simultaneous move
game. However, for sequential settings, where the agents can see the actions of
the other agents, they may not find it best to follow the PSNE strategy. For
this, we require a strategy profile that is the best response of every agent during
the project, i.e., the best response for every sub-game induced during it. Such a
strategy profile is said to be a Sub-game Perfect Equilibrium.

Definition 2 (Sub-game Perfect Equilibrium (SPE)). A strategy profile
σ∗ = (σ∗

1 , . . . , σ
∗
n), with σ∗

i = (x∗
i , t

∗
i ), is said to be a sub-game perfect equilibrium

if for every Agent i, it maximizes the payoff πi(σ∗
i , σ∗

−i|Ht∗
i
; θi) i.e. ∀i ∈ N ,

πi(σ∗
i , σ∗

−i|Ht∗
i
; θi) ≥ πi(σi, σ

∗
−i|Ht∗

i
; θi) ∀σi,∀Ht,∀θi.

Here, Ht is the history of the game till time t, constituting the agents’ arrivals
and their contributions and σ∗

−i|Ht∗
i

indicates that the agents who arrive after
t∗i follow the strategy specified by σ∗

−i. Informally, at every stage of the game,
it is Nash Equilibrium for each agent to follow the SPE strategy irrespective of
what has happened.

In this work, we aim to derive deterministic strategies for the induced CC
game. Non-deterministic strategies in our context will refer to equilibrium con-
cepts like Bayesian Nash equilibrium (BNE). A layperson will be required to
perform complex randomization to play such a strategy in practice. Besides, it
will also need assurance over the correctness of its calculation. As a result, we
focus on PSNE, a more robust and straightforward notion a layperson to play
in practice. The choice of PSNE is also consistent with the CC literature.

3 Related Work

This paper focuses on the class of mechanisms that require the project to aggre-
gate a minimum level, provision point, of funding before the SP can claim it.
There is extensive literature on mechanism design for CC with provision point
(see [6] and the references therein). Our work is most closely related to PPM,
PPR, and PPS.

Provision Point Mechanism (PPM). PPM [4] is the simplest mechanism in this
class where agents contribute voluntarily. Agents gain a positive payoff only
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when the project gets provisioned and a payoff of zero otherwise i.e., RPPM (σ) =
((0) | ∀i ∈ N). Then the payoff structure of PPM, for every Agent i, is,

πi(·) = IC≥H × (θi − xi)

where, πi(·) and xi are Agent i’s payoff and contribution respectively. PPM has
been shown to have multiple equilibria and also does not guarantee strictly pos-
itive payoff to the agents. It has led the mechanism to report under-provisioning
of the project, i.e., the provision point not being reached.

Provision Point Mechanism With Refund (PPR). PPR [21] improves upon the
limitations of PPM by offering refund bonuses to the agents in case the project
does not get provisioned. This refund bonus scheme is directly proportional to
agent’s contribution and is given as RPPR

i (σ) =
(

xi

C

)
B ∀i ∈ N , where B > 0 is

the total budget. Then the payoff structure of PPR, for every Agent i is,

πi(·) = IC≥H × (θi − xi) + IC<H × RPPR
i (σ).

In PPR, an agent does not know other agents’ contributions. Thus, as shown
in [6], PPR collapses to a one-shot simultaneous game where every agent delays
its contribution till the deadline. This delay results in each agent attempting to
contribute at the deadline, leading to a race condition, defined as follows.

Definition 3 (Race Condition). A strategy profile σ∗ = (σ∗
1 , . . . , σ

∗
n) is said

to have a race condition if ∃S ⊆ N with |S| > 1, for which ∀i ∈ S the strategy
σ∗

i = (x∗
i , t), with x∗

i as the equilibrium contribution, is the PSNE of the induced
game i.e., ∀σi,∀i ∈ S,

πi(σ∗
i , σ∗

−i; θi) ≥ πi(σi, σ
∗
−i; θi) where t ∈ [ȳ, T ] s.t. , ȳ = max

j∈S
yj .

Here, σi = (x∗
i , ti) ∀ti ∈ [yi, T ].

For PPR, S = N and t = T , i.e., the strategy σ∗
i = (x∗

i , T ) ∀i ∈ N constitutes
a set of PSNE of PPR in a sequential setting as the refund bonuses here are
independent of time of contribution. Thus, agents have no incentive to contribute
early. Such strategies lead to the project not getting provisioned in practice and
are undesirable.

Provision Point Mechanism With Securities (PPS). PPS [6] addresses the short-
comings of PPR by offering early contributors higher refund than a late con-
tributor for the same amount. The refund bonus of a contributor is determined
using securities from a cost based complex prediction market [1] and is given as
RPPS

i (σ) = (rti
i −xi) ∀i ∈ N where, ti and rti

i are Agent i’s time of contribution
and the number of securities allocated to it, respectively. rti

i depends on the
contribution xi and the total number of securities issued in the market at the
time contribution ti denoted by qti . Then the payoff structure of PPS, for every
Agent i, can be expressed as,

πi(·) = IC≥H × (θi − xi) + IC<H × RPPS
i (σ)
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To set up a complex prediction market in the context of CC, PPS requires a
cost function (C0) satisfying [6, CONDITIONS 1–4,6–7]. C0 can either be based
on the logarithmic [6, Eq. 3] or the quadratic scoring rule [6, Eq. 4].

PPS awards every contributing agent securities for the project not getting
provisioned. These securities are dependent on the agent contribution, i.e., the
greater the contribution, the higher the number of securities are allocated to
the agent. Each of these securities pays out a unit amount if the project is not
provisioned. However, setting up such a market and computing securities to be
allotted is computationally expensive to implement as a smart contract. Hence,
we want to look for more desirable refund bonus schemes.

4 Desirable Properties of Refund Bonus Schemes

Motivated by the theoretical guarantees of PPR and PPS, we look for CC mecha-
nisms with refund bonus schemes in this paper. In this context, a desirable refund
bonus scheme should not just restrict the set of strategies so that the project is
provisioned at equilibrium, but should also incentivize greater and early contri-
butions, to avoid the race condition, from all interested agents. A refund bonus
scheme without these would fail in a sequential (web-based) setting, similar to
PPR, and hence these are essential for a provision point mechanism’s imple-
mentation online. We formalize these desirable properties as the following two
conditions for a refund bonus scheme R(σ) where σ = ((xi, ti) | ∀i ∈ N) such
that xi ∈ (0,H], ti ∈ [yi, T ] ∀i ∈ N and with budget B.

Condition 1 (Contribution Monotonicity). The refund must always
increase with the increase in contribution so as to incentivize greater contri-
bution i.e., ∀i ∈ N, Ri(σ) ↑ as xi ↑. Further, if Ri(·) is a differential in xi ∀i,
then,

∂Ri(σ)
∂xi

> 0 ∀ti. (2)

Note. If the strict inequality is replaced with ≥ in Eq. 2, we call it “weak” CM.

Condition 2 (Time Monotonicity). The refund must always decrease with
the increase in the duration of the project so as to incentivize early contribution
i.e., R(σ) must be a monotonically decreasing function with respect to time ti ∈
(0, T ),∀xi, ∀i ∈ N or

Ri(σ) ↓ as ti ↑ and ∃ ti < T, and Δti s.t.,
Ri ((xi, ti + Δti), σ−i) − Ri ((xi, ti), σ−i)

Δti
< 0

(3)

Note that, with Condition 2 we impose that � ∃t ∈ [0, T ] such that there is
a race among the agents to contribute at t. We now analyze the consequence of
such a refund bonus scheme on the game’s characteristics induced by it.
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4.1 Sufficiency of the Refund Bonus Scheme

We show that a refund bonus scheme satisfying Conditions 1 and 2, is sufficient
to implement civic crowdfunding projects in sequential settings. For this, let G
be the game induced by the refund bonus scheme R(·), for the payoff structure
as given by Eq. 1. We require G to satisfy the following properties.

Property 1. In G, the total contribution equals the provision point at equilib-
rium, i.e., C = H.

Property 2. G must avoid the race condition.

Property 3. G is a sequential game.

Theorem 1. Let G be the game induced by a refund bonus scheme R(·) for the
payoff structure as given by Eq. 1, and with ϑ > H, 0 < B < ϑ − H. If R(·)
satisfies Conditions 1 and 2, Properties 1, 2 and 3 hold.

Proof Sketch.

1. Condition 1 =⇒ Property 1. At equilibrium, C < H can not hold as ∃i ∈ N
with xi < θi, at least, since ϑ > H. Such an Agent i could obtain a higher
refund bonus by marginally increasing its contribution since R(·) satisfies
Condition 1 and B > 0. For C > H, any agent with a positive contribution
could gain in payoff by marginally decreasing its contribution.

2. Condition 2 =⇒ Properties 2 and 3. Every Agent i contributes as soon as
it arrives, since R(·) satisfies Condition 2. This implies that, for the same
contribution xi and for any ε > 0, we have πi(·, yi) > πi(·, yi + ε). Further, as
the race condition is avoided, G results in a sequential game. �

4.2 Necessity of the Refund Bonus Schemes

Theorem 1 shows that Condition 1 is sufficient to satisfy Property 1 and Con-
dition 2 is sufficient to satisfy Properties 2 and 3. With Theorem 2, we further
prove that Condition 2 is necessary for Properties 2 and 3; while weak Condi-
tion 1 is necessary for Property 1. However, we remark that Theorem 2 does
not characterize G completely. For the theorem to hold, unlike in the case of
Theorem 1, we assume there exists a unique equilibrium defined by the strategy
(x∗

i , t
∗
i ), ∀i ∈ N .

Theorem 2. Let G be the game induced by a refund bonus scheme R(·) for
the payoff structure as given by Eq. 1, and with ϑ > H, 0 < B < ϑ − H. If
R(·) satisfies Properties 1, 2 and 3 and there is unique equlibrium, then “weak”
Condition 1 and Condition 2 hold.
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Proof Sketch.

1. Property 1 =⇒ weak Condition 1. Assume weak Condition 1 does not hold.
This implies that ∃i ∈ N for whom Ri(xi, ·) > Ri(xi + ε, ·) for some ε > 0.
Now consider a case, wlog, that the agent i is the last agent. Further, the
project will be funded if agent i contributes xi + ε, i.e., where its funded
payoff equals its unfunded payoff [21]. Since Ri(xi, ·) > Ri(xi + ε, ·), agent i
will prefer to contribute xi and at equilibrium, C �= H. This is a contradiction
as it is given that Property 1 holds.

2. Properties 2 and 3 =⇒ Condition 2. Property 2 implies that G avoids the
race condition. That is, � ∃ i ∈ N for whom πi(xi, yi) > πi(xi, yi + ε) for any
ε > 0 which in turn implies Condition 2. This is because, for the same xi, πi

and Ri are both decreasing with respect to ti. �
Theorem 1 shows that a refund bonus scheme satisfying Conditions 1 and 2

avoids the race condition (Property 2) and induces a sequential game (Property
3). Thus, a mechanism deploying such a refund bonus scheme can be imple-
mented sequentially, i.e., over web-based (or online) platforms. Additionally,
refund bonus schemes should also be clear to explain to a layperson. More-
over, these should be computationally efficient and cost-effective when deployed
as a smart contract. Through this generalized result on refund bonus schemes,
we show the following proposition.

Proposition 1. PPS satisfies Condition 1 and Condition 2.

Proof. Since every cost function used in PPS for crowdfunding must satisfy
∂(r

ti
i −xi)

∂xi
> 0, ∀i [6, CONDITION-7], PPS satisfies Condition 1.

For Condition 2, observe that ∀i, from [6, Eq. 6]

(rti
i − xi) = C−1

0 (xi + C0(qti)) − qti − xi. (4)

In Eq. 4, as ti ↑, qti ↑ as it is a monotonically non-decreasing function of t and
thus R.H.S. of Eq. 4 decreases since R.H.S. of Eq. 4 is a monotonically decreasing
function of qti [6, Theorem 3 (Step 2)]. Thus, PPS also satisfies Condition 2. �
Corollary 1. PPS avoids the race condition and thus can be implemented
sequentially.

In the following subsection, we present three novel refund schemes satisfying
Conditions 1 and 2 and the novel provision point mechanisms based on them.

4.3 Refund Bonus Schemes

Table 1 presents three novel refund schemes for an Agent i contributing xi at
time ti as well as the mechanisms which deploy them. Note that we require
all the refund bonus schemes to converge to a particular sum that can be pre-
computed. This convergence allows these schemes to be budget balanced. The
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Table 1. Various Refund schemes satisfying Condition 1 and Condition 2 for an Agent
i. Note that, in RPPRG and RPPRP , the subscript i denotes the order of the contribu-
tion.

Mechanism Refund scheme Parameters Covergence of sum Based on

PPRG RPPRG
i (·) =

(
xi+a×(1/γ)i−1

C+K1

)
B a > 0, 1/γ < 1, K1 = aγ

γ−1

∑∞
i=1

(
xi + a(1/γ)i−1

)
=

C + K1

Geometric
Progression (GP)

PPRE RPPRE
i (·) =

(
xi+K2×e−ti

C+K2

)
B K2 > 0

∑∞
i=1(xi) +∫ ∞

t=t1
(K2e

−tdt) ≤ C + K2

Exponential
Function (EF)

PPRP RPPRP
i (·) =

(
xi+K3× 1

i(i+1)
C+K3

)
B K3 > 0

∑∞
i=1

(
xi + K3

1
i(i+1)

)
=

C + K3

Polynomial
Function (PF)

parameters a, γ,K1,K2,K3 and B are mechanism parameters (for their respec-
tive mechanisms) which the SP is required to announce at the start. Additionally,
the refund schemes presented deploy three mathematical functions: geometrical,
exponential, and polynomial decay. RPPRG(·) and RPPRP (·) refunds the con-
tributing agents based on the sequence of their arrivals (similar to PPS), while
the refund scheme RPPRE(·) refunds them based on their time of contribution.

Sufficiency Conditions. We now show that PPRG satisfies Conditions 1 and 2.

Claim 1 RPPRG(σ) satisfies Condition 1 ∀i ∈ N .

Proof. Observe that ∀i ∈ N ,

∂RPPRG
i (σ)
∂xi

=
B

C + K1
> 0 ∀ti.

Therefore, RPPRG(·) satisfies Condition 1 ∀i. �
Claim 2 RPPRG(σ) satisfies Condition 2.

Proof. For every Agent i ∈ N arriving at time yi, its share of the refund bonus
given by RPPRG(·) will only decrease from that point in time, since its position
in the sequence of contributing agents can only go down, making it liable for a
lesser share of the bonus, for the same contribution. Let t̃i be the position of
the agent arriving at time yi, when it contributes at time ti. While t̃i will take
discrete values corresponding to the position of the agents, for the purpose of
differentiation, let t̃i ∈ R. Now, we can argue that at every epoch of time ti,
Agent t̃i will contribute to the project. With this, RPPRG(·) can be written as,

RPPRG
i (σ) =

(
xi + a × (1/γ)t̃i−1

C + K

)

B.

Further observe that ∀i ∈ N ,

∂RPPRG
i (σ)
∂t̃i

= −
(

a × (1/γ)t̃i

C + K1

)

B < 0 ∀xi.

Therefore, RPPRG(·) satisfies Condition 2. �
We can similarly prove that RPPRE and RPPRP satisfy Conditions 1 and 2.
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Table 2. Gas consumption comparison between PPS, PPRG, PPRE and PPRP for
an agent. All values are in Gas units.

Operation PPS PPRG PPRE PPRP

Operations Gas consumed Operations Gas consumed Operations Gas
consumed

Operations Gas consumed

ADD 2 6 2 6 2 6 2 6

SUB 2 6 0 0 0 0 0 0

MUL 2 10 2 10 2 10 3 15

DIV 2 10 1 5 1 5 2 10

EXP(x) 2 10 + 10 ×
(log(x))

0 0 1 10 + 10 ×
(log(x))

0 0

LOG(x) 2 365 + 8 ×
(bytes logged)

0 0 0 0 0 0

Total gas: 407 (at least) Total gas: 21 Total gas: 31 (at least) Total gas: 31

4.4 Gas Comparisons

As aforementioned, CC is now being deployed as smart contracts (SCs) over the
Ethereum network. Thus, CC mechanisms deployed as SCs must be efficient, i.e.,
result in less gas consumption. Gas is a unit of fees that the Ethereum protocol
charges per computational step executed in a contract or transaction. This fee
prevents deliberate attacks and abuse on the Ethereum network [5].

We show a hypothetical cost comparison between PPS, PPRG, PPRE, and
PPRP based on the Gas usage statistics from [5,20]. For the relevant operations,
the cost in Gas units is: ADD: 3, SUB: 3, MUL: 5, DIV: 5, EXP(x): 10+10∗log(x)
and LOG(x): 365 + 8∗ size of x in bytes. Table 2 presents the comparison2. We
remark that the only difference in the induced CC game will be the computation
of the refund bonus for each contributing agent. This refund will depend on the
underlying refund bonus scheme. Thus, we focus only on the gas cost because of
the said schemes.

From Table 2, for every agent, PPRG takes 21 gas units, PPRP takes 31
gas units, PPRE takes at least 31 gas units, and PPS takes at least 407 gas
units. When implemented on smart contracts, PPS is an expensive mechanism
because of its logarithmic scoring rule for calculating payment rewards. PPRG,
PPRP, and PPRE, on the other hand, use simpler operations and therefore have
minimal operational costs.

Inference from Table 2. Note that the average gas price per unit varies. At
the time of writing this paper, we have the average gas price ≈200 GWei, i.e.,
2 × 10−7 ETH; and also 1 ETH ≈ 1162 USD. As a result, the cost incurred by
a crowdfunding platform, assuming when n = 100, is (approximately) (i) PPS:
10 USD (at least); (ii) PPRG: 0.5 USD; (iii) PPRE: 0.72 USD (at least); and
(iv) PPRP: 0.72 USD. Further, in December 2019, Kickstarter had 3524 active
projects [12]. The data implies the total cost across the projects for (i) PPS:
35240 USD; and (ii) PPRG: 2537.28 USD. PPRG reduces the cost incurred by
the platform by (at least) ≈14 times.
2 We do not require any exponential calculation in PPRG – by storing the last GP

term in a temporary variable.
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5 PPRG

We now describe the mechanism Provision Point mechanism with Refund through
Geometric Progression (PPRG), for crowdfunding a public project. PPRG incen-
tivizes an interested agent to contribute as soon as it arrives at the crowdfund-
ing platform. In PPRG, for the exact contribution of Agent i and Agent j, i.e.,
xi = xj , the one who contributed earlier obtains a higher share of the refund
bonus. These differences in shares are allocated using an infinite geometric pro-
gression series (GP) with a common ratio of < 1.

Refund Bonus Scheme. The sum of an infinite GP with a > 0 as the first term
and 0 < 1/γ < 1 as the common ratio is: K1 = a × ∑∞

i=0(1/γ)i = aγ
γ−1 . With

this, we propose a novel refund bonus scheme,

RPPRG
i (σ) = pi =

(
xi + a × (1/γ)i−1

C + K1

)

B (5)

for every Agent i ∈ N , B > 0 as the total bonus budget allocated for the project
by the SP and where σ = ((xi, ti) | ∀i ∈ N). The values a and γ are mechanism
parameters which the SP is required to announce at the start of the project.

Equilibrium Analysis of PPRG. The analysis follows from Theorem 1.

Theorem 3. For PPRG, with the refund pi as described by Eq. 5 ∀i ∈ N , sat-
isfying 0 < B ≤ ϑ − H and with the payoff structure as given by Eq. 1, a

set of strategies
{

(σ∗
i = (x∗

i , yi)) : if hyi = 0 then x∗
i = 0 otherwise x∗

i ≤
θi(H+K1)−aB×(1/γ)i−1

H+K1+B

}

∀i ∈ N are sub-game perfect equilibria, such that at

equilibrium C = H. In this, x∗
i is the contribution towards the project, yi is

the arrival time to the project of Agent i, respectively.

Proof. We prove the theorem with the following steps.

Step 1: Since RPPRG(·) satisfies Condition 1 (Claim 1) and Condition 2 (Claim 2)
and has a payoff structure as given by Eq. 1, from Theorem 1 we get the result
that PPRG induces a sequential move game and thus, can be implemented in a
sequential setting.

Step 2: From Claim 2, the best response for any agent is to contribute as soon
as he arrives i.e., at time yi.

Step 3: We assume that each agent is symmetric in its belief for the provision
of the project. Moreover, from Theorem 1, agents know that the project will be
provisioned at equilibrium. Therefore, for any agent, its equilibrium contribution
becomes that x∗

i for which its provisioned payoff is greater than or equal to its
not provisioned payoff. Now, with C = H at equilibrium,

θi − x∗
i ≥ pi =

(
x∗

i + a × (1/γ)i−1

C + K1

)

B
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⇒ x∗
i ≤ θi(H + K1) − aB × (1/γ)i−1

H + K1 + B

Step 4: Summing over x∗
i , ∀i we get,

B ≤ (H + K1)ϑ − H2 − HK1

H + K1
.

as
∑

i∈N x∗
i = H. From the above equation, we get

0 < B ≤ (H + K1)ϑ − H2 − HK1

H + K1
= ϑ − H

as a sufficient condition for existence of Nash Equilibrium for PPRG.

Step 5: We can also show that the set of strategies are also sub-game perfect
through backward induction and by observing specific scenarios [10, Theorem 2
(Step 5)].

Discussion. Observe that, as the refund bonus decreases with time (Claim 2),
each agent in PPRG is better off contributing once instead of breaking up its
contribution. This result follows as we assume that each agent’s belief for the
project’s provision is symmetric and does not vary.

With Theorem 3, we identify a set of pure-SPE at which the project is pro-
visioned. However, we do not claim that these are the only set of pure-SPE pos-
sible. We leave it for future work to explore other possible pure-SPE at which
the project gets provisioned. Also, the equilibrium analysis of PPRE and PPRP
is similar to Theorem 3.

Coalition-Proof. Along similar lines of the argument presented in [21, Sect. 4.2],
we can show that the game induced in PPRG will be coalition-proof. This is
because the equilibrium in the induced game follows the aggregate concurrence
principle [13], i.e., at equilibrium, agents must agree on the choice of aggregate
outcomes. As it immediately follows from this principle, the equilibria produced
by PPRG (Theorem 3) are coalition-proof.

6 Conclusion

In this paper, we looked for provision point mechanisms for CC with refund
bonus schemes. Towards it, we introduced Contribution Monotonicity and Time
Monotonicity for refund bonus schemes in CC mechanisms. We proved that
these two conditions are sufficient to implement provision point mechanisms
with refund bonuses to possess an equilibrium that avoids free-riding and the race
condition (Theorem 1). We then proposed three simple refund bonus schemes and
design novel mechanisms that deploy them, namely, PPRG, PPRE, and PPRP.
We showed that PPRG has much less cost when implemented as a smart contract
over the Ethereum framework. We identified a set of sub-game perfect equilibria
for PPRG in which it provisions the project at equilibrium (Theorem 3).



Designing Refund Bonus Schemes for Provision Point Mechanism 31

References

1. Abernethy, J., Chen, Y., Vaughan, J.W.: Efficient market making via convex opti-
mization, and a connection to online learning. ACM Trans. Econ. Comput. 1(2),
12 (2013)

2. Alaei, S., Malekian, A., Mostagir, M.: A dynamic model of crowdfunding. In:
Proceedings of the 2016 ACM Conference on Economics and Computation, pp.
363–363. EC 2016, ACM, New York, NY, USA (2016). https://doi.org/10.1145/
2940716.2940777

3. Arieli, I., Koren, M., Smorodinsky, R.: The crowdfunding game. In: Proceedings
of the Web and Internet Economics - 13th International Conference, WINE 2017,
17–20 December 2017, Bangalore, India (2017)

4. Bagnoli, M., Lipman, B.L.: Provision of public goods: fully implementing the core
through private contributions. Rev. Econ. Stud. 56(4), 583–601 (1989)

5. Buterin, V.: Ethereum: a next-generation smart contract and decentralized applica-
tion platform (2014). https://github.com/ethereum/wiki/wiki/%5BEnglish%5D-
White-Paper

6. Chandra, P., Gujar, S., Narahari, Y.: Crowdfunding public projects with provision
point: a prediction market approach. In: ECAI, pp. 778–786 (2016)

7. Chandra, P., Gujar, S., Narahari, Y.: Referral-embedded provision point mecha-
nisms for crowdfunding of public projects. In: Larson, K., Winikoff, M., Das, S.,
Durfee, E.H. (eds.) Proceedings of the 16th Conference on Autonomous Agents
and MultiAgent Systems, AAMAS 2017, 8–12 May 2017, São Paulo, Brazil, pp.
642–650. ACM (2017). http://dl.acm.org/citation.cfm?id=3091218

8. Damle, S., Moti, M.H., Chandra, P., Gujar, S.: Aggregating citizen preferences
for public projects through civic crowdfunding. In: Proceedings of the 18th Inter-
national Conference on Autonomous Agents and MultiAgent Systems (AAMAS
2019), pp. 1919–1921. International Foundation for Autonomous Agents and Mul-
tiagent Systems, Richland (2019)

9. Damle, S., Moti, M.H., Chandra, P., Gujar, S.: Civic crowdfunding for agents with
negative valuations and agents with asymmetric beliefs. In: Kraus, S. (ed.) Pro-
ceedings of the Twenty-Eighth International Joint Conference on Artificial Intel-
ligence, IJCAI 2019, 10–16 August 2019, Macao, China, pp. 208–214. ijcai.org
(2019). https://doi.org/10.24963/ijcai.2019/30

10. Damle, S., Moti, M.H., Gujar, S., Chandra, P.: Designing refund bonus schemes for
provision point mechanism in civic crowdfunding. CoRR abs/1810.11695 (2018).
http://arxiv.org/abs/1810.11695

11. GoFundMe: Gofundme – Wikipedia, the free encyclopedia (2020). https://en.
wikipedia.org/w/index.php?title=GoFundMe

12. Kickstarter: Kickstarter – Wikipedia, the free encyclopedia (2020). https://en.
wikipedia.org/w/index.php?title=Kickstarter

13. Martimort, D., et al.: Aggregate representations of aggregate games (04 2010)
14. Schmidtz, D.: The limits of government (boulder) (1991)
15. Shen, W., Crandall, J.W., Yan, K., Lopes, C.V.: Information design in crowdfund-

ing under thresholding policies. In: Proceedings of the 17th International Confer-
ence on Autonomous Agents and MultiAgent Systems, pp. 632–640. International
Foundation for Autonomous Agents and Multiagent Systems (2018)

16. Smart Contract: Smart contract – Wikipedia, the free encyclopedia (2006). https://
en.wikipedia.org/wiki/Smart contract

17. Starbase: Starbase (2016). https://starbase.co/

https://doi.org/10.1145/2940716.2940777
https://doi.org/10.1145/2940716.2940777
https://github.com/ethereum/wiki/wiki/%5BEnglish%5D-White-Paper
https://github.com/ethereum/wiki/wiki/%5BEnglish%5D-White-Paper
http://dl.acm.org/citation.cfm?id=3091218
https://doi.org/10.24963/ijcai.2019/30
http://arxiv.org/abs/1810.11695
https://en.wikipedia.org/w/index.php?title=GoFundMe
https://en.wikipedia.org/w/index.php?title=GoFundMe
https://en.wikipedia.org/w/index.php?title=Kickstarter
https://en.wikipedia.org/w/index.php?title=Kickstarter
https://en.wikipedia.org/wiki/Smart_contract
https://en.wikipedia.org/wiki/Smart_contract
https://starbase.co/


32 S. Damle et al.

18. Strausz, R.: A theory of crowdfunding: a mechanism design approach with demand
uncertainty and moral hazard. Am. Econ. Rev. 107(6), 1430–76 (2017)

19. WeiFund: Weifund - decentralised fundraising (2015). http://weifund.io/
20. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.

Ethereum Project Yellow Paper 151, 1–32 (2014)
21. Zubrickas, R.: The provision point mechanism with refund bonuses. J. Public Econ.

120, 231–234 (2014)

http://weifund.io/


Federated Learning for Non-IID Data:
From Theory to Algorithm

Bojian Wei1,2 , Jian Li1(B) , Yong Liu3 , and Weiping Wang1

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{weibojian,lijian9026,wangweiping}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

3 Renmin University of China, Beijing, China
liuyonggsai@ruc.edu.cn

Abstract. Federated learning suffers from terrible generalization perfor-
mance because the model fails to utilize global information over all clients
when data is non-IID (not independently or identically distributed) par-
titioning. Meanwhile, the theoretical studies in this field are still insuf-
ficient. In this paper, we present an excess risk bound for federated
learning on non-IID data, which measures the error between the model
of federated learning and the optimal centralized model. Specifically,
we present a novel error decomposition strategy, which decomposes the
excess risk into three terms: agnostic error, federated error, and approx-
imation error. By estimating the error terms, we find that Rademacher
complexity and discrepancy distance are the keys to affecting the learning
performance. Motivated by the theoretical findings, we propose FedAvgR

to improve the performance via additional regularizers to lower the excess
risk. Experimental results demonstrate the effectiveness of our algorithm
and coincide with our theory.

Keywords: Federated learning · Non-IID · Excess risk bound

1 Introduction

Federated learning (FL) [25] is a new machine learning paradigm where a large
number of clients collaboratively train a model under the coordination of a cen-
tral server. Different from centralized learning (CL), in FL setting, the raw data
of each client is stored locally, other clients and the central server have no access
to it. Instead, the global model is updated by alternately performing local train-
ing and server aggregating. At present, FL still faces many problems [14], one
severe problem in FL is that training data is usually non-IID among clients, and
this leads to the decline of the model’s effectiveness compared to CL.

Some studies [28,31,33] try to solve this problem by designing new optimiza-
tion algorithms. FedAvg [25] is an efficient algorithm based on iterative model
averaging, but it might be less accurate when dealing with non-IID data. FedProx
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[15] adds a proximal term to local objectives to constrain the gap between local
models and the global model, but the convergence is slower. SCAFFOLD [9] con-
trols variates to reduce the variance among local updates, while it increases com-
munication costs. Using local momentum [38] instead of local SGD empirically
improves the accuracy in heterogeneous settings, but such methods also require
additional communication. FL with server momentum [35] performs better than
many existing methods including SCAFFOLD without increasing communication
costs, but such methods do not consider the specific non-IID setting. FedNova
[34] was proposed to tackle objective inconsistency problem and it could be
combined with some acceleration techniques [17], while it has not taken the dis-
tribution discrepancy into account. Another effective way is to apply clustering
[5,30] to FL, where clients are divided into several groups based on their sim-
ilarities, but the metric of clustering and the number of clusters needs to be
determined in advance.

On the contrary, there are only a few generalization analysis [13,21] for FL
under non-IID setting. Many works have analyzed federated optimization from
the aspect of homogeneity [2,32] or heterogeneity [18,36], where some works
focus on the convergence of federated stochastic algorithms [7] and have made
progress in relaxing the assumptions [18]. Most theoretical works paid more
attention to the optimization problem with convergence analysis [9,16] on non-
IID data, some of which showed that the heterogeneity of data slows down the
convergence. From the perspective of generalization, agnostic federated learning
[26] provided a new point on FL, but the target is to optimize the worst case
in the hypothesis, which often performs not well in practice, and it only focused
on the generalization error of FL. Thus, there is still a lack of generalization
analysis between FL and CL under the traditional framework, which may help
to further improve the performance of FL under non-IID setting.

In this paper, we analyze the excess risk of FL on non-IID data, which mea-
sures the gap between FL and the optimal CL, and we give the corresponding
excess risk bound. With proper error decompositions, the excess risk can be
divided into agnostic error, federated error, and approximation error, then we
further construct ingenious error decompositions to derive the upper bound of
these errors by means of Rademacher complexity [1,27] and discrepancy dis-
tance [3,24,40]. Based on the theoretical analysis, we devise an effective algo-
rithm, where we introduce three regularizers to ensure the performance of FL
on non-IID data. Experimental results on the synthetic dataset and real-world
datasets show that our proposed algorithm outperforms the previous methods
and validates our theory.

The contributions of our work are summarized as follows:

– Theoretically, we give the excess risk bound between FL on non-IID data and
CL for the first time and find out the factors that affect the accuracy decline.
We give a reasonable explanation for the bound by decomposing the excess
risk into three terms: agnostic error, federated error and approximation error,
where each term has a detailed analysis with complete proof.



Federated Learning for Non-IID Data: From Theory to Algorithm 35

– Algorithmically, we propose a novel algorithm FedAvgR (Federated Averag-
ing with Regularization) to improve the performance of FL on non-IID data,
which is regularized by Rademacher complexity and discrepancy distance.
Furthermore, we design a learning framework for a linear classifier with non-
linear feature mapping, where all the parameters will be updated automati-
cally through back-propagation.

2 Preliminaries and Notations

There are some general notations used in this paper. Assume that there are
K clients in a FL setting, where data on the k-th client is drawn i.i.d. from
distribution ρk, data on different clients may not have the same distribution
(ρi �= ρj), and all clients participate in each round (cross-silo FL). The global
distribution is assumed to be a mixture distribution of local distributions on all K
clients: ρ =

∑K
k=1 pkρk, where pk is the mixture weight (

∑K
k=1 pk = 1). Actually,

the mixture weight pk is unknown, so an estimated weight p̂k will be applied in
practice, which brings us the estimated global distribution ρ̃ =

∑K
k=1 p̂kρk.

In this paper, we focus on the multi-classification task. We denote the hypoth-
esis space H = {x → f(x)} consisting of labeling functions f : X → Y, where
X ⊆ R

d represents the input space and Y ⊆ R
C represents the label space,

training samples (xk, yk) on the k-th client with size of nk are i.i.d. drawn
from ρk(x, y). The labeling function f is formed as f(x) = W T φ(x), where
W ∈ R

D×C , φ(x) ∈ R
D and φ(·) is the feature mapping with learnable param-

eters ϕ.
Let �(f(x), y) be the loss function, which is assumed to be upper bounded

by M (M > 0), and L = {�(f(x), y)|f ∈ H} be the family of loss functions on
the hypothesis H, the expected loss of FL on ρ can be described as

Eρ(f) =
K∑

k=1

pkEρk
(f) =

K∑

k=1

pk

∫

X×Y
�(f(x), y)dρk(x, y),

and the corresponding empirical loss is

Êρ(f) =
K∑

k=1

pkÊρk
(f) =

K∑

k=1

pk
1
nk

nk∑

i=1

�(f(xk
i ), yk

i ).

The empirical learner of FL on the estimated distribution ρ̃ is denoted by
f̃fl = arg minf∈H

∑K
k=1 p̂kÊρk

(f), and we define the expected (optimal) learner
in H as f∗ = arg minf∈H Eρ(f), which minimizes the expected loss on ρ.

The performance of a learning model is usually measured by the excess risk :
Eρ(f̃fl) − Eρ(f∗). Unlike the generalization error, excess risk represents the gap
between an empirical model and the optimal model, which has not been consid-
ered recently in FL. In the following, we consider bounding this excess risk.

3 Generalization Analysis

In this section, we will derive the excess risk bound between FL and CL.
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To this end, we decompose the excess risk into agnostic error A1, federated
error A2, and approximation error A3:

Eρ(f̃fl)−Eρ(f∗) ≤ Eρ(f̃fl) − Eρ(f̂fl)
︸ ︷︷ ︸

A1:=

+ Eρ(f̂fl) − Eρ(f̂cl)
︸ ︷︷ ︸

A2:=

+ Eρ(f̂cl) − Eρ(f∗)
︸ ︷︷ ︸

A3:=

,

(1)
where f̂fl = arg minf∈H

∑K
k=1 pkÊρk

(f) denotes the empirical learner on the
unknown real distribution ρ and f̂cl = arg minf∈H

1
n

∑n
i=1 �(f(xi), yi) denotes

the empirical learner of CL.
As mentioned above, p̂k �= pk results in the difference between f̃fl and f̂fl,

which is caused by the agnostic nature of the mixture weight. And, in CL setting,
model is trained directly on the samples {(xn, yn), ..., (xn, yn)} i.i.d. drawn from
ρ(x, y) with size of n (n =

∑K
k=1 nk).

In (1), A1 represents the difference of expected loss for FL between the esti-
mated distribution and the real distribution, A2 represents the difference of
expected loss between FL and CL, and A3 represents the approximation error
of CL to the optimal solution.

3.1 Bounds of Three Error Terms

To measure the performance gap of a model on different distributed data, we
introduce the discrepancy distance [24] as follows:

discL(Q1, Q2) = sup
f∈H

|EQ1(f) − EQ2(f)| , (2)

where Q1 and Q2 are two different distributions.
Using Rademacher complexity and discrepancy distance, we bound A1, A2,

and A3 as follows.

Theorem 1 (Agnostic Error Bound). Assume that �(f(x), y) is λ-
Lipschitz equipped with the 2-norm, that is |�(f(x), y)−�(f(x′), y′)| ≤ λ‖f(x)−
f(x′)‖2, B = supf=W T φ(x)∈H ‖W ‖∗, where ‖ · ‖∗ denotes the trace norm. With
probability at least 1 − δ (δ > 0), we have:

A1 ≤ 2discL(ρ̃, ρ) + 4
√

2λB
K∑

k=1

p̂k

nk

√
C‖φ(Xk)‖F + 6M

√
S(p̂||n̄) log(2/δ)

2n
,

where ‖φ(Xk)‖F =
√∑nk

i=1

〈
φ(xk

i ), φ(xk
i )

〉
, S(p̂||n̄) = χ2(p̂||n̄) + 1, χ2 denotes

the chi-squared divergence, p̂ = [p̂1, ..., p̂K ], and n̄ = 1
n [n1, ..., nK ].

Proof. We first decompose A1 into the following parts:

A1 =Eρ(f̃fl) − Eρ̃(f̃fl) + Eρ̃(f̃fl) − Eρ̃(f̂fl)
︸ ︷︷ ︸

A′
1:=

+Eρ̃(f̂fl) − Eρ(f̂fl),
(3)
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According to 2, we know that Eρ(f̃fl) − Eρ̃(f̃fl) ≤ discL(ρ, ρ̃) and Eρ̃(f̂fl) −
Eρ(f̂fl) ≤ discL(ρ̃, ρ). Then, We further decompose A′

1 as:

A′
1 = Eρ̃(f̃fl) − Êρ̃(f̃fl)

︸ ︷︷ ︸
A11:=

+ Êρ̃(f̃fl) − Êρ̃(f̂fl)
︸ ︷︷ ︸

A12:=

+ Êρ̃(f̂fl) − Eρ̃(f̂fl)
︸ ︷︷ ︸

A13:=

.

where A11 and A13 represent the generalization errors of f̃fl and f̂fl, respectively,
which can be bounded by weighted Rademacher complexity.

Definition 1 (Weighted Rademacher Complexity). Let H be a hypothesis
space of f defined over X , L be the family of loss functions associated to H,
n = [n1, ..., nK ] be the vector of sample sizes and p = [p1, ..., pK ] be the mixture
weight vector, the empirical weighted Rademacher complexity of L is

R̂(L,p) = Eε

[

sup
f∈H

K∑

k=1

pk

nk

nk∑

i=1

εk
i l(f(xk

i ), yk
i )

]

,

and the empirical weighted Rademacher complexity of H is

R̂(H,p) = Eε

[

sup
f∈H

K∑

k=1

pk

nk

nk∑

i=1

C∑

c=1

εk
icfc(xk

i )

]

,

where fc(xk
i ) is the c-th value of f(xk

i ) corresponding to the C classes, εk
i s and

εk
ics are independent Rademacher variables, which are uniformly sampled from

{−1,+1}, respectively.
For any sample S = {S1, ...Sn} drawn from ρ, define Φ(S) by Φ(S) =

supf∈H(Eρ̃(f) − Êρ̃(f)). According to [26], we have

Φ(S) ≤ 2R̂(L, p̂) + 3M

√
χ2(p̂||n̄) + 1

2n
log

2
δ
. (4)

According to [8], it holds that R̂(L, p̂) ≤ √
2λR̂(H, p̂) under the Lipschitz

assumption. Applying Hölder’s inequality, we have:

R̂(H, p̂) = Eε

[

sup
f∈H

K∑

k=1

p̂k

nk
〈W k,Φk〉

]

≤ Eε

[
K∑

k=1

p̂k

nk
sup
f∈H

〈W k,Φk〉
]

≤ Eε

[
K∑

k=1

p̂k

nk
sup
f∈H

‖W k‖∗‖Φk‖F

]

≤ Eε

[
K∑

k=1

p̂k

nk
B‖Φk‖F

]

= B

K∑

k=1

p̂k

nk
Eε [‖Φk‖F ] ≤ B

K∑

k=1

p̂k

nk

√
Eε[‖Φk‖2F ].

(5)
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where W k,Φk = [
∑nk

i=1 εk
i1φ(xk

i ), ...,
∑nk

i=1 εk
iCφ(xk

i )] ∈ R
D×C and 〈W k,Φk〉 =

Tr(W T
k Φk). Eε[‖Φk‖2F ] can be further bounded as follows [10]:

Eε[‖Φk‖2F ] ≤ Eε

⎡

⎣
C∑

c=1

∥
∥
∥
∥
∥

nk∑

i=1

εk
icφ(xk

i )

∥
∥
∥
∥
∥

2

2

⎤

⎦ ≤
C∑

c=1

Eε

⎡

⎣

∥
∥
∥
∥
∥

nk∑

i=1

εk
icφ(xk

i )

∥
∥
∥
∥
∥

2

2

⎤

⎦

≤
C∑

c=1

Eε

⎡

⎣
nk∑

i,j=1

εk
icε

k
jc〈φ(xk

i ), φ(xk
j )〉

⎤

⎦ = C‖φ(Xk)‖2F .

(6)

Based on the definition of learners, f̃fl minimizes the empirical loss on
(x, y) ∼ ρ̃, while f̂fl minimizes the empirical risk on (x, y) ∼ ρ, so it is obvious
that Êρ̃(f̃fl) ≤ Êρ(f̂fl). Therefore, the proof of Theorem 1 is completed.

A1 (agnostic error) is mainly caused by the gap between the estimated distri-
bution ρ̃ and the real distribution ρ, because the underlying mixture weight pk is
unknown. S(p̂||n̄) represents the distance between p̂k and the uniform mixture
weight nk

n , which gives a guidance on the choice of p̂k.

Theorem 2 (Federated Error Bound). Under the same assumptions as
Theorem 1, with probability at least 1 − δ(δ > 0), we have:

A2 ≤
K∑

k=1

pk

(

discL(ρk, ρ) +
4
√

2λB

nk

√
C‖φ(Xk)‖F

)

+
K∑

k=1

pk

⎛

⎝6M

√
log(2/δ)

2nk

⎞

⎠ .

Proof. Note that A2 =
∑K

k=1 pk[Eρk
(f̂fl) − Eρ(f̂cl)

︸ ︷︷ ︸
A′

2:=

], we decompose A′
2 as:

Eρk
(f̂fl) − Êρk

(f̂fl)
︸ ︷︷ ︸

A21

+ Êρk
(f̂fl) − Êρk

(f̂cl)
︸ ︷︷ ︸

A22

+ Êρk
(f̂cl) − Eρk

(f̂cl)
︸ ︷︷ ︸

A23

+ Eρk
(f̂cl) − Eρ(f̂cl)

︸ ︷︷ ︸
A24

.

Substituting A22 into the equation of A2, due to the definition of f̂fl, we
have

∑K
k=1 pk[Êρk

(f̂fl) − Êρk
(f̂cl)] ≤ 0. Similar to Theorem 1, the rest parts of

A′
2 can be bounded by Rademacher complexity [27] and discrepancy distance.

Therefore, the proof is completed by bounding the four parts.

A2 (federated error) is mainly caused by the FL setting. Samples on different
clients are drawn from different distributions, which results in the discrepancy
between ρk and ρ, where the CL model is directly trained on ρ.

Theorem 3 (Approximation Error Bound). Under the same assumptions
as Theorem 1, with probability 1 − δ(δ > 0), we have:

A3 ≤ 4
√

2λB

n

√
C‖φ(X)‖F + 3M

√
log(2/δ)

2n
,

where ‖φ(X)‖F =
√∑n

i=1〈φ(xi), φ(xi)〉.
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A3 (approximation error) is a classic excess risk bound in CL setting, which
represents the gap between an empirical learner and the optimal learner in H.

Remark 1 (Proof Novelty). 1) The excess risk bound for FL on non-IID data
can not be derived directly. To bridge f̃fl to f∗, we decompose the excess risk
into three error terms. 2) There is no available tool can be applied to bound A1

and A2 directly. Thus, we propose a two-stage error decomposition for A1 and
a novel decomposition for A2 (See proofs for details).

3.2 Excess Risk Bound

The excess risk bound is obtained by combining the above bounds together.

Theorem 4 (Excess Risk Bound). Under the same assumptions as Theorem
1, With probability at least 1 − δ (δ > 0), the excess risk bound of federated
learning on non-IID data holds as follows:

Eρ(f̂fl) − Eρ(f∗) ≤ O (G1 + G2 + G3) , (7)

where G1 = discL(ρ̃, ρ)+
K∑

k=1

p̂kB
√

C
nk

‖φ(Xk)‖F +
√

S(p̂||n̄)
n , G2 = B

√
C

n ‖φ(X)‖F +
√

1
n and G3 =

K∑

k=1

pk[discL(ρk, ρ) + B
√

C
nk

‖φ(Xk)‖F +
√

1
nk

].

According to Theorem 4, to lower the excess risk, we need to reduce
discL(ρk, ρ), constrain ‖W ‖∗ and ‖φ(Xk)‖F , and at the same time reduce
discL(ρ̃, ρ).

In non-IID condition, samples on different clients are drawn from different
distributions, so the gap between ρk and ρ certainly exists. Furthermore, pk is
unknown, how can we reduce discL(ρ̃, ρ)? Actually, if we reduce discL(ρk, ρ), the
differences among local distributions will become smaller, that is, the degree of
non-IID will be reduced. At this time, ρk is approximate to ρ, so p̂k has a small
effect on discL(ρ̃, ρ), especially, when ρk = ρ, whatever value we choose for p̂k,
it’s not going to make big difference to the global distribution. Therefore, we are
able to lower the excess risk by reducing discL(ρk, ρ), ‖W ‖∗ and ‖φ(Xk)‖F .

On the other hand, when φ(·) is upper bounded by κ2 and p̂k is equal to pk, if

we can reduce discL(ρk, ρ) to 0, then (7) will be O[(κB
√

C+1)
∑K

k=1 p̂k

√
1

nk
]. In

this case, if the number of samples is equal (nk = n/K, ∀k = 1, ...,K), we have
O(κB

√
KC/n), which is the convergence rate for the counterpart of distributed

learning. Moreover, if we have only one client, we have O(κB
√

C/n), which is
the convergence rate for the counterpart of centralized learning. Thus, our theory
gives a more general framework that can be applied to FL as well as distributed
learning [37] and CL, with the latter two being a special case of the former.

Remark 2 (Novelty). Few of the existing theoretical studies of FL are concerned
with the excess risk. [26] analyzed federated learning under the agnostic frame-
work, which aims to improve the performance under the worst condition, and
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this may not get the optimal solution. Also, they just give the generalization
bound of agnostic federated learning. In this paper, we analyze the excess risk
between federated learning model on non-IID data and the optimal centralized
model under a more general framework and derive the excess risk bound, which
may provide a new path for theoretical analysis of federated learning.

4 Algorithm

Motivated by the excess risk bound, we propose FedAvgR (Federated Averaging
with Regularization) to improve the performance of FL on non-IID data.

Algorithm 1. FedAvgR. K clients are indexed by k, B is the local mini-batch size,

E is the number of local epochs, η is the learning rate, F represents the objective

function.
Server-Aggregate

1: initialize W 0 and ϕ0

2: for k = 1, ..., K do
3: ρ̂φ

k ← estimate the distribution of φ(x)

4: upload the parameters of ρ̂φ
k to the server

5: end for
6: get the global distribution ρ̂φ =

∑K
k=1 p̂kρ̂φ

k

7: for each round t = 1, 2, ... do
8: for each client k do
9: W k

t+1, ϕ
k
t+1, ρ̂

φ
k ← Client-Update(k, W t, ϕt, ρ̂

φ)
10: end for
11: update the global distribution ρ̂φ

12: W t+1 ← ∑K
k=1 p̂kW k

t+1, ϕt+1 ← ∑K
k=1 p̂kϕk

t+1

13: end for

Client-Update(k, W t, ϕt, ρ̂
φ)

1: draw samples Zρ̂φ from ρ̂φ

2: for epoch= 1, ..., E do
3: for (x, y) ∈ B do
4: calculate MMD[ρ̂φ

k , ρ̂φ] by (x, y) and Zρ̂φ

5: F = 1
B

∑

(x ,y)∈B �(f(x), y) + α‖W ‖∗ + β‖φ(X)‖F + γMMD[ρ̂φ
k , ρ̂φ]

6: W k
t+1 ← W t − η∇W tF , ϕk

t+1 ← ϕt − η∇ϕ t
F

7: end for
8: ρ̂φ

k ← estimate the distribution of φ(x)
9: end for

4.1 Regularization

Based on Theorem 4, we can constrain ‖W ‖∗, ‖φ(Xk)‖F , and discL(ρk, ρ) by
adding them to the objective function as regularizers [11,12].

Unlike ‖W ‖∗ and ‖φ(Xk)‖F , the discrepancy distance discL(ρk, ρ) is not an
explicit variable-dependent term, so we need to find an approach to quantify it.
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Another problem is that the local distribution ρk won’t change during training,
so we shall reduce the discrepancy after feature mapping. In other words, we can
reduce discL(ρφ

k , ρφ) instead of discL(ρk, ρ), where ρφ
k and ρφ are respectively

the local feature distribution on client k and global feature distribution.
We choose MMD (Maximum Mean Discrepancy) [4] to measure the distance

between different distributions Q1 and Q2, which is formed as MMD[Q1, Q2] =
supf∈H (EQ1 [f(x)] − EQ2 [f(x)]). Assume that H is a complete inner product
space of f , then H can be termed a reproducing kernel Hilbert space when the
continuous linear point evaluation mapping f → f(x) exists for all x ∈ X . Thus,
we can use inner product to represent f(x): f(x) = 〈f, φ(x)〉H, so it holds that
MMD[Q1, Q2] = ‖EQ1 [φ(x)],EQ2 [φ(x′)]‖H, and the related expansion is:

1
m2

m∑

i,j=1

〈φ(xi), φ(xj)〉H +
1
n2

n∑

i,j=1

〈φ(x′
i), φ(x′

j)〉H − 2
mn

m,n∑

i,j=1

〈φ(xi), φ(x′
j)〉H,

where m and n denotes the number of samples on Q1 and Q2, respectively.
Taking MMD[ρφ

k , ρφ] as a regularizer with ‖W ‖∗ and ‖φ(Xk)‖F , the objec-
tive function on the k-th client is

min
W ,ϕ

1
nk

nk∑

i=1

�(f(xk
i ), yk

i ) + α‖W ‖∗ + β‖φ(Xk)‖F + γMMD[ρφ
k , ρφ].

4.2 Learning Framework

The procedure of FedAvgR is listed in Algorithm 1. First, the server sends the
initial parameters to all clients, then we estimate the empirical local distribution
ρ̂φ

k and upload them to the server to get the empirical global distribution ρ̂φ.
Next, at each communication round, each client updates the model parameters
and reestimates ρ̂φ

k locally. Then, the server aggregates local updates and renews
ρ̂φ based on ρ̂φ

k , which will be sent to all clients again [23].
In order to calculate MMD[ρφ

k , ρφ] in client-update, we first drawn samples
Zρ̂φ from ρ̂φ, and then calculate MMD[ρφ

k , ρφ] by φ(xk) and Zρ̂φ . In server-
aggregate, we choose p̂k = nk/n to aggregate the updates, so that S(p̂||n̄) can
be minimized. Particularly, when discL(ρφ

k , ρφ) is close to 0, the learning problem
degenerates into the distributed learning, where nk/n is widely used.

We design a learning framework (Fig. 1) for linear classifier to update all
the parameters automatically through back-propagation, where W T φ(x) can be
treated as a fully-connected neural network with one hidden layer and we only
need to initialize the parameters. Besides, we apply D feature mappings with dif-
ferent parameters to reduce variance. Moreover, this framework is generalizable,
where φ(·) can be replaced by neural network, kernel method [22], etc.

5 Experiment

In this section, we will introduce our experimental setup and conduct extensive
experiments to demonstrate our theory and show the effectiveness of FedAvgR.
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Fig. 1. Architecture of local learning framework

5.1 Experimental Setup

We evaluate our algorithm and make further analysis on some real-world datasets
and the synthetic dataset. All the experiments are trained on a Linux x86 64
server (CPU: Intel(R) Xeon(R) Silver 4214 (RAM: 196 GB)/GPU: NVIDIA
GeForce RTX-2080ti).

The synthetic dataset in our experiment is generated related to the method
in [16], where the number of samples nk on client k follows a power law. We
choose three binary-classification datasets (a1a, svmguide1 and splice) and six
multi-classification datasets (vehicle, dna, pendigits, satimage, usps and MNIST)
from LIBSVM [6]. We apply the partitioning method related to [25] to all these
datasets to get non-IID data. We sort each dataset by the label and divide it into
N/Ns shards of size Ns, where N is the total number of samples, then we assign
each client 2 shards. The detailed information for the real-world datasets [6] is
listed in Table 1, where the training sets and the test sets are officially splited
except vehicle.

Table 1. Information of different datasets

Dataset Class Training size Testing size Features

a1a 2 1605 30956 123

svmguide1 2 3089 4000 4

splice 2 1000 2175 60

vehicle 4 500 446 18

dna 3 2000 1186 180

pendigits 10 7494 3498 16

satimage 6 4435 2000 36

usps 10 7291 2007 256

MNIST 10 60000 10000 28 × 28

In the following experiments, we use random Fourier feature to do the fea-
ture mapping. According to [29], random feature mapping can be formed as
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√
2 cos(ωT x + b), where ω is sampled from N (0, σ2), σ is related to the corre-

sponding Gaussian kernel, and b is uniformly sampled from [0, 2π].

5.2 Analysis of FedAvgR

In this part, we will discuss the effects of different components on the perfor-
mance of our algorithm. We set the feature dimension as 100, the minimum
number of local samples as 100, and the number of clients as 10.

Fig. 2. Distributions Changes via Training: Black points are sampled from ρ̂φ, and
others are sampled from ρ̂φ

ks, the corresponding discrepancy distance is labeled at the
bottom of each figure.

Impact of MMD[ρφ
k , ρφ ]. MMD[ρφ

k , ρφ] is used to match local distributions to
the global distribution, which is the key component to solve the non-IID problem.
We run 100 rounds on the synthetic dataset with (u, v) = (1, 1) and sample 100
points from each ρ̂φ

k and ρ̂φ. To show its impact, we visualize the distributions
changes via training process in Fig. 2, where all the points are transformed to
2D by PCA (Principal Component Analysis) and discL(ρφ

k , ρφ) labeled in Fig. 2
is calculated by the distance among the centroids of each group of points. (a)
shows the distributions after initializing by random feature, we find that there
exists a certain distance between ρ̂φ

k and ρ̂φ. (b) shows the distributions after 30
rounds training, and (c) shows the result after 60 rounds training, it is apparent
that discL(ρ̂φ

k , ρ̂φ) is getting smaller. (d) shows the distributions after 100 rounds,
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where the local distributions of all clients converge toward the global distribution,
which can reduce the negative impact of non-IID, and this also demonstrate the
effectiveness of FedAvgR.

Impacts of Different Regularizers. We conduct an experiment to analyze
the three regularizers. We run 250 rounds on the synthetic dataset with (u, v) =
(0.5, 0.5) and some real-world datasets with non-iid partitioning. As shown in
Table 2, FedAvgR mostly performs the best, and FedAvgR without regularization
(equal to FedAvg) performs the worst. The performances are close when FedAvgR
only contains ‖W ‖∗ or ‖φ(Xk)‖F , because both of them are designed to limit the
Rademacher complexity. The performance of FedAvgR only with MMD[ρφ

k , ρφ]
is only second to FedAvgR with all three regularizers on most datasets, which
exactly demonstrates our theory that when the gap between ρk and ρ becomes
smaller, the performance of the model will be improved.

Table 2. Test accuracy of FedAvgR with different regualrizers

Dataset No regularizer ‖W ‖∗ ‖φ(Xk)‖F MMD All regularizers

svmguide1 89.05 89.20 89.45 89.61 90.70

vehicle 77.12 77.17 77.17 77.46 78.32

dna 95.33 95.52 95.36 95.45 95.70

pendigits 95.70 95.71 95.74 95.94 95.90

usps 94.57 94.72 94.82 94.80 94.82

synthetic 95.82 96.07 96.06 96.12 96.23

5.3 Comparison with Other Methods

In this part, we compare FedAvgR with OneShot [39], FedAvg [25], FedProx [15]
and FL+HC [5] on several LIBSVM datasets. The regularization parameters of
FedAvgR are selected in α ∈ {10−8, 10−7, ..., 10−4}, β ∈ {10−6, 10−5, ..., 10−2},
and γ ∈ {10−4, 10−3, ..., 10−1} through 3-folds cross-validation [19,20], the regu-
larization parameters of FedProx are selected in {10−4, 10−3, ..., 10−1}, and the
number of clusters is set as 2 in FL+HC. The top-1 accuracy is used to evaluate
the performance, and the communication round is set as 300 with 10 epochs on
each client per round. We implement all the methods based on Pytorch and use
Momentum as optimizer with 10 instances in a mini-batch for training. We run
all the methods on each dataset 10 times with different random seeds, and we
apply t-test to estimate the statistical significance.

Instead of partitioning the test samples to each client, we test all the algo-
rithms with the entire test set of each dataset, because our target is to learn a
global model that has the best generalized performance on the global distribution
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ρ. OneShot aggregates local models when local trainings converge, FedAvg itera-
tively averages local models by nk/n, FedProx adds the last-round’s global model
to local training as regularization based on FedAvg, and FL+HC uses hierarchical
clustering to divide clients into several clusters and applies FedAvg separately.

According to the results in Table 3, FedAvgR shows the best performances
on all datasets, which means that the use of three regularizers brings notable
improvement coincides with our theoretical analysis. OneShot, FedAvg and
FedProx do not consider or explicitly deal with the differences among local distri-
butions, which limits the model’s performance on non-IID data, while FedAvgR
reduces the discrepancies between ρ̂φ

ks and ρ̂φ. FL+HC is a personalized method
for scenarios where each client has its own test samples. In particular, when the
number of clusters is 1, FL+HC is equal to FedAvg.

On most datasets, FedAvgR is significantly better than other methods with
confidence at level 95%. However, on a1a and splice, the advantage of our algo-
rithm is not significant. The reason is that the datasets are not balanced, where
the number of training samples is far less than the number of test samples.

Table 3. Test Accuracy on Real-World Datasets. We run methods on each dataset 10
times, each with 300 rounds. We bold the numbers of the best method and underline
the numbers of other methods which are not significantly worse than the best one.

Dataset OneShot FedAvg FedProx FL+HC FedAvgR

a1a 76.86 ± 0.30 84.29 ± 0.06 84.27 ± 0.06 81.63 ± 0.94 84.30 ± 0.06

svmguide1 71.50 ± 4.21 90.95 ± 0.86 91.19 ± 0.84 85.66 ± 4.48 91.77 ± 1.01

splice 75.95 ± 4.56 90.37 ± 0.21 90.38 ± 0.20 85.12 ± 2.14 90.40 ± 0.26

vehicle 52.31 ± 4.36 78.61 ± 1.08 78.58 ± 1.06 62.24 ± 8.12 78.82 ± 0.98

dna 63.73 ± 1.02 95.23 ± 0.17 95.18 ± 0.21 92.09 ± 3.25 95.59 ± 0.23

pendigits 46.70 ± 2.32 94.87 ± 0.58 94.85 ± 0.59 86.81 ± 4.58 95.12 ± 0.48

satimage 73.07 ± 2.39 88.83 ± 0.41 88.46 ± 0.31 76.72 ± 2.96 88.93 ± 0.39

usps 56.83 ± 4.06 94.57 ± 0.15 94.53 ± 0.13 88.03 ± 3.62 94.80 ± 0.19

MNIST 68.80 ± 2.06 97.26 ± 0.09 97.24 ± 0.07 85.13 ± 2.23 97.34 ± 0.06

6 Conclusion

In this paper, we give an excess risk bound for federated learning on non-IID
data through Rademacher complexity and discrepancy distance, analyzing the
error between it and the optimal centralized learning model. Based on our theory,
we propose FedAvgR to improve the performance of federated learning in non-
IID setting, where three regularizers are added to achieve a sharper bound.
Experiments show that our algorithm outperforms the previous methods. As
the first work to analyze the excess risk under a more general framework, our
work will provide a reference for the future study of generalization properties in
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federated learning with non-IID data. Besides, the proof techniques in this paper
are helpful to the research of error analysis related to the distributed framework.
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Abstract. We consider a fixed-price mechanism design setting where a
seller sells one item via a social network. Each buyer in the network has
a valuation of the item independently derived from a given continuous
distribution. Initially, the seller can only directly communicate with her
neighbors and sells the item among them. In order to get a higher rev-
enue, she needs more buyers to participate in the sale. One recent solution
is to design dedicated mechanisms to incentivize buyers to invite their
neighbors to join the sale, but they have relatively high time complexity
and may evoke concern for privacy. We propose the very first fixed-price
mechanism to achieve the same goal with less time complexity and bet-
ter preservation of privacy. It improves the maximal expected revenue of
the fixed-price mechanism without diffusion. Especially, when the valu-
ation distribution is uniform on [0, 1], it guarantees a lower bound of the
improvement.

Keywords: Mechanism design · Fixed-price mechanism · Information
diffusion · Social network

1 Introduction

Social networks, drawing support from popular platforms such as Facebook,
Twitter etc., can facilitate the diffusion of sale information [11]. The diffusion of
sale information promotes the sale and improves the seller’s revenue. To that end,
some desirable rules must be set up for participants to follow. Mechanism design
aims to build up a set of rules so that the strategic behaviors of participants
lead to the desirable results [19].

Therefore, how to design mechanisms on social networks to promote the sale
has attracted much attention from researchers in economics, computer science
and artificial intelligence [6].

There has been some recent work to tackle this issue [15,16,21–23]. They
studied the well-known Vickrey-Clarke-Groves (VCG) mechanism [5,8,20] in
the scenario of social networks and proposed new mechanisms with dedicated
c© Springer Nature Switzerland AG 2021
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payment schemes to attract more buyers via social networks. However, these
mechanisms have relatively high computational complexity and may evoke con-
cern for privacy because they require all buyers to report their valuations of the
items for sale.

Therefore, designing a faster mechanism of better preservation of privacy run-
ning on social networks is worth exploring. We noticed that fixed-price mecha-
nisms are characterized by simplicity and preservation of privacy [1,3,7,9,12,13].
In a fixed-price mechanism for selling one item, a seller sets a fixed price for the
item in advance and each buyer decides whether to buy it or not according to her
valuation of the item. With such simplicity and preservation of privacy, fixed-
price mechanisms have been the most applied trading rules for selling products
in practice [17]. So, in this paper, we aim to design a fixed-price mechanism
on social networks to attract more buyers. The goal is to promote the sale and
improve the seller’s revenue.

How to approximate the optimal revenue in fixed-price mechanisms has been
investigated in the literature. Babaioff et al. [2] considered a dynamic auction
model with fixed prices and showed that sequential posted-price mechanisms
cannot guarantee a constant fraction of the optimal revenue that is achievable
if the distribution is unknown to the seller. Chawla et al. [4] generalized the
optimal single-parameter auction mechanism proposed by Myerson [18] to multi-
parameter auction settings and proposed an approximately optimal sequential
posted pricing mechanism. Alaei et al. [1] proved that the seller’s revenue under
fixed-price mechanisms can achieve at least 1

e of Myerson’s optimal mechanism
when valuation distributions are independent and non-identical. Jin et al. [12]
provided a tight approximation ratio 1

2.62 for the fixed-price mechanism com-
pared with the optimal auction under single-item Bayesian mechanism design
setting.

However, the above studies assumed that the number of participants remains
a constant in the selling process. Obviously, more buyers will increase the chance
of selling out the items and may increase the revenue of the seller. Actually, we
will show in the later section that under the fixed-price setting there is an optimal
expected revenue for a fixed number of buyers. Therefore, the seller is willing to
attract more buyers to increase her revenue.

This paper considers designing a fixed-price mechanism to help the seller
attract more buyers via a social network. We assume that the seller is located
on the social network and initially she can only contact her neighbors. We want
the seller’s neighbors to help her attract more buyers. However, they would not
do so without giving them a proper incentive (because they are competitors for
the item). The goal of our mechanism is to design such an incentive for them.

To achieve the goal, we design a fixed-price diffusion mechanism (FPDM) for
selling one item via social networks. It integrates the merits of both fixed-price
mechanisms and social networks, and distinguishes itself with the following:
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– Helping the seller to attract more buyers via social networks.
– Improving the maximal expected revenue of the fixed-price mechanism with-

out diffusion, and guaranteeing a lower bound of the improvement for the
seller when the valuation distribution is the uniform distribution on [0, 1].

– Having less time complexity and better protection of privacy compared with
the previous mechanisms [15,16,21–23].

The rest of the paper is structured as follows. Section 2 describes the model.
Section 3 investigates the optimal price and the maximum revenue of the fixed-
price mechanism without diffusion. Section 4 defines our fixed-price diffusion
mechanism. Section 5 studies the properties of the proposed mechanism. We
conclude in Sect. 6.

2 The Model

We consider a market where a seller sells one item via a social network denoted
by a direct acyclic graph (DAG) 〈V ∪{s}, E〉, where the source node s represents
the seller and the other nodes in the DAG represent the buyers. Each buyer i ∈ V
has a valuation vi ≥ 0 for the item. We assume that all the buyers’ valuations
are independently drawn from a continuous distribution with both cumulative
distribution function (CDF) F (x) and probability density function (PDF) f(x)
of a support set [0, vmax] [19]. For each edge (i, j) ∈ E, j is called a neighbor of
i and all neighbors of i is denoted by ni ⊆ V \ {i}. Each i ∈ V is not aware of
others except her neighbors ni.

Initially, the seller only knows her neighbors and invites them to participate
in the sale. To improve the seller’s revenue, each of the seller’s neighbors is
incentivized to invite her neighbors to participate in the sale. Again, each invitee
makes further invitations, and so on. Finally, all the buyers in the network can
join the sale.

Since our mechanism is expected not to require agents to report their val-
uations but to diffuse the sale information to their neighbors, we let ni be
the type of i ∈ V . Let a = (n1, · · · , n|V |) be the type profile of all agents.
Let n′

i ⊆ ni or n′
i = nil be the action of i, where nil indicates that i

is not informed or she does not want to participate in the sale. The tuple
a′ = (n′

1, · · · , n′
|V |) is the action profile of all agents. We also write a′ = (n′

i, n
′
−i),

where n′
−i = (n′

1, · · · , n′
i−1, n

′
i+1, · · · , n′

|V |) is the action profile of all agents
except i.

Definition 1. Given a type profile a, an action profile a′ is feasible if for each
agent i ∈ V , her action is not nil if and only if i is informed the sale information
following the action profile of n′

−i.

A feasible action profile indicates that a buyer cannot join the mechanism if
she is not informed by anyone. If she is informed, she can further inform more
buyers from her neighbors. Let F(a) be the set of all feasible action profiles of
all agents under a type profile a.
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Definition 2. A mechanism consists of an allocation policy π = (πi)i∈V and a
payment policy p = (pi)i∈V , where πi : F(a) → {0, 1} and pi : F(a) → R are the
allocation and payment functions of buyer i respectively.

The mechanism is defined only on feasible action profiles. Given a feasible
action profile a′ ∈ F(a), πi(a′) = 1 indicates that i receives the item whereas
πi(a′) = 0 indicates that i does not. If pi(a′) ≥ 0, then i pays pi(a′) to the
mechanism; otherwise i receives |pi(a′)| from the mechanism.

We assume that each buyer will express her willingness to buy the item when
her valuation is not lower than her payment.

Next, we introduce the related properties of the mechanism.

Definition 3. An allocation policy π is feasible if for all a′ ∈ F(a),

– for all i ∈ V , if her action is nil, then πi(a′) = 0.
–

∑
i∈V πi(a′) ≤ 1.

In the rest of the paper, only feasible allocations are considered.
Given a feasible action profile a′ and a mechanism (π, p), the utility of i is

defined as
ui(a′, (π, p)) = πi(a′) · vi − pi(a′).

A mechanism is individually rational if, for each buyer, her utility is always
non-negative no matter how many neighbors she informs. That is, such a mech-
anism incentivizes all the buyers to participate in the sale.

Definition 4. A mechanism (π, p) is individually rational (IR) if ui(a′, (π, p)) ≥
0 for all i ∈ V , for all a′ ∈ F(a).

In a standard mechanism design setting, a mechanism is incentive compatible
if and only if for each buyer, reporting her truthful action is a dominant strat-
egy [19]. In our setting, the action of each buyer is diffusing the sale information.
Hence, diffusion incentive compatibility indicates that for each buyer, diffusing
the sale information to all her neighbors is a dominant strategy.

Definition 5. A mechanism (π, p) is diffusion incentive compatible (DIC) if
ui(a′, (π, p)) ≥ ui(a′′, (π, p)) for all i ∈ V , for all a′, a′′ ∈ F(a) such that n′

i = ni

and for all j 
= i, n′′
j = n′

j if there exists an invitation chain from the seller s to
j following the action profile of (n′′

i , n′
−i).

In this paper, we design a fixed-price diffusion mechanism that is IR and
DIC. Besides, it improves the seller’s maximal expected revenue and guarantees
a lower bound of the revenue improvement for the seller when the valuation
distribution is U [0, 1].
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3 Fixed-Price Mechanism Without Diffusion

In this part, we investigate the optimal fixed price to maximize the revenue
under the fixed-price mechanism, which will be compared with the revenue of
our diffusion mechanism.

Proposition 1. Given the continuous valuation distribution F (x), there exists
an optimal fixed price p0 to maximize the seller’s expected revenue ER, and the
maximum expected revenue ER0 is an increasing function of |ns|, where |ns| is
the number of seller’s neighbors.

Proof. Since the valuations of all buyers on the item have the independent and
identical distribution F (x), the probability that a buyer’s valuation vi < p equals
P (vi < p) = F (p), and the probability that the seller’s neighbors’ valuations are
less than p equals F |ns|(p), which is also the probability that the item cannot be
sold. So, the probability that the item can be sold is (1−F |ns|(p)) with the seller’s
revenue being p. Thus we get the seller’s expected revenue ER = (1−F |ns|(p)) ·
p, which is continuous on [0, vmax]. According to the Maximum Principle, ER
attains its maximum at some point p0 ∈ [0, vmax]. Since F (p0) ∈ [0, 1], the
maximum expected revenue ER0 = (1 − F |ns|(p0)) · p0 increases with |ns|. ��

Using the above optimal price p0 which can be obtained by numerical meth-
ods (e.g. Newton’s iteration), the fixed-price mechanism for continuous valuation
distribution can be described as follows.

Fixed-price Mechanism without Diffusion

1. Compute the optimal price p0.
2. The seller informs all her neighbors of p0.
3. If there are buyers expressing to buy the item, the seller selects one among

them (with random tie-breaking) to allocate the item and charges her p0.
4. Otherwise, the seller keeps the item.

Proposition 2. When the valuation has the uniform distribution U [0, 1], the
optimal price p0 and the maximum revenue ER0 have analytic expressions as
follows:

p0 =
(

1
1 + |ns|

) 1
|ns|

, (1)

ER0 = (1 − p
|ns|
0 ) · p0. (2)

The above expressions can be derived easily by solving the maximum point
of the seller’s expected revenue ER = (1 − p|ns|) · p, where p is the fixed price of
the item.
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4 Fixed-Price Diffusion Mechanism

In the fixed-price mechanism discussed in the last section, the seller sells the item
only among her neighbors at the optimal price and gets the maximal expected
revenue. In this section, to further improve the revenue, a fixed-price diffusion
mechanism is designed to increase the number of participants by incentivizing
those aware of the sale to diffuse the information to all their neighbors.

We first give some definitions and notations defined on the DAG 〈V,E〉.
Definition 6. For each buyer i ∈ V such that her action is not nil, her depth
denoted by di is defined as the length of the shortest path from the seller to i.
The length of a path is the number of edges on it.

Definition 7. For any two buyers i 
= j ∈ V such that their actions are not
nil, we say i is j’s critical node if all the paths starting from the seller to j pass
through i. If c1, c2, · · · , ct are all the critical nodes of i and their depths satisfy
the condition dc1 ≤ dc2 ≤ · · · ≤ dct , we call Ci = {c1, c2, · · · , ct} the critical
sequence of i.

Let the branch BRi(1 ≤ i ≤ |ns|) denote the set of the nodes having i as
their critical node, ki denote the cardinality of BRi, and k−i denote the number
of all buyers except BRi.

Given an action profile a′ ∈ F(a), by the invitations described in Sect. 2, a
DAG 〈V ′, E′〉 ⊆ 〈V,E〉 is generated, where V ′ ⊆ V is the set of agents partici-
pating in the sale.

Key points of our mechanism can be sketched as follows. First, when a buyer
invites more neighbors, the other buyers’ expected winning prices increase (so the
buyer will have a higher chance to get the item). In order to further strengthen
the incentive to invite neighbors, the winner shares some utility with her critical
nodes. Second, the DAG generated by an action profile is transformed into a tree-
shape graph where each branch is separated from the others. Third, the item is
promoted firstly among the seller’s neighbors and then sequentially among the
branches of the tree-shape graph.

The proposed mechanism is formally described in the following.

Fixed-price Diffusion Mechanism (FPDM)

Given an action profile a′ ∈ F(a), generate a DAG 〈V ′, E′〉.

– Transformation: Transform the DAG 〈V ′, E′〉 into a tree-shape graph
TG using Algorithm 1.

– Allocation: Compute the fixed price p0 for the seller’s neighbors and
inform them of the price.

• If there are neighbors expressing to buy the item, among them select
the buyer j with the most number of neighbors (with random tie-
breaking) and let πj(a′) = 1.
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• If all neighbors do not express to buy the item, then for i =
1, 2, · · · , |ns| + l (assuming k1 ≥ k2 ≥ · · · ≥ k|ns|+l), do

∗ set the fixed-price pi(a′) to be either the maximum point of (1 −
F k−i(p)) · p for k−i 
= 0 or 1

2 for k−i = 0.
∗ inform the buyers in BRi \ ns of the above price. If there are

buyers expressing to buy the item, select one buyer j with the
smallest depth and the most number of neighbors from them
(with random tie-breaking) and let πj(a′) = 1.

• Otherwise, let s keep the item.
– Payment:

• If there exists some buyer j ∈ BRi (1 ≤ i ≤ |ns| + l) such that
πj(a′) = 1, then for each buyer r ∈ V ′, the payment is:

pr(a′) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p0 if r = j ∈ ns,

pi(a′) if r = j /∈ ns,

−pi(a′) · α · ( 12 )dr if r ∈ Cj ,

0 else,

where α ∈ (0, 1) is predefined and dr is the depth of buyer r.
• Otherwise, let pr(a′) = 0 for each r ∈ V ′.

Algorithm 1. Transformation into a tree-shape graph TG from a DAG 〈V ′, E′〉
Input: The DAG 〈V ′, E′〉
Output: A TG 〈s, BR1, · · · , BR|ns|+l〉
1: Initialize A=φ;
2: for i = 1, 2, · · · , |ns| do
3: Find out the branch BRi;
4: Delete the set of edges (denoted by Ei) out from BRi;
5: Set E′ = E′ \ Ei;

6: Set A = V ′ \ {BR1, · · · , BR|ns|} and l = |A| representing the cardinality of A;
7: for j = 1, 2, · · · , l do
8: Take a node q from A;
9: Set A = A \ {q};

10: Draw an edge ej from s to q;
11: Set BR|ns|+j = {q} and E′ = E′ ∪ {ej};

12: Set TG = 〈s, BR1, · · · , BR|ns|+l〉;
13: return TG
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When the valuation distribution is the uniform distribution U [0, 1], pi(a′) is
computed by substituting |ns| in Formula (1) for k−i, i.e.

pi(a′) =
(

1
1 + k−i

) 1
k−i

. (3)

We exemplify FPDM with the following example.

Example 1. Suppose buyers’ valuations of the item are independently drawn
from the distribution U [0, 1]. The upper sub-figure in Fig. 1 is the DAG generated
by a feasible action profile a′. The bottom sub-figure in Fig. 1 is the tree-shape
graph transformed from the DAG, with s standing for the seller and the numbers
1, 2, · · · , 10 standing for the buyers. The set of the nodes having node 1 as their
critical node is {4, 5, 6, 10}. By deleting the edge from node 6 pointing to node
7, we get the first branch BR1 = {1, 4, 5, 6, 10}. Similarly, we get BR2 = {2, 8},
BR3 = {3}, BR4 = {7} and BR5 = {9}.

Next, by Formula (3) and Formula (1), we get p1(a′) = 0.699, p2(a′) = 0.760,
p3(a′) = 0.774, p4(a′) = 0.774, p5(a′) = 0.774 and p0 = 0.630. The seller first tells
the fixed price 0.630 to her neighbors ns = {1, 2, 3}. According to their valuations
(not revealed), all the neighbors do not express their willingness to buy the item.
Next, the seller tells the fixed price 0.699 to all the buyers in {4, 5, 6, 10} and only
buyer 5 and 10 express their willingness to buy the item. Since buyer 5 has the
depth of 3 and buyer 10 has the depth of 4, the seller allocates the item to buyer
5 and buyer 5 pays the seller 0.699. It can be worked out that C5 = {1} and
d1 = 1. Let α = 0.1. Then the payment of buyer 1 is −p1(a′) · α · ( 12 )d1 = −0.03.
So the utility of buyer 1 is 0.03 and the utilities of others except both buyer 1
and winner 5 are 0. The seller’s revenue is 0.699 − 0.03 = 0.669.

5 Properties of FPDM

Now we consider the individual rationality, diffusion incentive compatibility,
lower bound of the revenue improvement and time complexity of FPDM.

First, individual rationality means that each participant of the sale has non-
negative utility.

Theorem 1. The fixed-price diffusion mechanism is individually rational.

Proof. Given an action profile a′ ∈ F(a), generate a DAG 〈V ′, E′〉. We need to
prove that, for all i ∈ V ′, it holds that

ui(a′, (πFPDM , pFPDM )) ≥ 0.

Without loss of generality, we assume that i ∈ BRj (1 ≤ j ≤ |ns| + l). The
i’s utility has four possibilities.

– If i ∈ ns and πi(a′) = 1, then by the allocation of the mechanism, i’s utility
is higher than 0.
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Fig. 1. Transformation from a DAG 〈V ′, E′〉 to a tree-shape graph

– If i ∈ V ′ \ ns and πi(a′) = 1, then by the allocation of the mechanism, i’s
utility is higher than 0.

– If πi(a′) = 0, πw(a′) = 1 (w ∈ BRj) and i ∈ Cw, then i’s utility is pj(a′) · α ·
( 12 )di . Since pj(a′) > 0, α > 0 and di > 0, it holds that pj(a′) · α · ( 12 )di > 0.

– Otherwise, i’s payment and utility are both 0.

Therefore, we have ui(a′, (πFPDM , pFPDM )) ≥ 0 for all i ∈ V ′. ��
As for the diffusion incentive compatibility of the proposed mechanism, we

only need to prove that, for each buyer, in stages of both transformation and
selling (including allocation and payment), diffusing the information to all her
neighbors is her dominant strategy (maximizing her utility), which means the
mechanism incentivizes her to do so.

Theorem 2. The fixed-price diffusion mechanism is diffusion incentive compat-
ible.

Proof. Given an action profile a′ ∈ F(a), generate a DAG 〈V ′, E′〉. First, each
buyer cannot utilize the transformation of the DAG to choose between her critical
nodes and the branch she belongs to and further to decide her payment. So she
has no incentive not to diffuse the information to all her neighbors. That is,
diffusing the information to all her neighbors is her dominant strategy.

Next in the selling stage, when each buyer i’s action is not nil (i ∈ V ′), the
buyer i must fall into one of the following categories.

1. The winner w, i.e. the buyer who receives the item;
2. The buyers in Cw, i.e. the critical nodes of the winner;
3. The others.



58 T. Zhang et al.

Next we prove the statement in every category. Without loss of generality, we
assume the winner w ∈ BRj (1 ≤ j ≤ |ns| + l).

Category 1: If w ∈ ns, diffusing the sale information to all her neighbors brings
her the utility uw(a′, (πFPDM , pFPDM )) = vw−p0. Since p0 is only related to the
number of seller’s neighbors, her utility is independent of her diffusion. If w /∈ ns,
the same diffusion brings her the utility uw(a′, (πFPDM , pFPDM )) = vw −pj(a′),
which is also independent of her diffusion.

Instead, whether w ∈ ns or not, not diffusing the information to all her
neighbors either leads her to lose the item and thus to fall into Category 3
with zero utility or makes her still be in Category 1 and thus her utility does
not change. In summary, not diffusing the information to all neighbors does not
make her utility better off. So, diffusing the sale information to all her neighbors
is her dominant strategy.

Category 2: In this case, diffusing the information to all her neighbors brings
the buyer i the utility ui(a′, (πFPDM , pFPDM )) = pj(a′) · α · ( 12 )di . Since pj(a′),
α and di are all independent of i’s action, so is the i’s utility.

Besides, if i does not diffuse the information to all her neighbors, by the allo-
cation policy, she cannot become the winner. She either still stays in Category
2 with her utility unchanged, or falls into Category 3 with zero utility. So, not
diffusing the information to all her neighbors does not improve her utility. That
is, diffusing the sale information to all her neighbors is her dominant strategy.

Category 3: By FPDM, if i informs more neighbors, the chance increases that
she gets into Category 1 or Category 2, hence her revenue may be raised.
If else, her revenue will remain to be zero. In other words, diffusing the sale
information to all her neighbors is her dominant strategy. ��

According to Theorem 2, we can get 〈V ′, E′〉 = 〈V,E〉. Next, we compare the
seller’s revenue under FPDM with that of without diffusion. The FPDM first sells
the item among the seller’s neighbors; if the sale fails, it sells among the branches.
Therefore, the expected revenue of FPDM is greater than or equal to that of
without diffusion. When the valuation distribution is specified, the improve-
ment of the revenue can be computed. Taking into account the importance and
tractability of the uniform distribution, we compute the revenue improvement
under U [0, 1]. But precise computation requires enumerating all possible TGs,
which has the time complexity of O((|ns| + l)|V |). To cope with this EXPTIME
problem, we resort to the statistical analysis and statistically infer a lower bound
of revenue improvement in Theorem 3. To that end, we introduce a lemma.

Lemma 1 (Larsen and Marx [14]). Suppose population X has the Bernoulli
distribution B(1, p). Then the maximum likelihood estimate (MLE) for mean p
is the sample mean.

Using Lemma 1, we have the following theorem.

Theorem 3. The seller’s expected revenue of fixed-price diffusion mechanism
ERFPDM is greater than or equal to ER0 defined in Sect. 3. Under the uniform
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valuation distribution U [0, 1], statistically, the revenue improvement has a lower
bound

1 − α

4
· 1
|ns| ·

(

1 −
(

1
|V |

) 1
2·|ns|

)

,

where |ns| is the number of seller’s neighbors, |V | is the number of all buyers in
the network and α ∈ (0, 1) is the reward factor.

Proof. From Algorithm 1, there are |ns|+l branches in tree-shape graph TG. The
numbers of buyers in branches BR1, · · · , BR|ns|+l are denoted by k1, · · · , k|ns|+l

respectively. Then, given an action profile a′ ∈ F(a), the seller’s expected revenue
under FPDM is:

ERFPDM = ER0 +
1

1 + |ns| · {[1 − (p1(a′))k1−1] · p1(a′)

+
b∑

i=2

(p1(a′))k1−1 · · · (pi−1(a′))ki−1−1 · (1 − (pi(a′))ki−1)

· pi(a′)} · (1 − α).

(4)

Obviously, it holds that ERFPDM ≥ ER0.
Next, we prove the second part of the statement. According to formula (4),

we have

ERFPDM ≥ ER0 +
(

1 − α

1 + |ns|
)

· [1 − (p1(a′))k1−1] · p1(a′),

which is equivalent to the following

ERFPDM − ER0 ≥
(

1 − α

1 + |ns|
)

· [1 − (p1(a′))k1−1] · p1(a′), (5)

where p1(a′) =
(

1
1+k−1

) 1
k−1 and k−1 = |V | − 1 − k1. Next we estimate k1 (the

number of all buyers in BR1).
Let m̂ = V −ns−{s} (denoting the set of the buyers on the DAG 〈V,E〉 except

both the seller and her neighbors), m = |m̂| (denoting the cardinality of m̂), and
î (i ∈ ns) denotes the group of the buyers connecting to i. To approximate k1,
we need to draw i.i.d. samples from a population. For any buyer j in m̂, since
we have no a prior knowledge about which group she belongs to, according to
the Bayesian principle of indifference [10] we assume she uniformly falls into
each group with the probability of 1

|ns|+l , which means the discrete uniform
distribution serves as the population. Because the number k1 of buyers in BR1

has a binomial distribution, i.e. k1 ∼ b
(
m, 1

|ns|+l

)
, we have k1 = X1+X2+ · · ·+

Xm where Xi ∼ b
(
1, 1

|ns|+l

)
. From Lemma 1, we know that the MLE of 1

|ns|+l

is k1
m . So, an estimate of k1 is k1 = m

|ns|+l
, where l is an estimate of l. Next, we

compute l.
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For the buyer j, the probability for her to belong to sole group is 1
|ns| ·

(
1 − 1

|ns|
)|ns|−1

, denoted by q. So the probability for j to belong to at least two
groups is 1 − q. Therefore, the number l of the buyers belonging to at least two
groups has a binomial distribution, i.e. l ∼ b(m, 1 − q). By the way similar to
the deduction of k1, we can get l = m · (1 − q). From both k1 = m

|ns|+l
and

l = m · (1 − q), we have k1 = m
|ns|+m·(1−q) . So we obtain the following expression

of the lower bound of the revenue improvement

B =
(

1 − α

1 + |ns|
)

·
⎡

⎣1 −
(

1
|V | − k1

) k1−1
|V |−k1−1

⎤

⎦

·
(

1
|V | − k1

) 1
|V |−k1−1

,

where k1 = m
|ns|+m·(1−q) , m = |V | − |ns| − 1 and q = 1

|ns| ·
(
1 − 1

|ns|
)|ns|−1

.

Denote 1 −
(

1
|V |−k1

) k1−1
|V |−k1−1 by A and

(
1

|V |−k1

) 1
|V |−k1−1 by C. We further

shrink A and C.

For A, from q ≥ 1
|ns| ·

(
1 − 1

|ns|
)|ns|

and
(
1 − 1

|ns|
)|ns|

≥ ( 12 )2 = 1
4 (|ns| ≥ 2),

we have 1 − q ≤ 1 − 1
4·|ns| (|ns| ≥ 2). Therefore it holds that k1 ≥ 1 − 2·|ns|

|V |
(|V | ≥ 2). Again it is easy to know that k1 < m

|ns| . By tedious calculations, we

have
(

1
|V |−k1

) k1−1
|V |−k1−1 ≤

(
1

|V |
) 1

2·|ns|
. Therefore, we get A ≥ 1 −

(
1

|V |
) 1

2·|ns|
.

For C, letting x = |V | − k1 − 1 ≥ 1, we have C =
(

1
1+x

) 1
x ≥ 1

2 .
Combining the above estimates of A and C with the expression B, we have

B ≥ 1 − α

1 + |ns| ·
(

1 −
(

1
|V |

) 1
2·|ns|

)

· 1
2

≥ 1 − α

4
· 1
|ns| ·

(

1 −
(

1
|V |

) 1
2·|ns|

)

,

where |ns| is the number of seller’s neighbors, |V | is the number of all buyers in
the network and α ∈ (0, 1) is the reward factor. ��

It is noticed that the lower bound increases with the number of all buyers
in the network. That is, the more buyers participating in the sale, the higher
the lower bound of revenue improvement. In addition, for some other simple
valuation distributions, the computation of lower bound of revenue improvement
can be performed similarly. For example, when PDF f(x) = 2x(0 < x < 1) and
CDF F (x) = x2(0 < x < 1), we obtain the same lower bound as for U [0, 1]. But
for more complicated distributions, the computation can be intractable.
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The FPDM has lower time complexity than the previous work [15,16,21–23].
In what follows, taking the information diffusion mechanism (IDM) proposed by
Li et al. [16] for example, we demonstrate this attribute of FPDM.

Theorem 4. The fixed-price diffusion mechanism has lower time complexity
than that of the IDM proposed by Li et al. [16].

Proof. After the DAG 〈V,E〉 is constructed, the IDM proposed by Li et al. [16]
repeatedly invokes Depth-First-Search (DFS) to compute the payments of all
buyers, with the time complexity being O(|V | · (|V | + |E|)). In contrast, our
mechanism only needs the node numbers of all branches, which can be obtained
by operating DFS only once. So, our mechanism has lower time complexity of
O(|V | + |E|). ��

6 Conclusion

We designed the fixed-price diffusion mechanism (FPDM) for selling an item
via a social network when buyers’ valuation has a given continuous distribution.
By incentivizing buyers to willingly propagate the sale information to all their
neighbors, FPDM promotes the sale and improves the seller’s maximal expected
revenue of without diffusion. Especially, when the buyers’ valuations of the item
are uniform on [0, 1], it guarantees a lower bound of the revenue improvement.
In addition, not revealing the buyers’ valuations, it has better preservation of
their privacy and less time complexity than other existing diffusion mechanisms.

However, our mechanism utilizes the structure information of the social net-
works. As future work, it would be very interesting to try to hide the social
network structure from the seller in mechanism design. To that end, a decen-
tralized mechanism could be a promising choice.
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Abstract. This paper introduces a new online learning framework for
multiclass classification called learning with diluted bandit feedback. At
every time step, the algorithm predicts a candidate label set instead of
a single label for the observed example. It then receives a feedback from
the environment whether the actual label lies in this candidate label set
or not. This feedback is called “diluted bandit feedback”. Learning in this
setting is even more challenging than the bandit feedback setting, as there
is more uncertainty in the supervision. We propose an algorithm for mul-
ticlass classification using dilute bandit feedback (MC-DBF), which uses
the exploration-exploitation strategy to predict the candidate set in each

trial. We show that the proposed algorithm achieves O(T 1− 1
m+2 ) mistake

bound if candidate label set size (in each step) is m. We demonstrate the
effectiveness of the proposed approach with extensive simulations.

Keywords: Multi-class classification · Online learning · Dilute bandit
feedback

1 Introduction

In multi-class classification, the learning algorithm is given access to the exam-
ples and their actual class labels. The goal is to learn a classifier which given
an example, correctly predicts its class label. This is called the full information
setting. In the full information setting, online algorithms for multiclass classifi-
cation are discussed in [6,7,13]. In many applications, we do not get labels for
all the examples. Instead, we can only access whether the predicted label for an
example is correct. This is called bandit feedback setting [10]. Bandit feedback-
based learning is useful in several web-based applications, such as sponsored
advertising on web pages and recommender systems as mentioned in [10].

In the linearly separable case, Kakade et al. [10] propose Banditron algorithm
which can learn using bandit feedbacks. Banditron makes O(

√
T )1 expected

number of mistakes in the linearly separable case and O(T 2/3) in the worst case.
On the other hand Newtron [8] (based on the online Newton method) achieves
O(log T ) regret bound in the best case and O(T 2/3) regret in the worst case.
Beygelzimer et al. [4] propose Second Order Banditron (SOBA) which achieves
O(

√
T ) regret in the worst case.

1 T is number of trials.
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Fig. 1. The three types of supervised learning settings are explained in this figure.
(a) Full Information Setting: In this setting, the agent receives the correct label on
prediction. (b) Bandit Feedback Setting: Here, the agent gets the information whether
his prediction is accurate or not. (c) Partial Bandit Feedback Setting: In this setting,
the agent predicts a set of labels and gets the feedback whether the correct label lies
in the predicted set or not.

In the bandit feedback-based approaches, the algorithm predicts a single label
and seeks the feedback whether the predicted label is correct. Here, we intro-
duce a new learning framework called “learning under diluted bandit feedback”.
At every time step, when the algorithm observes a new example, it predicts a
candidate label set instead of a single label. Now the algorithm seeks the ora-
cle’s feedback whether the actual label lies in this candidate label set or not.
Note that learning in this setting is even more challenging than bandit feedback
setting as there is another level of uncertainty in the supervision. That is, if the
feedback says that the actual label lies in the predicted candidate label set, we
still do not know which of the label in the candidate set is the true one. Using the
example presented in Fig. 1, we can see the difference between bandit feedback
and diluted bandit feedback.

Diluted bandit feedback-based learning can be useful in many applications.
For example, consider the situation where a doctor is trying to diagnose a patient.
Based on the patient’s initial symptoms, she starts the treatment with some
idea about possible diseases. Based on the treatment outcome, the doctor would
know whether the actual disease was correctly diagnosed in the possible diseases
guessed by the doctor. The result of the treatment here is diluted bandit feed-
back. It does not tell the exact disease but only indicates whether the actual
disease lies in a possible set of diseases.

Another example would be that of advertising on web pages. The user first
queries the system. Based on the query and user-specific information, the system
makes a prediction as a set of advertisements. Finally, the user may either click
on one of the ads or just ignore all of them. The action of the user clicking or
ignoring the advertisements is the dilute bandit feedback. In the cases mentioned
above, knowing the ground truth label beforehand may not always be possible.
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Hence, this provides the motivation for coming up with the setting and the
corresponding algorithm.

Note that diluted bandit feedbacks make the supervision weaker than bandit
feedbacks. In this paper, we attempt the problem of learning multiclass classifier
using diluted bandit feedbacks. To the best of our knowledge, this is the first
work in this direction. Following are the key contributions in this paper:

1. We propose an algorithm which learns multiclass classifier using diluted ban-
dit feedbacks.

2. We show that the proposed algorithm achieves sub-linear mistake bound of
O(T 1−(m+2)−1

), where m is the size of the subset predicted.
3. We experimentally show that the proposed approach learns efficient classifiers

using diluted bandit feedbacks.

The main novelty of the MC-DBF algorithm is that it is able to train even
under the dilute bandit feedback setting. The proposed algorithm MC-DBF
achieves an error rate that is comparable to that of algorithms that receive
bandit feedback (SOBA [4]) or full feedback (Perceptron [6]) during training.

2 Problem Setting: Diluted Bandit Feedback

We now formally describe the problem statement for our multi-class classification
with diluted bandit feedback. The classification is done in a sequence of rounds.
At each round t, the algorithm observes an instance xt ∈ R

d. The algorithm
predicts a set of labels Ỹ t ⊂ {1, . . . , k} such that |Ỹ t| = m. After predicting
the set of labels, we observe the feedback I{yt ∈ Ỹ t} where yt is the true label
corresponding to the input xt. I{yt ∈ Ỹ t} is 1 if yt ∈ Ỹ t else 0. In this type
of bandit feedback, the classifier receives the information if the predicted set
contains the correct label or not. There are two possibilities of the value of m.

1. Case 1 (m = 1): Here, Ỹ t = ỹt and the feedback reduces to I{yt = ỹt} which
is discussed in [2,9,10]. Thus, when I{yt = ỹt} = 1, we know the true label.
On the other hand, I{yt = ỹt} = 0, the true label can be anything among
[k] \ ỹt.

2. Case 2 (1 < m < k): Here, the uncertainty is present in both possibilities of
the feedback I{yt ∈ Ỹ t}. When I{yt ∈ Ỹ t} = 1, then the true label could be
anything among the labels in the set Ỹ t. When I{yt ∈ Ỹ t} = 0, the true label
lies in the set [k] \ Ỹ t. Thus, in both possibilities of the feedback, there is
ambiguity about the true label. Hence the name diluted bandit feedback.

This paper is mainly concerned about Case 2, where 1 < m < k (diluted ban-
dit feedback setting). The algorithm’s final goal is to minimize the number of
prediction mistake M̂ as defined below.

M̂ :=
T∑

t=1

I{yt /∈ Ŷ t} (1)

To the best of our knowledge, this is first time diluted bandit feedback setting
has been proposed.
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Algorithm 1: MC-SLP: Multiclass Classification using Subset Label Pre-
diction

Parameters: γ ∈ (0,1.0);

Initialize W 1 = 0 ∈ R
k×d ;

for t= 1,. . . ,T do

Receive xt ∈ Rd;

Predict Ŷ (xt, W t) and receive feedback yt;

Define U t
r,j = xt

j

(
I{r = yt} − 1

m
I{r ∈ Ŷ (xt, W t)}

)
;

Update: W t+1 = W t + Ũ t;

end

3 Proposed Approach

The algorithm tries to learn a linear classifier parameterized by a weight matrix
W ∈ R

k×d. To formulate the algorithm which learns using diluted bandit feed-
back, let us first look at a simple full information approach.

3.1 Multiclass Algorithm with Subset Label Prediction: A Full
Information Approach

Consider the approach where the algorithm can predict a subset of labels. We
first define label set prediction function.

Definition 1. Label Set Prediction Function Ŷ (x,W ): Given an example
x and a weight matrix W ∈ R

k×d, we denote predicted label set of size m as
Ŷ (x,W ). We define Ŷ (x,W ) := {a1, . . . , am} where

ai = arg max
j∈[k]\{a1,...,ai−1}

(Wx)j .

Thus, Ŷ (x,W ) predicts top m-labels based on m-largest values in the vector
Wx. Then we observe the true label y ∈ [k].2 We use following variant of 0–1 loss
to capture the discrepancy between the true label (y) and the predicted label
set Ŷ (x,W ).

L0−1 = I{y /∈ Ŷ (x,W )} (2)

But, this loss is not continuous. So, we use following average hinge loss as a
surrogate loss function,

Lavg(W, (x, y)) = [1 − (Wx)y +
1
m

∑

i∈Ŷ (x,W )

(Wx)i]+ (3)

where [A]+ = A if A > 0 else 0. It is easy to see that Lavg is upper bound to
L0−1.
2 Note that this setting is exactly opposite to the partial label setting [3,5]. In the

partial label setting, ground truth is a labelled subset, and the algorithm predicts a
single label.
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Lemma 1. Lavg is an upper-bound on I{y ∈ Ŷ (x,W )}, that is Lavg ≥
I{y /∈ Ŷ (x,W )}.

An online algorithm in this setting can be easily derived by using stochastic
gradient descent on the loss Lavg. We call it MC-SLP (multiclass classifica-
tion using subset label prediction). The algorithm works as follows. At trial t
we observe example xt. We predict the label set Ŷ (xt,W t) using the existing
parameters W t. Then we observe the true label yt. We update the parameters
using stochastic gradient descent on the loss Lavg which results in the update
equation W t+1 = W t + U t where U t is described as follows.

U t
r,j = xt

j

(
I{r = yt} − I{r ∈ Ŷ (xt,W t)}

m

)
. (4)

We repeat this process for T number of trials. The complete description of this
approach is given in Algorithm 1. Note that MC-SLP is a full information type
algorithm as we get access to the true label for each example. The following is
true for MC-SLP (Algorithm 1).

Lemma 2. Let W t be the weight matrix in the beginning of trial t of MC-
SLP and U t be the update matrix in trial t by MC-SLP. Let 〈W t, U t〉 =∑k

r=1

∑d
j=1 W t

r,jU
t
r,j (matrix inner product). Then,

Lavg(W t, (xt, yt)) ≥ I{yt /∈ Ŷ (xt,W t)} − 〈W t, U t〉
This lemma gives us a lower bound on the loss Lavg computed for example xt

at trial t. This is a useful result which we will need later.

3.2 MC-DBF: Multiclass Learning with Diluted Bandit Feedback

We now describe the algorithm for learning using diluted bandit feedback. Here,
for each example xt, we do not receive the true label yt. We instead receive the
feedback whether yt lies in the predicted label set Ỹ t (i.e. I{yt ∈ Ỹ t}). The
algorithm works as follows.

At each iteration t, we receive xt as input. We find Ŷ (xt,W t) = {a1, . . . , am}
where

ai = arg max
j∈[k]\{a1,...,ai−1}

(W txt)j .

We define probability distribution P on individual class labels as follows.

P(r) =
(1 − γ)

m
I{r ∈ Ŷ (xt,W t)} +

γ

k
, ∀r ∈ [k] (5)

Here, γ is the exploration parameter. Let S denote the set of all m size subsets
of {1, . . . , k}. We call them superarms of size m. Now, we define probability
distribution Z on the set S as follows. For all A = {b1, . . . , bm} ∈ S, we define

Z(A) = P(b1)P(b2|b1) . . .P(bm|b1, . . . , bm−1),
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Algorithm 2: MC-DBF: Multiclass Classification Using Diluted Bandit
Feedback

Parameters: γ ∈ (0,1.0);

Initialize W 1 = 0d×k;
for t = 1, . . . , T do

Receive xt ∈ R
d;

Find Ŷ (xt, W t);

Define P(r) := (1−γ)
m

I{r ∈ Ŷ (xt, W t)} + γ
k
, ∀r ∈ [k];

Define Z(A) = P(b1)P(b2|b1) . . .P(bm|b1, . . . , bm−1), ∀A = {b1, . . . , bm} ∈ S;

Randomly sample Ỹ t according to Z;

Predict Ỹ t and receive feedback I{yt ∈ Ỹ t};
Compute ∀r ∈ [K] and ∀j ∈ [d];

Ũ t
r,j = xt

j

[
I{yt∈Ỹ t}I{r∈Ỹ t}

Z(Ỹ t)τ1
− τ2 − I{r∈Ŷ (xt,W t)}

m

]
;

Update: W t+1 = W t + Ũ t;

end

where P(bi|b1, . . . , bi−1) = P(bi)
(1−P(b1) − ··· − P(bi−1))

. Z(A) is the probability of
choosing b1, b2, . . . , bm from the set [k] without replacement.3

We randomly sample Ỹ t from Z and predict Ỹ t. We receive the diluted bandit
feedback I{yt ∈ Ỹ t}. We update the weight matrix as W t+1 = W t + Ũ t, where

Ũ t
r,j = xt

j

(
I{yt ∈ Ỹ t}I{r ∈ Ỹ t}

Z(Ỹ t)τ1
− I{r ∈ Ŷ (xt,W t)}

m
− τ2

)
(6)

where τ1 = m k−2Pm−1 and τ2 = m−1
k−m . Ũ t accesses yt only through the indicator

I{yt ∈ Ỹ t}. We will see that Ũ t is an unbiased estimator of U t as follows.

Lemma 3. Consider Ũ t defined in Eq. (6). Then, EZ [Ũ t] = U t, where U t is
defined in Eq. (4).

4 Mistake Bound Analysis of MC-DBF

In this section, we derive the expected mistake bound (EZ [M̂ ]) for the proposed
approach MC-DBF (Algorithm 2). To get the mistake bound, we first need to
derive some intermediate results. We first derive an upper bound the expected
value of the Frobenius norm of the update matrix Ũ t.

3 We see that
∑

A Z(A) = 1 as follows.

∑

A

Z(A) =
∑

A

P(b1) . . .P(bm|b1, . . . , bm−1) =
∑

b1

P(b1) · · ·
∑

bm

P(bm)

(1− P(b1) · · · − P(bm−1))

But,
∑

bi

P(bi)
(1−P(b1)−···−P(bi−1)

= 1. Thus,
∑

A Z(A) = 1.
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Lemma 4.

EZ [||Ũ t||2F ] ≤ ||xt||22
[mkm kPm

γmτ2
1

− 2mτ2
τ1

− 2
τ1

+ k[τ2
2 +

1
km

+
2τ2
k

]
]

+
2||xt||22

τ1
I{yt /∈ Ŷ (xt,W t)}

Now we derive the expected mistake bound EZ [M̂ ] using Theorem as follows.

Theorem 1. Assume that for the sequence of examples, (x1, y1), . . . , (xt, yt),
we have, for all t, xt ∈ R

d, ||xt|| ≤ 1 and yt ∈ [k]. Let W ∗ be any matrix and
let RT be the cumulative average hinge loss of W ∗ defined as follows.

RT =
T∑

t=1

Lavg(W ∗, (xt, yt)).

Let D be the complexity of W ∗ defined as below: D = 2||W ∗||2F . Then the number
of mistakes M̂ made by the Algorithm 2 satisfies

EZ [M̂ ] ≤ RT +

√
λ1DRT

2
+ 3max

(
λ1D

2
,

√
(λ2 + 1)DT

2

)

+ γT. (7)

where M̂ =
∑T

t=1 I{yt /∈ Ŷ (xt,W t)}, λ1 = 2
τ1

and

λ2 =
[mkm kPm

γmτ2
1

− 2mτ2
τ1

− 2
τ1

+ k[τ2
2 +

1
km

+
2τ2
k

]
]

We will now analyze different cases and find out the mistake bound in those
cases. Before going ahead, we state a new separability definition as follows.

Definition 2. Linear Separability: A sequence of examples, (x1, y1), . . . ,
(xT , yT ) is linearly separable if there exists a matrix W ∗ ∈ R

k×d such that

(W ∗xt)yt − (W ∗xt)i ≥ 1, ∀i 
= yt, ∀t ∈ [T ].

Note that linear separability also implies (W ∗xt)yt − 1
m

∑
i∈Ŷ (x,W ∗)(W

∗xt)i ≥
1,∀t ∈ [T ]. Which implies Lavg(W ∗, (xt, yt)) = 0, ∀t ∈ [T ]. Thus, when a
sequence of examples (x1, y1), . . . , (xT , yT ) is linearly separable with respect to
a weight matrix W ∗, then

RT =
T∑

t=1

Lavg(W ∗, (xt, yt)) = 0.

Corollary 1. Let (x1, y1), . . . , (xT , yT ) be the sequence linearly separable exam-
ples presented to algorithm MC-DBF. Then MC-BDF achieves O(T (1− 1

(m+2) ))
mistake bound on it.
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Corollary 2. Moreover, if we consider RT ≤ O(T (1− 1
(m+2) )), by setting γ =

O(( 1
T )

1
(m+2) ), we get that EZ [M̂ ] ≤ O(T (1− 1

(m+2) )).

Thus, we see that on increasing m, running time complexity of the algorithm
also increases.

Fig. 2. Searching best value of γ: graphs show converged error rates for MC-DBF (with
different values of m) and Second Order Banditron (SOBA) for varying values of γ.
The γ values on the X-axis are on a log scale.

5 Experiments

In this section, we present experimental results of the proposed algorithm MC-
DBF (Algorithm 2) and its comparison with other benchmark algorithms on
various datasets.

5.1 Datasets Used and Preprocessing

We use CIFAR-10 [11], SVHN [14], MNIST [12] and Fashion-MNIST [16]
datasets to show experimental results. We use VGG-16 [15] model that is pre-
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Fig. 3. Comparison of MC-DBF Algorithm using different values of m with Perceptron
(benchmark algorithm with full information feedback) and Second Order Banditron
(SOBA) (benchmark algorithm for bandit feedback).

trained on ImageNet dataset to extract the features. We use TensorFlow frame-
work [1] on all the datasets mentioned above for feature extraction using VGG-
16. All the experiments have been executed on a machine with Intel (R) Xeon(R)
CPU @ 2.30 GHz with 12.72 Gb of RAM.

The images are passed through the VGG-16 network, and then relevant fea-
tures are extracted from the last layer of VGG-16 network. The final dimension
of the features extracted for each dataset is 512.

In addition to the datasets mentioned above, we also use a synthetic linearly
separable dataset SYNSEP [10] for the purpose of comparison.

5.2 Benchmark Algorithms

We compare the proposed approach MC-DBF with Perceptron [6], which is an
algorithm for full information setting, Second Order Banditron (SOBA) [4],
which is a bandit feedback algorithm. We also compare with MC-SLP, which
is a full information version of MC-DBF. We will use three types of values of m
- (low, medium, high) in MC-DBF to observe the effect of variations in m.
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Fig. 4. Comparison of MC-DBF Algorithm with different values of m with MC-SLP

5.3 Experimental Setup and Performance Metric

We run each of the algorithms mentioned above for 1, 000, 000 iterations for
10 independent runs for every dataset. In each iteration, we calculate the error
rate (number of incorrectly classified samples averaged over the total number of
rounds). For calculating the error rate we compare the ground truth label yt,
with the predicted label ŷt = arg maxj∈[k] (W txt)j . The final plots have error
rate averaged over the 10 independent trials.

5.4 Choosing Optimal Value of γ in MC-DBF

MC-DBF takes γ as a parameter. To choose the parameter’s best values, we
plot the trend of error rates for varying values of γ. We choose the value of
γ for which the error rate value is minimized from these plots. While calcu-
lating the error rate, we compare the true label yt with the predicted label
ŷt = arg maxj∈[k] (W txt)j . We use a similar process to get optimal values of
hyper-parameters for the other benchmark algorithms.

Figure 2 shows the trend of the converged error rates with log(γ) on all the
datasets for all the algorithms. The best values of γ for MCDBF for different
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Fig. 5. Variation of the error rate of MC-DBF algorithm with different values of m.

Table 1. Optimal values of γ for different algorithms

SOBA

Dataset γ

MNIST 0.02

Fashion-MNIST 0.1

CIFAR-10 0.3

SVHN 0.25

MC-DBF (m: low)

Dataset γ

MNIST 0.12

Fashion-MNIST 0.12

CIFAR-10 0.28

SVHN 0.31

MC-DBF (m: medium)

Dataset γ

MNIST 0.12

Fashion-MNIST 0.2

CIFAR-10 0.25

SVHN 0.3

MC-DBF (m: high)

Dataset γ

MNIST 0.25

Fashion-MNIST 0.3

CIFAR-10 0.3

SVHN 0.5

datasets have been summarized in Table 1. All the final plots have been made
using these optimal values.

5.5 Comparison of MC-BDF with Benchmarking Algorithms

Figure 3 presents the comparison results of our proposed algorithm (MC-DBF)
using different values of m with Perceptron [6] (full information setting) and
SOBA [4] (bandit feedback setting).

We observe that MC-DBF algorithm achieves higher error rate compared
to the Banditron and Perceptron algorithms for m ≥ 2. This happens because
MC-DBF gets dilute bandit feedback. Also, increasing the value of m forces the
bandit feedback to become more diluted, which results in further increase in the
error rate as shown in Fig. 3.
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Fig. 6. Plot to show the variation of the error rate of MC-DBF algorithm with other
benchmark algorithms on SYNSEP (linearly separable dataset)

Figure 4 show the comparison results of our proposed algorithm MC-DBF
with MC-SLP (full information version of MC-DBF) for different values of m.
We observe that MC-DBF converges to MC-SLP in all the datasets, which is
expected as according to Lemma 3 (EZ [Ũ ] = U).

Figure 6 shows the comparison of the various benchmark algorithms with
our proposed algorithm (MC-DBF) using different values of m on the SYNSEP
dataset, which is a linearly separable dataset. Both the axes have been plotted
on a log scale. We observe that our proposed algorithm performs comparable to
Second Order Banditron (SOBA), in the linearly separable case as well.

5.6 Effect of Changing Values of m

Figure 5 shows the trend of the error rate of MC-DBF versus m for all the
datasets. We observe that the error rate increases on increasing m which is not
surprising as increasing m implies feedback to the algorithm becomes increas-
ing dilute leading to increasing error-rate for the same number of rounds and
constant γ.

6 Conclusion

This paper proposed a multiclass classification algorithm that uses diluted bandit
feedback for training, namely MC-BDF. We used the exploration-exploitation
strategy to predict a subset of labels in each trial. We then update the matrix,
using an unbiased estimator of the MC-SLP update matrix (full information
version of MC-DBF). We also proved the upper bound for the expected number
of mistakes made by our algorithm. We also experimentally compared MC-DBF
with other benchmark algorithms for the full/bandit feedback settings on various
datasets. The results show that our algorithm MC-DBF performs comparably
to the benchmark algorithms, despite receiving lesser feedback on most of the
datasets.
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Abstract. A common assumption in game theory is that players have a
common and correct (albeit not always complete) knowledge with regards
to the abstract formulation of the game. However, in many real-world
situations it could be the case that (some of) the players are misinformed
with regards to the game that they play, essentially having an incorrect
understanding of the setting, without being aware of it. This would inval-
idate the common knowledge assumption. In this paper, we present a new
game-theoretic framework, called misinformation games, that provides
the formal machinery necessary to study this phenomenon, and present
some basic results regarding its properties.

Keywords: Misinformation in games · Natural misinformed
equilibrium · Price of misinformation · Normal-form games · Load
balancing games

1 Introduction

A fundamental issue in interacting situations is the way decisions are made by
the participants, a process captured by game theory, where typically is assumed
that the rules of interaction (i.e., the game definition) are common knowledge
among players (but see [5,11,19] for some exceptions). This may be unrealistic in
circumstances where misinformation may cause players to have different and/or
incorrect knowledge about the rules of interaction.

This can happen for various reasons. Specifically, such scenarios could occur
on purpose (e.g., by deceptive agents communicating wrong information), due
to random effects (e.g., noise in the communication channels, erroneous sensor
readings), by design (e.g., by the game designer in order to enforce a socially-
optimal behaviour), or due to environmental changes (e.g., the setting changes
without players’ knowledge). Misinformation could play a prominent role in the
outcome of the game, without necessarily negative effects.
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Fig. 1. Schematic representation of a misinformation game with 2 players.

As a more concrete example, consider the classical Prisoner’s Dilemma (PD)
game, where two suspects (the players) are being interrogated, having the option
to betray the other (B), or stay silent (S). Each of them will get a penalty reduc-
tion if he/she betrays the other, but if they both remain silent, the police can
only convict them for lesser charge and not for the principal crime; if they both
betray, they will get a reduced penalty for the principal crime. Using classical
game theory, this situation is modelled by payoff matrix presented in Table 1a,
where the only Nash equilibrium is for both players to betray.

Now suppose that the cogent evidence with regards to the lesser charge has
been obtained in an illegal manner, and thus cannot be used in court. As a result,
players’ actual payoffs are as shown in Table 1b; however, this is not disclosed
to the suspects, who still believe that they play under Table 1a. This would lead
players to betray, although, had they known the truth (Table 1b), they also had
other options (Nash equilibria), e.g., to both stay silent. We will refer to this
game as the misinformed Prisoner’s Dilemma (mPD) in the rest of this paper.

Table 1. Payoff matrices for the PD and mPD

S B

S (−1, −1) (−3, −1/2)

B (−1/2, −3) (−2, −2)

(a) Payoffs (in PD); also, players’
view (in mPD).

S B

S (0, 0) (−3, −1/2)

B (−1/2, −3) (−2, −2)

(b) Actual game (in mPD).

To study situations like mPD, we relax the classical assumption of game the-
ory that agents know the correct information related to the abstract formulation
of the game, and admit the possibility that each player may have a different (and
thus incorrect) perception about the game being played, unknowingly to him-
self/herself or the other player(s). We call such games misinformation games.
As shown in Fig. 1, the main defining characteristic of misinformation games is
that agents are unwitting of their misinformation, and will play the game under
the misconceived game definition that they have. This essentially means that
the assumption of common knowledge is dropped as well.
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Obviously, in such a setting, game theory dictates the actual player behaviour
in his/her own view, which may be different from the behaviour regarding the
actual game. On the other hand, the payoffs received by the players are the ones
provisioned by the actual game, which may differ from the ones they assume.

This paper’s main objective is to introduce the formal machinery necessary
to study misinformation games. Specifically, the contributions of this paper con-
sisted of: i) defining misinformation games and recasting basic game-theoretic
concepts without the assumption of common and correct knowledge (Sub-
sect. 3.1), ii) introducing a new metric, called the Price of Misinformation
(PoM), to quantify the effect of misinformation on the social welfare of play-
ers (Subsect. 3.2), and iii) applying our ideas to load balancing games (Sect. 4).

2 Related Work

Starting from the concept of games with misperceptions (see Chap. 12 in [19])
many studies model subjective knowledge of players with regards to game speci-
fications, leading to the introduction of hypergames (HG) ([3,5,7,18,27,34] etc.)
and games with unawareness (GwU) ([8,11,26,28,29] etc.), where players may
be playing different games. Although we share motivation with these approaches,
there are also some crucial distinctions. First, HG/GwU are behaviour-oriented
(what the players will play), whereas misinformation games are outcome-
oriented. Furthermore, HG focus on perceptional differences among players, and
do not model the “actual game”, hence, HG lack grounding to the reality of
the modelled situation. In misinformation games we close this gap, modelling
also the environment, and allowing differences to also occur between each player
and the environment. Moreover, in GwU, though the “actual game” is used as
the basis of the models, the analysis based on consistency criteria and belief
hierarchies. In misinformation games we do not make such assumptions.

In [15] authors define the notion of games with awareness based on an
extensive-form game; they agglomerate descriptions of reality, changes in play-
ers’ awareness and players’ subjective views. Also, they define a generalized Nash
equilibrium that is similar with our equilibrium concept. Nevertheless, their anal-
ysis is behaviour-oriented. The work in [11] incorporates game and unawareness
as interrelated objects, whereas in [8] awareness architectures are provided to
study players’ limited awareness of strategies. Further, in [33] authors focus on
how unawareness affects incentives, whereas [30] provides a dynamic approach
for extensive-form games with unawareness. Moreover, [23] proposed a model for
games with uncertainty where players may have different awareness regarding a
move of nature.

In [6,14] studied the case where one of the players knows the (mis)perceptions
of the opponents. Also, in [32] the concept of subjective games is proposed, but
without introducing any equilibrium concept. Another approach is given in [10]
where an equilibrium concept is defined, but has a probabilistic dependence on
the actual game specifications.

Initiated by Harsanyi [16] the concept of incomplete knowledge in games has
attracted significant attention, mainly through the Bayesian games approach
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([12,13,31,35], etc.), where a key assumption is that of common priors. Although
this provides significant modeling advantages, it cannot address the situations
considered by misinformation games, cases where knowledge is not common.
Moreover, in Bayesian games, although agents are unsure as to their actual pay-
off, they are well-aware of that, and they do their best out of the uncertainty that
they have. On the contrary, in misinformation games, the agents play according
to their subjective game definition, without considering mitigation measures.

In particular, the mPD scenario (Table 1) cannot be captured by Bayesian
games, as the players do not distinct the actual situation from the one provided
to them. But even if a player suspects that the police are lying, has no clue as
to what they are lying about. Therefore, he/she cannot form any probability
distribution over an array of alternative plausible scenarios.

In [2,4,24] the case of uncommon priors was studied, but without addressing
the scenario of private priors, which is the case considered in misinformation
games. Additionally, the idea of agents understanding a different payoff matrix
than the actual one has been considered in [1,20]. In these studies, the agents
privately choose to modify their own objective payoffs (only), for personal reasons
(i.e. bias). Here misinformation is restricted only to each agent’s own payoffs,
therefore our work can be viewed as a more general case of such settings.

3 Normal-Form Games

A game in normal-form is represented by a payoff matrix that defines the payoffs
of all players for all possible combinations of pure strategies. Formally:

Definition 1. A normal-form game G is a tuple 〈N,S, P 〉, where:

– N is the set of the players,
– S = S1 × · · · × S|N |, Si is the set of pure strategies of player i ∈ N ,
– P = (P1, . . . , P|N |), Pi ∈ R

|S1|×...×|S|N|| is the payoff matrix of player i.

If player i randomly selects a pure strategy, then he/she plays a mixed
strategy σi = (σi,1, . . . , σi,|Si|) which is a discrete probability distribution over
Si. Let the set of all possible mixed strategies σi be Σi. A strategy profile
σ = (σ1, . . . , σ|N |) is an |N |-tuple in Σ = Σ1 × . . .×Σ|N |. We denote by σ−i the
|N − 1|-tuple strategy profile of all other players except for player i in σ. The
payoff function of player i is defined as: fi : Σ → R, such that:

fi(σi, σ−i) =
∑

k∈S1
· · ·

∑
j∈S|N|

Pi(k, . . . , j) · σ1,k · . . . · σ|N |,j , (1)

where Pi(k, . . . , j) is the payoff of player i in the pure strategy profile (k, . . . , j).
In other words, fi(σi, σ−i) represents player’s i expected payoff as a function of
σ. The Nash equilibrium in a normal-form game is defined as follows:

Definition 2. A strategy profile σ∗ = (σ∗
1 , . . . , σ

∗
|N |) is a Nash equilibrium, iff,

for any i and for any σ̂i ∈ Σi, fi(σ∗
i , σ∗

−i) ≥ fi(σ̂i, σ
∗
−i).
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3.1 Misinformation in Normal-Form Games

Misinformation captures the concept that different players may have a specific,
subjective, and thus different view of the game that they play.

Definition 3. A misinformation normal-form game (or simply misinformation
game) is a tuple mG = 〈G0 , G1, . . . , G|N |〉, where all Gi are normal-form games
and G0 contains |N | players.

G0 is called the actual game and represents the game that is actually being
played, whereas Gi (for i ∈ {1, . . . , |N |}) represents the game that player i thinks
that is being played (called the game of player i). We make no assumptions as to
the relation among G0 and Gi, and allow all types of misinformation to occur.
An interesting special class of misinformation games is the following:

Definition 4. A misinformation game mG = 〈G0, G1, . . . , G|N |〉 is called
canonical iff:

– For any i, G0, Gi differ only in their payoffs.
– In any Gi, all players have an equal number of pure strategies.

Although, non-canonical misinformation games may occur, e.g., when com-
munication problems deprives a player from the option to use a viable strat-
egy. However, we can transform any non-canonical misinformation game into an
equivalent canonical game (in terms of strategic behaviour), using the process
of inflation described as follows.

Let mG be a non-canonical misinformation game. To transform it into a
canonical misinformation game with the same strategic behaviour, we compare
G0 with each Gi (i > 0). Then:

1. If Gi does not include a player of G0, then we “inflate” Gi by adding this
new player, with the same strategies as in G0. We extend the elements of the
payoff matrix of Gi to represent the payoffs of the new player, using any fixed
constant value. Moreover, the current payoff matrix of Gi is increased by one
dimension, by replicating the original payoff matrix as many times as needed
(to accommodate the new player’s strategies).

2. If Gi contains an imaginary player not included in G0, then we add a new
player in G0, using the process described in #1 above. In addition, since
Definition 3 requires that each player in G0 is associated with a game in mG,
we add a new game in mG, which is a replica of G0.

3. If Gi does not contain a certain strategy which appears in G0 (for a certain
player), we add this new strategy, with payoffs small enough to be dominated
by all other strategies.

4. If Gi contains an imaginary strategy that does not appear in G0 (for a certain
player), we inflate G0 as in #3 above.

Repeating the above process a sufficient (finite) number of times, we derive a
misinformation game that satisfies the first condition of Definition 4 and has the
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same strategic properties as the original. For the second condition, we inflate the
games according to the largest dimension (number of strategies) of the largest
game, as in #3 above. Therefore, we focus on canonical misinformation games.

The definition of misinformed strategies and strategy profiles is straightfor-
ward, once noticing that they refer to each player’s own game:

Definition 5. A misinformed strategy, mσi of a player i is a strategy of i in
the game Gi. We denote the set of all possible misinformed strategies of player
i as Σi

i . A misinformed strategy profile of mG is an |N |-tuple of misinformed
strategies mσ =

(
mσ1, . . . ,mσ|N |

)
, where mσi ∈ Σi

i .

As usual, we denote by mσ−i the |N − 1|-tuple strategy profile of all other
players except for player i in a misinformed strategy mσ. The payoff function fi

of player i under a given profile mσ is determined by the payoff matrix of G0,
and is defined as fi : Σ1

1 × · · · × Σ
|N |
|N | → R, such that:

fi(mσi,mσ−i) =
∑

k∈S1
1

· · ·
∑

j∈S
|N|
|N|

P 0
i (k, . . . , j) · mσ1,k · . . . · mσ|N |,j ,

where P 0
i (k, . . . , j) is the payoff of player i in the pure strategy profile (k, . . . , j)

under the actual game G0. Also, Sj
i denotes the set of pure strategies of player

i in game Gj .
Observe that, although each player’s strategic decisions are driven by the

information in his/her own game (Gi), the received payoffs are totally dependent
on the actual game G0, that may differ than Gi. Further, the payoff function
would be ill-defined if we consider non-canonical misinformation games.

Next, we define the solution concept of a misinformation game, where each
player chooses a Nash strategy, neglecting what other players know or play:

Definition 6. A misinformed strategy, mσi, of player i, is a misinformed equi-
librium strategy, iff, it is a Nash equilibrium strategy for the game Gi. A mis-
informed strategy profile mσ is called a natural misinformed equilibrium iff it
consists of misinformed equilibrium strategies.

In the following, we denote by nmemG (or simply nme, when mG is obvious
from the context) the set of natural misinformed equilibria of mG and by NE
the set of Nash equilibria of G. Moreover, any natural misinformed equilibrium is
consisted of Nash equilibrium strategy profiles, regarding Gis. The computation
of a Nash equilibrium for each Gi is PPAD-complete [9]. Thus, the same holds
for a natural misinformed equilibrium.

3.2 Price of Misinformation

Inspired by the seminal work of [17] that introduced the Price of Anarchy (PoA)
metric we define a metric, called the Price of Misinformation (PoM) to measure
the effect of misinformation compared to the social optimum. For that, we con-
sider a social welfare function SW (σ) =

∑
i fi(σ), and denote by opt the socially

optimal strategy profile, i.e., opt = arg maxσSW (σ). PoM is defined as follows:
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Definition 7. Given a misinformation game mG, the Price of Misinformation
(PoM) is defined as:

PoM =
SW (opt)

minσ∈nme SW (σ)
(2)

Using the definition of PoA [17] and (2) we derive the following formula:

PoM

PoA
=

minσ∈NE SW (σ)
minσ∈nme SW (σ)

(3)

Observe that, if PoM < PoA, then misinformation has a beneficial effect on
social welfare, as the players are inclined (due to their misinformation) to choose
socially better strategies. On the other hand, if PoM > PoA, then misinforma-
tion leads to a worse outcome from the perspective of social welfare.

Moreover, misinformation is a powerful tool for mechanism design as shown
in the following proposition.

Proposition 1. For any normal-form game G and strategy profile σ there is a
misinformation game mG = 〈G0, G1, . . . , G|N |〉 such that G0 = G and the only
natural misinformed equilibrium of mG is σ.

Proof. Let G′ be a normal form game such that σ is the only Nash equilibrium
(we can always construct such a game). Then mG = 〈G,G′, . . . , G′〉 is the desired
misinformation game. ��
Corollary 1. For every normal-form game G there is a misinformation game
mG = 〈G0, G1, . . . , G|N |〉 such that G0 = G and PoM = 1.

The above results show that, given sufficient misinformation, anything is
possible in terms of improving (or deteriorating) the social welfare.

4 Load Balancing Games

In this section, we apply our framework in load balancing games, as defined in
[22], where tasks selfishly choose to be assigned to machines, so that no task has
any incentive to deviate from its machine. Formally:

Definition 8. A load balancing game (lbg) is a tuple G = 〈k,m, s, w〉, where
k = {1, . . . , |k|} is the set of tasks, each associated with a weight wj ≥ 0, and
m = {1, . . . , |m|} is the set of machines, each with speed si > 0.

We consider the case where tasks play only pure strategies, thus, the assign-
ment of tasks to machines is determined by a mapping A : k → m (note that
each task is assigned to exactly one machine). The load of machine i ∈ m
under A is defined as li =

∑
j∈k:i=A(j) wj/si. The cost of task j for choosing

machine i is ci
j = li. Furthermore, the social cost of assignment A is defined as

cost(A) = maxi∈m(li), in other words the makespan under the assignment A.
An assignment A∗ is optimal if cost(A∗) ≤ cost(A) for all possible assignments
A. An assignment A is a pure Nash equilibrium, if and only if, for any j and for
any î ∈ m, c

A(j)
j ≤ cî

j , in other words for any alternative assignment of task j

(say to machine î) the cost is worse.
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4.1 Misinformation in Load Balancing Games

Introducing misinformation in lbgs follows similar patterns as in Sect. 3.1:

Definition 9. A misinformation lbg is a tuple mG = 〈G0, G1, . . . , G|k|〉, where
all Gj are lbgs and G0 contains |k| tasks.

Definition 10. A misinformation lbg mG = 〈G0, G1, . . . , G|k|〉 is called canon-
ical, if and only if, for any j, G0, Gj differ only with regards to the weights of
the tasks and the speeds of the machines.

Like in the standard case, a misinformed assignment nmA is a mapping of
tasks to machines nmA : k → m, where any task j chooses a machine according
to its game Gj . Given a specific misinformed assignment nmA, the actual load
of a machine i is l0i =

∑
j∈k:i=nmA(j) w0

j /s0i , whereas the perceived load of a
machine i for task h is lhi =

∑
j∈k:i=nmA(j) wh

j /sh
i . The actual cost of task j for

choosing machine i is ci,0
j = l0i , whereas the perceived cost is ci,j

j = lji . Similarly,
the actual social cost of mA is cost(nmA) = maxi∈m(l0i ).

As with normal-form games, the tasks choose the Nash equilibrium assign-
ments in their own game without regards to what other tasks do. Formally:

Definition 11. A misinformed task assignment nmA(j) of task j is a pure
misinformed equilibrium task assignment, if and only if it is a pure Nash equi-
librium assignment for game Gj. A misinformed assignment nmA is called a
pure natural misinformed equilibrium assignment if and only if it consists of
pure misinformed equilibrium task assignments.

As each Gj is an lbg, the existence of a pure Nash equilibrium assignment in
every Gj is warranted by the results of [21,22,25], hence a natural misinformed
equilibrium assignment in misinformation lbgs always exists. Moreover, using
complexity results for standard lbgs [22], we can show the following:

Proposition 2. Consider a misinformation lbg mG with k tasks, such that each
Gj has m identical machines. Then, the computational complexity of computing
a natural misinformed equilibrium assignment in mG is O(k2 log k).

Proof. On identical machines we can transform any assignment A into a pure
Nash equilibrium in time O(k log k) [22]. To find a natural misinformed equi-
librium, we repeat this once for each Gj (j > 0), which requires O(k2 log k)
time.

4.2 Price of Misinformation in Load Balancing Games

PoM in misinformation lbgs (that aim at minimizing cost instead of maximizing
payoff) is defined as follows:

PoM =
maxA∈nmA cost(A)

cost(A∗)
, (4)
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where cost(A) is the worst cost among the pure natural misinformed equilibria
assignments nmA and cost(A∗) is the cost of the optimal assignment in the
actual game. The following example is illustrative of the concepts presented in
this section:

Example 1. Suppose that there are two identical machines with speed s = 1 and
four tasks with w1 = w2 = 1 and w3 = w4 = 2. The optimal assignment maps a
task of weight 1 and a task of weight 2 to each of the machines (A∗ = (1, 2, 1, 2)).
The worst pure Nash equilibrium assignment is A = (1, 1, 2, 2) with cost(A) = 4,
Fig. 2-(b).

Now, consider the misinformation game mG in which tasks have different
information on the weights. Let w1 = (w1

1 = 6, w1
2 = 1, w1

3 = 2, w1
4 = 2) be the

weights in G1 and wj = (wj
1 = 7, wj

2 = 1, wj
3 = 1, wj

4 = 1) in Gj , for j = {2, 3, 4}.
The pure Nash equilibrium assignments in each game Gj are A1 = (1, 2, 2, 2)
and A2 = (2, 1, 1, 1), thus the pure natural misinformed equilibrium assignments
are all combinations aligned with i) task 1 is assigned to a different machine
than tasks {2, 3, 4} or ii) all tasks are assigned to the same machine. From the
above, the worst natural misinformed equilibrium assignment is derived to be
nmA = (1, 1, 1, 1) (or nmA = (2, 2, 2, 2)) with cost(nmA) = 6, Fig. 2-(c-d). It
is interesting that in this example PoA = 4/3 and PoM = 2 implying that
misinformation worsens the behaviour of the game. ��

Fig. 2. (a) optimal assignment, (b) worst Nash equilibrium allocation, (c–d) worst
natural misinformed equilibrium allocation.

In terms of mechanism design, misinformation is equally strong and flexible
for lbgs as for normal-form games. In particular, for any lbg G and assignment
A, we can construct a misinformation lbg mG = 〈G0, G1, . . . , G|N |〉 such that
G0 = G and the only pure natural misinformed equilibrium assignment of mG is
A, as well as a misinformation lbg mG = 〈G0, G1, . . . , G|N |〉 such that G0 = G
and PoM = 1.

Due to the special form of lbgs, we can prove various bounds regarding their
cost and PoM , based on the task weights and machine speeds. Propositions 3,
4, 5 show some such results:

Proposition 3. Consider a canonical misinformation lbg mG = 〈G0, G1, . . . ,
G|k|〉, such that G0 = 〈k,m, s, w〉 and si > 0 for all i. Then, for any assignment
nme, cost(nme) ≤ ∑k

j=1 wj/mini si.
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Proof. The worst possible assignment nmA∗ (from the social cost perspective) is
to assign all tasks to the slowest machine, with cost(nmA∗) =

∑k
j=1 wj/mini si.

Misinformation can achieve this effect, so the result follows. ��
Proposition 4. Consider a misinformation lbg mG = 〈G0, G1, . . . , G|k|〉, such
that G0 has m identical machines and finite task weights. Then, the Price of
Misinformation is PoM ≤ m.

Proof. An optimal assignment cost(A∗) cannot be smaller than the average load
over all machines (i.e., (

∑
j∈[k] wj)/m). Also, the worst scenario is that all tasks

are assigned into one machine, with cost (
∑

j∈[k] wj). Then, using Eq. (4), we
conclude. ��

Next, we consider the case of uniformly related machines, i.e., the case where
the cost (processing time) of a job j of weight wj on machine i with speed si is
wj/si. We can show the following:

Proposition 5. Consider a misinformation lbg mG = 〈G0, G1, . . . , G|k|〉, such
that G0 = 〈k,m, s, w〉 with m uniformly related machines and finite task weights.
Then, the Price of Misinformation is

PoM ≤ k · S

s
· O

(
log m

log log m

)
, (5)

where s is the slowest speed and S is the fastest speed.

Proof. Since there is the case that all tasks be assigned to the slowest machine
we have that cost(nmA) ≤ ∑k

i=1 wi/s ≤ k ·M/s, where M is the largest weight.
Also, we have that PoM = PoA · maxA∈nmA Cost(A)

maxB∈NE Cost(B) with A be the worst natu-
ral misinformed equilibrium assignment, B the worst Nash equilibrium assign-
ment and NE the set of Nash equilibria assignments. Furthermore, we have
that maxB∈NE Cost(B) ≥ M/S. Finally, by Chap. 20 of [22] we have that
PoA ≤ O

(
log m

log log m

)
. ��

5 Synopsis and Future Work

This paper is motivated by the idea that misinformation is a fact of life in most
multi-player interactions, and thus having the formal machinery to analyse mis-
information can help understand many real-world phenomena. Towards this aim,
we introduce a novel game-theoretic framework, called misinformation games.

We argue that the concept of misinformation games has the potential to
explain various phenomena, and raises several interesting problems to be stud-
ied from different perspectives. From the designer’s perspective, we can consider
questions like the sensitivity of the game against misinformation, or the iden-
tification of ways to exploit the misinformation as a means to improve social
welfare (through PoM). From the players’ perspective, one could study how the
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players will revise their game definition following the realisation that it is wrong,
or the question of how to protect them from deceptive efforts. Finally, from the
more general perspective, it makes sense to study various forms of equilibria, as
well as the effect of different misinformation patterns on the game’s outcome.
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Abstract. We propose a novel approach to building influence-driven
explanations (IDXs) for (discrete) Bayesian network classifiers (BCs).
IDXs feature two main advantages wrt other commonly adopted explana-
tion methods First, IDXs may be generated using the (causal) influences
between intermediate, in addition to merely input and output, variables
within BCs, thus providing a deep, rather than shallow, account of the
BCs’ behaviour. Second, IDXs are generated according to a configurable
set of properties, specifying which influences between variables count
towards explanations. Our approach is thus flexible and can be tailored
to the requirements of particular contexts or users. Leveraging on this
flexibility, we propose novel IDX instances as well as IDX instances cap-
turing existing approaches. We demonstrate IDXs’ capability to explain
various forms of BCs, and assess the advantages of our proposed IDX
instances with both theoretical and empirical analyses.

1 Introduction

The need for explainability has been one of the fastest growing concerns in AI of
late, driven by academia, industry and governments. In response, a multitude of
explanation methods have been proposed, with diverse strengths and weaknesses.

We focus on explaining the outputs of (discrete) Bayesian classifiers (BCs)
of various kinds. BCs are a prominent method for classification (see [4] for an
overview), popular e.g. in medical diagnosis [15,17,25], owing, in particular, to
their ability to naturally extract causal influences between variables of interest.

Several bespoke explanation methods for BCs are already available in the lit-
erature, including counterfactual [1], minimum cardinality and prime implicant
[23] explanations. Further, model-agnostic attribution methods, e.g. the popular
LIME [21] and SHAP [16], can be deployed to explain BCs. However, these
(bespoke or model-agnostic) explanation methods for BCs are predominantly
shallow, by focusing on how inputs influence outputs, neglecting the causal influ-
ences between intermediate variables in BCs. Furthermore, most explanation
methods are rigid wrt the users, in the sense that they are based on a single,
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hardwired, notion of explanation. This sort of one-size-fits-all approach may not
be appropriate in all contexts: different users may need different forms of expla-
nation and the same user may be interested in exploring alternative explanations.

To overcome these limitations, we propose the novel formalism of influence-
driven explanations (IDXs), able to support a principled construction of various
forms of explanations for a variety of BCs. The two main ingredients of IDXs
are influences and explanation kits. Influences provide insights into the causal
relations between variables within BCs, thus enabling the possibility of deep
explanations, consisting of influence paths where influences are labelled with
influence types. An explanation kit consists, of a set of influence types, each
associated with a Boolean property specifying the condition an influence has to
meet to be labelled with that type. By using different influences for the same BC
and/or different explanation kits for the same BC and set of influences, a user
can thus configure explanations and adjust them to different needs. Specifically,
we propose four concrete instances of our general IDX approach: two amount
to novel notions of deep explanations, whereas the other two are shallow, corre-
sponding to LIME and SHAP. We evaluate the proposed instances theoretically,
in particular as regards satisfaction of a desirable principle of dialectical mono-
tonicity. We also conduct extensive empirical evaluation of our IDX instances.1

2 Related Work

There are a multitude of methods in the literature for providing explanations
(e.g. see the recent surveys [6,9,26]). Many are model-agnostic, including: attri-
bution methods such as LIME [21] and SHAP [16], which assign each feature an
attribution value indicating its contribution towards a prediction; and methods
relying upon symbolic representations, either to define explanations directly (e.g.
anchors [22]), or to define logic-based counterparts of the underlying models from
which explanations are drawn (e.g. [12,13]). Due to their model-agnosticism, all
these methods restrict explanations to “correlations” between inputs and outputs
and make implicit assumptions constraining the explanation [2,14]. Instead, our
focus on a specific model (BCs) allows us to define model-aware explanations
providing a deeper representation of how BCs are functioning via (selected) influ-
ences between input, output and (if present) intermediate model components.

Regarding BCs, [23] define minimum cardinality and prime implicant expla-
nations to ascertain pertinent features based on a complete set of classifications,
i.e. a decision function representing the BC [24]. These explanations are defined
for binary variables only and again explain outputs in terms of inputs. The
counterfactual explanations of [1] may include also intermediate model’s compo-
nents, but they are rigidly based on a single, hardwired notion of explanation,
whereas we present a flexible method for tailoring explanations to different set-
tings. Other works related to explaining BCs include explanation trees for causal
Bayesian networks [19] and studies linking causality and explanation [10,11].
Differently from these works, influences included in our explanations represent
1 An extended version (with proofs) is available at https://arxiv.org/abs/2012.05773.

https://arxiv.org/abs/2012.05773
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causal behaviour in the BC rather than in the world. Finally, [27] use support
graphs as explanations showing the interplay between variables (as we do) in
Bayesian networks, but (differently from us) commit to a specific influence type.

3 Bayesian Network Classifiers and Influences

We first define (discrete) BCs and their decision functions:

Definition 1. A BC is a tuple 〈O, C,V,D,A〉 such that:

– O is a (finite) set of observations;
– C is a (finite) set of classifications; we call X = O ∪ C the set of variables;
– V is a set of sets such that for any x ∈ X there is a unique V ∈ V associated

to x, called values of x (V(x) for short);
– D ⊆ X ×X is a set of conditional dependencies such that 〈X ,D〉 is an acyclic

directed graph (we refer to this as the underlying Bayesian network); for any
x ∈ X , D(x) = {y ∈ X |(y, x) ∈ D} are the parents of x;

– For each x ∈ X , each xi ∈ V(x) is equipped with a prior probability P (xi) ∈
[0, 1] where

∑
xi∈V(x) P (xi) = 1;

– For each x ∈ X , each xi ∈ V(x) is equipped with a set of conditional proba-
bilities where if D(x) = {y, . . . , z}, for every ym, . . . , zn ∈ V(y) × . . . × V(z),
we have P (xi|ym, . . . , zn), again with

∑
xi∈V(x) P (xi|ym, . . . , zn) = 1;

– A is the set of all possible input assignments: any a ∈ A is a (possibly partial)
mapping a : X �→ ⋃

x∈X V(x) such that, for every x ∈ O, a assigns a value
a(x) ∈ V(x) to x, and for every x ∈ X , for every xi ∈ V(x), P (xi|a) is the
posterior probability of the value of x being xi, given a.2

Then, the decision function (of the BC) is σ : A × X �→ ⋃
x∈X V(x) where, for

any a ∈ A and any x ∈ X , σ(a, x) = argmaxxi∈V(x)P (xi|a).3

We consider various concrete BCs, all special cases of Definition 1 satisfying, in
addition, an independence property among the parents of each variable. For all
these BCs, the conditional probabilities can be defined, for each x ∈ X , xi ∈ V(x),
y ∈ D(x), ym ∈ V(y), as P (xi|ym) with

∑
xi∈V(x) P (xi|ym) = 1. For single-

label classification we use Naive Bayes Classifiers (NBCs), with C = {c} and
D = {(c, x)|x ∈ O}. For multi-label classification we use a variant of the Bayesian
network-based Chain Classifier (BCC) [7] in which leaves of the network are
observations, the other variables classifications, and every classification c is esti-
mated with an NBC where the children of c are inputs. In the remainder, unless
specified otherwise, we assume as given a generic BC 〈O, C,V,D,A〉 satisfying
independence.

2 Posterior probabilities may be estimated from prior and conditional probabilities.
Note that, if a(x) = xi, then we assume P (xi|a) = 1 and, ∀xj ∈ V(x) \ {xi},
P (xj |a) = 0.

3 Note that if a(x) = xi then σ(a, x) = xi.
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Fig. 1. (i) Decision function (with posterior probabilities explicitly indicated) and (ii)
Bayesian network for the play-outside BC, with conditional dependencies as dashed
arrows. (iii–v) Corresponding MD-IDX, SD-IDX and SHAP-IDX (shown as graphs,
with influences given by edges labelled with their type) for input low wind (wl), medium
temperature (tm), and low pressure (pl) and output not play outside (o−) (for the
SHAP-IDX we also show the attribution values).

For illustration, consider the play-outside BCC in Fig. 1i–ii, in which clas-
sifications play outside and raining are determined from observations wind,
temperature and pressure. Here, C = {o, r}, O = {w, t, p} and D is as in
Fig. 1ii. Then, let V be such that V(w) = V(t) = {low,medium, high}, V(p) =
{low, high} and V(r) = V(o) = {−,+}, i.e. w and t are categorical while p, r and
o are binary. Figure 1i gives the posterior probabilities and decision function by
the BCC. Given our focus on explaining BCs, we ignore how they are obtained.

Our method for generating explanations relies on modelling how the vari-
ables within a BC influence one another. For this, we use two alternative sets of
influences. First, similarly to [1], we use deep influences, defined as the (acyclic)
relation Id = {(x, c) ∈ X ×C|(c, x) ∈ D}. Second, we use input-output influences,
defined as the (acyclic) relation Iio = O × Co, where Co ⊆ C are designated out-
puts. Obviously, Iio ignore the inner structure of BCs. Note that deep influences
indicate the direction of the inferences in determining classifications’ values,
neglecting dependencies between observations as considered in the BCs of [8].

For illustration, in Fig. 1i–ii, Id = {(w, o), (t, o), (r, o), (t, r), (p, r)} and Iio =
{(w, o), (t, o), (p, o)} for Co = {o}, while Iio = {(w, r), (t, r), (p, r), (w, o), (t, o),
(p, o)} for Co = {o, r}. Note that in the former Iio case, r is neglected, while in
the latter, the influence (w, r) is extracted even though wind cannot influence
raining in this BC, highlighting that using Iio, instead of Id, may have drawbacks
for non-naive BCs, except when the notions coincide, i.e. when D = Co × O.
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4 Influence-Driven Explanations

Our explanations are drawn from (deep or input-output) influences by categoris-
ing (some of) them as being of different types, depending on the satisfaction of
properties. The choice of types and properties is captured in explanation kits:

Definition 2. Given influences I, an explanation kit for Iis a finite set of pairs
{〈t1, π1〉, . . . 〈tn, πn〉} with πi : I × A → {true, false}, for i ∈ {1, . . . , n}: we say
that ti is an influence type characterised by influence property πi, and that πi

is satisfied for (x, y) ∈ I and a ∈ A iff πi((x, y), a) = true.

We will focus on explanation kits {〈t1, π1〉, 〈t2, π2〉} with two mutually exclusive
“dialectical” influence types, of “attack” (t1) and “support” (t2): intuitively
an influence (x, y) is of type attack (support) if x is a “reason” against (for,
resp.) y; mutual exclusion is guaranteed for t1 and t2 iff πi((x, y), a) = true
implies πj((x, y), a) = false (for i, j = 1, 2, i 	= j). We will show that these
influence types may be characterised by different influence properties, leading
to explanations which can all be deemed “dialectical”, while differing in other
respects.

In general, explanations are obtained from explanation kits as follows:

Definition 3. Given influences I and explanation kit EK = {〈t1, π1〉, . . .
〈tn, πn〉} for I, an influence-driven explanation (IDX) drawn from EK for
explanandum e ∈ C with input assignment a ∈ A is a tuple 〈Xr, It1 , . . . , Itn

〉
with:

• Xr ⊆ X such that e ∈ Xr (we call Xr the set of relevant variables);
• It1 , . . . Itn

⊆ I ∩ (Xr × Xr) such that for any i ∈ {1 . . . n}, for every (x, y) ∈
Iti

, πi((x, y), a) = true;
• ∀x ∈ Xr there is a sequence x1, . . . , xk, k ≥ 1, such that x1 = x, xk = e, and

∀1 ≤ i < k (xi, xi+1) ∈ It1 ∪ . . . ∪ Itn
.

An IDX thus consists of a set of relevant variables (Xr), including the explanan-
dum, connected to one another by influences satisfying the influence properties
specified in the explanation kit. Several choices of Xr may be possible and use-
ful: in the remainder we will restrict attention to maximal IDXs, i.e. IDXs with
⊆-maximal Xr satisfying the conditions set in the second and third bullets of Def-
inition 3. These may be deemed to convey in full the workings of the underlying
BC, shaped by the chosen explanation kit. We leave the study of non-maximal
IDXs to future work. Note that maximal IDXs, for mutually exclusive influence
types, are guaranteed to be unique for a given explanandum and input assign-
ment, due to the “connectedness” requirement in the third bullet of Definition 3.

We will define four instances of our notion of IDX: the first two use Id,
whereas the others use Iio. In doing so, we will make use of the following notion.

Definition 4. Given influences I, a variable x ∈ X and an input a ∈ A, the
modified input a′

xk
∈ A by xk ∈ V(x) is such that, for any z ∈ X : a′

xk
(z) = xk

if z = x, and a′
xk

(z) = a(z) otherwise.
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A modified input thus assigns a desired value (xk) to a specified variable (x),
keeping the preexisting input assignments unchanged. For example, if a ∈ A
amounts to low wind, medium temperature and low pressure in the running
example, then a′

wh
∈ A refers to high wind, medium temperature and low pres-

sure.

4.1 Monotonically Dialectical IDXs

Our first IDX instance draws inspiration from work in bipolar argumentation
[3] to define an instance of the explanation kit notion so as to fulfil a form of
dialectical monotonicity : intuitively, this requires that attacks (supports) have
a negative (positive, resp.) effect on influenced variables. Concretely, we require
that an influencer is an attacker (a supporter) if its assigned value minimises
(maximises, resp.) the posterior probability of the influencee’s current value.

Definition 5. An explanation kit {〈t1, π1〉, 〈t2, π2〉} for Id is monotonically
dialectical iff t1 = − (called monotonic attack), t2 = + (monotonic support)
and for any (x, y) ∈ Id, a ∈ A, the influence properties π1 = π−, π2 = π+ are
defined as:

• π−((x, y), a) = true iff ∀xk ∈ V(x) \ {σ(a, x)} P (σ(a, y)|a) < P (σ(a, y)|a′
xk

);
• π+((x, y), a) = true iff ∀xk ∈ V(x) \ {σ(a, x)} P (σ(a, y)|a) > P (σ(a, y)|a′

xk
).

A monotonically dialectical IDX (MD-IDX) (for given explanandum and input
assignment) is an IDX drawn from a monotonically dialectical explanation kit.

For illustration, consider the MD-IDX in Fig. 1iii (for explanandum o and input
assignment a such that a(w) = l, a(t) = m, a(p) = l): here, for example, pl

monotonically supports r+ because σ(a, r) = +, P (σ(a, r)|a) = 0.94 whereas for
a′ such that a′(p) = h (the only other possible value for p), P (σ(a, r)|a′) = 0.01.

Even though dialectical monotonicity is a natural property, it is a strong
requirement that may lead to very few influences, if any, in MD-IDXs. For con-
texts where this is undesirable, we introduce a weaker form of IDX next.

4.2 Stochastically Dialectical IDXs

Our second IDX instance relaxes the requirement of dialectical monotonicity
while still imposing that attacks/supports have a negative/positive, resp., effect
on their targets. Concretely, an influencer is an attacker (supporter) if the poste-
rior probability of the influencee’s current value is lower (higher, resp.) than the
average of those resulting from the influencer’s other values, weighted by their
prior probabilities (with all other influencers’ values unchanged). Formally:

Definition 6. An explanation kit {〈t1, π1〉, 〈t2, π2〉} for Id is stochastically
dialectical iff t1 =

.− (called stochastic attack), t2 =
.
+ ( stochastic support)

and for any (x, y) ∈ Id, a ∈ A, the influence properties π1 = π .−,π2 = π .
+

are
defined as:
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• π .−((x, y), a) = true iff P (σ(a, y)|a) <

∑

xk∈V(x)\{σ(a,x)}
[P (xk)·P (σ(a,y)|a′

xk
)]

∑

xk∈V(x)\{σ(a,x)}
P (xk)

;

• π .
+

((x, y), a) = true iff P (σ(a, y)|a) >

∑

xk∈V(x)\{σ(a,x)}
[P (xk)·P (σ(a,y)|a′

xk
)]

∑

xk∈V(x)\{σ(a,x)}
P (xk)

.

A stochastically dialectical IDX (SD-IDX) (for given explanandum and input
assignment) is an IDX drawn from a stochastically dialectical explanation kit.

For illustration, Fig. 1iv gives the SD-IDX for our running example (using uni-
form prior probabilities on the domains V(w), V(t), and V(p) and P (r+) = .67,
P (o+) = 0.22). Note that this SD-IDX extends the MD-IDX in Fig. 1iii by
including the negative (stochastic) effect which tm has on r+.

SD-IDXs are stochastic in that they take into account the prior probabilities
of the possible changes of the influencers. This implies that attacks and supports
in SD-IDXs will not be empty except in special cases.

4.3 Attribution Method Based Dialectical IDXs

We further show the versatility of the notion of IDX by instantiating it to inte-
grate attribution methods, notably LIME and SHAP. For our purposes, attri-
bution methods can be thought of as mappings α : O × A × Co �→ R, basi-
cally assigning real values to input-output influences, given input assignments.
These values represent the importance of input features towards outputs, and
are computed differently by different attribution methods (we will use αLIME

and αSHAP , omitting the computation details). To reflect attribution methods’
focus on input-output variables, these instances are defined in terms of Iio, as
follows:

Definition 7. Given an attribution method α, an α-explanation kit {〈t1, π1〉,
〈t2, π2〉} for Iio is such that t1 =

α− (α-attack), t2 =
α

+ (α-support) and for any
(x, y) ∈ Iio, a ∈ A, the influence properties π1 = π α− and π2 = π α

+
, are defined

as:

• π α−((x, y), a) = true iff α(x, a, y) < 0;
• π α

+
((x, y), a) = true iff α(x, a, y) > 0.

An α-IDX is an IDX drawn from an α-explanation kit.

LIME- and SHAP-explanation kits are instances of α-explanation kits for
choices, resp., of α =αLIME and α =αSHAP . Then, LIME-IDXs and SHAP-
IDXs are drawn, resp., from LIME- and SHAP-explanation kits. For illustra-
tion, Fig. 1v shows a SHAP-IDX for our running example. Here, the restriction
to input-output influences implies that the intermediate variable raining is not
considered in the IDX. Thus, IDXs based on attribution methods are suitable
only when the users prefer explanations with a simpler structure. However, in
real world applications such as medical diagnosis, where BCs are particularly
prevalent, the inclusion of intermediate information could be beneficial: we will
illustrate this in Sect. 5.2.
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5 Evaluation

We evaluate IDXs theoretically (by showing how different IDX instances relate
and how they differ in satisfying a desirable principle of dialectical monotonicity)
and empirically (for several BCs/datasets). Proofs are omitted for lack of space.

5.1 Theoretical Analysis

Our first two results show the relation/equivalence between MD- and SD-IDXs.4

Proposition 1. Given MD-IDX 〈Xr, I−, I+〉 and SD-IDX 〈X ′
r, I .−, I .

+
〉, both

for e ∈ Xr ∩ X ′
r and a ∈ A, it holds that Xr ⊆ X ′

r, I− ⊆ I .− and I+ ⊆ I .
+
.

Thus, an MD-IDX, for given explanandum/input assignment, is always (element-
wise) a subset of the SD-IDX for the same explanandum/input assignment.

When all variables are binary, MD-IDXs and SD-IDXs are equivalent:

Proposition 2. Given MD-IDX 〈Xr, I−, I+〉 and SD-IDX 〈X ′
r, I .−, I .

+
〉, both

for explanandum e ∈ Xr∩X ′
r and input assignment a ∈ A, if, for all x ∈ X ′

r\{e},
|V(x)| = 2, then Xr = X ′

r, I− = I .− and I+ = I .
+
.

In general, as discussed in Sect. 4.1, MD-IDXs may be much smaller (element-
wise) than SD-IDXs, due to the strong requirements imposed by the principle of
dialectical monotonicity, defined formally as follows, for generic dialectical IDXs:

Principle 1. An explanation kit {〈a, πa〉, 〈s, πs〉}5 for I satisfies dialectical
monotonicity iff for any IDX 〈Xr, Ia, Is〉 drawn from the kit (for any explanan-
dum e ∈ Xr, input assignment a ∈ A), it holds that, for any (x, y) ∈ Ia ∪ Is, if
a′ ∈ A is such that σ(a′, x) 	= σ(a, x) and σ(a′, z) = σ(a, z) ∀z ∈ X \ {x} such
that (z, y) ∈ I, then:

• if (x, y) ∈ Ia then P (σ(a, y)|a′) > P (σ(a, y)|a);
• if (x, y) ∈ Is then P (σ(a, y)|a′) < P (σ(a, y)|a).

Monotonically dialectical explanation kits satisfy this principle by design,
while it is worth noting that this does not hold for the other explanations kits:

Proposition 3. Monotonically dialectical explanation kits satisfy dialectical
monotonicity; stochastically dialectical, LIME and SHAP explanation kits do not.

4 From now on the subscript io and d of influences for instantiated IDXs will be left
implicit, as it is univocally determined by the IDX instance being considered.

5 Here a and s are some form of attack and support, resp., depending on the specific
explanation kit; e.g. for stochastically dialectical explanation kits a =

.− and s =
.
+.
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5.2 Empirical Analysis

For an empirical comparison of the proposed IDX instances, we used several
datasets/Bayesian networks (see Table 1),6 for each of which we deployed an
NBC (for single-label classification dataset) or a BCC (for multi-label classifica-
tion datasets and non-shallow Bayesian networks). Two illustrative IDXs for the
same input assignment and explanandum (amounting to the output computed
by a model built from the Child dataset) are shown in Fig. 2. Note that the
MD-IDX provides a deeper account of the influences within the BC than the
SHAP-IDX, while also being selective on observations included in the explana-
tions (with two observations playing no role in the MD-IDX), to better reflect
the inner workings (Bayesian network) of the model.

Table 1. Characteristics of datasets/BCs used in the empirical analysis. (†) NBC
(Naive BC) or BCC (Bayesian Chain Classifier); (‡) Binary or Categorical; (§) accuracy
and macro F1 score on the test set, averaged for multi-label settings.

Dataset BC† Size Variables Types‡ Performance§

|O| |C| O C Accuracy F1

Votes NBC 435 16 1 B B 90.8% 0.90

German NBC 750 20 1 C B 76.4% 0.72

COMPAS NBC 6951 12 1 C B 70.5% 0.71

Emotions BCC 593 72 6 C B 80.2% 0.70

Asia BCC 4 2 6 B B 100% 1.00

Child BCC 1080 7 13 C C 80.6% 0.66

Fig. 2. Example MD-IDX (i) and SHAP-IDX (ii), in graphical form, for explanandum
Disease for the Child BCC (predicting value TGA for Disease with posterior probability
87.9%). Each node represents a variable with the assigned/estimated value in italics.

Grey/white nodes indicate, resp., observations/classifications. +/
SHAP

+ and −/
SHAP− indicate,

resp., supports (green arrows) and attacks (red arrows). (Color figure online)

6 Votes/German: ML Repo [28]; COMPAS : ProRepublica Data Store [20]; Emotions:
Multi-Label Classification Dataset Repo [18]; Asia/Child : Bayesian Net Repo [5].
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Table 2. Average percentages of influences that are part of IDXs (on the left, with
types as shown and where, for types t, t′, IC

t t′ = {(x, y) ∈ It ∪ It′ |x, y ∈ C}) and
(on the right) of influences in IDXs violating dialectical monotonicity (all percentages
are drawn from a sample of 25,000 influences for 250 data-points). Here, × indicates
percentages that must be 0 due to the BC type. On the left, percentages may not sum
to 100 as some influences may not be part of IDXs.

Dataset % influences in explanations % violating influences

SD-IDX MD-IDX LIME-IDX SHAP-IDX SD-IDX LIME-IDX SHAP-IDX

I+̇ I−̇ IC
−̇+̇

I+ I− IC
−+ ILIME

+
ILIME− ISHAP

+
ISHAP−

Votes 77.1 22.9 × 77.1 22.9 × 77.1 22.9 73.2 7.3 0.0 0.2 0.1

German 59.3 40.7 × 29.6 22.0 × 55.9 44.1 46.9 36.4 18.5 20.8 19.8

COMPAS 67.0 33.0 × 45.4 20.3 × 65.7 34.3 35.6 19.1 12.3 12.5 22.7

Emotions 56.9 24.0 1.1 10.3 5.4 1.1 60.6 39.4 56.8 10.3 12.0 11.9 8.9

Child 77.5 22.5 64.0 65.4 15.1 64.0 54.0 41.3 24.4 9.7 7.1 2.5 5.6

Asia 87.5 12.5 62.5 87.5 12.5 62.5 70.8 29.2 54.2 20.8 0.0 0.0 0.0

The comparison is carried out by analysing the computational viability of
IDXs and two aspects linked to their effectiveness, i.e. the size of the produced
explanations and the actual amount of violations of dialectical monotonicity.

Computational Cost. MD-IDXs and SD-IDXs can be computed efficiently,
in linear time in the number of variables’ values. Formally, let tp be the time
to compute a prediction and its associated posterior probabilities by the BC
(in our experiments, tp ranged from 3µs for the simplest NBC to 40 ms for
the most complex BCC).7 The time complexity to compute whether an influ-
ence (x, y) ∈ I belongs to MD-/SD-IDXs, denoted as T1−IDX , is a function
of |V(x)| because determining membership of (x, y) in MD-/SD-IDXs requires
checking how the posterior probability of y changes when changing x. Specifi-
cally: T1−IDX((x, y)) = Θ (tp · [1 + |V(x)| − 1]) = Θ (tp · |V(x)|). Then, assum-
ing that the cost for checking the inequalities of Definitions 5 and 6 is negligible
wrt the cost of a BC call, it turns out that the cost to compute a full MD-/SD-
IDX, denoted as TIDX , corresponds to iterating T1−IDX((x, y)) over all variables
x ∈ X : TIDX(V) = Θ

(
tp · ∑

x∈X |V(x)|), showing linearity. Thus, MD-/SD-IDXs
are competitive wrt attribution methods, which rely on costly sampling of the
input space. For illustration, the time taken to generate MD-IDXs for the Child
BC is at most 60 · tp while the time taken to generate LIME explanations with
default parameters is 5000 · tp.

Size of the Explanations. In order to understand how many influences con-
tribute to IDXs, we calculated the percentage of influences (per type) in each
of the instantiated IDXs from Sect. 4: the results are reported on the left in
Table 2. We note that: (1) when non-naive BCs are used, MD- and SD-IDXs
include influences between classifications (see IC

−+ and IC.− .
+

in Table 2), as a
consequence of using Id and thus being non-shallow; this suggests that our deep

7 We used a machine with Intel i9-9900X at 3.5 GHz and 32 GB of RAM with no GPU
acceleration. For BCCs, we did not use optimised production-ready code.
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IDXs can provide better insights into models than shallow IDXs drawn from
input-output influences; (2) SD- and LIME-IDXs tend to behave similarly, and
MD-IDXs tend to include fewer influences than SD-IDXs (in line with Proposi-
tion 1); (3) in some settings, SHAP-IDXs fail to capture the majority of attacks
captured by the other IDX instances (e.g. for Votes and Emotions).

Satisfaction of Dialectical Monotonicity. We calculated the percentage of
influences in SD-/LIME-/SHAP-IDXs which do not satisfy dialectical mono-
tonicity : the results are reported in Table 2 (right). We note that: (1) All three
forms of IDXs may violate the principle for deep and shallow BCs; (2) SM-IDXs
violate the principle significantly (p < 0.05) less for all NBCs, but the percentage
of violations by SM-IDXs increases for BCCs, possibly due to SM-IDXs being
non-shallow for BCCs (differently from LIME-/SHAP-IDXs, which are always
shallow). Note that the violation of dialectical monotonicity may give rise to
counter-intuitive results from a dialectical perspective. For illustration, consider
the (shallow) SHAP-IDX in Fig. 2ii: one would expect that for values of Age for
which this is no longer a supporter the diagnosis that Disease is TGA becomes
less likely, but this is not so here. Instead, in the MD-IDX of Fig. 2i, Age is an
attacker of the inner Sick and no misunderstandings may arise.

6 Conclusions

IDXs offer a new perspective on explanation for BCs and open numerous direc-
tions for future work, including investigating other instances and other principles,
exploring IDXs for other AI methods, as well as conducting user studies to assess
how best IDXs can be delivered to users.
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Abstract. We study the excludable public project model where the
decision is binary (build or not build). In a classic excludable and binary
public project model, an agent either consumes the project in its whole
or is completely excluded. We study a setting where the mechanism can
set different project release time for different agents, in the sense that
high-paying agents can consume the project earlier than the low-paying
agents. The mechanism design objective is to minimize the expected
maximum release delay and the expected total release delay. We propose
the single deadline mechanisms. We show that the optimal single dead-
line mechanism is asymptotically optimal for both objectives, regard-
less of the prior distributions. For small number of agents, we propose
the sequential unanimous mechanisms by extending the largest unani-
mous mechanisms from Ohseto [8]. We propose an automated mecha-
nism design approach via evolutionary computation to optimize within
the sequential unanimous mechanisms.

Keywords: Automated mechanism design · Public project · Cost
sharing

1 Introduction

The public project problem is a fundamental mechanism design model with many
applications in multiagent systems. The public project problem involves multiple
agents, who need to decide whether or not to build a public project. The project
can be nonexcludable (i.e., if the project is built, then every agent gets to
consume the project, including the non-paying agents/free riders) or excludable
(i.e., the setting makes it possible to exclude some agents from consuming the
project) [8]. A public project can be indivisible/binary or divisible [7]. A
binary public project is either built or not built (i.e., there is only one level of
provision). In a divisible public project, there are multiple levels of provision
(i.e., build a project with adjustable quality).

In this paper, we study an excludable public project model that is “divisible”
in a different sense. In the model, the level of provision is binary, but an agent’s
consumption is divisible. The mechanism specifies when an agent can start con-
suming the project. High-paying agents can consume the project earlier, and
c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13031, pp. 101–112, 2021.
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the free riders need to wait. The waiting time is also called an agent’s delay.
The delay is there to incentivize payments. The model was proposed by Guo et
al. [6]. The authors studied the following mechanism design scenario. A group
of agents come together to crowd-fund a piece of security information. No agent
is able to afford the information by herself.1 Based on the agents’ valuations on
the information, the mechanism decides whether or not to crowd-fund this piece
of information (i.e., purchase it from the security consulting firm that is selling
this piece of information). If we are able to raise enough payments to cover the
cost of the security information, then ideally we would like to share it to all
agents, including the free riders, in order to maximizes the overall protection of
the community. However, if all agents receive the information regardless of their
payments, then no agents are incentivized to pay. To address this, the mecha-
nism releases the information only to high-paying agents in the beginning and
the non-paying/low-paying agents need to wait for a delayed release. The mech-
anism design goal is to minimize the delay as long as the delay is long enough to
incentivize enough payments to cover the cost of the information. Guo et al. [6]
proposed two design objectives. One is to minimize the max-delay (i.e., the max-
imum waiting time of the agents) and the other is to minimize the sum-delay
(i.e., the total waiting time of the agents). The authors focused on worst-case
mechanism design and proposed a mechanism that has a constant approxima-
tion ratio compared to the optimal mechanism. The authors also briefly touched
upon expected delay. The authors used simulation to show that compared to
their worst-case competitive mechanism, the serial cost sharing mechanism [7]
has much lower expected max-delay and sum-delay under various distributions.

In this paper, we focus on minimizing the expected max-delay and the
expected sum-delay. We propose a mechanism family called the single deadline
mechanisms. For both objectives, under minor technical assumptions, we prove
that there exists a single deadline mechanism that is near optimal when the num-
ber of agents is large, regardless of the prior distribution. Furthermore, when the
number of agents approaches infinity, the optimal single deadline mechanism
approaches optimality asymptotically. For small number of agents, the single
deadline mechanism is not optimal. We extend the single deadline mechanisms
to multiple deadline mechanisms. We also propose a genetic algorithm based
automated mechanism design approach. We use a sequence of offers to repre-
sent a mechanism and we evolve the sequences. By simulating mechanisms using
multiple distributions, we show that our genetic algorithm successfully identifies
better performing mechanisms for small number of agents.

2 Related Research

Ohseto [8] characterized all strategy-proof and individually rational mechanisms
for the binary public project model (both excludable and nonexcludable), under
minor technical assumptions. Deb and Razzolini [2] further showed that on top
of Ohseto’s characterization, if we require equal treatment of equals (i.e., if two
1 Zero-day exploits are very expensive [4,5].
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agents have the same type, then they should be treated the same), then the
only strategy-proof and individually rational mechanisms are the conservative
equal cost mechanism (nonexcludable) and the serial cost sharing mechanism
(excludable), which were both proposed by Moulin [7]. It should be noted that
Ohseto’s characterization involves exponential number of parameters, so know-
ing the characterization does not mean it is easy to locate good mechanisms.
Wang et al. [11] proposed a neural network based approach for optimizing within
Ohseto’s characterization family. The authors studied two objectives: maximiz-
ing the number of consumers and maximizing the social welfare. It should be
noted that Ohseto’s characterization does not apply to the model in this paper,
as our model has an additional spin that is the release delay. In this paper, we
propose a family of mechanisms called the sequential unanimous mechanisms,
which is motivated by Ohseto’s characterization. We apply a genetic algorithm
for tuning the sequential unanimous mechanisms. Mechanism design via evolu-
tionary computation [9] and mechanism design via other computational means
(such as linear programming [1] and neural networks [3,10,11]) have long been
shown to be effective for many design settings.

3 Model Description

There are n agents who decide whether or not to build a public project. The
project is binary (build or not build) and nonrivalrous (the cost of the project
does not depend on how many agents are consuming it). We normalize the
project cost to 1. Agent i’s type vi ∈ [0, 1] represents her private valuation for
the project. We use �v = (v1, v2, . . . , vn) to denote the type profile. We assume
that the vi are drawn i.i.d. from a known prior distribution, where f is the
probability density function. For technical reasons, we assume f is positive and
Lipschitz continuous over [0,1].

We assume that the public project has value over a time period [0,1]. For
example, the project could be a piece of security information that is discovered
at time 0 and the corresponding exploit expires at time 1. We assume the setting
allows the mechanism to specify each agent’s release time for the project, so that
some agents can consume the project earlier than the others. Given a type profile,
a mechanism outcome consists of two vectors: (t1, t2, . . . , tn) and (p1, p2, . . . , pn).
I.e., agent i starts consuming the project at time ti ∈ [0, 1] and pays pi ≥ 0.
ti = 0 means agent i gets to consume the public project right from the beginning
and ti = 1 means agent i does not get to consume the public project. We call
ti agent i’s release time. We assume the agents’ valuations over the time period
is uniform. That is, agent i’s valuation equals vi(1 − ti), as she enjoys the time
interval [ti, 1], which has length 1 − ti. Agent i’s utility is then vi(1 − ti) − pi.
We impose the following mechanism design constraints:

– Strategy-proofness: We use ti and pi to denote agent i’s release time and
payment when she reports her true value vi. We use t′i and p′

i to denote agent
i’s release time and payment when she reports a false value v′

i. We should
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have
vi(1 − ti) − pi ≥ vi(1 − t′i) − p′

i

– Individual rationality: vi(1 − ti) − pi ≥ 0
– Ex post budget balance:

If the project is not built, then no agent can consume the project and no agent
pays. That is, we must have ti = 1 and pi = 0 for all i.
If the project is built, then the agents’ total payment must cover exactly the
project cost. That is,

∑
i pi = 1.

Our aim is to design mechanisms that minimize the following design objec-
tives:

– Expected Max-Delay: Evi∼f (max{t1, t2, . . . , tn})
– Expected Sum-Delay: Evi∼f (

∑
i ti)

4 Single Deadline Mechanisms

We first describe the serial cost sharing mechanism (SCS) proposed by
Moulin [7]. Under SCS, an agent’s release time is either 0 or 1.2

Let �v be the type profile. We first define the following functions:

I(�v) =

{
1 ∃k ∈ {1, 2, . . . , n}, k ≤ |{vi|vi ≥ 1

k}|
0 otherwise

I(�v) equals 1 if and only if there exist at least k values among �v that are at
least 1

k , where k is an integer from 1 to n.

K(�v) =

{
max{k|k ≤ |{vi|vi ≥ 1

k}|, k ∈ {1, 2, . . . , n}} I(�v) = 1
0 I(�v) = 0

Given �v, there could be multiple values for k, where there exist at least k
values among �v that are at least 1

k . K(�v) is the largest value for k. If such a k
value does not exist, then K(�v) is set to 0.

Definition 1 (Serial Cost Sharing Mechanism [7]). Given �v, let k = K(�v).

– If k > 0, then agents with the highest k values are the consumers. The con-
sumers pay 1

k . The non-consumers do not pay.
– If k = 0, then there are no consumers and no agents pay.

2 Because the concept of release time does not exist in the classic binary excludable
public project model.
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Essentially, the serial cost sharing mechanism finds the largest k where k
agents are willing to equally split the cost. If such a k exists, then we say the
cost share is successful and these k agents are joining the cost share. If such a k
does not exist, then we say the cost share failed.

Next we introduce a new mechanism family called the single deadline mech-
anisms.

Definition 2 (Single Deadline Mechanisms).
A single deadline mechanism is characterized by one parameter d ∈ [0, 1]. d

is called the mechanism’s deadline. We use M(d) to denote the single deadline
mechanism with deadline d.

The time interval before the deadline [0, d] is called the non-free part. The
time interval after the deadline [d, 1] is called the free part.

We run the serial cost sharing mechanism on the non-free part as follows. For
the non-free part, the agents’ valuations are d�v = (dv1, . . . , dvn). Let k = K(d�v).
Agents with the highest k values get to consume the non-free part, and each needs
to pay 1

k .
The free part is allocated to the agents for free. However, we cannot give out

the free part if the public project is not built.
If we give out the free part if and only if I(d�v) = 1, then the mechanism is

not strategy-proof, because the free parts change the agents’ strategies.3 Instead,
we give agent i her free part if and only if I(dv−i) = 1. That is, agent i gets her
free part if and only if the other agents can successfully cost share the non-free
part without i.

If an agent receives both the non-free part and the free part, then her release
time is 0. If an agent only receives the free part, then her release time is d. If an
agent does not receive either part, then her release time is 1. Lastly, if an agent
only receives the non-free part, then her release time is 1 − d, because such an
agent’s consumption interval should have length d (i.e., [1 − d, 1]).

Proposition 1. The single deadline mechanisms are strategy-proof, individually
rational, and ex post budget balanced.

5 Max-Delay: Asymptotic Optimality

Theorem 1. The optimal single deadline mechanism’s expected max-delay
approaches 0 when the number of agents approaches infinity.

Proof. We consider a single deadline mechanism M(d). Every agent’s valuation
is drawn i.i.d. from a distribution with PDF f . Let Vi be the random variable
representing agent i’s valuation. Since f is positive and Lipschitz continuous,
we have that ∀d,∃k, P (dVi ≥ 1

k ) > 0. That is, for any deadline d, there always
exists an integer k, where the probability that an agent is willing to pay 1

k for the

3 For example, an agent may over-report to turn an unsuccessful cost share into a
successful cost share, in order to claim the free part.
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non-free part is positive. Let p = P (dVi ≥ 1
k ). We define the following Bernoulli

random variable:

Bi =

{
1 dVi ≥ 1

k

0 otherwise

Bi equals 1 with probability p. It equals 1 if and only if agent i can afford 1
k for

the non-free part. The total number of agents in �v who can afford 1
k for the non-

free part then follows a Binomial distribution B(n, p). We use B to denote this
Binomial variable. If B ≥ k + 1, then every agent receives the free part, because
agent i receives the free part if excluding herself, there are at least k agents who
are willing to pay 1

k for the non-free part. The probability that the max-delay is
higher than d is therefore bounded above by P (B ≤ k). According to Hoeffding’s

inequality, when k < np, P (B ≤ k) ≤ e−2n(p− k
n )2 . We immediately have that

when n approaches infinity, the probability that the max-delay is higher than
d is approaching 0. Since d is arbitrary, we have that asymptotically, the single
deadline mechanism’s expected max-delay is approaching 0.

Next, we use an example to show that when n = 500, the optimal single
deadline mechanism’s expected max-delay is close to 0.01. We reuse all notation
defined in the proof of Theorem 1. We make use of the Chernoff bound. When
k < np, we have P (B ≤ k) ≤ e−nD( k

n ||p), where D (a||p) = a ln a
p +(1−a) ln 1−a

1−p .
When all agents receive the free part, the max-delay is at most d. Otherwise,

the max-delay is at most 1. The expected max-delay is at most

P (B ≤ k) + d(1 − P (B ≤ k)) ≤ P (B ≤ k) + d

Example 1. Let us consider a case where n = 500. We set d = 0.01 and k = 250.

– f is the uniform distribution U(0, 1): We have p = 0.6 and P (B ≤ 250) ≤
3.69e − 5. M(0.01)’s expected max-delay is then bounded above by 0.01 +
3.69e − 5.

– f is the normal distribution N(0.5, 0.1) restricted to [0, 1]: We have p = 0.84
and P (B ≤ 250) ≤ 7.45e−69. M(0.01)’s expected max-delay is then bounded
above by 0.01 + 7.45e − 69.

On the contrary, the expected max-delay of the serial cost sharing mechanism
is not approaching 0 asymptotically. For example, when n = 500, under U(0, 1),
the expected max-delay of the serial cost sharing mechanism equals 0.632.

6 Sum-Delay: Asymptotic Optimality

Theorem 2. When the number of agents approaches infinity, the optimal single
deadline mechanism is optimal among all mechanisms in terms of expected sum-
delay.

Theorem 2 can be proved by combining Proposition 4 and Proposition 5.
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Proposition 2. The optimal expected sum-delay is finite regardless of the dis-
tribution.

Proof. We consider the following mechanism: Pick an arbitrary integer k > 1.
We offer 1

k to the agents one by one. An agent gets the whole interval [0, 1] if
she agrees to pay 1

k and if the project is built. Otherwise, she gets nothing. We
build the project only when k agents agree. Since we approach the agents one
by one, after k agents agree to pay 1

k , all future agents receive the whole interval
for free. This mechanism’s expected sum-delay is bounded above by a constant.
The constant only depends on the distribution.

The following proposition follows from Proposition 2.

Proposition 3. Given a mechanism M and the number of agents n, let Fail(n)
be the probability of not building under M . We only need to consider M that
satisfies Fail(n) = O(1/n).

We then propose a relaxed version of the ex post budget balance constraint,
and use it to calculate the delay lower bound.

Definition 3 (Ex ante budget balance). Mechanism M is ex ante budget
balanced if and only if the expected total payment from the agents equals the
probability of building (times project cost 1).

Proposition 4. Let Fail(n) be the probability of not building the project when
there are n agents. We consider what happens when we offer o for the whole
interval [0, 1] to an individual agent. If the agent accepts o then she pays o and
gets the whole interval. Otherwise, the agent pays 0 and receives nothing.

We define the delay versus payment ratio r(o) as follows:

r(o) =

∫ o

0
f(x)dx

o
∫ 1

o
f(x)dx

r is continuous on (0, 1). Due to f being Lipschitz continuous, we have
limo→0 r(o) = f(0) and limo→1 r(o) = ∞.4 We could simply set r(0) = f(0),
then r is continuous on [0, 1). We define the optimal delay versus payment ratio
r∗ = mino∈[0,1) r(o).

The expected sum-delay is bounded below by r∗(1−Fail(n)), which approaches
r∗ asymptotically according to Proposition 3.

Proposition 5. Let o∗ be the optimal offer that leads to the optimal delay versus
payment ratio r∗.5

o∗ = arg min
o∈[0,1)

r(o)

4 When o approaches 0, r(o)’s numerator is approaching of(0) while the denominator
is approaching o.

5 If o∗ = 0, then we replace it with an infinitesimally small γ > 0. The achieved sum-
delay is then approaching r(γ)(1 + ε) asymptotically. When γ approaches 0, r(γ)
approaches r∗.
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Let ε > 0 be an arbitrarily small constant. The following single deadline
mechanism’s expected sum delay approaches r∗(1 + ε) asymptotically.

M(
1 + ε

no∗ ∫ 1

o∗ f(x)dx
)

We then use an example to show that when n = 500, under different distri-
butions, the optimal single deadline mechanism’s expected sum-delay is close to
optimality.

Example 2. We consider n = 500 which is the same as Example 1. Simulations
are based on 100, 000 random draws.

– f is the uniform distribution U(0, 1): The single deadline mechanism M(1)
(essentially the serial cost sharing mechanism) has an expected sum-delay
of 1.006, which is calculated via numerical simulation. Fail(500) is then at
most 0.002. r∗ = 1. The lower bound is 0.998, which is close to our achieved
sum-delay 1.006.

– f is the normal distribution N(0.5, 0.1) restricted to [0, 1]: The single deadline
mechanism M(1)’s expected sum-delay equals 2.3e − 4 in simulation, which
is obviously close to optimality.

– f is the beta distribution Beta(0.5, 0.5): The single deadline mechanism
M(0.01)’s expected sum-delay equals 1.935 in simulation. Fail(500) is then at
most 0.00387. r∗ = 1.927. The lower bound equals (1− 0.00387) ∗ r∗ = 1.920,
which is very close to the achieved sum-delay of 1.935. The serial cost sharing
mechanism M(1) is far away from optimality in this example. The expected
sum-delay of the serial cost sharing mechanism is much larger at 14.48.

7 Automated Mechanism Design for Smaller Number
of Agents

For smaller number of agents, the single deadline mechanism family no longer
contains a near optimal mechanism. We propose two numerical methods for iden-
tifying better mechanisms for smaller number of agents. One is by extending the
single deadline mechanism family and the other is via evolutionary computation.

Definition 4 (Multiple Deadline Mechanisms). A multiple deadline mech-
anism M(d1, . . . , dn) is characterized by n different deadlines. Agent i’s non-free
part is [0, di] and her free part is [di, 1]. The mechanism’s rules are otherwise
identical to the single deadline mechanisms.

We simply use exhaustive search to find the best set of deadlines. Obviously,
this approach only works when the number of agents is tiny. We then present an
Automated Mechanism Design approach based on evolutionary computation.

Ohseto [8] characterized all strategy-proof and individually rational mecha-
nisms for the binary public project model (under several minor technical assump-
tions). We summarize the author’s characterization as follows:
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– Unanimous mechanisms (characterization for the nonexcludable model):
Under an unanimous mechanism, there is a cost share vector (c1, c2, . . . , cn)
with ci ≥ 0 and

∑
i ci = 1. The project is built if and only if all agents accept

this cost share vector.
– Largest unanimous mechanisms (characterization for the excludable model):

Under a largest unanimous mechanism, for every subset/coalition of the
agents, there is a constant cost share vector. The agents initially face the
cost share vector corresponding to the grand coalition. If some agents do not
accept the current cost share vector, then they are forever excluded. The
remaining agents face a different cost share vector based on who are left. If at
some point, all remaining agents accept, then we build the project. Otherwise,
the project is not built.

We extend the largest unanimous mechanisms by adding the release time
element.

Definition 5 (Sequential unanimous mechanisms). A cost share vector
under a sequential unanimous mechanism includes both the payments and the
release time:

T1, B1, T2, B2, . . . , Tn, Bn

Agent i accepts the above cost share vector if and only if her utility based
on her reported valuation is nonnegative when paying Bi for the time interval
[Ti, 1]. That is, agent i accepts the above cost share vector if and only if her
reported valuation is at least Bi

1−Ti
. Bi

1−Ti
is called the unit price agent i faces.

We require Bi ≥ 0 and
∑

i Bi = 1.
A sequential unanimous mechanism contains m cost share vectors in a

sequence. The mechanism goes through the sequence and stops at the first vector
that is accepted by all agents. The project is built and the agents’ release time
and payments are determined by the unanimously accepted cost share vector. If
all cost share vectors in the sequence are rejected, then the decision is not to
build.

The largest unanimous mechanisms (can be interpreted as special cases with
binary Ti) form a subset of the sequential unanimous mechanisms. The sequential
unanimous mechanisms’ structure makes it suitable for genetic algorithms—we
treat the cost share vectors as the genes and treat the sequences of cost share
vectors as the gene sequences.

The sequential unanimous mechanisms are generally not strategy-proof. How-
ever, they can be easily proved to be strategy-proof in two scenarios:

– A sequential unanimous mechanism is strategy-proof when the sequence con-
tains only one cost share vector (an agent faces a take-it-or-leave-it offer). This
observation makes it easy to generate an initial population of strategy-proof
mechanisms.
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– If for every agent, as we go through the cost share vector sequence, the unit
price an agent faces is nondecreasing and her release time is also nonde-
creasing, then the mechanism is strategy-proof. Essentially, when the above
is satisfied, all agents prefer earlier cost share vectors. All agents are incen-
tivized to report truthfully, as doing so enables them to secure the earliest
possible cost share vector.

The sequential unanimous mechanism family seems to be quite expressive.6

Our experiments show that by optimizing within the sequential unanimous mech-
anisms, we are able to identify mechanisms that perform better than existing
mechanisms. Our approach is as follows:

– Initial population contains 200 strategy-proof mechanisms. Every initial
mechanism is a sequential unanimous mechanism with only one cost share
vector. The Bi and the Ti are randomly generated by sampling U(0, 1).

– We perform evolution for 200 rounds. Before each round, we filter out mech-
anisms that are not truthful. We have two different filters:

• Strict filter: we enforce that every agent’s unit price faced and release
time must be nondecreasing. With this filter, the final mechanism pro-
duced must be strategy-proof. We call this variant the Truthful Genetic
Algorithm (TGA).

• Loose filter: we use simulation to check for strategy-proofness violations.
In every evolution round, we generate 200 random type profiles. For each
type profile and each agent, we randomly draw one false report and we
filter out a mechanism if any beneficial manipulation occurs. After fin-
ishing evolution, we use 10, 000 type profiles to filter out the untruthful
mechanisms from the final population. It should be noted that, we can
only claim that the remaining mechanisms are probably truthful. We call
this variant the Approximately Truthful Genetic Algorithm (ATGA).

– We perform crossover and mutations as follows:
• Crossover: We call the top 50% of the population (in terms of fitness, i.e.,

expected max-delay or sum-delay) the elite population. For every elite
mechanism, we randomly pick another mechanism from the whole popu-
lation, and perform a crossover by randomly swapping one gene segment.

• Mutation: For every elite mechanism, with 20% chance, we randomly
select one gene, modify the offer of one agent by making it worse. We
insert that new cost share vector into a random position after the original
position.

• Neighbourhood Search: For every elite mechanism, with 20% chance, we
randomly perturb one gene uniformly (from −10% to +10%).

6 Let M be a strategy-proof mechanism. There exists a sequential unanimous mech-
anism M ′ (with exponential sequence length). M ′ has an approximate equilibrium
where the equilibrium outcome is arbitrarily close to M ’s outcome. To prove this,
we only need to discretize an individual agent’s type space [0, 1] into a finite number
of grid points. The number of type profiles is exponential. We place M ’s outcomes
for all these type profiles in a sequence.



Public Project with Minimum Expected Release Delay 111

• Abandon duplication and unused genes: In every evolution round, if a cost
share vector is never unanimously accepted or if two cost share vectors
are within 0.0001 in L1 distance. then we remove the duplication/unused
genes.

7.1 Experiments

We present the expected max-delay and sum-delay for n = 3, 5 and for different
distributions (Table 1). ATGA is only approximately truthful. We recall that in
our evolutionary process, in each round, we only use a very loose filter to filter
out the untruthful mechanisms. After evolution finishes, we run a more rigorous
filter on the final population (based on 10, 000 randomly generated type profiles).
The percentage in the parenthesis is the percentage of mechanisms surviving the
more rigorous test. The other mechanisms (TGA and Single/Multiple deadlines)
are strategy-proof. SCS is the serial cost sharing mechanism from Moulin [7],
which has the best known expected delays [6].

Table 1. We see that ATGA performs well in many settings. If we focus on provable
strategy-proof mechanisms, then TGA and the optimal multiple deadline mechanism
also often perform better than the serial cost sharing mechanism.

n = 3, sum-delay ATGA TGA Single deadline Multiple deadline SCS

Uniform(0,1) 1.605(95%) 1.605 1.605 1.605 1.605

Beta(0.5,0.5) 1.756(89%) 1.757 1.757 1.757 1.757

Bernoulli(0.5) 0.869(100%) 0.868 1.499 1.253 1.498

50% 0, 50% 0.8 1.699(98%) 1.873 1.873 1.873 1.873

n = 3,max-delay ATGA TGA Single deadline Multiple deadline SCS

Uniform(0,1) 0.705(97%) 0.705 0.705 0.705 0.705

Beta(0.5,0.5) 0.754(87%) 0.757 0.782 0.757 0.782

Bernoulli(0.5) 0.5(100%) 0.498 0.687 0.50 0.877

50% 0, 50% 0.8 0.676(94%) 0.753 0.749 0.749 0.877

n = 5, sum-delay ATGA TGA Single deadline Multiple deadline SCS

Uniform(0,1) 1.462(95%) 1.503 1.415 1.415 1.415

Beta(0.5,0.5) 2.279(92%) 2.12 1.955 1.955 1.955

Bernoulli(0.5) 1.146(100%) 1.867 2.106 1.711 2.523

50% 0, 50% 0.8 2.432(94%) 2.845 2.323 2.248 2.667

n = 5,max-delay ATGA TGA Single deadline Multiple deadline SCS

Uniform(0,1) 0.677(91%) 0.677 0.662 0.662 0.678

Beta(0.5,0.5) 0.754(79%) 0.75 0.73 0.73 0.827

Bernoulli(0.5) 0.506(100%) 0.50 0.577 0.50 0.971

50% 0, 50% 0.8 0.666(80%) 0.751 0.736 0.679 0.968
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Abstract. Most studies of facility location problems permit a facility
to be located at any position. In practice, this may not be possible. For
instance, we might have to limit facilities to particular locations such
as at highway exits, close to bus stops, or on empty building lots. We
consider here the impact of such constraints on the location of facilities
on the performance of strategy proof mechanisms for facility location.
We study six different objectives: the total or maximum distance agents
must travel, the utilitarian or egalitarian welfare, and the total or mini-
mum satisfaction of agents (satisfaction is a normalized form of utility).
We show that limiting the location of a facility makes all six objectives
harder to approximate. For example, we prove that the median mecha-
nism modified suitably to locate the facility only at a feasible location is
strategy proof and 3-approximates both the optimal total distance and
the optimal maximum distance. In fact, this is optimal as no determin-
istic and strategy proof mechanism can better approximate the total or
maximum distances. This contrasts with the setting where the facility
can be located anywhere, and the median mechanism returns the optimal
total distance and 2-approximates the maximum distance.

1 Introduction

The facility location problem has been studied using tools from a wide variety of
fields such as AI (e.g. [1–4]). Operations Research (e.g. [5,6]), and Game Theory
(e.g. [7,8]). Our goal here is to design mechanisms that locate the facility in a
way that the agents have no incentive to mis-report their true locations. Facility
location models many practical problems including the location of bus or tram
stops, schools, playgrounds, telephone exchanges, mobile phone masts, recycling
centres, electric car charging points, shared cars, power plants, electricity sub-
stations, doctors, chemists, fire stations, and hospitals. In many of these real
world settings, facilities may be limited in where they can be located. For exam-
ple, a warehouse might need to be constrained to be near to the railway, or an
ambulance station close to a highway. Our contribution is to demonstrate that
such constraints on the location of a facility make it harder to design strategy
proof mechanisms which provide high quality solutions. We measure the quality
of the solution in six different ways: total or maximum distance of the agents to

c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13031, pp. 113–124, 2021.
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the facility, the utilitarian and egalitarian welfare, and the social or minimum
satisfaction.

From a technical sense, limiting the location of a facility might appear to
change little the facility location problem. We merely need to limit the space
of mechanisms to the strict subset of mechanism which only locate facilities
at feasible locations. We can therefore immediately inherit many impossibility
results. For instance, since there is no deterministic and strategy proof mecha-
nism for the facility problem which minimizes the maximum distance an agent
travels when the facility can be located anywhere, it follows quickly that there
is no such mechanism when the facility is limited in its location. However, the
mechanisms excluded because they locate facilities at infeasible locations are
often precisely those with good normative properties. Our contribution here
is to show restricting mechanisms to locate facilities only at feasible locations
often increases approximation ratios, irrespective of whether the objective is dis-
tance, welfare or satisfaction. However, the extent to which approximation ratios
increases depends very much on the objective and the problem. For example, the
lower bound on the best possible approximation ratio of the optimal egalitarian
welfare increases from 3

2 to unbounded when we limit the feasible location of a
facility. On the other hand, the best possible approximation ratio of the opti-
mal utilitarian welfare only triples in this case. Our results are summarized in
Tables 1 and 2.

Table 1. Approximation ratios achievable by deterministic and strategy proof mech-
anisms for the single facility location problem at limited locations. Bold for results
proved here. [Numbers] in brackets are the approximation ratios achieved for when the
facility can be located anywhere.

Mechanism Measure

Total distance Max

distance

Utilitarian

welfare

Egalitarian

welfare

Social

satisfaction

Min satis-

faction

Lower bound 3 [1] 3 [2] 3 [1] ∞ [ 32 ] ∞[1.07] ∞ ( 4
3 )

Median∗ 3 [1] 3 [2] 3 [1] ∞ [∞] ∞ [ 32 ] ∞ [∞]

Table 2. Summary of approximation ratios achieved by EndPoint∗ mechanism for
the two facility location problem at limited locations. Bold for results proved here.
[Numbers] in brackets are the approximation ratios achieved by the corresponding
EndPoint mechanism when the two facilities can be located anywhere.

Mechanism Measure

Total distance Max

distance

Utilitarian

welfare

Egalitarian

welfare

Social satisfaction Min satis-

faction

EndPoint∗ 2n-3 [n-2] 3 [2] 2 [2] 3
2 [ 32 ]

3n
4 − 1

2 [n2 − 1
4 ] ∞ [∞]



Strategy Proof Mechanisms for Facility Location at Limited Locations 115

2 Related Work

We follow the line of work initiated by Procaccia and Tennenholtz [1] that looks
to resolve the inherent tension in designing mechanisms that are strategy proof
and effective by identifying strategy proof mechanisms that are guaranteed to
return solutions within some constant factor of optimal. The most related prior
work to ours is by Feldman, Fiat, Golomb [9]. This also considers facility loca-
tion problems where the facility is restricted to limited locations. There is, how-
ever, a critical difference with this work. This earlier work restricted analysis
to a single objective (sum of distances), while here we consider six objectives
(sum/maximum distance, utilitarian/egalitarian welfare, social/minimum sat-
isfaction). Our results show that approximation ratios that can be achieved
depend critically on the objective chosen. For instance, when the facility is
restricted to limited locations, deterministic and strategy proof mechanisms can
3-approximate the optimal utilitarian welfare. However, no deterministic and
strategy proof mechanism has a bounded approximation ratio for the egalitar-
ian welfare. By contrast, if we consider a different but related objective to the
egalitarian welfare such as the maximum distance an agent travels, then deter-
ministic and strategy proof mechanisms exist which bound the approximation
ratio even when the facility is restricted to limited locations. In addition, when
the facility is unrestricted, there exists a deterministic and strategy proof mech-
anism that can 3

2 -approximate the optimal egalitarian welfare. The choice of
objective then reveals different aspects of the approximability of these facility
location problems.

One month after this work here first appeared as a preprint, Tang, Wang,
Zhang and Zhao published a preprint looking independently at a special case of
this problem in which facilities are limited to a finite set of locations [10]. There
are two significant technical differences between the two studies. First, the work
of Tang et al. does not capture the more general setting here where the facility
is limited to a set of subintervals. In their work, a facility is limited to a finite
set of locations. Their model cannot then describe a setting where, for example,
a school must be within 500 m of one of the neighbourhood bus stops as the
feasible set is not finite. In addition, the work of Tang et al., like the work of
Feldman et al., only considers two objectives: total and maximum cost. Here we
consider four additional objectives: utilitarian and egalitarian welfare, as well
as social and minimum satisfaction. Our results show that we can achieve very
different approximation ratios with these different objectives. Indeed, for many
of these new objectives, we cannot achieve a bounded approximation ratio with
deterministic and strategy proof mechanisms.

As in much previous work on mechanism design for facility location (e.g. [1]),
we consider the one-dimensional setting. This models a number of real world
problems such as locating shopping centres along a highway, or ferry stops along
a river. There are also various non-geographical settings that can be viewed as
one-dimensional facility location problems (e.g. choosing the temperature of a
classroom, or the tax rate for property transactions). In addition, we can use
mechanisms for the one-dimensional facility location problem in more complex
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settings (e.g. we can decompose the 2-d rectilinear problem into a pair of 1-d
problems). Finally, results about mechanisms for the one-dimensional problem
can inform the results about mechanisms for more complex metrics. For instance,
lower bounds on the performance of strategy proof mechanisms for the 1-d prob-
lem provide lower bounds for the 2-d problem.

3 Formal Background

We have n agents located on [0, 1], and wish to locate one or more facilities
also on [0, 1] to serve all the agents. Agent i is at location xi. Without loss of
generality, we suppose agents are ordered so that x1 ≤ . . . ≤ xn. A solution
is a location yj for each facility j. Agents are served by their nearest facility.
We consider six different performance measures: total or maximum distance,
utilitarian or egalitarian welfare, and social or minimum satisfaction.

The total distance is
∑n

i=1 minj |xi − yj |. The maximum distance is
maxn

i=1minj |xi − yj | . We suppose the utility ui of agent i is inversely related to
its distance from the facility serving it. More precisely, ui = 1 − minj |xi − yj |.
Utilities are, by definition, in [0, 1]. The utilitarian welfare is the sum of the util-
ities of the individual agents,

∑n
i=1 ui. The egalitarian welfare is the minimum

utility of any agent, minn
i=1ui.

In [11,12], normalized utilities called “happiness factors” are introduced. The
happiness hi of agent i is hi = 1 − minj

|xi−yj

di
max

where dimax is the maximum
possible distance agent i may need to travel. Here dimax = max(xi, 1 − xi). Note
that the happiness of an agent is, by definition, in [0, 1]. The social satisfaction is
then the sum of the happinesses of the individual agents,

∑n
i=1 hi. The minimum

satisfaction is the minimum happiness of any agent, minn
i=1hi. Our goal is to

optimize one of the distance, welfare or satisfaction objectives.
We consider some particular mechanisms for facility location. Many are

based on the function median(z1, . . . , zp) which returns zi where |{j|zj <
zi}| < �p

2� and |{j|zj > zi}| ≤ �p
2�. With n − 1 parameters z1 to zn−1 rep-

resenting “phantom” agents, a GenMedian mechanism locates the facility at
median(x1, . . . , xn, z1, . . . , zn−1) As we argue shortly, such mechanisms char-
acterize an important class of strategy proof mechanisms [13]. The Leftmost
mechanism has parameters zi = 0 for i ∈ [1, n) and locates the facility at the loca-
tion of the leftmost agent. The Rightmost mechanism has parameters zi = 1
for i ∈ [1, n) and locates the facility at the location of the rightmost agent. The
Median mechanism has parameters zi = 0 for i ≤ �n

2 � and 1 otherwise, and
locates the facility at the median agent if n is odd, and the leftmost of the two
median agents if n is even. The MidOrNearest mechanism is an instance of
GenMedian with parameters zi = 1

2 for i ∈ [1, n), locating the facility at 1
2

if x1 ≤ 1
2 ≤ xn, and otherwise at the nearest xi to 1

2 . The EndPoint mecha-
nism locates one facility with the Leftmost mechanism and another with the
Rightmost mechanism.

We extend this model of facility location problems with constraints on the
location of the facility. In particular, we suppose the interval [0, 1] is decom-
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posed into a set of feasible and disjoint (open or closed) sub-intervals, and the
facility must be located within one of these sub-intervals. Our goal is to see
how restricting the feasible locations of the facility in this way impacts on the
performance of strategy proof mechanisms. Note that unlike [9], agents are not
limited in where they can be located. We only limit where the facility (and not
agents) can be located. In particular, we modify mechanisms to ensure the facil-
ity is located at a feasible location. For instance, the Leftmost∗ mechanism
modifies the Leftmost mechanism to locate the facility at the nearest feasi-
ble location to the leftmost agent. The Rightmost∗ mechanism modifies the
Rightmost mechanism in a similar fashion. Note that we cannot have agents
simply report their nearest feasible location as there might be a choice of such
locations. Indeed, many of our results that approximation guarantees are not
bounded arise because of the difficulty of choosing between the two nearest and
feasible locations to some optimal but infeasible facility location in a strategy
proof way.

We consider three desirable properties of mechanisms: anonymity, Pareto
optimality and strategy proofness. Anonymity is a fundamental fairness property
that requires all agents to be treated alike. Pareto optimality is one of the most
fundamental normative properties in economics. It demands that we cannot
improve the solution so one agent is better off without other agents being worse
off. Finally, strategy proofness is a fundamental game theoretic property that
ensures agents have no incentive to act strategically and try to manipulate the
mechanisms by mis-reporting their locations.

More formally, a mechanism is anonymous iff permuting the agents does not
change the solution. A mechanism is Pareto optimal iff it returns solutions that
are always Pareto optimal. A solution is Pareto optimal iff there is no other
solution in which one agent travels a strictly shorter distance, and all other
agents travel no greater distance. A mechanism is strategy proof iff no agent
can mis-report and thereby travel a shorter distance. For instance, the Median
mechanism is anonymous, Pareto optimal and strategy proof. Finally, we will
consider strategy proof mechanisms that may approximate the optimal distance,
welfare or satisfaction. A mechanism achieves an approximation ratio ρ iff the
solution it returns is within a factor of ρ times the optimal. In this case, we say
that the mechanism ρ-approximates the optimal.

Procaccia and Tennenholtz initiated the study of designing approximate and
strategy proof mechanisms for locating facilities on a line [1]. With just one
facility, they argue that the Median mechanism is strategy proof and optimal
for the total distance, while the Leftmost mechanism is strategy proof and 2-
approximates the optimal maximum distance, and no deterministic and strategy
proof mechanism can do better.

4 Single Facility, Distance Approximations

For a single facility on the line, Moulin proved a seminal result that any mech-
anism that is anonymous, Pareto optimal and strategy proof is a generalized
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median mechanism, GenMedian [13]. This locates the facility at the median
location of the n agents and n−1 “phantom” agents. We cannot apply Moulin’s
result directly to our setting as a GenMedian mechanism may select an infea-
sible location for the facility. Instead, we consider the GenMedian∗ mechanism
which locates a facility at the nearest feasible location to that returned by a
GenMedian mechanism. If there are two nearest and equi-distant feasible loca-
tions, then the GenMedian∗ mechanism uses a fixed tie-breaking rule for each
infeasible interval (e.g.,. always use the leftmost of the two nearest locations).
Here, as indeed throughout the paper, we suppose a fixed tie-breaking rule to
ensure that the modified mechanism retains anonymity and strategy proofness.
However, none of our results on performance guarantees depend on the choice.

The Median∗ mechanism is an instance of GenMedian∗ which locates the
facility at the median agent if it is a feasible location, and otherwise at the nearest
feasible location to the median agent. Massó and Moreno de Barreda prove that,
when locating a single facility at limited locations, a mechanism is anonymous,
Pareto efficient and strategy proof iff it is a GenMedian∗ mechanism with at
least one phantom agent at 0 and one at 1 (corollary 2 in [14]). It follows that
the Median∗ mechanism is anonymous, Pareto efficient and strategy proof.

4.1 Total Distance

We first consider the objective of minimizing the total distance agents travel
to be served. The Median∗ mechanism 3-approximates the optimal total dis-
tance (Lemma 21 in [9]). In fact, this is optimal. No deterministic strategy proof
mechanism can better approximate the total distance in general (Lemma 19 in
[9]). By comparison, when the facility can be located anywhere, the Median
mechanism is strategy proof and returns the optimal total distance. Limiting
the feasible locations of a facility therefore worsens the performance of the best
possible deterministic and strategy proof mechanism. In particular, the best pos-
sible deterministic and strategy proof mechanism goes from returning an optimal
solution to 3-approximating the optimal total distance.

4.2 Maximum Distance

We consider next the objective of minimizing the maximum distance any agent
travels to be served. The Median∗ mechanism also 3-approximates the optimal
maximum distance.

Theorem 1. The Median∗ mechanism 3-approximates the optimal maximum
distance for a facility location problem with limited locations.

We contrast this with the setting where the facility can be located anywhere,
and the Median mechanism 2-approximates the optimal maximum distance.
In fact, when there are no constraints on where facilities can be located, the
Median mechanism is optimal as no deterministic and strategy proof mechanism
can do better than 2-approximate the optimal maximum distance (Theorem
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3.2 of [1]). Restricting the feasible locations of a facility therefore worsens the
performance of a median mechanism from a 2-approximation of the optimal
maximum distance to a 3-approximation.

Can any strategy proof mechanism do better than 3-approximate the maxi-
mum distance when we limit the feasible locations of the facility? We show that
no deterministic and strategy proof mechanism has a smaller approximation
ratio for the optimal maximum distance.

Theorem 2. For a facility location problem with limited locations, no determin-
istic and strategy proof mechanism can do better than 3-approximate the optimal
maximum distance.

Hence the Median∗ mechanism is optimal. No deterministic and strategy
proof mechanism can do better than 3-approximate the optimal maximum dis-
tance.

5 Single Facility, Welfare Approximations

We switch now to considering how well strategy proof mechanisms approximate
the utilitarian or egalitarian welfare.

5.1 Utilitarian Welfare

With no limits on the location of the facility, it is not hard to see that the Median
mechanism is strategy proof and returns the optimal utilitarian welfare. However,
in our setting, the Median mechanism may select an infeasible location for the
facility. We consider instead the Median∗ mechanism which locates the facility
at the nearest feasible location to the median agent.

Theorem 3. For a facility location problem with limited locations, the Median∗

mechanism is strategy proof and 3-approximates the optimal utilitarian welfare.

As with minimizing the total distance, the Median∗ mechanism is optimal.
No deterministic and strategy proof mechanism has a better approximation guar-
antee.

Theorem 4. For a facility location problem with limited locations, any deter-
ministic and strategy proof mechanism at best 3-approximates the optimal utili-
tarian welfare.

5.2 Egalitarian Welfare

We turn now to the egalitarian welfare. It is not hard to see that the Median
mechanism may not bound the approximation ratio of the optimal egalitar-
ian welfare. Similarly, when the location of facilities is limited, the correspond-
ing Median∗ mechanism also may approximate the optimal egalitarian welfare
poorly.
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Theorem 5. For a facility location problem with limited locations, the Median∗

mechanism does not bound the approximation ratio of the optimal egalitarian
welfare.

In fact, no deterministic and strategy proof mechanism for a facility location
problem with limited locations has a bounded approximation ratio. This con-
trasts with the setting where the facility can be located anywhere and it is pos-
sible to show that no deterministic and strategy proof mechanism can do better
than 3

2 -approximate the optimal egalitarian welfare, and that the MidOrNear-
est mechanism actually achieves this ratio.

Theorem 6. For a facility location problem with limited locations, no deter-
ministic and strategy proof mechanism has a bounded approximation ratio of the
optimal egalitarian welfare.

6 Single Facility, Satisfaction Approximations

We consider next how well strategy proof mechanisms approximate the optimal
social or minimum satisfaction.

6.1 Social Satisfaction

Mei et al. prove that the Median mechanism 3
2 -approximates the optimal social

satisfaction (Theorem 1 of [12]). In addition, they show that no deterministic
and strategy proof mechanism has an approximation ratio of the optimal social
satisfaction of less than 8 − 4

√
3 which is approximately 1.07 (Theorem 3 of

[12]). We cannot apply these results directly to our setting as the mechanisms
considered in [12] may select an infeasible location for the facility. Instead, we
again consider the Median∗ mechanism which locates the facility at the nearest
feasible location to the median agent.

Theorem 7. For a facility location problem with limited locations, the Median∗

mechanism is strategy proof and has an unbounded approximation ratio of the
optimal social satisfaction.

Unfortunately, we cannot do better. No deterministic and strategy proof
mechanism has a bounded approximation ratio of the optimal social satisfaction.

Theorem 8. For a facility location problem with limited locations, no deter-
ministic and strategy proof mechanism has a bounded approximation ratio of the
optimal social satisfaction.
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6.2 Minimum Satisfaction

We turn now to the minimum satisfaction. Mei et al. argue that no deterministic
and strategy proof mechanism has an approximation ratio of the optimal mini-
mum satisfaction of less than 4

3 (also Sect. 3.3 of [12]). The Median mechanism
has an unbounded approximation ratio for the minimum satisfaction. Consider
two agents at 0 and one at 1. Not surprisingly, the Median∗ mechanism may
also approximate the optimal minimum satisfaction poorly.

Theorem 9. For a facility location problem with limited locations, the Median∗

mechanism does not bound the approximation ratio of the optimal minimum
satisfaction.

In fact, no deterministic and strategy proof mechanism for a facility loca-
tion problem with limited locations has a bounded approximation ratio of the
minimum satisfaction.

Theorem 10. For a facility location problem with limited locations, no deter-
ministic and strategy proof mechanism has a bounded approximation ratio of the
optimal minimum satisfaction.

7 Two Facilities, Distance Approximations

We move now from locating a single facility to locating two facilities. When
facilities are not limited in their location, the only deterministic and strategy
proof mechanism for locating two facilities on the line with a bounded approxi-
mation ratio for either the optimal total or maximum distance is the EndPoint
mechanism [15]. This provides a (n−2)-approximation of the total distance and
a 2-approximation of the maximum distance.

We suppose now that facilities are limited in their location, and consider the
corresponding EndPoint∗ mechanism that locates the leftmost facility at the
nearest feasible location to the leftmost agent, tie-breaking to the right, and the
rightmost facility at the nearest feasible location to the rightmost agent, tie-
breaking instead to the left. Tang et al. prove that, when the two facilities are
limited in their locations, this mechanism 2n−3-approximates the total distance
[10]. Tang et al. also prove that the mechanism 3-approximates the maximum
distance, and that no deterministic and strategy proof mechanism can do better
[10].

8 Two Facilities, Welfare Approximations

When facilities are not limited in their location, the EndPoint mechanism offers
a good approximation of both the optimal utilitarian and egalitarian welfare. In
particular, it is not hard to show that it 2-approximates the optimal utilitarian
welfare, and 3

2 -approximates the optimal egalitarian welfare,
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When facilities are limited in their locations, the corresponding EndPoint∗

mechanisms provides the same approximation ratio for the utilitarian and egal-
itarian welfare. We contrast this with the distance objective, where limiting the
location of the two facilities worsens the approximation ratio of the EndPoint∗

mechanism. We also contrast this with a single facility, where limiting the loca-
tion of the facility worsens the approximation ratio for either welfare objective.

Theorem 11. The EndPoint∗ mechanism 2-approximates the optimal utili-
tarian welfare, and 3

2 -approximates the optimal egalitarian welfare.

9 Two Facilities, Satisfaction Approximations

When facilities are not limited in their location, the EndPoint mechanism
offers a good approximation of the social satisfaction but not of the minimum
satisfaction. In particular, it is not hard to show that it n

2 − 1
4 -approximates the

optimal social satisfaction but has no bound on the approximation ratio of the
minimum satisfaction.

When facilities are limited in their locations, the corresponding EndPoint∗

mechanism provides a larger approximation ratio for the social satisfaction. We
compare this with the distance objective, where limiting the location of the two
facilities also worsens the approximation ratio of the EndPoint∗ mechanism.
We also compare this with a single facility, where limiting the location of the
facility means that the approximation ratio for the social satisfaction becomes
unbounded.

Theorem 12. The EndPoint∗ mechanism 3n
4 − 1

2 -approximates the optimal
social satisfaction, but does not bound the approximation ratio of the optimal
minimum satisfaction.

10 Conclusions

We have studied the impact of constraints on the location of a facility on the
performance of strategy proof mechanisms for facility location. We considered
six different objectives: the total and maximum distance agents must travel, the
utilitarian and egalitarian welfare, and the social and minimum satisfaction. In
general, constraining facilities to a limited set of locations makes all six objec-
tives harder to approximate in general. For example, a modified median mecha-
nism is strategy proof and 3-approximates both the optimal total and maximum
distance. No deterministic and strategy proof mechanism can do better. This
contrasts with the setting in which there are no restrictions on where facilities
can be located and the median mechanism returns the optimal total distance,
and 2-approximates the optimal maximum distance. In future work, we intend
to consider computational questions around such facility location problems (e.g.
[16,17]), as well as online versions of the problem (e.g. [18]), and (Nash) equilibria
in strategic settings (e.g. [19,20]).
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Abstract. Existing face sketch synthesis methods extend conditional
generative adversarial network framework with promising performance.
However, they usually pre-train on additional large-scale datasets, and
the performance is still not satisfied. To tackle the issues, we develop a
deep bidirectional network based on the least mean square error recon-
struction (Lmser) self-organizing network, which is a further development
of autoencoder by folding along the central hidden layer. Such folding
makes the neurons on the paired layers between encoder and decoder
merge into one. We model the photo-to-sketch mapping by an Lmser
network and build a sketch-to-photo mapping by a complement Lmser
sharing the same structure. The bidirectional mappings form an alter-
nation system. We devise a supervised alternating consistency for the
system, by minimizing the deviation between the alternatively mapped
pattern and the ground-truth. Enhanced by the consistency constraints
along the bidirectional paths, the model achieve a significant improve-
ment in terms of Fréchet Inception Distance (FID). Experiments demon-
strate the effectiveness of our method in comparison with state-of-the-art
methods, and reduce the FID from 34.1 to 28.7 on the CUFS dataset and
from 18.2 to 11.5 on the CUFSF dataset.

Keywords: Face sketch synthesis · Deep bidirectional network ·
Lmser · Supervised alternating consistency

1 Introduction

Face sketch synthesis is to represent a photo of a face into a corresponding face
sketch [33]. It can be considered a subfield of image-to-image translation [7].
Enabling the judiciary to narrow down potential suspects in law enforcement
and criminal cases [28], it can also be used as an auxiliary process in digital
entertainment with the prevalent use of digital devices.
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Advances have been made in this area, especially with the development of
generative adversarial networks (GANs) [3]. As a common framework for image-
to-image translation with paired images, pix2pix [7] has drawn extensive atten-
tion and benefited various subfields. Pix2pix extends GANs with an image input
rather than a random noisy vector and employs convolutional neural networks
(CNNs) instead of fully connected neural network to model both the generator
and discriminator. Although the framework is easy to use, it tends to produce
blurry outputs in face sketch synthesis. The reason is that the generators and
the modules are relatively simple and insufficient to generate high-quality and
perceptual realistic images.

To tackle this problem, the community further extends pix2pix with various
technologies. For instance, the work by [33] employed perceptual loss [8] and
face parsing [13] for face sketch synthesis. However, the two mechanisms have
limitations of depending on datasets. For example, both are pre-trained on large-
scale image datasets, and there may be significant differences in the pattern of
data between the datasets for pre-training and training.

To develop an effective model for the generation of high-quality and percep-
tual realistic images, we propose a supervised-consistency (SC) enhanced deep
least mean squared error reconstruction network (Lmser) [29,30], and call our
model as SC-Lmser. Lmser was previously a further development of autoencoder
(AE) by folding along the central hidden layer. Such folding makes the neurons
on the paired layers between encoder and decoder merge into one, which induces
six types of dualities to improve the performance of representation learning [31].
Two major types are duality in connection weights (DCW), which refers to using
the symmetric weights in corresponding layers in encoder and decoder, and dual-
ity in paired neurons (DPN), which refers to dual roles of the neurons between
the encoder and decoder. Recently, Lmser was revisited in [5] and confirmed that
deep Lmser learning works well on potential functions, such as image reconstruc-
tion, association recall, and so on, as previously discuss in [30]. Moreover, it was
extended to CNN based Lmser (CLmser) [6], which is more appropriate for image
related tasks. DPN and DCW were extensively investigated in [6] with new find-
ings on their relative strengths in different aspects on image reconstruction and
image impainting. It has been suggested in [31] that GAN loss can be added to
improve Lmser learning. The effectiveness was verified in [10] for image super-
resolution and in [32] for image-to-image translation. Deep Lmser learning can
be further considered in deep yIng-yAng (IA) system [31] for various tasks of
image thinking, e.g., image pattern transformation. The IA system considers not
only inward cognition from the actual visible world or yAng domain (A-domain)
but also outward interaction from the invisible internal brain or yIng domain
(I-domain) back to A-domain. Readers are referred to [31] for more details.

Specifically, we consider photo X as A-domain, sketch Y as I-domain. We
model A-mapping by a Lmser network, which was trained by a conditional GAN
[7] to translate X into Y . Moreover, I-mapping is also modeled to translate Y into
X by a network with the same structure as A-mapping. For a paired X and Y , a
fake Y (i.e., Ŷ ) is generated via the A-mapping X → Ŷ , while a fake X (i.e., X̂)
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is also a generated through the I-mapping Y → X̂. With the IA-alternation, it is
then possible to compute the reconstruction results ˜X through Ŷ and I-mapping,
and generate further reconstruction results ˜Y through ˜X and A-mapping. In this
paper, we consider supervised consistency for two paths. One is the consistency
between X and X̂ via Y → X̂. The other is between the alternating outputs
and their ground-truth via X → Ŷ → ˜X → ˜Y . These consistencies enhance
the deep Lmser representation learning, leading to improved photo-to-sketch
performance.

The contributions of this study are as follows: (1) It extended a deep bidirec-
tional network with the Lmser network [29] for face sketch synthesis, to enhance
the efficiency of photo-to-sketch. (2) It demonstrated that the Lmser imple-
mented with additive skip connections benefited the bidirectional supervised
consistency system more than the concatenate one. (3) The proposed model
improved the Fréchet Inception Distance (FID) from 34.1 to 28.7 on the CUFS
[28] dataset and from 18.2 to 11.5 on the CUFSF [38] dataset.

2 Related Work

2.1 Face Sketch Synthesis

The method presented in [24] is the first data-driven method based on eigentrans-
formation. They project the test photo onto the eignspace of the training photos
by principal component analysis (PCA). Then the final sketch is generated from
linearly combined weighted training sketches using the same projection. [12] sub-
divides the photo into overlapping patches and proposes to calculate the linear
combination weight by searching similar neighbors in terms of Euclidean dis-
tance at the image patch level. In [28], a Markov random field (MRF) model
is employed to take the neighboring consistency into account. Given that the
similarity search processs is inefficient in previous data-driven methods, SSD
[21] functions face sketch synthesis as a spatial sketch denoising problem, and
RSLCR [25] develops a random sampling strategy to search the nearest neigh-
boring patch. The two methods indeed improve the efficiency of synthesizing
one sketch to an acceptable level. However, they are inefficient for applications,
compared to the model-driven methods without similarity searching of patches.

Several studies also extend CNN models to learn a direct mapping from
face photos to sketches. The method proposed in [35] employs a 7-layers fully
convolutional network (FCN) and the objective of mean squared error (MSE).
[34] proposes a branched fully convolutional network (BFCN) to generate struc-
tural and textual representations, and then fuse them together according to the
face parsing results. Recently, many researchers focus on GANs to synthesize
high-quality face sketches. For example, face sketches are generated by condi-
tional GANs and further refined using the back projection strategy (BP-GAN)
[27]. [33] extends pix2pix [7] framework by the composition information of face
image to guide the generation of face sketch, and employs a compositional loss
[34,37] to enhance the information of facial components and structures, leading
to state-of-the-art performance in combination with a stacked strategy.
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2.2 Image-to-image Translation

Face photo-to-sketch synthesis can be regarded as a subproblem of image-to-
image translation. So far, image-to-image translation problem has made excellent
progress using GANs [3,11], and variational auto-encoder (VAEs) [15].

Among the GAN models, there are two representative methods. A conditional
GAN, called pix2pix, was presented in [7] for image-to-image translation tasks
with paired training samples, such as image style transfer [1], labels to street
scenes and semantic segmentation. However, obtaining paired training data is
difficult or expensive. To tackle this problem, CycleGAN [39] is proposed. Cycle-
GAN is designed with two cycles, X → Ŷ → ˜X and Y → X̂ → ˜Y , to preserve
the consistency of input and output of the cycles. CycleGAN is closely related
to the network presented in this paper, but the proposed model is strengthened
by conditional GAN and a further cycle following X̂ → ˜Y mapping. As a result,
the model can synthesize sketch images of higher quality from real face photos.

3 Method

3.1 Overview of Our Method

Given a set of input images {xi}Ni=1 and output images {yi}Ni=1, where xi and
yi are paired. The aim is to learn a function of translating domain X to Y
where xi ∈ X and yi ∈ Y . The model consist of two networks A : X → Y
(A-mapping) and I : Y → X (I-mapping), and they share the same structure.
Each mapping is a Lmser with shortcuts. With the inputs X and Y , we get the
generated images Ŷ and X̂ by A-mapping and I-mapping respectively, then a
consistency constraint can be computed. According to the two paths X → Ŷ and
Y → X̂, a rough model of A-mapping and a regularization model of I-mapping
is first obtained. After that, with the input Ŷ , the reconstructed images ˜X are
produced to regularize the A-mapping by the symmetrical network I-mapping
in a complement direction. Moreover, ˜X is employed as new samples to further
train A-mapping. Finally, the path X → Ŷ is extended as X → Ŷ → ˜X → ˜Y .
This not only provides many more samples for A-mapping, but also sets higher
demands on it because the reconstructed samples do not strictly fit the real
images. In addition, the adversarial discriminators DX and DY are trained to
distinguish between real X with fake X and real Y with fake Y respectively, in a
conditional manner [7]. The overall architecture of the proposed model and the
differences of paths between cycleGAN [39] and ours are illustrated in Fig. 1.

3.2 Objective

We utilize the least square adversarial loss for both mapping functions, known
as LSGAN [16]. It converges easily and is useful for our model by conditional
adjustment. For the A-mapping A : X → Y and the corresponding discriminator
DY , the objective can be expressed as:

Ladv(A,DY ,X, Y ) = Ex,y[(1 − D(x, y))2] + Ex[(D(x,A(x)))2]. (1)
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Fig. 1. (a) Overview of our model. (b) Two paths in cycleGAN. (c) Two paths in our
model.

Following previous works [7,33], we adopt L1 distance to encourage the “fake”
outputs to fit the distribution of targets as:

LL1(A,X, Y ) = Ex,y[‖A(x) − y‖1]. (2)

In the deep bidirectional leaning framework, ˜X is regarded as the recon-
struction result by the abstract representation of A-mapping’s input X. We
also employ L1 distance to constrain them to be consistent. Moreover, ˜Y is the
abstract representation of ˜X by A-mapping, and to be consistent with Y can
further strengthen the learning of A-mapping. The two losses can be fused as:

LSC(A, I,X, Y ) = Ex[‖I(A(x)) − x‖1] + Ex,y[‖A(I(A(x))) − y‖1]. (3)

Our final objectives are:

(A∗,D∗
Y ) = arg min

A
max
DY

Ladv(A,DY ,X, Y ) + λLL1(A,X, Y ) (4)

+βLSC(A, I,X, Y ),

(I∗,D∗
X) = arg min

I
max
DX

Ladv(I,DX , Y,X) + λLL1(I, Y,X), (5)

where λ and β are weighting factors.

3.3 Network Architecture

In this paper, the Lmser are adopted with two different skip connections as
the networks of A-mapping and I-mapping. Similar to U-Net [19] architecture,
the residual blocks in both encoder and decoder are illustrated in Fig. 2. The
ReLU activation function with a slope 0.2 is used in all ResDown blocks. The
architecture of generators is illustrated in Fig. 2.

The discriminators follow 70 × 70 patchGAN architecture in [7].
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Fig. 2. (a) Network architecture for A-mapping. I-mapping has the same architecture
with contrary input and output. (b) Details of ResDown block. (c) Details of ResUp
block.

4 Experiments

To explore the effectiveness of the proposed method on face sketch synthesis, we
conduct experiments on two extensively applied and public available datasets:
CUFS dataset [28] and CUFSF dataset [38].

– CUFS: includes 606 pairs of face photos and sketches, and consists of three
datasets: CUHK student dataset [23] (188 pairs), AR dataset [17] (123 pairs)
and XM2VTS dataset [18] (295 pairs).

– CUFSF: includes 1194 pairs of face photos and sketches. It is more challenging
relatively because of the varieties of lighting in photos and shape deformations
and exaggerations in sketches.

Dataset Partition. To be consistent with representative methods, we follow the
settings presented in [25] to split the datasets. We select 88 face photo-sketch
pairs from the CUHK student dataset, 80 pairs from the AR dataset, and 100
pairs from the XM2VTS dataset for training, the rest are for testing. For the
CUFSF dataset, 250 pairs are for training and the rest are for testing.
Data Processing. Likewise, we follow SCA-GAN [33] to crop the face images
(photos and sketches) from the original using three-point geometric rectification
for those that do not well aligned. The overall images are cropped to the size
of 250 × 200. Photos are represented in RGB color space, and sketches are
represented in gray color space.

For data augmentation, the images obtained after the data processing are
padded to the size of 286 × 286 with 255 and further randomly cropped to the
size of 256 × 256 for training, and cropped the center for testing. In the SCA-
GAN setting, the input images is padded to the target size with zero, which
significantly enhances performance, compared to resize image setting in pix2pix
[7] according to their experiments. However, we observed that padding with zero
could produce slight blurred effects in the generated sketch in our experimental
settings.
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4.1 Training Details

We optimized the generators and discriminators alternatively at every iteration.
We use the Adam solver with a batch size of 1. For all the experiments, the
weighting factors λ and β were set to 10 and 10, respectively. The generators
and discriminators were trained with the learning rates of 0.0002 and 0.0001
respectively. We trained our model on a single Nvidia Titan X GPU. Each iter-
ation took about 1.2 s, and it took about 18 h for training 300 epochs.

4.2 Evaluation Metrics

Evaluating the quality of synthesized images is a synthetical and thorny prob-
lem. We follow [33] and employ three criteria: Fréchet inception distance (FID)
[4,14,33], feature similarity index metric (FSIM) [36] and null-space linear dis-
criminant analysis (NLDA) [2].

The FID measures the earth-mover distance (EMD) between the feature
of real image and generated image. Generally, the feature is produced by an
Inception-v3 network [22] pre-trained on the ImageNet dataset [20]. A lower
FID score means that the distribution and perception of real data and synthetic
are closer. FID score has been widely applied in image translation and related
tasks, and has a great impact on image quality assessment.

In FSIM, the consistency of real and synthesized image is measured by the
phase congruency and the image gradient magnitude. As reported in [26], FSIM
is better at evaluating the quality setbacks of photos compared with SSIM [9],
however, it is not suitable for evaluating the quality of sketches. In our exper-
iments, we still employ it since FSIM is a prevalent criterion in face sketch
synthesis community.

Additionally, face recognition is a significant application of face sketch syn-
thesis. [25] initially used NLDA [2] to conduct the face recognition experiments.
We follow this setting to evaluate the face recognition accuracy by the generated
and the ground-truth sketches.

4.3 Ablation Study

We conduct an ablation study to evaluate the performance of different modules
in the proposed method. We extend pix2pix framework [7] with two different
generators. The concat and add denote the concatenate and additive skip con-
nections applied in generators, respectively. Figure 3 shows the qualitative effects
of these modules on CUFS and CUFSF datasets. Table 1 illustrates their quan-
tify performance. With pix2pix framework alone, the concat and add generators
have almost the same performance and make significant progress compared to
SCA-GAN [33]. However, they still lead to blurry effects and coarse-grained
facial characteristics. Adding the deep bidirectional leaning mechanism make
further improvements in the quality of results, and decrease the FID score from
14.5 and 15.2 to 12.4 and 11.5 by using concat and add respectively. It follows
that the additive skip connections are fitter for the bidirectional system.
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Fig. 3. Each column shows results trained under different modules. (a) Input, (b)
Ground truth, (c) concat + cGAN , (d) add + cGAN , (e) concat + cGAN + SC, (f)
add + cGAN + SC. From top to bottom, the examples are selected from the CUHK
student dataset, AR dataset, XM2VTS dataset, and CUFSF dataset, sequentially.

Table 1. Ablation study: performance of face photo→sketch for different model mod-
ules, evaluated on the CUFS and CUFSF dataset. add denotes additive skip connec-
tions. concat denotes concatenate skip connections. The last row illuminate our final
model. cGAN denotes pix2pix framework. SC denotes our bidirectional supervised-
consistency mechanism.

Model CUFS dataset CUFSF dataset

FID↓ FSIM↑ NLDA↑ FID↓ FSIM↑ NLDA↑
concat + cGAN 32.2 0.7207 0.9667 14.5 0.7151 0.7885

add + cGAN 32.7 0.7203 0.9734 15.2 0.7154 0.7673

concat + cGAN + SC 29.5 0.7251 0.9712 12.4 0.7178 0.7902

add + cGAN + SC 28.7 0.7188 0.9720 11.5 0.7179 0.7968

4.4 Comparison Against Baselines

We compare the proposed method with several existing methods, including MRF
[28], SSD [21], RSLCR [25], DGFL [40], BP-GAN [27], pix2pix [7] and SCA-GAN
[33]. MRF, SSD and RSLCR are the representative data-driven methods, and
the rest are the representative model-driven methods. Pix2pix is proposed for
image-to-image translation tasks, and we implement this model for comparison
on face sketch synthesis since the proposed method is also extended with it. All
these methods and ours follow the same experimental settings.

Table 2 and Fig. 4 report the quantitative performance in terms of FID score,
FSIM and NLDA. The proposed model obtains the lowest FID score reducing it
from 34.1 and 18.2 to 28.7 and 11.5 on CUFS and CUFSF datasets, respectively,
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compared to the previous state-of-the-art method. In addition, it is highly com-
petitive with previous works in terms of FSIM and NLDA. As mentioned above,
FSIM is not suitable for evaluating the quality of sketches [26], and for reference
only.

Figure 5 shows some face sketches that have been synthesized by different
methods on the CUFS and CUFSF datasets. The incipient data-driven method
(MRF) [28] fails to synthesize quality sketches and leads to deformations and
blurry effects. SSD [21], RSLCR [25] and DGFL [40] produce over-smooth sketch
with artifacts. BP-GAN [27] synthesizes face sketches with clear outlines and
structures, but it also suffers an over-smooth problem especially in the regions
of hair. Pix2pix [7] has no over-smooth problems, it, however, generates many
blurry effects. SCA-GAN [33] is based on pix2pix framework and employs other
mechanisms. It obviously improves the performance and the results have qual-
ity details but fails to generate several subtle structures (such as glasses) and
textures. The model proposed in this paper can produce visually more realistic
face sketches than previous state-of-the-art methods, especially in some subtle
details. For example, as illustrated in Fig. 5, the proposed model can generate
an entire glasses frame (see the examples of AR and XM2VTS datasets), facial
folds (see the example of AR datasets), meticulous and plentiful textures (see

Table 2. Performance of face photo→sketch for different methods on the CUFS and
CUFSF dataset. ↓ indicates lower is better, and ↑ indicates higher is better.

Criterion Dataset Data-driven methods Model-driven methods

MRF SSD RSLCR DGFL BP-GAN pix2pix SCA-GAN Ours

FID↓ CUFS 57.9 72.7 70.7 62.3 68.7 48.0 34.1 28.7

CUFSF 61.5 59.9 68.5 52.5 52.0 20.8 18.2 11.5

FSIM↑ CUFS 0.7066 0.6946 0.6981 0.7079 0.6899 0.7205 0.7156 0.7188

CUFSF 0.6967 0.6830 0.6775 0.6957 0.6814 0.7189 0.7292 0.7179

Fig. 4. Face recognition rate against feature dimensions on CUFS dataset and CUFSF
dataset.
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the examples of CUHK and XM2VTS datasets), and little distortions (see the
example of CUFSF datasets).

Fig. 5. Example synthesized face sketches of different methods on the CUFS and
CUFSF dataset. (a) Photo, (b) corresponding sketch drawn by artist, (c) MRF, (d)
SSD, (e) RSLCR, (f) DGFL, (h) pix2pix, (i) SCA-GAN, and (j) Ours. From top to bot-
tom, the examples are selected from the CUHK student dataset, AR dataset, XM2VTS
dataset, and CUFSF dataset, sequentially.

5 Conclusion

In this paper, we presented a supervised consistency enhanced Lmser network
for face sketch synthesis. It contains two Lmser mappings for photo-to-sketch (A-
mapping) and sketch-to-photo (I-mapping). I-mapping provides a regularization
strength to A-mapping by optimizing the reconstruction of the input photo from
its corresponding sketch. Moreover, we introduced the reconstructed results as
complimentary samples, to further enhance the A-mapping network. This bidi-
rectional setting benefits the presented model and achieved a state-of-the-art per-
formance on face sketch synthesis. The experimental results on CUFS and CUFSF
datasets demonstrated that the proposed method succeeds in synthesizing higher-
quality sketches, in comparison with previous state-of-the-art methods. Moreover,
the ablation experiments showed that the additive skip connection generatorworks
more effectively in the deep bidirectional learning system.
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Abstract. Scene text detection in the wild is a hot research area in
the field of computer vision, which has achieved great progress with the
aid of deep learning. However, training deep text detection models needs
large amounts of annotations such as bounding boxes and quadrangles,
which is laborious and expensive. Although synthetic data is easier to
acquire, the model trained on this data has large performance gap with
that trained on real data because of domain shift. To address this prob-
lem, we propose a novel two-stage framework for cost-efficient scene text
detection. Specifically, in order to unleash the power of synthetic data, we
design an unsupervised domain adaptation scheme consisting of Entropy-
aware Global Transfer (EGT) and Text Region Transfer (TRT) to pre-
train the model. Furthermore, we utilize minimal actively annotated and
enhanced pseudo labeled real samples to fine-tune the model, aiming
at saving the annotation cost. In this framework, both the diversity of
the synthetic data and the reality of the unlabeled real data are fully
exploited. Extensive experiments on various benchmarks show that the
proposed framework significantly outperforms the baseline, and achieves
desirable performance with even a few labeled real datasets.

Keywords: Scene text detection · Unsupervised domain adaptation ·
Semi-supervised active learning

1 Introduction

Text spotting [39] in scene images has achieved great success with the devel-
opment of deep learning, which includes two stages, namely text detection
[3,8,24,25,30,47] and text recognition [21–23,28,41], or only a single end-to-
end stage [17]. Training these models requires a large amount of annotated data,
and the annotation process is time-consuming and expensive. To alleviate the
burden, many researchers turn to create massive synthetic data whose annota-
tions come for free. Text recognition models can be trained fully on synthetic
data and perform comparably with that trained on real data. However, for text
c© Springer Nature Switzerland AG 2021
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Fig. 1. Illustration of the domain shift problem. Left: synthetic text detection datasets
as source domains, e.g. SynthText [9] and VISD [42]. Right: real text detection datasets
as target domains, e.g. ICDAR 2015 [11] and ICDAR 2013 [12]. We visualize VISD and
ICDAR 2015 image features from a text detector [10]. It exhibits a large distribution
bias, which hinders the generalization between domains.

detection, there is still a large performance gap between the model trained on
synthetic data and that trained on real data [9,42], which results from domain
shift, as shown in Fig. 1. In the training settings of previous text detection work,
it is common to pre-train the model on large-scale synthetic datasets, and then
fine-tune it on the target datasets of specific scenarios. However, there are two
problems overlooked.

On the one hand, in the pre-training process, the unlabeled real data of target
domain is not explored. The model pre-trained only on the synthetic datasets
has difficulty adapting to the distribution of the real target datasets, leading to
the sub-optimal transfer learning results. Recently, Unsupervised Domain Adap-
tation (UDA) [4,7,46] is proposed to learn invariant representations between dif-
ferent domains. Inspired by this, we propose to implement domain adaptation in
the pre-training step to provide better initialization. We design an Entropy-aware
Global Transfer (EGT) module and a Text Region Transfer (TRT) module to
deal with the domain shift at image level and region level respectively. Especially,
the EGT module aligns not only image features but also discrimination entropy
maps to strengthen the global transferability. Considering that foregrounds are
more discriminative than backgrounds during the cross-domain text detection
process, the TRT module is introduced to reduce the domain discrepancy of text
regions.

On the other hand, supervised fine-tuning on the full target datasets requires
enormous annotation cost. Recent studies have shown that unsupervised and self-
supervised learning [14,15,18,19,38,44,45] are effective in many applications.
In this work, we contend that the contributions of annotations on the target
dataset may be different, and some annotations may even be redundant. We
adopt a Semi-Supervised Active Learning (SSAL) approach to leveraging both
the labeled and unlabeled data, targeting on maximizing performance at the low-
est labeling effort. Concretely, we present an uncertainty-based active learning
method to iteratively select the most informative samples for human labeling,
and further utilize the left samples with reliable pseudo labels. Equipped with
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the proposed framework, we take full advantages of synthetic data and real data,
thus creating a powerful network with less annotation cost.

In summary, the contributions of this work are as follows:

• We propose a novel text detection framework which explores the usability
of the synthetic data and the unlabeled real data simultaneously with UDA
and reduces the amount of annotations of real data with active learning. To
the best of our knowledge, it is the first work to combine UDA and active
learning for cost-efficient scene text detection.

• For UDA, we design two domain adaptation modules: EGT and TRT, to
mitigate the disparities between real and synthetic domains. Furthermore, an
SSAL algorithm which combines uncertainty-based sample selection and an
enhanced pseudo-labeling strategy is proposed to actively annotate real data
and utilize the remaining unlabeled data.

• On several benchmarks, our proposed method achieves significant improve-
ment over traditional learning-based schemes such as fine-tuning, and obtains
comparable performance to state-of-the-art text detectors with much fewer
annotations.

2 Related Work

2.1 Scene Text Detection

Scene text detection has been a fundamental problem in computer vision for
a long time, since it is widely applied in scene understanding, video analysis,
autonomous driving, etc. Most of recent text detectors are based on CNN models,
which can be roughly classified into bounding box-based and segmentation-based
methods. Bounding box-based methods [16,30] are usually inherited from general
object detection frameworks [27,36,37] by modifying anchors and filters to fit
text instances with large aspect ratios. Segmentation-based methods [5,32,33]
regard text detection as a semantic segmentation or an instance segmentation
task, which classify text regions at the pixel level, thus performing well on texts of
arbitrary shapes. Nevertheless, training these supervised text detectors comes at
the high cost of annotated data. Thus, some weakly and semi-supervised methods
are presented. WeText [29] trains a character detector with the help of word
annotations which can be easily obtained in existing datasets. [26] utilizes a small
amount of pixel-level annotated data and a much larger amount of rectangle-
level weakly annotated data or unlabeled data to detect curved text in scene
images.

2.2 Unsupervised Domain Adaptation

Unsupervised Domain Adaptation (UDA) tries to mitigate the domain dispar-
ities by transferring features and knowledge from a labeled source domain to
a new unlabeled target domain. Prior work [7] explicitly estimates the domain
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Fig. 2. Illustration of the overall framework. Top: the training process. We start with
pre-training through domain adaptation from labeled synthetic data (source domain)
to unlabeled real data (target domain). Then, the pre-trained model is used to perform
uncertainty-based sample selection to select some informative real samples for human
labeling, and the remaining real samples are pseudo-labeled with an enhanced strategy.
Finally, both the human-labeled and pseudo-labeled real data are used to fine-tune the
model. Bottom: the inference process. We can simply use the original Mask R-CNN
architecture with adapted weights to output detection results.

gap and minimizes it. Recent work [4,46] is prone to utilize adversarial learning
mechanism to achieve domain confusion.

Several efforts [1,2,35,43] are intended to address the domain shift in scene
text detection. Chen et al. [1] reduce the domain gap in feature space. They
apply pixel and image-level unsupervised adaptation components on a single-
stage detection architecture. SyntoReal-STD [35] first aligns the feature map
outputs of the backbone between synthetic and real domains, and then intro-
duces text self-training on unlabeled real data. In contrast to previous work,
our work not only improves global alignment on the image, but also takes into
account fine-grained foreground region alignment and distribution alignment.

2.3 Semi-supervised Active Learning

Active Learning (AL) [31,40] is to automatically choose the most informative
or representative samples for human labeling by elaborate sampling strategy.
Semi-supervised Learning (SSL) [20] is to utilize both labeled and unlabeled sam-
ples for training, and in the self-training scheme, unlabeled samples are usually
pseudo-labeled using model’s certain prediction. These two learning paradigms
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are related and complementary with the potential to yield better results if com-
bined. Leng et al. [13] introduce an SSAL method to train SVM with the labeled
samples and the unlabeled class central samples. Wang et al. [34] propose to com-
bine manifold regularization and AL, which shows that SSAL performs better
than either SSL or AL using the same number of labeled samples. Our work
aims to design a convincing combination of AL and SSL techniques for scene
text detection.

3 Methodology

The architecture of our proposed framework is illustrated in Fig. 2, which follows
Mask R-CNN [10] as the base network. It first extracts features of the input image
via backbone, and then uses Region Proposal Network (RPN) to generate text
proposals for the subsequent R-CNN and mask branch. The objective function
of Mask R-CNN is formulated as:

Lbase = Lrpn + Lcls + Lreg + Lseg (1)

where Lrpn, Lcls, Lreg and Lseg are the loss functions of RPN, classification,
regression and segmentation branches respectively.

Based on it, our proposed framework mainly consists of two components:
(1) the unsupervised domain adaptation in Sect. 3.1; (2) a novel semi-supervised
active learning strategy in Sect. 3.2.

3.1 Domain Adaptation in Pre-training

The goal of this section is to learn an adaptive text detector in pre-training with
the labeled synthetic data and unlabeled real data. Existing work [1,35] has
demonstrated the effectiveness of implementing synth-to-real domain adaptation
at the image and pixel levels. However, they ignore that text is a special kind of
object with larger diversity of shapes, sizes and orientations, so the adaptation
only at the image or pixel level is limited.

In this work, we design Entropy-aware Global Transfer (EGT) and Text
Region Transfer (TRT) to enhance the transferability at multiple levels in an
adversarial way. We introduce three domain classifiers (i.e. D1, D2 and D3)
with their associated Gradient Reversal Layers (GRLs) [6]. During the forward
process, GRL acts as an identity transform. In the backward stage, the sign
of gradient is reversed when passing through the GRL layer. As a result, the
domain classifiers are optimized to distinguish source and target examples, while
the feature extractor learns to deceive the domain classifiers.

Entropy-Aware Global Transfer. We first eliminate the shift caused by
the global image difference via aligning the feature map from the output layer
of the backbone. Given an image xs from the labeled source domain and xt

from the unlabeled target domain, G(xk) denotes the feature vector of the k-th
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Fig. 3. Visualization of features obtained by (a) feature alignment (i.e. L1 loss) and
(b) entropy alignment (i.e. L2 loss), where the orange points represent source samples
and the blue ones represent target samples.

location in the feature map obtained from backbone G. The domain classifier
D1 is designed as a fully convolutional network. Therefore, the image feature
adversarial training loss is formulated as follows,

L1=−
[∑

k

log(D1(G(xs
k))) +

∑
k

log(1−D1(G(xt
k)))

]
(2)

More importantly, considering that source images have labels but target
images do not, the trained model tends to produce different prediction con-
fidence levels for the two domains. Hence, we further propose to utilize the
entropy map generated by D1 to align the distribution shift between source and
target domains. Specifically, the output probability of the domain classifier D1

is represented by dk =D1(G(xk)). We can use information entropy function H(·)
to estimate the domain classification uncertainty (i.e. entropy) hk of each xk,

hk = H(dk) = −dk · log(dk) − (1−dk) · log(1−dk) (3)

Then, D2 is trained to predict the domain label of the entropy map via the
following loss function:

L2 = −
[∑

k

log(D2(hs
k)) +

∑
k

log(1−D2(ht
k))

]
(4)

The loss functions L1 and L2 are optimized to conduct global domain alignment
from the perspectives of image feature and discrimination entropy, respectively.
It is worth noting that both of them are indispensable, since the former is used
to confuse the features across domains, and the latter can keep the different
domain manifolds consistent, as shown in Fig. 3.

Text Region Transfer. There is an observation that foreground regions share
more common features than backgrounds between different domains, so Regions
of Interest (RoIs) are usually more important than backgrounds during domain
adaptation [46]. In order to highlight the foregrounds (i.e. text proposals) and
alleviate the local instance deviations across domains (e.g., text appearance,
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scale, deformation), the TRT component is added. Although text proposal rep-
resentations can be extracted from RoI-based feature vectors after the RPN
block, they always involve background noises. To reduce the negative effects, we
only align features of the proposals whose text classification scores exceed 0.5.

Similar to L1 and L2, we utilize a domain classifier D3 for the text region
features. Let us denote the i-th text region in an image x as xi, and its RoI
feature as F (xi). The TRT loss can be written as

L3=−
[∑

i

log(D3(F (xs
i ))) +

∑
i

log(1−D3(F (xt
i)))

]
(5)

The final training loss in pre-training is a weighted summation of each objec-
tive, denoted as:

L=Lbase + λ1L1 + λ2L2 + λ3L3 (6)

For simplicity, inheriting from the domain adaptation setting for general object
detection [4], λ1, λ2 and λ3 are all set to 0.1 in our experiments.

3.2 Semi-supervised Active Learning in Fine-Tuning

Although the detector performance has been greatly improved by the unsuper-
vised domain adaptation method, it is still far from satisfactory compared with
the supervised counterpart. The general fine-tuning strategy is to fine-tune the
pre-trained model on the full target labeled datasets, which is costly and unnec-
essary. In terms of self-training schema, it is common to generate pseudo labels
for unlabeled data and add them into the training set without extra labor cost
[20]. However, labeling all real target data with pseudo labels will mislead the
model since they include many label noises. Consequently, we propose a semi-
supervised active learning based approach in this section. For the real samples
with the lowest certainty for the pre-trained model, we feed them to the human
annotator. Meanwhile, the remaining real samples are automatically labeled with
an enhanced pseudo labeling strategy.

Uncertainty-Based Sample Selection. We use the pre-trained model to
select a small number of informative real samples for human labeling. It is not
only to save the cost of labeling, but also to reduce information redundancy.
Active Learning [31,40] is an algorithm that iteratively chooses the training
data from a large unlabeled pool by elaborate strategies. Considering that the
informative data points are often the samples that the model is most uncertain
about, we adopt an uncertainty-based sample selection approach.

In particular, we define a classification uncertainty metric based on the
entropy of text classification prediction. For each text proposal x, text detection
network can predict its foreground probability px in the classification branch.
Then we compute its entropy H(x) = −px · log(px) − (1−px) · log(1−px) as
the uncertainty score. Moreover, as we annotate image samples at each active
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Fig. 4. Visualization examples of the enhanced pseudo-labeling strategy. The first and
second columns are the predictions of the model trained with actively labeled samples
and the pre-trained model respectively. These predictions often vary, but they both
include a lot of false positives. The third column exhibits the final pseudo labels filtered
with the IOU threshold t, which are more reliable. Best viewed in zoom. (Color figure
online)

learning round, we need to take the average for all N proposals in the image I
to obtain the image level uncertainty:

U(I) =
∑N

i=1 H(xi)
N

(7)

Therefore, the model initialized by the pre-trained model conducts selection by
estimating the uncertainties of images from the unlabeled pool and sampling
top-K at each round. The selected samples are further labeled with human
annotations (i.e. ground truth annotations) and then added into the training
set for the next round. The selection process ends when the size of labeled set
reaches the annotation budget.

Enhanced Pseudo Labeling. The genuine pseudo-labeling strategy uses the
detection results of the pre-trained model as the pseudo labels. Unfortunately,
we have found that this naive strategy causes the degradation of performance.
Therefore, we propose an enhanced pseudo-labeling strategy by exploiting the
complementarity of the synthetic data and real data, because the models trained
by them always output different predictions for the same test image. Concretely,
we use the pre-trained model and the model trained with actively labeled samples
to output predictions for each unlabeled image respectively. The IOU values of
these two predictions are computed, and only those predictions with the IOU
value greater than threshold t (set as 0.7 in our experiments) are selected as the
final pseudo labels. These enhanced pseudo labels are more reliable and notably
suppress false positives. Some examples are visualized in Fig. 4. Note that we
have also tried to directly use the actively trained model to generate pseudo
labels, but its performance is inferior to our method.
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Fig. 5. Comparisons with baseline in different transfer scenarios. The x-axis indicates
the percentage of human labeled target images, and the y-axis indicates the perfor-
mance on the target test set.

Finally, both the actively human-labeled and enhanced pseudo-labeled real
data are used to fine-tune the pre-trained model. Especially, we remove the losses
of the bounding box regression and the segmentation for pseudo-labeled data,
since pseudo labels are not so accurate in localization.

4 Experiments

4.1 Datasets

We evaluate our proposed method on several synthetic and real datasets.
SynthText [9] is a synthetic dataset that includes about 800K text images

with 8K background images. Since the texts are rendered to blend with back-
ground images via well-designed heuristic algorithm, the images look realistic.

VISD [42] creates 10K synthetic images on different background images. It
takes into account the semantic coherence of text and the embedding region,
and thus is more diverse and realistic.

ICDAR 2015 (IC15) [11] is an incidental text dataset introduced from
ICDAR 2015 Robust Reading Competition. It includes 1,000 training images
and 500 test images, which are taken by Google Glasses without high quality.

ICDAR 2013 (IC13) [12] is a real focused text dataset whose text is often
horizontal and noticeable. The dataset consists of 229 training images and 233
test images.

4.2 Implementation Details

We use ResNet-50 that pre-trained on ImageNet as the backbone model. The
training is optimized by SGD and weight decay is set to 0.0001. The initial
learning rate is 0.003 which decays after several epochs.

The training process contains pre-training and fine-tuning stages. In the pre-
training stage, only the ground truth of source domain is accessible. At each
iteration, we feed three source images and three target images to the model. In
the fine-tuning stage, the batch size is set to 6. More critically, in the active
learning process, we perform 5 rounds and the annotation budget in each round
is equal to 1/5 of the number of the samples allowed to be labeled.
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Table 1. Comparisons with existing text detectors on VISD to IC15/IC13 transfer
tasks. “FOTS-Det” refers to the single detection version of FOTS [17] without recogni-
tion supervision. “Pro.” indicates the proportion of human-labeled target images. “P”,
“R” and “F” represent Precision, Recall and F-score respectively.

Source → Target Methods Backbone Pro. P R F

VISD→IC15 EAST [47] VGG16 10% 0.739 0.751 0.745

Mask R-CNN [10] ResNet50 10% 0.834 0.676 0.747

PSENet [32] ResNet50+FPN 10% 0.818 0.712 0.761

PAN [33] ResNet50+FPEM 10% 0.840 0.719 0.775

Ours ResNet50 5% 0.833 0.733 0.780

Ours ResNet50 10% 0.873 0.744 0.803

VISD→IC13 Mask R-CNN [10] ResNet50 20% 0.820 0.763 0.790

FOTS-Det [17] ResNet50 20% 0.797 0.740 0.767

Ours ResNet50 10% 0.861 0.698 0.771

Ours ResNet50 20% 0.812 0.790 0.801

4.3 Comparison Results

Comparison with Baseline. The baseline setting in our experiments is pre-
training only on all samples of the source dataset and fine-tuning on the ran-
domly selected human-labeled samples of the target dataset. It is important to
note that the performance will decrease if we perform genuine self-training, so we
decide to report the baseline without pseudo-labeling strategy. Figure 5 shows
the F-score curves with different annotation ratios in different domain transfer
scenarios. It is obvious that our method consistently outperforms the baseline no
matter how many target samples are labeled, which validates the effectiveness
of our framework. Additionally, there is a common trend for all scenarios: as the
number of labeled target samples increases, the performance improvement of
our method over the baseline first increases and then gradually saturates. This
phenomenon may result from the roles of active learning and pseudo-labeling
simultaneously. When the actively labeled target samples are scarce, the pseudo
labels provided by them are extremely noisy. And when the labeled samples
increase to about 10% on IC15 and 20% on IC13, the improvement reaches the
maximum. As shown in the Fig. 5 (c), when labeling 10% target samples, our
method achieves the maximum gain of 5.6% (74.7% to 80.3%), and it is even
close to the baseline with 30% labeled target samples (80.5%). Nevertheless,
when the amount of labeled samples exceeds a certain value, the effect of active
learning is relatively insignificant, hence the performance improvement saturates
or gradually decreases.

Comparison with Existing Methods. To demonstrate the cost-effectiveness
of our approach, we compare our framework with other state-of-the-art text
detectors at only minimal annotation cost. The comparisons are conducted on
VISD to IC15 and VISD to IC13 transfer tasks, and the results are summarized
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Table 2. Comparison with other UDA methods on VISD to IC15/IC13 transfer tasks.
The proportion of human-labeled target images is 10% on VISD→IC15 and 20% on
VISD→IC13. “P”, “R” and “F” represent Precision, Recall and F-score respectively.

Source→Target Methods P R F

VISD→IC15 Chen et al. [1] 0.894 0.700 0.785

SyntoReal-STD [35] 0.835 0.725 0.776

Ours 0.873 0.744 0.803

VISD→IC13 Chen et al. [1] 0.843 0.750 0.794

SyntoReal-STD [35] 0.845 0.751 0.795

Ours 0.812 0.790 0.801

Table 3. Ablation studies on VISD to IC15 transfer task. “USS” and “EPL” denote
uncertainty-based sample selection and enhanced pseudo labeling respectively. “P”,
“R” and “F” represent Precision, Recall and F-score respectively.

Method EGT TRT USS EPL P R F

Baseline 0.834 0.676 0.747

Ours � � � 0.838 0.727 0.779

� � � 0.872 0.674 0.760

� � 0.825 0.692 0.753

� � � 0.823 0.749 0.784

� � � 0.844 0.753 0.796

� � � � 0.873 0.744 0.803

in Table 1. Specifically, all the comparison text detectors are pre-trained on VISD
dataset, and then fine-tuned on the randomly annotated IC15 or IC13 dataset. At
the same annotation cost, our method which is based on Mask R-CNN without
many bells and whistles is superior to other powerful text detectors. Particularly,
on the VISD to IC15 task, even if PSENet [32] and PAN [33] use stronger
backbones, our method with 5% human-labeled target samples performs better
than them with 10% human-labeled target samples. On the VISD to IC13 task,
our method surpasses FOTS-Det [17] with a 10% annotation reduction. It shows
that our framework can yield appealing results with notable less annotation cost.
Moreover, our framework is generic and can also be applied to other state-of-
the-art text detection networks.

In addition, to evaluate the effect of our domain adaptation method (EGT
& TRT) in pre-training, we compare it with other UDA methods, while
uncertainty-based sample selection (USS) and enhanced pseudo labeling (EPL)
are retained. Chen et al. [1] propose a pixel and image level domain adapta-
tion scheme (PDA & IDA) to deal with cross-domain text detection problem,
but these components are all feature alignments without focus. SyntoReal-STD
[35] designs an adversarial text instance alignment (ATA) module to align the
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Fig. 6. Detection examples from three transfer tasks, from top to bottom: SynthText-
IC15, VISD-IC15, VISD-IC13. Best viewed in zoom. (Color figure online)

feature map outputs of the backbone, which is similar to Eq. 2. As shown in
Table 2, on the VISD to IC15 task, replacing EGT & TRT modules with PDA &
IDA modules and ATA module result in a 1.8% and 2.7% performance decrease
respectively. And on the VISD to IC13 task, our UDA method is also superior
to these competing UDA methods. It implies that entropy-aware distribution
alignment and fine-grained text instance alignment are important, and these
strategies are applicable to both rectangle annotations like IC13 and more com-
plicated quadrilateral annotations like IC15. Our method enhances the model
adaptability and handles the domain shift efficiently.

4.4 Ablation Study

To further evaluate the performance of each component in our framework, we
conduct an overall ablation experiment on VISD to IC15 transfer task, as dis-
played in Table 3. Note that all comparison methods are based on 10% labeled
target samples. No USS denotes random sampling, and no EPL denotes using the
single pre-trained model to provide pseudo labels for the remaining samples. The
results show that each component contributes to the final compelling results. In
particular, the EGT module and TRT module respectively bring 3.1% and 4.3%
gains compared with their ablated version (75.3%), and when integrating them,
the F-score can get a 5.0% improvement. It also suggests that USS and EPL
should be combined with these domain adaptation modules, since the effects of
USS and EPL greatly depend on the pre-trained model.
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4.5 Qualitative Analysis

Figure 6 illustrates the examples of detection results on several transfer tasks.
Our framework consistently performs better than the baseline. For example, in
the results of SynthText to IC15 task (Line 1), the baseline approach wrongly
recognizes several background regions as texts because they have “text-like”
patterns (such as fences, repetitive structured stripes, etc.), while our model
suppresses this adverse impact of false positives. It not only benefits from the
training of human-labeled hard samples introduced by USS, but also the mini-
mizing of domain gap addressed by our UDA method. Additionally, our model
is capable of detecting more obscured texts and producing more accurate local-
ization results.

5 Conclusion

In this paper, we propose a two-stage cost-efficient framework for scene text
detection. Unsupervised domain adaptation and semi-supervised active learning
are integrated to address the problems of domain shift and data annotation
respectively. Extensive experiments on public benchmarks of SynthText/VISD/
IC15/IC13 verify the effectiveness and superiority of our approach. Ablation
studies demonstrate that the proposed EGT/TRT/USS/EPL all contribute to
this framework. In the future, more sophisticated techniques will be explored
towards training detectors purely on synthetic data.
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Abstract. Planning an obstacle-free optimal path presents great chal-
lenges for mobile robot applications, the deep deterministic policy gra-
dient (DDPG) algorithm offers an effective solution. However, when
the original DDPG is applied to robot path planning, there remains
many problems such as inefficient learning and slow convergence that
can adversely affect the ability to acquire optimal path. In response to
these concerns, we propose an innovative framework named dueling deep
deterministic policy gradient (D-DDPG) in this paper. First of all, we
integrate the dueling network into the critic network to improve the
estimation accuracy of Q-value. Furthermore, we design a novel reward
function by combining the cosine distance with the Euclidean distance to
improve learning efficiency. Our proposed model is validated by several
experiments conducted in the simulation platform Gazebo. Experiments
results demonstrate that our proposed model has the better path plan-
ning capability even in the unknown environment.

Keywords: Robot path planning · Deep deterministic policy
gradient · Dueling network · Cosine distance

1 Introduction

Nowdays, a variety of mobile robots such as industrial robots [7,9,19], cleaning
robots [2,10,16], family companion robots [12,15,28] are booming and playing
an increasingly important role in people’s lives. Path planning [3,4,29], a funda-
mental technique for mobile robots, it directly determines whether a robot can
perform a specific task efficiently and accurately. The goal of robot path plan-
ning is to find an optimal or near-optimal obstacle-free path from the starting
position to the target position. Researchers have proposed many methods for
robot path planning. Traditional methods include Dijkstra algorithm [5,18,31],
A-star (A*) [22,26] and artificial potential field method [14,30]. These methods
rely on surrounding environment information and are difficult to work in the
c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13031, pp. 154–168, 2021.
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complex and uncertain environment. Therefore, it is essential to develop a path
planning solution that has low dependence on the environment. In response to
this situation, deep reinforcement learning (DRL) [27] has been proposed, which
combines the perception of deep learning (DL) with the decision-making ability
of reinforcement learning (RL) [6,8], agent learns through a continuous process
of trial and error by interaction with the environment. Thus it can perform
search and navigation tasks without relying on a priori map information, which
determines that it has better flexibility even in unknown environment.

Traditional RL methods are limited by high dimensions of action space, thus
they do not accommodate to continuous action space. Therefore, the deep deter-
ministic policy gradient (DDPG), a representative of DRL algorithm, is proposed
to reduce the dimensions of the action space using a deterministic policy. How-
ever, traditional DDPG has some drawbacks including inefficient learning and
slow convergence, which seriously hinder its wide application in realistic robot
path planning. In practice, learning by trial and error over a long period of time
is very expensive, so it is important to reduce the convergence time of the model.

In response to the above concerns, we propose an innovative D-DDPG app-
roach, which combines the dueling network with the critic network of DDPG and
redesigns the reward function to improve the training efficiency of the model.

Our main contributions in this paper are summarized as follows:

– We introduce the dueling network, which represents both the state value and
action advantage functions, making the estimation of Q-value more accurate
and a good learning efficiency can be obtained.

– We combine the cosine distance with the Euclidean distance to generate a
novel reward function. It can simultaneously control the direction and speed
of robot movement and make exploration goal clearer.

– We apply our model to several realistic simulation scenarios, which give a
more realistic picture of our model’s path planning performance.

2 Related Work

In recent years, many RL-based approaches have been proposed for robot path
planning, which can be categorized into value-based RL and policy-based RL.

Q-learning algorithm and State-Action-Reward-State-Action (SARSA) algo-
rithm are two typical representatives of value-based RL algorithms [20,24] and
have recently been implemented in various fields of robotics. The SARSA algo-
rithm has faster convergence performance, while the Q-learning algorithm has
better final performance, therefore Wang et al. [23] proposed to combine the
SARSA algorithm with the Q-learning algorithm to improve the convergence
effect of the algorithm. But the value-based Q-learning method has a shortcom-
ing that it lrequires maintaining a Q-table, which takes a lot of time and space
to search and store. To tackle this problem, Xin et al. [25] trained a designed
deep Q network (DQN) to approximate the mobile robot state-action value func-
tion. The DQN combines Q-learning algorithm, replay buffer and convolutional
neural network (CNN) [1], which is widely used in the field of path planning.
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However, value-based RL algorithm is essentially an algorithm that approaches
deterministic output. At best, it uses ε-greedy approach to exploration. This
approach is not problematic in a more restrictive state environment, but may be
problematic in environments with many repeated states.

Unlike the value-based RL, the policy-based algorithms directly optimize the
policy and output the random policy when processing continuous states and
actions. In recent years, researchers have been committed to integrating the Q
function learned by the value-based algorithm and the policy function learned by
the policy-based algorithm to make RL applicable to the continuous space. The
Actor-Critic (AC) framework is widely used in practical RL, which integrates
the value estimation algorithm and the policy search algorithm. Lillicrap et al.
[17] proposed deep deterministic policy gradient (DDPG), which trains a deter-
ministic policy to deal with the problem of continuous action by using a deep
neural network on AC method. Tai et al. [21] used only ten-dimensional sparse
feature values and real-time position to output the robot’s linear velocity and
angular velocity, which is similar to our work. As proved by Hasselt et al. [11], the
traditional critic network usually overestimates the Q-value and the estimated
error will increase as the action increases. They proposed the Double DQN algo-
rithm to solve this problem. However, using DQN as the underlying algorithm
still has limitations when facing high dimensional space, but the DDPG will
solve this problem very well. In addition, using only Euclidean distances in the
reward function often suffers from the problem of unclear exploration goal in the
exploration process.

Different from these works, we extend the DDPG algorithm by using a dueling
network and introducing a cosine distance into the reward function. This allows
the model to better implement robot path planning in a high-dimensional space.

3 The Methodology

In this section, we will give the definition of D-DDPG algorithm in detail. It
adopts the Actor-Critic architecture, consisting of actor network and critic net-
work. As shown in Fig. 1, our innovation is focused on the critic network, we
introduce the dueling network to improve estimation accuracy of Q-value, in
addition, a novel reward function is presented for optimizing the path.

3.1 DDPG Algorithm

The DDPG is based on the Actor -Critic framework and has good learning ability
in continuous action space problems. It takes state St as input, and the output-
action At is calculated by online action network, after the robot performs the
action, the reward value rt is given by the reward function. Then (St, At, rt, St+1)
are stored in the replay buffer. In addition, in order to improve the exploration
ability of the agent, random noise is added to the output action to increase the
randomness [13]:

A = μ(S; θ) + N (1)
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Fig. 1. The framework of the D-DDPG algorithm.

where the N is random noise.
A mini-batch of samples are sampled from replay buffer when updating critic

and actor networks, then the loss function of critic network is calculated by target
Q function and current Q function, the loss function can be defined as:

J(ω) =
1
m

m∑

t=1

(yt − Q(St, At;ω))2 (2)

where m represents the number of samples, the target Q function yt is defined
by Eq. 3:

yt =
{

rt, is end is true
rt + γQ′(St+1, At+1;ω′), is end is false

(3)

where the ω is the parameter of the online critic network and the ω′ is the
parameter of target critic network, the rt represents the reward value. γ is a
discount factor, the larger the value of γ is, the larger the proportion of future
income is considered in the calculation of the value generated by the current
behavior, and the γ is taken as 0.99 in this paper.

The actor network is updated by the deterministic policy gradient:

�θ J(θ) ≈ 1
m

m∑

t=1

�at
Q(St, At;ω) �θ μ(St; θ) (4)

where ω is the parameter of the critic network and θ is the parameter of the
actor network.

In order to avoid updating the parameters of network frequently and improve
learning stability, the online network and the target network all use a soft update
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method, which the parameters of the target network are updated by a small
amount in each iteration:

{
ω′ ← τω + (1 − τ)ω′

θ′ ← τθ + (1 − τ)θ′ (5)

The parameters in the target network are only scaled to update a small part of
them, so the value of the update coefficient τ is small, which can greatly improve
the stability of learning, we take τ as 0.001 in this paper.

3.2 Dueling Network

In D-DDPG, the actor network is served to output action using a policy-based
algorithm, while the critic network is responsible for evaluating the value of the
action based on its Q-value with a value-based approach. In order to generate
action with higher Q-value in the same state, the actor network will adjust the
policy gradient according to the evaluation of its current policy. Therefore, the
estimation accuracy of Q-value has a crucial impact on the performance of the
whole model. However, the original critic network tends to overestimate the Q-
value, which leads to slow converge when the whole model is trained. To tackle
this problem, we design a new critic network by introducing the dueling network
to improve the estimation accuracy of Q-value. The framework is shown in Fig. 2.

Input(S) | 16

Dense |500| ReLU

Dense |400| ReLU

Dense |300| ReLU

Input(A) | 2

Dense(State_q) Dense |300| ReLU

Dense |300| ReLU

Dense(Action_q)

Merge(Q)

Structure of the dueling network

Fig. 2. The network structure of dueling network.

The dueling network is based on the fact that for many states, it is unnec-
essary to estimate the value of each action choice, while the estimation of state
value is necessary. Therefore, in our critic network, the output is mapped to two
fully connected layers, which are responsible for evaluating the state value and
the action advantage, respectively. And they are merged to produce the final
Q-value.
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The relative advantage of action is expressed:

A(S,A) = Q(S,A) − V (S) (6)

where A(S,A) denotes the advantage of action A in a particular state, V (S)
represents the state value. As shown in Fig. 2, the state q and the action q are
calculated by V and A, respectively

According to the Eq. 6, we construct the aggregating module to parameterize
the estimation of the true Q function:

Q(S,A;ω, α, β) = A(S,A;ω, α) + V (S;ω, β) (7)

where ω is the network parameter of the common part, α and β are two param-
eters of the fully connected layer network.

The benefit of this is that we can realize the generalized learning of different
actions without imposing any changes to the underlying RL, thereby improving
the estimation accuracy of the Q-value.

3.3 Novel Reward Function

In RL, the reward function has a great effect on the convergence speed and
learning effect of the algorithm. Traditional reward function is used to control
the walking path of the robot indirectly only with the Euclidean distance, which
ignores the moving direction of robot, thereby leading to unclear goal for the
robot during exploration. To tackle this problem, we propose a novel reward
function by combining the cosine distance with the Euclidean distance.

The cosine distance reflects the relative difference in direction between two
vectors, while the Euclidean distance reflects the absolute difference in distance
between two positions. As illustrated in Fig. 3, we use the target position as
a reference, and control the moving direction of the robot by adjusting the
angle and distance between the position of the past step (past position) and the
position of current step (current position).

Specifically, the vec1 refers to the vector that points from the target position
to the current position, and the vec2 refers to the vector that points from the
target position to the past position. The angle between two vectors ranges from
0 to Π, corresponding to the cosine [1, –1], which is expressed as:

Cos < vec1, vec2 >=
vec1 · vec2

‖vec1‖2 ‖vec2‖2
(8)

To obtain the reward value, the cosine value is mapped to the value of [0, 1]
via a linear transformation. Let R1 denote the reward value:

R1 = k × Cos < vec1, vec2 > +b (9)

where the k and b is the linear transformation coefficient.
The reward value R1 is always used as a negative reward to penalize the robot,

in this way the greater the angle, the greater the negative reward penalty the
robot receives, so that the robot will tend to move towards the target position.
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dist(past,current)

current position

past position

Cosθ

x

y

target position

vec1

vec2

Fig. 3. Cosine distance and Euclidean distance between the past position and the
current position.

Let R2 denotes the reward value calculated from the Euclidean distance:

R2 = C × distance rate (10)

where distance rate represents the difference in Euclidean distance between
the current position and the past position from the target position, the hyper-
parameter C is adjusted by experiment and it is set to 500 in this paper.

As a result, the reward function is obtained by combining the cosine distance
with the Euclidean distance:

R =

⎧
⎨

⎩

−100, done
120, arrive

R2 − R1, else
(11)

According to the Eq. 11, the robot will get a reward value of –100 when
it runs into obstacles, and a reward value of 120 when the robot reaches the
target position. In other cases, the reward value is determined by both the cosine
distance and the Euclidean distance. We adjust the reward value during the
experiment according to the experimental results.

3.4 D-DDPG Algorithm

The framework of the D-DDPG algorithm is shown in Fig. 1, in the critic net-
work, the network structure is mapped into two fully connected layers. In this
way, the loss function after introducting the dueling network is defined as:

J(ω) =
1
m

m∑

t=1

(yt − Q(St, At;ω, α, β))2 (12)

where the Q function is defined by Eq. 13.

Q(St, At;ω, α, β) = A(St, At;ω, α) + V (St;ω, β) (13)
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where ω and (α, β) is the parameter of the dueling network. The details of D-
DDPG are described in Algorithm 1.

Algorithm 1. The D-DDPG algorithm
1: Initialize Actor net μ(St; θ) and Critic net Q(St, At; ω, α, β)
2: Initialize replay buffer D
3: for each episode i = 1, 2, 3, ...N do
4: Initialize random noise N
5: Initialize state St

6: for each episode t = 1, 2, 3, ...T do
7: Obtain action At in the online actor network based on state St: At =

μ(St; θ) + N
8: Perform action At and obtain the next state St+1

9: Obtain the reward value rt based on the novel reward function
10: Store (St, At, rt, St+1) in the replay buffer: D ← (St, At, rt, St+1)
11: St = St+1

12: Sample a mini-batch(St, At, rt, St+1) to calculate the target Q value
13: Update dueling network of online critic by minimizing loss
14: Update online actor network by policy gradient
15: Update target actor network and target critic network with soft update
16: end for
17: end for

4 Experiment Results and Evaluation

In this section, we first describe the setup details for the model training. Next,
to evaluate the effectiveness of our proposed method, we provide a thorough
evaluation of the D-DDPG by comparing it with the DDPG.

4.1 Experiment Settings

We select Gazebo as simulation platform to creat the complex indoor environ-
ments. In the platform, we take Turtlebot3 as mobile robot, which obtains a
sparse 10-dimensional range findings through laser scanning device. The linear
and angular velocities are used as continuous steering commands to directly con-
trol the action of robots, which the maximum linear velocity is 0.5 m/s, and the
maximum angular velocity is 1 rad/s.
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In addition, we build four two-dimensional indoor environments including
Env1, Env2, Env3 and Env4 to test our method, as shown in Fig. 4. The size
of Env1 is 8 m × 8 m, in which there is no other obstacles except the walls
around. Compared to Env1, Env2 with a size of 12 m × 12 m contains more
obstacles including a long wall with a length of 4 m and a number of randomly
placed cubes and spheres. In Env3, some cubes and spheres are placed indoors
as obstacles and the size of Env3 is same as Env2. Env4 with a size of 8 m × 8 m
is unknown to the robot and will serve as our test environment, which contains
several cubes and spheres placed as obstacles.

(a) (b) (c) (d)

Fig. 4. Four initial simulation environments. The target position is represented by a
target-shaped circle, the spheres and squares represent obstacles. (a) Env1. (b) Env2.
(c) Env3. (d) Env4.

In our model, the input contains only the sparse 10-dimensional range find-
ings, therefore our network has no convolutional layers but only fully connected
layers, which including three layers in the actor network and six layers in the
critic network. As shown in Fig. 2, in the critic network, the branch for calcu-
lating the state q is composed of two hidden layers, which contain 500 and 400
hidden units, respectively. While the branch for calculating the action q contains
a hidden layer with 300 hidden units. In each hidden layer, a rectified linear unit
(ReLU) activation function is set to avoid gradient explosion and gradient disap-
pearance. In the actor network, there are two hidden layers containing 400 and
300 hidden units, respectively, and each layer is normalized. The output layer
contains two units, corresponding linear velocity and angular velocity.

We use the Adam optimizer to train the network. The online network and
the target network adopt soft update method, and the decay rate is set to 0.999.
The learning rate of the network is set to 0.0001, the batch size of the samples is
set to 128, the size of the replay buffer is set to 1 × 105. Each episode is set to a
maximum of 500 steps, if the target position is not reached after more than 500
steps, the target position will be reset. When the total number of steps reaches
1 × 104 steps, the average reward value and success rate are recorded once.
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4.2 Experimental Results

Fig. 5. The average reward value of D-DDPG and original DDPG. (a) Env1. (b) Env2.
(c) Env3.

Both the original DDPG and the D-DDPG are trained for 8×105 steps in Env1,
Env2, and Env3. From Env1 to Env3, the obstacles become increasingly complex.
And there are some differences in the placement of the obstacles. As can be seen
from Fig. 5(a), the average reward of D-DDPG stabilizes at around 12 in Env1,
while the average reward of the original DDPG is stable around 10. Meanwhile,
D-DDPG starts to converge when the iteration reaches 2 × 105 steps, while the
original DDPG only starts to have a tendency to converge when the iteration
reaches 6 × 105 steps. Similarly, in Env2 and Env3, our model can obtain higher
average reward value and converge faster than the original DDPG model. This
indicates that our algorithm can speed up the convergence of the model with
good robustness.

4.3 Experimental Comparison Analysis

To investigate effectiveness of our proposed improvements and the factors influ-
encing the performance of the model, the proposed improvements are experi-
mentally verified separately.

Firstly, we only introduce the dueling network into the original DDPG and
the extended model is named as DDPG with dueling. The DDPG with dueling
and the original DDPG are all trained for 8×105 steps in Env1, and their average
rewards are shown in Fig. 6. It can be found that applying the dueling network
can speed up the convergence of the model and obtain higher reward values. This
indicates that combining the advantage of action and state value can improve
the accuracy of the model for Q estimation, which has a positive effect on the
performance of overall model.
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Fig. 6. Comparison of the DDPG with dueling and the original DDPG.
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Fig. 7. The moving path of the robot in Env2 and Env3. The yellow path represents
the robot movement path based on the cosine DDPG, and the blue path represents
the robot movement path based on the original DDPG. The gray objects represent
obstacles. (a) Env2. (b) Env3. (Color figure online)

Secondly, we only introduce cosine distance into the original DDPG and the
extended model is named as cosine DDPG. The cosine DDPG and the original
DDPG are iterated for 8 × 105 steps in Env2 and Env3, respectively. Then, we
test the trained models in the above two environments. The trajectory tracking
of robot is shown in Fig. 7, we can see that the robot based the original DDPG
tends to move around the target position rather than directly towards the target
position when it is close to the target position, but this phenomenon does not
occur when it is based on cosine DDPG. This indicates that adding negative
reward by using cosine distance as a criterion in the reward function can improve
the learning efficiency of the robot and achieve an optimized path.
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4.4 Generalization Experiment

Fig. 8. The two realistic simulation scenarios. (a) A small office. (b) A warehouse.

In order to test the effectiveness of our model in an unknown environment, we
train our model in Env3, then test the trained model in Env4 and several realistic
simulation scenarios. These several realistic simulation scenarios are shown in
Fig. 8, representing a small office and a warehouse. In the small office, our robot
can deliver documents for office workers; in the warehouse, our robot can help
workers move goods. The success rates of test are shown in Table 1.

Table 1. The success rate of our model tested in three scenarios.

Iteration steps(105) 1 2 3 4 5 6 7 8

Success rate in Env4 87% 84% 85% 84% 83% 86% 85% 87%

Success rate in office 72% 73% 75% 79% 80% 73% 74% 76%

Success rate warehouse 60% 61% 63% 55% 56% 54% 59% 60%

It can be seen from the Table 1 that our model trained in Env3 can still
achieve a success rate of >80% when tested in Env4. In addition, a success rate
of >50% can be obtained in the remaining two realistic simulation scenarios. The
results show that the D-DDPG can achieve obstacle avoidance and path planning
for robots in unknown environments with high success rate, and showed good
path planning ability in several real simulation scenarios. It indicates that the
D-DDPG has good generalization performance.

5 Conclusion

In this paper, we propose the D-DDPG for path planning of robots, which duel-
ing network are used to split the Q-value into two parts to improve the estimation



166 P. Zhao et al.

accuracy of Q-value. In addition, we propose a novel reward function to make the
exploration goal of robot clearer by combining cosine distance with Euclidean
distance. Experimental results show that our proposed method achieves higher
average reward value and better convergence efficiency compared to the original
DDPG, and it shows good obstacle avoidance and optimal path capabilities in
unknown environment. However, there are still some aspects for improvement,
such as we use ten-dimensional laser ranging findings as input and providing
a low-cost solution for robot path planning with multi-range sensors in indoor
scenes, but it is obvious that the advantage of it is not as great when the appli-
cation scenario is a large-scale complex environment, in which we need more
information about the environment.

In future work, in order to make our model more adaptable in complex envi-
ronments, the picture information of the environment will be used as input. And
we will evaluate the performance of the D-DDPG for path planning in real world.
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Abstract. Visual reasoning and reconsidering capabilities are instinc-
tively executed alternately as people watch a video and attempt to
describe its contents with natural language. Inspired by this, a novel
network that joints fully dynamic context guided reasoning and recon-
sidering is proposed in this paper. Specifically, an elaborate reconsidering
module referred to as the reconsiderator is employed for rethinking and
sharpening the preliminary results of stepwise reasoning from coarse to
fine, thereby generating a higher quality description. And in turn, the
reasoning capability of the network can be further boosted under the
guidance of the context information summarized during reconsidering.
Extensive experiments on two public benchmarks demonstrate that our
approach is pretty competitive with the state-of-the-art methods.

Keywords: Video captioning · Fully dynamic context guidance ·
Stepwise reasoning · Reconsidering

1 Introduction

The video captioning task aiming to describe video contents with natural lan-
guage, generally a sentence, attracts increasing interests from both computer
vision and natural language processing communities. It has been widely used in
varieties of areas such as human-robot interaction [15], assisting the visually-
impaired [27], visual question answering [8] and so on. Formidable challenges in
video captioning are mainly posed by diverse scenes, various interaction relations
and intricate causal relationships.

When describing video contents, human tend to reason step by step accord-
ing to perceived visual information at first. And then, each tentative reasoning
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result will be ruminated over and over again in mind to ensure its validity. For
instance, after the action “slice” is recognized, the “slice” will be refined to “slic-
ing” depending on the previous words “a woman is” in human brains. Lastly, a
fluent and grammatical sentence “a woman is slicing an onion” is generated via
stepwise reasoning and reconsidering. Compared to humans, most existing video
captioning models or deep models extremely adept at recognizing targets and
lack the ability to perform visual reasoning over time, let alone further in-depth
rethinking.

Recently, some research [22,33] exerts efforts to raise reasoning capacity for
visual captioning models. [22] utilized a so-called neural module networks [1] to
achieve stepwise reasoning and generate the description for a video clip word
by word. They devised three neural modules guided by static averaging global
features for executing visual reasoning. One of the preliminary reasoning results
from all the neural modules was then sampled as the determined reasoning result
and was used for emitting word. However, it has already been proved that the
simple mean-pooling method can result in chaotic feature representations [32]
and the contextual information involved in the static guidance is deficient as
well as not comprehensive enough. Clearly, the model reasoning performance is
inclined to degrade significantly under static and inaccurate guidance. Addition-
ally, they directly leveraged the preliminary reasoning result to generate word
and neglected the indispensable reconsidering part.

In this paper, we introduce to guide stepwise reasoning process fully dynamic
context which changes from time to time. To make up for the omission of recon-
sidering, we design a sophisticated reconsiderator to polish the preliminary rea-
soning result from coarse to fine. More accurate semantic feature representa-
tions thus can be provided for emitting words and contribute to diminish the
gap between visual reasoning and captions generating. Note that compared to
the global averaging features derived from performing mean-pooling operation
on visual feature representations, the fully dynamic context comprises more pre-
cise and richer historical information produced during reconsidering, which is
capable of further augmenting the model reasoning capability.

Overall, the main contributions of our work are summarized as follows:

1) We propose a fully dynamic context guided reasoning and reconsidering
network abbreviated as BiReNet for video captioning. It possesses both
capabilities of stepwise reasoning and reconsidering simultaneously. A pow-
erful reconsidering module called the reconsiderator is devised for refining
the preliminary reasoning result to generate higher quality captions.

2) More accurate and holistic dynamic context characterized in reconsidering
stage is introduced to guide stepwise reasoning process, strengthening the
model reasoning ability.

3) Extensive experimental results indicate that our model outperforms the
state-of-the-art methods on MSVD dataset and is quite competitive on
MSR-VTT dataset.
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2 Related Work

Early approaches to video captioning mainly are template-based [12,23]. They
first identify objects, actions and attributes in videos with hand-crafted fea-
tures respectively. And then these fragments are mapped into corresponding
components in predefined syntactic templates. However, manufactured features
and rigid templates are prone to generate descriptions with terrible fluency and
unsatisfactory quality.

Deep sequence learning methods are proposed to replace the template-based
ones with the booming development and remarkable improvement of deep learn-
ing. The encoder-decoder framework such as CNN-RNN or RNN-RNN has been
the prominent architecture for video captioning. [25] performs simple averaging
on visual features extracted from CNN and decodes it to captions with a RNN
language model. [26] utilizes a two-layer stacked LSTM to summarize temporal
structure in videos and handles input/output of variable length. To well explore
the spatial-temporal dependencies in videos, a large number of approaches incor-
porate attention mechanisms into encoder or decoder. [32] proposes a temporal
attention mechanism for assigning different weights over frame features to over-
come temporal crash caused by indiscriminative mean pooling. [6] devises a
motion guided attention mechanism for modeling spatial information. Recently,
prior knowledge such as Part-of-Speech (POS) tags, topics and knowledge graph
are applied in video captioning models to generate stylized and detailed sen-
tences. Besides visual modality, audio or textual modalities are fused in [20,31]
to complement each other.

More Recent, [7,14] introduce the deliberation network in neural machine
translation (NMT) to visual captioning tasks, in which more precise semantic
information is able to be acquired by refining the hidden states of the decoder.
[22] holds human may have the reasoning process of locating subjects, infer-
ring predicates and identifying objects in order when generating descriptions
for videos. Thus, they adopt neural module networks on video captioning for
imitating human-like stepwise reasoning and improving the model explainabil-
ity. However, they take static mean-pooling global visual features as a guide for
visual reasoning and directly have the preliminary reasoning result decoded with-
out any necessary reconsidering. We argue that it is irrational to guide reasoning
process using the static averaging global features since its insufficient contextual
information and negative impact on temporal cues underlying videos. In contrast,
we leverage more accurate and fully dynamic context to supervise the reasoning
process. And motivated by [7,14], we propose a unified video captioning network
that integrates stepwise reasoning and reconsidering. The preliminary reasoning
result can be polished from coarse to fine with an elaborate reconsiderator.

3 Method

3.1 Overall Framework

The overall framework of our video captioning network (BiReNet) is illustrated
in Fig. 1. It consists of two components, i.e., a) an encoder with reasoning and
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b) a decoder with reconsidering. Specifically, the reasoning portion c) of the
encoder including three distinct fully dynamic context guided reasoning mod-
ules and a module selector, as the name implies, is responsible for step-by-step
reasoning like humans. The reconsidering module d) of the decoder serves as
a reconsiderator for rethinking the preliminary reasoning result on the top of
a fundamental decoder. We describe the encoder with fully dynamic context
guided reasoning in Sect. 3.2. The decoder with a dedicated reconsiderator is
presented in Sect. 3.3. In Sect. 3.4, we detail the training process.

Fig. 1. The proposed BiReNet consists of a) an encoder with c) reasoning and b) a
decoder with d) reconsidering. Firstly, the appearance features Va, object features Vo

and motion features Vm of an input video sequence are extracted from the pretrained
2D CNN, RCNN and 3D CNN. Secondly, three reasoning modules, LOC, REL and
FUN, perform spatial-temporal visual reasoning on these features and the previous cell
states of decoder part under fully dynamic context guidance. Thirdly, one preliminary
reasoning result is sampled by a module selector and decoded by a fundamental decoder.
Finally, a reconsiderator is applied to polish the preliminary reasoning result from
coarse to fine for emitting a word.

3.2 Encoder with Fully Dynamic Context Guided Reasoning

Given an input video sequence, the appearance features Va, object features Vo

and motion features Vm are extracted from the pretrained 2D CNN, RCNN and
3D CNN respectively. Concretely, the InceptionResNetV2 (IRV2) [21] trained on
ILSVRC-2012-CLS [19] is used to extract Va, the Faster-RCNN [18] is adopted
to extract 36 region features per frame to obtain Vo and the I3D [4] trained on
Kinetics [11] is applied to extract Vm. Following [22], we employ three spatial-
temporal reasoning modules which are responsible for generating words of dis-
tinct POS information, i.e., LOC for generating visual words, REL for generat-
ing action words and FUN for generating functional words in our network. The
classical additive attention [2] is performed on space and time dimensions, for-
mulating the spatial attention SA(V,q) and the temporal attention TA(V,q)
respectively. V and q denotes values and queries of the attention.
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Different from plainly applying static averaging global features to guide the
stepwise reasoning process in [22], for time t, we render a guidance context G
made up of the word yt−1, the hidden state of the fundamental decoder hde

t−1

and the hidden state of the reconsiderator hre
t−1 generated at last timestep as

the guidance for visual reasoning (see Eq. (1), where [; ] denotes concatenate
operation and E[·] denotes embedding matrix). To this end, we take the guid-
ance context G as the query while the extracted feature representations or the
previous cell states of decoder part as the value for the spatial and temporal
attention. Note that the guidance context G not only is filled with more accu-
rate and informative context, but also dynamically evolves over time.

G = [hre
t−1;h

de
t−1;E[yt−1]] (1)

Relying on the fully dynamic guidance context G, the preliminary reasoning
results, i.e., V L

t , V R
t and V M

t , are produced by corresponding reasoning modules.
Specifically, in LOC module, the object features Vo are first fed into the spatial
attention SA. Then, the appearance features Va concatenated with the prior
result are fed into the temporal attention TA. Finally, the preliminary reasoning
result V L

t is acquired:

V L
t = LOC (Va, Vo, G) = TA ([SA (Vo, G) ;Va], G) (2)

In REL module, the motion features Vm rather than the appearance features
Va are used for characterizing action information:

Cate = [SA (Vo, G) ;Vm] (3)

V R
t = REL (Vm, Vo, G) = TA (Pair[Catei;Catej ], G) (4)

where a pairwise operation Pair[Catei;Catej ] concatenates all of the prior con-
catenated results Cate in pairs.

In FUN module, the previous cell states of the fundamental decoder and the
recosniderator, i.e., Cde

<t and Cre
<t, are fed into the temporal attention TA:

Cde
<t = [cde1 , cde2 , · · · , cdet−1], C

re
<t = [cre1 , cre2 , · · · , cret−1] (5)

V F
t = FUN

(
Cde

<t, C
re
<t, G

)
= TA

(
[Cde

<t;C
re
<t], G

)
(6)

For performing stepwise reasoning, a module selector is used to discretely
sample one of the preliminary reasoning results and takes it as input to the
decoder part, which is achieved by a scoring function [22] and the Gumbel
Approximation strategy [10]. As it is not the core content in this work, more
details please refer to [10,22]. In short, the determined preliminary reasoning
result Vt is selected by a one-hot decision vector St:

Vt = St ⊗ [V L
t , V R

t , V F
t ] (7)

where ⊗ denotes the inner product. In practical, St also represents the POS
tags predicted for the current word with the scoring function since the reasoning
modules are corresponds to specific POS tags, e.g., St = [0, 1, 0] indicates the
REL module is selected and V R

t is the determined preliminary reasoning result.
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3.3 Decoder with Reconsidering

The decoder part consists of a fundamental decoder and a reconsiderator, both of
which are the long short term memory (LSTM) networks (denoted as deLSTM
and reLSTM respectively). At time t, the fundamental decoder deLSTM takes
the preliminary reasoning result Vt, the hidden state of the reconsiderator hre

t−1

and the word yt−1 generated at last timestep as input:

hde
t , cdet = deLSTM

(
[Vt;hre

t−1;E[yt−1]],
(
hde
t−1, c

de
t−1

))
(8)

Unlike immediately emitting a word using the hidden state of the fundamen-
tal decoder hde

t in previous works, we devise a reconsiderator reLSTM on the
basis of the fundamental decoder deLSTM. It is defined as follows:

hre
t , cret = reLSTM

(
[Vt;hde

t ;E[yt−1]],
(
hre
t−1, c

re
t−1

))
(9)

where the preliminary reasoning result Vt is fed into the reconsiderator again for
further sharpening according to the current timestep hidden state of the funda-
mental decoder hde

t . It is noteworthy that the preliminary reasoning result Vt

actually passes through the fundamental decoder deLSTM and the reconsider-
ator reLSTM in a residual connection manner, which allows our network to be
endowed with the reconsidering capacity based on stepwise reasoning. Besides,
the hidden state of the reconsiderator hre

t is more accurate and full of sufficient
historical information.

For emitting the word at time t, a softmax function is employed to get the
probability distribution of yt:

Pyt
= softmax

(
WT [Vt;hre

t ;hde
t ;G]

)
(10)

where WT denotes the learnable parameters.

3.4 Training

Cross-Entropy Loss. The cross entropy loss is the most commonly used loss
function for generating sentences. Given the i-th video clip in the training dataset
D with N samples and its ground truth caption ŷi = [y∗

i1, y
∗
i2, · · · , y∗

ili
], the cross

entropy loss for the entire training dataset D is formulated as:

Lce = − 1
N

N∑

i=1

li∑

t=1

log (Pyit
(y∗

it)) (11)

where li denotes the length of the caption and yit is the word emitted at timestep
t for the i-th video.
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Kullback-Leibler Divergence Loss. For maintaining the syntactic structure,
the Part-of-Speech (POS) tags are applied to supervise module selection process.
Concretely, the POS tags ŝi = [s∗

i1, s
∗
i2, · · · , s∗

ili
] of the ground truth caption

ŷi = [y∗
1 , y

∗
2 , · · · , y∗

li
] are labeled by Spacy Tagging Tool1. The LOC module

corresponds to adjectives and nouns. The REL module corresponds to verbs.
The FUN module corresponds to the rest POS tags. The Kullback-Leibler (KL)
divergence loss is adopted to force the module selection vector Sit (in Sect. 3.2)
and the one-hot encoded POS tag Θ (s∗

it) to be as close as possible:

Lkl = − 1
N

N∑

i=1

li∑

t=1

KL (Sit||Θ (s∗
it)) (12)

Therefore, in training stage, the objective of our network is to minimize the
entire loss L:

L = Lce + λLkl (13)

where λ is a trade-off parameter and is set to 0.1 empirically.

4 Experiments

4.1 Datasets and Settings

We evaluate our proposed method on the two most popular video captioning
benchmark datasets, Microsoft Video Description (MSVD) [5] and MSR Video-
to-Text (MSR-VTT) [30], using the widely used standard automatic evaluation
metrics, BLEU-4 [16], METEOR [3], ROUGE-L [13] and CIDEr [24]. The MSVD
dataset contains 1,970 YouTube video clips. Each video clip has roughly 41
English captions and describes a single activity in 10 s to 25 s. The MSR-VTT
is a large-scale dataset which contains 10,000 video clips from 20 categories
and each video clip is annotated with 20 English descriptions on average. We
follow the standard training/validation/testing samples split settings in prior
works [14,17,20,22,29], i.e., 1,200/100/670 for MSVD and 6,513/497/2,990 for
MSR-VTT.

For each video clip, 26 equally spaced frames are uniformly sampled. Each
caption is truncated or zero-padded to 26 words. We convert all captions to
lower case, remove punctuations and filter rare words. The numbers of unique
words are 7,531 for MSVD and 9,732 for MSR-VTT. The hidden size of the
LSTM is set to 512 for MSVD and 1,300 for MSR-VTT, respectively. The Adam
optimizer with an initial learning rate 1e–4 is used for training. Our experiments
are performed on a device with a single NVIDIA RTX5000 GPU and the batch
size on both datasets is set to 8. The beam search with a beam size of 2 is
employed to generate the final captions during inference.

1 https://spacy.io.

https://spacy.io
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4.2 Quantitative Results

We compare our method with current state-of-the-art methods in video caption-
ing on MSVD and MSR-VTT dataset. The state-of-the-art methods we choose
to compare and their characteristics are as follows: POS-CG [28] and Mixture [9]
utilize the POS information of captions. RecNet [29] and CVI-DelNet [14] adopt
a two-layer stacked LSTM. MARN [17] exploits visual context from other videos
with a memory mechanism. SGN [20] takes the partially decoded caption as
textual modality cues. RMN [22] is our direct baseline and is described earlier.

Table 1 shows the comparison results on MSVD dataset. We observe that our
BiReNet achieves the best performance and outperforms all of the state-of-the-
art methods in multiple metrics, which is mainly attributed to the proposed fully
dynamic context guidance and the reconsidering for preliminary reasoning results
based on stepwise reasoning. Compared to the baseline model, BiReNet not
only outperforms it by 0.6%, 0.6% in terms of METEOR and ROUGE-L scores
respectively, but also outperforms it by a large margin of 3.7% in terms of the
CIDEr score. It is noteworthy that the CIDEr score is devised for captioning task
specifically and is believed to more consistent with human judgement. BiReNet
achieves the same scores with the baseline model on BLEU-4 that is designed
to evaluate the matching degree between generated captions and references. It
is reasonable because depending on the proposed fully dynamic context and the
sophisticated reconsiderator, BiReNet tends to generate more expressive and
detailed captions compared to the corresponding references. On the whole, the
quantitative results in Table 1 strongly suggest the superiority of our proposed
method.

Table 1. Comparisons with the state-of-the-art methods on MSVD dataset in terms
of BLEU-4, METEOR, ROUGE-L and CIDEr scores (%).

Models BLEU-4 METEOR ROUGE-L CIDEr

RecNet [29] 52.3 34.1 69.8 80.3

POS-CG [28] 52.5 34.1 71.3 92.0

Mixture [9] 52.8 36.1 71.8 87.8

MARN [17] 48.6 35.1 71.9 92.2

CVI-DelNet [14] 53.8 35.1 72.4 94.5

SGN [20] 52.8 35.5 72.9 94.3

Our Baseline: RMN [22] 54.6 36.5 73.4 94.4

Our BiReNet 54.6 37.1 74.0 98.1

Experimental results on MSR-VTT dataset is shown in Table 2. We can see
that our network outperforms the reproduced baseline model by 0.9%, 0.1%,
0.8% and 0.7% in terms of BLEU-4, METEOR, ROUGE-L and CIDEr scores. It
is interesting to observe that our network significantly outperforms the Mix-
ture [9] model on MSVD dataset while slightly inferior to it on MSR-VTT
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dataset. To figure out the reason behind it, we investigate the Mixture model,
delve into MSR-VTT dataset and come up with the following insights: 1)The
scale of MSR-VTT is larger than MSVD and each caption in MSR-VTT is more
longer. Its visual words and action words are richer and more diverse. In addi-
tion, there are a large number of other Part-of-Speech words inside the corpus
of MSR-VTT. 2)In Mixture, the top 24 most frequent POS tags are adopted
for training, whereas we divide all POS tags into three groups, i.e., adjectives
and nouns, verbs and the others, and leverage them for assisting our network
to maintain the syntactic structure. Compared to Mixture in which the POS
information is more granular and is of importance for generating descriptions,
the POS tags merely paly an auxiliary role in our network; 3)During inference,
the beam size set in Mixture is 5. Typically, the metric scores tend to fluctuate
with the beam size. For making a fair comparison with the baseline model, the
beam size in our experiments is set to 2.

It is noteworthy that even though the batch size adopted in all of our exper-
iments is 8 instead of 48 in the original baseline model due to computational
power limitation, our network still acquires quite competitive results and achieves
nearly state-of-the-art performance. More POS tags information and versatile
visual interactive relationships in videos will be focused on and explored for
MSR-VTT dataset in our future work.

Table 2. Comparisons with the state-of-the-art methods on MSR-VTT dataset in
terms of BLEU-4, METEOR, ROUGE-L and CIDEr scores (%). ∗ denotes our repro-
duced result with batch size 8.

Models BLEU-4 METEOR ROUGE-L CIDEr

RecNet [29] 39.1 26.6 59.3 42.7

POS-CG [28] 42.0 28.2 61.6 48.7

Mixture [9] 42.3 29.7 62.8 49.1

MARN [17] 40.4 28.1 60.7 47.1

CVI-DelNet [14] 41.6 28.4 61.3 48.5

SGN [20] 40.8 28.3 60.8 49.5

Our Baseline: RMN∗ 40.1 28.1 60.5 47.4

Our BiReNet 41.0 28.2 61.3 48.1

4.3 Ablation Study

To evaluate the effectiveness of our proposed fully dynamic context guided rea-
soning module and the dedicated reconsiderator, we conduct ablation studies
on MSVD dataset with diverse settings networks and the comparison results of
these ablated networks are illustrated in Table 3. Note that without all of the
proposed components, our network degrades to the baseline model RMN [22]
whose results are shown in the first row of Table 3.
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Table 3. Ablation study on MSVD dataset in terms of BLEU-4, METEOR, ROUGE-
L and CIDEr scores (%). RS denotes reasoning modules in encoder and RC denotes
reconsidering part in decoder.

Models BLEU-4 METEOR ROUGE-L CIDEr

Enc(RS)-Dec:RMN [22] 54.6 36.5 73.4 94.4

Enc(RS∗)-Dec 54.4 36.8 73.3 95.6

Enc(RS)-Dec(RC) 54.1 36.3 73.6 97.2

Enc(RS∗∗)-Dec(RC): Our BiReNet 54.6 37.1 74.0 98.1

To verify fully dynamic context is better than the static averaging global fea-
ture representations for guiding reasoning process, Enc(RS∗)-Dec exploits fully
dynamic context made up of the hidden states of decoder and the word gener-
ated at last timestep rather than static averaging global features as queries of
spatial and temporal attentions to guide the stepwise reasoning. It is observed
that Enc(RS∗)-Dec outperforms the baseline model by 0.3% and 0.6% in terms
of METEOR and CIDEr metrics respectively, which demonstrates the benefits
as well as great potential of the fully dynamic context guidance.

Enc(RS)-Dec(RC) empowers the baseline model with the dedicated reconsid-
erator for polishing and rethinking the preliminary reasoning results. We can see
that Enc(RS)-Dec(RC) performs superiorly to the baseline model on ROUGE-L
and CIDEr metrics when the reconsiderator is introduced. Especially, a consid-
erable increase, 2.8%, is obtained on CIDEr score, which implies that the recon-
sidering for preliminary reasoning results is necessary and useful for improving
performance.

Enc(RS∗∗)-Dec(RC) is our proposed BiReNet, where the fully dynamic con-
text and the reconsiderator are integrated on the basis of the baseline model.
Note that in addition to the hidden states of the fundamental decoder and the
word generated at last timestep, the fully dynamic context within BiReNet
also includes the hidden states of the reconsiderator which are more precise
and filled with historical information. We can find that BiReNet makes further
noticeable improvements on multiple metrics and achieves new state-of-the-art
performance. This is mainly due to the following facts: 1) The preliminary rea-
soning results in BiReNet can be refined from coarse to fine using the elaborate
reconsiderator for generating more expressive captions; 2) More accurate and
fully dynamic context characterized during reconsidering is employed to guide
the reasoning modules to generate more rational reasoning results; 3) BiReNet
is capable of performing stepwise reasoning and reconsidering alternately and
enables them to facilitate each other for boosting overall performance.

4.4 Qualitative Results

In order to intuitively perceive the superior quality of the captions generated by
our proposed BiReNet, we present several representative examples in Fig. 2. In
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(a) (b)

(d)

GT: an elephant is eating
Baseline: an elephant is walking
Ours: an elephant is eating

GT: two men are dancing
Baseline: a man is dancing
Ours: two men are dancing

(c)

GT: a girl doing some sort of makeup 
above her eyes
Baseline: a dog is making something
Ours: a woman is doing some sort 
of makeup with a brush

GT: a man is doing stunts on a 
motorcycle
Baseline: a man is riding a motorcycle
Ours: a man is doing stunts on a 
motorcycle

(e)

GT: a man spoons sauce into a bowl 
of spaghetti
Baseline: a man is cooking
Ours: a man is stirring some sauce 
in a bowl

(f)

GT: a panda is laying down
Baseline: a panda is laying on the 
ground
Ours: a panda is lying on the ground
and looking around

(g)

GT: the person is playing the rabbit
Baseline: a person is holding a piece 
of food
Ours: a person is playing with a rat

(h)

GT: a man is putting sliced cucumbers 
in a pitcher
Baseline: a man is removing 
something
Ours: a man is talking about how to 
make something

Fig. 2. Visualization examples for qualitative comparisons between BiReNet and the
baseline model (better viewed in color). As can be seen, our proposed BiReNet is
able to generate more accurate, more detailed and more descriptive captions than that
generated by the baseline model, even better than the references. (Color figure online)

Fig. 2(a), the baseline model generates the wrong action word “walking” while
BiReNet successfully infers the right verb term “eating”. Similarly, BiReNet
identifies “two men” instead of “a man” in baseline model in Fig. 2(b). It implies
that more accurate descriptions can be obtained through reconisdering based
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on stepwise reasoning. Note that the baseline model depicts the video clip in
Fig. 2(c) in a totally wrong manner, whereas our method is able to describe the
video contents correctly. It demonstrates that the preliminary reasoning results
need to be reconfirmed to ensure its validity, otherwise current step reasoning
error may incur a collapsed sentence. In Fig. 2(d), the baseline model fails to
capture the core video content and just generates “a man is riding a motorcycle”.
In contrast, BiReNet can recognize the man actually is doing stunts rather than
riding his motorcycle.

Besides, we can easily observe that the descriptions produced by BiReNet
is more detailed than that generated by the baseline model. For instance, the
rough caption “a man is cooking” is produced by the baseline model in Fig. 2(e),
while BiReNet depicts the video with a detailed caption “a man is stirring some
sauce in a bowl”. We also provide some interesting examples deserved to pay
attention. In Fig. 2(f), both the reference and the baseline model miss the fine-
grained action “look around” made by the panda. By contrast, BiReNet not
only identifies the panda is lying on the ground, but also captures the subtle
motion of the panda’s eyes and head. The baseline model generates “a person
is holding a piece of food” in Fig. 2(g), which apparently is a logical failure
and is irrational. In fact, the hamster is holding a piece of food and the core
content inside the video is that a person is playing with the hamster. BiReNet
succeeds in capturing the key information expressed by the video. In Fig. 2(h),
the baseline model produces a rough caption “a man is removing something”.
Although reference makes a further step to describe it in detail, the man in the
video indeed is explaining how to make a drink. The caption “a man is talking
about how to make something” generated by BiReNet is more precise.

Overall, these visualization examples demonstrate our proposed BiReNet is
capable of yielding more accurate, more detailed and more comprehensive cap-
tions. Meanwhile, the above observations validate the introduced fully dynamic
context guidance and the dedicated reconsiderator significantly contribute to the
quality of descriptions.

5 Conclusion

In this paper, we propose a novel fully dynamic context guided reasoning and
reconsidering network (BiReNet) which is equipped with reconsidering capac-
ity based on stepwise reasoning for video captioning. Specifically, to address
reconsidering omitting, a dedicated reconsiderator is devised to rethink and
polish the preliminary reasoning result rendered by stepwise reasoning mod-
ules. After reconsidering, the context filled with more accurate and dynamic
historical information is leveraged to guide the reasoning process for further
enhancing reasoning performance. The stepwise reasoning and reconsidering are
executed alternately and facilitate each other to generate higher quality descrip-
tions. Extensive experiments demonstrate that our proposed BiReNet achieves
state-of-the-art performances on MSVD dataset and reaches quite competitive
performances on MSR-VTT dataset.
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Abstract. The prediction of hip joint center (HJC) is an important step in hip
dysplasia screening. Existing state-of-the-art identification methods focus on the
development ofMose circle, functional and predictivemethods. Those approaches
extract few factors and ignore the adaptive HJC prediction, and their applications
are not universally applicable. This paper proposes an adaptive HJC prediction
model from X-ray images. The proposed network is based on generalized regular-
ized extreme learning machine (GRELM) with three improvements: a multivari-
able feature extraction module, obtaining comprehensive predictive factors; an
attribute optimization module based on Pearson correlation method and entropy
weights, guiding the network to focus on useful information at variables; And
appending a globalized bounded Nelder-Mead (GBNM) strategy to the frame-
work to automatically and efficiently determine optimal model parameters. By
integrating the above improvements in series, the models’ performances are grad-
ually enhanced. Experimental results demonstrate the effectiveness of ourmethod.
Our method can be easily connected in series with an automatic landmark detec-
tion module, and the HJC can be quickly determined based on these anatomical
landmarks using the proposed model.

Keyword: Hip joint center · Generalized regularized extreme learning machine ·
Globalized bounded Nelder-Mead strategy

1 Introduction

Hip joint center (HJC) is an important reference point for treatment decisions in hip
dysplasia, and X-ray examination has played a crucial role in its determination [1, 2].
Since theHJC landmark cannot be palpated, its location is usuallymanually estimated by
expert orthopedists. However, this artificial identification method may bring inaccurate
results due to poor personal experience or large visual blur [3, 4]. To assist early diagnosis
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in hips and improve the treatment efficiency, automaticHJC prediction is attractingmuch
attention.

Current state-of-the-art methods for HJC prediction can be categorized into three
classes. (1) The first class is Mose circle methods. Mose circle is a standardized and
quantitative approach to describe the HJC by using a template of concentric circles
[5], and the modified 1-mm Mose circle technique provides the most accurate approx-
imation of the HJC [6]. However, when the ossification of the femoral skull epiphysis
is insufficient, the HJC position determined by this method may be eccentric. (2) The
second class is functional methods. Functional methods locate the HJC by estimating
the relative motion of the thigh and pelvis [7–9]. But their accuracy is affected by two
main reasons. First, the estimate of the HJC relies heavily on the quality and range of
movement during calibration trials. Functional methods would result in large location
errors when hip motion is substantially limited [10]. Second, due to soft tissue arti-
facts (STAs) and stereo photogrammetric errors, it is difficult to establish a reliable local
coordinate system [11]. (3) The third class is predictive methods. Predictive methods use
anthropometric-based regression equations to determine the HJC, and different pelvic
dimensions and empirical regression equations have been proposed [12]. But these equa-
tions are not applicable universally since HJC-related measurements are quite variable
between races or even communities. Thus, more accurate and population-comprehensive
prediction approaches are desired.

However, within the context of adaptive HJC prediction from X-ray images, the
challenges stem from three aspects. (1) The first aspect is limited predictive factors.
Classical anatomical landmarks are the teardrop and the medial wall of the acetabulum
in pelvis. However, these landmarks can be deformed or destroyed in some cases [13].
More solid reference points or predictive factors are needed. (2) The second aspect
is adaptive HJC prediction. Existing HJC estimation approaches are suitable only for
certain groups of people [13], and how to predict the HJC adaptively using intelligent
machine learning models remains unsolved. (3) The third aspect is intraclass variations.
This issue is caused by the existence of HJC instances with an unexpectedly tilted or
rotated pelvis when X-ray examinations are taken. This property brings a new challenge
to general classifiers.

To address the above challenging problem, we focus on adaptive machine learning
approach and propose an automatic prediction model for HJC identification with the
following three aspects.

(1) Comprehensive predictive factors are extracted. Ourmodel is based on anteroposte-
rior X-ray images and their multiscale predictive factor extraction is desired. Eight
anatomical landmarks on each hip are annotated by expert orthopedists, and six
pelvis-related features are calculated. Note that these anatomical landmarks can
also be detected with an automatic landmark detection module, and our method can
be easily appended to an automatic landmark detection module to implement the
end-to-end HJC prediction.

(2) We introduce a new attribute optimization module, guiding the network to focus on
meaningful information at input variables. By ranking the correlation coefficients
between the input attributes and the output using the Pearson correlationmethod,we
select the high-importance attributes and then each input attribute is weighted using
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the entropy weight method. This module can be easily added to model architectures
increasing prediction accuracy.

(3) The proposedmethod is based on generalized regularized extreme learningmachine
(GRELM), and our method considers the adaptive HJC prediction to tackle the
problem of automated model optimization. We initialized the model with optimal
parameters obtained by the globalized bounded Nelder-Mead (GBNM) strategy.
Validation on a dataset from the Wuhan Women and Children’s Hospital in China
demonstrates the effectiveness of our method.

2 The Proposed Method

2.1 Overview

Our goal is to automatically and efficiently identify HJC from X-ray images using
adaptive machine learning approaches. This goal requires that comprehensive predictive
factors and adaptive optimization techniques be investigated for identifying HJC. To
this end, we propose an adaptive HJC prediction model based on GRELM, as shown
in Fig. 1. The proposed method involves one predictive factor extraction module that
calculates anatomical landmarks and pelvis-related features, one attribute optimization
module that conducts data post-processing, one adaptive GBNM module for automatic
optimal model parameters, and one model establishment and analysis module to train
the HJC prediction model. Next, we will describe these four modules.
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Fig. 1. The overall flowchart of our proposed method.

2.2 Predictive Factor Extraction

Comprehensive predictive factor extraction fromX-ray is desired. First, eight prominent
bony landmarks on each hip are annotated by orthopedists, as shown in Fig. 2 (a) and
Table 1.We set up the coordinate system as shown in Fig. 3 by taking the midpoint of the
line connecting landmark 1 and landmark 9 as the origin of the coordinates. Second, six
pelvis-related features are calculated, as shown in Fig. 2 (b) and Table 2. Note that these
anatomical landmarks annotated by orthopedists are the current gold standard, and their
determination is the consensus reached by experts inmanyorthopedic professional fields.
These anatomical landmarks can also be detected by an automatic landmark detection
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module [14, 15] and after automatically identifying these landmarks, our method can
be appended to the automatic landmark detection module to implement the end-to-end
HJC prediction. Our method can be regarded as a post-processing adaptive prediction
module.

(a) Anatomical landmarks. (b) Pelvis-related features.

Fig. 2. The comprehensive predictive factors.

Table 1. Annotated anatomical landmarks.

Landmarks Definition State

1, 9 Posterior inferior iliac spine Static

2, 12 Outer margin of acetabulum Static

3, 11 Inner margin of acetabulum Static

4, 10 Apex of Y-shaped cartilage Static

5, 15 Outer margin of epiphyseal plate Dynamic

6, 14 Inner margin of epiphyseal plate Dynamic

7, 13 Inferior margin of teardrop Static

8, 16 Tip of greater trochanters Dynamic

2.3 Attribute Optimization

To enhance the utilization of the useful information, we perform a post-processing
pipeline including the data normalization, Pearson correlation analysis, and weight
assignment. (1) Data normalization. All samples are normalized into [0, 1]. (2) Pearson
correlation coefficient with a significance level of 0.05 is adopted to determine useful
predictive features, as shown in Fig. 3. The Pearson correlation coefficient is described
as Eq. (1). (3) Different weights are assigned to the input attributes based on entropy
weight method. Entropy weight method uses the entropy to express the characteristics
of information. When the variance of a landmark or pelvis-related feature among the
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Table 2. Pelvis-related features.

Pelvic features Definition

K1 The slope of the connection line between the coordinate origin and outer
margin of epiphyseal plate

K2 The slope of the connection line between the coordinate origin and inner
margin of epiphyseal plate

L1 The length of the line connecting the outer margin of epiphyseal plate on the
left and right sides

L2 The length of the line connecting the inner margin of epiphyseal plate on the
left and right sides

H1 The distance between the x-axis and the line of outer margin of epiphyseal
plate on the left and right sides

H2 The distance between the x-axis and the line of inner margin of epiphyseal
plate on the left and right sides

input samples is large, the entropy of this input attribute is small, which reveals more
effective information. The weights of the input attributes are estimated as Eq. (2).

Px,y = cov(x, y)

σxσy
=

∑n
i=1 (xi − x̃)(yi − ỹ)

(n − 1)σxσy
(1)

Wj = cj

/
n∑

j=1

cj =
1+k

N∑

i=1
uij ln uij

n∑

j=1
(1+k

N∑

i=1
uij ln uij)

(2)

where, σ represents the standard deviation of samples, cov(x, y) represents the sample
covariance, x represents the predictive landmarks and pelvis-related features, y represents
the HJC samples, n is the sample size, Cj represents the effectiveness coefficient of
jth input attribute, uij represents the normalized samples, k = (lnN)−1 represents the
information entropy coefficient, and N is the overall sample size.

2.4 Adaptive GBNM Strategy

The manual tuning of model parameters can be a time-consuming and tedious pro-
cess. Adaptive HJC prediction and fully automated model optimization are desired.
The GBNM optimization strategy is appended to our GRELM architecture for better
prediction, as shown in Fig. 4. The GBNM optimization strategy is a black-box local-
global approach. It is based on the probabilistic restart and has been found to obtain
better performance than evolutionary optimization algorithms in terms of convergence
speed, accuracy of results, and ability to find optima. However, within the context of the
Nelder–Mead algorithm for optimum searches, the challenges stem from two aspects:
(1) Nelder–Mead algorithm may fail to converge to a local optimum, and (2) Nelder–
Mead algorithm may escape a region that would be a basin of attraction for a pointwise
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Fig. 3. The Pearson correlation analysis between the predictive factors and HJC.

descent search [16]. In this study, Nelder–Mead algorithm is enhanced with two follow-
ing improvements: simplex degeneracy detection and handling through reinitialization.
Note that the probabilistic restart uses an adaptive probability density to keep a memory
of past local searches, whose contribution in this study is twofold: (1) repeating local
searches until a fixed total cost, and (2) checking and improving the convergence of the
algorithm [17]. Our optimization objective function is the average coefficient of deter-
mination (R2) from 10-fold validation processes on the training data using the GRELM
method. Finally, the GBNMstrategy yields a list of candidate local optimawhich contain
global solutions [18].
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2.5 Model Establishment and Analysis

The selected best features with different weights are finally supplied to the adaptive
GRELM model for final HJC prediction. The main idea of GRELM approach is to find
a set of solutions that share a common nonzero support, which can be described as a
minimization problem:

minimize
B

C

2
‖HB − T‖2F + λ1‖B‖2,1 + λ2

2
‖B‖2F (3)

where λ1, λ2 and C represent the regularization parameters, H represents the output
matrix, B represents the output weight vector, T represents the training target, ‖.‖F
represents the Frobenius norm, ‖B‖2,1 = ∑Ñ

i=1‖bi‖ and bi is the ith row of B. Note
that the alternating direction method of multipliers (ADMM) [19] is used to address the
above minimization problem. In each iteration of ADMM, we perform the alternating
minimization of augmented Lagrangian, as described in Eq. (4).

L(B, Z, U) = C

2
‖HB − T‖2F + λ2

2
‖B‖2F + λ1‖Z‖2,1 + ρ

2
‖B − Z + U‖2F

− ρ

2
‖U‖2F

(4)

where U = (1/ρ)Y is the scaled dual variable, ρ represents the penalty parameter and Y
represents the Lagrangian multiplier, Z represents the global variable that is subjected
to B.

Having a smaller number of neurons in hidden layer without compromise the training
and testing accuracy is realized by using GRELM model. When a row of B is zero, our
method can eliminate the neuron in the hidden node associated with this row, as shown
in Fig. 4. Note that once the GRELM model is established, it can be used to predict the
unknown-label HJC. Moreover, the optimal model parameters (the alpha, regularization
parameter, and maximum iteration) obtained by the GBNM are updated automatically
during the training phase. Experimental results show that the proposed adaptive GRELM
model with optimal parameters can automatically and efficiently identify HJC.

3 Experimental Results

3.1 Data Processing and Analysis

To show the effectiveness of our proposed method, we collect the X-ray dataset from the
WuhanWomen andChildren’s Hospital in China and validate ourmethod on this dataset.
In addition, we compare it with state-of-the-art methods. The dataset includes 100 X-ray
images and a total of 200 hips. This work was approved by the Ethics Committee of
WuhanWomen and Children’s Hospital, and complied with the tenets of the Declaration
of Helsinki for clinical research. In addition, all participants in this study signed the
written consent form before they are examined. Comprehensive predictive factors are
extracted. We use the Pearson correlation coefficient (P) with a significance level (R)
of 0.05 to determine useful predictive features. The correlation results between HJC
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and each predictor are shown in Table 3 and Table 4, from which we can find that the
landmark points and pelvic features are highly correlated with the HJC, and we also find
P < 0.05, indicating that the correlation results are statistically significant. Specifically,
each input attribute is weighted using the entropy weight method, as shown in Table 5.

Table 3. The correlation results between HJC coordinates and anatomical landmarks.

Items Landmark 1 Landmark 2 Landmark 3 Landmark 4

R 0.9926 0.9987 0.9988 0.9977

P 0.0000 0.0000 0.0000 0.0000

Items Landmark 5 Landmark 6 Landmark 7 Landmark 8

R 0.9987 0.9977 0.9991 0.9934

P 0.0000 0.0000 0.0000 0.0000

Table 4. The correlation results between HJC coordinates and pelvic features.

Items Slope K1 Slope K2 Length L1

R (HJCx) -0.3019 -0.3024 -0.7825

P (HJCx) 0.0023 0.0022 0.0000

R (HJCy) -0.7649 -0.6939 0.4683

P (HJCy) 0.0000 0.0000 0.0000

Items Length L2 Height H1 Height H2

R (HJCx) -0.7571 -0.3718 -0.4068

P (HJCx) 0.0000 0.0001 0.0000

R (HJCy) 0.4946 0.7680 0.7074

P (HJCy) 0.0000 0.0000 0.0000

Table 5. The feature weight value based on entropy weight method.

Factors X1 Y1 X2 Y2 X3 Y3 X4 Y4

Weight 0.0374 0.0453 0.0386 0.0452 0.0509 0.0465 0.0560 0.0506

Factors X5 Y5 X6 Y6 X7 Y7 X8 Y8

Weight 0.0255 0.0389 0.0447 0.0307 0.0524 0.0425 0.0403 0.0784

Factors K1 K2 L1 L2 H1 H2

Weight 0.0249 0.0189 0.0670 0.0762 0.0416 0.0477
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3.2 Experimental Setting

By considering the number of bothweighted predictive features andHJC coordinates, the
end-to-end parameters of our model include the input neurons size (22) and the number
of output neurons (2). Note that 70% of the samples are used to train the model, and the
remaining 30% are used for testing. Our optimization objective function is the average
coefficient of determination (R2) from 10-fold validation processes on the training data
using theGRELMmethod. Themodel is initialized by constrained optimization strategy:
the lower boundary of the parameter is set to vector (0, 0.1, 10), and the upper boundary
is set to vector (1, 1500, 50). The optimal parameters obtained by the GBNM strategy
include the alpha (0.9470), regularization parameter (354.7452) and maximum iteration
(46).

3.3 Comparison with State-Of-The-Art Methods

The experimental results of our proposed method are shown in Fig. 5. We compare the
proposed GRELM approach with state-of-the-art ELM variants such as the ELM [20,
21], RELM [22] and IRELM [23] models. Note that the parameters of these algorithms
are optimal by the GBNM strategy, and their prediction error curves are shown in Fig. 6.
We use the correlation coefficient (R) with a significance level (P), root mean square
error (RMSE), mean absolute percentage error (MAPE) and coefficient of determination
(R2) as evaluation metrics, and the performance comparison of above state-of-the-art
ELM variants are shown in Table 6 and Table 7. Obviously, (1) our GRELM obtains the
largest R and R2 values and the smallest RMSE and MAPE values, which outperforms
the three state-of-the-art methods. (2) The ELMmodel achieves the best performance in
training phase but an inferior performance in testing phase. The reason is that the ELM
is a single-layer feedforward network (SLFN) and is prone to overfitting. Our proposed

Fig. 5. The experimental results obtained by our model. (a) Training results. (b) Testing results.
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strategy can greatly improve prediction performance. In addition, our GRELM features
a better accuracy (RMSE = 9.4777 mm) than traditional functional methods (up to
26 mm) [10] and regression methods (25–30 mm) [8]. These findings show that our
method obtains the coordinates closest to the real HJC. Like popular deep convolutional
neural network (CNN) models, these CNN methods extract features from images to
achieve prediction, which is completely different from our method based on anatomical
landmarks, so this paper does not compare CNN models for HJC prediction.

Fig. 6. The prediction error curves of four approaches.
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Table 6. Performance comparison of state-of-the-art ELM variants in training phase.

Models R (P) RMSE (mm) MAPE R2

ELM 1 (0) 2.4096e−09 2.4121e−09 1.0000

RELM 1 (0) 0.0580 0.0423 1.0000

IRELM 1 (0) 0.0953 0.0690 1.0000

GRELM 1 (0) 0.0069 0.0056 1.0000

Table 7. Performance comparison of state-of-the-art ELM variants in testing phase.

Models R (P) RMSE (mm) MAPE R2

ELM 0.9890 (2.1127e-16) 16.3804 11.1469 0.9744

RELM 0.9943 (5.7097e-19) 12.2013 9.5528 0.9858

IRELM 0.9960 (2.3805e-20) 9.5539 7.8256 0.9913

GRELM 0.9977 (1.9706e-22) 9.4777 7.6474 0.9914

3.4 Ablation Analysis

To better demonstrate the effectiveness of the proposed multiscale predictive factor
extraction and optimization pipeline strategy, we performed ablation experiments on our
model, as shown in Fig. 7 andTable 8. The results indicate that (1) themodel performance
is evidently improved by combining the bone landmarks and pelvic features. It can be
clearly observed that our multifeature extraction and fusion strategy can provide richer
feature representations than the existing single representation methods. (2) Applying a
post-processing step or a GBNM optimization strategy optimizes the HJC prediction.
(3) The hybrid post-processing step and GBNM optimization strategy can further help
the HJC prediction. Obviously, our proposed method greatly enhances the accuracy of
HJC prediction.

Ourmethod can be connected in serieswith an automatic landmark detectionmodule.
After the anatomical landmarks are detected, the HJC can be quickly predicted based
on these anatomical landmarks using the proposed model. Our future work is to develop
such an automatic landmark detection module, and we will test the proposed model with
more labeled clinical datasets to expand the application range and improve the robustness
and accuracy of the model.
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Fig. 7. The prediction error curves of ablation analysis.

Table 8. The ablation results on our proposed method.

Items R (P) RMSE (mm) MAPE R2

Landmarks 0.9839 (6.5068e-15) 20.8599 17.4001 0.9568

Pelvic features 0.9713 (1.1445e-12) 26.6584 20.7607 0.9355

Landmarks + Pelvic features 0.9884 (3.3692e-16) 20.2609 13.5847 0.9650

Landmarks + Pelvic features +
Post-processing

0.9940 (8.9410e-19) 11.3976 9.3318 0.9879

Landmarks + Pelvic features +
GBNM

0.9896 (1.2988e-16) 15.0021 11.4998 0.9798

Landmarks + Pelvic features +
Post-processing + GBNM (Our)

0.9977 (1.9706e-22) 9.4777 7.6474 0.9914
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4 Conclusion

This paper presents an adaptive prediction model to address the problem of hip joint cen-
ter (HJC) determination. A generalized regularized extreme learningmachine (GRELM)
with the globalized bounded Nelder-Mead (GBNM) strategy is designed to determine
optimal model parameters and address the adaptive prediction. Specifically, we use one
multivariable feature extraction module to obtain comprehensive predictive factors and
one attribute optimization pipeline to enhance the utilization of the useful informa-
tion. Validation on a dataset from the Wuhan Women and Children’s Hospital in China
demonstrates that the proposed method outperforms the state-of-art models.
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Abstract. Image captioning methods with attention mechanism are
leading this field, especially models with global and local attention. But
there are few conventional models to integrate the relationship informa-
tion between various regions of the image. In this paper, this kind of
relationship features are embedded into the fused attention mechanism
to explore the internal visual and semantic relations between different
object regions. Besides, to alleviate the exposure bias problem and make
the training process more efficient, we combine Generative Adversarial
Network with Reinforcement Learning and employ the greedy decoding
method to generate a dynamic baseline reward for self-critical training.
Finally, experiments on MSCOCO datasets show that the model can gen-
erate more accurate and vivid image captioning sentences and perform
better in multiple prevailing metrics than the previous advanced models.

Keywords: Image captioning · Fused attention mechanism ·
Generative Adversarial Network · Reinforcement Learning · Self-critical
training

1 Introduction

Automatic image captioning intends to generate a descriptive sentence that ver-
balizes the visual content of an image. With the rapid development of deep
learning, the current encoder-decoder model based on Convolutional Neural Net-
work (CNN) with attention mechanism and Recurrent Neural Network (RNN)
has been leading this field. However the RNN model faces a common problem
in dealing with the sequence generation problem: Exposure Bias. Which will
influence the result inevitably.

As far as we know, most traditional global attention mechanisms allocate
attention weights only to CNN’s low-level coarse features. It may cause the object
mistakenly identified. What’s more important, the crucial potential clues of the
relationship between different objects are also neglected. Concerning the caption
c© Springer Nature Switzerland AG 2021
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generation part, there are certain drawbacks associated with the application of
Generative Adversarial Network (GAN) [4] in discrete token generation. A major
reason is that the generative model’s discrete outputs make it difficult to pass
the gradient update from the discriminative model to the generative model. The
solution was then assayed for SeqGAN [25] model, which combines GAN with
policy gradient algorithm [15]. Nevertheless, when the policy is already powerful,
the model may still sample a bad sentence. The probability of this sentence will
even increase because it still has a reward value.

This paper proposes a Fused Attention Network (FAN) and extra allocate
attention weights to objects’ regional relation features to more effectively exca-
vate the image’s information. Besides, the GAN and Reinforcement Learning
(RL) [14] algorithm is combined in the proposed self-critical GAN (SC-GAN)
to solve the exposure bias problem. The main contributions of this paper are as
follow:

– The relation features containing visual similarity and semantic information
between different regions are integrated with the fused attention mechanism.
Subsequently, the relation features are weighted together with the object’s
local features. These three kinds of features complement each other to more
fully excavate and represent the feature information of the image.

– In the language part, the RL algorithm is combined with GAN. It replaces
the output of the discriminator with the reward value of the generated word
to solve the problem that discrete data can not propagate the gradient back.
Simultaneously, the greedy decoding method is applied to optimize the model
structure through self-critical training by providing a dynamic baseline reward
value.

– The experimental results on the MSCOCO dataset show that either of the
two methods can enhance the experiment performance. Furthermore, when
they are integrated together, the improvement is more salient. The ablation
and qualitative experiments show that our model is comparable even more
superior to many of the existing approaches in mostly metric.

2 Related Work

We mainly introduce the application of neural networks with attention mech-
anism. Besides, some sequence-level learning methods and transformer-based
methods are described.

2.1 Attention Mechanism

Inspired by soft-attention mechanism which can focus on diverse parts of input
when generating different words proposed by Bahdanau [2], Xu et al. [22] apply
soft-attention to image captioning; when generating different words, the model
will focus on different parts of the image to select the most useful information.
You et al. [24] initiated semantic attention. They abstracted important global
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semantic information from the image to enhance image information. Later, Wang
et al. [19] proposed a hierarchical attention network, which combines patch, tar-
get, and text semantic features to enhance image information. Anderson et al. [1]
believed the salient targets in the image should receive more attention, so he
improved the traditional method of evenly distributing attention to each region
of the image and added bottom-up attention through Faster R-CNN [12]. Yao
et al. [23] initiated the GCN-LSTM architecture, which novelly integrates both
semantic and spatial object relationships into image encoder. Huang et al. [7]
innovatively made use of the internal annotation knowledge to assist the cal-
culation of visual attention, then introduced a new strategy to inject external
knowledge extracted from knowledge graph into the encoder-decoder framework
to facilitate meaningful captioning. The original self-attention proposed by [16]
is regard as a great innovation in both Computer Vision and Natural Language
Processing. It has the advantage to catch the global long-distance relation infor-
mation and compute parallelly. Wei et al. [21] combined sentence-level atten-
tion with word-level attention for obtaining more detail and accurate captions.
Huang et al. [8] firstly considered whether or how well the attended vector and
the given attention query are related, and proposed an “Attention on Atten-
tion” (AoA) module which extends the conventional attention mechanisms to
determine the relevance between attention results and queries. Liu et al. [10]
proposed an Interactive Dual Generative Adversarial Network (IDGAN), which
mutually combined the retrieval-based and generation-based methods to learn
a better image captioning ensemble. The experiment results showed the great
effectiveness of this model. Zhou et al. [26] conducted Part-of-Speech enhanced
image-text matching model named POS-SCAN, as the effective knowledge dis-
tillation for more grounded image captioning. Wang et al. [18] introduced the
recall mechanism to integrate the prior knowledge of the similar image captions,
they first used the text retrieval model to calculate the similarity between the
image and other captions in the training set, and the words in the first five
captions are selected as recall words to guide the sentence generation.

2.2 Sequence-Level Training

With the aim to solve the exposure bias problem caused by the traditional RNN
based decoder, Ranzato et al. [11] introduced policy gradient algorithm into
RNN based sequence generation model for the first time and used Reinforce-
ment Learning combined with the Monte Carlo sampling method for training.
Although evaluating the generated result on the sentence-level can alleviate the
exposure bias problem to a certain extent, their performance on metric with
recall is still unsatisfactory, Chen et al. [3] proposed the SLL-SLE and added a
sequence-level exploration term to the conventional loss function to boost recall.
It guides the model to explore more plausible captions in the training phase.
By this means, the proposed sequence-level learning objective takes both the
precision and recall sides of generated captions into account. Rennie et al. [13]
proposed a self-critical sequence training method, which employs the sentences
generated by the current model as the baseline to reduce the variance of gradient
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estimation. By this way the model can generate better description sentences than
the auxiliary sentences. Yu et al. [25] innovatively changed the output passed
by the discriminator to the generator into a continuous probability value, which
presents the probability that generated sentence is ground truth. Referring to
the idea of self-critical sequence training (SCST) [13], we propose SC-GAN and
provide a dynamic baseline reward generated by the greedy decoding method,
which can not only reduce the high variance of the reward obtained by roll-out
sampling, but also make the model converges faster, and optimize the reward
and punishment of each generated sample more clear. Through the comparative
experiments on the MSCOCO dataset, it is found that the above two methods
can effectively improve the quality of generated sentences in the most popular
metric.

3 Method

Given an image I , image captioning aims to generate a text description Y =
{Y1, Y2, ...YT }, where T is the length of sentence. As depicted in Fig. 1, our model
consists of the FAN and the SC-GAN. We detail these parts in subsection.

Fig. 1. The overview of our proposed system Fused Attention Network (FAN) and
Self-critical GAN (SC-GAN). The FAN is composed of self-attention mechanism and
local-relation mechanism. After deriving the next word probability p(y t) from the FAN
to the SC-GAN, the Discriminator of SC-GAN completes the generated sentence and
updates the parameter of Generator by policy gradient strategy.

3.1 Fused Attention Network (FAN)

Directly processing by CNN is the main non-invasive method used for extracting
the global features in traditional attention mechanism. But in FAN, a variant of
self-attention is adopted to obtain further in-depth information of global static
features. We replace the original formula in [16] for computing the similarity
coefficients of the vector Q and the vector K with a single neural network.
As shown in Fig. 2. Firstly, the input image is encoded into a spatial feature
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vector I = ( i1, i2, ..., iL) by CNN, where L is the number of image space regions.
i1:L ∈ R

C represents the feature of regions and L=n ×n. Afterward three 1× 1
convolutional layers W q, W k, and W v are used to transform I into three
spatial features Q , K , and V . Then the attention weights a on V is calculated
by fusing Q and K . The final global feature V g

att is obtained by multiplying
the attention weights a by V . The global attention mechanism can expressed
by the following formula:

Q = W qI ,K = W kI ,V = W vI

a = f(Q ,K ) = W s(relu(Q � K )) + bs

a = softmax(aT )
Vg

att = V*a

(1)

Where W q ∈ R
C′×C , W k ∈ R

C′×C and W v ∈ R
C′′×C . We combine the

Q and K by a single neural network. The W s ∈ R
C′

in this network is the
transformation matrix and � is the dot-product operation. The a ,V have the
same space size, that is, n ×n. The obtained V g

att which represent the global
features with regions’ relation information is passed to the first Long short-term
memory (LSTM) [6] network in FAN. Then the corresponding LSTM hidden
state hg

t is generated.
Faster R-CNN [12] did the synthesis of local features and relation features

between different objects, the detected object regions are expressed as R1:K . If
these regional features are all assigned with attention weight, it will inevitably
lead to overfitting. At the meantime, it is hard to burden the computation
when calculating the relation features. Hence the Top-k ROIs are selected. The
obtained local features are represented as F l

i. The relation feature continues
to be a great impetus to optimize the attention mechanism. In our FAN, the
relation feature of region Ri is represented as F r

i . For the target region Ri, the
visual similarity between itself and other regions is calculated by dot-product,
as shown in Fig. 3, hereafter the relation coefficient of other regions is obtained
by softmax normalization:

f(Fl
i,F

l
j) =

exp(Fl
i · Fl

j)
∑k

j �=i exp(F
l
i · Fl

j)
(2)

In this way, the visual relationship between different regions are expressed.
It is generally acknowledged that in addition to the visual information visible to
the human eye, the semantic information between different regions in the image
is also very crucial to guide the generation of caption sentences. According to
human commonsense, the regions with long-distance or great visual difference
also contain important semantic relations, such as “football” and “doorframe”,
“people” and “football” in Fig. 3, each pair of them should play a key role when
generating the other one. So the region relation matrix f (F l

i, F l
j) is set as

trainable parameter matrix like W s, W a, and represent it as W i
r
j . The initial

value of it before training is set according to the visual relationship coefficient
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Fig. 2. The illustration of the global attention mechanism in FAN, after processed by
three 1 * 1 convolution layer, we get the global feature with assigned weights.

obtained by (2). During the train process, the W i
r
j can be updated by back

propagation. By this means the FAN can integrate the regional semantic relation
with visual relation, the region relation feature F r

i of the region Ri is obtained
by this formula:

Fr
i =

k∑

j �=i

f(Fl
i,F

l
j)F

l
j = W i

r
jF

l
j (3)

So far, the model has extracted the local feature and relation feature of each
region Ri. The image features integrated into the second LSTM at time step t in
this local-relation attention mechanism are represented as V l

att, the calculation
formula is as follows:

Fig. 3. The illustration of calculating the relation feature of the region Ri, the weight
f(Rl

i, R
l
j) of each other area is obtained by dot-product and softmax operation.

Vl
att =

k∑

i=1

γt
i (F

l
i + Fr

i ) (4)

γt
i is the attention weight of region Ri at time step t,

∑k
i γt

i = 1, which represents
the focusing degree of each ROI of the image with its closely related ROIs. It is
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determined by the connection with the LSTM hidden layer information ht−1 at
the previous time. The calculation method is as follows:

γt
i = softmax(WT

q tanh(Whht−1 + Wf (Fl
i + Fr

i ) + bl)) (5)

W q, W h, W f and bl are the parameters to be learned by training, which are
shared by all functions in all time steps. The decoding process is as follow:

hg
t = LSTM([xt;V

g
att], h

g
t−1)

hl
t = LSTM([xt;Vl

att], h
l
t−1)

hout
t = Concat(hg

t , h
l
t)

(6)

After concatenating the output hidden layer state ht at timestep t, the proba-
bility vector p(yt) of the next word is calculated following the traditional LSTM
operation in (7). So far, the output of the image caption generator to the dis-
criminator is completed. We denote the all the parameters of FAN including our
W i

r
j as θ. In traditional MLE training, parameters θ are learned by minimizing

the cross entropy loss (XE) in (8). While in our model, the parameters θ are
learned by self-critical adversarial training in SC-GAN and the MLE method is
used to pre-train our generator.

pθ(yt|I, y1:t−1) = softmax(W ph
out
t ) (7)

L(θ) = −
T∑

t=1

log(pθ(yt|y1:t−1)) (8)

3.2 Self-critical Generative Adversarial Network (SC-GAN)

Following traditional GAN structure combined with RL, the sequence
(y1,...,yt−1) is denoted as state s, action a is the next selected word yt, and
policy is generator Gθ(yt|y1, ..., yt−1). After the next action is chosen, the state
transition is determined. The flow of the training is shown in the Algorithm 1.
What is worth mentioning is that the parameter θ and ϕ are random values at
begin. First of all, Gθ should be pre-trained on the sequence dataset s by MLE
method. Secondly, the same amount of generated samples and ground truth
samples are transferred to Dϕ for pre-training, then Gθ and Dϕ will be trained
alternately. Because there is no intermediate reward, the goal of the generator
(policy) Gθ is to generate a sequence from the initial state s0 to maximize its
expected end reward:

J(θ) = E [RT |s0, θ] =
∑

y1∈Y

Gθ(y1|s0) ∗ QGθ

Dϕ
(s0, y1) (9)

where RT is the reward for a complete sentence given by the discriminator Dϕ,
QGθ

Dϕ
(s0, y1) is the action-value function of a sequence. The expected accumula-

tive reward starting from state s, taking an action a, and then following policy
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Gθ. The objective of the generator is to generate a sequence which would make
the discriminator consider it is real.

We follow the REINFORCE algorithm and consider the estimated probability
of being real given by the discriminator Dϕ(Y1:T ) as the reward. Formally, it is:

QGθ

Dϕ
(s0, y1)(a = yt, s = Y1:T−1) = Dϕ(Y1:T ) (10)

Since the discriminator can only judge the complete sentence, as shown in right
part of Fig. 1, we adopt Monte Carlo search with a roll-out policy Gβ to sample
the future last T-t tokens. We represent an N -time search for each sampled
token to evaluate the action-value for an intermediate state. The roll-out policy
Gβ is set the same as the generator. In this way the QGθ

Dϕ
(s0, y1) is formulated

as:

QGθ

Dϕ
(st−1, yt)

⎧
⎪⎨

⎪⎩

1
N

∑N
n=1 Dϕ(Y n

1:T ),Yn
1:T ∈ MCGβ (Y1:t;N) for t<T

Dϕ(Y1:t) for t=T
(11)

We connect the FAN and the SC-GAN with the policy gradient algorithm. The
policy gradient algorithm is applied to update the parameters in FAN including
W q, W i

r
j . Different from traditional cross entropy based method, RL method

takes the expectation of the reward from the discriminator as the objective
function. Refer to (9), the goal of generator training is to maximize the objective
function. The reward given by Dϕ is a non-negative probability value. Even if
a worse result is generated, the discriminator will not punish the bad result,
which will only reduce the probability of samples with less reward. However, due
to uncontrollable factors such as incomplete sampling, the unclear reward and
punishment system may make the training of the generator unfair. Therefore,
the traditional greedy decoding algorithm is introduced to select the word with
the highest probability. Then Dϕ will output this auxiliary sentence probability
of being ground truth Dϕ(wg

1:T ) and present it as the baseline reward:

wg
t = arg max p(wt|hout

t )
rbaseline = Dϕ(wg

1:T )
(12)

The QGθ

Dϕ
in (11) is supposed to be updated: each Dϕ score of sentence sampled

by N -time Monte Carlo search Dϕ(Y n
1:T ) should subtract Dϕ(wg

1:T ). Finally, the
generator’s parameters θ can be derived as (13), referring to likelihood ratios,
we further build an unbiased estimation:

∇J(θ) ≈
T∑

t=1

∇θGθ(yt|Y1:t−1) ∗ 1
N

N∑

n=1

(Dϕ(Y n
1:T ) − Dϕ(wg

1:T ))

=
T∑

t=1

Gθ ∗ ∇θlogGθ ∗ 1
N

N∑

n=1

(Dϕ(Y n
1:T ) − Dϕ(wg

1:T ))

=
T∑

t=1

Eyt∼Gθ
[∇θlogGθ ∗ 1

N

N∑

n=1

(Dϕ(Y n
1:T ) − Dϕ(wg

1:T ))]

(13)
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As the expectation E can be approximated by sampling, then we can update the
generator’s parameters as:

θ ← θ + at∇θJ(θ) (14)

Here at denotes the corresponding learning rate at time step t. Once Gθ generates
a more realistic sample, the model will retrain the discriminator Dϕ according
to the following formula:

∇θJ(θ) =EY ∼p(data)[logDϕY ] − EY ∼Gθ
[log(1 − Dϕ(Y ))] (15)

Dϕ and Gθ are trained alternatively after pre-train stage. When Gθ has been
trained for g-steps, the Dϕ needs to be re-trained for d -steps to keep in good
pace with Gθ, which means Gθ should provide d different negative samples. The
number of the positive samples from dataset S is set to the same as the negative
samples from generator in each d -step Dϕ re-training. With each pair of fused
samples, we train Dϕ for n epochs.

Algorithm 1 . Image Captioning Based on Self-critical Adversarial
Training.
Require: generator policy Gθ; roll-out policy Gβ ; discriminator Dϕ; a sequence

dataset S.
1: Initialize the Gθ and Dϕ with random weights θ, ϕ
2: Pre-train Gθ on S on MLE
3: repeat
4: for 1-steps do:
5: Generate a sequence Y1:T

6: for t in 1:T do
7: Compute Q(a = yt, s = Y1:t−1) by (11)
8: end for
9: Compute baseline reward rbaseline based on greedy

decoding
10: Update generator parameters including W i

r
j by (13)

11: end for
12: for 5-steps do:
13: Use current Gθ to generate negative samples and

combine with ground truth one
14: Train Dϕ for 3 epochs by (15) on each group of

sentences.
15: end for
16: β ← θ
17: until SC-GAN converges
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4 Experimental Results and Analysis

4.1 Implementation Details

We use the popular MSCOCO dataset to validate the performance of the pro-
posed method. In the phase of extracting global features, we adapt ResNet-101
without the last two layers, and fine-tune their parameters on the MSCOCO.
The extracted image feature I has a fixed size of 2048 * 14 * 14. In more details,
the number of neurons in LSTM sets to 512, the number of neurons in the three
1 * 1 convolutional layers W q, W k, W v are set to 64, 64, 512 separately. The
attention weights α has the same space size with V , which is 14 * 14. We also
retrieve local object features using a Faster R-CNN pre-trained on the MSCOCO
dataset. The top-15 detected object features are selected. We conduct our exper-
iment on the Pytorch platform.

Following the optimal parameters setting in SeqGAN, the g,d and n in SC-
GAN are set as 1, 5 and 3 separately and the maximum length of input sentence is
set to 20. We firstly pre-train the Gθ for 10 epochs by MLE and subsequently pre-
train the Dϕ for 2500 iterations. Then the Gθ and Dϕ can follow the adversarial
training scheme. The batch size is set to 32 and learning rating is 0.001. All
experiments are conducted on a server embedded with NVIDIA RTX2080Ti
GPU and Ubuntu16.04 system.

4.2 Result and Analysis

Ablation Experiments. In order to independently verify the effectiveness of
FAN, we first integrate the traditional MLE training method to conduct exper-
iments. Compared with other advanced models that also used the cross-entropy
method for training, the experimental results show in Table 1. What stands out
in the table is that the FAN with the cross-entropy loss training method brings
improvement in the major metric, which proves that it can make more reason-
able use of the image feature information and excavate the potential internal
relationship of the image regions.

To verify the effectiveness of SC-GAN, we further combine it with the FAN
and compare the performance with the model that only contains FAN. The
improvement is evident by comparing the results of Table 1 and Table 2. In
addition, we also conduct comparative experiments with some advanced RL-
based methods to verify the capacity of the whole model. As can be seen from
the Table 2, when the SC-GAN is combined with FAN, there is a more significant
increment in most metrics, our model can also bring comparable even better
results compared with start-of-the-art methods in recent years, including several
prevailing transformer-based models. The effectiveness of our proposed modules
is more clearly reflected in Table 3.

Qualitative Analysis. In order to show our model’s effect more intuitively,
we visualize the attention weights in Fig. 4 to demonstrate that our model can
accurately simulate human perception. We first expand our attention weight
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Table 1. Performance of our model and other advanced models based on cross-entropy,
where B@N, M, R, C and S are short for BLEU@N, METEOR, ROUGE-L, CIDEr-D
and SPICE scores.

Methods B@1 B@4 M R C S

SCST [13] – 30.0 25.9 53.4 99.4 –

HAN [19] 77.2 36.2 27.5 56.6 114.8 20.6

DAIC [21] 73.7 34.2 26.4 54.8 106.2 –

Up-Down [1] 77.2 36.2 27.0 56.4 113.5 20.3

RFNet [9] 76.4 35.8 27.4 56.8 112.5 20.5

GCN-LSTM [23] 77.3 36.8 27.9 57.0 116.3 20.9

AoANet [8] 77.4 37.2 28.4 57.5 119.8 21.3

ARL [17] 75.9 35.8 27.8 56.4 111.3 –

CL-topdown [20] – 37.08 27.85 57.22 117.10 –

Ours (FAN) 78.3 37.9 27.8 58.5 119.6 21.5

Table 2. Performance comparison with other advanced models based on Reinforcement
Learning. † means the original model is ensembled with self-critical training.

Methods B@1 B@4 M R C S

SCST:Att2all [13] – 34.2 26.7 55.7 114.0 –

G-GAN [5] – 29.7 22.4 47.5 79.5 –

DAIC† [21] 77.6 35.4 26.7 56.5 116.8 –

HAN† [19] 80.9 37.6 27.8 58.1 121.7 21.5

UP-DOWN† [1] 79.8 36.3 27.7 56.9 120.1 21.4

GCN-LSTM† [23] 80.5 38.2 28.5 58.3 127.6 22.0

IIEK† [7] 79.3 37.3 27.7 56.9 120.4 –

IDGAN [10] 81.3 38.5 28.5 58.8 123.5 –

AoANet† [8] 81.6 40.2 29.3 59.4 132.0 22.8

SLL-SLE [3] – – 27.0 – 119.6 19.9

POS-SCAN [26] 80.2 38.0 28.5 – 126.1 22.2

Ours (FAN+SC-GAN) 82.1 40.9 29.6 59.1 129.6 22.9

Table 3. Performance of our key modules combined with other baseline module.

Methods B@1 B@4 M R C S

FAN+cross-entropy training 78.3 37.9 27.8 58.5 119.6 21.5

HAN[19]+SC-GAN 80.2 38.6 28.5 58.7 125.9 22.1

FAN+SC-GAN 82.1 40.9 29.6 59.1 129.6 22.9
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Fig. 4. Examples illustrate word prediction when attending on different image regions.

24 times and adjust it to the same size as the input image by the Gaussian
filter. Closer inspection of Fig. 4 shows that the model can not only focus on the
corresponding target image area when generating the main object, but also grasp
the key areas in the graph when generating the words describing the relationship
between different objects. For example, in Fig. 4(a), when generating the word
“riding”, the model obviously focuses on the image part connected to the person
and the motorcycle. In Fig. 4(c), when generating the word “baseball”, the image
not only pays attention to the word “baseball” itself, but also pays adequate
attention to the baseball cap on the head. These demonstrates the model can
utilize the semantic information effectively.

The effect of our model at the sentence level is presented in Fig. 5, we compare
the ground-truth sentences, descriptions generated by the MLE training-based
model, and the generated sentences. The red texts are the sentences generated by
the proposed model, which are more accurate and natural than the MLE-based
model, which are shown in blue. Significantly, the proposed model shows superior
performance in detecting the fine-grained properties of the image. For example,
in Fig. 5(c), we successfully detect the “barrel”, and in (d) the keyword “ball” is
obtained. What’s more, we successfully excavate the critical relationship between
image areas. In Fig. 5(a), the successful detection of the verb “riding” shows the
importance of relation features. Besides, it is believed that the word “barrel”
plays a crucial role in generating the word “wine”, which indicated our local-
relation attention mechanism could effectively take advantage of the potential
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information between regions again. Our model has impressive performance in
generating the words that describe the regional relationship to obtain a more
vivid and appropriate image caption.

Fig. 5. Visualization of the generated descriptions. All samples are randomly selected.

5 Conclusion

In this paper, we propose a new fused attention mechanism, integrating global
attention achieved by self-attention and local-relation attention. For each region,
the relation features are assigned with attention weights together with the
local features to better excavate the potentially important information of the
image. Besides, we also improve the traditional GAN with a self-critical training
method. In this way, the reward and punishment system becomes more explicit.
The model training process can be more stable and effective. Experiments on
the MSCOCO dataset demonstrate both of the two innovations can boost the
quality of the generated sentences.
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Abstract. Software usually provides different GUI layouts for differ-
ent devices for a better user experience. This increases the workload of
testing, so crowdsourced testing is needed to reduce costs. The crowd-
sourced testing will perform similar test steps for each GUI layout and
record them. After the software is updated, each GUI layout can be auto-
matically tested according to these test records. A test record contains
several steps, and each step contains an operation and an element. The
automated test is to find the element according to the recorded element
attributes and then perform the recorded operation. The idea of man-
ually testing one GUI layout and then automatically testing other GUI
layouts does not work. Because an element may have different attributes
in different GUI layouts, the attributes recorded in one GUI layout can-
not guarantee that the elements will be found correctly in another GUI
layout. However, humans can easily find the same element in different
GUI layouts. This is because the appearance of the same element in dif-
ferent GUI layouts is similar. Humans can easily perceive this with their
eyes, and so can AI. To achieve this, we propose an approach of visually
re-identifying elements. Specifically, our method consists of two convolu-
tional neural networks, Element Re-Identification Network (ERINet) and
UNet. ERINet can identify whether two elements are the same or differ-
ent. UNet provides ERINet with attention masks of elements and back-
grounds which can help improve the accuracy. Furthermore, we intro-
duce a new dataset for element re-identification, which contains 31,098
element images and 170 background images. Our method achieves excel-
lent performance on this dataset. Our code and dataset are made publicly
available at https://github.com/laridzhang/ERINet.

Keywords: Crowdtesting · Element re-identification · Convolutional
neural network · Attention mechanism

1 Introduction

A lot of software requires long-term updates to fix bugs and add new features.
In order to attract more users, the software also needs to run on different devices
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(different hardware or operation systems). Every version of the software needs to
be fully tested on all kinds of devices. This will lead to a substantial increase in
testing workload, especially the testing of software with GUI. In order to reduce
costs, more and more test platforms use crowdsourcing to complete the test,
and we call them the crowdsourced test (CST) platforms. In this paper, we only
discuss the testing of software that has a GUI.

We investigated several CST platforms such as TestProject [16], Testim [15],
Applitools [2], Testsigma [17], TestBirds [14], and AppQuality [3]. At first, the
CST platforms would allow multiple testers to complete all the tests. Subse-
quently, the CST platforms found that only the first round of testing was required
to complete by testers. If they record the first round of testing, most of the later
versions of the software can be tested automatically, although some test steps
will fail. These failed test steps require testers to test again. Recently, the CST
platforms have discovered that artificial intelligence (AI) can fix most of these
failed test steps in automated testing.

Automated testing is performed based on test records. The first test record
was manually created by the crowdsourced testers. The test record contains the
information of the elements (such as user avatars, buttons, logos, images, and
links) and operations (such as click and drag) of each test step. Most failed
test steps are caused by missing elements. For example, elements in web pages
are located by identifiers such as XPath, CSS selector, name, and id. Once the
GUI layout changes, the identifier of the element also changes. Then the element
cannot be found according to the previously recorded identifier.

Some crowdsourced test platforms [15,16] increase the probability of finding
the element by recording several or hundreds of identifiers and then rely on a
recommendation algorithm to sort these identifiers according to the likelihood of
finding the element to improve efficiency. This did have some effect. But think
about this question: why humans can find the same elements in different GUI
layouts completely correctly. This is because the same elements in different GUI
layouts look the same or similar, which humans know at a glance. And this is
exactly the task that AI is good at, specifically, the computer vision methods
based on deep learning.

With the element images recorded in the previous test, the process for
humans to find the element is to match the corresponding element in the GUI
of this test according to the image, which is a task of image matching. Using a
screenshot of the area where the element is located is the best way to record the
element, because screenshots can be used for all types of elements in the GUI.
But using screenshots to match elements also makes this different from other
image matching tasks.

When an element changes its position due to updates or different devices,
the background on which the element is located may change. In other words, the
background area of the element screenshot may change in different tests while
the element area stays the same. Common image matching algorithms can be
misled by changing backgrounds. The algorithm for finding elements needs to be
able to identify the same elements in different backgrounds, that is, element re-
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identification. Element re-identification is a different task from image matching.
It needs to distinguish the subjects and backgrounds in the two images. Then it
matches the subjects in the two images, and ignore the similarities or differences
in the backgrounds.

We propose a novel method for element re-identification based on deep learn-
ing in this paper. To achieve this, we collect a new dataset for element re-
identification in GUI. Experiments prove that our method has achieved high
accuracy. We apply an attention mechanism to our method for distinguishing
elements and background, and it achieves better accuracy. We also analyzed the
results of the experiment in detail.

The contributions of this paper are summarized as follows.

(1) We propose a novel convolutional neural network (CNN) model for the re-
identification of elements in GUI.

(2) We propose a method to realize the attention mechanism for element re-
identification. It can focus the model’s attention on the element itself instead
of the background when it needs to be identified.

(3) We collected a new dataset for the re-identification of elements in the GUI.

This paper is organized as follows: Sect. 2 introduces related work; Sect. 3
presents our elements re-identification method, which mainly includes a dataset
and a CNN model with an attention mechanism for re-identifying elements in
previous tests; Sect. 4 introduces the experiments and results of our method;
Sect. 5 concludes this paper.

2 Related Work

Each test step in the record is an operation (such as clicking, dragging, typing
characters) for an element (such as button, link, icon, avatar, textbox). Elements
are identified by recorded attributes (such as ID, name, XPath, CSS selector).
All these CST platforms [15,16] use attributes to find elements and none of them
uses visual methods.

2.1 Element Attribute Recommendation

To increase the possibility of finding elements, these CST platforms [15,16]
record multiple attributes of each element. The number of recorded attributes
varies from a few to hundreds. In the next test, they look for available ones
from these records. This can improve the success rate of automated tests. The
greater the number of attributes recorded, the higher the success rate. But the
time consuming to find available records will increase. To solve this problem,
some CST platforms have introduced AI-based recommendation algorithms or
ranking algorithms. They use AI to recommend the attributes that are most
likely to be available.

None of these crowdsourced test platforms disclose the specific AI algorithm
to achieve this function. But they mentioned that they would rank each attribute
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of the element or assign weights to these attributes. Similar algorithms can refer
to RankNet [5], LambdaRank [6], LambdaMART [7].

These CST platforms provide a simple solution to avoid the invalidation
of a single attribute by recording multiple attributes. But this does not pre-
vent the invalidation of all recorded attributes. A better solution of element
re-identification is through vision. If the layout of a web page changes, humans
can still easily find the previous element. Humans use vision to judge, and com-
puters can do it too. Since we can use screenshots to record visual information of
all types of elements, using screenshots to find the elements is the most conducive
to all situations.

One good idea is to use an image comparison algorithm to determine whether
the current screenshot of the element is consistent with the recorded screenshot.
It should be noted that the current image comparison algorithms cannot dis-
tinguish between the subject (element) and the background in the image. If the
background of the element is changed due to various reasons, these algorithms
will give wrong results.

2.2 Real World Image Comparison

There are many approaches to judge the similarity of two images. Most of these
methods focus on judging real-world images, rather than software GUI screen-
shots. In addition, these methods compare the entire image, not the subject in
the image.

Traditional methods have used SIFT [11] or similar hand-craft meth-
ods [18,19] to extract features. To compare the distances of features more conve-
niently, these methods usually use dimensionality reduction methods [4] before
calculating the distances.

Convolutional neural networks (CNNs) have achieved many exciting results
in computer vision tasks. MC-CNN [21,22] inspired by this can determine
whether the two image patches match, so as to achieve the stereo matching. How-
ever, MC-CNN can only match very similar image patches. Elements that change
positions in the GUI may have completely different backgrounds, so MC-CNN
will not be competent. Similar to this, there are methods [1,20] for calculating
the similarity of image pairs.

The current image comparison methods, whether they are traditional meth-
ods or CNN methods, cannot be used to solve the problem of element re-
identification. Different GUI layouts or dynamic GUI and other reasons will
cause the background in the element screenshot to change. Therefore, it is inap-
propriate to use these methods to determine whether the elements in the two
screenshots match. The difficulty of element re-identification is how to judge
whether the elements in the images match, while avoiding the influence of the
backgrounds in the images. A good element re-identification method requires the
ability to distinguish between the elements and the backgrounds in the images.
This is precisely what is difficult to achieve with current image comparison or
matching methods.
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3 Element Re-identification

We propose a multi-task method based on deep learning to solve this problem.
Our idea is to find the element based on the visual information of the element in
the screenshot. This method is the same as the way humans find the elements,
so it is very reliable.

In this section, we first introduce a dataset that can be used for ele-
ment re-identification. Then we introduce an Element Re-Identification Network
(ERINet) for identifying the same elements in different backgrounds. We also
introduce an attention mechanism for reducing the adverse effect of background
on element re-identification.

3.1 Dataset

We collected 31,098 images of various types of GUI elements and 170 high-
resolution background images from the Internet. The resolution of element
images ranges from 32 × 32 to 512 × 512, which covers common element sizes.
These element images have various shapes and colors. Some samples of the ele-
ment images are shown in Fig. 1(a).

Fig. 1. Some samples of element images and some samples cropped from the back-
ground images in the dataset.

The resolution of background images ranges from 225 × 225 to 5369 × 7994.
The background images contain various colors and textures. These images will be
randomly cropped into small patches as the background of the element images.
Some samples cropped from the background images are shown in Fig. 1(b).

The same element image with different background patches stands for GUI
changes. Different element images with any background patches stand for differ-
ent elements in GUI.

Fig. 2. Some samples of the same or different elements with backgrounds.
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Some samples of the same or different elements with the background are
shown in Fig. 2. Figure 2(a) shows a pair of the same elements with different
backgrounds and its label is the “Same” . Similarly, the same elements with the
same background will also be labeled as the “Same”. Figure 2(b) shows a pair
of different elements with the same background and its label is the “Different”
. Similarly, different elements with different backgrounds will be labeled as the
“Different”. Figure 2(c) shows another pair of different elements. It should be
noted that this pair of different elements comes from the same element image,
but part of the element on the right is removed. All of these samples and labels
can be generated from the element images and background images of the dataset.

3.2 The Element Re-identification Network

We propose the Element Re-Identification Network (ERINet) for identifying
the same elements in different backgrounds. The structure of this network is
inspired by the success of the VGG [13] and the feature extraction method of
the ASNet [8]. The input of our ERINet will be two images of elements with
backgrounds. To reduce the amount of network calculation, we use two shared
weights backbone networks for feature extraction. Specifically, we removed the
deepest pooling layer, all fully-connected layers, and the softmax layer of the
VGG-16 [13] and then put rest convolutional layers and max pool layers as the
backbone network. This makes our network a fully convolutional network and is
good for adding attention. To obtain the desired label output, we used a com-
bination of convolutional layers, a transposed convolutional layer, an average
pooling layer, and a softmax layer to map the features to the label. The ERINet
architecture is presented in Fig. 3.

Fig. 3. The configurations of the Element Re-Identification Network (ERINet).

There are four new convolutional layers on top of the backbone. The first one
has convolutional kernels with a size of 1× 1 and has 256 output channels. The
second one is a deconvolutional layer that has 2 × 2 kernels with a stride of 2
pixels. The third one has 3× 3 kernels and 128 output channels. The fourth one
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has 1 × 1 kernels and 2 output maps. Then these two feature maps are mapped
to the labels through the global average pooling layer and the softmax layer.

3.3 The Attention Mechanism

As we can see, the background area in the element images may adversely affect
the estimation result of ERINet. We will elaborate on this adverse effect in the
section of the experiment. We expect ERINet to focus on extracting the features
of the element areas in the image, rather than the background. Therefore, we
propose an attention mechanism that can be used in ERINet.

Benefiting from the alpha channel in the original element images, we can
accurately distinguish the element area and background area in the images.
Some element images and corresponding ground truth masks are shown in Fig. 4.
Figure 4(a) shows the element images. Figure 4(b) shows the ground truth masks.
The black areas in the masks represent the background areas, and their values
are 0. The white areas in the masks represent the element areas, and their values
are 1.

Fig. 4. Some samples of element images and corresponding ground truth masks.

Using these element images and masks, we propose an attention mechanism
based on distinguishing background and element areas. Inspired by the success
of UNet [12] in medical image segmentation, we use its network structure to
provide ERINet with an attention mechanism. We apply the attention masks to
the feature maps of the ERINet to remove the adverse effects of the background.
The structure of the ERINet with attention (ERINet-A) is shown in Fig. 5.

The attention masks are generated using UNet. In order to make the esti-
mated masks have some redundancy, we dilate the masks by 10 pixels. Then
they are used to set the feature values in the background areas of the feature
maps generated by the ERINet to 0. After this, all the feature values that affect
the estimated labels come from the element area. ERINet’s attention will be
focused on the element area and ignore the influence of the background area.
The feature maps applied with attention masks will be processed by the global
average pooling layer and the softmax layer to obtain the estimated labels.

4 Experiments

In this section, we will first introduce the data settings for training and testing.
Then we will introduce the details of the experiment of the ERINet and the
UNet for attention mechanism. Finally, we will introduce the training details
and test results of the ERINet-A.
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Fig. 5. The configurations of the ERINet with attention (ERINet-A).

4.1 Basic Data Settings

There is a total of 31,098 element images in the dataset. We use about 10% of
the randomly selected element images as the test set and the rest as the training
set. There are 27988 element images in the training set and 3110 element images
in the test set. All element images are resized to 128 pixels on the long side with
a ratio fixed. All background images are resized to no more than 1024 pixels on
the long side and no less than 256 pixels on the short side with a ratio fixed. If
the long side and short side of the original background image meet this range, it
will not be resized. When scaling the background image, give priority to ensuring
that the short side meets the requirements.

Before using an element image for training or testing, we need to attach
a background image to it. We will randomly select a background image and
randomly crop a small area as the background. The length and width of this
small area are 20 pixels larger than that of the element image. The element image
is placed in the center of the cropped background image. Since the background
is random every time the element image is used, we used the same original
background image in training and testing.

4.2 Training and Testing Settings

Every element image for training or testing is generated using an element image
and a patch cropped from a background image. There are four types of generated
data. The first category is same element images and different backgrounds. The
corresponding ground truth label is “same”. This category accounts for about
40% of the total data. The second category is same element image and same
background. But one of the element images will be partially removed at a random
location. As a result, one of the elements is original, while the other is partially
missing. Therefore, from the perspective of human vision, these two element
images are different. In the actual software GUI, two elements like this will
have different meanings. So the corresponding ground truth label is “different”.
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This category accounts for about 20% of the total data. The third category is
different element images and same background. The corresponding ground truth
label is “different”. This category accounts for about 20% of the total data.
The fourth category is different element images and different backgrounds. The
corresponding ground truth label is “different”. This category accounts for about
20% of the total data. The ground truth labels used to calculate the loss will be
converted into a two-digit representation. We use (1, 0) to mean “same”, and
(0, 1) to mean “different”.

The data used for training and testing the UNet is the element images and
the corresponding ground truth masks. The ground truth masks are generated
based on the alpha channel in the element images. In the mask, the value of
pixels belonging to the background is 0, and the value of pixels belonging to the
element is 1.

4.3 Evaluation and Analysis

Below we will introduce the test results of the ERINet, the UNet for attention
mechanism, and the ERINet-A.

ERINet. We loop the test 20 times on the entire test set, and the average correct
rate of the ERINet was 99.38%. Some samples of test results are shown in Fig. 6.
The “GT” and “ET” in the upper left corner of each test result image represent
the ground truth label and estimated label, respectively. Each test result image is
composed of four small images. The upper row is two element images input to the
network. The bottom row is two feature maps output by the last convolutional
layer of the ERINet. The original feature maps are grayscale images (single-
channel images containing response values). For better visualization, we map
them to heat maps. The red in the heat maps represents the high response
value, and the blue represents the low response value. It can be seen that the
areas with high response values in the two feature maps represent similar and
dissimilar areas respectively. In detail, the similar parts in the two input images
have high response values at corresponding positions in the left feature map.
The dissimilar parts have high response values in the corresponding positions
in the right feature map. Because there is no attention mechanism, there are
some high response values in the area corresponding to the background in the
feature maps of the ERINet. The response values in the feature maps will affect
the final estimated labels. In other words, these abnormal response values in
the background area may lead to incorrectly estimated labels. Obviously, if the
attention mechanism is added, the influence of the background is less, and the
estimation result of ERINet can be more stable and accurate. Therefore, below
we introduce the experiment of adding attention mechanism through the UNet.

UNet for Attention Mechanism. We loop the test 20 times on the entire
test set, and the average Intersection-over-Union (IoU) of the UNet was 97.30%.
Some samples of test results are shown in Fig. 7. Each test result is composed of
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Fig. 6. Some samples of ERINet test results. (Color figure online)

three images. The images in the first row are element images that input to the
network. The second row is the ground truth masks. The third row is the binary
estimated masks that output by the network. The accuracy of the estimated
masks is very high. Whether it is a regular-shaped element image, or a complex-
shaped element image, or even an element image drawn by lines, the estimated
mask can well segment elements from the background. On this basis, we can
eliminate the influence of the background areas in the feature maps of ERINet
according to the estimated masks. Below we will introduce the experiment results
of the ERINet-A.

Fig. 7. Some samples of attention mask test results.

ERINet-A. We loop the test 20 times on the entire test set, and the average
correct rate of the ERINet-A was 99.84%. Compared with the ERINet, there is
a significant improvement. On average, in a test of 3110 samples, the estimated
results of more than 3101 samples are correct. Some samples of test results are
shown in Fig. 8. The layout of each sub-image is the same as the above ERINet
test results. This time, due to the support of the attention mechanism, no matter
what background the input image is, the background part of the feature maps
no longer have an obvious response value. In Fig. 8(a), there are samples of the
same element image with different backgrounds. The left feature maps of these
samples only have high response values in the element area, because the two
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elements are the same. The feature map on the right shows the different parts of
the input image, but there is almost no response value, even if their backgrounds
are different. This is because the network’s attention is completely focused on
the element areas while ignoring the differences in the backgrounds. In Fig. 8(b)
and (c), there are samples of different elements with different backgrounds. The
background areas of both feature maps do not have any response value. The
response values are concentrated in the element areas. Therefore, the attention
mechanism in these samples is also successful. In Fig. 8(d), there are samples of
different elements with the same background. The feature map on the left shows
the similarity of the two input images. The reason why there is no obvious
response value is that the attention mechanism makes the network ignore the
same background. Since the elements are not similar, there is no obvious response
value in the left feature map. In addition, the response values in the right feature
map are concentrated in the element area. There is no response value in the
background area. This shows that the attention mechanism also performs well
in this type of sample.

Fig. 8. Some samples of ERINet-A test results.

Based on the analysis of the results of the above three models, the follow-
ing summary can be drawn. Firstly, the ERINet can achieve good element re-
identification accuracy. However, it can be observed from its feature maps that
the backgrounds have adverse effects on the estimation result. Secondly, the
UNet used for the attention mechanism can accurately distinguish between the
elements and the backgrounds in the images, even if the appearances of the ele-
ments and the backgrounds are complex and changeable. Finally, the ERINet-A
can achieve higher accuracy of element re-identification. The main reason for this
is that the attention mechanism helps the network reduce the adverse effects of
the backgrounds.

4.4 Ablation Study

To quantify the effect of the attention mask, we counted the distribution of
feature values in the ground truth background area of the feature maps before
and after applying the mask. When there are nonzero values in the ground truth
background area, they may have negative effects on the accuracy. The ideal
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situation is that the feature values of the background are all zeros, and the values
of the foreground are relatively high. This means that the network concentrates
its attention entirely on the elements, rather than the background. Therefore,
we can understand the effectiveness of the network’s attention mechanism by
observing the distribution of feature values in the ground truth background
area. To avoid the effect of random backgrounds, we also tested 20 cycles on the
entire test set and calculate the averages. We first normalize the maximum value
of the feature map to 1. Then the distribution of the normalized feature values
in the ground truth background area of the feature map is counted and shown
in Table 1. The ratio values in the table have been rounded. After applying the
attention masks, the number of zero feature values has significantly increased
from 64.42% to 90.40%, which means that the total number of non-zero feature
values has been significantly reduced. In the ten equally spaced intervals from
0 to 1, the proportion of the number of non-zero feature values decreased from
27.79% to a maximum of 82.73%. The fewer the non-zero feature value of the
background area, the more the network ignores the background area because of
its attention.

Table 1. The distribution of feature values in the ground truth background area.

Value intervals Ratio in background Reduction ratio

w/o attention w/attention

0 64.42% 90.40% –

(0, 0.1] 20.57% 3.55% 82.73%

(0.1, 0.2] 6.20% 1.78% 71.22%

(0.2, 0.3] 3.15% 1.26% 60.07%

(0.3, 0.4] 1.90% 0.87% 54.15%

(0.4, 0.5] 1.27% 0.64% 49.64%

(0.5, 0.6] 0.90% 0.50% 45.03%

(0.6, 0.7] 0.65% 0.39% 40.39%

(0.7, 0.8] 0.46% 0.29% 36.53%

(0.8, 0.9] 0.29% 0.19% 34.00%

(0.9, 1.0] 0.19% 0.13% 27.79%

As mentioned in the Sect. 4.2, we divided the element images into four cat-
egories. The proportions of these four categories in training data and test data
are similar. In order to clarify the correct rate of ERINet-A on each category
of data, we conducted tests on each category of test data separately. Since the
data is randomly generated, we also conducted multiple rounds of testing and
averaged the results. The results are shown in Table 2. The correct rate shown in
the table has been rounded. These results show that ERINet-A has the highest
correct rate when the original element images are different. When the original
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element images are the same, the correct rate is slightly lower. The partially
missing element image is very similar to the original element image, only the
missing part is different from the original. This is very challenging and will
slightly reduce the correct rate of ERINet-A.

Table 2. The distribution of feature values in the ground truth background area.

Category Correct rate Data proportion

1 99.78% 40%

2 99.67% 20%

3 99.99% 20%

4 99.97% 20%

Ave. 99.84% –

5 Conclusion

In this article, we propose to use visual methods to solve the problem of re-
identification of elements in software testing. To this end, we propose an Element
Re-Identification Network (ERINet) and its attention mechanism. In order to
train and validate our proposed method, we also introduce a new dataset for
element re-identification. Extensive experiments on this dataset have proved that
the method has excellent performance.
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Abstract. Aiming at the current YOLOv4-tiny network’s insufficient
feature fusion capability and low utilization of feature extraction in flame
and smoke detection tasks, a flame and smoke detection algorithm based
on improved YOLOv4-tiny is proposed. Firstly, a new effective feature
layer is added to obtain more detailed feature information and improve
the accuracy of small target detection of flame and smoke. Then, the
DWCSP feature fusion structure is proposed to improve the network’s
ability to integrate and utilize multi-scale feature information on the
basis of minimizing the increment of parameters. Finally, the CBAM
attention mechanism is embedded to improve the network’s channel and
spatial feature expression ability, and enhance the ability to perceive
the target. The algorithm is embedded in the UAV equipment. In the
detection task of self built flame and smoke data set, the mAP@0.5
reaches 71.11%, which is 6.48% higher than the original algorithm, and
meets the needs of FPS and lightweight.

Keywords: Flame and smoke detection · YOLOv4-tiny · Feature
fusion · CBAM · UAV

1 Introduction

Among various disasters, fire is one of the most frequent and common major dis-
asters threatening public safety and social development, causing immeasurable
losses to people’s lives and property [1]. If the flame and smoke are identified
and dealt with in time before the fire spreads, losses can be greatly reduced and
disasters can be avoided.
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At present, fire monitoring system can be divided into two categories, that is,
traditional fire monitoring system and automatic fire monitoring system. Most
of the traditional fire monitoring systems use sensors such as flame and smoke
sensors to monitor, which has relatively low detection accuracy, sensitivity, and
response speed, and it is only suitable for indoor scenes [2]. For outdoor large-
scale scenes, monitoring personnel mainly use lookout, patrol and other ways,
which consume a lot of manpower and material resources [3]. It has become
urgent to explore new automatic fire monitoring methods. In this regard, several
fire monitoring technologies and systems have been proposed, such as Wire-
less Sensor Networks (WSNs) [4], remote camera monitoring systems [5] and
the Unmanned Aerial Vehicles (UAVs) monitoring systems [6]. With the rapid
development of image processing technology, the method of using UAV equipped
with intelligent algorithm for fire monitoring has been widely concerned by
researchers. It has the advantages of wide detection range, fast speed, high degree
of intelligence, small interference to the environment and so on. At the same time,
it can provide rich on-site information for firefighters and improve the efficiency
of fire fighting and rescue.

Considering the real-time requirements of embedded devices, and the fact
that YOLOv4-tiny [7] is one of the latest and most excellent lightweight target
detection algorithms, this paper is based on YOLOv4-tiny algorithm and carries
out the following work for flame and smoke detection: 1) In order to solve the
problem of poor flame detection of small targets in the early stage of fire, a
new effective feature layer is introduced; 2) In order to improve the feature
fusion capability of the network, the DWCSP module is proposed; 3) In order
to improve the channel and spatial feature expression ability of the network and
enhance the target perception ability, the convolutional block attention module
(CBAM) are embedded in the backbone network; 4) The improved algorithm
is transplanted to the UAV embedded device, and the real machine experiment
is carried out. The results show that in the flame and smoke detection tasks of
UAV, the improved algorithm’s mAP@0.5 reaches 71.11%, which is an increase
of 6.48% compared to the original algorithm, and it meets the real-time and
lightweight requirements of detection.

2 Related Work

In recent years, there are two kinds of fire detection methods based on image
processing: traditional method and deep learning method.

The traditional method is based on the hand-crafted of flame, according to
the color, shape, texture and other visual features of the flame, combined with
the classification algorithm in pattern recognition, to determine whether there is
flame in the image. Wang et al. [8] proposed a flame detection method based on
KNN background subtraction combining the flame color feature and the local
feature. Ashraf et al. [9] proposed a smoke and fire detection method based
on LBP and SVM. These hand-crafted methods have fast detection speed, but
poor stability and generalization ability. It is easy to cause false detection and
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missing detection when detecting the objects with similar color to the flame and
the flame with color beyond the set threshold.

Deep learning method uses neural network to achieve the task of image
feature extraction and pattern classification, which can easily process high-
dimensional data and automatically extract features without adding other man-
ual features. Compared with the traditional flame detection methods, the tech-
nology based on deep convolution neural network has higher accuracy, recall and
stronger generalization ability. Zhikai Yang et al. [10] proposed a Indoor video
detection method, which used CNN combined with SRU model to extract scene
content, extracted dynamic characteristics of fire from continuous frames, and
improved the accuracy of fire detection. However, in practice, there are many
missed detection, low robustness, and large amount of computation lead to the
difficulty of application of embedded equipment. Hongyi pan et al. [11] pro-
posed an additive neural network for forest fire detection, which can save the
detection time of flame and smoke by using the highly efficient additive deep
neural network. But the actual detection accuracy is not high enough. ChaoXia
et al. [12] proposed an improved Faster R-CNN flame detection method. This
method uses the color features of the flame to define the limit of the anchor, and
uses a parallel network to generate image global information to guide the detec-
tion. However, the reasoning speed of two-stage algorithm is slower than that of
one-stage algorithm, and its real-time performance cannot be guaranteed.

3 Method

3.1 YOLOv4-Tiny Network Structure

The YOLOv4-tiny backbone network is CSPDarknet53-Tiny, which mainly
includes CBL, CSP and maxpooling. The first two layers of CBL mainly com-
press the height and width of the image, and the last layer of CBL integrates the
features of the image. The CSP divides the feature map of the base layer into
two parts, and merges them through cross-layer connections, which enhances
the learning ability of the convolutional neural network, reduces the amount
of calculation, and ensures a higher accuracy rate. Among them, the benefits
of cross-layer connection are as follows: 1) feature mapping is formed, feature
reuse is achieved to obtain more semantic information, and detection accuracy is
improved; 2) calculation bottleneck is reduced, and memory overhead is reduced.
The structure of CBL and CSP is shown in Fig. 1. Each CSP structure is followed
by maxpooling to compress the height and width of the image.

Fig. 1. CBL and CSP structure.
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In the neck part, the backbone network leads to two effective feature layers of
13 × 13 and 26 × 26, adopts the FPN [13], builds a feature pyramid, and enhances
the feature fusion between images of different scales. In the head part, YOLO-
Head uses the acquired features to make predictions. YOLOv4-tiny extracts a
total of 13 × 13 and 26 × 26 feature layers for target detection. The specific net-
work structure of YOLOv4-tiny is shown in Fig. 2.

Fig. 2. YOLOv4-tiny network structure.

3.2 Feature Layer Improvement

When the CSPDarknet53-Tiny network extracts feature information, the shallow
feature map has a smaller grid division and mainly provides position information;
the deep feature map has a larger grid division and mainly provides semantic
information. YOLOv4-tiny uses two scale feature maps of 13 × 13 and 26× 26
when extracting multiple feature layers for target detection. Compared with the
input image of 416× 416 pixels, the fineness of the grid division is lower. After
the product is calculated, part of the feature information will be lost, and the
shallow feature information is not well used, resulting in the low accuracy of
the algorithm for detecting small targets. In the early stage of a fire, the area
of flames and smoke observed by UAVs at high altitudes is small, and higher
detection accuracy of small targets is required at the application level.

In response to the above problems, this paper improves the multi-scale detec-
tion network of YOLOv4-tiny, and increases the 52× 52 feature scale with a
smaller resolution to fully learn the shallow features and improve the multi-scale
feature fusion ability of the network.

3.3 DWCSP Feature Fusion Structure

The neck part of the YOLOv4-tiny network uses the feature pyramid of the
FPN, and there are multiple feature maps of different sizes for fusion. But since
the network itself has a small number of convolutional layers and only uses
conventional convolution, the prediction ability of multi-scale feature fusion is
insufficient.

Inspired by the structure of CSPNet [14], this paper designs a DWCSP struc-
ture that enhances the feature fusion capability, as shown in Fig. 3. The DWCSP
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structure is mainly formed by the fusion of DWCBL and 1× 1 convolution. In
order to reduce the amount of network parameters, the bottleneck structure is
used, and the residual unit inside the original CSPNet structure is cancelled.
After cross-layer connection and concat, further feature integration is performed
through the BN layer, the leakyrelu activation function and the DWCBL unit.

Fig. 3. DWCSP structure.

The DWCBL unit is composed of 3 × 3 depthwise separable convolution [15],
BN layer and Leaky Relu activation function. Depthwise separable convolution
is mainly composed of depthwise convolution and pointwise convolution. Depth-
wise convolution is responsible for filtering, composed of M 3× 3 × 1 convolution
kernels, which act on each input channel, where M is the number of input feature
map channels; Pointwise convolution is responsible for converting channels, com-
posed of N 1× 1 ×M convolution kernels, which act on the output feature map
of depthwise convolution, where N is the number of output feature map chan-
nels. Then the ratio of the parameter amount between the depthwise separated
convolution (DWConv) and the standard convolution (Conv) is Eq. (1):

DWConv

Conv
=

3 × 3 × 1 × M + 1 × 1 × M × N

3 × 3 × M × N
=

1
N

+
1
9

(1)

It can be seen from Eq. (1) that compared with standard convolution, depthwise
separable convolution can greatly reduce network parameters and calculations,
and the speed of prediction and detection is improved to a certain extent.

3.4 CBAM Attention Mechanism

CBAM [16] is an attention mechanism proposed in ECCV2018. The attention
map of network feature map is calculated from the dimension of channel and
space, and then the attention map is multiplied by the feature graph to carry
out adaptive feature learning. Then the features are re-weighted, and the features
with high weights are the focus of attention. CBAM can improve the channel
and spatial feature expression ability of the network, and enhance the perception
ability of the target.

Both flames and smoke are targets without a fixed form, but they are distin-
guishable from the background environment information. The attention mech-
anism is needed to extract the target more accurately from the environment.
Therefore, the performance and detection ability of the network can be improved
by the addition of CBAM. The network structure of CBAM is shown as in Fig. 4.
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Fig. 4. CBAM network structure.

Channel attention is an attention mechanism that considers the relationship
between the feature map channels. The input feature map is respectively passed
through global max pooling and global average pooling based on width and
height, and then passed through MLP. The features output by MLP are added
and sigmoid to generate channel attention features. The channel attention fea-
tures are shown in Eq. (2).

Mc (F ) = σ (MLP (Avgpool (F )) + MLP (Maxpool (F )))

= σ
(
W1

(
W0

(
F c
avg

))
+ W1 (W0 (F c

max))
)
,

W0 ∈ R
C/r×C W1 ∈ R

C×C/r

(2)

Among them, σ is the sigmoid operation, r represents the reduction rate, and
the Relu activation is required after W0. The feature is multiplied with the
input feature to generate the input feature map required by the spatial attention
module.

Different from channel attention, spatial attention can make the neural net-
work pay more attention to the pixel areas in the image that are decisive for
classification and ignore the insignificant areas. The feature map output by the
channel attention module is used as the input feature map of this module. Global
max pooling and global average pooling based on channel are implemented first,
and then these two results are subjected to channel concat operation. After 7× 7
convolution, the dimension is reduced into 1 channel, and then the spatial atten-
tion features are generated through sigmoid. The spatial attention features are
shown in Eq. (3).

Ms (F ) = σ
(
f7×7 ([Avgpool (F ) ;MaxPool (F )])

)

= σ
(
f7×7

([
F s
avg;F

s
max

])) (3)

Among them, 7 × 7 represents the size of the convolution kernel. The feature
is multiplied with the input feature of the module to obtain the final output
feature map.

4 Experiment

4.1 Data Set Establishment

At present, there are not many public data sets related to flames and smoke, so
this experiment uses self-built flame and smoke data sets. The main component
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of the data set is the public flame and smoke pictures crawled on the Internet
through crawler technology. At the same time, the relevant pictures taken in the
laboratory and outdoors are added to enrich the data set. The self-built data set
of this experiment has a total of 19,819 images, including 13,873 in the training
set, 1982 in the validation set, and 3964 in the test set.

4.2 Evaluation Index

In this experiment, when using the test set to test the trained model, a relatively
authoritative indicator in the target detection field is used to evaluate the per-
formance of the model using the mean Average Precision (mAP), and the IOU
threshold of mAP is set to 0.5 (mAP@0.5). The mAP is shown in Eq. (4):

Precision =
TP

TP + FP

Recall =
TP

FP + FN

mAP =
1
N

∑
AP

(4)

Among them, TP (True Positive) is the number of correctly detected targets, FP
(False Positive) is the number of falsely detected targets, FN (False Negative) is
the number of missed targets; AP (Average Precision) is the average accuracy of
each type of object, and its value is equal to the area under the Precision-Recall
curve; N is the total number of categories.

Considering the practical application of embedded devices, this experiment
adds the indicators of parameters, model size and FPS to evaluate the lightness
of the model and the real-time detection. Among them, due to the limitation of
camera and the complexity of video detection environment, the real-time FPS
is not good as an evaluation index, so the FPS test method in the literature [17]
is adopted. The FPS test method selects network reasoning, score threshold
screening and NMS part, and tests the FPS of a single flame and smoke picture.
In practice, the reading frequency of the camera is limited, and the process
includes pre-processing and drawing parts, so the FPS detected by the camera
will be relatively low. In addition, the evaluation index of computational time
is replaced by the FPS in this experiment, which is convenient for comparative
experiment and practical application.

4.3 Experimental Conditions

This experiment is based on the pytorch deep learning framework. The training
of the network model is completed on a computer with Intel Core i9-10980HK
CPU, NVIDIA 2070Super 8G GPU, and a memory capacity of 16 GB. Then
transplant the model to a self-organizing UAV development platform equipped
with NVIDIA TX2 onboard computer to complete the comparative experiment.
The UAV platform is shown in Fig. 5.
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Fig. 5. Self-organizing UAV development platform.

4.4 Comparative Experiment

Feature Layer Comparison Experiment. The third effective feature layer,
with a scale of 52 × 52, is derived from backbone, and added into the FPN
network to rebuild the feature pyramid to enhance the feature fusion between
feature layers of different sizes.

The effective feature layer of each size matches 3 anchors. After the introduc-
tion of the third effective feature layer, the number of anchors is increased from
6 to 9. Therefore, this paper uses the K-means clustering algorithm to recalcu-
late the anchors. The 13 × 13 size feature layer has the largest receptive field,
matching large-size anchors, suitable for detecting large-size target; The 26 × 26
size feature layer has medium receptive fields, matching medium-sized anchors,
suitable for detecting medium-sized target; The 52 × 52 size feature layer has
the smallest receptive field, but is more detailed in terms of details. It matches
small-size anchors, suitable for detecting small-size target.

The comparison experiment in this part takes the original YOLOv4-tiny as
baseline, compared with the algorithm of adding the 52× 52 effective feature
layer. The results are shown in Table 1. It can be seen that with a small increase
in parameters and a small decrease in FPS, mAP@0.5 has been improved to a
certain extent.

Table 1. Comparative experiment results of effective feature layer.

Model mAP@0.5 (%) Params (M) Size (MB) FPS

Baseline 64.63 5.92 22.4 18.4

With a new feature 65.31 6.17 23.4 18.0

DWCSP Feature Fusion Structure Comparison Experiment. Since
DWCSP is a module designed to enhance feature fusion, it is set after the
13 × 13 effective feature layer and the concat of different feature layers of the
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feature pyramid to enhance the feature fusion of different features and improve
the comprehensive prediction ability.

The comparison experiment in this part takes the algorithm introducing
52 × 52 effective feature layer as baseline. The DWCSP module, and the CSP
structure of CSPNet are added at the same position to compare the results.
The results are shown in Table 2. It can be seen that after adding the DWCSP
structure, the increase in parameters and the decrease in the FPS are within the
acceptable range, while mAP has increased by 3.14%, which has been greatly
improved.

Table 2. Comparative experiment results of DWCSP.

Model mAP@0.5 (%) Params (M) Size (MB) FPS

Baseline 65.31 6.17 23.4 18.0

With CSP 67.87 8.30 31.6 15.4

With DWCSP 68.45 7.33 27.8 15.8

CBAM Attention Mechanism Comparison Experiment. There is no
appropriate theory as to where the mechanisms of attention embedded in a net-
work might be more effective in specific situations. This part will compare the
performance of the CBAM attention mechanism embedded in different positions
in the network model. The structure of introducing 52 × 52 effective feature layer
and DWCSP feature fusion module into the network is taken as the baseline, the
following four structures of embedded CBAM are given: 1) Three modules are
embedded in the part where three effective feature layers are derived from the
backbone network; 2) Three modules are embedded in front of the three DWCSP
modules; 3) Three modules are embedded in front of the three YOLO Heads; 4)
Two modules are embedded before and after the three CSP-Maxpooling struc-
tures in the backbone. The results of the comparative experiment are shown
in Table 3. In contrast, model 4 has the highest mAP@0.5 and FPS, which can
increase the mAP@0.5 by 2.66% compared to the baseline. Therefore, the CBAM
embedded before and after the three CSP-Maxpooling structures of the backbone
has the best effect.

Comparison Between Improved Algorithm and Mainstream Algo-
rithm. Based on the above comparative experiments, this paper proposes
an improved algorithm based on YOLOv4-tiny (hereafter called YOLOv4-tiny
Super) for flame and smoke detection. The network structure is shown in Fig. 6.

In order to further analyze the algorithm performance of the improved
algorithm, YOLOv4-tiny Super was compared with SSD [18], YOLOv4 [19],
YOLOv4-tiny, Efficientdet-d2 [20] and Faster R-CNN [21] algorithm for self-built
flame and smoke data sets. The algorithm test results are shown in Table 4.
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Table 3. Comparative experiment results of CBAM.

Model mAP@0.5 (%) Params (M) Size (MB) FPS

Baseline 68.45 7.33 27.8 15.8

1 69.12 7.41 28.0 13.6

2 69.09 7.40 28.0 13.5

3 69.07 7.40 28.0 13.3

4 71.11 7.39 27.9 14.2

Fig. 6. Network structure of YOLOv4-tiny Super.

Table 4. Comparison experiment results with mainstream algorithms.

Model Backbone mAP@0.5 (%) Params (M) Size (MB) FPS

SSD VGG 69.46 23.9 91.1 9.72

YOLOv4 CSPDarknet53 71.02 63.9 244 4.50

YOLOv4-tiny CSPDarknet53-Tiny 64.63 5.92 22.4 18.4

Efficientdet-d2 Efficientnet 66.43 8.09 31.2 2.36

Faster R-CNN Resnet50 67.04 28.3 108 1.67

YOLOv4-tiny Super – 71.11 7.39 27.9 14.2

As can be seen from the Table 4, for flame and smoke detection, the mAP@0.5
of YOLOv4-tiny Super has reached the detection level of the YOLOv4. The
parameter amount is only 1/9 of the latter, and the FPS exceeds the latter by
67. Compared with the mainstream algorithms in other tables, the performance
of YOLOv4-tiny Super is better from mAP@0.5, parameters, model size and
FPS. In addition, It is not as good as the YOLOv4-tiny in FPS performance,
but its mAP@0.5 exceeds 6.48%. When FPS meets actual needs, the actual
detection effect is greatly improved. In summary, compared with the mainstream
algorithms in the table, YOLOv4-tiny Super meets the requirements of FPS and
lightweight, and can have better results for flame and smoke detection.
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UAV Detection Effect Experiment. The self-assembled UAV platform is
equipped with a three-axis pod gimbal for stability, which is suitable for flame
and smoke detection. YOLOv4-tiny and YOLOv4-tiny Super are compared for
UAV detection effect, and the results are shown in Fig. 7 and Fig. 8 respectively.

Fig. 7. Flame and smoke detection effect of YOLOv4-tiny.

Fig. 8. Flame and smoke detection effect of YOLOv4-tiny Super.

It can be seen from Fig. 7 that YOLOv4-tiny has a serious failure to detect
when the smoke is not thick and the color is lighter (such as (a)); In the case of
smoke interference, its flame detection effect is poor (such as (b)); In the case
of a small target flame, its detection effect is not good enough, and there are
many cases of missed detection (such as (c)). In Fig. 8, YOLOv4-tiny Super can
achieve better detection results in the above-mentioned situations. The compar-
ison shows that its actual detection results are much better than the original
algorithm, and the FPS can also meet the detection requirements of UAV.

5 Conclusion

In this paper, a lightweight flame and smoke detection network YOLOv4-tiny for
UAV is proposed. Firstly, the new effective feature layer is introduced and a new
FPN feature pyramid is constructed. Then, the DWCSP feature fusion struc-
ture is proposed, which makes the network better integrate and utilize multi-
scale feature information. Finally, CBAM attention mechanism is embedded in
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the backbone network to make the network pay more attention to the target
information from the environment. The results of UAV experiments show that
the mAP@0.5 of YOLOv4-tiny Super reaches 71.11%, which is 6.48% higher
than YOLOv4-tiny. When FPS meets actual needs, the actual detection effect is
greatly improved. Compared with other mainstream target detection algorithms,
YOLOv4-tiny Super performs better in mAP@0.5, parameters, model size, and
FPS. Aiming at the problem that the real-time FPS of camera is not as good as
the test FPS caused by the limitation of camera equipment, the next work will
improve and optimize these limiting factors to reduce the loss of real-time FPS
of camera.
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Abstract. Protein Structure Prediction (PSP) is one of the most chal-
lenging problems in bioinformatics and biomedicine. PSP has obtained
significant improvement lately. This is from the growth of the protein
data bank (PDB) and the use of Deep Neural Network (DNN) models
since DNNs could learn more accurate patterns from more known protein
structures in the PDB. Hidden Markov Models (HMM) are a widely used
method to extract underlying patterns from given data. HMM profiles
of proteins have been used in existing DNN models for protein backbone
angle prediction (BAP), but their full potential is yet to be exploited
amid the complexities involed with those DNN models. In this paper,
for BAP, we propose a simple DNN model that more effectively exploits
HMM profiles as features beside other features. Our proposed method
significantly outperforms existing state-of-the-art methods SAP, OPUS-
TASS, and SPOT-1D, and obtains mean absolute error (MAE) values
of 15.45, 18.33, 6.00, and 20.68 respectively for four types of backbone
angles φ, ψ, θ, and τ . The differences in MAE values for all four types of
angles are between 1.15% to 1.66% compared to the best known results.

Keywords: Protein structure prediction · Deep neural network ·
Protein backbone angle prediction

1 Introduction

Protein Structure Prediction (PSP) is one of the most challenging issues in the
bioinformatics area, especially in drug design. PSP is determining the three-
dimensional structure of a protein just from its amino acid sequence. The fast
growth of protein sequence information in comparison with the slow growth of
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protein structure knowledge indicates a huge demand of effective methods in
determining protein structures. In vitro methods such as X-ray Crystallogra-
phy, Nuclear Magnetic Resonance (NMR), and Electron microscopy (EM) are
time consuming, costly, and in some cases impossible. To address these issues,
computational methods have been proposed [5–7,9,11,18]. However, the compu-
tational approaches are also difficult because of the inevitability of searching an
astronomically large conformation space and the absence of a highly accurate
energy function to evaluate potential protein conformations [11,20].

Proteins are chains of amino acids linked by peptide bonds. Every amino
acid consists of three parts: an amine functional group (−NH2), a carboxyl
functional group (-COOH), and an R group or side-chain specific to each amino
acid. These groups are linked to a C atom, which is referred to as Cα. The
backbone of the protein is made up of C and N atoms of every two consecutive
amino acids. Hence, dihedral angles φ, ψ, and ω can represent protein backbone
structures, which are respectively defined by taking every four consecutive atoms
from the sequence Ci−1, Ni, Cαi

, Ci, Ni+1, Cαi+1 [11]. Protein structures can
also be represented by θ and τ angles, where θ is a planar angle defined by
three consecutive Cα atoms, τ is a dihedral angle defined by four consecutive
Cα atoms [11]. Since, ω is fixed at 180◦ for the majority of proteins [2]. The φ
and ψ, or θ and τ values are essential for constructing protein structures. In this
work, we predict all of these four backbone angles using HMM profiles besides
other informative features within a fully connected neural network (FCNN).

Protein backbone angle prediction (BAP) methods in recent years are mostly
based on DNNs. SPIDER [9] applies a stacked sparse auto-encoder DNN with
three hidden layers and 150 nodes in each layer for predicting θ and τ angles.
The input features in SPIDER are position-specific scoring matrices (PSSM)
produced by PSI-BLAST [1], seven physico-chemical properties (7PCP), pre-
dicted three probability values for secondary structures (SS3) helix, sheet, and
coils, and predicted solvent accessible surface area (ASA) from SPINE-X [3].
SPIDER also applied a window size of 21 in order to capture local interactions.
SPIDER2 [6] takes advantage of an iterative training process to improve protein
backbone angles and SS predictions. SPIDER2’s features are PSSM and 7PCP.
Besides, SPIDER2 reuses predicted backbone torsion angles, predicted SS, and
predicted ASA of one DNN as input features of another DNN, and SPIDER2
thus has three successive DNNs in total in a series.

SPIDER3 [7] is another BAP method, which employs bidirectional recurrent
neural networks (BRNN) to predict φ, ψ, θ, and τ . Like SPIDER2, SPIDER3
also uses an iterative training method to train BRNNs, and it’s input features are
PSSM, 7PCP, and Hidden Markov Model (HMM) profiles produced by HHBlits
[15]. In addition, SPIDER3 reuses predicted backbone torsion angles, predicted
SS, and predicted ASA for the iterative training process. SPOT-1D [5] uses the
same features used in SPIDER3 [7] and utilises an ensemble of 9 Long Short Term
Memory (LSTM) BRNN and Residual Network (ResNet) models to predict φ,
ψ, θ, and τ . OPUS-TASS [18] employs a DNN model consists of Convolutional
Neural Networks (CNN), LSTM, and Transformer [17] layers to predict φ and
ψ. OPUS-TASS also applies multitask learning to improve the generalization
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of neural networks by introducing related tasks into the training process [18].
OPUS-TASS’s input features contain all SPOT-1D’s input features plus PSP19
[19]. SAP [11], as a state-of-the-art BAP, insists on using a simpler model with
fewer features. SAP employs an FCNN, with three hidden layers and it’s input
features are PSSM, 7PCP, 8-state SS (SS8) predicted by SSPro8 [10]. SAP pre-
dicts φ, ψ, θ, and τ . In this paper, we use a simple DNN model as SAP does but
we include HMM profiles as additional features and investigate the effectiveness.

HMM profiles are one powerful statistical modelling technique to extract
underlying patterns from the high dimensional data. Bioinformatic researchers
over the years have used HMM profiles to analyse chromatin folding patterns
in order to distinguish cancer variant mutations [13] and to extract patterns
from protein sequences [1,15] for various purposes that include BAP methods
[4–7,9,11,18]. However, the full potential of HMM profiles in BAP is yet to
be exploited. In this work, for BAP, we propose a simple DNN model that
more effectively exploits HMM profiles as features beside other features such as
PSSM, HMM, 7PCP, and SS8 predicted by SSpro8 [10]). Our proposed method
significantly outperforms existing state-of-the-art methods SAP, OPUS-TASS,
and SPOT-1D, and obtains mean absolute error (MAE) values of 15.45, 18.33,
6.00, and 20.68 respectively for four types of backbone angles φ, ψ, θ, and τ .
The differences in MAE values for all four types of angles are between 1.15% to
1.66% compared to the best known results.

2 Methods

We explain the DNN model and the dataset used in our method.

2.1 Input Features

We describe each residue as an window of a number of residues around it: half
before and half after. Each residue in such a window is represented by 65 features.
30 features are from HMM profiles generated by HHblists [12] with the Uniprot
sequence profile database from October 2017. Next, 20 features are from PSSM
profiles generated by three iterations of PSI-BLAST [1] against the UniRef90
sequence database updated in April 2018. Then, 8 features are from encoded
one-hot vector of SS8 prediction by SSpro8 [10]. Lastly, 7 features are from
physicochemical properties of each amino acid.

Secondary Structure. Local structures named secondary structures (SS) are
formed in protein segments by hydrogen bonds. There are three overall kinds of
protein secondary structures: helies, sheets, and coils. Helices and sheets have
regular patterns while coils have irregular structures. There is also an eight-class
classification for secondary structures (SS8). The eight labels are 3–10 helix (G),
α-helix (H), π-helix (I), β-sheet (E), β-bridge(B), turn (T), bend (S), and coil
(C). In this work, we use SS8 prediction of SSpro8 [10] as input features, then
we encode each SS type prediction by a one-hot vector.
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Position-Specific Scoring Matrix. In PSSM, using multiple sequence align-
ment (MSA), for each position in a protein’s sequence, a substitution score is
computed for each amino acid. For a protein with length L, PSSM is a matrix
with size L × 20. The (i, j)th entry of the matrix shows the mutation score of
the ith residue to the jth amino acid. Scores are represented by positive and
negative values. Positive values mean the chance of occurrence is higher than
random selection while negative values show less probability of occurrence.

Hidden Markov Model. HMMs are widely used in modelling the correlations
between adjacent symbols, domains, or events [14]. HHM describes the observ-
able events that depend on internal factors and include two stochastic processes:
an invisible process of hidden states and a visible process of observable symbols.
The hidden states form a Markov chain, and the probability distribution of the
observed symbol depends on the underlying state. For this reason, HMM is also
called a doubly-embedded stochastic process [14]. HMM essentially accumulates
the substitution scores with penalties for insertions and deletions. These can be
estimated from the frequencies of insertions and deletions in the MSA [1,16].
For a protein with length L, HMM is a matrix with size L × 30, where first 20
columns show the residue substitution values while the last 10 columns illustrate
the transition frequency and the number of effective homologous sequences.

Seven Physicochemical Properties. 7PCP are another informative features
used in PSP. Each amino acid has its own physicochemical properties. Just like
the other BAP methods [5–7,9,11,18], for each amino acid, we only consider
seven properties as physicochemical features. These are steric parameter (graph
shape index), hydrophobicity, volume, polarizability, isoelectric point, helix prob-
ability, and sheet probability.

2.2 Predicted Outputs

Although most recent BAP methods use sine and cosine ratios for each angle to
tackle the periodicity issue (angles must be in range [−180◦, 180◦]), our method
predict direct angle values for one residue at a time. For each residue, we have
four regression outputs that predict the direct values of φ, ψ, θ, and τ . Similar
to SAP, we address the periodicity issue within the loss function of the DNN.

2.3 Neural Networks

We use SAP’s DNN, which is an FCNN with three hidden layers, and 150 neurons
in each layer, as shown in Fig. 1. An FCNN consists of neurons with learnable
weights and biases. Each neuron’s output is produced by computing the product
of the weights at the inputs and applying a nonlinear activation function to
provide results. Generally, inputs pass through the hidden layers. Each hidden
layer consists of several neurons that are connected to all neurons in the previous
layer. Each layer’s neurons work independently without any contact with each
other. The output layer is the last layer, which usually estimates the output or
displays each class’s score. In our method, we use Python language with Keras
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library to implement our DNN. We apply an SGD optimiser with momentum 0.9
as an optimiser. We use linear as the activation function for the last layer and
sigmoid as the activation function for the input and hiden layers. MAE and MSE
(Mean Square Error) are the common loss functions in regression problems. We
use MAE as the loss function since it is better with outlier predictions than MSE;
the square function in MSE causes more emphasis to be put on outliers. Besides,
recent BAPs [5–7,9,11,18] utilise the MAE as their loss function. To tackle the
periodicity issue, we calculate absolute error (AE) as the following procedure.
For each predicted angle (P) and native angle (N), we compute D = |P−N |. The
absolute error is defined by AE = min(D, |360−D|). In addition, we ignore the
angles at the beginning or at the end of the protein since they are not defined.

Fig. 1. The fully connected deep neural network used in our method. It has three
hidden layers, each has 150 neurons.

2.4 Benchmark Datasets

We use the same dataset used by SPOT-1D [5]. This dataset is collected with
the constraints such as high resolution (<2.5A◦), R-free < 0.25, and sequence
identity cutoff of 25% according to BlastClust [1]. Moreover, we have used fil-
ters similar to SAP [11] to handle proteins with mismatches in their amino acid
sequences from various data source files (e.g. .t, .pssm, .dssp, and .fasta files). We
have used 8-state SS predictions from SSpro8 [10], then perform another filter-
ing and remove 3259 proteins from SPOT-1D’s proteins using Blast [1] against
SSpro8’s training set with e-value 0.01. Table 1 demonstrates the numbers of
proteins and residues in training, validation, and testing datasets, after applying
the above mentioned filtering.
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Table 1. Numbers of proteins and residues in training, validation, and testing datasets.

Datasets Training Validation Testing Total

Proteins 6721 667 1205 8593

Residues 1670605 165530 282317 2118452

3 Results

In order to understand the effect of HMM and window size, we perform various
settings of our method to find the best settings. Besides, we show various other
analyses of the results obtained for the best settings.

3.1 Determining Best Settings

We select the SAP setting as our baseline and try to add HMM features to
check the effectiveness. Besides, we assess the performance by examining two
window sizes 5 and 9 (the best window sizes in SAP). In addition, based on the
SAP’s experimental results, we apply range based normalisation as feature input
encoding, direct angle value as output representation. Table 2 shows the MAE
value for each setting for each angle.

Table 2. Performance of our experimental settings on 1205 testing proteins. The col-
umn HMM denotes whether HMM is used (Yes/No), column WS shows the window
size. The boldened values are the best values over the four settings.

Features Window size φ MAE ψ MAE θ MAE τ MAE

HMM WS Test Valid Test Valid Test Valid Test Valid

N 5 15.65 16.04 18.59 18.80 6.07 6.16 21.03 21.18

N 9 15.82 16.16 18.83 19.06 6.14 6.24 21.25 21.40

Y 5 15.45 15.78 18.33 18.52 6.00 6.09 20.68 20.80

Y 9 15.47 15.79 18.41 18.57 6.03 6.12 20.72 20.81

As we see from Table 2, there is only one setting which is the best for all four
types of angles. In summary, the best setting has the following parameters.
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– Input Features: SS prediction from SSPro8, PSSM, 7PCP, HMM
– Window Size: 5
– Input Encoding: Range-based normalisation
– Output Representation: Direct angle prediction

To evaluate the robustness of our method, we perform 10-fold cross validation
and independent testing with the best setting. The results from the 10 runs are
not statistically significantly different from each other as per 95% confidence
level of the Analysis of Variance (ANOVA) testing.

3.2 Comparison with State-of-the-Art Predictors

As shown in Table 3, we compare our method with existing state-of-the-art BAP
methods. MAE values for all BAP methods are shown in Table 3 for φ, ψ, θ,

and τ . By computing improvement =
2nd Best MAE− Our Method MAE

2nd Best MAE
, we

compare relative improvements in MAE values and it shows our method is better
than the existing methods in all cases in terms of MAE. We do not strictly
compare the running time of the competiting methods since obtaining better
accuracy is a key focus in PSP. Moreover, execution time would depend on
the implementation, the language, and the hardware used. Further, the training
programs are not available to us for OPUS-TASS and SPOT-1D. Both for SAP
and the method proposed in this paper, given the input features are already
computed, each DNN model needs up to four hours for training and a few seconds
for each protein in testing.

Table 3. Performances of SPOT-1D, OPUS-TASS, SAP, and our method on our testing
dataset. The emboldened values are the winning numbers for the corresponding types
of angles and datasets. OPUS-TASS does not predict θ and τ angles.

Dataset Proteins Residues Method φ MAE ψ MAE θ MAE τ MAE

Testing 1205 282317 SPOT-1D 16.23 23.22 6.77 24.57

OPUS-TASS 15.74 22.41 – –

SAP 15.65 18.59 6.07 21.03

Our Method 15.45 18.33 6.00 20.68

Improvement 1.27% 1.40% 1.15% 1.66%
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Fig. 2. 95% confidence intervals of AE values (y-axis) for various methods (x-axis).

By analysing each method’s Absolute Error (AE) using ANOVA at 95%
confidence level, we see that at least one method is significantly different from
other methods. Then, in order to check pairwise differences at 95% confidence
level, we perform Tukey’s Honest Significant Difference (HSD) test. Figure 2
shows our method significantly outperforms the other BAPs for all four angles.
(except for φ the prediction of OPUS-TASS and SAP has overlapping)

3.3 Comparison on Protein Length Groups

Figure 3 shows the performance of our method, SAP, OPUS-TASS, and SPOT-
1D by categorising test proteins based on their lengths. Overall, for all methods,
performance decrease when the protein length increases (slight exception for
proteins with length between 200 to 300 residues). In all protein lengths, our
method achieves better MAE values than the other methods.
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Fig. 3. Performance of our method, SAP, OPUS-TASS, and SPOT-1D when test pro-
teins are grouped based on their length

3.4 Comparison on Secondary Structure Groups

Fig. 4. Distribution of residues over
8-state secondary structure types
on our test set

Figure 4 illustrates the distribution of the
residues over the native SS types. H, E, and
C with respectively 34.3%, 21.6%, and 19.9%
cover the big portions of residues while, the
amount of G, B, and I are negligible. One
way to assess each method’s performance is
by examining them based on the specific SS
types. Overall, the SS classification is associ-
ated with angle ranges. On one hand, Helices
and sheets have narrow ranges for φ and ψ
[8,11] and so prediction for them is easier
than prediction for coil residues. On the other
hand, coils contain a big portion of residues.
Therefore, assessing a method’s performance
based on the SS value brings more opportunities to have a better understand-
ing of each method’s weakness. Figure 5 shows the performance of our method,
SAP, OPUS-TASS, and SPOT-1D when test proteins are grouped based on the
native 8-state secondary structures and the horizontal line in each chart shows
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the overall MAE value for our method. Notice that all methods have worse MAE
for coils while the best MAEs are achieved for helices.

Fig. 5. Performance of our method, SAP, OPUS-TASS, and SPOT-1D on the testing
proteins when residues are grouped based on their SS types. In the charts, y-axis shows
MAE values and x-axis shows SS types. The dashed horizontal line in each chart shows
the overall MAE value for our method.

3.5 Protein Structure Generation and Refinement

The ultimate aim of BAP methods is achieving accurate protein structures.
However existing BAP methods still need to be improved and they are far from
this goal. In this work, we have tried to generate entire protein structures from
the predicted values of φ and ψ from our method, SAP, OPUS-TASS, and SPOT-
1D by considering ω = 180◦. Figure 6 shows the Root Mean Square Deviation
(RMSD) values obtained by our method, SAP, OPUS-TASS, and SPOT-1D for
27 proteins that are from Critical Assessment of Structure Prediction (CASP)
competition 2018 and are also in our test set. Moreover, Fig. 7, shows the 3D
structures of two sample proteins 5cesA (first row) and 5dleA (second row),
reconstructed by the predicted φ and ψ from our method, SAP, OPUS-TASS, and
SPOT-1D. Both proteins have helixes and sheets in their structures. The native
structures are shown in green colour. No method has the desired predictions for
sheet, but our method has better RMSD values than the others.
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Fig. 6. RMSD values obtained by our method, SAP, OPUS-TASS, and SPOT-1D on
our 27 test proteins (sorted on RMSD of our method) from CASP2018.

Fig. 7. Sample 3D structures of 5cesA (first row) and 5dleA (second row), reconstructed
using the predicted φ and ψ from our method, SAP, OPUS-TASS, and SPOT-1D.
Each method’s RMSD value is reported below each figure. The lower the RMSD,
the better the performance. The emboldened values are the better reconstruction. The
green colour indicates the native structure. (Color figure online)

4 Conclusion

In this paper, we improve the accuracy of backbone angle prediction for proteins
by employing HMM profiles as input features of a simple deep neural network.
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HMM is a statistical method to extract hidden models that are available in the
alignment of proteins. Although HMM profiles have been used in the litertaure,
but their full potential is yet to be exploited. In this work, we have used HMM
profiles besides other features like PSSM, 7PCP, and predicted secondary struc-
tures. On a set of standard benchmark proteins, our method achieves better
MAE than the state-of-the-art methods.
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Abstract. This paper builds an interactive automatic picture editing
system based on the most advanced algorithms in the field of multi-
modality. It removes a specific area or entity in the image according to
the natural language expression, which is like a magic mirror that can
make the target invisible. The system is composed of two core processing
modules: a referring image segmentation module based on natural lan-
guage expressions and an automatic image inpainting module. The two
modules cooperate to precisely control the editing area and generate the
editing results based on the image semantics, which can ensure that the
edited images are natural, realistic, and meet the editing needs of users.
The two modules of the system are trained on open-source datasets sepa-
rately. Experimental results demonstrate that the system can help users
quickly edit images by a natural language expression.

Keywords: Interactive automatic picture editing system · Referring
image segmentation · Image inpainting

1 Introduction

With the development of the mobile Internet and the popularization of smart-
phones, photo sharing has become an important part of everyday life. Many
photo editing tools have been developed to assist the user to process the picture.
However, some tools often require users to have certain background knowledge
and professional skill; the function of others is too single and is difficult to satisfy
the user. For example, we came to the snow mountain to ski and took pictures
during the vacation. We came and went in a hurry, so we couldn’t check the
photo in time. When we are preparing to post these photos on social media, we
find one of our favorite photos broke into one stranger which affects the beauty
of the photo, as shown on the left side of Fig. 1. It’s a pity that the photo is
abandoned and we don’t have a retake opportunity. At this time, if we do not
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have a professional image editing technique, we have to face the problem of post
an unsatisfactory photo or abandon the photo. If there is an automatic pic-
ture editing system, like a magic mirror, helps the user automatically “invisible”
strangers by interacting with the user, so that the difficulty of photo editing will
be greatly reduced, and the user experience will be improved.

The rapid development of artificial intelligence provides a technological basis
for the magic mirror stealth system. Deep learning technology has achieved great
success in many research fields such as computer vision and natural language
processing [1,2]. Cross-modal or multimodal research has also received extensive
attention and in-depth exploration [3]. Researchers are concerned about how to
interact and align the information between different modalities and put forward
a lot of many new research directions, such as referring image segmentation and
image repair. The new directions are derived from the actual needs of applica-
tions.

This paper proposes a magic mirror stealth system to achieve stealth like
a magic mirror. It is an interactive automatic picture editing system based on
multi-model technology and algorithm. This system receives natural language
expressions as instructions, aligns the text with the regions or entities in the
image, and automatically realizes accurate editing of the picture. Using a pic-
ture and a text instruction describing the target operation as inputs, the system
can remove a specific area or entity in the image and repair the image. At the
same time, the system should maintain the image visually realistic and seman-
tically correct. We present an example in Fig. 1. The inputs are a picture and
a text instruction “remove the man in blue”. The output is an automatically
edited photo, and the edited part of the photo can be well integrated with the
surrounding scenery.

Fig. 1. An example of magic mirror stealth system. (Color figure online)

2 Related Work

Deep learning has made significant progress in the fields of computer vision and
natural language processing [4–6]. How to combine different research to build
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a useful and efficient system has important significance for application. In this
paper, we investigate and use the advanced solutions to build a multimodal
end-to-end interactive image editing system, Magic Mirror Stealth System. The
system mainly involves two tasks: referring image segmentation tasks and auto-
matic image inpainting tasks.

The purpose of referring image segmentation tasks is to segment the part
from the image which includes entities described by input expression. Com-
pared with traditional semantic segmentation, the referring image segmentation
is a more challenging task, because the natural language has complex forms of
expression, such as various coreference relations. Early work [7] used a simple
pipeline method to integrate visual and language features to solve this problem.
Some later work [8,9] further uses attention between different modalities or self-
attention mechanism to learn visual embedding or visual text embedding and
model context information.

Image inpainting is another important task in computer vision. The chal-
lenge of image inpainting is how to generate pixels that are consistent with sur-
rounding pixels for a specified area to achieve visually realistic and semantically
reasonable. Early work [4,10] tried to solve the problem with texture gener-
ation [11,12], which was achieved by matching and copying background color
blocks. These methods are particularly effective in background repair tasks and
have been deployed in practical applications [4]. However, the method assumes
that the removed and missing pixels can be found somewhere in the background
area, so it cannot generate novel image content that is significantly different
from other background areas, nor can they solve the complex and non-repetitive
painting areas, such as faces. Moreover, these methods cannot capture high-
level semantics. Recently, inspired by the rapidly developing Deep Convolutional
Neural Network (CNN) and Generative Adversarial Network (GAN) [13], The
work [6,14,15] take image inpainting as the conditional image generation and
use a convolutional encoder-decoder network to generate pixels, which is jointly
trained with the adversarial network to improve the consistency between the gen-
erated pixels and the existing pixels. The generated results prove these methods
can generate reasonable new content in highly structured images, such as faces,
objects, and complex scenes.

3 The Interactive Automatic Image Editing System

Given a picture and a natural language expression, the goal of the system is
to remove the corresponding part of the image, repair the image according to
the description of the expression, and maintain the picture visually realistic and
semantically correct. The system mainly includes two parts: referring image seg-
mentation module and image inpainting module. The architecture of the system
is shown in Fig. 2. The image segmentation aims to understand natural language
expression, recognize entities in the image that match the expression, and use
masks for identification. This part obtains the image mask matching the lan-
guage expression, which is described in detail in Sect. 3.1. The image inpainting
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inputs the original image and the mask, removes the part of the image covered
by the mask, and uses the background information to repair the image to obtain
the edited image, which is described in detail in Sect. 3.2.

Fig. 2. Structure of magic mirror stealth system.

3.1 Referring Image Segmentation Module

The overall structure of the image segmentation module is shown in Fig. 3. First,
the pre-trained convolutional network is used to extract the visual features of the
image and the text encoder is used to extract the language features. Then, the
cross-modal progressive comprehension (CMPC) sub-module is used to identify
the entities in the text and images, and highlight the entities referred to by
the text expression and suppress other entities by the relational words. After
that, a text-guided feature exchange (TGFE) sub-module is used to implement
the communication between multi-level features. Finally, the ConvLSTM neural
network is used to integrate multimodal features to obtain the prediction result
of the image mask that matches the text expression.

Image and Text Feature Extraction. Following prior research [7,9], The
multi-level visual features are extracted with a pre-trained CNN and respec-
tively fused with an 8-D spatial coordinate feature O ∈ RH×W×8 using a 1 × 1
convolution. The dimension of visual features is RH×W×Cv , where H, W and
Cv are the height, width and channel dimension respectively. The transformed
image features are denoted as {X3,X4,X5}, which respectively correspond to the
3rd, 4th, and 5th stage output of pre-trained CNN. To simplify the representa-
tion, we will use X to represent the visual features of a single layer later. Text
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Fig. 3. The referring image segmentation module.

features L = {l1, l2, ..., lT } is extracted with a LSTM, where T is the length of
the input text, li ∈ RCl(i ∈ {1, 2, ..., T}) denotes i-th words features, Cl denotes
the dimension of word features.

Cross-Modal Progressive Comprehension (CMPC) Module. The
CMPC sub-module is mainly divided into two stages: entity perception and
relationship reasoning. The structure is shown in Fig. 4. In the entity perception
stage, the text features of the entity words and attribute words are fused with
the visual features through the bilinear fusion strategy to obtain multimodal
features M ∈ RH×W×Cm , where Cm is the channel dimension in the multimodal
feature size. In the relationship reasoning stage, a fully connected graph is con-
structed based on multimodal features M and relational words. Relation words
serve as routers connecting vertices in the graph. Each vertex corresponds to
a spatial region in M . By reasoning in the graph, the entities referred to in
the text are highlighted and other irrelevant entities are suppressed. Finally, an
enhanced multimodal feature Mg which further integrates visual features and
text features are obtained.

Text-Guided Feature Exchange (TGFE) Module. As shown in Fig. 3, the
input of the TGFE submodule is Y3, Y4, Y5 and text feature L = [l1, l2, ...lT ],
where multimodal features Y3, Y4, Y5 ∈ RH×W×Cm . After n rounds of feature
exchange, the output is Y

(n)
3 , Y

(n)
4 , Y

(n)
5 .

Through n rounds of iterative feature exchange, the features of each level are
refined. The model finally uses ConvLSTM to integrate the features Y3, Y4, Y5

to predict the final image mask.
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Fig. 4. The cross-modal progressive comprehension (CMPC) submodule.

3.2 Image Inpainting Module

The image inpainting uses the image and mask information to remove the mask
coverage part of the image, and generates new pixels to repair the image. The
image inpainting module structure is shown in Fig. 5, which is mainly based
on the work [16] Coarse-to-fine model structure. The coarse inpainting part is
an encoder-decoder network composed of gate convolution, which can deal with
valid and blank pixels in the image more effectively than the traditional convo-
lution. Because the shape of the mask is irregular and the position is uncertain,
a variant of generative adversarial networks (SN-PatchGAN) is proposed in the
refinement part. This network is simple in formulation, fast and stable in train-
ing.

Fig. 5. The automatic image inpainting module.
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Gated Convolution. The traditional convolution structure applies the same
convolution kernel to any spatial position in the image. About the image inpaint-
ing task, image pixels include valid pixels and invalid pixels (a mask covers some
pixels). Some problems will be caused by traditional convolution, such as color
discrepancy, blurriness. In the deep layer of traditional CNN, the mask part will
disappear.

To deal with the problem, a gated convolution is used, as shown in Fig. 6.
Gated convolution uses a soft parameter update method, as shown in the fol-
lowing formula:

Gattingy,x =
k′
h∑

i=−k′
h

k′
w∑

j=−k′
w

W g
k′
h+i,k′

w+jIy+i,x+j

Featurey,x =
k′
h∑

i=−k′
h

k′
w∑

j=−k′
w

W f
k′
h+i,k′

w+jIy+i,x+j

Oy,x = φ (Featurey,x) � σ (Gattingy,x)

where x and y represent the coordinates x and y of output, kh and kw are the
height and width of the convolution kernel, k′

h = kh−1
2 , k′

w = kw−1
2 , W g W f ∈

Rkh×kw×C′×C represent different convolution kernels, Iy+i,x+j ∈ RC and Oy,x ∈
RC′

represent input and output respectively, C represents channel dimension,
C ′ represents the number of convolution kernals, Σ is a sigmoid function. The
Gatting part range is [0, 1], φ is a activation function.

Fig. 6. Structure of gated convolution.

Gated convolution can learn a dynamic feature selection method for different
image positions and channels. In the deep layer, the value of the gate structure
not only includes the features of the mask part but also includes semantic fea-
tures in some channels.

Spectral Normalized Markovian Discriminator (SN-PatchGAN). The
model needs to deal with masks with various shapes that appear in any posi-
tion and to stabilize the training process, the model uses a spectral normalized
markovian discriminator [17].

A convolutional network is used as the discriminator where the input con-
sists of image and mask, and the output is a three-dimensional features feature
of shape RH×W×Cv′ representing the height, width, and the number of chan-
nels respectively. Six convolutions with kernel size 5 and stride 2 are stacked
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to captures the feature. Then GANs directly applied for each feature element
in this feature map, formulating H × W × Cv′ number of GANs focusing on
different locations and different semantics (represented in different channels) of
the input image. The receptive field of each neuron in the output map can cover
the entire input image in our training setting, thus there is no need for a global
discriminator.

The loss function of generator LG and the loss function of discriminator LDsn :

LG = −Ez∼P (z)[Dsn(G(z))],
LDsn = Ex∼Pdata(x) [ReLU(1 − Dsn(x))]

+Ez∼Pz(z)[ReLU(1 + Dsn(G(z)))]

where Dsn represents the discriminator, G is the image inpainting network,
ReLU represents the ReLU activation function, and Pdata(x) represents the prob-
ability distribution of real image data, Pz(z) represents the probability distribu-
tion of the input data of the image inpainting network.

The final image inpainting network loss function is composed of pixel-wise
reconstruction loss and SN-PatchGAN loss function.

4 Experiments

4.1 Datasets

We choose a high-quality open-source dataset to train the model and supplement
a part of self-built data. The open-source UNC dataset [3] is used to train the
referring image segmentation module. The automatic image inpainting module
is trained on the challenging Places2 dataset [18]. We randomly divide the UNC
dataset and Places2 dataset into training set, validation set and test set, the
statistics data of dataset in Table 1, the data example in Table 2 and Table 3.
We built a Magic Mirror Stealth System (MMSS) test dataset, which includes a
subset of the test set in the UNC dataset and self-built data, which are specif-
ically used to test the overall system performance. The dataset includes 1132
pieces of data and the example is shown in Table 4.

Table 1. Details of UNC and Places2 dataset

Dataset Training Validation Test

UNC 120624 10834 5657

Places2 1434967 36500 328500

4.2 Experimental Setup

First, we separately train and evaluate the two modules of the system. The
referring image segmentation module is trained on the dataset UNC and uses
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Table 2. An example of UNC dataset

original image text expression reference output

woman in white on
the left

Table 3. An example of Places2 dataset

input mask referrence output

Overall IoU and Prec@X as evaluation metrics. The automatic inpainting module
is trained on the dataset Places2, and the average absolute error (MAE) and
mean square error (MSE) are used as evaluation metrics. Then, we integrate the
two modules to construct a magic mirror stealth system and evaluate the system
on the self-build test set.

The backbone of the CMPC module is DeepLab-101 [19] pre-trained on the
PASCAL-VOC [1] dataset. The output of Res3, Res4, and Res5 is used as multi-
level features. The size of input image is 320 * 320. The channel dimension is
set to Cv = Cl = Cm = 1000. ConvLSTM hidden layer size is set to 500. The
hyperparameter of bilinear fusion is a = 5. The number of feature exchange
iterations is set to n = 3. The GloVe is used as word embedding. The layer of
GCN is set to 1. We use Adam optimizer wiht the initial learning rate of 2.5e−4

and the weight decay of 5e−4. During the training process, the CNN backbone is
freezed. The loss function is cross-entropy loss averaged over all pixels. Finally,
DenseCRF [20] is used to refine the segmentation mask.

Table 4. An example of magic mirror stealth system dataset

original image mask referrence output
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The input image size of the automatic image inpainting module is 256 * 256,
and the largest mask size is 128 * 128. Because the module is based on convolu-
tional neural networks, the model can adapt to different resolutions.

4.3 Results of Referring Image Segmentation Module

According to previous research [8], overall Intersection-over-Union (Overall IoU)
and Prec@X are adopted as metrics to evaluate the performance of the image
segmentation module. Overall IoU calculates total intersection regions over total
union regions of all the test samples. Prec@X measures the percentage of predic-
tions whose IoU are higher than the threshold X ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. The
experimental results are shown in Table 5.

Table 5. The experimental results of referring image segmentation module

Metric (%) pre@0.5 pre@0.6 pre@0.7 pre@0.8 pre@0.9 Overall IoU

UNC validation 63.82 56.13 45.88 31.28 9.72 57.74

UNC test 66.44 58.79 48.91 33.00 10.44 59.89

The results shown in Table 5 demonstrate the trained module has achieved
good results on both the validation set and the test set of UNC data, indicating
the effectiveness of the CMPC and TGFE submodule.

4.4 Results of Image Inpainting Module

The results shown in Table 6 demonstrate the trained module has achieved good
results on both the Places2 validation set and the test set, indicating the effec-
tiveness of the automatic image inpainting module.

Table 6. The experimental results of image inpainting module

Metric Places2 validation Places2 test

MAE (%) 7.89 7.95

MSE (%) 2.25 2.28

4.5 Results of Magic Mirror Stealth System

We evaluate the entire system on the MMSS test dataset. The experimental
results are shown in Table 7. The results demonstrate both the first phase test
and the second phase test have achieved good results, which can be considered
consistent with the single module test results. And it further shows that although
two modules are trained independently, the entire system still maintains effec-
tiveness and robustness in the integration test.
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Table 7. The experimental results of magic mirror stealth system

Metric (%) pre@0.5 pre@0.6 pre@0.7 pre@0.8 pre@0.9 overall IoU MAE MSE

MMSS test 64.36 56.90 46.18 32.90 10.81 59.44 7.45 2.92

4.6 Results of Manual Evaluation

To further evaluate the actual users’ demand and satisfaction with the system,
we designed a questionnaire, which contains the following three question:

(1) Question 1: Have you encountered any dissatisfaction with taking photos
(often, occasionally, never)?

(2) Question 2: Do you think you need an interactive automatic image editing
system to help you solve the problem of dissatisfaction with taking pictures
(necessary, a little, no need)?

(3) There are 10 sets of data randomly selected in the system test results,
(including original image, expression, and corresponding output image).
Please give an image quality score for each set of data (1–5).

We have released an online system that requires users to fill out a question-
naire after using the system. We got a total of 120 valid questionnaires. The
results of questionnaires are shown in Table 8. The results show that 74% of
users often or occasionally encounter unsatisfied photos, and 94% of users think
an interactive automatic editing system is useful. The result of these two ques-
tions illustrates the rationality and necessity of our magic mirror stealth system.
74% of the generated images have a score of no less than 3, which shows that
our Magic Mirror Stealth System can handle images in most scenes. The system
can meet the needs of users and generate a satisfactory image for users.

Table 8. The results of manual evaluation

Question Result

1 Often Occasionally Never

27% 47% 26%

2 Necessary Reasonable No need

45% 49% 6%

3 1 2 3 4 5

17% 9% 13% 25% 36%

We randomly select some example images generated by the system, as shown
in Table 9. The example image shows that our system can well use entities and
attribute words to perceive the candidate entities referred to by the expression,
and with the information of relation words for graph-based reasoning. Then the
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correct target can be distinguished among similar entities (for example, in the
“bird at the bottom” picture, the system keeps the bird at the top). The feature
exchange module in our system can also make good use of text information
and selectively integrate multiple levels of features to improve mask prediction
(for example, in the “ball on the bottom” picture, the system can also identify
the shadow of the ball). Our system can also make good use of surrounding
texture and structure to generate more realistic results by the context’s attention
mechanism (for example, in the “The man at the edge of the picturey” picture,
the system uses the texture of the surrounding).

Table 9. Examples of image edited by magic mirror stealth system

text expresion input image mask inpainting image

ball on the
bottom

boy on the left

bird at the
bottom

The man at
the edge of the

picture

5 Conclusion

To solve the practical problem, reduce the difficulty for users of editing images,
and improve the quality of the editing results, multimodal technology and algo-
rithms are applied to realize an end-to-end interactive automatic editing system,
the Magic Mirror Stealth system. The system includes two sub-modules: refer-
ring image segmentation module and image inpainting module. The system was
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evaluated qualitatively and quantitatively, which proved that the system has
good interactive automatic editing performance.

In this paper, we only realize the end-to-end reasoning. Considering the diffi-
culty of system implementation, training was divided into two phases. We hope
to achieve end-to-end training to achieve better results in the future work.
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Abstract. Micro-expression recognition is a video sentiment classifica-
tion task with extremely small sample size. The transience and spa-
tial locality of micro-expressions bring difficulties to constructing large
micro-expression databases and designing micro-expression recognition
algorithms. To reach the balance between classification accuracy and
model complexity in this domain, we propose a lightweight neural micro-
expression recognizer, Off-TANet, which is based on apex-onset optical
flow features. The neural network contains a simple yet powerful triplet
attention mechanism, and the powerfulness of this design could be inter-
preted in 2 aspects, FACS AU and matrix sparseness. The model evalu-
ation is conducted with a LOSO cross-validation strategy on a combined
database including 3 mainstream micro-expression databases. With obvi-
ously fewer total parameters (59,403), the results of the experiment indi-
cate that the model achieves an average recall of 0.7315 and an average
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of our model design.
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1 Introduction

Micro-expression is a very brief and rapid facial motion that is provoked involun-
tarily, which could reveal an individual’s true emotions even when true feelings
are deliberately concealed. Due to the affinity between micro-expression and
true emotions, micro-expression has a wide range of applications in mental dis-
order treatment, such as emotion recognition ability recovery for Schizophrenia
patients [20,21] and Alexithymia diagnosis [24]. Compared with regular facial
expressions (macro-expression), micro-expression is more subtle both tempo-
rally and spatially. To be more specific, the duration of a micro-expression is
rather low (between 1/25 s and 1/5 s) [33], and a micro-expression only occurs
in limited facial regions [13]. The nature of micro-expression not only brings
challenges to automated micro-expression recognition but also causes data cre-
ation difficulties including human data labeling, sample video capturing, and
micro-expression induction. As a consequence, the process of constructing large
micro-expression datasets is severely delayed, and micro-expression recognition
is still a small sample size problem even to this day.

In recent years, the MEGCs (Micro-Expression Grand Challenge) [22,32]
accelerates the development of this domain. In MEGC 2019 [22], lightweight
neural micro-expression classification approaches started to completely super-
sede handcrafted feature (LBP-TOP [8], etc.) based approaches with the help
of the widely-used ’Less is more’ onset-apex optical flow method [13]. In 2020,
deep learning-based algorithms with more advanced techniques, such as graph
neural networks and dilated convolution, are led into this domain [10,16]. These
models, though drastically inflating the parameter scale, show better recognition
accuracy than proposed methods in 2019. Nevertheless, neural micro-expression
recognition models in these years still reflect some disadvantages, and the main
demerit is that the balance between parameter scale and classification perfor-
mance is fairly unsatisfying for those models.

To solve the parameter-accuracy balance problem mentioned above, we pro-
pose a novel optical flow-based neural network architecture called Off-TANet
(Optical flow feature-Triplet Attention Net) for micro-expression sentiment clas-
sification. We design a triplet attention module including spatial attention, chan-
nel attention, and self-attention, and applied this attention module on a mini-
malist residual network. We summarize our main contributions as follows:
– We design a powerful triplet attention mechanism and find an interpretation

for the powerfulness of the novel attention module based on FACS AU [3] and
matrix sparsity.

– This paper proposes a simplified neural network architecture, Off-TANet,
with the triplet attention mechanism. The architecture could prevent overfit-
ting and greatly reduce the number of parameters.

– In a combined micro-expression database including CASME [31],
CASME II [30] and CAS(ME)2 [19], two evaluation metrics, UAR and
UF1, are verified in experiments. In comparison to the listed mainstream
models and ablation study results, our network, with an extremely low num-
ber of parameters, could reach the state-of-the-art.
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2 Related Work

Owning to the difficulty to construct a micro-expression dataset, research of
micro-expressions are based on some public databases with a limited number of
samples. The mainstream databases are SAMM [1], SMIC [11], CASME [31],
CASME II [30] and CAS(ME)2 [19]. The total number of micro-expression
image sequences in all the datasets mentioned above is extremely low (less than
1000). In those datasets, despite being unitary in ethnics, the three CASME
datasets with higher image resolution and better preprocessing, including face
region segmentation and apex frame detection, are more capable of training
neural micro-expression recognizers.

Micro-expression recognition is a new domain in computer vision. Automated
micro-expression recognition firstly appears in 2009 [18], which is much later than
the burgeon of macro-expression recognition algorithms since the 1990s. After
the early explorations of handcrafted feature-based micro-expression recogni-
tion, the innovative ‘Less is more’ apex-onset optical flow method is proposed
[13], and neural micro-expression classifiers began to emerge in 2019. ResNet-
18 with adversarial training and expression magnification and reduction [14]
shows a relatively satisfying performance in MEGC 2019. Several novel CNN
structures are also mentioned in MEGC 2019, such as Off-ApexNet [4], Dual-
Inception [34], and STSTNet [12]. In 2020, Lo et al. proposed a graph convolution
network-based model called MER-GCN [16], which applies a GCN on top of a
3D convolution network to explore the dependencies among different FACS AUs.
A real-time micro-expression recognizer, MACNN [10], with residual blocks and
atrous convolutions is proposed by Lai et al.to categorize a micro-expression in
a low response time. Wang et al. try to improve the performance of ResNet [5]
in micro-expression recognition by adding micro-attention modules.

Attention mechanism plays a significant role in human perception. Com-
puter vision researchers have made several previous attempts of leading attention
mechanisms into convolutional networks to improve the performance of feature
extraction. The spatial transformer is a typical form of spatial attention mech-
anism, which means the mechanism applies the same warping to each channel
[9]. This structure could rotate and scale the feature map and focus on the
regions with important features. By contrast, channel attention mechanism allo-
cates the weight of every channel instead of calculating the importance of every
pixel in each feature map. An instance of channel attention mechanism is the
“Squeeze-and-Excitation” (SE) block, which adaptively recalibrates channel-wise
feature responses by explicitly modelling interdependencies between channels [7].
The fusion of spatial and channel attention also shows satisfying performance
[27,29]. Self-attention, as the essential operator of Transformers [25], was first
widely used in the NLP (Natural Language Processing) tasks [25]. The early
application of self-attention blocks in computer vision is the non-local neural
network [28]. These days, the success of visual Transformers, including ViT [2],
BoTNet [23], and Swin Transformer [15], also proves the effectiveness of this
simple but powerful design.
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3 Proposed Method

Fig. 1. The whole picture of our two-stage proposed method.

3.1 Optical Flow Feature Extraction

Considering that the facial movements in a micro-expression are extremely sub-
tle, the difference between every two consecutive frames is inconspicuous. Instead
of taking all frames as an input of the neural network, our micro-expression recog-
nition pipeline (Fig. 1) includes two main steps: onset-apex optical flow feature
extraction and neural representation learning. This optical flow method firstly
mentioned in [13] could memorably reduce the dimension of input features.

Let u and v denote the horizontal and vertical components of the optical flow
vector field. In our feature extraction pipeline, the image partial derivatives are
calculated by the Sobel operator, and u and v are solved by the TV-L1 optical
flow algorithm [17].

Another optical flow-based feature called optical strain is also used in our
work. It is capable of approximating the intensity of facial deformation [12], and
can be defined as:

u = [u, v]T (1)

ε(x, y) =
1
2
[∇u + (∇u)T ] (2)

=

[
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1
2 (∂u
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]
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The magnitude of optical strain is:
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The optical flow features {u, v, |ε|} could be seen as a 3 channel image, and our
neural network will take that ‘image’ as an input.
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3.2 The Attention Mechanism

Spatial and Channel Attention Module. Experiments show that the con-
volutional block attention module (CBAM) is expected to boost the accuracy of
lightweight networks [29]. We applied this argument-saving yet powerful struc-
ture to enhance the process of high-level feature extraction.

The CBAM includes two separated mechanisms: spatial attention and chan-
nel attention. In the spatial attention operator, the features are aggregated
between different channels by both average and max pooling operations. Then
the two spatial context descriptors are concatenated and convolved. In the chan-
nel attention operator, the features in each channel are aggregated by the two
pooling operations, and then transformed by a shared MLP and merged by an
element-wise summation. The spatial and channel attention map SpA(·) and
CA(·) in our proposed method can be summarized as:

SpA(x) = Sigmoid(Conv([AvgPool(x);MaxPool(x)])) (5)
CA(x) = Sigmoid(MLP (AvgPool(x)) + MLP (MaxPool(x))) (6)

where Conv denotes a convolution operator with a 3 × 3 kernel and MLP
denotes a shared one-hidden layer perceptron. After the attention maps are cal-
culated, the attention map could be applied by an element-wise multiplication
on the input tensor.

Multi-head Self-attention Module. The burgeoning of visual Transformers
showed the potential of the self-attention mechanism in computer vision tasks.
Compared with spatial attention, which applies an identical map on each chan-
nel, the self-attention map on each channel differs. We applied this module after
the CBAM module to construct a more powerful triplet attention mechanism.

The self-attention module in our network is similar to the self-attention block
in NLP tasks. Specifically, the input tensor is transformed to three different rep-
resentations query q, key k, and value v by three linear transformation matrices
Wq, Wk, and Wv. Then we can calculate the output of the self-attention module
as follows:

Attention(q, k, v, r) = Softmax(qkT + qrT ) ∗ v (7)
rx,y = PE(x, featureMapSize) + PE(y, featureMapSize) (8)

PE(2i, d) = sin(1/100002i/d) (9)

PE(2i + 1, d) = cos(1/100002i/d) (10)

where r denotes the positional code, x and y represent pixel positions. The 2-D
image positional code is constructed by adding the results of two 1-D sinusoidal
positional code PE [25]. The attention map is then calculated by the element-
wise summation of query-key matrix product and query-positional code matrix
product. To obtain better performance, a multi-head self-attention mechanism is
also applied by concatenating the output from self-attention blocks with unequal
weights.
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3.3 Network Architecture

Fig. 2. The attention-enhanced residual block of our network, based on a ResNet-18
residual block. The triplet attention mechanism is added between the two convolution
layers in a ResNet-18 residual block.

According to the experiments in BoTNet [23], apply an attention mechanism in
the last residual block could improve the performance of ResNets. We replaced
the last residual block in a minimalist residual convolutional network with a
novel attention-enhanced residual block (Fig. 2). Compared with the CBAM [29]
attention module, our triplet attention module is expected to focus more on the
important facial regions, as the CBAM channel and spatial attention extract
features in a larger granularity, while the self-attention map differs both between
different spatial positions and different channels.

The input apex images and onset images are firstly normalized to 112 ×
112 with a cubic interpolation algorithm, then the 3 × 112 × 112 optical flow
features are extracted and sent to the network. The network architecture is
shown in Fig. 3. The number of channels in this architecture is under strict
control to reduce the scale of parameters. The low-level features are extracted
by a 7 × 7 convolution layer, and then the tensor is sent to two ResNet-18 style
residual blocks. The attention-enhanced residual block with a triplet attention
mechanism extracts the high-level representations. The output channels in the
last residual block are reduced to shrink the FC layer, which could cause over-
fitting problems. More details about the network can be found in the published
source code.

4 Experiments and Analysis

To validate the validity of our approach on micro-expression sentiment classifica-
tion, we conduct experiments on a combined database including CASME [31],
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Fig. 3. The overall architecture of our network. The operator type and the output
tensor shape in each layer are shown in this picture.

CASME II [30] and, CAS(ME)2 [19]. Considering that mainstream models
are tested on dissimilar benchmarks and datasets, all the models mentioned in
Table 2 are re-implemented and tested on this novel combined dataset with a
‘MEGC 2019-like’ benchmark.

Source code in Python, .csv format combined dataset (without images) and
our running environments are available on https://github.com/ECNU-Cross-
Innovation-Lab/PRICAI2021-Off-TANet.

4.1 Data Preparation

The datasets used in our work are CASME [31], CASME II [30], and
CAS(ME)2 [19] respectively. The sentiment label, apex frame, onset frame of
each micro-expression image sequence is provided by those datasets. Images are
also properly cropped to get rid of the interference from pixels containing non-
facial information. The input image will be normalized to different sizes with
inter-cubic interpolation to adapt the input layer of each model, and RGB images
are turned black and white before optical flow feature extraction.

To avoid confusing the learning process, We apply two ‘MEGC 2019-like’ data
preparation methods. Among all the datasets, only main sentiment categories,
which contain abundant micro-expression samples, are selected to form the com-
bined dataset. Apart from that, macro-expression samples in CAS(ME)2 [19]
and ‘Others’ samples in CASME II [30] are not used. To weaken the classifi-
cation bias between datasets, we map those original labels to only three classes.
Categorization information about the database can be seen in Table 1.

4.2 Algorithm Comparison

In this paper, all the methods mentioned in Table 2 are tested with a LOSO
(Leave One Subject Out) protocol, and our metrics, UAR (Unweighted Average

https://github.com/ECNU-Cross-Innovation-Lab/PRICAI2021-Off-TANet
https://github.com/ECNU-Cross-Innovation-Lab/PRICAI2021-Off-TANet
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Table 1. Categorization information about the databases.

Label Total samples Number of samples Original label
CASME [31] CASME II [30] CAS(ME)2 [19]

Positive 48 10 32 6 Happiness

Negative 194 85 88 21 Disgust
Repression
Sadness

Surprise 52 19 25 8 Surprise

Recall) and UF1 (Unweighted F1-Score) are the same as metrics used in MEGC
2019 [22].

The LOSO protocol is a cross-validation strategy that repeats evaluation for
49 times by splitting out samples in each subject group in the 49-subject com-
bined database. This widely used protocol effectively mimics realistic scenarios
and ensures subject-independent evaluation.

The combined dataset is obviously imbalanced in category distribution, so
class-balanced metrics are used in our experiments. The computation methods
of UAR and UF1, which are also called balanced accuracy and macro-averaged
F1-score, are as follows:

UAR =

∑
c∈C

TPc

nc

|C| (11)

UF1 =
1

|C|
∑
c∈C

2TPc

2TPc + FPc + FNc
(12)

In these two formulas, C is the set of sentiment classes, nc represents number
of samples in class c, and TPc, FPc, FNc means True Positive, False Positive,
and False Negative. We assume that each left-out subject is of the same impor-
tance, so the final UAR and UF1 is the unweighted mean of all UARs and UF1s
calculated in the 49-fold cross-validation.

Table 2. Results of mainstream approaches (sorted by UAR).

Model UAR UF1 Params Flops MemR+W

Off-ApexNet (2019) [4] 0.5832 0.5650 2.66M 3.87M 10.35 MB
STSTNet (2019) [12] 0.5584 0.5399 162,051 526.98K 0.76 MB
Dual-Inception (2019) [34] 0.6167 0.5814 6.45M 12.64M 25.67 MB
MACNN (2020) [10] 0.6835 0.6660 70.57M 793.67M 1140.00 MB
Micro-Attention (2020) [26] 0.7086 0.7003 53.38M 1.0G 237.97 MB
Off-TANet (ours) 0.7315 0.7242 59,403 30.08M 5.64 MB

The results of mainstream approaches are illustrated in Table 2. UAR, UF1,
the number of total parameters (Params), the total floating-point operation
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(FLOPs), and the total memory read/write (MemR+W) are listed in the
table. Parameter numbers and memory usage are measured by the torchstat
Python package.

Fig. 4. The scatter plot of the test results. Our model reaches the highest UAR and
UF1 with the lowest parameter number.

The hyperparameters of optimizers and the training process can be found in
the code of this paper. The train epochs of re-implemented models are selected by
a grid search to accommodate our new dataset, and other hyperparameters are
determined according to the original papers. The architectures of MACNN [10]
and Micro-Attention [26] are slightly adjusted to speed up the training process,
avoid over-fitting and save GPU memory.

Table 2 and its corresponding scatter diagram Fig. 4 directly shows the advan-
tages of our architecture. With the lowest Total Params (59,403) and an
obviously low Total MemR+W (5.64 MB), Off-TANet reached the highest
UAR (0.7315) and UF1 (0.7242).

4.3 Ablation Study

To ensure the validity of our model design, we have carried out a series of ablation
experiment.

First of all, the effectiveness of the optical strain feature is examined. In the
no optical strain experiment, we change the number of input channels of the
first convolution layer and remove the optical strain feature from the input. The
result also indicates the superiority of optical flow features compared with the
end-to-end approach, which takes the raw onset and apex image as the input.

Despite the experiments in BotNet [23] show that the attention-enhancement
should only be applied on the last residual block, we still compare the perfor-
mance between Off-TANet and a network with identical output tensor shape in
each block which change all the residual blocks with the triplet attention residual
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Table 3. Results of ablation experiments on the input feature and the number of
enhanced blocks.

Model UAR UF1

Off-TANet + no optical flow features 0.6631 0.6440
Off-TANet + no optical strain 0.7180 0.7078
Off-TANet + all residual block attention-enhanced 0.6895 0.6814
Off-TANet (ours) 0.7315 0.7242

Table 4. Results of ablation experiments on the design of the last attention-enhanced
residual block.

Model UAR UF1

No enhancement 0.6804 0.6745
+ CBAM [29] 0.6903 0.6744
+ multi-head self-attention 0.6943 0.6857
+ bottleneck Transformer [23] 0.7045 0.6937
Off-TANet (ours) 0.7315 0.7242

block. The accuracy of Off-TANet exceeds the accuracy of its counterpart which
could cause overfitting problems (Tables 3 and 4).

The design of the attention-enhanced block is also discussed in this paper.
On the original ResNet-18 residual block, we applied three different attention-
enhancement approaches including only self-attention, only CBAM and bottle-
neck transformer. As visual Transformers are more data-hungry, the bottleneck
transformer shows a less satisfying performance on micro-expression recognition
– a small sample size problem. The self-attention enhancement and the CBAM
approach also show their weakness compared with our design.

4.4 Off-TANet Attention Mechanism Analysis

Compared with raw CNN features, the attention features are more interpretable
when visualized. To explore the intrinsic mechanism of our integrated attention
block, we visualized the attention maps of our model (Fig. 5) when inferencing
sample EP01-5 from CASME Subject 1. The attention maps are firstly resized
to 112 × 112. The model is pre-trained on the training set of the first cross-
validation fold (leaving CASME Subject 1 out).

Sample EP01-5 contains a positive micro-expression with human-annotated
FACS Action Unit [3] ‘AU12’, which means the lip corner puller and its related
facial regions are colored red on the AU picture. The validity of the integration of
CBAM [29] and self-attention can be seen from the figure, as the spatial attention
map is general and vague, while the self-attention map only focuses on the most
important facial areas. In addition, the self-attention map and the FACS AU
facial regions correspond on the nasolabial fold, the right mouth corner, and
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Fig. 5. The attention maps of Off-TANet when inferencing sample EP01-5. The CNN
features are extracted by layers before the triplet attention mechanism. The spatial
and self-attention maps are visualized by two heat maps. All the self-attention maps
are aggregated by a channel-wise maximization to get exactly one attention map, and
then the attention map is multiplicated on the spatial-attention map and visualized.
Other details about the visualization process can be found in the source code.

the left cheekbone, and this shows the affinity between the Off-TANet triplet
attention mechanism and human perception.

Despite the effectiveness of the fusion of channel attention and spatial atten-
tion is ensured by the experiments in [29], the lead-in of the self-attention module
still needs more support phenomenons besides merely accuracy numbers. A pos-
sible explanation is that the self-attention enhanced CBAM [29] could further
discriminate the spatial regions with significant features in comparison with the
original CBAM [29]. This could mean that compared with the CBAM [29] spa-
tial attention map, the attention map after the self-attention enhancement has
greater matrix sparseness, as the attention weights for unimportant spatial posi-
tions are suppressed to zero. We applied two sparseness evaluation metrics in
our experiment, soft 0-norm (the number of elements smaller than the threshold)
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and Hoyer sparseness [6]. Their definitions are as follows:

Softt(x) = |{i|xi < t}| (13)

Hoyer(x) =
√

n − (Σ|xi|)/
√

Σx2
i√

n − 1
(14)

where x denotes the matrix, xi denotes its element and t denotes a threshold.
We validate the mean value of these two indicators in multiple cross-validation
folds (Table 5), and the sparseness assumption is confirmed.

Table 5. The sparseness of the self-attention map. Only folds with large test set sizes
are contained.

Cross-val fold Test set size Spatial attention Self-attention
Soft0.01 Hoyer Soft0.01 Hoyer

1 22 0 0.0088 1470 0.1195
4 13 0 0.0154 1161 0.1768
6 23 0 0.0172 845 0.1196

41 31 0 0.0161 1036 0.1313

5 Conclusion

The integration of innovative neural network architectures and micro-expression
recognition is an attractive topic. In our paper, we proposed a novel neural
optical flow processor called Off-TANet for micro-expression sentiment classifi-
cation. In this architecture based on a minimalist ResNet, a triplet attention
mechanism is used to improve its classification performance. We test our model
on a combined dataset with a LOSO protocol and showed that the UAR and
UF1 of our design exceed the counterparts of other mainstream approaches. We
also conduct a series of ablation experiments to ensure the validity of our design.
We also give an possible interpretation for the intrinsic mechanism of the triplet
attention module. Though this paper only explored the application of the triplet
attention mechanism in micro-expression recognition, this design could be a gen-
eral design for lightweight neural networks and we hope to release the potential
of this simple yet powerful architecture on other tasks in our future work.
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Abstract. Accurate identification and early diagnosis of malignant pul-
monary nodules are critical to improving the survival rate of lung can-
cer patients. Recently, deep learning methods have been proved to be
successful in computer-aided diagnosis tasks. However, most advanced
research work does not fully utilized valuable attribute prior knowledge
for semantic reasoning to guide the network. Therefore, it lacks inter-
pretability and hence is difficult for clinical radiologists to understand
and apply. To comprehensively tackle these challenges, we propose a
novel Attribute Self-guided Graph Convolutional V-shape Networks (AS-
GCVN) for pulmonary nodules classification with steps as follows. We
first develop a sub-network for representation learning, which can effec-
tively extract image-level features. Second, we construct a graph convolu-
tion V-shape network to model the semantic information of attributes to
guide the classification of benign and malignant pulmonary nodules accu-
rately. Moreover, an Attribute Self-guided Feature Enhancement (ASFE)
module is proposed to improve the ability of graph semantic reasoning,
which can map the image features extracted by the convolutional neural
network to attribute features through adaptive learning. Finally, the two
sub-networks effectively integrate attribute inference knowledge and rep-
resentation learning to enable end-to-end training. This way can further
improve the interpretability and robustness of pulmonary nodule classifi-
cation. Extensive experimental results on the LIDC-IDRI dataset demon-
strate that our approach obviously outperforms other existing state-of-
the-art methods.

Keywords: Pulmonary nodule classification · Graph convolution
network · Attribute learning · Computed tomography (CT)

1 Introduction

Medical image analysis is an important link in computer-aided diagnosis. Lung
computed tomography (CT) is a kind of medical image that can directly observe
c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13031, pp. 280–292, 2021.
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pulmonary nodules. Lung CT can clearly observe the structural information
of lung nodules, such as shape, size, texture, etc. The Lung CT provides an
effective measure for doctors to evaluate whether the pulmonary nodules have
canceration. Bray [3] and Torre [19] have shown that lung cancer is the leading
cause of cancer death globally, and its morbidity and mortality are both high.
Early diagnosis of lung cancer is the key to reducing mortality. Therefore, it
is significant to propose a reliable computer-aided diagnosis method to analyze
lung CT images to help doctors effectively and accurately classify lung nodules.

Despite the development of approaches for lung nodule classification in recent
years, it remains a challenging task for the following reasons. First, the visual
features of some nodules and their surrounding tissues have low contrast (see
Fig. 1(a) (P2 and P5)). Second, different types of nodules have different visual
characteristics (see Fig. 1(a) (P3 and P4, P1 and P5)). For these reasons, the
lung nodule classification model is still not reliable in terms of accuracy and
robustness. With the development of deep learning technology, convolution neu-
ral network (CNN) is widely proposed for image classification models. Some
researchers have tried to apply CNN to extract image features from lung CT.
These image features with rich discriminative information adapted to different
vision tasks. Most previous works focused on image features to pulmonary nod-
ules classification tasks. Shen [18] used a convolutional neural network to identify
benign and malignant pulmonary nodules, and a multi-crop convolutional neural
network was proposed. To diagnose pulmonary benign and malignant nodules
more efficiently, Causey [4] proposed NoduleXNet, which can extract features
from all CT at one time. Al-Shabi [1] proposed to use convolution kernel with
different scales as local and global feature extractors for pulmonary nodules to
extract local and global features of nodules, respectively. However, these meth-
ods can only output the malignant grade of lung nodules. Thus, they cannot
be explained. In order to make the network interpretable, some researches out-
put attribute scores and malignant scores. Shen [16] divided the process of deep
neural learning of pulmonary nodule diagnosis into the low task and high task.
Low and high tasks predict attribute scores and malignant scores, respectively.
LaLonde [11] utilized a capsule network to predict the attributes scores and
malignancy scores of pulmonary nodules. Unfortunately, these methods rely on
image features to judge the malignant degree of pulmonary nodules and ignore
the important prior knowledge based on the attributes of pulmonary nodules.
Thus, for the robust and interpretable lung nodule classification model, a method
that can jointly analyze image information and attribute information to judge
the malignant degree and output the attribute scores is indispensable.

To address the above challenge, we propose a novel method based on Graph
Convolutional Network (GCN), which joint analysis the attribute features and
image features of lung nodules. This work motivates by experts’ clinical expe-
rience that many features explained by radiologists from CT scans are consid-
ered when assessing the pulmonary nodule’s malignancy [6,9] as illustrated in
Fig. 1(b). These features are called attribute features in this study. Examples
of such attributes include margin, sphericity, texture, et al. Therefore, the joint
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Fig. 1. (a) Example CT images of lung nodules in different positions and shapes:
(1) common isolated nodule. (2) juxtapleural nodule. (3) cavitary nodule. (4) calcific
nodule. (5) ground-glass opacity (GGO) nodule. (b) The attributes of benign and
malignant pulmonary nodules are different. Thus these attributes can be used as an
important basis for judging benign and malignant pulmonary nodules. The six nodule
characteristics are diagnostic features and attribute features, including calcification,
subtlety, sphericity, margin, texture. For each characteristic, we take the average value
of four radiologists.

analysis of attribute characteristics and image characteristics will help improve
the ability to distinguish pulmonary nodules. Specifically, we first design a sub-
network to perform representation learning on lung CT images, which can extract
image-level features. Second, we utilize the GCN to model the attribute semantic
information of lung nodules, and then design a second sub-network to extract
attribute-level features. Moreover, we propose the Attribute Self-guided Fea-
ture Enhancement (ASFE) module that can map image-level features extracted
by CNN to attribute features, which enhances the semantic inference ability of
graph convolutional neural networks. Finally, the information extracted by the
two subnets is jointly optimized. This way also echoes our motivation that use
the images and attributes of lung nodules to analyze together, which makes the
final classification results more robust and accurate.

Our main contributions can be summarized as follows:

– To the best of our knowledge, we are the first to propose a novel end-to-end
interpretable classification framework for pulmonary nodules based on GCN
attribute features and CNN image features. The proposed framework employs
GCN to yield attribute scores for pulmonary nodule’s benign and malignant
assist-proofs diagnosis.

– We propose an attribute self-guided feature enhancement (ASFE) module
that can adaptively learn the low-level features of interdependent attributes
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to enhance the reasoning ability of the graph semantic so as to guide the
classification of pulmonary nodules better. Moreover, this module can be
seamlessly embedded in the network for end-to-end learning.

– Experimental results on the LIDC-IDRI dataset using 5-fold cross-validation
demonstrate that our AS-GCVN yields superior performance over the previ-
ous competing approaches.

2 Method

2.1 Overview

Our proposed diagnosis of benign and malignant pulmonary nodules via
attribute adaptive guided graph convolutional v-shape networks (AS-GCVN)
consists of two components. The overall pipeline of our model show in Fig. 2.

Fig. 2. Overview of the proposed method. The framework that we proposed can be
divided into four parts: (a) Representation learning module. This module extracts
the image feature through convolutional neural networks. (b) Attribute self-guided
feature enhancement (ASFE) module. The input of the ASFE module is the image-
level feature map. (c) GCVN fuses attribute features with prior knowledge and then
conducts attribute classification. (d) Feature fusion module. This module fuses image-
level features with attribute-level features.

The first component applies ResNet-50 to extract the overall images’ visual
features, and obtains the image-level feature vector ŷim ∈ R

B×C (B is the
number of batch size and C is the number of the attribute) through global
average pooling and fully connection (FC) layer; see the (a) frame in Fig. 2.
Thus, if an input image is with the B × 50 × 50 × 1 resolution, we can obtain
B × 5 feature vector from the FC layer.

The second component’s input is the feature map of the image in the first
stage after layer1 (the first block of the ResNet-50). The feature map transforms
the image-level features into attribute features through the ASFE module. Then
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attribute feature and attribute adjacency matrix are used as inputs to obtain
attribute level vector ŷat ∈ R

B×C through graph convolutional v-shape networks
(GCVN), as illustrated in the bottom part of Fig. 2. Thus, if an input feature is
with the B × 5× 11× 11 resolution, we can obtain the B × 5 feature vector from
the GCVN.

Next, ŷim and ŷat are added to obtain the feature vector enhanced by the
attribute level feature. Finally, the enhanced vector is passed through the FC
layer to obtain the benign and malignant results ŷ ∈ R

B×2.

2.2 Attribute Self-guided Feature Enhancement Module

To better guide the classification of benign and malignant pulmonary nodules,
we design an attribute self-guided feature enhancement (ASFE) module that
numerically maps image low-level features into attribute-level features utilizing
attribute learning. ASFE module numerically characterizes the low-level image
features extracted from the deep convolution neural network through adaptive
weight.

The ASFE module’s input is the image feature I ∈ R
B×S×H×W (S is the

number of image feature channel and H and W represent the height and width
of the feature map respectively). After one layer of convolution, the dimension
of the image level features becomes Iim ∈ R

B×C×H
′ ×W

′
. Then we transform

the image features of each category by weight adaptive, which can be expressed
as:

Ii
ASFE = Φ

(
f

(
Ii
im,Ei

ASFE

))
(1)

where Ii
im represents the ith image feature channel patch of Iim, Ei

ASFE that
have the same dimension as Ii

im is the adaptive transformation matrix and
f(·) represents the Hadamard product of the matrix, Φ(·) represents the ReLu
activation function.

Finally, we stretch the IASFE to get the attribute features A ∈
R

B×C×D(D = H
′ × W

′
).

2.3 Graph Convolutional V-Shape Networks

Graph Convolutional Network (GCN) was introduced in [10] to perform semi-
supervised classification. Unlike standard image convolution operations, the pur-
pose of graph convolution is to convolve the feature and adjacency matrix con-
structed by attributes. In the graph convolutional operations, the aim of the
network is to learn a series of weight matrices W which are acting on the graph
G, and then the nonlinear transformation F is used to extract the features. In
GCN, the feature matrix A ∈ R

B×C×D and the adjacency matrix X ∈ R
C×C

are used as inputs. In the network calculation, the network calculates the weight
matrix and the characteristic matrix to get the feature matrix H of this layer
and then transfers the feature matrix to the next layer. The calculation of the
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feature matrix of each layer is the same operation. And then the GCN operation
of [10] can be represented as

H1 = F (
XAW 1

)
,H l+1 = F

(
XH lW l+1

)
(2)

where H l is the feature graph of the output of each layer in GCN and W l ∈
R

dim×d′
is the weight matrices.

For the adjacency matrix X of the attribute, we build the adjacency matrix
between the nodes by mining the relationship between the attributes in the
dataset, for example, P (Cj |Ci) represents the probability of P (Cj) in the case
of P (Ci). As shown in Fig. 2, P (Cj |Ci) is not equal to P (Ci|Cj). Therefore,
the adjacency matrix between nodes is asymmetric.

To establish the adjacency matrix between nodes, firstly, we counted the
number of lesions per type. According to the doctor’s label, the grade of the
lesion is greater than or equal to 3, which is considered as this kind of lesion.
The adjacency matrix can be represented as:

P (Ci|Cj) =
Σ(Cij)
Σ(Cj)

(3)

In the experience of deep neural networks, multi-parameter learning can
achieve satisfactory performance. However, the excessive overlay of the GCN
model will lead to the problem of over-smoothing. Over-smoothing may cause the
nodes in GCN to be consistent. Unfortunately, the output results may become
indistinguishable. To solve the problem of over-smoothing, we propose a novel
V-shaped graph convolutional network framework, which distributes the seman-
tic information of high and low levels more evenly in the GCVN to overcome the
problem of over-smoothing.

GCVN expands the node information and then encodes and decodes the
node information. The purpose of encoding and decoding the node information
is to make the semantic information more evenly distributed in the deep graph
convolution network. To integrate and distribute the node information evenly
in the deeper graph convolution network, we fuse the low-level and high-level
semantic information of GCVN with each other. Thus, we utilize the element-
wise summation operation to fuse the semantic information as follows:

H l = sum
(
H l,HL−l

)
(4)

where L is the number of GCVN layers. In this paper, we set L to 4 empirically.

2.4 Joint Loss Function of AS-GCVN

Our proposed AS-GCVN combines attribute features and image features for
joint analysis. This fusion of semantic information of attribute regression with
benign and malignant image features renders a mutual influence between the
classification and regression. Therefore, our final loss function is the joint loss
function Lcls, which can be expressed as:
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Lcls = ψ1Len + ψ2Lat (5)

where Len and Lat can be expressed as:

Len(ŷ,y) = −
∑

yi log
(
exp(ŷi)/

∑
exp(ŷj)

)
, (6)

Lat(ŷat ,yat) =
1
C

∑
‖ŷat − yat‖22 (7)

In the above formula, Lat is attribute regression loss function and Len is the
benign and malignant classification loss function. Where ψ1, ψ2 represent the
weight factors of Len and Lat, respectively.

3 Experiments

3.1 Dataset

The lung image database combined with image collection (LIDC-IDRI) [2]
includes marker annotation lesions for diagnosis and lung cancer screening by
chest CT. For each lesion attribute, a total of four radiologists were labeled
independently. Therefore, we took the average value of four radiologists for each
attribute as the final label [7,8]. We excluded the benign and malignant mean
label values equal to exactly 3 similar to other works [4,5,20]. Therefore, a total
of 1593 lung nodules were left for evaluation (1092 benign(mean label< 3) and
501 malignant (mean label> 3)).

Besides malignancy, five semantic attributes (subtlety, calcification, spheric-
ity, margin, texture) were scored in the LIDC-IDRI dataset. Most of the Most
features were rated in the range of 1–5, while the calcification were given scores
in the range of 1–6. We also take the average score to obtain the ground truth
attribute score similar to other works [13].

3.2 Implementation Detail

The overall network structure consists of baseline and AAFE module, GCVN,
among which baseline is the ResNet50. The output of ResNet50 and GCVN is
5 × 1 vector, and the final output of the whole network is obtained by adding
the output of ResNet50 and GCVN. During training and testing, we perform
a five-fold cross-validation on the dataset. The input of ResNet50 network is a
50 × 50 image, and the input of GCVN is the adjacency matrix X ∈ R

5×5. We
crop The original data’s image into 50 × 50 according to the coordinates of the
node center point provided in the dataset. Moreover, we rescaled the average
truth attribute scores from 1–5, 1–6 to 1-0 for normalization. The weight factors
of loss function are set empirically to 1. During the training, the mini-batch size
is set as 32. And a total of 80 epochs are trained. For network optimization, we
use SGD as the optimizer. The momentum parameter is set to 0.9. The initial
learning rate is 0.01. We implement the network based on PyTorch [15] and train
on an Nvidia Tesla V100 GPU with 32G memory.
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3.3 Evaluation Metrics and Results

To compare with other state-of-the-art methods, we report the accuracy(ACC),
sensitivity(SEN), specificity(SPE), and AUC of benign and malignant classifica-
tion. which are expressed as:

ACC = (TP + TN)/(TP + TN + FP + FN) (8)

SEN = TP/(TP + FN) (9)

SPE = TN/(FP + TN) (10)

AUC =

∑
i∈p ranki +Np ∗ (Np + 1)

Np ∗ Nn
(11)

where TP is true positive, FN is false negative, FP is false positive, and TN is
true negative. Np, Np are the numbers of positive samples and negative samples,
respectively. ranki is the rank of the ith positive example. i ∈ p denotes the ith
example from the positive sample [14].

Table 1. The performance of the classification results on LIDC-IDRI dataset. ACC,
SEN, SPE, AUC indicate accuracy, sensitivity, specificity and ROC respectively. The
↑ indicates that the higher value, the better.

Method ACC (%)↑ SEN (%)↑ SPE (%)↑ AUC↑
Li et al. [12] 82.15 – – –

Shen et al. [16] 84.20 70.50 88.90 85.60

LaLonde et al. [11] 86.39 – – –

Shen et al. [17] 86.84 – – –

Ours 88.01 75.45 93.78 90.26

The results of pulmonary nodule classification are shown in Table 1. Con-
cretely, the proposed AS-GCVN obtains 88.01% mean ACC, 75.45% mean SEN,
93.78% mean SPE, 90.26% mean AUC, which the mean ACC outperforms state-
of-the-art by 1.17%. Experiments show that this method is effective. Besides,
our method’s superiority is demonstrated by the visualization of the feature, as
shown in Fig. 3.

Figure 4 shows the interpretability of the model for the analysis of benign
and malignant pulmonary nodules by attribute. Attributes were associated with
nodule’s prediction as benign or malignant, such as the absence of calcification,
sharp edges, roundness, a marked contrast with the surrounding environment,
and solid consistency. The regression scores and benign and malignant predic-
tions of the five attributes of pulmonary nodules are consistent with the true
labels. The regression predictions of the attributes are consistent with our knowl-
edge of benign and malignant pulmonary nodules. Unlike the benign case, our
model predicts the malignant nodule having indistinct margins or even partially
sharp margins, a partial ground glass, and an irregular shape.



288 X. Zhang et al.

Fig. 3. t-SNE visualizations. Red dots and blue dots represent the benign and malig-
nant pulmonary nodules. (Left): feature of the nodules from the original image pixel;
(Right): deep features from our proposed method. (Color figure online)

3.4 Ablation Studies

We applied five-fold cross-validation to conduct the ablation studies to objec-
tively evaluate the ASFE module’s effectiveness and GCVN on benign and malig-
nancy pulmonary nodule classification.

Table 2. Results of the ablation studies for analyzing the GCVN and ASFE mod-
ule. We compare our method to the GCVN and ASFE module. The best results are
highlighted in bold.

Baseline GCN GCVN ASFE Metrics (%)

ACC SEN SPE AUC

✔ 83.96 62.77 92.86 84.35

✔ ✔ 85.75 71.67 92.09 89.96

✔ ✔ 86.62 73.75 92.45 90.02

✔ ✔ ✔ 88.01 75.45 93.78 90.26

To verify the ASFE module and GCVN perform the notable effect, we first
compare our method with the baseline. After this, the GCVN framework in
our method is the novel network framework to alleviate the over-smoothing
problems, which can perform well on regression prediction. We compare GCVN
with results from the normal GCN framework on the baseline. Besides, the ASFE
module is the adaptive learning attribute feature module, which can enhance
GCVN reasoning power. Thus, we compare our method with the framework,
which contains the baseline and GCVN. Ablation studies are shown in Table 2.
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Fig. 4. pulmonary nodule diagnosis results of our proposed model. The score on each
pulmonary nodule’s right side was the five attribute scores and the benign and malig-
nant (Mal) grade predicted by our proposed model. The bracket after the predicted
score contains the true score for each attribute. The five attributes are calcification
(Cal), subtlety (Sub), sphericity (Sph), margin(Mar), texture (Tex).

Our method improves the mean ACC score from 83.96% (compared with
baseline) to 88.01%; raises the mean SEN score from 62.77% (compared with
baseline) to 75.45%. The mean ACC score of the GCVN framework proposed
in this paper has been improved from 85.75% to 86.62% compared with the
sequential GCN framework. The mean accuracy of the baseline model, which
contains GCVN and ASFE, has reached 88.01%, while the accuracy of the base-
line model with GCVN is 86.62%. GCVN has also outperformed the baseline
by around 5.91% area under the curve. The experimental results demonstrate
the effectiveness of the ASFE module and GCVN. Figure 5 shows the receiver
operating characteristic (ROC) curve plots comparing AS-GCVN versus abla-
tion studies. The closer the ROC curve is to the upper left corner, the higher the
accuracy of the model. The curve near the upper left corner shows the superior
performance of our model.
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Fig. 5. The receiver operating characteristic curve (ROC curve) of our AS-GCVN and
the ablation studies. It can be seen that the ROC of our AS-GCVN is very competitive
compared to the other ablation studies.

4 Conclusion

In this study, we propose a novel end-to-end AS-GCVN under the structure of
GCN, with a joint analysis strategy for the classification of lung nodules. In
order to improve the semantic reasoning ability of graph convolutional neural
networks, we introduced the ASFE module, which converts image-level features
from self-guided into attribute-level features. In addition, we designed the GCVN
model, which evenly distributes the information between nodes to solve the over-
smoothing problem. Experimental results and ablation results show that our
proposed model is superior to other methods in the classification of benign and
malignant lung nodules, reaching the latest level. Both quantitative and quali-
tative results show that our AS-GCVN has excellent robustness and accuracy in
the classification of lung nodules. In the future, we will explore our method in
interpretable medical image computing.
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Abstract. Pedestrian detection under occlusion scenes remains a
formidable challenge in computer vision. Recently, anchor-free approach
has been raised on the object detection and pedestrian detection field,
anchor-free detector Center and Scale Prediction (CSP) has been pro-
posed in pedestrian detection without special measures for occlusion. In
this paper, we propose an anchor-free detector named OCSP with power
ful occlusion handling ability to existing anchor-free detection network.
OCSP integrates prior information into the network to handle occlusion.
This high-fusion prior information gives the detector a hint about identi-
fying the structural features of pedestrians. OCSP becomes more robust
with the prior information which fusion the semantic head, the visible
part, and the size and center body for each pedestrian. The detector
enhances the perception of occlusion by predicting the semantic head
and visible part. Besides, we design a head branch and add predicting
the visible box to achieve a similar result. Experiments show that this
fusion of prior information represents a suitable combination. We com-
pare our OCSP with state-of-arts models on the Citypersons dataset, the
proposed OCSP detector achieves the state-of-arts result on the CityPer-
sons benchmark.

Keywords: Pedestrian detection · Anchor-free · Convolutional neural
networks · Semantic head

1 Introduction

Pedestrian detection is of fundamental importance in computer vision, which
serves as the basis of autonomous driving, pedestrian re-identification, video
surveillance, robotics, and so on. Pedestrian detection is related to people’s per-
sonal safety, so the performance of pedestrian detection needs to be improved.
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However, pedestrians usually are occluded in real scenes, and the detector should
accurately detect pedestrians in any situation, no matter how high the occlusion
rate is. Pedestrian detection evolved from anchor-based to anchor-free inspired
by the development of object detection. CSP [14] is an anchor-free detector,
which was first proposed in pedestrian detection, but the accuracy needs to
improve when in an occlusion scene.

Generally speaking, part-based pedestrian detection usually exploits the
parts of each pedestrian and integrates them to achieve a new balance. The
detector learns the pedestrian structure through five or four pedestrian parts,
in this way, the detector has the ability to identify the occluded pedestrians.
However, the five or four parts of pedestrian wouldn’t often precisely represent
the pedestrian structure for the pedestrian annotation is a rectangle box, not
pixel level mask and the common dataset often lacks the parts of the pedes-
trian annotations. However, the head remains a distinguishing feature of the
pedestrian structure and occupies a significant part of the human body. Even
at various angles, the head is also a distinguishing feature, the occlusion rate of
the head is lower than that of the human body. Therefore, we predict the head
center of each pedestrian. In this way, the detector can recognize a person’s
head to identify a pedestrian when the pedestrian visible part includes the head
region, the detector becomes more sensitive to the pedestrian head and more
stable. However, the annotation of the head in the datasets frequently lacking,
similar to PSC-Net [25], OR-CNN [29] and PehHunter [2], calculating the weak
annotations of the semantic head with the proportion of head area to the human
body.

In addition, prior information is useful for the detector to better classify
the characteristics of pedestrians. In CityPersons [28], there have bounding box
annotations and visible box annotations, to make full use of these two annota-
tions, we predict the body center and the visible part simultaneously. Further,
the relationship between the body center and the visible part center tells the
detector information when pedestrians in the occlusion scene. There are many
detectors adopt visible part to improve the performance, like BCNet [19] and
0.5-stage [23]. As follows, we predict the visible and body center simultaneously
to improve the ability to deal with occlusion.

We propose OCSP aim to handle the occlusion with some strategies. OCSP
integrates prior information which includes the semantic head, the visible part
and the center and size of the body to aware occlusion and improves the perfor-
mance and robustness. After adding these strategies, we observe that predicting
the width and height of the pedestrian can improve the result. On the basis of
these strategies, we find that predicting the visible box can also improve the
result, besides, we design a head branch that outside the box prediction also
improves the result.

The summary of our work are as follows:

We provide the performance-enhancing combination, combining the visible
part, the body box and the semantic head center to improve the capability of
handling occlusion. OCSP learns discrimination feature of the semantic head
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in each pedestrian. The detector learns to identify occlusion features by the
difference between the visible part center and the body center.

We straight predict the logarithm of height and width of each pedestrian
to learn the slight difference when the aspect ratio is not 0.41, this way the
detector divides more attention to the size map, predicting the width and height
combine center heat-map reserve space information of the pedestrian. We use
ResNeSt [26] as the backbone to extract feature.

We conduct some alternative experiments with similar results, such as,
adding predicting the visible box which achieves 7.77% on the partial subset;
designing a head branch outside the body center prediction which achieves 8.35%
on the Reasonable subset and 4.63% on the Bare subset.

Our result clearly shows that OCSP provides an improvement on Cityper-
sons [28] dataset. OCSP achieves 39.98% on the Heavy subset, 9.38% on the
Reasonable subset, 8.49% on the Partial subset, 5.57% on the Bare subset.

2 Related Work

2.1 Anchor-Based

With the development of anchor-based object detection, anchor-based pedes-
trian detection also improved greatly. The two-stage detectors RCNN [6], Fast-
RCNN [5] and Faster-RCNN [17] are the classical algorithm. Recently, Zoom-
Net [20] added an extra branch to the ResNet [8] backbone, the extra branch
composed of two convolution layers, which mainly handled the small scale of
the pedestrian. HBAN [15] adopted semantic head to make the detector more
robust.

There are many detectors based on part pedestrian detection to handle the
occlusion, i.e. PehHunter [2], PSC-Net [25] and OR-CNN [29]. PehHunter [2]
proposed occlusion-simulated data augmentation which randomly occluded the
part of the pedestrian beside the head with the mean-value of ImageNet [18]
to increase the occlusion ratio of a dataset, it also proposed a head mask guide
which utilized the head location to learn more discriminative occlusion features.
PSC-Net [25] proposed a dedicated module which exploited the topological struc-
ture of pedestrian, this module explicitly obtained the inter and intra-part co-
occurrence information of pedestrian parts to handle occlusion. OR-CNN [29]
proposed an occlusion-aware region of interest pooling unit which integrated the
prior structure information (parts of the body) of the human body with visi-
ble prediction to handle occlusion, it divided the human body into five areas to
improve the robustness of the detector.

2.2 Anchor-Free

Recently, anchor-free object detector has introduced in the object detection field,
i.e. CornerNet [11] and CenterNet [30]. In pedestrian detection, CSP [14] was
first proposed in an anchor-free method, it predicted the center and size of



296 H. Wang et al.

Fig. 1. The overall architecture of OCSP, which mainly includes three components,
i.e. the feature extraction, small branch and detection head. In the feature extrac-
tion, the detector concatenates the different level feature come from the backbone
(ResNeSt101 [26]). The detection head has five prediction layers, each of them is a
1 × 1 convolutional layer, the Conv 1 × 1, 2 indicates the kernel size is 1 × 1, the output
channel is 2. The 2/1 indicates 2 or 1. The small branch includes two layers. (Color
figure online)

each person. There are many improvements based on CSP [14], i.e. ACSP [24],
BCNet [19], PP-Net [1] and APD [27]. ACSP [24] changed the backbone from
ResNet-50 to ResNet-101. BCNet [19] predicted the fusion center which was the
weighted sum of the body center and the visible part center. PP-Net [1] proposed
a pyramid-like structure to aggregate multi-level information. APD [27] proposed
an attribute-aware Non-Maximum Suppression to refine box and encode both
density and diversity pedestrian in dense scenes.

3 Proposed Method

3.1 Overall Architecture

The proposed OCSP model is illustrated in Fig. 1 which is based on CSP [14]
architecture. The architecture includes two parts: feature extraction and detec-
tion head. The image put into the backbone to extract different levels of features,
fuse these features, attach two convolutional layers, then we obtain the output,
the architecture is simple and straight.

We use the ResNeSt-101 [26] to extract different levels features, the output fea-
ture of the backbone has four stages, the four stages are downsampled by 4, 8, 16,
32 times to the input size. Our input size of image is (512,1024), 1024 indicate
width, 512 indicate height, the original size of the input is (1024,2048), we resize
the original size to (512,1024), the size of the input is (512,1024) with 3 channels
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input, after feeding into the backbone, the size of stage 1 is (128,256) with 256
output channels, the size of stage 2 is (64,128) with 512 output channels, the size
of stage 3 is (32,64) with 1024 output channels, the size of stage 4 is (16,32) with
2048 output channels. Following [14], OCSP concatenate the stage 3, stage 4 and
stage 5. Next, three stages adopt L2-normalization. To fusion the lower feature and
high feature, these three stages upsampling 2, 4, 8 times to (H

4 , W
4 ), these three

upsampling with 256 output channels, then concatenate three stages together in
channel dimensions get the fusion feature concatenation. The size of this fusion
feature map is (128,256) with 768 input channels and 256 output channels.

This fusion concatenation feature map follows a 3 × 3 convolutional layer,
then attach five 1 × 1 convolutional layers set as the output of the architecture.
The five output represent the semantic head center map, the visible center map,
the visible size map, the body center map, the scale map, and the offset map.
The size of these output maps is (H

r , W
r ) with 1 or 2 output channel, where r

is set as 4. The detector predicts the body center with one output channel, the
visible center with one output channel, the semantic head center with one output
channel, the offset map with two channels, and the size map with one or two
channels. When the detector predicts the width and height, the output channel
of the scale map is two, one is for the width map, another is for the height map.
When the detector only predicts height, the output channel is one for height.
The offset map has two output channels, the offset map refines the coordinates
of the body center, one for refining the x coordinate of the body center, another
for refining the y coordinate of the body center. When the detector predicts the
center and size of the visible box, the output of the visible size map was applied,
visible size map with two output channels, one for the height map, another for
the width map.

Semantic Head. There have many occlusion situations, pedestrians become
incomplete under occlusion. Because of this situation, the detector needs to
understand that part of the body equally represents a pedestrian, so the pedes-
trian detector learns the parts feature of the pedestrian, compare with the other
part of the body, the head is a more discriminative part, so the head location
assists the detector to learn more discriminative features for occluded pedes-
trians. There have many detectors utilize the semantic head to assist detec-
tor identify the pedestrian, i.e. OR-CNN [29], HBAN [15], PSC-Net [25] and
PehHunter [2]. Consequently, we predict the semantic head center, with feeding
the detector prior information, the detector learns the discrimination feature of
the head. However, the dataset lack annotations for the precise head region, as
follows, taking the upper center part of the human body as the semantic head.

Similar to PSC-Net [25], OR-CNN [29] and PehHunter [2], the definition of
semantic head box contains the head and shoulder area. Assume B = (x1, y1),
C = (x2, y2), B is the left upper of the pedestrian, C is the right bottom of the
pedestrian, we assume the area of the head region is (0.7w, 0.2h) of the body
region, where w and h represent the width and height of body box, the head is
at the top center of the body. The left upper relative coordinates of semantic
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head is (0.85x1 + 0.15x2, y1), the right bottom relative coordinates of semantic
head is (0.85x2 + 0.15x1, 0.8y1 + 0.2y2). In this way, the detector can get the
feature of the semantic head. What’more, predicting the semantic head only in
training stages, it not spends extra cost when in the inference stage.

There have two styles of adding semantic head prediction seen in Fig. 1 and
Fig. 2 Detection Head part. At first, the prediction of the semantic head center
and the prediction of the body center share a 3× 3 convolutional layer. Since the
head area adopts the proportion of the human body, we design a semantic head
branch outside the predicting the center and size of the body, the architecture
shown in Fig. 2.

Fig. 2. The semantic head map is outside of the body prediction map, and the deep
magenta arrow point path is the head branch. The result is shown in Table 4 after
adopting the head branch. (Color figure online)

Visible Part. The visible part box is different from the body bounding box
when pedestrians in occlusion scenes, there are many types of visible parts, which
caused by both inter-class occlusion and intra-class occlusion. The visible part
center is different from the body center when in the occlusion situation. The
visible part of the pedestrian indicates the difference between the foreground
target and background target when in intra-class occlusion. Both anchor-free
detectors and anchor-based detectors predicted the visible part center of the
pedestrian, i.e. BCNet [19] and 0.5-stage [23]. The annotation provides the visible
pedestrian include the upper left corner and the right bottom corner. The way
obtains the visible boxes from the annotation is the same as gain the body
boxes. After predicting the visible center and the body center simultaneously,
the detector becomes more capable to deal with occlusion. What’s more, to let
the detector learn the feature of the visible part area and to make full use of the
visible part, we do further experiment to predict the center and size of the visible
part. Predicting the center and size of the visible part can make the detector
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more capable of handling occlusion. The visible part size map is seen in Fig. 1.
In the detection head, the output of the visible size map indicates by the dotted
line.

Extra Branch. The lower feature map contains detailed edge information, to
make full use of the lower level feature, we add an extra branch to the backbone as
shown in Fig. 1 the green dotted line, the input of the extra branch is the images,
the extra branch maintains two layers, and then fusion to the fusion feature
map. ZoomNet [20] proposed to add an extra branch to the network. Our extra
branch is two convolutional layers, the first layer is the same as ZoomNet [20],
the first layer is the ResNet-101’s [8] or ResNeSt’s [26] first layer without the max
pooling. We define the second convolutional layer with 3× 3 kernel and 2 strides,
the output channel of feature map is 128. Then attach BachNormlization [9] and
PReLU [7]. When the small extra branch is appended, the input channel of the
fusion feature map adds 128 which is the Conv2’s output channel, so its input
channel is 896. The extra branch adds to the backbone only in the ablation
experiment.

3.2 Training

Loss Function. The loss function includes three parts: center loss, scale loss
and offset loss.

Center Loss. As in [14], we predict the heatmap of center, the center indicates
the body center, the visible part center, and the semantic head center. Each
heatmap has 3 channels, one is the heatmap generated using the Eq. 2, the other
is the ground-truth of the center, which is set as 1 in the center and outside the
center are set as 0, and the last map within the box of each pedestrian are set as
1 and outside are assigned as 0. The size of center map is (H

r , W
r ). The center

heatmap using a 2D Gaussian. It is defined as:

Mij = max
k=1,2,...K

G(i, j;xk, yk, σwk
, σhk

) (1)

G(i, j, x, y, σw, σh) = e
−(

(i−x)2

2σ2
w

+
(j−y)2

2σ2
h

)
(2)

where K is the total number of pedestrian in each image, (xk, yk, wk, hk) is the
ground-truth center coordinates divided by r of the kth pedestrian. If two Gaus-
sians overlap, we apply the element-wise maximum [14] values in the overlapped
location.

Lc = − 1
K

W
r∑

i=1

H
r∑

j=1

αij(1 − p̂ij)γ log(p̂ij) (3)

where

p̂ij =
{

pij if yij = 1
1 − pij otherwise

(4)
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αij =
{

1 if yij = 1
(1 − Mij)β otherwise

(5)

In the above, yij is the ground-truth of the pedestrian center. The Mij is in
Eq. 1, pij represents the score at location (i, j) in the predicte map. The size of
predicting map is (H

r , W
r ), so the i is from 1 to W

r , the j is from 1 to H
r . The

center loss combines the focal loss [12] and 2D Gaussian map. The σ is set as 2
and β is set as 4, similar as suggested in [11].

For the loss function of the semantic head, visible center, and body center,
we formulate it as center loss, which is denoted as Lhead, Lvis and Lbodycenter.
The center loss is defined as:

Lcenter = λcLbodycenter + λvLvis + λhLhead (6)

where λc, λv, λh are set as 1, 0.5, 1.

Scale Loss. For scale prediction, the scale loss function consists of two parts, the
Lwidth and the Lheight. We formulate the Lwidth and Lheight as a regression task
via L1 loss [5]. In the ground-truth of scale map, there include three channels,
the two use surrounding 2 pixels of the body center are set as the logarithm of
width and height, the last map are set as 1 in the same location of the two maps
but other location are set as 0. When testing, the height and width take the
exponent of the predicting width and height. The scale loss is defined as:

Lwidth =
1
K

K∑

k=1

L1(sk, tk) (7)

where sk and tk represent the detector’s prediction of width map and the ground-
truth of width map. The loss function of Lheight is also formulated in the Eq. 7.
The total loss of scale loss is the sum of Lheight and Lwidth.

Lscale = Lheight + Lwidth (8)

When predicting the size of the visible part box, the loss function about the scale
of the visible part is marked as LvisibleScale. The LvisibleScale also includes two
parts, one for the height, anchor for the width. The loss LvisibleScale formulates
above function.

Offset Loss. The offset loss not only refines the center of the body but also
refines deviation during the process of rounding down. The offset loss is defined
as:

Loffset =
1
K

K∑

k=1

SmoothL1(ok, ôk) (9)

where ok and ôk are the ground truth offset and predicted offset respectively.
The ok include okx and oky. okx = xk

r − �xk

r �, oky = yk

r − �yk

r �, where r is set as
4.

The total loss function is denoted as:

L = λlLcenter + λsLscale + λoLoffset (10)
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where λl, λs, λo are set as 0.01, 0.05, 0.1.
If the detector predicts the size of visible box, the total loss function can be

denoted as:

L = λlLcenter + λsLscale + λsvLvisibleScale + λoLoffset (11)

where λl, λs, λsv, λo are set as 0.01, 0, 005, 0.0025, 0.1.

Inference. During testing, even adding prior information, the prediction of
pedestrian straight comes from the center map, size map and offset map. In the
body center prediction map, following [14], the score above 0.1 are kept. If the
detector predicts the width and height, the scale map has two output channels,
then keep the responding exponent of height and width in the prediction scale
map. NMS is also adopted 0.5 to filter the box. If the detector only predicts
the width, the scale map has only one channel, the width adopts 0.41 times the
height unless extra emphasis.

4 Experiments

4.1 Experiment Settings

Dataset. CityPersons [28] Dataset was proposed in the 2017 year, which anno-
tated on the CityScapes benchmark [3]. The background includes 27 cities. It
has 5,000 images altogether. We use the 2975 images for training and 500 val-
idation subset images for testing. The input size of images is 1× when testing.
The evaluation metric is MR−2 [4], which is log-average Miss Rate over False
Per Image (FPPI) ranging in [10−2, 100].

Training Details. The OCSP is realized in Pytorch [16]. The ResNeSt101 [26]
is the backbone of the network, which pre-trained on ImageNet [7]. The detec-
tor adopts Adam [10] optimizer to optimize the network. The moving average
weights [22] is adopted to achieve stable training and perfect result. A mini-batch
contains 4 images with one GPU. The type of GPU is Tesla V100-SXM2. The
input size of the image is 512 × 1024 which is 0.5 times the original size in the
datasets. The learning rate is set as 4e−4 and is unchanging during the training
unless otherwise stated. The epoch of the training is 150.

4.2 Ablation Study

Our experiment conducts on the CityPersons [28] datasets. We try different
strategy portfolios to reduce the MR−2. In these experiments, we select the
best result within 150 epoch. In the Table 3, we first do the experiment on the
backbone ResNet-101 [8], to improve the evaluation result, the detector add
predicting the semantic head center, the visible center and a small branch to
the network, however, the result needs to be improved, then we change the
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backbone from ResNet101 [8] to ResNeSt101 [26]. We conduct the ablation study
to find a better balance after changed the backbone, we first add each strategy
individually to the backbone, then add pairwise strategy, then add total strategy
to the networks. Furthermore, we predict the width and height to get a better
result rather than only predict the height. Finally, the experiment result shows
that predicting the semantic head center, the visible center, predicting the width
and height with the ResNeSt101 [26] backbone is a fine combination.

Table 1. Comparison between different backbones. The experiment sets both add
semantic head, visible center. The semantic head and small extra branch add in
ResNeSt50, the experiment of ResNeSt269 include visible center, semantic and one
GPU with 2 images. The learning rate is set as 2e−4 with the backbone ResNeSt101
[26].

Backbone Reasonable

ResNeSt50 11.30%

ResNeSt101 9.26%

ResNeSt200 10.41%

ResNeSt269 11.16%

What is the Influence of the Backbone? First, the result of own run-
ning ACSP [24] is show in Table 3 first row, which is different to the [24],
because of the different experiment setting, ACSP [24] adopt two GPU with two
images, we adopt one GPU with 4 images. To find the appropriate backbone for
the OCSP, we also use the ResNeSt50 [26], ResNeSt101 [26], ResNeSt200 [26]
and ResNeSt269 [26] backbone to extract feature, in the Table 1, experiments
shows that the ResNeSt101 [26] is fit for the OCSP. Comparisons are con-
ducted in Table 3, the result is improved when only change the backbone from
ResNet101 [8] to ResNeSt101 [26] with the result from 52.9% to 47.92% on the
Heavy subset, on the basis of the backbone, adding the semantic head, the result
comes from 10.82% to the 10.09% on the reasonable subset.

Table 2. Comparison between the different regions of the head. The backbone is
ResNeSt101, using the visible center and the semantic head.

Semantic head Heavy

(0.7w,0.2h) 44.44%

(2/3w,1/3h) 46.13%

What is the Influence of the Semantic Head Center when Training?
The semantic head is strong prior information for the detector. In the HBAN [15],
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the definition of the semantic head is (2/3w, 1/3h), in the PSC-Net [25], OR-
CNN [29] and PedHunter [2], the definition of the semantic head is (0.7w, 0.23h),
the two areas of the head are different, so it is significant to do the experiment to
find a better result. Both experiments add the semantic head and visible center,
the Table 2 shows that the (0.7w, 0.2h) receives a relatively good result. So the
region of the head area is (0.7w, 0.2h). In fourth row of the Table 3, MR−2 is
10.09% on the reasonable subset when predicting semantic head on the basis of
backbone ResNeSt101. In the penultimate row of the Table 3, the result is 44.22%
when predicting semantic head heatmap and visible part center heatmap. These
two results show that the semantic head is important to the detector.

In the Table 3, we make these strategies in a different combination, the result
shows that the ResNeSt-101, visible center, the semantic head and add predicting
width is the best combination with the result 42.55% on the heavy subset. In
Table 3, we observe that the evaluation result is 43.98% and 43.66% on the Heavy
subset after adding a small branch, so adding a small branch improves the result.

Table 3. Comparisons with different prior information had or not. The performance
is measured by MR−2. The +semantic head indicates that the detector predicts the
semantic head center, the +visible center indicates that the detector predicts visible
center, the +extra branch indicates that adds an extra branch to the fusion feature
map, the −log indicates that the detector predicts the width and the ground truth of
the width and height without the logarithm, the +width indicates that the detector
predicts the width with the logarithm. In the first and second row, the detector adopt
backbone ResNet101 [8]. In the remaining lines, the detector adopt ResNeSt101 [26].

+Semantic
head

+Visible
center

+Extra
branch

−log +width Reasonable Heavy

× × × × × 13.14% 52.22%√ √ √ × × 11.10% 52.90%

× × × × × 10.82% 47.92%√ × × × × 10.09% 46.67%

× √ × × × 10.45% 45.81%

× × √ × × 11.0% 43.98%√ √ √ × × 9.63% 44.21%√ √ √ √ × 9.58% 43.66%

× √ √ × × 8.93% 45.27%√ × √ × × 9.70% 44.03%√ √ × × × 9.26% 44.22%√ √ × × √
9.11% 42.55%

What is the Influence of Predict Width and Height? In the first row of
the Table 4, we find the detector achieve the best result in the 125 epoch, the
MR−2 on the heavy subset is 42.55% in 125 epoch, the learning rate reduced
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Table 4. The OCSP(w) indicates that the detector predicts the width and height
of each pedestrian, with adding predicting the semantic head center and the visible
center. The initial learning rate is set as 4e−4, decrease learning rate ten times after
125 epochs. Don’t use moving average weights after 125 epochs. The OCSP+ predict
visible box which predicts the visible center and visible width and visible height, the
learning rate is unchanging during training. In OCSP∗, the batch size is 4, but the loss
update is 16, because the backbone is a split attention network and it suits the larger
batch size, OCSP∗ adopts the head branch output in the head detection seen in Fig. 2.
The other experiment setting is the same as the OCSP(w).

Method Epoch LR Reasonable Heavy Partical Bare

OCSP (w) 125 4e−4 9.11% 42.55% 8.72% 5.17%

OCSP (w) 144 4e−5 9.38% 39.94% 8.49% 5.57%

OCSP (w) 120 4e−5 9.54% 42.98% 8.52% 6.41%

OCSP+ 144 4e−4 8.99% 43.00% 7.77% 5.51%

OCSP∗ 115 4e−4 8.35% 45.07% 8.05% 4.63%

by ten times after 125 epoch, what’s more, the moving average weights don’t
adopt after 125 epoch, after changing these and continuing training, the MR−2

on the heavy subset is 39.94% in 144 epoch. In the third row of the Table 4, we
use the learning rate 4e−5 to training the detector, these two experiments only
the learning rate are different, these two experiments both predict the width and
height, semantic head center and visible part center. The result shows that the
MR−2 increase 0.43% in the reasonable subset, so the smaller learning rate is
not fit the detector because of the poor performance. In the fourth row of the
Table 4, the detector predicts the semantic head center, the center and size of the
visible and full pedestrian box, each box predict the width and height, this two
result show that the OCSP+ represents a good balance with 43.00% on the heavy
subset, 7.77% on the partial subset, 5.51% on the bare subset, the partial result
and bare result is the state of art result. We also use the head branch outside
the body prediction which is shown in Fig. 2, the result of this experiment show
in the last line of the Table 4, the result outperforms the OCSP∗ with the 8.35%
on the Reasonable subset.

4.3 Comparison with the State of the Arts

We compare our OCSP with all existing state-of-the-art detectors on the vali-
dation set of CityPersons. All methods are trained on Citypersons training set
without any extra data (except ImageNet) and test on Citypersons validation
set. The result is observed in Table 5. The evaluation metric is MR−2. From
the table, we can figure out that our OCSP achieves a state-of-art result. When
predicting the center and center and size of visible part, the semantic head cen-
ter, the center and size of body box and each box predict width and height, the
MR−2 is 43.00% on the heavy subset, the MR−2 is 8.99% on the reasonable
subset, the MR−2 is 7.77% on the partial subset, the MR−2 is 5.51% on the
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bare subset. When add predicting the width and height, the semantic head cen-
ter and the visible part center to the predicting body center box, the MR−2 is
39.94% on the heavy subset. We achieve 8.35% on the Reasonable subset, when
adopting the head branch outside the prediction of the body.

Table 5. Comparisons with state-of-the-arts on Citypersons datasets.

Method Backbone Reasonable Heavy Partial Bare

FRCNN [28] VGG-16 15.4% – – –

FRCNN+Seg [28] VGG-16 14.8% – – –

TLL [21] ResNet-50 15.5% 53.6% 17.2% 10.0%

ALF [13] ResNet-50 12.0% 51.9% 11.4% 8.4%

OR-CNN [29] VGG-16 12.8% 55.7% 15.3% 6.7%

CSP [14] ResNet-50 11.0% 49.3% 10.8% 8.1%

BCNet [19] ResNet-50 9.8% 53.3% 9.2% 5.8%

ACSP [24] ResNet-101 9.3% 46.3% 8.7% 5.6%

OCSP(w) (ours) ResNeSt-101 9.38% 39.94% 8.49% 5.57%

OCSP+ (ours) ResNeSt-101 8.99% 43.00% 7.77% 5.51%

OCSP∗ (ours) ResNeSt-101 8.35% 45.07% 8.05% 4.63%

5 Conclusion

In this paper, we propose OCSP which is an anchor-free approach to handle
occlusion. A lot of prior information is provided to the detector, in this way, the
detector directly obtains the structural feature of the pedestrian. We model the
pedestrian as the semantic head center, visible center or visible box, body center
and scale, the scale includes the width and height. The detector not only pre-
dicts the center and size of the pedestrian, but also predicts the semantic head
center and the visible part, these two extra predictions can make the detector
more robust and effective to deal with the occlusion. OCSP maintains the per-
ception of occlusion by predicting the semantic head and visible part. We also
try other possibilities such as adding predicting the visible box and adopting
a head branch, which achieves similar results. We manage to explain why we
carry out these changes. Experiments are conducted on the Citypersons, OCSP
achieves state-of-the-art evaluation results.
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Abstract. Documents often contain complex physical structures, which
make the Document Layout Analysis (DLA) task challenging. As a pre-
processing step for content extraction, DLA has the potential to capture
rich information in historical or scientific documents on a large scale.
Although many deep-learning-based methods from computer vision have
already achieved excellent performance in detecting Figure from docu-
ments, they are still unsatisfactory in recognizing the List, Table, Text
and Title category blocks in DLA. This paper proposes a VTLayout
model fusing the documents’ deep visual, shallow visual, and text fea-
tures to localize and identify different category blocks. The model mainly
includes two stages, and the three feature extractors are built in the sec-
ond stage. In the first stage, the Cascade Mask R-CNN model is applied
directly to localize all category blocks of the documents. In the second
stage, the deep visual, shallow visual, and text features are extracted
for fusion to identify the category blocks of documents. As a result, we
strengthen the classification power of different category blocks based on
the existing localization technique. The experimental results show that
the identification capability of the VTLayout is superior to the most
advanced method of DLA based on the PubLayNet dataset, and the F1
score is as high as 0.9599.

Keywords: Document layout analysis · Fusion of visual and text ·
VTLayout · PubLayNet

1 Introduction

With the development of science and technology, more and more scientific
achievements are published, and the abundant academic literature makes it diffi-
cult for scientists to extract cutting-edge innovations. Therefore, it is highly crit-
ical to extract the information needed by researchers effectively and accurately
from a large amount of scientific literature. As a pre-processing step of the doc-
ument understanding system, the high-performance DLA model can accurately
locate and identify different category blocks in the documents. In practice, a good
c© Springer Nature Switzerland AG 2021
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DLA result can improve the performance for document retrieval, text recogni-
tion, and other tasks in the field of natural language processing (NLP).

Based on the observation of the images from the PubLayNet dataset [29],
the layout usually contains five categories: Figure, List, Table, Text, and Title.
According to the recent literature review, the recognition of the List can be a
challenge which the previous methods always can not perform well on List com-
pared with other categories [29]. Besides, identifying the Title is also one of the
most difficult tasks because Title always appears with fewer words. Therefore,
to fully understand the content of scientific literature, automatically identifying
the layout of document structure well has become a top priority.

The current widespread object detection and classification approaches often
rely on Deep Convolutional Neural Networks (DCNNs) to obtain features.
Although the Figure, List, and Table in DLA are different from the objects in
traditional object detection tasks, some deep-learning-based models can still per-
form well, such as Faster R-CNN [22], Mask R-CNN [29], SSD [15], and YOLO
[21]. Based on the observations of the images from the PubLayNet dataset, each
category has its unique feature. Therefore, we believe a DCNNs-based approach
can extract these unique features for fusion to effectively enhance the perfor-
mance of DLA. Besides, some intuitive perceptual features can help classify the
category blocks for the document pages with a single background color. For
example, people often notice that the Title usually presents in a bolder form
than other text paragraphs. Based on these observations, we believe that the
statistical pixel values of each category block can be used as a feature to classify
different category blocks. Therefore, this intuitive perceptual feature is consid-
ered in our proposed model, also called the shallow visual feature in this paper.
The ablation experiments prove that the extraction and recognition of shal-
low visual features can effectively enhance the recognition of different category
blocks.

Inspired by Asim M N [2], the model we finally propose that considers not
only the visual features but also the text features of the documents. In order to
improve the classification power based on the previous methods, the Faster R-
CNN and Mask R-CNN models are reproduced to find out which categories are
easily incorrectly classified. It can be found that the Title can not be recognized
well by both Faster R-CNN and Mask R-CNN models based on the PublayNet
dataset. Therefore, after considering the text features of the Title, we decide
to apply a traditional feature extraction technique in text mining as one of the
feature extraction techniques in our final proposed model.

Based on the motivations mentioned above, a novel two-stage model for DLA
is proposed. The first stage is designed to locate each category block accurately.
In the second stage, different category blocks are classified, including three dif-
ferent units related to the deep visual feature, shallow visual feature, and text
features. In order to extract deep visual features from different category blocks,
MobileNetV2 [23], a lightweight DCNNs, is applied in our proposed model. Fur-
thermore, the shallow visual feature is extracted based on the statistical pixel
values of each category block. In addition, Term Frequency - Inverse Document
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Frequency (TF-IDF) [20] is also applied as a weighting method to reinforce the
distinction between text format category blocks.

The contributions of our work can be summarized as follows:

– A document layout analysis model, VTLayout, based on the fusion of deep
visual, shallow visual, and text features, is proposed to solve the low recog-
nition rate of different document category blocks.

– A Shallow Visual Feature Extractor is proposed to obtain intuitive perceptual
features from document images.

– Experimental results show that the VTLayout model achieves the state-of-
the-art performance on the PubLayNet dataset.

The paper is structured as follows: In this section, the motivations of DLA
and contributions of this paper are introduced. The second section summarizes
the latest literature review in DLA. Then, the third section briefly describes
the structure of the VTLayout model with different feature extractors in detail,
and the PubLayNet dataset is introduced in Sect. 4. In the next section, the
experiment settings are listed in detail and we present the experimental results
of the VTLayout model on the PubLayNet dataset with some further analysis
in Sect. 6. The last section concludes the VTLayout model and future research
in DLA.

2 Related Work

Scientists have already proposed some methods for DLA. For example, a method
for page layout analysis has been proposed based on the bottom-up, nearest-
neighbor clustering of page components [17]. Meanwhile, this method generated
precise measures of skew, within-line, and between-line spacings. Besides, text
lines and blocks were also located. Another traditional page segmentation tech-
nique has been proposed based on the recursive X-Y [7]. Moreover, the black
pixels were used for connected components instead of using image pixels. In
2007, Namboodiri and Jain [16] proposed a workflow of the document layout and
structure analysis system that includes the pre-processing, layout, and structure
analysis, segmented document, and evaluation steps.

In recent years, Zhong et al. [29] published a huge dataset named the Pub-
LayNet. It was created for DLA by automatically matching the XML represen-
tation, and the content includes more than one million PDF articles publicly
available on PubMed Central. Based on the PubLayNet dataset, three more
experiments were also made to investigate. Firstly, it has been demonstrated
that Faster R-CNN and Mask R-CNN models can perform well on this dataset,
although there was much room for improvement. Next, the Faster R-CNN and
Mask R-CNN models were pre-trained on PubLayNet by researchers and fine-
tuned successfully to tackle the ICDAR 2013 Table Recognition Competition.
Thirdly, experimental results have demonstrated that the PublayNet dataset can
be used for transfer learning in distant domains.
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Furthermore, the researchers proposed a series of new methods based on the
DCNNs [3,4,26]. For document image classification, Kang et al. [11] applied a
DCNNs architecture on the Tobacco 3482 benchmark dataset to learn from the
raw image pixels. The experimental result has demonstrated that the proposed
method can surpass the performance of the simple structure-based approach. In
2018, Kavasidis et al. [12] proposed a method that combined the DCNNs, graph-
ical models, and saliency concepts to solve the table and chart detection task.
Siddiqui et al. [25] solved the table structure recognition task from the domain of
semantic segmentation. In addition, a method of prediction tiling based on the
consistency assumption was proposed for the tabular structure, which achieved
excellent performance on the ICDAR-13 image-based table structure recognition
dataset. Sun et al. [27] proposed a table detection method based on the Faster
R-CNN architecture combined with the corner location method.

In addition, some researchers believe that combining the semantic text infor-
mation of the documents is a benefit for DLA. In 2017, Yang et al. [28] pro-
posed an end-to-end, multimodal, and fully convolutional network for document
semantic structure. Meanwhile, the unified model classified pixels not only by
their appearance as in the traditional page segmentation task but also by the
content of the underlying text. In 2019, a novel two-stream approach was pro-
posed based on the feature-ranking algorithm for document image classification
[2]. Meanwhile, an average ensembling method was applied to concatenate the
textual and visual stream in the proposed approach. Jain and Wigington [10]
proposed another method for DLA based on the multimodal feature fusion com-
bining a feature representation of the visual and text modalities.

3 Methodology

This section introduces the workflow of VTLayout in detail. VTLayout consists of
two stages for DLA. A proven efficient object detection model has been applied
directly to localize different category blocks in the first stage. Then, a novel
classification approach has been proposed in the second stage based on the fusion
of the deep visual, shallow visual, and text features. Figure 1 exhibits the two
stages of the VTLayout model.

3.1 Category Block Localization

In the first stage, the document images are sent to the Cascade Mask R-CNN
model [5], where all the different category blocks are localized. The Cascade
Mask R-CNN model extends the Cascade R-CNN by adding a mask head to the
cascade. In object detection, the intersection over union (IoU) [5] threshold is
required to define positives and negatives, and it is expected that some existing
methods can not perform well when the IoU threshold increases. Therefore, the
Cascade R-CNN is proposed for solving this problem with a multi-stage object
detection architecture trained with increasing IoU thresholds.
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Fig. 1. The structure of the VTLayout consists of two stages, Category Block Localiza-
tion and Category Block Classification. The Category Block Localization stage local-
izes the different categories from scientific documents using the Cascade Mask R-CNN
model. The DVFE, SVFE, and TFE have been built to extract different features in the
Category Block Classification stage. The DVFE is built with the MobileNetV2 model
to extract the deep visual feature from all the category blocks. The SVFE extracts the
shallow visual feature based on the statistical pixels of different category blocks. The
TFE is implemented with the TF-IDF feature extraction technique to extract the text
features from the category blocks.

3.2 Category Block Classification

Although it is demonstrated that Cascade Mask R-CNN is shown to surpass all
the single-model object detectors on the challenging COCO dataset [14], due to
the similarity of List, Text, Title, it can locate each category block rather well
but can not classify them correctly in the PubLayNet dataset. Therefore, in the
second stage, a novel approach is proposed to improve the classification power
of the category blocks based on the fusion of the deep visual, shallow visual,
and text features. The Deep Visual Feature Extractor (DVFE) is built with
the MobileNetV2 model to extract the deep visual feature from all the category
blocks. The shallow visual feature is also extracted by the Shallow Visual Feature
Extractor (SVFE) based on the statistical pixels of different category blocks. To
extract the text features from the category blocks, the TF-IDF feature extraction
technique is applied as the primary technology in the Text Feature Extractor
(TFE). Then, a Squeeze-and-Excitation (SE) network [9] is applied with the
MobileNetV2 model to weigh each feature map extracted by the MobileNetV2
model. Meanwhile, the extracted shallow visual feature and text feature vectors
are concatenated and sent to a fully connected layer for further classification.
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The following subsections, the DVFE, SVFE, TFE, and Feature Concatenation
Unit (FCU), are introduced with more details.

Deep Visual Feature Extractor
MobileNetV2 model is selected as the backbone architecture, which has been
proved to achieve excellent results in multiple tasks and benchmarks. Compared
with other proposed architectures, MobileNetV2 is a lightweight DCNNs archi-
tecture, which delivers high accuracy results with small numbers of parameters
and mathematical operations. The basic structure of the MobileNetV2 is a bot-
tleneck depth-separable convolution with residuals and contains the initial fully
convolution layer [23]. Based on the MobileNetV1 model [8], researchers found
that removing non-linearities in the narrow layers is essential to maintain the
representational power and the experimental results proved its feasibility.

Shallow Visual Feature Extractor
Based on the experimental results from the Category Block Localization stage,
List, Text and Title can be misclassified by the Cascade Mask R-CNN. For most
images, pixel values range from 0 (black) to 255 (white). As Fig. 2 shows, the
statistical pixels of Figure, List, Table, Text and Title are plotted as line graphs
for comparison based on all the category blocks from the PubLayNet training
dataset. The horizontal axis represents the pixel values range from 0 to 255, and
the vertical axis represents the number of pixels for each pixel value. Based on
the line graph of pixels, it is easy to find that the pixel values between 0 to 255
have distinct characteristics to classify different category blocks. Therefore, the
SVFE is proposed as one of the units, and all the feature vectors are in length
256.

Text Feature Extractor
Text Feature Extractor (TFE) is built for extracting the text features of all
the different category blocks. Since every word needs to be extracted for text
features, all the category blocks are applied with the PaddleOCR [24]. In particu-
lar, as Title blocks are always in small formats and even difficult to be identified
by human naked eyes, we particularly enlarge each category block eightfold.
Then, the TF-IDF feature extraction technique is applied with the output of
PaddleOCR to determine the importance of each word in the textual content.
Finally, a vector is built for each category block which represents the text feature.

Feature Concatenation Unit
The DVFE can extract important feature maps that cannot be directly observed,
while SVFE can extract features that may be missed by the network in the pro-
cess of convolution. Furthermore, the features extracted by TFE can enhance
the discriminant capability of text format category blocks. Considering the three
kinds of extracted features, increasing the weights of the more valuable fea-
tures by the whole classifier automatically becomes the next research key point.
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Fig. 2. Statistical pixels of different category blocks.

Researchers have found that enhancing the quality of spatial encodings through-
out its feature hierarchy is a proper way to strengthen the representational power
of CNN. In this work, the SE block has been proposed to recalibrate the channel-
wise feature adaptively [9]. Since the SE block has been proved that it can
improve the performance of CNNs at a small additional computational cost, we
apply the SE block with the MobileNetV2 model.

Besides the deep visual feature, the shallow visual feature and the text fea-
tures are merged into a single larger vector. Then, the concatenated vector is put
into a four-layer, fully connected deep neural networks (DNNs) with the number
of neurons [512, 256, 128, 64], and the output is concatenated with the output
of the SE block.

4 Dataset

This section introduces the dataset used in our experiments in detail. The
PubLayNet dataset is the largest dataset ever for DLA task. It contains more
than 360,000 document images with five annotated document layout categories.
Table 1 shows the statistics of the whole PubLayNet dataset, which includes the
training and validation dataset. As Table 1 shows, the Text category contains
an enormous amount of data compared to other categories, which is expected
because the amount of Text is often much more extensive than other categories
in scientific literature.

Meanwhile, it is easy to find that the amount of data in Title is ranked
as the second, and the number of List is the smallest in the entire dataset.
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For experiments of reproducing the baselines and the VTLayout models, all the
images from the PubLaynet dataset are used. As the test dataset is not published
so far, we use all the images from the training dataset for training, and the whole
validation dataset is used for inference. Therefore, there are 335,703 images for
training and 11,245 images for inference.

Table 1. Statistic of the PubLayNet dataset.

Categories of the dataset Training dataset Validation dataset

Text 2,376,702 88,625

Title 633,359 18,801

List 81,850 4,239

Table 103,057 4,769

Figure 116,692 4,327

Total 3,311,660 120,761

5 Experimental Settings

This section describes all the experimental settings of this paper. In the begin-
ning, we compare the performance of our proposed VTLayout model with the
Faster R-CNN, Mask R-CNN baselines published in the paper of PubLayNet
dataset [29]. Besides, we also compare the Cascade Mask R-CNN experimental
results with the VTLayout model to observe the effectiveness of fusing the visual
and text features for DLA. As we want to compare the classification power of the
VTLayout model with the baselines, we reproduce the baselines based on their
experimental settings and analyze their classification results without localization
results. Therefore, precision, recall, and F1 score [6] are applied as the primary
evaluation metrics to evaluate the models in this experiment instead of the MAP
@ IOU [0.50:0.95] evaluation metric applied in the paper of PubLayNet dataset.

In our VTLayour model, the Cascade Mask R-CNN model is implemented
by Pytorch framework [18]. Then, the resNeXt-101-64x4d model is selected as
the backbone network, initialized with the model pre-trained on the ImageNet
dataset. The model is trained for 30 epochs with a batch size of 8, one sample
per GPU. Moreover, SGD optimizer [13] is used with the initial learning rate
of 0.02, the momentum of 0.9, and the weight-decay of 0.0001. In DVFE, the
mobileNetV2 model is applied with the TensorFlow framework [1] and all the
category blocks are resized to 128× 128 by padding. The mobileNetV2 is pre-
trained by the ImageNet dataset without the fully connected layer at the top of
the network. Besides, the three input channels are set as (128, 128, 3), and the
global average pooling is applied to the output of the last convolutional block.
In the SVFE, all the color images are firstly converted to grayscale images. In
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the first step of TFE, the chinese ocr db crnn mobile [30] from PaddleOCR is
applied to identify the words from the documents. Then, the TF-IDF feature
extraction technique is applied with the Sklearn library [19]. Finally, the Adam
optimizer [13] is used with the initial learning rate of 0.001, and the cross-entropy
is used as the loss function.

Besides comparing the VTLayout model with the baselines, a series of sta-
bility checking experiments are built based on a small-sized dataset. In order to
test our proposed VTLayout model on a small dataset, we only train the Cat-
egory Block Classification stage with 25,000 randomly selected images for Text
and Title, 10,000 randomly selected images for Figure, List and Table from the
output of the Cascade Mask R-CNN instead of all of the training dataset. Based
on the statistics of the PubLayNet training dataset, there are around seven Text
blocks, and two Title blocks can be extracted from one page. As around four
pages can contain one List, three pages can contain one Table and one Figure,
30,000 images from the PubLayNet training dataset are randomly selected to
train the Faster R-CNN and Mask R-CNN to see the classification capability
of each model. The results of the comparative experiment are presented in the
Result section.

Meanwhile, a five-fold cross-validation experiment is also applied to test the
stability of our VTLayout model on the same small-sized dataset. In the exper-
iments, the dataset is randomly divided into five parts on average and takes
out four of them as the new training dataset and the remaining one as the test
dataset each time. Besides, each fold of data is required to be the test dataset
once. Finally, in the ablation experiments, a series of experiments are imple-
mented to see whether all the three feature extractors can affect the master
model and what kind of feature can contribute most to the VTLayout model. In
particular, if the DVFE is not implemented as one of the units in the VTLayout
model, the SE network will also not be applied. If the SVFE or TFE are not
applied in the VTLayout model, their feature vectors will not be concatenated
and put into the fully connected layer. F1 score is selected as the only evaluation
metric for the stability experiments and ablation experiments.

6 Results and Analysis

Table 2 shows that our proposed VTLayout model achieves a state-of-the-art
performance than the baseline models on the PubLayNet dataset with the F1
score of 0.9599. The excellent F1 score means that our model has both low false
positives and low false negatives, and the low precision and recall values also
prove the effectiveness of the VTLayout model.

Moreover, we compare the F1 scores of the Faster R-CNN, Mask R-CNN,
Cascade Mask R-CNN, and our proposed VTLayout model based on each cate-
gory block. As Table 3 shows, it can be found that our proposed VTLayout model
achieve the state-of-the-art performance on identifying the Table, Text and List.
Compared with the Cascade Mask R-CNN model, our VTLayout model can
perform better in most categories, although there is a small drop in recognition
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Table 2. VTLayout performance compared with the baselines.

Model Precision Recall F1 score

Faster R-CNN 0.9319 0.9130 0.9224

Mask R-CNN 0.9379 0.9410 0.9385

Cascade Mask R-CNN 0.9515 0.9506 0.9510

VTLayout (ours) 0.9584 0.9618 0.9599

of Figure with the F1 score of 0.9824 only. In particular, the VTLayout model
successfully made up for the inaccuracy of Cascade Mask R-CNN in Title’s
recognition which increases the F1 score from 0.9166 to 0.9411, although Faster
R-CNN model can work better on recognition of the Title with the F1 score of
0.9425. Meanwhile, we can find that the identification capability of the List is
the worst among the five categories in baselines, but our proposed model greatly
improves the recognition power of the List with the F1 score of 0.9177.

Table 3. F1 score comparison on different categories.

Faster R-CNN Mask R-CNN Cascade mask R-CNN VTLayout (ours)

Text 0.9475 0.9475 0.9688 0.9751

Title 0.9425 0.9406 0.9166 0.9411

List 0.8150 0.8874 0.9055 0.9177

Figure 0.9663 0.9617 0.9846 0.9824

Table 0.9376 0.9553 0.9794 0.9833

Based on the paper of PubLayNet dataset, the MAP @ IOU [0.50:0.95] values
of the Title were the worst compared with other categories by Faster R-CNN
and Mask R-CNN models. However, according to our reproduction of the two
models, the experimental results from Table 3 show that Title can be recognized
better than List. Thus, it proves that Title can be well recognized but localizing
the Title can be challenging because it can be recognized easily as part of the
Text.

Correction of the Wrong Cases
As shown in Fig. 3, two images have been shown as examples of the corrections
based on our proposed VTLayout model. These two images are wrong predictions
by the Cascade Mask R-CNN. On the left-hand side, the Title is recognized
wrongly by the Cascade Mask R-CNN, and the VTLayout model predicts the
Title correctly. On the right-hand side, Cascade Mask R-CNN predicts the List
as Text, but our VTLayout model corrects this error successfully.
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Fig. 3. Corrections of the wrong cases.

Stability Checking on Small-Sized Dataset
The experiment of checking the VTLayout model on the small-sized dataset
shows that the overall F1 score decreases slightly from 0.9599 to 0.9546 on the
whole validation dataset. For the stability checking experiment on Faster R-
CNN, the F1 score decreases from 0.9224 to 0.9168 with a drop around 0.0056.
Meanwhile, the F1 score of Mask R-CNN also decreases from 0.9385 to 0.9361,
with a drop of around 0.0024. These experimental results demonstrate that our
proposed VTLayout model has excellent stability on the small-sized dataset as
well as the Faster R-CNN and Mask R-CNN model.

Table 4 shows the experimental results of the five-fold cross-validation exper-
iment, which demonstrates that the F1 score of all kinds is relatively stable.
Overall, all the experimental results prove that the stability of the VTLayout
model is high, and the contingency is low.

Table 4. Results of the five-fold cross-validation experiment of F1 scores on different
categories of the VTLayout model.

Text List Title Figure Table Average

Fold1 0.9450 0.9648 0.9295 0.9560 0.9472 0.9495

Fold2 0.9428 0.9746 0.9056 0.9878 0.9735 0.9569

Fold3 0.9402 0.9760 0.9347 0.9627 0.9512 0.9532

Fold4 0.9562 0.9810 0.9537 0.9848 0.9626 0.9678

Fold5 0.9376 0.9687 0.9195 0.9591 0.9425 0.9458

Average 0.9444 0.9286 0.9730 0.9701 0.9554 0.9546
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Ablation Experiments
Table 5 shows the F1 scores of the VTLayout model and all the ablation experi-
ments, in which DVFE denotes the Deep Visual Feature Extractor, SVFE repre-
sents the Shallow Visual Feature Extractor, and TFE represents the Text Feature
Extractor. Meanwhile, VTLayoutDV FE+SV FE+TFE represents our proposed
VTLayout model, and VTLayoutDV FE+SV FE denotes the VTLayout model
without the Text Feature Extractor. The experimental results demonstrate that
all the components impact the master model because the loss of any component
results in performance degradation. In particular, the VTLayoutDV FE experi-
ment shows that although DVFE can work well on the recognition of the Text
with an F1 score of 0.9789, the loss of SVFE and TFE can result in a decrease
of F1 score on identifying the List to 0.7881. Besides, we also can conclude that
the DVFE makes the most significant contribution to our model. While TFE
has the worst recognition rate for category blocks, it is still necessary because it
can make the overall performance of the model better.

Table 5. The ablation experimental results of F1 scores of the VTLayout model.

No. Model Text Title List Figure Table Average

1 VTLayoutDV FE+SV FE+TFE 0.9751 0.9411 0.9177 0.9824 0.9833 0.9599

2 VTLayoutDV FE+SV FE 0.9638 0.9296 0.8725 0.9834 0.9678 0.9440

3 VTLayoutDV FE+TFE 0.9230 0.8633 0.7635 0.9625 0.9656 0.8956

4 VTLayoutSV FE+TFE 0.8412 0.7699 0.6944 0.9308 0.9261 0.8455

5 VTLayoutDV FE 0.9789 0.9273 0.7881 0.9801 0.9576 0.9272

6 VTLayoutTFE 0.3657 0.3635 0.1030 0.1990 0.1505 0.3198

7 VTLayoutSV FE 0.8913 0.8391 0.3753 0.9275 0.9273 0.8209

Overall, based on the experimental results and analysis above, we demon-
strate that our proposed VTLayout model is superior to the current most
advanced methods of DLA. The reasons can be summarized as follows. Firstly,
our VTLayout model fuses three different kinds of features, deep visual, shallow
visual, and text features from the PublayNet dataset, which can boost the per-
formance of identifying different category blocks. In particular, the experimental
results of the ablation experiments have demonstrated that all three features are
beneficial and necessary for DLA. Secondly, with the great success of deep learn-
ing in object detection, researchers have neglected the importance of traditional
shallow visual features. Our proposed extractor for the shallow visual feature is
one of the most important contributions in this paper. Thirdly, the experimen-
tal results prove that the VTLayout model has excellent stability on randomly
selected small datasets.

In addition, our proposed method still has some deficiencies, which the recog-
nition of Title and List need to be further improved. Based on these findings and
recent literature review, the recognition of List still remains challenging com-
pared with other different category blocks, and it can be predicted wrongly as
Text category easily. Therefore, improving the identification rate of the List has
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become our next focus, and we believe that the bullet points in the List can be
the key to solving this problem. One of the main reasons for inaccurate recogni-
tion of Title is that many of the Titles in the text have only one or two words, so
the Titles are often appear in small sizes and even the human cannot accurately
identify them with naked eyes. In the experiments, although we enlarge the size
of Title blocks before applying with the PaddleOCR, the blurring caused by the
amplification still makes the recognition rate of Title less than ideal.

7 Conclusion

A VTLayout model is proposed for DLA task based on the fusion of deep visual,
shallow visual, and text features. The experimental results show that the pro-
posed VTLayout model is superior to the most advanced classification methods
in the PublayNet dataset, and the F1 score is 0.9599. Meanwhile, we find that
the intuitive perceptual feature is beneficial to the DLA. As we mentioned in
the introduction, the accuracy of the DLA can determine the performance of
many NLP-related tasks. An accurate and efficient DLA model can accurately
locate a category block and extract it from many complex datasets for future
work. As far as I know, in the field of applied chemistry, some researchers prefer
to pay more attention to the Tables only from the literature. Our work could
significantly shorten the time it takes researchers to find Tables in thousands of
academic papers. In addition, DLA can be beneficial to the evaluations of grant
applications. In recent years, government and top research institution funding
agencies gradually started to apply AI techniques to assist manual evaluating of
grant applications. Our proposed VTLayout model has been applied to extract
the Text and Tables from thousands of grant applications for further evaluation.

Although the VTLayout model achieves the state-of-the-art performance in
identifying different categories in DLA, there is still much room for improvement
in both localization and classification of different category blocks. Firstly, com-
pared with the traditional DCNN-based object detection models, Transformer-
based backbones start to show up and achieve remarkable results in a series
of traditional public datasets for object detection. Therefore, applying the
Transformer-based method to DLA will be our next research direction. Sec-
ondly, assign features that have more influence on classifier performance with
more weights can be another key consideration in the future. We believe that
the model’s performance can be improved by self-adjusting the weights of deep
visual, shallow visual, and text features. Next, the accuracy of OCR is self-
evident for the VTLayout model. In recent years, the research of scene text
recognition has made significant progress. Complex background conditions, text
color, font size, and irregular text representation are no longer obstacles in rec-
ognizing the scene text. Therefore, we believe that the achievements of scene
text recognition can meet our requirements for OCR’s accuracy. Fourthly, we
will continue to explore further the research of multimodal fusion in DLA to
optimize the extraction of deep visual, shallow visual and text features of doc-
uments. In addition, we also seek to come up with an end-to-end, lighter DLA
model.
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Abstract. From a dataset, one can construct different machine learn-
ing (ML) models with different parameters and/or inductive biases.
Although these models give similar prediction performances when tested
on data that are currently available, they may not generalise equally
well on unseen data. The existence of multiple equally performing mod-
els exhibits underspecification of the ML pipeline used for producing such
models. In this work, we propose identifying underspecification using fea-
ture attribution algorithms developed in Explainable AI. Our hypothe-
sis is: by studying the range of explanations produced by ML
models, one can identify underspecification. We validate this by
computing explanations using the Shapley additive explainer and then
measuring statistical correlations between them. We experiment our app-
roach on multiple datasets drawn from the literature, and in a COVID-19
virus transmission case study.

Keywords: Underspecification · Explainable AI · COVID-19

1 Introduction

Underspecification has been identified as a major challenge in machine learn-
ing (ML) research. Roughly speaking, an ML pipeline is underspecified “when
it can return many predictors with equivalently strong held-out performance in
the training domain.” [4] Having multiple different predictors is problematic in
real-world applications as the current practice often treats such predictors as
equivalent (based on their training performances), while they usually give differ-
ent behaviours in deployment. Thus, we see that ML models sometimes exhibit
unexpectedly poor behaviours when they are used in real-world applications
when such multi-predictor phenomenon occurs.
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Table 1. Two simple string datasets, D1, and D2 for underspecification illustration.

Data POS Explanation Pattern (s)

D1 POS: 01101, 11101, 11111, 01111 · 1 · · ·, · · 1 · ·, · · · · 1

NEG: 00000, 00010, 10010, 10000

D2 POS: 01101, 11101, 11111, 01111, 01001, 11100 · 1 · · ·
NEG: 00000, 00010, 10010, 10000, 00001, 10111

The first step of addressing underspecification is to identify it. To this end,
stress tests measuring prediction performances - evaluations that probe a predic-
tor by observing its outputs on specifically designed inputs - have been reported
in the literature [4]. However, with a few exceptions, as we discuss in Sect. 4,
existing approaches identify underspecification solely with traditional prediction
metrics such as accuracy and root mean square error, which will make under-
specification not fully identified in many situations.

In this work, we present an alternative approach: identifying underspecifica-
tion with explanations. In a nutshell, given a dataset, we construct a set of pre-
dictors and study explanations generated using a feature attribution algorithm
[14] from these predictors. We identify underspecification when observing “too
many” different explanations form such predictors on the dataset. We observe
that: if a dataset can be explained in multiple ways, then a ML pipeline
built from it is likely underspecified.

Our core idea can be illustrated with the following example. Consider two
binary classification datasets, D1 and D2, shown in Table 1. D1 and D2 contain
eight and twelve 5-bit strings as data instances, respectively, on the alphabet
{0, 1}. Each string is labelled either POS (positive) or NEG (negative). D2 contains
all strings of D1 and four additional strings. Both datasets are balanced with
each containing the same number of POS and NEG strings. If we consider each
bit in a string representing a feature, which can be a potential explanation for
a string’s positivity, then there are three “1-bit explanations” for the positivity
of strings in D1 as follows:

– · 1 · · ·: a string is POS because its second bit is 1,
– · · 1 · ·: a string is POS because its third bit is 1, and
– · · · · 1: a string is POS because its fifth bit is 1.

There are no reasons to prefer any one of these explanations to the others given
the dataset D1. However, with the four additional strings introduced in D2, we
see that both explanations · · 1 · · and · · · · 1 are ruled out, as 10111 and 00001
are both NEG. So there is a single explanation left for all strings in D2:

– · 1 · · ·: a string is POS because its second bit is 1.

Thus, we observe that D2 with more data yields fewer 1-bit explanations than
D1 and can better specify prediction models than D1.
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Various explanation construction techniques have been developed in Explain-
able AI (XAI) [18]. These techniques produce explanations of different types, see
e.g., [19] for an overview. In this work, we use a feature attribution explanation
method, SHapley Additive exPlanations (SHAP) [14], which computes explana-
tions to data instances in the form of “feature weights”, to facilitate underspec-
ification identification. SHAP is chosen in this work for its sound mathematical
foundation and its ease of implementation.

Fig. 1. An illustration of explanations from predic-
tors trained with different sample sizes. Predictors
trained with more data - hence less underspecified ML
pipelines - produce more agreeable explanations. Red
stars are placed closer to each other than blue dots
are. (Blue dots and red stars represent explanations
obtained from predictors trained with 100 and 1000
randomly selected samples in the COVID-19 dataset
respectively. Within each set, the coordinates xi are
computed with a stochastic hill climbing algorithm that
solves arg minxi,xj

∑ |L2(xi,xj)−Dτ (x̂i, x̂j)|, where L2

is the L2 norm, Dτ is the Kendall distance of each pair
of explanations (x̂i, x̂j).) (Color figure online)

SHAP is based on
the coalitional game the-
ory concept Shapley value,
which is assigned to each
feature of a data instance.
Shapley values are defined
to answer the question:
“What is the fairest way
for a coalition to divide
its payout among the play-
ers”? It assumes that pay-
outs should be assigned to
players in a game depend-
ing on their contribution
towards total payout. In
a machine learning con-
text, feature values are
“players”; and the predic-
tion is the “total pay-
out”. In this setting, the
Shapley value of a fea-
ture represents its contri-
bution to the prediction
and thus explains the pre-
diction. SHAP is model-
agnostic and thus indepen-
dent of underlying predic-
tion models. For a data
instance x, SHAP com-
putes the marginal contri-
bution of each feature to the prediction of x.

Given a prediction model P ∈ P, where P is the set of models, let y = P (x)
be the prediction made by P on the input x = 〈x1, . . . , xM 〉 ∈ R

M , SHAP
gives an explanation 〈φ1, . . . , φM 〉 ∈ R

M (for y = P (x)); φi can be viewed as
the contribution of xi for this prediction. We can think SHAP as a function
Π : P ×R

M �→ R
M . From a dataset, we train a set of models P = {P1, . . . , Pn}.

For the same input x, we compute a set of explanations Φ = {Π(Pi,x)|Pi ∈ P}.
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By looking at how “compact” Φ is, we identify underspecification of the ML
pipeline - if explanations in Φ are close to each other, that means models in P are
agreeable with each other, thus less underspecified. Otherwise, explanations in Φ
are apart from each other, then models in P, although might be making the same
prediction y, make predictions for different reasons, hence more underspecified.

To put things into a concrete setting, we study how underspecification occurs
in the context of predicting COVID-19 virus transmission. To this end, we con-
struct a dataset containing daily confirmed cases between March 2020 and Jan-
uary 2021 and non-pharmaceutical control measures used in the UK and predict
whether the infectious rate is growing on a given day. As illustrated in Fig. 1,
underspecification is observed when explanations generated from models are far
apart from each other; whereas when explanations are close to each other and
form compact clusters, there is less underspecification.

Overall, the proposed approach to identifying underspecification with expla-
nations has the following advantages:

1. It is model-agnostic and applicable to any data types and ML models as long
as such a model can be analysed with a model-agnostic explainer.

2. It is self-contained and does not require any additional information such as
domain knowledge or human expert inputs.

3. It is simple and does not require any special treatment to the dataset, e.g.,
stratification or alteration, to estimate underspecification.

Our contributions in this work are as follows:

– We formulate underspecification identification as a problem of measuring cor-
relations between explanations.

– We perform the explanation distance measurement using a well studied sta-
tistical metric, Kendall Rank Correlation Coefficient.

– We demonstrate our approach on both existing datasets in the literature and
a real-world COVID-19 dataset.

The rest of this paper is organised as follows. Section 2 introduces our main
approach with results produced from a synthesised dataset. Section 3 introduces
the virus transmission case study in detail. Section 4 discusses some related work.
We conclude in Sect. 5.

2 Our Approach

As introduced in [4], we consider underspecification in a supervised learning
setting. Specifically, we consider an ML pipeline with a dataset D that produces a
model (predictor) P , drawn from a set of predictors P. Regardless of the method
used to construct P , it is evaluated with some performance measures such as
accuracy or root mean square error on D. An ML pipeline is underspecified if it
can return multiple different predictors such that they give similar performances,
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while encoding substantially different inductive biases that can result in different
generalisation behaviours on datasets beyond D (Out-of-Distribution).

Since predictors can contain a vast amount of parameters and/or have differ-
ent internal structures, it is not straightforward to directly compare two predic-
tors and determine how similar they are. Thus, in order to determine whether
an ML pipeline is underspecified, we study explanations obtained from predic-
tors produced by the ML pipeline, and use those as a proxy to estimate the
differences between predictors.
Our Core Assumption is That:

If two predictors give the same explanation to a prediction, then they
encode the same inductive bias; hence they should be considered the same.

In this setting, given predictors P = {P1, . . . , PK} produced by an ML pipeline
with dataset D, we first use the SHAP explainer Π to compute global explana-
tions ΦP for each predictor P ∈ P on the entire dataset D:

ΦP =
∑

x∈D

Π(P,x). (1)

The rank of explanations from P is the ranked list calculated over ΦP . For
example, if SHAP values ΦP were [0.1, 0.2, 0.4, 0.3] the ranked list would be
[4, 3, 1, 2]. This process of generating models and then computing their rank of
explanations is shown in Algorithm 1. Note that the parameter θ used in line 3
is to ensure that all predictors trained in P have similar and high performances.
K is the parameter that controls the number of predictors in experiments.

Algorithm 1. GenModels(D,K, θ) return R
Input: The number of models K, Dataset D, Prediction Performance Threshold θ
Output: Global Explanation ranks R

1: R = []
2: while |R| < K do
3: Train a predictor P with D such that the performance of P is greater than θ
4: ΦP = 〈0, . . . , 0〉 with |ΦP | the number of features in D
5: for each x ∈ D do
6: ΦP = ΦP + Π(P,x)

7: Append the ranked list of ΦP to R

8: return R

With explanation rank lists R computed for all predictors, to identify under-
specification, we compute

T =
2

K(K − 1)

K∑

i=0

K∑

j>i

τi,j , (2)

where τi,j is the pair-wise Kendall rank correlation coefficient over ranks of
explanations generated from predictors Pi and Pj . T is the average Kendall
rank correlation coefficient between all explanation pairs in P. We can see that:
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– −1 ≤ T ≤ 1 for any ML pipelines and datasets; and
– the larger T is, the closer explanations are, hence less underspecification.

Table 2. Datasets for experiments.

Dataset # of samples # of POS samples # of feature Type of features

String [31] 9,623 4,410 20 Categorical

House Price [3] 1,461 728 79 Mixed

Abalone [5] 4,178 2,081 8 Mixed

Mushroom [5] 8,124 3,916 22 Categorical

Fig. 2. Explanation correlation vs dataset sizes.
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Table 3. Non-pharmaceutical COVID control measures.

Meeting Friends/Family (Indoor) Meeting Friends/Family (Outdoor)

Domestic Travel Control International Travel Control

Cafes and Restaurants Control Pubs and Bars Control

Sports and Leisure Closure Hospitals/Care and Nursing Home Visits

Non-Essential Shops Closure School Closure

We test our approach on four datasets found in the literature, string classi-
fication [31], house price [3], abalone age [5] and mushroom [5]. Characteristics
of these four datasets are summarised in Table 2.

To investigate how underspecification changes with different dataset sizes, we
stratify each dataset into multiple smaller datasets in different sizes. For each
of these smaller dataset lengths we trained K = 100 random forest predictors
and test their performances on the whole dataset, comparing their explanation
correlations with classification accuracy. This experiment was then repeated 10
times with averages shown in Fig. 2. In this figure, we can see that for all four
datasets, as we increase the dataset size, the explanation correlation increases.
This means that with a larger dataset, explanations become more similar. Both
the explanation correlations and classification accuracy plateau for larger dataset
sizes indicating that once the dataset size reaches a certain threshold, introducing
more samples does not reduce underspecification.

3 COVID-19 Virus Transmission Case Study

In this section, we apply our approach to a coronavirus virus transmission case
study. This case study can be viewed as a realistic experiment modelled after the
epidemiological model that demonstrates underspecification in [4]. In a nutshell,
the model in [4] illustrates that at early stages of an epidemic, there is insuffi-
cient amount of data to fully specify an accurate prediction model; so multiple
prediction trajectories can be formed based on the insufficient training data,
consequentially the predictions becomes largely arbitrary.

From the Public Health England website1, we collected daily infection num-
bers reported across 12 regions in UK: East Midlands, East of England, Lon-
don, North East, North West, Northern Ireland, Scotland, South East, South
West, Wales, West Midlands as well as Yorkshire and The Humber. Non-
pharmaceutical control measure data was composed based on UK’s COVID poli-
cies as summarised in Table 3. Data was corrected from various sources includ-
ing Wikipedia and major news agencies. Control Measures were coded based
on level of severity (e.g., “High”, “Moderate”, “Low”) for all control measures
excluding Non-essential shops and School closures, which are coded as binary
choices (“Open” and “Closed”). Data points for temperature and humidity were

1 https://www.gov.uk/government/organisations/public-health-england.

https://www.gov.uk/government/organisations/public-health-england
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extracted from the weather website Raspisaniye Pogodi Ltd2. In total 4,257 data
points were collected between February 2020 and February 2021.

From daily infection numbers, we estimate Rt using the method reported in
[7,30]. Rt is one of the most important quantities used to measure the epidemic
spread. If Rt > 1, then the epidemic is expanding at time t, whereas if Rt < 1,
then it is shrinking at time t. A serial interval distribution, which is a Gamma
distribution g(τ) with mean 7 and standard deviation 4.5, is used to model the
time between a person getting infected and them subsequently infecting another
person on day τ . The number of new infections ct on a day t is computed as:

ct = Rt

t−1∑

τ=0

cτgt−τ , (3)

where cτ is the number of new infections on day τ ,

g1 =
∫ 1.5

τ=0

g(τ)dτ,

and for s = 2, 3, . . .,

gs =
∫ s+0.5

τ=s−0.5

g(τ)dτ.

From Eq. 3, we have:
Rt =

ct∑t−1
τ=0 cτgt−τ

(4)

For x = t and τ , cx is the difference between the confirmed case on day x and
the confirmed case on day x − 1, which is available from the dataset directly.

With this data, we pose a simple classification question:

Given the infection number and control measures implemented on a day t,
is Rt ≥ 1?

To account the fact that control measures take time to affect the infection rate,
we expand the dataset to include the duration of control measure implementation
for all control measures. For example, “Meeting Indoors (High) = 5” means that
“it is the 5th day that meeting indoors has been banned completely”. Similarly,
International Travel (Low) = 0 means that “there is no restriction implemented
on international travel”. We also drop instances before March 15, 2020 across all
12 regions in our dataset due to the low number of infections.3 In this way, we
form a data file with 25 features and 3,937 instances with 2,288 positive ones.

2 https://rp5.ru/Weather in the world.
3 As can be seen from Eq. 4, when cx is small, Rt can flatulate in a unrealistically

large range and generate noises in the dataset.

https://rp5.ru/Weather_in_the_world
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To demonstrate the effect of underspecification, we stratify the dataset D
into 11 random groups with sizes 100 to 3500, respectively. We train 100 ran-
dom forest predictors with each group in D and compute explanation correla-
tions using the process described in Sect. 2. In addition, we also calculate the
classification accuracy over the remaining dataset. Figure 3 shows the results
from these experiments. We observe that as the dataset size increases, both the
classification performance and explanation correlation increase, as expected.

Fig. 3. COVID-19 Rt classification case study.

4 Related Work

As briefly discussed in the Introduction, stress tests have been used to identify
underspecification [4]. In particular, stratified performance evaluations, testing
whether different strata of a dataset give similar performance on a predictor
(see e.g., [1,21]), shifted performance evaluation, testing whether the average
performance of a predictor generalises when the test distribution differs in a
specific way from the training distribution (see e.g., [11,28]), and contrastive
evaluation, testing whether a particular modification of the input causes the
output of the model to change in unexpected ways (see e.g., [10,24]) are notable
approaches. Comparing with these, our work studies underspecification from a
different angle.

Underspecification has been studied in the ML literature in different notions.
In deep learning, the discussion focuses on the local geometric properties of
objective functions [2], and the geometry of loss surfaces in model averaging and
network pruning [8,9,13,29]. Recently there have been analyses of overparame-
terisation in theoretical and real deep learning models, where underspecificaiton
is considered to be caused by potential more degrees of freedom than datapoints
induce [17,20]. In [6,15,25,26], underspecificaiton is treated as different near-
optimal solutions for a single learning problem specifications having different
properties such as interpretability or fairness.
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Our idea of looking at underspecification from the explanation dimension
is highly relevant but also orthogonal to the line of recent works on “right for
the right reason”, for example [25] and [16]. In [25], domain knowledge captur-
ing “right explanations” and human experts are introduced in an ML pipeline
to directly assist the prediction and select the most suitable predictor from a
group of predictors based on their explanations, respectively. In [16], predictors
for natural language inference tasks are tested against a set of common but
sometimes wrong reasons, encoded as learning heuristics benchmarks. Compar-
ing with these, we do not attempt to increase prediction performance or develop
datasets for benchmarking; instead, we focus on studying the relation between
explanations and underspecification and show that the number of “distinct”
explanations, or the “average distance” between explanations, generated from
different predictors is a good indicator for the degree of underspecification.

5 Conclusion

In this work, we present an alternative approach that identifies underspecifica-
tion by investigating explanation correlation. Simply put, given a set of equally
high performing predictors trained from an ML pipeline, if they produce highly
correlated explanations to their predictions, then the ML pipeline is not under-
specified; otherwise, the pipeline is underspecified. We illustrate our approach
in multiple classification tasks and in a real-world case study. Our results show
that having more data usually helps to address underspecification.

As an early work in studying underspecification, there are several limitations
of this work we plan to address in the future. Firstly, we believe that the con-
cept of underspecification must be further refined. The current state-of-the-art
as represented by [4] suggests underspecification is a qualitative concept without
precise quantification. However, to advance this field, measurable quantification
is needed so researchers can compare two different ML pipelines and compare
their degrees of underspecification quantitatively so “improvement” can be dis-
cussed meaningfully. We believe explanation correlation suggested in this work
could be such a metric, yet a deeper study is needed.

Secondly, additional explanation generation algorithms should be considered.
As feature attribution algorithms are in rapid development, there are techniques
other than SHAP, e.g., LIME [23], that also compute feature weights. Although
SHAP shows certain superiority over LIME as found in some studies [12,14,
22,27], it would be interesting to see whether our SHAP-based results can be
reproduced with LIME, or some other interesting behaviours can be discovered.

Thirdly, other forms of machine learning should be studied. This work has
focused on classification tasks in supervised learning. We need to consider regres-
sion and unsupervised learning tasks. We believe some of the techniques intro-
duced in this work could be carried over to a regression setting. However,
carefully planned experiments are necessary to validate such approaches. For
analysing underspecification in unsupervised learning, some theoretical work is
needed to clearly define and scope the problem.
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Lastly, this work focuses solely on identifying underspecification. Ultimately,
we would like to have a technique that addresses underspecification with data
that is currently available. To this end, the technique needs to select predictors
with the “correct” inductive bias. We would like to explore whether explanation
properties can be used for such identification.
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Abstract. Digital camouflage is the most common and effective means to com-
bat military reconnaissance. Traditional digital camouflage generation methods
must regenerate camouflage images according to the current environment. When
the environment changes, generated camouflage images may be detected by neu-
ral network classification models. We present a digital camouflage generation
model based on disentangled representation, which can decompose images into
a content space and a style space, thereby recombining the current content of
the environment image with different digital camouflage styles. When the envi-
ronment changes, our model can generate digital camouflage images based on
the original environment content and the corresponding digital camouflage style,
without obtaining the current environment image. To counter the detection of the
classification models, we design a category reordering function to mislead the
classification result of the classification model. Experiments show that the pro-
posed method can generate digital camouflage images in different seasons and
successfully implement an adversarial attack on the classification model.

Keyword: Camouflage generation · Disentangled representation · Style
transfer · Adversarial attack

1 Introduction

Digital camouflage technology is an important military protection method which coats
the designed camouflage patterns on the surface of themoving target, in order to decrease
the saliency of the target and conceal the target in the background environment [1]. Tra-
ditional digital camouflage generation methods mainly include three aspects: selection
of the main color, design of camouflage spots and combination of the generated spots.
However, traditional digital camouflage generation methods may have appealing cam-
ouflage performance in the specified environment, but with the environment changes, the
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camouflage performance will be considerably weakened. At the same time, generated
camouflage may be detected by neural network models [2].

Several efforts have been made to combine digital camouflage generation with deep
neural networks. In [3], a deep convolution adversarial auto-encoder network is used to
extract and describe the configuration features of the spots in the background. In [4], a
new digital camouflage spots extraction and reproduction method based on generative
adversarial network is proposed to directly fit the distribution of deformation camouflage
pattern spots.However, the abovemethods only use deep neural networks to extract better
patterns of digital camouflage, cannot generate digital camouflage images based on the
same environment adapting to the changes of different environmental characteristics.
Moreover, the threat of neural network classificationmodels has also not been considered
in digital camouflage generating methods.

In this work, we propose an environment-irrelevant digital camouflage generation
model which can generate without environmental change and resist the detection of neu-
ral network image classification models. We assume that the digital camouflage images
in domain X and the environment images in domain Y share the same content space
and also have specific style space. This model learns the features of digital camouflage
patterns from different environments and maps them to the same background content
to generate digital camouflage. At the same time, we propose an adversarial sample
category loss to mislead the classification model with incorrect classification.

2 Related Work

Digital Camouflage Generation and Detection. Alfimtsev et al. [5] design a camou-
flage pattern generation system based on the characteristics of the deep neural network
recognition system and human observers. Zheng et al. [6] propose a model through the
Dense Deconvolution Network to accurately detect hidden camouflage people. Exper-
imental results show that the proposed method outperforms the classical camouflaged
object detection method and general CNN-based detection methods. In this work, we
propose an environment-irrelevant digital camouflage generation method for the digital
camouflage generation. Different from the aforementioned digital generation methods,
our method generates digital camouflage without the need for the current environment
image.

Disentangled Representations. Disentangled representation aims at modeling the fac-
tors of data variation. In [7], Mathieu et al. use labeled data to factorize representations
into class-related and class-independent components. In [8, 9], Gatys et al. demonstrate
that texture synthesis and image style can be extracted by convolutional neural networks.
Similar to MUNIT [10] and DRIT [11], we first encode the environmental images and
digital camouflage images into a shared content space and then encode the digital cam-
ouflage images with varying environmental characteristics into a specific style space. To
better align the environmental content and the digital camouflage content, we apply an
alignment feature loss to generate digital camouflage images which combine different
environmental features with the same environmental content features.
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Adversarial Attacks. Szegedy et al. [12] find that new samples obtained by adding
slight disturbances to the original data enable the machine learning model to output
incorrect classifications with high confidence. Traditional adversarial attack methods
usually add special perturbations to the original image to accomplish an attack. However,
the purpose of generating digital camouflage is to damage the surface structure of the
camouflaged target, and the camouflaged target can be integrated with the surrounding
environment through the fine patches of the digital camouflage. Therefore, we cannot
simply add perturbations to the original images to achieve an adversarial attack. In
this paper, we treat digital camouflage as a special perturbation and define a reordered
function to constrain the classification results of the adversarial samples.

3 Proposed Method

For generate digital camouflage with different environmental characteristics and attack
image classification models, we first propose a design scheme for an adversarial digital
camouflage generation model based on disentangled representation in Sect. 3.1. The
proposed adversarial sample category loss that enables the image classification model
misclassification is described in Sect. 3.2. Finally, we will detail the other loss functions
in Sect. 3.3.

3.1 Model Overview

Let x ∈ X , y ∈ Y as images from the environment image domain and the digital
camouflage domain. As we regard the generation of digital camouflage as a mapping
from the background environment domain to the digital camouflage domain, where our
framework consists of content encoders {Ec

X ,Ec
Y }, style encoders {E

s
X ,Es

Y }, generators
{GX ,GY }, and domain discriminators {GX ,GY } for two domains. The environmental
image x is first encoded into the shared content space (cx = Ec

X (x)) and the digital
camouflage image y is encoded into the specific style space (sy = Es

Y (y)). InMUNIT and
DRIT, they translate one domain to another domain through the generator to recombine
the content features and the style feature. However, due to the large structural difference
between the environment image and the digital camouflage, the environment content
feature cx cannot be properly integrated with the digital camouflage style feature sy. In
order to better align the features between environment images and digital camouflage
images, we aligned content features from the background environment domain X and
the digital camouflage domain Y by the content alignment functionMapc. After aligning
the content feature by:

cxtoy = Mapcshare2cy
(
cx, cy

)
, (1)

we can generate better digital camouflage images by yxtoy = Gy(cxtoy, sy). However, it is
difficult to define he content alignment functionMapc precisely. In this paper, we use the
feature alignment loss Lyremain to learn the alignment function. For finding the alignment
function Mapc, we require that the feature alignment loss Lyremain to force the content
feature cdown_y obtained by down samplingwhich is similar to the aligned content feature
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cxtoy. Therefore, the content feature cxtoy could align with the digital camouflage style
better (Fig. 1). The feature alignment loss Lyremain is defined as:

Lyremain = Ey∼p(y)[||cdown_y − Mapcshare2cy (cx, cy)||]1 (2)

Fig. 1. The framework of the digital camouflage generation method.

3.2 Adversarial Sample Category Loss

We expect the generated camouflage images could mislead the image classification
model to output incorrect results, so we introduce the adversarial sample recognition
module to attack the image classification model. We use the VGG-16 [13] to classify
the generated digital camouflage samples. The classification results are reordered to
constrain the classification categories of adversarial samples that were previously used
for classification purposes. The structure of the adversarial sample recognition module
is illustrated in Fig. 2.

The generated digital camouflage will damage the original image representation to
a certain extent, and the purpose of the generated adversarial samples is to mislead the
classification model. However, if the classify labels of the adversarial samples deviate
too much from the original labels, the generation model may fail to fit the distribution
of the original images. To address this problem, we set some constraints on the category
loss to ensure the classification result of the adversarial sample deviate not far from
the original category. The purpose of the adversarial attack is to make the classification
model misclassify the image x. Assuming that there are N categories, the output vector.

is defined as TN (x) = [l1, l2, . . . , li, . . . , lN ](l1 + l2 + · · · + lN = 1), where the li
represents the probability of x belong to i th category. We randomly select a category t 1
which different with the true category of the image x as the target category. We set lt =
in the output vector and introduce a reordering function:

Reorder(x) = softmax([l1, l2, . . . , lt, . . . , ltrue, . . . , lN ]) (3)

The reordering function ensures the output of the target category is maximized while
maintaining the original classification result as much as possible. In this way, we can
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maintain the original classification result to a certain extent and ensure the target category
has the highest classification score. The adversarial sample category loss combined with
the reordering function is defined as:

Llabeladv = Ex∼X [∑N
i=1 −f (x) log

(
Reorder

(
Gy(cx, sx)

)) − (1 − f (x)) log(1−
Reorder

(
Gy(cx, sx)

)
)] (4)

Fig. 2. The overall structure of the adversarial sample recognition module.

3.3 Other Losses

In addition to the proposed adversarial sample category loss, we also use several other
loss functions to facilitate network training. The used loss functions include functions
for style transfer and functions for image-to-image translation.

Image Reconstruction Loss. Since the generation model adopts the structure of the
encoder and the decoder, the image reconstruction loss is used to ensure the generator can
perform the image reconstruction. Therefore, we define the loss of image reconstruction
for the generators as follows:

Lxrecon = Ex∼p(x)[||Gx(cx, sx) − x||1] (5)

Lyrecon = Ey∼p(y)[||Gy
(
cxtoy, sy

) − y||1] (6)

Style Reconstruction Loss. In order to enable the model to learn specific style features
of images, we defined the style reconstruction loss Lsrecon. When different kinds of digital
camouflage (such as forest camouflage, desert camouflage, snow camouflage, etc.) are
used as the style features, the loss function enables the model to generate diverse digital
camouflage output under the same background environment.

Lsxrecon = Ex∼p(x)
[||Es

x(Gx(cx, sx)) − sx||1
]

(7)

L
sy
recon = Ey∼p(y)[||Ep

y
(
Gy

(
cxtoy, sy

)) − sy||1] (8)
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Adversarial Loss. Since the structure of generating countermeasure network is adopted
to ensure that the data distribution of the generated image is consistent with that of the
original image. The adversarial loss is used to ensure that the discriminator Dx and Dy

can distinguish the difference between the real image and the generated image, so that
the generated model can generate more real images.

Ldomainadv = Ex∼X
[
logDx(x)

] + Ecx,sx

[
log(1 − Dx(Gx(cx, sx)))

] + Ey∼Y
[
logDy(y)

]

+Ecxtoy,sy [log(1 − Dy(Gy
(
cxtoy, sy

)
))]

(9)

Cross-cycle Consistency Loss. We hope that after generating the digital camouflage
based on the background image, the generated image can still be converted to the original
background image.As the cyclic consistency loss proposed byUnpaired Image-to-Image
Translation using Cycle-Consistent Adversarial Networks (CycleGAN) [14] makes the
generation model maintain the original spatial image features in the cross-domain image
generation problem, we adopt the cyclic consistency loss function in our model.

Lxcycle = Ex∼X [||xx∼y∼x − x||1] (10)

Lycycle = Ey∼Y [||yy∼x∼y − y||1] (11)

Perceptual Loss. In order to perform cross domain image conversion better, we use the
perceptual loss to retain the content features of the original image.

Lxper = Ex,xtoy

[
||Ec

y(xtoy) − Ec
x(x)||1

]
(12)

Lyper = Ey,ytox[||Ec
x(ytox) − Ec

y(y)||1] (13)

Total Loss. We jointly train the encoders, decoders, and discriminators to optimize
thefinal objective, which is a weighted sum of the adversarial loss and the bidirectional
reconstruction loss terms.

min
Ex,Ey,Gx,Gy

max
Dx,Dy

L
(
Ex,Ey,Gx,Gy,Dx,Dy

) = λmap

(
L
y
remain

)
+ λimage

(
Lxrecon + L

y
recon

)

+λs

(
Lsxrecon + L

sy
recon

)
+ λcc

(
Lxcycle + L

y
cycle

)
+ λadv

(
Lxadv + L

y
adv

)
+ λlabelL

label
adv + λpre(Lxper + L

y
per)

(14)

where λmap,λimage, λs, λcc, λadv, λlabel are weights that control the importance of
reconstruction terms.

4 Experimental Results

4.1 Datasets

We select a variety of natural background images and digital camouflage images from
the Internet as experimental datasets, including 1000 natural background images and
1000 digital camouflage images, as well as 300 tank images and 300 aircraft images. In
order to unify the input of the datasets, all images are cropped to 256 * 256 pixels after
image preprocessing. Because there are no uniform labels for the natural background
images, only the labeled tank and aircraft data sets are used in the adversarial attack
training.
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4.2 Compared Methods

We compare our method with MUNIT and DRIT for comparative experiments. Both of
them learnmulti-modalmappings between twodomains. Formulti-domain comparisons,
we train these models multiple times for every pair of image domains. All the methods
are trained using the implementations provided by the authors.

4.3 Qualitative Comparisons

We use Canny edge detector to measure the visual camouflage effect of the generated
digital camouflage. Canny edge detector uses a multi-stage algorithm to detect a wide
range of edges in images and also detect and extract the spots in the background region.

When using the same environment image as the input of the model, the outputs of
digital camouflage maintain certain structural characteristics and have different seasonal
characteristics (such as the snow season, desertification and other climate conditions
under the same background). Figure 3 shows the digital camouflage generated from
different seasons within the same background environment, where the first row is the
semi-desertification area, the second row is the desert environment and the third row
is the grassland. Figure 3(a) is the natural image, Fig. 3(b) is the digital camouflage
generated by the proposed model, Fig. 3(c) and Fig. 3(d) are images generated from
MUNIT and DRIT.

Fig. 3. The digital camouflage generated from different environment by different models.

Figure 4 shows the results of digital camouflage and edge detection. The first row
shows the input environment image and the generated digital camouflage, the second row
shows the Canny edge detection results corresponding to the images shown in first row.
The third row and the fourth row are same with the first and the second row. Figure 4(a)
is the input background image, Fig. 4(b) is the digital camouflage generated by the
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Fig. 4. The generation of digital camouflage and edge detection results by different models.

proposed model, Fig. 4(c) is the digital camouflage generated by MUNIT, and Fig. 4(d)
is the digital camouflage generated by DRIT. From the generated digital camouflage
and edge detection images, it can be seen that the digital camouflage generated by
DRIT and MUNIT have more regular edges, which make the camouflage easier to be
detected by the edge detection model. However, the above two models use the content
features of background image without alignment which resulted in more overlapping
textures around the generated digital camouflage. The digital camouflage generated
by the proposed model has more irregular image edges, leading the generated digital
camouflage by the proposed model has better camouflage effects than that generated by
MUNIT and DRIT.

4.4 Quantitative Comparison

Due to the particularities of camouflage, compared with ordinary images, camouflage
should blend with the surrounding background as much as possible while retaining the
original texture structure of the background. We choose the SSIM [15] structural simi-
larity algorithm to quantitatively evaluate the digital camouflage generated by different
models, and the results are shown in Table 1. Lower SSIM scores indicate better cam-
ouflage effects. From Table 1 we can see that the proposed model has the lowest SSIM
score thus achieves the best camouflage effect. Both of the qualitative comparison results
and the quantitative comparison results show that the proposed model obtains the best
camouflage effects.
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Fig. 5. The camouflage image obtained by the aircraft and tank images

Table 1. SSIM evaluation score of edge detection results from different models

The proposed model MUNIT DRIT

SSIM score 0.318 0.394 0.469

For the adversarial attack problem of neural network classification model, the tanks
and aircraft images are used which are commonly used in military. The adversarial
sample category loss function is used in training to reduce the output accuracy of the
correct category of the classifier and improve the output accuracy of the target category.
If the accuracy of the target category is the highest, it demonstrates that the attack
is success. The image classification model uses the VGG-16 model which has been
pretrained by ImageNet, and the target categories are also selected from the categories
owned by ImageNet. Figure 5 shows the camouflage images obtained by the fusion of
digital camouflage generated based on camouflage targets (aircraft and tank). Figure 5(a)
shows the origin aircraft and tank images, Fig. 5(b) shows the digital camouflage styles,
Fig. 5(c) shows the generated digital camouflage with adversarial attack on Fig. 5(a).

Table 2. Classification accuracy of the tank dataset with different conditions

Target category Real category Target category after attacking Real category after attacking

Amphibian 95.58 87.81 8.27

Automobile 95.58 79.42 13.20

Table 2 and Table 3 show the accuracy of classifying the target categories to the
origin categories after adversarial attack in tank dataset and aircraft dataset. We choose
amphibian and automobile as the target categories in Table 2, we choose folding chair
and pinwheel as the target categories in Table 3. In Table 2 and Table 3, the first column



Generation of Environment-Irrelevant Adversarial Digital Camouflage 345

Table 3. Classification accuracy of the aircraft dataset with different conditions

Target category Real category Target category after attacking Real category after attacking

Folding chair 79.91 65.39 17.21

Pinwheel 79.91 72.19 14.78

shows the specified target categories, the second column shows the accuracy of the real
category without attack, the third column shows the accuracy of the target category after
attacking and the fourth column shows the accuracy of the real category after attacking.

The classification model without adversarial attack has high classification accuracy.
The purpose of proposed reordering function is to use specified target category to replace
the role of the real category. Leading the classification model to produce wrong output
and realize the purpose of adversarial attack. Therefore, the classification accuracy after
adversarial attack should be greatly reduced for the real category, while the classification
accuracy for the specified target category should be greatly increased.

As shown in the second column to the fourth column in Table 2 and Table 3, after
the adversarial attacking, the target categories we appointed have higher accuracy. The
accuracy of real category decreases greatly after adversarial attacking. The results show
that the proposed adversarial attack method achieves the expected objective.

5 Conclusion

In this paper, we propose an environment-irrelevant adversarial digital camouflage gen-
eration model. It deconstructs the content features and style features from different
domains, and aligns the content features of the environment images to the digital cam-
ouflage content features, improving the generalization effects of digital camouflage. In
order to implement an adversarial attack on the classification model, we propose an
adversarial sample category loss to mislead the classification model. Qualitative and
quantitative results show that the proposed model produces better digital camouflage
than other works. The experimental results show that the proposed adversarial attack
method reduces the accuracy of the real category successfully.
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Abstract. In this paper, we address the problem of clustering earth-
quakes in a catalog, which is also known as declustering in seismology,
i.e., a task of classifying each earthquake into foreshock, mainshock, or
aftershock. For this purpose, we newly propose a magnitude-weighted
mean-shift clustering algorithm equipped with a leave-one-out proce-
dure for estimating its bandwidth parameter. Although there exist a
wide variety of clustering techniques in machine learning, we employ the
mean-shift approach because each spatio-temporal event with magnitude
can be naturally regarded as a weighted Gaussian kernel function, and
the number of clusters can be automatically determined by a bandwidth
parameter, where some standard statistical resampling techniques can
estimate this parameter. In our experiments, we generated our dataset
of earthquakes with magnitudes ≥ 3.0 in 1997–2016 from the earthquake
catalog of the Japan Meteorological Agency that covered the whole of
Japan and selected 24 major earthquakes which caused significant dam-
age or casualties in Japan. In our experimental comparison with three
representative clustering methods in seismology, i.e., the window method,
single-link method, and correlation-metric method, we mainly show that
concerning the clusters containing the 24 major earthquakes, the sizes of
these clusters obtained by our proposed method are consistently smaller
than those of the window or correlation-metric method, but larger than
those of the single-link method. These results suggest that our proposed
method is vital and has a promising characteristic.

Keywords: Declustering · Mean-shift clustering · Bandwidth
estimation

1 Introduction

In seismology, there is a pressing need for understanding the relationships of
earthquakes in an extensive catalog. Especially, earthquake declustering [20],
which is tasked with classifying each earthquake into foreshock, mainshock, or
c© Springer Nature Switzerland AG 2021
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https://doi.org/10.1007/978-3-030-89188-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89188-6_26&domain=pdf
https://doi.org/10.1007/978-3-030-89188-6_26


348 Y. Yamagishi et al.

aftershock, plays an essential role in many critical applications such as fore-
casting future earthquakes, modeling seismic activities, and so forth. Note that
this declustering task can also be formalized as a standard clustering problem,
which identifies each cluster containing a mainshock together with its foreshocks
and aftershocks. Meanwhile, in machine learning, many sophisticated clustering
techniques have been developed. One ultimate goal in this research is to explore
advanced declustering algorithms under such sophisticated clustering techniques.

In this paper, by focusing on mean-shift clustering [4], we newly propose a
magnitude-weighted mean-shift clustering algorithm equipped with a leave-one-
out procedure for estimating its bandwidth parameter. Although there are many
clustering techniques in machine learning, we employ the mean-shift approach for
two reasons. First, since each earthquake in a catalog is expressed as a spatio-
temporal event with magnitude, we can naturally formulate it as a weighted
Gaussian kernel function. Second, although determining an adequate number of
clusters might be challenging for some clustering techniques such as hierarchical
clustering or k-means algorithm, this number can be automatically determined
by a bandwidth parameter, and some standard statistical resampling techniques
can estimate this parameter. In our experiments, we generated our dataset from
an earthquake catalog that covered Japan and selected 24 major earthquakes
which caused significant damage or casualties in Japan. In our experimental
comparison with three representative clustering methods in seismology, i.e., the
window method, single-link method, and correlation-metric method, we compare
the clustering results containing the above 24 major earthquakes in terms of the
cluster sizes, similarity matrices, and earthquake visualization results.

An outline of this paper is given below. Section 2 describes related conven-
tional algorithms for earthquake declustering and mean-shift clustering. As pre-
liminaries, Sect. 3 details the conventional declustering algorithms used in our
experimental evaluation for comparison purposes. After that, Sect. 4 presents our
magnitude-weighted mean-shift clustering algorithm, equipped with a leave-one-
out procedure for estimating its bandwidth parameter. In Sect. 5, we report our
experimental results using an existing Japanese earthquake catalog and discuss
notable characteristics of our proposed method. Finally, Sect. 6 gives concluding
remarks and future problems.

2 Related Work

One of the representative clustering methods is hierarchical cluster analysis such
as linkage methods [17–19], and the other is partitioning methods such as the
k-means algorithm [13]. In seismology, declustering algorithms (e.g., [22]) focus-
ing partitioning seismicity into groups closer in space and time than expected
in a purely random distribution have been studied. Yamagishi et al. [21] pro-
posed a clustering method using linkage based on the declustering algorithms
in the Japanese earthquake catalog, but it suffers from the same problem that
cannot determine an adequate number of clusters as the representative methods
described above. Therefore, we adopt the mean-shift algorithm described below,
automatically determining the number of clusters by a bandwidth parameter.
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In seismology, declustering is the task of classifying each earthquake in a
catalog into foreshock, mainshock, or aftershock, and tremendous efforts have
been devoted to developing effective algorithms for this task [20]. Knopoff &
Gardner [9,12] proposed a pioneering algorithm known as the window method,
which identifies aftershocks by assigning a window with some length and dura-
tion parameters to each earthquake regarded as a mainshock. Reasenberg [16]
proposed another algorithm known as the cluster method, which assumes an
interaction zone centered on each earthquake. Zhuang et al. [24–26] proposed
a stochastic declustering algorithm also known as stochastic reconstruction
using the ETAS (epidemic-type aftershock sequence) model [14,15]. Frohlich and
Davis [5,8] proposed another declustering algorithm, also known as the single-
link cluster analysis, which utilizes a spatio-temporal distance with respect to
given two earthquakes. Baiesi & Paczuski [1] proposed a spatio-temporal distance
known as correlation-metric, and based on this metric, Zaliapin et al. [23] pro-
posed another declustering algorithm, which identifies background earthquakes
(mainshocks) by rescaling its distance and time.

The mean-shift algorithm is a recursive computing procedure using a non-
parametric probability density estimator based on the Parzen window kernel
function [4]. The detailed mathematical derivation of the mean-shift procedure
is given in the study of a robust approach for characterizing multi-layered forests
using airborne laser scanning (ALS) data [7]. Mean-shift works by placing a ker-
nel on each point in the data set. The kernel, a function that determines the
weight of nearby points for re-estimating the mean, is iteratively shifted with a
bandwidth (namely the diameter of the hyper-sphere) to a denser region until
it converges to a stationary point. Namely, the choice of the kernel bandwidth h
is very critical. Many adaptive or variable bandwidth selection techniques have
been proposed for the mean-shift concerning 2D imagery analysis. Comaniciu [3]
proposed a variable bandwidth technique that imposes a local structure on the
data to extract reliable scale information by maximizing the magnitude of the
normalized mean-shift-vector. Huang and Zhang [11] proposed that separability
in feature space or local homogeneity can be exploited to adaptively select band-
width parameters for remote-sensing image classification and object recognition.
Bo et al. [2] proposed that the neighborhood’s local scale and structure infor-
mation around individual samples can also be utilized to calibrate the kernel
bandwidth in an adaptive mean-shift procedure to find arbitrary density, size,
and shape clusters in remote sensing imagery.

3 Declustering Algorithms for Earthquake Data

For the i-th observed event (earthquake), we denote its occurrence position,
occurrence time, and magnitude by ri, ti, and mi, in this order, where ri is a
3-dimensional vector obtained as ri = (longitudei, latitudei, depthi). Then, we
express the set of observed events as D = {(ri, ti,mi) | 1 ≤ i ≤ N}, where
ti < tj if i < j. Namely, we assign the index i to each event in chronolog-
ical order from oldest to most recent ones. In this paper, among representa-
tive clustering (declustering) methods developed in seismology, we focus on the



350 Y. Yamagishi et al.

window method [9,12], the single-link method [5,8], and the correlation-metric
method [1,23], which are referred to as WI, SL, and CM , respectively. Now,
we explain these methods as a unified graph decomposition algorithm. Namely,
we first construct a directed graph G = (V, E) by connecting the pairs of related
events according to the definition of each method, where V = {1, · · · , N} and
E ⊂ V×V denote the sets of nodes and links, respectively. Then, by decomposing
the constructed graph G into weakly connected components, we can obtain the
clusters of events as the sets of nodes belonging to the same components.

For each event i, the WI method defines the spatio and temporal metrics,
d(i) [km] and t(i) [days], as

d(i) = 100.1238∗mi+0.983, t(i) =

{
100.032∗mi+2.7389, if mi ≥ 6.5
100.5409∗mi−0.547, else

, (1)

and then compute the set VWI(i) of events belonging to the window of event i,
as VWI(i) = {j | i < j ≤ N, ‖ri − rj‖ ≤ d(i), tj − ti ≤ t(i)}. The WI method
constructs a graph G by selecting the following link set, EWI = {(i, j) | 1 ≤ i ≤
N, j ∈ VWI(i)}. Note that the event j ∈ VWI

i is regarded as the child node
(aftershock) of i.

For each pair of two events i and j, the SL method defines the spatio-
temporal metric d(i, j) as d(i, j) =

√‖ri − rj‖2 + C2(tj − ti)2, where the spatio-
temporal scaling constant C is set to C = 1 [km/day] [5,8]. The SL method
constructs a graph G by selecting the following link set, ESL = {(iSL(j), j) | 2 ≤
j ≤ N, d(iSL(j), j) < D}, where iSL(j) = arg min{d(i, j) | 1 ≤ i < j},
D = 9.4

√
S − 25.2, and S is the median of all d(iSL(j), j) distances. Note that

the event iSL(j) is regarded as the parent node (foreshock) of j.
For each pair of two events i and j such that i < j, by using the rescaled

distance R(i, j) and time T (i, j),

R(i, j) = ‖ri − rj‖df 10−b mi/2, T (i, j) = (tj − ti)10−b mi/2. (2)

the CM method defines the spatio-temporal metric as n(i, j) = T (i, j)×R(i, j),
where the fractal dimension df is set to df = 1.6 and the parameter b of the
Gutenberg-Richter law is set to b = 0.95 [1]. The CM method first classifies
X = {(T (iCM (j), j), R(iCM (j), j)) | 2 ≤ j ≤ N} into the background and clus-
ter components, BX and CX , i.e., X = BX ∪CX , by applying a Gaussian mixture
clustering procedure, and then constructs a graph G by selecting the following
link set, ECM = {(iCM (j), j) | 2 ≤ j ≤ N, (T (iCM (j), j), R(iCM (j), j)) ∈ CX},
where iCM (j) = arg min{n(i, j) | 1 ≤ i < j}. Note that the event iCM (j) is
regarded as the parent node (foreshock) of j. Finally, it should be mentioned that
according to the standard machine learning approach, we classify the observed
events into BX and CX by selecting the class with the largest posterior proba-
bility, rather than determining some threshold value to the metric n(i, j).

4 Proposed Method

We propose a magnitude-weighted mean-shift clustering algorithm equipped
with a leave-one-out procedure for estimating its bandwidth parameter h. For



Magnitude-Weighted Mean-Shift Clustering 351

each observed event i, we introduce an (M = 4)-dimensional vector xi con-
structed by arranging ri and ti for the i-th observed event, i.e., xi = (ri, ti),
where we adopt a scaling to be 1 [km/day] as performed in the SL method.
Then, we assign the following Gaussian kernel function to each event i,

gi(u;h) =
1

(2πh)M/2
exp

(
− 1

2h
||u − xi||2

)
, (3)

where u means an arbitrary M -dimensional vector. Now, by using a weight
value wi = 10mi for the i-th kernel function, we define the following magnitude-
weighted Gaussian mixture probability density function, i.e.,

G(u;h) =
∑N

i=1 wigi(u;h)∑N
i=1 wi

. (4)

Note that the spatio-temporal event i with magnitude mi can be naturally
regarded as the above weighted kernel function. According to Gutenberg-Richter
(GR) law [10], the frequency of earthquakes with the magnitude mi is propor-
tional to 10−b mi, where b is called b-value and close to 1.0. Therefore, this
weighting factor of wi = 10mi compensates for the earthquake frequency depen-
dent on the magnitude. Now, we briefly explain the clustering procedure by
the mean-shift algorithm. Namely, after setting u(0) ← xj for each event j and
s ← 0, by repeatedly performing the following mean-shift operation,

u(s+1) ←
∑N

i=1 wigi(u(s);h)xi∑N
i=1 wigi(u(s);h)

, (5)

and s ← s+1, we can obtain the converged vector u(xj). Finally, we can produce
a resultant cluster as the following set of events.

Rj = {k | 1 ≤ k ≤ N,u(xk) = u(xj)}. (6)

Thus, we can see that the number of clusters is automatically determined from a
given bandwidth h. Hereafter, we referred to our magnitude-weighted mean-shift
clustering method as MS.

We describe our leave-one-out procedure for estimating the bandwidth
parameter h. Namely, by excluding the i-th kernel function, we introduce our
leave-one-out magnitude-weighted Gaussian mixture probability density func-
tion.

Gi(u;h) =

∑N
j=1,j �=i wjgj(u;h)∑N

j=1,j �=i wj

, (7)

Then, we define the following leave-one-out logarithmic likelihood function.

L(h) =
N∑
i=1

log Gi(xi;h). (8)
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Based on likelihood maximization by the EM algorithm [6], we can obtain the
following update formula to maximize L(h) concerning h.

h ← 1
NM

N∑
i=1

N∑
j=1,j �=i

qi,j(h)||xi − xj ||2, (9)

where the posterior probability qi,j(h) is defined as

qi,j(h) =
wjgj(x;h)∑N

k=1,k �=i wkgk(xi;h)
=

wj exp(−||xi − xj ||2/(2h))∑N
k=1,k �=i wk exp(−||xi − xk||2/(2h))

. (10)

Below we summarize our proposed algorithm.

Step1. Set h0 to some initial value and s ← 0.
Step2. Update hs as hs+1 ← 1

NM

∑N
i=1

∑N
j=1,j �=i qi,j(hs)||xi − xj ||2.

Step3. Output hs+1 as ĥ and terminate if |hs+1 − hs|/hs < ε; otherwise set
s ← s + 1 and return to Step2.

In our experiments described later, by setting h0 ← 1, 000 and ε = 0.0001, we
obtained the estimated value as ĥ = 16.37. Note that instead of L(h) defined
in Eq. (8), by maximizing L̃(h) =

∑N
i=1 log G(xi;h) with respect to h, we can

obtain a standard maximum likelihood estimation result without using the leave-
one-out procedure. However, since Eq. (10) changes as follows:

q̃i,j(h) =
wj exp(−||xi − xj ||2/(2h))

wi +
∑N

k=1,k �=i wk exp(−||xi − xk||2/(2h))
, (11)

we can see that in the case of the standard maximum likelihood estimation, the
bandwidth h typically converges to 0 as an overfitted result.

5 Experimental Evaluation

We generated an original dataset from an earthquake catalog of the Japan
Islands containing source parameters determined by the Japan Meteorologi-
cal Agency1 for experimental evaluation. Namely, we selected N = 104, 343
events by restricting the minimum magnitude, maximum depth, and period to
Mmin = 3.0, Dmax = 100 km, and Oct. 01, 1997, to Dec. 31, 2016, respectively.
From this dataset, we selected 24 major earthquakes which caused significant
damage or casualties in Japan. Table 1 shows the list of these earthquakes and
their information about origin times, locations (longitude, latitude and depth),
magnitudes, and names, where their ids are assigned according to the occurrence
times.

First of all, with respect to the clusters obtained by the four methods, WI,
CM , SL, and MS, we examine the basic statistics of their sizes. Figure 1 com-
pares their distributions depicted by the size of clusters (SC) and the number
1 https://www.data.jma.go.jp/svd/eqev/data/bulletin/hypo.html.

https://www.data.jma.go.jp/svd/eqev/data/bulletin/hypo.html
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Fig. 1. Distribution and basic statistics of cluster sizes

of clusters (NC) corresponding to the horizontal and vertical axes, respectively,
where Figs. 1a, 1b, 1c, and 1d show those obtained by WI, CM , SL, and MS, in
this order, together with the total number, mean, and standard deviation of the
cluster sizes. From these results, we can observe that the largest size of clusters
obtained by WI is 47, 592 and 40, 789 by CM , which amount to almost half of
the total number of observed events, c.f., N = 104, 343, and the number of single-
member clusters obtained by SL is 56, 906, which also amounts to almost half
of the total number N . On the other hand, we can see that the depicted result
of MS is most likely to be approximated by a balanced power low distribution
among these four methods.

Next, we focus on the clusters which contain the selected 24 major earthquakes
shown in Table 1. For each method denoted by mtd ∈ {WI,CM,SL,MS}, let
Rmtd

id be an obtained cluster which includes the major earthquake with id ∈
{1, · · · , 24} shown in Table 1. Also, for each cluster Rmtd

id , we consider the following
two subclusters, RBmtd

id = {h ∈ Rmtd
id | th < tid} and RAmtd

id = {j ∈ Rmtd
id | tj >

tid}, i.e., the sets of events that occurred before and after the major earthquakes,
respectively. Note that |Rmtd

id | = |RBmtd
id | + |RAmtd

id | + 1.
Table 2 compares the size of these clusters obtained by the four methods.

From our experimental results, we can obtain the following three observa-
tions. First, we can observe that in the cases of the three id pairs of 4 &
5, 14 & 15, and 22 & 23, the same clustering results were obtained by any
mtd ∈ {WI,CM,MS}, i.e., Rmtd

4 = Rmtd
5 , Rmtd

14 = Rmtd
15 , and Rmtd

22 = Rmtd
23 .

In fact, as described in Table 1, these are the well-known pairs of foreshocks and
mainshocks about the 2004 Kii-Peninsula, 2011 Tohoku, and 2016 Kumamoto
earthquakes. We consider that these results might show the part of the validity
of these clustering methods.

Second, we can observe that for each mtd ∈ {WI,CM}, after the earthquake
with id ≥ 14, the same clustering results were obtained, i.e., Rmtd

14 = Rmtd
id except

for the results with id = 22 and 23, as well as id = 19 of WI. Here we should
note that the sizes of the clusters obtained by WI and CM might be too large.
In fact, the chronological order of the earthquake with id = 14 is i = 47, 744
for the total number of events N = 104, 343, and thus the number of events
after this earthquake is 56, 599 and those covered by these clusters amount to
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Table 1. List of selected 24 major earthquakes

id Time Lon. Lat. Depth Mag. Name

1 10/6/2000 13:30 133.349 35.2742 8.96 7.3 2000 Tottori earthquake

2 12/18/2001 13:02 122.8152 23.8935 8.00 7.3 2001 Yonaguni Island inshore earthquake

3 9/26/2003 4:50 144.0785 41.7785 45.07 8 2003 Tokachi-oki earthquake

4 9/5/2004 19:07 136.7977 33.0332 37.58 7.1 2004 Kii Peninsula earthquake 1

5 9/5/2004 23:57 137.1413 33.1375 43.54 7.4 2004 Kii Peninsula earthquake 2

6 10/23/2004 17:56 138.8672 37.2925 13.08 6.8 2004 Chuetsu earthquake

7 3/20/2005 10:53 130.1763 33.7392 9.24 7 2005 Fukuoka earthquake

8 8/16/2005 11:46 142.2778 38.1495 42.04 7.2 2005 Miyagi earthquake

9 3/25/2007 9:41 136.686 37.2207 10.70 6.9 2007 Noto earthquake

10 7/16/2007 10:13 138.6095 37.5568 16.75 6.8 2007 Chuetsu offshore earthquake

11 6/14/2008 8:43 140.8807 39.0298 7.77 7.2 2008 Iwate-Miyagi Nairiku earthquake

12 8/11/2009 5:07 138.4993 34.7862 23.32 6.5 2009 Shizuoka earthquake

13 2/27/2010 5:31 128.68 25.9187 37.00 7.2 2010 Ryukyu Islands earthquake

14 3/9/2011 11:45 143.2798 38.3285 8.28 7.3 2011 Tohoku earthquake 1

15 3/11/2011 14:46 142.861 38.1035 23.74 9 2011 Tohoku earthquake 2

16 3/11/2011 15:08 142.7668 39.8207 32.02 7.4 2011 Iwate offshore earthquake

17 3/11/2011 15:15 141.2525 36.1208 42.70 7.6 2011 Ibaraki offshore earthquake

18 3/11/2011 15:25 144.751 37.9143 11.00 7.5 2011 Sanriku offshore earthquake

19 3/12/2011 3:59 138.5978 36.986 8.38 6.7 2011 Nagano earthquake

20 4/7/2011 23:32 141.9202 38.2042 65.89 7.2 2011 Miyagi earthquake

21 4/11/2011 17:16 140.6727 36.9457 6.42 7 2011 Fukushima earthquake

22 4/14/2016 21:26 130.8087 32.7417 11.39 6.5 2016 Kumamoto earthquake 1

23 4/16/2016 1:25 130.763 32.7545 12.45 7.3 2016 Kumamoto earthquake 2

24 11/22/2016 5:59 141.6042 37.3547 24.50 7.4 2016 Fukushima earthquake

42, 196 and 40, 782, where the cover rates are around 0.75 and 0.72. Moreover,
in case of the 2011 Tohoku earthquakes with id = 15, the number of events in
its window is |VWI(id15)| = 13, 599 for WI, and the number of its direct child
events is |{j | iCM (j) = id15}| = 31, 101 for CM . Namely, we consider that some
large clusters are constructed by mutually connecting these sets of events for the
major earthquakes. Thus, compared to these existing methods, WI and CM ,
we can expect that our proposed MS method is likely to have a relatively high
separability. Hereafter, for our evaluation purpose, as indicated at the rightmost
column in Table 2, we refer to the set of the earthquakes before id = 14 as group
1 (G = 1), and the rest of those as group 2 (G = 2), respectively. Here recall that
the earthquake with id = 14 is the foreshock of the 2011 Tohoku earthquake.

Third, we can observe that in the case of id ∈ {1, · · · , 24} except for id = 19,
the following inequalities for the cluster sizes hold with reasonable precision,

|RWI
id | ≥ |RCM

id | > |RMS
id | > |RSL

id |, (12)

although |RWI
id | and |RCM

id | are almost comparable in the case of id ∈ {4, 5, 7},
and we can see the following inequalities for the cluster sizes about |RBmtd|,

|RBWI | ≥ |RBMS | ≥ |RBCM | ≥ |RBSL|. (13)

Here we should note that the sizes of the clusters obtained by SL might be
too small compared to those obtained by the other methods. Actually, in case
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Table 2. Size of clusters obtained by four methods

id WI CM SL MS G

|R| |RB| |RA| |R| |RB| |RA| |R| |RB| |RA| |R| |RB| |RA|
1 340 0 339 337 0 336 172 0 171 278 0 277 1

2 781 37 743 465 1 463 66 1 64 305 7 297 1

3 4718 1925 2792 1460 0 1459 7 0 6 440 5 434 1

4 726 0 725 740 0 739 27 0 26 666 0 665 1

5 726 58 667 740 58 681 68 2 65 666 58 607 1

6 591 4 586 550 0 549 298 0 297 520 6 513 1

7 294 0 293 295 0 294 127 0 126 280 1 278 1

8 47592 2643 44948 282 0 281 4 0 3 75 10 64 1

9 445 0 444 410 0 409 206 0 205 352 1 350 1

10 144 0 143 123 0 122 16 0 15 119 2 116 1

11 581 2 578 567 0 566 272 0 271 473 4 468 1

12 141 0 140 30 0 29 4 0 3 29 0 28 1

13 515 11 503 464 0 463 56 0 55 310 4 305 1

14 47592 5396 42195 40782 0 40781 1 0 0 1964 32 1931 2

15 47592 5587 42004 40782 190 40591 1 0 0 1964 216 1747 2

16 47592 5601 41990 40782 217 40564 1 0 0 418 7 410 2

17 47592 5607 41984 40782 226 40555 65 0 64 2134 24 2109 2

18 47592 5620 41971 40782 239 40542 1 0 0 325 1 323 2

19 207 0 206 40782 1002 39779 36 0 35 159 0 158 2

20 47592 16593 30998 40782 11373 29408 195 32 162 905 288 616 2

21 47592 17302 30289 40782 12085 28696 256 31 224 1386 400 985 2

22 1253 0 1252 1243 0 1242 74 0 73 1184 0 1183 2

23 1253 175 1077 1243 175 1067 74 18 55 1184 175 1008 2

24 47592 46663 928 40782 39872 909 181 1 179 923 57 865 2

of the 2011 Tohoku earthquakes with id = 15, the spatio-temporal metric
d(iSL(id15), id15) = 40.76 was larger than the threshold value D = 7.10.

To further examine our experimental results, we compare the visual event
distribution results of the events in the clusters obtained by the four methods.
Figure 2 shows the visualization results for id = 2, as a typical example in
group 1, where Figs. 2a, 2b, 2c, and 2d are those obtained by WI, CM , SL, and
MS, in this order. Here note that a red cross denotes the location of the major
earthquake, and while the location of events in RA and RB are depicted by
orange and blue triangles, respectively. From these results, we can easily confirm
the inequalities of the cluster sizes shown in Eqs. 12 and 13.

Figure 3 shows the visual event distribution results for id = 15, as a typical
example in group 2, where Figs. 3a, 3b, 3c, and 3d are those obtained by WI,
CM , SL, and MS, in this order, and we use the same marker notations as
explained in Fig. 2. From these results, we can visually confirm that the cluster
members of WI and CM are somehow different where recall that the size of
cluster obtained by the SL is 1, i.e., |RSL

id | = 1 as shown in Table 2. From these
results, we can also confirm the differences among these four methods. We believe
that our proposed MS method is vital and has a promising characteristic.
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Fig. 2. Event distribution evaluation of the clusters (id = 2) (Color figure online)
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Fig. 3. Event distribution evaluation of the clusters (id = 15)

6 Conclusion

In this paper, we addressed the problem of clustering earthquakes in a catalog,
which is also known as declustering in seismology, i.e., a task of classifying each
earthquake into foreshock, mainshock, or aftershock. This declustering task can
also be formalized as a standard clustering problem, which identifies each cluster
containing a mainshock together with its foreshocks and aftershocks. To this end,
we proposed a magnitude-weighted mean-shift clustering algorithm, equipped
with a leave-one-out procedure for estimating its bandwidth parameter. In our
experimental evaluation, we generated our dataset from an earthquake catalog
that covered the whole of Japan and selected 24 major earthquakes that caused
significant damage or casualties in Japan. In our experimental comparison with
three representative clustering methods in seismology, i.e., the window method,
single-link method, and correlation-metric method, we compared the clustering
results containing the above 24 major earthquakes in terms of the size of cluster,
similarity matrices, and earthquake visualization results. As a result, we observed
that concerning the clusters containing the 24 major earthquakes, the sizes of
these clusters obtained by our proposed method were consistently smaller than
those of the window or correlation-metric method but larger than those of the
single-link method.

As a future task, we plan to conduct experiments by tuning the C of SL and
the b-value of CM , which are also used in the proposed method MS by estimat-
ing the optimal values from the earthquake catalog, and extend our clustering
method by employing more general distance settings in the Gaussian kernel func-
tion, such as a Mahalanobis distance. A further empirical study to confirm the
validity of the clustering results obtained by our method is another future work.
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Abstract. Babies needing intensive care are at risk of developing gastrointestinal
problems, such as feed intolerance and necrotizing enterocolitis (NEC). Monitor-
ing, early detection, and prevention of bowel diseases in newborn may improve
outcomes. However, continuousmonitoring of the gastrointestinal health of babies
is not currently available. We develop an innovative miniature Bowel Sounds Sen-
sor (BoSS) for term babies and a bowel sound analyzer, called Recurrent Local
Relation Encoder Classifier (ReLATEC), for real-time, visualmonitoring of bowel
functions in NICUs. ReLATEC detects types and locations of bowel sounds from
a continuous audio stream of bowel activities recorded in noisy hospital envi-
ronments. ReLATEC combines the advantages of CNN and RNN by using local
attention with recurrent layers. We collected 171 bowel sound recordings from
113 newborn babies at two NICUs to evaluate our approach. The bowel sound
detector was then trained using weak labels. The detector performed 7% better
than conventional approaches. It was shown a sensitivity of 91% and specificity
of 71% in detecting short burst bowel sounds. It showed a sensitivity of 97%
and specificity of 72% in detecting long burst bowel sounds. Despite the model
being trained with weak labels, it detected the boundaries of the two bowel sounds
reliably for real-time visual monitoring.

Keywords: Deep learning · Semantic segmentation · Biomedical engineering ·
Computerized diagnosis

1 Introduction

Babies needing intensive care are at risk of developing gastrointestinal problems, such as
feed intolerance and necrotizing enterocolitis (NEC). Necrotizing enterocolitis (NEC)
occurs in nearly 10% of premature infants, accounts for 1% to 5% of neonatal intensive
care unit (NICU) admissions [1]. Due to the rapid progression of NEC, early diagnosis
of NEC remains challenging [2]. Monitoring, early detection, and prevention of bowel
diseases in newborn may improve outcomes. Bowel sound monitoring provides a non-
invasive clinical diagnosis [3]. The absence of bowel sound often indicates NEC [1].

© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13031, pp. 359–369, 2021.
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Fig. 1. Bowel Sound Sensor (BoSS) based on Docentron Acorn sensor

Fig. 2. Overall procedure of proposed approach

However, currently, there are no known approaches that can provide real-time, visual
monitoring of bowel functions of newborn babies. Diagnosis of NEC is currently made
manually using a stethoscope that is often uncomfortable and invasive for young children
[4–6]. Furthermore, due to the irregular pattern and occurrence of bowel sounds, locating
and detecting bowel sounds from digital recordings of bowel sounds remains a challenge
[7, 8]. Manually annotating and analyzing bowel sounds is time-consuming, especially
when noise exists. Even doctors can only identify a few random events [7].

Therefore,wedevelop an innovativeminiatureBowel SoundsSensor (BoSS) for term
babies shown in Fig. 1. The 3D-printed micro stethoscope of BoSS allows continuous
monitoring of bowel sounds of newborn babies with minimal discomfort. The recorded
bowel sounds are then analyzed using deep learning algorithms.

Deep learning approaches achieve outstanding performance in recent years. How-
ever, existing approaches have two significant shortcomings for analyzing streams of
bowel sounds. RNN updates its hidden state along the input sequence. As the gradient
of the hidden state accumulates, a long sequence may lead to vanishing or exploding
gradients. On the other hand, CNN learns the features like templates, which match input
features with a fixed spatial or temporal distribution.
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Therefore, we propose Recurrent Local Relation Encoder Classifier (ReLATEC) for
detecting the locations and types of bowel sounds. ReLATEC combines the advantage
of CNN and RNN by using local attention with recurrent layers.

Figure 2 illustrates how BoSS and ReLATEC are used to solve the problems. BoSS
continuously records bowel sounds of newborn babies using the micro stethoscope sen-
sor. The bowel sounds locations are then labeled for training the bowel sound detector.
The labels are converted into weak labels with a lower temporal resolution because it
is difficult for human listeners to identify all bowel sounds accurately due to hospital
environmental noises. A ReLATECmodel is then trained to detect the locations and two
types of bowel sounds: short bursts and long bursts. The trained detector then provides
real-time annotation of bowel sounds with locations, types, and statistics of bowel sound
activities.

In our study, ReLATEC achieved a sensitivity of 91% and specificity of 71% in
detecting short burst bowel sounds, and a sensitivity of 97% and specificity of 72% in
detecting long burst bowel sounds. Despite the model was trained with weak labels,
it recalled most of bowel sound locations labeled by human listeners reliably and also
discovered new bowel sound locations.

The main contributions of our work are as follows. For the first time, we developed
a miniature bowel sound sensor for preterm babies at NICUs for continuous real-time
monitoring of bowel functions. A total of 171 bowel sounds of newborn babies were
successfully recorded from 113 newborns at two different NICUs, and 1,267 bowel
activities were successfully identified and labeled from the recordings. A new novel
deep-learning approach was developed to detect the locations and types of bowel sound
activities automatically.

The paper is organized as follows. In Sect. 2, we introduce our dataset and details
of ReLATEC. In Sect. 3, the result is displayed and discussed. Section 4 concludes with
highlights of our discoveries.

2 Proposed Method

2.1 Dataset

A total of 171 bowel sounds were collected using BoSS (Fig. 1) from 86 newborns at KK
Women’s and Children’s Hospital in Singapore and Townsville hospital in Australian
over a period of 5 months. The doctors and nurses of the hospitals were responsible
for data collection. The total recordings were 852 min including 439 min of records of
pre-feed and 413 min of recordings of post-feed.

BoSS was designed to amplify and filter continuous bowel sounds from preterm
babies non-invasively, as shown in Fig. 1 and Fig. 2. The micro stethoscope is specifi-
cally designed to be small, soft, and comfortable for newborn babies. The bowel sound
processing module filters and amplifies audio signals within the frequency range of 100
Hz and 1 kHz. The sensor module is designed to be compatible with the microphone
input of mobile phones and tablets. KOPO1 mobile audio recorder is used for recording,
visualization, and annotation of bowel sounds.

1 https://www.kopo.com/da/.

https://www.kopo.com/da/
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2.2 Data Processing

Regions of Interests (ROIs) that contain bowel sounds were then manually selected as
an initial step of weak labeling. A total of 5 IT-students from James Cook University
participated in data labelling. Theywere first trainedwith different types of bowel sounds
both with real and simulated bowel sounds. The first group of four performed the initial
labeling followed by cross verification and reclassification. The remaining one student
then revalidated the labels. A total of 592 ROIs were selected from the 171 recordings
by the first group. Each ROI contained at least three to four bowel activities. We then
classified the bowel activities into two types: short burst and long burst (also called
grumble). Figure 3 shows examples of the two types of sounds. Short bursts have a
higher pitch, shorter duration, and sharp shape, while grumble sounds have a lower pitch
and longer duration. We resampled the data to 8000 Hz and generated a spectrogram
representation.

Fig. 3. Examples of (a) short burst bowel sound and (b) long burst (grumble) bowel sound

Then, the start and the end time locations of bowel activities were manually marked
and each was classified into the two types: short burst and long burst. A total of 1,267
bowel activities were marked: 971 for short bursts and 296 for long bursts, as shown in
Table 1.

Due to noises and the length of the recordings, not all bowel activities could be
identified by human listeners. Often bowel activities last less than a second. Therefore,
we used weak labeling approach: the labelling is not complete, but all identified bowel
actives are correct.

To generate weak labels, we first generated positional one-hot labels using themarks.
The one-hot labels were further segmented using a 0.75 s maximum pulling sliding
window. Each segment was then labeled as one or zero, whereas one means there is a
bowel sound at that location. This generated 7575 weak labels for each types of bowel
sound. The total number of positive weak labels indicating the presence of any short
bursts at the location is 1,796 and the total number of positive weak labels indicating the
presence of any long bursts at the location is 704 as shown in Table 2 and Table 3.

For training and testing, we have divided the ROIs into 10 s of input segments. Each
input segment was then converted into a spectrogram feature data. Corresponding label
data were also generated for each feature data. A total of 303 feature and label data pairs
were generated: 242 for training and 61 for testing.
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A single model was trained for both types of bowel sounds. For evaluation,
we divided the dataset into the training dataset (80%) and the testing dataset (20%).
Table 4 shows the mean durations of bowel activities that are manually labelled. It shows
that durations of long bursts are longer than short bursts. The durations of post-feed long
bursts are longer than pre-feed long bursts.

Table 1. The number of bowel activities labeled manually for training and testing

Dataset split Short brust Long burst (grumble) Total

Training set 707 252 959

Testing set 264 44 308

Total 971 296 1267

Table 2. The weak labels of short bursts generated for training and testing

Dataset split Positive Negative Total

Training set 1319 4731 6050

Testing set 477 1048 1525

Total 1796 5779 7575

Table 3. The weak labels of long bursts generated for training and testing

Dataset split Positive Negative Total

Training set 599 5451 6050

Testing set 105 1420 1525

Total 704 6871 7575

Table 4. Mean durations of bowel activities marked manually

Measurement Mean duration (seconds)

Pre-feed (short burst) 0.1810

Post-feed (short burst) 0.1803

Pre-feed (long burst) 0.2383

Post-feed (long burst) 0.3759

2.3 Recurrent Local Relation Transformer (ReLATEC)

Figure 4 describes the comparison between Vanilla Transformers and Recurrent Local
Relation Transformer (ReLATEC) for detecting the location and types of the bowel
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sounds (bowel activities) from an audio stream. The length of input and output data is
10 s. The input feature data is then embedded at the embedding layer comprising of
a linear layer, a pooling layer, and another linear layer. Then positional encoding is
performed to encode time locations of the features values. The position values and the
embedded feature data are then used to calculate attention. The resulting attention data is
then used to generate the output. The upsampling layer is used to generate 10 s length of
data corresponding to the input data. The output values are the probability of existence
of bowel activities at the locations in the output data.

Fig. 4. Comparison of (a) vanilla transformers and (b) ReLATEC

A Transformer Network consists of self-attention layers and Feed Forward Neural
Networks [9, 10]. Transformers learn features from the relationships of inputs that are
robust to a different distribution. The multi-head attention mechanism is shown below:

Attention(Q,K,V ) = softmax

(
QKT

√
dk

)
V (1)

MHA(Q,K,V ) = concat(head0, . . . headh)Wo (2)
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head i = Attention(QWq
i ,KW

k
i ,VW

v
i ) (3)

where Q, K, V denote the query, key and value of input, dk denotes the dimensions
of embedding, W denotes parameters, and i denotes the index of inputs. ReLATEC
only uses the encoder structure of Transformer. The encoder of Transformer uses self-
attention, where all Q, K, V are the input sequence, to relate different time steps among
input sequence [9]. For our data, Q, K and V are the feature vector sequence. For each
query vector, the energy A is calculated with all the key vector. Each value vector is
multiplied by the softmax of energy A and then added up.

ReLATEC uses local relation to constrain the aggregation window of self-attention.
Local Relation Network (LR-Net) [10] was also shown to be successful in modeling
pixel-to-pixel relations from images with aggregation window. Instead of using entire
sequence to calculate attention, only the adjacent feature vector is used to calculate atten-
tion. In LR-Net, the aggregation window is curial for learning features by introducing
an information bottleneck. In this approach, we treated the time domain of audio spec-
trogram as one-dimensional images to apply this aggregation window. Local Attention
function is shown as Eq. (4) and (5):

Local Attention(Q,K,V ) = mask

(
softmax

(
QKT

√
dk

))
V (4)

mask
(
Ei,j

) =
{
Ei,j, |i − j| < windowsize

2 + 1
0, otherwise

(5)

Position encodings are added to the embeddings to represent the relative positions of
each time step feature vector. Position encoding provides positional information to
Transformer as Eq. (6) and (7):

pos(2i) = sin

(
pos

base
2i
d

)
(6)

pos(2i + 1) = cos

(
pos

base
2i
d

)
(7)

where pos denotes position, base is a hyperparameter, and i denotes the index of
dimension.

In vanilla Transformer configuration, the base is 10000. Figure 5(a) shows the posi-
tion encoding when base is 10000. The higher dimensions do not have repeating pat-
terns and indicate absolute positional information. The absolute positional information
is meaningless in our task since breath sound is a periodical signal. Thus, we set the
base to 2 for ReLATEC. Figure 5(b) shows that all dimensions of ReLATEC relative
positional encoding have repeating patterns. Figure 5(c) shows that ReLATEC relative
positional encoding still indicates the local positional information.

Instead of using multiple independent layers, ReLATEC recurrent one layer with a
given number as Eq. (8) and (9):

Xi = ReLATEC layer(Xi−1) (8)
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ReLATEC layer(Xi) = FFN (Xi + MHA(Xi,Xi,Xi)) (9)

In another interpretation, ReLATEC is Transformer with cross-weight layer sharing.
Previous approaches, such as UT and ALBERT, have shown that recurrent structure the
superior to multiple layer structure [11, 12]. The recurrent structure not only reduces the
number of parameters but also introduces recurrent bias like RNN.

After that, the output is upsampled to the original length to provide semantic segmen-
tation of pixels. The skip connection allows gradients flow directly through the network
to prevent exploding or vanishing gradients. The length of classification layer is 1333
and dimension is two for two classes.

Fig. 5. Positional encodingwhen base is 10000 (a), base is 2 (b)and self-dot-product of ReLATEC
Positional Encoding (c)

3 Result

3.1 Bowel Activity Location Prediction

Table 5. Performance results of predicting bowel activities using different approaches

Approach Long burst Short burst

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

RNN 88.47% 71.56% 76.85% 90.48% 71.69% 72.98%

Transformer 85.53% 70.04% 74.89% 95.24% 72.82% 74.36%

Recurrent
Transformer

88.26% 70.04% 75.74% 96.19% 72.96% 74.56%

ReLATEC 90.99% 70.90% 77.18% 97.14% 72.25% 73.97%

Table 5 shows that ReLATEC archived 90.99% sensitivity and 70.90% specificity for
short burst while it achieved 97.14% sensitivity and 72.25% specificity for long burst.

To see if ReLATEC performs better than existing approaches, we fixed the specificity
to 70% by adjusting the decision boundary threshold and compared sensitivity values.
ReLATEC achieved significantly higher sensitivity compared to existing approaches.
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Especially for short burst activities, it showed 6.66% improvement. Figure 6 shows the
ROC curves of short burst and long burst detections. ReLATEC achieved the highest
AUC. The AUC for detecting long bursts was 93.1%, and the AUC for detecting short
bursts was 88.5%. ReLATEC was superior to the conventional RNN baseline, Vanilla
Transformer, and recurrent Transformer.

Fig. 6. ROC of different models to classifying (a) short burst and (b) grumble locations

Fig. 7. Segmentation visualization of (a) short burst and (b) grumble

Figure 7 shows the raw signal, spectrogram, ground truth, and prediction of short
bursts and grumbles. The orange lines indicate labels by human listeners, and the blue
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lines indicate predictions. ReLATEC detected almost all bowel sounds (bowel activities)
marked by human listeners. Furthermore, ReLATEC also discovered and detected bowel
sound activities that human listeners did not initially detect.

3.2 Clinical Statistics

Table 6. Physiological measurements calculated from ReLATEC prediction

Measurement Mean rate
(per minute)

Std. rate Mean duration
(seconds)

Mean gap
(seconds)

Pre-feed (burst) 2.0413 1.6095 0.2130 1.7597

Post-feed (burst) 3.1754 3.8070 0.2248 1.6668

Pre-feed (grumble) 1.5280 0.8269 0.2517 2.1221

Post-feed (grumble) 1.9666 0.9137 0.2955 2.1579

Displayed equations are centered and set on a separate line. Table 6 shows physio-
logical measurements of the bowel activities based on ReLATEC predictions. Similar to
the measurements done using the manual labels in Table 4, the mean durations of long
burst bowel activities are larger than the short burst bowel activities. The mean rates
of short bust bowel activities are higher than the post-feed rates. However, due to high
variance the differences are not significant.

4 Conclusion

The main contributions of our work are as follows. Our proposed method provides non-
invasive bowel activity detection and classification. The new innovative miniature bowel
sound sensor successfully recorded a large number of bowel sounds and bowel activities
at two different NICUs by nurses. The 3D-printed micro stethoscope was comfortable
for newborn babies for continuous monitoring of bowel functions. A new novel deep-
learning approach, ReLATEC, showed significant improvement in distinguishing and
detecting bowel activities even with hospital environmental noises. It provided reliable
and accurate boundaries of the two types of bowel activities with high sensitivity.

Furthermore, ReLATEC discovered and detected the bowel sound activities that
human listeners were failed to detect initially. It can be trained with noisy labels and
provide predictions with higher accuracy. The combinations of recurrent natures like
RNN and self-attention from Transformer in ReLATEC achieved better performance
than RNN and Transformer. Despite of the limitations of the imbalanced data, it was
able to produce good specificity values and goodROCcurveswithAUCs of 0.87 and 0.91
for short burst and long burst, respectively, indicating robust and reliable performance
for medical applications.
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Abstract. The recent enhancement of taxi dispatch services with infor-
mation technology has enabled data-driven pricing and dispatch. How-
ever, existing studies failed to address differences in individual priori-
ties as regards money savings and time savings, leading to non-optimal
taxi pricing and dispatch. In this paper, we formulate a new optimiza-
tion problem that yields optimized price and time proposals for each
requester according to their priorities. To consider the requester’s pri-
orities, we introduce an individual requester’s acceptance probability
model for price and required time, which is widely used in transporta-
tion economics. The proposals of price and time combinations yielded
by our method enhance both the requester’s satisfaction and the ser-
vice provider’s profit. Since the optimization problem is difficult to solve
because its objective values are hard to evaluate and discontinuous, we
construct a fast approximation algorithm by utilizing the characteristics
of the problem. Simulations using real-world datasets show that the pro-
posed framework increases both the requester’s satisfaction and service
provider’s profit.

Keywords: Ride-hailing · Price optimization · Taxi dispatching ·
Utility

1 Introduction

In recent years, many ride-hailing companies have introduced mobile applications
for taxi ordering, and extensive data on the movement of people by taxi is being
collected. The data is being actively analyzed to develop more effective taxi
dispatch operations. For example, studies have yielded useful taxi dispatch and
pricing technologies to maximize profit [16,22] and to minimize waiting time
[14,21].

However, work to date does not consider the differences in requester priori-
ties with regard to money savings and time savings. Many studies have shown
that money savings and time savings are important factors in the utility of
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D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13031, pp. 370–381, 2021.
https://doi.org/10.1007/978-3-030-89188-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89188-6_28&domain=pdf
https://doi.org/10.1007/978-3-030-89188-6_28


Price and Time Optimization for Utility-Aware Taxi Dispatching 371

Fig. 1. Conventional taxi dispatch Fig. 2. Proposed taxi dispatch

transportation services [9,20], and different individuals have different priorities
[1,23]. For example, requesters who prioritize time savings (e.g. business trav-
elers and high-income earners) want to move around the city in the shortest
possible time, even if the price is high. On the other hand, requesters who pri-
oritize money savings (e.g. non-business travelers and average income earners)
want to move as cheaply as possible and their time constraints are not severe.
Existing studies do not consider these differences and provide average services
to all requesters. Thus, they fail to satisfy a significant number of requesters.
Also, requester dissatisfaction triggers a decrease in requests, leading to a drop
in profits.

Figure 1 shows the problem caused by failing to consider individual priorities
as regards money savings and time savings. Here, we assume the policy that
determines a price rate (the price per unit distance) charged for taxi requests
for each area at each time [4,22] and executes shortest distance dispatch [14,21].
In Fig. 1, the same price rate is offered to Requester A and B since they are in
the same area at the same time. By the shortest distance dispatch, a distant
taxi is assigned to Requester A, while a closer taxi is assigned to Requester B.
Requester A is dissatisfied with the long waiting time because (s)he prioritizes
time savings over money savings. Also, Requester B is dissatisfied with the price
because (s)he has the reverse priorities.

To resolve this issue, we propose a new optimization problem of optimizing
price and time proposals for each requester according to their priorities. To
consider the requester’s priorities, we introduce a discrete choice model [18] based
on generalized cost [9,20], which is widely used in transportation economics, as
the requester’s acceptance probability model. Our formulation can achieve both
high requester satisfaction and high service provider profits for the following
reasons: (i) Since desirable proposals in terms of price and time are created for
each requester, the acceptance probability is high; (ii) As the proposals are less
likely to be rejected, service provider profit can be expected to increase.

Figure 2 shows the improvement possible by solving our new optimization
problem. The solution offers a shorter waiting time and a higher price to
Requester A, who prioritizes time savings. Conversely, the solution offers a lower
price and a longer waiting time to Requester B, who prioritizes money savings.
As a result, both requester satisfaction and the service provider’s profit are
improved.
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Although our new optimization problem is effective in improving the profit
of the service provider and requester satisfaction, it faces two main difficulties.
First, it is difficult to evaluate the objective value (expected profit of the service
provider) since it requires solving 2n bipartite matching problems, where n is
the number of requesters. This is because the objective value is the expectation
of the profit from the taxi-requester matching, which varies according to each of
the 2n patterns of the requester’s acceptance or rejection. Second, the objective
function is discontinuous with respect to times offered to requesters. This is
because the taxis that can be dispatched to a requester discontinuously change
depending on the time offered to the requester.

To overcome these difficulties, we propose a fast approximation algorithm
based on the characteristics of the optimization problem, that is, the monotonic
decreasing property of the acceptance probability model and the convexity of
the optimal value of the bipartite matching problem. The proposed algorithm
can output an L-approximate solution in polynomial time, O(n · (n3 + m3)).
Here, the approximation ratio, L, is a hyper-parameter that determines the
relative weighting of requester satisfaction and the service provider’s profit. In
real operation, since L is set high enough to keep the requesters satisfied, the
approximation ratio will be high as well.

We conducted experiments using real taxi data from New York City. The
experiments show that the proposed framework has the potential to increase
daily profit and improve requester satisfaction. Moreover, the computation time
is within 1 s, which is short enough to be practical in real service.

2 Related Work

Existing studies on optimization for ride-hailing/taxi platforms mainly cover two
topics: (a) optimization of the proposals (e.g., price, waiting time) offered to the
requesters before orders are confirmed [3,4,6,7,11,13,22,25]. and (b) optimiza-
tion of the taxi allocation to the requesters who accept proposals after orders are
confirmed [2,8,12,14,16,17,19,21,24,26–28]. Our main focus is (a); by making
appropriate proposals to requesters whose orders have not yet been confirmed,
we can increase the acceptance rate and earn higher profits.

Among the studies on optimization of the proposals, [6,22] are similar to
our work. In [22], price is determined with consideration of the taxi acceptance
probability of the requester in each area. [6] determines the price by the LinUCB
algorithm [15] which takes into account the dispatch strategy. They assume the
same dispatch process as our study. However, these studies differ from our study
in terms of contents of proposals. They do not propose the waiting time for each
requester, and only impose the constraint that each requester can be assigned a
taxi only if it is within a fixed radius of x km from the requester location. In this
paper, we propose not only price but also time by considering the differences in
individual price and time priorities.
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3 Problem Formulation

3.1 Process of Proposal Offer and Taxi Dispatch

We explain the system of proposal offer and taxi dispatch assumed in this paper.
We divide the time horizon into multiple time steps, and assume that there are
multiple requesters I := {1, 2, ..., n} and multiple taxis J := {1, 2, ...,m} at each
time step. We consider that proposal offering and taxi dispatching are performed
at each time step. The process in each time step is as follows, see Fig. 3:

Fig. 3. Taxi dispatch process and symbol definition

Step 1: The taxi operator offers price pi and total time taken ti to each requester
i ∈ I. Here, ‘price’ refers to the total payment (including both pick-up and
transfer costs), and the ‘total time taken’ refers the sum of the requester’s wait
for the taxi and travel time from origin to destination in the taxi. Let p ∈ R

n

and t ∈ R
n be vectors with pi and ti with requester index i, respectively.

Step 2: Each requester, i ∈ I, accepts or rejects the offer with a probability of
Si(pi, ti). Function Si is the requester’s acceptance probability model. We discuss
this function in detail in Sect. 4. Let a ∈ {0, 1}n be a discrete random vector
where ai = 1 indicates acceptance and ai = 0 indicates rejection by requester i.
Step 3: The taxi operator then dispatches a taxi to the accepting requester. We
assume the operator solves the following profit maximization problem (Pa) and
dispatches taxis according to the solution:

(Pa) max
z

∑
i,j

(pi − αij) · ai · zij

s.t.
∑

j
zij ≤ 1 ∀i ∈ I,

∑
i
zij ≤ 1 ∀j ∈ J

zij ∈ {0, 1} ∀i ∈ I ∀j ∈ J

zij = 0 ∀(i, j) ∈ {(i, j) | ti < τij},

where zij ∈ {0, 1} indicates whether taxi j is allocated to requester i (zij = 1)
or not (zij = 0), αij is the total cost paid by taxi operator (or taxi driver) to
dispatch taxi j to requester i, and τij is the total time taken by taxi j to satisfy
the request of i, that is, the total time required to move to the requester’s
location and to travel to the requester’s destination. Let U(a,p,z) and Z(t) be
the objective function and the feasible region in (Pa), respectively.
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We provide a detailed explanation of the optimization problem (Pa) in Step
3. (Pa) is a weighted bipartite matching problem. In the objective function,
(pi −αij) is the profit gained if the matching is successful. If ai = 1 and zij = 1,
the matching succeeds and profit is obtained. First and second constraints are
the matching problem constraints, and the third constraint is for the dispatch
of taxis to requesters within the total offered time taken.

3.2 Price and Time Optimization

To maximize the expected profit and heighten requester’s utility, we decide price
and time proposals by solving the following optimization problem:

(P) max
p,t

Ea∼D(p,t)[ max
z∈Z (t)

U(a,p,z)]

s.t. Si(pi, ti) ≥ L ∀i ∈ I,

where U(a,p,z) =
∑

i,j(pi − αij) · ai · zij , which is the objective function of
(Pa); Z(t) is the feasible region of (Pa); L ∈ [0, 1); D(p, t) is the probability
distribution of a ∈ {0, 1}n, and its probability mass function is Pr(a | p, t) =∏n

i=1

{
Si(pi, ti)ai(1 − Si(pi, ti))(1−ai)

}
.

The objective function of (P) represents the expected profit of the service
provider. The constant, L, is a hyper-parameter that can be freely determined
by the taxi operator, and constraint, Si(pi, ti) ≥ L (i ∈ I), keeps each requester’s
acceptance probability high. Section 4 formally defines Si and requester’s utility
function, and shows that achieving a high probability of taxi acceptance height-
ens requester’s utility. When L is close to 0, the constraints are loose and the
objective value (the service provider’s profit) takes precedence; when L is close
to 1, the constraints are tight and keeping the requester’s utility high is the
priority. Section 4 provides further explanation of L setting.

4 Utility and Taxi Acceptance Probability

We discuss in detail Si(pi, ti), the requester’s acceptance probability model that
appeared in Sect. 3. It plays a critical role in our study since we use it to optimize
price and time for each requester.

We introduce generalized cost [9,20] as the utility function. Generalized cost
is a measure that encapsulates several disutilities related to travel. We set Ci(p, t)
as the generalized cost to individual i for the use of a taxi with price p and total
time taken t. The simplest generalized cost [9] is defined as Ci(p, t) := p+φi·t+ξi.
Here, φi ≥ 0 reflects the priority requester i places on her time; it is used to
convert t into a monetary value, Ci. Parameter ξi represents costs with regard
to other factors such as weather and date, which is fixed in the optimization
process because only the price and time can be controlled in the short term.
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In this paper, we assume that Ci(p, t) is a monotonically increasing function
with respect to p, t. This assumption is quite natural because no one prefers
expensive or time-consuming taxis.

Then, we base our taxi acceptance probability model on a discrete choice
model [18]. We define Si(p, t) := exp(−Ci(p,t))

exp(−Ci(p,t))+
∑

k∈K exp(−Ci(pik,tik))
as the prob-

ability of requester i committing to a taxi offer, where K is the set of alternative
transportation modes (i.e., other than taxi), such as trains and buses, and pik

and tik are the price and total time taken by the k-th transportation mode for
requester i. Under the setting, increasing the acceptance probability Si(p, t) by
adjusting p, t leads to a decrease in generalized cost Ci(p, t). Hence, the con-
straint of (P) keeps the generalized cost low, that is, requester’s utility high, and
hyper-parameter L in (P) determines the strength of the constraint. We expect
to set L ≥ 0.5 in real-world operations, where the taxi service has a lower gen-
eralized cost than any alternative transportation options included in K.

Lemma 1. When Ci(p, t) monotonically increases w.r.t. p, t, function Si(p, t)
monotonically decreases w.r.t. p, t.

Note that we can use another acceptance probability function instead of Si(p, t),
as long as the function monotonically decreases w.r.t. p, t for all i ∈ I; this does
not invalidate the following discussions.

5 Optimization

We have to solve the problem (P) quickly to realize real-time proposals, but
there are two difficulties: (i) Random variable a takes 2n values in {0, 1}n, and
so it is necessary to solve 2n instances of maxz∈Z (t) U(a,p,z) to calculate the
objective value (Ea∼D(p,t)[maxz∈Z (t) U(a,p,z)]); (ii) For given p, the objective
function has at most mn discontinuities with respect to t, since the closed region
Z(t) varies in the case of at most mn according to t.

5.1 Approximation of the Objective Function of (P)

We introduce the following problem:

(AP) max
p,t,z

U(Ea∼D(p,t)[a],p,z) =
∑

i,j
(pi − αij) · Si(pi, ti) · zij

s.t. Si(pi, ti) ≥ L ∀i ∈ I, z ∈ Z(t).

Here,(AP) is obtained by replacing objective function Ea∼D(p,t)[maxz∈Z (t)

U(a,p,z)] with maxz∈Z (t) U(Ea∼D(p,t)[a],p,z) for (P).
We show the following lemma and theorem from the features of our problem:
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Lemma 2. maxz∈Z (t)U(x,p,z) is convex in x ∈ R
n for given p, t.

proof. We fix p, t. Since U(x,p,z) is convex in x ∈ R
n for any z ∈ Z(t),

maxz∈Z (t)U(x,p,z) is convex in x ∈ R
n from [5, Section 3.2.3]. ��

Theorem 1. Let (p∗, t∗) be an optimal solution of problem (P) and (p̂, t̂, ẑ) be an
optimal solution of problem (AP). Then,L·Ea∼D(p∗,t∗)[maxz∈Z (t∗) U(a,p∗,z)] ≤
Ea∼D(p̂,t̂)[maxz∈Z (t̂) U(a, p̂,z)].

proof. Let f(a,p, t) be maxz∈Z (t) U(a,p,z). For any feasible solution p, t of
(P) and (AP), we find that f(Ea∼D(p,t)[a],p, t) = maxz∈Z (t){

∑
i,j(pi − αij) ·

Si(pi, ti) · zij} ≥ L · maxz∈Z (t){
∑

i,j(pi − αij) · zij} ≥ L · Ea∼D(p,t)[f(a,p, t)],
where the first inequality follows from Si(pi, ti) ≥ L, and the second
inequality holds from ai ∈ {0, 1}. Lemma 2 and Jensen’s inequality give
Ea∼D(p,t)[f(a,p, t)] ≥ f(Ea∼D(p,t)[a],p, t). Then, L ·Ea∼D(p∗,t∗)[f(a,p∗, t∗)] ≤
f(Ea∼D(p∗,t∗)[a],p∗, t∗) ≤ f(Ea∼D(p̂,t̂)[a], p̂, t̂) ≤ Ea∼D(p̂,t̂)[f(a, p̂, t̂)], where
the second inequality holds because p̂, t̂ is the optimal solution for (AP) and
p∗, t∗ is a feasible solution for (AP). ��
Therefore, we can find the L-approximation solution of (P) by solving (AP).

5.2 Efficient Algorithm for (AP)

We propose an efficient algorithm for solving (AP) by utilizing Lemma 1. We
consider a new optimization problem as follows:

(APz) max
z

∑
i,j

(pij − αij) · Si(pij , τij) · zij

s.t.
∑

j
zij ≤ 1 ∀i ∈ I,

∑
i
zij ≤ 1 ∀j ∈ J

zij ∈ {0, 1} ∀i ∈ I ∀j ∈ J,

where pij ∈ arg maxp∈{p|Si(p,τij)≥L}{(p − αij) · Si(p, τij)}.
(APz) is the maximum weight matching problem and can be solved by the

existing method of [10]. In addition, we can easily determine pij by solving the
univariate optimization problem of (maxp∈{p|Si(p,τij)≥L}{(p − αij) · Si(p, τij)}).

We show that the optimal solution of (AP) can be found by solving (APz).
Based on optimal solution ẑ of problem (APz), we determine p̂ and t̂ as follows:

1. For i that satisfies ∃j ẑij = 1, let p̂i = pij , t̂i = τij .
2. For other i, set arbitrary values (p̂i, t̂i) that satisfy Si(p̂i, t̂i) ≥ L.

Then, the following theorem holds:
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Theorem 2. (p̂, t̂, ẑ) is an optimal solution of (AP).
proof. If the feasible region of optimization problem (APz) is taken to be Zc, the
following lemma holds.

Lemma 3. For all z′ ∈ Zc, we consider optimization problem (AP(z′)) by fixing
z to z′ in (AP). We set p′, t′ by (i) p′

i = pij, t′i = τij for i which satisfies
∃j z′

ij = 1, and (ii) arbitrary value p′
i, t

′
i that satisfies Si(p′

i, t
′
i) ≥ L for other

i. Then, (p′, t′) is an optimal solution of (AP(z′)) and the optimal value is∑
ij(pij − αij) · Si(pij , τij) · z′

ij.

proof. First, (p′
i, t

′
i) is a feasible solution of (AP(z′)) by definition. Let M :=

{(i, j) | z′
ij = 1} and hij(p, t) := (p − αij) · Si(p, t). For arbitrary feasible

solution (pi, ti) of (AP(z′)),
∑

(i,j) hij(p′
i, t

′
i) · z′

ij =
∑

(i,j)∈M hij(pij , τij) =∑
(i,j)∈M maxp{hij(p, τij) | Si(p, τij) ≥ L} ≥ ∑

(i,j)∈M maxp{hij(p, ti) |
Si(p, ti) ≥ L} ≥ ∑

(i,j)∈M hij(pi, ti) =
∑

i,j hij(pi, ti) · z′
ij . This indicates (p′

i, t
′
i)

is an optimal solution of (AP(z′)). Note that the first inequality holds since
ti ≥ τij , and Si(p, t) monotonically decreases in t from Lemma 1. ��
Lemma 3 shows that we can solve (AP) by solving optimization problem
maxz ′∈Z c

∑
ij(pij−αij)·Si(pij , τij)·z′

ij and deciding p, t by the process described
in Lemma 3. This optimization problem is equivalent to (APz). ��

5.3 Further Improvement of Objective Value

The algorithm explained in Sect. 5.2 cannot determine price and time for
requesters for whom optimum matching fails, that is, {i |∀j ẑij = 0} (the algo-
rithm outputs arbitrary feasible values). We need a policy to decide the proposals
offered to those requesters. We further consider the following problem:

(RPz) max
z

∑
i∈I′,j

wj · (pij − αij) · Si(pij , τij) · zij

s.t.
∑

j
zij ≤ 1 ∀i ∈ I ′,

∑
i∈I′ zij ≤ 1 ∀j ∈ J

zij ∈ {0, 1} ∀i ∈ I ′ ∀j ∈ J,

where I ′ is the set of remaining requesters and wj is a weight representing the
probability that taxi j will be available.

We propose a policy to recursively solve (RPz) while updating I ′ and wj to
determine the price and time of all requesters. First, we set wj := 1 and I ′ := I,
that is, (RPz) corresponds to (APz). After solving (RPz), form a new (RPz) as
follows: Remove index i ∈ I ′ and set wj := wj · (1 − Si(pi, ti)) for (i, j) included
in the previous matching. Here, the reason for multiplying the edge weights by
1−Si(pi, ti) is that the edges connected to j cannot be used if requester i accepts
(with probability Si(pi, ti)) and taxi j is matched. The weight can be regarded
as an approximation of the expected weight that considers the probability of
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Algorithm 1. Price and time optimization
Input: τij , αij , Si, and L
Output: p and t
1: Initialize: wj := 1, E := {(i, j) | i ∈ I, j ∈ J}.
2: Let pij∈arg maxp{(p − αij) · Si(p, τij)|Si(p, τij) ≥ L}.
3: while ∃(i, j) ∈ E, (pij − α · τij) · Si(pij , τij) > 0 do
4: Find the optimal solution ẑ of the (RPz).
5: Let pi := {pij | ẑij = 1}, ti := {τij | ẑij = 1} and remove {i | ∃j, ẑij = 1} from I.

6: Let wj := wj · (1 − Si(pij , τij)) for each {(i, j) | ẑij = 1}
7: end while
8: return p, t

the corresponding taxi being surplus. Here, every time (RPz) is solved, we can
determine price and time for some of the remaining requesters from optimal
solution ẑ for (RPz) as done in Sect. 5.2.

Algorithm 1 describes our overall algorithm. The algorithm is guaranteed to
output an L-approximate solution from Theorem 1 and 2. The time complexity
of the proposed algorithm is bounded by O(n(n3+m3)) because (i) the maximum
number of iterations of lines 3–7 is n since at least one index i is removed from
I with each iteration, and (ii) each iteration of lines 3–7 takes O(n3 + m3) time
to solve a weighted bipartite matching [10].

6 Experiments

We conduct experiments to show that the followings hold: (i) Proposed method
improves both requester’s utilities and service provider’s profit; (ii) Proposed
method solves the problem quickly. All experiments were run on a computer
with Xeon Platinum 8168 with 4 × 2.7 GHz, 1 TB memory, and CentOS 7.6.

Experiment Setup. First, we explain the data used in our experiments. We use
ride data gathered in New York1. Each record of the data consists of pick-up area,
pick-up time, drop-off area, drop-off time. We reproduce the situations of taxi
ordering and dispatching by the data. We use the data from September 8 and 12,
2019, which are holidays and weekdays in a randomly chosen week. The target
regions are Manhattan and Queens. We simulate 600 dispatch processes every
minute from 10:00 to 20:00 by the data. We assume the other transportation
set is {train, bus, walking}. Locations of stations and bus stops are taken from
subway stations data2 and bus stops data3.

Then, we set the inputs as follows.
(i) τij : It is calculated from the locations of requesters/taxis.
(ii) αij : Assume that there are no differences in taxi capability and no regional
differences; αij := 18.0 · τij , which is based on taxi driver income.

1 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.
2 https://data.cityofnewyork.us/Transportation/Subway-Stations/arq3-7z49.
3 https://data.cityofnewyork.us/Transportation/Bus-Stop-Shelters/qafz-7myz.

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://data.cityofnewyork.us/Transportation/Subway-Stations/arq3-7z49
https://data.cityofnewyork.us/Transportation/Bus-Stop-Shelters/qafz-7myz
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(iii) Si: Let Ci(p, t) := p+φi ·t and Si(p, t) := exp(−Ci(p,t))
exp(−Ci(p,t))+

∑
k∈K exp(−Ci(pik,tik))

,
as already explained in Sect. 4. We use Ci(p, t) without the effect ξi of other
factors for simplicity. We take the value of time φi for each request i from a
uniform distribution of 10 ≤ φi ≤ 17, which is a plausible range of values of time
in U.S.A4. For other transportation k, we set pik, tik from the published facts5.
(iv) L: we set L := 0.85 as the hyper-parameter of the proposed method.

Metrics. We use two metrics to measure how well each approach (i) improves the
service provider’s profits and (ii) meets the requester’s priorities. The first metric
is the approximated expected revenue of the service provider calculated by the
Monte Carlo method: ER := 1

N

∑N
d=1 maxz∈Z (t) U(ad,p,z), where (ad)N

d=1 is a
set of independent, identically distributed realizations of a, which are acceptance
results. The second is the approximation of the expected generalized cost reduc-
tion calculated by the Monte Carlo method: EGCR := 1

N

∑N
d=1{

∑
i∈Xd Gall

i −
Gother

i }, where Gother
i := mink∈K{Ci(pik, tik)}, Gall

i := min{Gother
i , Ci(pi, ti)},

and Xd is the set of requesters assigned taxis according to ad. Gother
i is the

generalized cost of optimal transportation modes when each requester can use
transportation modes other than taxis, and Gall

i is that when each requester
can use all transportation modes including taxis. It evaluates how much the taxi
service reduces the generalized cost. Our goal is to increase the value of these
two metrics. We set N := 102.

Compared Methods. We compared the proposed method with five baselines.
(i) MAPS [22]: It is an approximation algorithm for area basis pricing. We use
it to determine prices that are offered to requesters together with a fixed waiting
time θ. This method requires an acceptance probability function for each area,
so we added up the individual probability functions for each area. We use the
most profitable θ ∈ {0.05, 0.075, 0.10} for each region and each date.
(ii) LinUCB [15]: It is the generic contextual bandit algorithm adopted by [6].
We use it to determine prices and offer the prices and the fixed waiting time
θ = 0.075 to requesters. As features for learning, we use (pick-up areas, drop-off
areas, hours, trip distance).
(iii) FPFT (Fixed Price and Fixed Time): It offers a fixed price rate σ and
a fixed waiting time θ to all requesters. We use the most profitable combination
(σ, θ) in σ ∈ {1.0, 1.5, 2.0, 2.5} and θ ∈ {0.05, 0, 1} for each region and each date.
(iv) FPS (Fixed Price and Shortest distance dispatch): It offers a fixed
price rate σ and times based on shortest distance dispatch to requesters. We use
the most profitable σ ∈ {1.0, 1.5, 2.0, 2.5} for each region and each date.
(v) FPP (Fixed Price and Profitable distance dispatch): It offers a fixed
price rate σ and times based on profit-maximizing dispatch to requesters. We
use the most profitable σ ∈ {1.0, 1.5, 2.0, 2.5} for each region and each date.

Results. Table 1 shows the simulation results. The proposed method outper-
forms the baselines w.r.t. both ER and EGCR for all dates and regions. The
4 https://www.transportation.gov/sites/dot.gov/files/docs/2016%20Revised

%20Value%20of%20Travel%20Time%20Guidance.pdf.
5 https://new.mta.info/fares-and-tolls/subway-bus-and-staten-island-railway.

https://www.transportation.gov/sites/dot.gov/files/docs/2016%20Revised%20Value%20of%20Travel%20Time%20Guidance.pdf
https://www.transportation.gov/sites/dot.gov/files/docs/2016%20Revised%20Value%20of%20Travel%20Time%20Guidance.pdf
https://new.mta.info/fares-and-tolls/subway-bus-and-staten-island-railway
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Table 1. Simulation results. Each result represents the average of 600 dispatches.

differences between the proposed method and all other methods are significant
for ER and EGCR (two-sided t-test: p < 0.0001) in each region and date. In
addition, the computation times of the proposed method range from 0.08 to
1.0 s, which is short enough for practical use.

7 Conclusion

In this paper, we address the optimization of proposals offered to requesters in
taxi services considering the individual price and time priorities. We formulated
a price and time optimization problem that considers requester’s service accep-
tance probability; we also constructed a fast approximation algorithm that offers
performance guarantees. Simulations on real datasets showed that the proposed
method increases both the expected profit and the satisfaction of requesters, and
outputs the solutions fast enough to be practical.
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Abstract. In this paper, a novel unsupervised network for medical
image registration called VAN (Voting and Attention based Network)
is proposed, in which the final deformation field is determined by the
voting process between multiple registration branches. To reduce model
parameters, multiple registration branches share one encoder. Besides,
the attention mechanism is introduced, which further improves the net-
work accuracy. We also adopt the method of single training and multiple-
registrations to deal with the problem of the large deformation field. The
experimental results show that the registration effect of our proposed
network outperforms the baselines VoxelMorph and Symmetric Normal-
ization (SyN) on three brain MRI image datasets.

Keywords: Medical image registration · Voting process · Attention
mechanism · Multiple-registrations

1 Introduction

Medical image registration is a fundamental task in medical image studies, which
can be regarded as a basic procedure in medical image analysis. Doctors can
better observe the changes of lesions through the images after registration. In
short, the task of image registration is to align one image with another, so that
the similarity between the aligned images is the highest. It is a prerequisite for
medical imaging applications concerning comparison.

More specifically, given a moving (source) image IM and a fixed (target)
image IF , medical image registration aims to predict a displacement field u, and
the corresponding deformation field φ from the moving image to the fixed image,
so that the warped moving image IW = IM ◦φ and the fixed image are as similar
as possible. The transformation of pixel (voxel) position p can be expressed as
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φ(p) = p+u(p) [2]. The proper deformation field φ∗ is obtained by minimizing
the image dissimilarity, i.e.,

φ∗ = arg min
φ

dissim (IM ◦ φ, IF ) + λ reg(φ),

where dissim(·, ·) represents the dissimilarity between images, reg(·) is the regu-
larization term, and λ is the weight to balance the above two items.

The deformation field predicted by a single registration branch may be inac-
curate enough due to various reasons. Therefore, this paper uses multiple regis-
tration branches to generate multiple deformation fields at the same time, and
the final deformation field is generated by voting between these deformation
fields. Besides, multiple registration branches share the same encoder to reduce
the model parameters.

In general, the deformation can be classified as large-scale and small-scale
deformations. Most registration methods can only deal with small-scale defor-
mation. For example, VoxelMorph [2] is a typical deep learning method for small-
scale deformation, so it is necessary to perform pre-registration (affine alignment)
for the images. To handle the large-scale deformation, one intuitive solution is to
decompose the large-scale deformation into a series of small-scale deformations.
Some papers adopted the method of stacking multiple registration networks to
achieve large deformation prediction. In these networks, each registration net-
work predicts a small deformation and each of them is combined to form a large
deformation. However, the accuracy of this layer-by-layer training method is no
longer improved after the stacked layers reach a certain number [21].

In this paper, we provide our solution to the large-scale deformation by single
training and multiple-registrations, i.e., in the training stage the model is trained
once, and in the testing stage registrations are conducted multiple times.

The contributions of this paper can be summarized as follows:

• We predict the final deformation field by the voting process between multiple
registration branches, which are constructed by multiple decoders sharing the
same encoder to reduce model parameters;

• We use multiple-registrations to solve the problem of large deformation reg-
istration in the testing stage;

• We introduce the attention mechanism into registration, which improves the
registration effect while adding a few parameters.

2 Related Work

In this section, we summarize the similarities and differences between traditional
and learning-based registration methods.

2.1 Traditional Registration Methods

Medical registration can be divided into traditional registration methods and
learning-based registration methods. The traditional registration methods refer
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to the model-driven methods. These methods are explainable, however, they are
time-consuming as iterative methods are needed for implementation. Besides,
these methods neglect the inherent registration patterns shared across images
from the same dataset, so do not make full use of the information from other
images in registration.

The popular examples of these algorithmic are Large Deformation Diffeomor-
phic Metric Matching (LDDMM) [3], Diffeomorphic Demons [16] and Symmetric
image Normalization method (SyN) [1].

2.2 Learning-Based Registration Methods

The learning-based registration methods refer to the data-driven models con-
structed by neural networks. Firstly, a model is trained with a large amount of
data, and then a new pair of images are registered with the trained model. These
methods are in general more accurate than the traditional methods, although
they are less explainable. Besides, their registration process in the testing stage
is much faster than the traditional methods. The learning-based registration
methods can be further divided into supervised and unsupervised methods.

Supervised Registration Methods
Supervised registration needs ground truth. In general, the ground truth can
be obtained in two ways. One is to use the deformation field derived from the
traditional registration methods [14]. In this case, the effect of the model will not
exceed that of the traditional methods in theory. The other is to randomly deform
an image to form the ground truth [15]. The original image is taken as the moving
image, the deformed image as the fixed image, and the artificial deformation field
as the ground truth. The disadvantage of supervised registrations is that the
available high-quality supervision data are deficient, and the annotation process
is costly.

VoxelMorph realized both unsupervised and supervised registrations, in
which the segmentation masks are used as the supervised information. We use
this registration methods as one of our baselines. Based on VoxelMorph, BIRNet
[6] has made a lot of modifications to the registration network.

Unsupervised Registration Methods
Unsupervised registration is a hot topic in recent years. Image registration is
essentially an unsupervised task, as it only needs to optimize the similarity
between two images. However, these methods have certain requirements for the
selection of image similarity metrics. Recently, many unsupervised registration
models using the Generative Adversarial Networks (GANs) [7] were proposed.
The advantage of these models is that they do not need a specific image similarity
metric, which avoids the generality problem of fixed image similarity metrics due
to the different distributions of datasets.

DIRNet [17], the first unsupervised end-to-end deep learning registration
model, introduced Spatial Transformer Network (STN) [8] into registration.
ICNet [19] and SYMNet [12] avoided the overlapping of the deformation field by
ensuring that the deformation field is a diffeomorphism. Which is a reversible,
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differentiable and smooth transformation. CycleMorph [10] combined the bidi-
rectional registration and the cycle-consistent registration to make the defor-
mation field diffeomorphism. These models usually have many parameters and
long training time. ASNet [5] and Deform-GAN [20] used GAN to solve the
problem of mono-modal and multi-modal registration respectively. However, the
GAN-based model is hard to converge in training.

3 Methodology

This section describes our methodology for the medical registration network
called Voting and Attention based Network (VAN), as it uses the voting and
attention mechanism, which will be discussed in detail later. We also introduce
the loss function.

3.1 Network Framework

VAN has a training network and a testing network, which are similar but not
identical. The training network is illustrated in Fig. 1, and the testing network
in Fig. 3. Both networks consist of three modules: the registration module, the
STN module and the Convolutional Block Attention Module (CBAM) [18]. The
input of the whole network is the stacked image composed of the moving and
fixed images, and the output is the warped image.

Fig. 1. Structure of the training phase. To be concise, only two registration branches
are shown, and CBAM is not shown.

The moving image and fixed image are firstly concatenated in the channel
dimension to obtain a 2-channel 3D image, and then it is inputted into the
encoder to extract the features of the concatenated image. Then, two mappings
from the moving image to the fixed image are predicted by two decoders respec-
tively. The features obtained by the encoders are propagated to the correspond-
ing layer of the encoder through the skip connection. After the registration field
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is obtained, the moving image is processed by STN and two warped images are
obtained by trilinear interpolation.

Registration Module
The process of the registration module can be described as u = Rθ(IF , IM ),
where Rθ(·) is the registration module and θ indicates the network parameters.
The registration module consists of an encoder and multiple decoders, and each
decoder outputs a deformation field. Different from the task of using multiple
registration branches with the same structure and different parameters, multiple
decoders share the same encoder as the input, and they have the same structure
and different parameters after learning caused by different initial values. This
greatly reduces the model parameters while achieving high registration results.

The encoder can extract the features of the fixed image and the moving
image at the same time, while in the decoder part, the features extracted by the
decoder part are used to predict registration fields from the moving image to the
fixed image. The encoder and its decoder constitute a complete U-Net [13] like
structure as shown in Fig. 2. Each convolution block consists of the convolution
operation with the kernel size of 3 by 3 and the ReLU activation function.

Fig. 2. The U-Net structure is constituted by an encoder and its decoder. Each rect-
angle represents a 3D volume; the numbers in and below the rectangle represent the
number of channels and the relationship between the resolution of the original image
respectively. The solid line with an arrow indicates the skip connection.

In the testing stage as illustrated in Fig. 3, the output of the registration
module is a final deformation field generated by the voting process between
these deformation fields. More specifically, the voting process means that after
obtaining the multiple predicted deformation fields, each voxel value of the final
deformation field is obtained by the average of voxels in the same position of the
multiple deformation fields.

The output of the registration modules served as one of the two inputs of the
STN module.

STN Module
For the 3D image with the size of [D,W,H], the displacement field is a tensor
with the size of [D,W,H, 3]. STN is used to warp the moving image according to
the deformation field generated by the registration network. First, a normalized
sampling grid (registration field) is obtained, and then the registration field is



VAN: Voting and Attention Based Network for Registration 387

Fig. 3. Overview of the testing phase. Different from the training stage, the final defor-
mation field is generated by the voting of multiple predicted deformation fields.

used to sample the moving image. Here the trilinear interpolation is used. This
process can be expressed as IW = STN(IM , φ), where STN(·) is a model without
parameters, and its interpolation process is differentiable, which ensures that the
parameters of the whole network can be updated through back-propagation.

Fig. 4. Overview of the channel attention and spatial attention part in CBAM. The
pooling operations are channel-based and spatial-based respectively.

⊕
denotes the

sum and concatenation operation respectively.

Convolutional Block Attention Module
The attention mechanism in deep learning is generated by imitating human
attention. When we look at an image, our attention will focus on some parts
of the image (such as the face of the person), while others may be ignored.
The attention mechanism is equivalent to giving a weight to every pixel. CBAM
includes two parts as shown in Fig. 4: channel attention and spatial attention,
which adds attention to the image in the spatial and channel dimensions of the
feature map. Because CBAM does not change the size of the feature map, CBAM
can be inserted into any position in the network.

The channel attention part can be expressed as

Mc(F ) = σ(MLP(Avg Pool(F )) + MLP(Max Pool(F ))),

where F is the input feature map, AvgPool(·) and MaxPool(·) are the average
and maximum pooling operations respectively, MLP(·) is a multi-layer percep-
tron, and σ(·) represents the sigmoid activation function.
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The spatial attention part can be expressed as

Ms(F ) = σ
(
f7×7([AvgPool(F );Max Pool(F )])

)
,

where f7×7 is the convolution operation with convolution kernel size of 7 × 7.
To our best knowledge, CBAM has not been combined into the registration

yet. In our paper, we attempt to combine them. The CBAM is inserted into the
outputs of the 2nd, 3rd and 4th layers of the encoder in the registration module.

Multiple-Registrations
In the testing stage, given a moving image and a fixed image, we can obtain
a warped image. However, this warped image may not be sufficiently accurate.
Thus, the testing network should be conducted again, with the modification that
in the input the moving image is replaced by the warped image. This process is
called multiple-registrations.

3.2 Loss Function

The loss function consists of the image similarity loss Lsim(IF , IM ◦ φ) and the
smoothness regularization loss Lreg(φ).

There are many kinds of image similarity losses, such as correlation coefficient
(CC), normalized correlation coefficient (NCC), mutual information (MI), mean
square error (MSE) and so on. The normalized correlation coefficient (NCC) loss
is adopted in this paper, which is

Lsim(IF , IM ◦ φ) = −NCC(IF , IM ◦ φ)

= −
∑

p∈Ω

∑
pi

(
IF (pi) − ĪF (p)

) (
IM (φ (pi)) − ĪM (φ(p))

)

√∑
pi

(
IF (pi) − ĪF (p)

)2 ∑
pi

(
IM (φ (pi)) − ĪM (φ(p))

)2 ,

where pi denotes the position within a 9× 9 × 9 local window centered at position
p, ĪF and ĪM are the local means of IF and IM at p respectively, and Ω is a 3D
domain.

The smoothness regularization loss is used to measure the smoothness of
the deformation field to prevent the overlap and to ensure the smoothness of
deformation fields. The formula for smoothness regularization loss is

Lreg(φ) =
∑

p∈Ω

‖∇φ(p)‖2.

Therefore, the total loss of the network is

L(IF , IM , φ) = −1
2
[NCC(IF , IM ◦ φ1) + NCC(IF , IM ◦ φ2)]

+
1
2
λ[

∑

p∈Ω

‖∇φ1(p)‖2 +
∑

p∈Ω

‖∇φ2(p)‖2],

where λ is the regularization trade-off parameter.
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4 Experiments and Analysis

In this part, we first introduce the datasets, baselines and data preprocessing.
Then the model validity is analyzed by baseline comparison and ablation exper-
iments.

Fig. 5. Example results (top row) and difference images (bottom row) on the LPBA40
dataset.

4.1 Dataset and Preprocessing

Three brain MRI datasets LPBA40, IBSR18 and MGH10 are selected for the
experiments, which include 40, 18 and 10 subjects respectively, and the Dice
Similarity Coefficient (DSC) is calculated on 54, 96 and 106 brain ROIs.

We focus on the atlas-based registration, which selects an image as the fixed
image, and randomly selects an image as a moving image for registration in each
iteration. The fixed images used in different models and methods are the same.

For the LPBA40 and IBSR18 datasets, one image is selected as the fixed
image, 30 and 13 images as the training sets, and the remaining as the testing
sets. For the MGH10 dataset, one image is selected as the fixed image, the
remaining are used as the testing set to verify the generality of our model.

We carry out the standard pre-processing of 3D medical image registra-
tion, including brain extraction using FreeSurfer and affine image alignment
using FMRIB Software Library (FSL) [9]. Then we unify the voxel spacing to
1mm×1mm×1mm. The intensity is locally normalized for each image. Each pixel
value minus the minimum value of the image pixel value, and divided by the
maximum value of the image pixel value. In addition, to make full use of mem-
ory, we also use the method proposed in nnU-Net [4] to remove the redundant
background part and keep only the brain area, to reduce the memory cost and
training time. For LPBA40 dataset, because the images do not contain skulls
and have been aligned to the MNI305 space, we do not carry out brain extraction
and affine alignment.
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4.2 Implementation Details

In the training parse, we use the Adam optimizer [11] and set the batch size to
1. The initial learning rate and λ for LPBA40 are 4e−4 and 4, for IBSR18 are
2e−4 and 11, respectively. The training stage runs for 15,000 iterations.

4.3 Baselines

We choose a traditional registration method and a learning-based registration
method as the baseline models. The traditional registration method is symmet-
ric normalization [1] (SyN) registration algorithm in ANTs toolkit, while the
learning-based registration method is VoxelMorph registration network.

4.4 Experimental Results

The experimental results are shown in Table 1. We used three different registra-
tion methods to do experiments on three brain MRI datasets. VAN achieves the
best results on LPBA40 and IBSR18 datasets compared with the SyN and Voxel-
Morph. Figure 5 shows an example on the LPBA40 dataset. The warped images
generated by VAN registration are closer to the fixed image, which demonstrates
that VAN yields better structural alignment. Besides, to verify the transferabil-
ity of VAN, we apply VAN trained on the IBSR18 dataset to directly register
images in the MGH10 dataset, and find that its registration effect is 0.84 (from
33.83 to 34.67) higher than VoxelMorph. This shows that our model has good
robustness across different datasets.

Table 1. Average DSC of different registration methods on three datasets. (parenthe-
ses: standard deviations across subjects.)

Affine only SyN VoxelMorph VAN

LPBA40 53.86(0.04) 69.42(0.01) 68.77(0.02) 69.98(0.02)

IBSR18 38.38(0.05) 41.19(0.03) 41.43(0.03) 41.51(0.03)

MGH10 33.27(0.04) 34.65(0.06) 33.83(0.05) 34.67(0.04)

Table 2. Average inference time and the number of parameters for different registration
methods. (parentheses: standard deviations across subjects.)

SyN VoxelMorph VAN

Time(s) 17.66(1.18) 1.32(0.04) 1.62(0.22)

Parameter – 396,457 626,908
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Table 2 shows the computational time and the number of parameters for
different algorithms. As mentioned earlier, learning-based registration methods
take less time than traditional registration methods. The time required for Vox-
elMorph and VAN is much lower than the SyN. Because VAN has 230,451 (from
396,457 to 626,908) more parameters than VoxelMorph, it takes 300 ms extra
time.

Due to the limitation of memory, only two registration branches are used to
vote the final deformation field. Theoretically, the more registration branches
participated in the voting, the better the registration results.

4.5 Ablation Experiments

Table 3. Results of ablation experiments. VAN-1 means that registration is conducted
once, while VAN-2 means twice.

VAN-1 VAN-2 VAN-2 w/o CBAM

Avg. DSC 69.18 (0.02) 69.88 (0.02) 62.34 (0.04)

To verify the effect of multiple-registrations and CBAM, we also conduct the
ablation experiments. As shown in Table 3, for the LPBA40 dataset, a better
result is obtained when 2-registrations are performed, which is 0.70 (from 69.18
to 69.88) higher than 1-registrations in terms of average DSC. This verifies the
effectiveness of the multiple-registrations method. The registration effect before
and after removing CBAM is also shown in Table 3. It can be found that the
addition of CBAM improves registration accuracy. This shows that the addition
of attention mechanism is helpful to improve the registration results.

5 Conclusion

We have presented a voting and attention based registration network, in which
the final deformation field is generated by the voting process of multiple regis-
tration branches. To reduce the number of model parameters, the registration
module is constructed by multiple decoders sharing an encoder. Besides, we intro-
duce the attention mechanism to medical image registration. This voting method
achieves higher registration accuracy compared with SyN and VoxelMorph. The
attention mechanism improves the accuracy of the model while adding a few
parameters. In addition, we use multiple-registrations method to deal with the
problem of large deformation field prediction.
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Abstract. Classification of time series has attracted substantial interest
over past decades. Methods based on Dynamic Time Warping (DTW),
Symbolic Aggregate approXimation (SAX) and Shapelets are widely
used and have achieved success in various real-world scenarios. However
most existing time series classification methods either focus on global
variation (e.g. DTW, SAX) or local variation (e.g. Shapelets). In this
paper, we propose a Multi-Grained Ensemble Method for time series
classification (MEGoT), which can make use of the variation of multi-
grained data at the same time. In MEGoT, unstable base learners (Neural
Networks) are assigned different weights to combine the ensemble. Dif-
ferent learners represent the learning features of different subsequences
in time series, which can discover the discriminative regions, providing
interpretability for classification. The training process of MGEoT is sim-
pler and apt to parallel implementation. In the experiments, we conduct
empirical evaluations and comparisons with various existing methods on
25 benchmark datasets. The final results show that dividing samples
into smaller granularity is able to improve the diversity of ensemble,
and MGEoT is competitive in accuracy under the Nemenyi test. Fur-
thermore, MGEoT can discover the discriminative regions in time series,
which may be neglected in the global methods.

Keywords: Time series classification · Multi-grained · Ensemble
learning

1 Introduction

A time series is a set of ordered observations on a quantitative characteristic
of a phenomenon at equally spaced time points [17], which is recorded from
sensors and other input sources over time. There are a lot of possible application
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domains including Electro Encephalogram (EEG) in medicine, business, human
walking motions [17], finance, politics, and a lot of others.

Classification is essential in time series, which assigns time series pattern to a
specific category. Time series classification methods include 1-NN with Euclidean
distance (ED) [6], 1-NN with Dynamic Time Warping (DTW) [2] and Symbolic
Aggregate approXimation (SAX) [9], all of which only focus on the differences in
the global shape. These methods can use all the information of the data as much
as possible to classify different samples, but they do not concern which regions of
data are important to classification. [17] mentioned that the differences of time
series data in the global shape are very subtle. The Euclidean distance or DTW
distance methods do not significantly outperform random guessing on some time
series datasets, which is due to the fact that data is somewhat noisy, and such
noisy is enough to swamp the subtle difference in the shapes. Most shapelet-
based methods focus on the difference in the subsequences. Moreover, beyond
mere classification accuracy, shapelet-based methods can yield some insight into
the data. However if we only use the discriminative regions to classify different
samples, we may lose some useful information. Therefore, it is useful to combine
the information of different granularities of data at the same time.

In this paper, we propose MGEoT (Multi-Grained Ensemble), a new ensem-
ble method for time series classification. The information of different granu-
larities of data can be used at the same time to classify different samples. In
MGEoT, we get N new training datasets by dividing the raw training datasets
with different granularities. Then N unstable base learners are trained on each
new dataset to improve the diversity of the ensemble. The training process of
MGEoT is apt to parallel implementation, and all base learners can be trained at
the same time. In MGEoT, different base learners represent the learning results
of training data in different regions, which can help to discover the discriminative
regions. During the testing process, base learners are assigned different weights
according to their performance on the validation set. Testing data are divided
same as the training data and we can get N results through the N trained base
learners, which are weighted as the output.

Our contributions can be summarized as follows: (1) We propose a new multi-
grained ensemble method for time series classification, which trains base learners
by dividing the training sets with different granularities. (2) We conduct empir-
ical evaluation with various existing methods on a large number of benchmark
datasets, and achieve better performance than state-of the-art methods. (3) The
proposed multi-grained ensemble method can discover the discriminative regions
and can be interpretable.

2 Multi-grained Ensemble Method

In this section, we propose the multi-grained ensemble method. Firstly, we define
the concept of multi-grained division on raw samples and present the method
to discover the discriminative regions, and then introduce how to select suit-
able classifier as the base learner, followed by weight calculation of different
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base learners. Finally, we introduce four metrics, which can measure the diver-
sity between base learners trained by different granularities. Figure 1 shows the
framework of MGEoT.

Fig. 1. The framework of MGEoT

In the training process, N different datasets are generated by dividing all
data samples on different granularities, which are used to train N different base
learners. In the testing process, testing data are divided based on different gran-
ularities in the same way as the training data. The divided testing data are input
to the trained base learners, and the final results are obtained by weighting the
output of each base learner.

2.1 Multi-gained Dividing

Data sample manipulation is the most popular mechanism in ensemble to
improve the ensemble diversity [18]. Generally, the data sample manipulation
is based on sampling approaches, e.g., Bagging adopts bootstrap sampling [16],
AdaBoost adopts sequential sampling, etc. In MGEoT, data sample manipula-
tion is achieved by dividing data samples with different granularities. We define
1
n granularity, that is, equally divide a time series into n subsequences.

A time series sample with a length of L will be divided into n samples of
length

⌊
L
n

⌋
after the 1

n granularity division (as shown in Fig. 2).
N different datasets are generated by dividing all samples to different granu-

larities. In contrast to bootstrap sampling and sequential sampling, the datasets
in MGEoT do not contain the same samples. Furthermore, dividing data by
multi-grained in MGEoT preserves the context information of data. Different
base learners represent the learning features of different subsequences in time
series, which indicate the importance of different regions in raw data. Gener-
ally, the classification accuracy of the base classifier is higher, the region is more
important in raw data.
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Fig. 2. 1
n

granularity division of a time series sample

Most of time series data contain redundancy, so it is necessary to pay more
attention on the subsequence that can discriminate the different class of the
samples. The traditional brute force algorithms for finding shapelet are compu-
tationally expensive, and the classification accuracy is limited by the number of
shapelets. In MGEoT, all samples are divided to different granularities to train
different base learners. The base learner is assigned a larger weight if the base
learner has a higher classification accuracy on the validation set, and all the base
learners construct an ensemble.

2.2 Base Learner Selection

Ensemble diversity, that is, the difference among the individual learners, is a
fundamental issue in ensemble methods [18]. In general, there are four popular
mechanisms to improve the ensemble diversity, which include manipulating the
data samples, input features, learning parameters, and output representations
[18].

To construct an ensemble, different categories of base learners need to be
chosen for different ensemble mechanisms. Most of base learners fall into stable
base learners and unstable base learners. The stable base learners, such as SVM,
Naive Bayes and KNN, which are insensitive to data sample manipulation. For
many unstable base learners, such as decision tree, neural networks and so on,
training sample slightly change may result in significant changes in the learner.
In MGEoT, samples divided into different granularities can be considered as the
sample manipulation mechanism to improve the ensemble diversity, therefore
unstable base learners are needed to combine the ensemble. Time series is a kind
of unstructured data, then we use neural networks as the base learner.

Multi-layer perceptron (MLP) is a simpler neural network model than Con-
volutional Neural Network (CNN). According to Occam’s razor, when there is
no significant difference between the accuracy of MLP and CNN on raw dataset,
we select MLP as the base learner. To construct a good ensemble, it is known
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that individual learners should be accurate and diverse. Therefore, when the
accuracy of CNN on the raw dataset is significantly higher than MLP, we select
CNN as the base learner. In the experiments, we compare the accuracy of CNN
and MLP on each datasets and select the appropriate base learners.

2.3 Weight Calculation

In MGEoT, raw samples are divided into different granularities and these
datasets are used to train different base learners. Since the importance of dif-
ferent regions for time series classification is different, the weights of each base
learner should be set differently. Output of all base learners are weighted to
get the final classification result. Two issues are considered: (1) How many base
learners we need to train? (2) How to calculate the weight of each base learner?

It is widely recognized that there is a negative correlation between the num-
ber of base learners and test error when using bagging scheme to carry out
ensemble learning. Note that the test error is not monotonically decreasing with
the increase of the number of base learners. [19] revealed that it may be better
to ensemble many instead of all of the neural networks.

In MGEoT, two strategies can be used to determine the number of base
learners.

Strategy 1: Given a parameter n, we can obtain N (N =
∑n

i=1 i) different
datasets, which are used to train N base learners.

Strategy 2: Given a parameter Nmax as the maximum number of base
learners, as long as N � Nmax and the accuracy of the ensemble is higher than
previous, we divide raw dataset into smaller granularity.

Strategy 1 is a static strategy, and strategy 2 is a dynamic strategy. Strategy
2 is more flexible than strategy 1, but it also tends to fall into a local minimum.

In the experiments, we relax the requirement for strategy 2. Provided that
the accuracy of the ensemble after dividing the samples into smaller granularity
is not reduced too much (accn − accn−1 � ε, ε is a negative hyper-parameter),
we continue to divide the samples into smaller granularity.

Weight wi is the accuracy of each base learner on the validation set. Weight
Ci = wi − 1

c , c represents the number of classes, and 1
c represents the accuracy

of random guessing under the class-balance. We use the Ci as the final weight
of the i-base classifier. When the base learner is not better than random guess
(Ci < 0), the learner is removed. Compared with wi, using Ci as the final weight
of each base learner implies that this combination strategy prefers the strong
learners.

2.4 Diversity Measure

To measure ensemble diversity, a classical approach is to measure the pairwise
similarity/dissimilarity between two learners, and then average all the pairwise
measurements for the over all diversity [18]. We introduce four metrics that can
measure the diversity of base learners and take the binary classification task as
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an example. For binary classification, we have the contingency table (as shown
in Table 1) for two classifiers li and lj , where the a+ b+ c+d = m is the number
of samples.

Table 1. Contingency table for two classifers li and lj

li = +1 li = −1

lj = +1 a c

lj = −1 b d

Four metrics (disi,j , ρi,j , Qi,j , κ) of ensemble diversity are shown in Table 2.
The value of disi,j is in [0, 1], the larger value, the larger diversity. In statistics,
the correlation coefficient is used for referring to the correlations between the
entries of two random vectors X and Y. The value of ρi,j is in [−1, 1], where
ρi,j = 0 represents that li is independent of lj , ρi,j > 0 represents positive
correlation, and ρi,j < 0 represents negative correlation. The Qi,j is similar to
ρi,j and |Qi,j | � |ρi,j |. p1 and p2 are the probabilities that the two classifiers
agree and agree by chance, which can be calculated as equation (1). When li
and lj are totally same, κ = 1.

Table 2. Four metrics of ensemble diversity

disi,j ρi,j Qi,j κ

Formula
b+c
m

ad−bc√
(a+b)(a+c)(c+d)(b+d)

ad−bc
ad+bc

p1−p2
1−p2

p1 =
a + d

m
, p2 =

(a + b)(a + c) + (c + d)(b + d)
m2

(1)

3 Experiments

3.1 Datasets

Table 3 shows the information of 25 time series datasets from UCR archive [3].
We randomly select 20% training samples as the validation set to select the
number of hidden neurons. Strategy 2 (ε = −0.05, n = 8) is used to determine
the number of base learners that we need to combine.

Figure 3 shows the validation accuracy of MLP and CNN on 25 time series
datasets. We can see that, the validation accuracy of CNN is significantly higher
MLP on dataset 2, 4, 7 and 12, and there is no significant difference between
MLP and CNN on other time series datasets.

Therefore we use CNN as the base learner on dataset 2, 4, 7 and 12, whereas
use the MLP as the base learner on other datasets.
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Fig. 3. The validation accuracy of MLP and CNN on 25 time series datasets

Table 3. 25 real-word time series datasets

ID Datasets #Train #Test #Classes Length Base learners

1 Adaic 390 391 37 176 MLP

2 Beef 30 30 5 470 CNN

3 CBF 30 900 3 128 MLP

4 ChlorineCon 467 3840 3 166 CNN

5 CinCECGTor 40 1380 4 1639 MLP

6 Coffee 28 28 2 286 MLP

7 CricketX 390 390 12 300 CNN

8 DiatomSizeR 16 306 4 345 MLP

9 Haptics 155 308 5 1092 MLP

10 ECGFiveDays 23 861 2 136 MLP

11 FaceAll 560 1690 14 131 MLP

12 FaceFour 24 88 4 350 CNN

13 Gun Point 50 150 2 150 MLP

14 ItalyPower 67 1029 2 24 MLP

15 InlineSkate 100 550 7 1882 MLP

16 MedicalImages 381 760 10 99 MLP

17 NonInvTho1 1800 1965 42 750 MLP

18 NonInvTho2 1800 1965 42 750 MLP

19 OliveOil 30 30 4 570 MLP

20 MoteStrain 20 1252 2 84 MLP

21 SwedishLeaf 500 625 15 128 MLP

22 SonyAIBORI 20 601 2 70 MLP

23 SonyAIBORII 27 953 2 65 MLP

24 StarLightCur 1000 8236 3 1024 MLP

25 TwoLeadECG 23 1139 2 82 MLP
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3.2 Baselines

As the baselines introduced in [4], two classical baseline methods: 1-NN with
Euclidean distance (ED) [6] and 1-NN DTW [2]. 10 existing methods with state-
of-the-art results published in the recent years, including: DTW with a warping
window constraint set through cross validation (DTW CV) [11], SAX with vec-
tor space model (SV) [15], Bag-of-SFA-Symbols (BOSS) [13], Shotgun Classifier
(SC) [12], Elastic Ensemble (PROP) [10], 1-NN Bag-Of-SFA-Symbols in Vec-
tor Space (BOSSVS) [14], Learn Shapelets Model (LTS) [8], and the Shapelet
Ensemble (SE) model [1]. COTE, an ensemble model proposed by Bagnall et al.
[1], which uses the weighted votes over 35 different classifiers. Multi-Scale Con-
volutional Neural Networks (MCNN) [4] is a deep learning model for time series
classification.

These classifiers can be grouped into two categories: ensemble classifiers
and non-ensemble classifiers. The ensemble based classifiers include BOSS, SE,
COTE, BOSSVS, PROP and the others can be regarded as non-ensemble clas-
sifiers.

3.3 Results

Table 4. Test error for 25 ucr time series datasets

Dataset DTW ED DTWCV SV BOSS SC BOSSVS PROP LTS SE COTE MCNN MGEoT

Adiac 0.396 0.389 0.389 0.417 0.22 0.373 0.302 0.353 0.437 0.435 0.233 0.231 0.202

Beef 0.367 0.467 0.333 0.467 0.2 0.133 0.267 0.367 0.24 0.167 0.133 0.367 0.0677

CBF 0.003 0.148 0.006 0.007 0 0.01 0.001 0.002 0.006 0.003 0.001 0.002 0.033

ChlorineCon 0.352 0.35 0.35 0.334 0.34 0.312 0.345 0.36 0.349 0.3 0.314 0.203 0.17

CinCECGTorso 0.349 0.103 0.07 0.344 0.125 0.021 0.13 0.062 0.167 0.154 0.064 0.058 0.094

Coffee 0 0 0 0 0 0 0.036 0 0 0 0 0.036 0

CricketX 0.246 0.423 0.228 0.308 0.259 0.297 0.346 0.203 0.209 0.218 0.154 0.182 0

DiatomSizeR 0.033 0.065 0.065 0.121 0.046 0.069 0.036 0.059 0.033 0.124 0.082 0.023 0.023

Haptics 0.623 0.63 0.588 0.575 0.536 0.607 0.584 0.584 0.532 0.523 0.488 0.53 0.474

ECGFiveDays 0.232 0.203 0.203 0.003 0 0.055 0 0.178 0 0.001 0 0 0.023

FaceAll 0.192 0.286 0.192 0.244 0.21 0.247 0.241 0.152 0.217 0.263 0.105 0.235 0.099

FaceFour 0.17 0.216 0.114 0.114 0 0.034 0.034 0.091 0.048 0.057 0.091 0 0

GunPoint 0.093 0.087 0.087 0.013 0 0.06 0 0.007 0 0.02 0.007 0 0.007

ItalyPower 0.05 0.045 0.045 0.089 0.053 0.053 0.086 0.039 0.03 0.048 0.036 0.03 0.026

InlineSkate 0.616 0.658 0.613 0.593 0.511 0.653 0.573 0.567 0.573 0.615 0.551 0.618 0.55

MedicalImage 0.263 0.316 0.253 0.516 0.288 0.305 0.474 0.245 0.27 0.396 0.258 0.26 0.221

NonInvThorax1 0.21 0.171 0.189 0.161 0.174 0.138 0.178 0.131 0.1 0.093 0.064 0.064

NonInvThorax2 0.135 0.12 0.12 0.101 0.118 0.13 0.112 0.089 0.097 0.073 0.06 0.059

OliveOil 0.167 0.133 0.133 0.133 0.1 0.133 0.133 0.133 0.56 0.1 0.1 0.133 0.033

MoteStrain 0.165 0.121 0.134 0.117 0.073 0.113 0.115 0.114 0.087 0.109 0.085 0.079 0.102

SwedishLeaf 0.208 0.213 0.154 0.275 0.072 0.12 0.141 0.085 0.087 0.093 0.046 0.066 0.045

SonyAIBORobot 0.275 0.305 0.304 0.306 0.321 0.238 0.265 0.293 0.103 0.067 0.146 0.23 0.115

SonyAIBORobotII 0.169 0.141 0.141 0.126 0.098 0.066 0.188 0.124 0.082 0.115 0.076 0.07 0.104

StarLightCurves 0.093 0.151 0.095 0.108 0.021 0.093 0.096 0.079 0.033 0.024 0.031 0.023 0.025

TwoLeadECG 0 0.09 0.002 0.004 0.004 0.029 0.015 0 0.003 0.004 0.015 0.001 0.031

#best 2 1 1 1 8 3 2 2 4 1 2 5 15

rank mean 9.54 10.66 8.5 10.12 5.2 7.8 8.06 6.56 5.98 6.74 4.2 4.2 3.44
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We show the test error in the Table 4. The experimental results of the first
15 baseline are reported in [4]. All datasets of UCR are divided into training
sets and testing sets. As can be seen, convolutional neural network (CNN) has
better performance than MLP on FaceFour and CricketX, therefore we used CNN
as the base classifier on these two datasets. Table 4 shows the ensemble based
classifiers are significantly better than that non-ensemble classifiers. Among all
of the ensemble based classifiers, MGEoT is the most competitive, achieving the
highest accuracy on 15 datasets. In contrast to other ensemble learning methods
designed specifically for TSC, MGEoT is much easier to train. In MGEoT, we
divide the samples according to strategy 2, and different base learners are trained
according to different training sets. The training process is simple and stable.

To perform comparisons of predictive performances in more well-founded
ways, Friedman test is used which is a favorable statistical test for comparing
more than two methods over multiple datasets [7].

FF =
(N − 1)χ2

F

N(s − 1) − χ2
F

, χ2
F =

12N

s(s + 1)
(

s∑

j=1

R2
j − s(s − 1)2

4
) (2)

The Friedman statistic FF can be calculated by Eq. (2), based on that there
are s comparing methods and N datasets. Rj is the average rank of the j-
th method on all datasets. When the value Friedman statistic FF is signifi-
cantly greater than critical value, Friedman test at 0.05 significance level rejects
the hypothesis of “equal” performance among all the comparing methods, and
then we can adopt Nemenyi test to further analysis which methods are dif-
ferent. Figure 6 shows the critical difference diagram, which was proposed in
[5]. The broken lines shown in Fig. 6 are the average rank of each classifiers.
Bold lines (CD = 3.65) indicate group of classifiers which are not significantly
different under Nemenyi test. The results indicate that MGEoT achieves statis-
tically significantly superior classification performance against ED, SV, DTW,
DTWCV, BOSSVS and SC. Although there is no statistically significant differ-
ences between MGEoT, COTE, MCNN, BOSS, LTS, PROP and SE, MGEoT
achieves the smallest average rank among all time series classification methods.
We can conclude that, MGEoT achieves competitive performance on time series
classification.

3.4 Discriminative Regions

As shown with extensive empirical evaluations in diverse domains, algorithms
based on the time series shapelet can be interpretable [17]. Shapelet can be
regarded as the discriminative regions between different classes of time series
data. The accuracy of three base learners on five validation sets are shown in
Table 5.
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Table 5. The accuracy of three base learners on five validation sets

Dataset learner1 learner2 learner3

Beef 0.833 0.867 0.8

CinCECGTorso 0.843 0.905 0.766

ChlorineCon 0.743 0.648 0.781

GunPoint 0.933 0.887 0.96

OliveOil 0.9 0.967 0.867

learner1 is trained on the raw dataset. As mentioned in Sect. 2.1, we can get
two datasets after the 1

2 -granularity division of raw dataset, which can be used to
train learner2 and learner3. We can see that, the accuracy of learners trained on
the whole sequences lower than the learners trained on subsequences. learner2
achieved highest classification accuracy on Beef, CinCECGTorso and OliveOil.
learner3 achieved highest classification accuracy on ChlorineCon and GunPoint.
In MGEoT, different learners represent the learning features of training data in
different subsequences in time series. For example, learner3 has higher classifi-
cation accuracy than learner2 on GunPoint, so we conclude that shapelet can
be found in the latter part of the data. In order to validate the conjecture, we
refer to the results of finding shapelet on the GunPoint in [17]. The result shows
that shapelet is found in the latter part of the GunPoint dataset.

In our method MGEoT, the subsequence corresponding to the base learner
with highest accuracy on the validation set can be regarded as the discrimi-
native regions in the raw time series data. The discriminative regions provide
interpretability for time series classification.

3.5 Diversity Measure

Ensemble diversity is a fundamental issue in ensemble methods [18]. In this
section, we compare the diversity among different base learners. Experiments
are conducted on three datasets, which are SonyAIBORobot, ECGFiveDays and
MoteStrain.

In these three datasets, ten base learners are combined to construct the
MGEoT. As mentioned in Sect. 2.4, there are four metrics that can measure the
diversity of base learners. disi,j (0 ≤ disi,j ≤ 1) is a disagreement measure, the
larger the value, the larger the diversity. ρi,j (−1 ≤ ρi,j ≤ 1) is a correlation
measure, the smaller the value of |ρi,j |, the larger the diversity. Qi,j is similar
to ρi,j . κ (−1 ≤ κ ≤ 1) is a classical statistical measure, the smaller the value
of |κ|, the larger the diversity. The results of four diversity measures on three
datasets are shown in Fig. 4. We can see that, the values of ρ and κ are very
close. The trend of ρ, κ and Q are similar, which is contrary to the trend of dis.
Moreover, the diversity of learners can be improved by dividing samples into
smaller granularity, such as, dis1,3 < dis1,5 < dis1,8 on MoteStrain, dis1,2 <
dis1,6 < dis1,8 on SonyAIBORobot and dis1,2 < dis1,4 on ECGFiveDays. The
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Fig. 4. Four diversity measures of nine pairwise base learners on three datasets: learner
1 trained on the raw dataset, second to third learners trained on the datasets divided by
1
2
-granularity, fourth to sixth learners trained on the datasets divided by 1

3
-granularity,

seventh to tenth learners trained on the datasets divided by 1
4
-granularity.
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accuracy of different learners on testing data is shown in Fig. 5. We can see that,
MGEoT achieves the highest accuracy on these datasets, which indicates that
ensemble can improve the classification accuracy.

Fig. 5. The accuracy of 10 base learn-
ers and MGEoT on validation set
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Fig. 6. Critical Difference Diagram
over the mean rank of MGEoT and
other baselines. The critical difference
is 3.65.

4 Conclusion

In this paper, we propose a multi-grained ensemble method (MGEoT) for time
series classification. In MGEoT, we manipulate the data samples to improve the
ensemble diversity, which is implemented by dividing the raw samples into differ-
ent granularities. Unstable base learners (Neural Networks) are assigned different
weights to combine the ensemble. Note that, the training process of MGEoT is
simpler and apt to parallel implementation. In experiments, we conduct empiri-
cal evaluation and comparisons with various existing methods on 25 benchmark
datasets. The final results show that dividing samples into smaller granularity
is able to improve the diversity of ensemble, and the MGEoT is competitive in
accuracy under the Nemenyi test. The training result of different base learners
can help to find discriminative regions, which provide interpretability for time
series classification.
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Abstract. Skyline frequent-utility itemsets (SFUIs) can provide more actionable
information for decision-makingwith both frequency andutility considered. In this
paper, the problemofminingSFUIs byfiltering utilities fromdifferent perspectives
is studied. First, filtering by frequency is considered. The max utility array (MUA)
structure is designed, which is proved to have a size no larger than the size of arrays
in state-of-the-art algorithms. Using the MUA, the utility-list is verified to prune
unpromising itemsets and their extensions. Second, filtering using transaction-
weighted utilization is applied. The minimum utility of SFUIs is proposed and the
proof that this concept can be used as a pruning strategy in the early stage of search
space traversal is provided. Finally, filtering using utility itself is also considered.
The minimum utility of extension is presented, and its use as a pruning strategy
during the extension stage of search space traversal is validated. Based on these
filtering methods, a novel algorithm called SFUIs mining based on utility filtering
(SFUI-UF) is proposed. Extensive experimental results show that the SFUI-UF
algorithm can discover all correct SFUIs with high efficiency and low memory
usage.

Keywords: Skyline frequent-utility itemsets · Max utility array · Minimum
utility of SFUIs · Minimum utility of extension

1 Introduction

Itemset mining is a core task in data mining. Several types of itemsets [10] have been
proposed, among which, frequent itemsets (FIs) and high utility itemsets (HUIs) are the
two most influential. FIs are itemsets that have high frequency [6], whereas HUIs are
itemsets that have high profit [11].

To meet users’ multiple needs and provide them with more informative knowledge,
researchers have been paying increasing attention to combining FIs and HUIs. In [12],
the utility-frequent itemset (UFI) and its mining algorithm were proposed considering
both utility and support. Setting a single threshold of FIs or HUIs is a difficult problem,
let alone two thresholds that are needed simultaneously. Furthermore, the algorithm’s
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efficiency is another challenging issue for mining UFIs because the downward closure
property does not hold when support and utility are considered together.

To solve this problem, skyline frequent-utility itemsets (SFUIs) were proposed [2].
An itemset is an SFUI if it is not dominated by any other itemset in the database con-
sidering both frequency and utility. Using both frequency and utility is meaningful. For
example, parents of students may choose to rent houses for the students according to the
price and distance of the houses from the school to save the time that it takes for students
to travel to and from school. In this case, the distance from the house to the school and
the price of the house are contrasted; that is, a house that is close to the school normally
has a higher price than a house that is far from the school.

In the first SKYMINE algorithm [2], a tree structure was used to transform the
original information. To improve efficiency, the utility-list (UL) structure was used in
SFU-Miner [8], SKYFUP-D [3], and SKYFUP-B [3] algorithms. Becausemining SFUIs
does not require either a support threshold or utility threshold, the algorithm’s efficiency
is still the most challenging issue for the SFUI mining (SFUIM) problem.

We propose an SFUIM algorithm called SFUI-UF. First, we design the max utility
array (MUA) structure, which is smaller than arrays in mainstream algorithms. Using
this array, we propose a UL-based pruning strategy to omit unpromising itemsets and
their extensions. Second, we propose the minimum utility of SFUIs (MUS), which is the
highest utility of single items that have the highest frequency. Considering transaction-
weighted utilization, the MUS is an effective strategy that can prune unpromising single
items and all their extensions. Third,we present theminimumutility of extension (MUE),
which is the utility of the itemset that generates the enumeration itemsets. The MUE is
an effective pruning strategy for search space traversal. Finally, we conducted extensive
experiments. Our results showed that the proposed algorithm is efficient and memory-
saving compared with mainstream algorithms.

2 SFUIM Problem

Let I = {i1, i2,…, im} be a finite set of items. Set X ⊆ I is called an itemset, or a
k-itemset if it contains k items. Let D = {T1, T2, …, Tn} be a transaction database.
Each transaction Td ∈ D (1 ≤ d ≤ n), where d is a unique identifier, is a subset of I.
The frequency of itemset X, denoted by f (X), is defined as the number of transactions in
which X occurs as a subset.

The internal utility q(ip, Td) represents the quantity of item ip in transaction Td . The
external utility p(ip) is the unit profit value of item ip. The utility of item ip in transaction
Td is defined as u(ip, Td) = p(ip) × q(ip, Td). The utility of itemset X in transaction
Td is defined as u(X ,Td ) = ∑

ip∈X
u
(
ip,Td

)
. The utility of itemset X in D is defined as

u(X ) = ∑

X⊆Td∧Td∈D
u(X ,Td ). The transaction utility (TU) of transaction Td is defined

as TU(Td) = u(Td , Td). Because utility is not a measure that maintains the downward
closure property, Liu et al. [5] proposed the transaction-weighted utilization (TWU)
model. TWU can be used as the upper bound of utility, and it is proved that an itemset is
not an HUI if its TWU is lower than the minimum utility threshold. Formally, the TWU
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of itemset X is the sum of the TUs of all the transactions containing X, which is defined
as TWU (X ) = ∑

X⊆Td∧Td∈D
TU (Td ).

Considering both frequency and utility factors, an itemset X dominates another item-
set Y in D, if f (X) ≥ f (Y ) and u(X) > u(Y ), or f (X) > f (Y ) and u(X) ≥ u(Y ), which is
denoted by X � Y. An itemset X in a database D is an SFUI if it is not dominated by any
other itemsets in the database considering both frequency and utility factors. An itemset
X is considered as a potential SFUI (PSFUI) if there is no itemset Y such that f (Y ) =
f (X), and u(Y ) > u(X), and it was proved that all SFUIs are PSFUIs [8]; hence, we can
enumerate the PSFUIs first, and then filter the actual SFUIs from the PSFUIs.

Based on the above definitions, the SFUIM problem is to discover all the non-
dominated itemsets in the database by considering both frequency and utility factors.

Table 1. Example database

TID Transactions TU

1 (B, 1), (D, 1) 7

2 (A, 1), (B, 1), (C, 1), (D, 1), (E, 1) 18

3 (B, 2), (D, 1), (E, 1) 13

4 (D, 1), (E, 1) 9

5 (A, 4), (B, 1), (D, 1), (E, 2) 39

6 (B, 4), (E,1) 12

7 (C, 2) 2

Table 2. Profit table

Item A B C D E

Profit 6 2 1 5 4

As a running example, consider the transaction database in Table 1 and the profit
table in Table 2. For convenience, an itemset {D, E} is denoted by DE. In the example
database, the utility of item E in transaction T2 is u(E, T2) = 4 × 1 = 4, the utility of
itemset DE in transaction T2 is u(DE, T2) = 5 + 4 = 9, and the utility of itemset DE
in the transaction database is u(DE) = u(DE, T2) + u(DE, T3) + u(DE, T4) + u(DE,
T5) = 40. The TU of T2 is TU(T2) = u(ABCDE, T2) = 18, and the utilities of the
other transactions are shown in the third column of Table 1. Because DE is contained
by transactions T2, T3, T4, and T5, f (DE) = 4, and TWU(DE) = TU(T2) + TU(T3) +
TU(T4)+ TU(T5)= 79. Because an itemset that has a frequency of 4 and utility greater
than 40 does not exist, DE is considered as a PSFUI. We can further verify that DE is
not dominated by any other itemsets, so it is an SFUI.
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3 Related Work

Yeh et al. [12] first proposed the concept of UFIs and designed a two-phase algorithm for
mining UFIs. Then, the FUFM algorithm was proposed to mine UFIs more efficiently
[9]. Both frequency and utility thresholds are required to discover UFIs. However, it is
difficult for non-expert users to set these two appropriate thresholds.

To consider both frequency and utility without setting thresholds, Goyal et al. intro-
duced SFUIs and proposed the SKYMINE algorithm for mining them [2]. Considering
both frequency and utility, SFUIs are itemsets that are not dominated by any other item-
sets. Thus, neither the frequency threshold nor utility threshold is needed. The UP-tree
structure is used in the SKYMINE algorithm to transform the original data for mining
SFUIs using a pattern-growth approach.

Using the UL structure [4], Pan et al. proposed the SFU-Miner algorithm to discover
SFUIs [8]. Compared with the UP-tree, the UL can identify SFUIs directly without
candidates. Furthermore, the umax array has been proposed to store information about
the maximal utility for each occurrence frequency, which can be used to identify the
non-dominated itemsets efficiently based on the utility and frequency measures. With
the above structures, the SFU-Miner is more efficient than SKYMINE algorithm.

Lin et al. proposed two algorithms, that is, SKYFUP-D and SKYFUP-B, for mining
SFUIs by depth-first and breadth-first traversing the search space, respectively [3]. In
these two algorithms, the UL is also used, and the utility-max structure is designed to
keep the maximal utility among the itemsets if their frequency is no lower than the index
parameter.

Different from the UL, Nguyen et al. designed an extent utility list (EUL) structure in
their FSKYMINE algorithm for mining SFUIs [7]. For EUL, the utility of the expanded
itemset in UL is decomposed into two fields: the utility of the itemset before extension
and the utility of the item before appending to the enumeration itemset. Using EUL, new
pruning strategy is proposed to speed up the mining process of SFUIs.

Compared with existing methods, we design new array structure with frequency,
and propose three utility filter strategies to prune the search space. Thus, the overall
performance is improved.

4 Proposed Algorithm

4.1 UL Structure

The same as the methods in [3, 8], we also use the UL to transform the original data.
Let � be the total order (e.g., lexicographic order) of items in the database D. The UL
of an itemset X, denoted by X.UL, is a set of triads, in which each triad consists of three
fields denoted by (tid, iutil, rutil), where tid is the ID of a transaction containing X; iutil
is the utility of X in Ttid , that is, iutil(X, Ttid) = u(X, Ttid); and rutil is the remaining
utility of all the items after X in Ttid . Let Ttid / X be the set of items after all items of X
in Ttid according to �, rutil(X ,Ttid ) = ∑

i∈(Ttid /X ) u(i,Ttid ).
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4.2 Max Utility Array

We propose an array to store utility with respect to frequency.

Definition 1 (Max utility array). Let f max be the maximal frequency of all 1-itemsets
in D. The MUA is an array that contains f max elements. The element that has frequency
f (1 ≤ f ≤ f max) is defined as

MUA(f ) = max { u(X ) | f (X ) ≥ f }, (1)

where X is an itemset. The MUA is similar to utilmax [3]; the difference between them
is the size of the array. According to [3], the size of utilmax is |D|, that is, the number of
transactions in D, whereas the size of MUA is f max .

Theorem 1. For the same transaction database D, the MUA covers all frequencies and
|MUA| ≤ |utilmax|, where |MUA| and |utilmax| are the number of elements in the MUA
and utilmax, respectively.

Proof . The frequency measure satisfies the downward closure property; that is, for
any two itemsets X and Y, if X ⊆ Y, f (X) ≥ f (Y ).

We first prove that the maximal frequency of 1-itemsets, f max , is also the maximal
frequency of all the itemsets. We prove this by contradiction. Let ixiy be a 2-itemset that
has the highest frequency of all the itemsets. Because ix ⊂ ixiy, f (ix) ≥ f (ixiy). Because
f max is the maximal frequency of 1-itemsets, f max ≥ f (ix) ≥ f (ixiy). This contradicts the
assumption. Similarly, for any k-itemset Z, we also have f max ≥ f (Z). Thus, f max is also
the maximal frequency of all the itemsets.

According to Definition 1, all frequencies between 1 and f max correspond to an
element of the MUA. Because f max is also the maximal frequency of all the itemsets,
the MUA covers all frequencies in D. Furthermore, |MUA| = f max ≤ |D| = |utilmax|. �

In real-world transaction databases, very few itemsets appear in every transaction.
Thus, the size of the MUA is no larger than that of utilmax, in most cases, and memory
consumption can be saved.

Theorem 2. Let X be an itemset. If the sum of all iutil and rutil values in X.UL is less
than MUA(f(X)), then X and all the extensions of X are not SFUIs.

Proof . According to the assumption, there exists an itemset Y such that u(Y )
= MUA(f (X)); that is, u(Y ) >

∑
d∈X .tids (iutil(X ,Td ) + rutil(X ,Td )), where X.tids

denotes the set of tids in X.UL. Thus,

u(Y ) >
∑

d∈X .tids
iutil(X ,Td ) = u(X ). (2)

Based on Definition 1, f (Y ) ≥ f (X). Thus, Y dominates X and X is not an SFUI.
Let Z be arbitrary extension of X. Then X ⊂ Z; hence, f (Z) ≤ f (X). Because f (X) ≤

f (Y ), f (Z) ≤ f (Y ) holds. Similarly,

u(Y ) >
∑

d∈X .tids
(iutil(X ,Td ) + rutil(X ,Td )) ≥ u(Z). (3)

Thus, Y also dominates Z and Z is not an SFUI. �
Based on Theorem 2, we can prune the search space effectively using MUA.
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4.3 Pruning Strategies

We also propose two pruning strategies. They are used in the initial stage and extension
stage of the SFUI-UF algorithm.

Definition 2 (Minimumutility ofSFUIs). LetDbe a transactiondatabase.Theminimum
utility of SFUIs (MUS) in D is the maximal utility of single items that have the highest
frequency, which is defined as

MUS = max {u(i) | f (i) = fmax}, (4)

where i is an item in D and f max is the maximal frequency of all 1-itemsets in D.
In the running example, three items have the highest frequency: f (B) = 5, f (D) = 5,

and f (E) = 5. Since u(B) = 18, u(D) = 25, and u(E) = 24, MUS = 25.

Theorem 3. Let ixbe a 1-itemset. If TWU(ix)<MUS, ixand all itemsets containing ixare
not SFUIs.

Proof . Let ic be the 1-itemset with f (ic) = f max and u(ic) = MUS. Because u(ix) ≤
TWU(ix) <MUS = u(ic) and f (ix) ≤ f max = f (ic), ix is dominated by ic. Thus, ix is not
an SFUI.

Consider an arbitrary itemset X containing ix: u(X) ≤ TWU(ix)<MUS = u(ic), and
f (X) ≤ f (ix) ≤ f max = f (ic). Thus, X is dominated by ic and X is not an SFUI. �

Using Theorem 3, once a 1-itemset is found to have TWU lower than the MUS, this
itemset and all its supersets can be pruned safely. In our algorithm, the MUS is set to
the initial values of each element in the MUA, whereas for umax [8] and utilmax [3], all
initial values are set to zero.

Definition 3 (Minimum utility of extension). Let X be an itemset, ix be an item, and
X ∪ ix be an extension of itemset X. Then u(X) is defined as the minimum utility of
extension (MUE) of X ∪ ix, which is denoted by MUE(X ∪ ix).

Consider itemset A and its extension AD in the running example:MUE(AD)= u(A)
= 30.

Theorem 4. Let X be an itemset and Y be an extension of X. If u(Y)<MUE(Y), Y is not
an SFUI.

Proof . Because Y is an extension of X, X ⊂ Y. Hence, f (Y ) ≤ f (X). Because u(Y )<
MUE(Y )= u(X), Y is dominated byX. Thus, Y is not an SFUI. �

Using Theorem 4, we can prune those unpromising extensions during search space
traversal.

4.4 Algorithm Description

Algorithm 1 describes the proposed SFUI-UF algorithm.
The transaction database is first scanned once to determine themaximal frequency of

all 1-itemsets and theMUS (Step 1). According to Theorem3, Step 2 prunes unpromising
items using the MUS, and then the TWU values of the remaining items are updated in
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Step 3. The loop from Step 4 to Step 9 sorts the items in ascending order of TWU in
each transaction and builds the UL of each item. The next loop (Steps 10–12) initializes
each element of the MUA as the MUS. S-PSFUI and S-SFUI denote the sets of PSFUIs
and SFUIs, and they are initialized as empty sets in Steps 13 and 14, respectively. The
procedure P-Miner (described in Algorithm 2), which determines all PSFUIs, is called
in Step 15. The function tail(X) is the set of items after all items in X according to the
total order of items, denoted by�. Specifically, tail(X)= {j ∈ I | for ∀i ∈ X, i� j}. In the
SFUI-UF algorithm, ascending order of TWU is used. Then Step 16 calls the function
S-Miner (described in Algorithm 3) to return all SFUIs. Finally, Step 17 outputs all the
discovered SFUIs.

Algorithm 2 generates the PSFUIs by extending the enumerating itemset via depth-
first search space traversal. For each item i in tail(X), Step 2 first formulates a candidate
itemset by appending i after X. According to Theorem 4, the new candidate is not
processed until its utility is no lower than the MUE (Steps 3–12). If the utility of the
candidate is no lower than the corresponding element in the MUA, the MUA is updated
using the utility and frequency of the candidate in Step 5, and the candidate is determined
as a PSFUI in Step 6.When a new itemset is inserted, some itemsets already in S-PSFUIs
may be dominated by the newly inserted itemset. The dominated itemsets are removed
from S-PSFUIs in Step 7. If the sum of all the iutil and rutil values in the UL of the new
candidate is no lower than the corresponding value in theMUA, the P-Miner procedure is
called recursively to determine the new PSFUIs in Step 10. Finally, the updated S-PSFUI
is returned in Step 14.
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In Algorithm 3, all itemsets in the S-PSFUI are checked individually. Only those
itemsets that are not dominated by other PSFUIs are verified to be the actual SFUIs.

4.5 Illustrated Example

We use the transaction database in Table 1 and profit table in Table 2 to explain the basic
idea of the SFUI-UF algorithm. When D is scanned once, f max = 5 and MUS = 25.
Because TWU(C) = 20<MUS, C is deleted from the database. Then, the TWU values
of remaining items are recalculated, and the results are TWU(A) = 56, TWU(B) = 88,
TWU(D) = 85, and TWU(E) = 90.

Thus, according to TWU-ascending order, the remaining four items are sorted as
A�D�B�E. With this order, each transaction in the database is reorganized, and the
result is shown in Table 3.
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Table 3. Reorganized database

TID Transactions TU

1 (D, 1), (B, 1) 7

2 (A, 1), (D, 1), (B, 1), (E, 1) 17

3 (D, 1), (B, 2), (E, 1) 13

4 (D, 1), (E, 1) 9

5 (A, 4), (D, 1), (B, 1), (E, 2) 39

6 (B, 4), (E,1) 12

Then, the constructed UL structures for all remaining 1-itemsets are shown in Fig. 1.
The MUA contains five elements, and each element is initialized as 25.

We take A as an example. We can calculate u(A) = 30 by summing up its iutils in
Fig. 1. Furthermore, f (A) = 2 and u(A) > MUA(2). Then MUA(2) is updated to 30.
Accordingly, MUA(1) is also updated to 30. At this moment, MUA = {30, 30, 25, 25,
25}. Then, A is added into the S-PSFUI as a PSFUI. Because iutil(A, T2) + rutil(A,
T2) + iutil(A, T5) + rutil(A, T5) = 56 > MUA(2), the procedure P-Miner is called
recursively taking A, tail(A) = DBE, and the MUA as parameters.

A D B E
tid iutil rutil tid iutil rutil tid iutil rutil tid iutil rutil
2 6 11 1 5 2 1 2 0 2 4 0
5 24 15 2 5 6 2 2 4 3 4 0

3 5 8 3 4 4 4 4 0
4 5 4 5 2 8 5 8 0
5 5 10 6 8 4 6 4 0

Fig. 1. ULs of the remaining 1-itemsets

Then, we can obtain a new candidate AD by extending A using D. Similarly, f (AD)
= 2 and u(AD) = 40. Because u(AD) > MUA(2), the MUA is updated to {40, 40, 25,
25, 25}. Then, AD is added into the S-PSFUI as a PSFUI. Because itemset A is already
in the S-PSFUI, and f (A) = f (AD), A is then deleted from the S-PSFUI.

We perform these operations recursively until all items are processed. Finally, MUA
= {56, 56, 40, 40, 25}, and the discovered SFUIs are shown in Table 4. The search space
of the running example is shown in Fig. 2.

In Fig. 2, the blue nodes containing a red cross are pruned. C and all its child nodes
are pruned according to Theorem 3, whereas ABE is pruned according to Theorem 2.
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Table 4. Discovered SFUIs

SFUI Frequency Utility

ADBE 2 56

DE 4 40

D 5 25

C

{}

A B ED

CA CD CECB ABAD AE

CAD CAB CAE CDB CDE ADE

DB DE BE

ADB ABE DBE

CADB CADE CABE

CADBE

CDBE

CBE

ADBE

unvisited itemsets visited itemsets

Fig. 2. Search space of the running example

5 Performance Evaluation

In this section, we evaluate the performance of our SFUI-UF algorithm and compare it
with SFU-Miner [8], SKYFUP-D [3], and SKYFUP-B [3]. The source code of SFU-
Miner was downloaded from the SPMF data mining library [1], and the source codes of
SKYFUP-D and SKYFUP-B were provided by the author.

Our experiments were performed on a computer with a 4-Core 3.40 GHz CPU and
8GBmemory running 64-bitMicrosoftWindows 10. Our programswerewritten in Java.
We used six datasets for performance evaluation, five real datasets downloaded from the
SPMF data mining library [1], and one synthetic dataset generated using the transaction
utility database generator provided on the SPMF[1]. We present the characteristics of
the datasets in Table 5.

The five real datasets, Chess, Foodmart, Mushroom, Ecommerce, and Connect, con-
tain utility information. The synthetic dataset T25I100D50k do not contain the utility
value or quantity of each item in each transaction. Using a random transaction database
generator provided in SPMF [1], we generated the unit profit for items following a
Gaussian distribution.
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Table 5. Characteristics of the datasets

Dataset #Trans #Items Avg. Trans. Len Max. Trans. Len

Chess 3,196 76 37 37

Foodmart 4,141 1,559 4.42 14

Mushroom 8,124 120 23 23

Ecommerce 14,975 3,803 15.4 29

Connect 67,557 129 43 43

T25I100D50k 50,000 100 25 25

5.1 Search Space Size

We first compare the sizes of the search spaces of the four algorithms, where the size
of an algorithm’s search space refers to the number of nodes this algorithm visited. We
show the results in Table 6.

Table 6. Comparison of the sizes of the search spaces

Dataset #SFUIs Sizes of search spaces

SFU-Miner SKYFUP-D SKYFUP-B SFUI-UF

Chess 35 15,433,601 3,750,820 122,363 915,101

Foodmart 1 1,307,831 1,232,033 773,580 773,400

Mushroom 17 810,440 79,710 9,910 22,710

Ecommerce 2 22,309,811 18,590,045 3,471 2,731

Connect 46 - 13,335,429 - 4,349,427

T25I100D50k 6 193,981,690 2,123,115 - 1,595,532

For the six datasets, the proposed SFUI-UF algorithm and SKYFUP-D algorithm
returned correct results in all cases, whereas the other two algorithms could not on the
Connect dataset. Furthermore, SKYFUP-B algorithm could also not find any results on
T25I100D50k dataset. Specifically, SFU-Miner did not return any results after 12 h, and
the problem of memory leakage occurred for the SKYFUP-B algorithm. We use “-” for
these three entries.

Table 6 clearly shows that the number of SFUIs is very scarce, which is in sharp
contrast to the huge search space. Thus, mining SFUIs is a truly challenging problem.
Among these four algorithms, SFU-Miner performed worst. This is mainly because the
elements of the umax array only recorded the maximal utility of a specific frequency,
whose pruning effect was worse than those of the other two array structures. The search
spaces of SFUI-UF were always smaller than those of SFU-Miner and SKYFUP-D. The
search spaces of SFUI-UF were comparable to those of SKYFUP-B. This shows that
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the MUS was effective for search space pruning. This is because once a top-ranked item
was pruned using the MUS, a large number of its child nodes were pruned. Thus, the
search space was reduced greatly.

5.2 Runtime

Wedemonstrate the efficiency of our algorithm and the comparison algorithms.We show
the comparison results in Table 7.

For the same reason mentioned in Sect. 5.1, we do not report the runtime of SFU-
Miner for the Connect dataset, and the runtimes of SKYFUP-B for the Connect and
T25I100D50kdatasets. Table 7 shows that SFUI-UFwas alwaysmore efficient thanSFU-
Miner and SKYFUP-D. Furthermore, SFUI-UF is demonstrated to bemore efficient than
SKYFUP-B except for theEcommerce dataset.More importantly, SFUI-UF successfully
discovered SFUIs on all six datasets, whereas SKYFUP-B encountered the problem of
memory leakage on two datasets. This shows that, in addition to theMUS, theMUEwas
effective for avoiding generating unpromising candidates. Thus, efficiency improved.

Table 7. Runtime of the compared algorithms

Unit (Sec) SFU-Miner SKYFUP-D SKYFUP-B SFUI-UF

Chess 169.50 40.14 37.35 29.28

Foodmart 0.57 0.44 0.46 0.34

Mushroom 9.30 2.10 2.22 1.73

Ecommerce 7.37 5.54 0.39 1.20

Connect - 6,643.63 - 4,176.86

T25I100D50k 2781.29 139.02 - 108.85

5.3 Memory Consumption

Wecompare thememory usage of the four algorithms.Wemeasuredmemory usage using
the Java API, and show the results in Table 8. SFUI-UF performed best on most datasets,
except Foodmart and Connect. Additionally, besides the reasons mentioned in Sect. 5.1
and Sect. 5.2, the MUA structure was also an important factor for saving memory. As
stated in Sect. 4.2, the size of the MUA equals the maximal frequency of the 1-itemset,
whereas for umax in SFU-Miner [8], and utilmax in SKYFUP-D and SKYFUP-B [3],
their sizes are both equivalent to the number of transactions in the database. To show
the effect of the MUA, we compared the sizes of the three arrays, and show the results
in Table 9.
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Table 8. Memory usage of the compared algorithms

Unit (MB) SFU-Miner SKYFUP-D SKYFUP-B SFUI-UF

Chess 128.24 154.31 1,754.45 41.30

Foodmart 12.48 12.48 85.45 50.70

Mushroom 52.49 123.02 110.50 22.72

Ecommerce 75.08 80.43 69.52 23.50

Connect - 409.12 - 574.91

T25I100D50k 155.34 128.69 - 90.91

Table 9. Sizes of arrays of the compared algorithms

Dataset umax utilmax MUA

Chess 3,196 3,196 3,195

Foodmart 4,141 4,141 25

Mushroom 8,124 8,124 8,124

Ecommerce 14,975 14,975 1,104

Connect 67,557 67,557 67,473

T25I100D50k 50,000 50,000 12706

The results in Table 9 show that the sizes umax and utilmax were always equivalent
to each other on all the six datasets, whereas the size of the MUAwas only equivalent to
those of umax and utilmax for the Mushroom dataset. The superiority of the MUA was
obvious on the three datasets: Foodmart, Ecommerce and T25I100D50k. Particularly,
for Foodmart, the size of the MUA was two orders of magnitude smaller than that of the
other two arrays. This is because, for most part, the items in the dataset do not appear in
every transaction, the length of the MUA will always be less than or equal to the length
of umax and utilmax, and the more sparse the dataset, the more significant the difference
will be.

6 Conclusion

In this paper, we solve the SFUIM problem by proposing a novel algorithm called SFUI-
UF. Because the frequency measure satisfies the downward closure property, we focused
our algorithm on utility, similar to other SFUIM algorithms. The main idea of SFUI-UF
is to filter utilities from three perspectives, that is, frequency, TWU, and utility itself,
which have been formally proved. The SFUI-UF algorithm uses the UL structure to
transform the original database, and traverses the search space in a depth-first manner.
The experimental results on both real and synthetic datasets showed that SFUI-UF can
discover accurate SFUIs with high efficiency and low memory usage.
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Abstract. Textual network embedding aims to learn meaningful low-
dimensional representations for vertices with the consideration of the
associated texts. When learning the representations for texts in net-
work embedding, existing methods mostly only exploit information from
neighboring texts (i.e., contexts), while rarely taking advantages of the
valuable network topological (structural) information. To bridge the gap,
in this paper, a model based on adaptive-filter convolutional neural net-
works (CNN) is developed, in which the filters are adapted to local
network topologies, rather than clamped to fixed values as in tradi-
tional CNNs. The dependency enables the learned text representations
to be aware of local network topologies. It is shown that the proposed
topology-aware representations can be viewed as a complement to exist-
ing context-aware ones. When the two are used together, experimental
results on three real-world benchmarks demonstrate that significant per-
formance improvements on the tasks of link prediction and vertex clas-
sification.

Keywords: Textual network embedding · Network topology ·
Topology-aware · Context-aware

1 Introduction

Networks provide a nature way to organize the relational information like that
in the social and citation networks [23,24]. The huge amount of information
contained in the networks can benefit downstream applications significantly if
it is exploited appropriately, such as friends recommendation in social network,
precise products advertisement in e-commerce and so on. However, as networks
become increasingly large, extracting information from them directly becomes
too expensive to be feasible. Thus, investigating how to efficiently extract use-
ful information from huge networks turn out to be a problem of practical
importance.
c© Springer Nature Switzerland AG 2021
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Network embedding aims to learn a low-dimensional representation for every
network vertex so that the neighboring information of vertices can be preserved
in the low-dimensional representations as much as possible. If we want to extract
some information (e.g. similarity information) from the networks, we only need
to work on the low-dimensional representations, instead of the original huge net-
works, increasing the computational efficiency significantly. So far, many efforts
have been devoted to this area. In DeepWalk [22], by viewing sequences of ver-
tices obtained by randomly walking on the network as sentences, word embed-
ding technique Skip-Gram [18] is used to learn the embeddings for network ver-
tices. To consider second-order proximities of networks, LINE [27] is proposed
to encourage the representations of vertices that share many common neighbors
to be also similar. Node2vec [8] generalizes the concept of neighborhood, and
propose an efficient sampling algorithm biasing towards important vertices.

To take the influence of texts into account, TADW [35] proposes a way to
absorb texts into the vertex embeddings under the framework of matrix factor-
ization (MF), after discovering the close connection between MF and DeepWalk.
On the other side, CENE[26] achieves the goal by treating the texts as another
type of vertices, and then use the aforementioned structure-only methods to learn
the embeddings. To generate robust embeddings for attributed networks, some
researchers propose an outlier-aware network embedding algorithm (ONE) [2]
which minimizes the effect of the outlier nodes. Noticing that the exact meaning
of a piece of texts highly depends on the contexts it resides in, a context-aware
network embedding (CANE) method is later developed in [29], which employs
the attention mechanism to model the impacts from the contexts to the inter-
ested texts. To capture the fine-grained relations between the interested texts
and contexts, word alignment mechanism is further proposed to use in WANE
[25]. The influence of contexts is further investigated under the optimal trans-
port metric in [7]. However, we argue that in addition to the contexts, network
topologies also play an important role in uncovering the true meanings of texts.
As illustrated in Fig. 1, the meaning of a sentence ‘The main business of our
company is to sell apples.’ can only be recognized unless we resort to their
social connections, i.e., the network topologies. If the connections include many
high-profile businessmen, it more likely means selling Apple electronic products.
Otherwise, if lots of farmers are connected, it may refer to the fruit apple.

To have the textual representations being aware of network topologies, in
this paper, adaptive-filer convolutional neural networks (CNN) are proposed to
capture the complex relations between the network topologies and texts. Specif-
ically, filters of the CNN are generated from a deconvolutional neural network
(DCNN) by taking the local network topologies representation as input. As a
result, the filters are adapted to the local topologies, rather than clamped to
fixed values as in traditional CNNs. The adaptive filters enable the learned tex-
tual representations being aware of the network’s local topologies. In this pro-
posed model, the same text that is associated with different network topologies
will lead to different representations. The topology-aware textual representa-
tions can be understood as a complement to the previous context-aware textual
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Friends

The main business 
of our company is 

to sell apples.

Friends

FriendsFriends

The main business 
of our company is 

to sell apples.

Fig. 1. Illustration of how social connections help to understand the semantic meaning
of a sentence.

representations in [25,29], which provides a different view to the texts. When
the proposed topology-aware representations are used together with the existing
context-aware ones, substantial performance gains are observed on the tasks of
link prediction [15] and vertex classification [4], demonstrating the importance
of network topologies in learning textual representations for network embedding.

2 Related Work

2.1 Network Embedding.

Network embedding is designed to efficiently analyze and extract information
from large networks. Traditional network embedding is regarded as a process of
dimension reduction [6], and many methods focus on exploiting the properties
of the Laplacian and adjacency matrices [3,28,34]. However, due to the high
computational complexity, these methods are difficult to scale to large networks.
Later, a large number of more sophisticated and efficient methods emerged. LINE
[27] was proposed to explicitly preserve the first-order and second-order prox-
imities [28,30] of the network. Similar to the idea of Skip-Gram [18], DeepWalk
[22] employs a random walk strategy over networks to learn vertex embeddings.
Further, in order to explore the network structure more efficiently, node2vec [8]
introduces a biased random walk strategy in place of the random walk strategy in
DeepWalk. By leveraging community structure and microscopic structure of the
network, M-NMF [31] learns network embeddings from the view of Nonnegative
Matrix Factorization [12].

2.2 Textual Network Embedding

TADW [35] leverages the equivalence between DeepWalk and matrix decompo-
sition and proposes to integrate textual features into DeppWalk, which can be
solved by matrix decomposition to learn the latent representation from struc-
tural information and textual information jointly. Proposed in [26], CENE opti-
mizes the loss of vertex-vertex links and vertex-content links jointly by regarding
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text content as a special type of vertices. TriDNR [21] and ASNE [14] consider
information from three parties: node structure, node content, and node labels (if
available) to learn optimal node representation with different models [11,22] com-
prehensively. Considering the impact of contextual information from neighbor
texts, CANE is further proposed in [29], which employs a mutual attention mech-
anism to adaptively encode texts conditioned on neighboring texts. Recently,
NEIFA in [33] takes into account the mutual influence between structural and
textual information by effectively fusing them into one information. In [32], how
to embed dynamic networks is further considered by tracking the evolution of
network changes over time. However, all of the aforementioned methods ignore
the impact from local topology information of network for the understanding of
semantic information.

3 Preliminaries

3.1 Framework of Textual Network Embedding

A textual network is defined as G = (V, E , T ), where V is the set of N vertices;
T is the set of texts associated with vertices; and E ∈ V × V is the set of edges.
Textual network embedding aims to learn a low-dimensional representation for
each vertex and its associated texts, with the neighboring information preserved
as much as possible. To this end, a structural and textual representation is
learned for each vertex by optimizing the objective [25,29]:

L = −
∑

{u,v}∈E
log p (hs

u|hs
v)−λ1

∑

{u,v}∈E
log p

(
ht

u|ht
v

)

−λ2

∑

{u,v}∈E

(
log p

(
hs

u|ht
v

)
+ log p

(
ht

u|hs
v

) )
,

(1)

where hs
u,ht

u ∈ R
d denote the structural and textual representation of vertex

u, respectively; p(hu|hv) � exp (hT
u hv)

∑|V|
i=1 exp (hT

i hv)
; the four terms in right hand side

(r.h.s.) of (1) are used to account for the structure-to-structure, text-to-text,
text-to-structure and structure-to-text influences, respectively; λ1 and λ2 are
used to control the relative importance of different terms. Here, the structural
representation hs

u is mainly used to capture local network topological informa-
tion around vertex u, while the textual representation ht

u mainly captures the
information in the texts of vertex u. Given hs

u and ht
u, the network embedding

of vertex u is obtained by directly concatenating the two vectors like

hu = [hs
u;ht

u]. (2)

In the objective (1), the structural representation hs
u is randomly initialized,

while the textual representation ht
u is set to be the output of a function, that is,

ht
u = Fθ (tu) , (3)

where tu denotes the sequence of words associated with vertex u and the function
Fθ(·) maps raw texts to their representations. This paper mainly focuses on how
to learn a good mapping.
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3.2 Context-Aware Textual Representation Learning

One simple way to obtain a textual representation is to pass the text through a
neural network. When learning text representations, since the semantic meaning
of texts often depends on the context it resides in, it is suggested to consider the
influences from the texts of neighboring vertices as well. Therefore, a mapping
function with the following form is proposed

ht
u = Fθ(tu, tv), (4)

where the first argument tu is the text of interest, while the second argument tv

serves as its context for any (u, v) ∈ E . Textual representations obtained from a
mapping like (4) are often dubbed as context-aware representations.

The first context-aware network embedding model (CANE) is proposed in
[29]. It computes a correlation matrix Gu ∈ R

m×n between the target text tu

and one of its neighboring texts tv as follows

Gu = tanh
(
XT

u AXv

)
, (5)

where Xu ∈ R
d×m and Xv ∈ R

d×n denote the word embedding matrices of
texts in vertices u and v, respectively; m and n are the number of words in the
texts of vertices u and v, while d is the dimension of textual representation; and
A ∈ R

m×n is a trainable affinity matrix used to align the two feature matrices
[5]. Then, the context-aware representation of texts in vertex u is computed as

ht
u = Xuαu, (6)

where αu = softmax(Mean(Gu)) is the attention weight; and Mean(·) means
taking the average over matrix rows. Obviously, the i-th element of αu represents
the relative importance of the i-th word of text tu when it is placed under the
context of tv.

Later, fine-grained word alignment mechanism is further employed to cap-
ture the subtle relation between interested text and its contexts, leading to a
model named word-alignment network embedding (WANE) [25]. WANE works
similarly to CANE, except the method of computing the attention weight αu

and the way on how to obtain the final textual representation ht
u in (6). Please

refer to [25] for more details. In both of the CANE and WANE models, attention
mechanism is the key to absorb the influence of contexts into the final textual
representations.

4 Topology-Aware Textual Representation Learning

In addition to the contexts, as stated in the Sect. 1, network topologies also
play an important role in uncovering the exact meanings of texts. The simplest
way to take the influences of topologies into account is to extend the existing
context-aware methods to handle the topologies. Specifically, we can represent
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Fig. 2. Illustration of the procedure to learn topology-aware textual representations.

the local topological information of vertex u using the structural representations
of vertex u and its neighbors as

Hu =
[
hs

u,hs
u1

, · · · ,hs
uk

]
, (7)

where uk denotes the k-th neighbor of vertex u; and hs
u is the structural represen-

tation of vertex u. Hu can be understood as the embedding matrix of vertices,
and plays a similar role as the word embedding matrix Xv in (5). We can simply
replace the Xv in (5) with Hu to obtain a topology-aware textual representation.
However, we notice that the two information sources of Xv and Hu come from
different domains (text and network topology). This may prevent the simple
model from producing high-quality representations since attention mechanism
generally works most effectively only when the information sources come from
similar domains.

4.1 Topology-Aware CNN-Based Method

To have the textual representations being aware of the local network topologies,
adaptive CNNs are proposed to capture the complex relations between texts and
their local topologies. The key is that the CNN filters here are not clamped to
fixed values, but are adapted to local network topologies. Supposing that the
local topological information of vertex u can be summarized by a vector su (we
will discuss how to obtain it in the next subsection), a set of CNN filters can be
specifically generated for vertex u as

F u = Generator (su) , (8)

where the tensor F u ∈ R
c×w×d is the collection of CNN’s filters, with c

and w × d representing the filter number and kernel size, respectively. The
Generator(·) is realized mainly by a deconvolutional operator, which transforms
small patches/matrices to large ones through zero-padding and convolutional
operations [20]. More specifically, the filter tensor F u is generated by passing
the local topological information vector su through a deconvolutional operator
and performing some reshaping.
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Fig. 3. Illustration of the process of local topology information extraction. (a) Sample
multi-hops neighbors of node u, where blue and green nodes are 1-hop and 2-hop neigh-
bors of u. (b) Aggregate neighborhood information: we first aggregate 2-hop neighbors’
information (green) to 1-hop neighbors (blue), so we can obtain new representations
for 1-hop neighbors (purple); finally we obtain new representations of node u by aggre-
gating information from 1-hop neighbors. (Color figure online)

Given the topology-dependent filters F u, we then pass the word embedding
matrix Xu of vertex u through a one-layer CNN equiped with F u as

Mu = Conv(F u,Xu) + b, (9)

where Mu denotes the CNN’s feature map of vertex u; and b is the bias term.
Taking an average-pooling and nonlinear transformation tanh(·) over Mu gives
the final textual representation

hs→t
u = tanh(Mean(Mu)), (10)

where hs→t
u denotes the topology-aware textual representation, with the super-

script representing from structure (i.e. topology information) to text. This is
contrast to the context-aware textual representation, which is denoted as ht→t

u

in the subsequent, where the superscript represents from text to text. The most
intriguing part here is that the CNN filters are not fixed, but are dependent
on the local network topology, which allows the model to learn topology-aware
representations for texts. The advantage of such parametrization will be demon-
strated in the experiments. Figure 2 illustrates the whole process of how to
extract topology-aware textual representations.

4.2 Extracting Local Topological Information by Graph Neural
Networks

One simple way to extract local topological information su used in (8) is to collect
the structural representations of vertex u as well as its neighbors’ {hs

k}k∈{u,N (u)},
and then take an average as su = Mean(Hu), where Hu is defined in (7).
Inspired by the extraordinary performance of graph neural networks (GNN) in
learning graph representations [9], a GNN-based method is adopted here. Specif-
ically, for each vertex, we first select a fixed number (e.g. 10) of neighbors (they
could be multi-hop away from the considered vertex), inducing a small subgraph.
The structural representations of vertices in outer layers are then propagated
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towards inner ones layer-by-layer until the innermost vertex u, as illustrated in
Fig. 3. More precisely, we divide vertices in the subgraph into different layers
according to their number of hops to vertex u, and mark the outermost layer as
the 0-th layer, and the one next to the outermost as 1-th layer and so on. For
any vertex i from the �-th layer with � = 1, 2, · · · , L, we execute the following
updates

Z�
i = Aggregate

(
z�−1

v ,∀v ∈ N�−1(i)
)
, (11)

z�
i = σ

(
W � · Mean(Z�

i) + W ′
�h

s
i

)
, (12)

where z0
v is initialized by hs

v; W � and W ′
� are the GNN’s parameters;

Aggregate(·) assembles all vectors to constitute a matrix; N�−1(i) denotes the
neighbors of i that are in the (�−1)-th layer; L is the maximum number of hops
to the vertex u; and σ is the sigmoid function. After L steps, the obtained zL

u is
used to represent the local topological information, that is,

su = zL
u . (13)

This information su is then fed into the filter generator module as shown in (8).

5 The Whole Model

The topology-aware model views the texts from a perspective different from the
context-aware models, thus is possible to extract some extra information not
contained in the context-aware representations. To obtain a more comprehen-
sive textual representation, we can merge the two. For simplicity, only a linear
combination is considered here

ht
u = γht→t

u + (1 − γ) hs→t
u , (14)

where ht→t
u could be obtained by using the existing CANE [29] or WANE [25]

methods; and γ ∈ [0, 1] is a learnable parameter that controls the relative
importance of the two representations. In the experiments, this parameter is
learned together with other model parameters automatically. Given the struc-
tural and textual representations hs

u and ht
u, the network embedding of vertex

u is obtained by directly concatenating them

hu = [hs
u;ht

u].

In the subsequent, the whole model proposed above is abbreviated as TANE,
standing for Topology-Aware Network Embedding Model.

Training Details. To train the model, we need to optimize the objective func-
tion (1), which requires to repeatedly evaluate the probabilities p(zu|zv) �

exp (zT
u zv)

∑|V|
i=1 exp (zT

i zv)
, where |V| is number of vertices. For large-scale networks, this
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would be computationally prohibitive. To address this problem, the nega-
tive sampling strategy [19] that samples only a subset of negative edges for
each evaluation is introduced. As a result, the probability is approximated as
log p(zu|zv) ≈ logσ

(
zT

u zv

)
+

∑K
k=1 Ek∼p(w)[logσ

(
−zT

k zv

)
], where σ(·) is the sig-

moid function; K is the number of negative samples. Following [19], the distribu-
tion is set to be p(w) ∝ d

3/4
w , where dw denotes the out-degree of vertex w ∈ V.

During the whole training process, the Adam algorithm [10] is used.

6 Experiments

6.1 Datasets, Baselines and Setups

Datasets. To evaluate the performance of the proposed methods, we conduct
experiments on the following three benchmark datasets.

– Zhihu [26]: A social network crawled from the largest Q&A website in China,
including 10000 active users, 43896 connection relationships, as well as the
users’ descriptions on their interested topics.

– Cora [17]: A paper citation network consisting of 2277 machine learning
papers collected from 7 research areas, and 5214 citation relationships.

– HepTh [13]: A citation network made up of 1038 papers associated with
abstract information, and 1990 citation relationships between them.

Baselines. To demonstrate the effectiveness of our proposed method, two types
of competitive baselines are adopted for comparison. The first type employs
the structure information only, including MMB [1], DeepWalk [22], LINE [27]
and node2vec [8], while the second type leverages both the structure and text
information, including the naive combination method, TADW [35], CENE [26],
CANE[29] as well as the WANE [25].

Experiment Setups. For a fair comparison, following the settings in [29], we
also set the dimension of network embedding hu to 200, with the dimensions of
structural and textual representations hs

u and ht
u both set to 100. Adam [10] is

employed for optimizing the model parameters, with the mini-batch size set to
64. Dropout is used on the word embedding layer to alleviate overfitting. For the
local topology information extraction, we sample up to 25 one-hop neighbors and
10 two-hop neighbors for each node. Moreover, to speed up the convergence and
obtain better results, we learn the structural representation hs

u alone for sev-
eral epochs first, and then learn both the structural and textual representations
simultaneously using the Adam algorithm.

6.2 Comparison with Other Methods

Link Prediction. We randomly delete certain proportions, ranging from 15% to
95%, of edges from the networks, and then use the learned embeddings of vertices
to predict the existence of unobserved (deleted) edges between two vertices. The
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Table 1. AUC values on Zhihu.

% Training edges 15% 25% 35% 45% 55% 65% 75% 85% 95%

MMB [1] 51.0 51.5 53.7 58.6 61.6 66.1 68.8 68.9 72.4

DeepWalk [22] 56.6 58.1 60.1 60.0 61.8 61.9 63.3 63.7 67.8

LINE [27] 52.3 55.9 59.9 60.9 64.3 66.0 67.7 69.3 71.1

node2vec [8] 54.2 57.1 57.3 58.3 58.7 62.5 66.2 67.6 68.5

Naive Combination 55.1 56.7 58.9 62.6 64.4 68.7 68.9 69.0 71.5

TADW [35] 52.3 54.2 55.6 57.3 60.8 62.4 65.2 63.8 69.0

CENE [26] 56.2 57.4 60.3 63.0 66.3 66.0 70.2 69.8 73.8

CANE [29] 56.8 59.3 62.9 64.5 68.9 70.4 71.4 73.6 75.4

TANE-ATT 50.4 51.2 51.8 52.0 53.1 55.0 55.4 58.3 60.5

TANE1 61.0 68.0 72.4 76.4 76.9 77.6 78.4 78.5 78.8

WANE [25] 58.7 63.5 68.3 71.9 74.9 77.0 79.7 80.0 82.6

TANE2 66.2 69.3 73.5 75.4 78.1 80.0 81.2 82.5 82.8

task is established on the assumption that the embeddings of two originally
connected vertices should be closer. We follow the procedures in CANE [29] and
WANE [25] to compute the accuracy of link prediction, in which the AUC metric
is used. The performance of the proposed models, along with the baselines, on
the three benchmark datasets Zhihu, HepTh and Cora are reported in Table 1,
Table 2 and Table 3, respectively. In the tables, TANE1 and TANE2 represent the
TANE models that use the context-aware textual representations from CANE
and WANE, respectively, while TANE-ATT denotes the TANE model based on
the attention mechanism.

It can be seen from Tables 1, 2 and 3 that when the proposed adaptive TANE
is used together with existing context-aware methods, no matter it is the CANE
or WANE, performance improvements can be observed consistently on all three
datasets. This may be because the topology-aware representations successfully
extract from texts some extra information that is not contained in the context-
aware representations. Thus, when they are used together, improvements can
be observed. This also demonstrate the importance of topologies and contexts
in understanding the subtle meanings of texts. But as seen from the tables, the
attention-based TANE performs poorly on all the three datasets. This confirms
our previous conjecture that the attention mechanism is not suitable to cap-
ture the complex relation between texts and network topologies that come from
two totally different domains. We also notice that the proposed TANE models
sometimes perform a little worse than the CANE or WANE models at small
proportions of observed edges. This is because under this scenario, the obtained
topological information is too little to represent the true local network structure.
Interestingly, we observe that in Zhihu dataset, the learnable parameter γ con-
verges to a small value (e.g. 0.2), while in the other two datasets, it converges
to a relatively large value (e.g. 0.9). This indicates that the topology-aware rep-
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Table 2. AUC values on HepTh.

% Training edges 15% 25% 35% 45% 55% 65% 75% 85% 95%

MMB [1] 54.6 57.9 57.3 61.6 66.2 68.4 73.6 76.0 80.3

DeepWalk [22] 55.2 66.0 70.0 75.7 81.3 83.3 87.6 88.9 88.0

LINE [27] 53.7 60.4 66.5 73.9 78.5 83.8 87.5 87.7 87.6

node2vec [8] 57.1 63.6 69.9 76.2 84.3 87.3 88.4 89.2 89.2

Naive Combination 78.7 82.1 84.7 88.7 88.7 91.8 92.1 92.0 92.7

TADW [35] 87.0 89.5 91.8 90.8 91.1 92.6 93.5 91.9 91.7

CENE [26] 86.2 84.6 89.8 91.2 92.3 91.8 93.2 92.9 93.2

CANE [29] 90.0 91.2 92.0 93.0 94.2 94.6 95.4 95.7 96.3

TANE-ATT 60.3 78.2 82.0 83.4 83.5 85.6 89.7 90.8 91.9

TANE1 84.9 92.6 93.7 94.9 96.6 96.7 98.3 98.2 99.3

WANE [25] 92.3 94.1 95.7 96.7 97.5 97.5 97.7 98.2 98.7

TANE2 86.5 94.7 96.0 97.2 98.2 97.7 98.5 98.4 99.1

Table 3. AUC values on Cora.

% Training edges 15% 25% 35% 45% 55% 65% 75% 85% 95%

MMB [1] 54.7 57.1 59.5 61.9 64.9 67.8 71.1 72.6 75.9

DeepWalk [22] 56.0 63.0 70.2 75.5 80.1 85.2 85.3 87.8 90.3

LINE [27] 55.0 58.6 66.4 73.0 77.6 82.8 85.6 88.4 89.3

node2vec [8] 55.9 62.4 66.1 75.0 78.7 81.6 85.9 87.3 88.2

Naive Combination 72.7 82.0 84.9 87.0 88.7 91.9 92.4 93.9 94.0

TADW [35] 86.6 88.2 90.2 90.8 90.0 93.0 91.0 93.4 92.7

CENE [26] 72.1 86.5 84.6 88.1 89.4 89.2 93.9 95.0 95.9

CANE [29] 86.8 91.5 92.2 93.9 94.6 94.9 95.6 96.6 97.7

TANE-ATT 75.4 77.3 80.2 83.1 84.7 85.6 88.0 90.1 91.3

TANE1 85.2 89.6 93.1 94.4 94.8 95.2 95.8 97.5 98.2

WANE [25] 91.7 93.3 94.1 95.7 96.2 96.9 97.5 98.2 99.1

TANE2 89.4 92.1 94.3 95.9 96.6 97.3 97.8 98.4 99.2

resentation is more important in Zhihu dataset, while less in the other two,
suggesting that Zhihu may contain more topological information.

Multi-label Vertex Classification. For this task, we train a linear SVM clas-
sifier on the learned network embeddings of the Cora dataset. The proportions of
embeddings used for training vary from 10% to 50%. The classification accuracy
on the remaining embeddings is reported as the final performance. Figure 4(a)
shows the test accuracies of the proposed and baseline models under different
percentages of training data. Note that due to the similarities between CANE
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(a) Vertex classification. (b) Vertex visualization.

Fig. 4. Vertex classification and visualization on Cora

(a) Zhihu (b) HepTh (c) Cora

Fig. 5. Ablation study of TANE on different datasets in terms of link prediction.

and WANE, only the TANE model using CANE context-aware representations
is considered in subsequent experiments. It can be seen that the proposed model
TANE performs the best under all percentages, demonstrating the effectiveness
of the proposed network embedding method. This further supports the argument
that the topology-aware and context-aware representations emphasize different
aspects of the texts, and integrating them could lead to more comprehensive
representations.

6.3 Further Analysis

Ablation Study. To investigate the importance of topological information and
the adaptive filter CNN in the proposed TANE model, we carry out an ablation
study on different datasets in the link prediction task. Specifically, in addition
to the original TANE model, we also experiment with its two variants: i) TANE
(w/o topological information), in which the topological information is replaced
by random vectors; ii) TANE (w/o adaptive filters), in which the adaptive filters
are replaced by a set of fixed filters as in the traditional CNNs. The experimental
results are shown in Fig. 5. It can be observed that if we replace the topological
information with random vectors, the performance decreases a lot, which implies
that the topological information does contribute a lot to produce high-quality
network embeddings. On the other hand, by replacing the adaptive filters with a
set of fixed filters, a significant performance drop is also observed. This confirms



Network Embedding with Topology-Aware Textual Representations 437

the effectiveness of adaptive filter CNN in learning semantic representations that
are aware of local structures.

Visualization Analysis. To show an intuitive understanding on the quality
of network embeddings learned by the proposed TANE method, we apply t-
SNE [16] to project the embeddings into a two-dimensional space, and then
visualize them in the coordinate system. We conduct this experiment on Cora
dataset whose vertices are labelled. As shown in Fig. 4(b), each point denotes a
vertex (paper) in the network and its color indicates the category it belongs to.
It can be seen that most of the embeddings with the same label are clustered
relatively closer than those with different labels. This may explain the superior
performance of our proposed topology-aware network embedding method.

7 Conclusions

In this paper, we present the topology-aware textual network embedding (TANE)
model for the first time. It seeks to eliminate the semantic ambiguities and boost
the quality of text representation in network embedding by leveraging the net-
work topological information. To this end, an adaptive CNN based model is
developed, in which the filters are adapted to the local topology information,
rather than fixed in traditional CNNs. An graph neural network is also proposed
to extract the local topology information. It is found that the proposed model
is able to extract from texts some additional information which is not preserved
in the existing context aware representations. When the proposed model is used
with existing context-aware models like CANE and WANE, significant perfor-
mance improvements are observed.
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Abstract. Cross-modal hashing has drawn increasing attentions for effi-
cient retrieval across different modalities, and existing methods primar-
ily learn the hash functions in a batch based mode, i.e., offline meth-
ods. Nevertheless, the multimedia data often comes in a streaming fash-
ion, which makes the batch based learning methods uncompetitive for
large-scale streaming data due to the large memory consumption and
calculation. To address this problem, we present an Online Discrimi-
native Semantic-Preserving Hashing (ODSPH) method for large-scale
cross-modal retrieval, featuring on fast training speed, low memory con-
sumption and high retrieval accuracy. Within the proposed ODSPH
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codes and update hash functions in a stream manner. When new data
comes, the corresponding hash codes are obtained by regressing the class
label of the training examples. For hash function, we update it with the
accumulated information from each round. Besides, we design a novel
momentum updating method to adaptively update the hash function and
reduce quantization loss, which can produce discriminative hash codes
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1 Introduction

In recent years, with the explosive growth of various kinds of multimedia data
on the Internet, cross-modal retrieval algorithm is popular to return semanti-
cally relevant results of one modality in response to a query of different modality
[1]. Hashing method has been widely applied in cross-modal retrieval due to its
advantages of low storage and fast query [2,3]. In general, cross-modal hashing
methods can be categorized into unsupervised fashion [4–6] and supervised fash-
ion [7–9]. The unsupervised cross-modal hashing methods directly learn the hash
codes from original feature space to Hamming space, so they ignore the label dis-
crimination and the their retrieval performances are a bit poor. Remarkably, the
label information is able to well correlate the semantic information between dif-
ferent modalities, and supervised cross-modal hashing approaches often produce
more compact hash codes to boost the retrieval performance, typical methods
including Semantic Correlation Maximization (SCM) [10], Semantic-Preserving
Hashing (SePH) [11], Generalize Semantic Preserving Hashing (GSePH)
[12], Fusion Similarity Hashing (FSH) [13], Discrete Cross-modal Hashing
(DCH) [14].

It is noted that most cross-modal hashing methods mainly attempt to learn
hash functions in a batch based mode, and all training data points should be
available before hash functions learning process. If the training data is increas-
ingly accumulated, the batch based learning method must recalculate the hash
functions on the whole database, which involve expensive computation and large
memory cost [15]. Works [16,17] solve this problem with an online learning
scheme. Nevertheless, these online methods often accumulates large quantiza-
tion error when learning hash codes and their retrieval performances need fur-
ther improvements. Therefore, it is particularly important to develop an effi-
cient online cross-modal retrieval method to deal with the streaming multimedia
database.

In this paper, we propose an Online Discriminative Semantic-Preserving
Hashing (ODSPH) for fast retrieval of streaming data, which improves the state-
of-the-art methods by providing following contributions:

– We propose to regress the class labels of training examples to their corre-
sponding hash codes in a streaming fashion, and only utilize the newly coming
data to adaptively learn the hash functions.

– An efficient momentum updating method is presented to optimize the
descending direction of hash function, which can significantly reduce the quan-
tization loss for compact hash codes learning.

– The proposed ODSPH algorithm seamlessly correlates the heterogeneous
modalities in the online learning process and preserves the semantic correla-
tions both in the old data points and new data points.

– Experimental results show its comparable performance in comparison with
existing online cross-modal hashing and other offline counterparts.
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2 Related Work

In this section, we briefly review the related works of cross-modal hashing
(CMH), including offline CMH and online CMH works.

2.1 Offline CMH Works

Many efforts have been devoted to offline cross-modal hashing, which can be
broadly divided into supervised and unsupervised cases. Unsupervised CMH
learns the unified hash codes directly from the paired training data so as to pre-
serve the inter-modality and intra-modality information. For instance, Ding et
al. [18] present a collective matrix factorization hashing (CMFH) to learn cross-
view hash functions and achieve cross-modal retrieval. In addition, Inter-Media
Hashing (IMH) [19] defines two selection matrices to deal with unpaired data,
and obtains the hash function by linear projection and threshold method. Fusion
Similarity Hashing (FSH) [13] constructs a graph to simulate the fusion similar-
ity between different patterns, and learns the binary codes embedded with this
fusion similarity. Supervised CMH leverages the label information to promote the
hash codes learning, which generally produces better performance. Along this
line, [10] presents a Semantic Correlation Maximization (SCM) [10] maximizes
the semantic correlation by utilizing the label information. Supervised Matrix
Factorization Hashing (SMFH) [20] improves accuracy by embedding tags to
supervise the collective matrix decomposition. Generalized Semantic Preserving
Hashing (GSePH) [12] constructs an affinity matrix using the tag information
to obtain more discriminative hash codes. Discrete Cross-modal Hashing (DCH)
[14] retains discrete constraints when learning hash codes. In recent years, deep-
networks-based cross-modal hashing methods [21,22] can represent high-level
semantics more efficiently and accurately compared to the method of extracting
hand-crafted features. Although these cross-modal methods are effective in the
search process, they are all offline learning methods. In real application, multi-
media data points often continuously arrive in a stream fashion, which makes
these methods hard to retrain hash functions on all available data points.

2.2 Online CMH Works

Online retrieval algorithm can be applied to deal with the streaming data points,
and most online hashing methods mainly focus on single modality [23–26], which
cannot be directly extended to cross-modal retrieval scenarios. To address this
issue, Online Cross-Modal Hashing (OCMH) [16] updates hash codes online, and
decomposes the hash codes matrix to a shared latent codes matrix and a dynamic
matrix. Online Collective Matrix Factorization Hashing (OCMFH) [27] performs
collaborative matrix decomposition in an online manner. However, these unsu-
pervised methods often deliver a bit poor retrieval performance. To embedding
the label supervision, Online Latent Semantic Hashing (OLSH) [17] maps dis-
crete tags to a continuous latent semantic space, while updating hash functions
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based on only newly arriving multimedia data points. This approach has pro-
duced promising retrieval performances to sequentially process the streaming
data points, but its performance is not very stable. Therefore, it is still desirable
to develop an efficient online cross-modal hash algorithm.

Fig. 1. The graphical illustration of the proposed ODSPH framework.

3 Proposed ODSPH Algorithm

In this section, we present the proposed online discriminative semantic-
preserving hashing (ODSPH) algorithm in detail, and the graphical illustration
of ODSPH is shown in Fig. 1. The proposed ODSPH approach aims to overcome
the limitation of batch based model by developing an online cross-modal hashing
learning scheme. Without loss of generality, we focus on online hash learning for
image and text, and the proposed framework can be easily extended to more
modalities.

3.1 Problem Formulation

Suppose the training database consists of multiple streaming image-text data
pairs. During the training, a new data chunk X(t) = [X(t)

1 ,X(t)
2 ] of size Nt is

added to the database at each round t, where X(t)
1 ∈ Rd1×Nt , X(2)

2 ∈ Rd2×Nt

denote the feature matrices of image and text data, respectively. Let L(t) ∈
Rc×Nt represents the class label matrix of new data chunk, where c is the number
of all categories. At round t, N is utilized to denote the size of the all data that

has been obtained. So we can define the old data as ̂X
(t−1)

= [̂X
(t−1)

1 , ̂X
(t−1)

2 ],

the old label as ̂L
(t−1) ∈ Rc×(N−Nt), where ̂X

(t−1)

1 , ̂X
(t−1)

2 denote all cumulative
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image features and text features that have been obtained at round t − 1. For
simplicity, we can utilize ̂X = [̂X1,

̂X2] denotes all cumulative data that have
been obtained at round t, ̂L denotes all the label that have been obtained at

round t, where ̂Xm = [̂X
(t−1)

m ,X(t)
m ], ̂L = [̂L

(t−1)
,L(t)].

3.2 Objective Function

Our ultimate goal is to learn the mapping matrix corresponding to the heteroge-
neous data, and map the heterogeneous data into a shared hamming space, where
the similarity between the different modalities can be calculated. For image-text
data pair, we study two mapping matrices W1, W2, which can map the feature
data of two modalities into binary hash codes. When the new data arrives, the
hash function is formulated as:

hm(Xm) = sgn(WmXm) (1)

where hm(Xm) denotes the hash codes of the data Xm, sgn(·) is a sign function.
For the paired data, the hash codes of different modalities should share same
hash codes to maintain the similar semantic information. Therefore, the following
expression can be obtained:

min ||B(t) − W(t)
1 X(t)

1 ||2F + ||B(t) − W(t)
2 X(t)

2 ||2F s.t.B ∈ {−1, 1}r×Nt (2)

where ‖ · ‖F denotes the Frobenius norm. To solve Eq. (2), most methods usu-
ally abandon the discrete constraint of learning binary codes and adopt relaxed
quantization method to approximate binary solutions, which often degrades the
retrieval performance. In order to learn more discriminative binary codes, we
refer to work [28] and directly regress the tag information to the corresponding
hash codes, while retaining the discrete constraint to reduce the quantization
loss. The corresponding expression is formulated as:

min ||B(t) − UTL(t)||2F s.t.B(t) ∈ {−1, 1}r×Nt (3)

Where U ∈ R
r×c is a auxiliary matrix. Note that the solution of Eq. (3) has

a closed solution for hash codes learning, which only needs one step to learn
the hash codes. Therefore, such hash codes learning scheme is computationally
efficient in comparison with iterative learning model. By combining Eq. (2) and
Eq. (3), considering the online scenario, when new data is added in each round
of training, our cumulative objective function is:

̂G = ̂G
(t−1)

+ ||B(t) − UTL(t)||2F +
2
∑

m=1
μm||B(t) − WmX(t)

m ||2F

+
2
∑

m=1
λm||Wm||2F + λ3 ‖U‖2F s.t.B(t) ∈ {−1, 1}r×n

(4)

where

̂G
(t−1)

= ||̂B(t−1) − UT
̂L
(t−1)||2F +

2
∑

m=1
μm||̂B(t−1) − Wm

̂X
(t−1)

m ||2F

+
2
∑

m=1
λm||Wm||2F + λ3 ‖U‖2F s.t.̂B

(t) ∈ {−1, 1}r×n

(5)
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3.3 Online Optimization

In this section we discuss the online optimization of Eq. (4). At each learning
round t, a new data chunk [X(t)

1 ,X(t)
2 ] is added into the training set for online

updating, and the optimization process is as follows:
Compute B(t): Learn B(t) by fixing other variables. B(t) is only relevant to

the new data. So the objective function related to B(t) can be written as follow:

min
B

||B(t)−UTL(t)||2F +
2
∑

m=1
μm||B(t)−WmX(t)

m ||2F s.t.B ∈ {−1, 1}r×n (6)

where B(t) denotes the hash codes of the new data obtained at round t. For the
solution of B(t), we refer to work [28] and directly regress the tag information
of training examples to the corresponding hash codes, so as to speed up the
algorithm and retain the discrete constraint. The trace of the matrix is denoted
by tr(·), and Eq. (6) can be expressed as:

min
B

tr
(

(B(t) − UTL(t))
T
(B(t) − UTL(t))

)

+μ1tr

(

(B(t) − WT
1 X(t)

1 )
T
(B(t) − WT

1 X(t)
1 )

)

+μ2tr

(

(B(t) − WT
2 X(t)

2 )
T
(B(t) − WT

2 X(t)
2 )

)

s.t.B ∈ {−1, 1}r×n

(7)

Since tr(B(t)TB(t)) is a constant, Eq. (7) is equivalent to:

min
B

−tr(B(t)T (UTL(t) + μ1WT
1 X(t)

1 + μ2WT
2 X(t)

2 )) s.t.B ∈ {−1, 1}r×n (8)

Therefore, B(t) can obtain the following analytic solution:

B(t) = sign(UTL(t) + μ1WT
1 X(t)

1 + μ2WT
2 X(t)

2 ) (9)

The solution is only related to the new data, so the time complexity is O(Nt).
Update U: Learn U by fixing other variables. U is related to all accumulated

data. So Eq. (4) can be written as follow:

min
U

||̂B − UT
̂L||2F + λ3 ‖U‖2F (10)

where ̂B = [̂B
(t−1)

,B(t)] denotes all hash codes that have been obtained at

round t, ̂B
(t−1)

denotes all hash codes that have been obtained at round t − 1.
By setting the derivative of Eq. (10) w.r.t U to 0, the analytic solution can be
obtained by:

U = (̂L̂L
T

+ λ3I)−1
̂L̂B

T
(11)

where

̂L̂L
T

=
[

̂L
(t−1)

,L(t)

]

[

(̂L
(t−1)

)T (L(t))T
]

= ̂L
(t−1)

(̂L
(t−1)

)T + L(t)(L(t))T (12)
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̂L̂B
T

=
[

̂L
(t−1)

,L(t)

]

[

(̂B
(t−1)

)T (B(t))T
]

= ̂L
(t−1)

(̂B
(t−1)

)T +L(t)(B(t))T (13)

By substituting Eq. (12) and Eq. (13) into Eq. (11), the online solution expres-
sion of U can be obtained:

U = (pLL + L(t)(L(t))T + λ3I)−1(pLB + L(t)(B(t))T ) (14)

where pLL = ̂L
(t−1)

(̂L
(t−1)

)T and pLB = ̂L
(t−1)

(̂B
(t−1)

)T are constants, and
they can be obtained in the previous round. So this step only needs to calculate
L(t)(L(t))T and L(t)(B(t))T . Therefore, the time complexity is O(Nt).

Update W1,W2: Learn W1 by fixing other variables, Eq. (5) can be written
as follow:

min
W1

μ1||̂B − W1
̂X1||2F + λ1||W1||2F (15)

By setting the derivative of Eq. (15) w.r.t W1 to 0 respectively, the analytic
solution can be obtained as follows:

W1 = ̂B̂X
T

1 (̂X1
̂X

T

1 + λ1I)−1 (16)

Similarly, ̂X1
̂X

T

1 and ̂X1
̂B
T

in Eq. (16) can be calculated as follows:

̂B̂X
T

1 =
[

̂B
(t−1)

,B(t)

]

[

(̂X
(t−1)

1 )T

(X1
(t))T

]

= ̂B
(t−1)

(̂X
(t−1)

1 )T + B(t)(X1
(t))T (17)

̂X1
̂X

T

1 =
[

̂X
(t−1)

1 ,X1
(t)

]

[

(̂X
(t−1)

1 )T

(X1
(t))T

]

= ̂X
(t−1)

1 (̂X
(t−1)

1 )T + X1
(t)(X1

(t))T (18)

By substituting Eq. (17) and Eq. (18) into Eq. (16), the online solution expression
of W1

(t) can be obtained:

W1
(t) = (pB1 + B(t)(X1

(t))T )(pX1 + X1
(t)(X1

(t))T + λ1I)−1 (19)

where pB1 = ̂B
(t−1)

(̂X
(t−1)

1 )T and pX1 = ̂X
(t−1)

1 (̂X
(t−1)

1 )T are constants, and
their values can be obtained in the previous round. Therefore, the time com-
plexity of this step is O(Nt).

Similar to W(t)
1 , the solution expression for W(t)

2 is

W2
(t) = (pB2 + B(t)(X2

(t))T )(pX2 + X2
(t)(X2

(t))T + λ2I)−1 (20)

where pB2 = ̂B
(t−1)

(̂X
(t−1)

2 )T , pX2 = ̂X
(t−1)

2 (̂X
(t−1)

2 )T . Therefore, the time
complexity is O(Nt).

Momentum Updating: Due to W1, W2 is constantly updated at each
round t, which is similar to gradient descent process. One problem with this
process is that it is difficult for the model to reach the optimal value if the
descending speed is too slow, while it may skip the global optimal value if the
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Algorithm 1. Optimizing of ODSPH at round t

Input: X
(t)
1 ,X

(t)
2 , L(t), W1, W2, pLL, pLB, pX1, pB1, pX2, pB2

Output: W1, W2, B, pLL, pLB, pX1, pB1, pX2, pB2

1: Initialize B(t) randomly
2: for iter <= Titer do
3: Compute B(t) according to Eq.(9);
4: Update U according to Eq.(14);
5: Update W1 according to Eq.(19)(21);
6: Update W2 according to Eq.(20)(21);

7: end for
8: Update B by B = [B;B(t)];
9: Update pLL, pLB, pX1, pB1, pX2, pB2;

descending speed is too fast. To tackle this problem, we propose a momen-
tum updating method to adapt the proposed online learning framework. More
specifically, we perform exponential weighted moving average processing on the
variable, and the result Wm at round t is the linear combination of the variable
Wt−1

m calculated at round t − 1 and the variable Wt
m calculated at round t:

Wm = (1 − γ)W(t)
m + γW(t−1)

m (21)

where γ is the balance parameter. To adapt online learning, we learn its values
adaptively instead of assigning a fixed value. That is, γ is given by the change in
the mapping matrix Wm at each round of t. However, it is difficult to quantify
its variation by itself. Considering that the ultimate purpose of calculating the
mapping matrix is to get the appropriate hash codes, we utilize the hash codes
calculated by both the mapping matrix and the training data, as the calculation
standard. The solution equation of γ is obtained by:

γ = νm

∑

i,j

|BP [i, j] − BQ[i, j]|

r · Nt
(22)

where νm denotes an auxiliary parameter. BP = Wt
mX(t)

m denotes the hash
codes computed from the current Wt

m. Similarly, BQ = W(t−1)
m X(t)

m represents
the hash codes computed from the previous Wt−1

m . The difference between the
two methods is quantified to obtain the proportion of different places within the
hash codes matrices, which is taken as the value of γ.

Complexity Analysis: The whole optimization process of ODSPH at each
round t is shown in Algorithm 1. The time complexity of computing U, W1, W2

is O(Nt), which is linear to the size of new data. Comparing with batch based
methods, the proposed ODSPH algorithm is more computational efficient.
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4 Experiments

4.1 Datasets and Features

In order to confirm the superiority of our method, we conduct a series of quantita-
tive experiments on three datasets: MIRFlickr dataset and NUS-WIDE dataset.

MIRFlickr dataset [29] consists of 25,000 image-text pairs collected from
the popular Flickr website, where the images are annotated with one or more
of 24 semantic labels. We use the 4,096-dimensional feature vector of fc7 layer
extracted by VGG-16 as the image feature, while the text is represented by
a 1,386-dimensional feature vector derived from its binary tagging vector. As
suggested in [11], we remove the instances whose textual tags appear less than
20 times, then 20,015 image-text pairs are kept. We take out 2,000 instances as
the query set and the remaining parts as the training set.

NUS-WIDE dataset [30] contains 269,648 image-text pairs with 81 con-
cepts that can be used for evaluation. Specifically, we use a 500-dimensional
SIFT feature vector as the feature of the image, and the text is described by
a 1000-dimensional bag-of-words (BoW) vector. We select pictures of the 10
categories with the highest frequency as the experimental data set, and obtain
186,577 pictures. As NUS-WIDE-all is a larger dataset, it needs to occupy a
large amount of computing resources. Then we randomly select 100,000 images
and associated texts in this experiment. We take out 5% of the dataset as the
query set and the remaining parts as the training set.

4.2 Baseline and Experimental Settings

Within the proposed method, we empirically set λ1 = λ2 = 10−2, u1 =u2 = 10−5

and λ3 = 1. In Algorithm 1, we set Titer = 1 since each variable has been opti-
mized by old data at each round.

For online cross-modal methods, i.e., OCMH [16], OCMFH [27], OLSH [17]
and our ODSPH, they learn hash functions with streaming data, and the train-
ing hash codes are directly used in retrieval task. To simulate streaming data,
referring to [17], the training set of MIRFlickr is split to 19 data chunks, each
of the first 18 chunks contains 1,000 pairs, and the last chunk contains 15 pairs.
The training set of NUS-WIDE is split to 10 data chunks, each of the first 9
chunks contains 10,000 pairs, and the last chunk contains 5,000 pairs.

Besides, our proposed ODSPH algorithm is also compared with some popular
batch based methods, such as CCA [31], SCM [10], CMFH [18], SMFH [20], FSH
[13], SePH [11], IMH [19], DCH [14], GSePH [12]. For these batch based methods,
we utilize the all accumulated training data to retrain the hash functions and
regenerate the hash codes. In addition, the experimental settings for all compared
methods are chosen according to the suggestions of their original papers.

Evaluation Metrics: The quantitative performance is evaluated by the pop-
ular mean Average Precision (mAP) [19], precision-recall [17] and topK-precision
[14]. The mAP@K scores are computed on the top K retrieved documents of
each query. In the retrieval, data points which share at least one same label are
considered as relevant.
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Table 1. The mAP@100 scores on MIRFlickr and NUS-WIDE datasets

Method MIRFlickr NUS-WIDE

I to T T to I I to T T to I

16 32 64 128 16 32 64 128 16 32 64 128 16 32 64 128

CCA 0.5625 0.5802 0.5798 0.5926 0.5826 0.5976 0.6129 0.6243 0.4826 0.4977 0.5114 0.5243 0.4526 0.4686 0.4787 0.4850

CMFH 0.5233 0.5299 0.5280 0.5297 0.5553 0.5573 0.5621 0.5659 0.3767 0.3828 0.3874 0.3905 0.3810 0.3880 0.3931 0.3995

IMH 0.6452 0.6427 0.6465 0.6370 0.7324 0.7412 0.7568 0.7636 0.4967 0.4776 0.4608 0.4476 0.5024 0.4891 0.4747 0.4581

FSH 0.6671 0.6599 0.6751 0.6791 0.7106 0.6957 0.7243 0.7380 0.5353 0.5607 0.5578 0.5637 0.5789 0.6467 0.6494 0.6640

SCM 0.6943 0.6953 0.6961 0.7099 0.7038 0.7042 0.7120 0.7263 0.5780 0.6126 0.6029 0.6332 0.5312 0.6251 0.6302 0.6401

SMFH 0.6913 0.6831 0.6830 0.6867 0.6576 0.6711 0.6755 0.6866 0.3831 0.3973 0.4070 0.4033 0.3780 0.3876 0.3853 0.4142

SePH 0.7406 0.7545 0.7606 0.7656 0.8467 0.8574 0.8661 0.8743 0.5595 0.5729 0.5838 0.5853 0.7159 0.7431 0.7648 0.7616

GSePH 0.7374 0.7388 0.7551 0.7563 0.8598 0.8649 0.8745 0.8823 0.5583 0.5724 0.5819 0.5890 0.7335 0.7467 0.7613 0.7703

DCH 0.7476 0.7546 0.7825 0.7632 0.9025 0.9117 0.9078 0.9070 0.6128 0.6088 0.6091 0.6453 0.8090 0.8172 0.8101 0.8239

OCMH 0.5746 0.5749 0.5602 0.5889 0.5796 0.5792 0.6001 0.6021 0.4784 0.4733 0.4178 0.4334 0.4920 0.5144 0.4331 0.4704

OCMFH 0.6386 0.6382 0.6287 0.6291 0.7025 0.7247 0.7559 0.7745 0.4088 0.4353 0.4496 0.4426 0.5141 0.5482 0.5568 0.5712

OLSH 0.7973 0.8136 0.7882 0.7981 0.7890 0.8587 0.8693 0.8521 0.6799 0.6897 0.6857 0.7011 0.8282 0.8312 0.8556 0.8465

ODSPH-m 0.8038 0.8173 0.8249 0.8102 0.8547 0.8636 0.8671 0.8701 0.7346 0.7507 0.7834 0.7893 0.8426 0.8661 0.8808 0.8892

ODSPH 0.8127 0.8284 0.8305 0.8211 0.9042 0.9078 0.9082 0.9097 0.7725 0.7946 0.7960 0.7991 0.8586 0.8733 0.8817 0.8996

Fig. 2. The mAP@100 scores tested on NUS-WIDE at each round.

4.3 Experimental Result and Analysis

We analyze the experimental results of ODSPH in following three aspects, to
demonstrate the efficiency of the proposed ODSPH method.

1) Results of Retrieval Tasks: Table 1 shows the mAP@100 scores of all
compared methods. In general, online methods should lose retrieval accuracy
in comparison with batch based methods, for reason that the online methods
often selected limited data for training. However, as shown in Table 1, it can
be observed that the proposed ODSPH method yields the best results. The
main reason is that the correlation is well preserved through the label regression
method. Compared with the two online learning methods, i.e., OCMH, OCMFH,
and OLSH, the proposed ODSPH method also shows higher mAP@100 scores.
The reason is that OCMH and OCMFH ignore the use of label information.
Meanwhile, ODSPH also outperforms OLSH in all cases, because the designed
online framework make the relevance of the old and new data well preserved,
and can obtain more discriminant binary hash codes. Besides, ODSPH takes
into account the loss of updating the hash function at each round and adopts
the adaptive strategy of momentum updating to improve its performance.

Moreover, in order to prove the advantages of ODSPH in streaming data,
we show the mAP@100 scores tested on NUS-WIDE at each round in Fig. 2.
Remarkably, our proposed ODSPH method obtains the highest scores at each
round of mAP@100. Although occasionally DCH shows competitive results, it
is less stable and efficient than the online learning methods. Besides, it can be
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Fig. 3. The precision-recall curves obtained on NUS-WIDE.

Fig. 4. The representative topK-precision curves tested on NUS-WIDE

found that most batch based methods are inefficient in this online scenario, which
means that batch based methods are not suitable for streaming data.

Further, Table 2 records the mAP@all scores to demonstrate the effective-
ness of our method, and ODSPH also performs well from this perspective. The
precision-recall curves and the representative topK-precision curves tested on
NUS-WIDE dataset are also reported in Fig. 3 and Fig. 4, respectively. It can be
observed that the smaller of recall or topK values, the better retrieval perfor-
mances are achieved. It indicates that our proposed ODSPH method can search
more similar samples at the beginning, which is significantly important for a
practical retrieval system.

2) Results of ablation studies: The method ODSPH-m reported on Table 1
represents the proposed ODSPH method without utilizing momentum updat-
ing. Compared with ODSPH, it can be observed that ODSPH-m degrades its
performance with lower mAP@100 score, which prove that the strategy of using
momentum updating is beneficial to the retrieval performance. Specifically, for
the large-scale data sets, i.e., MIRFlickr and NUS-WIDE, the proposed ODSPH
method outperforms the ODSPH-m in all different hash lengths. That is, the pro-
posed momentum updating scheme is able to well obtain the mapping functions
for hash code learning, which is particularly suitable for online hash learning.

Meanwhile, according to the mAP@100 scores tested on NUS-WIDE at each
round in Fig. 2, it can be found that the curves of most competitive methods
have fluctuated to some degree. Comparatively speaking, the proposed ODSPH
approach not only yields higher mAP values in different retrieval tasks, but also
generates more stable curves than other competing methods.

3) Results of Training Time: Figure 5 shows the training times on NUS-WIDE
dataset at each round. It can be clearly observed that the batch based methods
often need larger training time in comparison with online learning methods. For
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Table 2. The mAP@all scores on MIRFlickr and NUS-WIDE datasets

Task Method MIRFlickr NUS-WIDE Task Method MIRFlickr NUS-WIDE

32 64 32 64 32 64 32 64

I to T GSePH 0.7879 0.8002 0.5481 0.5582 T to I GSePH 0.7440 0.7557 0.5481 0.5582

DCH 0.7710 0.7919 0.6219 0.6398 DCH 0.7746 0.7946 0.6219 0.6398

OCMH 0.5554 0.5562 0.3404 0.3442 OCMH 0.5547 0.5555 0.3415 0.3435

OCMFH 0.5554 0.5598 0.3695 0.3713 OCMFH 0.5551 0.5576 0.4104 0.4235

OLSH 0.6459 0.6564 0.5229 0.5295 OLSH 0.6521 0.6641 0.6321 0.6348

ODSPH 0.7844 0.8096 0.6315 0.6514 ODSPH 0.7762 0.8086 0.6537 0.6692

Fig. 5. The training time on NUS-WIDE at each round.

instance, GSePH often needs long time to learn the hash codes from the training
process. Although the online OCMH and OLSH methods are able to reduce the
training time, they often involve larger matrix computations or learn the hash
codes bit by bit. The proposed ODSPH method requires the smallest training
time to achieve different retrieval tasks due to its simple and effective online
framework. That is, the proposed ODSPH method not only has the advantages
of producing high retrieval performance, but also shows the strong ability to
exhibit the less training time.

5 Conclusion

In this paper, we propose an efficient online discriminative semantic-preserving
hashing method for cross-modal retrieval, particular for streaming media data.
The proposed method aims to update the hash function online with the new data,
while giving a very simple yet effective online regression method to generate the
hash code for new data. Meanwhile, the proposed learning framework designs
a novel momentum updating method to adaptively update the hash function,
which can produce discriminative hash code for different retrieval tasks. The
extensive experiments have shown its outstanding performances.
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Abstract. LightGBM has proven to be an effective forecasting algorithm
by winning the M5 forecasting competition. However, given the sensitiv-
ity of LightGBM to hyperparameters, it is likely that their default values
are not optimal. This work aims to answer whether it is essential to tune
the hyperparameters of LightGBM to obtain better accuracy in time series
forecasting and whether it can be done efficiently. Our experiments con-
sisted of the collection and processing of data as well as hyperparameters
generation and finally testing. We observed that on the 58 time series
tested, the mean squared error is reduced by a maximum of 17.45%
when using randomly generated configurations in contrast to using the
default one. Additionally, the study of the individual hyperparameters’
performance was done. Based on the results obtained, we propose an
alternative set of default LightGBM hyperparameter values to be used
whilst using time series data for forecasting.

Keywords: Gradient boosting · Forecasting · Time series ·
Hyperparameter tuning

1 Introduction

A time series is a collection of observations made sequentially through time [8].
Forecasting the value of future observations of time series is vital in many sci-
entific and industrial activities. Moreover, forecasting using time series data is
particularly relevant in applications such as sales and model evaluation.

Many algorithms have been developed for forecasting. However, traditional
regression algorithms can be used, after a simple data transformation is done. In
particular, gradient boosting has gained interest in the forecasting community
after the LightGBM algorithm [18] won the M5 forecasting competition [17].

LightGBM is sensitive to different hyperparameters [15]. However, there are
only a few works that focus on the tuning of hyperparameters for time series
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data, and these are domain specific [25,29]. Thus this project aims to understand
which hyperparameters are the most important and which values are the most
promising when dealing with time series data. This subset of hyperparameters
can serve to warm-start an optimization process. As such, we have the primary
goal of understanding and answering whether it is essential to tune LightGBM’s
hyperparameters to obtain better accuracy in time series forecasting and whether
it can be done efficiently.

After data collection, experimentation, and testing of 58 dataframes, we con-
clude that the use of randomly generated configurations outperforms the use of
the default one by a maximum of 17.45% mean squared error reduction. We also
studied the individual hyperparameters’ performance and, based on the results
obtained, proposed an alternative set of hyperparameters values to be used when
dealing with forecasting problems using time series data.

This paper is organized as follows. We start with a literature review empha-
sizing forecasting, LightGBM for forecasting, and the importance of hyper-
parameters tuning in Sect. 2. Afterwards, the methodology of the work is pre-
sented in Sect. 3. Section 4 presents the experimental setup, hyperparameters’
generation, and search processes and results. Finally, conclusions are discussed
in Sect. 5.

2 Literature Review

This section is subdivided into forecasting, LightGBM for Forecasting and Hyper-
parameter Tuning.

2.1 Forecasting

As stated before, forecasting is an important activity that attempts to predict
future values of time series. A good example is the forecasting of the demand for
stock-keeping units (SKU). Daily SKU predictions are particularly challenging,
for they tend to be characterized by intermittency and erraticness [24]. Some
machine learning algorithms have been shown to have significantly better per-
formance than previously used statistical ones both in terms of accuracy and
bias [24].

Since forecasting can be too demanding, many techniques have been applied
to it. Some simple forecasting methods consist of applying statistical measures
such as average, Naive, seasonal Naive, and drift [13]. Another option when
no historical data exists can be to apply judgemental forecasting [16]. However,
when a more complex mathematical relation may be found, non-linear regression
can also be used [22].

To be able to detect the various patterns time series can exhibit, it is often
helpful to divide a time series into several parts, based on some underlying metric
or specification (example: diving time series representing a day in daytime and
nighttime). Such methodology is called time series decomposition, and many
algorithms such as moving averages, X11, SEATS [10], and STL [9] have proven
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to give reasonably good results in such cases. Exponential smoothing is another
forecasting method proposed in [5]. Exponential smoothing-based methods use
weights having the most recent observations, weighing the most. It achieves
reliable forecasts expeditiously and for a wide range of time series [11].

Auto-regressive Integrated Moving Average models (ARIMA) aim to describe
the auto-correlations in data and provide another approach to time series fore-
casting. These models are mainly used in cases where data show evidence of
non-stationarity (relating to mean). To make it stationary, in a unified ARIMA,
the data is differenced (further analyzed in Sect. 3). Most economical and mar-
ket data present trends, so differencing aims to eliminate every tendency and
seasonal structures [4].

In more complex problems, advanced forecasting methods such as neural net-
works [14], bootstrapping and bagging [2] and vector auto-regressions [1] (creat-
ing lag variables) are used. Given the described importance of forecasting and the
plethora of available algorithms, forecasting competitions have become popular
in recent years, given their objectivity in evaluating existing forecasting methods,
adding brand-new ones, and defining how to improve forecasting theory.

One of the most recognized competitions is the M competition which in 2020
had its fifth instance (M5). That year, the competition focused on a retail sales
forecasting application, specifically Walmart’s time-series data. The goal was to
produce the most accurate point forecasts for 42,840-time series representing the
largest retail company’s hierarchical unit sales in the world, Walmart. The fore-
casting application accurately predicts retail companies’ daily unit sales across
various locations and product categories [17]. The winner of the 2020 competi-
tion was the LightGBM algorithm gaining its recent popularity through such a
win.

2.2 LightGBM for Forecasting

The LightGBM algorithm takes its roots in the Gradient Boosting Decision Tree,
also recognized as GBDT, a widely used machine learning algorithm that is valu-
able in many implementations. GBDT uses regression trees as weak classifiers.
The weak learners measure the error observed in each node splitting the node
using a test function, with a threshold and return values. The identifying triplet
then obtains the optimal split (threshold and values) [23]. The authors in [15]
have, however, proposed a lighter GBDT implementation, also known as Light-
GBDM, that tackles the known issues GBDT faces with efficiency and scalabil-
ity when the feature dimension is large, and the data size is extensive. They
attribute this problem to the need to scan all the data instances for each feature
to estimate the information gain of all possible split points, which is very time-
consuming. They propose using two new techniques: Gradient-based One-Side
Sampling (GOSS) and Exclusive Feature Bundling (EFB). GOSS ’s primary pur-
pose is to reject a notable proportion of data occurrences with small gradients
and solely use the remainder to estimate the information gain. With this, it is
determined that since the data instances with more substantial gradients play a
more critical role in the computation of information gain, GOSS can obtain quite
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an accurate estimate of the information gain with much meagerer data size. With
EFB, they bundle ordinarily exclusive features to lessen the number of features.
It is then proven that optimal bundling of exclusive features is NP-hard, but a
greedy algorithm can accomplish a good approximation ratio. LightGBM is shown
to speed up the training process of conventional GBDT by up to over 20 times
while reaching around the same accuracy.

2.3 Methods

The authors in [19] propose an automated method for obtaining weighted fore-
cast combinations using time series features. The suggested process involves two
stages. First, a time series gathering is used to train a meta-model for attributing
weights to various possible forecasting methods. The inputs to the meta-model
are features that are extracted from each series. Then, in the second phase,
they forecast a new series using a weighted forecast combination, where the
weights are obtained from our previously trained meta-model. Such a method
outperforms a simple forecast combination and all of the most popular individual
techniques in the time series forecasting literature. The approach even achieved
the second position in the M4 competition.

2.4 Hyperparameter Tuning

Several methods have been proposed to improve the accuracy of Machine Learn-
ing Models such as the tuning of algorithms’ hyperparameters. A straightforward
way of selecting a configuration is to use default settings, often proposed, and
publish and implement a new algorithm. Those default values are usually chosen
in an ad-hoc manner to work well enough on many datasets.

The importance of hyperparameter settings across datasets has been thor-
oughly explored and credited by the literature [20,26,28]. The results confirm
that the hyperparameters selected are indeed essential and that the obtained pri-
ors (the probability distribution expressing one’s beliefs about a quantity before
evidence is taken into account) also lead to statistically significant improve-
ments in hyperparameter optimisation [26]. This principled approach usually
improves performance but adds additional algorithmic complexity and com-
putational costs to the training procedure. Given this complexity, the authors
in [20] propose learning a set of complementary default values from an extensive
database of prior empirical results. Selecting an appropriate configuration on a
new dataset requires only a simple parallel search over this set. This approach is
demonstrated to be more effective and efficient in comparison to random search
and Bayesian Optimisation.

The authors in [28] introduce a collaborative filtering method for hyperpa-
rameter tuning. The method forms a matrix of the cross-validated errors of
many supervised learning models on a large number of datasets. The experi-
ments demonstrate that the model delivers a performance faster than competing
approaches.



458 F. S. Barros et al.

3 Methodology

In this section, the methodology used during our work is described. The text is
divided into the data used for forecasting and random hyperparameters’ search.

3.1 Data for Forecasting

This work followed the methodology described in [6] to transform a univariate
time series, representing a temporal sequence of values, in a data frame later used
for forecasting the next iteration value. Shortly, the time series was reconstructed
as a geometric object by applying a time delay embedding using the Takens
theorem to frame the predictive task as a multiple regression problem [21]. We
constructed a set of observations of the form (X, y). In each observation, the
value of y is modeled based on the past p values before it. Conclusively, the time
series is transformed into the data set D(X; y). The learning goal is to produce
a regression model approximating an unknown function f : X!Y . The principle
behind this method is to model the conditional distribution of the i-th value of
the time-series given its p past values: f(yi → Xi).

3.2 Random Hyperparameters’ Search

Despite grid and manual search being the most used strategies for hyperparam-
eter optimization, randomly chosen trials are more efficient than trials on a grid.
In contrast to grid search, chosen parameters are not equally spaced and are
searched randomly, providing a broader scope of cases than grid search [3]. In
this work, we follow such a methodology for hyperparameters’ search.

4 Experiments

The experiments’ performed in this work are described in this section and are
divided into case study description, hyperparameters’ experiment description
and finally, tests and results.

4.1 Case Study

The data was collected from the Time Series Data Library (TSDL) database [12]
and consisted of fifty-eight time-series dataframes. From that database, all uni-
variate time series with at least 1000 observations were selected. This condition
regarding the minimum of observations is justified since the methods need a
reasonable amount of data to build a good predictive model. This query to the
database returned the referred fifty-eight data sets.

From there, we limited the maximum number of observations to 10,000 for
the computation process to become faster. Besides, differencing was applied to
account for a trend component that can be found in time series. Differentiation
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consists of the process of subtracting the current value of the time series with
the previous value: [7]

y
′
i = yi − yi−1 (1)

In Eq. 1, y
′
i corresponds to the i-th transformed value of the time series.

Our Target variable was t-1 representing the next iteration of the time series
from the generated matrices.

4.2 Hyperparameters

To establish the hyperparameters worth being used in the specific case of
LightGBM, we consulted the LightGBM documentation. In the documentation,
it is referred that the parameters that should be tuned for better accuracy were
the maximum number of bins, which should be large; the reduction of the learn-
ing rate using a large number of iterations; the enlargement of the number of
leaves; and the possible use of the DART algorithm. An important parameter to
avoid over-fitting is the use of a maximum depth.

It should be noted that the use of a large number of bins could cause the
computation to slow down and that a large number of leaves may cause over-
fitting. Regarding the components themselves, a short description of each follows.
The number of bins sometimes called a class interval, is a way of sorting data.
Its principle is very similar to putting data into categories; The learning rate is a
hyperparameter that controls how much to change the model in acknowledging
the predicted error each time the model weights are renewed. Choosing the
learning rate is daring as a value too minute may issue a lengthy training process
that could become stuck in a local optimum. In contrast, a value too large
may ensue in learning a sub-optimal assortment of weights unreasonably fast
or an unstable training process. An iteration indicates the number of times the
algorithm’s parameters are updated. A tree leaf is labeled with a class or a
probability distribution over the classes. As such, the tree has classified the data
set into either a specific category or into a particular probability distribution.
Finally, the DART algorithm consists of an algorithm that drops trees to solve the
over-fitting [27].

Table 1. LightGBM hyperparameters for better accuracy.

Hyperparameters Definition Default Range

max bin Max number of bins that feature values will

be bucketed in

255 >1

learning rate The rate at which the algorithm learns 0.1 >0.0

num iterations Number of boosting iterations 100 ≥0

num leaves Max number of leaves in one tree 31 1 < num leaves ≤ 131072

boosting Boosting algorithm to be used gbdt gbdt,rf,dart,goss

In Table 1 one finds the used hyperparameters, definitions, default values, and
possible range. To generate the hyperparameters, a table containing all combi-
nations possible within a reasonable range was generated. For the maximum
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number of bins, a list ranging from 100 to 500 with a step of 11 was created.
The learning rate values tested were 0.01, 0.1,0.2 and 0.5. The number of itera-
tions values consisted of a fixed amount of 1000 iterations. The maximum depth
consisted of a list of values being these −1,3,5 and 10. The number of leaves
consisted of a list comprised of the values 16, 31, 50, 100, and finally, the boost-
ing algorithm could either be gbdt, the default algorithm, or dart. As stated
before, these parameters were combined using a mesh grid of all possible values
and stored for later use.

4.3 Tests and Results

There were two primary concerns and goals in our work. The first consisted
of having a general overview of the impact of random hyper-parameterization
as a whole for forecasting time series in LightGBM. The second consisted
of understanding which of the hyperparameters had the most significant
impact/importance in reducing the Mean Squared Error (MSE).

Overview of Hyper-Parameterization. To understand the impact of ran-
dom search applied to hyperparameters, we randomly chose 251 random config-
urations of the previously generated table of hyperparameters. Next, we applied
these configurations as hyperparameters of LightGBM with each of the fifty-eight
available data frames. To measure each configuration’s impact, we applied the
default configuration as the hyperparameter vector with each of the data frames.
When obtaining the predictions from LightGBM we calculated the Mean Squared
Error (MSE). MSE measures the average of the squares of the errors calculated
as shown in Eq. 2.

MSE =
(

1
n

) n∑
i=1

(
Yi − Ŷi

)2

(2)

After having the MSE for both the default and the 500 randomly selected
configurations, we normalized the error using:

MSEi,j =
(msej − msei,j)

msej
∗ 100 (3)

where j represents the 58 datasets, i represents the 251 configurations, msej
represents the MSE of j using the default configuration and msei,j represents
the MSE measured in dataset j using hyperparameter configuration i out of the
251 randomly chosen ones.

Table 2. Metrics for MSE error for top configurations for all datasets

Mean(%) Minimum(%) Maximum(%) Standard Deviation(%)

3.28 0.11 17.45 3.43
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Fig. 1. Dataset vs percentage of improvement in MSE value using the best random
configuration found.

Using the default configuration as a benchmark, we compared all the random
configurations and found that most of the random ones performed better to
reduce the measured MSE.

In Table 2 we represent the top performing absolute normalized scores in the
percentage of MSE for the random configurations for each dataset by showing
the mean, minimum, maximum, and standard deviation of these values. We can
also observe that our range of reduction varies up to 17.45% in more significant
default MSEs. Complementary, in Fig. 1, we can observe all of the top configu-
ration performance regarding MSE percentage improvement for each dataset.

Individual Study of Hyperparameters. To study each of the hyperparam-
eters’ individual performance and impact, we took the previously-stored results
and analyzed the effect of each possible different category. We performed the
median value of the MSEs for configurations containing each of the possible
hyperparameter values for each dataset, storing the result. As such, we obtained
fifty-eight median values for each possible category of the hyperparameter and
calculated the median of the list. Then, we compared the final median values of
each of the categories and concluded that the results were as described in the
following paragraph for each of the different hyperparameters.

The boosting algorithm that minimizes MSE is DART with a reduction of the
MSE value of approximately –2.62 on average. The number of leaves that min-
imizes MSE is 50, reducing the MSE value by approximately –0.89 on average.
The learning rate that minimizes MSE is 0.1 with a reduction of the MSE value of
approximately –2.63 on average, corresponding to the default configuration. The
maximum number of bins that minimizes MSE is 400, reducing the MSE value
by approximately –0.9 on average. The maximum depth that minimizes MSE
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is: –1 T with a reduction of the MSE value of approximately –1.7 on average,
corresponding to the default configuration.

Fig. 2. Boosting algorithms MSEs’ comparison.

We further analyzed the impact of using different categories of each of the
values to see the difference made by using one configuration or the other. Such
analysis was majorly executed using box plots. We analyze the impact of the
boosting algorithm in Fig. 2. On average, the DART algorithm proves to be a
better choice than the default gbdt algorithm.

The analysis of the impact of the number of leaves is shown in Fig. 3a. As
discussed before, on average, the number of leaves that minimizes the MSE in
our range of used categories is 50 proving to give better accuracy than the default
31 number of leaves.

In Fig. 3b we analyze the impact of the number of bins used. It can be seen
that 400 gives a better accuracy than the default 255. Finally we concluded that
the default configurations prove to have the best results out of our selection of
values for both the maximum depth and learning rate hyperparameters.

Despite some parameters showing better accuracy, one should be aware of
over-fitting when augmenting the value of the maximum number of bins, the
number of leaves and maximum depth. With that in mind, we propose that
an alternative for better accuracy in a time series forecasting problem using
LightGBM by using the hyperparameters shown in Table 3
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Fig. 3. Comparison of MSEs’ in terms of number of leaves and maximum bins.

Table 3. LightGBM’s suggested hyperparameters for time series forecasting problems

max bin learning rate num iterations num leaves boosting max depth

400 0.1 1000 50 dart –1

5 Conclusions

Our work consisted of exploring the importance of hyperparameter tuning in
LightGBM for forecasting time series. We started by establishing hyperparameters
that could be tuned for better accuracy for LightGBM. We then applied 251
randomly selected for each one of the 58 time-series data frames available using
LightGBM and calculated the MSE error of each of the configurations. Using
the default configuration as benchmarks in a broader scope, we concluded that
randomly selecting configurations can lower the MSE up to 17.45%. We then
studied the individual performance and impact of each of the hyperparameters
and suggested an alternative beginning configuration for LightGBM when faced
with a time series forecasting problem.

As future work, we would like to test the DART boosting algorithm to further
enhance our solution especially given the impact of DART in lowering the MSEs in
our case study. We would like to study the impact of the suggested configuration
on multivariate times series datasets.
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Abstract. Deep convolutional neural networks (DCNNs) have achieved
promising performance in different computer vision tasks in recent years.
Conventionally, deep learning experts are needed to design convolutional
neural network’s (CNN’s) architectures when facing new tasks. Neural
architecture search (NAS) is to automatically find suitable architectures;
however, NAS suffers from the tremendous computational cost. This
paper employs a genetic algorithm (GA) and a grid search (GS) strategy
to search for the micro-architecture and adjust the macro-architecture
efficiently and effectively, named TSCNN. We propose two mutation
operations to explore the search space comprehensively. Furthermore,
the micro-architecture searched on one dataset is transferred to another
dataset to verify its transferability. The proposed algorithm is evaluated
on two widely used datasets. The experimental results show that TSCNN
achieves very competitive accuracy. On the CIFAR10 dataset, the com-
putational cost is reduced from hundreds or even thousands to only 2.5
GPU-days, and the number of parameters is reduced from thirty more
million to only 1.25 M.

Keywords: Convolutional neural network · Genetic algorithm · Grid
search · Neural architecture search

1 Introduction

Deep convolutional neural networks (DCNNs) have attracted significant atten-
tion in recent years and have been applied to many fields of computer vision
[24], such as image classification, semantic segmentation, and object recognition.
Some DCNNs outperform most traditional human-designed image processing
techniques, achieving state-of-the-art performance, mainly due to their superior
automatic feature extraction ability, such as VGG [19], GooLeNet [23], ResNet
[8], and DenseNet [9]. Nevertheless, the architecture of the convolutional neural
network (CNN) needs to be delicately designed to solve different problems on
various datasets, as the same CNN may perform differently on different datasets.

Because of the reasons mentioned above, deep learning experts are needed
when encountering a new task, so it is inconvenient for people who do not know
c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13031, pp. 469–484, 2021.
https://doi.org/10.1007/978-3-030-89188-6_35
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much about deep learning to enjoy DCNNs’ superiority. As a result, there is
a surge of interest in automatically searching the architecture, which is named
neural architecture search (NAS) [14,26].

Some NAS methods search for the whole architecture from scratches, such as
CNN-GA [22], NAS [30], Large-scale Evolution [17], DAGCNN [28], and IPPSO
[25]. The main limitation of these methods is the search space is very big, usually
consuming a lot of computational resources and searching time. For example,
NAS [30] spends 28 days using 800 Graphics Processing Units (GPUs) to find
the promising architecture on the CIFAR10 dataset; Large-scale Evolution [17]
consumes 2,750 GPU-days for the same dataset.

Inspired by the repeated blocks in manually designed architectures, some
NAS approaches search for the micro-architecture, i.e., the structure of the
cells, and stack the cells to form the final CNN, such as Hierarchical Evolu-
tion [13], NASNet [31], Block-QNN [29], and AmoebaNet [16]. These methods
are much more preferred than searching for the whole architecture because of
the much smaller search space. Nevertheless, there are two main limitations of
these approaches: the first one is that the macro-architecture, which refers to
the system-level organization of multiple micro-architectures into a CNN archi-
tecture, is usually in a predefined manner, which reduces the degree of automa-
tion, i.e., human experts are still needed to decide the number of searched cells
and how to connect them. Another limitation is that the efficiency is still not
promising—NASNet [31] consumes 2,000 GPU-days, and Hierarchical Evolution
[13] spends 300 GPU-days for CIFAR10. In fact, many individual users or even
university research teams do not have sufficiently powerful GPUs to support
such a tremendous computation amount. Therefore, in this paper, an efficient
NAS algorithm with a self-adjustable macro-architecture search strategy will be
proposed.

The overall goal of this paper is to design an efficient approach to auto-
matically constructing promising CNN architectures, which could adjust the
macro-architecture dynamically. The goals are specified as follows:

1) Propose a two-stage efficient search strategy to speed up the searching pro-
cess. The first stage is employing a genetic algorithm (GA) [5] to search for
the micro-architecture while limiting the network’s width to a small range and
fixing the depth to a small number. In this case, the scales of the searched
CNNs are strictly restricted to a relatively small space, which could speed up
both the offspring generating process and the fitness evaluation process. The
second stage uses the grid search (GS) [11] to explore the proper depth and
width of the macro-architecture, since GS is suitable when there are a small
number of parameters.

2) Design two mutation operators to cope with the graph-based variable-length
encoding strategy. The node-level mutation adds, removes, or modifies a whole
layer, and the parameter-level mutation changes the layer’s number of kernels
and which layers to be the preceding ones. Because the encoding information
is complicated, performing two different mutations could help explore the
search space more comprehensively.
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3) Explore the transferability of the searched micro-architecture. As there are
similarities among different datasets, the network architecture learned from
one dataset may be used on others to reduce the tedious searching process.
The micro-architecture searched on one dataset is transferred to another dif-
ferent dataset. The whole network’s width and depth are further adjusted by
the GS stage in order to fit the new dataset.

2 Background

2.1 CNN Architectures

CNNs are composed of a number of layers that are of different types. Various
layers have various functions: convolutional layers are to extract the features
from images or feature maps, and the kernel size and the number of kernels are
two main parameters of convolutional layers; pooling layers filter the features
and reduce the size of feature maps; fully-connected layers are usually used for
mapping the learned feature representation to the label space.

Some variants of convolutions are designed to reduce the number of parame-
ters and the computational cost: depthwise-separable convolutions [4] are com-
posed of depthwise convolution and pointwise convolution; dilated convolutions
[27] enlarge the receptive field with pixel skipping; spatially separable convolu-
tions divide a kernel into two smaller kernels across their spatial axes.

2.2 Genetic Algorithms

Genetic algorithms [1,5] search for the optimal solution by simulating the natural
evolutionary process. Specifically, the solutions are encoded into chromosomes,
and the evaluation criterion is the fitness of individuals. Generally, the main
steps of GAs are as follows:

Step 1: Initialize the initial population according to the encoding strategy.
Step 2: Evaluate the individuals with the fitness evaluation function.
Step 3: Select the promising individuals according to their fitness.
Step 4: Perform crossover and mutation operations, and select individuals to

generate the offspring.
Step 5: Evaluate the new offspring, and perform environmental selection to gen-

erate the next generation.
Step 6: Go to step 3 if the termination criterion is not met. Otherwise, select

the best individual to be the optimal solution.

Commonly, the termination criterion is a predefined maximal number of gen-
erations. The crossover and mutation operators need to be designed correspond-
ing to the encoding strategy.
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2.3 Grid Search Algorithms

Grid Search [11] is an exhaustive optimization algorithm. Therefore it is mainly
implemented when there are a small number of parameters, and each with a
small and limited search range. The Cartesian product of the parameters leads
to particular combinations. GS is commonly used to search for the optimal com-
bination of parameter values in training a machine learning model, where it
employs each parameter variety to train the model. The ones leading to the best
performance on the validation set are picked as the final parameter combination.

3 The Proposed Algorithm

3.1 Algorithm Overview

We name the proposed algorithm as TSCNN (Two-Stage CNN). Figure 1 shows
the procedure of TSCNN, which mainly involves two stages: GA searches for the
best cell structure, and GS explores the appropriate number of cells and number
of feature maps of the convolutional layers. The upper part of Fig. 1 exhibits the
flowchart of the GA stage, which follows the standard GA procedure introduced
in Sect. 2.2. The whole network is stacked by several dense blocks, and each dense
block is composed of some cells, and the cells in the same block are connected
by dense connections [9]. Please note that all the cells share the same micro-
architecture.

Fig. 1. The flowchart of TSCNN.

3.2 Individual Representation and Population Initialization

In TSCNN, the first stage is using the GA to search for the micro-architecture.
The micro-architecture is represented by a directed acyclic graph (DAG), which
is composed of some nodes and directed connections. A node represents a layer,
and a directed connection represents the data flow between layers. We mainly
employ some kinds of convolutional operations and an identity operation. The
identity operation just connects its preceding layer to its output layer without
processing the feature maps, increasing the flexibility of the architecture. There
are nine types of candidate operations:
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– Type 1: 3×3 depthwise-separable con-
volution

– Type 2: 5×5 depthwise-separable con-
volution

– Type 3: 7×7 depthwise-separable con-
volution

– Type 4: 3×3 convolution
– Type 5: 1×5 then 5×1 convolution
– Type 6: 1×7 then 7×1 convolution
– Type 7: 3×3 dilated convolution
– Type 8: 5×5 dilated convolution
– Type 9: identity

We employ a variable-length encoding strategy to represent DAGs with dif-
ferent numbers of nodes, making the represented architectures more flexible.
A five-integer vector is employed to represent a node, and the integers are the
node index, the operation type, the corresponding parameter, and two preceding
nodes’ indexes. For the convolution operation, the parameter is the number of
kernels, and there is no parameter for the identity layer, represented by 0. Please
note that the input layer’s index is set to 0. If the preceding node’s index is −1,
the node has no corresponding predecessor. If two indexes of the predecessors
are neither negative, the feature maps of them are concatenated together and
then inputted to the corresponding layer.

Fig. 2. An example of the encoding strategy.

Figure 2 illustrates an example of the encoding strategy. Each rectangle rep-
resents a specific layer, and the types of the layers are displayed. The numbers in
brackets are the number of kernels of the convolution layers. All the layers that
do not connect to other layers are concatenated together to form the output.
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Algorithm 1: Population Initialization
Input: The population size N , the minimal number of nodes Nmin, the

maximal number of nodes Nmax.
Output: Initialized population P0.

1 P0 ← ∅;
2 for i = 1; i ≤ N ; i ← i+ 1 do
3 ind ← ∅;
4 nnode ← Randomly generate an integer between [Nmin, Nmax];
5 for j = 1; j ≤ nnode; j ← j + 1 do
6 node ← ∅;
7 ntype ← Randomly generate an integer between [1, 9];
8 if ntype ≤ 8 then
9 npara ← Randomly select the number of kernels;

10 pre1, pre2 ← Randomly generate two integers between [-1, j − 1];
11 else
12 npara ← 0;
13 pre1 ← −1;
14 pre2 ← Randomly choose an integers between [0, j − 1];
15 end
16 node ← j ∪ ntype ∪ npara ∪ pre1 ∪ pre2;
17 ind ← ind ∪ node;
18 end
19 P0 ← P0 ∪ ind;
20 end
21 Return P0.

Algorithm 1 shows the pseudo-code of the population initialization process.
Briefly, the range of the number of nodes in the DAG needs to be predefined con-
sidering the effectiveness of the represented architecture and the computational
resources. The individuals are generated separately until reaching the predefined
population size N (lines 2–20). For each individual, the number of nodes nnode

is randomly determined within the predefined range (line 4), and each node is
generated according to the encoding strategy (lines 5–18). Specifically, the oper-
ation of the node is randomly selected from 9 types of operations (line 7). If the
operation is convolution-related, the number of kernels is determined randomly
(line 9), and the two predecessors are chosen from no predecessor (represented
by −1), the original input future maps (represented by 0), and the preceding
nodes [1, j − 1]. Otherwise, if the node’s type is identity, the parameter of the
node is set to 0 (line 12), and only one predecessor is chosen (lines 12–13) from
the original input feature maps and the preceding nodes (line 14). Afterward,
the node’s index j, the node type ntype, the corresponding parameter npara, and
the predecessors’ indexes pre1 and pre2 are integrated into a vector to represent
the node (line 16). All the node vectors are connected to form the individual
(line 17). Finally, all individuals build the population (line 19).
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3.3 Fitness Evaluation

Fig. 3. The process of the fitness evaluation in the GA search.

Fitness evaluation is a crucial part of GAs, which evaluates the individuals quan-
titatively, indicating suitable individuals being parents to produce offspring with
potentially better performance.

Figure 3 indicates the fitness evaluation procedure in the GA search. To
evaluate individuals’ fitness, the encoded information of the individuals needs
to be decoded to the corresponding CNN architectures first. Specifically, the
encoded information is decoded according to the representation policy, and all
the convolution-related layers are followed by batch-normalized layers and rec-
tified linear unit layers. After converting the encoded information to the corre-
sponding micro-architecture, the cells that share the same micro-architecture in
the same block are densely connected, as shown in Fig. 4. Average pooling layers
are employed to connect two adjacent blocks, and a global average pooling layer
followed by a fully-connected layer is added at the end of the network.

Fig. 4. The framework of the whole CNN.

The whole dataset is divided into two separate parts: the training set and
the test set, and only the training set is used during the whole NAS process, and
it is further divided into the evolutionary training set and the gradient training
set, respectively. The evolutionary training set is used for training the weights
of the networks, and the gradient training set is used to evaluate the networks’
fitness during the search process.

Next, the decoded whole network is trained by the gradient training set and
tested by the evolutionary training set for a predefined small number of epochs.
Only a small number of epochs are used here with the goal of reducing the com-
putational cost. Although this reduces the fidelity of the fitness evaluation, it is
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expected to not significantly reduce the overall performance since the relative
performance of individuals can be roughly indicated, which is sufficient for per-
forming the genetic operators to generate new offspring. Finally, the best testing
accuracy is recorded as the fitness of the individual.

3.4 Offspring Generation

In TSCNN, two parent individuals are selected from the current population by a
binary tournament selection method. Next, the crossover operation is performed
on them. Then, a node-level mutation operation and a parameter-level operation
are proposed to perform mutation on the offspring. In the end, new offspring is
generated.

A random number between 0 and 1 is generated, and if it is smaller than
the predefined crossover probability, the crossover operation is carried out: two
different positions are randomly chosen from the shorter parent, and the nodes
between them are switched with the nodes of the same parts on the longer one.
At last, two offspring are generated.

As the encoded information is composed of several nodes, and a node is
represented by a five-bit vector, two mutation operators are designed to change
the vectors in the individual and the bits in the vector, respectively. The proposed
node-level mutation operation is performed on the offspring first. There is a
predefined probability to decide whether to perform the mutation operation. If
the mutation is to be performed, a node is randomly chosen, and a mutation
type is randomly selected from adding, removing, and modifying. If the type
is adding, a new node is randomly generated according to the encoding strategy
and is added behind the chosen node. Accordingly, for the nodes on the right
side of the inserted one, the indexes and corresponding predecessors may also
change. If the type is removing, the chosen node is deleted; also, other nodes’
encoded information would change to keep consistency with the initial intention.
Otherwise, the chosen node is replaced by a newly generated node.

Fig. 5. An example of the adding mutation.
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To better understand the node-level mutation process, an example of the
adding mutation is presented in Fig. 5. Before mutation, the individual is com-
posed of four nodes: [(1, 2, 18,−1, 0), (2, 6, 16,−1, 1), (3, 9, 0, 1, 2), (4, 3, 12, 2, 3)] ,
and the first node is chosen. A new node is then randomly generated according to
the encoding strategy, and the predecessors are determined based on the node’s
position in the individual. Next, the new node is added next to the first node.
Please note that the following nodes’ indexes and the predecessors’ indexes are
also changed accordingly. All the changed information is displayed in red color
in Fig. 5.

Algorithm 2: Parameter-level Mutation Operation of TSCNN
Input: The offspring individual o1, parameter-level mutation propability ppm.
Output: The mutated offspring.

1 for node in o1 do
2 rpm ← Randomly generate a number between [0, 1];
3 if rpm < ppm then
4 if node′s type is not identity then
5 r ← Randomly generate a number between [0, 1];
6 if r < 0.5 then
7 generate a new number to replace the parameter of o1
8 else
9 generate new predecessors to replace pre1 and pre2 of o1

10 end
11 else
12 generate a new predecessor to replace pre2 of o1 ;
13 end
14 end
15 end
16 Return o1.

As the node-level mutation alters a whole node instead of changing a node’s
specific parameter, a parameter-level mutation is proposed to complement the
node-level mutation for a better exploration performance. Algorithm 2 exhibits
the details of the parameter-level mutation operation. Generally, there is a prob-
ability of modifying the parameter or the predecessors for each node in the off-
spring. Suppose the node’s type is convolution-related (line 4), there is a tossing
coin probability of modifying the parameter in the predefined range (lines 6–
7) or generating two new predecessors’ indexes for the node according to the
corresponding principle mentioned before (line 9). Otherwise, if the node’s type
is identity, only one predecessor is changed, for there is no parameter for the
identity node, as well as it only has one predecessor.
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3.5 Environmental Selection

Environmental selection is used to select some individuals of the current popula-
tion to survive to the next generation. Conventionally, a good population should
have both convergence and diversity to promise the effectiveness of the evolution
and prevent the premature convergence problem.

In TSCNN, a binary tournament selection operator is employed to select
individuals from the current population to form the next generation. Specifically,
two individuals are randomly selected and compared, and the better one is passed
on to the next generation. Besides, an elitist strategy is utilized to promise the
current best individual could survive.

3.6 Grid Search

GS is used to explore the appropriate depth and width of the macro-architecture.
The depth is controlled by the number of cells in each dense block, and a multi-
plication factor controls the width. The final number of feature maps in a layer
is the product of the one searched by GA and the multiplication factor.

Specifically, the number of cells in each dense block and the multiplication
factor are traversed together. The CNN is generated according to the decoding
strategy illustrated in Sect. 3.3 with the candidate depth and width, and is then
trained on the gradient training set. Then, the CNN is tested on the evolutionary
training set. The process will repeat until all the candidate depths and widths are
tested. The depth and width leading to the best performance on the evolutionary
training set are selected as the final macro-architecture’s depth and width.

The micro-architecture searched by the GA on one dataset could be adjusted
by the GS stage on another dataset to explore the transferability of the micro-
architecture since different datasets may share some common features. Finally,
the searched CNN is fully trained on the training set, and the performance is
estimated on the test set.

4 Experiment Design

4.1 Benchmark Datasets

To verify the effectiveness and efficiency of the proposed algorithm, the CIFAR10
and CIFAR100 datasets are chosen as the benchmark datasets. Many peer com-
petitors are trained and tested on them, and the scale is suitable for our avail-
able computational resources. Please note that the data augmentation technique
is not employed during the NAS process but is performed for the post-search
training process. The augmentation method is similar to other peer competitors:
padding and flipping, without the cutout [6] technique.
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4.2 Peer Competitors

For the purpose of verifying the effectiveness and efficiency of the proposed
algorithm, some state-of-the-art approaches are selected to be compared with
TSCNN. These peer competitors could be divided into two categories according
to whether the CNN is designed manually. The first category is the human-
designed CNNs. They are FractalNet [10], Maxout [7], ResNet [8], DenseNet [9],
Highway Network [20], and VGG [19]. These competitors are all trained and
tested on both CIFAR10 and CIFAR100.

Another category belongs to NAS, such as CGP-CNN [21], NAS [30], Large-
scale Evolution [17], Block-QNN [29], MetaQNN [2], EIGEN [18], CNN-GA [22],
PNASNet [12], and AmoebaNet [16].

4.3 Parameter Settings

The parameter settings follow the convention of the evolutionary algorithm and
deep learning, as well as considering the computational capability of the resources
available. Particularly, Table 1 exhibits the parameter settings.

In the micro search process, the Adam optimizer is used to train the network
for 10 epochs; and a standard stochastic gradient descent (SGD) optimizer is
employed to train each network for 50 epochs in the macro search process.

Table 1. Parameter settings.

Parameters Value Parameters Value
GA # kernels in convolutional layers [8, 36]
population size 30 # cells in each dense block 4
# generations 10 GS
crossover rate 0.8 # cells in each dense block [4, 7]
node-level mutation rate 0.2 multiplication factors of # kernels 0.8, 1.0, 1.5
parameter-level mutation rate 0.1 fitness evaluation for macro search
micro-architecture initial learning rate 0.1
# layers [5, 10] momentum 0.9

In the post-search training process, similar to [3] and [15], an auxiliary clas-
sifier [23] is appended to about 2/3 depth, and its loss is weighted by 0.4 to
improve the training performance. In addition, the learning rate is set to 0.1
initially and is decayed with a cosine restart schedule for 600 epochs.

The experiments are implemented on one Quadro RTX 6000 GPU card.

5 Experiment Results

5.1 Overall Performance

The proposed TSCNN method is compared with the manually designed
approaches from two aspects: the number of parameters and the classification
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error rate, since the number of parameters affects the deployment of the CNN,
and a network with a large number of parameters usually has a complex archi-
tecture, which is more likely to lead to a lower classification error rate. When
compared with other NAS methods, the GPU-days is also taken into account,
which indicates the search process costs how many days using a single GPU card,
implying the algorithm’s computational cost.

The search is repeated for five times, and the median run measured by the
classification error rate is reported. Table 2 exhibits the experimental results of
TSCNN and the competitors on CIFAR10 and CIFAR100. On the CIFAR10
dataset, TSCNN achieves an error rate of 4.89%, and 5 peer competitors out-
perform it. However, their numbers of parameters are much larger than TSCNN.
As for the computational cost, TSCNN only costs 2.5 GPU-days, ranking second
over the search algorithms. EIGEN [18] only needs 2 GPU-days, but its error

Table 2. The comparisons between TSCNN, TSCNN(Transfer), and state-of-the-art
peer competitors in terms of the number of parameters, error rate, and computational
cost on CIFAR10 and CIFAR100 datasets.

Model #Parameters CIFAR10 CIFAR100 GPU-Days

FractalNet [10] 38.6M 5.22% 22.3% –
Maxout [7] – 9.3% 38.6% –
ResNet-101 [8] 1.7M 6.43% 25.16% –
DenseNet (k = 40) [9] 25.6M 3.5% 17.2% –
Highway Network [20] – 7.72% 32.39% –
VGG [19] 20.04M 6.66% 28.05% –
CGP-CNN [21] 2.64M 5.98% – 27
NAS [30] 2.5M 6.01% – 22,400
Large-scale Evolution [17] 5.4M 5.4% – 2750
Large-scale Evolution [17] 40.4M – 23% >2730
Block-QNN-S [29] 6.1M 4.38% 20.65% 90
MetaQNN [2] – 6.92% – 100
MetaQNN [2] – – 27.14% 100
EIGEN [18] 2.6M 5.4% — 2
EIGEN [18] 11.8M – 21.9% 5
CNN-GA [22] 2.9M 4.78% – 35
CNN-GA [22] 4.1M – 20.03% 40
PNASNet-5 [12] 3.2M 3.41% – 150
AmoebaNet-B [16] 34.9M 2.98% – 3150
TSCNN 1.25M 4.89% – 2.5
TSCNN 4.31M – 21.38% 5.5
TSCNN(Transfer) 4.09M – 22.03% 3
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rate is 0.51% higher than TSCNN’s, and the model scale is 2.08 times of TSCNN.
Other competitors’ computational costs are much larger than TSCNN.

As for CIFAR100, TSCNN’s error rate ranks fourth among the 11 peer com-
petitors, and only ResNet-101 [8] and CNN-GA’s [22] network scales are smaller
than TSCNN. Nevertheless, ResNet-101’s classification accuracy is 3.78% worse
than TSCNN, and CNN-GA’s computational cost is 7.27 times of TSCNN. Only
EIGEN’s [18] computational cost is 9.1% lower than TSCNN, while its error rate
is 0.52% higher than TSCNN, and the network scale is 2.74 times of TSCNN.
So we can say TSCNN is a very competitive algorithm considering the model
scale, classification error rate, and computational cost.

5.2 Transferability Justification

To justify the transferability of the micro-architecture, the cell structure searched
on CIFAR10 is transferred to the GS process, and the GS is performed on
CIFAR100 to search for the final depth and width of the network. The experi-
mental result is exhibited in Table 2, denoted as ‘TSCNN (Transfer)’. The error
rate of TSCNN (Transfer) is 22.03%, and it is only 0.65% higher than directly
using CIFAR100 to search for the micro-architecture, but the model size becomes
smaller, and the computational cost is the lowest among all the competitors.
Please note that the computational cost contains both the micro-architecture
search process on the CIFAR10 dataset and the GS phase on CIFAR100. To
conclude, the result achieved by transfer learning is also competitive, which
demonstrates the excellent transferability of the searched cell structure.

5.3 Searched Cell Structures

Figure 6 presents the cell structures searched by the GA in the first stage of
TSCNN on CIFAR10 and CIFAR100, respectively. The architecture obtained
on CIFAR100 contains more layers and is more sophisticated compared with the

Fig. 6. The cell structures searched on different datasets.
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architecture searched on CIFAR10. The reason is probably that the classification
task of CIFAR100 is much more challenging, as the categories of objectives are 10
times that of CIFAR10, but the number of images of each class is only one-tenth
of that of CIFAR10.

The cell structures are based on DAG, and there are multi-branch connections
and skip connections in the searched motifs, which could help to improve the
feature extraction ability.

6 Conclusions

In conclusion, this paper aimed to design an efficient NAS algorithm to auto-
matically search for the micro-architecture and adjust the macro-architecture
to improve the classification performance. This objective has been successfully
achieved by employing GA to search for the cell structure and using GS to
explore the appropriate depth and width of the macro-architecture. Besides, two
mutation operators are applied to improve the exploration performance of GA.
The proposed algorithm is implemented on two popular benchmark datasets and
is compared with 15 state-of-the-art peer competitors. For the CIFAR10 dataset,
the experimental results show TSCNN’s error rate ranks 6th, but the model size
and the computational cost are much smaller than the first 5 algorithms. On
CIFAR100, TSCNN’s classification accuracy ranks 4th with small number of
parameters, and consume much less time and computational resources. Besides,
the micro-architecture searched on CIFAR10 is transferred to CIFAR100, and
the results show its error rate is only a little worse than TSCNN without trans-
fer learning, but with a smaller network size, and the computational cost is less
than all the competitors. All these prove the searched cell’s good transferability.
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Abstract. Multistage robust optimization problems can be interpreted
as two-person zero-sum games between two players. We exploit this
game-like nature and utilize a game tree search in order to solve quanti-
fied integer programs (QIPs). In this algorithmic environment relaxations
are repeatedly called to asses the quality of a branching variable and for
the generation of bounds. A useful relaxation, however, must be well bal-
anced with regard to its quality and its computing time. We present two
relaxations that incorporate scenarios from the uncertainty set, whereby
the considered set of scenarios is continuously adapted according to the
latest information gathered during the search process. Using selection,
assignment, and runway scheduling problems as a testbed, we show the
impact of our findings.

Keywords: Multistage robust optimization · Game tree search ·
Relaxations · Quantified integer programming

1 Introduction

Most aspects of decision making are highly affected by uncertainty. In order
to take such uncertainty into account different methodologies have been devel-
oped, such as stochastic programming [25] or robust optimization [4]. In this
setting, multistage models can be used to obtain an even more realistic descrip-
tion of the underlying problem. While there are several real multistage stochastic
approaches (e.g. [23,30]), extensions to robust optimization with more than two
stages only recently gained more attention (e.g. [5,11]). Due to their PSPACE-
complete nature [32], tackling multistage robust problems is a very complicated
task and for the human mind even comprehending a solution is rather challeng-
ing. Solution approaches include approximation techniques [6], dynamic pro-
gramming [36], and solving the deterministic equivalent problem (DEP), also
referred to as robust counterpart [4], often using decomposition techniques (e.g.
[38]). We, on the other hand, exploit the similarity of multistage robust problems
with two-person zero-sum games and apply a game tree search to solve quantified
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integer programs (QIPs) [14,37]. QIPs are integer linear programs with ordered
variables that are either existentially or universally quantified, and provide a
convenient framework for multistage robust optimization, allowing polyhedral
or even decision-dependent uncertainty sets [21]. The very intuitive approach of
applying a game tree search in order to solve the very compact QIP formula-
tion paves the way for large multistage problems: a recent computational study
showed that solving robust discrete problems with multiple stages is well within
the reach of current computational prowess [17].

As in any tree search algorithm, a rapid but high-quality assessment of the
potential of different subtrees is crucial for the search process. This can be done
by relaxing some problem conditions in order to obtain a bound on the optimal
value of a (sub)problem. In mixed integer linear programming (MIP), variants of
the linear programming (LP)-relaxation of a problem are employed [3]. Equiv-
alently for QIPs, the quantified linear programming (QLP)-relaxation can be
used. But its DEP’s size remains exponentially large, even when tackled with
decomposition techniques [28]. By further relaxing the variables’ quantification
the LP-relaxation of a QIP arises, which, however, completely neglects the prob-
lem’s multistage and uncertain nature. In order to restore the robust nature of
the problem, we exploit that a solution must cope with any uncertain scenario:
fixing (originally) universally quantified variables in this LP-relaxation yields a
very powerful tool in our tree search algorithm. Furthermore, we show that if
only a small subset of the uncertainty set is considered in the QLP-relaxation,
the correseponding DEP remains small enough to yield an effective relaxation.
This local approximation, which has similarites to sampling techniques [18], is
utilized to eventually obtain the optimal solution for a multistage robust opti-
mization problem.

For both enhanced relaxations the selection of incorporated scenarios cru-
cially affects their effectiveness, i.e. having reasonable knowledge of which univer-
sal variable assignments are particularly vicious can massively boost the search
process. We partially rely on existing heuristics, developed to analyze and find
such promising assignments in a game tree search environment [2,35] as well as
for solving SAT problems [31]. As these heuristic evaluations change over time,
the relaxations adapt based on newly gathered information.

In Sect. 2 we introduce the basics of quantified programming and outline
the used game tree search. In Sect. 3 we present the utilized relaxations and
we illustrate the strength of our approach in a computational study in Sect. 4,
before we conclude in Sect. 5.

2 Quantified Programming

In the following, we formally introduce quantified integer programming. [19] can
be consulted for a more detailed discussion.
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2.1 Basics of Quantified Integer Programming

A QIP can be interpreted as a two-person zero-sum game between an existential
player setting the existentially quantified variables and a universal player setting
the universally quantified variables. The variables are set in consecutive order
according to the variable sequence x1, . . . , xn. For each variable xj its domain is
given by Lj = {y ∈ Z | lj ≤ y ≤ uj} �= ∅ and the domain of the entire variable
vector is L = {yyy ∈ Z

n | ∀j ∈ {1, . . . , n} : yj ∈ Lj}. In the following, vectors are
always written in bold font and the transpose sign for the scalar product between
vectors is dropped for ease of notation. Let QQQ ∈ {∃,∀}n denote the vector of
quantifiers. We call each maximal consecutive subsequence in QQQ consisting of
identical quantifiers a block. The quantifier corresponding to the i-th quantifier
block is given by Q(i) ∈ {∃,∀}. Let β ∈ {1, . . . , n} denote the number of variable
blocks. With L(i) we denote the corresponding domain of the i-th variable block
as in L. At each move xxx(i) ∈ L(i), the corresponding player knows the settings
of xxx(1), . . . ,xxx(i−1) before taking her decision. Each fixed vector xxx ∈ L, that is,
when the existential player has fixed the existentially quantified variables and the
universal player has fixed the universally quantified variables, is called a play. If
xxx satisfies the existential constraint system A∃xxx ≤ bbb∃, the existential player pays
cccxxx to the universal player. If xxx does not satisfy A∃xxx ≤ bbb∃, we say the existential
player loses and the payoff is +∞. Therefore, it is the existential player’s primary
goal to ensure the fulfillment of the existential constraint system, while the
universal player tries to violate some constraints. If the existential player is able
to ensure that all constraints are fulfilled he tries to minimize cccxxx, whereas the
universal player tries to maximize her payoff.

We consider QIPs with polyhedral uncertainty [19,20] where a universal
constraint system A∀xxx ≤ bbb∀ is used. The main goal of the universal player
becomes satisfying this universal constraint system and therefore the univer-
sally quantified variables are restricted to a polytope. Here, in contrast to a
decision-dependent uncertainty set [21], the submatrix of A∀ corresponding to
existentially quantified variables is zero. Therefore, the system A∀xxx ≤ bbb∀ restricts
universally quantified variables in such way that their range only depends on pre-
vious universal variables. In particular, a universal variable assignment must not
make it impossible to satisfy the system A∀xxx ≤ bbb∀.

Definition 1 (QIP with Polyhedral Uncertainty). Let L and QQQ be given
with Q(1) = Q(β) = ∃. Let ccc ∈ Q

n be the vector of objective coefficients, for
which ccc(i) denotes the vector of coefficients belonging to block i. Let D = {xxx ∈
L | A∀xxx ≤ bbb∀} �= ∅ where all entries of A∀ that correspond to existentially
quantified variables are zero. The term QQQ ◦xxx ∈ D with the component-wise bind-
ing operator ◦ denotes the quantification sequence Q(1)xxx(1) ∈ D(1) Q(2)xxx(2) ∈
D(2)(xxx(1)) . . . Q(β)xxx(β) ∈ D(β)(xxx(1), . . . ,xxx(β−1)) such that every quantifier Q(i)

binds the variables xxx(i) of block i ranging in their domain D(i)(xxx(1), . . . ,xxx(i−1)),
with D(i)(x̃xx(1), . . . , x̃xx(i−1)) ={

L(i) if Q(i) = ∃
{yyy ∈ L(i) | ∃xxx = (x̃xx(1), . . . , x̃xx(i−1), yyy,xxx(i+1), . . . ,xxx(β)) ∈ D} if Q(i) = ∀ .
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We call

min
xxx(1)∈D(1)

(
ccc(1)xxx(1) + max

xxx(2)∈D(2)

(
ccc(2)xxx(2) + min

xxx(3)∈D(3)

(
ccc(3)xxx(3) + . . . min

xxx(β)∈D(β)
ccc(β)xxx(β)

)))

s.t. QQQ ◦ xxx ∈ D : A∃xxx ≤ bbb∃

a QIP with polyhedral uncertainty given by the tuple (A∃, A∀, bbb∃, bbb∀, ccc,L,QQQ).

Note that the domains D(i)(xxx(1), . . . ,xxx(i−1)) in the quantification sequence
force the universally quantified variables to fulfill A∀xxx ≤ bbb∀. We use L∃ to
describe the domain of the existentially quantified variables, given by their vari-
ables bounds as in L. L∀ �= ∅ is the domain of universally quantified variables, i.e.
the uncertainty set, given by their domain and the universal constraint system.
x∃x∃x∃ and x∀x∀x∀ denote the vectors only containing the existentially and universally
quantified variables of game xxx ∈ D, respectively. We call x∀x∀x∀ ∈ L∀ a scenario
and refer to a partially filled universal variable vector as a subscenario. Addi-
tionally, we use Lrelax to describe the domain given by L without the integrality
condition.

Example 2. We consider an instance with n = 6 binary variables, i.e. L =
{0, 1}6. Let Q = (∃,∀,∃,∀,∃,∃) and thus β = 5 with the second and fourth vari-
able being universally quantified. The universal constraint system contains the
single constraint x2 +x4 ≥ 1. The objective function, the quantification sequence
as well as the existential constraint system are given as follows (the min/max
alternation in the objective and the domains in the quantification sequence are
omitted):

min 2x1 + 2x2 − 2x3 − 2x4 + 3x5 + x6

s.t. ∃x1 ∀x2 ∃x3 ∀x4 ∃x5 ∃x6 :

x1 +x2 +x5 ≥ 1
x3 +x4 +x6 ≥ 1

The optimal first stage solution is x1 = 0 and the optimal play, i.e. the
assignment of the variables if both players play optimally, is given by x̃xx =
(0, 1, 1, 0, 0, 0). Hence the optimal worst-case objective value is 0 and therefore
the existential player has a strategy that ensures an objective value less than or
equal to 0. Note that for the instance without the universal constraint x2+x4 ≥ 1,
even though x1 = 0 remains the optimal first stage solution, the optimal strategy
can only ensure an objective value of 1.

2.2 Solving QIP via Game Tree Search

A game tree can be used to represent the chronological order of all possible
moves, given by the quantification sequence QQQ ◦ xxx ∈ D. The nodes in the game
tree represent a partially assigned variable vector and branches correspond to
assignments of variables according to their variable domain. A solution of a QIP
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is a so-called winning (existential) strategy, that defines how to react to each legal
move by the universal player, in order to ensure A∃xxx ≤ bbb∃. Hence, a solution is
a subtree of the game tree with an exponential number of leaves with respect to
the number of universal variables. If no such strategy exists the QIP is infeasible.
If there is more than one solution, the objective function aims for a certain (the
“best”) one, whereat the value of a strategy is defined via the worst-case payoff
at its leaves (see Stockman’s Theorem [34]). The play x̃xx resulting in this leaf is
called the principal variation [8], which is the sequence of variable assignments
being chosen during optimal play by both players.

The heart of our search-based solver for 0/1-QIPs [13] is an arithmetic linear
constraint database together with an alpha-beta algorithm, which has been suc-
cessfully used in gaming programs, e.g. chess programs for many years [12,26].
The solver proceeds in two phases in order to find an optimal solution:

– feasibility phase: It is checked whether the instance has any solution. The
solver acts like a quantified boolean formula (QBF) solver [7,27] with some
extra abilities. Technically it performs a null window search [33].

– optimization phase: The solution space is explored via alpha-beta algorithm
in order to find the provable optimal solution.

The alpha-beta algorithm is enhanced by non-chronological backtracking and
backward implication [10,15]: when a contradiction is detected a reason in form
of a clause is added to the constraint database and the search returns to the
node where the found contradiction is no longer imminent. The solver deals
with constraint learning on the so-called primal side as known from SAT- and
QBF-solving (e.g. [16,29]), as well as with constraint learning on the dual side
known from MIP (e.g. [9]). Several other techniques are implemented, e.g. restart
strategies [24], branching heuristics [1], and pruning mechanisms [22]. Further-
more, relaxations are heavily used during the optimization phase: at every search
node a relaxation is called in order to asses the quality of a branching decision,
the satisfiability of the existential constraint system or for the generation of
bounds.

3 Enhanced Relaxations

3.1 Relaxations for QIPs

In case of a quantified program, besides relaxing the integrality of variables, the
quantification sequence can be altered by changing the order or quantification
of the variables. An LP-relaxation of a QIP can be built by dropping the inte-
grality and also dropping universal quantification, i.e. each variable is considered
to be an existential variable with continuous domain. One major drawback of
this LP-relaxation is that the worst-case perspective is lost by freeing the con-
straint system from having to be satisfied for any assignment of the universally
quantified variables: transferring the responsibility of universal variables to the
existential player and solving the single-player game has nothing to do with the
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worst-case outcome in most cases. In order to strengthen this relaxation we use
that for any assignment of the universally quantified variables the constraint
system must be fulfilled. Hence, fixing universally quantified variables according
to some element of L∀ still yields a valid relaxation. This can be interpreted as
knowing the opponent moves beforehand and adapting one’s own moves for this
special play.

Definition 3 (LP-Relaxation with Fixed Scenario). Let P = (A∃, A∀,
bbb∃, bbb∀, ccc,L,QQQ) and let x̂̂x̂x∀ ∈ L∀ be a fixed scenario. The LP

min
{
cccxxx | xxx ∈ Lrelax ∧ xxx∀ = x̂̂x̂x∀ ∧ A∃xxx ≤ bbb∃}

is called the LP-relaxation with fixed scenario x̂̂x̂x∀ of P .

Proposition 4. Let P = (A∃, A∀, bbb∃, bbb∀, ccc,L,QQQ) and let R be the corresponding
LP-relaxation with fixed scenario x̂̂x̂x∀ ∈ L∀. Then the following holds:

a) If R is infeasible, then also P is infeasible.
b) If R is feasible with optimal value zR, then either P is infeasible or P is

feasible with optimal value zP ≥ zR, i.e. zR constitutes a lower bound.

Proof.

a) Let A∃
∃ and A∃

∀ be the submatrices of A∃ consisting of the columns correspond-
ing to the existentially and universally quantified variables, respectively. If R
is infeasible then

�xxx∃ ∈ L∃ : A∃
∃xxx∃ ≤ bbb∃ − A∃

∀x̂̂x̂x∀ ,

and since x̂̂x̂x∀ ∈ L∀ there cannot exist a winning strategy for P . As a gaming
argument we can interpret this the following way: If there is some move
sequence of the opponent we cannot react to in a victorious way—even if we
know the sequence beforehand—the game is lost for sure.

b) Let zR = cccx̂̂x̂x be the optimal value of R, and let x̂̂x̂x∃ be the corresponding
fixation of the existential variables. It is

x̂̂x̂x∃ = arg min
x∃x∃x∃∈L∃

{
c∃c∃c∃x∃x∃x∃ | A∃

∃x∃x∃x∃ ≤ bbb∃ − A∃
∀x̂̂x̂x∀

}
. (1)

If P is feasible, scenario x̂̂x̂x∀ must also be present in the corresponding winning
strategy. Let x̃̃x̃x be the corresponding play, i.e. x̃̃x̃x∀ = x̂̂x̂x∀. With Eq. (1) obviously
zR = cccx̂̂x̂x ≤ cccx̃̃x̃x and thus with Stockman’s Theorem [34] zR ≤ zP .

As we will show in Sect. 4 adding a scenario to the LP-relaxation already
massively speeds up the search process compared to the use of the standard
LP-relaxation. However, partially incorporating the multistage nature into a
relaxation should yield even better bounds. Therefore, we reintroduce the orig-
inal order of the variables while only taking a subset of scenarios S ⊆ L∀ into
account.
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Definition 5 (S-Relaxation). Given P = (A∃, A∀, bbb∃, bbb∀, ccc,L,QQQ). Let S ⊆ L∀
and let LS = {xxx ∈ Lrelax | x∀x∀x∀ ∈ S}. We call

min
xxx(1)∈L(1)

S

(
ccc(1)xxx(1) + max

xxx(2)∈L(2)
S

(
ccc(2)xxx(2) + min

xxx(3)∈L(3)
S

(
ccc(3)xxx(3) + . . . min

xxx(β)∈L(β)
S

ccc(β)xxx(β)

)))

s.t. Q ◦ xxx ∈ LS : A∃xxx ≤ bbb∃ (2)

the S-relaxation of P .

Proposition 6. Let P = (A∃, A∀, bbb∃, bbb∀, ccc,L,QQQ) be feasible and let R be the S-
relaxation with ∅ �= S ⊆ L∀ and optimal value z̃R. Then z̃R is a lower bound on
the optimal value z̃P of P , i.e. z̃R ≤ z̃P .

Proof. Again we use a gaming argument: with S ⊆ L∀ the universal player is
restricted to a subset of her moves in problem R, while the existential player is
no longer restricted to use integer values. Furthermore, any strategy for P can
be mapped to a strategy for the restricted game R. Hence, the optimal strategy
for R is either part of a strategy for P or it is an even better strategy, as the
existential player does not have to cope with the entire variety of the universal
player’s moves. Therefore, z̃R ≤ z̃P .

In general, L∀ has exponential size with respect to the number of universally
quantified variables. Therefore, the main idea is to keep S a rather small subset
of L∀. This way the DEP of the S-relaxation—which is a standard LP— remains
easy to handle for standard LP solvers.

Example 7. Consider the following binary QIP (The min/max alternation in
the objective is omitted for clarity):

min −2x1 +x2 −x3 −x4

s.t. ∃x1 ∀x2 ∃x3 ∀x4 ∈ {0, 1}4 :
x1 +x2 +x3 +x4 ≤ 3

−x2 −x3 +x4 ≤ 0

The optimal first-stage solution is x̃1 = 1, the principal variation is (1, 1, 0, 0)
and hence the optimal value is −1. Let S = {(1, 0), (1, 1)} be a set of scenarios.

Table 1. Solutions of the single LP-relaxations with fixed scenarios.

Scenario x2 = 1, x4 = 0 x2 = 1, x4 = 1

Relaxation

min −2x1 −x3 +1

s.t. x1 +x3 ≤ 2

−x3 ≤ 1

min −2x1 −x3 +0

s.t. x1 +x3 ≤ 1

−x3 ≤ 0

Solution x1 = 1, x3 = 1 x1 = 1, x3 = 0

Objective −2 −2
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The two LP-relaxations with fixed scenario accoring to the two scenarios in S
are shown in Table 1. Both yield the optimal first stage solution of setting x1 to
one. Now consider the DEP of the S-relaxation in which x3(x̃2) represents the
assignment of x3 after x2 is set to x̃2:

min k
s.t. −2x1 −x3(1) +1 ≤ k

x1 +x3(1) ≤ 2
−x3(1) ≤ 1

⎫⎬
⎭Scenario (1, 0)

s.t. −2x1 −x3(1) +0 ≤ k
x1 +x3(1) ≤ 1

−x3(1) ≤ 0

⎫⎬
⎭Scenario (1, 1)

s.t. −2x1 , x3(1) ∈ [0, 1]

In the S-relaxation it is ensured that variables following equal sub-scenarios are
set to the same value. As x2 is set to 1 in each considered scenario in S, x3

must be set to the same value in both cases. The solution of the DEP is x1 = 1,
x3(1) = 0 and k = −1. Thus, the S-relaxation yields the lower bound −1 for the
original QIP. This is not only a better bound than the one obtained by the two
LP-relaxations with individually fixed scenarios but it also happens to be a tight
bound.

3.2 Scenario Selection

Both for the LP-relaxation with fixed scenario as well as the S-relaxation the
selection of scenarios is crucial. For the S-relaxation additionally the size of
the scenario set S affects its performance, in particular if too many scenarios
are chosen, solving the relaxation might consume too much time. We use three
heuristics to collect information on universal variables during the search:

VSIDS Heuristic [31]. Each variable in each polarity has a counter, initialized
to 0. When a clause is added, due to a found conflict, the counter associated with
each literal is incremented. Periodically, all counters are divided by a constant.

Killer Heuristic [2]. When a conflict is found during the search the current
assignment of universal variables—and thus the (sub)scenario leading to this
conflict—is stored in the killer vector. This is a short-term information and is
overwritten as soon as a new conflict is found.

Scenario Frequency. For each scenario and subscenario the frequency of their
occurrence during the search is stored.

The LP-relaxation with fixed scenario is implemented as follows: before call-
ing the LP solver in a decision node, all variable bounds must be updated accord-
ing to the current node anyway. When doing so (yet unassigned) universally
quantified variables are set as in Algorithm 1. Hence, the considered scenario is
adapted in every decision node based on the latest heuristic information.
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Algorithm 1. Building a scenario
1: for each universal variable block i ∈ {1, . . . , β | Q(β) = ∀} do
2: for each unassigned variable xj in block i, in random order do
3: if killer[j] �= undefined then Value = killer[j]
4: else Value = arg maxp∈{0,1} VSIDS[j][p]

5: if setting xj to Value is legal according to D(i) then xj = Value

6: else xj = 1 − Value

The S-relaxation is adapted at each restart. The scenario set S is rebuilt
by considering the S̄ ∈ N most frequently used (sub)scenarios. Subscenarios
are extended to a full scenario according to Algorithm 1. Even though starting
with S̄ (sub)scenarios, S often contains fewer unique scenarios, as extending a
subscenario may result in a scenario already contained in S.

Furthermore, our implementation merges the LP-relaxation with fixed sce-
nario into the S-relaxation: the final relaxation takes all scenarios in the scenario
set S, as well as one additional scenario that can be updated at each decision
node into account. Hence, the used relaxation in fact reflects |S| + 1 scenarios
and in case of S = ∅ the LP-relaxation with fixed scenario remains. The DEP of
this final relaxation is built and solved with an external LP solver.

The S-relaxation is currently only used while the search is in the very first
variable block, i.e. as soon as all variables of the first block are assigned, only the
LP-relaxation with fixed scenario is used. The reason why this relaxation is no
longer used in later variable blocks is that then universally quantified variables
are already fixed according to the current search node. Hence, some scenarios in
S are no longer relevant as they refer to other parts of the search tree. Therefore,
in order to use the S-relaxation in higher blocks it needs to be rebuilt each time
a universal variable block is bypassed.

4 Experiments

4.1 Problem Descriptions

We conduct experiments on three different QIPs with polyhedral uncertainty.
For a more detailed discussion on the problem formulations we refer to [19].

Multistage Robust Selection. The goal is to select p out of n items with minimal
costs. In an initial (existential) decision stage a set of items can be selected
for fixed costs. Then, in a universal decision stage, one of N ∈ N cost scenario
is disclosed. In the subsequent existential decision stage further items can be
selected for the revealed costs. The latter two stages are repeated iteratively
T ∈ N times. Hence, there are 2T + 1 variable blocks.

Multistage Robust Assignment. The goal is to find a perfect matching for a
bipartite graph G = (V,E), V = A ∪ B, n = |A| = |B|, with minimal costs. In
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an initial (existential) decision stage a set of edges can be selected for fixed costs.
Then, in a universal decision stage, one of N ∈ N cost scenario is disclosed. In
the subsequent existential decision stage further edges can be selected for the
revealed costs. Those two stages are repeated iteratively T ∈ N times. Both for
the selection and the assignment problem, a universal constraint system is used
to force the universally quantified variables to reveal exactly one scenario per
period.

Multistage Robust Runway Scheduling. Each airplane i ∈ A has to be assigned
to exactly one time slot j ∈ S and at most b ∈ N airplanes can be assigned to one
time slot (as there are only b runways). As soon as the (uncertain) time window
in which the airplane can land is disclosed by universally quantified variables,
the initial plan has to be adapted. The goal is to find an initial schedule that can
be adapted according to the later disclosed time windows with optimal worst-
case costs, as for each slot that the airplane is moved away from its originally
planned time slot, a cost is incurred. The time window disclosure occurs in
T ∈ N periods: the airplanes are partitioned into T groups and after the initial
schedule is fixed the time windows are disclosed for one group after the other.
After each disclosure the schedule for the current group of airplanes has to be
fixed right away, before knowing the time windows for the subsequent groups.
The universal constraint system contains a single constraint, demanding that
the disclosed time windows are comprised of 3 time slots on average.

4.2 Computational Results

Our solver utilizes CPLEX (12.6.1) as its black-box LP solver to solve the relax-
ations and all experiments were run with AMD Ryzen 9 5900X processors.

First we provide details on the benefit of utilizing the LP-relaxation with
fixed scenario as given in Definition 3 compared to the standard LP at each
decision node. Therefore, we consider the following testset:

– 350 selection instances with n = 10 items, N = 4 scenarios per period and
T ∈ {1, . . . , 7} periods

– 1350 assignment instances with n ∈ {4, 5, 6}, N ∈ {21, 22, 23} scenarios per
period and T ∈ {1, . . . , 3} periods

– 270 runway scheduling instances with A ∈ {4, 5, 6} planes, b = 3 runways,
S ∈ {5, . . . , 10} time slot and T ∈ {1, . . . , 3} periods

In Table 2, as one of our major results, the overall runtimes when using the basic
LP-relaxation and the LP-relaxation with fixed scenario are displayed. In each
case, explicitly setting the universally quantified variables to a fixed scenario
results in a massive speedup that is most impressive for the selection instances.
This emphasizes, that partially incorporating the worst-case nature of the under-
lying problem into the basic LP-relaxation is clearly beneficial and does not have
any negative side effects: the bounds of the variables in the LP-relaxation have
to be updated at each search node anyway and fixing the universally quantified
variables even decreases the number of free variables in the resulting LP.
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Table 2. Overall runtime (in seconds) when only using the standard LP-relaxation vs.
the LP-relaxation with fixed scenario.

Used relaxation Selection Assignment Runway

LP 29 501 7 152 12 902

LP with fixed scenario 348 837 4 520

We now investigate how the use of the more sophisticated S-relaxation in
the first variable block changes the solver’s behavior. Therefore, the scenario set
S is built from S̄ = 2i (sub)scenarios, with i ∈ {0, . . . , 6}. In case of S̄ = 0 only
the LP-relaxation with fixed scenario is utilized in the first variable block. The
used testset consists of the following instances

– 1050 selection instances with n ∈ {10, 20, 30} items, N = 4 scenarios per
period and T ∈ {1, . . . , 7} periods

– 450 assignment instances with n ∈ {7}, N ∈ {21, 22, 23} scenarios per period
and T ∈ {1, . . . , 3} periods

– 360 runway scheduling instances with A ∈ {4, 5, 6, 7} planes, b = 3 runways,
S ∈ {5, . . . , 10} time slot and T ∈ {1, . . . , 3} periods

As one indicator we consider the number of decision nodes visited during the
optimization phase of the search. We denote N(i, S̄) the number of visited deci-
sion nodes when solving instance i with S̄ scenarios used to build the corre-
sponding S-relaxation. We compare each run with S̄ = 2i to the basic run
with S̄ = 0 by considering the relative difference Dr(i) = N(i,S̄)−N(i,0)

max(N(i,S̄),N(i,0))
. If

N(i, S̄) − N(i, 0) < 0, i.e. if fewer decision nodes were visited while using the
S-relaxation, Dr(i) is negative, with its absolute value indicating the percentage
savings. Similarly, if N(i, S̄) − N(i, 0) > 0, Dr(i) is positive. The data on all
instances is cumulated in Fig. 1 showing the corresponding box plots . It can be
seen that the median of the relative difference values is always negative and tends
to decrease when more scenarios are considered in S, i.e. the larger the scenario
set the fewer decision nodes have to be visited during the search. Note that com-
pared to the box plots for the selection and runway instances, for the assignment
instances the upper whisker remains at a rather high level. But does a decreasing

Fig. 1. Boxplots of the Dr values for all three testset and S̄ ∈ {20, . . . , 26}
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number of visited decision nodes also result in a lower runtime? For now consider
the columns of Table 3 representing the heuristic scenario selection as presented
in Sect. 3.2. Both for the selection and the runway scheduling problem the overall
runtimes tend to decrease when S̄ increases. Compared to only using the LP-
relaxation with fixed scenario (S̄ = 0), the runtimes decreased up to about 30%
and 35% for the selection and runway scheduling instances, respectively. The
slightly increased runtime for S̄ = 64 indicates that the solution time of such a
large relaxation can no longer be compensated by fewer visited decision nodes.
For the assignment instances, however, the overall runtime increases, up to a
factor of four times the runtime when solely using the LP-relaxation with fixed
scenario. Hence, even though fewer nodes are visited, the time it takes to process
and generate information at these nodes increases considerably for this type of
problem.

Table 3. Overall runtime (in seconds) when using the S-relaxation with heuristic and
random scenario selection

S̄ Selection instances Assignment instances Runway instances

Heuristic Random Heuristic Random Heuristic Random

0 12 561 53 348 2 091 1 853 33 335 32 401

20 11 324 35 316 2 111 1 865 29 313 30 418

21 9 900 30 970 2 022 2 046 25 876 26 412

22 9 700 31 158 2 210 2 232 25 876 26 101

23 9 394 29 087 2 220 2 708 23 915 24 795

24 9 030 27 503 2 931 3 718 23 958 24 860

25 8 843 26 857 4 223 7 300 21 788 26 777

26 9 149 26 590 8 632 17 400 23 073 30 292

In Table 3 we additionally provide information on how well our scenario build-
ing routine performs on the considered testset. Therefore, instead of extending
the S̄ most frequently visited (sub)scenarios via Algorithm 1, the scenario set
S now contains S̄ random scenarios. Similiarly, for the LP-relaxation with fixed
scenario, we replace the heuristic Value selection in lines 3 and 4 of Algorithm 1
by randomly assigning the value 0 or 1. Note, however, that even though the
killer and VSIDS information is neglected while building the relaxation, it is still
utilized in other situations during the search. The overall runtimes are shown in
the according columns of Table 3. For the selection problem, randomly selecting
the scenario results in a runtime about three times longer compared to using the
heuristic selection process. For the runway instances, our heuristic also slightly
outperforms the use of random scenarios. For the assignment instances the ran-
dom scenario selection tends to be more favorable when only few scenarios are
involved.
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5 Conclusion and Outlook

We investigated how adaptive relaxations influence our search-based solution
algorithm for multistage robust optimization problems. Our experimental results
show that incorporating a single scenario in the standard LP-relaxation sig-
nificantly speeds up the search process and clearly dominates the basic LP-
relaxation. Furthermore, the use of the S-relaxation which incorporates a subset
of scenarios in a slim DEP, considerably decreases the number of visited nodes,
even if only utilized in the very first variable block. While this smaller search
space also resulted in a faster solution time for multistage selection and runway
scheduling problems, the solution time tended to increase for multistage assign-
ment instances. Additionally, we showed that our scenario selection heuristic
outperforms a random scenario selection.

Several research questions arise from the presented experimental results. Is
it possible to improve the heuristic scenario selection? Currently our heuris-
tic focuses on including seemingly harmful scenarios but does not consider the
diversity of the scenario set S, which might be one reason why using random
scenarios already works quite well on specific problems. In contrast to our cur-
rently implemented search-information-based scenario selection heuristic, we find
it interesting to deploy AI methods in order to classify scenarios as relevant and
irrelevant for general QIP. Additionally, relevant characteristics of instances have
to be found, in order to dynamically adjust the size of the used scenario set S.
Furthermore, deploying the S-relaxation in all—not only the very first—variable
blocks is a very promising yet challenging task, as the implementation of such a
frequently modified S-relaxation must be done carefully. In this case having the
ability to update all considered scenarios in each decision node is also of interest,
in particular as our results showed that having few scenarios in the relaxation is
already very beneficial.
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Abstract. Graph neural networks (GNNs) are widely used on graph-
structured data, and its research has made substantial progress in recent
years. However, given the various number of choices and combinations of
components such as aggregator and activation function, designing GNNs
for specific tasks is very heavy manual work. Recently, neural architec-
ture search (NAS) was proposed with the aim of automating the GNN
design process and generating task-dependent architectures. While exist-
ing approaches have achieved competitive performance, they are not well
suited to practical application scenarios where the computational budget
is limited. In this paper, we propose an auto-designed lightweight graph
neural network (ALGNN) method to automatically design lightweight,
task-dependent GNN architectures. ALGNN uses multi-objective opti-
mization to optimize the architecture constrained by the computation
cost and complexity of the model. We define, for the first time, an eval-
uation standard for consumption cost with the analysis of the message
passing process in GNNs. Experiments on real-world datasets demon-
strate that ALGNN can generate a lightweight GNN model that has
much fewer parameters and GPU hours, meanwhile has comparable per-
formance with state-of-the-art approaches.

Keywords: Graph neural network · Nerual architecture search ·
Particle swarm optimization · Multi-objective optimization · AutoML

1 Introduction

Graph neural networks (GNNs) are currently widely used on non-Euclidean data,
e.g., computational biology [12], social network [8], and knowledge graph [22].
GNN follows a message passing scheme to gradually spread the information of
neighboring nodes in each layer. With the increase of GNN layers and the expan-
sion of graph data, the selection and combination of functions such as message
c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13031, pp. 500–512, 2021.
https://doi.org/10.1007/978-3-030-89188-6_37
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aggregation and activation have a great influence on the model performance. It
is usually heavy manual work to design an effective GNN for a specific task and
dataset. Moreover, unlike typical neural networks, the GNN message passing
process is much more computationally expensive. Many practical applications,
however, require GNN models to be both effective and computationally effi-
cient, e.g., have low power consumption in mobile applications and low latency
in internet-of-things applications.

Neural architecture search (NAS) has a great impact by automating neu-
ral network architecture design. The architecture is optimized for accuracy and
efficiency (i.e., computational cost) under the constraints (e.g., FLOPs, latency,
memory). NAS has shown promising results in automatically designing archi-
tectures for CNN and RNN and has demonstrated success in various deep
learning tasks, such as image classification, detection, and segmentation. NAS
methods based on reinforcement learning (RL) and evolutionary computation
(EC) [17,23] have recently gained much attention. Generally, NAS searches for
architectures with maximal predictive performance. However, in real applica-
tions, additional objectives such as inference time and computational consump-
tion must be considered. Multi-objective NAS methods [15,19] are further pro-
posed to search for high performance under computation resource constraints.

There are preliminary studies [7,25] of GNNs architecture search with RL.
However, those methods have low search efficiency with limited consideration
of the computational cost. In this paper, we propose a novel auto-designed
lightweight GNN (ALGNN) architecture search method based on multi-objective
optimization. We stratify and expand the search space of GNN, to be more spe-
cific, we divide the search space into message passing search space and hyper-
parameter search space to find the hyperparameters that are more suitable for
the current model combination. ALGNN regards the computation cost of the
GNN message passing process as one of the objectives in the architecture search,
meanwhile takes into account the GNN parameters. To aid the evaluation of the
generated lightweight model, we further define a novel standard MCost with the
analysis of message passing process in GNNs.

We adopt the multi-objective particle swarm optimization (MOPSO) as our
NAS search algorithm and evaluate the generated model using the accuracy,
parameters, and computational consumption as multiple objectives. Experimen-
tal results show that ALGNN can generate a lightweight GNN model with per-
formance comparable to the best architecture of previous graph NAS work but
with a much lower computational cost. Moreover, the experimental results show
that, compared with the RL-based graph NAS methods, our proposed ALGNN
has a better searching efficiency. In short, we make the following contributions
in this paper:

– We propose a novel graph NAS framework ALGNN to search for a lightweight
GNN model. The proposed approach uses the MOPSO as the search algorithm
and expands the search space in previous work.

– With the analysis of the computational complexity of the message passing
process, we define a novel GNN evaluation standard MCost as one of the
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objectives to assist the searching process for generating a portable GNN. To
the best of our knowledge, this is the first work to consider the computational
consumption constraints in the graph neural architecture search.

– Experimental results show that ALGNN can generate a lightweight GNN
that is comparable in performance to the best architecture of the previous
graph NAS work and has the lowest computational cost in terms of model
parameters and GPU hours.

2 Related Work

2.1 Graph Neural Networks

GNNs integrate neural networks with graph-structured data and are widely used
[12]. Graph propagation is the core operation in GNN, in which information is
propagated from each node to its neighborhood through some certain rules [22].
In general, the graph propagation rules can be divided into spectral-based con-
volutions [3] and spatial-based convolutions [8]. Recently, improved methods
[7,16,20] have been proposed on the message passing architecture. Determining
the suitable GNN structure for a specific problem normally necessitates tremen-
dous expert knowledge and laborious trials. With the expansion of graph data
and the demand for mobile applications, the size of GNN models needs to be
optimized [21]. To improve training efficiency on large graphs, FastGCN [1] and
HAGs [9] have been proposed. Our paper solves the conflict of automatically
optimizing GNN efficiency while maintaining model performance accuracy using
the multi-objective neural architecture search method.

2.2 Neural Architecture Search

NAS is a hot research topic in AutoML and has shown promising results in
designing architectures for deep learning models. RL [14] and EA [17,18,23] are
the two main methods used in NAS. However, RL-based methods have steep
computational requirement for the search process [14]. Moreover, they are not
readily applicable for multi-objective NAS. On the other hand, EA-based meth-
ods do not need to train the controller and the search process only depends
on the model training time. EA-based methods firstly initialize a population of
architectures and evolve with mutation and crossover. The architectures with
competitive performance will be retained during the search progress. Recently,
graph NAS has made preliminary progress [7,24,25], exclusively based on RL-
based methods. In this paper, we use an EA-based method (i.e., MOPSO) for
GNN architecture search.

2.3 Multi-Objective NAS

Multi-objective NAS is currently a hot research branch in the field of NAS,
where the goal is not only optimizing the model accuracy for a given task but
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also considering resource consumption. NEMO [11] is one of the earliest evolu-
tionary multi-objective approaches to evolve CNN architectures. NSGA-Net [15]
adopts the classic non-dominated search algorithm (NSGAII) to handle trade-
off among multiple objectives. LEMONADE [5] utilizes Lamarckian inheritance
mechanism which generates children with performance warm-started by their
parents. MnasNet [19] uses a customized weighted product method to approxi-
mate Pareto optimal solutions. Our proposed ALGNN uses MOPSO to find the
Pareto approximate optimal solution, which is the first work of multi-objective
graph neural architecture search.

3 Methods

3.1 Problem Statement

We consider a method that will maximize a GNN model performance, con-
strained by the computation cost and model complexity. In this work, the search
algorithm implies a multi-objective bi-level optimization problem [2,4], shown
in the following:

min
m∈M

F (m) = (f1 (m;w∗(m)) , f2(m))

s.t. w∗(m) ∈ argmin L(w;m)
(1)

where M is the message passing search space, m is a candidate architecture,
and w represents the model parameters weight. F (m) comprises of the model
error f1 on the validation data Dval , and the complexity f2 of the GNN model
architecture. The objective L(w;m) is the cross-entropy loss on the training
data Dtra .

Fig. 1. An illustration of message passing process. Given an input graph that node
hi is connected with h1, h2, ..., hj . Attention mechanism is to measure the relation
between neighbor nodes and calculate the attention weight αij . Aggregator integrates
the information between neighbor nodes with the attention weights αij .
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3.2 GNN Message Passing Computation

The message passing process of GNN requires a lot of computational consump-
tion. The aggregation of the message passing process and the update process all
need to extract and integrate the information of the entire input graph. Assume
the input graph G = (V,E) has node V and edge E . For each node, N (v) rep-
resents the neighbor set of v and hv represents the input node characteristics.
A GNN iteratively learns the representation of each node on the entire graph
through multiple layers. Figure 1 illustrates the message passing process in a
typical GNN that contains attention mechanism and aggregate function.

The attention mechanism helps to focus on the most relevant neighbors to
improve the representative learning of node embedding. According to GAT [20],
the attention of the edge eij from node i to j is as follows:

eij =AttM(Whi
,Whj

)

αij = softmax (eij) =
exp (eij)∑

k∈N (i) exp (eik)

in which, the computation cost of the edge weight aij is related to the number
of edges in the graph. In addition, the calculations of aij are attention func-
tions dependent. We need to consider the selection of attention function in the
calculation of message passing.

Aggregate function is to capture neighborhood structure for learning node
representation. For node v with neighbor N (v), the k-th layer aggregation func-
tion is as follows:

h
(k)
i = AggM(α(k−1)

ij h
(k−1)
j |j ∈ N (i))

With the analysis of the two components, we define the computation cost
MCost for GNN message passing layer as:

MCost(M, G) = K × AttM(|EG |) +
∑

v∈V

AggM(|N (v)|) (2)

where K represents the heads in multi-heads attention, and EG is the number of
edges of the input graph G.

3.3 Multi-faceted Search Space

Based on the above analysis of the message passing mechanism, we propose a
multi-faceted search space to deal with multi-objective optimization. We divide
search space into two parts: message passing search space and hyper-parameters
search space.

Message Passing Search Space (orMacro Search Space): The message passing pro-
cess in GNN requires multiple steps to complete, including the design of aggre-
gation, attention, activation, and dropout. We refer to previous work [7,25]. For
a fair comparison, we use the same search space in aggregate function, attention
function, and activation function. Table 1 shows the search space of the message
passing layer.
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Table 1. Macro search space.

Type Search space

Attention function const, gcn, gat, sym-gat, cos, linear, gene-linear

Attention head 1, 2, 4, 8, 12, 16

Aggregation function sum, mean pooling, max pooling, MLP

Activation function sigmoid, tanh, relu, identity, softplus, leaky relu, relu6, elu

Hidden unit 2, 4, 8, 16, 32, 64, 128

Dropout False, 0.1, 0.3, 0.5, 0.7

Table 2. Hyper-parameters search space.

Type Search space

Layer connectivity stack, skip-sum, skip-cat

Message passing layers 2, 3, 4

Learning rate 5e-4, 1e-3, 5e-3, 1e-2

L2 regularization strength 0, 1e-3, 1e-4, 1e-5, 5e-5, 5e-4

Decay rate 5e-4, 8e-4, 1e-3, 4e-3

Hyper-Parameters Search Space: Only optimizing message passing layer struc-
tures may lead to a suboptimal searched model since the change of learning
parameters could severely degrade the fine-tuned GNN structure. The train-
ing configuration includes decay rate, learning rate, optimizer parameters, etc.,
which all have a great impact on the performance of the model. Therefore, we
design the message passing layer and the hyperparameters iteratively. With the
increase of GNN layers, skip connections began to be used in GNN research.
We add skip connections to the hyperparameter search target to find the most
suitable skip connections method. Table 2 shows the set of hyper-parameters.

3.4 Search Algorithm

Multi-Objective PSO: The problem in Eq. (1) poses two main computational
bottlenecks for GNN bi-level optimization methods. To attack it, we use the
MOPSO algorithm. PSO is a population-based algorithm, motivated by the
social behaviour of fish schooling or bird flocking [10], commonly used for solv-
ing optimization problems without rich domain knowledge. In PSO, each particle
represents a potential solution to a problem, and particles fly in the search space
to find the best solution by updating velocity and position vector according to
Eqs. (3) and (4), respectively:

vij(t + 1) = c1 · r1 · (Pbestij(t) − xij(t))
+ c2 · r2 (Gbestj(t) − xij(t))

(3)

xij(t + 1) = xij(t) + vij(t + 1) (4)
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Fig. 2. Overview of the proposed ALGNN. (a) The particles are decoded into a GNN
model and then evaluated by training input graph data to obtain the classification
accuracy and the cost MCost. (b) In MOPSO, Archive set is to keep a historical
record of the nondominated particles found along the search process. The best GNN
architecture Gbest is then selected in the current generation. (c) Update each particle
velocity and position vector according to Eqs. (3) and (4). (d) Find the Pareto optimal
solution within the maximum number of iterations.

Algorithm 1. Search Algorithm of ALGNN
Input: target graph G; training set Dtra ; validation set Dval ; message passing search
Space M; hyperparameters search space P; archive set A.
Parameter: Np : population size;
Km : the number of message passing searching iterations;
Kp : the number of hyperparameters searching iterations.
Output: optimal message passing structure ∗m and hyperparameters
∗p.

1: Initialize the Particles and Archive.
2: for i ←− 1 to Km do
3: Evaluate Particles (training GNN model).
4: if Premature convergence appears then
5: Perturb and update Pbest and Gbest.
6: end if
7: Update Archive and select the Gbest in the Archive.
8: Update the particles.
9: end for

10: for i ←− 1 to Kp do
11: Evaluate Particles(training GNN model).
12: if Premature convergence appears then
13: perturb and update PBest and Gbest.
14: end if
15: Update Archive and select the Gbest in the Archive.
16: end for
17: return ∗m and ∗p
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Table 3. Node classification performance and model parameters comparison for differ-
ent architectures (including human experts, random search, the optimal ones found by
GraphNAS and our proposed ALGNN) on the Cora, Pubmed, and Citeseer datasets.

Search methods Architectures Cora Pubmed Citeseer

#Params Accuracy #Params Accuracy #Params Accuracy

Human experts GCN 0.05M 81.5% 0.02M 79.0% 0.12M 70.3%

GAT 0.09M 83.0± 0.7% 0.03M 79.0± 0.3% 0.23M 72.5± 0.7%

LGCN 0.06M 83.3± 0.5% 0.05M 79.5± 0.2% 0.05M 73.0± 0.6%

Graph U-Net 0.07M 84.4± 0.6% 0.04M 79.6± 0.2% 0.16M 73.2± 0.5%

APPNP 0.18M 83.8± 0.3% 0.06M 79.7± 0.3% 0.23M 71.6± 0.5%

Random Random 2.95M 82.3± 0.5% 0.13M 77.9± 0.4% 0.95M 71.9± 1.2%

RL GraphNAS-R 0.14M 83.3± 0.4% 0.07M 79.6± 0.4% 3.80M 73.4± 0.4%

GraphNAS 0.37M 83.7± 0.4% 0.20M 80.5± 0.3% 1.92M 73.5± 0.3%

PSO ALGNN-S 0.12M 84.3±0.5% 0.13M 81.2±0.3% 0.09M 74.6±0.4%

ALGNN 0.04M 84.2±0.4% 0.02M 80.9±0.4% 0.03M 74.3±0.3%

where vij represents the velocity of the particle i in the j-th dimension, xij

represents the position of particle i in the j-th dimension, Pbestij and Gbestj
are the local best and the global best in the j-th dimension, r1, r2 are random
numbers between 0 and 1, c1 and c2 are PSO parameters used to tweak the
performance.

MOPSO adds the Archive set and calculate the set from particles with the
principle of Pareto dominance. The best particle Gbest is randomly selected
in the Archive set. To overcome local optimal solution, we propose a variant of
MOPSO in this paper. When the distance between particles falls below a specific
threshold, we double perturb Pbest and Gbest to avoid particles trapped into
local optimum. Algorithm 1 shows the pseudocode and corresponding steps from
a sample run of ALGNN. Figure 2 shows the whole framework of our proposed
method.

We search for the two types of search space hierarchically. In the message
passing layer search process, we use the multi-objective PSO algorithm, and the
optimization objectives are the accuracy of the model and the computational
consumption of the model. The definitions of these two conflict objective func-
tions in the message passing layer search process are described as follow:

f1 = 1 − Acc(GraphNet(w∗(xm)),Dval) (5)
f2 = λMCost(xm) + (1 − λ)Parameters(xm) (6)

where xm represents the solution to message passing layer, w∗ denotes the asso-
ciated weights, Acc represents the accuracy of the model GraphNet in the vali-
dation set Dval, and λ controls the proportion between MCost and Parameters.

Next, the model hyperparameters are optimized through the general PSO
algorithm. The optimization goal of this process is focused on the model accu-
racy. Since we have determined the message passing layer to design M , the
MCost and Parameters are also fixed. The definition of fitness function in the
hyperparameter search process is described as follow:
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Table 4. Search efficiency comparison with NAS methods on Pubmed datasets.

Architectures Search methods Params (M) Accuracy (%) GPU Hours

GraphNAS-R RL 0.85 79.0 ± 0.4 10

GraphNAS-S RL 0.07 79.6 ± 0.3 8

GraphNAS RL 0.20 80.5 ± 0.3 7

ALGNN-S PSO 0.32 81.2±0.3 2

ALGNN PSO 0.03 80.9±0.5 1.5

fh = Acc(GraphNet(w∗(xp(M)),Dval) (7)

where xp represents the solution to hyperparameter layer search and w∗ denotes
the associated weights.

4 Experiments

Datasets Details. The datasets are divided into two categories: transductive
learning tasks and inductive learning tasks. For the transductive learning tasks,
we use the datasets Cora, Citeseer, and Pubmed obtained from semi-GCN [12]
to ensure a consistent comparison. We follow the same setting used in semi-
GCN that allows 20 nodes per class for training, 500 nodes for validation and
1,000 nodes for testing. In inductive learning tasks, the experiment dataset is
the protein-protein interaction (PPI) [8].

Implementation Details. We implemented ALGNN using PyTorch, and com-
pleted the implementation of the GNN message passing layer in PyTorch Geo-
metric 1. In the search process, with repeated experiments, the hyperparameters
of our MOPSO algorithm are set as follows. We set the number of MOPSO par-
ticles to 15, and the dimensions of the particles change according to the number
of message passing layers. The number of iterations Km of the message passing
layer is set to 50, and the number of iterations Kp of the hyperparameter search
is set to 30. The hyperparameters c1, c2 of the particle velocity update are both
set to 1.8, and w is set to 0.8.

To ensure a consistent comparison with the state-of-the-art GNN NAS meth-
ods, we set the number of GNN layers to 2 in transductive learning tasks and 3 in
inductive learning tasks. The training epoch is 300. In the message passing layer
search, We apply the L2 regularization with λ = 0.0005, dropout probability dp
= 0.6, and learning rate lr = 0.005 as the default parameters. For all searches
and training, we used a single NVIDIA GeForce RTX 2080Ti.

1 https://github.com/rusty1s/pytorch geometric.

https://github.com/rusty1s/pytorch_geometric
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Fig. 3. Per-epoch training time and inference latency comparison between GraphNAS
and ALGNN on two tasks and four datasets. The performance numbers are normalized
by the GraphNAS. GNN architectures designed by ALGNN provide significant speed-
ups.

4.1 Classification Performance and Efficiency

Table 3 summarizes the performance of ALGNN and the baselines on the
three transductive learning datasets. From Table 3, we observe the GNN model
designed by our method achieves better performance compared with baselines
(including human experts [6,13], random, and other NAS methods) across all
datasets. Without computation cost constraints, ALGNN-S can get a slightly
better performance model, but the scale of the network in terms of parameter
size is not competitive. With the addition of multi-objective search conditions, a
model with slightly better performance and extremely low parameter and com-
putational consumption can be obtained.

In terms of search efficiency, since the MOPSO algorithm does not need
to train the controller, the MOPSO search process only related to the com-
putation cost for training the model. Without parameter sharing, the search
efficiency (i.e., GPU time) of MOPSO and the state-of-the-art RL-based Graph-
NAS is shown in Table 4. ALGNN achieves comparable performance to both the
GraphNAS generated architectures with 0.2× search cost and 6× less number
of parameters respectively.

4.2 Effectiveness Validation of Multiple Objective

We further study the effectiveness of the ALGNN multi-objective search algo-
rithm. In ALGNN, we set the second target as the computational cost of the
GNN model to constrain the parameters and computational complexity. Figure 3



510 R. Cai et al.

Fig. 4. Node classification accuracy vs. model parameters comparison on transductive
learning task. On all three datasets, ALGNN could find more accurate solutions with
fewer parameters.

compares our models with other methods in terms of both accuracy performance
and parameters. In the three transductive learning datasets, the top-5 accuracy
model designed by ALGNN is competitive in terms of parameter quantity and
accuracy performance. Meanwhile, Fig. 4 compares the per-epoch training time
and inference latency between the Top-1 GraphNAS and ALGNN model across
all the four datasets. Compared to GraphNAS, ALGNN can improve the training
and inference performance by up to 2.3× and 2.4×, respectively.

4.3 Ablation Studies

Here, we verify the disturbance effect of the MOPSO algorithm. In Sect. 3.4, we
mentioned that when the particle swarm is too crowded and the search algorithm
trapped into the local optimum, we perturb and update Pbest and Gbest. From
Fig. 5, we can observe that adding perturbation helps the swarm to avoid local
optima during iteration to search for a better position. It is worth mentioning
that the double perturbation is more efficient than the single perturbation in the
iteration.

Fig. 5. ALGNN without perturbation, with single perturbation, and with double per-
turbation during 50 iterations.
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5 Conclusions

We proposed a neural architecture search method ALGNN for designing
lightweight graph neural networks. ALGNN uses a multi-objective optimization
algorithm to restrict the network scale and computation cost of graph neural net-
works. With the analysis of the message passing process in GNN, we defined an
evaluation standard MCost for GNN consumption cost. We enlarged the search
space and added hyperparameters that affect model performance. Experiment
results showed that ALGNN can generate a lightweight GNN model that has
comparable performance with state-of-the-art Graph NAS methods. The study
also revealed that the search process of ALGNN is more efficient than the current
Graph NAS methods.
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Abstract. In recent years, automated machine learning (AutoML) has
received widespread attention from academia and industry owing to its
ability to significantly reduce the threshold and labor cost of machine
learning. It has demonstrated its powerful functions in hyperparame-
ter optimization, model selection, neural network search, and feature
engineering. Most AutoML frameworks are not specifically designed to
process graph data. That is, in most AutoML tools, only traditional
neural networks are integrated without using a graph neural network
(GNN). Although traditional neural networks have achieved great suc-
cess, GNNs have more advantages in processing non-Euclidean data (e.g.,
graph data) and have gained popularity in recent years. However, to the
best of our knowledge, there is currently only one open-source AutoML
framework for graph learning, i.e., AutoGL. For the AutoGL framework,
traditional AutoML optimization algorithms such as grid search, random
search, and Bayesian optimization are used to optimize the hyperparame-
ters. Because each type of traditional optimization algorithm has its own
advantages and disadvantages, more options are required. This study
analyzes the performance of different evolutionary algorithms (EAs) on
AutoGL through experiments. The experimental results show that EAs
could be an effective alternative to the hyperparameter optimization of
GNN.

Keywords: Automatic graph learning · Evolutionary algorithms ·
AutoML

1 Introduction

Automated machine learning (AutoML) [1–3] refers to the automation of the
entire machine learning process from model construction to application. Com-
pared with traditional machine learning, AutoML can achieve results equivalent
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to or better than human experts with no or few human interventions. Therefore,
AutoML can lower the threshold of algorithm learning and use; thus, it can be
helpful for applications in machine learning algorithms in real scenarios.

Most of the existing AutoML research and frameworks do not consider the
particularity of graph data, therefore they cannot be directly applied to graph
machine learning models [4]. Many research problems in different fields can be
naturally modeled into graph machine learning, such as social media analysis
[5], recommendation systems [6], and protein modeling. Although traditional
deep learning methods have achieved great success, their performance in pro-
cessing non-Euclidean spatial data may be unsatisfactory [7,8]. For example,
in e-commerce, a graph-based learning system can use the interaction between
users and products to make very accurate recommendations, but the complexity
of graphs makes existing deep learning algorithms face huge challenges [6]. This
is because the graph is irregular; that is, each graph has an unordered node with
a variable size, and each node in the graph has a different number of adjacent
nodes. The characteristics of graph data lead to some important operations (such
as convolution) that are easy to calculate in image processing no longer suitable
for direct use in graph data [7]. In addition, a core assumption of existing deep
learning algorithms is that data samples are independent of each other [7]. For
graphs, this is not the case. That is, each data sample (i.e., a node) in the graph
has edges related to the other nodes. This information can be used to capture the
interdependence between instances [7]. Therefore, graph neural networks (GNNs)
[9] have been proposed to specifically process graph data. Compared with tra-
ditional neural networks, GNNs have better reported experimental results in
processing graph data. Thus, this research line has received widespread atten-
tion recently [10]. Typical GNNs include graph convolution networks (GCNs)
[11] and graph attention networks (GAT) [12].

Automatic graph learning (AutoGL) refers to AutoML for graph data.
According to [4], AutoGL is the first open-source automatic graph learning
toolkit1 that was released on December 21, 2020 [4]. This tool supports fully
automatic machine learning on graph data, implements typical GNNs including
GCN and GAT, and supports the two most common tasks in graph machine
learning, that is, node classification and graph classification. Hyperparameter
optimization (HPO) algorithms mainly include grid search, random search, sim-
ulated annealing, and Bayesian optimization methods. However, each HPO algo-
rithm adopted in AutoGL has its own disadvantages. For example, grid search
is not efficient, because it tries every possible combination of hyperparameters.
Random search generally performs better than grid search in previously reported
results; however, the obtained results may still not be good in the case of limited
computing resources. Simulated annealing uses a single individual for optimiza-
tion, leading to the final solution having a certain dependence on the initial
solution. Gradient descent requires gradient information, which typically cannot
be obtained for the model training process because only the input and output of

1 https://github.com/THUMNLab/AutoGL.

https://github.com/THUMNLab/AutoGL
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the models are available during the tuning process. Therefore, we require more
HPO options for the AutoGL.

In this study, we attempted to apply evolutionary algorithms (EAs) to
AutoGL, as a class of nature-inspired population-based stochastic search algo-
rithms. Because searching is based on a population of candidate solutions,
instead of a single one, EAs have good adaptability and robustness [13]. More-
over, no or few restrictions are required for cost functions, therefore EAs are
suitable for solving complex problems that cannot be solved well by traditional
methods [14,15]. Therefore, EAs have been widely used to solve various opti-
mization problems in practical applications [16–19].

Researchers may be concerned about two research questions concerning the
application of EAs in automatic graph learning. The first question is whether
EAs perform better than other traditional HPOs for AutoGL. Second, EAs are
so diverse that researchers may find it difficult to choose which EA to apply
in their own experiments, or they may need to spend an unexpected time to
compare.

This study focuses on analyzing the above two research questions through
experiments. Both the topology and learning parameters of GNNs were encoded
into chromosomes for simultaneous optimization using different EAs. Several
EAs have been applied, and a number of experiments on two real-world datasets
have been performed. To the best of our knowledge, this is the first study to
compare the experimental performance of various EAs for AutoGL. The exper-
imental results show that EAs could be an effective alternative to the HPO of
AutoGL.

In summary, the contributions of this study are as follows:

1. To the best of our knowledge, this is the first study to apply EAs to the
AutoGL framework, where AutoGL is the first open-source AutoML frame-
work for graph learning.

2. An experimental analysis was conducted of the performance of different EAs
for AutoGL through extensive experiments. This study may have reference
value for researchers attempting EAs in this field.

The rest of this paper is organized as follows. Details of the algorithm is
given in Sect. 2. The experiments are discussed in Sect. 3, and Sect. 4 concludes
the paper.

2 Approach

In this section, we introduce the motivation of this study and the specific oper-
ation process of the method mentioned.

2.1 Motivation

The open-source toolkit AutoGL [4] shares various HPO algorithms for GNNs,
such as grid search, random search, simulated annealing, and Bayesian optimiza-
tion methods. However, there are disadvantages detailed in Fig. 1. Therefore, we
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Traditional HPO algorithms in AutoGL

Grid search

Try every possible combination of
hyperparameters

Combinatorial explosion

Random search

Try random combination of
hyperparameters

Random performance

Bayesian optimization

Reliance on the random initialization

No better performance than
random search some times

1. More options for HPO algorithms in AutoGL

HPO algorithms with EA in AutoGL
EA searches the solution based on a population of candidate solutions, instead of a single one, leading to better

adaptability and robustness.

2. Which type of EAs could we choose? 

Differential evolution (DE) Evolutionary strategy (ES) Genetic algorithm (GA)

3. Which EA in each type own better performance? 

DE best bin DE best L DE rand bin DE rand L DE targetToBest bin DE targetToBest L

DE currentToBest bin DE currentToBest L DE currentToRand

ES 1 plus 1 ES miu plus lambda EGA SEGA SGA studGA

4. How to set the values of parameters in EA? 

Mutation probability; crossover probability; and population size.

Fig. 1. The motivation of this study to present an experimental study of AutoGL with
EA. The main task of the study is to solve the four points.

attempt to show more options for HPO algorithms for GNNs, i.e., AutoGL with
EA algorithms.

EA has been widely used to solve various optimization problems [20,21]. In
this study, EA is applied to HPO for GNNs to attempt to address the above dis-
advantages of the existing HPO algorithms, as reflected in the following aspects.

– Because some existing HPO algorithms (e.g., simulated annealing and
Bayesian optimization methods) use a single individual for optimization, the
final solution has a certain dependence on the initial solution. EA is intro-
duced into HPO algorithms because it searches the solution based on a pop-
ulation of candidate solutions, instead of a single one, owing to its good
adaptability and robustness [13,14].

– Some existing HPO algorithms (e.g., grid search and random search) are
not efficient when computing resources are limited. HPO algorithms using
EA obtain high-quality individuals through population evolution based on
heuristic information.

To facilitate researchers to choose AutoGL with EA in applications, the fol-
lowing research points are analyzed in the experimental study, as shown in Fig. 1:
1) More options for the HPO algorithm are displayed. 2) Various types of EAs are
compared. 3) EAs in each type are compared. 4) Different values of parameters
in EA are set to analyze the performance.
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Table 1. Search space of discrete parameters

Parameter name Type Min Max Scaling type

Learning Rate P1 float 0.01 0.05 Log

Weight Decay Rate P2 float 0.0001 0.001 Log

Dropout Rate P3 float 0.2 0.8 Linear

Table 2. Search space of continuous parameters

Parameter name Searching space

Number of Hidden Units H1 {4, 5,..., 16}
Number of Attention Heads H2 {6, 8, 10, 12}
Activation Function P4 {leaky relu, relu, elu, tanh}
Max Epoch P5 {100, 101,..., 300}
Early Stopping Round P6 {10, 11,..., 30}

In this section, AutoGL with EA is modeled (corresponding to point 1). Then,
the experimental results are analyzed from the aspects of the abovementioned
points 2 to 4.

2.2 Optimized Parameters

In this subsection, AutoGL with EA is used to optimize the hyperparameters of
two typical GNN models, i.e., GCN and GAT.

In GCN, the number of layers in the convolution structure was fixed, and
only the number of units in the hidden layer (H1) was adjusted. It is because
when the number of layers is above two, the effect is not greatly improved, and
when the number of layers is too high, the training effect is significantly reduced
[11]. In GAT, the number of nodes in the hidden layer (H1) of the model and
the number of multi-head-attentions (H2) in the GAT model participated in the
optimization of the model, and the same number of hidden layers was fixed.

In addition to the abovementioned hyperparameters, the common hyperpa-
rameters of GCN and GAT are the learning rate (P1), weight decay rate (P2),
dropout rate (P3), activation function (P4), maximum epoch (P5) and early
stopping round (P6).

The parameters involved in the optimization are discrete and continuous, and
information such as the range of values for continuous parameters is presented
in Table 1. The range of the discrete parameters is listed in Table 2.

2.3 Encoding

The encoding methods of the hyperparameters in GCN and GAT are given in
this subsection.

The encoding process contains the following two parts: the encoding of the
topological structure of the network and the encoding of the hyperparameters
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Hidden Unit Attention head Learning Rate Weight Decay
Rate Dropout Rate Activation 

Function Max Epoch Early Stopping 
Round

Hidden Unit: 12, Attention head: 8, Learning Rate: 0.015, Weight Decay Rate: 0.005, Dropout Rate: 0.5, Activation Function: relu,
Max Epoch: 250, Early stopping round: 24

Encoding

2.484906 -4.1997051.00000 -5.298317 0.500000 1.000000 250.000000 24.000000

Fig. 2. An example encode of solution

in the training process, where the former is embodied in the coding of the num-
ber of hidden units and attention heads. To better participate in the search in
the EA, the data types of each parameter were re-coded and the upper and
lower limits were set; discrete parameters, such as categories and integers, were
re-coded as floating-point numbers to facilitate the operation of the EA, and
some parameters were logged before they participated in the optimization of the
EA. At each evaluation, it was converted from the floating-point number to the
original data type through a certain decoder and within the valid range.

For GCN model, chromosome is represented as Eq. (1).

f = {H∗
1,P∗

1 ,P∗
2 ,P3,P4,P5,P6} . (1)

For GAN model, chromosome is represented as Eq. (2).

f = {H∗
1,H∗

2,P∗
1 ,P∗

2 ,P3,P4,P5,P6} , (2)

where H∗
1 represents the number of hidden units H1 transformed as lnH1. H∗

2

represents the mapping of the value H2 in the discrete value space to the rep-
resented ordinal number. P∗

1 represents the number of units P1 transformed as
lnP1. P∗

2 represents the number of unit P2 been transformed as lnP2. P∗
4 repre-

sents the mapping of the value P4 in the discrete value space to the represented
ordinal number. f represents the individuals of this set of hyperparameters.

For example, a set of hyperparameters are as follows, the number of hidden
units: 12, the number of attention heads: 8, learning rate: 0.015, weight decay
rate: 0.005, dropout rate: 0.5, activation function: relu, max epoch: 250, and
early stopping round: 24. They are encoded as (2.484906, 1.00000, –4.199705,
–5.298317, 0.500000, 1.000000, 250.000000, 24.000000), for a more intuitive view,
referred to Fig. 2.

2.4 Parameter Evolution

The objective of HPO algorithms is to optimize the individual fitness, where the
individual represents the encoded chromosome regarding the hyperparameters.
The following equations are used to evaluate the fitness of individual as shown
in Eq. (3).

fitness(Ii) = loss(Modelopt(i)), (3)
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Table 3. Dataset statistics [22]

Dataset Classes Nodes Edges Features

Cora 7 2708 5429 1433

Citeseer 6 3327 4732 3703

where Ii denotes the individual. fitness(Ii) denotes the fitness function of indi-
vidual Ii. loss() denotes the loss function, e.g., accuracy and logloss. Modelopt(i)
is shown in Eq. (4).

Modelopt(i) = model.train(decode(fi)), (4)

where Modelopt(i) denotes the optimized model after the training process using
the hyperparameter setting Ii. fi denotes the encoded chromosome according
to Eq. (2). decode(fi) denotes the reverse process of encoding, reversing all the
values in the gene nodes into the original format to facilitate the construction
of the model.

3 Experiment

In this section, the performance of HPO with EAs is experimentally investigated
in the following aspects. 1) The performance between the HPO with EA and
the traditional HPO algorithm is compared (Sect. 3.2) on different tasks, i.e.,
GCN and GAT. 2) The performance comparison between the HPO with various
EAs is analyzed (Sect. 3.3). 3) The effects of different parameter settings in the
EAs on the results are shown, including the mutation probability, the crossover
probability, and the population size (Sect. 3.4).

All experiments were performed on a PC with an Intel(R) Xeon(R) Gold 6151
CPU, 32 GB memory, and a GeForce RTX 2080 TI GPU. The implementation
of genetic algorithms relies on the open-source library2.

3.1 Setup

The setup is detailed in the subsection, including datasets, baselines, and metrics.

Datasets. In the experiment, two famous datasets, i.e., Cora and Citeseer are
used, where the dataset statistics [22] are presented in Table 3.

Baselines. The HPO models using various EAs were compared with the tra-
ditional HPO models with the same number of evaluations. And the parameter
setting in the experiment for EAs is shown in Table 4. The parameters are not
finely turned.

The baselines are the traditional HPO methods, shown as follows.
2 https://github.com/geatpy-dev/geatpy.

https://github.com/geatpy-dev/geatpy
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Table 4. Parameter setting

Population size Mutation rate Crossover rate Evaluation rounds

100 0.2 0.7 10000

– GCN-Random search. Random search which conducted on the GCN task.
– GAT-Random search. Random search which conducted on the GAT task.
– GCN-Bayesian optimization. Bayesian optimization which conducted on the

GCN task.
– GCN-Bayesian optimization. Bayesian optimization which conducted on the

GAT task.
– GCN-Simulated annealing. Simulated annealing (SA) which conducted on the

GCN task.
– GCN-Simulated annealing. SA which conducted on the GAT task.

The HPO with EAs applied three types of EAs, i.e., the differential evolution
(DE) algorithms, the evolutionary strategy (ES) algorithms, and the genetic
algorithms (GA). For a more comprehensive comparison, various algorithms are
chosen in each type of EAs, listed as follows. The same as the baselines, these
EAs are also conducted on the GCN and GAT tasks.

– DE: DE best bin [23], DE best L [23], DE rand bin [23], DE rand L [24], DE
targetToBest bin [25], DE targetToBest L [25], DE currentToBest bin [26],
DE currentToBest L [26], and DE currentToRand [26].

– EA: ES 1 plus 1 [27] and ES miu plus lambda [27].
– GA: EGA, SGA, SEGA [28], and studGA [29].

Metrics. The accuracy is used to quantify the performance from the classifica-
tion perspective, shown as follows. Larger values indicate a better performance.

accuracy =
TP + TN

TP + TN + FP + FN
, (5)

where TP, FP, TN,FN denote the numbers of true positives, false positives,
true negatives, and false negatives, respectively.

3.2 Comparison Between HPO with EA and Traditional HPO

Different types of EAs share the same parameter setting (detailed in Table 4) to
conduct the GCN and GAT tasks. Note that the results are the average values
from 10 independent tests to avoid accidental results.

As shown in Fig. 3, they have different performances for the tasks, how-
ever, the performance of HPO with EA is better than those of the traditional
HPO methods in most cases. It demonstrated that the HPO with EA is a good
option for AutoGL. The detailed results are displayed in Table 5. It can be found
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Fig. 3. Performance comparison between HPO with EA and traditional HPO conduct-
ing the GCN and GAT tasks on the Core and Citeseer datasets. The ordinate of each
subgraph is the accuracy (the higher, the better). It demonstrated that the HPO with
EA is a good option for AutoGL.

Table 5. Accuracy performance results among the various types of EAs

Method Cora Cora

Average

(validation)

Standard

deviation

(validation)

Average (test) Standard

deviation (test)

GCN-DE targetToBest 1 L 0.8268 0.0022 0.8247 0.0086

GCN-EGA 0.825 0.0037 0.8264 0.0093

GCN-ES 1 PLUS 1 0.8234 0.0020 0.8209 0.0053

GCN-Random (baseline) 0.8246 0.0027 0.8161 0.0058

GCN-Bayes (baseline) 0.8163 0.0042 0.8169 0.0086

GCN-Anneal (baseline) 0.8272 0.0027 0.8182 0.0083

GAT-DE targetToBest 1 L 0.8398 0.0017 0.8271 0.0058

GAT-EGA 0.845 0.0033 0.838 0.0071

GAT-ES 1 PLUS 1 0.8404 0.0020 0.8322 0.0068

GAT-Random (baseline) 0.8366 0.0027 0.8249 0.0091

GAT-Bayes (baseline) 0.8298 0.0026 0.8222 0.0083

GAT-Anneal (baseline) 0.837 0.0018 0.8253 0.0090

Method Citeseer Citeseer

Average

(validation)

Standard

deviation

(validation)

Average (test) Standard

deviation (test)

GCN-DE targetToBest 1 L 0.7414 0.0020 0.7102 0.0036

GCN-EGA 0.739 0.0031 0.7101 0.0029

GCN-ES 1 PLUS 1 0.738 0.0033 0.7057 0.0090

GCN-Random (baseline) 0.7366 0.0039 0.7045 0.0099

GCN-Bayes (baseline) 0.7267 0.0033 0.6953 0.0069

GCN-Anneal (baseline) 0.739 0.0034 0.7045 0.0074

GAT-DE targetToBest 1 L 0.746 0.0037 0.7026 0.0138

GAT-EGA 0.752 0.0042 0.7086 0.0070

GAT-ES 1 PLUS 1 0.7436 0.0041 0.6975 0.0039

GAT-Random (baseline) 0.7384 0.0034 0.7019 0.0107

GAT-Bayes (baseline) 0.7308 0.0084 0.699 0.0109

GAT-Anneal (baseline) 0.7402 0.0050 0.7026 0.0100

that the HPO with EA perform the better average values and standard devia-
tions of accuracy than the traditional HPO algorithms. Furthermore, under the



522 C. Bu et al.

(a)
(b)

(c) (d)

CD=5.27

12 11 10 9 8 7 6 5 4 3 2 1

1.2 GAT-EGA
2.65 GAT-ES 1 PLUS 1
2.75 GAT-DE targetToBest 1 L
4.15 GAT-Anneal
4.3 GAT-Random
6.5 GAT-Bayes7.95GCN-Anneal

8.15GCN-DE targetToBest 1 L
9.2GCN-Random
9.3GCN-EGA
10.15GCN-ES 1 PLUS 1
11.7GCN-Bayes

CD=5.27

11 10 9 8 7 6 5 4 3 2 1

2.3 GAT-EGA
3.7 GAT-ES 1 PLUS 1
5.1 GAT-DE targetToBest 1 L

5.75 GCN-DE targetToBest 1 L
5.85 GAT-Random
6.05 GCN-EGA6.75GAT-Anneal

7.15GAT-Bayes
7.85GCN-ES 1 PLUS 1

8.2GCN-Anneal
9.15GCN-Bayes

10.15GCN-Random

CD=5.27

12 11 10 9 8 7 6 5 4 3 2 1

1.4 GAT-EGA
3.05 GAT-DE targetToBest 1 L
4.1 GAT-ES 1 PLUS 1
5.3 GCN-DE targetToBest 1 L
6.3 GAT-Anneal

6.85 GCN-EGA6.85GAT-Random
6.9GCN-Anneal
7.3GCN-ES 1 PLUS 1
8.25GCN-Random
10.2GAT-Bayes
11.5GCN-Bayes

CD=5.27

12 11 10 9 8 7 6 5 4 3 2 1

3.9 GCN-EGA
4.15 GCN-DE targetToBest 1 L
4.6 GAT-EGA

5.85 GCN-ES 1 PLUS 1
6.05 GAT-DE targetToBest 1 L
6.25 GCN-Anneal6.5GCN-Random

6.65GAT-Anneal
6.9GAT-Random
8.6GAT-Bayes
9.2GAT-ES 1 PLUS 1
9.35GCN-Bayes

Nemenyi Test for Validation Accuracy On 
Cora dataset 

Nemenyi Test for Testing Accuracy On 
Cora dataset 

Nemenyi Test for Validation Accuracy On 
Citeseer dataset 

Nemenyi Test for Testing Accuracy On 
Citeseer dataset 

12

Fig. 4. Nemenyi test results for the validation and testing accuracy on the GCN and
GAT tasks. The average rank of each algorithm is marked along the axis (lower ranks
to the right). The models on the same horizontal line have a similar prediction perfor-
mance. The average ranks of the HPO with EA in the validation and testing accuracy
outperform those of the traditional HPO methods.

parameter settings and experimental task in this paper, the type of GA owns
the excellent performance in the tasks, comparing with DE and ES.

To provide a comprehensive performance comparison between the HPO with
EA and traditional HPO, the Friedman and Nemenyi tests [30] were conducted
in the experiments, which are widely used to statistically compare different algo-
rithms over multiple datasets. As shown in Fig. 4, the average ranks of the HPO
with EA in the validation and testing accuracy outperform those of the tradi-
tional HPO methods.

In the Nemenyi tests, it is considered that a significant difference exists if the
average ranks of two models differ by at least one critical difference (CD), which
is calculated using a 5% significance level. The CD diagrams for the validation
and testing accuracy are plotted in Fig. 4, where the average rank of each algo-
rithm is marked along the axis (lower ranks to the right). In Fig. 4, the models
on the same horizontal line have similar prediction performance.

3.3 Comparison Among Various Types of EAs

This subsection is to show the performance of various EAs in DE, ES, and GA
types, and therefore to provide some options for tasks in AutoGL. They are
compared on the GCN and GAT tasks.

Table 6 shows that, for the tested GCN tasks, DE rand bin performs better
than other tested DE variants, and ES miu plus lambda performs the best for
the tested ES variants. For the GAT tasks, DE best L and ES miu plus lambda
performs better than other tested DE and ES variants, respectively. Note that
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Table 6. Accuracy performance comparison among the various types of EAs

Method GCN GAT

Cora Citeseer Cora Citeseer

DE best bin 0.823 0.703 0.843 0.712

DE best L 0.828 0.697 0.849 0.714

DE rand bin 0.832 0.722 0.838 0.712

DE rand L 0.823 0.702 0.820 0.709

DE targetToBest bin 0.826 0.703 0.832 0.718

DE targetToBest L 0.826 0.705 0.839 0.713

DE currentToBest bin 0.826 0.705 0.838 0.729

DE currentToBest L 0.827 0.709 0.823 0.706

DE currentToRand 0.827 0.703 0.825 0.720

ES plus 0.814 0.704 0.823 0.706

ES miu plus lambda 0.816 0.719 0.828 0.721

EGA 0.825 0.721 0.845 0.709

SEGA 0.817 0.717 0.847 0.710

SGA 0.818 0.710 0.838 0.714

studGA 0.810 0.722 0.832 0.710

these are under the specific parameter settings and experimental tasks in this
paper.

In addition, the effect of EA parameters on the tested tasks is shown in Fig. 5.
The adjusted parameters are population size, crossover rate, and mutation rate.

3.4 Findings

To summary, several findings are concluded as follows. It should be pointed
out that the analysis and the findings are under the experimental settings in
this paper. The comparison results may be different in different experimental
settings or tasks.

1. When the classification accuracy on the verification set is considered as the
target to be optimized, most HPO methods using EAs perform better than
the optimal method among traditional HPO methods.

2. When considering the type of EAs in the HPO of GNNs for good performance,
GA is a good choice based on the experiments under the specific parameter
setting in this paper.

3. According to our experiments, DE rand bin, DE best L, and ES miu plus
lambda might be good options for optimizing the GCN and GAT. And the
experimental results of genetic algorithm are relatively stable for the tested
cases.
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Fig. 5. Influence of the parameters of evolutionary algorithm, including the mutation
probability, the population size, and the crossover probability. Three algorithms, i.e.,
DE targetToBest 1 L, EGA, and ES 1 Plus 1, are conducted on the GCN and GAT
tasks on the validation and testing data of Cora and Citeseer datasets.

4 Conclusion

In this study, we aim to demonstrate the validity of EAs in the HPO work of
automatic graph neural network learning. We have performed many experiments
to test the performance differences of different EAs. The experiments are con-
ducted on the Cora and Citeseer datasets. The experimental results show that
the EAs could be an effective alternative to the hyperparameter optimization
of GNN, which could provide a reference for later researchers interested in this
field.
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Abstract. Dendritic cell algorithm (DCA) is a classification algorithm
that simulates the behavior of dendritic cells in the tissue environment.
Selecting the most valuable attributes and assigning them a suitable
signal categorization are crucial for DCA to generate input signals on
the data pre-processing and initialization phase. Several methods were
employed (e.g., Correlation Coefficient and Rough Set Theory). Those
studies preferred to measure the importance of features based on the
degree of relevance with the class and determined a mapping relation-
ship between important features and signal categories of DCA based on
expert knowledge. Generally, those researches ignore the effect of unim-
portant features, and the mapping relationship determined by expertise
may not produce an optimal classification result. Thus, a hybrid model,
GPSO-DCA, is proposed to accomplish feature selection and signal cat-
egorization based on Grouping Particle Swarm Optimization (GPSO)
without any expertise. This study transforms feature selection and signal
categorization into a grouping task (i.e., the selected features are divided
into different signal groups) by redefining the data coding and veloc-
ity updating equations. The GPSO-DCA searches the optimal feature
grouping scheme automatically instead of performing feature selection
and signal categorization. The proposed approach is verified by employ-
ing the UCI Machine Learning Repository with significant performance
improvement.

Keywords: Dendritic cell algorithm · Grouping particle swarm
optimization · Input signal generation.

1 Instruction

DCA is a binary classification algorithm inspired by the functioning of the den-
dritic cells in the natural immune system [1,2]. DCA classifies the data items
into two classes, class 1: normal; or class 2: anomalous. DCA is designed for
low-dimensional space, and a pre-processing and initialization phase generally is
required to generate suitable input signals with three signals for DCA. The input
of DCA contains three signals: pathogen-associated molecular patterns (PAMP),
c© Springer Nature Switzerland AG 2021
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danger signals (DS), and safe signals (SS) [2]. The work of this phase includes
two components: feature selection/extraction and signal categorization [3], and is
crucial for DCA to obtain reliable results. The aim of those works is to appropri-
ately map a given problem domain to the input space of DCA. Feature extraction
projects the original high-dimensional features to a new feature space with low
dimensionality, and feature selection, on the other hand, directly selects a subset
of relevant features for model construction [4]. After feature selection/extraction,
each selected/extracted feature is assigned to a specific signal category, either
PAMP, DS, or SS.

Several researchers select useful features from the original data set to make
up a feature subset. Some other researchers use the feature extraction method
to generate new feature space with low dimensionality. In the pre-processing and
initialization phase of DCA, Gu et al. [5] applied Principal Component Anal-
ysis(PCA), a feature extraction technique, to project the original data onto a
new feature subspace with low dimensionality. Due to destroying the implied
meaning of features in the original data set, feature extraction techniques have
received criticism for performing DCA pre-processing work. Feature selection is
another dimensionality reduction technique, and various selection methods are
researched such as Correlation Coefficient (CC) [5], null Linear Discriminant
Analysis (LDA) [6] and Rough Set Theory(RST) [7–9]. Alok Sharma et al. [6]
used the null LDA method to arrange the full features in descending order, and
then the r highest-ranked features were selected in turn to form a feature subset.
They used null LDA method and nearest neighbor classifier to compute the clas-
sification accuracy of this feature subset. They proposed that those works with
different r perform repeatedly, and the feature subset with optimum r main-
tained good classification ability without significant loss of discriminant infor-
mation. Due to the good performance of feature selection technology in machine
learning, Gu et al. [5] attempted to apply the CC method to perform the pre-
processing work of DCA. They measured the relevance between attributes and
the class as the importance of attributes. The features whose importance degree
exceeded a certain threshold were selected to make up a feature subset. Chelly
et al. [7–9] proposed RST-DCA, RC-DCA, and QR-DCA by hybridizing the
Rough Set Theory and DCA to select features for DCA using RST. RST-DCA
and RC-DCA measured the importance degree of a feature by computing the
difference between the positive region of an original data set and the positive
region of the data set without this feature. Based on the importance degree of
features, a family of feature reducts and a core of these reducts were achieved
for feature selection. Due to the expensive costs for calculating reducts and core,
QR-DCA adopted the QuickReduct algorithm to generate only one reduct. For
DCA, those approaches [5,7–9] based on the CC method and RST filter weakly
important or unimportant features and select the most important features with
their data-intrinsic methods. For signal categorization of DCA, each selected
feature is assigned to a particular signal category based on the ranks of features
and signal categories, or just by users. Features in the original feature set are
ranked according to their relevance/importance degree of the classification. A
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rank of input signals of the DCA is achieved based on their significance in the
algorithm’s classification stage. For example, Gu et al. [5] proposed that values
of the PAMP or Danger signal are positively correlated to class anomalous, and
the value of the safe signal is positively correlated to class normal, according to
the semantics of the DCA’s signal categories. In [5], features, highly positively
correlated or highly negatively correlated to the class, were assigned to a spe-
cific signal based on their importance. The ranks of feature and input signals
are derived from the intuitions, similar to the principle used in manual meth-
ods with expert knowledge. RST-DCA [7] assigned only one attribute randomly
from a reduct to both PAMP and SS based on specialist knowledge, as well as
combined the rest features of this reduct to represent DS. RC-DCA [8] and QR-
DCA [9] assigned attributes of the core to PAMP/SS based on expert knowledge,
as well as combined the rest of a reduct to represent DS. However, it is essen-
tial to realize that relevance/importance according to those definitions does not
imply membership in the optimal feature subset, and the irrelevance does not
imply that a feature cannot be in the optimal feature subset [4]. Hence, due to
ignoring the effects of those filtered features, those approaches may not generate
the optimal feature subset. For signal categorization of DCA, expert knowledge
or artificial experience used in the research mentioned before may not assign
features to the most appropriate signal. Thus, the process of feature selection
and signal categorization based on CC method and RST may lead unsatisfied
classification results.

Aiming to overcome those problems, this study proposes a novel method,
GPSO-DCA, to perform the feature selection and signal categorization in a
coherent procedure automatically without any artificial experience. This study
transforms the tasks of feature selection and signal categorization into a job of
feature grouping. Divide features of original data set into four groups: PAMP,
DS, SS, and UN. The group of UN contains all the features unselected. The
PAMP group includes all the attributes assigned to the signal PAMP, and so
do DS, SS. The GPSO-DCA, hybridizing GPSO and DCA, automatically gives
each feature in the original data set to a group, either PAMP, DS, SS, or UN.
A search space is composed of all possible grouping schemes. DCA is considered
a black box (i.e., no knowledge of DCA is needed, just the interface) to evalu-
ate schemes’ performance. The GPSO is the search engine to find an optimal
scheme that wraps around the DCA. The classification results of the mentioned
techniques (e.g., DCA base CC, RST-DCA, RC-DCA, QR-DCA) are discussed
and compared with GPSO-DCA on the UCI Machine Learning Repository. This
study also compares GPSO-DCA with the K-Nearest Neighbor (KNN) [10] and
the Decision Tree (DT) [11], the potent tools for classification in Machine Learn-
ing. Through the experiments, the GPSO-DCA performs better than them and
is found successful enough to obtain good classification results.

The remaining paper is organized as follows: Sect. 2 reviews the brief intro-
duction related to the DCA and the GPSO. The novel model, GPSO-DCA, is
proposed in Sect. 3. The experiments, the preparation of the investigation, the
result, and the analysis are elaborated in Sect. 4. Finally, the conclusion and
future work are reported in Sect. 5.
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2 Related Work

This section provides a brief introduction to Dendritic Cell Algorithm and Group
Particle Swarm Optimization.

2.1 Dendritic Cell Algorithm

The behavior of dendritic cells depends on the concentration of the immuno-
logical signals in a tissue environment, namely pathogen-associated molecular
patterns (PAMP), danger signals (DS), safe signals (SS) [3]. Inspired by the
behavior and mechanism of dendritic cells, GreenSmith [2] proposed a binary
classification algorithm, DCA. In the algorithm, the input signals of DCA cor-
respond to those immunological signals respectively. Each data item is denoted
as an antigen to be processed by detectors. The algorithm contains four main
phases: the pre-processing and initialization phase, the detection phase, the con-
text assessment phase, and the classification phase [3]. In the pre-processing and
initialization phase, the appropriate features should be chosen from the origi-
nal data sets and assigned a specific signal category, either as PAMP, DS, or
SS. After that, combine the signal categories and antigens to achieve a signal
database. Each row in the signal database represents an antigen, with three
attributes: PAMP, DS, and SS, to be classified. A weighted sum equation and
a weight matrix are utilized to compute the input signals mentioned previously
throughout the detection phase. When a DC detects an antigen, the input signals
are transformed into three interim signals, known as the costimulatory molecule
signal value (CSM), the semi-mature signal value (SEMI), and the mature signal
value (MAT) [3]. The three interim signals of a DC are continuously accumulated
during the process of antigen processing. Equation (1) shows the weighted sum
equation. The weights of PAMP, DS, and SS used for generating CSM respec-
tively are [2,1,2], the weights for SEMI are [0,2,–1], and the weights for MAT is
[2,1,–2].

(CSM,SEMI,MAT ) =
T∑

n=1

WPAMP × CPAMP

|WPAMP | + |WSS|+|WDS |

+
T∑

n=1

WDS × CDS

|WPAMP | + |WSS|+|WDS |

+
T∑

n=1

WSS × CSS

|WPAMP | + |WSS|+|WDS |
,

(1)

where the CPAMP represents the value of input signal PAMP , the CSS repre-
sents the value of input signal SS, the CDS represents the value of input signal
DS, the WPAMP is the weight for CPAMP , the WDS is the weight for CDS , the
WSS is the weight for CSS , T is the number of antigens detected by a DC.

In the context assessment phase, the three cumulative interim values are
used to assess the state of the context around a DC. The CSM measures the
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concentration of antigens around a DC, and a migration threshold is incorporated
into the DCA. As soon as the cumulative CSM of a DC exceeds the migration
threshold, the DC ceases to detect new antigens and its context is assessed. If
the cumulative SEMI of the DC is more than its cumulative MAT, the antigens
around the DC are considered as normal, and vice versa.

In the algorithm, a DC can detect many antigens, and an antigen can also
be detected by many DCs. Therefore, the class of an antigen is determined by
analyzing and computing the decisions of DCs that have detected this antigen.
In the last phase, the Mature Context Antigen Value (MCAV) is incorporated
into the DCA, shown as Eq. (2). In general, there is a threshold value of MCAV
to represent the probability that an antigen is anomalous. If the MCAV of an
antigen exceeds the threshold value mentioned before, the antigen is labeled as
anomalous, and vice versa.

MCAV =
DCmature

DCsemi + DCmature
, (2)

where DCmature is the number of DCs that label the antigen as anomalous; and
DCsemi is the number of DCs that label the antigen as normal.

2.2 Grouping Particle Swarm Optimization

Grouping Particle Swarm Optimization (GPSO) is an extension of the traditional
Particle Swarm Optimization to solving grouping problems. The PSO. [12], first
proposed by Kennedy and Eberhart, is inspired by observing the bird flocking
and fish schooling where the synchrony of flocking behavior is through maintain-
ing optimal distances between individuals and their neighbors. PSO preserves a
swarm of particles that fly through a virtual search space and communicate with
each other to find the global optimum. Each position visited by particles rep-
resents a potential solution to the problem. The search of each particle (whose
position represents a possible solution to the problem) is simultaneously guided
by two positions, the personal best position and the global best position found
by the whole swarm. The main components of PSO are the grouping scheme rep-
resentation and velocity updating equations. Compared with PSO, GPSO uses
a special encoding scheme (group encoding) to take into account the structure
of grouping problems and redefines the velocity updating equations.

Due to the excellent grouping capacity, Ali Husseinzadeh Kashan et al. [13]
applied GPSO to the single batch machine scheduling problem and bin packing
problem, and results were compared with the results reported by GGA. Compu-
tational results testified that GPSO was efficient and could be regarded as a new
solver for the wide class of grouping problems. Xiaorong Zhao et al. [14] con-
structed an elite swarm to replace the worst one in every iteration for improving
the performance of GPSO. In addition, they applied a simple mutation operator
to the best solution so as to help it escape from local optima. Their GPSO was
compared with several variants of PSO and some state-of-the-art evolutionary
algorithms on CEC15 benchmark functions. As demonstrated by the experimen-
tal results, their proposed GPSO outperformed its competitors in most cases.
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Experimental results show that GPSO is promising to solve the grouping prob-
lem. In this paper, GPSO is firstly applied to perform the feature selection and
signal categorization synchronously for DCA.

3 Proposed Method

As showing in Fig. 1, a novel method named GPSO-DCA is presented that
hybridizes the DCA with GPSO. GPSO-DCA is a framework that contains
three components, search space, search method (GPSO), and evaluation method
(DCA).

Fig. 1. The model of GPSO-DCA.

This study transforms the tasks of feature selection and signals categorization
into a procedure of feature grouping. A feature grouping scheme is a solution for
generating the input signal of DCA. After that, a search space is constructed
which contains all the possible grouping schemes. Aiming to find an optimal
grouping scheme, DCA is a part of the performance evaluation function, and
GPSO is a search method wrapping around DCA to find the optimal group-
ing scheme. The three components, search space, search method (GPSO), and
evaluation method (DCA), are described in detail in the following sections.

3.1 Search Space

As shown in Fig. 2, the work of feature selection is to select independent features
from the original data set to construct a feature subset. The work of signal
categorization is to establish a mapping relationship between selected features
and signal categories, shown as Eq. (3).

f : (Featurei, F eaturej , F eaturek, ...) → (PAMP,DS, SS) (3)
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Establishing a mapping relation can be considered as grouping the attributes
into four groups, either PAMP, SS, DS, or UN. The features in PAMP, SS, DS
groups are the selected features, and the groups represent the special signal
categorization assigned for those features. Thus, grouping schemes of the fea-
tures represent solutions of feature selection and the possible signal categories
of selected features. Thus, the aim of the data pre-processing is to search for a
suitable feature grouping scheme.

Fig. 2. Steps of feature selection and signal categorization.

In the search space, each state represents a grouping scheme of features.
A scheme is denoted as { subsetPAMP ( Featurei ...), subsetDS ( Featurej
...), subsetSS ( Featurek ...), subsetUN ( Featureh ...) }. The group order is
unique, and { Featurei, Featurej , Featurek, Featureh, ...} are independent
features in the original data set. The subsetPAMP ( Featurei ...) represents
that the features ∈ { Featurei ... } are assigned to signal PAMP, the subsetDS (
Featurej ...) represents that the features ∈ { Featurej ... } are assigned to signal
DS, the subsetSS ( Featurek ...) represents that the features ∈ { Featurek ... }
are assigned to signal SS, and the subsetUN ( Featureh ...) represents that the
features ∈ { Featureh ... } are not assigned to any signals. Transform a state to
another by new velocity updating equations.

3.2 Evaluation Method

The evaluation method is utilized to evaluate each state in the search space. This
study adopts the classification accuracy of DCA to evaluate the performance
of states. To estimate the accuracy of DCA, this study performs classification
multiple times for 10-fold cross-validation with a particular signal database con-
tributed by a state. The average accuracy of 10 times experiments is calculated
as the performance of a state.

3.3 Search Method: GPSO

Step1: Data Encoding. In GPSO, the position of each particle represents
a state in the search space. GPSO maintains a particle swarm where the
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personal best position and the best position found by swarm guide them to
update their position. Through updating positions, GPSO searches globally
for as many schemes as possible to find the optimal. This study uses real
number {1, 2, 3, ..., N} to represent features in the original data set (N is the
amount of the total features). This study determines a 4-dimensional vector
V = { (i ..), (j ...), (k...), (h...) }, shown in Fig. 3, as a position of particles
({0 ≤ i, j, k, h ≤ N, i �= j �= k �= h}, i, j, k and h are the real number to repre-
sent independent features from the original data set). The vectors with different
orders represent different positions, e.g., { (i...), (j...), (k...), (h...) } �= { (j...),
(i...), (k...), (h...) } (i, j, k, h are the real number to represent independent
features of the original data set).

Fig. 3. Data encoding scheme of GPSO: a 4-dimensional vector V.

Step 2: Fitness Function. This study adopts the classification accuracy of
DCA to evaluate the performance of a position described in Sect. 3.2.

fitness(V ) = 10 − foldCrossV alidation(Accuracy(DCA(V ))), (4)

where V is a postion of particles, fitness(V ) is the fitness value of postion V .
Accuracy(DCA(V )) is the classification accuracy of DCA running on the signal
database based on the postion of particles V . This study uses 10-fold cross-
validation to estimate the classification accuracy of DCA.

Step 3: Velocity Updating Equations. After computing the fitness for each
particles’ position in the current swarm, the velocity updating equations are
utilized to update the positions of the whole swarm. Generally, the velocity
updating equations contain two-part: Eq. (5) and Eq. (6).

vt+1
id = wvtid + c1r1(ptid − xt

id) + c2r2(ptgd − xt
id) (5)

vt+1
id = xt+1

id − xt
id (6)

where d is the dimensionality of grouping for the positions and velocities, and
this study set d to be 4; i = 1, ..., NP , NP is the size of swarm; t represents the
number of iterations; xt+1

id is the dth group of position at the ith particle for the
(t+ 1)th iteration; pid is the currently optimal position of the ith particle at the
dth group in the tth iteration; pgd is the currently optimal position of the sarm
at the dth group in the tth iteration; vt+1

id is the velocity of ith particle at the dth
group for the (t+1)th iteration; w is the inertia weight; c1 and c2 are private and
population acceleration coefficients respectively; r1 and r2 are random numbers
between 0 and 1.
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Fig. 4. An example about three position.

In particular, this study substitutes operator “−” with a group dissimilarity
measure denoted as Distance().

Distance(G,G
′
) = 1 − Num(|G ∩ G

′ |)
Num(|G ∪ G′ |) (7)

The G and G
′
are two groups; the measure Distance(G,G

′
) is 0 to 1; if G = G

′
,

the measure is equal to 0; if G∩G
′
= ∅, the measure is equal to 0. Substituting

“−” in Eq. (5) and Eq. (6) with the Distance, the updating equations in GPSO
are introduced as follows:

vt+1
id = wvtid + c1r1Distance(pid, xt

id) + c2r2Distance(pgd, xt
id) (8)

vt+1
id = Distance(xt

id, x
t+1
id ) = 1 − Num(|xt

id ∩ xt+1
id |)

Num(|xt
id ∪ xt+1

id |) (9)

Distance(pid, xt
id) represents the number of different features between two

groups of pid and xt
id; Distance(pgd, xt

id) represents the number of different fea-
tures between two groups of pgd and xt

id; Num(|xt
id ∩ xt+1

id |) is the number of
identical features between two groups of xt

id and xt+1
id ; Num(|xt

id ∪ xt+1
id |) is the

number of all the unique features between two groups of xt
id and xt+1

id .
The shared features between two groups of xt

id and xt+1
id are one of the parts.

The xt+1
id can inherit the shared features of xt

id. The number of shared feature is
as follow:

Num(|xt
id ∩ xt+1

id |) = (1 − vt+1
id )Num(|xt

id ∪ xt+1
id |) (10)

Stripping out the shared features, this study assigns the remaining features
to special groups by some rules. Hence, this study concerns more about the
percentage of shared features in xt

id. This study defines that the nt+1
id is close to

Eq. (11).
Num(|xt

id ∩ xt+1
id |) ≈ (1 − vt+1

id )xt
id (11)

For exsample, the xt
i, pi and pg are shown in Fig. 4. The Distance() between

the four groups of xt
i, p

t
i and ptg is shown in Fig. 5. Suppose that c1r1 = 0.2;

c2r2 = 0.4; vti1 = 0.1; vti2 = 0.2; vti3 = 0.3; vti4 = 0.4; w = 0.5. After computing
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Fig. 5. The computing of Distance().

the Distance() of four groups, the four velocities of the ith particle is achieved
as follows: ⎧

⎪⎪⎨

⎪⎪⎩

vt+1
i1 = 0.5 ∗ 0.1 + 0.2 ∗ 3/4 + 0.4 ∗ 1 = 0.24,
vt+1
i2 = 0.5 ∗ 0.2 + 0.2 ∗ 2/5 + 0.4 ∗ 2/5 = 0.34,
vt+1
i3 = 0.5 ∗ 0.3 + 0.2 ∗ 1/3 + 0.4 ∗ 1/4 = 0.32,
vt+1
i3 = 0.5 ∗ 0.4 + 0.2 ∗ 1/2 + 0.4 ∗ 1/2 = 0.5

(12)

Based on the four velocities achieved before, the share features of four groups
between xt

i, pi and pg is achieved as follows:
⎧
⎪⎪⎨

⎪⎪⎩

Num(|xt
i1 ∩ xt+1

i1 |) = �(1 − 0.24) × 3� = 2,
Num(|xt

i2 ∩ xt+1
i2 |) = �(1 − 0.34) × 4� = 2,

Num(|xt
i3 ∩ xt+1

i3 |) = �(1 − 0.32) × 2� = 1,
Num(|xt

i4 ∩ xt+1
i4 |) = �(1 − 0.5) × 3� = 1

(13)

The shared features of four groups are randomly selected from the four cor-
responding groups of xt

i. The missing features are assigned a special signal cat-
egorization first according to its group in pg, and secondly according to pi.

Step 4: Termination Conditions. The search process is running iteratively
until satisfying one of the two conditions. The first condition is when the fitness
value of a position is larger than a threshold. The second condition is when the
number of iterations executes up to a certain number MaxIterations.

4 Experimentation

In this section, four data sets, (e.g., Spambase(SP), Sonar and Cancer), are
applied to validate the proposed approach from UCI Machine Learning Repos-
itory [15]. In this work, non-numerical features are transformed into numerical
features.

4.1 Experiment Setup

To study the feasibility and superiority of the proposed approach, two experi-
ments are performed. In the first experiment, GPSO-DCA, RST-DCA, RC-DCA,
QR-DCA, and the DCA based on the CC perform classification tasks on the three
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Table 1. Quantitative comparison results on the test sequences from four datasets:
SP, Sonar and Cancer. The arrow each after each metric indicates that the higher (↑)
or lower (↓) value is better. Best in bold.

Dataset Method Metric

Accuracy %( ↑) F-Measure% (↑)
SP GPSO-DCA (Ours) 94.7 93.6

RST-DCA 89.32 88.03

RC-DCA 93.35 92.21

QR-DCA 93.17 92.01

DCA based CC 93.48 92.35

Sonar GPSO-DCA (Ours) 99 98

RST-DCA 92.9 92.41

RC-DCA 89.67 89.04

QR-DCA 88.38 88.16

DCA based CC 85.16 80.67

Cancer GPSO-DCA (Ours) 99 99

RST-DCA 94.28 95.83

RC-DCA 92.71 94.68

QR-DCA 92.28 94.45

DCA based CC 90.86 93.36

data sets. Furthermore, the classification performance of the well-known classi-
fiers, the KNN and the DT, are also compared with the proposed approach. This
study utilizes 5-fold cross-valication to estimate the classification performance
of each algorithm. The stratified sampling method divides each data set into
two disjoint sets: training and testing. The sizes commonly used for those sets
are 80% of the data for the training and 20% for testing. To evaluate the per-
formance of the above approaches, the accuracy and F-measure are calculated.
Those algorithms train their model on the train data, and the results obtained
from the above experiments are generated across many trials.

4.2 Parameters Description

In this work, the size of the DC poll is set as 100, and each antigen is sampled by
up to 10 DCs. The migration threshold is the combination of the weight values
and the max signal values by using Eq. (1). The threshold of MCAV is set to 0.6.
The MaxIterations of GPSO-DCA is 10 in each experiment. The acceleration
coefficients c1 and c2 are 0.49 and 0.51 respectively. The inertia weight w is 0.5.
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Fig. 6. Comparison of classifiers average accuracy on the 3 binary data sets.

4.3 Results Analysis and Comparison

Table 1 shows the classification performance of the proposed approaches on
the UCI Machine Learning Repository. The GPSO-DCA performs classification
on the SP data set and achieves the best accuracy/f-measure (94.7%, 93.6%)
compared with RST-DCA (89.32%, 88.03%), RC-DCA (93.35%, 92.21%), QR-
DCA (93.17%, 92.35%), and DCA based CC (93.48%). Compared with those
approaches, GPSO-DCA also performs better on the other data sets with the
highest accuracy and F-measure.

This study also compares the performance of GPSO-DCA to other popular
classifiers including KNN and DT in terms of the accuracy on the three data sets.
The classification process of KNN and DT are shown in [10] and [11] respectively.
As shown in Fig. 6, when applying those approaches to the SP data set, Cancer
data set and Sonar data set, GPSO-DCA outperforms the other two approaches
in terms of accuracy.

In summary, GPSO-DCA is a feasible classification technique that accom-
plishes feature selection and signal categorization synchronously and automat-
ically without any expert knowledge. This study shows that grouping suitable
feature to signal categories is crucial. Those promising results are achieved by
the appropriate application of the GPSO in the DCA data pre-processing phase.

5 Conclusion

This study firstly transforms the works of feature selection and signal categoriza-
tion into a grouping work of features. To accomplish those works synchronously
and automatically, a novel hybrid DCA based on GPSO is proposed. This study
redefined the data coding of particles and velocity updating equations in GPSO
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to find the optimal feature grouping scheme globally without any expertise.
The future works include two parts: on the one hand, the search method with
less running time in GPSO-DCA will be explored; on the other hand, an opti-
mization method of weight matrix for GPSO-DCA should be researched to let
GPSO-DCA preserve good classification results on more challenging data sets.
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Abstract. Trust plays a role in the process of belief revision. When
information is reported by another agent, it should only be believed if
the reporting agent is trusted as an authority over some relevant domain.
In practice, an agent will be trusted on a particular topic if they have
provided accurate information on that topic in the past. In this paper,
we demonstrate how an agent can construct a model of knowledge-based
trust based on the accuracy of past reports. We then show how this model
of trust can be used in conjunction with Ordinal Conditional Functions
to define two approaches to trust-influenced belief revision. In the first
approach, strength of trust and strength of belief are assumed to be
incomparable as they are on different scales. In the second approach,
they are aggregated in a natural manner.

Keywords: Belief revision · Trust · Knowledge representation

1 Introduction

Belief revision is concerned with the manner in which an agent incorporates new
information that may be inconsistent with their current beliefs. In general, the
belief revision literature assumes that new information is more reliable than the
initial beliefs; in this case, new information must always be believed following
belief revision. However, in many practical situations this is not a reasonable
assumption. In practice, we need to take into account the extent to which the
source of the new information is trusted. In this paper, we demonstrate how an
agent can actually build trust in a source, based on past reports.

Suppose that an agent believes φ to be true, and they are being told by an
agent R that φ is not true. In this kind of situation, we will use ranking functions
to represent both the initial strength of belief in φ as well as the level of trust in
R. Significantly, however, the trust in R is not uniform over all formulas. Each
information source is trusted to different degrees on different topics. The extent
to which R is trusted on a particular topic is determined by how frequently they
have made accurate reports on that topic in the past.

In the rest of the paper, we proceed as follows. In the next section, we give
a motivating example that will be used throughout the paper. We then review
formal preliminaries related to belief revision and trust. We then introduce trust
graphs, our formal model of trust. We define a simple approach for building a
c© Springer Nature Switzerland AG 2021
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trust graph from past revisions, and prove some basic results. We then demon-
strate how trust rankings can influence belief revision in two different ways.
First, we consider the naive case, where the strength of trust is independent of
the strength of belief. Second, we consider the more complex case, where strength
of trust is aggregated with strength of belief.

2 Preliminaries

2.1 Motivating Example

Consider a situation where there are two rooms A and B located inside a build-
ing. There are two agents, which we call Absent and Present. Informally, Absent
is not in the building whereas Present is in the building. These agents commu-
nicate about the status of the lights in each room. For simplicity, we say that A
is true when the light is on in room A and we say B is true when the light is on
in room B.

We focus on the beliefs of Absent, who initially thinks that the light in room A
is on and the light in room B is off. Now suppose that Present sends a message
that asserts the light is off in A and the light is on in room B. If Present is
completely trusted, this is not a problem; the report simply leads Absent to
believe they were incorrect about the lights.

But suppose that Present has given incorrect reports in the past. We can
collect these reports, and check to see when they have been correct and when
they have been incorrect. For example, suppose that Present is always correct
about the light status in room A, whereas they are often incorrect about the
light status in room B. We might draw the conclusion that they are normally
physically in the room A, and that they are too lazy to walk to a another room
to check the lights.

Formally, Absent does not need a plausible story to explain the mistakes
in the reports; they need some mechanism for modelling trust over different
propositions. By looking at the accuracy of reports on different topics, they
build a model of trust that allows information reported from Present to be
incorporated appropriately. In this paper, we develop formal machinery that is
suitable for capturing all facets of this seemingly simple example.

2.2 Belief Revision

We assume an underlying set V of propositional variables. A formula is a propo-
sitional combination of elements of V, using the usual connectives →,∧,∨,¬.
We will assume that V is finite in this paper, though that need not be the case in
general. A state is a propositional interpretation over V, which assigns boolean
values to all variables. We will normally specify a state by giving the set of vari-
ables that are true. A belief state is a set of states, informally representing the
set of states that an agent considers possible. We let |φ| denote the set of states
where the formula φ is true.
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The dominant approach to belief revision is the AGM approach. A revision
operator is a function ∗ that maps a belief state K and a formula φ to a new belief
state K ∗ φ. An AGM revision operator is a revision operator that satisfies the
so-called AGM postulates. We refer the reader to [1] for a complete introduction
to the AGM theory of belief revision.

Although we are concerned with AGM revision at times, in this paper we
actually define the beliefs of an agent in terms of Ordinal Conditional Functions
(OCFs) [13], which are also called ranking functions. An OCF is a function κ
that maps every state s to an ordinal κ(s). Informally, if κ(s1) < κ(s2), this is
understood to mean that the agent considers it more likely that s1 is the actual
state, as opposed to s2. Note that κ defines a belief state Bel(κ) as follows:

Bel(κ) = {s | κ(s) is minimal }.

We can also define a revision operator ∗ associated with κ as follows:

Bel(κ) ∗ φ = min
κ

(|φ|).

The operator on belief states specified in this manner defines an AGM belief
revision operator, for any underlying OCF.

2.3 Trust

The notion of trust plays an important role in many applications, including
security [5,10] and multi-agent systems [9,12]. In this paper, we are concerned
primarily with knowledge-based trust. That is, we are concerned with the extent
to which one agent trusts another to have the knowledge required to be trusted on
particular statements. This is distinct from trust related to honesty or deception.

We refer occasionally to trust-senstive belief revision operators [4]. Trust-
sensitive belief revision operators are defined with respect to a trust-partition
over states. The equivalence classes of a trust partition Π consist of states that
can not be distinguished by a particular reporting agent. In our motivating exam-
ple, we might define a trust partition for Present that consists of two equivalence
classes: one that includes all states where the light is on in room A, and one that
includes all states where the light is off in room A. In this case, Present is infor-
mally trusted to be able to tell if the light in room A is on or off. However,
Present is not trusted to be able to tell if the light in room B is on or off.

A trust-sensitive revision operator ∗Π is defined with respect to a given AGM
revision operator ∗ and a trust partition Π. The operator ∗Π operates in two
steps when an agent is given a report φ. First, we find the set Π(φ) of all
states that are related by Π to a model of φ. Then we perform regular AGM
revision with this expanded set of states as input. Hence, the model of trust is
essentially used to pre-process the formula for revision, by expanding it to ignore
distinctions that we do not trust the reporter to be able to make.
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2.4 Trust Rankings

We can also define trust in terms of a distance function between states. The
notion of distance required is generally an ultrametric.

Definition 1. An ultrametric is a binary function d over a set X, such that for
all x, y, z ∈ X:

– d(x, y) ≥ 0.
– d(x, y) = 0 if and only if x = y.
– d(x, y) = d(y, x).
– d(x, z) ≤ max{d(x, y), d(y, z)}.
If we remove condition 2, then d is a pseudo-ultrametric.

The following definition of a trust ranking is given in [8].

Definition 2. For any propositional vocabulary, a trust ranking is a pseudo-
ultrametric over the set S of all states.

A trust ranking is intended to capture the degree to which an agent is trusted to
distinguish between states in a graph. If d(s1, s2) is large, this means the agent
can be trusted to distinguish the states s1 and s2. However, if the distance is
small, they can not be trusted to draw this distinction.

3 Building Trust

3.1 Trust Graphs

We now turn to our main problem: building a notion of trust from data. We
assume throughout this paper a fixed, finite vocabulary V. All states, belief
states, and formulas will be defined with respect to this underlying vocabulary.

Definition 3. Let S be the set of states over V. A trust graph over S is a pair
〈S,w〉, where w : S × S → N.

Hence, a trust graph is just a complete weighted graph along with a distance
between states. Informally, a trust graph represents the trust held in another
agent. The weight on the edge between two states s1 and s2 is an indication of
how strongly the agent is trusted to directly distinguish between those states.

Fig. 1. A trust graph
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Example 1. Consider the motivating example, in the case where Absent trusts
Present more strongly to check if the light in room A is on as opposed to room
B. This could be captured by the trust graph in Fig. 1, by having a higher weight
on edges that connect states that differ on the value of A. Note that the minimax
distance d can easily be calculated from this graph.

The edge weights represent how strongly a reporting agent is trusted to
distinguish between a pair of states. If the weight is high, we interpret this to
mean that the agent is strongly trusted to distinguish between the states. If the
weight is low, then the reporting agent is not trusted to distinguish the states.

In order to build a notion of trust in an agent, we need to have a history of
the past reports that agent has provided. Our basic approach is to assume that
we start with a set of statements that a reporting agent has made in the past,
along with an indication of whether the reports were correct or not.

Definition 4. A report is a pair (φ, i), where φ is a formula and i ∈ {0, 1}. A
report history is a multi-set of reports.

We let Φ, possibly with subscripts, range over report histories. A report history
Φ represents all of the claims that an agent has truthfully or falsely claimed
in the past. Informally, if (φ, 1) ∈ Φ then the agent in question has reported φ
in the past in a situation where φ was shown to be true. On the other hand,
(φ, 0) ∈ Φ means that φ has been reported in a situation where it was false.

3.2 Construction from Reports

Suppose we start with a trust graph in which the reporting agent is essentially
trusted to be able to distinguish all states, with a default confidence level. For
each true report in the history, we strengthen our trust in the reporting agent’s
ability to distinguish certain states. For each false report, we weaken our trust.

Definition 5. For any n > 0, the initial trust graph Tn = 〈S,w〉 where S is
the set of states, and w is defined such that w(s, t) = 0 if s = t and w(s, t) = n
otherwise.

The idea of the initial trust graph is that the reporting agent is trusted to
distinguish between all states equally well.

We are now interested in giving a procedure that takes a report history, and
returns a trust graph; this is presented in Algorithm 1. The algorithm looks at
each report in the history R, and it increases the weight on edges where there
have been true reports and decreases the weight on edges where there have been
false reports.

Proposition 1. Given a report history R, the weighted graph returned by Algo-
rithm 1 is a trust graph.

This result relies on the fact that w only returns non-negative values; this is
guaranteed by the choice of n for the initial trust graph.
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Algorithm 1. Construct from(R)
Input R, a report history.
n ← size of R.
T = 〈S, w〉 is the initial trust graph for n.
while R �= ∅ do

Get some (φ, i) ∈ R
if i = 0 then

w(s1, s2) ← w(s1, s2) − 1 for all s1, s2 such that s1 |= φ and s2 �|= φ
else

w(s1, s2) ← w(s1, s2) + 1 for all s1, s2 such that s1 |= φ and s2 �|= φ
end if
R = R − (φ, i).

end while
Return 〈S, w〉.

Example 2. We return to our running example. Suppose that we have no initial
assumptions about the trust held in Present, and that the report history R
consists of the following reports:

〈A, 1〉, 〈A, 1〉, 〈B, 0〉, 〈A ∧ B, 1〉

Since our report history has size 4, the initial trust graph would look like Fig. 1,
except that all edge weights would be 4. After the first report, the edge weights
would be increased on the following edges:

({A,B}, ∅), ({A,B}, {B}), ({A}, ∅), ({A}, {B}).

The same thing would happen after the second report. On the third report, we
would subtract one from the following edges:

({A,B}, ∅), ({A,B}, {A}), ({B}, ∅), ({A}, {B}).

Finally, the fourth report would add one to the following edges:

({A,B}, ∅), ({A,B}, {A}), ({A,B}, {B}).

The final trust graph is given in Fig. 2. Based on this graph, Present is least
trusted to distinguish the states {B} and ∅. This is because the positive reports
were all related to the truth of A, and the only false report was a report about
the trust of B. Hence, the graph is intuitively plausible.

3.3 Basic Results

We have defined an approach to building trust graphs from reports. We remark
that the edge weights will not be used directly when it comes to belief revision.
For belief revision, what we need is a single trust ranking that is derived from
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Fig. 2. Graph construction

the trust graph. However, constructing the graph allows us to define the ranking
function as sort of a consequence of the reports. In this section, we show the
construction satisfies some desirable properties.

First, we define the trust ranking associated with a trust graph.

Definition 6. For any trust graph T = 〈S,w〉, let dT denote the minimax dis-
tance between states.

The distance dT captures an overall trust ranking that can be used to inform
belief revision. Informally, even if an agent is not trusted to distinguish two states
directly, they may be trusted to distinguish them based on a path in the graph.
The important feature of such a path is the minimax weight. The following is a
basic result about the notion of distance defined by a trust graph.

Proposition 2. For any trust graph T = 〈S,w〉, the function dT is a pseudo-
ultrametric on S.

Recall from Sect. 2 that a pseudo-ultrametric over states can be used to define
a ranking that is suitable for reasoning about trust. We remark that, in fact,
every ultrametric over a finite set is actually equivalent up to isomorphism to
an ultrametric defined by the minimax distance over some weighted graph. This
means that every trust ranking can be defined by a trust graph.

The next result shows that there is nothing particularly special about the
trust graphs constructed by our algorithm.

Proposition 3. Every weighted graph over S is the trust graph obtained from
some report history R.

This can be proven by a simple construction where each report only modifies a
single edge weight.

In the next results, we adopt some simplifiying notation. If R is a report
history and r is a report, we let R · r denote the multiset obtained by adding r
to R. Also, if R is a report history, we let T (R) denote the trust graph obtained
from R and we let dR denote the distance d defined by T (R).

As stated, Algorithm 1 can only construct a trust graph starting from scratch.
However, the following proposition states that we can iteratively modify a trust
graph as we get new reports.
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Proposition 4. Let R be a report history and let r be a report. Then T (R · r)
is identical to the trust graph obtained by modifying T (R) as follows:

– Increment weights between states that disagree on φ, if r is a positive report.
– Decrement weights between states that disagree on φ, if r is a negative report.
– Defining a new minimax distance d in accordance with the new edge weights.

Hence, rather than viewing trust graphs as something created with no a priori
knowledge, we can think of trust graphs as a simple model of trust together with
an operation that tweeks the weights to respond to a new report.

One desirable feature of our construction is that a report of (φ, 0) should
make the reporting agent less trustworthy with regards to reports about the
trust of φ. The next proposition shows that this is indeed the case.

Proposition 5. Let R be a report history, let s1 and s2 be states such that
s1 |= φ and s2 �|= φ. Then

dR(s1, s2) ≥ dR·(φ,0)(s1, s2).

We have a similar result for positive reports.

Proposition 6. Let R be a report history, let s1 and s2 be states such that
s1 |= φ and s2 �|= φ. Then

dR(s1, s2) ≤ dR·(φ,1)(s1, s2).

Taken together, these results indicate that negative (resp. positive) reports of
φ make the reporting agent less (resp. more) trusted with respect to φ. We
remark that the inequalities in the previous theorems would be strict if we were
considering actual edge weights; but they are not strict for dR, since there may
be multiple paths between states.

We have seen that trust graphs define a distance over states that represents
a general notion of trust that is implicit in the graph. Significantly, trust graphs
can be constructed in a straightforward way by looking at past reports; the
implicitly defined trust ranking is based on the accuracy of these reports. In the
next section, we consider how the notion of trust defined by a trust graph can
be used to construct different approaches to revision.

4 Using Trust Graphs

4.1 Example Revisited

Consider again our example involving reports about the lights in a building. We
previously pointed out that Absent might not actually trust the reports from
Present, and we gave an approach to construct a trust graph.

Informally, when talking about trust, we might make assertions of the fol-
lowing form:
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1. Present is not trusted to know which room they are in.
2. Present is not trusted to check two rooms at once.

These kind of assertions give us a hint about how belief revision might occur. For
example, in the first case, Absent would interpret a report to mean that exactly
one of the rooms is lit.

Note, however, that a trust graph does not simply give a binary notion of
trust; it defines a distance function that indicates strength of trust in various
distinctions. Similarly, the beliefs of an agent might be held with different levels
of strength. So, even if we have a trust graph, there are still problems with
incorporating reports related to comparing strength of belief with strength of
trust.

In our example, if Absent just left the building, they might believe very
strongly that the light in room A must be off. They might believe this so strongly
that they disregard Present’s report entirely. But disregarding reports is not the
only option. It might be the case that the exact strength of Absent’s beliefs
needs to be considered. Suppose Absent believes the light in room A is off with a
medium degree of strength. In that case, a report from a weakly trusted agent will
not change their beliefs, whereas a report from a strongly trusted agent would be
more convincing. Moreover, Absent also needs to have a strength ranking over
possible alternatives. Hence, this is not simply a binary comparison between
strength of degree and strength of trust. In order to model interaction between
belief and trust, we need a precise formal account that permits a comparison of
the two. We also need to account for the way that Present develops a reputation,
either for laziness or inaccuracy.

4.2 Naive Revision with Trust Graphs

In the remainder of this paper, we assume that the beliefs of an agent are repre-
sented by an OCF. We show how a trust graph allows us to capture an approach
to belief revision that takes trust into account. In fact, the approach in this
section depends only on a pseudo-ultrametric dT defined by a trust graph.

For any pseudo-ultrametric d, we define a family of revision operators ∗n.

Definition 7. Let κ be an OCF and let d be a pseudo-ultrametric over S. For
each n, the operator ∗n is defined such that Bel(κ) ∗n φ is equal to:

min
κ

{s | there exists t such that d(t, s) ≤ n and t |= φ}

From the theory of metric spaces, we have the following.

Proposition 7. For any pseudo-ultrametric d over a set X, if n ∈ N then the
collection of sets Yx = {y | d(x, y) ≤ n} is a partition of X.

The next result relates these revision operators to trust-sensitive revision opera-
tors. A parallel result is proved in [8], although the result here is stated in terms
of OCFs rather than AGM revision.



552 A. Hunter

Proposition 8. Let κ be an OCF and let T be a trust graph. For any formula
φ and any n:

Bel(κ) ∗n φ = Bel(κ) ∗Π φ

where Π is the partition defined by (dT , n) and ∗Π is the trust-senstive revision
operator associated with Π.

Hence κ and dT define a set of trust-sensitive revision operators. The parameter
n specifies how close two states must be to be considered indistinguishable in
the partition.

We refer to the operators ∗n as naive trust-sensitive revision operators in this
paper. These operators are naive in the sense that they do not allow us to take
into account the relative magnitudes of the values in κ and the distances given
by dT . In other words, the scales of κ and dT are not compared; it doesn’t matter
if the initial strength of belief is high or low. This makes sense in applications
where the magnitudes in κ and dT are seen as independent.

Example 3. We refer back to our motivating example. Suppose that the initial
beliefs of Absent are given by κ such that:

κ({A}) = 0, κ({B}) = 1, κ({A,B}) = 1, κ(∅) = 2

Hence the initial belief set for Absent is {A}. Now suppose that Present passes
a message that asserts ¬A ∧ B; in other words, the light is off in A while it is
on in B. If this information was given to Absent as infallible sensory data, then
the result could be determined easily with regular AGM revision. But this is not
sensory data; this is a report, and trust can play a role in how it is incorporated.

To make this concrete, suppose that Absent thinks that Present is generally
lazy and unaware of the room that they are in. It is unlikely therefore, that
Present would run quickly from one room to another to verify the status of the
light in both. So perhaps the trust graph T constructed from past reports defines
the distance function dT from {B} as follows:

dT ({B}, {A}) = 1
dT ({B}, {B}) = 0

dT ({B}, {A,B}) = 10
dT ({B}, ∅) = 5

This distance function does indeed encode the fact that Present is not strongly
trusted to distinguish {A} and {B}; this is because they do not always know
where they are.

We have supposed that Present reports ¬A ∧ B. So, what should Absent
believe? It depends on the threshold n. If we set n = 3, then by Proposition
6, ∗3 is the trust-sensitive revision operator defined by the partition with cells
{{A}, {B}} and {{A,B}, ∅}. Since {A} and {B} are in the same cell, it follows
that revision by B is equivalent to revision by A ∨ B. Hence:

Bel(κ) ∗3 B = {{A}}.
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This is a belief state containing just one state; so Absent believes that the most
plausible state is the unique state where only the light in room A is on. Hence,
if Present reports that the light in room B is on, it will not change the beliefs
of A at all.

For naive operators, it does not matter how strongly Absent believes the
light in room A is on. It only matters whether or not the reporting agent can
distinguish between particular states.

4.3 General Revision with Trust Graphs

In the previous section, we considered the case where strength of belief and
strength of trust are incomparable; the magnitudes of the values are not on the
same scale. In this case, we can not meaningfully combine the numeric values
assigned by κ with the numeric distances given by a trust graph; we essentially
have two orderings that have to be merged in some way. This is the general
setting of AGM revision, and trust-sensitive revision.

However, there is an alternative way to define revision that actually takes
the numeric ranks into account. First, we define a new OCF, given some initial
beliefs and a trust distance function.

Definition 8. Let κ be an OCF and let d be a pseudo-ultrametric. For any
s ∈ S:

κφ
d(s) = κ(s) · min{d(s, t) | t |= φ}.

The OCF κφ
d(s) combines the a priori belief in the likelihood of s along with a

measure indicating how easily s can be distinguished from a model of φ. Essen-
tially, this definition uses d to construct a ranking function over states centered
on |φ|. This ranking is aggregated with κ, by adding the two ranking functions
together.

Given this definition, we can define a new revision operator.

Definition 9. Let κ be an OCF and let d be a pseudo-ultrametric. For any
formula φ, define ◦d such that

Bel(κ) ◦d φ = {s | κφ
d(s) is minimal}.

This new definition lets the initial strength of belief be traded off with perceived
expertise. We return to our example.

Example 4. Consider the light-reporting example again, with the initial belief
state κ and the distance function dT specified in Example 3. Now suppose again
that Present reports φ = ¬A ∧ B, i.e. that only the light in room B is on. We
calculate κφ

d(s) for all states s in the following table.
Since the first two rows both have minimal values, it follows that

Bel(κ) ◦d ∗¬A ∧ B = {{A}, {B}}.

Following revision, Absent believes exactly one light is on.
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s κ(s) d({B}, s) κφ
d (s)

{A} 0 1 1

{B} 1 0 1

{A, B} 1 10 11

∅ 2 5 7

This example demonstrates how the strength of belief and the strength of
trust can interact. The given result occurs because the strength of belief in {A}
is identical to the strength of trust in the report of {B}. Increasing or decreasing
either measure of strength will cause the result to be different. Note also that
this approach gives a full OCF as a result, so we have a ranking of alternative
states as well.

5 Related Work

This work fits in the general tradition of formalisms that address notions of
trust and credibility for belief revision. There are alternative approaches, based
on non-prioritized and credibility-limited revision as well [2,3,7]. The notion of
trust has been explored in the setting of Dynamic Epistemic Logic (DEL), by
adding an explicit measure of trust to formulas [11].

But fundamentally, this work is really about building trust in a source based
on the knowledge demonstrated in past reports; our goal is to develop a formal
model of knowledge-based trust. To the best of our knowledge, this problem has
not been explored previously in the context of formal belief change operators.
However, it has been explored in some practical settings, such as the formulation
of search engine results [6].

6 Conclusion

In this paper, we have addressed the problem of building trust from past reports.
We demonstrated that, in the context of OCFs, trust can be interpreted in two
ways. First, if the scale used for the the strength of belief is deemed to be
independent of the distance metric, then we can use a trust ranking to define a
family of naive revision operators for trust-sensitive revision. On the other hand,
if strength of trust and strength of belief are considered to be comparable on the
same scale, then we have shown how the two can be aggregated to define a new
approach to trust-influenced belief revision.

There are many directions for future research. Beyond expanding the formal
theory, we are primarily interested in practical applications of this work. Natural
candidate problems include modelling trust and belief change for Internet search
results, or for improving the safety and reliability of drone controllers.
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Abstract. Domain-oriented knowledge bases (KBs) such as DBpedia
and YAGO are largely constructed by applying a set of predefined extrac-
tion rules to the semi-structured contents of Wikipedia articles. Although
both of these large-scale KBs achieve very high average precision values
(above 95% for DBpedia (The estimated precision of those statements
is 95% in the Data Set 3.9 of DBpedia) and YAGO), subtle mistakes
in a few of the underlying extraction rules may still impose a substan-
tial amount of mistakes derived from specific relations. By applying the
same regular expressions to detect mistakes of range constraint of rela-
tion, some special features of negative statements are erased while min-
ing the rules. For traditional rule-learning approaches based on Inductive
Logic Programming (ILP), it is very difficult to correct these extraction
mistakes from the Wikipedia, since they usually occur only in a rela-
tively small subdomain of the relations’ arguments. In this paper, we
thus propose a GILLearn, a Guided Inductive Logic Learning model,
which iteratively asks for small amounts of feedback automatically over
a given KB to learn a set of knowledge correction rules. The GILLearn
introduces the guided information to rule augmentation and provides the
respective metrics for the validation of corrected triples. Our experimen-
tal evaluation demonstrates that the proposed framework achieves the
significant performance on the large knowledge bases.

Keywords: Negative statements · Rule learning · Knowledge
correction

1 Introduction

Recent advances in knowledge correction have motivated the automatic con-
struction of large domain-oriented knowledge bases. The KBs are always noisy
and incomplete. There are a number of recent approaches that specifically tackle
the problem of learning error detection from a given KB (or from a fixed train-
ing subset of the KB) for data-cleaning purposes [7,19]. However, few of scholars
focus on the main issues of error correction or find the missing facts in the KB.
The errors of knowledge base are derived in the knowledge acquisition process,
or in the source data. In the KBs, constraint-based approaches detect erroneous
c© Springer Nature Switzerland AG 2021
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values that violate the constraint and most data items receive a high confidence
according to the traditional rule-mining metrics [36]. Items violating the con-
straints are marked as incorrect by the data-cleaning framework. Specifically,
Wikidata [31], DBpedia [3], YAGO [30], and the Google Knowledge Graph [28]
originated from the Wikipedia wipe out the invalid items in the process of data
cleaning. There are 2.8% error rates estimated in the core of knowledge source of
DBpedia from Wikipedia [32]. For example, by applying the same regular expres-
sions to extract person nationality, DBpedia erroneously swaps most of entities
regarding the type of ethnic group as nationality. For these entities with the eth-
nic group, they have erroneous nationality relied on range constraint of relation.
For human understanding, we can ascertain the nationality with the attribute
values. However, these special features of negative statements are erased while
mining the rules. For general error correction systems [16], they contain majority
fault values in the tables and leverage the correction values as the sample repairs.
Conversely, these systems are not available for the knowledge base with inferior
inaccuracy. Here, a rule correction system is established for the KB with few and
special errors. As an illustration, it is an obvious false truth that everyone has
more than one birthplace. Additionally, some people regard single or multiple
nationalities as a notable classification feature. Perhaps one of birthplaces is false,
or both of nationalities are correct in terms of ethnic attributes. In some seman-
tic scenarios, some facts are captured in the sentence: “Albert Einstein was a
German − born.” Like this, Albert Einstein’s nationality is Germany. Checking
the messages in the DBpedia, the head entity (Einstein) ignores the items of
nationality. Also, the DBpedia catches the German as the inaccurate tail in the
triple, which holds the nationality as the relation. In the semantic KBs, it is usu-
ally hard to guarantee its quality and completion without external information.
For this purpose, systematic users need to keep the triple quality in the process of
knowledge extraction. Some researchers do this work using integrity constraints
[12], statistics [17], or machine learning [35], etc. In the knowledge base comple-
tion (KBC) [29], rule learning can mine the logic relations to deduce the missing
facts. Piyawat et al. [14] correct the range violation errors in the DBpedia for
the completion. Fortunately, the state-of-art rule learning algorithm is observed
to refine the KB, i.e., AMIE3 [13]. Other rule learning algorithms [18] based on
Inductive Logic Programming [21] are also leveraged to improve the KB. In the
AMIE3 rule learning algorithm, they mine the first-order rules [33] to infer the
logic constraints of entities in the KB. Few facts are the critical deficiency in
the search space, which trigger the rules to fall into a local optimal solution.
At the same time, the logic rules can’t be generated with insufficient samples
in the rule learning models. In recent years, some scholars design RuDiK [23], a
system for the discovery of declarative rules over KBs. Especially, the inequality
rules are detected with entities features, such as, time, length, weight, etc. In the
embedding model [14], the implicit information is fetched by the internal rela-
tions of instances. For example, the classical TransE model is utilized to correct
the error triples in the KBs. Furthermore, the Statistical Distributions [25] can
be extended to filter out the faulty statements and all distribution of entities are
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in the closed word assumption. In the [6], the incorrect facts are detached by
the embedding models with the Word2vec method in the Knowledge base. Also,
some mistaken tails of the triples are recognized by wrong links between differ-
ent KBs and each link is embedded into a feature vector in the learning model
[24]. After that, the researchers [1] propose the correction tower with the embed-
ding method of the error recognition for knowledge graph correction. Here, we
only explore the triple outliers without numeric values to refine and correct the
KBs. Viewing as the errors extracted from the KB’s sources, some sparse errors
have unknown knowledge that is worth of exploration. One instance, the entity
“England” has the type of Country, but the England is the part of United
Kingdom since the extracted news is not rigorous in KB. If the KBs only con-
sider the simple range violation errors, many negative statements are ignored in
the range type of relation property.

In this paper, the GILP [34] model is updated to correct the wrong items
by correction rules. Further, we correct these errors exploiting the co-occurring
similar entities [10] in the publicly available knowledge graphs, like Wikidata or
DBpedia. First, the negative and positive feedback are adopted by the conflict-
with constraint1. Then, we choose the heuristic method to evaluate the feedback
and rewrite the rule queries to extract the correction rules. For solving these
errors in the KB, we propose a reasonable rule-based correcting and learning
model, Guided Inductive Logic Learning model (GILLearn model), to
correct the KB in our system. And more features are learned in depth to refine
the knowledge base by small samples. In this paper, the proposed system are
leveraged to visualize the meaningful rewriting queries and pick the appropriate
repair as the final correction by the cross similarity measures. The ability of
GILLearn is to annotate error tail of triple in specified relation environment and
the logic links are illustrated in the KB.

The rest of this paper is organized as follows. In the Sect. 2, preliminaries
are exhibited. Section 3 introduces the proposed framework of Guided Induc-
tive Logic Learning model and Sect. 4 shows experimental results and analysis.
Finally, the conclusion remarks are presented in Sect. 5.

2 Preliminaries

In this section, we introduce the basic notation that is used through the rest of
the paper.

Triple: Let ξ be a set of entities, R be a set of predicates(relations), defining a
3-tuple that stand for the relation r between subject s and object o, where s, t ∈
ξ and r ∈ R, refer to triples as <subject/head, predicate/relation, object/tail>.
Let K be a set of triples of {< s, p, o > |s, o ∈ ξ, p ∈ R}. We define a knowledge
base by the 3-tuple (ξ, R, K). We denote a knowledge base as KB. We focus on
RDF formulation [9] to encode the triples which represent the facts. For example,

1 https://www.wikidata.org/wiki/Help:Property constraints portal.

https://www.wikidata.org/wiki/Help:Property_constraints_portal
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the sentence (Yao Ming was born in Shanghai) is translated to new formulation,
<Yao Ming, wasBornIn, Shanghai>.

First-order Logic Definitions: Learn the first-order logic definitions [27] from
an input knowledge base and training examples. Training examples E are usually
tuples of a single target relation, mainly, positive(E+) or negative(E−) examples.
The given knowledge base is also called background knowledge. The hypothesis
space is the set of all possible first-order logic definitions probed in the learning
algorithm. A hypothesis is each member of the hypothesis space. Clause C covers
an entity e if the instance I ∧C |= e , where |= is the entailment operator, i.e.,
we can know e is positive while I and C are correct. Also, Definition H covers
an entity e if at least one clauses covers e. Horn clauses are also called Datalog
rules (without negation) or conjunctive queries. Also, we call the first-order horn
clause as the first-order logic rule.

Problem Statement: At this point, the paper concentrates on correct-
ing ABox property assertions <s, p, o> where o is an entity assertion that
has the mistaken type. Stating a relation assertion, some triples with erro-
neous tail (wrong object) are captured in the models. Notably, some simple
canonicalizations are obtained in the former case, e.g., the property assertion
<dbr:Hiro Arikawa, dbo:nationality, dbr:Japanese people>2 should be amended
to <dbr:Hiro Arikawa, dbo:nationality, dbr:Japan>.

The incorrect tail assertions can be detected automatically by the new GILP
model. It is significant to mention that the KB is an OWL ontology and the set of
object properties connecting two items should be disjoint. In practice, the DBpe-
dia often do not respect this constraint. A set of entities are regarded as faulty
by the analysis of the object type. For each assertion <s, p, o> in the set, the
proposed correction framework aims at observing an entity from K as an object
substitution, such that e is semantically related to o and the new triple <s, p, e>
is true. Or the new target replacing one old entity exists in the real world and
not in the K. For example, the fact formerTeam(Alan Ricard,Buffalo Bill) is
an erroneous fact, where the correct tail should be the NFL team Buffalo Bills
instead of the character Buffalo Bill. The CoCKG (Correction of Confusions
in Knowledge Graphs) [19] model is utilized to do the correction by exploit-
ing disambiguation links (dbo:wikiPageDisambiguates relation in DBpedia) and
approximate string matching for this situation.

Inspired by the rudik model [23], we follow the type features to recognize the
negative triples. This way can avert some false negative entities. Besides, the
PaTyBRED [20] method incorporates type and path features into local relation
classifiers for the detection of relation assertion errors in KB. In our model, the
plugins of rule discovery are exploited to grasp the strict negative statements
without false negative instances in the search space.

2 dbr: http://dbpedia.org/resource; dbo: http://dbpedia.org/ontology.

http://dbpedia.org/resource
http://dbpedia.org/ontology
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Fig. 1. Correction Architecture in the GILLearn workflow

3 GILLearn Model

In this section, we formally define our correction model. Our goal is to do the rule
corrections by learning consistency constraints iteratively over a relational rep-
resentation of KBs. We also provide a unifying approach to denote relations and
constraints as first-order literals or rules that capture both positive and negative
feedback, respectively. we outline our GILLearn Model, which implements the
correction rules to refine the large knowledge base and pulls some missing facts
for KB completion, depicted by the framework of Fig. 1. In the model, the logic
rules with high quality are realized automatically by the random initial feedback.
And a guidance of the repair process is offered to correct the KB. The GILLearn
model has three modules, namely, Rule Augmentation, Correction Validation,
Triple Refinement. Especially, we illustrate how to initialize our framework to
generate seed rules in the rule augmentation. Next, the refinement operators are
defined in the module of correction validation and the plugin gathers the overall
set of candidate rules to seize the repairs from the seed rules. Also, the quality
measures are submitted to accept or reject these candidate repair rules. Finally,
some corrected facts existed in real-world are learned in the model and the KB
are enriched by new facts. Overall, the rule augmentation component explores
rule patterns in the KBs. The correction validation module provides the best
triple patterns and the items annotations interacting with other KBs. And this
part comments the triples by the rules for the repairs in the KB. It also gener-
ates possible repairs for the erroneous triples in the negative rules. The triple
refinement section detects some missing facts to mend the KB.
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3.1 Rule Augmentation

Given small initial feedback in KB, the template interprets the semantics of rules
w.r.t. the given KB and identifies correct or wrong triples in batches. The module
computes and identifies top-k optimal rules, which are visualized to the users via
a simple graph representation. Since it’s complex to realize the system’s auto-
matic selection of the best rule, the models leverage the semantic KB’s special
feature (TBox ) to catch the associated rules. If a false triple contains an error
object whose type is right, we do the second feedback from the co-occurring
similar entities with other KB. In the DBpedia, we filter the positive/negative
feedback by the TBox property of fixed relations. For instance, the TBox prop-
erty of nationality contains type, subclassof, equivalentClass, etc. Compared with
the expert knowledge, the generation time of rules in the AMIE3 model [13] are
reduced by the TBox property. Here, we employ the wordNet property of YAGO
to take the false positive feedback and the algorithm has the faster computation
than the PRA method [15]. The Rule Augmentation module utilizes the types of
the entities and the relationships between facts in the DBpedia since types hold
the unique marks. One positive/negative rule pattern is represented as a labeled
graph where the body of rule shows attributes or its associated type. A recycle
rule represents the associated relationships in the targeted relation. The Sparql
queries are issued to supply the initial feedback by the fundamental and super
types of the given relation. If there is only one partial match from feedback to
rules, either the rule is incomplete or the tuple is simply erroneous in the rule.

Algorithm 1: Rule Augmentation

Φacc:= ∅; T := ∅; Φ:= Φ0; F := F0;
Φ0 := generateSeedRules(F0);
while Φ �= ∅ or T changed do

Φi := all rules in Φ which are accepted based on P in TBox or linked KB’s
property;
Φacc := top-k optimal rules from Φi;
T := facts predicted by Φacc;
Φ := Φ ∪ ILP(F , K);
F := F ∪ pullFeedback(T );

end
return Φacc;

Algorithm 1 illustrates our basic model of Rule Augmentation. Inspired by
the algorithm GILP [34], we update the model of rule generation. We generate
the set of seed rules Φ0 from the initial user feedback F0. The sets of accepted rules
Φacc and predicted facts T (which will be based on all rules in Φacc) are initially
set to be empty. Similarly, we initialize the iteratively merged sets of overall rules
Φ and feedback facts F to Φ0 and F0, respectively. At each GILP iteration, all
rules in Φ which are accepted based on the schema axioms in TBox or linked KB’s
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property. Next, the set of accepted rules Φacc is selected from the current Φ based
on the top-k rules we collected so far. Here, we leverage the rank of confidence
to find the optimal rules. Next, we utilize the mean quantity of generated rules
between each iterations to decide k value. Similarly, T is expanded by the facts
predicted by Φacc at the current iteration. Next, we expand the set of all rules Φ
by using any general ILP subroutine which supports the refinement operations
for the kinds of constraints we wish to learn based on the current set of feedback
facts F over the knowledge base K. Finally, pullFeedback(T ) collects the next
round of user feedback as a randomly chosen subset of the currently predicted
facts T . We terminate the GILP iterations either when no rules in Φ could
initially be generated, or when T remains unchanged among two iterations.

We attach the TBox or linked KB’s property to do the feedback iteratively.
Then, the GILP model is updated to learn the final rules automatically while
the property of type is used to replace the expert knowledge in the part of
feedback generation. For the KB, the search space is explored in the RDF3X
engine by RDF sparql query in YAGO, DBpedia or wikidata. In the process of
feedback generation, the characteristics of KB are reflected on the TBox property
of DBpedia or wordNet property of YAGO. Both of the two KBs, there are
over one type for each relation property. Here, the domain or range of relation
are only taken into consideration in the search space. First, the feedback is
randomly selected by the TBox property, i.e., the type of nationality range is
dbo:Country. The triples including the same type of range are regarded as the
positive feedback, others considered as the negative feedback while they have the
same relation and the type of domain. Similarly, the relation of isCitizenOf in
YAGO are leveraged to select the feedback by the type of wordnet country. In this
way, the feedback is picked up automatically in this module. For other semantic
KBs, the type of property can be replaced with other specific background, e.g.,
the expert knowledge, special rules, internal characteristics, contextual news,
etc.

3.2 Correction Validation

To design a complete set of error corrector model, the system leverages all triple
feedback comprising negative and positive statements. In principle, to fix a set
of error triples in a given negative rule, we can apply two error contexts: Range
of erroneous tail of triple and Error information in associated KBs.

In the module of Correction Validation, the most appropriate query patterns
are selected to explain the semantics of correction rules by rewriting the neg-
ative rules with the positive rules. Once the pattern is chosen, the GILLearn
model scans all the tuples from each new query in the revised negative rules.
It marks the tuples as positive if the new rules of the KB covers all tuples of
the feedback. Otherwise, an ambiguity is raised about whether this is caused
by the incompleteness of the KB or the query is simple wrong. To resolve such
ambiguity, the GILLearn model connects auxiliary KB to validate the correction
by the fusion features. In the measure of similarity, the GILLearn model can get
more accurately annotated triples.
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For human validation, the system encounters some tails( alike, the attribute
values in the table) with erroneous property of specified type. For instance, Ger-
mans has the incorrect type of Country. Like that, some initial positive feedback
picked are respected as false positive items and the specifics are ignored by gen-
eral correction algorithms. The errors extracted from the source of DBpedia are
pondered and top-k most meaningful candidates are created to fix the KB in
the framework of correction. The basic assumption is that the targets predi-
cated by the single-value correction model with higher scores tend to contain
the correct entity in the tail of triple. The feedback can’t be fully overlaid by
the correction query in each iteration. We can’t induce repairs for rule’s remedy,
in case of the positive triples without the property of (wikidata:Q6256 ). Two
possible reasons stated, the KB is incomplete with exact triples and the tuple
itself contains property errors. Such ambiguity is tackled by utilizing the extra
KB(wikidata) since the wikidata is more completion than the DBpedia and it
has a connection to the DBpedia by the property sameAs. Compared to the
human validation, the algorithm saves computing time and has high fidelity for
the automatic type validation without expert knowledge. The GILLearn will fur-
ther disclose the similarity results from the collections of the annotated triples
with property sparsity. The Single-value Correction Architecture exhibits how to
bridge KBs and achieve reliable triple correction by the co-occurring knowledge
base, such as, the wikidata.

Algorithm 2: Rule Correction algorithm

(φ+
n , φ−

n ) := GILP(F0, K);
T − := facts predicted by φ−

n ;
[γ(x)] := φ−(x, y)− > ξ(x, y, z);
Refine := (φ+(x, y), φ−(x, y))− > φrefine;
Corr0 := ∅;
while ξ(x, y, z) �= ∅ do

T := all predictions in φrefine which are accepted based on P in T-Box;
Corri := pullCorrections(filterRepairs(T ));
ξ(x, y, z) remove T −;

end
return Corrn;

The rules are mined with Algorithm 2, which is an adaption of correction
rule mining [26]. Here, the relation of nationality in the DBpedia is appeared as
the example. Our algorithm is introduced to mine positive/negative rules from
the KB with two versions( one is in 2016, another is in 2020). Then, we apply
the algorithm to correct the negative rules. The (φ+

n , φ−
n ) shows the final pairs

of positive and negative rules. ∅ is the empty. The function of filterRepairs is
presented in the Subsect. 3.4.

For instance, the entity’s (Moshe Safdie) relation (nationality) has two
tails (United States, Canadians). The violation is 〈 Moshe Safdie, nationality,
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Canadians〉 and constraint instance: Γ0(Canadians). The previous algorithm
has given us a list of relevant past corrections based on fixed relations. To find
available correction seeds, the first step of the algorithm pre-computes for each
constraint a set of atomic modification patterns matching the possible correc-
tion seeds. In the instance, there is only one pattern: the deletion pattern ( ,
<?, nationality, ?>). And the symbol of can be anything except that the
instance has the type of person. Simultaneously, it matches both the deletion of
<?, nationality, ?> and its replacements. The algorithm only respects past cor-
rections involving assertions, desires them to be relevant for the current TBox,
and computes the correction seed patterns by the conjunctive queries in the
body b(x) and the head h(x). Each atom occurs in the rewriting of a constraint
corresponds to a deletion pattern in the negative rule’s body and a completeness
constraint corresponding to an addition pattern in the positive rule’s body. We
converge the patterns for the constraint Γ in the set Patterns (Γ ). The second
step of the algorithm verifies whether it works out some constraint violation for
each correction seed in the past (DBpedia’s version in 2016).

The approach relies on error detection methods automatically based on type
predictors. It leverages string similarity algorithms [11] to detect the target sim-
ilarity, e.g., Levenshtein Distance, Cosine similarity, Jaccard index, and so on.
The entities with similar IRIs or wikidata pages (if available) are searched to
meet candidate instances with the type property of same target for correcting
the facts in the DBpedia. Next, we detail our instantiation of the rule correc-
tion. In this module, the system generates top-k possible repairs for the wrong
triples. The system applies properly property of sameAs without the unique
name assumption to verify the errors. Last, the GILLearn model breeds the
rewriting query to generate a set of possible repairs for the tuples in negative
rules. Generally, the number of possible repairs for one of error items can be large.
Most automatic correction algorithms use minimality as a guidance to pick pos-
sible values conforming to the patterns [8]. Here, we renovate the cross-similarity
[22] containing string similarity methods to filter the optimal correction.

3.3 Triple Refinement

Query Rewriting. [2,4] represents one of the most promising algorithmic
approaches to search engine or query answering. We redecorate the query rewrit-
ing algorithmic approach combining the positive or negative features. The app-
roach consists of a rewriting step where the input query (a negative conjunctive
query) is transformed into a new query (adding positive query, called a rewrit-
ing) in the KB. The rewriting query encodes the relevant information from the
knowledge base and it is evaluated over the data using positive query followed
by a second step. The positive rewriting query is utilized to correct the negative
query. Thus, we leverage the rewriting query to correct the knowledge base with
special property. Particularly, we only reckon with the rewriting query trans-
formed from the first-order rules. Consider the Horn Description Logics (DLs)
[5], the following query q1 is shown below. The q1 is a rewriting query w.r.t. prop-
erty of nationality. We evaluate the preceding query over the knowledge base and
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gain the correction item (Germany) to replace the error target (German people)
in the relation of nationality, as expected.

q1: relative( ?a, ?b), stateOfOrigin( ?b, German people), nationality( ?a, Ger-
man people) ∩ birthPlace ( ?a, ?c), country( ?c, ?d) ⇒ nationality∗(?a, ?d).

3.4 Quality Measures

Repairs Similarity. For computing similarity from the rule corrections, we rely
on a weighted similarity function in the entities extracted from the Wikipedia.
And the function considers two entities (error entity and any repair) as simi-
lar parameters while the weight is the number of the shared types and their
mixed similarity distances. We utilize the frequency of items shared in the
wikiPageWikiLink as one part of similarity. The dL represents string similar-
ity distance. Subsequently, we calculate a custom similarity measure s(e0, ei)
between an error entity e0 and a candidate item ei. The first element is the prob-
ability of (dL) distance of two entities’ all match tokens. And the second compo-
nent estimates the number of matched attribute values in special property(Pei ,
wikiPageWikiLink) to capture the shared information of the linked source,
shown in the Function 1(a). The measure is also shown in the Eq. 1(b).

a : sim outer(e0, ei) = |Pe0 |∩|Pei
|

|Pe0 |
b : s(e0, ei) = 1 − dL(e0,ei)

max(|e0|,|ei|) + sim outer(e0, ei)
(1)

Similarity Harmonic Average Ratio. We design a new function fsim, which
is the harmonic means of sim inner and sim outer, in order to balance the inner
and outer correction levels. Our ultimate goal is to find out which repair can
represent the optimal correction in the candidate triples.

fsim = 2×sim inner(e0,ei)×sim outer(e0,ei)
sim inner(e0,ei)+sim outer(e0,ei)

(2)

In the function 2, the part of sim inner(e0, ei) reflects the best similarity of
two entities. Here, some similarity algorithms are chosen to detect the best suit-
able methods, solely indicating their own features, e.g., the Levenshtein distance,
Cosine similarity, Sorensen Dice, Jaro Winkler, etc. The link entities shared in
the original source are applied to Analys the outer similarity of two entities. Here,
the outer similarity leverages the property of wikiPageWikiLink, since they are
extracted from the Wikipedia in the DBpedia.

4 Experiments

4.1 Setup and Datasets

In the experiments, we exploit KBs including two versions of DBpedia(2016,
2020)3, the wikidata4 and the YAGO5. Also, we pick up two openly and available
3 texthttps://wiki.dbpedia.org/develop/datasets.
4 https://query.wikidata.org/.
5 https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/

research/yago-naga/.

https://wiki.dbpedia.org/develop/datasets
https://query.wikidata.org/
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/
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query editors (DBpedia6 and wikidata7) to search the triples online. All models
and framework are implemented in Java 1.8.0. The experiments are run on a
notebook with an Intel i7 CPU @1.80 GHz and 16 GB memory.

A strength of our GILLearn framework is that it relies on very few tuning
parameters only. First, The size of initial and further feedback sets is 40. Second,
the maximum rule length (and depth of expansion sets) is 3. Last, the accuracy
threshold to either accept or reject candidate rules is defined as 0.9. Additional
AMIE3 parameters, such as the minimum head coverage (HC min) and the
minimum standard confidence (STD min) are both kept at their default value of
0.01 in the rule learning model, AMIE3(openly available). Then we evaluate our
model using a filtering similarity function and their harmonic mean measure, as
shown in Eq. 2.

4.2 Results and Discussions

In our experiments, the classic rule learning algorithm, i.e., AMIE+, is modified
to filter rules automatically through the auxiliary details in the case of DBpedia.
Here, the search space is pruned with hierarchical classification. Combining the
positive and negative rules, the new logical queries are created to correct the
false statements. One negative rule randomly is selected to find negative triples
in batches. Then, the similar statistics is to filter special features in positive
rules. By the unique attributes, the best match positive rules are adopted to
construct the logical queries. Analysing the search space of the negative rule,
the positive rule is leveraged to build the logical query for correction. Finally,
the new refined query and one example are shown in the below:

The negative rule:
birthP lace(a, f) ∧ populationP lace(b, f) → nationality−(a, b).

the positive rule:
birthP lace(a, d) ∧ rdfType(d,Country) → nationality+(a, d).

The revised rule(φ Revised):
birthP lace(a, f) ∧ populationP lace(b, f) ∧ nationality(a, b) ∧ rdfType(f, Country) →
nationality∗(a, f).

The entities in the variable f are regarded as the repairs from the refined query.
Generally, the corrected targets of nationality have multi-values. So the similarity is
applied to filter the top-k repairs as the final corrections. We randomly select the triples
based on the relation of nationality, we can get over 92% accuracy feedback for the
correction. Compared with the correct facts in the wikidata, we acquire the figure of the
precision shown in Fig. 2. The more erroneous triples existed and the external knowl-
edge base utilized (wikidata), more time is spent to do the corrections while matching
the error triples. Then the correction tail of triple can be caught to replace the old entity.
The algorithm is easy and quick in the small sample of KBs. For large KBs, the model
provides plenty of rules and errors with special semantics like the example. The single
rule offers two associated relations to the targets of triple. Here, the top-k rules are
leveraged to refine queries in the KB. Finally, the top-k refined logic rules are regarded

6 https://dbpedia.org/sparql.
7 https://query.wikidata.org/.

https://dbpedia.org/sparql
https://query.wikidata.org/
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Fig. 2. Precision of type and quantities

as the correction rules. In short, the model exploits the positive rules φ+
i to correct the

false statements. Give one error fact: <Jeroen Willems, nationality, Dutch people> and
extract features in the φ+: <Jeroen Willems, birthPlace, Netherlands>, <Netherlands,
type, Country> → <Jeroen Willems, nationality, Netherlands>. Last, the corrected
fact is attained: <Jeroen Willems, nationality, Netherlands>.

In the closed world assumption, two methods are taken to correct the negative state-
ments in the DBpedia with two versions since it’s convenient to filter the wrong triples
with the TBox property. In Fig. 2, there are obvious improvements in the single-value
condition. The GILLearn model and single-value correction have the closed perfor-
mance in the same KB. Both of two algorithms have near 0.9 precision after refining
the whole KB. The results display that the GILLearn model has better significant
effects and the proposed logic rules are full of nice explanation.

Fig. 3. Error and correction rates in DBpedia

In Fig. 3, we count the empty and correction rates with original error rate in the
experiment. Four situations of DBpedia have the correction rate over 80% and there is
empty rate below 15% in the GILLearn model. Here, the single-value method consider
the whole KB in the closed world assumption. Especially, the GILLearn model also
can be practiced in the open world assumption. They receive the correction rates
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Fig. 4. Similarity harmonic average ratio

based on all entities in the final rules containing nearly over 80% entities in the given
relations of DBpedia. Through the final results, the GILLearn algorithm is suitable for
the correction of the large KB. In addition, the single-value error correction is proper
correct method in the small samples. Also, the accuracy of correction has little effect
on the type and quantity of errors.

The results of one random rule correction test are shown in Fig. 4. Here, we only
discuss the error targets of triples and ignore their quantity. For each error sample,
we calculate the maximum ratio interval of harmonic average similarity for all pairs of
repairs and basic objects in the triple. Since all entities exist in real world and have some
interconnections, the model only reflects internal associations (literal similarity) and
external alliances (extracted source). Here, the system holds the maximum similarity
harmonic average ratio to do the selection of correction. And the precision of final
correction is centralized on the interval of [0.3, 0.6], since the great majority of error
targets have small search space to do the correction. In the expert validation, we
deduce that the final correction has the better effect while the selection measure reaches
exceeding 0.5. Here, we can correct over 80% errors from the negative rules in the
GILLearn model. At the same time, we can detect some semantic details in the negative
rules. For instance, the facts with ethnic group have close ties with the nationality.
These negative statements give us an new guidance to extend new views in the answer
question systems. As mentioned above, the system can serve users with a negative
perspective to refine the large KBs.

5 Conclusions

In this paper, the framework aims to correct errors extracted automatically from the
Wikipedia. Logical queries are utilized to detect targets of triples existed in the KB
to replace the errors in batches. Based on rule learning, repairs of range errors are
a significant issue for knowledge base completion. A rule correction and refinement
framework was proposed to leverage the rewriting sparql query from semantic KBs.
Furthermore, we explored the challenge of learning rules directly from the perspective
of interesting negative statements. The ontological knowledge of range constraints is
adopted for knowledge cleaning and the learning model is updated to mine logic rules
for knowledge base correction. Our empirical results showed that our proposed model
is efficient and effective over large knowledge bases. In the future, we will investigate
the conflicting feedback and expand the search space with co-occurring similar entities
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to refine the KBs, such as, the contextual information and schema axioms. Moreover,
the inductive correction algorithm will be combined with the markov logic network and
graph neural network for knowledge base correction and knowledge base completion.
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Abstract. Knowledge representation learning is usually used in knowledge rea-
soning and other related fields. Its goal is to use low-dimensional vectors to rep-
resent the entities and relations in a knowledge graph. In the process of automatic
knowledge graph construction, the complexity of unstructured text and the incor-
rect text may make automatic construction tools unable to accurately obtain the
semantic information in the text. This leads to high-quality noise with matched
entity types but semantic errors. Currently knowledge representation learning
methods assume that the knowledge in knowledge graphs is completely correct,
and ignore the noise data generated in the process of automatic construction of
knowledge graphs, resulting in errors in the vector representation of entities and
relations. In order to reduce the negative impact of noise data on the construction
of a representation learning model, in this study, a high-quality noise detection
method with rule information is proposed. Based on the semantic association
between triples in the same rule, we propose the concept of rule-based triple
confidence. The calculation strategy of triple confidence is designed inspired by
probabilistic soft logic (PSL). The influence of high-quality noise data in the train-
ing process of the model can be weakened by this confidence. Experiments show
the effectiveness of the proposed method in dealing with high-quality noise.

Keywords: Knowledge representation · Knowledge graph · Noise detection

1 Introduction

In recent years, in the background of big data and big knowledge [1], knowledge graph
[2] is widely used to describe concepts in the world. In the knowledge graph, in order
to transform knowledge into a structured knowledge system, knowledge is generally
stored in the form of triple as (head entity, relation, tail entity), where nodes represent
entities and the line segments between nodes represent relations. Freebase [3], DBpedia
[4], YAGO [5] and other large-scale general knowledge graph have been widely used in
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question answering system [6, 7], entity disambiguation [8], entity alignment [9], entity
linking [10], and other fields.

There are several problems in symbolic representation of the knowledge graph such
as difficulty in operation, hard to calculate, sparse data distribution and so on. In order to
solve these disadvantages, a new research direction,KnowledgeRepresentationLearning
(KRL) [11], has been proposed and rapidly attracted widespread attention. The main
idea of knowledge representation learning is to project entities and relations into low-
dimensional vector space through model training. Knowledge representation learning
can effectively circumvent the disadvantages of symbolic computation.

At present, the construction of knowledge graph by manual annotation is no longer
suitable for the updating and increasing speed of knowledge graph, so a large number of
automatic construction technologies of knowledge graph have emerged. However, in the
process of automatic construction of knowledge graph, some noise and conflict triples
are usually introduced due to inaccurate data in real corpus and complex language
logic in unstructured text data. For example, (LiBai, IsmarriedTo, DuFu) is a high-
quality noise of entity type matching but semantic error. Most traditional knowledge
representation learning methods assume that the knowledge in the existing knowledge
graph is completely correct, ignoring a large number of noises in real life [12]. Therefore,
how to find possible errors from the knowledge graph with noise or conflict has become
an urgent problem.

The work in this paper focuses on detecting high-quality noise in the knowledge
graph, considering the approximate relationship between rule-constrained triples to assist
noise detection. A novel concept of rule-based triple confidence is proposed, which is
applied to the representation learningmodel based on translationmethod. RCKRL (Rule
Confidence-Aware KRL Framework) method for high quality noise detection based on
Rule information is proposed. Through the RCKRL model, the confidence of the high-
quality noise triple is reduced, the influence of noise data on the model training process
is weakened, and the quality of model embedding representation is improved.

The main contributions of this paper are threefold: (1) Combining the representation
learning method with the symbolic method, a novel concept of rule-based triple confi-
dence is proposed; (2) The rule-based triple confidence is used to improve the triple con-
fidence function of CKRL model and enhance the noise detection ability of knowledge
graph representation.; (3) RCKRL can effectively reduce the influence of high-quality
noise in the process of model training, and has achieved a relatively significant effect in
the experimental part.

The rest of this paper is organized as follows: Sect. 2 describes the background,
including the concepts of KG embedding and KG noise detection. Section 3 introduces
the preliminary. Section 4 presents the framework of our method and the proposed
algorithms. Experimental results and analysis are presented in Sect. 5, followed by the
final section summarizes our main conclusion and future work.
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2 Background

In this section, we discuss the background including knowledge graph (KG) embedding
and knowledge graph noise detection.

KG Embedding. Knowledge graphs is usually represented by symbol, but the symbol
representation has several problems, such as difficult to operate, hard to calculate, and
sparse data distribution. To tackle these issues, knowledge representation learning has
been proposed and widely applied in many areas of KGs. KG embedding is mainly to
embed entities and relations in knowledge graph in vector space. At present, the models
can be divided into three categories: models based on translation [13, 14], models based
on tensor decomposition [15] and models based on neural network [16].

KG Noise Detection. Noise detection of knowledge graph is to detect and eliminate the
noise generated in the process of knowledge graph construction. From the perspective
of research, there are mainly two kinds of noise detection methods of knowledge graph.
(1) Symbol-based approach. According to whether external knowledge is used, symbol-
based noise detection methods can be divided into internal noise detection methods and
external noise detection methods [17]. The internal approach [18] is designed to use the
known information in a given knowledge graph to determine the wrong entity types,
relationships, and so on. External methods [19] employ additional corpora or human
knowledge to assist in judging noise or conflicts. (2) The method based on embedding
[20–22]. In this method, the reliability of a triple is judged according to the distance
between vectors. The concept of triple confidence is introduced to enhance the model
training quality.

3 Preliminary

Probabilistic soft logic (PSL) is a framework for collective probabilistic reasoning in the
relational domain [23]. It can use simple logic syntax to define the model, and perform
operations through fast convex optimization. PSL has a wide range of applications in
many fields such as natural language processing, social network analysis, knowledge
graphs, recommendation systems, and computational biology. PSL uses the soft truth
value between [0, 1] as the calculated value.

Each rule has an associated non-negative weight, and the relative importance of the
rule can be captured by the weight, which is the confidence of the rule. The confidence
can also be regarded as a soft truth value between [0, 1]. In order to determine the degree
of satisfying the basic rules, PSL uses Lukasiewiczt paradigm and its corresponding
co-paradigm as the relaxation of logical AND and OR. These relaxations are accurate
in certain situations and can provide consistent logical mapping. In the application field
of knowledge graph, given the triplet Tn, the truth value calculation formulas of logical
conjunction (∧), disjunction (∨) and negation (¬) are defined as follows:

d(T1 ∧ T2) = max{0, f (T1) + f (T2) − 1} (1)
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d(T1 ∨ T2) = min{f (T1) + f (T2), 1} (2)

d(¬T1) = 1 − d(T1) (3)

The rules are represented by symbols and the length of the rule body is variable. If we
want to use the rule to obtain the rule confidence of the triple, we need mathematically
express thewhole rule body. Using the PSLmethod, combinedwith the calculation of the
triple scoring function, the overall score of the rule body can be obtained. For example,
as shown in Fig. 1. Given a rule, the score of each part of the triple is calculated by the
translation model. Using formula (1), the overall score of the rule body can be calculated
as: d

(
rbody

) = max{0, 1.9 − 1} = 0.9

(A,spouse,B) (A,voteFor,P)=>(B,voteFor,P)

f(h,r,t) = 0.9 f(h,r,t) = 1 f(h,r,t) = 0.5

Fig. 1. Rules and their component triples score

4 Method

In this section, the motivation is introduced in Sect. 4.1 and an overview of our proposed
model is presented in Sect. 4.2. Next, we introduce our method in detail in Sects. 4.3
and Sects. 4.4.

4.1 Motivation

High-quality Noise Problem In KGs. In our previous works [24, 25], the task of low-
quality noise detection was considered to filter triples with the wrong entity type. For
example, (Libai, IsmarriedTo, Shandong) is a low-quality noise, because the tail entity
is expected to be a person, but not a province. However, “high-quality noise” with the
same entity type but semantic misunderstanding should also be considered, which is
more difficult to detect. For example, the noise triple (Nanjing, IscapitalOf, China) is
extracted by a famous tool, where the correct triple should be (Beijing, IscapitalOf,
China). Because “Nanjing” and “Beijing” share the same entity type, this kind of error
is regarded as high-quality noise. The example of two noise types are shown in Fig. 2.



576 Y. Hong et al.

Libai

Dufu

Liu

Shan 
Dong

IsmarriedTo

IsmarriedTo

IsmarriedTo

Low-quality 
noisy

Correct triple

High-quality 
noisy

Fig. 2. The example of two noise types

Rules Contain Semantic Information. The rules contain rich semantic information,
and the triples linked by the rules are highly correlated. Therefore, through making full
use of semantic associations between triples contained in rules, high-quality noise errors
can be found. Using the semantic connection between the triples connected by rules, if
the head of the rule is error, then the rule tail is regarded as a possible noise. Adjust the
embedding representation of entities and relations in the triples through this connection
is necessary. For example, the rule “isMarriedTo(x, y)⇒ isMarriedTo(y, x) confidence=
0.97” obtained by extracting rules from the YAGO37 dataset through the AMIE + tool.
High-quality noisy triple (Kobe Bean Bryant, isMarriedTo, Tracy McGrady) is existed
in the knowledge graph. After rule grounding, we can obtain the triple (Tracy McGrady,
isMarriedTo,KobeBeanBryant).After dynamically adjusting the confidence of triples in
the CKRLmodel, it can be seen that the confidence of (Kobe Bean Bryant, isMarriedTo,
Tracy McGrady) is low, which represent this is possibly an error triple. So the other
triple (Tracy McGrady, isMarriedTo, Kobe Bean Bryant) which connected by the rules,
its confidence should be lower as well. Therefore, using the approximate relationship
between the rule-constrained triples can more effectively reduce the confidence of the
wrong triples, finally reduce the influence of noisy data on the model training process.

4.2 Overall Architecture

In this section, we first explain the assumption of the approximate relationship between
the triples based on rule constraints, and use this assumption to initialize the rule confi-
dence of the triples, the method described in Sect. 4.3. Then based on rule confidence,
a high-quality noise detection method based on rule information is introduced. High-
quality noise detection method is fully described in Sect. 4.4. From these two steps, our
method RCKRL can effectively reduce the negative impact of high-quality noise on the
training process of the representation learning model. In order to make our approach
more intuitive, the details of the proposed model are summarized in Algorithm 1 below.
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4.3 Approximate Relations of Rule Constraints

The approximate relationship between rule-constrained triples means that a certain rule
contains multiple sets of triples, the triples in the rule body and the triples in the rule
header have similar semantics. For example, there is a rule “?b was born in ?a = >

?a nationality ?b”. The rule contains two relations “place of birth” and “nationality”.
This rule states that a person born in a certain country is more likely to have nationality
of the country. Each such relationship pair

(
rbody, rhead

)
is associated with a weight

φ, this weight is the confidence of the rule. The higher weight of the rule, the higher
credibility of the rule. Therefore, the rule can be expressed as “rbody => rheadφ”. There
is an assumption that if a rule is correct, then the rule header score should be higher or
equal to the score of rule body. According to the above assumptions, the approximate
implication relationship between rhead and rbody in the rule can be expressed as follow:

f (h, rhead , t) ≥ φ · f (h, rbody, t
)

(4)

Where f (h,r,t) represents the score of each part of the triple in the rule, and φ is the
confidence level of the rule. Using the approximate relationship guided by the rule, it
can be known that if the rule body is a noise triple, there is a high probability that the rule
head will become a noise triple. Therefore, the concept of rule-based triple confidence
RC (h,r,t) is proposed, which is defined as follow:

RC(h, r, t) = [
φ · f (RBODY ) − f (RHEAD)

]
+ (5)

Since the vector representation of entities and relations changes dynamically during
the training process, the scores of the triples also can be changed. Because the rule-based
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triple confidence uses the score of the translation model, the confidence will also change
with the model training process. This change can better capture the status of entities and
relationships in the current knowledge graph. When the rule length is 2, f (RBODY ) is
the score of the triple in the rule body, and the rule-based confidence of the triple in
the rule body can be initialized or updated directly. When the rule length is longer than
2, the rule body contains several triples, so the score cannot be calculated directly by
the score function. In order to solve the calculation problem, the PSL method in Sect. 3
is used to transform the symbolic representation of the rule body into a mathematical
representation. Then the confidence of each triple in the rule body can be updated with
the process of the model training. The overall calculation method of the rule body is as
follow:

f (RBODY ) = f (T1 ∧ T2) = max{0, f (h1, r1, t1) + f (h2, r2, t2) − 1} (6)

After extracting the data through AMIE+ [26], the rule “?b /film/film/written_by ?a
= > ?a /film/writer/film ?b 0.93” is obtained. This rule indicates that if Bmovie iswritten
by A, the probability that A wrote B is 0.93. After rule grounding process through the
training set, the rule body (Harry Potter, written_by, Jacob) and the rule header (Jacob,
writer, Harry Potter) are obtained respectively. These two triples are both high-quality
noise triple. According to the global path confidence of the CKRL model, the score
of the rule body triple is low. According to the approximate relationship between the
rule-constrained triples, the rule-based confidence score of the head triple should also
be low. By introducing negative sample triples, the distance in the vector space between
entities and relations in the noise triples is increased, thereby reducing the influence of
noise data in model training process.

4.4 High-Quality Noise Detection

According to the assumption of the translation model, the vector in the same triple must
satisfy h + r-t = 0 after training. Since the automatic construction of the knowledge
graph introduces a large number of high-quality noise, it cannot be guaranteed that all
triples can satifity the assumptions after training. According to translation assumptions,
entitieswith similar semanticswill form clusters in adjacent positions in the vector space.
Due to the close distance between entities with similar semantics, high-quality noise is
difficult to distinguish in the calculation process, which greatly affects the link prediction
between entities and relations. Noisy or conflicting triples should have lower confidence.
Use rule-guided approximation to punish triples that violate translation rules, reduce the
impact of high-quality noise in the model training process.

It should be noted that the CKRL [20] model uses local and global structures and
designs local triple confidence and global triple confidence respectively. In our study,
referring to the NCKRL model, only the confidence of the local triple is considered.
Combinedwith themethod proposed in this paper, the overall triple confidence is updated
to a combination of two confidences as shown below:

C(h, r, t) = λ1 · LT (h, r, t) + λ2 · RC(h, r, t) (7)

Among them, λ1, λ2 are hyperparameters, LT (h, r, t) is the global path confidence
of the triple, and RC(h, r, t) is the rule confidence of the triple proposed in Sect. 4.3.
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On the basis of the NCKRL model, the rule-guided triple confidence is added, and the
confidence is used to assist model training. The objective function is defined as L:

L =
∑

(h,r,t)∈S
∑

(h′,r′,t′)∈S ′
[
γ + f (h, r, t) − f

(
h′, r′, t′

)]
+ · C(h, r, t) (8)

f (h, r, t) is the score of the triple, C(h, r, t) guides the model to pay more attention
to the more convincing facts. S’ represents the generated negative sample set expressed
as:

S ′ = {(
h′, r, t

)|h′ ∈ E
} ∪ {(

h, r, t′
)|t′ ∈ E

} ∪ {(
h, r′, t

)|r′ ∈ R
}

5 Experiments

In this section, ourmethod is evaluated in the link prediction task and noise detection task.
If we could obtain a more accurate representation of entities and relations, this meant
that a relatively higher quality of the learned model, which further shows that the model
had capable of filtering noise and conflicts in KGs. We first introduce the datasets and
experimental settings, then show the experimental results and corresponding discussions.

5.1 Datasets

The dataset FB15K used in this section is a standard knowledge graph dataset. However,
the data in FB15K is completely correct, without considering the noise or conflicting
data in real life. Xie et al. [20] based on the FB15K dataset, by simulating the high-
quality noise generated by the automatic construction of knowledge graphs in real life,
selecting the head entity or tail entity of the same entity type to replace the triples in the
correct dataset. Through this method three datasets FB15K-1, FB15K-2 and FB15K-4
with different noise ratios (10%, 20% and 40%) are generated. The detailed data of the
FB15K original dataset is shown in Table 1. The data information of different noise
ratios is shown in Table 2.

Table 1. Statistics of FB15K

Dataset #rel #ent #train #valid #test

FB15K 1,345 14,951 483,142 50,000 59,071

The AMIE + was adopted to extract logical rules for specific knowledge graph.
Considering the validity of the rules, the length of the extracted rules should not exceed
2 and the PCA (partial completeness assumption) confidence should not be less than
0.8. Under the above restrictions, 628 rules are extracted, and some examples of rules
are shown in Table 3.
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Table 2. Different ratios of negatives on FB15K

Dataset FB15K-1 FB15K-2 FB15K-4

*neg triples 46,408 93,782 187,925

Table 3. Rules extracted from FB15K

Rule PCA

/location/people born here(x, y)⇒/people/place of birth(y, x) 1.00

/director/film(x, y)⇒/film/directed by(y, x) 0.99

/film/directed by(x, y)∧/person/language(y, z)⇒/film/language(x, z) 0.88

The grounding of the rule is to replace the variables in the rulewith the specific triples
in the training set. For example, there is a rule ∀x, y: /location/people born here(x, y)
⇒ /people/place of birth(y, x). After replacing the variables in the rules with the triples
in the FB15K training set, the instantiated rules can be obtained as follow: (Emmanuel-
Macron, /location/people born here, France) ⇒ (EmmanuelMacron, /people/place of
birth, France). Through the above method, the three datasets with different noise ratios
were instantiated, 207,379, 312,416, and 450292 pieces of grounding datawere obtained.

5.2 Experiment Setup

Three state-of-the-art algorithms were used for comparison: TransE [13], CKRL(LT)
[20], and NCKRL [22]. In this paper, only the confidence of local triple(LT) in the
CKRL model is considered by referring to the NCKRL model. The proposed algorithm
is called RCKRL. In addition, in order to consider the influence of the rule length on
the model, experiments were performed on the length of 2, the length of 3, and the
combination of the two lengths, denoted as RCKRL-2, RCKRL-3 and RCKRL.

In order tomake a fair comparison, the parameter settings of the proposed algorithms
are given as follows: the number of negative samples NG = 20, learning rate is 0.001
and γ = 1.0. The overall score function adopts the L1 paradigm, dimension d is 50. The
experiment uses the “bern” strategy when generating negative samples. This strategy is
defined during model training, replacing the head entity or tail entity with different prob-
abilities to generate negative samples. Two hyperparameters that affect the proportion
of the confidence of the two rules are λ1 = 1.5, λ2 = 0.4.

5.3 Link Prediction Task

Link Prediction is one of the important methods of knowledge graph completion, which
aims to predict the missing edges in the knowledge graph. In this task, given two known
elements, predict the missing entity or relation in the triple.
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By convention, MR, MRR and Hits@10 were selected as our metrics, where MR is
the average ranking of correct answers, MRR represents the average value of the recip-
rocal ranks of the results and Hits@10 represents the proportion of correct alignments
in the first ten results. The larger the value of MRR and HIT@10, the better the model
effect, and the smaller the value of MR, the results can be better. Follow NCKRL, we
both consider raw and filter cases. The results of the entity prediction with different
datasets are shown in Table 4.

Under the evaluation indicators of MRR and Hits@10, the RCKRL results are better
than the other three comparison models. Under the MR evaluation, the value is lower
than the CKRL model, however the result is better than the improved NCKRL model
and the classic TransE model. Therefore, the result indicating that the algorithm in this
paper can reduce the impact of high-quality noise data on the training process. At the
same time, it can be seen from the experimental results that RCKRL has achieved good
results in the case of different rule lengths. The model that combines two type rules is
more accurate than themodel that combines a single length rule, which further illustrates
the ability of the semantic connection implied by the rules in noise detection. The rule
length of 2 is better than the rule length of 3 in most cases, indicating that the smaller
the rule length, the higher the credibility.

In addition to entity prediction, this paper also performed relation prediction on three
datasets with different noise ratios. The experimental results are shown in Table 5. It
can be seen from this table that although the algorithm results are poor under the MR
index, the RCKRL algorithm has achieved better experimental results than NCKRL on
Hits@1. When predicting relationships, the method in this chapter performs poorly in
predicting the average ranking of all relationships, but the probability that the correct
relationship ranks first is very high, indicating that RCKRL has the ability to accurately
predict the position of the correct relationship, which further confirms the performance
of our model.

5.4 Noise Detection Task

In order to verify the ability to detect noise and conflicts in the knowledge graph, a high-
quality noise detection task of the knowledge graph is proposed. This task can intuitively
express the model noise detection ability. The purpose of this task is to detect potential
noise in the knowledge graph based on the scores of the triples. This experiment uses the
TransE score function to calculate the score of the triple. The triple is ranked according
to the score, and the triple with a higher score can be considered as noises. By matching
the ranking of the triples with the high-quality noise dataset, the number of noises can
be obtained. According to this method, the accuracy of the proposed method in noise
detection can be verified.

By convention, Precision was selected as our metrics, where Precision is the ratio
of the detected high-quality noise to the overall noise data is calculated. We conducted
high-quality noise detection verification on the 20% and 40% noise ratio datasets, and
the experimental results are shown in Table 6.
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Table 4. Entity prediction on FB15K with different ratios of noise

FB15K-N1 MR MRR Hits@10 (%)

Raw Filter Raw Filter Raw Filter

TransE 249 155 0.122 0.234 45.2 59.9

CKRL(LT) 230 133 0.136 0.278 45.9 62.5

NCKRL 278 178 0.138 0.334 47.9 68.3

RCKRL-2 256 155 0.25 0.49 49.9 71.4

RCKRL-3 283 181 0.25 0.48 48.6 69.7

RCKRL 258 157 0.26 0.49 50.3 71.6

FB15K-N2 MR MRR Hits@10 (%)

Raw Filter Raw Filter Raw Filter

TransE 251 157 0.114 0.209 43.3 56.6

CKRL(LT) 236 140 0.128 0.255 44.7 60.4

NCKRL 287 188 0.133 0.305 46.8 65.9

RCKRL-2 267 165 0.25 0.45 48.1 68

RCKRL-3 287 184 0.24 0.47 47.5 67.8

RCKRL 271 170 0.25 0.45 48.2 68.2

FB15K-N3 MR MRR Hits@10 (%)

Raw Filter Raw Filter Raw Filter

TransE 268 175 0.099 0.176 40.4 51.9

CKRL(LT) 246 150 0.119 0.232 43.1 57.4

NCKRL 304 206 0.127 0.281 45.6 63.1

RCKRL-2 288 183 0.23 0.42 46.0 64.6

RCKRL-3 312 205 0.24 0.42 46.1 66.1

RCKRL 290 185 0.24 0.45 46.2 64.5

From the results, it can be found that the algorithm proposed in this section performs
better under the Precision evaluation, and RCKRL can detect a higher proportion of
high-quality noise. The experimental results are better than the other two comparison
models, so RCKRL not only improves the prediction effect of the representation learning
model, but also better detect the high-quality noise in the knowledge graph, which further
illustrates the noise detection ability of the improved model in this section.
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Table 5. Relation prediction on FB15K with different ratios of noise

FB15K-N1 MR Hits@1 (%)

Raw Filter Raw Filter

NCKRL 6.9182 6.5504 62.76 79.72

RCKRL 6.7244 6.3598 63.13 80.48

FB15K-N2 MR Hits@1 (%)

Raw Filter Raw Filter

NCKRL 6.9141 6.5520 62.14 78.92

RCKRL 7.3495 6.9904 62.72 79.83

FB15K-N3 MR Hits@1 (%)

Raw Filter Raw Filter

NCKRL 6.9107 6.5434 61.87 78.80

RCKRL 7.8115 7.4545 62.97 79.76

Table 6. High-quality noise detection results on FB15K

TransE NCKRL RCKRL

Noisy rate 20 40 20 40 20 40

Precision 46.3% 43% 47.6% 44.6% 49.9% 45.1%

6 Conclusion and Future Work

In this study, we designed a RCKRLmodel for high-quality noise detection using seman-
tic information contained in rules. By reducing the confidence of the noise triples during
the training process, and quantifying the correctness of semantics and the truth of the
facts, we can effectively improve the embedding quality of noise knowledge graphs.
The experimental results demonstrated that our model achieved good performance in
most cases. In the future, we will study how to introduce additional information, such
as ontology and entity descriptions, into noise detection in knowledge graphs, so as to
design a more effective noise detection strategy.
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Abstract. Developing autonomous agents that can reason about the
perspective of their (human or artificial) peers is paramount to realisti-
cally model a variety of real-world domains. Being aware of the state of
mind of others is a key aspect in different fields—e.g., legal reasoning,
business negotiations, ethical AI and explainable AI. In particular, in
the area of Multi-Agent Epistemic Planning (MEP), agents must reach
their goals by taking into account the knowledge and beliefs of other
agents. Although the literature offers an ample spectrum of approaches
for planning in this scenario, they often come with limitations. This paper
expands previous formalization of MEP to enable representing and rea-
soning in presence of inconsistent beliefs of agents, trust relations and
lies. The paper explores the syntax and semantics of the extended MEP
framework, along with an implementation of the framework in the solver
Epistemic Forward Planner (EFP). The paper reports formal properties
about the newly introduced epistemic states update that have been also
empirically tested via an actual implementation of the solver.

Keywords: Epistemic planning · Multi-agent · Belief update ·
Knowledge representation

1 Introduction

The branch of AI interested in studying and modeling technologies in which
agents reason about the activities required to achieve a desired goal is referred to
as automated planning. In particular, multi-agent planning [1,6–9,18] provides a
powerful tool to model and manage scenarios which include multiple agents that
interact with each other. To maximize the potentials of such autonomous systems
each agent should be able to reason on both i) her perspective of the “physical”
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world; and ii) her beliefs of other agents’ perspective of the environment—that
is, their viewpoints of the “physical” world and of other agents’ beliefs. In the
literature, the planning problem in this setting is referred to as multi-agent epis-
temic planning. Existing epistemic action languages [3,4,9,19] are able to model
several families of problems, but cannot comprehensively reason on aspects like
trust, dishonesty, deception, and incomplete knowledge.

In this paper, we expand the language mAρ [9] with the concept of agents’
attitudes. Our idea of attitudes stems from the concept of dynamic attitudes that
“represent the agent’s assessment of the reliability of the source” introduced by
Rodenhäuser [20]. We define basic attitudes that capture how an agent reacts
when another agent is informing her about something. In the real world, in
fact, it is often the case that we associate an idea of reliability to an informa-
tion source. This work captures this idea by having agents behave according
to the following attitudes: doubtful, impassive, trustful, mistrustful or stubborn
(the detailed description is given in Sect. 3). Specifically, we present, to the best
of our knowledge, the first transition function that is able to update an epis-
temic state—i.e., the knowledge/belief-graph of the agents—when considering:
i) inconsistent beliefs, i.e., discrepancies between the beliefs currently held by an
agent and some new information that she acquires; ii) trust relations between
agents; and iii) the possibility for an agent to lie.

2 Background

In this section, we introduce the core elements of Multi-agent Epistemic Planning
(MEP) following the notation proposed by Baral et al. [3]. Let AG = {1, 2, . . . , n}
be a set of agents and F be a finite set of propositional atoms, called fluents.
Fluents describe the properties of the world in which the agents operate; a possi-
ble world is represented by a subset of F (i.e., those fluents that are true in that
world). Agents often have incomplete knowledge/beliefs, thus requiring them to
deal with a set of possible worlds. The incompleteness of information applies also
to the agent’s knowledge/beliefs about other agents’ knowledge/beliefs. Agents
can perform actions drawn from a finite set of possible actions A. In MEP, each
action can be performed by a set of agents α ⊆ AG. The effects of an action can
either directly modify the state of the world (ontic action) or the knowledge or
beliefs of some agents (epistemic action). Nevertheless, both action types can
affect the agents’ knowledge or beliefs.

To formally define concepts related to information change we make use of
Dynamic Epistemic Logic (DEL) [21]. The language of well-formed DEL formu-
lae with common belief LC(F ,AG) is defined as follows:

ϕ ::= f | ¬ϕ | ϕ ∧ ϕ | Biϕ | Cαϕ,

where f ∈ F , i ∈ AG and ∅ �= α ⊆ AG. A fluent formula is a DEL formula with
no occurrences of modal operators. B captures the concept of Belief and we
read the formula Biϕ as “i believes that ϕ.” Cα captures the Common belief
of the set of agents α.
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DEL formulae semantics is traditionally expressed using pointed Kripke struc-
tures [16]. Instead, in this paper we make use of an alternative semantics based
on the concept of Possibilities adopted by Fabiano et al. [9].

Definition 1 (Possibility [13]).
– A possibility u is a function that assigns to each fluent f ∈ F a truth value

u(f) ∈ {0, 1} and to each agent i ∈ AG an information state u(i) = σ;
– An information state σ is a set of possibilities.

We denote the set of literals that are “true” in a possibility u with u(F) = {f |
f ∈ F ∧ u(f) = 1} ∪ {¬f | f ∈ F ∧ u(f) = 0}. Possibilities capture the concept of
epistemic state (e-state) that consists of two components: i) information about
the possible worlds (the interpretation of the fluents u(F)); and ii) information
about the agents’ beliefs (represented by the set of possibilities u(i)). The pos-
sible world that represents the real state of affairs is called pointed possibility.
Due to space constraints, we refer the interested reader to [10,13] for the notion
of entailment for possibilities and further details on this topic.

We now recall the concept of domain. An MEP domain contains the informa-
tion needed to describe a planning problem in a multi-agent epistemic setting.

Definition 2 (MEP Domain). A multi-agent epistemic planning domain is
a tuple D = 〈F ,AG,A, ϕini, ϕgoal〉, where F , AG, A are the sets of fluents,
agents, actions of D, respectively; ϕini and ϕgoal are DEL formulae that must be
entailed by the initial and goal e-state, respectively. The former e-state describes
the domain’s initial configuration while the latter encodes the desired one.

We refer to the elements of a domain D with the parenthesis operator; e.g., the
fluent set of D is denoted by D(F). An action instance a〈α〉 ∈ D(AI) = D(A)×
2D(AG) identifies the execution of action a by a set of agents α. Multiple executors
are needed in sensing actions (introduced in detail in the next sections), since we
consider as executors all the attentive agents. On the other hand, announcement
actions only require one executor (|α| = 1), i.e., the announcer. Let D(S) be the
set of all possible e-states of the domain. The transition function Φ : D(AI) ×
D(S) → D(S) ∪ {∅} formalizes the semantics of action instances (the result is
the empty set if the action instance is not executable).

Since we are interested in capturing the beliefs of agents (as opposed to their
knowledge), we consider possibilities that satisfy the well-know axiom system
KD45n (see Chapter 3 of [11] for more details), where n denotes the presence
of multiple agents. When an e-state is consistent with such axioms, we call it a
KD45n-state.

The Action Language mAρ . Our work builds on the action language mAρ [9],
which has been used in the solver Epistemic Forward Planner (EFP) proposed
by Fabiano et al. [9]. The language allows three different types of action: i)
ontic actions, used to change the properties of the world (i.e., the truth value of
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fluents); ii) sensing actions, used by a group of agents to refine their beliefs, and
iii) announcement actions, performed by an agent to affect the beliefs of others.

The action language also captures agents’ observability relations on action
instances. Namely, an agent may be fully observant (aware of both the execution
of the action instance and its effects), partially observant (aware of the action
execution but not of the outcome), or oblivious (ignorant about the execution
of the action) w.r.t. a given action instance.

Following previous approaches [9,17], actions’ effects are assumed to be
deterministic. Therefore, we assume the presence of a unique fluent literal that
describes the effects of an epistemic action to further avoid non-determinism. In
fact, the transition function of epistemic actions presented in this paper consid-
ers the negation of the effects that, if defined as conjunction, would generate a
disjunctive form (i.e., non-deterministic effects).

3 Inconsistent Beliefs and Attitudes

In real-world situations, it is often the case that we learn a fact that discords with
our previous beliefs. When such a discrepancy arises we talk about inconsistent
belief. Since we consider KD45n-states, inconsistencies are relative only to the
beliefs of an agent (and not to the actual world). Let us assume that agent i
believes that ¬ϕ is the case in the e-state u (i.e., u |= Bi¬ϕ); in mAρ there are
two main sources of inconsistencies: i) i observes the real world—performing a
sensing action—and learns ϕ (the opposite of what she believed); ii) i learns ϕ
as a result of an announcement performed by another agent j.

In both scenarios, we must account for the belief of i after the action. In
particular, the resulting e-state u′ must be consistent with axiom D. In the
former case i), we resolve the inconsistency by having i believe ϕ; i.e., we make
sure that u′ |= Biϕ. This is a reasonable solution, as we assume that agents
trust their senses when observing the world. In the latter ii), we must take into
account the attitude of the agent w.r.t. the announcer j. As in [20], “we are not
only interested in the acceptance of new information (based on trust), but also
in its rejection (based on distrust)”. For instance, the listener may be skeptical
or credulous, and thus she would change her belief according to her attitude.

Let us notice that inconsistent belief is different from false belief. An agent
has a false belief about a property ϕ if she believes ϕ to be true, but such
property does not hold in the actual world. False beliefs are already allowed in
mAρ as a result of the presence of oblivious agents in action instances.

Going back to the attitudes of agents, the notion of trust naturally arises.
It is reasonable to have the listener i believe the announcer j if i trusts j.
In this work, we consider three attitudes for fully observant agents that listen
to an announcement: trustful, mistrustful, and stubborn. Trustful agents believe
what the announcer tells them; mistrustful agents believe the opposite of what is
announced; and stubborn agents do not modify their beliefs. Considering the case
of semi-private announcements, we need to introduce the concept of attitude
for partially observant agents as well. Specifically, we consider impassive and
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doubtful agents. Impassive agents keep their current beliefs, while doubtful agents
do not believe neither what is being announced nor the opposite, regardless of
their previous beliefs. Note that stubborn and impassive agents are different, as
the former are aware of what is being announced—i.e., the truth value of the
property ϕ. Let us note that such attitudes are named to capture our personal
idea of the behaviour they represent and they are not meant to wholly describe
the nuances of complex social attitudes such as, for example, stubbornness.

When communicating with their peers, agents might announce something
that is false relative to their own point of view. We call lies such announcements.
Similar to the notion of inconsistent belief, the truthfulness of announcements
depends on the point of view of the announcer i—i.e., , i truthfully announces
ϕ iff u |= Biϕ.

4 Enriched Semantics

In this section, we provide a formalization of the transition function of mAρ that
captures the aspects that we previously discussed. When clear from the context,
we use a to indicate the action instance a〈α〉, with α ⊆ D(AG).

Definition 3 (Frame of reference [3]). The frame of reference of an action
instance a〈α〉 is a partition ρa〈α〉 = 〈Fa,Pa,Oa〉 of the set D(AG), denoting the
Fully observant, Partially observant and Oblivious agents of a〈α〉, respectively.

The concept of attitude is strictly related to announcements. Therefore, in
what follows, a〈α〉 is assumed to be an announcement action. We recall that
announcement action instances are assumed to have a single executor (|α| = 1),
that we call the announcer. In this case, we make use of the short notation a〈j〉
in place of a〈{j}〉.
Definition 4 (Attitude). The attitude of an agent determines how she
updates her beliefs when new information is announced. Attitudes induce a
refined partition of the frame of reference ρa〈j〉 = 〈Fa,Pa,Oa〉 as follows:

– Fa = {j}∪Ta∪Ma∪Sa: fully observant agents may be the executor, Trustful,
Mistrustful, or Stubborn;

– Pa = Ia ∪ Da: partially observant agents may be Impassive or Doubtful.

Attitudes are specified with mAρ statements of the form “has attitude i wrt
j att if ϕ” (where att is one of the attitudes of Definition 4) and they define
the trust relations among agents. Such a statement asserts that i bears the
attitude att towards j if the condition ϕ is met. We assume that the attitudes
of the agents are publicly visible, except for the attitude that the announcer
has w.r.t. herself. That is, the announcer knows whether she is being truthful,
lying or announcing something that she is unaware of, while other agents do
not. Instead, trustful and stubborn agents believe that the announcer is truthful
(i.e., they believe that the executor believes the announced property), whereas
mistrustful agents believe the announcer to be lying (i.e., they believe that the
announcer believes the negation of such property). Finally, we assume that the
announcer does not modify her own beliefs about the property being announced.
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Definition 5 (MEP domain with attitudes). A MEP domain with atti-
tudes is a tuple D = 〈F ,AG,A, T , ϕini, ϕgoal〉, where the additional element T
contains the attitudes relations of agents:

T = {(i, j, att, ϕ) | [has attitude i wrt j att if ϕ]}.

4.1 Transition Function

In the remainder of this section we define the mAρ transition function Φ. Let
D = 〈F ,AG,A, T , ϕini, ϕgoal〉 be an MEP domain with attitudes, j ∈ D(AG),
u ∈ D(S) and a ∈ D(AI). The frame of reference ρa and the attitudes of the
agents are determined by confronting the elements of the attitudes relation T
with the possibility u. If a is not executable in u, then Φ(a, u) = ∅. Otherwise,
we distinguish between ontic and epistemic actions.

Ontic Actions. Since ontic actions are not affected by the introduction of incon-
sistent beliefs, nor attitudes, the previous formalisation described by Fabiano
et al. [9] is maintained, and it is omitted due to space constraints.

Epistemic Actions. Sensing and announcement actions modify the beliefs
of agents. Since agents might acquire information that discords with previous
beliefs, we must resolve the discrepancies. In the case of sensing actions, we con-
sider all fully observant agents as executors. Since each agent trusts her senses,
we have Fa = Ta. Similarly, we assume partially observant agents to keep their
beliefs about the physical features of the world unchanged, i.e., Pa = Ia. Hence,
the refined frame of reference of sensing actions is ρa〈Ta〉 = 〈Ta, Ia,Oa〉.

In the case of announcement actions, it is necessary to state both the executor
j ∈ D(AG) and the attitudes in order to resolve inconsistent beliefs. Therefore,
the frame of reference of announcement actions is ρa〈j〉 = 〈({j},Ta,Ma,Sa),
(Ia,Da),Oa〉. During the computation of the update, the attitude of the
announcer j is set to match the perspective of the agent being currently handled
by the transition function.

Let � be the (unique) fluent literal such that [a senses/announces �] ∈ D.
With a slight abuse of notation, we define the value of � in a possibility w as
val(a, w) = w(�). The effect e(a) of action a is equal to 1 if � is a positive fluent
literal (e(a) = 0, otherwise). We use the following simplifications: given a possi-
bility p, i) p′ denotes the updated version of p; and ii) if not stated otherwise,
we consider p′(F) = p(F). For clarity, we briefly describe each component of the
transition function after its definition.

Definition 6 (Transition Function for Epistemic Actions). Let i be an
agent (i.e., i ∈ D(AG)). Applying an epistemic action instance a on the pointed
possibility u results in the updated pointed possibility Φ(a, u) = u′ such that:
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u
′(i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(i) if i ∈ Oa

P(a, u) if i ∈ Pa

F(a, u, 1) if i ∈ Ta

F(a, u, 0) if i ∈ Ma

S(a, u, e(a), 1) if i ∈ Sa

S(a, u, e(a), 0) if i = j

where P, F, S are defined below.

Description: Φ modifies the beliefs of each agent on the announced fluent w.r.t. to
her attitude. Each sub-function (P, F, S) updates the beliefs that the agents have
of others’ perspectives.

We first define the helper functions χ and χ̄. Let w′
x = χ(a, w, x) and w̄′

x =
χ̄(a, w, x̄) with: i) w′

x and w̄′
x represent the possibility w updated with χ and χ̄,

respectively; ii) x and x̄ represent opposite boolean values s.t. x = ¬x̄; and iii) let
b be 1 and 0 when executing χ and χ̄, respectively. Then w′

x and w̄′
x are defined

as follows:

w
′
x(�) =

{
x if � = f

u(�) otherwise
w̄

′
x(�) =

{
x̄ if � = f

u(�) otherwise

w
′
x(i)

w̄
′
x(i)

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(i) if i ∈ Oa

P(a, w) if i ∈ Pa
⋃

v∈w(i)

χ(a, v, x) if i ∈ Ta ∨ (i = j ∧ b = 1)

⋃

v∈w(i)

χ̄(a, v, x̄) if i ∈ Ma ∨ (i = j ∧ b = 0)

S(a, w, x, 1) if i ∈ Sa

Description: Functions χ and χ̄ recursively update the nested beliefs by specifying
the correct value of x to guarantee that the higher-order beliefs are in line with
the agents’ point of view. These functions make us of two boolean variables: i) x
to encode the truth value of � believed by i; and ii) b: a flag that keeps track of
whether i is trustful (b = 1) or mistrustful (b = 0) w.r.t. the announcer.

1) Let w′
p = P(a, w). Then:

w
′
p(i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(i) if i ∈ Oa
⋃

v∈w(i)

P(a, v) if i ∈ Ia

⋃

v∈w(i)

χ(a, v, 0) ∪ χ(a, v, 1) if i ∈ Da

⋃

v∈w(i)

χ(a, v, val(a, v)) if i ∈ Ta ∪ Ma ∪ {j}
⋃

v∈w(i)

S(a, v, val(a, v), 1) if i ∈ Sa
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Description: Function P updates the beliefs of partially observant agents. It
updates their “direct beliefs” (i.e., that represent their point of view) on � and
the nested beliefs of fully observant agents (by calling χ with x = val(a, w)). This
guarantees that agents in Pa believe that (mis)trustful agents are aware of the
action’s effect. For doubtful agents χ is executed with x = 0 and x = 1, forcing
them to be ignorant about �.

2) Let w′
f = F(a, w, b). Then:

w
′
f(i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(i) if i ∈ Oa

P(a, w) if i ∈ Pa
⋃

v∈w(i)

χ(a, v, e(a)) if i ∈ Ta ∨ (i = j ∧ b = 1)

⋃

v∈w(i)

χ̄(a, v, ¬e(a)) if i ∈ Ma ∨ (i = j ∧ b = 0)

⋃

v∈w(i)

S(a, v, e(a), 1) if i ∈ Sa

Description: Function F updates the point of views on � of trustful and mistrust-
ful agents, calling χ and χ̄, respectively. Moreover, F deals with the beliefs of
other agents w.r.t. to (mis)trustful agents. The flag b keeps track of whether F is
executed from the perspective of a trustful (b = 1) or a mistrustful (b = 0) agent
allowing to update i’s perspective on the beliefs of the announcer.

3) Let w′
s = S(a, w, x, s). Then:

w
′
s(i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(i) if i ∈ Oa

P(a, w) if i ∈ Pa
⋃

v∈w(i)

χ(a, v, x) if i ∈ Ta ∨ (i = j ∧ s = 1)

⋃

v∈w(i)

χ̄(a, v, ¬x) if i ∈ Ma

⋃

v∈w(i)

S(a, v, x, s) if i ∈ Sa ∨ (i = j ∧ s = 0)

Description: Function S keeps the “direct” beliefs of the executor and stubborn
agents unchanged and it updates their perspective on other agents’ beliefs. Here,
we make use of two boolean variables: i) x is defined as in χ/χ̄; ii) s is used to
identify whether the function has been called by a stubborn agent (s = 1) or if it
is updating the “direct” beliefs of the executor (s = 0).

Let a be an announcement action (a sensing action can be thought of as a
special case of an announcement). The point of view of oblivious agents remains
untouched. Since a is an epistemic action, the fluents of the pointed world u′

are unchanged w.r.t. its previous version u. On the other hand, trustful agents’
points of view are changed to fit the announced property �; mistrustful agents
believe the opposite of what is announced; stubborn and impassive agents do not
change their belief on �. The perspective of doubtful agents is built by including
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also the opposite point of view w.r.t. �. Higher-order beliefs are also correctly
updated as stated in Proposition 1. Finally, the announcer considers herself
stubborn, since the announcement does not intact her beliefs, while other agents
derive the attitude of the announcer depending on their own. As mentioned
before, trustful and stubborn agents consider the announcer to be truthful, while
mistrustful agents consider the announcer to be lying. Notice that the announcer
is aware of the other agents’ perspective on her attitude.

Examples of actions’ executions are presented in the Supplementary Docu-
mentation (available at http://clp.dimi.uniud.it/sw/) due to space constraints.

Desired Properties. Following Baral et al. [3] and Fabiano et al. [9], we list
some properties concerning the effects of actions and attitudes in mAρ. Complete
proofs are available in the Supplementary Documentation.

Proposition 1 (Epistemic Actions Properties). Let a〈j〉 be an epistemic
action instance such that j announces � (where � is either f or ¬f). Let u be
an e-state and let u′ be its updated version, i.e., Φ(a, u) = u′, then it holds that:

1. u′ |= CFa
(CTa

(� ∧Bj�)) – Fully observants think that Trustfuls believe that
the announced property holds and that the announcer believes such property;

2. u′ |= CFa
(CMa

(¬� ∧ Bj¬�)) – Fully observants think that Mistrustfuls
believe that the announced property does not hold and that the announcer
does not believe such property;

3. ∀i ∈ (Sa∪{j}), u′ |= ϕ if u |= ϕ with ϕ ∈ {Bi�; Bi¬�; (¬Bi�∧¬Bi¬�)} –
Stubborns and the announcer do not modify their beliefs about the property;

4. ∀i ∈ Fa, u′ |= CPa
(Bi� ∨ Bi¬�) – Partially observants believe that Fully

observants (including the announcer) are certain on the value of the property;
5. ∀i ∈ Da, u′ |= C(Fa∪Pa)(¬Bi� ∧ ¬Bi¬�) – Non-Oblivious believe that

Doubtfuls are uncertain on the truth value of the announced property;
6. for every pair of agents i ∈ D(AG), o ∈ Oa, and a belief formula ϕ,

u′ |= Bi(Boϕ) if u |= Bi(Boϕ) – Every agent (even Oblivious) believe
that Oblivious do not change their beliefs.

5 Related Work

The enriched semantics of mAρ has been implemented in the C++ solver EFP
(available upon request) that is now able to tackle families of problems that con-
sider complex aspects such as doxastic reasoning, lying agents, faulty perception
etc. Examples of execution can be found in the Supplementary Documentation.

To the best of our knowledge, in the literature only one other solver, RP-
MEP [19], is able to tackle such domains. The solver firstly encodes an MEP
problem into a classical planning problem and then handles the solving phase
with a “classical” planner. The key difference between EFP and RP-MEP is that
while RP-MEP grounds the agents’ beliefs and reasons on them as if they were
“static facts”, EFP builds and interprets e-states, and it updates them using a

http://clp.dimi.uniud.it/sw/
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full-fledged epistemic transition function. For this reason, the latter constitutes a
more comprehensive framework. In fact, given the effects of an action instance (a
single literal/conjunction of literals), the transition function of mAρ propagates
the effects and updates the nested beliefs of agents automatically. Conversely,
RP-MEP needs the propagated effects to be explicit.

Other theoretical approaches explore the idea of trust between agents
[5,15,20]. For example, following [5], Herzig et al. [15] devised a logic to capture
“truster’s belief about certain relevant properties of the trustee with respect to a
given goal”. While this logic elegantly captures the ideas of Castelfranchi and
Falcone [5] it does not actively use the notion of trust to modify the outcome
of an action’s execution w.r.t. an agent’s perspective, that is what we are trying
to accomplish with our idea of attitudes. Conversely, Rodenhäuser [20] proposes
a theoretical framework where agents make use of the reliability of the source
(using the so-called dynamic attitudes) to correctly update their beliefs. While
our idea of attitudes stems from such work, we only introduced attitudes that are
intuitively derived from real-world scenarios without considering more complex
ones. In the future we plan to expand our formalization and the planner with
the attitudes presented in [20] along with the idea of “plausibility”.

Belief revision [2] in presence of inconsistent/false beliefs has been explored
by Baral et al. [3] and Herzig et al. [14]. These works focus on the introduc-
tion of a theoretical framework for resolving inconsistencies. Baral et al. [3]
mainly focuses on false beliefs, and while their solution correctly accounts for
false beliefs, it is not sufficient to resolve inconsistent beliefs. On the other
hand, Herzig et al. [14] propose a multi-agent extension of AGM-style belief
revision [12]. While revising the agents’ beliefs could be a viable solution we
believe that having to decouple the belief revision from the e-state update for
each action execution would generate an excessive overhead in the solving pro-
cess.

6 Conclusions

This paper presented a novel MEP framework supporting inconsistent beliefs,
trust relations and lies, in the presence of ontic, sensing and announcement
actions with different degrees of observability. The framework, based on the
logic LC(F ,AG), is capable of reasoning in the presence of higher-order beliefs
without limitations and thanks to attitudes, the updated transition function can
handle inconsistent beliefs. E-states are updated in an homogeneous fashion that
solely depends on agents’ attitudes. This generates a flexible framework that can
be expanded by simply defining attitudes that represents novel ideas.

Attitudes represent a first step towards building complex behavior of agents
in an epistemic/doxastic setting. As future works, we plan to characterize more
sophisticated attitudes. Moreover, we want to investigate attitudes and trust
relations that can be affected by actions. We also plan to analyse private trust
relations—e.g., allow each agent to have her own belief about the attitudes of
others.
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