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Abstract. Multi-robot system is an ever growing tool which is able
to be applied to a wide range of industries to improve productivity and
robustness, especially when tasks are distributed in space, time and func-
tionality. Recent works have shown the benefits of multi-robot systems in
fields such as warehouse automation, entertainment and agriculture. The
work presented in this paper tackles the deadlock problem in multi-robot
navigation, in which robots within a common work-space, are caught
in situations where they are unable to navigate to their targets, being
blocked by one another. This problem can be mitigated by efficient multi-
robot path planning. Our work focused around the development of a
scalable rescheduling algorithm named Conflict Resolution Heuristic A*
(CRH*) (https://github.com/iranaphor/crh star) for decoupled priori-
tised planning. Extensive experimental evaluation of CRH* was carried
out in discrete event simulations of a fleet of autonomous agricultural
robots. The results from these experiments proved that the algorithm
was both scalable and deadlock-free. Additionally, novel customisation
options were included to test further optimisations in system perfor-
mance. Continuous Assignment and Dynamic Scoring showed to reduce
the make-span of the routing whilst Combinatorial Heuristics showed to
reduce the impact of outliers on priority orderings.

Keywords: Multi-robot path planning · Prioritised planning ·
Decoupled path planning · A* · Reservation tables

1 Introduction

Autonomous mobile robotic technologies have matured over recent decades
enabling their uses in many real-world applications. This has resulted in a push
towards scaling up systems to large mobile robot fleets to improve operational
efficiency, especially when tasks are inherently distributed in space, time or func-
tionality. One of the primary requirements to ensure proper coordination among
a fleet of autonomous mobile robots in a shared-workspace, is efficient path plan-
ning and allocation. Without effective coordination, interference between robots
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can have a detrimental effect on the fleet operations. Congestion-free route plan-
ning and coordination is needed to address this interference.

In Multi-Robot Path Planning (MRPP), there are four main challenges to
overcome: Completeness, is the guarantee that a route will be found if one exists;
Optimality, is the guarantee to find a set of routes minimising some metric such
as make-span (time the last robot arrives) or flow-time (sum of all route lengths)
[19]; Deadlocking, is where a robot will be in a state preventing another from
reaching a target [5,8]; and Scalability, is the issue of processing resources thin-
ning as the complexity of the joint state-space increases. Among these, optimal-
ity and scalability can be considered mutually exclusive, and are tackled well by
Coupled and Decoupled approaches respectively.

An example of a scenario where MRPP can be useful is a fleet of agricul-
tural robots deployed in a polytunnel environment to execute a series of in-field
logistics tasks [7]. These tasks are dynamic in nature and are dispersed over
the environment. This paper addresses the MRPP problem to enable conges-
tion and deadlock-free movement of robots in such a polytunnel environment,
by proposing a novel algorithm called Conflict Resolution Heuristic A* (CRH*).
By relying on decentralised and decoupled route planning to find sub-optimal
solutions, the CRH* algorithm is complete and scalable, as demonstrated by
empirical evaluations.

The rest of this paper is organised as follows: Sect. 2 provides an overview of
related work in Prioritised Planning; Sect. 3 provides an overview of the imple-
mentation; Sect. 4 details the experimental setup, evaluation and results; and
Sect. 5 concludes our findings.

2 Related Works

Decentralised and decoupled MRPP approaches are widely preferred to address
the high computational complexity and low scalability of centralised approaches.
Prioritised Planning (PP) is a decoupled MRPP approach which assigns priori-
ties to each robot and then plans a route for each one sequentially, treating all
prior robots as dynamic obstacles.

As the complexity of the joint state-space is proportional to the total config-
uration of priorities, finding the optimal assignment of priorities is a NP-Hard
problem. Thus a full state-space search is unfeasible and smarter approaches
must be taken [2]. When routes are unavailable due to blocking from higher pri-
ority agents, the robot can be considered to be deadlocked. Rescheduling can be
used to optimise priority assignments and replan routes. CRH* tackles the area
of rescheduling, making use of enhanced reservation tables and comprehensive
replanning in a distributed decision-making topology.

Our approach focuses in the topological domain, in which the map is a finite
set of discrete positions (nodes) and connections between them (edges) indi-
cating possible paths from one node to another [10]. It is used as the common
discretised environment representation over which all robots plan their routes.
Such representations have low planning complexity and can easily detect possible
conflicts compared to metric maps.
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Fig. 1. Example of the potential of combinatorial heuristics, as the combination of two
independent heuristics.

2.1 Heuristics

The effective use of heuristics works with the intent to give priority to the robot
which needs it the most. In Static Ordering (SO) [9] scoring is made using the
order the agents were added to the network, and in Euclidean Distance (ED)
[17] scoring is based on the distance to the target.

These work well in metric maps which are very open and well-connected,
however for agricultural environments in the scale of hectares, these are not
viable as they are. Polytunnels and fields often include long isolated paths to
traverse, which are better managed by approaches such as below, which follow the
idea that agents struggle due to environmental constraints. ED can be adapted
into Optimal Path Length (OPL) to become viable in these scenarios.

In Planning Time (PT) [18], the processing time to find a route is used for
scoring, however this falls short in heterogeneous systems where platforms have
differing processing hardware. In Naive & Coupled Surroundings [6,19] agents
are scored based on the cluttering of their workspace by counting the number
of local obstacles. Where in Naive Surroundings (NS), obstacles are regarded as
distinct and in Coupled Surroundings (CS) they are treated as effective, where
effective obstacles are regions the agent is unable to navigate. In Path Prospects
(PaP) [19] scoring is made based on the number of effective obstacles between
the start and target to score on the number of paths available in the homology
class of trajectories.

In PP, it is standard to use a single heuristic to assign priorities. We extend
on this, exploring the potential of combining multiple heuristics to improve to
handling of outliers demonstrated in Fig. 1.

2.2 Rescheduling

Rescheduling works to reduce the impact of deadlocks by modifying the priority
schema to optimise generated orderings [9]. In Random rescheduling [4] priorities
are randomised and replanned whenever a deadlock occurs. The Hill-Climbing
search [3] extends on this by randomly swapping pairs of priorities. Continuous
Enhancement [15] allows agents to modify their own score if they are unable
to find a route. This is extended by Deterministic Rescheduling [1], to award
the maximum priority, following the idea that issues are caused by their local
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environment. Local Priority Assignment [14] works by exploring all local priority
configurations in proximity to an agent unable to find a route. Priority Tuning
[13] optimises successful assignments by shuffling priorities between the least
optimal agents, repeating until convergence. In our approach, we extend the
ideas in Deterministic Rescheduling by integrating the intelligent overriding of
higher priorities.

2.3 Path Finding

Path Finding algorithms are a core component within prioritised planning, being
used to generate routes once priorities are assigned. As detailed in [11,16], there
are many categories of path finding algorithms. Being one of the most funda-
mental path finding algorithms, A* [12] works only to identify a route. Local
Repair A* (LRA*) [20], recalculates the remainder of its route when a collision
is pre-empted. Cooperative A* (CA*) [16], uses three dimensional space-time
reservation tables to mark off impassable regions. Our approach includes an
extension to the reservation tables of CA* to override existing reservations; and
an extension to LRA* to optimise replanning from a point of conflict.

3 Design and Development

3.1 Overview

The main architecture of CRH* (Fig. 2), works in three stages, with the final
two repeating together till convergence. In the first stage, the robot is assigned
a target, plans a route, and informs the coordinator of its reservations. The
coordinator, on receiving the route, adds the reservations to the global map,
notifying any other robots of overturned reservations in the second stage. The
robots each receive their failed reservations (FR) in the third stage, and perform
replanning to identify new routes, passing these new routes to the coordinator.

Each message contains a list of reservations, of which each consist of an edge
identifier, agent identifier, and a reservation start and end time.

On receiving an FR, the shortest of three replanning methods is returned
to the coordinator. These three methods are: Replanning from Start where a
new route is generated from scratch; Replanning from Conflict where the route
beyond FR is replanned; and Replanning with Delay which adds a time delay
(in which the robot will wait to use the FR once it is available) and replans from
there.

3.2 A* Adaptations

There were two key modifications to the motion planning algorithm to enable
the enhancements for our approach, the first was the reservation override system
(CRH Battle), the second was the deadlock management (FAILED List).

The CRH Battle was included within A* where as each edge is initially
investigated, a score (referred to as the CRH score) is generated to query against
any existing reservations in the time period specified. Only if the robot’s CRH
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Fig. 2. Visual representation of robot-coordinator communication.

score is greater, will the override work. While this scoring system can utilise
any single heuristic such as described in Sect. 2.1, it is also capable of taking the
combination of multiple heuristics (e.g. ED,

∑
(ED,OPL), or

∏
(PT,NS,CS)).

For our experiments, we utilise a variety of scoring systems as the heuristics
themselves are arbitrary to the aim of the research.

The deadlock management is implemented in the form of an additional flag
for exploration. A* has two flags, OPEN and CLOSED, which define whether a
node is on the frontier for exploration or has already been explored, where if the
OPEN list is exhausted, the planning fails. In our approach, when reservation
overrides fail, the edge is added to a new FAILED list, which is accessed once the
OPEN list is exhausted to obtain the most optimal edge to override, boosting
the CRH Score generated.

3.3 Framework Facilities

Continuous Assignment. In PP, the handling of new assignments is done in
one of two ways, in Batch Assignment replanning will wait till all have completed
routes, whilst in Full Replanning all agents replan in the current state. In our
approach, we propose a third method Continuous Assignment as a direct con-
trast to Batch Assignment in which rescheduling is applied without replanning
the entire network, only updating affected agents. This allows for a reduction in
make-span as shown in Fig. 3.

Dynamic Scoring. The standard method of score generation is Static, in which
scores for each agent are assigned before routing. In our approach, we implement
the concept of dynamic scoring, where every reservation uses locally relevant
information to compute heuristics. As the routing gets closer to a target, each
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Fig. 3. Example of route times in batch (upper) and continuous (lower) assignment
for a series of agents.

(a) Fork Map (53 edges) (b) Riseholme Map (150 edges)

Fig. 4. Topological Maps used in the experiments.

edge will be reserved with information relevant to that edge rather then infor-
mation from the agents current location, for example with ED, each edge will
be reserved with its distance to the target rather the distance to the target from
the start node as would happen with static scoring.

4 Experiments

Discrete Event Simulation. To ensure a comprehensive evaluation, Dis-
crete Event Simulation (DES) was utilised along with Monte-Carlo simulations,
enabled through the deterministic nature of the approach. In this, time jumps
to points of interest (POI) rather than evaluating every timestep. In our exper-
iments, these POI consist of any timestep in which a route is completed; time
jumps to the next route completion, performs any calculations, and repeats.

Experiment Maps. Experimentation was completed on two topological maps
Fork (Fig. 4a) and Riseholme (Fig. 4b), representing a single polytunnel and a
pair of polytunnels respectively. The experimentation was completed on the Fork
map for the majority of experiments, with the Riseholme map used also for the
scalability test.

Heuristics. In the following experiments, used to generate the CRH scores for
resolving conflicts are the heuristics of: Optimal Path Length (OPL), Euclidean
Distance (ED), Planning Time (PT), and Static Ordering (SO) of which we
utilise the Agent’s ID.
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Fig. 5. Average number of deadlocks resolved per run. Completed with 10 agents,
across 50 iterations of 1k targets in the Fork Map.

4.1 Evaluation of CRH*

Deadlocks. The FAILED list, is used to handle every deadlock encountered,
so by recording the activity of the FAILED list, we are able to identify how
often potential deadlock situations occur. Figure 5 shows the average number
of deadlocks encountered per target over 50 runs with 1000 targets per run.
These results show on average 0.47 deadlocks for each given target, which if not
managed as they are here, would cause many delays in navigation.

Scalability. As the approach is decentralised in design, path planning is
expected to run distributed, thus does not contribute to scalability concerns.
The area of highest concern is thus communication, which consists of one mes-
sage per replan to the coordinator. So to evaluate scalability, the Replans per
Target (RT ) is recorded, which accurately measures the load on the coordina-
tor. The results in Fig. 6 show upward trends initially before plateauing, avoiding
exponential scaling and thus can be regarded as scalable.

(a) Average Replans in Fork Map (b) Average Replans in Riseholme Map

Fig. 6. Range-grouped area charts for average RT over five runs of 50 targets

4.2 Evaluation of Optimisation Improvements

Batch vs. Continuous Assignment. Continuous Assignment works to
improve make-span by reducing idle time for agents waiting to replan. Figure 7a
shows the resulting make-span distributions contrasting Batch and Continuous
Assignment. The tests were run five times with 20 targets for each of 5, 10 and
20 agents using OPL as the CRH score to resolve conflicts. The results show
Continuous Assignment improves make-span in both small and large simula-
tions. This is evidenced by Fig. 7b showing the same tests run for 1000 targets
with make-span reductions of 47%, 38%, and 20% respectively to the number of
agents.
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(a) Flow-Time over 20 Targets in seconds (s)

(b) Flow-Time over 1000 Targets in seconds (s)

Fig. 7. Make-Span distribution for Continuous (left) and Batch (right) Assignment
with simulations of 5, 10 and 20 agents.

Fig. 8. Distribution of delays contrasting Dynamic (left) and Static (right) Scoring
systems with 50 and 100 targets per agent.

Static vs. Dynamic Scoring. To test the efficacy of the optimisation, the
decoupled optimal make-span is negated from the CRH* make-span to get the
worst-case delay. This delay was recorded across two sets of experiments, the first
testing static scoring, and the second with dynamic scoring. This was repeated
across six categories using the heuristics of ED, OPL and PT, for each of 50
and 100 targets per agent. The results in Fig. 8 show Dynamic Scoring offers a
significant improvement, with the margin between Static and Dynamic Scoring
growing larger proportionally to the total targets.

Base vs. Combinatorial Heuristics. To evaluate the efficacy of combina-
torial heuristics, 10 tests were performed with 10 agents each, recording the
average number of replans per run. Each test consisted of 10 runs with 20 tar-
gets, completed for each heuristic independently then combined together. This is
repeated three times, the first comparing ED, OPL and PT; the second using SO
and OPL; and the third comparing SO and ED. From Fig. 9, the average range
of outliers is reduced when using the combination of all heuristics as opposed
to purely independent heuristics. In addition, the average number of replans
decreases for combined heuristics when using a combination of heuristic and
Agent ID.
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Fig. 9. Distribution of replans between independent heuristics, and their combination
(all).

5 Conclusion

In this work, we have proposed the CRH* algorithm, a decentralised and decou-
pled enhancement to prioritised planning which aimed to improve deadlock
avoidance with the use of reservation tables and deterministic rescheduling. We
show through experimental evaluation that our approach is both scalable and
deadlock-free as the complexity of the joint state-space increases with the size
of the topological map and the number of agents.

We have also shown, clear make-span reductions of up to 47% with the use
of Continuous Assignment and up to 82% with Dynamic Scoring. We have also
shown prioritisation quality improvements with Combinatorial Heuristics reduc-
ing the impact of extreme outliers.

Due to the agnostic nature of the approach, the discrete event simulation
and specific heuristics chosen are arbitrary to the evaluation of the developed
features, however further work will include exploration with a wider sample of
heuristics, and performance evaluations beyond discrete event simulation.
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