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Preface

TAROS is the longest-running UK-hosted international conference on Robotics and
Autonomous Systems (RAS), which is aimed at the presentation and discussion of the
latest results and methods in autonomous robotics research and applications. TAROS
offers a friendly environment for robotics researchers and industry to take stock and
plan future progress. It welcomes senior researchers and research students alike and
specifically provides opportunities for research students and young research scientists
to present their work to the scientific community.

TAROS 2021 received 66 submitted papers, of which 45 were accepted (a 68 per
cent acceptance rate) with 19 presented orally and 26 as posters. The number of
submissions was lower than for a usual TAROS due to submissions taking place during
the COVID-19 pandemic. Each paper was single-blind reviewed by at least three
Program Committee members and scored from -3 to +3. TAROS is a UK-based
conference but the Program Committee contained international members. TAROS aims
to present the state of the art in the UK robotics community and to bring this com-
munity together so the Organizing Committee decided to retain a larger conference via
a higher acceptance rate rather than reduce the size of the conference, so acceptances
were made algorithmically for papers with threshold mean scores of 0 or more.

The main conference spanned two days. The first day focussed on algorithms and
computer science, with sessions on reinforcement learning, perception, and
co-operation. The second day focussed on systems, hardware and mechatronics, with
sessions on robot design, sensing, and actuation. Linking to these themes, the keynotes
talks were ‘Towards Personal Assistive Robots’ by Yannis Demeris (Imperial College
London), ‘An Uncertain Mission: Decision Making for Autonomous Robots’ by Nick
Hawes (University of Oxford), which was made public and sponsored by the IET, and
‘Ant-inspired Robots’ by Barbara Webb (University of Edinburgh). As is traditional,
TAROS 2021 featured an extended presentation of the best paper from the UKRAS
conference, which is included as ‘Predicting Artist Drawing Activity via Multi-camera
Inputs for Co-creative Drawing’ by Chipp Jansen and Elizabeth Sklar. The conference
took place remotely due to the COVID-19 pandemic and was hosted virtually by the
University of Lincoln.
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A Study on Dense and Sparse (Visual)
Rewards in Robot Policy Learning

Abdalkarim Mohtasib1(B), Gerhard Neumann2, and Heriberto Cuayáhuitl1

1 Lincoln Centre for Autonomous Systems, University of Lincoln, Lincoln, UK
amohtasib@lincoln.ac.uk

2 Autonomous Learning Robots, Karlsruhe Institute of Technology,

Karlsruhe, Germany

Abstract. Deep Reinforcement Learning (DRL) is a promising app-
roach for teaching robots new behaviour. However, one of its main limi-
tations is the need for carefully hand-coded reward signals by an expert.
We argue that it is crucial to automate the reward learning process so
that new skills can be taught to robots by their users. To address such
automation, we consider task success classifiers using visual observations
to estimate the rewards in terms of task success. In this work, we study
the performance of multiple state-of-the-art deep reinforcement learning
algorithms under different types of reward: Dense, Sparse, Visual Dense,
and Visual Sparse rewards. Our experiments in various simulation tasks
(Pendulum, Reacher, Pusher, and Fetch Reach) show that while DRL
agents can learn successful behaviours using visual rewards when the
goal targets are distinguishable, their performance may decrease if the
task goal is not clearly visible. Our results also show that visual dense
rewards are more successful than visual sparse rewards and that there is
no single best algorithm for all tasks.

Keywords: Deep reinforcement learning · Reward learning · Robot
learning

1 Introduction

In Deep Reinforcement Learning, the reward signal is typically carefully designed
such that the agent can learn behaviour that achieves a good performance. But
hand-coding and engineering rewards requires an expert to design it for each
task to be learned, and it is often not easy to design rewards for robotic tasks.
This limits the applications of DRL to real robots, especially when the end-user
of the robot has to teach the robot new tasks. To address this limitation, it is
crucial to find a mechanism that can autonomously and intuitively learn the
rewards from a human expert for new tasks.

The problem of autonomous reward generation has been recently investigated
in the literature by several researchers. Most previous works have used image-
based success classifiers—as illustrated in Fig. 1—to learn the task’s reward
c© Springer Nature Switzerland AG 2021
C. Fox et al. (Eds.): TAROS 2021, LNAI 13054, pp. 3–13, 2021.
https://doi.org/10.1007/978-3-030-89177-0_1
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[12,13,21–23,25–27,30]. [21] attempted to use transfer learning to learn the
rewards for new tasks, but with slow prediction times (>0.5 s per interaction)
that prevent its practical application. Other approaches used goal images to esti-
mate the reward for each time step based on the difference between the goal and
the current image, calculated in different ways [6,7,15,16,18,19]. While these
approaches achieved good results in learning the task reward, they have not
investigated the effects of different types of rewards on DRL agents. There is no
clear study that shows how the different DRL algorithms perform with different
types of reward in different tasks.

Fig. 1. System overview.

The reward learning
pipeline starts with collect-
ing expert demonstrations
for the task at hand. Their
images are then labelled as
success/no-success. Subse-
quently, the labelled data
is used to train an image-
based success classifier that
estimates the success prob-
ability for each environ-
ment state. This success
probability is used as a
dense or sparse (visual)
reward signal, see Sect. 3.2.

The contribution of this paper is a comparison of different types of rewards
(Dense, Sparse, Visual Dense, and Visual Sparse) for learning manipulation
tasks. Our study was carried out using four different DRL algorithms (DDPG,
TD3, SAC, and PPO) in four different robotic tasks. Our results show that it
is indeed possible to learn good policies using visual rewards, where the higher
the quality of the success classifier the better the learnt policy. Our results also
show that, while a DRL algorithm may perform very well in one task, it may
perform poorly in another.

2 Related Work

The literature shows different ways to learn numerical rewards. Some previous
works have used Inverse RL to estimate the reward function from demonstra-
tions [1,3,8,9,29]. Here, we consider a setting where the expert labels the visual
observations as success/no-success. We use these expert labels to train a success
classifier to estimate the reward. This setting differs from the Inverse RL setting
(no expert labels). Other approaches use visual representations of the goal state
to define the vision-based task [6,7,15,16,18,19]. In these approaches, the goal
image has been used in different ways to calculate the rewards: (i) using the
latent distance between the current state image and the goal image [7,15,16];
(ii) using the pixel-wise L1 distance to the goal image [19]; or (iii) using the
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histogram distance to the goal image [6]. The approach of using a goal image to
represent the task’s success achieved good results. Yet this approach is limited as
the goal could have different varieties and shapes. Furthermore, it is not always
possible to represent the task goal using one or several images.

Our study focuses on the use of success classifiers to learn visual rewards of
the task at hand [12,13,21–23,25–27,30]. The main neural network architecture
that has been used for the task success classification is based on multiple convo-
lutional blocks (convolutional layers followed by a max-pooling layer) followed
by a multiple fully-connected layers [13,22,23,26,27,30]. Sermanet et al. [21]
used transfer learning of the Inception network [24] pre-trained for ImageNet
classification [5] to extract the features from the environment’s visual states.
Subsequently, they used a simple neural network with multiple fully-connected
layers to generate rewards from the extracted visual features [21]. However, the
interaction of such a large image classifier slows down the execution of the manip-
ulation task.

While some of the previous works have used dense rewards in their
experiments [13,21,23,25,27], some others have only employed sparse rewards
[12,22,26,30]. The difference between dense and sparse rewards is important
because, in many tasks, the only available reward is a sparse reward and this
represents a big challenge for the DRL agent to learn the task’s objective. Fur-
thermore, different types of RL algorithms have been used in these works such
as DDPG [26], SAC [23], A3C [12,22], REINFORCE [27], and DQN [25]. While
task success classifiers have been used in different ways with different RL algo-
rithms in the literature, there is no ablation study in the literature studying the
pros and cons (or effects) of different types of rewards for inducing robot policies.
This paper aims to fill that gap. Our ablation study, using different DRL algo-
rithms across multiple tasks, reveals the effects of oracle dense rewards, oracle
sparse rewards, visual dense rewards, and visual sparse rewards.

3 Research Methods

3.1 Problem Formulation

We consider environments that can be framed as a Markov Decision Process
(MDP) [2], where an agent receives a reward rt after taking action at in the
state st, then it progresses to the next state st+1. We focus on the discounted
case, where The agent tries to maximise the cumulative discounted reward Gt =
Eτ

[∑T
t=0 γtRt

]
= Eτ

[∑T
t=0 γtr (st, at)

]
, where γ is the discount factor, τ =

(s0, a0, · · · ) denotes the whole trajectory, s0 ∼ p0 (s0), at ∼ π (at|st), and st+1 ∼
p (st+1|st, at). We consider a success classifier R̂t = f (ot), where ot is a visual
observation of the environment (an image), and R̂t ∈ [0, 1] is the probability
of having achieved the task in state st. We train f(ot) for a new manipulation
task from N demonstrations by updating the parameters of this function to
minimize

∑
L (f(oi), yi), where L is the classification loss (cross entropy loss

and mean square error in our case) and yi is the image label. We assume that
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Table 1. Rewards for training DRL agents. φ is the tilt angle of the pendulum in
radians, DR is the distance between the end-effector of the robotic arm and target
position in the Reacher task, DP is the distance between the object and target location
in the Pusher task, and DF is the distance between the gripper of the Fetch arm and
target position.

Reward Pendulum Reacher Pusher Fetch

Dense − |φ| −DR −DP −DF

Sparse

{
0, |φ| < 0.15

−1, |φ| ≥ 0.15

{
0, DR ≥ 0.01m

−1, DR < 0.01m

{
0, DP ≥ 0.01m

−1, DP < 0.01m

{
0, DF ≥ 0.01m

−1, DF < 0.01m

a demonstrator classifies the ground truth images, which are used by such a
probabilistic classifier to learn to generate rewards. The research question that
our study aims to answer is: Can DRL agents learn good policies by using visual
rewards derived from task success classifiers?

3.2 Rewards

For each task, we trained DRL agents using four different types of rewards in
order to understand the effects of the different types. The agents were trained
using true Dense and Sparse rewards, where they come directly from the physical
simulator. The equations of Dense and Sparse rewards are shown in Table 1. In
addition, we used Visual Dense and Visual Sparse rewards, which were calculated
based on the estimated success probability using our (best) CNN-based success
classifiers. While the Visual Dense rewards for all tasks were estimated according
to R̂t = 2 × P (success = 1|ot) − 1, the Visual Sparse rewards were estimated

according to R̂t =

{
0, P (success = 1|ot) ≥ 0.5
−1, P (success = 1|ot) < 0.5

Where P (success = 1|ot) is

the success probability estimated by the success classifier.

3.3 Task Success Classifiers

We compare two different image classifiers trained using expert demonstrations,
and use them to reward the DRL agents. The image classifiers are as follows.

– CNN Classifier (CNN). This is a standard CNN-based model that has
been used in literature [7,9,13,21,23,25,26,30]. Its inputs are (160 160 3)
resized images of the robotic environment, followed by six main convolutional
blocks and one convolutional layer, see Fig. 2.

– Time-Based CNN Classifier (T-CNN). This architecture extends the
CNN one with two pathways and features (shared in between): one is the
classification path, the other is a timing path that predicts the proportion of
task completion (a regressor), see Fig. 2. The task completion proportion for
each image is calculated according to yt = t

(j−1) , where t is a given time step,
and j is the total number of time steps in the demonstration at hand. The
timing path will add more gradient information and this aims to be helpful
in predicting the task success.
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Fig. 2. Model architectures for task success classification with input images of (160 160
3). The Class output is the predicted success probability for both models. On the other
hand, the Timing output is associated only with the T-CNN model. This output is the
estimated task completion proportion (notation: GAP= Global Average Pooling).

3.4 Training Methodology

For each task, we collected a set of 10 successful demonstrations in different tasks
(see Sect. 4.1). These demonstrations are used for training the success classifiers
in each task. Each image in these demonstrations is labeled as success/no-success.
We compare the performance of the classifiers across all tasks and use the best
classifier to estimate the success probabilities from visual observations. There-
after, we train DRL agents using four different learning algorithms1 (DDPG
[14], TD3 [10], SAC [11], and PPO [20]) with dense rewards and sparse rewards
across four different tasks. Similarly, another group of DRL agents are trained
but using visual dense rewards.

4 Experiments and Results

4.1 Training Tasks

We trained the DRL agents using the following OpenAI Gym Environments [4],
see Fig. 3: (1) Pendulum. A simple one Degree-Of-Freedom (DOF) task with
one continuous action to stabilize the inverted pendulum in the up position. In
each episode, the pendulum initial tilt angle is random. (2) Reacher: In this
task, the end-effector (the green point, see Fig. 3) of the two links robotic arm
(2-DOFs) should reach the red target. The position of the red target is initialised
randomly in each episode. (3) Pusher: The 7-DOFs robotic arm in Fig. 3 pushes
the white object to the red target position. The position of the white object is
initialised randomly in each episode. (4) Fetch (Reach): The 7-DOFs Fetch

1 We used a PyTorch implementation of the DRL algorithms [17].
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Fig. 3. Visualisation of our simulation tasks: Pendulum, Reacher, Pusher, Fetch
(Reach).

Table 2. Performance results of the CNN and T-CNN classifiers (notation:
ACC= Average Classification Accuracy, AUC= Area Under the Curve).

Task CNN T-CNN

ACC Precision Recall F1 Score AUC ACC Precision Recall F1 Score AUC

Pendulum 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Reacher 0.738 0.970 0.704 0.816 0.962 0.872 0.970 0.872 0.918 0.982

Pusher 0.990 0.992 0.994 0.993 1.000 0.992 0.994 0.994 0.994 1.000

Fetch 0.898 0.908 0.982 0.943 0.976 0.948 0.966 0.975 0.970 0.989

Average 0.907 0.968 0.920 0.938 0.985 0.953 0.990 0.960 0.971 0.993

robotic arm in Fig. 3 should reach the red target position that is initialised
randomly in each episode. This is a realistic robotic task that simulates the real
Fetch robot (https://fetchrobotics.com).

4.2 Success Classifiers Results

The CNN (Standard Convolutional Neural Net) and T-CNN (Time-Based CNN)
image classifiers in each of the four tasks were trained with a set of 10 demonstra-
tion episodes and tested with another set of 10 demonstration episodes. Here,
we test the ability of the success classifier to predict the success probability for
each observation (image) in the test set. We assess the performance of success
classification according to the following metrics: Classification Accuracy, Preci-
sion, Recall, F1-score, Area Under the Curve. Table 2 shows the test results of
our classifiers, where the T-CNN classifier outperformed the CNN classifier in all
classification metrics across all tasks. This suggests that the additional gradient
information for predicting the task completion proportion helps in predicting
the task success. Thus, the T-CNN model is adopted to estimate the success
probabilities for the visual rewards.

4.3 Experimental Results of the DRL Agents

We evaluated different aspects in the performance of our DRL agents. First, we
start with the learning curves of the DRL agents under the different settings
as shown in Table 3. The most important outcome from these learning curves is
that the DRL agents (except for PPO agents) were able to learn good policies

https://fetchrobotics.com
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Table 3. Learning curves of DRL agents using different learning algorithms (DDPG,
TD3, SAC, PPO) across four tasks when trained using dense, sparse, visual dense, and
visual sparse rewards. The agents used five different seeds, 320 learning curves in total.

Dense Reward Sparse Reward Visual Dense Reward Visual Sparse Reward

Pe
nd

ul
um

R
ea
ch
er

Pu
sh
er

Fe
tc
h
(R

ea
ch
)

by using only the visual rewards that come from the success classifier. See the
following video for example behaviours of the trained DRL agents2.

It is crucial to test the learned policies to ensure that the visual rewards
can be used to learn useful behaviours that lead to the successful execution of
the tasks. Table 4 shows the test results of the learned policies. It is clear from
these results that the visual rewards are indeed helpful in learning good suc-
cessful behaviours—as noted by their success rates across tasks. On average,
there is a small drop in performance when using visual rewards as the success
classifier is error-prone. It can be noted that the drop in performance when
using visual rewards is larger in the Reacher and the Fetch (Reach) tasks. With
further investigation and experiments, we found that when the target object is
behind the robotic arm, the visual images are not reflecting the correct envi-
ronment’s state. Thus, the success classifier fails to predict the correct success
probability, and hence the drop in the performance in this task. The ranking of
algorithms according to average success rate is as follows: DDPG (81.4% ± 18%),
SAC (77.8% ± 20%), TD3 (75.7% ± 26%), and PPO (12.1% ± 21%).

2 Video: https://youtu.be/8zOqEQDBleU.

https://youtu.be/8zOqEQDBleU
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Table 4. Performance of DRL algorithms across tasks. The maximum episode’s length
is 100 steps. Training and test times of DRL agents: training in HH:MM, and test in
seconds. While 2 million steps were used in the Pendulum task, 10 million steps were
used in the other tasks. The learnt policies were tested with 1000 episodes in each task.

Task Agent Dense reward Sparse reward Visual dense rew. Visual sparse rew.

Success

rate

Average

eps. len.

Success

rate

Average

eps. len.

Success

rate

Average

eps. len.

Success

rate

Average

eps. len.

Pendulum DDPG 98% 62.36 96% 59.68 96% 63.18 87% 53.88

TD3 100% 62.53 87% 60.56 99% 58.19 87% 63.9

SAC 95% 66.37 75% 61.76 99% 62.7 38% 61.12

PPO 1% 60.77 2% 61.19 2% 51.86 4% 61.66

Reacher DDPG 100% 51.87 97% 53.79 45% 82.16 62% 75.35

TD3 98% 54.64 8% 97.28 52% 78.34 33% 83.99

SAC 98% 52.93 97% 56.09 45% 80.38 47% 73.95

PPO 6% 98.13 8% 95.01 11% 95.12 10% 95.6

Pusher DDPG 91% 60.44 90% 59.94 80% 60.52 72% 69.38

TD3 92% 62.8 87% 67.95 83% 66.25 80% 69.89

SAC 95% 58.17 90% 63.16 87% 67.21 84% 63.1

PPO 2% 99.46 19% 91.78 4% 98.78 14% 95.27

Fetch DDPG 91% 52.23 88% 60.95 58% 73.25 51% 74.78

TD3 94% 53.87 82% 58.07 64% 67.53 65% 68.13

SAC 81% 58.52 82% 62.5 72% 67.83 59% 75.29

PPO 90% 52.75 4% 98.11 13% 92.95 4% 97.41

Avg. success 77.00% 62.99 63.25% 69.24 56.88% 72.89 49.81% 73.92

Std. success 37.02% 14.67 38.89% 16.03 34.28% 13.85 29.78% 13.13

A statistical analysis using the Wilcoxon Signed-Rank Test (paired)[28] on
the results of Table 4 revealed the following. Comparing Dense Success Vs. Sparse
Success, the p-values are: p = 1e−4 including PPO, and p = 6e−7 excluding
PPO. Comparing Visual Dense Success Vs. Visual Sparse Success, the p-values
are: p = 4e−4 including PPO, and p=0.016 excluding PPO. Whilst the first
comparison supports our claim that dense rewards are better than sparse ones,
the second supports the claim that visual dense rewards are better than visual
sparse rewards.

We carried out another statistical analysis using the Wilcoxon Signed-Rank
Test (paired)[28] to compare the ranking of algorithms according to average suc-
cess rate. While comparing DDPG Vs. TD3 gives a p-value of 0.236, comparing
DDPG Vs. SAC gives p = 0.182. The differences are not significant and more
comparisons are needed.

Table 5 reports training and test times of various experimented settings. Con-
sidering the training time3 of agents using visual rewards, their training time is
almost twice than non-visual rewards. Although such long training times should
be addressed in future work, this cost comes with a large benefit where there is
no need to hand-code the reward functions. Similarly and in contrast to agents
using non-visual rewards, the test times of agents using visual rewards increase
3 PC: CPU: Intel i7-6950 @ 3.00 GHz, 10 cores. RAM: 32GB. GPU: NVIDIA

TITAN X 12GB.
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Table 5. Training and test times of DRL agents: training in HH:MM, and test in
seconds. While 2 million steps were used in the Pendulum task, 10 million steps were
used in the other tasks. The learnt policies were tested with 1000 episodes in each task.

Task Dense or Sparse reward Visual reward

DDPG TD3 SAC PPO DDPG TD3 SAC PPO

Training Pendulum 05:45 05:47 09:10 04:12 16:22 16:15 22:27 10:30

Reacher 27:02 19:18 45:50 12:16 45:24 51:42 77:56 18:40

Pusher 29:07 27:49 35:01 12:11 47:00 45:59 60:35 29:58

Fetch (Reach) 29:30 24:33 34:50 14:59 50:20 40:25 62:55 26:34

Avg. 22:51 19:21 31:12 10:54 39:46 38:35 55:58 21:25

Test Pendulum 17.03 17.28 16.22 16.75 46.02 33.15 33.90 43.35

Reacher 16.53 17.42 17.75 17.18 45.60 43.55 47.63 49.03

Pusher 17.54 17.09 15.84 16.76 44.53 45.17 47.93 46.59

Fetch (Reach) 16.14 17.56 17.38 17.78 45.72 45.34 45.87 47.13

Avg. 16.81 17.34 16.80 17.12 45.47 41.80 43.83 46.53

by about 30 ms for every environment step. We calculated the average test time
for one environment step across tasks, which resulted in ∼45 ms—acceptable for
real robotic tasks.

Furthermore, we investigated the effects of the choice of success classifier
by comparing policies using our baseline and proposed success classifiers—CNN
and T-CNN, respectively. Results show that while the performance of agents is
similar in simple tasks (74% of task success on avg. across algorithms for both
classifiers in the Pendulum task), T-CNN-based agents outperform CNN-based
agents in more complex tasks (61.7% and 47.8% of an overall average task success
across tasks, respectively), suggesting that the higher the performance of success
classifiers the better learnt policies.

5 Conclusion and Future Work

This paper shows that it is indeed possible to learn successful policies from
visual rewards, though with higher computational cost than non-visual rewards.
Our experiments reveal the following. First, dense rewards can achieve higher
task success than sparse rewards. Second, the better the success classifier the
better the policy. Third, when images do not represent the correct state of the
environment, this may lead to learning poor policies. Fourth, while one algorithm
might be good in a given task, it may not performs well in another task. DDPG
achieved the highest task success across tasks, but the differences in performance
against other algorithms were not significant.

Future work will consist of investigating the proposed learned visual rewards
on real robotic tasks and multiple robot platforms. Other future works with high
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potential contribution to the previous work include accelerating the training
times of DRL agents, and improving their success rates across tasks.
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Abstract. This work re-implements the OpenAI Gym multi-goal
robotic manipulation environment, originally based on the commercial
Mujoco engine, onto the open-source Pybullet engine. By comparing
the performances of the Hindsight Experience Replay-aided Deep Deter-
ministic Policy Gradient agent on both environments, we demonstrate
our successful re-implementation of the original environment. Besides,
we provide users with new APIs to access a joint control mode, image
observations and goals with customisable camera and a built-in on-hand
camera. We further design a set of multi-step, multi-goal, long-horizon
and sparse reward robotic manipulation tasks, aiming to inspire new
goal-conditioned reinforcement learning algorithms for such challenges.
We use a simple, human-prior-based curriculum learning method to
benchmark the multi-step manipulation tasks. Discussions about future
research opportunities regarding this kind of tasks are also provided.

Keywords: Deep reinforcement learning · Simulation environment ·
Pybullet · Robotic manipulation · Multi-goal learning · Continuous
control

1 Introduction

Due to the difficulties of reinforcement learning in real-world environments [5],
developing simulation environments for robotic manipulation tasks becomes
increasingly important. In addition to the requirement of being realistic, such
simulation is also required to be efficient in generating synthetic data for training
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(a) From left to right: KukaReach, KukaPickAndPlace, KukaPush and KukaSlide.

(b) From left to right: BlockRearrange, ChestPush, ChestPickAndPlace, BlockStack

Fig. 1. The robotic arm manipulation tasks. (a) Single-step tasks, reproduced from
the original OpenAI Gym multi-goal manipulation tasks [1,8] (described in Sect. 2.1).
(b) Multi-step tasks (described in Sect. 2.2).

deep reinforcement learning (DRL) agents. Currently, the most popular physics
engines in DRL research are Mujoco [13,16,17] and Pybullet [3,4,15]. Mujoco is
known to be more efficient than Pybullet [6], but it is not open-sourced.

The cost of a Mujoco institutional license is at least $3000 per year [9],
which is often unaffordable for many small research teams, especially when a
long-term project depends on it. To promote wider accessibility to such resource
and support DRL research in robot arm manipulations, we introduce an open-
source simulation software, PMG, Pybullet-based, Multi-goal, Gym-style [2].
It is written in Python, the most popular language in recent machine learning
research1.

The manipulation tasks proposed by [1,13] focus on goal-condition reinforce-
ment learning (GRL) in sparse reward scenarios. GRL aims to train a policy
that behaves differently when given different goals, for example, picking up dif-
ferent objects. While in sparse reward cases, the agent only receives a reward
signal when a goal is achieved. This is motivated by the fact that providing
task completion information is often easier and less biased than hand-designing
a behaviour-specific reward function for most real-world robotic tasks [5].

We implement the four basic tasks (Fig. 1a) proposed in [1] using Pybul-
let and reproduce the performances achieved by the Deep Deterministic Policy
Gradient (DDPG) algorithm with Hindsight Experience Replay (HER) [1,8].

In addition, we further propose a set of new tasks that focus on multi-step
manipulations in longer horizon with sparse rewards (Fig. 1b). To improve read-

1 The source codes are available at https://github.com/IanYangChina/pybullet mul
tigoal gym.

https://github.com/IanYangChina/pybullet_multigoal_gym
https://github.com/IanYangChina/pybullet_mul
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ability, the original set of tasks is named ‘single-step tasks’ and the new set of
tasks is named ‘multi-step tasks’. The multi-step tasks are developed with the
aim to inspire new learning algorithms that can handle tasks where the reward
signals only appear near the end of the task horizon [5,18]. Beside the delayed
rewards, these tasks also require multiple steps to complete, and some of the
steps are strongly dependent. For example, a block cannot be placed into a chest
unless the chest is opened. This characteristic requires a learning algorithm to
reason about the relationships between steps.

To facilitate comparison in future research, we benchmarked the perfor-
mances on the four multi-step tasks by training the aforementioned DDPG-HER
agent [1] with a simple human prior-based curriculum. Potential research direc-
tions in this regard are also discussed. To sum up, our contributions in this
article are:

• Reproducing the multi-goal robotic arm manipulation tasks [13] using Pybul-
let, making it freely accessible.

• Reproducing the Hindsight Experience Replay performances [1] on the
Pybullet-based environments.

• Proposing a set of new environments for multi-goal multi-step long-horizon
sparse reward robotic arm manipulations.

• Benchmarking the multi-step tasks and proposing future research opportuni-
ties.

The rest of this paper includes the details of the proposed environments
and programming APIs (Sect. 2); the reproduction results of the DDPG-HER
agent on the single-step tasks, the benchmark results of the multi-step tasks and
discussions of challenges and future research (Sect. 3); and finally the conclusion
(Sect. 4).

2 Environment

2.1 Single-Step Tasks

As shown in Fig. 1a, the single-step tasks are:

• KukaReach, where the robot needs to move the gripper tip to a goal location.
• KukaPickAndPlace, where the robot needs to pick up the block and move it

to a goal location2.
• KukaPush, where the robot needs to push the block to a goal location on the

table surface.
• KukaSlide, where the robot needs to push the cylinder bulk with a force such

that the bulk slides to a goal location that is unreachable by the robot.

2 In training, the PickAndPlace goals are generated either on the table surface or in
the air, with even probability, as suggested by [1].
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Different from the original environments, which use a Fetch robot, we use
a Kuka IIWA 14 LBR robot arm equipped with a simple parallel jaw gripper.
This does not affect training as only Cartesian space control (gripper movement
and finger width) are used in the original tasks. We plan to support more robot
arms in the future.

In addition to the gripper frame control mode, our environments also sup-
port joint space control, which results in a 7 dimensional action space for the
KukaReach and KukaPush tasks and an 8 dimensional one for the other two
tasks (with one extra dimension for controlling the gripper finger width). Such a
control mode has been largely ignored in most DRL-based manipulation works,
possibly due to its high dimensionality. However, this control mode is impor-
tant in scenarios that involve collision avoidance. A manipulation policy should
not only consider end-effector control, but also learn to control each joint more
explicitly when the surroundings are crowded by objects or other agents, e.g.,
humans. We leave the design of tasks for this specific direction to future work.

The tasks provide two reward functions. The dense reward function uses the
negative Euclidean distance between the achieved and desired goals. The sparse
reward function gives a reward of 0 when a goal is achieved and -1 everywhere
else. We further provide RGB-D images as an optional observation representa-
tion. Users can easily define different camera view-points for rendering observa-
tions and goals.

Note that, we did not change the design of these four tasks, but reproduce
them using a different physics engine. For more details of the task, such as the
state and the action spaces, we refer the readers to the original paper [13]. The
APIs and programming style are slightly different and are described in Sect. 2.3.

2.2 Multi-step Tasks

Figure 1b visualises the four challenging multi-step tasks developed by the
authors, aiming at sparse reward long-horizon manipulations. Briefly, they are:

• BlockRearrange, where the robot needs to push the blocks to random positions.
Gripper fingers are blocked in this task.

• ChestPush, where the robot needs to first open the sliding door (in black
colour) of the chest and then push the blocks into the chest. Gripper fingers
are blocked in this task.

• ChestPickAndPlace, where the robot needs to first open the sliding door (in
black colour) of the chest and then pick and drop the blocks into the chest.

• BlockStack, where the robot needs to stack the blocks into a tower in a given
order that is randomly chosen.

These tasks require the robot to learn different combinations of behaviours
and provide different numbers of step dependencies. For example, the BlockStack
task has more dependent steps with the increase of the number of blocks to be
stacked. The complexity of these tasks increases with more dependent steps
and blocks, as shown in Table 1. Moreover, the number of blocks involved in a
task affects its task horizon, and thus its exploration difficulty. Detailed task
information is provided in supplementary material Sect. 1.

https://github.com/IanYangChina/taros2021codes/blob/master/taros20210308_supplementary.pdf
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Table 1. Multi-step tasks summary

Task Needed behaviours Step dependency Num. of blocks

BlockReaarange pushing 0 2 to 5

ChestPush pushing 1 1 to 5

ChestPickAndPlace pushing, picking, dropping 1 1 to 5

BlockStack pushing, picking, placing ≥2 2 to 5

With the challenge of sparse reward in mind, the extreme case of these tasks
is that the environment only gives a task completion signal (e.g., a reward of 0)
when the ultimate goal (e.g., all the blocks are stacked) is achieved, and provides
a reward of -1 everywhere else. In this case, the task is extremely difficult for any
naive reinforcement learning algorithm, even the one with hindsight experience
replay (see Sect. 3.2). This is because the reinforcement learning agent has an
extremely low probability of seeing a meaningful reward value. Compared to the
single-step tasks, which only feature the sparse reward problem in a short task
horizon, these multi-step tasks can be used to investigate more difficult problems,
such as

• How to explore efficiently for multi-step tasks with sparse and delayed
rewards?

• How to represent and learn the dependencies among task steps?
• How can ideas such as curriculum learning, option discovery and hierarchical

learning help in these tasks?

One possible research direction for these problems is to create a curriculum
that provides the learning algorithm with goals starting from easy to difficult
[11,12]. In this paper, we design a human-prior based curriculum for the multi-
step tasks. It simply generates goals that require increasing time horizons to
achieve, e.g., from stacking two blocks to five. However, the results show that
such a simple curriculum is not efficient enough for longer horizon tasks (see
Sect. 3.2). To tackle these problems, more efficient methods need to be developed.
Section 3.3 provides more discussion on future research opportunities.

2.3 APIs and Programming Style

In OpenAI Gym, users create environment instances by specifying a unique
task ID pre-registered in the package [2,13]. In contrary, we provide users
with an API to make environments more intuitively. As shown in Code 1, the
make env(...) function provides arguments to setup a specific environment
instance. Supplementary material Sect. 2 provides a detailed explanation of these
arguments. Currently, only eight tasks are prepared, including four single-step
tasks and four multi-step tasks.

We provide an argument to activate image observations and goals, while
the original Gym environment requires users to rewrite some of the code to

https://github.com/IanYangChina/taros2021codes/blob/master/taros20210308_supplementary.pdf
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Code 1. Create an environment instance

# Original OpenAI Gym style
import gym
env = gym.make(“FetchReach-v0”)
# Our style
import pybullet multigoal gym as pmg
env = pmg.make env(

# task args
task=‘block rearrange’, joint control=False, num block=2, render=False,
binary reward=True, max episode steps=50, distance threshold=0.05
# image observation args
image observation=False, depth image=False, goal image=False,
visualize target=True,
camera setup=camera setup, observation cam id=0, goal cam id=1,
# curriculum args
use curriculum=True, num goals to generate=1e6)

# Interaction loop
obs = env.reset()
while True:

action = env.action space.sample()
obs, reward, done, info = env.step(action)
if done:

obs = env.reset()

achieve this. In addition, users can easily customise cameras for observation
or goal images by defining a list of Python dictionaries and passing it to the
camera setup argument. An example is given in Code 2. Intuitively, the setup
example defines two cameras, and in Code 1 they are used for capturing obser-
vation and goal images respectively, by setting the cam id arguments to 0 and
1. Alternatively, users can pass −1 to the cam id arguments, activating an on-
hand camera looking at the gripper tip position. Figure 2 shows a scene and
three images rendered with the above-mentioned cameras.

Except for the codes that create an environment instance, other user APIs
are kept the same as the original multi-goal Gym environment package. In our
experiments, the code of training the DDPG-HER agent needs no change from
Mujoco to Pybullet, and we successfully reproduce the performances as shown
in Sect. 3.1.

3 Benchmark and Discussion

In Sect. 3.1, we reproduced the Hindsight Experience Replay (HER) [1] on the
single-step tasks to demonstrate the success of the transfer from the Mujoco-based
environments to ours. More specifically, we trained a DDPG agent using the
‘future’ goal-relabelling strategies, with the same hyperparameters and design
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Code 2. A list of camera setup dictionary Meaning

camera setup = [
{

’cameraEyePosition’: [-1.0, 0.25, 0.6], the 3D coordinates of the camera
frame in the world frame

’cameraTargetPosition’: [-0.6, 0.05, 0.2], the 3D coordinates which the cam-
era looks at in the world frame

’render width’: 128, the width of the rendered image
’render height’: 128 the height of the rendered image

},
{

’cameraEyePosition’: [-1.0, -0.25, 0.6],
’cameraTargetPosition’: [-0.6, -0.05, 0.2],
’render width’: 128,
’render height’: 128

}
]

(a) Scene (b) Camera 1 (c) Camera 2 (d) On-hand camera

Fig. 2. Images rendered using the two cameras defined in Code 2 and the built-in
on-hand camera.

proposed in [1], except that we did not use distributed training. In addition, we
also trained the same agent on the single-step tasks with joint control. Section 3.2
shows the results of training the DDPG-HER agent on the multi-step tasks. The
results serve as a benchmark for future studies. Section 3.3 provides challenges
and future research opportunities.

The Pytorch implementation of the algorithm is available here. The exper-
iment scripts are available here. All experiments were run on Ubuntu 16.04 on
a workstation with an Intel i7-8700 CPU and an Nvidia RTX-2080Ti GPU. All
performance statistics are averaged from 4 runs with different random seeds.

https://github.com/IanYangChina/DRL_Implementation/blob/master/drl_implementation/agent/continuous_action/ddpg_goal_conditioned.py
https://github.com/IanYangChina/taros2021codes
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3.1 Reproducing Hindsight Experience Replay on Single-Step Tasks

Fig. 3. DDPG-HER perfor-
mances on Joint space con-
trol tasks.

For comparison, we ran the same DDPG-HER algo-
rithm [1] with the same hyperparameters on the
Mujoco- and our Pybullet-based environments. As
shown in Fig. 4, the agent achieved almost the same
performances on the both environments3. These
results demonstrate our successful transplantation
of the single-step tasks onto the Pybullet engine.
Running an episode of the Reach task in Mujoco
took 0.079 ± 0.007 s, and in PMG, 0.272 ± 0.011 s
(averaged over 100 episodes for 10 random seeds).

Beside the original tasks, we also ran the experi-
ments with joint space control using the same algo-
rithm. These joint space control tasks differ from
the original gripper frame control tasks in that the robot’s actions are now joint
commands, and the state representation further includes the current joint states.
Results show that, in comparison to gripper frame control mode, single-step tasks
under joint space control mode are harder to learn (Fig. 3). Its performance on
the easiest Reach task also shows higher variance.

(a) Reach (b) PickAndPlace (c) Slide (d) Push

Fig. 4. Test success rates of the single-step tasks on Mujoco or Pybullet engine.

This is expected as the action space has higher dimensionality. On the other
hand, the gripper is constrained to be pointing top-down under the gripper frame
control mode, but this constraint is released under the joint space control mode.
This makes the tasks harder to learn by increasing the size of its solution space.

For future research, it is valuable to develop reinforcement learning algo-
rithms that can handle such control tasks with higher action dimensionality and
larger solution space, potentially from (depth-) image observations. Investigat-
ing harder tasks including collision avoidance and comparing with classic motion
planning methods are interesting directions as well.

3 Note that the Slide task is sensitive to the random seeds in both environments. The
agent was unable to learn anything in some cases. It also exhibited higher variance
than other tasks.
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3.2 Benchmarking Multi-step Tasks

This section discusses the performances of the DDPG-HER agent [1] on the
multi-step tasks, with and without the use of the proposed simplistic curriculum
(supplementary material Sect. 3). We benchmarked the tasks without a chest
using 2, 3, 4 blocks, and the tasks with a chest using 1, 2, 3 blocks.

We made one modification to the agent for these tasks. The action values
predicted by the critic network are clipped within [−50, 0] in the single-step tasks
as suggested by [1], because the lowest value is −50 under sparse reward setting,
given that the maximum episode timestep is 50 [13]. For the multi-step tasks, we
changed the lower bound of the clipped value range to the negative maximum
episode timestep for each task.

(a) BlockRearrange (b) ChestPush (c) ChestPick (d) BlockStack

Fig. 5. Test success rates of the multi-step tasks. ‘crcl’ means ‘curriculum’.

As shown in Fig. 5, the DDPG-HER agent learned nothing without the help
of the curriculum (blue line in each subplot). When aided by the curriculum,
it could achieve the easiest steps (open the chest door) in the ChestPush and
ChestPickAndPlace tasks, but failed at later harder steps (success rates quickly
drop to near 0 as learning proceeds, shown by the orange, green and red lines).
For the BlockRearrange and BlockStack tasks, the agent struggled to learn the
easiest steps even with the help of the curriculum. This is because exploring to
open the chest door is easier than moving a block around. These results indicate
that these sparse rewards multi-step tasks are still unsolvable given the current
state-of-the-art reinforcement learning algorithms.

3.3 Challenges and Opportunities

This section discusses the challenges and future research opportunities related to
the sparse reward multi-step robotic manipulation tasks from two perspectives,
including exploration efficiency and representation learning. From each of them,
there are several research directions that can be focused on.

Exploration: In sparse reward environments, improving exploration efficiency
has long been a research challenge in the field of DRL [14]. However, current
research has been restricted within toy problems (e.g., grid world) or the Atari
games (e.g., Montezuma’s Revenge). These are all 2D tasks with discrete action

https://github.com/IanYangChina/taros2021codes/blob/master/taros20210308_supplementary.pdf
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spaces. Robotic manipulations are tasks in a 3D world, with larger and richer
observations and continuous action spaces. It would be valuable to evaluate
techniques that work in the 2D tasks on our 3D and continuous action tasks,
with the hope to improve them further and transfer to the real-world.

In the multi-goal setting, we have demonstrated the insufficiency of the HER
aided by a simplistic goal generation curriculum. It is then potentially fruitful
to develop a better curriculum for such tasks. Another interesting direction is
to leverage task decomposition for multi-step tasks and make use of hierarchical
learning systems [18]. The use of sub-goals is a promising way to tackle the hard
exploration problem in such tasks.

Representation Learning: Representation for RL agents, especially in sparse
reward tasks, has been increasingly active recently. Different from supervised
learning tasks, RL agents rely on the reward signals to learn a representation
of the environment and the task altogether. This makes it hard to generate and
maintain a good representation in sparse reward tasks, in which the represen-
tation learnt can easily collapse. Again, current state-of-the-art in this direction
has been largely restricted within 2D tasks or tasks with short horizon [7,10],
and our environment is a promising testbed for evaluating and improving them
in a 3D world with longer task horizons.

4 Conclusion

We propose an open-source robotic manipulation simulation software implemen-
tation for multi-goal multi-step deep reinforcement learning. The implementa-
tion of the OpenAI multi-goalstyled environment (based on the Mujoco engine)
has been achieved using Pybullet. Performance of the popular DDPG-HER algo-
rithm has been reproduced in our work (Sect. 3.1). Except for the original manip-
ulation tasks, named single-step tasks, we designed a set of multi-step tasks with
sparse rewards in longer task horizons. We benchmarked the performances of
the DDPG-HER agent with and without the use of a simplistic goal generation
curriculum (Sect. 3.2), demonstrating the inability of the state-of-the-art algo-
rithms to learn in such long horizon and sparse reward environments. Finally,
we provided brief discussions of the challenges and future research opportunities,
including exploration and representation learning in sparse reward rein-
forcement learning. Our future research will focus on developing sub-goal-based
solutions to tackle such multi-step sparse reward robotic manipulation tasks.
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Abstract. Central Pattern Generators (CPGs) have several properties
desirable for locomotion: they generate smooth trajectories, are robust
to perturbations and are simple to implement. However, they are noto-
riously difficult to tune and commonly operate in an open-loop manner.
This paper proposes a new methodology that allows tuning CPG con-
trollers through gradient-based optimisation in a Reinforcement Learning
(RL) setting. In particular, we show how CPGs can directly be integrated
as the Actor in an Actor-Critic formulation. Additionally, we demon-
strate how this change permits us to integrate highly non-linear feedback
directly from sensory perception to reshape the oscillators’ dynamics.
Our results on a locomotion task using a single-leg hopper demonstrate
that explicitly using the CPG as the Actor rather than as part of the envi-
ronment results in a significant increase in the reward gained over time
(20× more) compared with previous approaches. Finally, we demonstrate
how our closed-loop CPG progressively improves the hopping behaviour
for longer training epochs relying only on basic reward functions.

Keywords: Central Pattern Generators · Reinforcement Learning ·
Feedback control · Legged robots

1 Introduction

The increased manoeuvrability associated with legged robots in comparison
to wheeled or crawling robots necessitates complex planning and control solu-
tions. The current state-of-the-art for high-performance locomotion are modular,
model-based controllers which break down the control problem in different sub-
modules [1]. This rigorous approach is rooted in the knowledge of every portion
of the motion, but it is also limited by heuristics handcrafted by engineers at
each of the stages.

While the field of legged robot control has been dominated over the
last decades by conventional control approaches, recently, data-driven meth-
ods demonstrated unprecedented results that outpaced most of the classical
approaches in terms of robustness and dynamic behaviours [2]. In particular,
controllers trained using deep-RL utilise a Neural Network (NN) policy to map
c© Springer Nature Switzerland AG 2021
C. Fox et al. (Eds.): TAROS 2021, LNAI 13054, pp. 25–35, 2021.
https://doi.org/10.1007/978-3-030-89177-0_3
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Fig. 1. The experiments are carried out on a classic Reinforcement Learning (RL)
benchmark – the single-leg hopper based on the ANYmal quadruped robot [3]. It hops
along the vertical axis and is controlled by Central Pattern Generators (CPGs). Closed-
loop feedback is incorporated using a jointly trained Multilayer Perceptron (MLP)
network (a). To demonstrate that the CPG-Actor progressively learns to jump higher
peaks of both the hip (solid line) and foot (dotted line) heights (b) are shown.

sensory information to low-level actuation commands. As a result, controllers
trained with RL exhibit behaviours that cannot be hand-crafted by engineers
and are further robust to events encountered during the interaction with the
environment. However, widely-used NN architectures, such as MLP, do not nat-
urally produce the oscillatory behaviour exhibited in natural locomotion gaits
and as such require long training procedures to learn to perform smooth oscilla-
tions.

A third family of controllers have been used with promising results for robot
locomotion: CPGs, a biologically-inspired neural network able to produce rhyth-
mic patterns. However, very few design principles are available, especially for
the integration of sensor feedback in such systems [4] and, although conceptu-
ally promising, we argue that the full potential of CPGs has so far been limited
by insufficient sensory-feedback integration.

The ability of Deep-NNs to discover and model highly non-linear relationships
among the observation – the inputs – and control signals – the outputs – makes
such approaches appealing for control. In particular, based on Deep-NNs, Deep-
RL demonstrated very convincing results in solving complex locomotion tasks
[2,5] and it does not require direct supervision (but rather learns through interac-
tion with the task). Hence, we argue that combining Deep-RL with CPGs could
improve the latter’s comprehension of the surrounding environment. However,
optimising Deep-NN architectures in conjunction with CPGs requires adequate
methods capable of propagating the gradient from the loss to the parameters,
also known as backpropagation.

To address this, this paper introduces a novel way of using Deep-NNs to incor-
porate feedback into a fully differentiable CPG formulation, and apply Deep-RL
to jointly learn the CPG parameters and MLP feedback.
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Fig. 2. (a) represents the basic actor-critic Deep-RL method adopted for continuous
action space control. (b) illustrates the approach proposed in [10–13], which consists
in a classic actor-critic with CPGs embedded in the environment. (c), instead, is the
approach proposed in the present work, which includes the CPGs alongside the MLP
network in the actor critic architecture.

1.1 Related Work

Our work is related to both the fields of CPG design and RL, in particular to
the application of the latter for the optimisation of the former’s parameters.

CPGs are very versatile and have been used for different applications includ-
ing non-contact tasks such as swimmers [6], modular robots [7] and locomotion
on small quadrupeds [8]. The trajectories CPGs hereby generate are used as
references for each of the actuators during locomotion and a tuning procedure
is required to reach coordination. The optimisation of CPG-based controllers
usually occurs in simulation through Genetic Algorithms (GA), Particle Swarm
Optimisation (PSO) or expert hand-tuning [6,8].

To navigate on rough terrain sensory feedback is crucial (e.g. in order to
handle early or late contact), as shown in [9]: here, a hierarchical controller
has been designed, where CPGs relied on a state machine which controlled the
activation of the feedback.

Similarly to [8,9] also uses feedback, this time based on gyroscope velocities
and optical flow from a camera to modify the CPGs output in order to maintain
balance. However, in [8] the authors first tune CPGs in an open-loop setting and
then train a NN with PSO to provide feedback (at this stage the parameters of
the CPGs are kept fixed). We follow the same design philosophy in the sense
that we preprocess the sensory feedback through a NN; yet, we propose to tune
its parameters in conjunction with the CPG.

Actor-critic methods [14] rely on an explicit representation of the policy
independent from the value function Fig. 2a.

Researchers applied RL to optimise CPGs in different scenarios [10]. The
common factor among them is the formulation of the actor-critic method; yet,
they include the CPG controller in the environment – as depicted in Fig. 2b. In
other words, the CPG is part of the (black-box) environment dynamics. Accord-
ing to the authors [13], the motivations for including CPGs in the environment
are their intrinsic recurrent nature and the amount of time necessary to train
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them, since CPGs have been considered Recurrent Neural Networks (RNNs)
(which are computationally expensive and slow to train). In [10] during train-
ing and inference, the policy outputs a new set of parameters for the CPGs in
response to observations from the environment at every time-step. Conversely, in
[13] the parameters are fixed and, similarly to [8], CPGs receive inputs from the
policy. However, whether the CPGs parameters were new or fixed every time-
step, they all considered CPGs as part of the environment rather than making
use of their recurrent nature as stateful networks. We exploit this observation in
this paper.

1.2 Contributions

In this work, we combine the benefits of CPGs and RL and present a new
methodology for designing CPG-based controllers. In particular, and in con-
trast to prior work, we embed the CPG directly as the actor of an Actor-Critic
framework instead of it being part of the environment. The advantage of directly
embedding a dynamical system is to directly encode knowledge about the charac-
teristics of the task (e.g., periodicity) without resorting to recurrent approaches.
The outcome is CPG-Actor, a new architecture that allows end-to-end train-
ing of coupled CPGs and a MLP for sensory feedback by means of Deep-RL. In
particular, our contributions are:

1. For the first time – to the best of our knowledge – the parameters of the CPGs
can be directly trained through state-of-the-art gradient-based optimisation
techniques such as Proximal Policy Optimisation (PPO) [15], a powerful RL
algorithm). To make this possible, we propose a fully differentiable CPG
formulation (Sect. 2.1) along with a novel way for capturing the state of the
CPG without unrolling its recurrent state (Sect. 2.1).

2. Exploiting the fully differentiable approach further enables us to incorporate
and jointly tune a MLP network in charge of processing feedback in the same
pipeline.

3. We demonstrate a roughly twenty times better training performance com-
pared with previous state-of-the-art approaches (Sect. 4).

2 Methodology

As underlying oscillatory equation for our CPG network, we choose to utilise
the Hopf oscillator [16] in a tensorial formulation, Eq. (2).

Differently to previous approaches presented in Sect. 1.1, we embed CPGs
directly as part of the actor in an actor-critic framework as shown in Fig. 2c.
Indeed, the policy NN has been replaced by a combination of an MLP network
for sensory pre-processing and CPGs for action computation, while the value
function is still approximated by an MLP network.

In practice, in our approach the outputs of the actor are the position com-
mands for the motors. In [10], instead, the actor (MLP-network) outputs the
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parameters of the CPGs, that are then used by the environment (that includes
the CPGs) to compute the motor commands. In this sense, there is a substan-
tial difference in the architectures: in CPG-Actor, both the CPGs’ and MLP’s
parameters are trained, while in [10] only the MLP’s parameters are trained and
the CPGs’ ones are derived at runtime, being the output of the network.

However, a naïve integration of CPGs into the Actor-Critic formulation is
error-prone and special care needs to be taken i) to attain differentiability
through the CPG actor in order to exploit gradient-based optimisation tech-
niques; ii) not to neglect the hidden state as CPGs are stateful networks.

We are going to analyse these aspects separately in the following sections.

2.1 Differentiable Central Pattern Generators

Since equations in [16] describe a system in continuous time, we need to discretise
them for use as a discrete-time robot controller, as in Eq. (1):

θ̇t
i = 2πνi(dt

i) + ζt
i + ξt

i

ζt
i =

∑
j rt−1

j wij sin(θt−1
j − θt−1

i − φij)
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i = ai(ai

4 (ρi(dt
i) − rt−1

i ) − ṙt−1
i ) + κt

i

xt
i = rt

i cos(θ
t
i)

(1)

where ·t describes the value at the t-th time-step, θi and ri are the scalar state
variables representing the phase and the amplitude of oscillator i respectively,
νi and ρi determine its intrinsic frequency and amplitude as function of the
input command signals di, and ai is a positive constant governing the amplitude
dynamics. The effects of the couplings between oscillators are accounted in ζi

and the specific coupling between i and j are defined by the weights wij and
phase φij . The signal xi represents the burst produced by the oscillatory centre
used as position reference by the motors. Finally, ξi and κi are the feedback
components provided by the MLP network.

In order to take advantage of modern technology for parallel computation,
e.g. GPUs, there is a strong need to translate the equations in [16] into a ten-
sorial formulation (2) which describes the system in a whole enabling batch
computations. Let N be the number of CPGs in the network, then:

Θ̇t = 2πCν(V,Dt) + Zt1+ Ξt

Zt = (WV ) ∗ (ΛRt−1) ∗ sin(ΛΘt−1 − ΛᵀΘt−1 − ΦV )
R̈t = (AV ) ∗ (AV

4 (P (V,Dt) − Rt−1) − Ṙt−1) + Kt

Xt = Rt cos(Θt)

(2)

Here, Θ ∈ R
N and R ∈ R

N are the vectors containing θi and ri, while
Ξ ∈ R

N and K ∈ R
N contain ξi and κi respectively. V ∈ R

M contains the M ,
constant parameters to be optimised of the network composed by the N CPGs.

This said, Cν : R
M ,Rd → R

N , P : R
M ,Rd → R

N and A ∈ R
N×M are

mappings from the set V and the command Dt ∈ R
d to the parameters that lead

νi, ρi and ai respectively. Z ∈ R
N×N instead takes into consideration the effects
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Fig. 3. The images above show the difference between back-propagation for classic
RNNs (a) and CPGs (b). In particular to train RNNs, the matrices Wxh, Why, Whh

have to be tuned, where Whh regulates the evolution between two hidden states. Instead,
for CPGs only the parameters in θ̇i and r̈i (Eq. (2)) need tuning, while the evolution
of the hidden state is determined by an integration operation.

of the couplings of each CPG to each CPG; all the effect to i-th CPG will be then
the sum of the i-th row of Z as in Z 1, where 1 is a vector of N elements with
value 1. Within Z, W ∈ R

N×N×M and Φ ∈ R
N×N×M extrapolate the coupling

weights and phases from V , while Λ ∈ R
N×N×N encodes the connections among

the nodes of the CPG network.
The reader can notice how in (2) only already-differentiable operations have

been utilised and that the MLP’s output, i.e. the CPG’ feedback, is injected
as a sum operation, enabling the gradient to backpropagate through the MLP
network as well. This further enables us to compute the gradient of each of the
parameters in (2) (CPGs and MLP) with respect to the RL policy’s loss using
the auto differentiation tools provided by PyTorch.

Recurrent state in CPGs. In order to efficiently train CPGs in a RL set-
ting, we need to overcome the limitations highlighted in [13]: In fact, CPGs are
considered similar to RNNs (due to their internal state) and consequently they
would have taken a significant time to train. In this section, we show how we
can reframe CPGs as stateless networks and fully determine the state from our
observation without the requirement to unroll the RNN.

RNNs are stateful networks, i.e. the state of the previous time-step is needed
to compute the following step output. As a consequence, they are computation-
ally more expensive and require a specific procedure to be trained. RNNs rely
on Backpropagation Through Time (BPTT), Fig. 3a, which is a gradient-based
technique specifically designed to train stateful networks. BPTT unfolds the
RNN in time: the unfolded network contains t inputs and outputs, one for each
time-step. Undeniably, CPGs have a recurrent nature and as such require stor-
ing the previous hidden state. However, differently from RNNs, the transition
between consecutive hidden states, represented by the matrix Whh, in CPGs is
determined a priori through simple integration operations without the need of
tuning Whh. This observation has two significant consequences: Firstly, CPGs do
not have to be unrolled to be trained as the output is fully determined given the
previous state and the new input. Secondly, eliminating Whh has the additional
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benefit of preventing gradient explosion or vanishing during training, Fig. 3b.
As a result, CPGs can be framed as a stateless network on condition that the
previous state is passed as an input of the system.

3 Evaluation

We evaluate our method on a classic RL benchmark: the hopping leg [17], which
due its periodic task is a great fit for the application of CPGs. In fact, a single
leg Fig. 1a needs only two joints to hop and this is the minimal configuration
required by coupled Hopf-oscillators to express the complete form; less than two
would cancel out the coupling terms [16].

We based the environment on a single leg of the ANYmal quadruped robot,
which was fixed to a vertical slider. Its mass is 3.42kg, it is actuated by two
series-elastic actuators capable of 40N m torque, a maximum joint velocity of
15 rad s−1 and controlled at 400Hz. We use PyBullet [18] to simulate the system
and use a data-driven method to capture the real system’s actuator dynamics.

At every time-step the following observations are captured: the joints’ mea-
sured positions pm

j and velocities vm
j , desired positions pd

j , the position ph and
the velocity vh of the hip attached to the rail. While the torques tdj and the
planar velocity of the foot vx,y

f are instead used in computing the rewards, as
described in the following. To train CPG-Actor, we formulate a reward func-
tion as the sum of five distinct terms, each of which focusing on different aspects
of the desired system:

r1 = (1.2 · max(vh, 0))2 r4 =
∑

J

−1.e−4 · (tdj )
2

r2 =
∑

J

−0.5e−2 · (pd
j − pm

j )
2

r5 = −1.e−2 ·
∥
∥
∥vx,y

f

∥
∥
∥ (3)

r3 =
∑

J

−1.e−3 · (vm
j )

2

where J stands for joints.
In particular, r1 promotes vertical jumping, r2 encourage the reduction of

the error between the desired position and the measured position, r3 and r4
reduce respectively the measured velocity and the desired torque of the motors
and finally, r5 discourage the foot from slipping.

3.1 Experimental Setup

CPG-Actor is compared against [10] using the same environment. Both
approaches resort to an actor-critic formulation, precisely running the same critic
network with two hidden layers of 64 units each. Indeed, the main difference is
the actor, which is described in detail in Sect. 2 for the CPG-Actor case, while
[10] relies on a network with two hidden layers of 64 units each.
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We trained the approaches for 20M time steps using an Nvidia Quadro M2200
GPU and an Intel(R) Xeon(R) E3-1505M v6 @ 3.00GHz CPU (8 cores) CPU;
the process lasted roughly 2 h.

As Sect. 4 illustrates, an appropriate comparison between CPG-Actor and
[10] required the latter to be warm-started to generate desired positions resulting
in visible motions of the leg. Differently from the salamander [16], already tuned
parameters are not available for the hopping task, hence a meaningful set from
[9] was used as reference. The warm-starting consisted in training the actor
network for 100 epochs in a supervised fashion using as target the aforementioned
parameters.

Fig. 4. (a) represents how the reward evolves during training, each approaches run five
times and averaging the rewards. (b) trajectories generated by the different approaches:
[10] warm-start produces an output similar to CPG-Actor without feedback. While
CPG-Actor with feedback presents a heavily reshaped signal. The different contri-
bution of the feedback in the two aforementioned approaches is explained by (c) and
(d). The feedback – in CPG-Actor case – is interacting with the controller, resulting
into visibly reshaped θ̇ and r̈ (green lines).

4 Results

4.1 CPG-Actor and Previous Baselines, Comparison

The results of the comparison between CPG-Actor ans [10] can be seen
in Fig. 1a. Although the warm-starting procedure results in a performance
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improvement for [10] (red line vs blue line), CPG-Actor (green line) achieves
roughly a twenty times higher reward after 20 million training time-steps.

We investigated the reason of such different performances and we argue it lies
in the way the feedback affects the CPG controller. Figures 4c and 4d represent
the evolution over time of the CPGs. Observing θ̇ and r̈ in experiments with
[10] it is evident they do not show responsiveness to the environment, since
the blue and the red lines remain almost flat during the whole episode. On
the other hand, θ̇ and r̈ in CPG-Actor experiments (green line) demonstrate
substantial and roughly periodic modifications over time. Although [10] relies
on feedback information to infer the CPGs dynamics, in practise the effects of
the feedback signals on the shape of the output variables are rather weak when
compared to CPG-Actor, as visible in Fig. 4b: in the case of CPG-Actor
the original CPG’s cosine output is heavily reshaped by the feedback, while [10]
presents an almost-sinusoidal behaviour. Hence, to achieve successful hopping
strong feedback information is crucial.

To further assess our intuition, we show CPG-Actor’s open-loop (i.e. with-
out feedback) behaviour (orange line), which shows performances on par with
[10] after warm-start. Indeed, albeit explicitly penalised by Eq. (3), both led to
policies with the foot sliding on the floor and, as such, with low vertical velocity
(yet slightly oscillating as if hopping); this behaviour results in low final rewards
even after a large number of training episodes (20 M). It is then evident that the
direct propagation of the gradient through a differentiable CPGs allows CPG-
Actor to learn an effective correction to the open-loop behaviour through the
sensor feedback.

4.2 Evaluation of Progressive Task Achievement

The last set of experiments presented assess how CPGs’ outputs and the overall
behaviour evolve over the course of the learning. The plots in Fig. 1 present
the system at 1, 20 and 50 million time-steps of training. Figure 1b, shows the
progress of the hopper in learning to jump; indeed, the continuous and dotted
lines – respectively indicating the hip and the foot position – start quite low
at the beginning of the training, to almost double the height after 50 millions
time-steps.

5 Discussion and Future Work

We propose CPG-Actor, an effective and novel method to tune CPG con-
trollers through gradient-based optimisation in a RL setting.

In this context, we showed how CPGs can directly be integrated as the
Actor in an Actor-Critic formulation and additionally, we demonstrated how
this method permits us to include highly non-linear feedback to reshape the
oscillators’ dynamics.

Our results on a locomotion task using a single-leg hopper demonstrated that
explicitly using the CPG as an Actor rather than as part of the environment
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results in a significant increase in the reward gained over time compared with
previous approaches.

Finally, we demonstrated how our closed-loop CPG progressively improves
the hopping behaviour relying only on basic reward functions.

In the future, we plan to extend the present approach to the full locomotion
task by utilising the same architecture shown in Fig. 1a with a CPG-network
made of 12 neurons in order to be able to control a quadruped robot with 12
DOFs.
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Abstract. Plant phenotyping is an essential step in the plant breeding
cycle, necessary to ensure food safety for a growing world population.
Standard procedures for evaluating three-dimensional plant morphology
and extracting relevant phenotypic characteristics are slow, costly, and in
need of automation. Previous work towards automatic semantic segmen-
tation of plants relies on explicit prior knowledge about the species and
sensor set-up, as well as manually tuned parameters. In this work, we pro-
pose to use a supervised machine learning algorithm to predict per-point
semantic annotations directly from point cloud data of whole plants and
minimise the necessary user input. We train a PointNet++ variant on a
fully annotated procedurally generated data set of partial point clouds
of tomato plants, and show that the network is capable of distinguishing
between the semantic classes of leaves, stems, and soil based on struc-
tural data only. We present both quantitative and qualitative evaluation
results, and establish a proof of concept, indicating that deep learning is
a promising approach towards replacing the current complex, laborious,
species-specific, state-of-the-art plant segmentation procedures.

Keywords: 3D perception · Semantic segmentation · Plant
phenotyping

1 Introduction

The global agriculture industry currently faces the challenges of adapting to new
climates and reducing its environmental impact, while also feeding a fast-growing
world population. One essential effort needed to overcome these challenges is the
breeding of new high-yielding plant varieties with various resistances to environ-
mental stresses. While recent advances in plant genome research enable quick
development of new plant genotypes, plant phenotyping, i.e. evaluation of the
plant’s structure, performance, and physiological and biochemical traits, is a slow
and laborious process, which is considered as a bottleneck in the plant breeding
cycle. Thus, there is great demand for fully automated high-throughput in-field
phenotyping [16]. Importantly, many essential measurements can be extracted
directly from the morphology of the plant. The introduction of new 3D sens-
ing technologies and mobile agricultural robots opens up possibilities for in-
field data collection and automation of the morphological analysis. Thus, in
c© Springer Nature Switzerland AG 2021
C. Fox et al. (Eds.): TAROS 2021, LNAI 13054, pp. 36–45, 2021.
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recent years there have been a number of scientific contributions towards cap-
turing and automatically interpreting three-dimensional (3D) structural models
of plants. To extract relevant phenotypic measurements, such as leaf area and
inclination angle, semantic segmentation of these representations into individual
plant organs is needed. The existing algorithms for plant segmentation in 3D
space rely heavily on controlled environments, elaborate calibration procedures,
hand-picked features, and manually tuned thresholds. As a result, they do not
generalise well to new or changing environmental circumstances or new species.

Instead, we propose to train a supervised deep learning algorithm to pre-
dict the point-wise segmentation directly from point cloud data. Deep neural
networks are heavily data-driven and typically do not require much explicit
prior knowledge about the task, other than a suitably large annotated data set.
Besides reducing the need for manual tuning, we anticipate that using a super-
vised learning approach will also maximise the generalisation potential of the
same algorithm for a wide range of crop species and environments, by adjust-
ing the training data accordingly. In this paper we use the PointNet++ net-
work architecture for semantic segmentation [14] to discriminate between three
semantic categories (soil, leaves, and stems) based on structural data only. Due
to the lack of publicly available labelled agricultural data sets, we train and test
the network on a data set collected in simulation from synthesised plants. We
evaluate the network’s segmentation performance in simulation and provide an
indicative qualitative validation of the trained network on a smaller selection of
real-world depth data taken from the 4D Plant Registration Dataset [12].

The contributions of this work include (i) a novel fully annotated synthetic
data set for 3D plant segmentation, (ii) application of the PointNet++ network
architecture to the plant segmentation domain, and (iii) a quantitative and qual-
itative evaluation of semantic segmentation and generalisation performance.

2 Related Work

2.1 3D Plant Segmentation

Until recently plant segmentation has been focused on classical vision algorithms
applied to 2D images. For the purpose of evaluating plant morphology, however,
considerable information about 3D configurations and areas obscured by occlu-
sion is lost in 2D projections. There are relatively fewer approaches for semantic
segmentation of plants from 3D data.

Several approaches combine clustering techniques with a series of heuristic
filters. In [13], a Euclidean clustering procedure is used along with colour and
leaf shape heuristics. [18] suggests to apply mean-shift clustering on the depth
information of RGB-D images, then classify candidate clusters as vegetation ver-
sus background by colour, followed by further instance segmentation based on an
active contour model. In [2], individual leaves are segmented in top-down RGB-D
images of single plants in a greenhouse environment via blob detection, such that
vertically close points are assigned to the same image segments. [10] introduces
an elaborate series of filters including removal of statistical outliers, removal of
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ground points by fixed distance and colour thresholds, followed by 3D equiva-
lents of morphological erosion and subsequent expanding operations. This app-
roach achieves impressive results for a number of greenhouse ornamental plant
species, especially in dealing with a complicated occlusion. However, all listed
algorithms rely on carefully tuned species-specific parameters and assumptions
about plant height, orientation, or colour and lighting conditions. Such tailor-
made approaches usually do not generalise well to different species or changes
in the testing set-up. More recently, in [1,12] binary segmentation into stems
and leaves is achieved by using a support vector machine (SVM) classifier with
feature vectors containing point coordinates and fast point feature histograms.
The SVM classification is later refined by density-based clustering into coher-
ent leave and stem areas, discarding of small clusters, and re-assigning points
via k-nearest neighbour classification. This approach requires comparably lit-
tle annotated training data or manual intervention, but addresses the simpler
problem of binary segmentation on very high-resolution point clouds, which were
recorded with a precision laser scanner from multiple views, resulting in minimal
occlusion and no background interference.

In summary, state-of-the-art methods for semantic segmentation of plants
rely on hand-crafted filters or controlled environments. While very effective in
specific lab settings, their weaknesses lie in their poor generalisability and need
for prior knowledge and manual tuning. Their assumptions do not hold in the
field and are often violated due to natural variations in plant morphology.

2.2 Deep Learning for 3D Plant Segmentation

Deep learning algorithms, especially convolutional neural networks (CNNs) are
well-established as a standard approach to semantic segmentation for 2D images.
CNNs take advantage of the ordered spatial pattern of images by performing
convolution operations on the input and extract information about local struc-
tures in overlapping receptive fields at different scales. Naturally, there have been
attempts to translate their success into 3D space. In [15], a multi-view approach
is proposed, which allows the use of a CNN to perform semantic segmentation
on 2D images. The 2D projections are then combined into a 3D point-cloud and
semantic information from the different views is integrated via a voting strat-
egy. Although much less reliant on manual tuning, this approach also suits lab
environments best, as it requires exact camera parameters and positions to be
known and assumes that the points are visible from all camera angles.

2.3 PointNet++

Recently, novel deep neural network architectures have been introduced, which
are specifically designed to accommodate for the irregular structure of point
cloud inputs, without the need for projection or discretisation. Point clouds are
unordered sets of points in 3D space and frequently vary in size and point den-
sity. Unlike CNNs, the PointNet++ network architecture does not require regular
input shapes and can be applied to point clouds, independently of its order or
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size. In a series of set abstraction levels, PointNet++ extracts local shape features
from nested subsections of a point cloud and repeatedly aggregates features into
higher-level features. Through a corresponding set of feature propagation levels,
the higher-level features are then interpolated and propagated back into smaller
subsections and combined with local features. Eventually, each original input
point is described by a feature vector that captures local and global information
from all levels of abstraction and can be used for per-point semantic segmenta-
tion. This hierarchical architecture has since been applied successfully to tasks
such as object detection in indoor scenes [5] and autonomous driving [11], typ-
ically focused on rigid, man-made objects and structured environments. There
are very few applications to plants, not least because of a lack of training data,
but it is also unclear how effectively the network can cope with naturally extreme
variations in shape of non-rigid structures.

In [8], PointNet++ is used for a binary segmentation task of detecting straw-
berry fruit in RGB-D images taken in a real farm. Even though the well-studied
2D CNNs currently still outperform PointNet++, the authors report promising
results and suggest further research into using PointNet++ in the agricultural
domain, in order to make use of the unique shape information lost in 2D projec-
tions. In this work, we aim to apply PointNet++ to the 3D plant segmentation
problem using end-to-end deep learning as a possible alternative to the rigid
state-of-the-art procedures.

3 Methodology

3.1 Data Set

To provide a suitably large annotated 3D data set for deep learning, we cre-
ated an artificial set of point clouds captured in simulation from synthesised
plant models. First, we defined a general model of a tomato plant, describing its
branching structure and relative dimensions, using the random tree generating
software Arbaro, an open-source implementation of an algorithm introduced by
Weber and Penn [17]. Individual mesh objects were then procedurally generated
by randomly varying all descriptors, such that the resulting plants are between
0.15 m and 0.35 m tall, and vary in the number, distribution, scale, and relative
dimensions of their branches and leaves. In this way a total of 500 unique tomato
plant models were produced. An indicative selection is shown in Fig. 1. Using
the open-source 3D modelling software Blender [4], a simulated depth camera
captured three depth images of each plant from different angles. A common
configuration in agricultural robots features a sensor array aimed at the space
below the robot [6]. To emulate the in-field deployment, we chose to capture one
top-down view from 1.2 m height and two views at 20◦ and 40◦ viewing angles,
as shown in Fig. 1.

The depth information was captured by ray-casting in a frustum shape cov-
ering a 40◦ square field of view at a resolution of 480 × 480 rays, yielding 1500
point clouds of 230400 labelled points each. Finally, the data set was shuffled and
divided into a training set (1052 examples) and a validation set (224 examples)
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Fig. 1. Schematic diagram of the three partial views captured by simulated depth
cameras on a rendered visualisation of three example plant meshes, along with their
resulting point clouds.

for training purposes, and a test set (244 examples) which was used for final
performance evaluations only.

3.2 Network Architecture

We use the PointNet++ architecture adjusted for point-wise segmentation appli-
cations introduced by Qi et al. [14]. The network features four set abstraction
levels SA(K, r, [l1, ..., ld]) with K local regions of ball radius r, and using d fully
connected layers of width li(i = 1, ..., d) within the abstraction level, followed
by four corresponding feature propagation levels FP(l1, ..., ld) with d fully con-
nected layers. We also apply a random dropout with a ratio of 0.5 before the
final fully connected layer. Following the original paper’s notation conventions,
the full parameters are: SA(1024,0.1,[32,32,64]) → SA(256,0.2,[64,64,128]) → SA
(64,0.4,[128,128,256]) → SA(16,0.8,[256,256,512]) → FP(256,256) → FP(256,256)
→ FP(256,128) → FP(128,128,128,128,K).

3.3 Performance Metrics

In the following evaluation, we report two standard metrics for multi-class seg-
mentation: Categorical Accuracy and mean Intersection over Union (mIoU). The
categorical accuracy, however, is susceptible to distortions by imbalanced class
sizes. Our synthetic data set is naturally highly imbalanced, containing larger
regions of soil than plant matter. Thus, we monitored the network’s learning
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Table 1. Confusion matrix for all point-wise semantic class labels in the test set, along
with the performance metrics for individual classes

progress throughout training by the mIoU, which is the average across all four
semantic classes’ individual Intersection over Union (IoU) ratios, computed from
the number of true positive (TP ), false positive (FP ), and false negative (FN)
classifications as IoU = TP

TP+FP+FN . The mIoU places equal importance on all
three semantic classes, and is therefore more appropriate for the data considered
here. Finally, we also report Cohen’s Kappa (κ) [3] for each semantic class, which
also takes into account the scale of imbalance and the expected probability of
random correct classifications for each class.

3.4 Network Training

The network was trained on the designated training set for 120 epochs using the
categorical cross-entropy loss function, Adam optimiser, and a learning rate of
0.0001. We selected the trained model after 82 epochs, at which point a rolling
average of the validation mIoU across 10 epochs reaches its highest value, as the
final model used for the remainder of this work.

4 Evaluation

In the following evaluation we report quantitative and qualitative assessments of
the per-point semantic annotations produced by the chosen trained network on
a test sample of synthetic data, a sample of a more complex growing scenario,
and a real plant data sample.

4.1 Quantitative Performance Evaluation

On the remaining test sample (see Sect. 3.1), the network achieved an overall
categorical accuracy of 0.999 and a mIoU of 0.712. The sources of error are
further broken down in a confusion matrix in Table 1. The matrix displays counts
for all point-wise classification cases across the test set. We also report individual
IoU and κ metrics for each semantic class. This breakdown suggests that the
network produces excellent segmentation results for the soil and leaf classes, and
the main sources of error are confusions between leaves and stems. In particular,
the network has a tendency to be too conservative in assigning stem labels. The
stem class is assigned with high specificity, meaning that 0.999 points from other
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Fig. 2. The network’s predicted segmentation (left), corresponding ground truth (cen-
tre), and highlighted differences (right) for two example test point clouds.

classes are correctly not labelled as stems, and low sensitivity, with only 0.306
true stem points correctly identified as stems. This failing may well be due to
insufficient examples depicting the stem class being presented during training.
To counteract the effect of class imbalance, we introduced sample weights to
the loss function, such that higher importance was placed on examples of the
under-represented classes during training. However, the weighted loss did not
significantly influence the network’s performance.

4.2 Qualitative Performance Evaluation

To contextualise the quantitative results, two segmentation outputs from the test
set are pictured in Fig. 2, along with the original ground-truth annotation, and
a point cloud visualisation highlighting only misclassified points. As expected,
the network prediction appears very similar to the ground truth, and the most
common segmentation errors occur where stems are confused with leaf regions.
Especially thin stems towards the crown of the plant are often not spotted among
the leaves. Occasionally, where only small proportions of a leaf are captured in
the point cloud, or stems and leaves overlap closely due to perspective and
occlusion, the leaf points are misclassified as stems. In summary, however, we
can confirm visually that the segmentation of leaves against soil in particular is
sensible, and in most cases the base of the stem can be located too.

Transfer to Complex Growing Scenario. One major weakness of existing
plant segmentation algorithms is their poor generalisability. Many procedures
discussed in Sect. 2.1 are designed for laboratory settings and can not easily be
applied to realistic in-field growing environments with multiple plants, dense
foliage, and heavy occlusion patterns. To test how well the concepts our network
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Fig. 3. The network’s predicted segmentation (left), corresponding ground truth (cen-
tre), and highlighted differences (right) for a complex scene of 4 overlapping plants.

learned from single plants translate to more complex scenarios, we generated one
example scene with four plants taken from the test set. The result is pictured
in Fig. 3. For this point cloud, the network produced slightly more misclassifi-
cations, but largely within the same pattern of errors we observed before. The
network fails to locate especially thin stems but was able to locate the base and
some broader stem regions. We can also observe a few more instances of leaves
falsely classified as stems. On the whole, the segmentation works, even though
the global shape of this scene was significantly different from any example point
cloud presented during training. We conclude that the network did indeed learn
to discriminate local shape characteristics and did not over-fit to regularities of
the global shape of single plants presented in the training data.

Transfer to Real-World Data. Finally, we tested whether the concepts
learned from synthetic data transfer to real-world plants. For a qualitative vali-
dation, we selected two scans of tomato plants and one scan of a maize plant from
the 4D Plant Registration Dataset [12]. We down-sampled the high-resolution
point clouds by ray-casting to reproduce the perspective and resolution of the
simulated depth camera as described in Sect. 3.1. Figure 4 shows the segmenta-
tion labels predicted by our network for the three resulting point clouds.

The network produces sensible segmentation masks for the two tomato
plants, distinguishing well between regions representing soil and plant mat-
ter. This experiment serves to demonstrate that knowledge transfer about local
shapes to real plants differing from the training data in their acquisition pro-
cedure, scale, and natural shape variations, is possible. Finally, the maize plant
offers the additional challenge of knowledge transfer to a different species. While
similar, the overall morphology and leaf shape differ significantly from our
synthetic tomato plants. Still, large regions of all three semantic classes were
detected successfully, however, the boundaries between the regions are less pre-
cise. Arguably, the semantic separation between stem and leave regions is more
ambiguous in this species and previously unseen by the network. Considering
these challenging factors, the achieved segmentation demonstrates that the net-
work learned meaningful shape characteristics. It remains to be investigated how
well the segmentation algorithm could perform on real data when trained on real
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Fig. 4. The network’s predicted segmentation for real-world depth data of two tomato
plants (left and centre) and one Maize plant (right).

data too. The observed knowledge transfer between the synthetic and real-world
data and also across species raises the possibility of pre-training in simulation,
reducing the amount of fully annotated real-world training data needed.

5 Conclusions and Future Work

In this work, we successfully applied a supervised machine learning algorithm to
the challenge of semantically segmenting plants based on structural data only.
On the example of a fully annotated synthetic data set, we demonstrate that the
PointNet++ neural network can successfully predict per-point semantic anno-
tations for soil, leaves, and stems directly from point cloud data, and that the
learned concepts transfer to new environments and real-world data. Our results
serve as a proof of concept, supporting the idea that an understanding of the
semantic sub-regions of plants can be learned from data, instead of relying on
manually crafted pipelines of classical vision techniques, and that this approach
carries potential for increased generalisability compared to current state-of-the-
art algorithms. To judge the algorithm’s applicability to fully automated in-field
phenotyping, more experiments with real-world data are necessary. Our syn-
thetic data set can also be improved by introducing realistic sensor noise and
adding models of different crop species to further investigate knowledge transfer
and possibilities to learn cross-species concepts for plant organs. To address the
network’s weakness in segmenting stems, we will trial higher sensor resolutions
to improve the sampling density on fine structures and data pre-processing pro-
cedures, which augment the training data in such a way as to counter class imbal-
ance without distorting its geometric information (e.g. [7]). Future work should
also explore alternative network architectures. Instead of using PointNet++, we
are interested in one promising architecture, presented in the context of in-field
broccoli head detection [9]. The authors take advantage of the fact that, as a
result of the data acquisition technique, point clouds produced by some RGB-D
sensors provide an organised structure and allow for the use of a CNN without
need for projection.
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Abstract. Autonomous grasping of unknown objects is challenging due
to the uncertainty in robotic sensing and action generation. This paper
presents a pipeline for predicting a safe grasp in unknown objects using
depth and tactile sensing. The main objective of the work is to explore
haptically to maximise a given grasp metric, such that the probability of
dropping the object after lifting from the surface is minimal. The perfor-
mance of the uniform grid search method is compared with probabilistic
methods (i.e. standard and unscented Bayesian Optimisation) to discover
safe points. The results show that unscented Bayesian Optimisation pro-
vides better confidence in finding a safe grasp. This is demonstrated by
observing optimum points being far from the edges and the exploration
converging sooner than other methods in a limited number of exploratory
observations.

Keywords: Grasp metric · Dexterous hand · Haptics · Manipulation

1 Introduction

Design solutions for grasping unknown objects often use RGB-D, tactile and
proprioceptive sensing modalities. In literature, these modalities are often used
separately in different phases of the grasping; however, approaches using multi-
modal data are increasing in popularity [1]. Indeed, exploiting the multimodal-
ity of data to extract knowledge from different data sources can improve robot
intelligence performance. The capability to deal with visual-tactile multimodal
information enables robots to acquire more human-like capabilities in several
tasks like grasping, object manipulation, and slip detection. While vision plays
an essential role in grasp planning, which relies on the global visual features
of the scene, it is ineffective to detect the safety of the performed grasp. This
ineffectiveness occurs because grasping is dependant on physical contact, forces
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exerted by hand, tactile attributes of the object and hand configurations. Vision
sensors cannot provide an estimation of these attributes. Thus, incorporating
tactile sensing allows enriching the grasping information with features repre-
senting the physical contact modalities accessing a safer grasp at the execution
stage.

This article describes a model that combines visual and tactile sensory inputs
to predict stable grasping points of unknown objects using a grasp metric. The
proposed approach can be used to measure the safety of the grasp before lift-
ing the object from the surface. The approach is independent of building an
extensive database of 3D objects. Moreover, it does not require the object sym-
metry assumption or object segmentation for computation. Castanheira et al.
[2] proposed the concept of using probabilistic modelling to find a safe grasp in
a simulated environment. However, many additional uncertainties are present in
a real-world environment (e.g. insensitivity of sensors, disturbance in the posi-
tion of the object while exploring) that are not present in a controlled simulated
environment. This work also validates the practical application of probabilistic
modelling in acquiring safer grasp points.

A series of experiments are conducted to compare the performance of prob-
abilistic models with the uniformly distributed model. The experimental results
validate the superiority of probabilistic models in finding safer grasp points.
Probabilistic models also have a higher probability of convergence during explo-
ration, hence providing confidence in predicting a safe grasp point. The contri-
butions of the paper are threefold:

1. an approach to predict safer grasp of an unknown object from a combination
of visual and tactile perception.

2. a model that considers uncertainties of the real world to predict a safer grasp
of the object.

3. a series of experiments that demonstrates the proposed system for object
grasp prediction.

2 Related Work

Grasping objects of unknown shape is an essential skill for automation in man-
ufacturing industries. Many existing grasping techniques require a 2D or 3D
geometrical model, limiting its application in different working environments
[3]. On the other hand, acquiring 3D images is an expensive process and mostly
simulation-based [4]. Kolycheva et al. [5] introduces a task-specific grasping sys-
tem for a tridactyl manipulator. The system uses RGB-D vision to estimate for
shape and pose of the object. The models for grasp stability are learnt over a set
of known objects using Gaussian process regression. The grasp model has itera-
tively improved through re-planning the grasp around the object and collecting
tactile data.

Merzic et al. [6] makes use of deep reinforcement learning technique to grasp
partially visible/occluded objects. It does not rely on the dataset of the object
models but instead uses tactile sensors to achieve grasp stability on unknown
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objects in a simulation. Zhao et al. [7] implements probabilistic modelling with
a neural network to select a group of grasp points for an unknown object. There
is also work on learning object grasping based on visual cues, and the selection
of features are often based on human intuitions [8]. However, vision-based accu-
racy is limited due to its standardization and occlusions. Some details can be
overlooked even for known objects, which may cause failure in grasping objects
[9].

Tactile sensing is capable of compensating for some of the problems of the
vision-only approach. Indeed being able to perceive touch allows the robot to
understand when the contact with the object has been made and have a better
perception of the occluded areas of the object by making contact with those sur-
faces of the target object. Techniques are proposed to control slippage and grasp
stabilization of the objects using tactile sensors only [10,11]. It is independent
of the data of object mass, object centre of mass and forces acting on the object
to prevent the object from slipping.

There are seven different kinds of grasp quality metrics to predict how well it
performs on the robotic platform and in simulations [12]. Different classifiers are
trained on the extensive database, and results are evaluated for each grasp. The
human labelled database is used in this work, which requires more accuracy in
collecting data using different protocols. To accomplish the autonomous grasping
of an unknown object, we aim to predict the grasping stability of the object
before lifting the object from the surface. In this paper, we used tactile feedback
to predict the safety of the robotic grasp of an unknown object. We present
real-time grasp safety prediction by haptic probabilistic modelling exploration
with a dexterous robotic hand.

3 Methodology

3.1 Object Extraction from Point Cloud

We define a specific area in an environment as a workspace in which the robot
operates safely. The object placed on the workspace is perceived by the robot
while the remaining point cloud data is filtered out, as shown in Fig. 1 part A.
We are using a non-deterministic iterative algorithm, random sample consensus
(RANSAC) [13], for detection of the object. It tries to fit the points from the
point cloud into a mathematical model of a dominant plane. RANSAC then
identifies the points which do not constitute the dominant plane model. These
points that do not fit into the plane model (called outliers) are clustered together
to form one object. Dimensions of the object are used to create a 3D bounding
box around the object. The midpoint of the object is computed as the difference
between the maximum and minimum boundary points in an axis parallel to
the plane. This point is then used to reference the robot to move close to the
object and initiate tactile exploration. Figure 1 part B shows the robot’s planned
trajectory, avoiding collision with the environment. Moveit! framework [14] is
utilised for the implementation of motion planning.
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3.2 Grasp Metric Calculation

The volume of the force wrench space (FWS) [15] is used as a force metric to
gauge the stability of the grasp during tactile exploration. FWS is defined as
the set of all forces applied to the object with all grasp contacts. It is a three-
dimensional grasp matrix consisting of force components from all the four tactile
sensors positioned on the tip of the fingers of the robotic hand. This metric is
also independent of the coordinates of reference system. Function Qv for this set
of FWS (℘) can be described as:

Qv = V olume(℘) (1)

During the closing state, the robotic hand wraps its fingers around the object.
The grasp metric is calculated when a connection is established between the hand
and the object. Figure 1 part C displays the Allegro hand position, as observed
in one experiment. The size and coordinates of the objects are assumed fixed to
limit the size of the exploration space.

3.3 Probabilistic Modelling

Bayesian Optimisation (BO) is a probabilistic model to accomplish the task
of exploring global optima [16]. For n number of iterations, the input dataset of
query point is x = {x1:n} and the resulted outcome is z = {z1:n}. In general, the
algorithm depends on tuning parameters where input x ε X in some specified
domain, where X ⊆ R

D The main goal is to find the global optimisation method,
which focuses on finding the minimum optimum value for the objective function
f : X → R, where X is a compact space. It works on selecting the best grasp
points for every iteration geared towards the minimum Consider this process in
two basic steps: First, for each grasp point input, a probabilistic model (in our
case, the Gaussian process) is built. Second, using an acquisition function α to
decide the model to select the next point for exploration. As the method depends
on the trial-and-error approach, BO helps optimise the number of steps required
for a safe grasp. Grasp metric score is computed as described in Sect. 3. The
performance of BO is then compared with the uniform distribution exploration
model for different kinds of objects.

Unscented Bayesian Optimisation (UBO) is a method to propagate mean
and covariance through nonlinear transformation. The basis of the algorithm is
better manageability of an approximate probability distribution than approx-
imate arbitrary nonlinear function [17]. To calculate mean and covariance, a
set of sigma points are chosen. These sigma points are deterministically chosen
points that depict certain information about mean and covariance. The weighted
combination of sigma points is then passed through linear function to compute
transformed distribution. The advantage of UBO over classical BO is the ability
to consider uncertainty in the input space to find an optimal grasp. For dimension
d, it requires 2d + 1 sigma points that show its computational cost are negligible



50 M. S. Siddiqui et al.

Fig. 1. Methodology for the calculation of force metric. (A) Point cloud data of the
workspace. (B) Path planning towards the bounding box of the object. (C) Robotic
hand position during metric calculation.

compared to others such as Monte Carlo, which requires more samples or Gaus-
sian function. In UBO, the query is selected based on probability distribution.
We choose the best query point considering it as deterministic but also check
its surrounding neighbours. Thus, while considering input noise, we will analyze
the resulting posterior distribution through the acquisition function. Assuming
that our prior distribution is Gaussian distribution where x ∼ N (x̄,

∑
x), then

the set of 2d + 1 sigma points of the unscented transform is computed as:

x0 = x̄, xi
± = x̄ ±

(√
(d � κ)

∑
x

)

i

,∀i = 1...d (2)

where d is dimensional input space, κ parameter tunes magnitude of sigma
points and

(√
(.)

)

i
is the ith row or column of the corresponding matrix square

root. Detailed information of UBO is provided in [2]. UBO reduces the chance
that the next query point is in an unsafe region where a small change in input
results in a bad outcome.

4 Implementation

4.1 Configuration

To achieve our objective of successfully grasping an unknown object, we set up a
UR5 robot in the lab. Allegro hand is mounted at the end of the UR5 arm as an
end effector. Kinect is fixed at the top of the robot’s base, facing perpendicular to
the workspace. Optoforce OMD 20-SE-40N is a 3-axis force sensor that measures
the forces experienced by the fingers of the Allegro Hand (at a rate of 1 kHz).
The workplace is 72 cm from the kinect frame. Any object within the workplace
area (a rectangular area of 31 cm by 40 cm) is processed, and the extra points
are filtered out. The orientation of the Allegro hand is fixed parallel to the axis
of the workspace plane. The setup is shown in Fig. 2.
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Fig. 2. Overview of the approach to evaluate safe grasps in unknown objects. UR5
robot equipped with an Allegro robotic hand.

4.2 Protocol

To perform the experiments, we apply the following experimental protocol:

1. object detection: unknown object detection using PCL.
2. motion planning: once we have detected the object’s pose, the Moveit plans

the collision-free movement of the robot to the top of the object.
3. plan execution: after successful planning, the robot navigates itself to the

target pose. This is also the starting pose for haptic exploration.
4. gradually gripping the object: when the robotic arm reaches the search point,

it starts closing its fingers until contact is detected.
5. applying grasping force: to ensure the gripper applies enough pressure over

the object and not just touches it.
6. calculation of grasp metric: evaluate grasp score of the candidate grasp.
7. haptic exploration: open the grip of the robotic hand and move to the next

pose directed by the probabilistic model. This process is repeated 25 times.

5 Results

The proposed model is validated by exploring grasp points in the 3D space, but
the contact points are searched on two dimensions. Experiments are conducted
five times with probabilistic modelling exploration and then compared with the
uniformly distributed exploration. BO and UBO models are used for probabilistic
modelling exploration. We used the objects from the dataset1 developed by EU
RoMaNs to observe exploration performance. The objects in the dataset are
1 https://sites.google.com/site/romansbirmingham.

https://sites.google.com/site/romansbirmingham
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Fig. 3. Scatter plots of all points explored in uniform, BO and UBO for different
objects. Pose of Allegro hand at start of experiments is also shown in first column.
Final column represents optimum position in 2D from each experiment.

commonly found in nuclear waste and are categorised in different categories such
as bottles, cans, pipe joints. We conducted the experiments with different kinds
of objects and materials: rectangular-shaped foam (4.6 cm × 15 cm × 6 cm),
a complex-shaped c-shaped pipe joint and a complex-shaped mustard plastic
bottle. Image of the objects can be seen in the ‘objects’ column of the Table 1.
Objects were slightly fixed to the surface due to the insensitivity of the tactile
sensors. Tactile sensors disturb the position of the object during the calculation
of the grasp metric.

Scatter Plots: Figure 3 represents the points observed by each exploration
method in all the experiments. The point represents the location of the mid-
dle finger of the robotic arm. A total of 125 search points (5 experiments with
25 iterations each) are plotted for each exploration method. It can be observed
that for probabilistic methods, more observations are recorded at the boundaries
of the object. This is due to the concavity of the tactile sensor and its contact
with the edges in the objects. The figure also represents the optimal position
with the highest metric score for all experiments for each exploration model.
There are a total of 15 points represented, five for each approach. The points
are the location of the middle finger of the robotic arm.

Optimal Position: The position with optimal grasp score is the distance from
the world frame along the horizontal plane of the object. The frames are shown
in Fig. 2. Table 1 tabulates the optimal position of the object as observed in each
experiment. It also shows the value of grasp metric value in the optimal position.
The points are skewed towards one side of the object because of the constraint in
the encoders of the thumb, which restricts the movement of the thumb to align
with the middle finger. The results indicate that probabilistic models have an
optimum position similar to uniform distributed exploration with less standard
deviation in position and metric score.
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Fig. 4. Mean of grasp metric and convergence of explorations at each observation for
all five experiments.

Convergence: Convergence of each exploration to its maximum grasp metric
value reflects confidence in a safer grasp. The mean of grasp metric value and
convergence to the final optimum position in each iteration for all experiments
is shown in Fig. 4. Uniform, BO and UBO are represented by green, blue and
orange lines, respectively. A total of five experiments are conducted with twenty-
five observations for three different shaped objects. Plots present convergence
in the x-axis only because of the confined range of exploration in the y-axis
(<±4 cm). It can be seen that the probabilistic models have a higher probability
of convergence than the uniform-grid search model. The results validate that
probabilistic models have a better ability to converge to the optimum position
with a higher grasp metric score in fewer iterations than uniformly distributed
exploration. The experimental results collected demonstrates:

– the ability of probabilistic methods to provide confidence in predicting a safe
grasp in a very limited number of iterations.

– BO and UBO have the advantage of converging sooner than the uniform
exploration even with the low amount of observations.

– the potential of UBO to find grasps that are safer. This is evident in the case
of the bottle, as the optimum points lie far from the edges.
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Table 1. Mean optimal position for respective objects of all experiments from the
world frame. Standard deviation of the mean position in x and y axes

Uniform Bayesian Unscented
Object Exploration Exploration Exploration

Optimal Position(cm) (40.4,114.2) (41.6,113.7) (39.4,114.5)

Standard Deviation[x,y] 3.1,1.1 1.9,1.6 2.1,0.5

Mean Metric 47.9 51 48.6

Metric Deviation 6.3 7.4 7.7

Optimal Position(cm) (41.2,115.8) (40.9,115.5) (41.1,116.6)

Standard Deviation[x,y] 1.4,0.8 2,1.6 1.1.1.1
Mean Metric 46.0 52.8 48.6

Metric Deviation 05.2 9.5 9

Optimal Position(cm) (39.9,114.4) (40.4,113.7) (38.5,116.6)

Standard Deviation[x,y] 4.2,1.5 2.9,2 1.6,0.7
Mean Metric 52.7 56.1 46.2

Metric Deviation 10.8 10.7 4.2

6 Conclusion

This work validates our approach of using probabilistic modelling for finding
safe grasp points for unknown objects in real-time. The approach outperforms
the uniform distributed exploration in acquiring a safe grasp configuration with
a limited set of exploratory iterations. The approach has application in handling
materials in a nuclear environment where the robot can afford the time to find a
safe grasp. For future developments, using tactile sensors that are more sensitive
[18,19] and distributed over a larger surface [20,21], could allow to: rely on a
more delicate haptic exploration; obtain a more reliable estimation of the grasp
metric; consider object properties other than geometric, e.g. elasticity, friction
coefficient.
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Abstract. Monocular visual Simultaneous Localisation and Mapping
algorithms estimate map points and frame poses simultaneously based
on video data. The estimated map point locations do not contain any
structural information. Due to the measurement noise, the estimated
trajectory is slightly different from the ground truth. This paper improves
the estimation accuracy of trajectory in a pipe network by leveraging
structural regularity. An optimisation-based method is used to detect a
cylinder among map points in the SLAM back-end. When the cylinder is
detected, the system enforces cylindrical regularity to the points from the
cylindrical pipe surface, which is named cylindrical points. The estimated
trajectory and map points will benefit from this structural information.
This method is verified and evaluated on both synthetic data and real-
world pipe video datasets.

Keywords: SLAM · Structural regularity · Pipe networks inspection ·
Structure from motion

1 Introduction

Pipe networks play an important role in transporting resources such as water, oil,
and natural gas. Due to their low cost and efficiency, pipelines are widely found
in cities and industry. However, pipe networks may suffer from defects, such as
blockages or leakage, leading to economic losses, environmental contamination,
and damage to health [2]. Nondestructive inspection or testing is an essential
task, which can provide early detection of defects and avoid undesirable results.

Cameras are low-cost, effective sensors providing detailed appearance in an
immersive fashion, and there is an extensive existing literature on Structure from
Motion (SfM) and visual Simultaneous Localisation and Mapping (SLAM) [3].
The majority of vision-based methods focus on SfM [17], which take advantage
of the structural information of pipes, but impose strong constraints on the robot
motion or cannot perform in real-time. Visual SLAM methods enable an agent
equipped with a camera to explore its environment and build a sparse point cloud
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simultaneously [4,6,16]. These can be divided into feature-based methods, which
track features between video frames and estimate frame poses and map points
by reducing reprojection error [16], and direct methods, which track informative
points and estimate the frame poses by minimizing the photometric error [4].

In the narrow space of the pipe, visual SLAM algorithms suffer from low par-
allax. The estimated pipe becomes less cylindrical and shapes more like a cone,
and the travel distance is underestimated. In order to improve the accuracy in
a man-made environment, a natural choice is structure SLAM algorithm which
uses structural information such as knowledge of lines or planes. However, pre-
vious SLAM algorithms do not consider cylinders, and the SfM methods cannot
be used directly for visual SLAM in pipe networks.

In this paper, we propose a new extension to the popular ORB-SLAM2 sys-
tem [16] to leverage cylindrical regularity in a pipe network. The main contri-
butions of this work include: 1) An iterative cylinder detection method based
on sparse points, selecting cylindrical points within 95% confidence intervals; 2)
In order to leverage the cylindrical information through all related frames, our
method estimates the cylinder based on optimised map points, which is different
from existing structure SLAM algorithms which detects structural regularities
among local map points; 3) The method is verified on synthetic and real-world
data. The results demonstrate that the cylindrical regularity improves the accu-
racy of estimated camera trajectories and sparse points clouds.

The remainder of the paper introduces related work in Sect. 2, and the pro-
posed method is described in Sect. 3. Section 4 introduces how the system detects
the cylinder. Section 5 presents the cost function and the cylindrical regularity.
Section 6 describes the experiment setups and results. Finally, conclusions and
plans for future work are summarised in Sect. 7.

2 Related Work

In man-made environments with many higher-level features and structural reg-
ularities, many robots use SLAM algorithms designed to exploit this informa-
tion to improve localization accuracy. There are two main ways to incorporate
structural regularities. The first approach uses the Manhattan world [20] which
abstracts the man-made environment as a set of blocks. However, many require-
ments for this approach are not met in the pipe environment, such as lines in
orthogonal directions and the vanishing points. The second approach is to add
structural regularities to landmarks, including points, edges, and lines, in the
optimisation [7,9,13]. These algorithms also optimise the structural parameters
in the local optimisation, including other landmarks. However, these specific
structural regularities are not present in the buried pipe environment.

A key structural property of pipe environments are their cylindrical shape,
and some Structure from Motion (SfM) methods have been designed to exploit
this information. Some methods [8,19] estimate the map point location by com-
puting the intersection of the known cylindrical surface and the ray from the
camera centre to the observation when the camera moves parallel with the pipe
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axis. Others methods [8,10] add cylindrical regularity to map points in the bun-
dle adjustment (BA) algorithm to keep the points on the known cylindrical
surface. Further, this prior knowledge has been used in local pose optimisation,
which can optimise the camera poses and triangulate features iteratively [12].

To date, SfM approaches have typically assumed that the robot moves for-
ward parallel with the pipe axis, where the system benefits most from the cylin-
drical information [8,12]. In some cases, the pose estimation is simplified by
assuming the robot moves in a straight line [3,8,19]. Those assumptions do not
typically hold in the SLAM problem. Cone detection among the triangular fea-
tures has been used to lift restrictions on camera movement [10], which can be
done without prior knowledge of the pipe axis, and is less sensitive to camera
calibration [14]. This method detects multiple pipe instances with temporary
map points incrementally per reconstructed model, which can not perform in
real-time.

In summary, although many SfM algorithms exploit cylindrical information,
SLAM algorithms cannot implement these methods directly since they incorpo-
rate some prior knowledge that is not available in the SLAM problem formula-
tion. Meanwhile, SLAM algorithms have yet to incorporate cylindrical structure
information. This paper aims to address this gap.

3 System Overview

The proposed system is derived from ORB-SLAM2 [16] which is a well-known
visual SLAM algorithm. ORB-SLAM2 has three threads: tracking, local mapping
and loop closing. The conventional ORB-SLAM2 selects frames with much new
information as keyframes in the tracking thread. In the local mapping thread,
the system triangulates features and optimises keyframe poses and map points
in local optimisation. The proposed system applies cylinder-related operations
in the second thread. Optimised map points are defined as map points that are
optimised in the previous optimisation and excluded from current local opti-
misation. When enough optimised points are obtained since the beginning of
mapping or the end of the last cylinder model, the system estimates a cylin-
der among optimised map points and select cylindrical points among local map
points. The system punishes the distance of the cylindrical points from the cylin-
drical surface in local BA. Finally, the system culls some map points far outside
of the estimated pipe model, considered outliers. Once the ratio of cylindrical
points to all local map points is lower than a threshold, the system will stop
using cylindrical regularity and prepare to update the cylinder model with new
cumulative optimised points.

4 Cylinder Detection

Given a set of 3D map points, the cylinder is detected based on geometric proper-
ties. In order to leverage cylindrical regularity in local optimisation, it is essential
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to estimate the cylinder accurately and distinguish the cylindrical points clearly.
This section introduces cylinder representation and cylinder detection.

4.1 Cylinder Representation and Estimation

The cylinder estimation is based on cylinder representation. The cylinder is

denoted by �π =
[

�Lc
T �Oc

T
rc

]T

, where �Lc ∈ R3 is a vector characterising the

direction of the cylinder’s axis, �Oc ∈ R3 represents the 3D coordinates of the
intersection point between the pipe axis and the xy plane of the world coordinate,
and rc is the radius of the cylinder. Here �P i

w ∈ R3(0 < i < n) represents a
cylindrical point. These elements are illustrated in Fig. 1.

The �Lc vector has three elements but only two degrees of freedom, so one
element can be fixed to avoid the singularity. During the initialisation, the coor-
dinate of the first keyframe is regarded as the world coordinate shown in Fig. 1.

The camera will move along the pipe, looking along the pipe axis. Since the z
axis of the world coordinate will not be perpendicular to the pipe axis, the pipe
axis is likely to intersect the xy plane of the world coordinate. Thus the third
element of vector �Lc would not be zero and is set to a fixed nonzero number to
avoid the singularity. The cylinder vector �Lc =

[
ac bc 1

]T, where ac and bc are
the elements of Lc along the x and y axes of the world coordinate, always inter-
sects xy plane of the world coordinate in the point �Oc =

[
xc yc 0

]T, at distances
xc and yc in the x and y axes of the world coordinate. The system therefore uses
five numbers to parameterise a cylinder, which is the minimum number of vari-
ables, where are estimated in unconstrained optimisation [18]. There are some
other line representation methods, such as Plücker coordinates and orthonor-
mal representation [13]. The former has a constraint to their parameters, and
it is hard to illustrate the cylindrical regularity with both mathematically. The
nonlinear geometry fitting is solved by g2o [1] which is used by ORB-SLAM2.

Fig. 1. Cylinder representation, with parameters describing a cylinder in space. Two
image frames are shown; the world coordinates are set to those of the first frame.

Theoretically, all cylindrical points are equidistant from the cylinder axis.
This property is used to estimate the cylinder and add constraints to the map
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points in later optimisation. For a cylindrical point �P i
w, as the cross product

between two vectors is the area of a parallelogram with the vectors as sides, the
following equation holds

S = | �Lc × ( �P i
w − �Oc)| = | �Lc| · rc (1)

where | · | is the magnitude of a vector. According to this cylindrical property,
an error function is obtained for a feature i as follows, where Δx = x − xc and
Δy = y − yc,

g(P i
w) = | �Lc × ( �P i

w − �Oc)|2 − | �Lc|2|rc|2
= [bcz − Δy]2 + [Δx − acz]2 + [acΔy − bcΔx]2 − rc

2(a2
c + b2

c + 1)
(2)

This is minimized by the Gauss-Newton or Levenberg–Marquardt algorithm
[11,15], using the Jacobian J( �P i

w) of g( �P i
w) with respect to �π

J( �P i
w) =

∂g

∂�π
=

⎡
⎢⎢⎢⎢⎣

2acz
2 − 2Δxz + 2acΔy2 − 2bcΔxΔy − 2acrc

2bcz
2 − 2Δyz + 2bcΔx2 − 2acΔxΔy − 2bcrc

−2Δx + 2acz − 2bc
2Δx + 2acbcΔy

−2Δy + 2bcz − 2ac
2Δy + 2acbcΔx

−2rc(ac
2 + bc

2 + 1)

⎤
⎥⎥⎥⎥⎦

T

(3)

4.2 Cylinder Detection

Cylinder detection is to estimate a cylinder among selected 3D points. Noise
in the map points can lead to a poorly estimated cylinder, providing incorrect
information through cylindrical regularity and causing misclassification in the
future selection of cylindrical points. This sensitivity to noise makes cylinder
estimation different from other landmarks. For accuracy, this cylinder is esti-
mated from optimised map points instead of local map points observed by the
current keyframe and its covisible keyframes. The local map points are noisy
before optimisation. The local optimisation not only optimises the local map
points but also filter out some points far outside the estimated cylinder as out-
liers at the end of the optimisation. Since that, the optimised map points are
more reliable and accurate.

The system iteratively estimates the cylinder with updated cylindrical points
close to the cylindrical surface. The points far from the cylindrical surface are
regarded as non-cylindrical points. It is assumed that these distances of cylin-
drical points satisfy a Gaussian distribution, and the variance should be smaller
than an appropriate threshold τ . This system select points whose distances are
within 95% confidence intervals as cylindrical points. An alternative to this
method could be to use an algorithm such as RANSAC [5], which could improve
accuracy with higher computational cost. With a set of map points, the system
detects the cylinder with Algorithm 1:
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Algorithm 1. Cylinder Detection
1: Clean up the set G
2: Add all the map points to set G
3: Initialise the parameters
4: while σ >threshold σt do
5: Fit a cylinder to the map points from set G
6: Compute the distance of all map points from the cylinder axis
7: Compute the mean μ and variance σ of the distances dj(j ∈ G)
8: Clean up the set G, and add all points close to the mean μ, given by

|dj − μ| ≤ 1.96σ, which is a 95% confidence interval
9: end while

After cylinder detection, the estimated cylinder is fixed during the subse-
quent local bundle adjustment until the low ratio of current cylindrical points
to all local map points. The estimated cylinder changes slightly if the system
optimises it in every local bundle adjustment due to the measurement noise.
This instability will give the system a false impression that the robot moves in
a curve pipe, which contradicts reality. With the estimated cylinder, the map
points close to the cylindrical surface are classified as cylindrical points, which
have a cylindrical regularity in the local bundle adjustment.

5 Bundle Adjustment with Cylindrical Regularity

Formulation. The state of the proposed augmented ORB-SLAM2 system
includes local frame poses, local map points, and the estimated cylinder param-
eters. When the kth keyframe is accepted, the full state set is defined as follows:

X = {Twi, �pj , �π}i∈αk,j∈βk
(4)

where the variable αk denotes the covisible keyframes for the current keyframe k,
the set βk contains the map points observed by frames αk, and �π is the estimated
cylinder. Covisible keyframes share more than a certain number of map points.
The following cost function

f = arg min
X

∑
i∈αk

∑
j∈βk

ρ(eij
v

2

Σv
) +

∑
l∈γk

ρ(|el
c|

2

Σc
) (5)

is optimised via the local bundle adjustment method, with respect to X and with
a fixed �π, using the g2o solver [1]. Here eij

v is the reprojection error of feature
j observed by the keyframe i, and el

c is the cylindrical regularity of cylindrical
point l from the set γk. The kernel function ρ is used to suppress outliers. Σv

is the covariance matrix of a feature observation and is set to be an identity
matrix; Σv is the variance of the point-to-surface constraint.
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Reprojection Error. The reprojection error is the distance between the pro-
jected map point and observed feature in the image plane, for frame i and feature
j, this is given by

eij
v = zij − κ(TiwPwj) (6)

where κ(·) is used to map a 3D map point Pij to a 2D pixel coordinate fij , Tiw

is the transformation matrix between the camera pose and the world coordinate.

Cylindrical Regularity. The cylindrical regularity is same as Eq. (2). Given
a cylindrical point Pj and the cylinder parameters Lc, oc and rc, the cylindrical
regularity is given by

ej
c = |Lc × (P i

w − oc)|2 − |Lc|2rc
2 (7)

In the following experiments, it is assumed that the distances of cylindrical
points are within the interval [−0.05rc, 0.05rc] from the cylindrical surface. The
uncertainty of the regularity is set to 0.00065r2

c .

6 Performance Validation and Evaluation

The proposed algorithm is evaluated over different testing scenarios on syn-
thetic and real data. ORB-SLAM2 and ORB-SLAM2 with cylindrical regularity
(CRORB) are compared in terms of trajectory accuracy and running time on a
computer with Intel Core i7-8700 @ 3.2 GHz, 16 GB memory.

6.1 Synthetic Data

A synthetic environment is shown in Fig. 2. There is a straight 20-meter long pipe
with an inner diameter of 1 m. The lower part of the straight pipe is embedded
in the ground. The virtual robot moves horizontally in the pipe, and the camera
observes the inner pipe surface. To provide features for SLAM, a colourful image
covers the inner pipe surface (Fig. 2). Every second, the virtual camera collects
30 images of 1280 × 720 pixels, with added Gaussian noise. The true trajectory
of the robot is exported from ROS Kinetic.

6.2 Real Data

The real data is acquired from a small unmanned ground vehicle (UGV) which
moved along a long-buried straight pipe. The UGV (Fig. 3) is equipped with a
pin-hole camera collecting images of 720 × 576 at 20 FPS (Fig. 3). A length of
rope from a rope drum attaches to the UGV. When the robot moves, the rope
drum turns and calculates the distance travelled shown on the images. This
recorded travel distance is used as a reference instead of frame poses.



Improving SLAM in Pipe Networks by Leveraging Cylindrical Regularity 63

Fig. 2. Left: The synthetic pipe environment, with a flattened bottom surface to allow
easy robot motion, and a cylindrical shape to represent the real pipe environment. The
robot is pictured. Right: The pipe’s inner surface with a synthetic texture to allow
visual SLAM algorithms to detect features.

Fig. 3. Left: The UGV with camera used to collect data. Right: An example image
from the pipe environment. The texture on the sides of the pipe can be seen.

Fig. 4. The 3D points from actual data and the cylinder fit to them. The non-cylindrical
points can be seen which are not fit to the cylinder, and the cylindrical points which
will be fit to the estimated cylinder are seen ahead of the most recent keyframe.

Table 1. Comparison between the two SLAM algorithms

Dataset Synthetic data Real data

Method ORB-SLAM2 CRORB ORB-SLAM2 CRORB

rmse 0.026 m 0.007 m 0.378 m 0.285 m

Cylinder detection 0.0158 s 0.0533 s

BA 0.199 s 0.324 s 0.059 s 0.073 s

Local optimisation 0.411 s 0.505 s 0.08 s 0.104 s
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6.3 Discussion

The experiments proved that the CRORB is more accurate than the ORB-
SLAM2 in a pipe at the cost of additional computation. The Fig. 4 show map-
ping with actual data, and the cylinder fit to the data points. The error between
the ground truth and the estimated trajectory is difficult to visualise. Table 1
compared accuracy and computation between two SLAM algorithms. The root
means squared error (RMSE) of the absolute pose error from two estimated
trajectories are provided. These numbers indicate the performance of the esti-
mation. Also, the running time of local optimisation, BA and cylinder detection
are compared, each of which is the average time over ten runs on the same
data. The local optimisation includes cylindrical points classification, optimiser
initialisation and BA.

The running time of local optimisation and BA differs significantly between
the two algorithms. The difference is because the BA in CRORB has additional
cylindrical regularity. Also, the algorithms in actual data cost less computation.
In the scale-free map, the robot’s speed is faster in the actual data than in
synthetic data. The local optimisation in synthetic data involves more covisible
keyframes, and they share more common map points, which means a larger opti-
misation problem with more variables and more constraints. So the running time
of synthetic data is longer. The conventional ORB-SLAM2 tends to underesti-
mate the trajectory. The cylindrical regularity cannot solve this problem, but it
can slow down this trend.

7 Conclusion

In this paper, a novel SLAM framework is proposed to leverage cylindrical regu-
larity in a straight pipe. The cylindrical regularity can improve the localisation
accuracy. In the future, we plan to use a new flexible cylinder representation
method and include other structural information from a pipe network.
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4. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular
SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014.
LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10605-2 54

https://github.com/RainerKuemmerle/g2o
https://github.com/RainerKuemmerle/g2o
https://doi.org/10.3390/rs12060968
https://doi.org/10.1109/ROBIO.2011.6181697
https://doi.org/10.1109/ROBIO.2011.6181697
https://doi.org/10.1007/978-3-319-10605-2_54
https://doi.org/10.1007/978-3-319-10605-2_54


Improving SLAM in Pipe Networks by Leveraging Cylindrical Regularity 65

5. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commun.
ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692

6. Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: fast semi-direct monocular visual
odometry. In: Proceedings of the IEEE International Conference on Robotics
and Automation, no. May, pp. 15–22 (2014). https://doi.org/10.1109/ICRA.2014.
6906584

7. Gee, A.P., Chekhlov, D., Calway, A., Mayol-Cuevas, W.: Discovering higher level
structure in visual SLAM. IEEE Trans. Rob. 24(5), 980–990 (2008). https://doi.
org/10.1109/TRO.2008.2004641

8. Hansen, P., Alismail, H., Rander, P., Browning, B.: Visual mapping for natural
gas pipe inspection. Int. J. Rob. Res. 34(4–5), 532–538 (2015). https://doi.org/10.
1177/0278364914550133

9. He, Y., Zhao, J., Guo, Y., He, W., Yuan, K.: PL-VIO: tightly-coupled monocular
visual-inertial odometry using point and line features. Sensors (Switzerland) 18(4),
1–25 (2018). https://doi.org/10.3390/s18041159

10. Kagami, S., Taira, H., Miyashita, N., Torii, A., Okutomi, M.: 3D Pipe network
reconstruction based on structure from motion with incremental conic shape detec-
tion and cylindrical constraint. In: Proceeding of the IEEE International Sympo-
sium on Industrial Electronics, vol. 2020-June, pp. 1345–1352 (2020). https://doi.
org/10.1109/ISIE45063.2020.9152377

11. Levenberg, K.: A method for the solution of certain non-linear problems in least
squares. Q. Appl. Math. 2(2), 164–168 (1944)

12. Künzel, J., Werner, T., Eisert, P., Waschnewski, J., Möller, R., Hilpert, R.: Auto-
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Abstract. Multi-robot system is an ever growing tool which is able
to be applied to a wide range of industries to improve productivity and
robustness, especially when tasks are distributed in space, time and func-
tionality. Recent works have shown the benefits of multi-robot systems in
fields such as warehouse automation, entertainment and agriculture. The
work presented in this paper tackles the deadlock problem in multi-robot
navigation, in which robots within a common work-space, are caught
in situations where they are unable to navigate to their targets, being
blocked by one another. This problem can be mitigated by efficient multi-
robot path planning. Our work focused around the development of a
scalable rescheduling algorithm named Conflict Resolution Heuristic A*
(CRH*) (https://github.com/iranaphor/crh star) for decoupled priori-
tised planning. Extensive experimental evaluation of CRH* was carried
out in discrete event simulations of a fleet of autonomous agricultural
robots. The results from these experiments proved that the algorithm
was both scalable and deadlock-free. Additionally, novel customisation
options were included to test further optimisations in system perfor-
mance. Continuous Assignment and Dynamic Scoring showed to reduce
the make-span of the routing whilst Combinatorial Heuristics showed to
reduce the impact of outliers on priority orderings.

Keywords: Multi-robot path planning · Prioritised planning ·
Decoupled path planning · A* · Reservation tables

1 Introduction

Autonomous mobile robotic technologies have matured over recent decades
enabling their uses in many real-world applications. This has resulted in a push
towards scaling up systems to large mobile robot fleets to improve operational
efficiency, especially when tasks are inherently distributed in space, time or func-
tionality. One of the primary requirements to ensure proper coordination among
a fleet of autonomous mobile robots in a shared-workspace, is efficient path plan-
ning and allocation. Without effective coordination, interference between robots
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can have a detrimental effect on the fleet operations. Congestion-free route plan-
ning and coordination is needed to address this interference.

In Multi-Robot Path Planning (MRPP), there are four main challenges to
overcome: Completeness, is the guarantee that a route will be found if one exists;
Optimality, is the guarantee to find a set of routes minimising some metric such
as make-span (time the last robot arrives) or flow-time (sum of all route lengths)
[19]; Deadlocking, is where a robot will be in a state preventing another from
reaching a target [5,8]; and Scalability, is the issue of processing resources thin-
ning as the complexity of the joint state-space increases. Among these, optimal-
ity and scalability can be considered mutually exclusive, and are tackled well by
Coupled and Decoupled approaches respectively.

An example of a scenario where MRPP can be useful is a fleet of agricul-
tural robots deployed in a polytunnel environment to execute a series of in-field
logistics tasks [7]. These tasks are dynamic in nature and are dispersed over
the environment. This paper addresses the MRPP problem to enable conges-
tion and deadlock-free movement of robots in such a polytunnel environment,
by proposing a novel algorithm called Conflict Resolution Heuristic A* (CRH*).
By relying on decentralised and decoupled route planning to find sub-optimal
solutions, the CRH* algorithm is complete and scalable, as demonstrated by
empirical evaluations.

The rest of this paper is organised as follows: Sect. 2 provides an overview of
related work in Prioritised Planning; Sect. 3 provides an overview of the imple-
mentation; Sect. 4 details the experimental setup, evaluation and results; and
Sect. 5 concludes our findings.

2 Related Works

Decentralised and decoupled MRPP approaches are widely preferred to address
the high computational complexity and low scalability of centralised approaches.
Prioritised Planning (PP) is a decoupled MRPP approach which assigns priori-
ties to each robot and then plans a route for each one sequentially, treating all
prior robots as dynamic obstacles.

As the complexity of the joint state-space is proportional to the total config-
uration of priorities, finding the optimal assignment of priorities is a NP-Hard
problem. Thus a full state-space search is unfeasible and smarter approaches
must be taken [2]. When routes are unavailable due to blocking from higher pri-
ority agents, the robot can be considered to be deadlocked. Rescheduling can be
used to optimise priority assignments and replan routes. CRH* tackles the area
of rescheduling, making use of enhanced reservation tables and comprehensive
replanning in a distributed decision-making topology.

Our approach focuses in the topological domain, in which the map is a finite
set of discrete positions (nodes) and connections between them (edges) indi-
cating possible paths from one node to another [10]. It is used as the common
discretised environment representation over which all robots plan their routes.
Such representations have low planning complexity and can easily detect possible
conflicts compared to metric maps.
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Fig. 1. Example of the potential of combinatorial heuristics, as the combination of two
independent heuristics.

2.1 Heuristics

The effective use of heuristics works with the intent to give priority to the robot
which needs it the most. In Static Ordering (SO) [9] scoring is made using the
order the agents were added to the network, and in Euclidean Distance (ED)
[17] scoring is based on the distance to the target.

These work well in metric maps which are very open and well-connected,
however for agricultural environments in the scale of hectares, these are not
viable as they are. Polytunnels and fields often include long isolated paths to
traverse, which are better managed by approaches such as below, which follow the
idea that agents struggle due to environmental constraints. ED can be adapted
into Optimal Path Length (OPL) to become viable in these scenarios.

In Planning Time (PT) [18], the processing time to find a route is used for
scoring, however this falls short in heterogeneous systems where platforms have
differing processing hardware. In Naive & Coupled Surroundings [6,19] agents
are scored based on the cluttering of their workspace by counting the number
of local obstacles. Where in Naive Surroundings (NS), obstacles are regarded as
distinct and in Coupled Surroundings (CS) they are treated as effective, where
effective obstacles are regions the agent is unable to navigate. In Path Prospects
(PaP) [19] scoring is made based on the number of effective obstacles between
the start and target to score on the number of paths available in the homology
class of trajectories.

In PP, it is standard to use a single heuristic to assign priorities. We extend
on this, exploring the potential of combining multiple heuristics to improve to
handling of outliers demonstrated in Fig. 1.

2.2 Rescheduling

Rescheduling works to reduce the impact of deadlocks by modifying the priority
schema to optimise generated orderings [9]. In Random rescheduling [4] priorities
are randomised and replanned whenever a deadlock occurs. The Hill-Climbing
search [3] extends on this by randomly swapping pairs of priorities. Continuous
Enhancement [15] allows agents to modify their own score if they are unable
to find a route. This is extended by Deterministic Rescheduling [1], to award
the maximum priority, following the idea that issues are caused by their local
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environment. Local Priority Assignment [14] works by exploring all local priority
configurations in proximity to an agent unable to find a route. Priority Tuning
[13] optimises successful assignments by shuffling priorities between the least
optimal agents, repeating until convergence. In our approach, we extend the
ideas in Deterministic Rescheduling by integrating the intelligent overriding of
higher priorities.

2.3 Path Finding

Path Finding algorithms are a core component within prioritised planning, being
used to generate routes once priorities are assigned. As detailed in [11,16], there
are many categories of path finding algorithms. Being one of the most funda-
mental path finding algorithms, A* [12] works only to identify a route. Local
Repair A* (LRA*) [20], recalculates the remainder of its route when a collision
is pre-empted. Cooperative A* (CA*) [16], uses three dimensional space-time
reservation tables to mark off impassable regions. Our approach includes an
extension to the reservation tables of CA* to override existing reservations; and
an extension to LRA* to optimise replanning from a point of conflict.

3 Design and Development

3.1 Overview

The main architecture of CRH* (Fig. 2), works in three stages, with the final
two repeating together till convergence. In the first stage, the robot is assigned
a target, plans a route, and informs the coordinator of its reservations. The
coordinator, on receiving the route, adds the reservations to the global map,
notifying any other robots of overturned reservations in the second stage. The
robots each receive their failed reservations (FR) in the third stage, and perform
replanning to identify new routes, passing these new routes to the coordinator.

Each message contains a list of reservations, of which each consist of an edge
identifier, agent identifier, and a reservation start and end time.

On receiving an FR, the shortest of three replanning methods is returned
to the coordinator. These three methods are: Replanning from Start where a
new route is generated from scratch; Replanning from Conflict where the route
beyond FR is replanned; and Replanning with Delay which adds a time delay
(in which the robot will wait to use the FR once it is available) and replans from
there.

3.2 A* Adaptations

There were two key modifications to the motion planning algorithm to enable
the enhancements for our approach, the first was the reservation override system
(CRH Battle), the second was the deadlock management (FAILED List).

The CRH Battle was included within A* where as each edge is initially
investigated, a score (referred to as the CRH score) is generated to query against
any existing reservations in the time period specified. Only if the robot’s CRH
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Fig. 2. Visual representation of robot-coordinator communication.

score is greater, will the override work. While this scoring system can utilise
any single heuristic such as described in Sect. 2.1, it is also capable of taking the
combination of multiple heuristics (e.g. ED,

∑
(ED,OPL), or

∏
(PT,NS,CS)).

For our experiments, we utilise a variety of scoring systems as the heuristics
themselves are arbitrary to the aim of the research.

The deadlock management is implemented in the form of an additional flag
for exploration. A* has two flags, OPEN and CLOSED, which define whether a
node is on the frontier for exploration or has already been explored, where if the
OPEN list is exhausted, the planning fails. In our approach, when reservation
overrides fail, the edge is added to a new FAILED list, which is accessed once the
OPEN list is exhausted to obtain the most optimal edge to override, boosting
the CRH Score generated.

3.3 Framework Facilities

Continuous Assignment. In PP, the handling of new assignments is done in
one of two ways, in Batch Assignment replanning will wait till all have completed
routes, whilst in Full Replanning all agents replan in the current state. In our
approach, we propose a third method Continuous Assignment as a direct con-
trast to Batch Assignment in which rescheduling is applied without replanning
the entire network, only updating affected agents. This allows for a reduction in
make-span as shown in Fig. 3.

Dynamic Scoring. The standard method of score generation is Static, in which
scores for each agent are assigned before routing. In our approach, we implement
the concept of dynamic scoring, where every reservation uses locally relevant
information to compute heuristics. As the routing gets closer to a target, each
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Fig. 3. Example of route times in batch (upper) and continuous (lower) assignment
for a series of agents.

(a) Fork Map (53 edges) (b) Riseholme Map (150 edges)

Fig. 4. Topological Maps used in the experiments.

edge will be reserved with information relevant to that edge rather then infor-
mation from the agents current location, for example with ED, each edge will
be reserved with its distance to the target rather the distance to the target from
the start node as would happen with static scoring.

4 Experiments

Discrete Event Simulation. To ensure a comprehensive evaluation, Dis-
crete Event Simulation (DES) was utilised along with Monte-Carlo simulations,
enabled through the deterministic nature of the approach. In this, time jumps
to points of interest (POI) rather than evaluating every timestep. In our exper-
iments, these POI consist of any timestep in which a route is completed; time
jumps to the next route completion, performs any calculations, and repeats.

Experiment Maps. Experimentation was completed on two topological maps
Fork (Fig. 4a) and Riseholme (Fig. 4b), representing a single polytunnel and a
pair of polytunnels respectively. The experimentation was completed on the Fork
map for the majority of experiments, with the Riseholme map used also for the
scalability test.

Heuristics. In the following experiments, used to generate the CRH scores for
resolving conflicts are the heuristics of: Optimal Path Length (OPL), Euclidean
Distance (ED), Planning Time (PT), and Static Ordering (SO) of which we
utilise the Agent’s ID.
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Fig. 5. Average number of deadlocks resolved per run. Completed with 10 agents,
across 50 iterations of 1k targets in the Fork Map.

4.1 Evaluation of CRH*

Deadlocks. The FAILED list, is used to handle every deadlock encountered,
so by recording the activity of the FAILED list, we are able to identify how
often potential deadlock situations occur. Figure 5 shows the average number
of deadlocks encountered per target over 50 runs with 1000 targets per run.
These results show on average 0.47 deadlocks for each given target, which if not
managed as they are here, would cause many delays in navigation.

Scalability. As the approach is decentralised in design, path planning is
expected to run distributed, thus does not contribute to scalability concerns.
The area of highest concern is thus communication, which consists of one mes-
sage per replan to the coordinator. So to evaluate scalability, the Replans per
Target (RT ) is recorded, which accurately measures the load on the coordina-
tor. The results in Fig. 6 show upward trends initially before plateauing, avoiding
exponential scaling and thus can be regarded as scalable.

(a) Average Replans in Fork Map (b) Average Replans in Riseholme Map

Fig. 6. Range-grouped area charts for average RT over five runs of 50 targets

4.2 Evaluation of Optimisation Improvements

Batch vs. Continuous Assignment. Continuous Assignment works to
improve make-span by reducing idle time for agents waiting to replan. Figure 7a
shows the resulting make-span distributions contrasting Batch and Continuous
Assignment. The tests were run five times with 20 targets for each of 5, 10 and
20 agents using OPL as the CRH score to resolve conflicts. The results show
Continuous Assignment improves make-span in both small and large simula-
tions. This is evidenced by Fig. 7b showing the same tests run for 1000 targets
with make-span reductions of 47%, 38%, and 20% respectively to the number of
agents.
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(a) Flow-Time over 20 Targets in seconds (s)

(b) Flow-Time over 1000 Targets in seconds (s)

Fig. 7. Make-Span distribution for Continuous (left) and Batch (right) Assignment
with simulations of 5, 10 and 20 agents.

Fig. 8. Distribution of delays contrasting Dynamic (left) and Static (right) Scoring
systems with 50 and 100 targets per agent.

Static vs. Dynamic Scoring. To test the efficacy of the optimisation, the
decoupled optimal make-span is negated from the CRH* make-span to get the
worst-case delay. This delay was recorded across two sets of experiments, the first
testing static scoring, and the second with dynamic scoring. This was repeated
across six categories using the heuristics of ED, OPL and PT, for each of 50
and 100 targets per agent. The results in Fig. 8 show Dynamic Scoring offers a
significant improvement, with the margin between Static and Dynamic Scoring
growing larger proportionally to the total targets.

Base vs. Combinatorial Heuristics. To evaluate the efficacy of combina-
torial heuristics, 10 tests were performed with 10 agents each, recording the
average number of replans per run. Each test consisted of 10 runs with 20 tar-
gets, completed for each heuristic independently then combined together. This is
repeated three times, the first comparing ED, OPL and PT; the second using SO
and OPL; and the third comparing SO and ED. From Fig. 9, the average range
of outliers is reduced when using the combination of all heuristics as opposed
to purely independent heuristics. In addition, the average number of replans
decreases for combined heuristics when using a combination of heuristic and
Agent ID.
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Fig. 9. Distribution of replans between independent heuristics, and their combination
(all).

5 Conclusion

In this work, we have proposed the CRH* algorithm, a decentralised and decou-
pled enhancement to prioritised planning which aimed to improve deadlock
avoidance with the use of reservation tables and deterministic rescheduling. We
show through experimental evaluation that our approach is both scalable and
deadlock-free as the complexity of the joint state-space increases with the size
of the topological map and the number of agents.

We have also shown, clear make-span reductions of up to 47% with the use
of Continuous Assignment and up to 82% with Dynamic Scoring. We have also
shown prioritisation quality improvements with Combinatorial Heuristics reduc-
ing the impact of extreme outliers.

Due to the agnostic nature of the approach, the discrete event simulation
and specific heuristics chosen are arbitrary to the evaluation of the developed
features, however further work will include exploration with a wider sample of
heuristics, and performance evaluations beyond discrete event simulation.
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Abstract. Many real-world applications require agents to cooperate
and collaborate to accomplish shared missions; though, there are many
instances where the agents should work together without communica-
tion or prior coordination. In the meantime, agents often coordinate
in a decentralised manner to complete tasks that are displaced in an
environment (e.g., foraging, demining, rescue or firefighting). Each agent
in the team is responsible for selecting their own task and completing
it autonomously. However, there is a possibility of an adversary in the
team, who tries to prevent other agents from achieving their goals. In
this study, we assume there is an agent who estimates the model of
other agents in the team to boost the team’s performance regardless of
the enemy’s attacks. Hence, we present On-line Estimators for Ad-hoc
Task Allocation with Adversary (OEATA-A), a novel algorithm to have
better estimations of the teammates’ future behaviour, which includes
identifying enemies among friends.

Keywords: Autonomous systems · Adversary agent · Learning agent ·
Multi-agent system · Decentralised task allocation

1 Introduction

The world is moving towards “smart systems”, which rely on some form of intel-
ligent agent technology, that can autonomously collect information from their
surrounding environment and act upon it. An example is multiple rovers in
space, which attempt to accomplish their missions cooperatively. These agents
may work collaboratively toward the completion of common tasks that they can-
not handle individually. However, there might be differences between the agents
in terms of origin, access to information, and perceptual and actuation capabili-
ties. Therefore, such teamwork might take place without any prior coordination
protocol or even, in some cases, any form of explicit communication. These kinds
of teams are known as ad-hoc teams. Moreover, many domains require agents
to work together to accomplish tasks that are distributed across the system. In
these systems, several tasks need to be accomplished in an uncertain environment
with no centralised mechanism to allocate tasks. Accordingly, the agents in the
team are not managed to perform their tasks, and they autonomously decide
c© Springer Nature Switzerland AG 2021
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which one to complete, without being directly assigned [4]. The decentralised
allocation is quite natural in ad-hoc teamwork, as we cannot assume that other
agents would be programmed to follow a centralised controller. For example,
imagine a natural disaster and hazardous situation where autonomous robots
(agents) have been dispatched from different countries or different organisations
to handle the emergency conditions. Rather than waiting for communication
and coordination protocols to develop, these robots need to act immediately to
avoid putting lives at risk. In other words, each robot chooses its own strategy
for saving as many lives as possible and behaves accordingly.

Nevertheless, there is a possibility of existing potential enemies in the sys-
tem which are unknown to the rest of the team. The agents of this type display
destructive behaviours that prevent their teammates from reaching their targets.
This work focused on the tasks-based teams where the team involves multiple
agents with a range of cooperative and disruptive behaviours in a decentralised
distributed system. As such, we refer to this task-based ad hoc team working
with an adversary as Task-based Ad-hoc Teamwork with Adversary. Hence, learn-
ing and reasoning about the team members are mandatory to improve the team’s
performance. In our system, there are some learning agents, who are aware of
pre-existing standards for coordination and communication, so they can try to
learn about their teammates with limited information [3]. Through such intel-
ligent coordination in this ad-hoc team, the shared goals will be achieved more
efficiently. However, the sole aim of our team study is not to improve collabo-
ration, and we need to reduce the hostile behaviour of some team members by
identifying and examining the enemies correctly. Our solution to this problem
is On-line Estimators for Ad-hoc Task Allocation with Adversary (OEATA-A),
a novel algorithm for estimating teammates future behaviours. We show that
our algorithm converges to a perfect estimation when the number of tasks to be
performed gets larger.

2 Related Works

In the literature, there are many works considering the presence of opponents
in the team. In the majority of these studies, the team members know who
the adversary agent is. Celli [5] focuses on ex-ante coordination, where team
members have an opportunity to discuss and agree on tactics before the game
starts, but will be unable to communicate during the game.

Mirchevska [8] presents a domain-independent Multi-Agent Strategy Discov-
ering Algorithm (MASDA), which discovers strategic behaviour patterns of a
group of agents under the described conditions. The algorithm represents the
observed multi-agent activity as a graph, where graph connections correspond to
performed actions and graph nodes correspond to environment states at action
starts. Based on such data representation, the algorithm applies hierarchical
clustering and rule induction to extract and describe strategic behaviour.
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There is another work [9], which is focused on resilience in cooperative MAS
and propose an Antagonist-Ratio Training Scheme (ARTS) by reformulating
the original target MAS as a mixed cooperative-competitive game between a
group of protagonists which represent agents of the target MAS and a group of
antagonists which represent failures in the MAS. However, Lin [7] introduces a
novel attack where the attacker first trains a policy network with reinforcement
learning to find a wrong action it should encourage the victim agent to take.
Then, the adversary uses targeted adversarial examples to force the victim to
take this action. Uesato [11] addresses the problem of evaluating learning systems
in safety-critical domains such as autonomous driving, where failures can have
catastrophic consequences. In our work, we assume that we are not aware of
which teammate is the adversary agent. However, by observing their behaviour,
we show that our method could obtain a better estimation which leads better
performance for the team.

3 Methodology

3.1 Ad-Hoc Teamwork with Adversaries

Our ad-hoc team consists of several agents, which do not have enough knowledge
about each other. The team’s goal is to work together and cooperate to accom-
plish shared goals. There is, however, a possibility of there being an adversary
agent among team members. This agent is attempting to minimise the team’s
performance in a way the other agents are not aware of.

Three main groups of agents are working together as part of this ad hoc
team. The first group is the naive agents (ω ∈ Ω), which attempt to improve
the team’s achievement. Agents of this type use static algorithms to accomplish
their tasks, and they cannot learn from what is happening in their environment.
Second are the adversaries, who attempt to defeat the goals of other agents. In
our team, we assume there is only one adversary agent, Λ. The last group is the
learning agents, and again we consider only one learning agent, φ, in our team.
The objective of the learning agent is to find the best actions that maximise the
performance of the team. The φ agent is the only agent in the team which can
learn teammates’ future actions as it estimates and discovers their models over
time.

In this system, there is a set of tasks (T ) that team members make an effort
to accomplish autonomously, except the adversary group. A task τ ∈ T may
require multiple agents, as well as several time steps to finish successfully. For
instance, in a foraging problem, a heavy item may require two or more robots
to be collected. Furthermore, the robots would need to move towards the task
location, taking multiple time steps to move from their initial position.

Model of Naive Agents. All naive agents try to perform their tasks
autonomously within the environment. However, choosing and completing each
task τ by each ω is dependent on its internal algorithm and capabilities. The



Task-Based Ad-hoc Teamwork with Adversary 79

algorithm for each ω can be varied in different domains. We assume that all
these algorithms have a set of inputs, which we denote as parameters of these
algorithms. For example, in the foraging domain [10] (explained in detail in
Sect. 4.1), there might be multiple boxes in the robot’s visible area. Hence, the
algorithms in this domain would be the way the robot chooses an item to col-
lect. The algorithm might be selecting the closest box or the lightest box among
the visible ones. In addition, the size of the robot’s visible cone, as well as its
ability to collect the box, are considered its parameters. Like previous works
[1,12], we consider the algorithm of choosing targets as the type of naive agents.
Furthermore, we suppose the learning agent knows the set of possible types Θ
in the system. However, the type of each ω agent is unknown to it. Thus, naive
agents’ behaviour and actions mirror the type and parameter of the agents, and
we define each ω ∈ Ω as a tuple (θ, p). θ ∈ Θ in this tuple is ω agent’s type
and p represents its parameters, which is a vector p =< p1, p2, ..., pn >. Each
element pi in the vector p is defined in a fixed range [pmin

i , pmax
i ] [1]. Choosing

a new task (considered as the agent’s “target”) happens in the very first state,
and whenever ω agent finishes a task. We call these states as Choose Target
State (s).

Model of Adversary Agent. The adversary agent has the full observation
of the environment, and we define a Markov Decision Problem model for it.
Although there are multiple agents in the team, we set the model under the
point of view of the agent Λ. Therefore, we consider a set of states SΛ, a set of
actions AΛ, a reward function R : SΛ×AΛ×SΛ → [0, 1], and a transition function
T : SΛ ×AΛ ×SΛ → [0, 1] for the Λ agent. The actions in the model are only the
Λ agent’s actions and not any of others. Additionally, the goal of the Λ agent
is minimising the reward function. In Λ agent’s MDP model, all naive agents
and the learning agent are considered as a part of the environment, and they
are not directly represented in the MDP model. The Λ agent can only decide its
own actions and has no control over the actions of any other agents in the team.
However, the Λ agent has not the ability to learn the other teammates’ types
and parameters. Therefore, it will not be able to estimate the future behaviour
of the teammates, and it considers them as obstacles in the environment. The Λ
agent employ UCT-H [12] for its on-line planning.

Model of the Learning Agent. Like the adversary agent, the learning agent
has full observability and its model is defined as a single agent MDP, under the
point of view of the agent φ, as in previous works [1,12]. Like the adversary
agent, for the φ agent, we consider a set of states Sφ, a set of actions Aφ,
a reward function R : Sφ × Aφ × Sφ → [0, 1], and a transition function T :
Sφ × Aφ × Sφ → [0, 1], where the actions in the model are only the φ agent’s
actions and not any of others. Similar to the adversary agent, we apply UCT-H
to solve the MDP model of the learning agent. It is clear that in the actual
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problem, the next state depends on the actions of all agents as they are dynamic
in the environment. Whereas, the φ agent is unsure about the teammates’ next
actions. By taking naive agents’ into account, given a state s, an agent ω ∈ Ω
has an unknown probability distribution (pdf) across a set of actions Aω, which
is given by ω’s internal algorithm (θ, p). Additionally, as we mentioned earlier,
the learning agent has the ability to estimate teammates’ future actions. Note
that the agents’ types and parameters are actually not observable, but in this
MDP model that is not directly considered. The estimated types and parameters
are used during online planning, affecting the current transition function.

As mentioned earlier, in this task-based ad-hoc team, φ agent attempts to
help the team to get the highest possible achievement. For this reason, the learn-
ing agent needs to find the optimal value function, which maximises the expected
sum of discounted rewards E[

∑∞
j=0 γjrt+j ], where t is the current time, rt+j is

the reward φ agent receives at j steps in the future, γ ∈ (0, 1] is a discount
factor. Also, we consider that we obtain the rewards by solving the tasks τ ∈ T
of the team. That is, we define φ agent’s reward as

∑
rτ , where rτ is the reward

obtained after the task τ completion. Note that the sum of rewards is not only
across the tasks completed by φ agent but all tasks are completed by any set of
agents in a given state. Furthermore, there might be some tasks in the system
that cannot be achieved without cooperation between the agents. Hence, the
number of required agents for finishing a task τ depends on each specific task
and the set of agents that are jointly trying to complete it.

3.2 On-Line Estimators for Ad-hoc Task Allocation with Adversary

In this paper, we introduce On-line Estimators for Ad-hoc Task Allocation with
Adversary (OEATA-A), which is based on the work done by Shafipour [10], called
OEATA. In this method, we want to check if all the team members collaborate
to finish common tasks. In other words, our goal is to check if there is any
adversary agent in the team that has non-collaborative behaviours and wishes
to avoid other team members to reach their goals which are called In OEATA-A,
when the learning process starts, we assume there is no adversary agent in the
team. Additionally, we suppose all non-learning agents will accomplish shared
tasks. For this purpose, we record all tasks that each agent accomplishes (except
for the learning agent φ). The reason for keeping the completed task by each
agent is to compare them with the predictions of a set of estimators.

All estimators are initialised at the beginning of the process and evaluated
whenever a task is done. The ones that are not able to make good predictions
are removed after several incorrect estimations, and replaced by new estimators
that can either be created using successful ones or entirely random. Moreover,
if the agent is an adversary, then there will not be a recorded task for it.

In OEATA-A as well as OEATA, we have a set of estimators to keep the
potential parameters p for a possible type θ, which are applied to predict task
selections. Additionally, we have history of tasks to keep track of all tasks com-
pleted by each non-learning agent. Additionally, in OEATA-A, we have bags of
successful parameters, which is borrowed from OEATA. However, in OEATA-A,
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we introduce suspicious agent to hold any uncooperative behaviour of the agent.
The details of all these fundamentals are described below.

3.3 OEATA-A Fundamentals

3.4 Sets of Estimators

In OEATA-A, there are sets of estimators Eθ
δ for each type θ and each non-

learning agents (δ ∈ Δ), whereas each set Eθ
δ has a fixed number of N estimators.

Therefore, the total number of sets of estimators for all agents are |Δ| × |Θ|.
An estimator e of Eθ

δ is a tuple: {pe, se, τe, ce, fe}, pe is the vector of estimated
parameters, and each element of the parameter vector is defined in the corre-
sponding element range; se is the initial state or the last Choose Target State ,
where the non-learning agent δ completed a task and wants to find a new task;
τe is the task that δ agent would try to complete, assuming type θ and param-
eters pe. By having estimated parameters pe and type θ, we assume it is easy
to predict non-learning agent’s target task at se; ce holds the number of times
that e was successful in predicting δ agent’s next task; fe holds the number of
failures in predicting correct task.

History of Tasks. As well as OEATA, in OEATA-A, we keep the history
of the completed task for all non-learning agents. Therefore, along with the
sets of estimators, φ agent keeps track of the tasks completed by each non-
learning agent, as History of Tasks. Hence, the History of Tasks is defined as
Hδ = {(s0, τ0), . . . , (sn, τn)}, where si is the ith Choose Target State, where δ
agent plans to find a new target, and τ i is the actual task that the same agent
completes afterwards. As mentioned before, Choose Target State is the initial
state or the state where δ agent accomplishes a task and wants to choose a new
one.

Bags of Successful Parameters. As we mentioned earlier, we assume all non-
learning agents as naive agents. Therefore, the same as OEATA, we keep a bag
of successful parameters for each δ agent. Hence, if any estimator e succeeds
in task prediction, for the vector of parameters pe =< p1, p2, ..., pn >, we keep
each element of the parameter vector pe in their respective bags of successful
parameters.

Suspicious Agent. In OEATA-A, we have a new variable called Suspicious
Agent ζδ. this value increases when the learning agent notices an unusual
behaviour from a specific agent.

3.5 Process of Estimation

After presenting the fundamental elements of OEATA-A, we will explain how we
define the process of estimating the parameters and type for each non-learning
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agent. The algorithm has five steps: (i) Initialisation; (ii) Evaluation; (iii) Gen-
eration and (iv) Estimation. Additionally, an (v) Revision step is executed for
all agents in Δ, any time a task is completed by any agent of the team, including
agent φ. Notice that the other difference between OEATA and OEATA-A is here
in the processing stage. Unlike OEATA, OEATA-A does not have update step,
and instead, we have revision step to find out the adversary agents. These steps
are described below:

Initialisation. At the very first step, all estimators should be initialised. There-
fore, agent φ needs to generate N estimators for each type θ ∈ Θ and each δ ∈ Δ.
For every estimator, first, we create a random value per element of the parameter
vectors pe from the uniform distribution. Generated elements of the parameter
vector should be in their defined range. For all estimators, in the initialisation
phase, the initial state of the environment is set as the Choose Target State se.
By having the type θ and the parameter vector pe of the δ agent, the agent φ
will be able to estimate its future task τe. Lastly, both ce and fe are initialised
to zero.

Evaluation. The evaluation of all sets of estimators Eθ
δ for a certain agent δ

starts when it completes a task τδ. In this step we check if the τe (estimated task
by assuming pe to be δ’s parameters with type θ in state se) is equal to τδ. If
they are equal, we consider them as successful parameters and save each pi in
the pe vector in a respective bag Bθ,i

δ . If the estimated task τe is equal to the
real task τδ, we set fe to zero and increase ce. This penalisation of estimators for
successive failures aids us in the type estimation. If τe is not equal to τδ, then
we increase fe and decrease ce. We do not remove an estimator e after a failure
since it may still have correct parameters. Hence, we define a threshold ξ for it,
and if fe is greater than ξ, we remove e from its belonging set. In this step, after
finding successful and failing estimators, we update se and τe of all survived
estimators of the sets Eθ

δ . We replace every se with the current state sc, and
the τe with the new predicted task, by considering the current state sc as the
Choose Target State and assuming pe as δ agent’s parameter vector, and θ as
its type. Additionally, at the end of this step, as a task has just been completed,
we update δ agent’s history Hδ, in order to use it for future evaluations.

Generation. Lets suppose that E′θ
δ is the new set with only the surviving esti-

mators for agent δ and type θ that were not removed in the Evaluation step.
In this step, the aim is to generate new estimators, in order to have the size of
the sets Eθ

δ equal to N again. Therefore, N − |E′θ
δ | new estimators should be

generated. Unlike the Initialisation step, we do not only create random param-
eters for new estimators, but generate a proportion of them using previously
successful parameters from the bags Bθ,i

δ . Therefore, we will be able to use a
new combination of parameters that had at least one victory in previous steps.
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Moreover, as the number of copies of the parameter pi in the bag Bθ,i
δ is equiv-

alent to the number of successes of the same parameter in previous steps, the
chance of choosing very successful parameters will increase. The main part of
producing new estimators is creating a new parameter vector p′, and then updat-
ing the other elements of the estimator accordingly. Parameters for a portion
(N −|E′θ

δ |)× 1
m (where m > 1) of the new estimators will be randomly sampled

from a distribution (e.g., uniform within the parameters range, if there is no
domain knowledge). The other portion (N − |E′θ

δ |) × (1 − 1
m ) will be generated

as a new combination from the corresponding bags, which are holding previously
victorious parameters. That is, each position p′

i of the parameter vector p′ of the
new estimator is populated by randomly sampling from the corresponding bag
Bθ,i

δ . If the corresponding bag Bθ,i
δ is empty, then that position of the parameter

vector will be randomly generated. If all bags are empty, then all parameters will
be random. Before creating a new estimator e′, we check if the newly generated
parameter p′ would have at least one success across the history Hδ so far. This
improves our algorithm since it decreases the likelihood of wasting an estimator
with a parameter p′ that would not be able to make any correct prediction in
the previous steps. As a result, if the output of the function is zero then p′ will
be discarded, otherwise, it will be considered as the parameter vector pe′ of the
new estimator e′.

Estimation. At each iteration after doing evaluation and generation, it is
required to estimate a parameter and type for each δ ∈ Δ for decision-making.
First, based on the current sets of estimators, we calculate the probability dis-
tribution over the possible types. First of all, we calculate the probability of the
agent being adversary. For that, we consider ζδ value. If it is bigger than zero we
will assume that the agent δ is the adversary. Otherwise, we calculate the proba-
bility of agent δ having type θ, P(θ)δ, we use the success rate ce of all estimators
of the corresponding type θ. That is, for each δ ∈ Δ, we add up the non-negative
success rates ce of all estimators in Eθ

δ of each type θ:kθ
δ =

∑
e∈Eθ

δ
max(0, ce).

It means that we want to find out which set of estimators is the most success-
ful in estimating correctly the tasks that the corresponding non-learning agent
completed. In the next step we normalise the calculated kθ

δ , to convert it to a

probability estimation: P(θ)δ = kθ
δ∑

θ′∈Θ kθ′
δ

. After calculating the probability dis-

tribution over types for each δ ∈ Δ, we use aggregation rules like median, mode,
or mean across all parameter vectors pe of each set of estimators Eθ

δ . As a result,
we will have one estimated parameter vector p per θ ∈ Θ for each δ ∈ Δ.

Revision. The Revision step triggers when a task τ is completed by any agent
in the team. As mentioned earlier, there is a possible issue that might arise in
our estimation process when a certain task τ is accomplished by any of the team
members (including agent φ), and some other non-learning agent was targeting to
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achieve it. This step has two sub-steps: Updating Tasks and Checking Suspicious
Agents.

– Updating Tasks: Consequently, agent δ, would notice in the state s that
the task is completed by other agents, and it will try to find a different task
at this state. Hence, s would be a new Choose Target State for the agent δ.
This problem would affect all estimators as well. Therefore, once a task τ is
completed by any agent in the team, we check every τe in all sets Eθ

δ , for all
non-learning agents (δ ∈ Δ) that have not just completed τ , to see if there
is any estimator e that predicts the same task as τ . If there is any e with
the same task, we will consider s as the Choose Target State se of e, and will
update its target task τe accordingly based on the current parameters of the
estimator pe and the type θ of the set.

– Checking Suspicious Agents: In this sub-step, we check the sum of all
success rates for each agent

∑
e∈Eθ

δ
ce. If the result is zero then we increase

the value of ζδ by 1.

4 Experiments

4.1 Level-Based Foraging Domain

We evaluate our approach in level-based foraging, a common problem for eval-
uating ad-hoc teamwork [1,2,10]. In this domain, a set of collaborative agents
must collect items (tasks) displaced in the environment and non-collaborative
(adversary) agents surround items and prevent other collaborative agents from
reaching items. Each item has a certain weight, and each agent has a certain
(unknown) skill-level. If the sum of the skill levels of the agents (try to collect an
item) that surround a target is greater than or equal to the item’s weight, it is
“loaded” by the team (Fig. 1). Each collaborative agent has 5 possible actions,
in a grid-world environment: North, South, East, West, and Load.

For the Naive Agents, the two “leader” types defined in [1]. Additionally,
the visibility region of each δ has an angle and a maximum radius, which are
unknown. Therefore, there are 3 parameters to be learned for each δ: Skill-level,
Angle and Radius. Based on the agent’s type and parameters, the target item
(task) will be selected. These two types are L1 and L2. For L1, the target is the
furthest visible item that has a lower weight than the agent’s skill level. If the
agent has the type L2, its target will be the visible item with the highest weight
below own skill-level, or the item with the highest weight if none are below own
level; In both types, the target will be ∅ if the agent could not find any item
that meets the criteria. After choosing the target, the naive agents will move
towards the target using the A∗ algorithm [6].
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2

φ

Fig. 1. Level-based foraging domain.
There are four agents in three dif-
ferent types in the grid. Boxes are
the items that should be collected.
Dashed cells in the grid are obstacles.

Each non-collaborative agent has 5 pos-
sible actions, in a grid-world environment:
North, South, East, West, and Stay. In our
experiments both the adversary agent and
the learning agent have full observation of
the whole environment.

4.2 Results

For evaluating our novel method, we com-
pare our algorithm OEATA-A against using
POMCP-based Estimation [10] for finding
the existence of an adversary in the team.
When using POMCP-based Estimation to
find the enemy, we still consider that the
agent can see the whole environment. How-
ever, agent type and parameters are not
observable and hence are estimated using
POMCP’s particle filter. We use N × |Δ| ×
|Θ| particles, matching the total number of estimators in our approach (since
we have N per agent, for each type). We executed 100 runs for each experiment
and plotted the average results and the confidence interval (ρ = 0.01). When
we say that a result is significant, we mean statistically significant considering
ρ ≤ 0.01.

OEATA-A used the following parameters: N = 100, t = 2, m = 0.2. Type
and parameters of agents in Δ are chosen uniformly randomly, and the weight
of each item is chosen uniformly randomly (between 0 and 1). Each scenario
is also randomly generated. Agent φ and agent Λ’s skill-level are fixed at 1, so
every generated instance is solvable. We ran UCT-H, which introduced [12] for
100 iterations per time step, and a maximum depth of 100. We fixed the scenario
size as 20 × 20, and ran experiments for a varying number of items (|T |). We
first show how the learning agent φ is recognising the adversary agent among six
teammates where the number of non-learning agents is 5 (|Ω| = 5). The Fig. 2
illustrates, the mean absolute error for the type, and 1−P(θ∗) we show here the
average error across all types.

As it is shown, the type estimation error of OEATA-A is consistently signif-
icantly lower than the other algorithm from the second iteration, and it mono-
tonically decreases as the number of iterations increases. POMCP-estimation,
on the other hand, does not show any sign of converging to a low error as the
number of iterations increases. We can also see that type estimation of OEATA-
A becomes quickly better than POMCP, significantly overcoming them after a
few iterations. In Fig. 3(a), we showed how finding the adversary among agents
works among six agents with a varying number of items in the grid. In these
scenarios, the size of the grid is 20 × 20. As it is clear, we are significantly bet-
ter than POMCP-estimation and as the number of items increases the error of
finding the enemy decreases.
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Fig. 2. Error of finding adversary agent
when there are 7 agents in the team with
|Ω| = 5.

Figure 3(b) illustrate the perfor-
mance of the team as the number of
items increases in the grid size 20 × 20,
and with the same seven agents in the
team where one of them is the learning
agent φ, one in adversary agent Λ and
the other five agents are the naive ones.
As we see, with 20 items we are better
with a p-value less than 0.05, but as the
number of items increases, we can say
that we are significantly better. In addi-
tion to estimating adversary agents, we
need to estimate the parameters of the ω agents as well and the Fig. 3(c), we
proved that results for OEATA-A have an error between 0 and 0.15. Additionally,
for all number of items we are better than the other method.

Fig. 3. Type estimation errors for a varying number of items in full observability. Error
estimating agent parameters when there are 7 agents in the team with |Ω| = 5.

5 Conclusion

We studied ad-hoc teamwork with an adversary for decentralised task allocation.
One ad-hoc agent learns its teammates and could distinguish the opponent agent
in the team and despite its existence, makes better decisions concerning overall
team performance. We proposed a novel algorithm On-line Estimator for Ad-hoc
Task Allocation with adversary, that obtained better estimations than previous
works in ad-hoc teamwork, leading to better performance. OEATA-A converged
to zero error, and in our experiments, the error decreased with the number of
iterations. We also showed estimations with partial observability for the first
time in ad-hoc teamwork, and still outperform previous works. In our future
works, we are planning to increase the number of the adversary and learning
agents to find out how the results would change.
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Abstract. In physical Human-Robot Cooperation (pHRC), humans
and robots interact frequently or continuously to manipulate the same
object or workpiece. One of the tasks within pHRC that has the high-
est potential for increased value in the industry is the cooperative lift-
ing (co-lift) task where humans and robots lift long, flexible or heavy
objects together. For such tasks, it is important for both safety and con-
trol that the human and robot can access motion information of the
other to safely and accurately execute tasks together. In this paper, we
propose to use Inertial Measurement Units (IMUs) to estimate human
motions for pHRC, and also to use the IMU motion data to identify
two-arm gestures that can aid in controlling the human-robot cooper-
ation. We show how to use pHRC leader-follower roles to exploit the
human cognitive skills to easily locate the object to lift, and robot skills
to accurately place the object on a predefined target location. The exper-
imental results presented show how to divide the co-lifting operation into
stages: approaching the object while clutching in and out of controlling
the robot motions, cooperatively lift and move the object towards a new
location, and place the object accurately on a predefined target location.
We believe that the results presented in this paper have the potential to
further increase the uptake of pHRC in the industry since the proposed
approach do not require any pre-installation of a positioning system or
features of the object to enable pHRC.

Keywords: Physical human-robot interaction · Cooperative lifting ·
IMUs

1 Introduction

In physical Human-Robot Cooperation (pHRC), humans and robots work
towards a common goal in a shared workspace with physical interaction, and
more examples of pHRC such as cooperative lifting and carrying, kinesthetic
teaching, coordinated material handling and rehabilitation therapy are seen
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within industry and healthcare [16]. The introduction of collaborative robots
(cobots) is particularly important for small and medium-sized enterprises since
the configuration of the fully automated production for each design might take as
much effort as the conventional production process when the number of product
is little. Installation can be done without replanning whole factories or introduc-
ing additional safety measures such as fences or cages for the cobots.

The cooperative lifting (co-lift) operation have the potential to enable
humans and robots to lift and carry long, flexible, or heavy objects together
while exploiting the human cognitive skills and the robot accuracy in different
parts of the task. However, to enable safe and accurate pHRC in co-lift tasks,
the control system must have access to human motion data to be able to follow
human motions. There are several studies on co-lift and manipulation between
a human and a robot in the literature. In [11], the authors use haptic data to
dynamically allocate human-robot leader roles on a co-lift scenario. A recent
study using only haptic data from the robot joints without requiring external
sensors is presented in [6] where the authors estimated external forces applied by
the human operator during the collaborative assembly of a car engine. In [13], a
human operator and a cobot on a mobile platform carry a long aluminium stick
between two locations in the work environment. Cartesian impedance control is
applied in the co-lift process and the localization in the environment is done by
using a laser scanner. Learning algorithms are also quite popular in co-lifting and
co-manipulation studies [1,2,12]. In [12], a novel approach using the learning by
demonstration for various cooperative tasks is proposed where a demonstrated
trajectory is adapted through weighting factors to adjust learning speed and
disturbance rejection to collaboratively transport an object. In [2] a table-lifting
task performed by a human and a humanoid using programming by demonstra-
tion and in [1] the human-robot role change is assessed probabilistically using
Gaussian Mixture Regression. While these studies found cover important topics
for HRC and co-lift tasks, they generally only address the stages of the coop-
eration where the human and robot is physically interacting. There is no study
found that also address the approach to the co-lift stage of the cooperation as
this requires motions sensors able to detect human motions when not in contact
with the object or robot directly.

To enable pHRC for a cooperative lifting task where also the approach stage
is included, the control system must be able to estimate human motions both
to control and to detect gestures that can enable/disable human control over
the robot. Studies on human motion tracking and estimation can be catego-
rized based on the type of the motion tracker devices used: visual-based [10,15],
and nonvisual-based [3,7,14], and hybrid solutions [8,9]. Each category has its
advantages and disadvantages depending on the application area. For example,
visual-based solutions are dominant in motion tracking solutions since provide
highly accurate human motion tracking but they often fail in industrial usage
for pHRC due to occlusion, loss in line-of-sight, intolerant to lightning changes,
and lack of mobility etc. IMU-based solutions are stand-alone systems without
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no permanent installations and can be a good alternative to address the chal-
lenges of vision-based systems at a lower cost, but are prone to drift for long
term usage. While several solutions to eliminate the drift problem have been
proposed [4], there are still few pHRC industrial applications using IMU-based
solutions in soft real-time.

The roles in pHRC may change in different stages of a cooperative lifting
task [1,5,11]. The human cognitive skills can be exploited in the approach stage
of a co-lift task to identify the location of the object to pick up, while the
robot accuracy can be used to accurately place the object on a predefined target
location. In this scenario, the human takes the leader role in picking and the
follower role in placing.

In addition to the active stages, a passive idle stage is also needed for the user
to clutch in and out of. This allows the human to disconnect from controlling
the robot to re-position. Switching between roles and active/passive stages of
the cooperation requires that triggers may be identified in the operation, or that
additional control signals are introduced to control the switching.

In this paper, we propose a novel approach for Human-Robot cooperative
lifting in Sect. 2, and show how we can estimate human motions using IMUs
during the approach and co-lift stage of the cooperation in Sect. 2.1. We also
address the different roles of cooperation in Sect. 2.2 by using individual human
arm gestures to clutch in and out of active roles. The proposed approach is
experimentally tested in Sect. 3, and the results discussed in Sect. 4. Conclusion
and outlook is provided in Sect. 5.

2 Human-Robot Cooperative Lifting Using IMUs
and Gestures

In this paper, we address the problem of collaborative lifting, carrying and plac-
ing an object as a joint operation between a human and a robot to share the load
of the object, and also to exploit the accuracy of the robot to place the object
at a predefined target location. First, we will show how we estimate human
motions and gestures using IMUs. Second, we show how leader-follower roles
are defined, and how arm gestures are used to switch between active (approach,
co-lift, release) and passive (idle) states.

2.1 Posture and Gesture Estimation

We propose to estimate 13 DoFs upper-body motions (chest, left and right arm)
using 5 IMUs placed as shown in Fig. 1. Note that we disregard any wrist motion
in this paper.



Human-Robot Cooperative Lifting Using IMUs and Human Gestures 91

Fig. 1. Human model, IMU placements and joint angle definitions.

The full upper-body posture and motion estimation is a collection of esti-
mated individual joint angles, and where a joint angle can be found by calculat-
ing the rotation between two consecutive links with attached IMUs as shown in
figure Fig. 1a. The illustrated body parts in Fig. 1b can be considered as upper
and lower arm segments.

The raw orientation data from the IMU sensor is referred as qGS
i where i is

the IMU number. Each IMU provides orientation information with respect to
global frame F0. If the link-1’s frame of reference is called F1 and link-2’s frame
of reference is called F2, the rotation from the global frame to sensor frames will
be qGS

0 and qGS
1 respectively. We can find the joint angle q01 between two links

as the rotation from F1 to F2 using quaternion multiplication as

q01 = (qGS
0 )∗ ⊗ qGS

1 (1)

where ⊗ denotes the quaternion multiplication and ∗ the complex conjugate of
the quaternion. The term qGS

1 is the rotation of the IMU attached on link-1 from
global to sensor frame. If we apply this process from link-0 (chest to shoulder)
to link-2 (elbow to wrist), we obtain the arm posture of a human arm based
on estimated IMU orientations. One arm can be modelled as a total of 5 DoFs
where 3 DoFs are on the shoulder joint and 2 DoFs are on the elbow joint as
shown in Fig. 1a. The kinematic chain for such a human model from the base
(chest) to the tip (hand) can be written as:

qc = qCH qs = q∗
c ⊗ qLS qe = q∗

c ⊗ q∗
s ⊗ qLE (2)

where qc, qs and qe are the quaternions representing joint angle rotations, qCH ,
qLS and qLE are the IMU orientation from global to the sensors frame in Fig. 1a -
which are the raw orientation readings from the sensors. The process is identical
for the second arm.

2.2 Cooperation Roles and States in Cooperative Lifting

The cooperative lifting scenario can be divided into three active (APPROACH,
CO-LIFT, RELEASE) and one passive (IDLE) state of the operation as shown
in Fig. 2.
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IDLE APPROACH

CO-LIFT

RELEASE

Clutch deactive

Clutch active

Hand holdHand release

Clutch deactive

Clutch active

Steering arm down

HUMAN LEADER

ROBOT LEADER

Start new cycle

Fig. 2. HRC states and leader roles

There are two key concepts in
this scenario, one is the role and
the other is the state. The role is
defined by who is leading the coopera-
tive task and the state defines which
stage of the task is running. There
is a dynamic role change between
human and the robot leader-follower
roles based on the human two-arm
gestures and the completion of the
task, and also the state changes are
triggered based on human arm ges-
tures.

Human Leader: This role is where the robot takes actions led by the human
operator based on his/her upper-body motions. The pick position of the object
is not necessarily to be known by the robot. The cognitive skills of the human
can be exploited to approach the object sensibly, identify the object to pick up,
and finally lift and carry it towards a target position. Within a close distance
to the place position, the robot-leader role is activated by a gesture so that a
precise placement is achieved.

In our proposed approach, we track both human arms individually and can
use them for different purposes in human-robot cooperation. We define one arm
as the motion arm (left) and the other as the steering arm (right). The motion
arm is directly controlling the robot motions in the active stages when the human
is the leader, while the steering arm motions are superimposed on the motion
arm when applied to the robot. In this way, the human can approach and grip
the object on one end using the motion hand – and the robot will mirror this
motion – but also use the steering hand to adjust the robot position to the proper
gripping position on the other end of the object while keeping the motion hand
still. Thus, any misalignment between the starting position of the human and
robot can be corrected. Furthermore, gestures from the steering hand can be used
as triggers or control signals to move from one state to another in cooperation.
There are 3 states in the human-leader role: idle, approach and co-lift.

In IDLE, no human motions are mapped into robot motions. The human can
move closer to the pick-up position without moving the robot. This state is also
a safe state which the human can switch to from any other state in the human-
leading role, and thus enables the human operator to move freely at any time.
In APPROACH, motion and steering arm motions are combined into a hand
pose that controls the goal pose of the robot. The individual contribution of the
two arms can be scaled through gains. Human forward/backwards and up/down
motions are identical on the robot, but sideways motions are mirrored by the
robot. In CO-LIFT, both the robot and the human is holding the common
object and lifting it towards the desired target position. Only the motion hand
controls the goal pose of the robot. The steering arm is free to move to help
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to lift, or to perform gestures. Two gestures of the steering arm are defined as
“release down” and “rotate up/down” to trigger state and role changes.

There are two transition gestures and a foot pedal activated transition
between states and roles. The “clutch activate/ deactivate” gesture activates
and deactivates the human to robot motion mapping. The clutch is triggered
by the steering hand rotating to the palm up gesture to switch from IDLE to
APPROACH/CO-LIFT, and rotating to palm down gesture to switch from APP-
ROACH/ CO-LIFT to IDLE. The “handhold/release” transition is triggered by
a foot pedal to close the robot gripper so that the CO-LIFT stage can start. The
option to switch from CO-LIFT to IDLE state (dashed lines in Fig. 2) is included
for safety reasons in case the human leader need to free the motion hand from
the object. Care should be taken to support the load of the lifted object in such a
scenario since the load cannot necessarily be supported by the robot alone. The
last transition gesture is the “release down” gesture where the human points the
steering arm downwards to trigger the role change from human leader to robot
leader.

Robot Leader: The trigger gesture “release down” switches from a human
leader role strategy to a robot leader strategy where the robot can take over
control of the execution to move the object to the target position while the
human keeps supporting the load of the object and follows the robot motions.
Only one state called RELEASE is proposed in our design, but a sequence of
other tasks can be added for more complex tasks. As soon as the robot reaches
the desired target position, the gripper is automatically released and the robot
moves away from the object and is ready for another cycle.

2.3 Human-Robot Cooperative Lifting of a Table

The cooperation starts in the IDLE state, and is shown in Fig. 3. The robot
expects the clutch deactivate signal (see the rotation of the steering hand from
Fig. 3a to Fig. 3b). At this stage, the motion hand pose P̂hm and steering hand
pose P̂hs are combined into the hand pose P̂h, but the goal pose P̂goal is not sent
to the robot in the IDLE state.

When the clutch is released the HRC system switches to an active APP-
ROACH state as shown in Fig. 3b. The human operator controls the robot, and as
the human approaches to the table with the motion hand, the robot approaches
the table with a scaled mimicking motion. If the motion hand reaches and grips
the table, the robot can still be controlled using the steering hand to approach
the appropriate grip position on the other side. Pose calculations are computed
using 4 × 4 homogeneous transformation matrix (HTM). The robot goal pose is
calculated based on the relative position change of the hand pose P̂h,t as shown
in Eq. (3).

P̂−
h,t = ŝ · (P̂−1

hm,t=0 × P̂hm,t) + k̂ · (P̂−1
hs,t=0 × P̂hs,t) (3)

where P̂−
h,t is the merged hand pose. To get the approach response from the robot

the y-axis in P̂−
h,t is inverted and P̂h,t is obtained to control the approach of the
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Fig. 3. Human and robot poses in co-lift states. (a) shows both the human and the
robot initial poses in the IDLE state. The steering hand (right) is palm down. (b) shows
both the human and the robot poses in action in the APPROACH state. The steering
hand is palm up. (c) shows the CO-LIFT state where both the human and the robot
is carrying the table. The steering hand has does not influence motion commands, but
is helping the motion hand (left) to lift the object. Finally, (d) shows the RELEASE
state triggered by the “release down” of the steering hand, and where the robot takes
control of the operation to place the object at the desired target position.

robot. The 4 × 4 scaling matrix for the motion hand ŝ has the last row equal
to [sxsysz1] with the rest of the elements as 1. The scaling matrix k̂ is defined
similarly for the steering hand. The robot goal pose based on the combined hand
pose is

Ĥ(t) = P̂−1
h,t=0 × P̂h,t P̂r,t = P̂r,t=0 × Ĥ(t) (4)

where Ĥ(t) is the transformation of merged hand pose from initial to the current
pose. The goal pose is set to initial orientation of the robot for easier cooperation.

When the system switches to the CO-LIFT state, the contribution of the
steering hand is eliminated. The current pose of the motion hand is set to a
new initial pose and the robot goal pose is calculated based on only the motion
hand’s relative position changes as in

P̂−
h,t = ŝ2 · (P̂−1

hm,t=tco−lift
× P̂hm,t) (5)

where P̂hm,t=tco−lift
is the new pose measurement of the motion hand in HTM

form needed to ensure a smooth transition between states. The ŝ2 term is the
new scaling factor for the motion hand. Finally, the y-axis measurements of
P̂−
h,t are reversed for a mirror the human motions to obtain the new hand pose

command P̂h,t in CO-LIFT.
When the steering hand is released down to switch to the RELEASE state,

we no longer compute the human hand to robot motion mapping since the robot
takes over the leading role in the RELEASE state, and the human follows the
robot motions.
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3 Experimental Setup and Results

The experimental test was performed as a full human-robot cooperative lifting
operation as shown in Fig. 3. We first present the experimental setup and the
calibration steps before presenting the resulting data.

3.1 Setup

The human is equipped with 5 Xsens Awinda IMUs to estimate orientations
output as filtered orientation raw data in quaternions. The cooperative robot
as the Universal Robots UR5e cobot equipped with a Robotiq 2F-85 gripper.
The data acquisition is processed in the ROS Melodic environment on two PCs.
One PC is running the ROS master and the Universal Robot’s ROS driver,
and the other PC runs all the other ROS nodes. The UR5e is connected via
Ethernet cable to the ROS Master PC, and the URCap software is started after
the UR5e ROS driver is started on the ROS Master PC. The data acquisition
from the IMUs runs 100 Hz whereas the UR5e controller runs 50 Hz. The inverse
kinematic solver node using ikfast runs 10 Hz, and scaling factors for the motion
and steering hand are set to 1.

3.2 Calibration

The calibration process consists of three steps as following: The first step is to
remove any bias on IMU orientation raw data, the second is to initialize human
posture and the third is to map the human initial pose to the robot’s initial
pose.

IMU Orientation Calibration: First, we eliminated the bias and set a relative
initial pose of each IMU to make sure the IMUs output zero orientation initially
as

qI,abs ⊗ qinit−rot = qbias qI,rel = q∗
bias ⊗ qbias. (6)

where qI,abs is the absolute initial orientation of an IMU, which is a unit quater-
nion, on a particular 3D orientation where the IMU axes are perfectly aligned
with the global frame of reference. The qinit−rot is the rotation from the initial
orientation to when the data acquisition starts, which is unknown. The qbias is
initial raw orientation data from the sensors that changes in every setup. The
initial orientation is set based on recording qbias for 2s in a steady T-pose (arms
out), and qI,rel is set to the identity quaternion.

Human Body Calibration: The IMU calibration is computed in a the T-pose
, and all the joint angles are set to zero, and q∗

bias is set to identity quaternion.

Hands to Robot Calibration: This sets the human arm pose to the robot
initial pose. The human moves to a desired initial pose and the robot move to
its predefined initial pose Fig. 3a. The robot initial pose P̂r,t=0 is registered, and
the computed hand pose P̂h,t=0 is initialized to zero position and zero rotation.
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Fig. 4. A full cycle demo of the proposed HRC cooperative lifting scenario. The lines
shows the position change on the x-axis of the motion hand (left) in blue thin dots,
steering hand (right) in orange thin dashes, merged hands in green thick line, the
goal pose to the robot’s end-effector in red thick dashes and the actual robot pose in
purple plus signed dashes. The states IDLE, APPROACH, CO-LIFT and RELEASE
are indicated as background colours/shades. The roles (human or robot leading) are
indicated with blue texts at the bottom of the figure where human-leading role covers
IDLE, APPROACH and CO-LIFT and robot-leading role covers only RELEASE.

3.3 Results

The experiment is carried out by an inexperienced user and the data is presented
in Fig. 4. As explained in Sect. 3.1, the actual robot data is recorded on the
ROS Master PC, and therefore the recorded data clocks are synchronized after
recording. In human-leading role states, it can be seen how hand motions affect
the goal position of the end-effector of the robot whereas the hand positions
are not affecting the goal position in the robot-leading role state. In IDLE, we
observe motions of the human arms (blue/orange), but these motions do not
affect the robot goal position (red) in this state. The merged hand position
(green) at the initial pose shown in Fig. 3a is set to zero. When the clutch is
deactivated (t = 8 s), the goal pose is sent to the robot based on the merged
hand pose (green), and the robot starts following the same trend as the goal
pose (red). Between t = 15–20, the motion hand (blue) is stable (holding the
table at one end) and the steering hand (orange) keeps commanding the robot
to adjust the robot position to be ready to grip the table. After the human is
satisfied with the position on which the robot can grip the table, the handhold
signal is sent and the CO-LIFT stage starts. In this state, only the motion hand
(blue) is affecting the goal pose (red) - but inverted. The steering hand (orange)
helps to lift without affecting the goal pose. After the steering hand is released
down as in Fig. 3d, a role changing is triggered and the RELEASE stage starts.
No hand motion is sent as the goal pose in this stage. Instead, the goal pose is
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set to the predefined target position. When the robot reaches the target position
at around t = 40 s, it automatically opens the gripper and pulls itself back (t =
40), and waits for input to do another cycle (t = 49 s), where the goal pose is
set to the robot initial pose. When the robot reaches the desired position with
a small tolerance (the absolute sum of joint angle error is less than 0.001 rad),
the system is automatically set to the IDLE and the robot wait for the clutch
to deactivate for the new co-lift cycle.

4 Discussion and Future Work

In this study, we demonstrated a human-robot cooperative lifting task scenario
based on estimated human motions and gestures using IMUs, and we tested
and validated the proposed pHRC states, roles and their transitions using a real
robot in experiments.

The proposed method is a novel conceptual design that still requires some
tuning based on more extensive user tests. Different learning curves are observed
for different users, and also some feedback on preferences are reported which
conflict between users:

Motion Mapping: In the current setup, we take the spine-fixed frame as the
human motion reference frame. It is reported as confusing in the beginning.
After a few trials, it is reported to become more natural. It is still an open
question for real applications and highly depends on the users’ learning curve.
To develop a training setup is a possibility or more intuitive frame of reference
can be analyzed with more user tests - potentially using the motion arm as the
frame of reference.

Robot Speed: It is seen Fig. 4 that the actual pose (purple) does not follow the
goal pose (red) identically. There is no lagging or real-time during the experi-
ments, but the robot maximum speed is set to be 30% of full speed as a safety
measure. If this is increased, the robot becomes more responsive and exceeds the
comfort zone of the human operator which then tries to slow the robot down, and
thus we can induce harmonic motions around the desired pose. With training,
the trust in the robot increases, and the speed limit can be increased.

Contribution of the Two Hands: We set the contribution of the two hands
equal in the experiments based on user preferences. However, during tests in the
development stage, other users reported that they preferred either the motion or
steering hand to be more dominant. Also, the approach direction of the motion
hand could be either mimicked or mirrored based on user preferences. These are
open questions.

The pick and place positions are selected close due to the limited workspace of
the robot. The ikfast module provides a rapid inverse kinematic (IK) solution
(on the order of 4µs) but no limitless elbow/wrist configuration can be set.
Therefore, we set joint limits in the experiments to make sure the robot works
within the configuration space, but this can be extended in future versions, or
changed to a recursive IK solver.
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The human and robot motions are defined as relative positions with respect
to the initial states. Therefore, the parameters of the human model do not play
a vital role. An average human model can be used for most users. It should be
noted that the behaviours on the other axes are observed; the states and the
transitions correspond in all axes yet they are not presented in this paper due
to the number of page limitations.

For the proposed method, the initial position of the object and its properties
is unknown. The approach is lead by the human, and the release is lead by the
robot. Only the target position of the object is necessary. Such a design opens
up a wide range of application possibilities such as co-manipulation, co-assembly
as well as co-lifting.

The real-time term describes a soft real-time behaviour that the human does
not feel a delay or lagging. We have not assessed quantitatively the real-time
capabilities, and we are planning to address this issue in future studies.

The IMUs are prone to drift but the filtered orientation by Xsens Awinda pro-
vides relatively stable data. For about 15 min of data collection period without
re-calibrating IMUs, no drastic drift issue is reported. However, before testing
the system in real industrial applications, a quantitative drift assessment study
in various magnetic disturbances should be carried out.

5 Conclusions

In this study, a conceptual design of human-robot cooperative lifting based on
human motions and gestures captured using IMU data is presented and validated
with a real-world experiment. The proposed system consists of two leading roles
as human-leader and robot-leader which dynamically switches based on human
gestures. The proposed roles consist of 4 different states and the human-to-robot
motion mapping differs according to the system state. This study aims to open
up new possibilities in pHRC for industrial applications by using IMUs as cheap,
portable, and low-cost measurement systems that do not suffer from occlusion
and line-of-sight loss.
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Abstract. Mapless navigation is the capability of a robot to navigate
without knowing the map. Previous works assume the availability of
accurate self-localisation, which is, however, usually unrealistic. In our
work, we deploy simultaneous localisation and mapping (SLAM)-based
self-localisation for mapless navigation. SLAM performance is prone to
the quality of perceived features of the surroundings. This work presents
a Reinforcement Learning (RL)-based mapless navigation algorithm,
aiming to improve the robustness of robot localisation by encouraging
the robot to learn to be aware of the quality of its surrounding features
and avoid feature-poor environment, where localisation is less reliable.
Particle filter (PF) is deployed for pose estimation in our work, although,
in principle, any localisation algorithm should work with this framework.
The aim of the work is two-fold: to train a robot to learn 1) to avoid
collisions and also 2) to identify paths that optimise PF-based localisa-
tion, such that the robot will be unlikely to fail to localise itself, hence
fail-safe SLAM. A simulation environment is tested in this work with
different maps and randomised training conditions. The trained policy
has demonstrated superior performance compared with standard mapless
navigation without this optimised policy.

Keywords: Fail-safe localisation navigation · Mapless navigation ·
Reinforcement learning

1 Introduction

For robots to navigate in unknown environments without knowing the maps,
such as in search and rescue scenarios, reliable decision making for the robot of
immediate responses to collisions or efficient path planning towards the goal is
critical. We categorise such problems as mapless navigation. Conventional path
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planning methods have been dominantly applied in most occasions. However,
there are known limitations with these algorithms [13]. Usually, hand-crafted
heuristic or constraint functions are needed and customised for different condi-
tions. However, too much hand-engineered path planning could limit the gener-
alization capability of mobile robots to be employed in different environments
[14].

To address the limitations above, with recent advances in deep learning and
reinforcement learning (RL), learning based navigation approaches have con-
tinuously attracted increasing attention. Supervised learning that learns from
expert demonstrations is one popular approach, which, however, would require
a large amount of labelled data for training. An alternative approach is RL that
deploys an agent in the environment and lets the agent explore by itself through
direct interaction with the environment. By gaining corresponding rewards from
environment during exploration, the agent will learn how to navigate gradually.
One promising recent work is the RL-based mapless navigation [13] that aims to
train an agent, a mobile robot, to navigate in an unknown environment with the
capabilities of collision avoidance. This could reduce a considerable amount of
time to tailor hand-crafted rules or heuristics for navigation and decision making.

Despite the promising performance from previous works, they all assume that
the robots can access their actual poses. However, this assumption is unrealistic,
especially for GPS-denied environment. Also, even with GPS localisation, local-
isation quality along the navigation path should be taken into consideration.
SLAM-base localisation will be required in such cases. However, its performance
is prone to poor observation of environment features, e.g. navigation in areas
with no distinct features, e.g. an open area. Most localisation algorithms, such
as PF or Kalman filter, will be negatively impacted by environment ambiguities
and, hence, more weights will be given to interoceptive sensors, such as odome-
ters, leading to unreliable localisation. The decoupled nature of robot perception
and path planning could lead to catastrophic failures of self-localisation, due to
the unpredictable observable features from the surroundings to perform SLAM-
based localisation. The unreliable localisation will then in turn result in failures
of reaching its goal location. Figure 1 illustrates a real-world scenario, where the
grey path is more preferred than the less reliable path in white for drone nav-
igation (assuming GPS localisation is unavailable). In this case, the grey path
would allow the drone to observe more local features, hence improving localisa-
tion robustness.

This leads to the motivation of this work: how to train a policy for an agent
to learn to navigate while also prevent localisation failures during navigation.
The aim of our work is, therefore, two-fold: to train a robot that is able to 1)
avoid collisions, while also 2) plan its paths that can provide robust localisation.
This is different from other mapless navigation agents in previous works, which
only consider obstacle avoidance without considering localisation performance.

The remainder of this paper is organised as follows. Section 2 introduces
related work. Our method in this work is introduced in Sect. 3, followed by exper-
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Fig. 1. A robot navigates from the start location to the destination on the left-hand
side. The white trajectory is traversing in a feature-poor area, which is not suitable
for SLAM-based localisation. The grey trajectory is a more preferred path, which
maximises feature observations for robust SLAM-based localisation.

iments and results in Sect. 4. The conclusion and future research are presented
in Sect. 5.

2 Related Work

With the great advances of neural networks, deep learning has been widely
utilised to teach mobile robots driving by expert demonstrations by various
means. For example, supervised learning techniques, such as Convolutional Neu-
ral Networks (CNN), have been deployed to train robots to autonomously make
decisions or act directly based on depth images or Lidar data, to learn to navi-
gate [5,9,11]. However, as it would be costly to collect labelled data in the real
world, those methods are often trained and evaluated in virtual environments.
In recent years, efforts have been paid to focus on transfer the trained networks
to work in real world too [2,13].

RL, on the other hand, is more favourable, as it allows an agent to perform
autonomous exploration and learning without human intervention. For mapless
navigation, one prominent work is introduced in [12], where robots are trained
with RL by a two-step method with depth images as inputs. Since then, several
variants of related works have been introduced, inheriting the above method
to improve the performance of mapless navigation in different aspects [8]. For
discretized action space, state-of-the-art Deep Q-Networks (DQN), such as dou-
ble networks and duel architectures, are integrated together to enhance robot
navigation abilities [10].

Further, RL is also used for navigation in continuous action space by
deploying the Asynchronous Deep Deterministic Policy Gradient (DDPG) algo-
rithm [13]. RL in continuous action space requires more data than discretized
space. To improve its sample efficiency, imitation learning and RL can be com-
bined for improving efficiency [9], where the policy network is first pre-trained
with imitation learning, and, then further tuned with the constraint policy opti-
misation, named as the (CPO)RL algorithm. In [15], a modular architecture
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is introduced to train robots on the modular basis by dividing a task into
local obstacle avoidance and global navigation modules. An action scheduling
mechanism is proposed to perform efficient exploration and exploitation. Other
improvements have also been made in sampling efficiency [7] and algorithm hyper
parameters selection [1]. When visual inputs are used for navigation, a technique
called reinforcement learning with auxiliary tasks is applied in order to obtain
effective representations from images for navigation tasks [4,6].

Although the works discussed above have achieved relatively promising per-
formance, to the authors’ best knowledge, none of these learning-based works
have discussed the effect of localisation quality on its final navigation perfor-
mance. In other words, path planning and robot perception should be consid-
ered as tightly coupled problems for decision making. Considerations should be
given not only to localisation and mapping, but also optimal path planning or
policy to optimise performance of localisation. The agent policy makes decisions
to ensure paths are also beneficial to the localisation and mapping performance,
such that uncertainty of its localisation and map construction are minimised.
This is related to our work.

3 Methodology

3.1 System Description

Figure 2 shows the system overview of this work. First, measurement data of the
robot are fed to the localisation algorithm for calculating the current estimated
robot pose. The estimated robot pose and the goal position are then used to
compute the relative goal pose, represented by the relative distance and relative
heading with respect to the robot. Finally, the relative goal pose together with
measurement data are provided to the fail-safe localisation reinforcement learn-
ing agent to make decision on the next action. This procedure iterates until the
robot reaches the designated goal position.

Fig. 2. System overview

As mentioned, most mapless navigation algorithms assume the availability
of ground truth poses of the robot and this assumption is highly impractical
for real-world applications. On the other hand, robot pose estimation purely
based on odometry is unacceptable too, due to unpredictable odometry drifts
over time. In our work, it relies on sensors such as Lidar or cameras with a
localisation algorithm to estimate robot poses.
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3.2 Localisation Algorithm

In this paper, we consider a feature-based PF localisation algorithm, specifically,
the Rao-Blackwellized Particle Filter (RBPF) [3], which is probably the most
deployed method for robot state estimation. In principle, our focus should not be
limited to any particular localisation algorithm. Briefly, according to the RBPF
framework, the joint probability of the map m and the robot poses x can be
factorised through Rao-Blackwellization, formulated as follows:

p(x1:t,m|z1:t, u1:t−1) = p(m|x1:t, z1:t)p(x1:t|z1:t, u1:t−1) (1)

where z and u represent the measurement and the control input respectively. The
particle filter maintains a batch of particles, where each particle produces their
own pose estimation from control inputs and measurements and then builds a
map of their own according to Eq. 1. An importance weight factor is assigned
to each particle to evaluate the pose estimation quality of this particle, which is
defined by the following equation:

w
(i)
t ∝ w

(i)
t−1p(zt|m(i)

t−1, x
i
t) (2)

where the weight factor w is updated recursively and i represents the particle
identification. The particle filter will do re-sampling based on the importance
weight factors. It will recursively select some particles to replace some others.
The larger the importance weight factor is, the higher possibility it is of to be
selected to replace other particles. After a few iterations, the particles will then
converge towards the true pose gradually.

3.3 Reinforcement Learning Agent

An RL agent gains experience from interaction with the environment. At each
time step t, it selects an action a from a θ parameterised policy π(a|s; θ) based
on its current state s and executes the selected action in the environment. After
execution, the state will be updated and the agent will receive a reward r. This
process will iterate continuously until a termination condition is met, such as goal
state achieved or exceeding the maximum time. The aim of training is to generate
a policy, which maximises the accumulated discounted reward, formulated as
Rt =

∑∞
k=0 γkrt+k, where γ is the discount factor.

As the objective of this work is to illustrate the necessity of considering
localisation quality for planning, thus the specific RL algorithm should not affect
the final conclusion. Considering DQN is relatively easy to implement and widely
deployed, we use DQN in our work for this pilot study.

In DQN, a deep neural network is trained to estimate the action value
Qπ(s, a) = E[Rt|st = s, at], which is the expected return for selecting action
a at state s following the policy π. The details of the DQN configuration in
this work are as follows. The state space of the DQN agent consists of sensor
observation measurement ot and relative goal position gt, which includes the
relative distance dg and heading β with respective to the robot. As the classic



RL-Based Mapless Navigation with Fail-Safe Localisation 105

DQN is designed for handling discrete action space, the action space needs to
be discretized. During each time step, the agent selects a linear velocity vlinear

among a set of values [vl1 , vl2 ...vli ] and an angular velocity among a set of values
[w1, w2...wj ]. i and j can be decided according to different requirements.

In the task, the agent needs to navigate to a designated goal position,
while, meanwhile, also avoids obstacles and minimises its localisation uncer-
tainty. Therefore, in this work, the reward function is defined as follows:

r =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

rlost if no enough features are observed
rcollision if collision happens
rgoal if dg < dgmin

f × (dt−1 − dt) otherwise

(3)

where rlost is negative when the agent observation ot does not contain enough
environmental features for robust localisation; rcollision is a negative value to
punish the agent when it collides with obstacles; rgoal is a positive value and
is set when the robot arrives at the goal position within a minimum acceptable
distance, defined by dgmin; the term dt−1 −dt is to encourage the agent to make
decisions that reduce the relative goal distance; and f is the distance rate factor
that can be adjusted.

Previous research works seldom consider the penalty of rlost to regulate agent
behaviours. However, this reward is critical to prevent the robot from moving
into open space, where no or very sparse features can be observed. According
to the description in Sect. 3.2, it is clear that when the robot moves into open
space, where has no enough observed features, the second term in Eq. 2 will not
be calculated. Hence, the weight factors of the particles will not be updated.
Consequently, the PF will not be able to evaluate the quality of the particles
and will not perform re-sampling to correctly estimate the robot state using
these weight factors. The localisation algorithm will thus fail and depend solely
on odometry, which is not accurate.

4 Experiments and Results

4.1 Experiment Setup

We test our work in a 2-dimensional simulation environment using a mobile robot
of a 3-dimensional kinematic motion model. As illustrated in Fig. 3a, the grey
dots serve as landmarks that may be observed by the robot for localisation. Each
landmark also represents an obstacle, in the circular shape with the radius of 1
m (illustrated by the light grey regions in Fig. 3a). The observation of the robot
contains relative distances and angles of those landmarks to the robot within
the robot maximum observation range, which is 5.0 m with a full 2π coverage.
The robot needs to travel to a goal position, denoted by a black star, as shown
in Fig. 3a. Those black crosses are the estimated landmarks that are observed
during navigation.
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Fig. 3. (a) Environment: robot (black dot with laser scan beams) and goal position
(star), (b) Robot navigation trajectory with ground truth poses provided

During training, those landmarks and goal positions are generated randomly.
We also use randomly generated maps of different shapes. The robot linear
velocity is set to be a constant value vl = 1.0 m/s. The angular velocity is a
selection from the following set of values (−2.0,−1.0, 0.0, 1.0, 2.0) rad/s. Both
linear and angular velocities are added with Gaussian noises during the robot
execution to simulate odometry errors. The reward elements rlost, rcollision and
rgoal are −300, −300 and 600 respectively and the distance rate factor f is 10.

For the DQN-based RL framework, measurement data need to be converted
into a discrete structure. The observed landmarks are first divided into 36
groups according to relative angles (10◦ per group). The observation ot con-
sists of two value lists: [lmin1 · · · lmin36], where each element represents the
value of the relative distance to the nearest landmark in that angle group and
[number1 · · · number36], where each element represents the number of observed
landmarks in that angle group. Using the restructured observation (36 + 36
dimensions) together with the relative goal position (2 dimensions), the agent
state would be then represented by a 74-dimension vector. The input data is
connected with 2 dense layers (512 nodes each) and the final layer uses a linear
activation function, as shown in Fig. 4. Other DQN parameters are shown in
Table 1.

Table 1. DQN settings

Parameter Value

Learning rate 0.00025

Discount factor 0.99

Epsilon decay rate 0.998

Replay buffer 1000000

Target network update rate Per 10 episodes
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Fig. 4. The Q network structure

4.2 Results

As mentioned before, previous work always assume that the robot ground truth
poses are accessible. Figure 3b shows the trajectory, when a robot is provided
with true poses and trained without the localisation failure penalty. The robot
navigates through an open space diagonally to reach the goal position with
a relatively short distance. In the real world, however, it is not always easy
to obtain ground truth poses. When PF-based localisation is deployed in the
same task, the robot will diverge from the true trajectory, as shown in Fig. 5,
where the dash and solid lines are the estimated and ground truth trajectories
respectively. During navigation, the divergence is caused by the poor observation
of environmental features, as shown in Fig. 5a. In the case of navigation with
diverged particles, when new features are observed, particles will be re-sampled
to re-localise the robot to re-converge to a new pose estimated with respect to
the new observed features. However, the estimated pose could potentially lose
its original track and, hence, converge to wrong poses, as illustrated in Fig. 5b.
The PF localisation will then fail catastrophically. In certain cases, due to the
PF failures, the robot goal position might become unreachable for the robot due
to the misaligned obstacles (black crosses at the bottom right corner in Fig. 5b).
In this case, the robot will never reach the goal position.

The same experiments are performed with the additional localisation fail-
ure penalty rlost introduced in our work. Figure 7 shows the trajectories esti-
mated using the same PF algorithm for localisation. As expected, it can be
clearly seen that the estimated trajectories align closely to the true trajec-
tories. It is also worth noting that the new trajectories tend to stay close to
landmarks, to ensure high-quality landmark observation for robust localisation.
Consequently, the robot can arrive at the goal successfully with only PF-based
localisation. As mentioned, the performance improvement is mainly attributed
to the new landmark-aware RL-based navigation policy, which encourages the
robot to maintain a distance with good observation of features to ensure high
localisation confidence.
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Fig. 5. Trajectories without localisation failure penalty (a) PF localisation diverges
when no feature is observed, (b) PF localisation re-converges to wrong poses (solid
line: ground truth trajectory; dashed line: estimated trajectory)

Fig. 6. Success rate

The success rates evaluated at different training episodes are shown in Fig. 6.
As can be seen, the success rate rises as the number of training episodes increases
and stabilises at about 0.8 after training for 3000 episodes. The network is rela-
tively simple and thus the training takes several hours on a workstation with an
Intel i7-8700 CPU and an Nvidia RTX-2080 GPU.
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Fig. 7. Example trajectories generated with localisation failure penalty (solid black
line: ground truth trajectory; dashed line: estimated trajectory)
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5 Conclusion

In this work, we introduced a novel DQN-based mapless navigation method that
uses SLAM-based localisation for robot pose estimation, rather than relying
on robot ground truth poses as used in previous works. A localisation failure
penalty rlost is introduced in the reward function to regulate agent behaviours
to prevent robots from entering areas with no observable features, where SLAM-
based localisation tend to fail. We performed different tests with and without
using localisation failure penalty in different environments for training with ran-
domised robot start/goal locations and maps. It can be clearly seen that our
work considerably improves localisation performance attributed to the effective-
ness of localisation failure penalty, which encourages a robot to follow paths
with consistent observable landmarks while also free from collisions, hence fail-
safe localisation.
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Abstract. Coordination of mobile robot teams has attracted significant
attention in the area of robotics research. As one of the most important
techniques used in the multi-robot systems, coverage has shown great
potential to be applied to many real-world applications. In this paper,
we aim to provide a novel path planning method for multi-robot cover-
age with applications to cooperative autonomous vacuum cleaning. Some
preliminary results are presented using an open-source simulator Webots,
which lay the foundation for more in-depth theoretical analysis and prac-
tical implementation in the subsequent research.

Keywords: Coverage · Navigation · Path planning · Swarm robotics

1 Introduction

Autonomous vacuum cleaning, as one of the most successful applications of
mobile service robotics, has received significant attentions since the past decade.
Simultaneous localization and mapping techniques are mostly used in the robotic
platforms, which lead to reliable coverage performances in small-scale environ-
ments. However, with the increasing demand in using robot swarms to collabora-
tively clean a common large-scale area like hotels, warehouses, office buildings,
etc., high-efficiency coordination algorithms for networked cleaner robots are
being explored by researchers from both academia and industry.

A team of vacuum cleaner robots can be viewed as a multi-robot system,
which shows great potential to be used in real-world applications due to its
flexibility, reconfigurability, robustness to faults and cost-effectiveness in solving
complex tasks. Some potential applications of multi-robot teams include coop-
erative transportation [1,2], target monitoring [3], etc. When properly designed,
a multi-robot system can provide a more efficient and robust performance com-
pared to a single robot [4]. Various of coordination strategies have been developed
by researchers in recent years. Some main research directions include collec-
tive decision making, swarm intelligence, multi-robot path planning, formation
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control, etc. Consider the features of the cooperative cleaning tasks, coverage
techniques can be utilized to fulfil the objective.

To achieve the goal, robots should be able to communicate with each other
to obtain relative position information via a decentralized network. Besides, a
control structure should also be designed properly to ensure the robots achieve
the pre-specified goal by using the information obtained from the sensors and
communication modules. In this paper, we aim to provide a novel coordination
solution for multi-robot collaborative cleaning problems.

2 Method

Each vacuum cleaner robot can be viewed as a cyber-physical system. We imple-
ment a two-layer control structure for the robot teams, which consists of a cyber
layer for the decision making purpose and a physical layer for the target tracking
purpose.

In the cyber layer, a frontier-based exploration technique [5] is mainly used
to achieve autonomous coverage, where the radius of the frontier point detec-
tion should be set the same as the robot’s radius to ensure that the robot’s
footprints fully cover the explored area. To avoid repeated trajectories and over-
lapping cleaning areas when using multiple robots in the collaborative task, a
Voronoi-based path planning technique [6] is also added to improve efficiency.
By using the relative position information from the neighbors via the connected
communication network, some Voronoi partitions are generated automatically,
thus each robot will give a higher priority to the target area in its local Voronoi
cell before moving to other robots’ working zones. Combine these two decision
making processes, a desired set of waypoints can be generated, which are then
transmitted to the physical layer for target tracking.

In the physical layer, the assigned waypoint should be tracked precisely by
implementing a robust control system based on the robot dynamics. Firstly, the
nonlinear robot dynamic model is transformed to a linear system using an input-
output feedback linearization controller [7]. Then an adaptive tracking controller
which was proposed in [8] can be applied to the robot to achieve position tracking
using the state feedback from the onboard sensors.

The proposed coverage strategy will terminate only if there is not new frontier
point in the whole environment, which means the working area is fully covered
by the robots’ footprints.

3 Results

In this section, Webots [9] is selected as the simulation platform, which provides
a realistic environment to test the effectiveness of the theoretical results. As a
professional robotic platform, Webots has integrated cross-compilation systems
allowing users to compile and upload the controllers to real robots with minimum
modification, which facilitates the real-robot application of the proposed control
architecture.
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Fig. 1. Five cleaner robots are used in the simulation case study.

Fig. 2. Trajectories of the vacuum cleaner robots at different time instants. (a) Ran-
dom movements. (b) Semi-coordinated coverage method. (c) Fully-coordinated cover-
age method.

In the simulation, the arena’s size is set as 6 m×6 m. We use five vacuum
cleaner robots to perform the collaborative cleaning task as shown in Fig. 1. For
comparison, three different methods are applied to the robots during the mission.
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Firstly, a default control algorithm is directly implemented in the robotic plat-
form, which reflects the random movements commonly observed in the early
version of the cleaner robot products. Based on the proposed coverage strat-
egy, a semi-coordinated algorithm is also tested, where the robots are able to
cooperate with each other to cover the working area via Voronoi partitions, but
the waypoints are randomly selected inside their own Voronoi cells. Finally, a
fully-coordinated method is presented, where each robot tends to cover the area
closer to its initial position, such that the robots movements are more orga-
nized. The trajectories of the robots under different methods during the mission
are presented in Fig. 2(a), (b) and (c), respectively. From all these figures, the
effectiveness and efficiency of the proposed coverage strategy can be verified.

4 Conclusion

In this paper, we proposed a coverage strategy for networked vacuum cleaner
robots. Some preliminary results were obtained to validate the feasibility of the
proposed method. For the next step of this research, we will implement the
proposed algorithm on real robotic platforms and conduct real-world robotic
experiments in large-scale complex environments.
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Abstract. Maintaining an ad hoc network infrastructure to cover multi-
ple ground-based users can be achieved by autonomous groups of hydro-
carbon powered medium-altitude, long-endurance (MALE) unmanned
aerial vehicles (UAVs). This can be seen as an optimisation problem
to maximise the number of users supported by a quality network while
making efficient use of the available power. We present an architecture
that combines genetic algorithms with a network simulator to evolve
flying solutions for groups of UAVs. Results indicate that our system
generates physical network topologies that are usable and offer consis-
tent network quality. It offers a higher goodput than the non-network-
aware equivalent when covering the communication demands of multiple
ground-based users. Most importantly, the proposed architecture flies
the UAVs at lower altitudes making sure that downstream links remain
active throughout the duration of the mission.

Keywords: Genetic algorithms · Wireless communication ·
Unmanned aerial vehicles · Networks

1 Introduction

It is broadly recognised that area coverage for communication services is a
promising application domain for cooperative UAVs [1,2]. Genetic algorithms
(GAs) offer significant advances with most of the research concentrated on coor-
dination, route finding, path planning and constraint management in multi-
UAV systems [3–5]. In most of these contributions, the communication network
between the UAVs is assumed. Exemplar works include Carruthers et al. [6]
where the authors proposed a GA-based collision-aware coordination system for
UAV missions related to surveillance and searching in unknown areas, with the
assumption that the communications are constantly available.

Very few researchers have addressed the quality of network coverage for large-
scale missions offered by groups of UAVs. Noticeable examples include Agogino

c© Springer Nature Switzerland AG 2021
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et al., [7] who optimised power levels and antenna orientations using GAs to
maximise area coverage for ground-based users.

In this paper, we address the problem of autonomous position coordination
for communication UAVs using GAs, by providing and maintaining an efficient
airborne network infrastructure capable of supporting the communication needs
of users on the ground. Our design includes a network-aware evaluation method
for evolving solutions, which incorporates communication links’ validation via a
network simulator that implements a complete TCP/IP protocol stack. Thus,
two objectives are addressed: i) to maximise the number of users being covered
based on the available power and ii) to maximise the number of active UAV-to-
UAVand UAV-to-users links being provided.

Section 2 introduces the problem with a scenario. The design of the GAs we
employ is found in Sect. 3, and in Sect. 4, we discuss the system’s architecture
along with the network-aware evaluation method. The experimental methodol-
ogy and results are found in Sects. 5 and 6 respectively. Final remarks and future
work are included in Sect. 7.

2 Problem Description

MALE fixed-wing UAVs are equipped with two radio antennae; i) one isotropic
for the UAV-to-UAV transmissions, and ii) one horn-shaped able to transfer
data to the ground-based users. They have limited power for the communica-
tion, denoted as Pmax with which they have to provide as many communication
links as possible. All users, including the UAVs, are equipped with a Global
Positioning System (GPS) and periodically broadcast information about their
current positions.

Communication links are treated independently. A transmission is considered
successful when a UAV’s transmitter can feed its antenna with enough power to
satisfy the quality requirements. A link is considered of good quality if the ratio
of the energy per bit of information Eb to the thermal noise 1 Hz bandwidth N0

is maintained. Equation 1 expresses the transmitting power Pt required to cover
a user at slant range d, as shown in Fig. 1a. For further details on computing
slant range values, the reader is encouraged to consult Giagkos et al. [8].

Pt = p ×
(
d2Rb

Eb

N0

1
GrGt

(
4πf

c

)2

TsysK
)

(1)

The higher the UAV flies, the greater its altitude h, the wider its conical
footprint on the ground, and thus the greater the area covered. Similarly, the
longer the slant range d between the transmitter and the receiver, the higher
the signal power required to support the communication. The slant angle α to
a user is calculated by applying spherical trigonometry using the available GPS
data that each network user is expected to broadcast at regular intervals. A user
needs to lie within the footprint of at least one UAV to be part of the network.
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Fig. 1. (a) A UAV’s canonical footprint; (b) The Dubins path flying trajectory.

Noise related to obstacles is represented by the use of the elevation angle
γ. A link is achieved when γ ≥ ω, with ω = 10◦. Subsequently, if γ < ω then
the factor p in Eq. 1 is set to 0, indicating that no power is dedicated to that
specific link, and thus the user is not covered. The link is ultimately considered
achievable if and only if Pt is less than or equal to the remaining Pmax, the
maximum power available for communications each cycle.

3 Power-Aware Genetic Algorithms

In our previous work, we describe how genetic algorithms can cooperatively
relocate UAVs to maximise coverage [9]. Flying trajectories are described by
Dubins paths [10] consisting of 3 segments as depicted in Fig. 1b. We encode
a UAV’s trajectory as a 8-gene chromosome; three pairs of bank angle βi and
associated duration δti for each segment, with i ∈ {1, 2, 3} and

∑3
n=1(δti) equal

to the duration a complete trajectory. The final two genes are related to vertical
flying with a binary b indicating whether the altitude change (δh) will be applied
or the UAV will keep flying at constant altitude.

A single-point cross-over and a mutation operator are designed to evolve
groups of N number of flying trajectories for N number of UAVs. A population
of M × N are initiated, with M = 100 number of groups. The best previous
group is retained unchanged (i.e., elite), whereas all others are combined to form
new offspring. Selection is performed using roulette wheel. Every two randomly
selected chromosomes among chosen groups are reproduced with a probability
of 0.3. Each offspring gene is mutated; we apply a random Gaussian offset (mean
0.0, stdev. 0.1) to all real-valued genes, whereas the binary one is just flipped.
The mutation rate is 0.05. Finally, GAs run for 200 generations or until the
allowed computation time has elapsed, with M − 1 trajectories created at each
generation. The time criterion is set to the time necessary to complete the default
built-in circle manoeuvre when no solution is available.

The power-aware GAs utilise an evaluation method that measures the fitness
of each group collectively. Given that the key objective is to maximise the number
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of supported users when limited power is available, the fitness score for a solution

is calculated by f =
∑|U|

n=1 |Cn|
|G| , with U the set of all UAVs, and Cn the packing

array of the nth UAV and G the set of all users on the ground.
Calculating the packing arrays for each UAV plays an important role in the

efficiency of the searching algorithm. The packing algorithm that assigns users
to appropriate UAVs was initially introduced in Giagkos et al. [9] and thus, its
details are omitted. Packing favours those users that are low-maintenance (closer
to the centre of the footprint) and, in turn, maximises the total coverage.

4 Network-Aware Genetic Algorithms

We extend our work to form new network-aware GAs that not only consider
link budgets but also evaluate each solution by measuring its network topology
qualities. We integrate the system with NS3, a discrete-event network simula-
tor capable of providing realistic network phenomena and monitoring network
performance metrics [11]. In this section, we describe the integration before doc-
umenting the internal mechanisms of the proposed network-aware GAs.

Fig. 2. Illustration of one NS3 network topology depicting a group of 4 UAVs. Each
UAV gateway relays packets to and from its own footprint’s network.

4.1 Integration with a Network Simulator

NS3’s codebase is developed to allow the exchange of information between the
GAs and the network simulator, namely the predicted positions of all users at
the beginning of the next computational step, and the packing arrays. The built-
in functionality to convert geographic to Cartesian coordinates is used, mapping
the physical positions of all communicating users to a physical network topology.

All of the users’ network interfaces are configured with respect to the pack-
ing information associated with each UAV, as seen in Fig. 2. Isotropic anten-
nae’s interfaces are given the address 192.168.0.Un, with Un being the UAV’s
unique identifier (UID). Similarly, the horn-shaped antennae’s addressed are set
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to 10.0.Un.1 to facilitate footprint networks. Depending on which packing array
it belongs to, each user receives an address 10.0.Un.Gj , with Gj being its UID+1
and Un the UID of the supporting UAV. For example, user 42 in Fig. 2 uses the
gateway address 10.0.3.1 to communicate with the rest of the network.

NS3’s wireless PHY and MAC implementations are based on the IEEE 802.11
standards. We increase the request to send/clear to send (RTS/CTS) timeout
thresholds, overcoming the failed distributed coordination function pitfall in
long-range transmissions. The gain of the horn-shaped antennae transmitters
is set according to the manufacturer, i.e., calculated by Gt = 2η

1−cos( θ
2 )

, with
θ = 125◦ corresponding to the half-power beam-width angle of the antenna and
η = 0.95, the efficiency of its transmission. For the isotropic antennae, gain
Gt = 1.

Fig. 3. Network-aware GAs architecture: the master UAV’s internal components.

4.2 Network Topology Evaluation Model

The core differences between the power-aware and the network-aware GAs are
the integration of the network simulator and its use to evaluate individual solu-
tions by the latter GAs. The new objective is to maximise the fitness of each
group of trajectories with respect to whether their resulting network topologies
are able to maintain communication.

Figure 3 depicts the internal components of the subsystem installed on the
master UAV, which generates and distributes solutions to the rest of the group.
The component responsible for the communication sends and receives data using
the connected interfaces, including the GPS broadcaster. Data is ported to the
flying controller, the component in charge of preparing the next steering param-
eters (i.e., bank angle and altitude changes). When no trajectory is available or
incomplete,1 the controller initiates the GAs, feeding it at the same time with
position related data.

Although the network-aware GAs share both encoding/decoding scheme
and genetic operators with the power-aware GAs, the network-aware evaluation
method also comprises short network trials (duration of 320 simulated seconds),
1 While the GAs search for solutions, the default UAV manoeuvre is to cruise in circles.
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designed to check the validity of all links of a solution’s network topology. Link
validation is a two-phase process and is performed by using a bespoke network
protocol.

For UAV-to-UAV links, the master UAV broadcasts one discovery request
packet per second to 192.168.0.255 containing a fresh sequence number (SeqNo).
All receiving UAVs save the packet’s SeqNo, update their routing tables and
broadcast the request further before acknowledging it by sending a unicast ACK
packet to the master. Received broadcast packets that contain the same SeqNo
are dropped, while unicast ACKs are forwarded using the routing tables. At the
end of the trial, the UAV-to-UAV link validation metric is calculated as:

Nuu =
pktack

pktreq × (|U | − 1)
(2)

where pktack is the number ACK packets received and pktreq the discovery
requests sent to a topology of |U | UAVs during the course of the trial.

Subsequently, UAV-to-ground links are checked by making use of the foot-
print networks. Every time a UAV acknowledges a discovery request, it broad-
casts a request packet to its own network (10.0.Un.255) with the same SeqNo.
Any listening users acknowledge the request by sending ACK unicast packets.
At every t of the trial, a UAV-to-ground link validation metric N t

ug is given by:

N t
ug =

|U |∑
n=1

|Ct,ack
n |, with Ct,ack

n ⊆ Ct
n (3)

where Ct
n is the packing array for Un at t and Ct,ack

n the subset of users from that
array that have acknowledged support by Un. Considering the whole duration T
of the trial, Nug is given by:

Nug =

∑T
t=1 N t

ug∑T
t=1 |Ct|

, with C
t =

|U |⋃
n=1

Ct
n (4)

with C
t the set of packed users at time t. Having calculated both Nuu and

Nug, the fitness score for the evaluation of a group of |U | flying trajectories is
calculated as:

f = w1 ×
∑|U |

n=1 |Cn|
|G| + w2 × Nuu + w3 × Nug (5)

with w1, w2 and w3 equally set to 0.33 for even contribution. Note that Cn of
each UAV is not expected to change significantly between every t and t + 1.
Equation 5 is designed to consider the packing algorithm that regulates the link
budget, but also to examine whether the resulting network topology consists of
active links for a sufficient period of time.

The fittest solution is decoded and returned to both the flying controller and
the communication components, as shown in Fig. 3. At every next trial all routing
tables are erased. Note that for the rest of the UAVs, the solution generation
component is omitted from the architecture.
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5 Experimental Methodology

To compare the power-aware with network-aware GAs groups of 4 UAVs are
autonomously controlled to support 50 users uniformly distributed within a
100 km2 terrain for 1 h. All users follow a random waypoint mobility model,
with varying speeds (5–60 mph) and pausing times of 120 s. The UAVs’ speed is
75 knots and flying is constrained by a maximum bank angle of 48◦ and altitude
range of 150 m to 6 km. Other parameters related to link budget are: Pmax = 50
Watts, θ = 125◦, η = 0.95, Rb = 2 Mbit/s, Eb/N0 = 10 dB, frequency f = 5
GHz and ω = 10◦.

The Ad-hoc On-demand Distance Vector (AODV) protocol [12] is used for
routing. AODV offers a state-of-the-art reactive mechanism for discovering paths
between sources and destinations. To ensure that users can only communicate
within the assigned footprint, AODV is disabled outside their 10.0.Un.0 net-
works.

Algorithm 1. Selecting source and destination pairs for communication sessions.
Require: acking arrays Cn of all n ∈ U and their union C

Ensure: L, a set of source and destination users’ pairs
1: L ← ∅
2: Sused ← ∅, Dused ← ∅ � sets of used sources and destinations
3: for each n ∈ U do
4: for each n′ ∈ U do
5: if n == n′ then
6: continue
7: Sleft ← Sused � Cn � calculate the symmetric difference of two sets
8: Dleft ← Dused � C′

n
9: if |Sleft| − 1 < 0 or |Dleft| − 1 < 0 then

10: continue

11: Sused
+← Sleft(0) � append first element of the set

12: Dused
+← Dleft(0)

13: L
+← < Sleft(0), Dleft(0) > � append tuple of source and destination

14: return L

A |U |(|U |−1) number of communication sessions are used in each experiment,
with the selection of sources and destinations being performed using Algorithm 1.
This approach ensures that the airborne backbone is fully utilised by the users
on the ground. Constant Bit Rate (CBR) traffic generators are used for the
communications between selected pairs, with sources transmitting 512-byte UDP
datagrams at a rate of 1 Mbps.

Three performance metrics are used for the comparison of the two systems.
Namely, i) coverage as the total number of supported users calculated by the
packing algorithm, ii) goodput as the overall CBR throughput of the communi-
cation sessions excluding any protocol overhead bytes, and iii) altitude changes
as the mean to examine the vertical activity of the group. The metrics highlight
coverage capabilities with respect to both the number of users able to participate
in the provided networks and the latter’s efficiency in supporting communication
services. Also, monitoring altitudes is important because it affects the footprint
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sizes and the slant range distances. As such, it offers useful insights about flying,
revealing any emergent specialisation strategy.

Due to the stochastic nature of both systems, we repeat the experiments 30
times using random seeds and aggregate the results.

Fig. 4. Coverage results by power-aware and network-aware GAs.

6 Results

Figure 4 shows coverage for both systems. Considering link validation causes
a reduced number of supported users for the network-aware GAs. This is an
expected result, the magnitude of which highlights the importance of considering
network-related qualities. We observe that the network-aware system reaches
a plateau while the power-aware exploits several windows of opportunity to
improve coverage during the flight. This is due to the less conservative flying of
the power-aware GAs, restricted only by the Pmax values. This is justified by the
altitude changes depicted in Fig. 6, where 3 out of 4 UAVs are found to almost
reach the maximum altitude of 6 km.

Fig. 5. (a) Goodput results for both systems.

In practice, the network topologies generated by the two systems differ signif-
icantly in performance. Figure 5 shows the goodput of the multiple CBR traffic
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generators. The network-aware GAs provide a usable and consistent infrastruc-
ture, whereas the links in the power-aware system gradually decline due to the
lack of real network awareness of the power-aware GAs. For the latter, the dis-
tances between UAVs and their altitudes cause links to fail. Closely looking at
the traffic data, we observe that communication is only possible for a single pair
of users at the end of the experiment.

Altitude changes caused by the network-aware GAs are found to be less
frequent, as shown in Fig. 7. All UAVs fly level (approx. 4 km), ensuring that
downstream links remain active. Specialisation in flying emerges less frequently
than by the power-aware GAs, as activity in the vertical axis is significantly
lower. Although the power-aware GAs seemingly put more effort in increasing
coverage by changing their vertical formation, the resulting physical topologies
are not efficient throughout the mission, mainly due to the internal mechanisms
of the underlying network protocols combined with long-range transmissions.
This is addressed by the network-aware GAs using the integrated evaluation
method.

Fig. 6. Altitude in metres (y-axes) of 4 UAVs (x-axes) by power-aware GAs.

Fig. 7. Altitude in metres (y-axes) of 4 UAVs (x-axes) by network-aware GAs.

7 Conclusions

We presented a network-aware coordination system for MALE UAVs, which
employs GAs to evolve flying solutions that result in effective physical topology
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networks. We discussed the integration with NS3 and compared the system’s
performance with a power-aware alternative that is purely based on link budget
calculations. The integrated design offers a usable, consistent airborne infras-
tructure to support multiple users’ communication demands. Considering the
network-aware objective in the evaluation mechanism, via NS3, ensures that
downstream links remain active throughout the mission and offer higher good-
put than the power-aware GAs.

We deem the examination of the network-aware GAs under various scenarios
as important future work to identify potential scalability issues. Consequently,
we will investigate improvements to the evaluation method, such as considering
application-related traffic to improve the performance of the overall network.

References

1. Khan, N.A., Jhanjhi, N.Z., Brohi, S.N., Usmani, R.S.A., Nayyar, A.: Smart traffic
monitoring system using unmanned aerial vehicles (UAVs). Comput. Commun.
157, 434–443 (2020)

2. Zeng, Y., Zhang, R., Lim, T.J.: Wireless communications with unmanned aerial
vehicles: opportunities and challenges. IEEE Commun. Mag. 54(5), 36–42 (2016)

3. Zhang, X., Duan, H.: An improved constrained differential evolution algorithm for
unmanned aerial vehicle global route planning. Appl. Soft Comput. 26, 270–284
(2015)
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multiple UAVs. Trans. Inst. Meas. Control 38(5), 593–601 (2016)

5. Rathbun, D., Kragelund, S., Pongpunwattana, A., Capozzi, B.: An evolution based
path planning algorithm for autonomous motion of a UAV through uncertain envi-
ronments. In: 2002 Proceedings of the 21st Digital Avionics Systems Conference,
vol. 2, pp. 8D2-1. IEEE (2002)

6. Carruthers, B., McGookin, E.W., Murray-Smith, D.J.: Adaptive evolutionary
search algorithm with obstacle avoidance for multiple UAVs. In: Źıtek, P. (ed.)
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Abstract. Self-organised flocking behaviour, an emergent collective
motion, appears in various physical and biological systems. It has been
widely utilised to guide the swarm robotic system in different applica-
tions. In this paper, we developed a self-organised flocking mechanism for
the homogeneous robotic swarm, which can achieve the collective motion
with obstacle avoidance in a cluttered environment. The proposed mech-
anism introduces an obstacle avoidance approach to the Active Elastic
Sheet model that was previously proposed for self-propelled particles.
The proposed mechanism is represented by a nonlinear repulsive force
inspired by Lennard-Jones potential function in molecular dynamics. In
order to evaluate the flocking performance, three different environmental
settings were implemented. Results revealed that the interaction mecha-
nism significantly determines the robustness and stability of the swarm
in flocking.

Keywords: Swarm robotics · Flocking · Self-organised · Bio-inspired

1 Introduction

Flocking of social animals is a commonly observed behaviour in many biological
systems from tiny bacterial community to social animals such as fish school [9],
sheep herds [14] and birds flocking [7]. Flocking, also known as collective motion,
has been widely implemented in swarm robotic systems [16] such as exploration
in precision agriculture [1] and unmanned aerial vehicles swarm coordination
control [21].

The underlying mechanism of flocking behaviour steers a group of individuals
to coherently move with an approximately identical speed and direction. Hence,
the entire swarm moves together like a super-organism with astounding elegance
and flexibility [19]. This large-scale swarm flocking presents the same universal
property that, the emergent flocking behaviour only relies on the local interac-
tions between robots without any need for global communication and any central
control law. Researchers from physics to biology have proposed different collec-
tive motion models [2,4,8,12,20]. These models effectively reveal and describe
c© Springer Nature Switzerland AG 2021
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the collective motion principles in large-scale swarm scenarios. One of the most
important models is proposed by Vicsek et al. [20], which was followed by other
study like [3]. It is a minimal agent-based model where individuals follow veloc-
ity alignment rule. This model establishes a fundamental and explicit interaction
principle called the alignment rule. Despite many subsequent complex models
were introduced to achieve self-organised flocking in a more precise and natu-
ral way [2,3,10], they can be considered as the variants of Vicsek model since
they all strongly rely on the velocity-based alignment interaction to perform self-
organised collective motion. However, this pioneering model still has limitations
to fully depict self-organised flocking motion, especially for swarm robotic appli-
cations. Firstly, the velocity-based algorithm not only requires robots to obtain
the orientation of neighbouring robots in short communication range, but it also
needs their relative positions to determine the neighbouring topology. Hence,
the robots must have a strong computational ability and a reliable inter-robot
communication to address the issue, e.g. by using local communication meth-
ods [11]. Secondly, the swarm achieves collective motion in an infinite and ideal
space without any physical boundary restriction, e.g. walls. Therefore, it is not
practical for a real-world swarm robotic system where robots encounter obstacles
and in a cluttered environment. In addition, velocity-based model assumes that
each robot is set up with a fixed speed, and only orientation can be adjusted in
each step. It significantly restricts the swarm in terms of flexibility and adapt-
ability in case of the complex environments. Considering the limitations of the
velocity alignment, another collective mechanism for flocking was proposed by
Ferrante et al. [5,6], which developed a novel position-based decentralised algo-
rithm for achieving a collective motion. They abstracted self-propelled particle
swarm in two-dimensional active solids, and introduced the Active Elastic Sheet
(AES) model. The individual interaction is based on attractive-repulsive forces.
Robot’s motion is driven by the combination of linear elastic forces from its
fixed neighbouring topology. Therefore, the agent-based model only rely on the
exchange information of relative position, rather than including the heading ori-
entation of neighbouring robots, which significantly alleviates the requirement
of hardware computation and perception. In addition, in [15,22], both simulated
and real robot experiments demonstrated the feasibility of AES model in the
real swarm robot applications.

The AES model does not consider the limitations of the real-world environ-
ments since it is derived from the collective behaviour of the perfect active crys-
tal. Inevitably, in a real-world scenario, there exists plenty of physical boundaries
including obstacles and walls. Therefore, in this work, we developed a new flock-
ing method based on the AES model, that facilitates application of the flocking
in real-world scenarios with several obstacles– cluttered environments. In this
work, we investigated different states of the swarm trajectory when an inter-
action between the swarm and obstacles happens in a cluttered environment.
We modelled a repulsive force for collision avoidance and combined it with the
AES model’s attraction-repulsion force. In addition, the impact of the proposed
model in presence of obstacles with different collective forces was investigated.
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2 Flocking Method

2.1 Active Elastic Sheet Model

The agent-based AES model [5] can produce the self-organised collective motion,
even in the presence of noise. It can also start from swarm system with random
initial orientation and position. Rather than orientation and alignment inter-
action, each pairwise of robots only exchange the position information, then
generate the corresponding elastic force to affect the robot’s motion state. Its
simplicity contributes to implementing self-organised flocking in swarm robotic
applications. As introduced before, in a swarm system including N robots, indi-
vidual’s motion dynamics is determined by the spring-like forces from its fixed
neighbouring robot set. The attraction-repulsion forces affect both the linear and
angular velocities of the robot during flocking. This continuous-time model can
be illustrated mathematically as:

−̇→x i = v0n̂i + α[(
−→
F i + Dr ξ̂r) · n̂i]n̂i, (1)

θ̇i = β[(
−→
F i + Dr ξ̂r) · n̂⊥

i ] + Dθξθ, (2)

where, −→x i and θi are position and orientation of the ith robot. v0 is the self-
propelled forward biasing speed that is imposed into all robots. n̂i and n̂⊥

i are
two unit vectors pointing parallel and perpendicular to the heading direction of
the ith robot, and two parameters α and β are inverse translation and rotation
damping coefficients, respectively. The motion essence of AES model is that the
robot adjusts its linear and angular velocities based on the projection of forces
in parallel to its heading and perpendicular to its heading.

This model also concentrates on the impact of noise from both measure-
ment and actuation; Dr ξ̂r is the error from the measured forces and Dθξθ is
the fluctuation of the individual motion. ξ̂r is a randomly generated unit vector
for noise strength coefficient Dr. Also, ξ̂r is a random variable with standard,
zero-centred normal probability distribution for noise strength coefficient of Dθ.
The total linear elastic force,

−→
F i, is originated from those neighbouring robots

interacting with the ith robot. It can be calculated as follow:

−→
F i =

∑

j∈Si

−k

lij
(|−→r ij | − lij)

−→r ij

|−→r ij | , (3)

−→r ij = −→x j − −→x i, (4)

where, lij is the equilibrium distance where the force between ith and jth robot
will become zero, and k

lij
is the spring constant. Each neighbouring robot set

Si contains all robots that connect with the focal robot through the “virtual
springs” at the beginning of each experiment. This connection would not be
broken up regardless of the distance between this pair of the robots. Similar
to spring, once the interaction network of neighbouring robots is defined, it
will remain fixed throughout the experiment. In addition, according to Eq. (5),
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the inducing force would become large as the distance to equilibrium position
increase. Overall, the total elastic force drives the robot to move toward the
equilibrium position.

In order to implement our experiments, we followed experimental setup pro-
posed in [15] and modified the original AES model with adding the goal direction,
Fg, which coordinates the swarm to achieve a collective motion with a specific
direction. In addition, this modification can also lead to faster convergence of the
collective motion. Hence, the goal direction is added to the swarm as a “virtual
external force” described as: −→

F g = ωg
−→̂
vd. (5)

The goal force is parallel to the desired velocity unit vector
−→̂
vd and its magnitude

is determined by the weighting coefficient ωg. The modification steers the swarm
system moving towards the region of obstacles by adjusting the desired velocity
unit vector.

2.2 Extended AES Model

The robots’ interaction with obstacles based on the original AES model purely
relies on attraction-repulsion force, which provides a natural benchmark to
design obstacle interaction from the point of force. Indeed, the obstacle force
can be treated as a repulsive force and its magnitude is also based on the dis-
tance between the robot and the obstacle. In contrast to elastic force in AES
model, as the robot approaches to obstacle, its magnitude should become sig-
nificantly large to avoid the collision. It should be close to the infinity when the
distance is nearly zero. When a robot detects the existence of an obstacle, the
repulsive obstacle force will appear will be imposed into the robot.

Obviously, the previous spring-like force cannot satisfy the requirement.
There are some other virtual physical-based models with more complicated rela-
tion with distance and are utilised especially for robotic control. One of most
widely used virtual physical-based models is the Lennard-Jones (LJ) potential
model [17,18], which was proposed to interpret motion of atoms or molecules in
molecular dynamics. The obstacle force

−→
F obs,i that acts against the ith robot

was designed based on the following equation:

−→
F obs,i =

∑

o∈Oi

εobs[(
σobs

||−→r io|| )
2αLJ − 2(

σobs

||−→r io|| )
αLJ ]−→r io (6)

There are some parameters that need to be explained and set for the experiments.
Here, −→rio is the distance vector from an obstacle, o, to ith robot, and obstacle
set Oi is the set of all obstacles within the detecting range of ith robot. εobs

corresponds to the depth of potential function and αLJ defines the rate of change
of the potent versus distance by changing its power. The value of αLJ is set to
2, which contributes to improve the smoothness of collective behaviour. The
final important parameter is σobs, which is related to the equilibrium distance at
which the Eq. (6) is equal to zero. According to Eq. (6), by setting the obstacle
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force to zero and solving it, the proper value for σobs parameter can be obtained
in following relation:

σobs =
√

2d0,obs, (7)

where d0,obs represents the equilibrium distance where the obstacle force mag-
nitude is equal to zero. Using the above equation, the σobs can be tuned auto-
matically and its value can be determined as a function of equilibrium distance
d0,obs. In order to maintain the repulsion force only, it is necessary to adjust the
parameter σobs in a way that the obstacle exceeds the sensing range of robot
before reaching the equilibrium point, i.e. d0,obs > rsens, where rsens is the sens-
ing range of the robots. One suggestion is to define d0,obs in a way that the
obstacle force turns to zero at the verge of detection zone as follow:

σobs =
√

2d0,obs =
√

2rsens. (8)

In this case, when the robot perceive the obstacle, the repulsive obstacle force
would appear and impose on the robot. In addition, as the robot approaches to
an obstacle, the magnitude will increase significantly.

Designing all the forces affect the collective behaviour of robots, and con-
sequently the whole swarm system. The motion dynamics of each robot would
be redefine to consider the impact from external forces including goal force and
obstacle force. The total force in Eq. (1) and Eq. (2) need be substituted by
the total force which is simply modelled as the combination of collective force in
Eq. (3), goal force in Eq. (5) and obstacle force in Eq. (6). The corresponding
equation is illustrated below:

−→
F tot,i =

−→
F c,i +

−→
F g +

−→
F obs,i, (9)

where, in the new definition, the total force
−→
F tot,i replaces the force in original

AES motion dynamic, and the
−→
F i in Eq. (3) is viewed as the collective force−→

F c,i.

2.3 Metrics

The main aim of flocking behaviour is to achieve a common direction within the
swarm members. In addition, the robots should move collectively, which can be
characterised by an essential property, so called the coherency. The coherency
depicts the likelihood of individual remaining in the swarm system. This prin-
ciple feature can also serve as the performance index of flocking when swarm
encounters obstacles in a cluttered environment. In order to evaluate the swarm
coherency, a metric was introduced in this work. The metric is the average dis-
tance between the swarm individuals. It is also a common method to evaluate
the coherency of swarm for collective motion [13]. The coherency is presented
as:

ds =
2
∑N−1

i=1

∑N
j=1 ||−→r ij ||

N(N − 1)
. (10)
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Table 1. Setting values of related parameters in the experiments

Parameters Description Value/Range

N Population 15 [robot]

v0 Forward biasing speed 0.05 [m/sec]

α Inverse translational damping coefficient 0.01

β Inverse rotational damping coefficient 0.12

ωg Weighting coefficient for goal force 4−→̂
vd Desired velocity unit vector (1,0)

εobs Depth of potential function 0.01

rsens Sensing range for robot 2 [m]

rR Radius of robot 0.7 [m]

robs Radius of circle obstacle 2.7 [m]

L Length of the swarm arena 35 [m]

lij Equilibrium distance {2, 3} [m]

k Magnitude of collective force {0.05, 0.3}

This metric describes the mean value of each pair of robot’s distance. It should
keep unchanged if the swarm maintains a stable motion without an abruption
or squeeze deformation.

2.4 Experimental Setup

After defining the obstacle interaction and modifying the AES model, all the pre-
requisites are fully prepared to implement the simulated experiments. The aim
of these experiments is to investigate the performance of self-organised flocking
based on AES model in a cluttered environment. We designed three different
environmental conditions to implement the experiments, including ideal envi-
ronment without obstacle, single-obstacle environment and multi-obstacle envi-
ronment. There are some basic parameters (listed in Table 1) that need to be
determined. There are also some critical assumptions needed to be mentioned:
i) the simulated experiments do not consider the impact of noise, ii) the net-
work topology of robot swarm is determined prior to flocking and fixed. Each
robot establishes a connection within its sensing range, and iii) the equilibrium
distance lij in Eq. (3) is set to the initial distance between robots i and j.

There are essential factors that will affect the flocking behaviour in the clut-
tered environment such as population size (N), equilibrium distance (lij) and
the magnitude of collective force (k); however, we only considered lij and k in
this work. In order to eliminate the accidental error in observation, repeatabil-
ity principle need to be considered in these experiments. Therefore, each set of
experiments was repeat 10 times.

Experiments without Obstacles: In this set of experiment, swarm moves in
a given L × L square arena with the physical boundaries. Their initial distance
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between two nearest neighbouring robots is set to equilibrium distance. The
initial orientations and positions of the robots were selected randomly and uni-
formly distributed in the left-hand side of the arena. In this set of experiments,
only goal force and collective force are imposed into the individual robots. The
set goal force drags the swarm on the x-axis, and the collective force contributes
to configure the swarm into a stable structure.

Experiments with a Single Obstacle: This set of experiments simulate a sin-
gle obstacle environment, where the obstacle was located at a fixed point, where
the swarm will encounter. In this experiment, the obstacle avoidance interaction
was introduced into the collective motion. Similar with the first set of experi-
ments, the related parameters still remain unchanged.

Experiments with Multiple Obstacles: This set experiments study the self-
organised flocking in cluttered environment, with several obstacles which appear
in front of robots which they are moving to right-hand side of the arena. There
are three obstacles which form a triangle shape to block the motion of the flock.
Except for this, other parameters are the same as the previous experiments.
Compared with the single obstacle case, the obstacles’ force will provide a com-
plex situation. Therefore, the robots will detect more than one obstacle force
from different directions at the same time.

3 Results and Discussion

Figure 1 shows examples of the randomly selected flocking trajectories in three
different scenarios with lij = 3.5 m and N = 15. In the diagrams, the small
blue circles represent the robots in a swarm. The red arrows on each robot
represent orientation of the robot. The large red circles indicate the obstacles
which are nearly 4 times larger than the robots. Obviously, the swarm could
achieve a collective motion in an ideal environment without obstacles as shown
in Fig. 1(a). In addition, robotic swarm is also capable of avoiding the obstacles
in all the scenarios, shown in the rest of Fig. 1. In Fig. 1(b) and (c), the parameter
k associated with the collective force is set to 0.05. It can be viewed that the
flock will be separated by the obstacle, and it is difficult to recover to the original
structure. The swarm was divided into several small clusters by obstacle forces.
Figure 1(d) and (e) present the flocking behaviour of the swarm with the same
initial conditions (position and orientation). The only difference is to improve
the magnitude of the collective force by setting it to k = 3. In this case, The
flocking performance in the ideal environment does not manifest any significant
change. Hence, the swarm still can move collectively like a solid entity with a
common direction. However, even if the robots in the swarm were segmented
by the obstacles’ force, they were able to converge into a single cluster with
a stable structure and maintain the self-organised flocking. In addition, this
flocking behaviour possesses higher flexibility and robustness. It goes through
the obstacles smoothly like a liquid flow in nature.

To analyse the behaviour of swarm in detail, we investigated the average
distance of the swarm during flocking. Figure 1(a) shows that the form of the
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Fig. 1. Flocking behaviour in three environmental cases with k = 0.05; (a) without an
obstacle, (b) with a single obstacle, and (c) with multi-obstacle. (d) with k = 3 and a
single obstacle, and (e) with k = 3 and multi-obstacle.

swarm do not change during the flocking in the environment without obstacle.
Therefore, the results if the average distance for the first case is shown with
dashed lines. Figure 2 illustrates the average distance of swarm for two different
collective forces, k ∈ {0.05, 3}. Figure 2(a) depicts the results for lij = 3 m from
single-obstacle flocking motion. It takes approximately t =150 sec to encounter
the obstacle and the average distance of swarm becomes bigger while they are
crossing the region. This disturbance is recovered and reached the original stable
state for large collective force. In contrast, in case of the small collective force,
the average distance was increased after the swarm passed the obstacles. The
main reason is that the swarm is divided into several clusters that were formed
in different positions far from each other. Similarly, this result also appears in
multi-obstacle cases shown in Fig. 2(b). In addition, the average distance was
much larger than the single-obstacle cases. Figure 2(c) and (d) show the results
for lij = 3.5 m. It illustrates that the equilibrium distance has minor impact on
the flocking performance in cluttered environments.
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Fig. 2. Average distance with two different collective forces (a) with lij = 3 in a single
obstacle, (b) with lij = 3 in multi-obstacle, (c) with lij = 3.5 in a single obstacle,
and (d) with lij = 3.5 in multi-obstacle. Line and dashed line indicate the median and
shaded area represent the first and third quartiles.

4 Conclusion

This work proposed a self-organised collective motion method based on the AES
model. The main aim is to improve the AES collective motion behaviour to make
it possible for use in a real-world application. This work designed an appropriate
obstacle force and added it into the basic model. The simulation results illus-
trated the proposed method can achieve the self-organised flocking and obstacle
avoidance in the complex environments. In addition, we investigated the flock-
ing performance under the different parameters setting for collective force with a
constant obstacle force. The results showed that the relationship between these
two essential forces could have a significant impact on the flocking performance.
The different equilibrium distances in the AES model were also investigated to
illustrate the functionality of the proposed method. Further work will continue to
investigate the obstacle interaction mechanisms in AES model using real-robot
experiments.
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Abstract. Different feedback modalities while using a mobile robot in
a telecare task were compared. An experimental setup in which care-
givers teleoperated a robot to perform several tasks remotely, outside the
immediate environment of a patient, while they simultaneously managed
other secondary tasks was designed. The robot provided feedback related
to status information on the robot’s path and on tasks it performed.
Two feedback modalities (textual and audio) and their combination were
investigated to determine the most suitable for a remote operator in a
simulated telecare task with secondary tasks. Additionally, the influence
of the secondary task location on interaction was evaluated. Experiments
with 40 participants with a teleoperated mobile robot revealed that the
interaction was influenced mainly by the feedback modality, while the
secondary task location had less influence. The feedback modality that
combined textual and audio feedback yielded a better outcome as com-
pared to the other single feedback modalities.

Keywords: Teleoperation · Telerobotic assistance · Assistive robots ·
Human-robot collaboration · Feedback modalities · Secondary task

1 Introduction

As the aging population increases there is increasing demand for caregivers [12].
The shortage of caregivers [11] along with the rising proportion of older people
[12] leads to an increased need to support these caregivers. A promising solution
to meet these needs is using robots that can support the caregivers and reduce the
workload by performing various assistive functions [15]. One of these functions is
the ability to remotely perform tasks such as pre-diagnosis, health monitoring,
distribution of food, medicine and laboratory specimens [15]. An upgraded role
for the assistive robots is to work alongside the caregivers to support their work
and enhance efficiency [4]. This enables the caregivers to remotely manage tasks
in places and in situations where they cannot be physically present. In many care
giving contexts, the caregiver must attend several tasks (primary and secondary
tasks) simultaneously. This usually constitutes challenges such as role overload
[13]. Teleoperated robots can be employed for some tasks and thereby reduce
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the workload. A teleoperated robot is controlled by a human operator from a
distance and performs tasks (services) as if the operator were on the spot [5].

Caregivers play a major role in providing and coordinating patient care [8].
This care, in addition to other duties, usually involves documenting information
on patients, to facilitate care and to provide adequate and timely information for
all health-related actions [1]. This is a time consuming task which consequently
limits the time dedicated to care of the patient, affects outcomes and also influ-
ences the caregiver’s work performance [8]. The work involved in documenting
is also usually not entirely electronic, as some aspects are sometimes carried out
on the desk, on an equipment or at the bedside of a patient. The effect of these
differences in location and procedure of documentation on overall performance
are not clear cut in previous evaluations [3]. Using teleoperated robots to support
these type of tasks therefore requires investigation of the impact on the overall
performance for the primary task of care giving and for secondary tasks such as
documenting patients’ information.

In this research, a hospital environment is simulated in which a caregiver
(the user) delivers medication with other supplies to the patient and receives
samples from the patient with a teleoperated robot. This is needed in situations
where the caregiver (e.g. a nurse) cannot get near the patient for several possible
reasons (e.g., task load, risk of infection). Feedback from equipment used in such
care settings in general, have been found to improve patient care by providing
alerts when needed [8]. The feedback from the robot can help inform the remote
operator on different robotic aspects [2]: the robot’s state of operation (e.g.,
moving towards goal or stopped due to an obstacle; details and constraints in
the local environment (e.g., location of door to patient’s room ahead, direction
of passer-by in the corridor); and on state of the task being performed (e.g.,
delivery of an item at the desired destination, vital sign checks of the patient).
In order to maximize the benefits of such alerts and information in the feedback
from the teleoperated system, we developed suitable feedback modalities through
which alerts and information can be provided by the robot. We then examined
the influence of these modalities on the interaction between the caregiver and the
teleoperated robot and on the performance. Additionally, we investigated if the
location of the secondary task and the interaction with the feedback modalities
influence performance and interaction between the robot and the operator.

2 Materials and Methods

2.1 The Experimental System

The experimental system consists of a mobile robot platform, remote user inter-
faces and a server-client communication architecture that used a rosbridge web-
socket to connect to the robot operating system (ROS) platform of the robot.
Two user interfaces were developed - one runs on the robot while the other runs
on the operator’s computer. These interfaces (programmed using HTML, CSS,
JS and PHP) run within a standard web browser making them independent of
the operating system of the device or any specific software.
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The Robot Platform. The robot platform is a Keylo telepresence robot1.
Its height is approximately 1.64 m with a low center of gravity and circular
footprint 52 cm of diameter. Keylo is equipped with a 24′′ multi-point high FOV
touchscreen. It runs Ubuntu 18.04 LTS, ROS Melodic with a standard ROS
API to all its sensors and features. The navigation sensor specifications are:
Hokuyo URG-04LX-UG01 lidar (5.6 m range, FOV 240◦); 2 × 4 front and rear
ultrasonic range sensors (5 m range); 2 × 2 IR edge detectors hard-wired to the
motors controller. Cameras include two front and one rear 3D RGB-D camera
Intel RealSenseTM R200.

User Interfaces. The user interface running on the robot’s browser was
designed for the local user (e.g. patient directly interacting with the robot).
The remote user interface through which the caregiver teleoperates the robot is
displayed on a computer located remotely with the caregiver. The remote user
interface was divided into three sections: a left, central and right panel (Fig. 1).
The video from the camera on the robot is broadcasted on the left panel. Feed-
back from the robot is displayed on the central panel. This feedback includes
status information about: start of the mission, arrival at the destination (e.g.
patient’s bed), various conditions along the way (e.g. malfunction/something
unexpected on the way or information regarding attention such as code to access
the patient’s room).

Fig. 1. Remote user interface

The right panel contains information related to the secondary task where par-
ticipants are expected to answer questions related to the provided information.
Two different secondary task locations were considered:

On the screen only - all information is displayed on the right panel. This includes
a compilation of patients’ health records and some questions on these patients.

1 https://www.wyca-robotics.com/.

https://www.wyca-robotics.com/
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Combination of screen and desk - the information is divided between the screen
and papers containing health records on the desk below. The right panel contains
only the questions on the patients while the compilation of patients’ health
records is in paper format on the desk.

The feedback modalities examined were based on previous findings [10]:

Textual - Textual feedback appeared on the central panel in the form of written
messages. These messages were designed to convey the information clearly and
immediately.

Audio - Audio feedback was given via voice commands as the robot navigates.
The content of these commands was the same as the content that appeared in
the on-screen messages in the textual feedback.

Textual and audio combination - feedback was transmitted to the participant
through on-screen messages and voice commands simultaneously.

2.2 Task

The tasks involved navigating the robot from a control position to the loca-
tion where the patient is. The caregiver sends the robot towards the patient to
accomplish the main task while s/he carries out a secondary task. Feedback is
provided during the process to indicate important points along the robot’s path
that require user involvement.

Main Task. The main task was to deliver food and medicine (which was repre-
sented by specific objects in the actual experiment) to the patient and retrieve
samples (also represented by specific objects) from the patient. The robot moves
autonomously in the environment but may require user involvement at certain
points (e.g., code for entering a particular room, floor number for the elevator,
which were represented by an access confirmation to enter a specific care unit)
before continuing with its task.

Secondary Task. The caregiver completes an electronic health record which
involves answering some questions related to the patients. This starts once the
robot commences the main task of delivery to the patient. The participant is
expected to answer the questions according to the relevant information as best
they can. Once the robot returns from the patient (main task ends), the sec-
ondary feedback section ends.

2.3 Research Hypotheses

The first two hypotheses are based on a previous study which revealed that
feedback coming from more than one source increases the quality of the inter-
action [10], similar to work by [2]. It revealed that different feedback modalities
improved effectiveness of control: the audio feedback will draw the participant’s
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attention at the appropriate time and the textual feedback will serve as a backup
in case the user is focused on the tasks and missed the voice instructions. These
studies focused on evaluation with a stationary manipulator robot operated by a
user who worked with the robot that was situated nearby [10] and at a distance
[2] as opposed to the current work which focused on a teleoperated mobile robot.
Also, the main task in these previous studies was a pick and place task with the
stationary robotic manipulator. These studies also did not consider the influence
of a secondary task, as well as the location of secondary task in the overall inter-
action. Considering the differences between the previously studied pick and place
task and the current telecare task which also involved the potential influences
of the secondary task inclusion, we propose the following hypotheses:

H1 : A combination of textual and audio feedback modality in a teleoperated
task increases the overall performance of users (as measured by the objective
variables) relative to a single feedback modality.

H2 : Combination of textual and audio feedback modality in a teleoperated task
will increase the overall positive user perception of the interaction (as assessed
through the subjective variables) compared to a single feedback modality.

Studies in a driving scenario show that the farther the display of the sec-
ondary task is from the main screen, the lower the performance [16]. This is
particularly relevant when the distance is a vertical distance, the response times
increase and there are more errors [7]. This inspired the third hypothesis:

H3 : Executing the secondary task only on-screen will improve the performance
for users compared to executing the secondary task between desk and screen.

2.4 Experimental Design

The experiment was designed as a mixed (3 × 2) design experiment with the feed-
back modality (textual, audio and combination) and the location of secondary
task (screen only and combination) defined as the independent variables. The
feedback modality was the within-participants variable while the location of sec-
ondary task was the between-participants variable. Each participant experienced
one location of the secondary task only for each of the three trials involving the
three feedback modalities provided in a random order.

2.5 Dependent Measures

Objective Measures. For each participant and trial, overall user performance was
measured in terms of efficiency, effectiveness and understanding. Efficiency was
evaluated as the completion time (in seconds) of the task, the time between
the robot’s departure and return to the control point. Effectiveness was eval-
uated as user performance in the secondary tasks since the participants were
expected to complete the primary task. The primary task completion time deter-
mined the secondary task completion time. Completeness of secondary task is
denoted as the number of subtasks in the secondary tasks completed, which
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was represented by the number of complete answers (completeness); the number
of correct answers from total questions (global accuracy, GA) and the number
of correct answers from total questions that answered (response accuracy, RA).
Understanding was evaluated by the reaction time. The reaction time is the time
(in seconds) that it took the participant to respond to the feedback the robot
provided. Understanding was additionally evaluated by the number of clarifi-
cations the participant requested from the experimenter during the experiment
after the initial explanation of the procedure at the beginning of the experiment.

Subjective Measures. The post-trial questionnaires (assessed after each trial)
were used to assess usability, understanding, and satisfaction through 5-point
Likert scales, with 5 representing “Strongly agree” and 1 representing “Strongly
disagree”.

2.6 Participants

40 third year undergraduate industrial engineering students (27 females, 13
males) at Ben-Gurion University were recruited as participants for the role of the
caregiver (Mean age = 26.5 years, SD = 1.11). All of them had experience with
computers and limited experience with robots. The students were compensated
with a credit in an obligatory course they took, which was commensurate with
their time of participation in the experiment.

2.7 Procedure

At the start of the experiment, after reading and signing the consent form, par-
ticipants were asked to provide some background information regarding their
age, gender and on their attitude toward robots. To assess their level of anxiety
towards robots [14], we used a sub-set of the Negative Attitude toward Robots
Scale (NARS). Following this, they were briefed on the scenario, tasks and pro-
cedure. Each participant performed the task three times - in each trial they
experienced a different feedback modality. The order of feedbacks was randomly
selected. Each trial was followed by a questionnaire enquiring about the experi-
ence with the condition (details on the measures are given below). After com-
pletion of all three trials, participants answered a final questionnaire in which
they rated their overall experience with the robot and tasks. It afforded the
opportunity to receive additional feedback or remarks from the participants.

2.8 Analysis

Analyses were performed using a two-tailed General Linear Mixed Model
(GLMM) analysis to address non-normally distributed response variables, het-
eroscedasticity, and non-linear relationships between the mean of the dependent
variables and the independent variables. This ensured that both fixed effects
and random effects were accounted for. The fixed effects were the feedback and
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secondary task modes. Random effect was included to account for individual
differences among participants. To ensure that analyzed variables conformed to
the GLMM requirements, the variables that included time were log transformed.
The cumulative logit model was used for variables with ordinal values. The tests
were designed with a significance level of 0.05. Mean and median results were
also compared for the objective and subjective variables respectively.

3 Results

3.1 Efficiency

The efficiency, measured as the completion time (seconds) of the task (mean =
80.27, SD = 1.81) was significantly affected by the feedback modality (F(2, 114)
= 13.1, p = 0.001). The completion time of those using only audio feedback was
lower (mean = 70.61, SD = 2.75) than that of the participants that used both
audio and textual feedback (mean = 78.42, SD = 2.75). The highest completion
time was observed in trials with only textual feedback (mean = 93.40, SD =
3.64). The completion time was not significantly affected by the location of the
secondary task (F(1, 114) = 1.283, p = 0.260). Completion time of participants
was, on average, lower (mean = 78.25, SD = 2.49) for the screen-only condition
compared to the screen and desk condition (mean = 82.34, SD = 2.62).

3.2 Understanding

Understanding was measured both objectively and subjectively. Most of the
participants (75.8%, med = 4, SD = 0.11) indicated in the questionnaire that
they understood the system well and most indicated that the robot’s feedback
was received clearly (78.4%, med = 4, SD = 1.05). The feedback modality
significantly affected comprehension (F(2, 113) = 10.254, p< 0.001) and clar-
ity (F(2, 112) = 12.015, p< 0.001). Participants reported higher understanding
while using either audio or combined feedback (med = 5, SD = 0.5) compared
to when using textual feedback (med = 3, SD = 1.32). Using only the screen
resulted in higher understanding (med = 4.5, SD = 0.96) compared to when
using the combination of screen and desk (med = 4, SD = 0.97).

The reaction time (seconds) of the participants in the first trial (mean =
7.45, SD = 0.52) was significantly affected by both the feedback modality (F
(2, 114) = 49.905, p = 0.001) and the location of secondary task (F (1, 114) =
4.94, p = 0.028). The combination of textual and audio feedback provided the
shortest reaction time (mean = 3.68, SD = 0.62) when only the screen was used.

3.3 Effectiveness

In terms of completeness, the feedback modality did not significantly affect the
number of questions that were answered by the participants (mean = 3.7, SD
= 0.18, F(2, 114) = 2.17, p = 0.12). Participants who experienced textual feed-
back only have higher completeness score (mean = 4.18, SD = 0.32) as compared
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to participants with only audio feedback (mean = 3.28, SD = 0.29) and with
combined feedback (mean = 3.71, SD = 0.30). The completeness was not sig-
nificantly affected by the location of secondary task (F (1, 114) = 0. 89, p =
0.35). The completeness of answers when using the screen only (mean = 3.54,
SD = 0.24) was slightly lower than the completeness when using desk and screen
(mean = 3.87, SD = 0.25).

The feedback modality did not significantly affect the global accuracy, GA
(mean = 0.59, SD = 0.04, F(2, 114) = 2.07, p = 0.13). The GA measure was
also not significantly affected by the location of secondary task (F (1, 114) =
0.455, p = 0.501). In terms of response accuracy, RA (mean = 0.71, SD = 0.06;),
the influence of the feedback modality (F(2, 114) = 0.005, p = 0.95) and the
location of secondary task (F(1, 14) = 0.342, p = 0.56) was not significant.

3.4 User Perception

The scores of the questionnaire responses of the participants related to satisfac-
tory communication was significant with respect to the feedback modality (med
= 3.75, SD = 1.22, F (2, 113) = 10.25, p = 0.001). Feedback that contained
verbal commands in either audio feedback (med = 4, SD = 0.99) or combined
feedback (med = 4, SD = 0.99) led to a higher communication score compared
to when using feedback that contained only textual modality (med = 3, SD =
1.23). The feedback modality had a significant effect on fluency (F(2, 112) =
10.04, p = 0.001). 72.5% of the participants indicated that the feedback from
the robot was received at the right timing. It was observed that the feedback
that contained verbal commands in both audio feedback (med = 5, SD = 0.93)
and combined feedback (med = 5, SD = 0.93) resulted in a very high score while
textual feedback had a reduced score (med = 3, SD = 1.19). The secondary task
location did not have a significant effect on fluency. Fluency score was similar
for both secondary task locations (med = 4, SD = 0.94).

The feedback modality had significant influence on situation awareness (SA)
(med = 4, SD = 1.13; F (2, 112) = 21.74, p< 0.001). The audio feedback yielded
higher SA score (med = 4.5, SD = 0.95) compared to combined feedback (med
= 4, SD = 0.86) and to textual feedback (med = 3, SD = 1.244). SA was not
significantly affected by the location of secondary task (F (1, 112) = 0.872, p =
0.352).

The feedback modality was significant on comfortability (F (2, 112) = 14.93,
p = 0.001). The lowest comfortability score was observed when participants
used the textual feedback (med = 2.5, SD = 1.29). When participants used the
audio feedback, the comfortability score was higher (med = 4.37, SD = 0.99)
compared to when they used the combined feedback (med = 4.25, SD = 1.14).
The comfortability score was similar at both secondary task locations (med =
4, SD = 1.21).

Regarding usability, the frequency of use (F(2, 112) = 10.51, p< 0.001) and
ease of use (F(2, 112) = 4.26, p = 0.02), were significantly affected by the feed-
back modality but learnability was not (F(2, 112) = 0.35, p = 0.71). The usability
scores were higher when using the audio feedback only (med = 4, SD = 0.10)
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compared to the combined feedback (med = 3.67, SD = 0.11) or the textual
feedback only (med = 3, SD = 0.12). The usability scores when using the screen
only (med = 3.67, SD = 0.04) was slightly higher than the usability when using
screen and desk (mean = 3.33, SD = 0.14).

4 Discussion

This research examined how the feedback modality and secondary task location
influence the interaction between a caregiver (for instance, a nurse) and a tele-
operated robot and their effect on performance. Results showed that feedback
modality had significant effect on the interaction, with a mix of audio and visual
feedback yielding best results (supporting H1 and H2). The secondary task loca-
tion had less influence on performance but influenced some of the performance
interaction parameters (supporting H3). More details are discussed as follows:

4.1 Impact of Feedback Modality

88% of participants preferred voice feedback, of which 67% claimed that feedback
that combined audio and textual was most comfortable for them (in line with
H2). The difference between the combined feedback and the two other feedback
modalities was most significant in the understanding. However, there were also
major differences in the effectiveness and efficiency. These contributed to the
overall significant values seen through the objective and subjective variables.
Even though the audio feedback reduced both response times and completion
times, it did not result in the highest performance in the study. This seems to
point to some pitfalls of audio-only feedback which may have affected the quality
of the performance. The audio feedback usually prompts a quick response, which
may have caused some stress or additional workload, consequently lowering the
performance quality. This is in line with previous research which showed that
sound alone requires higher attentional demand [9]. When the task is simple,
concentration required from the caregiver is low. In such cases, the transition
between the tasks (primary and secondary) when giving a voice command is
usually easier and does not often impair the performance of any of the tasks.
But as the task complexity increases, more concentration is required, and the
transition between tasks becomes more difficult and may take longer. In this
regard, the combined feedback seems better than the voice-only feedback (in
line with H1). This agrees with the conclusions reached in an HCI context [6]
where it was stated that auditory information proves superior to textual-only
information but that this is not always the case when both auditory and textual
modalities were used.

4.2 Impact of Secondary Task Location

The secondary task location did not statistically influence most results. How-
ever, better performance scores were obtained when the secondary task was
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performed on the screen only and not when it was divided between the screen
and desk (in line with H3). An interesting point relates to the performance in the
secondary task - the participants answered more questions when the task was
divided between the screen and the desk, however the RA (number of correct
answers out of the total answered) was higher when the task was performed on
screen only.

This seemed to imply that the transition between desk and screen may have
caused more errors. This agrees with a previous study in which multiple eye
movements increased user’s mistakes [7].

5 Conclusions and Future Work

This experiment simulated a hospital environment in which a caregiver teleoper-
ates a mobile robot while performing another task. In this type of scenario where
the time, accuracy and understanding of the scenario are critical, we found that
the feedback that combined textual and audio feedback modalities yielded bet-
ter performance, compared to the single modality feedback. Note that, if the
goal is to shorten the performance time, audio feedback is optimal. However,
due to some of the shortcomings of the audio-only feedback discussed, combined
audio and textual feedback is recommended. It is also worth noting that addi-
tional visual feedback modalities superimposed on the camera image and other
feedback modalities such as haptic feedback were not tested in this experiment.
It is important to note that these experiments examined specific scenarios and
were not performed with real caregivers. In order to generalize these conclusions,
additional experiments examining different interfaces and different tasks must
be performed with real caregivers.
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Abstract. This paper explores the differential impact of multi-agent
system heterogeneity in the context of an idealised herding task. In sim-
ulation, a team of simple herders must move a flock towards a target
location in a continuous 2d space. Flock heterogeneity is controlled by
dividing the flock into a number of non-overlapping social groups that
influence sheep movement. Results demonstrate that increasing system
heterogeneity (i.e., the number of different social groups) reduces herding
performance when social groups are self-attracting, but conversely, the
same increase in system heterogeneity can increase herding performance
when groups are other-attracting. Implications for designing heteroge-
neous multi-agent systems are considered.

Keywords: Heterogeneous · Multi-agent · Herding

1 Introduction

Intelligent systems comprising some combination of robots, humans and soft-
ware agents promise to deliver increased flexibility and efficiency by sharing and
coordinating their resources, information and capabilities. However, designing
these multi-agent systems (MAS) brings considerable challenges. Their control
may be decentralised to some extent, they may need to operate in noisy and
uncertain environments, and finally the different agents involved may need to
be designed (and to operate) without complete knowledge of the way in which
other agents in the system have been designed or are operating. Consequently,
the challenge of engineering these systems is strongly influenced by the extent
to which the agents involved exhibit heterogeneity of different kinds.

A heterogeneous MAS involves agents that are different from each other,
e.g., a team of human carers working alongside robot care assistants to deliver
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services to patients [1], or the coordination of aerial and ground based robots to
map the surface of Mars [11]. Such heterogeneity may arise for many reasons:
team diversity may be required in order to satisfy multiple functional require-
ments; mixing sub-systems with different provenance or legacy issues may be
unavoidable; agents with differing degrees of degradation or component failure
may be expected to inter-operate, etc.

Achieving systems such as these will require engineers to design solutions
that exploit the positives of system heterogeneity while mitigating any negatives.
This will require better understanding of when and how heterogeneity impacts
system performance. This paper characterises the differential impact of agent
heterogeneity on system performance in a simple multi-agent setting. A team of
artificial dogs, driven by simple reactive controllers, are tasked with herding a
flock of sheep that exhibit a parameterisable degree of heterogeneity. The paper’s
key contribution is to characterise the way in which the positive and negative
impact of this heterogeneity differs with aspects of the agent’s social structure.

1.1 Motivation

Heterogeneity has been studied extensively in social systems. In books such as
The Difference [16] and The Wisdom of Crowds [20] it is argued to be a posi-
tive, as diverse views and strategies inject useful resilience and redundancy into
human systems. By contrast, heterogeneity is typically regarded as an unwanted
feature of engineered systems, where uniformity and regularity are associated
with predictable and reliable performance. Perhaps consequently, the value of
heterogeneity for artificial autonomous systems is not clear cut.

On the one hand, the Law of Requisite Variety tells us that a more heteroge-
neous system requires a more complex controller [12]. This reinforces the belief
that heterogeneity is strongly associated with complexity, and something engi-
neers want to avoid in order to create reliable systems. On the other hand, the
El Farol Bar problem suggests a diverse, heterogeneous system performs better
[2]. It can be seen as an allegory for the view that homogeneous systems can be
brittle; if one element has a vulnerability then all have a vulnerability.

The dual nature of heterogeneity poses a problem for the design of
autonomous robotic systems. Just when is heterogeneity helpful and when is
it harmful? There is a lack of prior work which investigates this specific ques-
tion, particularly within a single task domain. This prevents direct comparisons
which makes it difficult to understand how heterogeneity could affect a system.

1.2 Related Work

An important step to understanding MAS heterogeneity is to devise a means
to measure it. In [4], concepts from taxonomy are drawn on in order to mea-
sure heterogeneity in terms of dendrograms and social entropy. Both [4] and [21]
present means to measure differences between agents in terms of distance norms.
Distance norms and entropy seem common ways of characterising heterogeneity
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but it is rare to see measures of heterogeneity linked to performance. An excep-
tion is [6]. An evolutionary framework and heterogeneity measure are developed
based on agent fitness. These are then used to show that heterogeneous agents
suited a travelling mailman task but homogeneous agents suited a foraging task.
In similar work, [4] shows via reinforcement learning that a single policy suited
foraging but agents with different policies were better at playing robot soccer.

The natural world is often used as a source of inspiration when discussing het-
erogeneity. The work of [14] demonstrated through simple modelling that having
a mix of age and mass can improve the success of wolf pack hunting. In [23],
artificial evolution was used to create teams of heterogeneous and homogeneous
agents which were tested on tasks requiring different amounts of cooperation.
A framework for human MAS is used in [16] to show that, provided certain
conditions are met, a heterogeneous system of lesser agents performs better in
problem solving than a homogeneous system of superior agents.

Perhaps the most pertinent question for a MAS designer is how to exploit het-
erogeneity to benefit performance. To this end, exploiting heterogeneity can be
viewed as a resource allocation problem, for examples see [8,9,17]. While effec-
tive, these prior works only consider heterogeneity in the scope of functional
capability. While it could be concluded that the weight of prior work views het-
erogeneity as positive, there are exceptions. In [5], the author comments that
trials with heterogeneous agents were not successful because agents reacted dif-
ferently to the same stimulus. This led to confused behaviour at the population
level and poor overall performance.

Overall, the majority of prior work studies heterogeneity as a means to solve
a given task. General design principles for heterogeneity are rarely, if ever, pro-
posed. Consequently, there remain unanswered questions concerning when and
how heterogeneity (or homogeneity) should be employed by a MAS designer.
This paper presents a comparative analysis of heterogeneity in the context of
a single multi-agent herding task, demonstrating that its effect on performance
can change from negligible to significant as only a single parameter is varied,
and showing that heterogeneity can be beneficial or detrimental to performance
in a manner that depends on subtle changes to agent behavioural rules.

2 Model

Herding is a multi-agent task in which one or more herding agents attempts
to influence a second group of herded agents towards a goal. Here we use a
common formulation of the task in which a number of “dog” agents are tasked
with moving a number of “sheep” agents to a target location. The task has
been studied by a number of different authors. This paper uses a relatively
traditional model however there are number of alternatives, for example applying
the unicycle model to the dogs [18], encircling the flock with relatively many dogs
and then moving them in formation towards the goal [15], or using a motion
control strategy for the dogs based on goal occlusion by the flock [10].
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2.1 Experimental Setup

The work by [22] is widely regarded as one of the earliest in the area. In their
research, a single robot sheepdog herds a flock of geese in an enclosed pen. [19]
took this a step further and their paper typifies the traditional approach: the
herding strategy adopted by a dog is split into separate collecting and driving
phases, and the dog uses heuristics to choose steering points from which to
influence the sheep. A solution to the problem of reaching these steering points
without adversely affecting the flock is provided by [13] and [7].

The work here makes a number of contributions to this traditional model. It
uses Voronoi partitioning [3] to subdivide the task of gathering the flock amongst
multiple dogs. Previous works, [7,13], suggests a planning based controller, here,
a simple reactive behaviour is described that accomplished the same task (to
our knowledge for the first time). Finally, each sheep belongs to a social group
that is influenced by a target group (either itself or a different group). This
influence may be a positive bias (sheep inside this target group are attractive)
or a negative bias (sheep outside this target group are attractive).

This simulation is conducted as follows within a 2D space measuring 400 by
400. Thirty sheep are initially distributed over a 270 square region centred on the
point (200, 220) using a uniform random distribution. Two dogs aim to move all
the sheep to within a threshold distance of a goal located at (40, 30) in minimum
time. The goal and starting locations of the dogs remain the same throughout
the experiments. A two phase strategy first collects the sheep together into a
single group and then drives the flock to the goal. A single herding episode lasts
2000 time steps and results are averaged over 50 episodes to reduce the effect of
random initial conditions.

For each time step, an acceleration is calculated for each agent, based on vir-
tual forces that are influencing it at that instant. Each agent’s velocity is updated
according to their new acceleration, and their new positions are calculated. A
physics check tweaks the simulated positions of two agents if they occupy the
same space. The dogs can always see all the sheep, and the experiment was
repeated for sheep with a small (60) and large (600) visible range.

2.2 Sheep Agent Model

Each sheep experiences a weighted combination of three virtual forces (Fig. 1a)
exerted by agents within their visual range: repulsion from visible dogs (FD),
very short range repulsion from any other sheep (FS), and a longer range social
attraction to other sheep (FG).

F = KDFD + KSFS + KGFG (1)

Here, KD = 20, KS = 200 and KG = 1, and are parameters governing the
strength of the influence of each of the three force. The forces are determined as
follows:

FD =
D∑

k

si − dk

‖si − dk‖e−λD‖si−dk‖ (2)
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(a) (b)

Fig. 1. The virtual forces acting on (a) a sheep, si, and (b) a dog, dk, where C is the
overall flock centre of mass, Ci is the centre of mass for visible sheep in si’s preferred
social group, and C′

i is the centre of mass for sheep that are outside this group, W
is the dog’s current steering point, R̂CD, R̂CW , R̂DW and R̂DT are unit vectors, and
S = {s1, s2 . . . sN} is the set of visible sheep.

FS =
S∑

j �=i

si − sj

‖si − sj‖e−λS‖si−sj‖ (3)

FG =

⎧
⎪⎨

⎪⎩

λG
Ci−si

‖Ci−si‖ + (1 − λG) C−si

‖C−si‖ if λG > 0

|λG| C′
i−si

‖C′
i−si‖ + (1 − |λG|) C−si

‖C−si‖ if λG ≤ 0
(4)

where D and S are the set of visible dogs and visible sheep respectively, λD and
λS are set to 0.1 & 0.6 respectively and determine the length scale of the two
repulsive forces. The social grouping mechanic uses three centre of mass: C, Ci

and C ′
i. These are the centres of mass for (i) all visible sheep, (ii) all visible sheep

in i’s target social group and, (iii) all visible sheep not in i’s target social group,
respectively. Centres of mass are always calculated as the average position of a
set of sheep, given by

∑
sj/N , where N is the number of sheep in the set.

The influence of a sheep’s target social group is governed by two param-
eters: the identity and location of the visible group members, and the social
bias towards the group, denoted λG. This bias controls the degree of heterophily
(−1 < λG < 0) or homophily (0 < λG < 1) displayed by the sheep. When λG = 0
sheep are influenced by group members and non group members indiscriminately.

2.3 Dog Agent Model

The strategic part of the Dog model follows that specified in [19] to identify
steering points as locations for the dogs to move towards. Initially, during the
collecting phase each dog chooses a steering point to target a peripheral sheep,
i.e., the one furthest from the flock’s centre of mass (CoM), and drives it towards
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the flock’s current CoM. Once all sheep are within a threshold distance, d, of the
CoM, the dogs transition from collecting to driving. During the driving phase,
the dogs move the flock towards the goal by choosing a steering point which is
colinear with the goal and the flock CoM. A dog will re-collect any sheep that
strays further than 1.6d from the CoM during driving. The dogs have a visible
range of 600.

To enable multiple dogs to coordinate their activities, the space occupied by
the flock is partitioned into Voronoi cells seeded with the location of the dogs.
This partitioning is performed at a global level. During the collecting phase,
each dog targets a succession of the most peripheral sheep within its own cell.
A single dog is then chosen to drive the flock during the driving phase while the
other dogs hold a position away from the flock (unless and until a sheep strays
too far from the flock).

A dog’s movement between steering points in controlled by a reactive con-
troller comprised of two behaviours: a force to interact with the sheep (FH) and
a repulsive force to avoid getting too close to other dogs (FD). The resultant
behaviour is a weighted vector of these forces:

F = KHFH + KDFD (5)

where KH = 1 and KD = 10.
The repulsion, FD, is designed to causes the dog (dk) to rotate around another

dog (dj) rather than simply be repulsed. This creates a graceful way of handling
deadlock situations and is modelled as:

FD = FDD + 0.75F⊥DD (6)

where:

FDD =
D∑

j �=k

dk − dj

‖dk − dj‖ (7)

The herding force, FH , is a weighted combination of 3 behaviours: Repulsion
from sheep (FF ), attraction towards the current steering point (FW ), and an
orbital force around the flock (FT ). These behaviours interact to cause the dog
to move around the flock, towards the steering point, at a sufficient distance
from the sheep to leave them undisturbed. As the dog approaches the steering
point, the repulsion to the sheep rolls off and it moves closer to interact with its
target sheep. The forces are combined via the equation:

FH = KF FF + KW FW + KT FT (8)

where KF = 20, KW = 2, and KT = 8.
The herding behaviours in Eq. 8 are a function of the dog position dk, the

positions of the sheep S = {s1...sN}, and the angular error (θDCW ) between the
dog’s desired and current approach directions (Fig. 1b). The component forces
are calculated as:
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(a) (b)

Fig. 2. a) The roll off in sheep repulsion force, HF = 1 − e−2|θDCW |, as the dog
approaches its steering position, b) The magnitude of the orbital force rolls off as the
angle between the ideal and current approach direction decreases. The sign ensures the
dog takes the shorter orbital direction around the flock.

FF = HF (θDCW )
S∑

i

dk − si

2‖dk − si‖ (9)

FW = R̂DW (10)

FT = HT (θDCW )R̂DT (11)

HF (θDCW ) rolls off the sheep repulsion as the dog lines up with its steer-
ing point. The form of HF (θDCW ) is given in Fig. 2a. The orbital force (FT )
acts tangentially to the flock circumference, and its magnitude is controlled by
HT (θDCW ) which, similar to the sheep repulsion, rolls off as the dog approaches
its steering point. The form of HT (θDCW ) is shown in Fig. 2b.

3 Results

The following results characterise the performance of the multi-agent herding
system as we vary three aspects: i) the number of different sheep social groups,
ii) the nature of the social group bias, and iii) whether a sheep’s target social
group is its own group, or a different group. System performance is measured
in terms of minimising goal absement, i.e., minimising the distance between the
goal location and the centre of mass of all sheep, C, integrated over time. While
this doesn’t capture the cohesion of the flock explicitly, it proved to be a reliable
indicator of how difficult the task was to complete.

Figure 3a shows results for scenarios in which a sheep’s own social group is
also its target social group. When sheep are attracted towards members of this
social group (homophily, λG > 0), the performance of the system degrades as
heterogeneity increases. That is, the more social groups exist within the flock,
the harder the flock is to herd. By contrast, when each sheep is attracted to
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Fig. 3. Herding performance under two flock social structures: a) sheep are influenced
by their own social group, b) sheep are influenced by another social group. In both
cases, negative social bias extinguishes the effects of heterogeneity. However, under
positive social bias, increasing heterogeneity helps or hinders performance depending
on the flock social structure.

flock members outside its target social group (heterophily, λG < 0), the impact
of heterogeneity is extinguished. This makes flocks easy to herd regardless of
the social structure within the flock. These results can be explained by noting
that heterophily tends to encourage mixing of the flock’s social groups resulting
in global cohesion, whereas homophily tends to encourage each social group to
form a sub-flock, reducing the overall global cohesion of the flock and thereby
making it more difficult to herd. Increasing the number of types exacerbated this
effect of homophily. In summary, when agents are attracted to their own group,
heterogeneity has a negative effect on performance, but this does not hold when
agents exhibit heterophilic behaviour.

Figure 3b depicts an analogous set of results for the herding system where a
sheep’s target social group is not its own but instead one other social group in
the flock. The target social group is determined according to a ring arrangement.
For n social groups, G1, G2, through Gn, members of group Gi are influenced
by members of Gi+1 and members of group Gn are influenced by members of
G1. The nature of the influence may be positive (each sheep is attracted towards
members of its target group, λG > 0) or negative (each sheep is attracted towards
sheep that are not members of its target group, λG < 0).

Under these conditions, the impact of heterogeneity changes. As before, for
λG < 0 performance is not influenced by heterogeneity, with herding being easy
regardless of the number of social groups within the flock. However, where λG > 0
(i.e., sheep are attracted to their target social group), increasing heterogeneity
can either improve performance (when social bias is weak, 0 < λG � 0.6),
or decrease performance (when social bias is strong, 0.6 � λG < 1.0). The
interaction between positive social bias and heterogeneity can be explained by
noting that strongly positive social bias means sheep are strongly attracted to
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Fig. 4. As Fig. 3 except sheep vision range is increased from 60 to 600.

their target group CoM, Ci. A large number of groups and the fixed population
size means only a small number of sheep are in each group. This, combined
with the limited visible range (60), creates circumstances where sheep in the
same social group calculate different Ci’s which causes the flock to fragment.
This does not occur when the social bias is weekly positive due to sheep being
attracted to the CoM of all visible sheep, C, which is more consistent across a
group of sheep. Consequently, results for sheep with a much larger sensor range
extinguish this effect (Fig. 4). Note also that while the differences in performance
depicted in Fig. 3a could be attributable to a difference between the number of
sheep inside and outside each social group, the contrast between Fig. 3a and
Fig. 3b cannot be so attributed as the number of members within social groups
is equivalent between these two sets of results, indicating that it is the nature of
the flock heterogeneity that is accounting for performance differences.

4 Conclusions

By characterising how the performance of a relatively simple multi-agent system
changes as system heterogeneity is varied, both in terms of its magnitude and
character, we have shown that understanding whether heterogeneity will be a
positive or negative influence on multi-agent systems is a subtle question. Sim-
ply knowing whether or not a system is heterogeneous, or knowing the amount
of heterogeneity exhibited by a system is not enough to anticipate MAS design
challenges or guide good MAS design decisions. A deeper understanding of the
link between heterogeneity and multi-agent system dynamics is needed. Future
work will take this a step further by investigating the effect of functional het-
erogeneity, such as movement speed and sight range, on the herding problem.
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Abstract. Structure from Motion (SfM) is the technology of recovering the 3D
model from multiple 2D views. It has received a great attention from computer
vision community to construct large scale 3D models whose spatial resolution
of comparable quality to LiDAR. Nowadays, aerial SfM is becoming even more
important due to the rapid growth of low cost commercial UAV and small satel-
lite market. This paper presents the evaluation of an OpenCV implementation of
incremental SfM approach on open source data. The results of 3D construction
obtained by OpenCV are compared to Visual SfM program in terms of precision,
density of features and spatial resolution.

Keywords: 3D reconstruction · Structure from motion · OpenCV

1 Introduction

Light detection and ranging (LiDAR) is very useful 3D data source that is commonly
adopted to construct 3Dmodels of theworld [1–4]. An increasing number of applications
in the field of geography and environmental science require 3D model as input source
such as remote sensing [5–7], topographic mapping [8, 9], and geographic information
systems (GIS) [10, 11]. LiDAR sends out pulses of laser light and measures the exact
time it takes for these pulses to return as they bounce from the ground. Then through
measuring the timing and intensity of the returning pulses, it can provide readings of the
terrain and of points on the ground.

The 3D map generated from LiDAR provides elevation information, which can be
colorized based on either elevation or intensity to aid interpretation. The major advan-
tages of LiDAR are the accuracy in terms of spatial resolution, and its capability of
capturing 3D data in the day as well as in the night time. In addition, LiDAR performs
well when it used to capture 3D data over terrains that contain power lines and dense
vegetation [12, 13]. However, a visual inspection of the results shows that the 3D point
cloud constructed by LiDAR in urban areas is difficult to interpret, and this may be
explained due to the absence of the color in the point cloud which has a strong rele-
vance to object recognition. Moreover, LiDAR is high cost because in addition to the
laser sensor that captures 3D data, some other sensors are usually required such as high
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precision satellite positioning system (GNSS) and inertial measurement unit (IMU) in
order to determine the position of LiDAR in space.

Recently, the Structure fromMotion (SfM) technology has received a great attention
from the researchers of computer vision community to construct large scale 3D models
whose spatial resolution of comparable quality to Lidar [14–19].

Nowadays, aerial SfM is becoming evenmore important due to the availability of low
cost commercial UAV and small satellite market. However, the images should captured
at the same height and contain at least 50% overlap in order to make SfM more suitable
for 3Dmapping. The output of SfM is a 3Dmodel that contains not only elevation/height
information, but also texture, shape, and color for every point on the map, which enables
easier interpretation of the resulting 3D point cloud. Moreover, using low cost RGB
cameras for capturing the images, then processing these images based on SfM will
reduce the cost of 3D construction compared to Lidar [18].

Structure from Motion is similar to visual simultaneous localization and mapping
(visual SLAM) in robotics [20]. The work [21] demonstrated that visual SLAM can
be considered as a special case of SfM. However, both visual SLAM and SfM require
computer vision algorithms for 3D mapping by using RGB cameras [22]. While LiDAR
requires knowledge about how to exploit 3D data, and construct a surface model based
on geometry post processing algorithms. Hence, the choice between LiDAR, visual
SLAM or SfM depends on many factors such as the desired 3D output, the considered
application, the available datasets, and the equipment to be used for 3D mapping.

There have been many different implementations of SfM pipelines in the literature.
This paper searched for the most effective pipelines with publicly available source code
that could allow customization of the pipeline itself. Examples of the available pipelines
include the followings. Bundler [23] is a 3D reconstruction software that provides all
of the executable version and source code. COLMAP [24] is a SfM and Multi-View
Stereo (MVS) pipeline with a graphical and command-line interface. OpenMVG [25],
is a SfM library well documented and accessible, including all the dependent libraries
for simple installation. VisualSFM [26] is GUI application for 3D construction from a
set of uncalibrated images based on SfM and MVS software. Theia [27] is a computer
vision library aimed at providing efficient and reliable algorithms for SfM.

This paper presents the evaluation of anOpenCV implementation of incremental SfM
approach [28] on open source data. Efficient algorithms are used in this implementation
such as ORB with brute force for features detection and matching. The rejection of
outliers based on RANSAC to obtain a robust estimation. Moreover, Google Ceres
solver is embedded in this code to further optimize the 3D model by minimizing the
reprojection errors given by Levenberg–Marquardt algorithm.

To the best of our knowledge this the only OpenCV implementation of incremental
SfM that is available as open source code in the internet. However, it is a monocular SfM
approach which considers that the images are captured by the same camera. Therefore,
the contributions of this paper are two folds. First, the monocular SfM approach of
[28] is extended to multi view SfM which makes it possible to construct 3D point
cloud using images taken from different cameras that is more advantageous than a
monocular camera. Second, a comparison is made between the characteristics of the
OpenCV implementation of SfM and Visual SfM program.
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The remainder of this paper is structured as follows. Section 2 describes the algorithm
of incremental SfM. Section 3 presents the OpenCV implementation and the experimen-
tal results. Section 4 presents the comparison made between the OpenCV and Visual
SfM program. Section 5 presents the conclusions and the future works.

2 Algorithmic Description

There are two approaches of incremental SfM. The first approach involves performing
iteratively the two view SfM algorithm over multiple 2D views. After computing the
intrinsic and extrinsics parameters for the first two views. The next step would be to
get the 3D points of the two views using the projection matrix. Upon getting the initial
estimate of the 3Dpoints, these points have to be triangulated. Triangulation is performed
iteratively over every imagepair in a similar fashion.However, one of themain drawbacks
of this approach is that the 3D reconstruction is up to scale.Whichmeans that the motion
obtained between the two views is going to have an arbitrary unit ofmeasurement, that is,
it is not in centimeters or inches but simply a given unit of scale. Thus, the reconstructed
cameras will be one unit of scale distance apart. This has a big implications when
extending the two views SfM to multiple views, as each pair of cameras will have their
own units of scale, rather than a common one.

The second approach is based on using the Perspective-n-Point (PnP) algorithm [29]
for multi view reconstruction. PnP takes care about the scale issue that existed in the
first approach. However, it is observed in some cases that PnP algorithm don’t give
a reasonable projection matrix. Therefore, PnP is used in conjuction with RANSAC
algorithm which is more robust. After getting the projection matrices of the first image
pair, a triangulation is performed to get the initial 3D points. Now a baseline structure
is computed, the projection matrix of the next view is calculated by using the 3D points
that correspond to the 2D points of the new frame which is in turn used as input to PnP
RANSAC module. Then, the 3D reconstruction is performed by triangulation and the
process is repeated iteratively to get the projection matrix of successive views. However,
this approach involves bookkeeping which means one needs to keep a track of the 3D
points reconstructed using the previous two frames that correspond to the 2D points in
the new frame. For each point in the 3Dmodel, a vector denoting the 2D points is stored,
then features matching is used to get a matching pair.

The incremental SfM approach presented in this paper is based on the robust PnP
RANSACmodule. The flowchart of Fig. 1 shows the architecture of the incremental SfM
approach proposed in this paper. It mainly introduces an additional operation compared
to the monocular approach of [28], that is extract EXIF data. This operation is needed
only for initialization at the beginning of the 3D reconstruction, because after that all
the parameters are refined based on bundle adjustment.

The flowchart of Fig. 1 cover the following four phases.

1. Extraction of EXIF data.
2. Finding 2D corresponding features points.
3. Initialization.
4. Incremental reconstruction.



Evaluation of an OpenCV Implementation of Structure 161

Compute baseline camera pose

Pick the best baseline image pair

Triangulate the initial 3D point cloud

3D point cloud

Triangulation

Compute new camera pose 
based on PnP ransac

Find 2D-3D correpondence

Bundle adjustment

Add more views

Set of RGB Images

Extract EXIF data

Find 2D corresponding feature points

Bundle adjustment

In
iti

al
iz

at
io

n

In
cr

em
en

ta
l r

ec
on

st
ru

ct
io

n

Fig. 1. Flowchart of the proposed incremental SfM approach

A. Phase 1: extraction of EXIF data
EXIF information that is stored in the header of each image is parsed to get the cam-
era focal length information for each input ith image. Then the focal length is used
to construct the internal calibration matrix that is further optimized based on bundle
adjustment.
B. Phase 2: finding 2D corresponding feature points
The purpose of this phase is to detect the 2D locations of the feature points in all the
images, then estimating their corresponding points in all the possible image pairs using
RANSAC. The algorithm is described below.
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Algorithm of finding corresponding features 
Input: set of n RGB images 
For each ith image
1. Apply the robust features detector. 

End for 
For each ith and jth image pair
2. Match the features points. 
3. Compute the fundamental matrix ( ).
4. Estimate again the 2D features based on RANSAC. 

End for 
Output: fundamental matrices, corresponding feature points. 

C. Phase 3: initialization
In this phase it is desired to pick the best baseline image pair in order to construct an
initial 3D model. Indeed, if the baseline is small it is clear that it is not possible to
determine the depth of the scene.

The accuracy of the initial baseline structure will determine the quality of the 3D
model. Which means if the initialization is bad then the quality of the final 3D model
will be low. Otherwise, if the initialization is accurate, then the overall 3D model will
have a good accuracy. The initialization algorithm is given as follows.

Initialization Algorithm
Input: corresponding 2D feature points, focal lengths, base-

line=false
For the image pair with large number of matching fea-

tures
1. Compute the Homography matrix  using RANSAC

If the number of inliers is below the threshold then base-
line=true

2. Set the projection matrix of the first camera is 
where I denotes the identity matrix. 

3. Compute the essential matrix .
4. Decompose based on SVD to get .
5. Reconstruct the 3D points based on triangulation. 
6. Refine the reconstruction of the 3D model based on bundle 

adjustment.
7. Get the colors of the 3D points. 
8. Store the 3D point cloud #1. 

Else
9. Increment i and j
10. Check if the number of matches is enough then baseline is 

true
11. Back to step 3 
12. Otherwise, initialization is failed 

End if 
End for 
Output: 3D point cloud #1, .
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D. Phase 4: incremental reconstruction
After getting the initial baseline structure, the following algorithm is carried out to
construct the 3D model frommultiple views based on the robust PnP RANSACmodule.

Algorithm of incremental reconstruction 
Input: , 3D point cloud #1, 2D features points of the re-

maining images, focal lengths. 
For each registered ith image 
1. Find 2D-3D correspondence points between the 2D corre-

sponding feature points of the ith image and the 3D point 
cloud #1. 

2. Compute the projection matrix of the camera pose  based 
on PnP ransac. 

3. Reconstruct the 3D points based on triangulation accord-
ing to the initial baseline structure and the registered 
images.

4. Refine the reconstruction of the 3D model based on bundle 
adjustment.

5. Get the colors of the 3D points.
End For 
6. Increment i
7. Back to step 1

Output: 3D point cloud, RGB data, camera pose. 

3 Implementation and Experimental Results

A. Implementation based on OpenCV
OpenCVprovides a rangeof feature detectors, descriptor extractors, andmatchers.Hence
ORB (Oriented Binary Robust Independent Elementary Features) is used to get the loca-
tion of the feature points and their respective descriptors. ORB may be preferred over
traditional 2D features such as the Speeded-Up Robust Features (SURF) or Scale Invari-
ant Feature Transform (SIFT) because it is unencumbered with intellectual property and
shown to be faster to detect, compute, and match.

After detecting feature points based on ORB, brute force binary matcher is used to
get the matching, which simply matches two feature sets by comparing each feature in
the first set to each feature in the second set.

Bundle adjustment is performed by Google Ceres solver [30] that is embedded in
the code. Ceres Solver is an open source C++ library for modeling and solving large,
complicated optimization problems. It can be used to solve Non-linear Least Squares
problems with bounds constraints and general unconstrained optimization problems. It
is a mature, feature rich, and performant library that has been used in production at
Google since 2010.

Point cloud library (PCL) is used for real time visualization of the 3D reconstruction.
After compiling the code, an executable file is generated in order to run SfM process.
The point cloud that arises from the images is saved to PLY files, which can be opened
in most 3D editing software.
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B. Results of 3D construction
This section demonstrates the evaluation of the OpenCV implementaion of SfM
compared with Visual SfM program.

Visual SfM saves on computation time by using GPU-accelerated SIFT in feature
tracking to locate keypoints. In addition to its speed, Visual SfM has an excellent graphi-
cal user interface (GUI) that allows it to be operated easily.Moreover, it can be integrated
with multi view stereo programs to produce dense 3D models. For more details about
how to compile Visual SfM and use its GUI interface to generate sparse and dense 3D
models the reader is referred to [31].

However, note that any other SfM software can be used as well for comparing the
results of 3D reconstruction with Open CV.

Consider as dataset the 3 images depicted in Fig. 2(a) that are captured for façade of
Merton College. The open source data is downloaded from the following link [32]. The
ground truth model which includes 3D points, lines and cameras are shown in Fig. 2(b).
The software that is used for visualizing the (.wrl) model is view3dscene.

The results of 3D reconstruction based on Visual SfM and OpenCV are depicted in
Fig. 3. The software used for visualizing the 3D model is Meshlab.

The 3D model constructed based on Visual SfM shown in Fig. 3(a) contains 2983
points, which is very sparse and leavesmany holes on the surface.Whereas the 3Dmodel
constructed based on OpenCV shown in Fig. 3(b) contains 24482 points, which is dense
and most of the objects appear clearly on the surface of the model.

Fig. 2. Image dataset and the ground truth 3D model

4 Comparison

The comparison that is made between the OpenCV and Visual SfM program is
summarized in Table 1. The following points are noted.

• There are some algorithms that are not available about the Visual SfM that are denoted
by (n/A) in Table 1.
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Fig. 3. 3D construction based on Visual SfM and OpenCV

• Extraction of feature points in the images is the most important part of SfM process,
and consists the main difference between the approaches of Table 1. Based on the
comparative results it is noticed that SIFT algorithm used by Visual SfM is accurate
and robust but time costs even though it can be used with GPU. Whereas ORB of
OpenCV that is fast and more efficient than SIFT.

• Even though Visual SfM utilizes GPU-accelerated SIFT in feature tracking and multi
core bundle adjustment to save on computation time, but the constructed 3D model
is very sparse. In most cases the 3D point cloud generated based on Visual SfM is
refined to a finer resolution using Multi-View Stereo (MVS) programs. However, the
MVS software are computationally expensive in terms of processing time andmemory
resources because they are based on dense matching algorithms.

• The comparative results shown in Fig. 3, it is concluded that OpenCV implementation
of SfM is effective to satisfy the near real time requirements in terms of computation
time, precision and spatial resolution of the 3D model.

Table 1. Comparison between Visual SfM and OpenCV

Characteristics Visual SfM OpenCV

Features extraction SIFT ORB

Features matching Sequential preemptive Brute force

Robust estimation RANSAC RANSAC

Triangulation n/A DLT

Image registration n/A PnP RANSAC

Bundle adjustment Multicore BA Ceres

Visualization OpenGL PCL
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5 Conclusions

This paper presents the evaluation of an OpenCV implementation of incremental SfM
approach using open source data. The comparative results with Visual SfM program
demonstrate that the proposed SfM approach is capable to produce high quality 3D
point clouds in terms of precision and spatial resolution.

In the future works the following tasks are suggested. Developing the proposed SfM
approach for very large scale 3D reconstruction. Using parallel computing methods
based on GPU processors to accelerate SfM process. Investigation of visual SLAM and
3D reconstruction by considering no prerecorded dataset.
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Abstract. In this work, we present a comparative analysis of the tra-
jectories estimated from various Simultaneous Localization and Mapping
(SLAM) systems in a simulation environment for vineyards. Vineyard
environment is challenging for SLAM methods, due to visual appearance
changes over time, uneven terrain, and repeated visual patterns. For this
reason, we created a simulation environment specifically for vineyards
to help studying SLAM systems in such a challenging environment. We
evaluated the following SLAM systems: LIO-SAM, StaticMapping, ORB-
SLAM2, and RTAB-MAP in four different scenarios. The mobile robot
used in this study equipped with 2D and 3D lidars, IMU, and RGB-D
camera (Kinect v2). The results show good and encouraging performance
of RTAB-MAP in such an environment.

Keywords: Agricultural robotics · Visual SLAM · 3D lidar SLAM

1 Introduction

Precision agriculture relies on collecting data from multiple sensors to help
improving farm management and crop yield. Better management of the farm
requires continuous monitoring of the plant health and soil condition, discover-
ing diseases at an early stage and reducing chemical treatment. To achieve these
goals, one solution would be to use a mobile robot to autonomously inspect the
plants and the crops. In that context, the mobile robot must have an accurate
representation of the farm to accurately localize itself and navigate to the goals.
For this reason, many solutions have been proposed to overcome the localiza-
tion problem in an outdoor environment. The most common solution is to use
Real-Time Kinematic Global Positioning Systems (RTK-GNSS) [1], however,
this solution is quite expensive and requires good coverage of base stations to
guarantee accuracy. Other solutions rely on consumer-grade GNSS with fusing
the output with different onboard sensors to enhance localization accuracy [2].

GNSS is not always available and the signal may not be reliable due to
environmental conditions; loss of signal for the autonomous robot may lead to
c© Springer Nature Switzerland AG 2021
C. Fox et al. (Eds.): TAROS 2021, LNAI 13054, pp. 168–177, 2021.
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catastrophic failures. Therefore, alternative solutions have been proposed based
on the Simultaneous Localization and Mapping (SLAM) concept [3], where robot
pose is estimated using sensory input, while at the same time building map of
the environment. Various SLAM systems have been developed in that regard
[4]. The selection of a suitable SLAM system depends on multiple factors, such
as type (indoor or outdoor) and scale of the environment. Another factor is the
sensors’ cost, for example, some systems rely on data from relatively expensive
3D lidars whilst others use data from cheap consumer-grade monocular cam-
eras. However, most of the developed solutions were targeting either the indoor
environments or outdoor urban environments [3]. Nevertheless, SLAM in agri-
cultural applications is still a growing field due to challenges related to harsh
environmental conditions, seasonal changes in appearance, and repeated visual
features in large open fields.

The main contributions of this paper are (i) Releasing to the public an open-
source realistic vineyard simulator, offering uneven terrain and five different
stages of plant growth1. (ii) Comparing and benchmarking 4 SLAM systems in
an environment with repeating structure and appearance. The algorithms chosen
for this study represent the sate-of-the-art visual and 3D-lidar systems including
LIO-SAM [5], StaticMapping [6], ORB-SLAM2 [7], and RTAB-MAP [4].

2 Related Work

There has not been much work done in comparing various SLAM systems specif-
ically for the vineyard environment, nevertheless, there have been many research
papers dealing with analyzing and comparing SLAM methods for indoor static
environments. In this section, we review the most relevant papers in this area.

The authors in [8] evaluated the trajectory generated from different ROS-
based SLAM algorithms in a typical office indoor environment. The mobile robot
was equipped with a 2D laser scanner, a monocular and stereo camera. The eval-
uation was on a specifically acquired data-set. The authors used the estimated
trajectory from the best performing 2D lidar SLAM as the ground truth for
visual SLAM systems. The results were good and encouraging for RTAB stereo
with Root Mean Square Error (RMSE) of 0.163 m, and for ORB-SLAM monoc-
ular with RMSE of 0.166 m. A precise laser tracker was used in [9] for accurate
ground truth to evaluate the accuracy of the map and the expected trajectory
generated from the three most common 2D SLAM algorithms, gmapping, hec-
tor slam, and google cartographer. The results showed that in this particular
scenario, Google Cartographer is the most accurate algorithm compared to oth-
ers.

Part of the work in [4] is an evaluation of the trajectory performance between
different sensor configuration of RTAB-MAP (stereo and lidar), LSD-SLAM
(stereo), ORB-SLAM2 (stereo) and SOFT-SLAM (stereo) in the outdoor KITTI
dataset [10]. At this dataset, the authors stated both lidar and stereo configura-
tion have followed well the ground truth. However, in some sequences with not
1 github.com/LCAS/bacchus lcas.

https://github.com/LCAS/bacchus_lcas
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a complex structure, stereo setup systems outperform the lidar configuration of
RTAB-MAP. Stereo RTAB with ORB feature detection has performed well in 9
out of 11 sequences, but that configuration was computationally expensive and
was not able to meet real-time constraint on their hardware setup.

An Extended Information Filter (EIF) was used for mapping an agricultural
environment and localizing a mobile robot [11]. The system makes use of a 2D
laser scanner and monocular camera to detect olive tree stems. The tests were
done in a real agricultural environment. However, the authors stated that they
find some errors in identifying features and detecting loop closure. In [12] the
authors evaluated visual SLAM methods, such as ORB-SLAM2 and S-PTAM,
against visual-inertial SLAM system as S-MSCKF on the Rosario dataset [13].
The result showed poor accuracy and robustness compared to an indoor or urban
environment, where those algorithms are designed for. Another study [14] com-
paring three visual SLAM algorithms in an orchard of fruit trees. The results
showed that ORB-SLAM2 is the most accurate system with its loop closure
ability.

Based on the above literature, there is a lack of comparison between SLAM
methods in vineyards environment. Therefore, more research needs to be done
in that field.

3 SLAM Algorithms

The SLAM systems used in this work can be classified into two main categories:
visual SLAM and 3D lidar SLAM. This section briefly describes the four tested
algorithms, RTAB-MAP and ORB-SLAM2 under visual SLAM, LIO-SAM, and
StaticMapping under 3D lidar SLAM. Those systems have been chosen since they
are the state-of-the-art, and the most popular algorithms by the time writing this
paper. However, StaticMapping is not very popular yet. A brief list of sensors
employed by each system is shown in Table 1 including the front-end back-end
algorithms used by each method. The sensors that are used by each system in
our setup are marked as bold text in the table.

3.1 RTAB-Map

Real-Time Appearance Based Mapping (RTAB-Map) is a graph-based SLAM
approach [4] that supports input from RGB-D, Stereo, and lidar sensors. It
combines two main algorithms which are loop closure detector and graph opti-
mizer. The system uses the bag-of-words concept for loop closure detection by
determining if the new image comes from a previously visited location or a new
location; If the hypothesis of the new image is above a certain threshold, the
new location will be added to the map as a new graph constraint. Then, in the
background, the map graph is optimized to reduce the drift error in the overall
map [15]. To achieve real-time performance for large scale environments, the
system has a memory manager that limits and control the number of locations
that are used for loop closure detection [4]. The system implements two standard
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Table 1. The SLAM systems used for benchmarking together with supported sensors,
front end and back end algorithms.

System Sensors support Front-end Back-end

LIO-SAM 3D lidar + IMU,
GNSS (Optional)

ICP GTSAM

Static-
Mapping

3D lidar, IMU
(Optional),
GNSS (Optional)

ICP GTSAM

ORB-
SLAM2

Monocular, RGB-D or
Stereo cameras

ORB features extraction.
PnP RANSAC for
motion estimation

g2o

RTAB-
MAP

RGB-D or Stereo cam-
era (Mainsensors)
2D or 3D lidar (Optional
to enhance map build
from main input
sensors)

Visual odom:
GFTT/BRIEF
for feature detection,
NNDR for feature
matching,
PnP RANSAC for
motion estimation
lidar odom: ICP

GTSAM
(default)
g2o,
TORO

odometry methods, Frame-To-Map (F2M) and Frame-To-Frame (F2F) using 3D
visual features. In F2M, the system registers the new frame against upon local
map, while the F2F registers the new frame to the last key-frame. RTAB-MAP
can generate 2D and 3D occupancy grid map with dense point cloud, which is
very useful for robotics applications. Furthermore, there is a full integration of
this algorithm in Robot Operating System (ROS) as rtabmap ros2 package.

3.2 ORB-SLAM2

ORB-SLAM2 is a feature-based visual SLAM method that can create a sparse 3D
map, which can be used with monocular, stereo, and RGB-D cameras to compute
the camera trajectory. This algorithm has three main threads running in parallel,
which enable real-time performance. The first thread is for tracking the camera
pose in the new frames by finding feature matches in the local map. The second
thread for local map management and optimization by applying local Bundle
Adjustment (BA). The final thread is for loop closure detection and pose-graph
optimization; this process is mainly for correcting the accumulated drift [7]. The
system uses the bag-of-words DBoW2 concept [16] for place recognition, loop
closure, and localization. However, when mapping a large-scale environment, the
processing time of loop closure detection and graph optimization will increase
as the map grows. This leads to a significant delay when making loop closure
corrections after being detected. This system does not generate an occupancy

2 wiki.ros.org/rtabmap ros.
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grid map, which makes it difficult to use directly in real robotics applications
[4]. ORB-SLAM2 does not have full integration with ROS, it only subscribes to
the camera topics and there are no output topics. However, it offers a visualizer
for the trajectory and a sparse point cloud.

3.3 LIO-SAM

LIO-SAM is a factor graph tightly-coupled lidar inertial odometry via smoothing
and mapping system [5]. The main input sensors to the system are 3D lidar and 9-
axis IMU, but it can also use data from GNSS sensors for absolute measurement
and map correction. LIO-SAM estimates lidar motion during the scan by using
the raw IMU data. Then, for point cloud de-skewing, it assumes a nonlinear
motion model. The novelty of this algorithm is that it uses the idea of keyframes
and sliding windows from visual SLAM systems. In this way, the scan registration
is performed at the local window scale instead of the global map improving the
real-time performance significantly. On the other hand, the old scans are used
for pose optimization. The IMU data is critical for this system to work properly.
LIO-SAM is fully integrated into ROS. The generated output map and trajectory
could be saved on a disk after finishing the scan.

3.4 StaticMapping

StaticMapping is a 3D lidar SLAM algorithm with optional IMU, odometry and
GNSS inputs [6]. The back end of this algorithm uses M2DP [17] global descriptor
for loop closure detection, and iSAM2 [18] for smoothing and mapping. This is
an offline map-building algorithm from the recorded data.

4 Evaluation

This section describes our simulation environment, the different scenarios to test
the algorithms, and the metrics we used for evaluation. Finally, we present and
discuss the results.

4.1 Environment

We created a digital twin of an actual vineyard located at the University of
Lincoln Riseholme campus under ROS/Gazebo as shown in Fig. 1. The virtual
environment offers realistic uneven terrain, plus multiple growth stages of the
vine plants and the crops. The vineyard has nine rows that are 18 m long with
a 3 m distance between the rows. The mobile robot used is Thorvald produced
by Saga Robotics3 equipped with the following sensors: two 2D Hokuyo laser
scanners, 3D lidar VLP-16 by Velodyne, ROS-IMU plugin and a Kinect V2
camera. A video of the environment can be seen in the link below4.
3 sagarobotics.com/.
4 Field: youtu.be/L9ORZNyWdT0. Uneven terrain: youtu.be/L9ORZNyWdT0.

http://sagarobotics.com/
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(a) Real field (b) Simulation (c) Growth stages

(d) Robot front camera view (e) The final growth stage

Fig. 1. Digital twin of the vineyard environment.

4.2 Testing Scenarios

We designed four different scenarios in which we evaluated the 4 different SLAM
methods we aim to compare.

– Scenario 0 (S0): Move in a straight line. That is mainly to evaluate the drift
of the generated trajectory. Trajectory length is 25 m.

– Scenario 1 (S1): Send the robot to inspect a row and get back from the same
row. Trajectory length is 48.6 m.

– Scenario 2 (S2): Send the robot to inspect a row and get back from the
adjacent row. Trajectory length is 54.6 m.

– Scenario 3 (S3): Inspect multiple rows. That is to simulate a real-life inspec-
tion scenario with multiple loop closures. Trajectory length is 101.2 m.

4.3 SLAM Algorithms Configurations

As mentioned earlier, the tested SLAM systems have some integration with ROS,
either partially like ORB-SLAM2, or fully as in LIO-SAM. The configuration
file for each algorithm has been modified to work with our setup. (a) For ORB-
SLAM2, we used the RGBD configuration and modify the camera parameters in
the setting file based on the used camera. (b) In RTAB-MAP, the configurations
are passed through the launch file. We used the rgbd sync node to synchronize
the RGB-D camera data before passing them to rtabmap ros node. A laser scan
data was passed to construct a 2D occupancy grid map. (c) StaticMapping is an
offline system, it can only construct the map from recorded data. The default
parameters were used and accumulate cloud num was set to 1. (d) For LIO-SAM
we used the default configurations but disabled the GNSS optimization.
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4.4 Metrics

The output trajectory of a SLAM system can be evaluated by finding the abso-
lute distance between the estimated trajectory and the ground truth. The Abso-
lute Trajectory Error (ATE) is defined as the average deviation from the ground
truth trajectory [19].

ATErmse =

(
1
n

n∑
i=1

‖trans(Q−1
x SPi)‖2

) 1
2

,

where i is the time sample or frame, SPi is the spatial translation at time i,
trans is the translation error, and Qx is the ground truth pose. To find the
statistical metrics of ATE, we used the open-source library evo5 to calculate the
following metrics: Maximum, Mean, Median, Root Mean Square Error (RMSE),
and Standard deviation (STD).

4.5 Results

The error metrics of the experiments are summarized in Table 2. Figure 2 shows
the output trajectories of the four algorithms compared to the ground truth. As
it can be observed from Table 2 RTAB achieves superior performance with the
lowest RMSE across all scenarios compared to other systems.

Table 2. ATE statistical metrics for various SLAM systems on 4 different scenarios
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MAX 1.65 1.55 1.62 0.20 1.32 1.85 1.42 0.08 0.83 0.79 1.34 0.20 0.77 2.64 8.95 0.12

MEAN 1.00 0.97 0.81 0.08 0.53 0.77 0.86 0.05 0.20 0.42 0.69 0.12 0.36 1.23 4.35 0.07

MEDIAN 1.11 1.03 0.81 0.05 0.40 0.29 1.04 0.05 0.18 0.40 0.78 0.12 0.34 0.98 3.91 0.06

RMSE 1.13 1.07 0.95 0.09 0.68 1.04 0.96 0.05 0.22 0.45 0.84 0.14 0.40 1.51 5.22 0.07

STD 0.53 0.46 0.50 0.05 0.43 0.70 0.42 0.01 0.10 0.17 0.47 0.06 0.19 0.88 2.90 0.03

In the first scenario S0, all SLAM methods except RTAB-MAP reported big
drift in the estimated trajectory, with a maximum value of 1.65 m from LIO-
SAM, while RTAB-MAP has the minimum drift with a maximum value of 0.20
m and RMSE of 0.09 m. For scenario S1, RTAB-MAP has the minimum drift
and smallest RMSE with 0.05 m, the performance of the remaining algorithms
were close. There is no loop closure in this scenario even though the robot got
back to the same place, which is due to the difference in the camera viewpoint. In

5 github.com/MichaelGrupp/evo.

https://github.com/MichaelGrupp/evo
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(a) S0 (b) S1

(c) S2 (d) S3

Fig. 2. Output trajectory from various SLAM systems in different test scenarios.

(a) LIO-SAM (b) StaticMapping (c) ORB-SLAM2 (d) RTAB-MAP

Fig. 3. Output maps and estimated trajectory from different SLAM system for sce-
narios 3

scenario S2, the second-best algorithm after RTAB-map is LIO-SAM, followed by
StaticMapping, and finally ORB-SLAM2 with the largest RMSE of 0.84 m. The
final scenario is the most interesting and realistic one, where the robot traverses
multiple rows before going back to its starting point. This scenario with multiple
loop closures represents a very interesting benchmark for the algorithms, as
represented in Fig. 2. ORB-SLAM2 has failed to create a reliable map, we think
that might be due to the repeated visual appearance of the environment; on
the other hand, LIO-SAM and StaticMapping did not completely fail. However,
the drift of the trajectory is too large to be used for robot navigation. This is
because, in a vineyard, the distance between two rows is usually between 2 to
3 meters, in which if the mobile robot fails to localize itself accurately it can
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cause damage to the crops. The map generated for scenario 3 from the different
systems is shown in Fig. 3.

Even though both ORB-SLAM2 and RTAB-MAP are using the bag-of-words
concept for loop closure detection, the pose-graph optimization is different. In
ORB-SLAM2, global bundle adjustment is used for the pose optimization process
after loop closure. So, since there are lots of visual features shared between the
keyframes due to similar appearance, this algorithm fails to estimate reliable
trajectory as represented in Fig. 2d and Table 2. On the other hand, RTAB-MAP
is much more robust to false loop closures, since it checks the transformation
in the graph after the optimization process, if the translation variance was too
large, the loop closure is rejected. The lidar methods did not suffer from repeated
feature issue, due to the large field of view of the 3D lidar.

5 Conclusion

In this work, we compared four state-of-the-art visual and 3D lidar SLAM algo-
rithms in a challenging simulated vineyard environment with uneven terrain.
The main challenge for the visual SLAM system in such an environment is rep-
resented by a repeated pattern of appearance and less distinct features. This
may result in false loop closures. The state of the art ORB-SLAM2 failed when
the robot moved across multiple rows with multiple loop closures, we think this
may be due to an identical visual appearance between vineyard rows. RTAB
map is much more robust to invalid loop closure. The trajectory generated from
the RTAB-MAP algorithm was the most accurate in our test scenarios. The
estimated trajectories from LIO-SAM and StaticMapping suffer from big drift
but the trajectories shape is acceptable, we believe in real-world tests, this drift
could be fixed with the availability of GNSS signal. For future work, we will
add some unique features within vineyard rows to test the reliability of ORB-
SLAM2. Those unique features could be to have some variation in the plant
models instead of having them identical across all the rows. In addition, we
would like to test the localization ability within the generated maps from the
SLAM systems. Finally, we will test those methods in a real vineyard.

Acknowledgement. This work has been supported by the European Commission as
part of H2020 under grant number 871704 (BACCHUS).

References

1. Nørremark, M., Griepentrog, H., Nielsen, J., Søgaard, H.: The development and
assessment of the accuracy of an autonomous GPS-based system for intra-row
mechanical weed control in row crops. Biosys. Eng. 101(4), 396–410 (2008)

2. Imperoli, M., Potena, C., Nardi, D., Grisetti, G., Pretto, A.: An effective multi-
cue positioning system for agricultural robotics. IEEE Robot. Autom. Lett. 3(4),
3685–3692 (2018)



Benchmark of Visual and 3D Lidar SLAM Systems 177

3. Aguiar, A.S., dos Santos, F.N., Cunha, J.B., Sobreira, H., Sousa, A.J.: Localization
and mapping for robots in agriculture and forestry: a survey. Robotics 9(4), 97
(2020)
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Abstract. Real-time and accuracy are the two most important indi-
cators for unmanned vehicle localization. In this paper, we propose a
novel map representation and its corresponding Lidar-only localization
framework. In essence, we first extract geometric features from Lidar
key-frames, and bundle these features with their observation poses (i.e.,
ground truth) to form a prior map named Pose-Feature Map. Then, the
position of vehicle will be achieved by integrating Lidar-Odometry (LO)
and Map-Matching (MM) with the Pose-Feature Map. In our framework,
these two solutions are complementary. LO provides smooth and real-
time pose estimation for MM, while MM can correct the accumulated
drift of LO. During MM, we adaptively generate local maps to replace
the global map for matching. Therefore, our proposed framework can
further reduce the mismatch between the current frame and the map
while maintaining low computational complexity. We demonstrated the
framework in the KITTI dataset. The results confirm that our approach
is superior to independent localization solutions in terms of real-time and
accuracy.

Keywords: Localization · Lidar Odometry · Pose-Feature Map
matching · Integration

1 Introduction

As one of the key technologies of unmanned vehicles, localization has a variety
of mature technical solutions. However, due to the challenges posed by the envi-
ronment and sensors, no localization solution can be applied to all scenarios. For
example, the Global Navigation Satellite System (GNSS) is widely used in most
open environments, but due to signal occlusion and canyon effects, it cannot
be used in the closed or semi-enclosed environment (e.g., the garage, and the
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urban building block). Therefore, in order to solve the localization problem of
unmanned vehicle, we need multiple solutions to achieve localization redundancy.

Our research motivation comes from the specific requirements of Lidar for
vehicle self-location. In the past decade, various Lidar-only localization solu-
tions have emerged. It can be simply divided into Simultaneous Localization
And Mapping (SLAM) and Map-Matching (MM) solutions. Lidar-SLAM solu-
tions, such as [3,7,12,14], estimate 6 Degrees of Freedom (6-DOF) of motion
by comparing the continuously scanned point clouds frame by frame and regis-
tering them finely. Therefore, their localization frequency is equal to the Lidar,
and their real-time performance is better. Nevertheless, all SLAM solutions have
their inherent flaws. In long-distance driving, the lack of prior constraints will
cause errors to accumulate, and the trajectory drift will become larger and larger,
until the localization is lost. Lidar-MM solutions, such as [8,9,13], register the
Lidar scans with the prior map to obtain the localization results, so that the
above-mentioned error accumulation does not occur. However, a large prior map
will lead to heavy computation and poor real-time localization, and its repeti-
tive structure will lead to mismatches. This makes it unsatisfactory in practical
applications.

To address these challenges above, we propose a novel map representation
called Pose-Feature Map to reduce the computation and mismatch in MM,
and a new framework that integrates MM and LO to increase the frequency of
localization. During operation, the Pose-Feature Map change MM from frame-
to-global-map matching into adaptive frame-to-local-map registration, thereby
reducing the computation and avoiding mismatches caused by repeated envi-
ronmental structures. Moreover, interpolating the SLAM localization result into
MM can make it smoother and more real-time. Also MM localization results can
correct the cumulative drift of SLAM. Their complementary allows us to obtain
real-time and accurate localization results.

The remaining part of this paper is organized as follow. Related research
work of Lidar localization solutions is presented in Sect. 2; Sect. 3 introduces
the framework architecture and the background of Lidar-only odometry; Sect. 4
presents the Pose-Feature Map and the special Map-Matching base it in detail;
the experiment and conclusion are located in the Sect. 5 and 6, respectively.

2 Related Work

Lidar is considered to be an indispensable sensor for future unmanned vehicles.
How to apply Lidar as the only sensor to the localization system, in recent
years, three methods have been mainly proposed: Lidar-SLAM, Lidar-MM, and
integration scheme.

Lidar-SLAM is a branch of the SLAM system. Among the Lidar-SLAM
solutions in recent years, the most popular one is LOAM [14]. It performs down-
sampling through curvature features, and converts the real-time registration
from point-to-point to point-to-line/surface in iterative optimization. LOAM has
maintained a long-term leading position in the KITTI test. In LeGO-LOAM [12],
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the outlier and ground points in scans were segmented out before registration,
besides loop detection was added. This make LeGO-LOAM perform better than
LOAM in certain environment. However, their biggest problem is drift, which
can also be clearly observed in the experiment part.

Lidar-MM will continuously corrects drift errors during localization. The
registration method is a decisive factor. With the development of deep learning
on 3D point clouds registration, L3-Net [9] and DeLS-3D [13] have adopted arti-
ficial neural network methods for mapping between scans and the map. However,
these AI methods are not interpretable and require expensive hardware to sat-
isfy the computation, so they are not suitable for vehicle platforms. In contrast,
the traditional method, such as ICP [11] and NDT [1], are lighter and more
interpretable. For example, HDL [8] exploits multi-thread NDT. However, the
general method of extracting local maps based on a certain radius can easily
lead to loss of localization in many cases. In PoseMap [6], it innovatively divides
global-map into surfel sub-maps based on the ground truth to solve the above
problems, which inspired us. However, in vehicle platform, the frequency of MM
still cannot meet the driving requirements.

Integration is actually a fusion of the above two solutions. The greatest
advantage is to make them complement each other and eliminate their own short-
comings. In LOL [10], a global positioning method that merged Segmap [5] and
LOAM is proposed to solve the long-distance drift of LOAM. [4] also integrates
information from complementary nodes such as Lidar global matching and Lidar
inertial odometry to achieve accurate and smooth position estimation. However,
they are all complex and non-lightweight.

Our solution is also the integration of SLAM and MM. In SLAM, we exploit
the LO algorithm part in LOAM and LeGO-LOAM; and in the MM scheme,
we adopt the idea of sub-map similar to PoseMap and improved it. The map-
ping scheme relies on the ground truth to provide a coherent initial map that
is sufficiently enough for waypoint localization. We believe that by combining
LO and a prior map constraints, we can complete high-frequency and accurate
localization in a long period of time.

3 Framework Architecture and Background

3.1 Framework Architecture

As shown in Fig. 1, the framework requires two inputs for operation. One is real-
time scans generated by Lidar. These input point cloud frames will be processed
and filtered by the pre-processing nodes to generate features. Another one is a
special prior map called Pose-Feature Map. It will dynamically generate local
maps based on some parameters during the running of the framework.

Next, we exploit two strategies to perform localization. LO maintains high
frequency motion estimation. The matching module intermittently matches the
scanned features and generated local maps to obtain the discrete anchor position
of the vehicle.
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Fig. 1. Structure of Lidar-only localization framework with Pose-Feature Map. The
white part is input data, the blue modules represent the LO algorithm from LOAM
and LeGO-LOAM, while the green modules are our novel map matching and integration
method. The localization results of LO and MM are Tw and Tm respectively. Mlocal is
the local maps generated by Tm and global map. In addition, the solid line represents
the high frequency, and the dashed line represents the low frequency, which are 10 Hz
and 1 Hz, respectively. (Color figure online)

Then, we apply pose graph optimization to further correct the discrete map-
ping position. Finally we combine the lidar odometry and the optimized mapping
result through interpolation, and publish it as the trajectory of the vehicle.

3.2 Lidar-Only Odometry Background

The main task of LO is to estimate high frequency self-motion based on the data
flow transmitted by Lidar. Here we apply a more mature algorithm from LOAM
[14] and LeGO-LOAM [12].

Point Cloud Pre-processing. Before performing the localization algorithm,
the framework should extract features from real-time frames to reduce the com-
putation in subsequent nodes. LOAM extract features P t

fea in Lidar scans P t

base on the smoothness of each point. Furthermore, LeGO-LOAM noticed the
interference of points generated by the ground, distant objects or plants, and
designed a clustering algorithm to detect and segment them.

Lidar Odometry. The way that LO calculates the local movement T t
l of Lidar

between two consecutive scans is to register the features P t−1
fea and P t

fea. Both
LOAM and LeGO-LOAM use KD-tree to find the corresponding point pairs,
and then use iterative algorithms (e.g., Levenberg-Marquardt) to minimize their
distance to calculate the relative motion between two frames. The whole process
can be expressed as

min
T l
t

d
(
T l
t ,X,C

)
(1)

where X is a point in P t
fea, C represent the correspond target in P t−1

fea , and
function d represent their distance.
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Fig. 2. Comparison of the maps generated by LeGO-LOAM and ground truth. The
ground truth map (The driving time is 4′36′′ and the track length is 2200 m.) is
visualized with red points, while blue is LeGO-LOAM. The larger figure on the left is
a global view, and the other three on the right are enlarged partial views. (Color figure
online)

By continuously multiplying all the transformation relations T t
l , the vehicle’s

odometry world track estimation result T t
w can be obtained in (2).

T t
w =

t∏

i=1

T i
l (2)

4 Pose-Feature Map Localization

In the case of lidar-only, SLAM is unreliable. As shown in Fig. 2, in long sequence,
the map and its trajectory generated by LeGO-LOAM have obvious drifts. For
this reason, many researchers choose to treat ground-truth maps as prior bench-
marks and use MM algorithms (e.g., NDT [1] and ICP [11]) to complete vehicle
localization.

However, we found that in the real-time registration process of sans and
global maps, not only the computation is heavy, but also the area in the map
that does not need to be registered will seriously interfere with the result, espe-
cially when the surrounding environment changes drastically. In addition, the
registration result between the local maps generated by general methods and
the vehicle Lidar perception is also very poor. Based on long-term research and
inspiration from PoseMap [6] we created the Pose-Feature Map. The way it gen-
erates a local map is to extract several point cloud frames near the position of
the vehicle on the map. Compared with common methods, it can not only ensure
the validity of local maps, but also reduce the computation of calculation.
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Fig. 3. Pose-Feature Map composed of key-frames (light) and their observation poses
(dark).

4.1 Pose-Feature Map

The point cloud map is a layer of a high definition (HD) map used for
autonomous driving. It consists of a large number of points. Their coordinate
value represent the geometric information of the three-dimensional world, and
provide powerful and indispensable prior 3D scene knowledge. Obviously, the
construction of a normal point cloud map M generated by splicing frames fi
collected from the same or different Lidars, vehicles and even at various times.
Then we set a global coordinate system, and transform these key-frames to f

′
i

according to their pose Ti from GNSS or Surveying and Mapping Engineering,

M :
{
f

′
1, f

′
2, · · · , f

′
n

}
, i ∈ N, f

′
i = fi · Ti (3)

Our Pose-Feature Map has the normal duty of a point cloud map: represents
the surrounding environment. Specially, each feature point has it’s observation
pose after the map is formed. This is visible in Fig. 3. Points with the same
observation pose constitute a node. The general data structure is as follow,

M :
{(

f
′
1, T1

)
,
(
f

′
2, T2

)
, · · ·

(
f

′
n, Tn

)}
(4)

For the purpose of reducing MM computation, we adopt two methods to
reduce the map size, namely key-frame extraction and down-sampling. The
extraction method is mainly based on the time interval. Since the speed of the
vehicle is slow when collecting road curve features, details of the corner will be
strengthened, although this will cause uneven map density. In order to better
match the features extracted in pre-processing step, down-sampling strategy for
generating Pose-Feature Map is the same.
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4.2 Adaptive Local-Map Matching

The main advantage of the Pose-Feature Map is the convenience and efficiency of
fragmentation. When constructing the prior map, we also store all the key-frame
poses in the KD-tree. With the vehicle localization at the last moment, we can
quickly select the nearest key-frames to generate an adaptive local map Mlocal.
In addition, our Pose-Feature Map matching can trade with low frequency for
high accuracy. For example, multiple iterations and finer granularity can be set.

Next, we also need to consider the issue of selecting the number of frames.
In our research, we found that there are two factors that affect the local map,
namely driving environment and operating parameters.

Driving Environment. We simply divide them into straight or curved roads,
open or closed environments. Generally, the changes between consecutive frames
of a straight road or an open environment is much smaller than that in curved or
closed environment. Therefore, when the vehicle is turning or driving in a closed
environment, more key-frames should be selected to generate a local map, and
when driving in a straight or open environment, fewer should be selected.

Operating Parameters. These parameters include vehicle speed, map match-
ing frequency and key-frame distance, which should be adapted to the frame-
work. Reflected in adaptive matching process, the proportion of overlap area
between the vehicle perception and local map should be large enough. That is,
the adaptive local map must cover the area that the vehicle may reach in the
next cycle, while avoid mismatches caused by oversize.

Figure 4 nicely shows the advantages of our novel Map. Compared with the
method that roughly selecting a point cloud within a certain range (e.g., 50 m),
the adaptive local map we extracted overlaps well with the vehicle’s perception,
simultaneously the point cloud size is reduced by 70%.

Our next task is to register P k
fea(k ∈ t) with the Mk

local fragmented from
Pose-Feature Map to obtain the anchor MM position T k

m of the vehicle by NDT
[1]. This is also the purpose of the entire matching node. Where k represents a
certain moment in the time stream t. In this paper, the interval between k and
k − 1 is 1 s, and the interval between t and t− 1 is 0.1 s. Their initial values are
0 s.

4.3 Integrating Localization

During the Pose-Feature Map matching process, our global localization result
T k
m is obtained through NDT registration. Here, we will further optimize the

NDT results with pose graph to increase confidence. Then, we integrated the
odometry to increase frequency.

Optimization. We know that the errors come from the short-time (1 s) drift of
LO and the NDT algorithm. Now we define the results of MM and odometry as
vertices and edges to construct a pose graph. Their errors can be expressed as,

rk =
(
T k
w

)−1 · T k−1
w · (

T k−1
m

)−1 · T k
m (5)
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Fig. 4. Comparison of the points handed by radius search (white) and our Pose-Feature
Map (green). The red points are the global map. (Color figure online)

where the residual cost in k-th cycle is rk. The non-linear least squares opti-
mization is solved by using the GTSAM [2] solver, and get the optimized result
defined as T k

o .

Fusion. In our proposed framework, the frequency of odometry is the same
as Lidar operating frequency. The integration process is actually interpolation.
We treat the T k

o as a anchor localization, the odometry result T t
w continuously

interpolated until a new MM optimization result is obtained. The method is
expressed as follow,

T t
int = T k

o · (
T k
w

)−1 · T t
w (6)

where T t
int is the final output of our entire framework and consistent with the

map coordinate system.

5 Experiments

5.1 Hardware, Datasets and Parameter Setting

The computing platform is NVIDIA JETSON AGX XAVIER, equipped with
ARMv8 Processor rev 0(v8l), 32 GB of RAM. Our framework has been tested
many times on the KITTI dataset. The driving distance in data sets range from
800 m to 3700 m. Their environment is variable, and full of curves. The trajec-
tories are also diverse, such as straight-line, closed-loop, and regional repeated
driving.

5.2 Localization Performance

Figure 5 is the quantitative result of our method compared with the original
LeGO-LOAM algorithm, MM with Pose-Feature Map and the ground truth in
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(a) trajectory

(b) error

Fig. 5. The result of KITTI Drive 00, 05, 07, 09.

certain datas. The Fig. 5a shows the trajectory comparison that can be clearly
seen that the vehicle trajectory calculated by our method and MM coincide with
the ground truth, which corrects the drift in LeGO-LOAM. The Fig. 5b shows
the error comparison of the positioning results for each frame. In these datas,
the drive distance are 3724 m, 2205 m, 695 m and 1705 m respectively. The
LeGO-LOAM deviated by 23.4 m, 23.93 m, 4.19 m and 22.57 m, and our result
(same as MM) are 9.57 m, 2.94 m, 0.45 m and 6.13 m. The above results can be
concluded that: compared with SLAM, MM and our framework can effectively
reduce drift.

Table 1 shows the results of several localization frequencies. It can be seen
that the frequency of localization of our framework is consistent with LeGO-
LOAM, and is almost consistent with the operating frequency of Lidar. However,
the frequency of MM is only about one-tenth. It is worth mentioning that under
the same NDT parameters, this computing platform can no longer increase the
MM frequency. This also shows that if you completely rely on MM, the localiza-
tion frequency will be greatly reduced.

Table 1. Localization frequency of each Drive sequence with different solutions.

Solution\sequence Drive 00
(470.4 s)

Drive 05
(287.3 s)

Drive 07
(113.1 s)

Drive 09
(164.8 s)

Ground truth 9.65 Hz 9.61 Hz 9.73 Hz 9.65 Hz

LeGO-LOAM 9.65 Hz 9.61 Hz 9.72 Hz 9.64 Hz

ILM (ours) 9.65 Hz 9.61 Hz 9.72 Hz 9.64 Hz

Pose-Feature Map matching 1.00 Hz 1.00 Hz 1.00 Hz 0.99 Hz

6 Conclusion

This paper proposes a novel map representation called Pose-Feature Map for
the map matching solution, which bundles key-frames with their correspond
observation poses. In the registration step, the module extracts a more effective
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local map from it, which improves the localization accuracy and reduces the
computation of calculation. At the same time, we integrated the above Pose-
Feature Map-Matching and Lidar-Odometry into a new framework, enabling
the two localization methods to make up for their respective shortcomings. The
KITTI’s data set confirms that our framework performs well in terms of accuracy
and real-time.
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Abstract. Visual odometry can be used to estimate the pose of a robot
from current and recent video frames. A problem with these methods is
that they drift over time due to the accumulation of estimation errors at
each time-step. In this short paper we propose and briefly demonstrate
the potential benefit of using prior 2D, top-down map information com-
bined with multiple hypothesis particle filtering to correct visual odom-
etry estimates. The results demonstrate a substantial improvement in
robustness and accuracy over the sole use of visual odometry.

Keywords: Visual odometry · Deep learning · Multiple hypothesis ·
Particle filter · Map prior

1 Introduction

Visual odometry (VO) is a popular method of pose estimation in mobile robots
and there are many methods for this including key-frame optimisation [8]
and recently deep learning [3,6]. The deep learning methods are advantageous
because they avoid the need for camera calibration and online optimisation used
in key-frame methods, although they tend to be less accurate than the optimi-
sation methods.

One problem that is common to all VO methods (and indeed all odometry
methods) is that the pose estimate drifts over time due to the accumulation
of estimation errors. Yet, there is often additional information we can use to
help reduce drift, such as prior map information. This is true in scenarios of
driver-less cars (road maps), mobile robots moving along corridors in indoor
environments (architectural floor-plans), and pipe inspection robots such as in
the oil, gas, sewer/water and nuclear industries (where pipe network plans tend
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to be readily available). In all these cases we potentially have prior information
in the form of a top-down 2D view of the map, and the mobile agent is largely
constrained to move along routes in this map. So, it appears attractive to make
use of this information in scenarios where it is available. This idea is used in
a VO system in [1], where the probability of being located in a discrete road
segment is estimated using a particle filter.

The algorithm developed in this paper fuses VO with prior 2D map informa-
tion using multiple hypothesis particle filtering: when a moving agent reaches
a junction in the map, multiple particle filters are used to fuse the VO data
with each possible route away from the junction. The most likely hypothesis is
probabilistically selected using the distribution of particles for each filter, which
acts as a likelihood function, similar to methods that have been used in multiple
model particle filtering for fault detection [4]. The results demonstrate that sim-
ply using knowledge of the map alone with VO does not lead to successful pose
estimation but instead a multiple hypothesis method must be used to ensure
accuracy and robustness.

2 Methods

The proposed method of map hypothesis switching is intended for robots or
vehicles operating in environments that highly constrain the agent’s motion but
whose exact layout is uncertain. Examples of such situations are road or pipe
networks where the location of junctions and the connections between junctions
are approximately known and available in the form of a 2D, top-down map.

The system performs VO via a deep network similar to those presented in
[5,6] using optic flow calculated via the Horn-Shunck method. The VO outputs
are filtered via a particle filter that uses accelerometer and gyroscope data as
the basis for a state-space model.

The map provided to the system is represented as a set of coordinates of
known junctions with connections between each junction. The system uses the
straight lines between each pair of connected junctions as its prior map. Multiple
models are instantiated upon reaching a junction and we make one important
assumption that the system can identify when it has reached a junction via a
separate system. A standard method of multiple model particle filtering, as in
[4], is adapted here to switch between particle filter models that express different
hypotheses, where the distribution of particles for each filter acts as a likelihood
function, and this is used to probabilistically select the most likely hypothesis.

We use the KITTI data set [2] consisting of camera and GPS data from a
car, to both train the visual odometry and test the multi hypothesis system. We
use different sequences for training and testing, to ensure testing is independent.

3 Results

In order to evaluate our proposed algorithm we tested 1. a system that used
VO only, 2. a VO system using a map with a single particle filter, and 3. a
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Fig. 1. Comparison of ground truth GPS vehicle data with pose estimation algorithms
on independent validation data (KITTI, sequence 5). (a) Ground truth. (b) Visual
odometry only (note that the pose estimate exits the area of the ground truth but we
retain a comparable zoom-level to the other plots for clarity). (c) Visual odometry with
map information. (d) Multiple hypothesis visual odometry.

VO system using a map with multiple hypothesis particle filtering on separate
test data. Figure 1 shows the ground truth and pose estimates for each method
overlaid on a street map. As can be seen, the raw VO system performs poorly
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and a single map hypothesis results in unrecoverable failure when the system
believes itself to be in the wrong section of the map. The multiple hypothesis
system is generally much more accurate. This system occasionally selects an
incorrect hypothesis (corresponding to the apparent gaps in location estimates
in Fig. 1d) but then automatically recovers. The principal improvement of this
system over simple odometry is the ability to recover from failure, however it
also demonstrates an improved pose accuracy, with VO alone resulting in a
mean position and heading error of 335.2 m (343.20) and −1.65 (−2.20) radians
respectively and a final positional error of 230.4 m, and the multi hypothesis
system resulting in mean errors of 49.2 m (40.3) and 0.28 (0) radians and a final
error of 0.85 m.

4 Conclusions

In this work we have presented a novel VO method that uses prior 2D map
information and multiple hypothesis particle filtering. We demonstrated that
the method was more accurate and robust than solely using VO, and that using
multiple hypothesis particle filtering substantially improved on using a single
particle filter with map information, particularly in it’s ability to recover from
errors. In future work we aim to resolve the problem of junction recognition in
order to make a fully standalone algorithm and also develop a compact system
that can run in real-time on mobile hardware.

Additionally we aim to address the system’s main weakness, that of tem-
porarily selecting an incorrect hypothesis, which occurs regularly after junctions.
Improvements here may come from including additional information in the prob-
ability calculations, such as designed or learned features from each hypotheses
parameters similar to [7], or from more complex assessments of each hypotheses
probabilities compared to each other and possibly the system’s states and sensor
inputs.
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Abstract. Compliant elements overcome many of the shortfalls of using
3D printing to create mechanisms, as print artefacts such as ‘stair step-
ping’ can cause issues with conventional joints. One of the key decisions
when designing a compliant mechanism is choosing to either concentrate
the compliance into a small region that resembles a conventional hinge,
or distribute it over a larger area. This research details the simulated
deformation and stress difference between these two types of compliant
elements for a 3D printed gripper. Results show that for the same grip-
per deformation, the distributed compliant element experiences much
less stress, at the expense of stiffness in secondary loading directions.

Keywords: 3D printing · Compliant mechanism · Gripper

1 Introduction

One of the benefits to 3D printing grippers, is the ability to produce complex
geometries which would be difficult to create using conventional manufacturing
methods. The majority of 3D printing processes create parts which are built
up of many individual layers, which causes an effect known as stair-stepping
on surfaces which are not parallel or perpendicular to the print bed (Fig. 1).
This effect can cause problems with parts which need to interface with each
other like revolute joints, which can require calibration to perform well when 3D
printed [2]. Printing curved surfaces parallel to the print bed can reduce stair
stepping, but this is not always possible for every joint on a part. Although work
has been done to improve the performance of 3D printed conventional joints
[4,7], issues such as excess material/support removal still remain. Compliant
mechanisms overcome these issues by consolidating multiple parts into a single
element featuring some form of compliance. This not only reduces the number of
parts, but can also reduce or remove backlash, noise and frictional losses as well
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Fig. 1. Stair stepping

(a) Concentrated (b) Distributed

Fig. 2. Comparison of concentrated and distributed
compliant elements

as the need for maintenance or lubrication [5,6]. Blanes et al. [1] showed a single
piece gripping mechanism featuring two coils to allow rotation of the digits,
using an external pneumatic cylinder for actuation. This shows that a simple
one-piece 3D printed gripper can be created to transfer a linear input motion
to an opposed gripping motion. Compliant mechanisms can be classified into
two sub-divisions. The first and most common type is concentrated or lumped
compliance [3], which is where a mostly rigid part has small regions where elastic
deformation is concentrated as a hinge. The second type is where the compliant
region is spread over a much larger area, distributing the stress concentration and
compliance [8]. Figure 2 shows two elements, one with concentrated compliance
(2a), and one with distributed compliance (2b).

2 Compliant Gripper Simulation

Figure 3 shows the deformation of two grippers. The first features rigid elements
with compliant regions concentrated as hinges. The second is the same grip-
per but with sections which distribute the compliance. The same 5N load is
applied to the tab of each gripper in the −Y direction (shown by black arrow).
It can be seen that the 5N load results in approximately the same deformation
of the input tab and tips for both mechanism designs. Analysing the stress in
the compliant regions showed a maximum (von-Mises) stress of 120 MPa for the
concentrated compliance element, and 24.6 MPa for the distributed element. A
significant difference, considering how similar the overall deformation is. As the
tensile strength of many common 3D printing materials such as PLA, PETG, and
Nylon is around 50 MPa, this would cause the concentrated compliant regions to
plastically deform or break completely. Figure 4 shows von-Mises stress regions
over 10 MPa for both grippers. One observed benefit to the concentrated com-
pliance design is that as the compliant region is much smaller, the stiffness of the
element to deflections in other axes is much higher. Figure 5 shows a simulated
comparison between deformation of the concentrated and distributed compliance
gripper mechanisms after a 5N load is applied to the side of the same tab (in
the x axis, i.e., not the direction intended for operation). It can be seen that
the distributed compliance regions allow much more deflection in this axis than
the concentrated compliance regions. The colour scales have been matched to
make visual comparison easier. The simulations assume isotropic material prop-
erties, as the gripper can be 3D printed using a process which produces isotropic
mechanical properties (such as MJF), or using an FFF process with the gripper
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oriented such that the deformation will act in the plane of the layers, which will
act in an essentially isotropic manor.

(a) Concentrated Compliance (b) Distributed Compliance

Fig. 3. Deformation of concentrated and distributed compliance gripper

(a) Concentrated Compliance (b) Distributed Compliance

Fig. 4. Concentrated vs distributed compliance equivalent stress capped IsoSurface

3 3D Printed Grippers

Both gripper designs were 3D printed using the Fused Filament Fabrication
(FFF) process (Fig. 6). Experimental testing showed that the 3D printed com-
pliant grippers act in the same manner as the simulated grippers, with a similar
amount of deflection in the intended direction, but much less stiffness in other
axes on the gripper with distributed compliance. As expected from the much
higher simulated stress on the concentrated compliance gripper, plastic defor-
mation occurs, resulting in the gripper not returning to the original position.
Without limiting the deformation to prevent this, the lifespan of the gripper
would likely be much lower than the one with distributed compliance.
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(a) Concentrated Compliance (b) Distributed Compliance

Fig. 5. Comparison of off-axis deformation

(a) Concentrated Compliance (b) Distributed Compliance

Fig. 6. Prototype FFF 3D printed grippers

4 Conclusion

Although the concentrated compliance mechanism shows less off-axis deforma-
tion, the much higher stress causes it to plastically deform, altering the per-
formance and likely reducing its future reliability. Distributing the compliance
across a larger region reduces the stress concentration and allows the gripper
to deform elastically without damage, but this does also make the gripper more
susceptible to deformation in other axes. Careful consideration should there-
fore be taken when developing one-shot 3D printed mechanisms to ensure that
the type of compliance is suitable for the desired deformation. Future simula-
tion or experimental work into the performance of the grippers whilst interacting
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with objects could show additional advantages or disadvantages between the two
designs. Hybrid approaches which use a combination of concentrated and dis-
tributed compliance could also be explored, tailored based on the results found
in this work.
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Abstract. Perception tasks that require long and frequent testing can result in a
loss of attention and focus, contributing to erroneous and inconsistent data. To
maintain engagement and improve reliability of data, a more interactive interface
could be used. This study aims to investigate if a humanoid NAO robot could
provide such an interface to improve or maintain engagement during testing.More
specifically, human-robot interaction (HRI) will be explored when performing
various auditory perception tasks, played in the form of games, on the NAO robot.
Evaluation of the HRI will be performed using questionnaires derived from the
system usability, Godspeed, and similarity-attraction scales, as well as through
video analysis. Future research will extend the evaluation of the HRI to children
and aim to further improve the engagement and social acceptability of the NAO
robot as a game interface.

Keywords: HRI · Auditory perception · Robot perception · Task engagement

1 Introduction

Maintaining focus and engagement during perception tasks that require long or frequent
repetitions can become challenging for individuals with limited attention spans, such as
children [1]. More interactive interfaces, such as humanoid robots, could help, as they
have been shown to be adept at retaining attention in comparison to more commonly
used laptops [2]. As a preliminary investigation into engagement when using a humanoid
robot, this study aims to explore the impression adults have of a NAO V5 humanoid
robot as an interactive interface for games designed for auditory perception testing.
The Perception of Indexical Cues in Kids and Adults (PICKA) test battery [3] is a set of
auditory perception tasks, on perception of voice and speech, as an ongoing investigation
into hearing loss. To obtain reliable data, these tests – played in the form of games on
a laptop – are performed frequently over relatively long testing times, often resulting
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in a loss of concentration; thus, necessitating a more engaging interface. Maintaining
engagement during the PICKA games could lead to longer testing times, providing more
consistent data.

2 Experimental Design

Thirty normal hearing, proficient English speaking, locally recruited adult participants,
both from Dutch and international backgrounds, thus far between the ages of 19–38
(24.04 ± 5.26) years, play one of the four PICKA games on either the laptop or NAO
interface, randomly determined, followed by the same game on the other interface. Due
to the game duration and repetitive procedure, the study is divided into two experiments
in which two of the games are paired together.Which games participants play is also ran-
domly determined; however, counterbalancing was performed across both experiments
for games and interfaces. When using the NAO, it both plays the stimuli for the game
and logs responses, given through the tactile sensors, from participants. In comparison,
when using the laptop, stimuli are presented from the laptop speakers and responses are
given using the laptop screen and external mouse.

Each of the four PICKA games is composed of an introduction, a training phase, a
testing phase, and breaks (where applicable). At the start of each game, NAO stands up,
introduces the game, and familiarizes the participant with how and where to touch the
tactile sensors. Following the introduction, NAO returns to a seated position for the rest
of the game. In this position, the motors and fans are switched off, making NAO much
quieter and the auditory stimuli easier to hear.

Prior to the experiment, participants are asked to complete the revised person-
ality index (neo-PIR) questionnaire [4] to obtain an indication of their extrover-
sion/introversion, as this would provide an additional parameter for analysing how one’s
personality influences their interaction with the robot. If a trend exists, this could poten-
tially be used to adapt the interaction based on an individual’s personality [5] to improve
the level of engagement, as well as to enhance the interaction. Additionally, the Nega-
tive Attitude towards Robots Scale (NARS) [4] questionnaire is included to account for
potential factors that may influence the interaction and used in covariate analyses. Video
recordings of the participants are taken from two cameras of both the laptop and NAO
versions of the games. One video camera is placed behind the laptop/NAO to capture
the face of the participant, and another to the side of the participant to capture the par-
ticipant’s movements and interactions with the interfaces. After the completion of the
game on both interfaces, the participant is asked to complete a new set of questionnaires
to evaluate their experience with the robot and the laptop. Questionnaires include the
system usability scale (SUS) [6], questions about the experiment, the Godspeed ques-
tionnaire [7], and the similarity-attraction questionnaire [8]. Evaluation of the HRI is
performed using both questionnaires and video recordings.

2.1 Voice Cue Sensitivity

Three pseudowords are presented, one of which sounds different to the other two
in a three-interval three-alternative-forced-choice paradigm. Participants must identify
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which of the three stimuli was different by touching NAO’s right hand, head, or left
hand (for first, second and third stimuli, respectively). The acoustic difference between
the stimuli becomes progressively smaller as the participant answers correctly. If an
incorrect response is given, the acoustic difference becomes greater, making it easier
to discern. To obtain reliable data, this paradigm is presented four times separated by a
short break, totalling 30–40 min. When NAO is used, it offers a break to the participant,
to which they verbally reply. If they take the break, NAO offers them to join in a stretch
routine. If not, NAO remains seated for a short time before asking them if they are ready
to continue. In the laptop version of the game, progress is displayed with a progress
bar, as well as a running tally of correct responses. The displaying of a progress bar is
not currently implemented on NAO, and thus to accommodate for the lack of progress
tracking, NAO praises participants if they provide consistent correct answers or moti-
vates them if incorrect responses are given. NAO also provides visual feedback for each
answer, nodding for a correct response or shaking its head for an incorrect response.

2.2 Gender Categorization

An English word is presented to the participant, and they must subjectively categorize
the gender (male or female) of the spoken voice. After the stimulus is presented, NAO
indicates which of its hands can be touched for which gender (they are randomized after
each stimulus to avoid association of a gender to a specific hand). No visual feedback is
presented to the participant after their responses. The eyes, however, do change colour
to indicate when a response can be given, and again when the response has been stored.
Since this game is much shorter (8–10 min) than the voice cue sensitivity, no breaks are
offered.

2.3 Emotion Identification

This game presents the participant with a nonsensical sentence spoken with either a
happy, angry, or sad voice. The participant uses NAO’s hands and head to input their
responses. In comparison to the gender categorization game, the hand-emotion pair is
kept constant as it could confuse participants if randomized each time, or significantly
increase the duration if NAO indicates the pair after each stimulus. Identifying the
emotion of the voice is not subjective; thus, visual feedback is provided after an answer
is given. Again, no breaks are offered to the participant as the game is relatively short
(5–10 min).

2.4 Speech-on-Speech Perception

This game uses an adapted version of the coordinate response measure (CRM) [9]. A
sentence containing a colour and number is presented to the participant, who uses a
tablet with a coloured and numbered grid to indicate the heard colour and number. A
tablet is used here as there are more combinations of colours and numbers than inputs on
NAO. The stimuli also contain masker signals to simulate background speech, varying
the difficulty of identifying the colour and number. Half-way through the game (total
duration is 15–20 min), NAO offers an optional break to the participant, identical to that
described above. Visual feedback is provided to the participant based on their responses.
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2.5 Video Analysis

A combination of social cues described by Giuliani et al. [10] and Desideri et al. [11],
including both verbal and non-verbal cues, are used to code videos of both the laptop and
robot interfaces. Segments between one to two minutes from each part of the PICKA
games are taken for each participant, which are then randomized and merged into a
single video. Four reviewers are used to code the videos, which are divided such that
each game from each participant is coded by at least two reviewers in a fully crossed
coding design.

3 Further Work

As this study is still underway, results cannot yet be reported. However, it is expected that
the perception of NAO as the interface for the PICKA games will be favoured over the
laptop interface. It is also expected that the results of the questionnaires will correlate
with the video analysis of the interaction; i.e., a higher useability score, similarity-
attraction, and likeability of NAO will also be present as longer maintained engagement
and improved enjoyment with the robot. Furthermore, it is expected that the results of
the neo-PIR would give an indication toward future adaptations; i.e., how the interaction
could be improved for introverted/extroverted individuals.

Further investigation will include playing the PICKA games on the NAO robot with
more vulnerable populations, starting with normal hearing children followed by hard-of-
hearing children. This will provide additional data on how the interaction can be further
adapted to better establish and maintain engagement with them. Anticipated challenges
regarding the next phase primarily concern children becoming distracted when using the
robot and thus contradicting the intention of the NAO robot, or the duration of the test
protocol being too long for the limited attention spans of children.
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Abstract. Terrain traversability analysis plays a major role in ensuring
safe robotic navigation in unstructured environments. However, real-time
constraints frequently limit the accuracy of online tests especially in sce-
narios where realistic robot-terrain interactions are complex to model.
In this context, we propose a deep learning framework trained in an
end-to-end fashion from elevation maps and trajectories to estimate the
occurrence of failure events. The network is first trained and tested in
simulation over synthetic maps generated by the OpenSimplex algorithm.
The prediction performance of the Deep Learning framework is illus-
trated by being able to retain over 94% recall of the original simulator
at 30% of the computational time. Finally, the network is transferred
and tested on real elevation maps collected by the SEEKER consor-
tium during the Martian rover test trial in the Atacama desert in Chile.
We show that transferring and fine-tuning of an application-independent
pre-trained model retains better performance than training uniquely on
scarcely available real data.

Keywords: Deep Learning · Transfer learning · Mobile robotics

1 Introduction

Autonomous traversability analysis of unstructured terrains is a crucial task in
many sectors, such as rescue robots for disaster areas, agriculture, nuclear plants,
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and space exploration. The primary goal of traversability analysis is to ensure
the safety of the robotic system and reduce its dependency on human control by
autonomously assessing the surrounding terrain. Moreover, in contrast to nav-
igation in structured environments, where a clear distinction between obstacle
and non-obstacle is possible, unstructured natural terrains present continuous
difficulty values which mostly depend on the specific robot mobility capabilities.
This makes the definition of safe trajectories considerably more challenging as
the algorithm has to take more numerous and complex metrics into account.
On the other hand, real-time navigation requirements often impose stringent
constraints on the overall software complexity.

In this context, several terrain analysis algorithms, which differently trade-
off between accuracy and computational speed, have been proposed [13]. Among
them, square-grid cost maps based on geometric analysis are often considered the
most successfully deployed on real systems [3,16]. The main reason for their suc-
cess is their implementation simplicity and relatively low computational work-
load. However, they often make use of overly conservative assumptions which
could lead to sub-optimal navigation performance [3,16]. Other works have pro-
posed to use accurate physics-based simulators to assess the traversability of
trajectories [6]. However, in spite of their accuracy which allows to maximise the
optimality of trajectory planning, their computational workload is often unbear-
able for on-board resources and real-time navigation.

In recent years, deep learning methods have gained an increasing popularity
for their ability of extracting features from high-dimensional inputs and their
efficient parallel computing [8]. In this context, deep learning has demonstrated
remarkable capabilities to improve the autonomy of mobile robots [9]. Other
works have proposed to exploit deep learning models to estimate mobile robot
traversability metrics [1,2]. However, these methods often assess traversability
over arbitrary-shaped patch of terrains (e.g. circular, or squared). Moreover,
state-of-the-art deep learning methods often require substantial amounts of data
to provide sensible predictions, while their availability is often limited for many
robotic applications of interest.

In this paper, we propose a deep learning model to estimate traversability
metrics from a simulator (Sect. 2). Our formulation has the advantage to explic-
itly address learning over feasible trajectories, thereby considering the robot
mobility constraints and providing direct information in terms of trajectory plan-
ning. Furthermore, we propose to address the problem of data scarcity by devel-
oping a synthetic dataset based on the OpenSimplex noise algorithm (Sect. 3).
We show that, despite some degradation in performance, a model trained on the
synthetic dataset can retain characteristics of generic unstructured terrains and,
thus, be used as the baseline model of a real use-case scenario. We show evidence
of this by transferring on real data from the SEEKER Martian rover test trial
in the Atacama desert in Chile and comparing the synthetic model performance
with training based solely on the limited amount of available real data (Sect. 4).
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Fig. 1. The three input layers. From the left: the terrain elevation map, the trajectory
centre, and the wheel trace.

Fig. 2. The proposed CNN architecture.

2 Traversability Prediction Model

We propose to formulate the traversability prediction as an image classification
problem by using a standard Convolutional Neural Network (CNN) architecture.
This choice is motivated by the well-demonstrated CNNs’ capabilities to process
and find patterns in high-dimensional spatial inputs [4]. Moreover, we propose to
assess terrain traversability directly over feasible trajectories. In this way, failure
prediction can be achieved by considering the actual robot mobility constraints,
thereby increasing the accuracy of prediction. The remainder of this section
illustrates the proposed methodology.

2.1 Input Features

To enable the use of CNN architectures, an approach is devised which gives the
terrain and trajectory input features a three-channel image-like representation.
Each channel is a 129 × 129 grid, where each pixel position corresponds to an
(x,y) coordinate with respect to the rover centre (between −4 and +4 m) and
the robot is assumed positioned in the centre of the map and oriented in the
positive direction of the vertical axis. A visual description of the three channels
is illustrated in Fig. 1. The three channels from left to right are: (1) the terrain
elevations, where the value of each cell is the normalized z elevation value for that
(x,y) coordinate, (2) the trajectory left from the robot on the map, where the
channel has its peak (value of 1) at the robot centre and exponentially decreases
to 0 at the wheel track, and (3) the trace left from the wheels on the map, where
each trace has its peak at the wheel centre and exponentially decreases to 0
outside the wheel; furthermore, a higher value is given to the cells where both
the front and rear wheels pass.

In this way, the feature processing can be addressed on regions of the terrain
of particular relevance to the failure prediction (i.e. the regions under the robot
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Fig. 3. (a) Seekur Jr. Robot (Courtesy of Generation Robots), and (b) portion of the
robot action space for no initial point turn rotation.

ride and the wheels) and directly over feasible trajectories. Hence, each 129 ×
129 × 3 image represents one terrain-trajectory input feature that is fed to the
neural network for traversability prediction.

2.2 Network Architecture

Figure 2 illustrates the proposed neural network architecture. The ResNet50 net-
work [5] pre-trained on ImageNet [12] is chosen as the baseline of the prediction
model. This choice is motivated by the remarkable performance demonstrated
by Imagenet pre-trained residual networks as baseline architectures for transfer
learning problem. Indeed, although our inputs are quite dissimilar from Ima-
geNet images, exploiting pre-learned low level features (e.g. vertical or horizontal
edges, which are common to all image classification problems) has proved to give
faster convergence than training from scratch [15]. Conversely, the original top
Fully Connected (FC) layer is removed and replaced with three randomly initial-
ized FC layers to learn the application-dependent features (one for each failure
event as described in Sect. 2.3). Each FC layer has 512 neurons and randomly
initialized weights. Finally, three FC layers with sigmoid activation functions
provide the failure predictions.

2.3 Robot Model and Failure Events

A simplified kinematic robot model is developed in Python to emulate the robot
navigation over unstructured terrains. The dimensions and the mobility capabili-
ties of the robot model are selected according to the 4-wheel skid-steering Seekur
Jr robot [10]. Its main features are summarised in Fig. 3a. Hence, each trajec-
tory is defined according to the mobility capability of our robot as a combination
of an initial point turn rotation (18 rotations for multiple of 20◦ including no
rotation) followed by two arcs of length 1.65 m and different radius (13 different
possibilities). This leads to a total of 3042 possible trajectories 3.3 m long each.
Figure 3b illustrates a portion of the action space for no initial rotation.

Three failure events are defined: step, obstacle, and tilt. Failure for step occurs
when the differential elevation of the terrain underneath the robot wheels for two
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Algorithm 1. Generating natural terrains with OpenSimplex
1: for all x,y do
2: m = noise2d(x ∗ αm, y ∗ αm) ∗ βm + γm

3: p = (noise2d(x ∗ αp, y ∗ αp) ∗ βp + γp)δ

4: w = intrp(noise2d(x ∗ αw, y ∗ αw) ∗ βw + γw, u, d)
5: Z(x, y) = p ∗ w + m ∗ (1 − w)
6: end for
7: return Z

Fig. 4. Examples of 8 m × 8 m maps generated using the OpenSimplex algorithm.

consecutive time steps is above the maximum traversable step of the robot. Fail-
ure for obstacle occurs if one or more of the terrain elevation points underneath
the robot base is higher than the robot ride height. Finally, failure for tilt occurs
if the inclination of the robot with respect to the vertical direction is above the
maximum traversable inclination. To reduce the computational workload, the
dynamics of the system are not taken into account. This is a reasonable assump-
tion for robotics navigation at low speed (which could be the case in some real-
istic scenarios, such as planetary exploration and nuclear reactor maintenance)
[7,16]. Traverse is simulated by placing the robot on sequential trajectory points
(equally spaced at 6 cm intervals along each arc) and computing for each one of
them the robot static pose and orientation and the elevation of the points under
the rover base. Hence, the occurrence of the three failure events is recorded for
each combination of terrain and trajectory.

3 Dataset Generation

3.1 OpenSimplex Synthetic Maps Generation

To reduce the data scarcity problem of mobile robot applications, synthetic
maps are generated using the OpenSimplex noise algorithm, a popular approach
to generate realistic unstructured environments [14]. In this work, the OpenSim-
plex Python API is used along with three filtering techniques to render realistic
terrains. A description of the approach is illustrated in Algorithm 1. The noise2d
function is the Python API which takes as input an (x,y) coordinate and outputs
a number in [−1,1] according to the OpenSimplex algorithm. Hence, additional
heuristic parameters are used to filter the result of Opensimplex. Specifically,
αm, αp, and αw act on the noise frequency, βm, βp, and βw scale the output,
while γm, γp, γw offset the output. In this way, αm, βm, and γm are set in Line
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2 to control the generation of obstacles. Line 3 controls the generation of plain
regions by using a smoothing coefficient δ ∈ [0,1] in addition to the αp, βp, and
γp parameters. Line 4 controls the interpolation between obstacles and plains,
where intrp is a function returning 1 if the first argument is larger than u, 0 if it
is lower than d, or linearly interpolates between 0 and 1 otherwise. Finally, Line
5 combines the results of the previous three operations by interpolating between
obstacles and plain regions and assigning the elevation value to the elevation
matrix Z. The implementation of Algorithm 1, with the parameters used in this
paper, is made available at UNSTR-NAV. We remark that the process is fully
automated and, by different tuning of the algorithm parameters, different terrain
conditions can be achieved, such as rough, wavy, and smooth terrains, as well
as mountains and depressions. Figure 4 illustrates some examples of generated
maps.

3.2 Dataset Collection and Training

A total of 56840 synthetic elevation maps is generated with the method described
in Sect. 3.1. Then, the robot traverses each map with 3042 trajectories and col-
lects failure events with the method described in Sect. 2.3. The resulting dataset
is composed of approximately 1.7e8 samples. The dataset is randomly divided
among training (90%), validation (8%), and test (2%) datasets. Moreover, since
safe trajectories are considerably more numerous than failures for each terrain
(90.4% against 9.6%), a reduced and better balanced subset is extracted for
training and validation to avoid excessive bias in prediction (5.7e5 and 4.9e4
samples respectively). Conversely, all maps and trajectories of the test set are
retained to assess final performance (3.4e6 samples).

The network is trained by means of supervised learning and binary cross-
entropy loss function [11]. The parameters used for training are: RMSprop opti-
mizer, learning rate 1e−4, dropout 20%, and L2 regularization 0.001. During the
first epoch, only the 3 FC layers are trained, while the ResNet weights are kept
frozen. Then, the whole network is unfrozen and trained for 10 epochs.

4 Results

4.1 Prediction Performance - Synthetic Dataset

The results of the trained model on the synthetic test dataset are illustrated
in Table 1. An overall accuracy of 98% can be observed, with the accuracy of
each failure event above 96%. However, since safe and unsafe trajectories are
extremely unbalanced in the test set (roughly 1e7 vs 4e5 samples respectively),
accuracy by itself can not be considered as a representative metric. For this
reason, recall, precision, and F1 score are used to provide a more informed rep-
resentation of the actual model performance. Specifically, an overall high recall
(94.4%), and low precision (68.4%) are observed, with a consequent F1 score of
79%. This means that the network tends to be conservative, being able to cor-
rectly predict the majority of dangerous trajectories, but at a price of relatively

https://github.com/picchius94/unstruct_navigation.git
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Table 1. Synthetic dataset model performance

(a) Confusion Matrices

Step Pred. Safe Pred. Fail

True Safe 3126951 113457

True Fail 13615 201689

Obstacle Pred. Safe Pred. Fail

True Safe 3211837 53842

True Fail 9644 180389

Tilt Pred. Safe Pred. Fail

True Safe 3425479 15806

True Fail 163 14264

(b) Classification Performance

Acc. Recall Prec. F1 Score

Step 0.963 0.937 0.640 0.760

Obstacle 0.982 0.950 0.770 0.850

Tilt 0.995 0.989 0.474 0.641

Overall 0.980 0.944 0.684 0.793

Fig. 5. Qualitative example of events prediction. (a) Synthetic elevation map, (b) pre-
diction (top) and ground truth (bottom) of step, obstacle, and tilt probability.

high false-positive rate. A possible explanation for the low network precision
could depend on the high sensitiveness of a correct prediction to small variations
in the image. Indeed, even just one different pixel in the elevation map could
lead the same trajectory to be safe or unsafe, making it a relatively challenging
image classification problem. Therefore, while the model could have successfully
learned macro-associations of elevation points and trajectories to safe or unsafe
areas, it might struggle to seize much more subtle local differences. However,
the tendency to conservativeness is not excessively detrimental for the specific
application of robotic navigation as long as safety is ensured. For instance, an
increased rate of false alarms can be tolerated if it results in reliable identification
of dangerous trajectories.

A qualitative example of the failure prediction is illustrated in Fig. 5. The
image on the left represents the elevation map under analysis, while each sub-
sequent image represents the robot action space (i.e. 3042 different trajecto-
ries from the map centre) with probability of failure occurrence encoded with
3 colours (green: less than 0.25, yellow: 0.25–0.5, red: more than 0.5). The
network accurately predicts most of the dangerous trajectories due to obstacle,
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Fig. 6. (a) Image from the Atacama desert and (b) the extracted elevation map.

as wells as the absence of tilt failures. Conversely, some conservativeness can
be observed for the step failure predictions. Nevertheless, trajectories laying in
completely failure-free areas of the map are correctly predicted as safe which is
a sign that the network has successfully learned to differentiate among macro
distributions of elevation points.

The experiments are tested on a Intel Core i5 6500 Skylake and NVIDIA
GeForce GTX 1050 graphic card. The resulting running time for a complete
simulation of the 3042 trajectories is assessed at around 58 s and 17 s for the
Python simulator and deep learning model respectively. Therefore, the deep
learning model is able to reduce the computational time by approximately 70%.

4.2 Prediction Performance - Planetary Mission Use Case

In this section, the traversability estimator is analysed on real unstructured ter-
rains from the SEEKER Martian rover test trial in the Atacama desert in Chile
[17]. Figure 6a shows an example of stereo camera image from which the test site
elevation maps have been generated. From the SEEKER dataset, elevation maps
from 10 traverses are selected for a total of 1289 m. The real data are partitioned
in 8 × 8 m elevation maps to be consistent with the dimensionality of the input
data accepted by our model. An example of extracted map from the SEEKER
dataset can be observed in Fig. 6b. The final dataset is composed of 645 maps,
which is approximately 1.1% of the synthetic dataset size. Moreover, data aug-
mentation is performed to help reducing the data scarcity problem (by rotating
each image by 90, 180, and 270◦). Hence, each sample is labelled according to the
three failure events by running the traverse simulator. Finally, one of the rover
traverse is randomly selected and all its samples are removed from the training
set to be used as the test set.

First, the transferring performance on the SEEKER test set of our baseline
model (i.e. pre-trained on the synthetic data but without further training on
the real data) can be observed in Table 2. We observe that no failure for tilt is
present in the real data. Therefore, we are limited in the evaluation of this event.
However, the network is able to predict 99.9% of the samples correctly as tilt
safe. Furthermore, also the step and obstacle classes are extremely unbalanced
towards safe trajectories. Similarly to the synthetic data, the accuracy is above
99% (i.e. the model is able to classify nearly all the samples correctly as safe).
Conversely, the performance for the failure prediction considerably drops both
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Table 2. Real dataset transferring model performance

(a) Confusion Matrices

Step Pred. Safe Pred. Fail

True Safe 132880 811

True Fail 109 48

Obstacle Pred. Safe Pred. Fail

True Safe 132622 521

True Fail 269 436

Tilt Pred. Safe Pred. Fail

True Safe 133735 113

True Fail 0 0

(b) Classification Performance

Acc. Recall Prec. F1 Score

Step 0.993 0.306 0.056 0.094

Obst. 0.994 0.618 0.456 0.525

Tilt 0.999 - - -

Overall 0.995 0.561 0.251 0.347

Fig. 7. Overall test performance of differently pre-trained models while training on
the real data. Epoch 0 on the yellow line is the transfer learning performance (i.e. our
synthetic pre-trained baseline model before training on the real data).

for the step and obstacle events. A possible explanation for this is that the
synthetic data may not represent with sufficient realism many of the geometric
distributions responsible for failure events in the real data. Specifically, the step
event seems the most largely influenced both in terms of recall and precision
(respectively 46% and 6%), while the obstacle event has been able to retain
considerably better performance (recall of 62% and precision of 46%), which
means that the network has learned to generalize more effectively to this type
of failure in the real scenario.

Then, the performance of training on the SEEKER dataset is analysed for
three differently pre-trained models: (1) a model with randomly initialized net-
work parameters, (2) a model pre-trained on ImageNet only, and (3) our base-
line model initialized with ImageNet weights and pre-trained on our synthetic
dataset as described in Sects. 2 and 3. Hence, the three models are trained on the
SEEKER training set for 11 epochs and the maximum F1 score on the test set
is used as the convergence point of their performance. Figure 7 summarises our
findings. The randomly initialized network fails to learn useful features in the
dataset, resulting in poor performance. Meanwhile, the network pre-trained on
ImageNet shows some initial improvement, learning useful features for its task,
but overfits after 8 epochs at 21% F1 score, resulting in 54% recall and 14%
precision. Conversely, the model pre-trained on our synthetic dataset improves
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Fig. 8. (a) Elevation map from SEEKER dataset, and (b) step and obstacle predictions
before and after model fine-tuning compared with the ground truth.

its performance more effectively when fine-tuning on the real dataset, resulting
in a final F1 score, recall and precision of 46%, 76% and 31%, respectively. This
provides evidence of the improved capability of our baseline model to transfer
features of relevance to the traversability analysis problem. Most importantly,
this model is able to outperform the ImageNet model in terms of recall, demon-
strating it has learned how to correctly classify failure events more reliably. In
Fig. 8 a qualitative example is illustrated of the prediction capabilities of our
baseline model before and after fine-tuning on the real data. As with the pre-
vious results, the transferred model is initially unable to correctly identify the
dangerous trajectories both for the step and obstacle events while evidently
improves after the model fine-tuning.

5 Conclusion and Future Work

This paper has investigated the use of deep learning as a traversability estimator
for mobile robots in unstructured terrains. We provided insights on the benefits
of the proposed method to predict the occurrence of failure events over feasible
trajectories and at a fraction of the time of a sequential traverse simulator. We
also showed that by generating a domain-independent synthetic dataset we can
learn general features for traversability analysis. Then, by fine-tuning the learned
model on the domain-specific real-world data, we can transfer the knowledge to
enable the deep neural network to learn traversability analysis on datasets that
would be excessively small to train on. Therefore, this technique enables more
efficient learning for domains where large real world datasets are not available
and where deep learning might not otherwise be a feasible solution due to the
scarcity of data.

We are extending this work in several directions. While binary failure metrics
could be sufficient to enforce safety in navigation, they cannot provide adequate
information to perform optimal path planning. Future works may consider an
extension of learning to include more complex continuous metrics. Finally, we
discussed how the representativeness of the synthetic data could have a crucial
impact during transfer learning. In future works, this could be addressed by
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generating more realistic synthetic data and by using algorithms specifically
devised for efficient transfer learning (e.g. meta-learning).
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Abstract. This paper presents the results of computer vision experi-
ments in the perception of an artist drawing with analog media (pen and
paper), with the aim to contribute towards a human-robot co-creative
drawing system. Using data gathered from user studies with artists and
illustrators, two types of CNN models were designed and evaluated. Both
models use multi-camera images of the drawing surface as input. One
models predicts an artist’s activity (e.g. are they drawing or not?). The
other model predicts the position of the pen on the canvas. Results of
different combination of input sources are presented. The overall mean
accuracy is 95% (std: 7%) for predicting when the artist is present and
68% (std: 15%) for predicting when the artist is drawing. The model
predicts the pen’s position on the drawing canvas with a mean squared
error (in normalised units) of 0.0034 (std: 0.0099). These results con-
tribute towards the development of an autonomous robotic system which
is aware of an artist at work via camera based input. In addition, this
benefits the artist with a more fluid physical to digital workflow for cre-
ative content creation.

Keywords: Human-robot collaboration · Co-creative drawing ·
Computer vision · Deep learning · Convolutional neural networks ·
Sketch-based computing

1 Introduction

Visual artists enjoy a large economy of creative digital tools to produce their
work. In our recent study into co-creative artistic workflows [10], we found artists
often use physical analog media (e.g. pen and ink on paper) for initial idea
exploration and desire for a more fluid transition from analog to digital media.
In addition, when considering collaboration with an Artificial Intelligence (AI),
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we found that artists preferred an inspirational or co-creative AI role to that of
a didactic one.

In this paper, we investigate vision-based methods to build models of artists’
activity (e.g. are they currently drawing—pen touching the page—or not—pen
hovering above the page while the artist is thinking about what to draw next)
and output (e.g. predicting the pen position on the page to understand what is
being drawn on the canvas) while drawing.

Understanding the pen movements would then allow for a vision-based sys-
tem to digitally recreate a drawing without being tethered to a drawing tablet or
to rely on a scanner set-up. A camera-based system would allow an artist freer
physical range in the studio, as well as a more diverse set of mediums to draw
upon—an important point of feedback gathered previously [10].

Ultimately, we see these vision-based methods as models that would be com-
ponents of a co-creative drawing system enhanced with visual-based awareness
of the artist. Since the drawing process is a 3-D activity, despite having 2-D
outputs, we evaluate which image inputs (e.g. camera positions for observing
the artist) are most useful for these models through the experiments presented
in this paper. We believe the results of these experiments would not only be use-
ful for the creative computing community, but also the greater human-robotic
interaction community, as they describe predicting fine human motor control
(e.g. drawing) at a personal robot scale.

2 Background

Artist’s drawing behaviour with physical media has been studied in psychology,
from manual annotation of video frames of an artist’s hand motion [18] to using
techniques such as saliency analysis, or analysing the movement of an individ-
ual’s eye fixation to understand where the their attention lies [16,17]. Sensor
fusion has also been used to study the painting process through combining axis-
aligned cameras and acoustic sensors attached to a canvas to record the contact
of a paint brush onto the canvas surface [6]. Within the computer graphics and
human-computer interaction literature, there is a rich tradition of sketch-based
computing and interaction via digital interfaces such as drawing tablets [12,15].

Co-creative drawing systems aim to be a drawing partner, such as the Draw-
ing Apprentice [4], where an improvising drawing agent analyzes the user’s input
and responds with its own artistic contributions upon a shared digital canvas.
Neural network approaches to sketching, such as the sketch-rnn model [7] (and
the availability of large-scale drawn datasets, e.g. QuickDraw! [11]) have inspired
a class of deep learning driven co-creative drawing systems [5,13,14]. In all of
these systems, the medium is digital drawing, which is immediate for the cre-
ative agent to observe the state of the artist, where they are drawing and for
the agent to interact with the canvas. However, there are a few recent examples
of physical co-creative work with robotic systems, such as D.O.U.G [2], which
involves an industrial robot to mimic what the artist is drawing and in turn
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the artist can respond; and the ArtTherapyRobot [3] which uses a Baxter1 robot
to conduct research into socially assisted robotics for art therapy. Instead of a
robot, projected interfaces serve as a platform to physical co-creative drawing
as well, such as the DialogCanvasMachine [1].

Most of these physical co-creative drawing examples feature a bespoke sys-
tem created to facilitate the co-creation with a specific individual artist or artist-
group, as opposed to being research into more general physical co-creative draw-
ing. In addition, while some of the examples capture the artist’s drawing process
for reflective post-processing [1,6], none of these systems build a real-time model
of what the artist is currently drawing or their behaviour. In addition, artists and
illustrators still use physical media as part of their workflow and desire a more
fluid way of capturing their drawings [8], a feature which is currently lacking in
contemporary sketch-based computing research.

3 Research Set-Up

Fig. 1. (a) Prototype hardware setup with components: top, right and left cameras
T, R and L; front camera F with infrared i depth d components; and drawing tablet
Tab. (b–g) input from the components: top camera, drawing tablet, front camera rgb,
front camera depth, left camera and right camera respectively (front infrared camera
component is not shown).

We have developed a co-creative drawing system research prototype [9], shown
in Fig. 1, comprising multiple cameras that observe an artist’s drawing surface.
There are 3 RGB cameras2 (an overhead top down camera (T), and side oblique
1 https://robots.ieee.org/robots/baxter/.
2 Raspberry PI Camera Module V2 https://www.raspberrypi.org/products/camera-

module-v2/.

https://robots.ieee.org/robots/baxter/
https://www.raspberrypi.org/products/camera-module-v2/
https://www.raspberrypi.org/products/camera-module-v2/
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right (R) and left (L) cameras). There is also a front facing depth camera3

(with separate RGB (F) and infrared sensors (i) integrating into a depth image
(d)). All of the cameras record at 25 frames per second to produce images at
1280 × 960 resolution (for T, R, L) and 640 × 480 resolution (for F, d, i). In
addition, the artist draws on paper on top of a drawing tablet (Tab), which
records the position (x and y coordinates) and pressure of the drawing pen at
200 vector points per second at a discrete 0.01mm resolution. This set-up allows
us to gather drawing data that correlates camera images with a drawn vector
representation from the tablet.

4 Drawing Data Gathering Study

In early 2020, we conducted a drawing data gathering study (n = 13) involving
full-time drawing practitioners (professionals and students) to test our prototype
system and to collect the drawing dataset used in the models presented in this
paper. Participants were instructed to undertake two separate drawing exercises:
draw from observation of a still-life, and draw freely from imagination. For each
exercise, the participants were asked to draw for at least 10 min, but no more
than 30 min (with a time reminder every 10 min). In total, our research prototype
recorded 26 drawing exercises. However, due to technical issues, our prototype
was only able to record from all input sources for both drawing exercises from 7
participants.

In this paper, we utilised data from these 7 participants to produce two types
of datasets with corresponding models: activity and pen position. The examples
in each dataset comprise 6 temporally correlated input images (T, R, L, d, i),
which are individually resized (using nearest-neighbor) to a smaller and more
computationally tractable resolution (80 × 60 pixels). Each example is labelled
using the corresponding drawing tablet data as ground truth. From each of the 7
participants’ two drawing sessions, 14 activity and 14 pen position datasets were
produced. Every dataset had 3500 examples, which we split into 80% training
(n = 2800) and 20% testing sets (n = 700).

Each activity dataset was randomly sampled from the entire drawing session,
prioritising examples that had the lowest temporal difference amongst the 6
image frames. Categorising artist’s “activity” while drawing is a multi-faceted
and deeply complex phenomenon. For the purposes of these experiments, we
take advantage of the drawing tablet, which senses the proximity of the pen
once it is within 2–3 cm. The pen senses a pressure level as an integer value
([0, 2047]), which is a relative measure of the pressure of the pen’s tip upon the
drawing surface. A pressure level of 0 indicates that the pen is “hovering” above
the page. A pressure level >0 indicates the pen is “drawing”. Otherwise, when
no points are being recorded, the pen (and thus the artist) is “away”. We use
these pen states to label the activity dataset examples with a 3-class pen state
variable (“drawing”, “hovering”, “away”). While these are a natural classification

3 Intel Depth Camera SR305 https://www.intelrealsense.com/depth-camera-sr305/.

https://www.intelrealsense.com/depth-camera-sr305/
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Table 1. Distribution of pen state classes for each participant exercises dataset. Rows
are labelled by the participant id (1 to 7) and the drawing exercise: observation (obs)
and imagination (img).

Training Test

Total Drawing Hovering Away Total Drawing Hovering Away

1 img 2800 1985 (71%) 593 (21%) 222 (8%) 700 468 (67%) 181 (26%) 51 (7%)

obs 2800 1654 (59%) 721 (26%) 425 (15%) 700 427 (61%) 164 (23%) 109 (16%)

2 img 2800 1071 (38%) 1181 (42%) 548 (20%) 700 261 (37%) 317 (45%) 122 (17%)

obs 2800 1389 (50%) 1277 (46%) 134 (5%) 700 380 (54%) 281 (40%) 39 (6%)

3 img 2800 873 (31%) 1372 (49%) 555 (20%) 700 220 (31%) 357 (51%) 123 (18%)

obs 2800 596 (21%) 957 (34%) 1247 (45%) 700 142 (20%) 232 (33%) 326 (47%)

4 img 2800 921 (33%) 1236 (44%) 643 (23%) 700 227 (32%) 314 (45%) 159 (23%)

obs 2800 1295 (46%) 1342 (48%) 163 (6%) 700 328 (47%) 329 (47%) 43 (6%)

5 img 2800 2001 (71%) 473 (17%) 326 (12%) 700 501 (72%) 108 (15%) 91 (13%)

obs 2800 2113 (75%) 594 (21%) 93 (3%) 700 552 (79%) 133 (19%) 15 (2%)

6 img 2800 1443 (52%) 1201 (43%) 156 (6%) 700 363 (52%) 294 (42%) 43 (6%)

obs 2800 1009 (36%) 1419 (51%) 372 (13%) 700 253 (36%) 330 (47%) 117 (17%)

7 img 2800 1388 (50%) 1263 (45%) 149 (5%) 700 342 (49%) 315 (45%) 43 (6%)

obs 2800 1532 (55%) 1136 (41%) 132 (5%) 700 393 (56%) 279 (40%) 28 (4%)

from the pen; however, from the perspective of developing a controller for a co-
creative system, it is useful for the AI to be able to discern two things: first,
is the artist present; and second, is the artist drawing. We derive two further
binary classes: is drawing (activity == drawing) and is present (activity ==
drawing ∨ activity == hovering) based on the pen state.

Table 1 shows the distribution of examples for each of the three pen state
classes. Due to the random sampling regime, the distribution for each
participant-drawing exercise activity dataset varied. For the experiments pre-
sented here, the balance of examples across classes was not adjusted; future
work will consider re-balancing (e.g. boosting) some classes to improve predic-
tion accuracy.

Finally, each pen position dataset was randomly sampled only when the
artist was drawing and are labeled with the normalised pen position: (x, y) =
([0, 1], [0, 1]).

5 Visual Based Models

We produced two types of models, based on the previously described datasets:
activity and pen position. Each model takes the 6 camera images as input (from
individual sources or in combination of multiple sources). Each image is fed inde-
pendently through a sequence of Convolutional Neural Network (CNN) layers,
to be concatenated in a single layer that is fully connected to output variables.
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The concatenation layer is then connected via a single hidden layer to the out-
put. There are three different variations of the activity model, each based on
the multi-class output variables: pen state (3 classes), is present (2 classes) and
is drawing (2 classes). There is a single pen position model, which produces pen
positions (x and y), normalised to the width and height of the drawing tablet.

Models were built and trained using Tensorflow4, with a split of 80:20 on the
training to the test data subsets, using an ADAM optimiser with a learning rate
of 0.01, for 30 epochs each. The activity models were trained to optimise a cross-
entropy loss for multi-class variables (Boolean variables were treated as multi-
class to maintain consistency in the experimental methods) with an accuracy
metric evaluated on the test dataset. The pen position models were trained to
minimise the combined Mean Squared Error (MSE) loss for the normalised x
and y output variables.

6 Experiments and Results

We experimented with 22 different combinations of input images (6 single indi-
vidual image input, 15 pairs of images and the set of all images) on the three
flavours of activity models and the pen position model. Each model was trained
and evaluated independently with a corresponding user-session dataset to explore
308 variations per model type.

Figure 2 shows the accuracy results for the three activity models: pen state,
is drawing, is present for specific image combinations. Each bar is a summary
of the 14 participant-exercises datasets.

Overall (all sessions and combinations together), the accuracy for the
is present binary model was higher (mean 95.7%, std 6.7%, n = 308) than the
is drawing (mean 68.3%, std 15.1%, n = 308) model. Accuracy for the 3-class
pen state (mean 68.5%, std 16.0%, n = 308) model had a wide variation amongst
the different input combinations, with the Front camera (F) having the best per-
formance. The Right camera (R) had noticeably worse performance, as shown by
the spread in the is present model. All of the participants in the selected datasets
were right-handed and their hand often occludes the pen tip in the Right cam-
era view, which may explain this variation. The Front infrared (i) camera also
performed poorly within the is present model, although the RGB component of
the same camera (F) produced a high mean accuracy for the pen state model.

Figure 3 shows the MSE of the x and y components, and the combined x and y
training metric for the pen position model for specific image combinations. The
MSE is in terms of normalised x, y positions of the pen with respect to the width
(29.7 cm) and height (21.6 cm) of the drawing tablet.

Overall, the MSE for x (mean 0.001298, std 0.004564, n = 308) was lower
than y (mean 0.002054, std 0.005789, n = 308). The combined (x and y) MSE
(mean 0.003352, std 0.009936, n = 308) was highest. For the pen position model,
there seems to be little difference amongst the individual RGB cameras (T, L, R,

4 https://www.tensorflow.org/.

https://www.tensorflow.org/
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Fig. 2. Accuracy of predicting the activity of the artist: (top to bottom): pen state,
is drawing, is present. Accuracy values fall between 40–100%, higher is better (↑).

F), while the individual depth (d) performs worse, and the individual infrared
(i) has an out-sized comparative variance. In addition, the pair-wise images also
seem to have little difference amongst themselves. However, models that use all
the input images (All) yielded a far better result than the individual image
sources, and had the best mean MSE overall.

7 Discussion and Limitations

Sensing when the artist is present visually, using the is present model, is by far
the most successful model from our experimentation aside from relying solely on
the same-handed oblique side camera (i.e. Right camera (R) for a right-handed
artist). Sensing when artist is drawing, using the is drawing model, proves to be
more difficult. This may be due to the slight visual differences between the pen
touching the canvas and that of the pen hovering just above the canvas, especially
at the lower image resolution of 80 × 60. In addition, the wide variation in the
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Fig. 3. Mean Squared Error (MSE) (log scale) of the pen attribute predictions for
the pen position models (top to bottom): x, y and combined x and y. Each error bar
summaries the 14 drawing sessions for the specific images combination, lower is better
(↓).

balance for the different pen state classes as shown in Table 1 may be a reason
for the results for the activity models having a wide variation.

Basing the artist’s activity on the pen state also has limitations. For exam-
ple, an artist who draws with grand arm motions will, at moments, lift their
pen beyond the 2–3 cm bounds of pen proximity for the drawing tablet, thus
recording “hover” as “away” activity. Or, when the artist sets their pen down
upon the tablet to take a break, this will be recorded as a continuous stream
of “hover” points, but the artist is in fact “away”. These limitations reinforce
the advantage of having a vision based system which adds additional context
to recording an artist’s activity. These labels could be further refined, through
manual annotation of the artist’s states from the camera images.
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Fig. 4. Example rendering using the pen position model using test points (n = 700)
from an observational drawing session. Actual points (light grey dots) are connected
to predicted points (black X’s).

Predicting the pen’s position had a clearer result with the combined image
inputs model (All) having the lowest error. While the MSE for the pen position
model is low, initial attempts to use a model with visual-driven drawing did not
produce coherent results (Fig. 4). This might be due the variation in predicted
points being too high at the camera frame rate (i.e. 25 frames per second as
opposed to the 200 point per second produced by the drawing tablet).

8 Summary and Future Work

We have demonstrated that using vision-based input from a multi-camera system
with a trained CNN can predict the activity and output of an artist drawing
with physical media—being able to predict that an artist is present and drawing
within a relatively localised area on the canvas.

While these models were trained and evaluated on individual drawing session
datasets, possible future work in transfer learning is possible to evaluate one
artist’s model on another artist’s drawing data. Our current rationale for training
only on an individual session is to work towards a system which is bespoke and
custom to a particular artist’s drawing style. However, another avenue of work
would be to train a more general purpose model that later adapts to a specific
artist’s style.

Next steps in our research is to integrate these models into a framework
for co-creative drawing, and to evaluate this framework with various co-creative
drawing agents in an artist’s studio setting.
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Abstract. Here we describe the initial development of a 3D printed modular
robotic segment that is driven by variable stiffness actuators (VSAs). The nov-
elty of the presented work is the combination of cost-effective antagonist VSAs
with mechanical modularity: this enables multiple segments to be used either
as a stand-alone serpentine robot or as compliant joints that can easily be inte-
grated into other robotic systems. The VSAs are comprised of antagonist DC
motor pairs that separately actuate two orthogonal revolute joints via a viscoelas-
tic tendon-based transmission system. The simplistic nature of the design also
aims to minimize the effects of joint coupling. Joint-level control is performed on
a microcontroller which transmits motor current and joint position information
over USB to a computer. ROS packages, including those needed for Gazebo and
MoveIt!were created to enable physics simulations and motion-planning of either
a single isolated segment, multiple chained segments, or some combination of
segments and other robotic devices. We present results of a preliminary physical
prototype of one such robotic segment whose joint positions and co-contractions
were manually controlled using a gamepad and subsequently visualized using the
developed ROS packages. The dynamics of the VSA were analyzed and the joint-
torque equations were derived as functions of tendon parameters, joint angles, and
motor electrical characteristics.

Keywords: 3D-printing · Variable-stiffness · Passive-compliance · ROS

1 Introduction

In recent years, there has been a growing research interest in the development of vari-
able stiffness actuators, known as VSAs, that enable impedance control [1]. One of
the major driving factors for developing such actuators is to address safety concerns
regarding physical human-robot interaction (HRI). According to [2], there is a strong
indication that VSAs enable safer and faster payload handling compared to purely rigid
actuators. In this work, a prototype two-degree-of-freedom (2-DoF) mechanically mod-
ular VSA segment was developed to meet the HRI safety and performance criteria in a
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cost-effective manner by 3D-printing most components. Currently, the segment consists
of embedded joint encoders and off-board current-sensing circuits for inferring motor
load to control tendon stiffness. The sensor read-outs of a single segment were inspected
using rqt-plot and were also used to control simulations in ROS. Althoughmany compli-
ant tendon-driven robots designs exist, few have a modular construction. One exception
is the VSA-CubeBot, which makes use of low-cost servo units, and whose performance
characteristics were very thoroughly investigated and characterized [3]. Unlike theVSA-
CubeBot, the design of the system we present here consists of internal wiring cavities
that ensure cabling is routed away from pinching points, secondary tendon channels
to address the risk of overloading segments at the base of multi-segment assemblies,
and integration with ROS. The latter is key for further researching the controllability
of multi-segment implementations in a timely manner as the ever-expanding ecosystem
of ROS packages is rich with state-of-the-art open-source trajectory-planning libraries,
along with other useful software stacks. Furthermore, the mechanical coupling imple-
mentation of the design we present here is inherently very mechanically stable, only
requires a single bolt to chain two segments together, and is almost fully 3D printed.
These and additional featureswhich are important for both the practical and cost-effective
application of such a system will be elaborated upon in the following sections.

2 Design Considerations

Serpentine robots are effectively a compromise between continuum-style and conven-
tional rigid robots, as they are characterized by many discrete joints connected via small
rigid links. Given that the joints of serpentine robots can be clearly defined by a kinematic
chain, modelling using Denavit-Hartenberg (DH) parameters is possible. This avoids the
control challenges associated with continuum-style robotics, and the high degree of joint
redundancy of multi-segment chains facilitates many inverse-kinematic solutions for a
particular motion-plan, which is useful for obstacle avoidance in unstructured environ-
ments. However, as the number of segments increases so too does the torque experienced
at the bottom-most segment. Hence, this latest prototype is most appropriate for use in
neutrally buoyant environments, mounted overhead to a gantry, or as a robotic wrist.
Improving the load-bearing capacity of multi-segment manipulators will be the subject
of later studies as this will greatly broaden the potential applications of this system, such
as for use as a cost-effective robotic arm mounted on a wheelchair. In order for a user
to teleoperate the manipulator’s end-effector to perform pick-place tasks, a closed-loop
control model was required. This allowed a motion-planner to accept goal end-effector
pose data from a gamepad or 6-DOF joystick, generate a set of actuator commands to
achieve the planned trajectory, receive sensor feedback to determine whether the manip-
ulator is following the planned trajectory, and finally either confirm that the goal position
is reached or indicate a failure to execute the planned motion.

3 Segment Design

As is illustrated in Fig. 2A, the segment design adopted here consists of male &
female mechanical coupling elements sandwiching two offset/orthogonal revolute joints



230 A. Wilmot and I. S. Howard

and an actuator block above the female connector at the base of the segment. Figure 1
demonstrates how the mechanical-modularity facilitated by these coupling elements
enables the combination ofmultiple chain segments and the easewithwhich other periph-
eral elements such as end-effectors can be incorporated. Each joint can be deflected from
the centered upright position by 45 degrees in either direction, yielding a total range-
of-motion (ROM) of 90 degrees per joint. Embedded into each joint is an I2C-capable
Hall-effect rotary magnetic encoder that is oriented opposite a radially magnetized mag-
net. The top and bottom joint sections rotate relative to one-another, and given that
the encoder is static relative to the bottom section while the magnet is static relative
to the top, the magnet rotates in front of the encoder IC as the joint actuates. Vis-
coelastic tendons, originally developed for the GummiArm [4], were used to connect
the actuators to their respective joints to impart both variable-stiffness and passive com-
pliance characteristics onto the segment, thereby facilitating safe HRI capabilities on
the hardware level. These tendons exhibit an approximately linear response for low co-
contractions and a quadratic response for higher co-contractions. An antagonist pair is
required as each motor can only pull the joint in a single direction and not push in the
other. The benefit of this setup is that joint stiffness can be controlled by varying the ten-
don co-contraction. Given the reciprocal nature of stiffness and compliance, the joint can
also be made more passively compliant by relaxing the antagonist pair. To modulate the
stiffness in this manner, the viscoelastic element must behave like a non-linear spring,
otherwise the stiffness is independent of tendon length. If the response is quadratic, then
the joint stiffness is linearly dependent on co-contraction [5, 6].

Fig. 1. Illustration of the segment’s mechanical modularity. A Three segments are assembled
together with a dummy end-effector at the distal-most end.B Illustrates how segments are fastened
to each other using the mechanical coupling element.

4 Control Electronics

The I2C communications protocol was chosen for an initial implementation due to its
ease of use and extensive documentation. As can be seen in Fig. 2G, each joint is braced
at two coupling points to mitigate axial torsion. Each coupling point consists of three
bearing mount elements that are sandwiched together with an M3 bolt which is secured
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with a nut inserted into the head of the inside bearingmount. TheM3 bolt straddles a steel
axial bearing installed into the head of the central bearing mount. The magnet is placed
into the head of the larger bearing mount facing the encoder. These bearing mounts
are embedded into the joint plates and secured with M2 nuts and bolts. The joint plates
holding the bearing mounts are partially hollowed to internally accommodate cabling
for the I2C BUS, thereby protecting electronics from direct impact with the environment
or from being pinched between moving parts. The joints are symmetric, so they can
be combined such that their axes of rotation are either parallel or orthogonal. The latter
configuration was chosen since this results in a 3D workspace. As the system is tendon-
driven from the base, the distal joint tendon length can be indirectly varied as the proximal
joint moves through its range of motion. To mitigate the effects of joint coupling, the
tendon-channel that intersects a joint’s axis of rotation is brought as close to that axis as
possible; this and all other design features are illustrated in Fig. 2.

5 Mechanical Construction

Fused deposition modelling (FDM) is a 3D printing technique based on the layer-wise
deposition of a thermoplastic filament from a heated nozzle. PLA was selected as the
build material due to its affordability and ease of use. There is an inherent delamination
strength associated with printed parts that is dependent on the material properties of the
filament used and the surface area between printed layers. The orientation of the printed
layers of a part relative to the forces that the part will experience when used had to be
considered. The bearing mount elements were designed and printed in such a way as
to maximize the joint’s resistance to torque when under load and minimize the risk of
delaminating printed layers. Furthermore, all printed parts were designed in such a way
that few-to-no support structures were needed during manufacture, thereby reducing
the post-processing overhead. The actuator block shown in Fig. 2C consists of an array
of four DC motors where the tip of each motor shaft is braced by a bearing installed into
the housing of an adjacent motor, thereby mitigating any moment experienced at the
gearbox-shaft interface when the shaft is under load.

6 Position Sensing and Torque Estimation

Joint angle andmotor current-drawweremonitoredusingPCBs fabricated by the authors.
This enabled the variation of joint stiffness through controlling the tension applied to
the tendons by the motors. Tendon tension is related to the torque exerted by the shaft
of the motor, which in turn is related to the amount of current drawn.

Monitoring the current drawn by motors also means that safety-measures can be
implemented to prevent them from being damaged. Modulating the applied voltage to
control shaft velocity, thereby preventing overloading of the motor, will enhance the
longevity of the system and enable joint torque control via tendon tension modulation.
This also makes the system safer to use around people as the segment will be able to
control the amount of force exerted as well as enforce low tendon tensions to ensure
collisions result in minimal damage.
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Fig. 2. Illustrations of segment design. A Internal channels in joint plates for routing electronics.
B Proximal joint bearing mounts can be seen to the left. Of the two tendon channels towards the
right, only the inner channel is used for connecting tendons to the actuator block associated with
that segment. The outer channel is intended for a second set of tendons connected to powerful
motors at the base of the segment-chain which pass through all segments and coupling to the
distal-most segment. The viability of controlling a chain of segments in this manner is the subject
of futurework.CLayout of two antagonist pairs of brushed-DCmotors forming the actuator block.
D, E Illustrations of the 90-degree range of motion of the distal joint and mechanical hard-stops.
F Table of DH parameters (bottom) and a schematic with the measurements that were used to
calculate them (top). G Cross-sectional view of a rotary joint shows the position of the captive
radially magnetized magnet (part of left axle) relative to the rotary magnetic encoder (located at
the center of the joint). H, I Illustrations showing how the mechanical coupling element achieves
a secure connection due to the tapered design using a single screw and captive nut.

7 Characterizing VSA Dynamics

By considering the electrical characteristics of the DC motors used for the VSA, illus-
trated in Fig. 3A, the generated torques can be derived as functions of armature current
(ia) its differential (i′a), and shaft angular velocity (ωm). This is shown in Eq. (1).

τm = ia
ωm

· (vs − R · ia − L · i′a) (1)

The joint openings αr and αl , referred to generally as α, relate to the joint angle (θj)

according to Eq. (2).

θj = π

4
− αr = αl − π

4
(2)

The tendons exhibit a characteristic restorative force which we describe using the
standard quadratic equation for simplicity, though in practice there is typically an initial
region of linearity that is observed when the tendon is below a critical extension length,
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beyond which the response becomes quadratic. The constants of the quadratic equation
shown in Eq. (3) are unique to each tendon and need to be determined through exper-
imentation. Although the forces exerted on an individual tendon by either joint torque
(τj) or motor torque (τm) are acting in opposite directions, the net tendon displacement
(x) is positive. Hence, these forces can be considered as acting on a fixed tendon in the
same direction, resulting in the expression shown in Eq. (3), where the torque lever arms
are the joint-side lengths (a) and shaft radii (b), respectively.

φ(x) = Ax2 + Bx + C = τm

b
+ τj

a
sin

(α

2

)
(3)

Fig. 3. Diagrams used to characterize the system dynamics. A Shows an equivalent electrical
circuit of theDCmotor used to drive theVSA.Definitions of the electrical constant (κE ) and torque
constant (κτ ) are shown, and these are equivalent in the case of DC motors. This information is
used to relate motor torque with its electrical characteristics. B Illustration of the geometric layout
of a single VSA joint driven by an antagonist motor pair. Both tendons are assumed to exhibit
identical responses for the same amount of deflection, governed by quadratic force functions
(φ(xl), φ(xr)), and as having lengths (xl , xr) that are functions of motor torque (τm,l , τm,r) and
joint angle (θj). The effective shaft-radius (b) and joint side-lengths (a) affect the displacement
characteristics for a particular motor shaft angle.

When the joint is static, the motor torque can be expressed purely in terms of the
tendon force function (φ(x)) of the tendon coupled to its shaft, as shown in Eq. (4).

τm = φ(x) · b (4)

Equation (5) shows that the displacement of an individual tendon is a function of
both the joint angle andmotor shaft position. This becomes apparent when we consider a
co-contraction event: wherein the joint angle does not change, but the tendons are being
elongated by their respective motors. The displacement due to the joint position (xj) can
be derived via the law of cosines, and that due to movement of the motor shaft (xm) is
the arc-length swept by the shaft as it rotates.

x = xj + xm =
(
a · √

2 ·
√
1 − cos

(α

2

))
+ (b · θm) (5)
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Given that we are treating the joint as being static when its stiffness is being mod-
ulated, the tendon displacement associated with this value can be treated as a constant,
and so the derivative of the tendon displacement is purely that induced by the motor
torque, resulting in Eq. (6).

x
′ = x

′
m = b · ωm (6)

Therefore, when we combine Eqs. (1), (3), (4), and (6), the result is the differential
Eq. (7) that relates the tendon displacement due to the motor with the tendon parameters
and the electrical characteristics of the motor.

x
′ = ia · (vs − R · ia − L · i′a)

Ax2 + Bx + C
(7)

In the case of a joint driven by an antagonist motor pair, as is illustrated in Fig. 3B,
the torque experienced at the joint can be described as a function of the forces generated
by these two opposing tendons, as shown in Eq. (8). The derivative of Eq. (8) with
respect to tendon displacements (xl, xr) results in the joint stiffness, which needs to be
controlled to achieve impedance control.

τj = a

(
φ(xr)

sin
(

αr
2

) − φ(xl)

sin
(

αl
2

)
)

(8)

In future work, these equations that govern the system dynamics will be used for the
implementation for a state space controller. However, in this work, a facile implementa-
tion was set-up to manually demonstrate the impedance-controllable nature of the VSA
using a gamepad.

8 Control and Simulation Using ROS

Various IK solving algorithms are available via theMoveIt!open-sourcemotion-planning
framework, which is a plugin for the rviz 3D visualization package available through
the Robot Operating System (ROS). Motion-planning, preliminary qualitative simula-
tions, and controlling the segment test-rig with a gamepad, were all performed using the
ROS peer-to-peer nodal network of publishers and subscribers. To utilize ROS motion-
planning packages, a Universal Robotic Description File (URDF) is needed. A URDF
is essentially an xml-type file that describes how a robot’s links and joints are arranged
to form the resultant kinematic chain. URDFs treat a link’s inertial, visual, and colli-
sion frames as separate entities. A Fusion360 plugin was used as a starting point for
generating the URDF package from an assembly of the CAD model. Once finished, a
ROS package is generated containing STLs representing each link, a URDF that refer-
ences these STLs, and a launch-file that can be executed to visually debug the URDF in
the rviz ROS package. When using rviz, a 3D representation of the system described by
the URDF is shown in a GUI which includes track-bars for controlling what each vir-
tual joint publishes to the joint states topic. Figure 4D shows the corresponding system
node-graph. Chapter 18 of Morgan Quigley’s book, Programming Robots with ROS,
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Fig. 4. Diagrams illustrating various aspects of the robot. A Testing platform for evaluating the
performance characteristics of the developed segments. B Heat-map wherein each point indicates
the reachable workspace of a single two-degree-of-freedom segment, and the color-coding indi-
cates the corresponding theoretical torque experienced at the proximal joint of a single segment
while a 10 kg payload is connected to the distal joint at each point in the reachable workspace. C
Annotated experimental current-measurements of a motor during a contraction event. There is a
transient spike, an initial region of linearity as the tendon is being tensioned, then the quadratic
response can be observed.D rqt node-graph showing how theGUI (the/joint_state_publisher node)
controls the model in the rviz simulation (the /rviz node).

was used as a guideline for setting up a ROS package that could utilize MoveIt! For
motion planning, and simulations using the Gazebo physics engine.

Toperformexperiments for evaluating the performance characteristics of the segment
in a timelymanner, a testing rig shown in Fig. 4Awas constructed. Given that the tension
of a particular tendon is inferred from the current drawnby its associatedmotor, themotor
must be actively driving the joint for the tension to be modulated. For initial testing,
tendon-tension modulation was controlled directly by the operator via a gamepad in
order to experiment with various levels of co-contraction by manually modulating joint
stiffness using the rqt_plot data-visualizer as a means of visually inferring the real-time
joint stiffness and observe the system stability at different co-contraction levels.

9 MATLAB Simulations and Demo

To evaluate the effective workspace of the serpentine-segment, the kinematic chain was
derived using conventionalDHparameters, and the relevantmeasurements used to derive
them are shown in Fig. 2F. To estimate the expected torque that a single segment would
experience at its proximal joint when the end-effector is carrying a 10 kg load, the inverse
Jacobians of each possible joint configuration of the two joint setups were evaluated and
multiplied with the force vector resulting from the 10 kg load. The Forward-Kinematics
of the segment for the joint-angle pair was evaluated in order to determine the (x, y, z)
coordinates of the end-effector in the work-space. The end-effector coordinates were
plotted on a 3D plot and the proximal joint torque associated with each end-effector
position was encoded as a value for the heat-map shown in Fig. 4B.
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In order to investigate the response characteristics of the segment under various load-
ing conditions, the testing platform shown in Fig. 5 was devised. This set-up enables the
study of joint deflection angles under various loading conditions at particular tendon co-
contractions. The degree to which the segment can be made to reliably follow a planned
trajectory and recover from path deviations when perturbed can also be investigated, as
well as the controllability of multi-segment systems.

Fig. 5. Demonstration of the 2-DOF VSA prototype. A The mechanically modular nature of the
design can be demonstrated by placing an end-effector on a segment that is itself mounted to a
testing platform. B The graphs in the background represent the joint angles (top) and the current-
draw (bottom) of eachmotor. The resulting current-draw profile corresponds to the force generated
by the segment as it attempts to maintain a particular joint configuration when deflected by an
external force. This enables the system to exert either a known amount of force or comply (relax
the tendons) as needed. C, D Actuation of the segment while an end-effector is mounted with
either a stable mass (C), or an unstable mass (D). Link to video of demo

10 Discussion

Amodular 2-DOF actuator was developed, and some preliminary evaluations weremade
using a testing platform. A simple closed-loop controller demo with teleoperation was
devised, ROS packages were created for motion-planning and physics simulations, and
further analysis was also performed using MATLAB. Overall, this project involved the
design and development of mechanical, electronic, and software components. Future
developments will explore the scalability of the system and investigate embedding all
the electronics used to control the segment into the segment body itself, such that the
mechanical coupling of multiple segments places them on a common communications
bus. The joint-torque equations presented were derived as functions of motor current and
joint positions and are the first steps towards realizing simultaneous closed-loop control
of the segment’s joint positions and exerted torques (impedance control).
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Abstract. A multi-material 3D printed soft actuator is presented that
uses symmetrical, parallel chambers to achieve bi-directional variable
stiffness. Many recent soft robotic solutions involve multi-stage fabri-
cation, provide variable stiffness in only one direction or lack a means
of reliably controlling the actuator stiffness. The use of multi-material
3D printing means complex monolithic designs can be produced with-
out the need for further fabrication steps. We demonstrate that this
allows for a high degree of repeatability between actuators and the abil-
ity to introduce different control behaviours into a single body. By inde-
pendently varying the pressure in two parallel chambers, two control
modes are proposed: complementary and antagonistic. We show that the
actuator is able to tune its force output. The differential control signif-
icantly increases force output with controllable stiffness enabled within
a safe, low-pressure range (≤ 20 kPa). Experimental characterisations in
angular range, repeatability between printed models, hysteresis, absolute
maximum force, and beam stiffness are presented. The proposed design
demonstrated a maximum bending angle of 102.6◦, maximum output
force 2.17N, and maximum beam stiffness 0.96mN m2.

Keywords: Soft robot · 3D printing · Variable stiffness actuator

1 Introduction

Soft and compliant materials have been increasingly implemented into robotics
research in the last decade. These soft robots have shown benefits over their rigid
counterparts with regards to higher levels of safety and the ability to adapt to
unknown environments or tasks [1,2]. However, the compliance of the materials
and non-linear behaviour limit precise position control and the force that can be
applied to the environment [1,3].

Various research works have proposed solutions to solve the above issues. In
particular, to increase the force that can be applied, variable stiffness actuators
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Fig. 1. Left: The multi-material actuator bent in both directions and at the neutral
position. P1 and P2 are the independently applied driving pressures. θ1 is the output
angle. Right: Section view of the actuator showing the two chambers and the different
regions utilising multi-material fabrication. Geometric properties are presented in mm:
ri = 2.75; t1 = 1.2; t2 = 1.5; d1 = 4.5; d2 = 3; L1 = 48; L2 = 5; H = 31.

have been proposed based on several methods [4,5]. These solutions, based on
composite materials, introduce challenges in the actuator fabrication and control
because they require the integration of extra systems into the soft actuators.
In contrast, antagonistic pneumatic actuators, composed of parallel chambers,
achieve variable stiffness behaviour whilst avoiding the need for extra internal
parts [6–8]. Many of these designs excel in one-directional bending stiffening to
improve force output but are limited in having a one-sided active region [8,9].
Bi-directional variable stiffness actuators have successfully improved the bending
performance with a larger workspace [6]. However, fabricating multiple chambers
in the actuator is challenging with moulding and casting methods, where multiple
stages of assembly or lost-wax casting are typically needed [6,10].

Recent advances in soft material 3D printing have provided an effective solu-
tion to quickly fabricate soft actuators precisely with high repeatability [11–13].
Compared to conventional silicone moulding methods, actuators fabricated via
3D printing can also have higher design freedom. Complex internal geometries
that can optimise the bending motions can be introduced into the design [14,15].
Furthermore, recent advances in additive manufacturing have provided the abil-
ity to use multi-material printing. By introducing a variety of materials into a
fully-integrated monolithic actuator, designs can be extended to exploit complex
material behaviours [9,16].

In this work, we present the design of a multi-material 3D printed soft mono-
lithic actuator which incorporates parallel symmetrical chambers to achieve bi-
directional variable stiffness. The actuator is experimentally characterised to
demonstrate its performance improvements compared to the state of the art.
Figure 1 shows the printed actuator in both neutral and bent poses. The two
parallel chambers can be actuated independently with two modes: complemen-
tary and antagonistic. Complementary control is the method of applying pos-
itive pressure to one chamber whilst exerting negative pressure in the other,
and antagonistic control applies the same pressure in both chambers. Currently
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available 3D printed soft materials are still limited in the range of elongation
at break compared to conventional silicone polymers. For instance, Ecoflex 00–
30 (Smooth-on [17]) has elongation at failure of 900% compared to Agilus 30
(Stratasys [18]), which exhibits a range of 220–270%. This limitation implies
that 3D printed bending actuators are more prone to failure when only driven
with positive pressures. To address this issue, we have proposed the two control
modes, which increase the actuator workspace and force output while main-
taining the capability of tunable stiffness. Crinkles are also integrated into the
design to mitigate the limited material elongation where structual compliance is
explored predominantly instead of material compliance.

2 Design and Fabrication of the Actuator

The actuator consists of two parallel bellow-shaped flexible chambers connected
by a common midlayer. By regulating the pressure variation between the two
chambers, bidirectional bending motions with tunable stiffness can be achieved.
The design utilises novel 3D printing technology to maximize the ease and preci-
sion of fabrication and significantly reduces the time between design-fabrication
cycles. Figure 1 shows the schematics of the actuator with design specifications
in the chambers, end plate, and base attachment.

The design consists of two expanding chambers bonded to an inextensible
central layer. The compliant region expands to enforce a bending motion about
the central layer with the increase of driving pressure. A bellows shape design has
been incorporated to reduce the chamber’s strain during expansion and facilitate
easy extension/contraction of the chambers [19]. The Shore 35 Agilus/VeroCyan
blend was used in the fabrication of the actuator to ensure maximum compli-
ance. The bellow structure design further reduces the stress concentration on the
material during the inflation, where a smaller principal strain is required for the
material during bending. When the bellows expand, there is little tensile stress
induced in the material compared to a design without bellows [13].

The parallel chambers enable variable stiffness control of the actuator with-
out requiring the addition of granules or extra internal layers through antagonis-
tic behaviour. Furthermore, a higher force output than a single-sided chamber
(with the same driving pressure) can be achieved through complementary con-
trol behaviour. The end plate is designed to be rigid (VeroCyan) to prevent
ballooning at the end which wouldn’t contribute to the curvature of the body
and would increase local bending strains. The surface area between the end
plate and chambers was maximised to reduce warping or delamination at multi-
material interfaces. Similarly to the end plate, the base is designed to be rigid
to prevent unfavourable displacements when pressurised.

The relationship between bending angle, stiffness and pressure cannot simply
be presented in analytical form and so optimum parameters have to be deter-
mined through simulation. A parametric analysis was run in CAD to determine
the optimum geometry for the chambers. The thickness of the chamber and the
inner radius of the crinkle were identified as critical parameters governing the
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bending behaviour of the actuator and were applied to a grid search optimisation
algorithm. The body’s principal stresses and tip displacement were allocated as
the key metrics. An internal pressure of 10 kPa was applied to the model whilst
the thickness of the material was varied between 1 mm and 3 mm, and the inner
radius of the crinkle pattern was varied between 1.5 mm and 2.75 mm. These
ranges were chosen to satisfy printing constraints for minimum feature size, and
to ensure the overall length of the actuator was less than 50 mm.

The optimised design parameters are illustrated in Fig. 1. The normalised
simulated results of the displacement and stress were weighted towards priori-
tising the maximisation of the displacement over minimising the stress at a
weighting ratio 5:4. The difference of the weighted values was minimised to find
the optimal combination of thickness and inner radius, which was found when
the chamber thickness was 1.2 mm and the inner radius was 2.75 mm. The over-
all length of the chambers is 48 mm, the height is 31 mm, and the weight is 35 g.
The central layer was empirically set to be 1.5 mm.

Polyjet technology (Stratasys J735 printer) was used for multi-material print-
ing of the actuator (VeroCyan and Agilus30). VeroCyan is a rigid plastic that
has a quoted tensile strength of 50-65MPa and Shore hardness 83-86D. Agilus30
is a compliant and rubber-like material, which has a quoted tensile strength of
2.1–2.6 MPa and a Shore hardness of 30A.

3 Control Setup

The actuator was controlled by an Arduino. The pneumatic setup used one Dela-
man air pump, four Yosoo1210 solenoid valves, and one Panasonic ADP5101
pressure sensor per chamber. The pressures were sampled at 50 Hz. A 30 Hz HD
Webcam was used to acquire a video stream for angle detection. The setup

Fig. 2. Control architecture for one chamber of the soft actuator. The Arduino controls
the pumps and valves, responding to real-time pressure values from the pressure sensor.
The data from the Arduino and webcam is stored and post-processed to plot.
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is shown in Figs. 2 and 3. For the actuator characterisation, closed-loop PI
(proportional-integral) control was used to compare the internal pressure value
against a target value. The output of the PI control governed a pulse-width
modulated (PWM) pump input, and the inflate and deflate valves. The angle of
the actuator was acquired by identifying black markers down the centre of the
actuator (shown in Fig. 1) and fitting them to a circular profile using a constant
curvature approximation.

Fig. 3. (a) Experimental setup: the webcam is used for angle acquisition. (b) A circular
profile is fitted to identify markers from the webcam stream to determine the angle, θ1.
(c) Complementary force test: the actuator is attached to a weight and inflated/deflated
to change the force output. (d) Antagonistic stiffness test: the deflection was set at 2 mm
as the chambers were inflated and the force was recorded. θ2 indicates the angle used
in the small angle approximation.

4 Testing

In this section, the performance of the proposed actuator was physically tested as
the bending angle versus driving pressure, hysteresis, and the effect of increased
force output and tunable stiffness via complementary and antagonistic control.
To evaluate differences in the printed actuators’ performance, a total of 3 actu-
ators were tested under identical experimental conditions. The actuators were
tested 5 times for each test category with time between each test of more than
5 min to allow any residual strain energy to fully dissipate. Chambers A and B
are indicated in Fig. 1 and used interchangeably between tests to validate the
bi-directionality.
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Pressure Versus Angle. This test is used to evaluate the repeatability of
the actuators’ performance. Using PI control, Chamber A was inflated at a
continuous rate of 0.5 kPa/sec to a maximum target pressure of 16 kPa with
Chamber B maintained at atmospheric pressure. Although the chamber was
empirically found to withstand pressures up to 22.3 kPa, the targeted range was
chosen to be 0–16 kPa. This is to examine mid-range performance without risking
breaking the actuator. Figure 4 shows the results for a single chamber being
actuated. Across all 15 tests for the 3 actuators, the single chamber actuation
test shows that, at the target pressure of 16 kPa, the mean angle is 44.8◦, with
a standard deviation of 1.3◦. This translates to only a 2.9% variation compared
to the full range of the test, which validates the repeatability of the fabrication
method. It is also worth noting that the actuator requires lower pressures than
other comparable designs [7,9,13].

Fig. 4. Result of the single chamber pressure versus angle test. (a) 5 tests on one
actuator. (b) average of 15 tests across 3 actuators.

Hysteresis. The amount of hysteresis in a design can complicate the control of
the system by adding a reliance on the historic behaviour of the actuator. The
tests were undertaken by increasing the pressure in Chamber A by 0.5 kPa/sec
with PI control up to 16 kPa target, holding the pressure steady for 2 s, and
then decreasing the pressure by the same rate until the actuator returned to
the neutral pose. Figure 5 is shown with the lower curve indicating the inflation
sequence and the higher curve indicating the deflation sequence. The amount
of hysteresis is presented as the percentage difference between the area under
the curves for the increasing and decreasing pressure cycles. This value was
calculated to be 24.7%.

Complementary/Antagonistic Control. Using two parallel chambers, the
force output and beam stiffness of the actuator can be tuned. The force output
was tested for both complementary and antagonistic control.

The actuator’s performance (Complementary control) with respect to stiff-
ness variation was tested in terms of the actuator’s maximum force. In this
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Fig. 5. Hysteresis test results. The pressure was increased/decreased at 0.5 kPa/s for
the inflation and deflation phases. 16 kPa was the maximum targeted pressure in Cham-
ber A before deflation. (a) 5 tests on one actuator. (b) average of 15 tests across 3
actuators.

Table 1. Complementary/Antagonistic control

Chamber A

Positive pressure Negative pressure

Chamber B Positive pressure Antagonistic Complementary

Negative pressure Complementary Antagonistic

regard, a thread was wound around the end plate of the actuator and attached
to digital weight with displacement constrained. By measuring the change in
weight on a set of scales, the exerted force was deduced (Fig. 3c). For each change
in pressure, the pressure was held constant for 5 s to ensure a static force was
recorded. Chamber A was inflated to a maximum pressure of 20 kPa to achieve a
bent position and provide a reference force before Chamber B was depressurised
to increase the force output. The depressurisation was done in 5 decrements
between 0 and –22.5 kPa.

The actuators’ resistance to deflection (Antagonistic control) was tested by
enforcing a tip deflection, pressurising the chambers, and measuring the imposed
lateral force as shown in Fig. 3d. The tip was deflected by 2 mm to ensure that
the force being applied is normal to the end of the actuator under a small
angle approximation (sin θ ≈ θ). The chambers were equally pressurised in 2 kPa
increments up to 20 kPa with 5 s wait to ensure static force acquisition. Classical
beam theory was applied to calculate the beam stiffness of the actuator at each
pressure increment. The actuator was approximated to be a cantilever, fixed at
one end, with stiffness k = 3EI/L3. By applying this to Hooke’s law, the beam
stiffness (EI) was deduced.

To acquire a maximum force output for the actuator that can be used for
benchmarking the actuator within the literature, Chamber A was pressurised to
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20 kPa and Chamber B was completely evacuated before the force measurement
was made.

When only one chamber was actuated, the force output was 0.56N. The
complementary variable force plot (Fig. 6b) shows that the design is able to
increase the output force linearly by 1.56N by reducing the pressure in Chamber
B. This behaviour provides an overall maximum force output of 2.17N. The
antagonistic variable force plot (Fig. 6a) demonstrates that the beam stiffness of
the actuator can be increased by 0.64mN m2, which corresponds to more than a
300% increase. Whilst this is a low absolute stiffness output, it is comparable to
similar work at a considerably lower pressure and validates the use of the control
modes to improve the force and output of the actuator [6].

Fig. 6. (a) Result of the antagonistic actuator force test. Both chambers were inflated
simultaneously from 0–20 kPa in 2 kPa increments. (b) Result of the complementary
control force test. Chamber A was pressurised to 20 kPa before starting this test and
the presented data is the difference in force recorded as Chamber B was depressurised
from 0 to –22.5 kPa in 5 kPa increments.

Effect of Stiffness Variation on Angle. The effect of independently varying
the pressure in the parallel chambers leads to a change in the output angle. To
enact precise position control, it is important to understand the extent of this
effect for the complementary control mode. Chamber A was inflated to a sin-
gle target pressure, the valves were closed, and then Chamber B was deflated.
The target pressure in Chamber A was set at 13 kPa and the target pressure
in Chamber B was set at –10 kPa. Both target pressures were, again, chosen to
demonstrate the mid-range performance. The test was then used to determine
a value for the maximum angle of the actuators, which can be used for eas-
ily benchmarking the design within the literature, by inflating Chamber A to
22.5 kPa and deflating Chamber B to –20 kPa.

The results are presented in Fig. 7 with a common x-axis to indicate the
timing for the test. The test presents the effect of the change of stiffness on
the actuator’s angle. By actuating the second chamber, the angle is increased
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from 33.1◦ to 85.7◦ over the pressure change of –10 kPa. This indicates that the
stiffness variation has a significant effect on the output angle. This variation can
be accounted for by mapping the pressure in each chamber to the output angle.
The mean maximum angle across 15 samples is 85.5◦, with a standard deviation
of 2.9◦. This corresponds to a 3.4% variation compared to the full range of the
test, which further demonstrates the repeatability of the fabrication process.

Fig. 7. Results of the two chamber pressure versus angle test. (a) Pressure in Chamber
A. (b) Pressure in Chamber B. The rise times are calculated as: t1: 1.5 s, t2: 1.9 s. The
pressure in Chamber A continues to drop over time as the volume is affected by the
contraction in Chamber B. (c) Angle subtended by the actuator.

The maximum values of the actuators’ input pressure, force, and angle are
–25 to 22.3 kPa, 2.17 N, and 102.6◦, respectively. The maximum pressure value
was acquired by applying pressure until the actuator failed; the minimum pres-
sure was determined by completely evacuating the actuator; the force and angle
measurements were taken at slightly lower pressure values than the extremes
(–24.5 kPa and 22 kPa) and measured in accordance with Fig. 3b and c.

5 Conclusion

This paper presents a multi-material 3D printed soft monolithic actuator that
incorporates parallel symmetrical bellow chambers to implement bi-directional
variable stiffness. Complementary and antagonistic control modes were proposed
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and implemented in the design while the two chambers can work collaboratively
with either positive pressure or negative pressure. For pneumatic actuators that
operate in the low-pressure region (<20 kPa), output force and bending angle
performance is always a challenge. Compared to actuators that can only be
actuated in a single mode with either positive or negative pressure, the presented
design achieves higher output force, larger bending angle, or tunable stiffness
without the need to increase the driving pressure.

3D printing rather than silicone moulding introduces quicker prototyping,
better reproducibility, and stronger interfacial bonds to the actuator. The test
results confirm the high level of reproducibility with low deviation between test
results. The actuator was fully physically characterised under two-chamber PI
control. The results show that the proposed complementary and antagonistic
control method is promising for future work in bi-directional bending actuators.
The key metrics to take from the studies are: maximum angle of curvature 102.6◦;
maximum output force 2.17N; controlled force variability 1.56N; and maximum
beam stiffness 0.96mN m2. With the proposed complementary/antagonistic con-
trol modes, this design achieves a higher output force and comparable bending
angles to the similar designs [6,13] at a fraction of the driving pressure.

Future work plans to further explore the potential of this actuator design
and investigate the possible applications in grasping and in-hand manipulation.
The authors will investigate variations on this preliminary design: increasing the
stiffness to improve force output; adding modularity; scaling down the size of
the actuator; and adding tactile sensing as a means of feedback.

Supplementary video: https://youtu.be/F-ANfUwE0XY
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Abstract. Snakes possess multi-locomotion abilities to best suit differ-
ent environments. This work explores the design of a robot to replicate
three types of snake motions: rectilinear, serpentine and sidewinding. The
design featured identical modular housing units containing all the com-
ponents for movement, a biomimetic skin to replicate the anisotropic fric-
tion created by the scales of the snakeskin and smart servos motors that
produce adjacent housing rotation to imitate the body motion of a snake.
Two prototypes are manufactured using rapid prototyping. Prototype 1
is designed to replicate rectilinear motion produced by the biomimetic
snakeskin and collinear movement of each housing. Prototype 2 is pow-
ered by the smart servos and the rotation of adjacent housings to pro-
duce serpentine and sidewinding motions. From initial tests, prototype 1
is shown to be able to replicate rectilinear motion at low speeds, and pro-
totype 2 is shown to be able to undertake 6 different movement options
utilising both sidewinding and serpentine motions.

Keywords: Snake robot · Biomimetic · Kirigami · Chain configuration

1 Introduction

Snake-like robots have numerous applications in an industrial context. Such
examples include travelling over, or through, hazardous terrain for rescue mis-
sions [9], the development of medical equipment for stereotactic surgery due to
enhanced flexion and dexterity [8] or even a role in facilitating complex tasks
required by space rovers exploring extra-terrestrial environments [5]. The first
snake-like robot, ACM-R5 [10], was invented in 1972. The ACM-R5 propelled
forwards by twisting and turning. This robot had one degree of freedom (DoF)
joints, resulting in its movement being constrained to a sine wave configuration
on a flat surface simulating serpentine motion. The robot is able to travel in
both water and on the ground. To allow for movement in water, paddle blades
were attached around the side of the body. To aid movement on the ground,
small wheels were attached to the paddle blades.
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Various designs have been actively explored on robot joint configuration in
recent years [5]. For example, researchers focused on developing robots with a
greater number of DoFs [2], enabling 3-DoF motions. The mechanism includes
a moving platform and three mechanical joints: one universal joint and two
composite spherical joints. Two symmetrical prismatic legs are connected to the
sphere joints to replicate the snake’s intercostal muscles. These joints eliminate
torque, which is normal to the moving platform to protect the universal joint.
To keep the original length of snake segments, the parallel joint is designed to
prevent simultaneous yaw and pitch movement. The rotating axis is the cross
axis of the universal joint, which entails two rotating directions perpendicular
to each other.

Rectilinear motion is produced with a different principle. The scales of the
skin help propel the snake forward. To replicate the behaviour of the scales,
anisotropic frictional behaviour is to be simulated based on the theory in [7].
One study achieved this with nibs designed to allow for smooth and swift motion
in one direction, but high friction in the opposite direction [6]. However, while
a particular scale orientation would facilitate rectilinear motion perfectly, the
concern is over how this might interfere with the other motion sequences our
robot is intending to achieve. Another design [4] uses the art of kirigami to cre-
ate a sheet of scales that buckle and pop out when the sheet is extended. During
material extension, the scales pop out and contact the ground. With the scales
protruded, a higher coefficient of friction with the ground in the direction oppo-
site to the desired motion would be created. Upon retraction, this enables the
elastomer to push forwards off the ground. The system is optimised to function
with a pneumatic elastomer actuator.

This work aims to develop a prototype with multi-locomotion capabilities to
be adaptable to its environment, allowing for effective travel across numerous
terrains. We explore three main topics: modular robotics, chain robots com-
monly referred to as snake robots and biomimetic snakeskin. All three areas
are brought together to design and manufacture a snake-like robot prototype
consisting of individual identical modules connected in a chain formation capa-
ble of three types of snake motion: rectilinear, serpentine and sidewinding. A
novel biomimetic snakeskin is designed and manufactured to propel the robot
forwards during rectilinear motion. The modular design of the snake consists of
identical housing all components necessary to produce the movement of a sin-
gular model such that they can be operated individually or linked together with
inter-modular communication to form systems of varying numbers of modules.
Ultimately, this would allow for greater flexibility of module configuration in the
future in addition to the chain formation the current prototypes are based on.

2 Proposed Design

2.1 Locomotion

Below is a summary of the three snake locomotion models to be implemented
in this work. Rectilinear motion is useful for a snake travelling through tight
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spaces, entailing the snake moving in a straight line through contracting muscles
to control the movement of the scales. The scales are alternatively lifted from
the ground, and then pulled downward and backwards. The friction between
the scales and the ground will pull the body forwards. When the scales are
lifted forwards, they are stretched out creating a rougher surface in contact with
the ground. This inspired us for our design. To replicate rectilinear motion, the
biomimetic silicone snakeskin is developed with cuts to mimic the movement of
scales using the Kirigami method. The movement of the contracting muscles to
lift the scales are simulated using micro linear actuators to extend and retract
the housing units. With the scales lifted, a higher coefficient of friction is created
in one direction, propelling the snake forwards upon housing retraction.

Serpentine motion consists of waves of lateral bending being propagated along
the body from head to tail using objects on the ground to propel itself forwards.
To simulate this slithering-like motion, smart servo motors are used to insti-
gate 180◦ rotation between adjacent housing units orthogonal to the direction
of travel of the robot. When the surface is slippery, such as sand, the most com-
mon locomotion used is sidewinding, where two parts of the body are solely in
contact with the ground with the remainder being held above it. The body is
propelled laterally from these anchor points creating new anchor points a fixed
distance away. Like serpentine motion, this movement will be replicated using
servo motors to rotate the housing units. Sidewinding can be simplified by adding
a vertical wave to the lateral existing wave of serpentine motion.

2.2 Housing

The focus for the housing design is to enable collinear and rotational movement of
the housing modules and contain all components required to produce the robots
motion in a compact package. Thus a 3-part module was developed, consisting
of external and internal housings and an internal mounting tray.

The housing components of the module facilitated all modes of locomotion by
enabling 2 modes of actuation, both within each module and between adjacent
modules. The first mode of actuation is extension and retraction of the unit
caused by the external housing of each module sliding over the internal housing
of the same module on a fixed path (Fig. 1(a)). This enables the rectilinear
motion of the modular system when combined with the biomimetic snakeskin.
The second mode of actuation is rotation of two adjacent modules facilitated
by the rotation of the external housing and internal mounting tray of adjacent
modules about a fixed axis with a set of brackets, (Fig. 1(b)), to which the
rotational actuator mounts.

Each of the housing parts has further functions to enable system mobility.
The external module has one main purpose, ensuring that the biomimetic skin
can function effectively; the smooth external surface does this by ensuring that
the scales are only able to protrude in the correct direction when under extension,
this was a functional priority over potential weight savings of removing material
from this part (Fig. 1(a)). The internal module facilitates the movement of the
system with its slatted covering for the rotational actuator and bracket, this
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both protects the actuator from impact during function and gives the system
a smoother surface, preventing it from catching on obstacles during function
(Fig. 1(b)). The internal mounting tray enables the assembly of the control sys-
tems for each module to be carried out externally of the module itself, sliding and
locking into place when assembled. This facilitated easy assembly and compo-
nent replacement, ensuring easy maintenance during lab testing and real-world
function (Fig. 1(c)). Figure 2 shows a final module additively manufactured by
Selective laser sintering (SLS) in Nylon and the final assembled prototype.

Fig. 1. CAD design of modules (a) external and internal housing in extension and
retraction, (b) rotational bracket between adjacent modules, (c) internal mounting
tray with and without components)

Fig. 2. Final module printed with SLS in extension and exploded views, and the assem-
bled prototype
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2.3 Smart Servos

To mimic the serpentine and sidewinding movements, servo motors are chosen
due to their precise control of angular position, velocity, and acceleration. Addi-
tionally, compared to other motor types, servos have a high power-output to size
and weight ratio, which is ideal for a modular-based robot. The DYNAMIXEL
“smart” servos are used due to their ability to be connected in series in a daisy-
chain-like formation, simplifying the electric wiring, and in-turn make the hous-
ing design more accommodating.

The motors within the body of the snake followed a coordinated sequence of
movements to mimic not just the type of movement of serpentine and sidewind-
ing, but also the direction of movement. To achieve these simulated movements,
the motors followed a triangular waveform, formulated by Eq. 1:

θ(n, t) = ±
⎧
⎨

⎩

Vn(t − δt), δt ≤ t ≤ T
4 + δt

−Vn(t − δt) + π
2 , T

4 + δt ≤ t ≤ 3T
4 + δt

Vn(t − δt) − π, 3T
4 + δt ≤ t ≤ T + δt

(1)

where θ is the angle of motor n at time t, vn is the joint speed of motor n, t is
the elapsed time, δt is the time delay between motors, T is the waveform period.

2.4 Biomimetic Snakeskin

The primary purpose of the skin design is to facilitate rectilinear motion through
friction as demonstrated by snakeskin scales in nature [1,3]. Below is the sum-
mary of our design principle:

1. Simulating muscle propulsion to propel robot forward by the electrical actu-
ator system

2. Creating anisotropic frictional interaction with robot’s surface of travel by
the skin kirigami mechanism

3. Integration of skin layer with robot body housing through strong adhesion of
the skin attachment to the housing.

To simulate contracting muscles that control the movement of scales, lin-
ear actuation is used. This would extend and retract the housing, which would
stretch the skin layer from its normal state. At the normal state, the housing
is retracted, the skin relaxed and the scales lying flat, upon extension the skin
stretches, and the scales protrude out. With the scales protruding, a higher
coefficient of friction would be created in one direction, propelling the snake for-
wards upon retraction. In this project, electromechanical actuators are chosen
as they do not require the extra external equipment or sealing of hydraulic and
pneumatic actuators, which is difficult for the small scale of our modules.

Actuonix PQ12 Linear Actuators are chosen to be the most desirable for this
project. They have a weight of 15 g and are capable of smooth and consistent
linear stroke length of up to 20 mm with a load up to 50 N. They also have an
internal potentiometer, which can provide positional feedback.
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Several materials were investigated and compared based on their properties.
The skin material selected is silicone due to its high stiffness, good flexibility
and anti-adhesive properties, so that it would minimise the coefficient of friction
with the ground when flat (in the direction of motion) and not interfere with
the other robotic motions.

Tension testing was conducted to establish the kirigami pattern that would
yield the best performance. Several samples underwent extension under a load
of 20 N at 8 mm/s (as these are the peak efficiency settings of the actuator)
until complete failure. Sample 1 represented the dimensions proportional to the
derived equations found in the kirigami research undertaken in [4]. As for the
subsequent samples, factors that were varied included adjusting the cut size, the
hinge size, the angle of the cut with respect to the horizontal plane and the
number of scales per row (Fig. 3). The snakeskin width and height are kept the
same to accommodate for the housing dimensions, so there are limitations in
varying some of these factors e.g. the cut size can only be reduced compared to
the original design as any substantial increase would exceed the skin width.

Fig. 3. Snakeskin samples designed at approximately height = 70 mm and width = 48
mm and the tension testing

Briefly, the following conclusions are derived from the performance results: 1)
Cut size has minimal influence on the stiffness, 2) There is a positive correlation
between hinge size and the stiffness, and 3) As the angle size increase, so does the
stiffness. Ideally, the cut sizes need to be large enough to effectively protrude
under the robot body weight, but not too large so as to deform and flatten
against the ground surface [7]. Additionally, it is desirable for the skin to be as
flexible as possible so that the layer may be extended easily by the actuator, but
the skin also needs to be as stiff as possible to allow for the hinges to trigger
the protrusion of the scales, without any failure propagation through the skin.
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From the results, sample 3 in Fig. 3 is found to be the stiffest sample that did
not hinder actuator extension, and is thus selected for the robot design.

3 Experiments and Discussion

3.1 Prototype 1 - Snakeskin Testing

Three tests were performed to assess the performance of the skin mechanism to
extend and retract the housing and its effect on the skin layer. The areas that
are examined include actuator retraction-extension motion, housing retraction-
extension motion and function of the scales when the skin is in tension.

Actuator with Housing. The actuators were initially tested by implementing
a continuous sweeping motion, causing the actuator to go from fully retracted to
fully extended. Parameters of this motion were then adjusted until the actuator
functioned in a smooth cyclic motion to establish the optimal values for these
parameters. This code was then adjusted such that future connection of sensors
to the Arduino would not be detrimental to the performance of the actuators.
The actuator took 3 s to fully extend the housing to a 20 mm distance and
another 3 s to fully retract the housing. It would have been desired for this
duration to be faster. This would not cause any issues with performing rectilinear
motion except it is just slower. The actuators could be swapped out for quicker
ones in the future if desired.

Actuator in Housing with Skin Attachment. This test for the skin mech-
anism is to test the housing extension with the skin attached to the module, in
order prove whether the attachment can withstand the tension force indirectly
produced by the actuator, and how the scales behave during the motion.

This was executed by the actuator performing a sweep motion continuously
from full extension to full retraction (Fig. 4). Under full extension, the scales
simultaneously protruded outwards (Fig. 4(a)). The cuts within the skin layer
created a higher coefficient of friction with the ground in the direction opposite
to the desired motion. Therefore, on module retraction, the robot was able to
push forwards off the ground. At full retraction, the scales flatten allowing for
ease of motion (Fig. 4(b)).

Fig. 4. Skin behaviours (a) housing extension with scales protruding, (b) housing
retraction with scales flattened
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Based upon the testing conducted with one housing unit, it has given a
strong indication that the same mechanism could work with multiple units joined
together. With more segments, the robot would have had a higher pushing force
during rectilinear motion, and thus may have moved a greater distance under
each cycle of the actuator extension-retraction motion. Due to time constraints,
a full quantitative analysis of this prototype could not be undertaken and should
be considered if the project is carried forward in future.

Frictional Testing. The snakeskin layer function is heavily reliant on its inter-
action with the surface it is travelling on. Therefore, it was imperative that
frictional testing was conducted in order to quantify these interactions through
obtaining the static (μs) and kinetic (μk) coefficients of friction between the
silicone layer and various substrates.

Data was recorded for the performance of both a flat silicone sample and
a scaled silicone sample to compare their interactions with various substrate
surfaces. The set-up shown in Fig. 5 is employed to conduct the testing.

Fig. 5. Frictional testing rig (a) Set-up for the flat silicone sample (b) Set-up for the
scaled silicone sample

The flat silicone sample is attached under a 3.5 kg mass block, which is not
the case with the scaled sample. It is expected that the scales would have been
crushed due to not being able to sustain the block’s weight. Instead, this sample
was attached to a module housing prototype weighing 171.91 g. The difference in
weight is not an issue, as any mass difference is accounted for when calculating
coefficients of friction.

The flat silicone sample was tested along four substrate surfaces (steel, carpet,
acetate, laminate). The skin layer was tested across steel and carpet, with both
forwards and backwards motion recorded.

Flat Silicone Results. From Fig. 6, it appears that the frictional resistances
across carpet, acetate and laminate are relatively similar. This suggests that,
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Fig. 6. Frictional testing results for flat silicone and scaled silicone samples across
various substrates

Fig. 7. Scale orientation in the ‘forwards’ and ‘backwards’ directions.

when the scales are flat against the module housing, they will not hinder the
robot’s serpentine and sidewinding motion. However, it should be noted that the
steel and acetate tests did not produce a stabilised force range during travel.

Scaled Silicone Results. Although three of the four tested cases did not dis-
play a consistent magnitude of frictional force during motion, there are mean-
ingful findings with regards to the impact of the scale direction on motion. For
the steel surface, there is more resistance to the scales in the forwards direc-
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tion than backwards (scale orientation depicted in Fig. 7). This is because, on a
flat surface, the scales have nothing to interlock with. They become compliant,
increasing contact area with the steel substrate and therefore adhesion-mediated
friction becomes the dominant interaction [7]. In the backwards direction, only
the points of the scales contact the surface so there is less frictional resistance
due to adhesion in this direction.

For the carpet substrate, the opposite relationship is demonstrated, with
μk in the backwards direction being larger than in the forwards direction. The
scales in the forwards direction grip more effectively with the carpet, with the
stiff points propelling the module housing ahead. In the backwards direction,
the scale orientation and carpet roughness interlock opposingly, thus preventing
smooth travel. This may explain the jagged nature of the frictional force data
recorded in Fig. 6.

3.2 Prototype 2 - Housing and Smart Servos

Smart Servo Testing. We implemented 6 motions for the robot snake: forwards
serpentine, backwards serpentine, left sidewinding, right sidewinding, clockwise
rotation, and anticlockwise rotation. The aim of this testing stage is to observe
these different motions performed by the robotic snake in both the standard and
custom SLS brackets and identify associated issues. The hierarchy of potential
issues includes ease of assembly, mechanical movement, motion stability, and
bracket durability.

The housing enables the full function of the robot without restriction,
enabling the full rotation of servo motors at each bracket whilst providing the
rigidity necessary for controlled motion. Initially a 5-motor snake robot was
used to test the 6 motions using the standard manufacturer motor brackets. The
bracket assembly, motion stability, and mechanical movement of the 6 motions
demonstrated no issues with the initial 5-motor prototype.

Backwards serpentine is considerably slower than forwards serpentine, as this
movement relies on the tail contacting the ground and pushing off from it. Left
and right sidewinding movements have some stability issues, the increased weight
and length of the SLS motor brackets means that more weight is shifted onto
the mid-section of the snake, causing the robot snake to turn onto its side. It is
still able to achieve the desired direction of movement, but with less efficiency.

Initial testing, performed upon the assembly of the prototype, showed that
target joint angles greater than 45◦ produce smoother forwards and backwards
serpentine motions. An angle of 45◦ was originally chosen as it was observed
to cause certain sections to not be in contact with the ground to assist the
different motions. Angles of 55◦ and 60◦ showed smoother movements; these
greater angles allowed the “tail” end of the snake to contact the ground and push
off. It is also noted that angles lower than 45◦ give the sidewinding movements
more stability. This has the effect of evening out the weight distribution. Due to
time constraints, a test to give a quantitative characterisation of each locomotion
could not be undertaken. Further testing would be required to identify the exact
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causes within the movement issues identified, and to identify optimum angles
and joint speeds for the different motions by assessing their speed and stability.

4 Conclusion

This project endeavoured to construct a snake-inspired robot based on the prin-
ciples of a modular robotic system. Using modular robotics as a base, identical
housing units were developed and interlinked to produce a housing chain with
alternating degrees of freedom producing rotational and collinear movement.
Software was created to incorporate servo motor control and produce serpentine
and sidewinding motion. A segregated system was packed into the housing to
control the linear actuators to facilitate rectilinear motion. An extendible elas-
tomer skin layer was also manufactured with retractable scales to exclusively
facilitate the rectilinear motion of the robot. Two prototypes were assembled,
including 1) prototype 1, used to test the snakeskin, demonstrating a single actu-
ator’s ability to extend and contract a module housing with a scaled skin layer
fixed on, shifting the module housing forwards and 2) prototype 2, used to test
the smart servos, demonstrating the motors’ ability to allow a housing chain of
5 modules to perform the serpentine and sidewinding motions.
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Abstract. In 2020, breast cancer affected around two million people
worldwide. Early cancer detection is, therefore, needed to save many lives
and reduce treatment costs. Nowadays, mammography and self- palpa-
tion are the most popular monitoring methods. The high number of cases
and the difficulty of correct self-diagnosis has prompted this research
work to design a fully autonomous robot to perform breast palpation.
Specifically, this study focuses on learning the path for a successful breast
examination of a silicone model. Learning from demonstrations proved to
be the most suitable approach to reproduce the desired path. We imple-
mented a teleoperation control between two Franka Emika Panda robots
with tactile and force feedback to perform palpation on both simple
and complex shapes. Moreover, we created a dataset of simple palpation
strategy. Finally, we developed and tested different sequential neural net-
works such as Recurrent Neural Network (RNN), Long short-term mem-
ory (LSTM), Gated recurrent unit (GRU) and Temporal Convolutional
Network (TCN) to learn the stochastic behaviour of the acquired palpa-
tion trajectories. The results showed that TCN is capable of reproducing
the desired behaviour with more accuracy and stability than the other
models.

Keywords: Robotic palpation · Learning from demonstration ·
Teleoperation · Force and tactile feedback · Sequential neural networks

1 Introduction

Breast cancer affects many people in the world every year. According to
the GLOBOCAN Cancer Today database from the International Agency for
Research on Cancer, 2.261.419 new cases were identified in 2020 [4]. Early can-
cer detection is of utmost importance as it can allow faster, simpler and more
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effective treatment; hence saving many lives. Breast self-examination, expert pal-
pation and Mammography are currently the means of detecting breast cancer.
Expert and Self-examination are composed of a visual inspection of the breasts
and palpation of the breasts and lymph nodes. Nonetheless, these are subjec-
tive approaches and may result in many false negative [15]. On the other hand,
in mammography, the body is exposed to radiation. Hence, early breast cancer
detection is not well practised illustrating a technology gap. Robot palpation
is a solution to fill this gap. For example, during robotic minimally invasive
surgery [19,22,24], palpation is essential to identify anomalies [6]. Nowadays,
the palpation action for breast cancer detection is performed by the patient,
consequently of the subjects, the diagnosis is not always reliable, or by expert
which is not convenient for many subjects, revealing an autonomous robot for
palpation an interesting solution.

Advanced Robotic breasT ExaMination Intelligent System (ARTEMIS)
project funded by Cancer Research UK aims to develop a completely autonomous
robot that substitutes the palpation action in order to obtain higher accuracy in
the diagnosis. There are studies focused on the estimation of mechanical charac-
terisation [5,16,17,19]; but, to the best of our knowledge, this is the first work in
literature that study data collection and palpation path planning for autonomous
palpation to be used for breast cancer examination. Robotic palpation is com-
plex because combined haptic feedback and visual information determine the
interaction between the robotic end-effector and breast tissue, which is complex
geometry and has varying mechanical properties across different breasts. Here we
consider two phases of path/trajectory planning: (1) palpation path/trajectory
planning based only on visual information provided by RGB-D sensor/s and
(2) trajectory adaptation based on the tactile information – i.e. according to
change of stiffness in the examined tissue by the tactile sensor the robot gener-
ates exploration trajectory for that part to gain more information necessary for
later cancer detection classifier. The complexity of path planning comes from the
alternation between contact and no-contact actions and the correlation between
the path and RGB-D sensory information representing different geometry, i.e.
the path has to change in accordance to the patient’s breast.

Palpation of a breast is an intuitive test technique in which the pads of the
three middle fingers are used to identify and locate diseased tissue. It is very
important to examine the entire surface, hence, the doctors suggest following a
predefined path that can be circles, wedges and/or lines during the palpation
[1–3]. Recent research highlights the potential of Learning from demonstration
(LfD) in path planning [20]. Recent LfD approaches are reviewed in [23]. Elliot
et al. [8] presented LfD to extract the tool application pattern for cleaning task.
However, they use many hard-coding and preprocessing operations which is not
feasible in breast palpation case due to high geometrical variability across sub-
jects at different palpation tasks. In this work, we aim to develop a data-set
and deep model learning the palpation trajectory from human demonstrations
without human interference. Palpation trajectory is complicated and stochastic
due to human factors. Thus, it is difficult to capture a correct path using tradi-
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tional machine learning methods. Deep models instead seem to be an appropriate
solution correlating visual information to proper palpation trajectory.

[11] used a deep model to learn the robot control action for inserting a nee-
dle into a soft tissue. Zhang et al. [25] used a Temporal Convolutional Net-
work (TCN) to predict the long-term lane-changing behaviour trajectory. The
results showed that the model could successfully predict the trajectory behaviour
with higher performance than RNN and CNN. The contribution of this paper is
threefold: (1) a data collection setup for tele-operating palpation actions, (2) a
palpation data-set, (3) a series of deep recurrent models generating palpation tra-
jectories based on visual information. These models can capture the behaviour
of the palpation trajectory by sequential architectures Recurrent Neural Net-
work (RNN), Long Short Term Memory (LSTM) [10], Gated Recurrent Units
(GRU) [9] and TCN. This study demonstrates deep time series are suitable tools
for learning palpation trajectory for a phantom at different position and orienta-
tion. We created a palpation data set publicly available and baseline deep time
series model. This is a proof of concept study. Future works include the big data
set more suitable for deep time series model, considering forceful interactions in
our experimentation and the use of a breast phantom.

2 Methodology

Learning from the demonstration method achieved good where a human demon-
stration is not expensive while programming the robot can be time consuming
and expensive. The main concept is to record demonstrations of palpation action
and extrapolate from them the main features to predict a successful path. It is
important to understand what to learn and how to learn before going through
the details of the methodology. As such, we made demonstrations using a simple
silicon phantom and moving the follower arm end-effector from right to left with
a contact motion and from left to right with a no-contact motion, as shown in
Fig. 1c), and repeat the motion until all the surface is examined. Then, a deep
model will be trained on the data acquired. In the following, we describe the
experimental setup, data-set acquisition and deep-model implementation.

2.1 Data-Set Acquisition

Set-Up: We use two Franka Emika Panda robots where the right one (called
follower-arm) mirrors the left one (called leader-arm). I.e. the left arm follows the
movement of the right arm in Fig. 1a. A real-sense RGB-D camera is mounted
on the wrist of The follower and a 4 by 6 Xela sensor is attached to the left finger
of Panda arm as shown in Fig. 1b. Each sensing cell of the Xela sensor measures
a normal force and two tangent forces during palpation actions. The leader is
compliant controlled so that it feels zero mass while a human is moving the fol-
lower far from the phantom. If the follower is close to the surface of the phantom
the leader will guide the user to keep the leader be normal to the phantom sur-
face and does not allow too much penetration in the phantom (see the Control
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(a) Set-up (b) Teleoperation

(c) Phantom motion (d) Phantom point-cloud

(e) Breast point-cloud

Fig. 1. The experimental setup to perform teleoperated palpation actions consisting
of 2 Panda arm manufactured by Franka Emika Gmbh (a) and (b); the palpation are
applied on a phantom with rectangle cross section made of silicon. The movements
pattern during palpation (c); the depth map of the silicon phantom (d) and the breast
phantom (e).

for data acquisition section!). We have two phantoms (1) breast phantom which
is a model of a real breast, (2) a simple flat surface silicon phantom. In our
first implementation in this paper, we use the silicone piece (2A Shore scale) to
develop necessary control, learning and experimental setups, shown in Fig. 1c.
We fabricated two silicone layers of 15 × 15 × 2 cm dimension and stacked one
on the other where two harder objects were embedded as simulation of lumps
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betweeen the layers. We cover the top silicone surface with a paper to help the
sensor sliding.

Control for Data Acquisition. The robot has to learn a behaviour from one
or several demonstrations performed by a human who is considered an expert.
A teleoperation control with force feedback is implemented to give input to the
Franka arm. For terminologies, robots are going to be called ‘leader’, the one
used by operator, and ‘follower’, the one that computes the task on the silicone
phantom. Looking at Fig. 1a, leader is on the left and follower on the right.
The two robots have to communicate with each other. For that purpose, a PD
control is implemented. The control’s goal is to impose a motion to the follower
arm equal to the one applied by the operator on leader side. Therefore, the torque
is calculated in order to apply same in the follower’s actuator Tf as follows:

Tf = Kp(θl − θf ) + Kd(θ̇l − θ̇f ) (1)

where Kp and Kd are the proportional and derivative coefficient, θ is the joint
position and θ̇ is the angular velocity for leader (l) and follower (f) side. Notice
that the control works only for small Δθ and Δθ̇. To satisfy this hypothesis, the
initial positions of the leader and the follower are set equal, and the frequency of
the control loop has to be higher than a limit value estimated equal to 200 Hz.
The palpation action is performed in a perpendicular direction. In order to help
the operator, who does not have a direct contact with the object to estimate
the normal direction and to fill the reaction force given by the contact, a force
feedback control is implemented. The torque on the leader side is modelled and
was set Tl equal to:

Tl = JT · FEE
f (2)

where J is the Jacobian matrix and FEE
f is the force apply on the follower

end-effector. FEE
f is a 6 × 1 dimensional vector defined as follow:
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Where ref are the variable related to the frame attached to each point of the
object’s surface with the z axis equal to the normal vector in that point to the
surface, while EE refers to the frame attached to the follower’s end-effector.
The force in x and y direction are considered null, instead the one along z is
estimated as:

⎧
⎪⎨
⎪⎩

FEE
z = 0, z > zref

FEE
z = k1 · |z − zref |, zref > z > zref − δz

FEE
z = k1 · |δz| + k2(e|z−(zref−δz)| − 1), z < zref − δz

(4)
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k1 and k2 are coefficient chosen experimentally and δz is the area within the
object is easily deformed. The three torques TEE are calculated as a coefficient
times the difference between the Euler angles of the end-effector frame and ref-
erence surface frame. During the demonstrations, the object’s point closer to
the end-effector is used as reference. The point cloud of the object was used for
the estimation of the reference frame in each points of the object (Fig. 1e and
1d). During the teleoperation, the distance between the end-effector and all the
points is calculated. If the minimum value of the distance is lower than 2 cm,
then the force feedback control is activated.

The zref is estimated on-line taking the average value of z of the closest 1000
points with respect to the end-effector position. On the other hand, the reference
of the orientation, the rotational matrix which corresponds to the closest point
is considered. The control was tested on both the simple phantom as well as the
real breast with excellent results.

2.2 Deep-Model

The extraction of palpation path from the raw demonstration is a crucial task
for robot motion planning. Therefore, the goal is to capture the common features
of an entire execution and estimating a global pattern to follow.

Data-Set. 31 demonstrations were collected with the phantom fixed to the
table and only one subject as operator. The data-set is composed by X, Y and
Z Cartesian’s coordinates of the follower’s end-effector. The first and the last
contact between the end-effector and the object are the initial and last point
acquired. The trajectory is described in a relative frame fixed to the object in
such a way that the x coordinates corresponds to the repetition direction, y
to the task direction and z to the contact direction (Fig. 1c). One trial lasts
about 2.5–3 min. In the phase of modelling our trajectories, shallow methods
like Hidden Markov models or Bayesian inverse reinforcement learning lack the
capacity to model data that has the long-term dependencies property, this is why
RNN was chosen for the implementation of our model. They have demonstrated
strength in modeling variable length sequence. Hao Wu et al. adopted RNN
to predict trajectories on a real world taxi GPS trajectory datasets. Similarly,
the behaviour of our trajectories coordinates are periodical, and this makes it
sufficient for the network to learn the behaviour of a time series. They can learn
the time-dependent mechanisms underlying the expert palpation on the breast
phantom. In this work, RNN and its variants like LSTM, GRU and TCN are
designed to work with sequential data, they have all been tested to observe which
performs best.

Model Architecture. The experiments have been tested on RNN, LSTM,
GRU and TCN since each of them have a unique distinction to their structure.
RNN is not enough because they cannot solve the vanishing gradient problem,
a common problem encountered when training artificial neural networks with
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Fig. 2. Schematic comparisons of RNN, LSTM and GRU

gradient-based learning methods and backpropagation. During training, the gra-
dient becomes very small in a vanishing fashion and prevents the weights of the
model from changing its value. LSTM’s and GRU’s were created as the solution
to the vanishing gradient problem, they both use a gate system that controls the
memorization process. LSTM composes of a cell, an input gate, an output gate
and a forget gate. The cell remembers values over arbitrary time intervals and
the three gates regulate the flow of information into and out of the cell, it learns
to bridge minimal time lags in discrete time steps by enforcing constant error
flow through the cell. GRU on the other hand, composes of two gates, a reset
gate and update gate. The network has fewer tensor operations since it has a
simpler network than the LSTM, and this makes it computationally faster than
LSTM.

Conversely, TCN is a recent network different from previous models
described. Lea et al. [14] introduced it as a modification of Convolutional Neural
Networks for sequence modelling tasks, by combining RNN and CNN architec-
tures. It’s a combination of two different network with dissimilar architectures.
The first network is a CNN that functions as a feature extractor by encoding
spatial-temporal information, while the second network, usually a RNN, takes
the low-level dimensional features output of the CNN and acts as a classifier by
capturing a high-level temporal information from these features. The CNN is a
Casual convolution, a type of network which ensures the model cannot violate
the ordering in which we model the data. This means prediction emitted by the
model at timestep t cannot depend on any of the future t+1 timesteps. This
work focus is not to much focus on how the sequential models shown in Fig. 2,
however, we invite readers to get more information about these architectures
from the original authors, RNN [21], LSTM [13], GRU [7] and TCN [14].

Defining a sequence modelling as f : XT+1 → Y T+1 with the mapping:
ŷ0, ...., ŷT = f(x0, ...., xT ) where (x0, ...., xT ) is the input sequence that predict
the output y0, ...., yT . In our case, T is set as 50, i.e. 50 time steps in past are
considered to predict 50 time steps in the future. Even if 50 time steps in the
future are predicted, the input temporal window is shifted only by one time
step for the next iteration with respect to the previous one, i.e. if the first input
is from t0 to t49, the second input will be from t1 to t50 and so on. 50-time
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Fig. 3. Deep-model

steps in the past are considered to predict 50-time steps in the future. For this
research, 67% of the data-set are considered for training and validation while
the remaining 33% were used in test phase (Fig. 3).

The four sequential models described above were trained to predict each coor-
dinate i.e. X, Y, Z separately. The structures of the models for the 3 coordinates
are very similar: they start and finish with one or more Time Distributed Dense
(TDD) layers and in the middle, there are one or more sequence layers (layer* ).

The X and Y model consists of: InputLayer - TimeDistributedLayer1 -
NNLayer - TimeDistributedLayer2.

The Z model consists of: InputLayer -TimeDistributedLayer1 - TimeDis-
tributedLayer2 - NNLayer1- NNLayer2- TimeDistributedLayer3 where NNLayer
is replaced with either RNN, LSTM, GRU or TCN layer.

The Time Distributed layer serves as a wrapper by applying a Dense layer
to every temporal slice of the input. The addition of the extra NNLayer and
TimeDistributedLayer in the Z model was done to optimize the prediction of
the trajectory efficiently because it’s a different type of trajectory in comparison
to X and Y. The optimizer chosen is Adam and the loss function used is Mean
Absolute Error between the trajectory predictions and ground truth for each
coordinate. The number of epochs in accordance with the validation losses is set
to 15 for all the models. The performance of models are discussed in the next
section. We have used Adam optimiser, the Learning rate is 0.001, 15 epochs,
and the loss function used was Mean Absolutes Error.

3 Results

The implemented models show interesting results in both test phase and real-
time prediction. In test phase, the inputs sequences given to the model are taken
directly from the acquisitions; in real-time instead, the sequences used as inputs
are taken from the previous prediction, obviously an exception is made for the
first one. The interest is not in replicating the single demonstration but only
the correct trend of each coordinate. As a matter of fact, the performance of a
network is compared on the capability of estimating the common trend of each
demonstrations.

Figure 4(a) represents the X prediction for all the possible networks. The
trends of the curves are very similar to each other and there are not relevant
differences. For the Y prediction (Fig. 4(b)), it is evident that the peaks of
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Fig. 4. Test results: (a) Prediction test results of behaviour for X; (b) Prediction test
results of behaviour for Y; (c) Prediction test results of behaviour for Z.

the ground-truth do not correspond to the predicted one. This should not be
surprising since the periodicity is related to each execution. On the contrary,
this fact is interpreted as a strength because the model can learn a medium time
period to complete the task. It is significant that all the models identify the same
periodicity. Another strength is that the amplitudes of the data acquired have
variations in repetitions, instead the predicted trajectory replicates a constant
behaviour in accordance with the fixed shape of the phantom. The peaks have
a smoother shape along the positive slope and steeper shape along the negative
one; the trend reflects perfectly what happens during the execution. In the ascent
phase, the sensor is in contact with the surface and the velocity is slower, while
in the descent phase, the end-effector is no more in contact and it can reach
higher velocity.

Looking at the prediction, one can conclude that Y best estimation is given
by GRU, thanks to the smoother shape. Finally, some considerations about Z are
needed. It is very difficult to correctly estimate the amplitude of the peaks (no-
contact motion) due to the low number of samples with respect to the contact
phase since the velocity of the robot is very high. Moreover, most of the samples
have same value because the phantom has a constant surface, this is why the
model tends to predict a constant output. Nevertheless, a behaviour similar to
the ground-truth is achieved by the TCN (Fig. 5). To conclude, unseen inputs
were tested on the trained models, and they exhibited the ability to predict a
path with a correct trend. Out of all four, GRU had the best performances for
Y prediction while TCN performed best for Z.
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Fig. 5. Predicted 3D trajectory by TCN (a) and GRU in real-time (b); TCN predicted
values for (f) x, (g) y, (h) z and GRU predicted values for (i) x, (j) y, (k) z.

In both train and test phase, the sequences given as inputs to the network are
taken from the ground-truth. In the following results, only the first sequence is
considered as known and the others inputs are taken directly from the prediction.
The goal is to find a unique path (Γ ) for a correct palpation on the specific
phantom. The first 50 points of Γ was given in advance to predict the whole
curve. The function is initialised with 50 points and it uses the first element of
the output vector as the first element of the input for the next iteration.

TCN and GRU result to be the best models from the testing phase, for the
real-time only they are implemented. Figure 5 and 5 summarise the results of
TCN and GRU model respectively. The x axis is designed to be equal to repeated
direction thus an ideal shape for the X coordinates will look like an ascendant
step function since the repetitions should be parallel to x axis. The X prediction
in TCN is closer to this ideal trend with respect to the GRU (Table 1).
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Table 1. Dynamic time warping distance

TCN LSTM GRU RNN

X 16.39 39.71 14.5 14.46

Y 57.93 27.40 41.37 57.80

Z 15.89 17.50 16.94 15.75

Y coordinate prediction is unstable in the GRU model (decrease in time),
but in TCN, the amplitude remains constant. Considering that the length of the
phantom to be examined is equal in each repetition, TCN prediction achieves
better performance with respect to GRU. Similar consideration applies to the Z
coordinate, the TCN was more stable in Z prediction. On the other hand, the
predicted value of X is like the real one in term of dimension. The contact points
of Z are comparable to the ground-truth, but the no-contact points are only 1cm
higher than the phantom surface, therefore these values have to be increased for
a real application. Finally, Y predictions were 0.5 less with respect to the real
value.

In conclusion, TCN reflects the best trajectory for the phantom examination.
The model can predict a whole trend trajectory that is very close to the expected
using only the first 50 time steps, but the dimensions of the final trajectory do not
fit perfectly the real values. Nevertheless, the obtained results must be considered
a fundamental basis for future works in this research topic. The implementation
of the Neural Networks have been made available on github: https://github.
com/imanlab/artemis dpd.

The cumulative mean absolute error between the ground truth and predictions
for X, Y and Z in our test set (33% of the data) is X = 0.03412817658471579,
Y = 0.03194648418311379, and Z = 0.006836229386848896.

4 Conclusion

Mammography and self-examination are the only tools known for detecting
breast cancer in the early stage. The increasing number of new cases all over
the years and the importance of correct diagnosis motivated the development
of a completely autonomous robot for breast cancer examination. One of the
key elements of such a system is learning how to palpate different breasts from
expert palpation. This work built the basis of learning from demonstration for
breast cancer examination. The highly complex geometry of breasts and differ-
ent palpation practice, makes it challenging to hard code the palpation actions;
hence, we built the palpation trajectory directly from human demonstrations.

We implemented a teleoperation control with force and tactile feedback for
data acquisition where this setup enables us to perform palpation on different
environments. We collected data of a series of palpation actions on a silicon phan-
tom. Finally, we studied the implementation and results of different deep models
for trajectory planning from demonstrations including LSTM, GRU, TCN and

https://github.com/imanlab/artemis_dpd
https://github.com/imanlab/artemis_dpd
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GRU. These baseline implementations revealed the pros and cons of each deep
model. Although TCN is among the best model, considerable improvements on
the trajectory generation is still needed before making autonomous palpation in
future developments.

We identified the limitations of optimisation based approaches, e.g. [18], and
conventional learning from demonstration approaches, e.g. DMP [12] can only
generalise to new start and goal points whereas in our application the entire
palpation path should be adapted to a new breast geometry. Hence, we explored
the use of deep model as the mean to generalise the palpation action across
different breast geometry.
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Abstract. Probabilistic Movement Primitives (ProMPs) model robot
motor skills by capturing the mean and variance of a set of demon-
strations provided by a human teacher. Such a probabilistic represen-
tation of motor skills is beneficial in physical human-robot cooperation
(pHRC) where robots have to respond to the inherent variance in human
motion. However, learning ProMPs incrementally and from scratch, as
it is desirable in pHRC, is difficult due to the large number of parame-
ters required to model the distribution of a motor skill compared to the
few demonstrations available at the beginning of training. In this paper
we propose to predict the variance structure of a motor skill based on
the speed found in the individual demonstrations and to incorporate this
prediction into the prior parameter distribution of the ProMP. Our basic
approach is taking inspiration from the speed-accuracy trade-off found in
human motion. Experimental evaluation suggests that with the proposed
prior parameter distributions, the true distribution is approached faster
in incremental learning of a motor skill than with the priors previously
proposed for batch learning.

Keywords: Speed-accuracy trade-off · Movement primitives ·
Learning by demonstration

1 Introduction

In physical human-robot cooperation (pHRC) robots are placed in unstructured
environments where they have to deal with changing surroundings and, since
human and robot are in continuous physical contact over longer periods, the
variance inherent in the motions of their human partners. Some of the varia-
tions in the environment and human motion can be captured by probabilistic
representations of motor skills, as for example probabilistic movement primitives
(ProMPs) [5]. ProMPs represent probability distributions over trajectories, sum-
marizing motor skills in terms of a mean trajectory and corresponding variance.
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ProMPs can be learned from human demonstrations which is a common app-
roach in robotics, enabling humans to teach robots new motor skills fast and
without writing code. In learning by demonstration (LbD) a human demon-
strates multiple instances of a movement to a robot by moving the robot’s end
effector around either directly or through a jointly gripped object. The robot
then learns a ProMP by computing e.g. maximum likelihood estimates (MLE)
of the ProMP parameters based on the provided examples.

This learning process can either happen incrementally or in batch. Learning
in batch means that a set of demonstrations is recorded at the beginning of
training. Thereafter, a learning algorithm computes the ProMP parameters on
basis of all demonstrations in the set. Since the robot remains passive during
the demonstration phase, any cooperation between human and robot is delayed
and the human experiences no support in providing the demonstrations in coop-
erative tasks such as the joint manipulation of objects. A possibility to achieve
human-robot cooperation with batch learning is to first train a ProMP covering
all expected variations in a task and then use conditioning to adapt the ProMP to
the preferences and circumstances at the time. However, this approach requires
external sensor systems to detect changes in the environment, aggravating its use
in practice. Furthermore, lay users have a limited understanding of how a robot
learns motor skills and how it reacts to new demonstration inputs, making it dif-
ficult to deliver just the right demonstrations to the robot without any preview
of the resulting motor skill. The training in batch mode has the advantage that
a larger data set is available, making the estimation of the ProMP parameters
easier, but is however unintuitive in cooperative tasks, where humans expect
an incremental training progress of their partner. Batch learning is thus better
suited for tasks outside the pHRC domain, where human and robot are not con-
tributing actively and simultaneously to the same task, and where tasks can be
broken down intuitively into a training and an execution phase.

In incremental learning, the ProMP parameters are updated sequentially
– each time a new demonstration arrives [6]. With that, incremental learning
is well suited to pHRC, where human and robot solve tasks together and a
new demonstration naturally arrives with each execution of a task. After each
execution, the motor skill can be slightly adjusted to the most recent preferences
of how to execute the task. Incremental learning has the advantage that the
human can observe the robot’s training progress while they learn a new task
together. Cooperation can emerge after the first demonstration and the human
can focus on corrections and adaptations – compared to batch learning, the time
in which the human has to take on the full leader role is minimized. Shaping
motor skills over time with corrective demonstrations can be further facilitated
by a forgetting factor which gives more weight to recent demonstrations over
what was learned earlier [6]. Incremental learning using a forgetting factor is a
step towards life long learning of motor skills.

A challenge in incremental learning is the low number of demonstrations
available at the beginning of training. When learning a motor skill from scratch,
the ProMP distribution initially has to be estimated on basis of a single demon-
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stration, leading to a degenerate distribution with zero covariance. Also the sub-
sequent estimates, as long as the number of demonstrations is small compared to
the dimension of the covariance matrix, suffer from numerical instability caused
by rank deficient (singular) covariance matrices. Poor estimates of the covariance
matrix are especially severe when the robot’s compliance along the trajectory is
adjusted according to the variance of the ProMP.

The problem of poor parameter estimates in face of a small sample of demon-
strations can be countered with regularization in the form of prior parameter dis-
tributions, and hence the computation of maximum a posteriori estimates (MAP)
of the parameters, which has been shown to improve the robustness of parameter
estimates in batch [3] and incremental [6] learning of ProMPs. The authors in
[3] propose to use an uninformative prior for the mean of the ProMP and an
informative, data-dependent prior for its covariance matrix, where they use the
(scaled) block-diagonal maximum likelihood estimate of the covariance matrix
as an initial guess for the parameter. With this setting, the MAP of the mean is
equal to its MLE. The block-diagonal prior for the covariance matrix favours the
off-diagonal elements representing the correlations between the robot’s joints to
be zero in presence of a small number of demonstrations, yielding numerically
more robust estimates while holding the variances of each joint close to their
MLEs. Even though this prior has a positive effect on the robustness of the
covariance estimates, it does not actually input prior knowledge into the sys-
tem but instead utilizes information from all available demonstrations. Hence,
it does not cope with the lack of information about the movement/task itself
encountered when learning new motor skills incrementally.

It is of course difficult to make general prior assumptions about all arbi-
trary movements that could possibly be learnt, but it may be possible to make
assumptions about the distribution of a specific motor skill based on individ-
ual demonstrations. Considering that the demonstrations come from a human
manipulating the robot’s end effector, characteristics/features of human motion
can potentially serve as a source for such prior assumptions. One such feature is
the speed accuracy trade-off found in human motion, implying that movement
accuracy decreases as speed increases. The most renowned model of this trade-off
may be Fitts’ law [2]. Fitts’ law, originally proposed for translational movements,
states that the movement time in a pointing task is a function of the distance to
the target and the target width. The smaller the target width, the greater the
elapsed time to reach the target. Experiments show that also one-dimensional
rotational movements and combined translational and rotational movements can
be modelled well with a Fitts’ law equivalent [7]. Fitts’ law was later generalized
to trajectory-based movements, resulting in the steering law [1]. The steering
law proposes a linear relationship between the steering time and the “tunnel”
width which imposes a spatial accuracy constraint on the movement. Further
research has been devoted to the steering law, investigating the effects of com-
binations of spatial and temporal constraints [11], the effects of narrowing or
widening tunnels on the steering time [9] and steering through sequential linear
path segments [10]. The aforementioned research is rooted in the field of human
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Fig. 1. Example data supporting our assumption of a speed-accuracy trade-off in kines-
thetic teaching. The data are computed from 51 kinesthetic demonstrations recorded
in the setup on the top-right. The plot shows in light grey the absolute mean task-
space velocities in X, Y, Z as well as the 2-norm of the mean velocity vector. The
sample variance of the mean task-space positions in X, Y, Z and the 2-norm of the
mean position vector are shown in black. When the task-space velocity is high the
variance of the task space position is high as well. The variance and thus the velocity
is low at sections b and d and c where the movement is physically constraint by the
environment. Note that the velocity peak in section c has no corresponding peak in
the variance since we aligned the data with dynamic time warping (DTW). Without
DTW the speed-accuracy relationship is even more distinct.

computer interaction and the derived models are only verified for simple 1 or 2
dimensional movements in absence of force interactions with the environment.
Only recently, motivated by the growth of virtual and mixed reality technology,
the development of higher dimensional speed-accuracy models suited to describe
3D object interactions has gotten into focus [8].

Even though we did not find specific studies proving the speed-accuracy
trade-off to be present while a human is manipulating a robot’s end effector
in 3D space by kinesthetic teaching, we suggest to exploit the basic idea of
Fitts’ law to make prior assumptions about the variance of a ProMP/motor skill
based on individual demonstrations. We assume that while delivering demon-
strations, the human is subject to a speed-accuracy trade-off limiting the human
to guide the robot in a slower pace in directions in which the spatial constraints
of the movement are stringent. Figure 1 shows observations we found in kines-
thetic demonstration data from a setup that imposes a spatial constraint on the
robot’s end effector that support this assumption. We propose, that by examin-
ing the task-space velocity along the path, we are able to make an estimate of
the variance that can be expected in one section relative to other sections of the
movement. These estimated variances can be incorporated into the prior of the
covariance matrix, enhancing the ProMP with context about the task in early
stages of training.
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2 Probabilistic Movement Primitives

A ProMP represents a distribution over trajectories [5]. A trajectory τ = {yt}T
t=1

is a time-series of vector-valued robot states yt ∈ S in a state space S ⊆ R
D,

where D is the dimension of the state space. In this paper we encode trajectories
in task space by recording the robot’s end effector position in 3D Euclidean space.
Trajectories are concisely represented as weight vectors w ∈ R

KD in the basis
function model yt = Φtw + εy, where Φt ∈ R

D×KD is a time dependent, block
diagonal basis function matrix containing on its diagonal a row vector φᵀ

d,t ∈ R
K

for each degree of freedom, which again contains the values of K normalized,
evenly spaced, Gaussian basis functions φk(t) evaluated at time t. The last term
εy ∈ R

D is a vector containing the observation noise which is assumed to be
independent and identically distributed according to the normal distribution
N (0,Σy). Given a weight vector w, it follows that a trajectory τ consisting of
T time steps is distributed according to

p(τ |w) =
∏T

t=1 N (yt|Φtw,Σy). (1)

Multiple demonstrations of the same movement are expected to differ slightly.
This implies that different weight vectors wn are needed to represent the n
different instances of a movement. The underlying mechanism generating the
weight vector samples is assumed to be a Gaussian distribution

p(w|θw) = N (w|μw,Σw), (2)

where θw = {μw,Σw} are the distribution parameters. The mean vector μw ∈
R

KD summarizes the mean of the demonstrations in each degree of freedom.
The covariance matrix Σw ∈ R

KD×KD represents the variances and covariances
of the demonstrations in respectively between each degree of freedom.

Learning a ProMP from demonstration can be done by maximizing the
likelihood of the N observed trajectories Y = {τn}N

n=1 with respect to the
ProMP parameters i.e. computing the maximum likelihood estimate (MLE)
θMLE

w = arg maxθw
p(Y |θw), where the marginal likelihood is given by

p(Y |θw) =
∏N

n=1

∫
p(wn|μw,Σw)

∏T
t=1 p(ynt|wn)dwn. (3)

For regularization of the MLE, a prior distribution p(θw) over the ProMP
parameters can be incorporated into the maximization problem which becomes
θMAP

w = arg maxθw
p(Y |θw)p(θw). Where θMAP

w is the mode of the posterior
distribution p(θw|Y ) known as the maximum a posteriori estimate (MAP). This
maximization can be accomplished by means of the expectation-maximization
(EM) algorithm in batch [3] and incremental [6] learning settings. Details about
the learning algorithms can be found in the respective publications. Since the dis-
tribution in Eq. 1 is assumed to be a multivariate normal with unknown mean
and variance its conjugate prior is a normal-inverse Wishart distribution [4].
Using the conjugate prior has the advantage that the computations in the EM
can be solved in closed form. The normal-inverse Wishart prior has the form
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p(θw) = NIW(μw,Σw|m0, k0,S0, v0)

= N (μw|m0,
1
k0

Σw)IW(Σw|S0, v0), (4)

where N (μw|m0,
1
k0

Σw) is a normal distribution representing our prior belief
about the ProMP mean with m0 being the prior mean and k0 controlling the
prior strength, and IW(Σw|S0, v0) is an inverse Wishart distribution represent-
ing our prior belief about the covariance matrix of the ProMP with S0 being
(proportional to) the prior mean and v0 controlling the prior strength [4].

3 Prior Parameters Inspired by Speed-Accuracy
Trade-Off

Inspired by the speed-accuracy trade-off described in studies on human motor
control, we investigate the design of the scale matrix S0 specifying our initial
guess of the ProMP variance based on the velocities in the demonstrations. For
our initial investigation of this idea in this paper we choose a straight-forward
approach. We consider learning a new motor skill incrementally and from scratch,
using the incremental learning algorithm for ProMPs presented in [6]. The com-
putation steps are shown in Fig. 2. The training process begins with the human
providing the first demonstration to the robot via kinesthetic teaching. Dur-
ing the teaching, we record the Cartesian coordinates of the robot’s end effector
τ = {yt}T

t=1 =
{(

pt
x pt

y pt
z

)}T

t=1
. Each time a new demonstration is available, the

learning algorithm is executed to incorporate the new demonstration into the
ProMP. Between the M-step for the mean μw and the M-step for the covariance
matrix Σw we compute the prior parameter S0 as follows:

q̇ = Ψ̇μw (5)

Q̇abs = diag(abs◦(q̇)) (6)

S∗
0 = vminI + vmax−vmin

max(Q̇abs
ii ∀i)−min(Q̇abs

ii ∀i)
(Q̇abs − min(Q̇abs

ii ∀i)I) (7)

S0 = (v0 + KD + 1)Ψ−1S∗
0Ψ−ᵀ (8)

Fig. 2. Computation steps during incremental learning with the speed-accuracy trade-
off (SAT ) prior proposed in this paper. The SAT prior is computed in the grey block
between the M-step of the mean μw and the M-step of the covariance matrix Σw.
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where Ψ , Ψ̇ ∈ R
HD×KD are a block diagonal basis function matrices with each

block containing K normalized Gaussian basis functions respectively the deriva-
tives of K normalized Gaussian basis functions evaluated at H = K evenly
spaced time steps. q̇ is the concatenation of the velocity profiles in x, y, z. By
setting H = K the velocity profiles will be coarse and consist only of as many
time steps as there are basis functions. In Eq. 6 the operator abs◦(·) computes the
element wise absolute values of the velocity vector. The diag(·) operator forms a
diagonal matrix from a given vector. In Eq. 7 the absolute velocities are rescaled
to the range between the minimum and maximum desired variance [vmin, vmax],
where 0 < vmin ≤ vmax. The resulting diagonal matrix S∗

0 contains the rescaled
absolute velocities on its diagonal, thus when interpreted as a covariance matrix
S∗
0 has higher variance at sections of the movement where the velocity was high

– representing a speed-accuracy trade-off. Multiplying S∗
0 by the inverse of the

basis function matrices has the effect that vmin and vmax correspond to actual
minimum and maximum variance of the ProMP in task space, making it more
intuitive to set the scaling parameters. So can we set them in task space units in
terms of the smallest and biggest standard deviation we expect for the task. The
scaling still has to be set manually but is at least limited to the maximum preci-
sion and maximum reach of the robot and can be estimated from the dimensions
of the real world set up of the task.

Similar to [3], we multiply S∗
0 by (v0 +KD +1) such that the MAP estimate

Σw becomes a convex combination of S0 and ΣMLE
w with a coefficient dependent

on the number of demonstrations N . We set the parameter v0 = KD+2 to ensure
that the expected value of the inverse Wishart distribution equals S0.

Instead of using the scaling matrix computed in Eq. 5–7 alone, we can also
blend it with the block diagonal MLE of the covariance matrix, yielding

S0 = (v0 + KD + 1)
(
(1 − λ) Ψ−1S∗

0Ψ−ᵀ + λ blockdiag(Σ∗
w)

)
(9)

λ =

{
n−1

η 1 ≤ n ≤ η

1 otherwise
, (10)

where n is the current number of demonstrations and η is the desired number
of demonstrations in which the influence of S∗

0 on S0 diminishes to zero. By
setting η ≈ 15, the prior assumption based on the speed-accuracy trade-off
helps to bridge the initial phase of training where only a few demonstrations are
available. As more and more demonstrations are accumulated the influence of
the MLE on the prior can be increased.

4 Experimental Evaluation: Comparison of Prior
Parameters in Incremental Learning

For a brief experimental evaluation of our proposed approach, we compare the
effects of different prior parameters for the covariance matrix on a data set
generated from demonstrations recorded on a Franka Emika Panda manipulator.
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The experimental setup is shown in Fig. 1. The goal of the task was to hand-
guide the robot’s end effector from the round mark on the right to the round
mark on the left, while following along the tube with the circular gripper fingers
without touching it. The tube poses a physical constraint in task space that
could correspond to sliding/insertion movements or tasks like glueing, cutting
or welding in industrial settings. During the tube section, the human has to be
precise (diameter of the tube 10mm, diameter of the gripper 40mm), hence we
argue that he/she is guiding the robot slowly. Our prior computed as described
in Sect. 3 incorporates this assumption and suggests a lower variance during the
tube section than during the sections before and after the tube.

We recorded 51 demonstrations on the physical setup. Dynamic time warping
(DTW) was used for temporal alignment of the demonstrations to rule out that
our proposed prior predicts variance stemming from temporal misalignment of
the data and not from the speed-accuracy trade-off of the human. Since DTW
removes the variance tangential to the path, we removed the tangential variance
from our prior by transforming S∗

0 to the Frenet-Serret frames of the path rep-
resented by the mean vector μw, setting the tangential component to zero, and
transforming it back to task space coordinates. From the aligned demonstrations,
we compute MLE estimates of the parameters of a ProMP with the batch EM
algorithm from [3]. We use this ProMP as a reference to compare the parameter
estimates during the incremental training under the different priors. We compare
following four priors with different prior parameter S0: MLE, SAT, blended and
const. tube. MLE is computed from the block diagonal MLE estimate of Σw as
proposed by [3]. SAT is computed as proposed in this paper in Eq. 5-8. Blended
is computed as a blending of SAT and blkdiag MLE as proposed in Eq. 9-10 with
η = 15. Const. tube is computed as in Eq. 8 with S∗

0 = vmin+vmax

2 I which yields
a constant tube with a radius equal to the mean of the minimum and maximum
radius of the SAT prior. The const. tube prior serves as a benchmark to get an
impression how much information is conveyed in the scaling of the SAT prior
alone and whether the information about the variance structure based on the
speed-accuracy trade-off is beneficial. All other prior parameters are set to same
values: m0 = 0, k0 = 0 and v0 = KD + 2 = 62. To check the sensitivity of
the performance of our proposed prior to the scaling parameters vmin and vmax,
we tested and compared three different parameter settings. As training data
for the incremental training, we sampled 500 demonstrations from the reference
ProMP. These 500 demonstrations where split into 10 blocks of N = 50 demon-
strations. The results presented in Fig. 3 are averaged results of the 10 blocks.
All ProMPs in the experiment have K = 20 basis functions. We compare the
effect of the different priors on the incremental training performance by means
of the Kullback-Leibler divergence (KLD) between the reference ProMP and the
ProMPs under test. In addition, and to emphasize the effect of the variances,
we compute the KLD where we set all off-diagonal elements of the covariance
matrices Σw of reference and ProMPs under test to zero. To monitor the numeric
stability of the covariance estimates, we compute the matrix condition number
of Σw during the course of training.



Speed-Accuracy Trade-Off Prior for Incremental Learning of ProMPs 281

Fig. 3. Results of the experimental evaluation. Each column shows the results of a
different scaling setting of the SAT prior and the const. tube. The first row shows
the Kullback-Leibler divergence (KLD) of the ProMPs with different priors to the
reference ProMP. The second row shows the KLD where only the diagonal elements
of the covariance matrix Σw are considered. The last row shows the matrix condition
number of Σw. All y-axes are in logarithmic scale.

The KLD of the MLE prior from [3] is greater throughout the entire training
than those of the other priors in all three scaling settings. The other three priors
perform relatively similar during the first 15 demonstrations, towards the end
of training the SAT and blended perform slightly better than the const. tube.
The performance of all priors is better when we only consider the diagonalized
covariance matrices. The MLE and hence also the blended show the biggest
performance increase. The blended prior achieves the lowest final KLD in all
experiments, followed by the SAT prior which has the second lowest final KLD
except for the second scaling setting where the upper scaling bound is very large.
For a qualitative comparison of the effects of the different priors on the initial
training phase we show the ProMPs after training on only the first demonstration
in Fig. 4. The ProMP trained with the SAT (blended and SAT are identical after
one demonstration) resembles the reference best and already gives hints about
the task constraints after just one demonstration.

5 Discussion and Conclusion

The experimental results in this paper show that the MLE prior from [3] is not
the best choice for incremental learning settings. The three other priors tested
approach the true distribution faster within 50 demonstrations of training. Mea-
sured in terms of the KLD, the difference between the const. tube and the SAT
and blended is not large, but slightly more distinct when considering the diago-
nalized covariance matrices. We conclude that the proposed prior inspired by the
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Fig. 4. Qualitative comparison: effects of the different priors on the variance structure
of the ProMPs after training on the first demonstration only. The black lines show the
mean and the grey tubes two standard deviations of the ProMPs, plotted without the
observation noise Σy. The ProMP trained with the SAT prior proposed in this paper
resembles the Reference best and already gives hints about the task constraints after
just one demonstration. The ProMP with the blended prior is identical to the SAT
ProMP after the first demonstration and therefore not shown separately. The tube of
the ProMP trained with the MLE prior appears black since its diameter is smaller
than the thickness of the mean line.

speed-accuracy trade-off provides additional beneficial information compared to
a constant variance structure along the movement. How much this additional
information helps in practice, e.g. in the cooperative learning of a new task, has
to be determined in real world experiments. Based on the qualitative comparison
of the ProMPs which shows that our SAT prior reveals more information about
the spatial constraints of the task than the others after the first demonstration,
we speculate that our prior can have a noticeable effect in incremental, cooper-
ative learning settings where the physical interaction between human and robot
is controlled according to the variance of the ProMP. We speculate that when
using the proposed prior, the robot would take over the leader role in precise
sections of a task early, relieving the human from the tedious precise control in
these sections. Since we only predict variance of the human in interaction with
the environment but not variations in the environment itself, our approach fails
in tasks that have precise sections (e.g. via points) that change position. In such
cases either separate primitives for the via point positions have to be learnt,
or the position of the via point has to be captured and encoded as a context
variable of the primitive. More work has to be devoted to the proposed method
for computing priors before it can be used in practice. At this stage, it is rather
a tool to demonstrate the principle idea to estimate task constraints from move-
ment speed. We have only tested our approach on a limited set of tasks and
there are still some open parameters that have to be guessed when computing
the prior, e.g. the scaling of minimal and maximal desired variance of the prior.
Even though the experiments did not show a strong sensitivity towards the scal-
ing, the influence of the parameters on the performance has to be studied in
further experiments.

Regardless of the applicability and possible benefits of our prior, it is inter-
esting that it is possible to predict, to some extent, the variance structure of a
motor skill by means of the speed-accuracy trade-off. This paper did not aim to
provide conclusive proof of a relationship between movement speed and spatial
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accuracy in kinesthetic teaching, but we think it shows that further investiga-
tion of the underlying idea of this paper with regard to incremental learning of
movement primitives may be worthwhile.

6 Future Work

To develop the idea of priors inspired by the speed-accuracy trade-off further
and to establish them for use in practice, we need to test them on a wider range
of tasks. We also need to investigate how to include orientations in addition
to translations and how to determine the overall scaling of the variance struc-
ture automatically by some algorithm. Furthermore, it is interesting to explore
whether there are differences in predicting the variance of point-to-point and
trajectory based movements and if priors resembling Fitts’ law or the steering
law work better in either of them.
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Abstract. Tactile sensing provides essential information about the state
of the world for the robotic system to perform a successful and robust
manipulation task. Integrating and exploiting tactile sensation enables
the robotic systems to perform wider variety of manipulation tasks in
unstructured environments relative to pure vision based systems. While
slip detection and grip force control have been the focus of many research
works, investigation of tactile dynamic behaviour based on robot actions
is not yet sufficiently explored. This analysis can provide a tactile plant
which can be used for both control methods and slip prediction using
tactile signals. In this letter, we present a data driven approach to find an
efficient tactile dynamic model with different tactile data representations.
Having evaluated the performance of the trained models, it is shown that
the tactile action conditional behaviour can be predicted in a sufficiently
long time horizon in future for doing robot motion control.

Keywords: Tactile sensing · Robotic manipulation · Data
dimensionality reduction

1 Introduction and Related Works

Tactile sensation is an essential tool for intelligent interactions with a surround-
ing environment. In manipulation tasks in particular, we use tactile sensing to
help inform and reinforce our understanding of an objects dynamics and physical
properties beyond outputs from visual assessments. Grasping an object whose
weight was different than visual assessment suggested, or an object’s centre of
mass was in an unexpected location are examples where visual information must
be reinforced with tactile data to produce reliable manipulation of an object.
Visual assessment alone typically falls short due to being physically remote and
occlusion by the end effector at the points of contact [1].

As manipulation tasks push from structured environments into more realistic
real world states, the ability to utilise tactile information for manipulation con-
trol tasks becomes a more critical challenge and still remains an open problem.
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Humans rely heavily on the use of tactile sensing for grasping and manipulation,
and the difficulty (and complete failure) of manipulation without tactile feedback
was excellently shown in Johansson et al. [2] who anaesthetised peoples finger-
tips and had them attempt to perform a match striking task. Its importance
within the robotics community has also been stated in [1,3–5].

Romeo et al. [4] state “control algorithms for force regulation or minimisation
and grasp stabilisation” as a key open problems for tactile feedback. However,
solving these problems has remained a fiendish problem to solve for the key
reasons outlined in [1], (i) tactile sensing technology and fabrication is limited
to visual information of soft materials or sparse point-wise force measurements,
well behind the resolution of a human skin. (ii) modelling contact forces between
objects and fingertip are difficult to create. (iii) specifying a desired tactile signal
for use in controlled manipulation is also complex to define.

In this paper, a multi-step tactile predictive model is developed to predict
future tactile state vector for a pick and move manipulation task with in hand
objects using tactile sensors with point-wise force measurements. The contribu-
tions of this paper are as follows: We train a variety of deep neural networks
and show that a multi-modal recurrent neural network can accurately predict
the future fingertip tactile readings of a robot grasping a slippery object while
moving through a non-linear trajectory. We show that this prediction model can
be trained with entirely unlabelled data. We exploit data compression methods
on tactile data to remove the redundancy in tactile sensory information and
reduce the computational complexity of tactile dynamic behaviour prediction.
Finally, we prove that accurate predictions can be made with 3D, unconfined
trajectories of a 7DOF robotic manipulator with variance in pose, velocity and
acceleration with a real object.

We demonstrate and evaluate these contributions with a data set of pseudo
random trajectories generated by human kinesthetic motions of a Franka Emika
robot arm. This arm has two Xela uSkin sensors attached to a two finger parallel
type gripper. The force of the gripper is insufficient to keep the object in a stable
location and so the motion of the robot creates slipping and eventually the object
falls out of the robots grasp. The purpose of this data set is to produce a rich
set of sequences where the motion of the robot has direct effect on the sensation
felt at the fingertips.

Research in the field of tactile sensor use for control is in the reactive appli-
cation of slip detection, surveyed in depth in [4]. However, fewer research works
can be found in slip prediction. [1] proved that with accurate tactile predictions
of a GelSight tactile sensor by a video prediction model introduced in [6], model
predictive control could be used to reach the target tactile reading, in this case
rolling a ball on the end of a CNC machine to a desired location on a table. While
for doing a manipulation task in our case, specifying the goal tactile signal (or
image) is not feasible beforehand.

[7] converted the xela uSkin tactile sensor readings to a visual representation;
However, there are significant issues with the proposed representation including
reduced resolution of the tactile readings, and taxel objects cross over produces
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an impossible problem for the prediction model to interpret. The model pre-
sented, uses a simplified convolutional LSTM chain structure presented in [6].

Model-based approaches are also applied for tactile data exploitation from
the large variety of tactile sensors available [8]. Spike trains analysis [9], threshold
on derivatives of normal and shear tactile forces for slip detection [10], applying
PCA and Hidden Markov Models for slip prediction [11], using friction cone for
slip detection by estimating friction coefficient [12,13] are among these model-
based approaches. Model-based approaches usually suffer from being limited to
the type of the sensor and gripper and the known object characteristics are
required in advance.

Deep neural networks (DNNs) have also been extensively used on processing
tactile information; Such as fusing tactile data with other sensory information
for texture recognition [14,15], grasp stability estimation [16], train RL policy
in a peg-in-hole task [17]. [18] classifies the direction of slip into seven categories
by using ConvLSTM cells on the constructed tactile images from BioTac sensor.
Having AEs for dimensionality reduction [19] uses multi-dimensional scaling for
tactile servoing. [12] divides each manipulation task to four types of manipulation
primitives and friction cone slip detection is used to regenerate robot trajectory.

Overall, while tactile signals are exploited for slip detection, grasp stabil-
ity estimation, stable grasp policy learning, data fusion, grip force control, and
robot motion control, only a few [1,18] items try to learn a predictive model
to capture the dynamic of a tactile system to predict its behaviour in a suffi-
ciently long time horizon for robot control. We propose an approach in which a
model combines recent tactile readings and robot states and based on the future
planned robot action, the tactile readings will be predicted in the planned time
horizon. The pipeline can be used for different types of tactile data including
vision and non-vision tactile sensors and also the trained forward model which
learnt the dynamic behaviour of the tactile readings, can be used in different
control architectures including tactile Reinforcement Learning controllers.

2 Methodology

2.1 Problem Statement

Let’s assume �S(t) ∈ R
n and �O(t) ∈ R

d denote the tactile state and observation
space vectors at time t respectively. The external input vector to the system
is robot state �r(t) which effects the tactile interaction with the world. With
the curse of dimensionality for �O(t), there is a highly ambiguous non-linear
mapping between the observation to state space. As such, it is desired to map
�O(t) to an abstract lower dimension feature space �Z(t) which can give us a closer
representation to the state space. For the tactile system, �Z(t) is achieved by
applying dimensionality reduction methods on the raw tactile data. The problem
of latent tactile state prediction in a time horizon of length τ , can be denoted
as follows:

�Z(t + 1 : t + τ) = �f(�Z(t − τ : t), �r(t − τ : t + τ)) (1)
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Fig. 1. AE structures for tactile data dimensionality reduction

Where �f is the vector function mapping recent tactile state and robot trajec-
tory to future tactile vector; which is trained by the deep recurrent network.
Therefore, the pipeline that we apply for tactile dynamic modelling is to map
observation space to lower dimension abstract feature space and then investigate
the correlation of tactile features with robot state using the RNN cells.

2.2 Tactile Data Dimensionality Reduction

As the main objective of tactile state signal prediction is for slip prediction,
the 96 values of the 32 taxels are having redundant readings which could be
more compact by dimensionality reduction methods. In this regard, we use two
main approaches for tactile data reduction while trying to avoid any major
information loss. First, is the Principal Component Analysis (PCA) which finds
orthogonal vectors consisting of linear combination of the original data while
preserving as much as variability as possible [20]. In tactile data dimensionality
reduction with PCA, keeping at least 80% variance of the data is considered as
the threshold value. This means fewer number of principle components which
could not preserve the minimum value of the variability are ignored. 20 PCs was
the minimum number of PCs which resulted larger than 80% variance.

The second approach is utilising a deep Auto-encoder (AE) [21] for data
dimensionality reduction. AEs are self-supervised DNNs which consist of two
main components, the encoder which compresses the input data into smaller
dimensions, and the decoder which tries to reconstruct the same input data in
the output. To include a temporal dependency in encoding the tactile data three
types of input data are used for the AEs, I. 96 dimensional tactile vector at each
time step t, II. 192 dimensional tactile vector including the readings at time t-1
and t stacked row-wise together, and III. 188 dimensional tactile vector including
readings at t-2, t-1, and t. We call the three classes of AEs, AE-C1, AE-C2, and
AE-C3 respectively for easier referencing. Figure 1 presents the structure of the
input data for tactile AEs. The depth and hyper-parameters for each AE network
are optimised independently.
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Fig. 2. Recurrent forward model

After training, the latent vector �Z inholds the compact representation of the
input data. The dimension of the latent vector is a hyper parameter which is
chosen based on a trade-off between how compact the latent vector is and the
reconstruction loss. For tactile data compression, the latent vector is a 8 dimen-
sional vector. The size is chosen based on trying various sizes and comparing the
loss values.

2.3 Deep Recurrent Model for Prediction

The problem of predicting a system’s behaviour in a time horizon with having its
recent past data can be categorised in the type of sequence to sequence modelling
in the context of deep learning. In the input we are having sequences of tactile
readings, robot state, and robot planned action; and in the output future tactile
readings are predicted. To process the sequential data we use LSTM cells which
are preserving two main components, Ct and ht which are called cell and hidden
state respectively. The update rule for each time step will be defined with the
elements called gate values. The forget, input, and output gates are defined by
applying sigmoid function over the independent weight matrices multiplied by
the input vectors to the cell, scaling them between zero and one to tell the cell
how much of the previous state and current data it should forget, take as input
or send as output. Ct and ht can be initialised with either zero or random values
after processing each batch of training data.

In tactile prediction model, the hidden state of the LSTM cell should rep-
resent the dynamic behaviour of the tactile signals and the correlation between
tactile and robot state. Figure 2 shows the architecture of the recurrent model.
As Fig. 2 shows, the Recurrent Encoder block encodes the tactile and robot state
correlation for the past 10 time steps until present time t into h and c. These
RNN state vectors are then used as initial state for Recurrent Decoder. From
time t onward, at each time step cell’s prediction is concatenated with planned
robot action at that time step, and then fed back as an input to the next cell. The
difference between the input tactile data for Encoder and Decoder blocks is that
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Fig. 3. Experimental setup for in hand manipulation including xela tactile sensors and
proximity sensor [22].

while in the Encoder ground truth tactile data are combined with past robot
states as final input, in the Decoder block, tactile prediction at each time step is
combined with future robot action as the final input. This helps the Recurrent
Forward Model to efficiently use past tactile and robot state and future planned
action to deduce future tactile state as Eq. 1 denotes.

3 Experiments

In order to define a manipulation task as a train/test case for tactile state pre-
diction, Franka arm does a pick and move motion consisting of two linear motion
trajectory in Z and X directions. The velocity/acceleration profile varies among
different pick and move trials. We use a commercially available magnetic based
tactile sensor from XELA robotics which is shown in Fig. 3. The sensor works
with average 50 Hz frequency and has one kg normal force threshold. There are
tri-axial readings for each taxel and by having 16 taxels on each sensor the over-
all 48 readings are available including 16 for normal, shear x and y directions.
We have mounted two of the XELA sensors on designed interfaces to connect
to Panda Franka normal grippers. Figure 3 shows the sensors mounted on the
Panda EE.

In order to have labelled data for slip detection we use a proximity sensor
attached to the robot wrist which looks directly to the top surface of the object.
After grasping the object, as long as the distance measured by the proximity
sensor is constant there is no relative motion between the object and the fingers
hence no slippage. However, changes in the proximity readings larger than a
small specified threshold is indicative of slippage. These proximity readings are
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Fig. 4. PCA results with 20 principle components

then binarized and saved with the data for slip classification labelling purposes.
For the object we use a bottle with plastic structure and the weight can change
between 5 categories based on the objects inside the bottle. In data acquisition
robot, proximity, and tactile data are publishing with 1000, 400, and 50 Hz
respectively. All data readings are synchronised in ROS subscriber to have the
same frequency for all of the data (50 Hz).

For data collection for a manipulative task we have applied two approaches
to achieve rich enough data for training our tactile prediction recurrent model.
The first approach was to do a linear motion pick and place task for the bottle
and send Cartesian velocity profiles with trapezoidal shapes and different accel-
eration/deceleration values to the robot. This is designed to have structure for
robot motion for doing control in the next steps of the project once the for-
ward model is learned. As such, for an object with constant weight, while with
lower acceleration the task was completed successfully, by increasing the acceler-
ation in the profile the object was dropped in the middle of the task. Therefore,
robot motion profile was the only parameter causing the slippage and hence the
changes in tactile readings. The second strategy was data collection with robot
kinaesthetic teaching. In this mode a human operator does various manipulation
motions until the object is dropped. The benefit of this mode is that the zero
impedance robot motion lets the user to execute motions with large variety of
velocity and acceleration ranges; which might not be possible with robot motion
controller in the previous mode. This will provide richer tactile data for training
the model.

4 Results

In order to achieve the most precise tactile behaviour prediction we have utilised
data dimensionality reduction methods to further remove the redundancy of the
tactile readings and reduce the computational complexity of the prediction prob-
lem. As such, the performance of the recurrent model will be evaluated by three
types of tactile inputs: 1. Original raw data, 2. principle components (PCs)
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Table 1. Evaluation of recurrent forward models

Tactile input Validation loss† Test loss†

Raw data 0.0484 0.0552

AE-C1 0.0330 0.0403

AE-C2 0.0351 0.0453

AE-C3 0.0405 0.0510

PCA 0.0298 0.0363

[†] MSE Loss

Fig. 5. Two main PCA principle components and prediction with recurrent model

resulted from PCA, and 3. latent vectors of three classes of AEs namely AE-
C1, AE-C2, and AE-C3. For the implementation, PCA function from python’s
sklearn library is used. Figure 4 shows the result of applying PCA on the raw tac-
tile data. Figure 4a presents the covariance matrix between the PCs and Fig. 4b
illustrates the variance contained in each of the 20 PCs. Overall, 82% of the
variance are preserved by all of the PCs.

Having the tactile data analysed by dimensionality reduction methods, we
can now evaluate the performance of the recurrent model on the compressed
tactile data. As Fig. 2 shows we combine tactile data with the robot state as the
input for the Recurrent Encoder block; and the predicted tactile vector at each
time step and the robot action as the input to the Recurrent Decoder block. As
Table 1 shows the PCA and AE-C1 tactile input resulted in the best prediction
results. Figure 5 shows the ground truth signal and the model prediction for the
first two major PCs of the dimensionality reduction resulted from PCA. For
visualising model prediction, the ground truth tactile feature vector is plotted
alongside the prediction for three different time steps in prediction horizon. The
graphs for t+3, t+5, and t+10 are plotted without the shift in time axis, since
these data are available at time step t and are compared with the ground truth
data available at that time. Figure 6 presents the predictions for two components
of the C1 AE latent vector. It can be observed that t + 10 prediction signal
captures the change in ground truth signal before it happens. This is a desired
feature to enable the model to be used for slip prediction. Although the loss value
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Fig. 6. Recurrent model prediction for sample latent vector components

for PCA input is smaller than the corresponding value for AE-C1 (table1), the
AE-C1 model has the advantage to predict the sudden rise of the latent tactile
feature before it happens in the ground truth.

5 Conclusion

We have applied a data driven approach on exploring action conditional tac-
tile dynamic behaviour with deep recurrent neural networks. Data compression
could improve the tactile prediction accuracy and diminish the computational
complexity of the problem. Having been trained on the collected data from the
real robotic setup, the model can predict the tactile behaviour for slippage case
in advance of time which is the desired purpose of the model for slip prediction
in the next step. With this learnt tactile dynamic, the models can now be used
for a closed loop control for object slippage avoidance.
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Abstract. Here we investigate variable-stiffness tendon drive for a robot arm.
The novel aspect of our design is that it makes use of non-back-drivable worm-
gear motor actuation, so static arm configurations can be maintained at a desired
stiffness level without requiring motor power. We first analyze a link that is driven
via uni-directional agonistic-antagonistic non-linear elastic tendons and construct
the state space model of the system. We then design an observer-based state feed-
back controller. This ensures the output link can track a reference input vector
consisting of a desired joint angle as well as tendon extension realized by ten-
don co-contraction. We simulated the controller and plant in MATLAB and show
examples of typical movement trajectories for angular control of the link.

Keywords: Agonistic-antagonistic tendons · Worm drive · State space control

1 Introduction

There is much interest in the development of actuators that exhibit compliance [1, 2],
and there are many potential applications areas for compliant robotic arms. They are
well suited for operation in unstructured environments where occasional collisions are
possible and are potentially safe around people. High compliance is not always desirable
and variable compliance assists payloads manipulation [3], and high stiffness assists
operation with unstable loads, as it does in human manipulation and movement [4].
Various methods have been proposed to implement compliance and modulate stiffness
[2].We extend the approach taken in theGummiarm,which achieves variable stiffness by
means of non-linear elastic tendon co-contraction [5]. We use a uni-directional agonist-
antagonist tendon setup, but bi-directional designs are also possible [6]. Here we use
low-cost worm-gear motor actuation, which is not back drivable, to ensure static joint
configuration at a fixed tendon tension and consequently fixed joint stiffness, can be
maintained without requiring drive to the motors. This makes the overall design power-
efficient and well suited to mobile applications. An example could a mobile autonomous
berry picking system, where compliance increases robustness to collisions and power
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consumption must be minimized to extend operating time between recharging of the
platform’s batteries.

2 Tendon Drive System

Much previous work has been done on tendon driven mechanisms [7]. Here we analyse
the motor-tendon system illustrated in Fig. 1A and develop a state space description. A
feedback controller is used to drive the motors that operate the left and right pulleys,
ensuring the output angle follows the reference input angle. Similarly, the controller
maintains co-contraction to achieve a target tendon extension. Turning both input pulleys
in opposite directions increases tension in both tendons, but results in no net torque on
the output pulley and it remains stationary. Rotating them in the same direction results in
a net torque, which causes the output pulley to rotate. A rod representing a robot link is
attached to the output pulley, as shown in Fig. 1B. This resists the applied torque due to
viscous friction from the bearing and air, and due to the moment of inertia of the rotating
components. Brushed worm-drive DC motors rotate the pulleys.

Fig. 1. Panel A: Schematic of agonist-antagonist two-tendon drive. The tendons wrap-around and
are firmly attached to the pulleys and do not just rely of friction to transfer force. Panel B: Simple
robot link connected to the output pulley.

3 State Space Analysis of DC Motor

Many researchers have investigated the analysis and control of DC motors, e.g. [8, 9],
including those that make the use of worm gear drives [10, 11]. Here we run DC motors
under voltage control. Consider the equivalent circuit of a single DC motor as shown in
Fig. 2. Motor torque Tm generated by current passing through the motor coils is given
by the product of armature current and the motor torque constant kt.

Tm = kti (1)

Motor torque Tm is resisted by the motor’s inertia J, as well as its viscous friction b

Tm = bdθt
dt + J d2θt

dt2
(2)
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Fig. 2. Equivalent electrical circuit of a DC motor, including armature mechanical properties.

Equating the two terms gives

kti = bdθt
dt + J d2θt

dt2
(3)

⇒ d
d t

(
θ̇t

) = − b
J θ̇t + kt

J i (4)

Summing voltages around the circuit leads to a voltage equation, where v represents
the motor control input voltage, L is motor inductance, R motor resistance, and Ke is
motor generator constant

v = iR + L d i
dt + ke

dθt
dt (5)

⇒ d
dt (i) = − ke

L θ̇t − R
L i + 1

Lv (6)

Choosing the states and the input as the voltage applied to the motor

x1 = θ̇t (7)

x2 = i (8)

⇒ d
d t (x1) = − b

J x1 + kt
J x2 (9)

⇒ d
dt (x2) = − ke

L x1 − R
L x2 + 1

Lv (10)

Angular position output can be computed by integrating motor angular velocity, so

d
dt (x3) = x1 (11)

This leads to the state space matrix equation for a motor

⇒ d
dt

⎡

⎣
x1
x2
x3

⎤

⎦ =
⎡

⎣
− b

J
kt
J 0

− ke
L −R

L 0
1 0 0

⎤

⎦

⎡

⎣
x1
x2
x3

⎤

⎦ +
⎡

⎣
0
1
L
0

⎤

⎦v (12)

We represent the worm gear motor gearing ratio by Ge which increases the mechan-
ical advantage and scales the overall motor output position by a factor 1

Ge
. We note in

practice that Kt = Ke but choose to keep them separate here for clarity.
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4 Analysis of Two-Tendon Rotary Series Elastic Actuator

4.1 Modeling Tendon Extension

In an agonistic-antagonist arrangement, if tendon extension force is a quadratic function
of extension, then stiffness is a linearly function of extension [12, 13]. However, for
small displacement around their extension point, we can consider the tendons as locally
linear springs with spring constant k, so local force is proportional to local extension.
Thus, the local linear constant k is dependent on tension, which can be modulated by co-
contraction.We assume that both tendon springs are always operating under pre-tension,
so neither ever goes slack.With drive and output angles in radians, output torque is given
by the differences in torques exerted by the right and left tendons

To = k(θR rR − θo ro )ro − k(θo ro+θL rL)ro
∑

(13)

Where + ve directions are shown on Fig. 1. If both drive pulleys have same radius
rin

To = kro((θR − θL)rin − 2θo ro) (14)

We can re-write the expression in terms of a new spring constant Kr = kr2o

To = Kr

(
rin
ro

(θR − θL) − 2θo
)

(15)

4.2 Modeling to 2-tendon Actuator Dynamics

When the link (modelled as a rod) moves in a vertical plane, the torque exerted on the
output pulley by the tendons is resisted by mechanism’s inertia I, a torque term arising
from the gravity and viscous friction μ.

To = I θ̈o + μθ̇o + mgl
2 sin(θo) (16)

Equating the two expressions

Kr

(
rin
ro

(θR − θL) − 2θo
)

= I θ̈o + μθ̇o + mgl
2 sin(θo) (17)

Rearranging with only the highest order differential on the LHS

θ̈o = − μ
I θ̇o − mgl

2I sin(θo) − 2Kr
I θo + Kr

I
rin
ro

(θR− θL) (18)

We note the gravity term will be small in comparison to the restoring force due to
tendon stiffness. It is also zero when the link moves horizontally. More generally, when
the link is hanging down vertically, linearizing for small angles gives

θ̈o = − μ
I θ̇o −

(
mgl
2I + 2Kr

I

)
θo + Kr

I
rin
ro

(θR− θL) (19)
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4.3 State Space Model of 2-tendon Drive Dynamics

To build a state space model of this 2-tendon system we choose states x1 and x2

x1 = θ̇o (20)

x2 = θo ⇒ ẋ2 = θ̇o = x1 (21)

This leads to two 1st order equations

ẋ1 = −μ
I x1 −

(
mgl
2I + 2Kr

I

)
x2 + Kr

I
rin
ro

θR − Kr
I

rin
ro

θL (22)

ẋ2 = θ̇o = x1 (23)

Writing in matrix form gives the state space equations

⇒ d
dt

[
x1
x2

]
=

[
−μ

I −
(
mgl
2I + 2Kr

I

)

1 0

][
x1
x2

]
+

[
Kr
I

rin
ro

−Kr
I

rin
ro

0 0

][
θR

θL

]
(24)

4.4 Tendon Extension and Output Actuation

When the link is in equilibriumposition hanging downwards or is horizontal, and exerting
no load on the tendons, tension stretching is only due to the co-contraction extension
from the control pulleys (again note rotation directions on Fig. 1)

θstretch = (θR+θL) (25)

⇒ θR = θstretch − θL (26)

⇒ θL = θstretch − θR (27)

Output angle will be midway between the two control angles

θtarget = (θR−θL)
2 (28)

Substituting for θR from Eq. (26)

⇒ θtarget = (θstretch−θL−θL)
2 (29)

⇒ θL = θstretch
2 − θtarget (30)

Substituting for θL from Eq. (27)

⇒ θtarget = (θR−θstretch+θR)
2 (31)

⇒ θR = θtarget + θstretch
2 (32)
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5 State Space Model for Motor Driven 2-tendon Drive

We now build as single state space model for two DCworm-drive motors and the tendon
dynamics for the unloaded arm. Since we use a worm drive gear that is not back-drivable
and the load on the motors due to arm is very low, we assume the output position of
the worm gear motors are unaffected by the link mechanism. However, we could easily
add an additional effective inertial term to the motor to account for the link’s inertial
resistance. Given our simplifying assumptions, the tendons are only influenced bymotor
output actuator angles. We can thus combine the state space models for motor actuation
and tendon drive into single matrix as follows:

d
dt

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

x1
x2
x3
x4
x5
x6
x7
x8

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

= A

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

x1
x2
x3
x4
x5
x6
x7
x8

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

+ B

[
θtarget

θstretch

]
(33)

Where the A and B matrices are given by Eqs. (34) and (35). It can be seen that the
3 × 3 regions in the A matrix denoted by the black rectangles represent the state space
matrix contributions from the two motors and follow the A matrix in Eq. (12). We drive
these two motors with target angle and co-contraction stretch extension inputs in the

input vector
[
θtarget θstretch

]T
, where θtarget is the joint output target angle and θstretch

is co-contraction. These inputs are mapped onto the control inputs for the left and right
motors by Eqs. (30) and (32), as implemented in the combined input matrix B given in
(35); note the transpose. A full list of parameters is given in Table 1.

(34)

B =
[
0 − 1

L 0 0 1
L 0 0 0

0 1
2L 0 0 1

2L 0 0 0

]T
(35)
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The states x3 and x6 represent motor drive angles prior to reduction by the worm
gears. These values are scaled by the reciprocal of the gearing ratio and drive the input
to the left and right tendon pulley system. The latter is represented by the lower dashed
rectangle, which follows the A matrix for the tendon dynamics captured in Eq. (24).
This leads to a system with 8 states in total. To implement state feedback control we
need to estimate the full system state. We use a Luenberger observer for this purpose.
Figure 3. shows the structure of the controller. Since motor and link angular velocities
are be hard to measure directly in a mechanical implementation, they are estimated.
However angular position from the motors, motor currents, and output link angle are
often available and can be used to correct the state estimate. The C matrix shown in
Eq. (36) thus selects motor current, position and link position from the full state vector:

Table 1. List of all parameters for agonist-antagonist compliant drive system

Link and tendon Worm-drive motor

I Link mechanism’s inertia L Motor inductance

mg Link gravity force term R Motor resistance

μ Link viscous friction coefficient J Motor inertia

Kr Effective tendon spring constant b Motor viscous friction

rin Drive pulley radius Ge Worm gearing ratio

ro Output pulley radius Ke Motor generator constant

l Link length Kt Motor torque constant

6 Observer-Based State Feedback Control of Link Angle

To find a linear quadratic regulator gain K to implement full state feedback control of the
system, diagonal terms in the Q and R matrices were specified, to penalized the system
states and controls.

⎡

⎢⎢⎢
⎢⎢
⎣

y1
y2
y3
y4
y5

⎤

⎥⎥⎥
⎥⎥
⎦

=

⎡

⎢⎢⎢
⎢⎢
⎣

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎤

⎥⎥⎥
⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

x1
x2
x3
x4
x5
x6
x7
x8

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

(36)

They consisted of costs for the motor states Costmv = 0.01, Costml = 0.01 and
Costma = 10 for the motor velocity, current and angle respectively. In addition, costs
were specified for the tendon system consisting of Costlv = 0.01 and Costla = 10 for
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the link velocity and angle states. The values used were found by experimentation. The
cost matrix Q was composed of these elements:

Q =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

Costmv 0 0 0 0 0 0 0
0 Costmi 0 0 0 0 0 0
0 0 Costma 0 0 0 0 0
0 0 0 Costmv 0 0 0 0
0 0 0 0 Costmi 0 0 0
0 0 0 0 0 Costma 0 0
0 0 0 0 0 0 Costlv 0
0 0 0 0 0 0 0 Costla

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

(37)

Similarly, the control voltages to the motors were penalized by Costcv terms along
the diagonal of the R matrix:

R =
[
Costcv 0

0 Costcv

]

Fig. 3. Signal flow graph of tendon drive model under observer-based state feedback control.

For weak control penalization we set Costcv = 5 and for strong control penalization
Costcv = 50. Pre-compensation was implemented to track the reference link angle target
by computing nbar, so that the corresponding angular position DC gain of the system
was unity. The Luenberger observer state estimator uses the state space a model of the
plant as captured by the matrices A and B, given in Eqs. (34, 35), and a correction term
arising from the difference between actual and predicted output. The Luenberger gain L
was again calculated using the MATLAB lqr command. The state space controller was
implemented in MATLAB and the trapezoid method was used to implement integration,
which is also suitable for a real-time implementation [14].
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7 Results and Conclusions

Simulation results are shown in Fig. 4. Panels A-C show results when low control
voltage penalization of 5 was used and no limits were placed on the drive voltage to
the motors. We use a point to point angular movement task, which is representative of
typical operation. The target joint angle follows a sequence of 2-s-long values held at [0,
1, 0, –1, 0] Rad. It can be seen that the link follows the target angle specified with a rise
time of about 200 ms. To demonstrate that extending the tendons due to co-contraction
does not affect output angle, the extension angle simultaneous follows the sequence of
[0, 0.5, 0, –0,5, 0]. Panels B and C show the link velocity and motor voltages rises to
high values. Panels D-E show results when control voltage penalization of 50 was used,
with limits placed on the motors of 48v (to simulate the effects of using a real controller
with the motors). Results in panel D shows that more cost for the voltage drive to the
motors and clipping the maximum values slows down the rise time to about 700 ms,
although this system still reaches the target link angle. The limitation on motor voltages
makes the latter scenario suitable for a real-time hardware implementation.

To summarize, we analysed a variable-stiffness tendon drive system usingworm gear
actuation. The non-back drivability of the drive lead to a simplifying assumption that
the tendon mechanism was uncoupled from the dynamics of the motor and vice-versa.

Fig. 4. Simulation in MATLAB. Panels A-C for case when no limit was placed on the voltage
control and its cost was small. Panels AThe squarewave envelope (black line) shows a positive and
negative rectangular target angle applied to the controller. The response (solid line that quickly
reaches the target) shows the link output link angle. Note that co-contraction results in tendon
extension (dotted line) but had no effect on the output angle. Panel B shows the corresponding
link velocity. Panel C shows the two motor control voltages. Panels D-E show the corresponding
results when motor voltage magnitude is limited to 48v and voltage control cost was set a factor 5
higher than before. It can be seen penalized and limiting the drive voltage, necessary in a hardware
implementation, affects behavior, but not catastrophically.
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Simulation showed observer-based state feedback control can realise angle position
control of a single link. Results from an EtherCAT implementation on a mechanical
motor-driven tendon system are described in a companion manuscript [14].
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Abstract. Mobile manipulators are expected to revolutionise robotics
applications because they combine mobility and dexterity. Robotics mid-
dlewares such as ROS (Robot Operating System) is a key component to
develop the capability of these platforms and to research their novel
applications. In this paper, we present a complete ROS stack for the
KMR iiwa mobile manipulator. This stack comprises of a ROS driver,
with a novel architecture, running natively on the platform controller and
the essential support packages that allow motion planning, navigation,
visualisation and simulation using ROS standard tools and frameworks.
To our knowledge, this work is the first ROS 1 (For the purpose of this
work the term ROS will refer to ROS 1 ) package for the KMR iiwa. To
demonstrate the capabilities of our work, we present example applica-
tions both in simulation and using the real robot. Finally, the proposed
stack is used in a heterogeneous multi-robot system in the context of an
autonomous chemistry laboratory.

1 Introduction

Mobile manipulators are becoming more common and are expected to revolu-
tionise various sectors using robotics [12]. A mobile manipulator comprises of a
robotic manipulator mounted on a mobile base, which provides both mobility
and dexterity. In the coming years, it is expected for these platforms will be
widely employed in different indoor and outdoor applications such as providing
assistance in manufacturing [9], transporting goods in warehouses [3], performing
chemistry workflows [2] and picking fruits in farms [7], among others.

The expansion in the use and development of these platforms in recent years
has been accelerated by the growth of e-commerce and its aim to have fully
automated warehouses run by robots [1]. This trend is reflected in the increasing
number of commercially available mobile manipulators such as KUKA KMR
iiwa, MiR ER-FLEX, OMRON MoMa, to name but a few. Furthermore, these

We acknowledge the Leverhulme Trust via the Leverhulme Research Centre for Func-
tional Materials Design for funding.

c© Springer Nature Switzerland AG 2021
C. Fox et al. (Eds.): TAROS 2021, LNAI 13054, pp. 304–314, 2021.
https://doi.org/10.1007/978-3-030-89177-0_31
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Fig. 1. KMR iiwa mobile manipulator.

platforms are still widely studied in academic research labs as their potential
application domains and full capabilities are still being investigated.

The Robot Operating System (ROS) is an open source robotics middleware
framework that allows to connect various hardware and software components
together [11]. This allows for the easy addition and integration of new peripherals
with robots such as sensors and grippers. Also, it provides a number of tools
and frameworks for robot’s control, motion planning, navigation and simulation,
that also allow to develop new algorithms and test them on real and simulated
robots. For these reasons, ROS has become a very popular and widely used as
middleware in robotics research.

ROS support is crucial to advance research with mobile manipulators and
to develop novel applications. Specifically, this includes having a ROS-based
driver for the platform and supporting ROS packages that utilise that driver
for planning and controlling the robot. Some mobile manipulators have ROS
compatibility features out of the box by virtue of having ROS-based support for
their individual components, i.e., the mobile base and mounted manipulator. In
that case, additional development and integration work is needed to fully use
these robots with ROS. On the other hand, some mobile manipulators lack of
ROS support because one or both of their components (the robotic manipulator
or the mobile base) do not have developed drivers and supporting packages.

The KMR iiwa mobile manipulator is one such platform that lacks ROS
support and compatibility. It was developed by the German company KUKA
(Keller und Knappich Augsburg) as a collaborative robot (Cobot) for the pur-
pose of meeting the requirements of Industry 4.0. It is a highly flexible and
mobile platform that is intended for handling manufacturing automation tasks.
This mobile manipulator is shown in Fig. 1. It comprises of the KMP200 omni-
Move mobile base and a LBR iiwa14 R820 robotic arm. The robot is programmed
using KUKA’s proprietary Sunrise.OS that utilises the Java programming lan-
guage. Currently, there is no official KUKA support to provide ROS packages for
the KMR iiwa mobile manipulator, the work presented in [3] was one of the first
attempts to produce a ROS compatible software to control the first generation
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of the KUKA mobile platform, however that was explored to a limited extent
and the produced source code was not made public.

The installed manipulator, LBR iiwa14, has a ROS-based driver and accom-
panying support packages that allow to control and interact with the arm [5].
The KMP200 mobile base does not have any public ROS-based driver at the
moment. On the other hand, there exists a ROS 2 (the second generation of
ROS)1 driver for the KMR iiwa platform that allows to control the mobile base
and receive its sensors’ data [4]. However, ROS 2 nodes and topics are not com-
patible with ROS 1. There exists a special ROS 1 - ROS 2 bridge2 that can
facilitate their interaction but is of limited use because it only offers restricted
functionality and is cumbersome to set up and use. Furthermore, ROS 1 is pre-
dominately used in research and few robots and peripherals currently offer ROS
2 support, which limits the applicability of the driver in [4] in the context of
heterogeneous robotic applications and use with other peripherals.

In this paper, we present a novel complete ROS stack for the KMR iiwa mobile
manipulator that allows the control of its arm and mobile base, and the gather-
ing of sensory data. This stack is composed of a ROS driver running natively on
the robot controller and accompanying support packages that collectively allow
to perform motion planning, navigation, visualisation and simulation using ROS
standard tools. To the best of our knowledge this is the first public ROS pack-
age for the KMR iiwa mobile manipulator that provides an interface and com-
plete integration between the platform, and the Robot Operating System (ROS).
Furthermore, this paper details our contribution of the novel design of the driver
architecture and describes the various tests performed to validate the stack oper-
ation with the robot. This will allow other robotic researchers to utilise this plat-
form with ROS in their research and development endeavours. Our aim is to use
this ROS-based mobile manipulator in the context of an autonomous chemistry
laboratory and develop hardware and software architectures for chemist robots
(robots that research chemistry); but, we envisage that there will be other real-
world applications that would also benefit from this architecture.

This paper is structured as follows. A description of the KMR iiwa platform
is presented in Sect. 2. Section 3 describes the developed software stack and its
components. In Sect. 4, the results and tests performed to validate the software
architecture are detailed. Finally, Sect. 5 summarises the key conclusions.

2 KMR iiwa Robot

2.1 Platform Description

The KMR iiwa mobile manipulator (see Fig. 1) comprises of a LBR iiwa14 R820
robotic manipulator, a KMP200 omniMove mobile base and two SICK S300
safety laser scanners. The LBR iiwa14 arm is a 7-DOF (Degrees Of Freedom)
robotic manipulator with 14 Kg payload. It is designed to be used in human
robot collaboration settings.

1 https://docs.ros.org/en/galactic/index.html.
2 https://github.com/ros2/ros1 bridge.

https://docs.ros.org/en/galactic/index.html
https://github.com/ros2/ros1_bridge
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The KMP200 is an omnidirectional mobile base that has four mecanum
wheels. This base is equipped with two SICK S300 safety laser scanners mounted
diagonally opposite to each other. These scanners emit laser beams at a height of
15 cm above the floor. Each scanner covers an area spanning 270◦ and thus cov-
ers one long and one short side of the base. The platform controller, named The
Sunrise cabinet, along with the drive battery, are located inside the KMP200
base.

2.2 Operation and Safety

KUKA Sunrise.OS is the current operating system software for the KMR iiwa
mobile manipulator. It is used by all KUKA robots that are controlled by the
Sunrise cabinet. It provides tools for the development, deployment and config-
uration of robotic applications. Moreover, these applications are developed in
the Sunrise Workbench programming environment using Java programming lan-
guage and Sunrise.OS software packages. These collectively represent Sunrise.OS
API (Application Programming Interface) that allows to interact and control the
robot’s components. This API allows to command and access the robot resources
locally via the Sunrise cabinet or the platform’s teach pendant, named Smart-
PAD. Consequently, in contrary to using a middleware such as ROS, this makes
the system harder to integrate in heterogeneous robotic experiments and inter-
face with other systems.

The platform has three operating modes: T1 mode, in which the platform
is manually operated in reduced speed mode for the purposes of testing and
debugging the developed application, T2 mode that is the same as T1 without
the speed reduction and AUT mode where the platform executes its program
autonomously.

The operation safety of this mobile platform is monitored by means of the
SICK S300 laser scanners. Each scanner monitors a predefined area around the
mobile base, which is divided into warning and protective fields. The size of
these fields depends on the vehicle’s velocity, where higher velocities translates
to larger fields. Any violation of the protective fields result in an emergency
stop in all modes except for T1 and T2 modes when the velocity is less than
0.13 m/s. Violations of the warning fields depends on the mode but mostly result
in maximum speed reduction. Moreover, the installed robotic arm, by virtue of
it being a Cobot, has built-in force/torque sensors in the joints that ensure safe
and compliant robotic manipulation.

2.3 Interfacing with ROS

To interface the Sunrise.OS with ROS middleware and consequently make the
mobile platform compatible with it, two approaches in the literature were dis-
cussed. One approach to achieve that, suggested by [5], was to run ROS nodes
natively on the Sunrise cabinet as part of the robotic application. This was
achieved by using ROSJava3 libraries, which provided a complete native Java

3 https://wiki.ros.org/rosjava.

https://wiki.ros.org/rosjava
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implementation of the ROS framework. This allowed these nodes to directly
access the robot’s data and commands on the controller, and at the same time
to interact with the outside “ROS ecosystem” without restrictions. This app-
roach required the installation of third-party libraries on the robot controller to
run RosJava nodes.

Another approach suggested by [10] and [4], which did not require any exter-
nal libraries, was to have a daemon thread running on the Sunrise cabinet that
allowed access to the robot data and commands over TCP/IP or UDP sockets.
This thread would be exchanging string messages with an external ROS node
that would parse inbound and outbound messages and exchange them accord-
ingly with the ROS ecosystem. However, this approach, when compared to the
first one, is less versatile and robust because: i) raw string messages are prone
to parsing errors and difficult to handle when transmitting complicated data, ii)
programming with low level sockets instead of established frameworks leads to
reliability issues and corner-case errors and iii) having the ROS node running on
a separate machine increases the delay of interaction with the robot and adds an
extra point of failure to the system. For these reasons, we have opted to utilise
the first approach when developing our proposed ROS driver and use it as a
starting point for our architecture.

3 KMR iiwa ROS Stack

Robotic applications developed with ROS are usually composed of multiple
nodes that are running on different machines/robots communicating and inter-
acting with each other in order to execute their tasks. This is only possible
because ROS provides the communication middleware. As a result, in this frame-
work, everything is a node that exposes certain interfaces and expects other
nodes’ interface in return in order to operate.

We utilised this philosophy in our work when designing the ROS driver for
the KMR iiwa robot. As a result, the developed stack is composed of: i) a robot
driver that creates a ROS node running natively on the robot controller, which
exposes various standard ROS interfaces, and ii) a number of accompanying
support ROS packages that utilise these interfaces to control the robot and
get its sensors data, such as MoveIt4, Navigation stack5, RViz6, Gazebo7. The
following subsections describe the software design, the developed support ROS
packages of the stack and their relationship with the robot safety system.

The source code of the work presented in this paper, the ROS driver and the
related support packages for the KMR iiwa mobile platform are available in the
following links:

– KMR iiwa ROS driver: https://github.com/stoic-roboticist/kmriiwa ros java
– Support packages: https://github.com/stoic-roboticist/kmriiwa ros stack.

4 https://moveit.ros.org.
5 https://wiki.ros.org/navigation.
6 https://wiki.ros.org/rviz.
7 http://gazebosim.org.

https://github.com/stoic-roboticist/kmriiwa_ros_java
https://github.com/stoic-roboticist/kmriiwa_ros_stack
https://moveit.ros.org
https://wiki.ros.org/navigation
https://wiki.ros.org/rviz
http://gazebosim.org
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Fig. 2. KMR iiwa ROS driver architecture.

3.1 KMR isiwa Driver Design

Architecture: In order to interact with the robot and its controller, the
KUKA’s Sunrise.OS API need to be wrapped using the Java programming lan-
guage. Moreover, to fully leverage ROS middleware capabilities and not develop
custom communication solutions like in [4,10], the software need to run ROS
libraries natively on the controller as described in [5]. For these reasons, the
driver was developed as a robotic application running on Sunrise.OS that utilised
RosJava libraries. The developed software architecture and interactions is illus-
trated in Fig. 2. The driver is composed of three principal layers:

– ROS Layer: Is an abstract layer that represents the driver’s interface with
the outside ROS ecosystem, which includes ROS core and all the other nodes.
This layer is composed of three main nodes and one optional node:
• Publication Node: that allows the driver to publish messages to differ-

ent ROS topics.
• Subscription Node: that allows the driver to receive messages from

different ROS topics.
• Action Server Node: that provides the driver with an action server

that can interact with external action clients.
• Tool Node: is an optional node that is provided such that it can be

utilised to interact with any tools attached to the robot, such as grippers,
that expose their functionality via Sunrise.OS API. In order to utilise this
node, the user needs to provide the implementation of this node’s meth-
ods. Table 1 lists the different topics exposed by this layer’s components.

– Driver Layer: Is a communication layer that represents the core layer of the
driver that transforms inbound ROS messages to robot’s actions and at the
same time transforms robot’s sensors readings to outbound ROS messages.
This layer interacts with the ROS layer via generated and received ROS
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messages; while on the other end, it interacts with the Sunrise.OS layer via
its Sunrise.OS API calls, which translate to actuating the robot and reading
its sensors’ data. This layer is composed of four components:
• KMR Message Generator: creates ROS messages from the readings of

the base’s laser scanners, odometry, emergency status and battery infor-
mation. Note that, the Sunrise.OS API calls used to retrieve the sensors’
data were based on those described in [4] since they were not readily
available in the documentation.

• KMR Commander: uses the appropriate Sunrise.OS API calls to issue
velocity commands that moves/jogs the KMP200 mobile base from the
received ROS Twist messages.

• LBR Message Generator: creates ROS messages from the LBR iiwa14
arm’s joints’ states, emergency and calibration status information.

• LBR Commander: utilises the appropriate Sunrise.OS API calls from
the received ROS messages to issue joint position commands to actuate
the LBR iiwa14 arm. It also creates motion trajectory commands for the
arm to follow from the received follow joint trajectory action goals.

– Sunrise.OS Layer: Is a physical layer that represents all the native Sun-
rise.OS classes such as LBR for the robot arm and KmpOmniMove for the
base that are utilised to call its API and consequently interact with the robot
system.

Table 1. The different topics exposed by the ROS layer components.

Topic name Message type Description

Publication node topics

arm/joint states sensor msgs.JointState LBR iiwa14 joint states

arm/state/RobotStatus kmriiwa msgs.LBRStatus LBR iiwa14 general status

base/state/LaserB1Scan sensor msgs.LaserScan Front SICK S300 laser readings

base/state/LaserB4Scan sensor msgs.LaserScan Back SICK S300 laser readings

base/state/odom nav msgs.Odometry KMP200 odometry readings

Subscription node topics

/arm/command/JointPosition kmriiwa msgs.JointPosition LBR iiwa14 joint position motion target

/base/command/cmd vel geometry msgs.Twist KMP200 velocity twist jog target

Action server node actions

/arm/manipulator controller control msgs.FollowJointTrajectoryAction LBR iiwa14 joint trajectory controller

Operation: The driver is running on the controller as a native Sunrise.OS
robotic application. This application is composed of two running threads. A
main thread that synchronously polls the Subscription Node and Action Server
Node for any newly received ROS messages or action goals and subsequently
execute them using the appropriate driver layer commander. The second thread
is a publication thread, that utilises the ROS messages generated from the driver
layer and publish them using Publication Node at a constant rate.
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3.2 Support ROS Packages

The ROS ecosystem provides a standard set of tools/frameworks for robot
motion planning, navigation, visualisation and simulation. These respectively
include Moveit, ROS navigation stack, Rviz and Gazebo. The developed stack
provides fully configured and ready to use packages to run these tools with the
KMR iiwa mobile manipulator. These packages utilise the developed driver and
its exposed interfaces to interact with the robot. All these packages are name-
spaced by default, which make them readily usable in multi-robot applications.
A short description of these packages follows:

– KMR iiwa Description Package: contains the robot’s description and its
URDF models.

– KMR iiwa MoveIt Package: allows Moveit to control the robot’s arm by
utilising the FollowJointTrajectory action server running on the robot to exe-
cute the planned trajectories. This is achieved by using the interfaces provided
by LBR Commander and Action Server Node. In the current implementation,
ros control, which is a generic controller interface package, is not supported
because we do not currently have access to the official KUKA software pack-
ages that allow low level control of the arm.

– KMR iiwa Navigation Package: allows to control the robot’s base and
navigate it in a known or unknown environments using SLAM [6], localisation
and path planning algorithms. To do so, it relies on the interfaces provided
by KMR Commander and KMR Message Generator.

– KMR iiwa Visualisation Package: contain different Rviz configurations
to visualise the robot in different contexts.

– KMR iiwa Gazebo Package: allows to simulate the robot in Gazebo. It
exposes the same interfaces as the robot driver and allows to control both the
robot’s base and the arm.

3.3 Robot Safety

The KMR iiwa safety system is managed by a PLC (Programmable Logic Con-
troller) that monitors safety signals received from the robot’s various devices,
i.e., laser scanners, mobile base and arm, and based on their values and its pro-
grammed logic determines the safety state of robot operation. These signals and
their combinations can be configured using a special safety configuration file,
which is part of every Sunrise.OS project running on the robot controller. Con-
sequently, every application running on the controller will be subjected to these
settings and would stop executing if any safety rules are violated.

The developed driver, being a native Sunrise.OS application, is also subject
to these safety rules and would stop executing if they are violated. As a result,
using our developed stack does not violate the robot safety rules and rely on
them for safe operation. Furthermore, all the stack components were tested with
the default safety settings of the robot with no modifications.
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Fig. 3. The demonstrated sample preparation workflow. Note that ROS is used as a
communication and execution layer for the robots.

4 System Testing and Applications

The proposed ROS-based driver is used in two example applications. This is not
intended to be a particular challenging application or example, it is simply used
to take the reader through the functionalities and capabilities of the developed
software presented in this paper.

4.1 Manipulation, Navigation and Simulation with ROS

A series of demonstrations was carried out to illustrate the stack’s individual
components’ readiness for operation and showcase their utility. These demonstra-
tions included: i) controlling the LBR iiwa14 arm using MoveIt, ii) controlling the
KMP200 base using ROS navigation stack and iii) simulating and controlling the
platform in Gazebo simulation environment. The demonstrations for MoveIt and
navigation stack, which involved the real robot, were carried out by running the
developed driver alongside the relevant individual package; where the user com-
manded the platform via RViz to different target poses. For the Gazebo demon-
stration, two KMR iiwa robots were simulated and then commanded using a script
that utilised their available interfaces. A result video of these demonstrations can
be viewed on the following link: https://youtu.be/ODOPMoMAK-o.

Fig. 4. (Left): Two KMR iiwa robots interacting with each other. (Centre): KMR iiwa
placing the rack of vials in order for the Frank Emika robot to dispense liquid. (Right):
two KMR iiwa robots interacting in Gazebo simulation environment.

https://youtu.be/ODOPMoMAK-o


ROS Stack for the KMR iiwa 313

4.2 Example Robotic Application in a Chemistry Laboratory

An example robotic application in the context of an autonomous chemistry lab-
oratory was implemented. Specifically, a sample preparation workflow, this task
is very common in manual and automated chemistry workflows [2]. This example
application, besides illustrating the stack’s navigation and manipulation capa-
bilities, also demonstrates an heterogeneous system where our package is able
to interact with other robots and interfacing with external sensors operating in
the ROS ecosystem.

The sample preparation workflow example can be described as follow: (1)
the KMR iiwa navigates autonomously to a rack station. In the rack station,
the robot use the information provided by a camera (IntelR© Realsense

TM
D435)

positioned on the mobile base to align the robot with the station and arrive
at the correct manipulation position. The visual information use an AprilTag
fiducial marker [8] to calculate the pose correction, compensate the navigation
and localisation errors and correct the final position based on the sensor reading
at the target rack-station-position. (2) the robot picks the rack of vials from the
station and place it on top of its base. (3) the platform navigates to the liquid
dispensing station, as in the first step, the robot use the camera to align the
mobile base before placing the rack on the liquid station table. (4) a Franka
Emika Panda robot dispenses liquids by operating a pipette. (5) after finishing
the liquid dispensing process, the KMR iiwa robot picks the rack of vials and
transports it back to the rack station thus completing the task. Figure 3 shows
the described example and the interaction between the components of the system
with our developed ROS-based package. In this task, all the manipulation and
navigation operations were handled by Moveit and the ROS navigation stack,
respectively. Moreover, ROS topics were used to coordinate the KMR iiwa and
the Franka Emika Panda robot work as well as to publish the attached camera
pose correction information. The task was repeated eight times. In all of the
runs, the developed stack performed reliably with no performance issues. There
were two failed runs due to the camera failing to detect the AprilTag and the
robot navigating too close to an obstacle due to the path planner choosing a
sub-optimal path that triggered an emergency stop. Figure 4 shows screenshots
of the example applications presented in this section and the package running in
simulation and real robots as described in the previous section. A video result
of the robotic application in a chemistry laboratory example can be viewed in
the following link: https://youtu.be/psyFOOgRlyE.

5 Conclusion

Mobile manipulators and their application are becoming more common, new
platforms are being released and novel application domains are being explored.
Providing ROS compatibility to these platforms will allow research and devel-
opment of novel applications. In this paper, we presented a fully developed ROS
stack for the KMR iiwa mobile manipulator. This stack is composed of a ROS

https://youtu.be/psyFOOgRlyE
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driver running natively on the controller and a number of essential accompany-
ing ROS packages. The driver has a novel architecture with three layers that
interact with each other to allow robot control and compatibility with ROS.
The stack was tested in an real-world robotic application in the context of an
autonomous chemistry laboratory where the use of heterogeneous hardware plat-
forms: robotics arms, mobile manipulators and standard lab equipment (e.g.,
pipette) was presented. Future work includes the integration of the Sunrise.OS
safety configuration into ROS planning frameworks as constraints.

References

1. Bogue, R.: Growth in e-commerce boosts innovation in the warehouse robot mar-
ket. Ind. Rob.: Int. J. 43, 583–587 (2016)

2. Burger, B., et al.: A mobile robotic chemist. Nature 583(7815), 237–241 (2020)
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Abstract. This paper generates a collision-free trajectory for wheeled
mobile robots in presence of dynamic obstacles. The existing literature
solves the collision avoidance problem by changing the velocity vector
instantaneously, which is not feasible due to the non-holonomic con-
straints of robots. So in this work, a smooth change in the velocity
vector along with constraints in turn radius has been considered for
any required maneuvers. This work also re-plans the path evading re-
collision to reach the goal ensuring minimum deviation from the initial
path, which was also not addressed in the literature. The low compu-
tational requirement of the proposed algorithm allows for online appli-
cations on wheeled mobile robots with limited computational resources.
The approach is validated through simulations on multiple randomized
configurations.

Keywords: Collision avoidance · Optimal path · Dynamic obstacles

1 Introduction

Mobile robots play an integral role in shaping mankind’s lifestyle but have
many challenges associated to address. Reaching a specified goal while avoiding
unwanted obstacles in a cluttered environment is one of the important require-
ments for automation. Collision-free navigation depends upon the vehicle model,
sensor arrangement and optimality. [11] and [19] reviewed different avoidance
systems for collision-free navigation.

Motion-planning algorithms like vector-field histograms and the bug algo-
rithm [22] can provide a feasible path to the goal but they are not optimal. Such
algorithms use occupancy-grid methods to model the environment. A∗ [15], RRT
[16] and Delaunay triangulation [25] can provide a near-optimal path in finite
time. But, these algorithms are fraught with the problem of large computational
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costs. Geometry-based algorithms, which have significantly lower computational
costs, have recently been used for collision avoidance. They are extensively used
for optimal path planning in various missions both in two-dimensional (2D) plane
([3] and [14]) as well as in three-dimensional (3D) space ([10] and [9]). Finding
the shortest path to converge to a circular path [3] and reaching a target via
circular boundaries for vehicles with bounded curvature [14] are a few planning
algorithms based on Dubins curves [5].

Dynamic-Window Approach (DWA) ([7] and [24]) discusses two-dimensional
space-search algorithms for translational and rotational speeds to provide the
permissible trajectories for short-intervals of time. Constraints over the velocities
are taken into account while creating the dynamic window. Hybrid DWA [20]
utilises a 3D search space for collision avoidance. Potential field-based methods
[4] and [29] create a field-based upon forces of attraction towards goals and
repulsion from obstacles. These methods are mainly used with velocity obstacle
methods [27] and can be implemented on manipulators, Autonomous Underwater
Vehicles [6] and quadrotors [12]. Potential field methods have a limitation of
getting stuck in local minima, but extensions like simulated annealing [30] and
modified Artificial Potential Field [23] have the potential overcome them.

A powerful collision cone approach was proposed in [2], which was utilised
in reactive-collision avoidance maneuvers [21], velocity obstacle methods [13]
and conflict detection and resolution techniques in aircraft [8] and [1]. [28] uses
the dynamics of an omnidirectional robot to solve the avoidance problem in a
cluttered environment. Analytical solutions for the optimal path can be obtained
by integrating vehicle dynamics with obstacle geometry. [17] and [18] proposed a
velocity obstacle technique for collision avoidance with spherical and cylindrical
safety bubbles for multiple aircraft. But, it requires an instantaneous change in
velocity directions, which is not feasible for the dynamical constraint of vehicles.

The novelty of this work is to ensure smooth changes of the velocity vectors
for all the maneuvers required for collision avoidance and re-planning the path
making it implementable in nonholonomic robotic platforms. This work also finds
a solution to evade re-collision while re-planning the path to the goal ensuring
minimum deviation from its initial trajectory, which was also not explored in the
literature. The low computational requirement of the proposed algorithm makes
it online implementable on wheeled mobile robots.

2 Problem Formulation

Let us consider a ground robot initially at A0, with the position vector −→ru,
and the velocity −→u directed towards its goal (G) −→rg . The state of the robot is
X : [x, y, θ] and the minimum turn radius is ρ. It detects a dynamic obstacle, B0

at −→rv headed on a collision course towards it with a velocity −→v . The objective
is to re-plan the path for the robot such that it avoids the obstacle B0 with
a safety radius dmin, and reach the goal, G with state Xg : [xg, yg, θg]. The
kinematic equations of motion are:

ẋ = |−→u | cos θ ẏ = |−→u | sin θ θ̇ = ω (1)
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Fig. 1. Problem formulation and collision avoidance maneuver

where, ω is the angular rate at any given instant. It is assumed that the robot
moves with a constant speed |−→u | and the velocity of the obstacle remains con-
stant. All vectors are measured in an x-y inertial frame as shown in Fig. 1a.

3 Collision Detection and Avoidance

The avoidance maneuver is executed only after collision with the obstacle is
predicted. In Fig. 1a, the minimum separation in vector between the robot and
the obstacle is given by

−→
drel = (−→r .v̂rel)v̂rel −−→r , where, −→r is the relative position

of the obstacle with respect to the robot and v̂rel is the unit vector along −→vrel.
Let, dmin be the radius of the obstacle avoidance sphere. Collision is possible if
the following conditions are satisfied:

|−→drel| ≤ dmin and ṙ < 0 (2)

In addition to the above conditions, collision is certain if time to reach the goal
tg is greater than the time of collision tc,

tg = |−→u |−1|−→rG − −→ru| tc = |−→vrel|−1

[√
|−→r |2 − |−→drel|2 −

√
d2min − |−→drel|2

]
(3)

A geometry-based collision avoidance algorithm that avoids the detected
dynamic obstacle is proposed. It is assumed that the speed of the robot remains
constant throughout the avoidance maneuver. Let us consider that the robot
takes a turn with minimum turn radius, ρ for time t0 with a constant speed |−→u |
and avoids the incoming obstacle. The relation between the angle subtended at
the centre ϕ, minimum turn radius ρ and t0 is:

ϕ =
|−→u |t0

ρ
(4)

Let At0 , Bt0 be the respective positions of the robot and the obstacle respectively,
after time t0. As shown in Fig. 1b the backward extension of −−→unew intersects the
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Fig. 2. Collision avoidance formulation

original trajectory at A. If the robot kept moving with the same velocity, and
had it travelled to A, then the time taken to reach A would have been,

t =
AAt0

|−→u | =
ρ tan(ϕ/2)

|−→u | (5)

Hence position vectors of virtual positions −→rA and −→rB are dependant on t, which
in-turn is a function of ϕ and can be calculated as

−→rA = −→ru + −→u .t = −→ru + ρ−→u
[
tan(ϕ/2)

|−→u |
]

(6)

−→rB = −→rv + −→v .(t0 − t) = −→rv + ρ−→v
[
ϕ − tan(ϕ/2)

|−→u |
]

(7)

Hence the problem statement can be restated as follows: “Given that the
robot and the obstacle are at virtual positions, A and B, with velocities −→u and−→v , respectively, find the instantaneous change in the velocity vector −→u to −−→unew

required to avoid the collision”
In Fig. 2, points A and B are the virtual position of the robot (−→rA) and

obstacle (−→rB), respectively.
−→
AF is such that its direction is opposite to −→v and

magnitude is the same as −→v . Similarly, we have
−−→
FD whose magnitude is |−→u | and

the direction is the same as −→u . The resultant of the vectors
−→
AF and

−−→
FD, i.e.−−→

AD, gives the sense of the relative velocity between the robot and the obstacle.
Hence, the position vectors of the points, D and F , can be given as

−→rD = −→rA +
−−→
AD and −→rF = −→rA +

−→
AF (8)

C1 is the collision cone and any solution that moves the relative velocity
vector outside the cone will avoid the collision. However, optimal conflict reso-
lution is provided if the new relative velocity vector is tangential to the collision
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cone C1 [8]. A circle, S centered at F is defined with the radius equalling to the
magnitude of −→u . The vector joining A to any point on the circle, S, represents a
possible configuration of the relative velocity vector with constant robot speed.
The cone, C2 is constructed such that the new velocity vector, −−→unew, makes an
angle, ϕ, with −→u . Since the vertex of the cone lies at the center of the circle,
the intersection is a straight line, say LP . The slope of LP is perpendicular to−→u and it passes through a point, −→rC given as

−→rC = −→rF + (1 − cosϕ)
−−→
FD (9)

Equations of the different curves shown in Fig. 2 are,

LP : ux(x − xC) + uy(y − yC) = 0 (10)

S : (x − xF )2 + (y − yF )2 − |−→u |2 = 0 (11)

C1 : (|−−→rAB |2 − d2min)[(x′)2 + (y′)2] − [xAB(x′) + yAB(y′)]2 = 0 (12)

where, x′ = x − xA, y′ = y − yA, −−→rAB = −→rB − −→rA, xAB and yAB are the x and y

components of
−−→
AB, and ux, uy are the x and y components of −→u . −→rF and −→rC can

be computed using (8) and (9). It is now required to find out the point Q(x, y)
which satisfies constraints (10), (11) and (12) and minimizes the change in −→u ,
i.e. the point is nearest to D. Hence this can be formulated as a multi-variable
optimization problem as follows:

min
x,y,ϕ

f =
√

(x − xD)2 + (y − yD)2 s.t. S = 0, C1 = 0, LP = 0, ϕ > 0 (13)

where (xD, yD) is the position of point D. Using x and y components obtained
from the above optimization problem, we can find −−→unew = (x−xF , y−yF ), where
(xF , yF ) is the position of point F . The duration for which turning takes place
can be obtained using (4), where ϕ is calculated from (13).

4 Path Re-planning

The collision avoidance maneuver is complete when the robot passes the point of
the closest approach with the obstacle. Let this point be P . It now has to re-plan
its path back to the final goal. If the re-planning maneuver starts as soon as it
finishes its collision avoidance phase, there is a possibility that the re-planned
trajectory may intersect with the obstacle, leading to a re-collision. Hence, to
minimize the probability of this event, a design parameter has been proposed
which is the ratio of the safe re-planning distance (the safety distance between
the obstacle and the robot after which the re-planning maneuver begins), dsafe
and the radius of the obstacle avoidance sphere, dmin: rsafe = dsafe

dmin
.

After reaching a distance dsafe away from the obstacle at the point, P ′, the
robot then plans a Dubins-like path [5] back to the goal point as illustrated in
Fig. 3a. The Dubins path provides the shortest path between any two poses of a
robot with a bounded turn radius. The procedure for generating Dubins paths
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Fig. 3. Re-planning Maneuver

has been described in [26] and [15]. The optimal Dubins path, Porig is generated
maintaining a constant speed to reach the goal Xg : [xg, yg, θg].

In an unlikely event of the re-planned path coming on the way of the obstacle,
a strategy which involves lowering the speed of the robot until the collision is
re-avoided is proposed. The approach of re-planning a longer path to the goal
is avoided due to the increased actuation cost. Re-collision with the obstacle is
checked by projecting the original Dubins path Porig to the obstacle frame. To
carry out this projection, we sample points Porigi

(an array of sampled points)
on the path. During sampling, the path corresponding to motion primitive S
(straight line) can be sampled by just at its start and end points. For L (Left
turn with the minimum turn radius) and R (Right turn with the minimum
turn radius) motion primitives, a hyper parameter (sample density, sD) which
represents samples per unit length of the curved path, is used to uniformly
sample the points on the curve. We assume the robot velocity decreases from

−→|u|
to

−→|u|in with a deceleration, arp. Hence we define
−→|u|i as

−→|u|i =

⎧⎨
⎩

√−→|u|2 + 2arpi
sD

i ≤
[

sD(
−→|u|2in−−→|u|2)
2arp

]
−→|u|in otherwise

(14)

Then the relative path, Prel, in the obstacle fixed frame can be obtained:

−−→
Preli =

−−−→
Porigi

− −→v
[
PathDist(

−−−→
Porigi

)
−→|u|i

]
(15)

Obstacle velocity −→v , final robot speed
−→|u|in and the original sampled path

points Porigi
are the inputs to this equation. PathDist(

−−−→
Porigi

) gives the distance
between the initial and ith point along the path. It can be seen that for larger−→|u|in values, the relative path will almost be the same as the original path, and
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Algorithm 1: Path Re-planning
Porig ← Plan Dubins path between P ′ and G;
Prel ← TransformPath(Porigi

, |−→u |in = |−→u |);
if CheckCollision(Prel)=true then

Binary search in (0, |−→u |) to obtain |−→u |reduced for a fixed arp;
Decrease speed to |−→u |reduced by decelerating with arp while following Porig;

else
Follow Porig with speed |−→u |;

end

for a smaller
−→|u|in value, points further away in the path will deviate by a large

amount along −→v . The strategy for finding an optimal lower speed |−→u |reduced is
elaborated in Algorithm 1. Figure 3b illustrates this procedure.

5 Simulation and Analysis

5.1 Implementation and Trajectory Visualization

The optimization problem described in (13) can be solved using an Interior Point
Algorithm. During the analysis, it is found that a randomized initial condition
fails to converge to the optimal point in many cases. Hence we run multiple
instances of the solver parallely, and report back the most optimum solution.
This addition greatly improves the accuracy of the algorithm while keeping the

Fig. 4. Trajectory visualization with parameters as mentioned in Table 1
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Table 1. Parameters for trajectory visualization

Goal State Xg [15 m, 3.5 m, 13.124◦]

Robot initial state X0 [0, 0, 13.124◦]

Robot initial velocity −→u0 [1.85, 0.431] m/s

Minimum turn radius ρ 1.8 m

Obstacle avoidance distance dmin 1.2 m

Obstacle initial position B0 [6, 3] m

Obstacle velocity −→v [−0.92, −0.92] m/s

Re-planning safe distance ratio rsafe 1.25

Path sample density sD 100 pts/m

computation time the same due to parallel implementation. An i7-7700HQ 8GB
RAM machine is used to carry out all simulations.

For visualizing the planned path of the robot, a random simulation with the
parameters shown in Table 1 is performed. Figure 4 illustrates the various aspects
of this simulation. B0 is the position of the obstacle when it is initially detected.
The optimizer outputs a turning time t0 = 0.301s with a −−→unew = [1.893,−0.168]
m/s. The corresponding instantaneous change virtual positions are marked as A
and B, and the collision cone with various vectors at this position is shown in the
figure. The robot performs a smooth turn for t0 seconds to change its velocity
from −→u to −−→unew. It continues with the same velocity till it reaches its point of the
closest approach at P . The re-planning maneuver begins after reaching a safe
distance dsafe away from the obstacle at P ′. Finally the robot plans a Dubins
path to the final goal, and as there is no re-collision, it traverses this path with
the same speed and reaches the goal at t = 8.266 s.

5.2 Monte Carlo Simulation

Monte carlo analysis has been used to validate the proposed algorithm. Consider
the setup shown in Fig. 5. Two simulation setups with parameters are as shown in
Table 2. Parameters have been chosen such that Set 1 is slightly more aggressive
than Set 2. Two metrics used for comparative analysis are given below:

Path deviation PD =
PathDist(PlannedPath)
PathDist(Initial Path)

(16)

Velocity deviationVD =
|−−→unew − −→u |

|−→u | (17)

A total of 7000 random simulations were run on each set of parameters. The
direction of velocity of the obstacle was chosen randomly such that collision with
the robot was certain. Table 2 also presents the results obtained. Optimization
failures represent conditions where the turn radius of the robot was not sufficient
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Fig. 5. Setup for randomized simulation

Table 2. Parameter variation with simulation results for randomized simulation

Parameter Set 1 Set 2

Goal State Xg =

[
rXg

θXg

] [
U(20, 40) m

U(−70, 70)◦

] [
U(60, 100) m

U(−80, 80)◦

]

Robot

Robot initial state X0 =

⎡
⎢⎢⎣

Xx0

Xy0

Xθ0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0

0

θXg

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0

0

θXg

⎤
⎥⎥⎦

Robot initial velocity −→u0 =

[
|−→u0|
∠−→u0

] [
U(1.0, 2.5) m/s

θXg

] [
U(1.2, 3.5) m/s

θXg

]

Minimum turn radius ρ U(0.8, 1.2) m U(1.2, 1.5) m

Obstacle

Avoidance distance dmin U(1.2, 3) m U(1.8, 3.5) m

Initial position B0 =

[
rB0

θB0

] [
U(15, 50) m

θXg+ U(−60, 60)◦

] [
U(35, 70) m

θXg+ U(−70, 70)◦

]

Obstacle Velocity −→v =

[
|−→v |
∠−→v

] [
U(1.5, 3.5) m/s

U(−180, 180)◦

] [
U(2.2, 4) m/s

U(−180, 180)◦

]

Safe re-planning ratio rsafe 1.25 1.25

Path sample density sD 100 pts/m 100 pts/m

Simulation Results

Success / Number of Simulations 6901 / 7000 6944 / 7000

Collisions / Optimization failures 5 / 94 11 / 45

Velocity deviation (VDmax , VDavg ) (0.6775,0.1378) (0.6117, 0.0986)

Path deviation (PDmax , PDavg ) (1.4121,1.0174) (1.0942,1.0038)

Accuracy 98.58% 99.20%

to avoid collision going with constant speed. It is observed an accuracy of over
98.5% in set 1 and over 99% in set 2. (It was found only 2 of the total 14000
simulation run required the speed lowering re-planning maneuver, hence 99.986%
of the initial re-planned paths are collision free).
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6 Conclusion and Future Work

A geometry-based strategy for generating a smooth trajectory avoiding dynamic
obstacles has been presented in this paper. A novel re-planning approach has
been proposed which generates the shortest path to the goal while avoiding
re-collision with the obstacle. The proposed algorithm has been validated by
conducting 14,000 random simulations and an average accuracy of 98.89% has
been obtained. The proposed algorithm can be extended to consider vehicles
dynamics, and non-linear controllers like back-stepping or sliding mode control
can be developed to track the generated path. It can also be extended to irregu-
larly shaped obstacles. A strategy to avoid multiple collisions can be devised by
introducing avoidance hierarchies based on obstacle speeds and collision times.
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Abstract. Mapping a confined space with a drone-based system
becomes challenging when vision sensors cannot be used due to environ-
mental constraints. This paper presents a novel scan-matching approach
based on an Iterative Closest Point algorithm that uses low-rate and low-
dense scans from a LiDAR. The proposed technique only employs the
horizontal layer from a 3D LiDAR to estimate the transformation matri-
ces in a computationally efficient fashion, which is then used to generate
the 3D map of the scanned environment in real-time. This is, then, com-
plemented with a fit-for-purpose indoor navigation path-planning strat-
egy. The method was successfully tested by mapping a confined space
within a cement plant simulated environment and estimating a stockpile
volume stored in that space. The volume of the reconstructed stockpile
was estimated with an error as low as 3%, which matches the accuracy
levels recommended by relevant regulations.

Keywords: Flying robots · Mapping · Confined spaces · Autonomous

1 Introduction

A confined space is an area that is substantially enclosed and where danger-
ous material or hazards inside the space or nearby may cause serious injury.
One of the most challenging confined spaces for robotic inspection are cement
manufacturing process storage spaces. This is due to robots having to operate
under poor lighting and visibility conditions, lack of global positioning, uneven
and slippery terrains, and sensor interference [1]. Drones have significant advan-
tages over other mobile robotics. Hence, drones were used for inspecting confined
spaces within many real-world applications such as sewer inspection [2], search
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and rescue (SAR) [3], and underground mines inspection and mapping [4], all
of which required an indoor localisation approach to deal with the limitations
imposed by operation in confined spaces. However, the aforementioned examples
are not suitable to export to the missions within cement plants storage because
either they cannot perform within the exceptionally harsh environmental condi-
tions or they are commercialised solutions that do not allow flexible adjustments
to the system to fit new mission requirements.

One of the essential tasks conducted frequently in cement plants is to estimate
the volume of different stockpiles within storage facilities. Estimating stockpile
volumes in outdoor environments typically uses photogrammetry as it is cheaper
and faster when compared to other methods like surveying [5]. Many studies,
such as in [6], demonstrated real applications of using drones for stockpile volume
estimation. Nevertheless, these studies have only focused on applying drones
within outdoor environments. In fact, dust, limited illumination, and lack of
GPS signals in confined spaces are some of the severe challenges that have rarely
been considered in previous studies tackling aerial stockpile volume estimation.

Simultaneous Localisation and Mapping (SLAM) is one of the popular meth-
ods for drone navigation in GPS-denied environments. SLAM is the process of
using cameras, Light Detection and Ranging (LiDAR), or both to estimate the
robot’s navigation states and the surrounding map simultaneously [7]. In dusty,
low illuminated, and large confined spaces (such as in cement plants), LiDAR is
the best class of sensors for such application [8]. Here, a scan-matching technique
is usually employed to compute the current state transformation of the robot
and compare it to last states [9]. Iterative Closest Point (ICP) algorithm is one
of the most widely applied techniques for LiDAR scan-matching in the robotic
community [10]. Since the introduction of ICP by Chen and Medioni [11] and
Besl and McKay [12], many variants have been introduced to enable improve-
ments such as reduction in overall computational cost, smaller mean square error,
faster convergence speed, and optimal selection of points for overall algorithm
efficiency. For more details on the different ICP variants, the reader is referred
to Mora et al. [13] for a comprehensive review.

In this paper, we implemented a modified ICP algorithm for real-time scan-
matching to localise a drone and simultaneously generate a 3D map of a confined
space. The proposed method can be deployed in indoor, dark, and dusty facil-
ities such as the storage spaces within cement plants. Matching high dense 3D
scans provides detailed set of results that are needed for applications such as
3D reconstruction of power lines [14]. However, this is very costly to implement
in real-time. Given that our intended application is to map a large stockpile
that has no fine geometric details, we have the luxury/excuse to sacrifice some
of the collected data without reducing the accuracy of the reconstructed map.
As such, to reduce computational cost taken in matching scans and to reduce
memory requirements, we reduced the gathered data rate from the 3D LiDAR
through using the below horizon layers only, and applying the scan-matching
at rates as low as every 6 s. Therefore, our proposed method obtained the 3D
transformation matrix based only on the point clouds from the 2D horizontal
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layer. To increase the accuracy and speed of the matching, we assigned lower
weights to point clouds with greater distances from the LiDAR source because
points at greater distances have more noise in dusty environments, as illustrated
by Phillips et al. [8]. Whilst the model precisely simulates stockpiles in cement
plants, it can be reconfigured to other applications such as agri-robotics, etc.

2 Method

2.1 Drone Localisation and 3D Map Generation

In a fully confined storage, the drone’s position (xv, yv, zv, φ, θ, ψ) and the recon-
structed 3D map (M) of the scanned area are obtained by estimating the trans-
formation matrices (rotation R3×3 and translation t3×1) between two LiDAR
scans recorded at different locations using scan-matching based on point-to-point
ICP algorithm. By maintaining flight at a constant height, h, we can simplify the
problem and assume that zv = h, φ = 0 and θ = 0. Therefore, the scan-matching
process can be solved as a 2D problem by only employing the point cloud in the
horizontal layer of the LiDAR scans to estimate the transformation matrices.

Fig. 1. Data flow diagram for 3D map reconstruction and drone’s position estimating.

Figure 1 shows the data flow diagram for drone localisation and total map
generation. Let Q̂ be a scan of size 3 × n received from a 3D LiDAR that contains
point clouds, i.e. each column (n) in Q̂ is a point cloud that is defined in the
three-dimensional space by its coordinates (x, y, z). Moreover, let Q (size 2 × n)
be the selected points by taking the horizontal layer from Q̂, so that each point
cloud in Q is defined within the two-dimensional space by its coordinates (x, y).
The applied ICP algorithm is shown in Algorithm 1. The required 2D rotation R
and translation t can be estimated by minimising the sum of the squared error
in:

E(R, t) =
N∑

i=1

wi ‖qi − (Rpi − t)‖2 , (1)

where qi and pi are the corresponding pair points from the current scan Qk

and the previous scan Qk−1, respectively. The subscript k and k − 1 are the
scan index, ‖ . ‖ is the norm, N is the overall number of the matched point
pairs, and wi is a weighting factor for the ith pair. For every point q in Qk−1,
a search is conducted for the corresponding point p in Qk which has the closest
distance. The weighting factor, wi, is set to be linear from 1 to 0, where 1 is for
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Algorithm 1: Compute the 2D transformations (Rk−1, tk−1) between two
3D LiDAR scans.
Input: Current 3D scan (Q̂k) and previous 3D scan (Q̂k−1)
Result: Rk−1, tk−1

Initialisation: Q = f(Q̂) ← Take the 2D horizontal layer;
E = ∞;

R = [1 0; 0 1], t = [0 0]T ;
while E > threshold, & iteration < maximum number of iteration do

Qk = R Qk − t ← Update Qk;
Determine and weighting corresponding points q and p;
Determine the mean of the corresponding,uQ′

i
and uQ′

i−1
;

Compute the cross-coverance matrix, K ;
SVD(K) ← U ,V ;

Rnew = U V T ← New R;
R = Rnew R ← Update R;
tnew = uQk−1 − R uQk ← New t;
t = tnew + t ← Update t;

E(R, t) =
∑N

i=1 wi ‖qi − (Rpi − t)‖2;

end

points at minimum range of the LiDAR and 0 is for those at its maximum range.
Algorithm 1 is executed for a specific number of iterations (maximum number
of iteration), or until E ≤ threshold. After finding the transformation matrices,
the drone current position can be obtained as:

[
xv

yv

]

k

= Rk−1

[
xv

yv

]

k−1

+ tk−1 , (2)

where
[
xv yv

]T
k−1

is the drone’s previous position, and Rk−1 and tk−1 are the
obtained rotation and translation (transformation) matrices from Algorithm 1
that match the scan Qk and Qk−1.

The overall 3D map, M, of the total scanned area is generated by append-
ing the current 3D scan Q̂k to the initial scan Q̂1 after applying the obtained
transformation matrices. Since the transformation matrices (R2×2 and t2×1) are
cast in 2D space, we applied a homogeneous transformation to allow 3D space
transformation matrices (R̂3×3, t̂3×1). The overall 3D map, M, can, thus, be
obtained as:

M3×n =

⎡

⎢⎢⎢⎢⎢⎣

[Q̂1]T

[R̂1Q̂2 + t̂1]T

[R̂2(R̂2Q̂3 + t̂2) + t̂1]T
...

[R̂1(R̂2(...(R̂k−1Q̂k + t̂k−1) + ...) + t̂2) + t̂1]T

⎤

⎥⎥⎥⎥⎥⎦

T

=

⎡

⎣
x
y
z

⎤

⎦

3×n

, (3)
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where n is the total number of the registered point clouds and Q̂1 is the initial
3D scan at scan index, k = 1.

2.2 Indoor Navigation

Navigating a drone within a dusty confined space is challenging due to the need
to fly the drone beyond line of sight and the inability to use cameras [15]. To
address the issue, a simple algorithm is implemented for autonomous navigation
that always keeps the drone at a certain distance from the walls. The point
clouds from the LiDAR horizontal layer are used to obtain the normal distance
from the drone to the front (df ) and right (dr) obstacles, as illustrated in Fig. 2.
Let Rs be the ranges in the current scan Qk, where s is a positive integer that
donates the range index. The distances df and dr can be obtained from Eq. (4)
and (5) as follow:

df = Rs, when s = [ rπ/(2π) ] = [ r/2 ] , (4)

dr = Rs, when s = [ r(π/2)/(2π) ] = [ r/4 ] , (5)

where r is the total number of the ranges in Rs and [ . ] denotes the standard
rounding function that rounds to the closest integer number.

The navigation algorithm starts when the drone reaches the desired altitude,
then the drone starts to fly forward whilst keeping dr = D by changing the
heading direction using a proportional–derivative (PD) controller. Note that, D
is the desired normal distance between the walls and the trajectory path. Then,
when df ≤ D, the drone starts turning. This way, the drone is always capable of
keeping the distance, D, with the surrounding walls. Figure 2 shows an overall
description of the trajectory planning and navigation parameters. Clearly, this
is a very simple trajectory planning approach; however, it is sufficient for our
storage mapping application.

Fig. 2. The planned trajectory where df is the distance from the drone to the front
obstacle and dr is the distance to the right obstacle.
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2.3 Surface Generation and Volume Estimation

At the end of the mapping process, the volume of the stockpile is estimated
by calculating the volume of the overall 3D map, M. The meshgrid function
in Matlab is used to generate a uniform 2D grid across the inspected space R.
The heights, z, from M are interpolated on top of the uniform grid R using a
linear approach (achieved using the griddata function in Matlab). Therefore, the
surface of the stockpile Zsurface can be generated from these returned values. To
estimate the volume of the stockpile, Vstockpile, double integration of the surface
over the inspection space is, then, performed as follow:

Vstockpile =
∫∫

R
Zsurface (x, y) dx dy . (6)

3 Simulation Setup

3.1 Simulation Environment

We created a model for the environment as well as the robotic system in Webots
(2021a), an open-source virtual mobile robotics simulation platform that allows
users to model, programme, and simulate mobile robots in a virtual prototyp-
ing environment. In Webots, a fully confined storage was implemented along
with a stockpile as a fair representation of a real cement or clinker storage
within a cement plant. The stockpile is a 3D CAD model of a generic stockpile
designed in SolidWorks 2019 CAD software. Hence, the CAD software provides
the actual volume of the stockpile that can be compared with the estimated
volume. Figure 3 shows a screenshot of the modelled environment, including the
implemented stockpile.

Fig. 3. A screenshot showing the developed model in Webots simulator demonstrating
a stockpile in a fully confined storage. The ceiling and two walls are transparent to
show the stockpile inside.
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3.2 Robotic Platform

A quadcopter drone from the in-built robot libraries of Webots was inserted into
the environment. To collect the 3D scans Q̂ of the environment, the drone was
equipped with a rotary 3D LiDAR that has a 45◦vertical field of view below
the horizon. The LiDAR was set in the simulation with five layers. Each layer
has 512 point clouds (i.e. low-dense scan). Moreover, a Gaussian noise with 0.12
standard deviation was added to the LiDAR data by the simulator. The drone
was programmed and controlled using Matlab codes. Furthermore, the ICP scan-
matching algorithm and the navigation approach were implemented in Matlab.

Fig. 4. Example simulation with vf = 0.43 m/s and sr = 0.21 Hz. (a) Estimated
drone’s positions superimposed on actual positions. (b) The overall 3D map (M) of
the total scanned area.

3.3 Simulations

To investigate the system’s performance, we defined two parameters: drone for-
ward speed, vf , and scan rate, sr. In Webots, a pitch disturbance value is typically
used to move the drone forward. In this work, we tested three values of pitch
disturbance ∈ {0.50, 0.75, 1.0} which resulted in vf ∈ {0.31, 0.43, 0.55} m/s.
Moreover, we recorded scans and applied the proposed scan-matching method
described in Sect. 2 at four low-rate values by skipping {50, 100, 150, 200} scans
in the simulation loop which are equivalent to recording a scan every {1.6, 3.2,
4.8, 6.4} seconds or {0.63, 0.31, 0.21, 0.16} Hz. Each simulation was repeated
five times with different initial positions. The doted circle in Fig. 3 indicates the
area where drone is randomly placed at the start of each test. Thus, in total, 60
tests were conducted. The threshold error and the maximum number of itera-
tion were set in Algorithm 1 to 2 and 50, respectively. Lastly, the desired normal
distance D between the walls and the trajectory path was set to 6 m.

In order to measure the performance of the system, three metrics were
defined: i) computing cost, cc, ii) error of the estimated positions, ep, and iii)
error of the estimated volume, ev. The metric cc is defined as the sum of total
iterations in the ICP algorithm throughout each test. The metric ep is defined as
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Fig. 5. An example of matching a current scan (Qk) with a previous scan (Qk−1) and
adding the corrected current scan to the total map, M. (a) Two scans before matching,
(b) after matching, and (c) adding to M. Colour in (c) encodes height from the ground.

the root mean square error between the drone’s actual and estimated positions.
Finally, the metric ev is defined as the percentage error between the actual and
estimated stockpile volumes.

4 Results

Using the case with vf = 0.43 m/s and sr = 0.21 Hz as an example, Fig. 4-a shows
the drone’s estimated positions superimposed on the actual ones, whereas Fig. 4-
b shows the generated overall 3D map, M. Evidently, the developed navigation
strategy in Sect. 2.2 has successfully navigated the drone within the confined
space by following the walls of the storage and successfully returning to the
initial position. Moreover, Fig. 5 illustrates an example of matching a current
scan (Qk) with a previous scan (Qk−1) and adding the corrected current scan
to M in real-time. This matching would have not been achieved in real-time if
all point clouds from both scans were used in the scan-matching. Therefore, our
method and assumptions for matching 3D scans are very useful when scanning
at a low-rate and whilst having low-dense scans.

The defined performance metrics of the system as well as the total recorded
scans during simulation are assessed for the different flight speeds, vf , and scan
rates, sr, Fig. 6. It is evident that higher sr and lower vf increase all metrics
cc, ep, and ev. This is because as more scans are recorded (as seen in Fig. 6-d)
more scans have to be matched. Noting that the error E from Eq. (1) at the
end of each scan-matching has an influence on the next scan-matching due to
the corrected current scan (with the error E) being a reference scan in the next
scan-matching. Hence, more recorded scans will decrease the accuracy of the
drone’s position estimation and the reconstructed 3D map.

It should be noted that higher flight speeds (than the three speeds simulated)
were not attempted to recognise safety considerations, as it is not safe to fly at
high speeds within a confined space. On the other hand, lower scanning rate can
lead to blind spots (un-scanned area) or failure of the scan-matching technique.
As such, these considerations defined our maximum sr value. It is evident from
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Fig. 6. Variations of the performance metrics of the system against drone forward
speed, vf , and scan rate, sr. (a) Computing cost, cc, (b) root mean square error of
the estimated positions, ep, (c) percentage error in volume estimation, ev, and (d) the
total recorded scans during the simulation. Each boxplot represents five repeated runs
of each condition with different initial positions.

the shown results that the estimated volume is always more than the actual
volume, mainly because of the walls and the ground that need to be excluded
from M. Nevertheless, the values of ev are reasonable. In fact, according to [5],
regulations regarding mine engineering often state that estimated volumes should
present ±3% accuracy of the whole amount. hence, the proposed method for
mapping succeeded to estimate the stockpile volume with the recommended
accuracy.

5 Conclusion and Future Work

This work demonstrated the implementation of a modified ICP algorithm for
real-time scan-matching based on low-dense and low-rate scanning suitable for
low computational requirements. The approach has localised a drone and simul-
taneously generated a 3D map of a confined space. A navigation strategy was
developed to navigate the drone within the area autonomously. Using the recon-
structed map of the confined space, the volume of the stored stockpile in the
confined space was estimated.

The approach was tested using simulations for mapping a confined space
within a cement plant. Results were demonstrated for different flight speeds and
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scan rates, demonstrating successful scan-matching. Moreover, the volume of the
mapped stockpile was estimated with an error as low as 3%, which matches the
accuracy levels recommended by relevant regulations.

In future work, we intend to develop the approach further by introducing a
process to correctly remove outliers from the generated 3D map to enhance the
accuracy of the results. Since the current method does not have a loop closure,
our future work will, also, involve developing a strategy for accurate larger space
mapping by closing the loop. We, then, intend to test the system in real-world
scenarios.
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Maximising Availability of Transportation
Robots Through Intelligent Allocation

of Parking Spaces
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Abstract. Autonomous agricultural robots increasingly have an impor-
tant role in tasks such as transportation, crop monitoring, weed detection
etc. These tasks require the robots to travel to different locations in the
field. Reducing time for this travel can greatly reduce the global task
completion time and improve the availability of the robot to perform
more number of tasks. Looking at in-field logistics robots for supporting
human fruit pickers as a relevant scenario, this research deals with the
design of various algorithms for automated allocation of parking spaces
for the on-field robots, so as to make them most accessible to preferred
areas of the field. These parking space allocation algorithms are tested
for their performance by varying initial parameters like the size of the
field, number of farm workers in the field, position of the farm workers
etc. Various experiments are conducted for this purpose on a simulated
environment. Their results are studied and discussed for better under-
standing about the contribution of intelligent parking space allocation
towards improving the overall time efficiency of task completion.

Keywords: Robotic farming · Agricultural robots · Autonomous
parking · Robotic fleets · Swarm robotics

1 Introduction

Autonomous mobile robots have been extensively used to perform specific tasks
in various application domains such as care homes, warehouses, and precision
agriculture. In many of these environments, the tasks are dynamic, meaning they
can appear at any time at any part of the environment, and the robots allocated
to do these tasks should travel to one or more locations in the environment to
execute the tasks. Most of these environments are structured, hence the path of
the robot should be planned carefully in advance to reduce travelling time to
these task locations. This work specifically addresses this challenge by dynami-
cally allocating the parking spaces of robots closer to the area where demand is
high. In particular, the deployment of a fleet of agricultural robots for in-field
logistics operations to support human fruit pickers in a strawberry production
poly-tunnel environment is considered here.
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Fig. 1. (a) A representative image of a picker loading fruits into the robot; (b) Graphi-
cal representation of pickers in the rows of a poly-tunnel environment; and (c) Graphical
representation of the field’s Topological map.

The work we are presenting here is build upon our previous works in fleet
coordination [3] and tracking of human in the field [7], with the aim of developing
a robotic fleet that supports fruit pickers in soft-fruit production by automating
transportation tasks, allowing the human pickers to focus on their job of picking.
The overall system is readily deployed in various farm environments comprising
autonomous Thorvald robotics platforms, coordinated by a central controller. A
photograph of a picker performing loading of fruits is shown in Fig. 1a. The feasi-
bility study reported in [3] has shown that although the overall task completion
time and hence the picking efficiency can be improved up to 20% by deploy-
ing a fleet of robots for fruit transportation, the pickers still have to wait for
the robots after they request for one. This wait time increases when the robots
have to travel longer distances to reach the picker. While in our previous work,
the parking positions for robots (where they will wait for new transportation
tasks to be allocated) in the farm environment was randomly fixed, in this work
we focus on reducing the time pickers have to wait for a robot to serve them
by proposing and evaluating novel approaches to dynamically reallocate these
parking spaces. Hence, the contributions in this work are i) Novel approaches to
dynamically reallocate robot waiting spaces to reduce the task start delay and
overall task completion time and ii) Comprehensive experimental evaluations of
the proposed approaches in discrete-event simulations (DES).
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2 Background and Related Work

Agricultural robotics have been widely researched and deployed at different
stages of food supply chain from fully autonomous precision field operations
such as seeding, weeding and harvesting [4] to human-robot interactive applica-
tions such as in-field logistics [3]. With the background research maturing, many
agri-robotic platforms targeting specific crops and applications are made com-
mercially available [2]. Deploying a fleet of such robots is beneficial to distribute
the tasks among the robots [5] and to improve the task completion. Specifically
looking at in-field logistics operations, positioning the fleet of robots closer to
the area of high demand can reduce the robots’ travel time to the task locations
as well improve the overall task completion metrics. This work explores this
approach to dynamically allocate parking spaces for the robots.

The researchers in [6] claim that multi-robot task allocation can be reduced
to an instance of the Optimal Assignment Problem. They perform a compara-
tive study amongst popular task allocation strategies such as ALLIANCE, BLE
amd M+ to study differences in their computational complexity and impact
on efficiency of task completion, which iterates the importance of strategies in
task allocation towards maximising overall efficiency. The authors of [1] discuss
in detail about a system of Unmanned Robotic Service Units in Agricultural
tasks. Here, they point out that the three major problem areas in unmanned
agricultural robots are their interaction with field workers, maneuvering and
prioritisation of tasks. The problem of parking space allocation to robots can be
considered vital towards enhancing the quickness of approach by the robots to
farm workers, which in turn partly contributes to the improvement of the first
mentioned problem area in robotised farming.

3 Methodology

For the purpose of our research, we discretise the spatial representation of the
farm environment into a topological graph of nodes and edges. We assume human
pickers travelling from node to node while picking, until they have exceeded the
capacity of their picking crate and require a robot to take the picked fruits
away and provide a new empty crate to continue picking into. Likewise, robots
navigate along the topological graph, and we model their travel time along the
edges, based on real-world parameters. Such a discretised representation of the
problem, allows us to use the formalism of discrete event simulation (DES) to
study the problem at hand [3].

DES models the operation of a multi-agent system as a discrete sequence of
events in time and the basic unit agents, here, the human picker and the field
robot, as entities [9]. The entities in the DES model compete among themselves
for resources which are limited (e.g. in our case a node can only ever be occupied
by single robot or picker, modelling the spatial constraints). Consequently when
all robot are allocated to support pickers, any picker making a new request will
have to wait in a queue to be allocated a robot. We use DES in our analysis as
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it allows to run simulations very fast, as any time between events (such as the
waiting and travel times) discrete steps that do not occur in reality, allowing the
efficient study of the proposed parking space allocation algorithms comprehen-
sively.

As described in our previous work [3], a gang of human pickers are assumed to
pick berries in a strawberry production poly-tunnel environment with plants on
raised tables in this work. Typically, the farm layout looks like a fork with a head
lane along one open end of the tunnel and navigation rows between the tables
inside the poly-tunnel, as shown in Fig. 1b. Following our approach, a discrete
topological map representation of the environment can easily capture the layout
in which robots and pickers operate. A representation of the topological map of
the poly-tunnel field is shown in Fig. 1c. It is assumed that there is sufficient
space along the header lanes to park multiple robots as well for other robots
to pass through. Different approaches to dynamically assigning parking spaces
along the header lane are proposed in the following.

3.1 Parking Space Allocation Algorithms

This paper suggests five different algorithms that help with the allocation of
parking spots for robots in an agricultural setup. These are designed keeping
in mind their need to be adaptable to different field sizes, number of pickers
and the average time each picker takes for performing the picking action at
each node before moving on to the next. The parking spot algorithms vary in
their complexity of decision from random allocation to speed based cumulative
ranking that takes into account factors including number of pickers, their position
in the field, the average time they take up while picking etc. This is to observe
if the allocation of parking spaces is indeed important to conserve resources
and the global task completion time, and also if the performance improvement
is consistent with the increasing complexity and intuitive intelligence of the
parking allocation algorithms.

Random Ranking. This is the simplest in design of all the suggested parking
space allocation designs suggested. Of all of parking spaces spread across all row
headers of the field, one is allocated at random to the robot irrespective of the
size of the field, position of the pickers or their speed of picking. This algorithm
is vital in providing a comparison of performance to all other parking space allo-
cation algorithms. This is to firstly understand if there is in fact any positive
consequence to providing intelligence to the task of parking space allocation.
Figure 2c shows a demonstrative case of having implemented the Random Rank-
ing technique. The figure shows 10 rows of crops and pickers located in rows 3,
5, 9, 10. Since Random Ranking is independent of any initial parameters of the
field and pickers, it randomly generates row 2 to be the assigned parking space.

Middle Row Ranking. Middle Row Ranking is built on the logic that a robot
placed at a parking space near the center of the field would enable it to fairly
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access picker calls from any part of the field. In case of n robots, the robots shall
be recommended to be parked sequentially in parking spaces at every 1/nth of the
field. This is the second most simple design for parking space allocation suggested
in this paper. Figure 2d shows a demonstrative case of having implemented the
Middle Row Ranking technique. The figure shows 10 rows of crops and Pickers
located in rows 3, 5, 9, 10. Middle Row Ranking entirely bases its decision upon
the width of the field, i.e. the number of rows in the field. Therefore, the row 5,
one of the centre rows is assigned as the parking space.

Distance Based Raking. Distance Based Ranking looks at the distance in
between each of the pickers in the field. The robot is allocated a parking space
that lies in the approximate centre of the rows that indicate the largest gap
between the pickers. The logic behind this algorithm is to tackle cases in which
the concentration of pickers is to one side of the field rather than them being
spread evenly across the field, which is the intuitive assumption made in the
previously suggested Middle Row Ranking. Figure 2e shows a demonstrative case
of having implemented the Distance Based Ranking technique. The figure shows
10 rows of crops and Pickers located in rows 3, 5, 9, 10. This technique bases
its decision upon the comparative distance in between the pickers. So despite
the exact same initial conditions as discussed in the previous ranking technique
Middle Row, the result through Distance Based Ranking varies choosing row
7 as the assigned parking space, which lies in the centre of the largest gap d2,
indicating the maximum distance between any two pickers in the given case.

Cumulative Ranking. Cumulative Ranking makes a parking space allocation
decision by aggregating the individual parking spot preferences given out by each
of the pickers based on their position in the field. Figure 2a shows a demonstrative
case of having implemented the Cumulative Ranking technique. It is seen in the
figure that there are four Pickers A, B, C and D located in rows 3,5,9,10. The
individual preferences assigned to rows by each of the pickers can be observed in
the figure. Picker A gives out its preference of parking space allocation where,
the space near its own row, row 3 is given the first priority with rank 1 and
the rows that are subsequently adjacent are given with incrementally increasing
ranks indicating a decreased preference to rows that are farther from the row
of that particular picker. Pickers B, C and D do the same to all the rows of
the field. The ranks given by each of the pickers for each of the rows are added
up. The aggregated ranks of rows are now observed to find the least objected
row, i.e. the row with the least rank number. The parking space near the header
of this row is considered to be the most suitable one. In case of multiple rows
holding the minimum rank, the median of that sequence of rows is taken as the
winner. As a result of this, in this example row 7 which is the most mutually
agreeable row amongst the pickers is assigned as the parking space.

Preferential Cumulative Ranking. This is an extension from the Cumulative
Ranking Technique but with inclusion of consideration given to the time taken
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Fig. 2. Demonstrative Diagrams of (a) Cumulative Ranking, (b) Speed Based Cumu-
lative Ranking, (c) Random Ranking, (d) Middle Row Ranking, (e) Distance Based
Ranking are presented along with their reference legend in (f)

by the individual pickers to move from one node to another i.e. to perform
the picking action. In simple terms, rankings given by the faster pickers are
prioritised over that of the slower pickers. To enable this, the mean value of
the set of times taken by each of the pickers to go from one node to another is
calculated. Faster pickers are classified as those who take time less than or equal
to the calculated mean value, those remaining are bracketed as the slower pickers.
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After this classification, the same procedure explained in Cumulative Ranking is
carried out. The only difference is that, the slower pickers change their ranking
preference for every two consecutive rows instead of one as in case of faster
pickers. This is done in an attempt to mathematically reduce the implication
of preference given by the slower pickers. Figure 2b shows a demonstrative case
of having implemented the Preferential Cumulative Ranking technique. Here,
Picker A which is a picker whose picking time is assumed to fall under the average
picking time of all the pickers in the field is given a lesser preference that can
be noticed through the change in the ranking priority it provides for the same
case as in the Cumulative Ranking Technique. Therefore, while aggregating the
preferences this time, row 8 is found to be the most agreeable row, it can be
noted that row 8 is further away from the slow picker, Picker A than row 7
which was the calculated result without the preferential treatment in ranking.

4 Experimental Evaluation and Results

The performance of the parking space allocation algorithms mentioned in the
methodology section are put through experimentation on a simple simulated
environment. In order to keep the parametric values of the simulation as realistic
as possible, the values defining the spacing of nodes in the farm, speed of the
pickers while picking at each node, their capacity to hold on to yield before
calling for a robot are derived through an approximation of the corresponding
values used in [3] that has a similar experimental setup. This paper by itself uses
verified empirical data obtained from real farms.

4.1 Experimental Setup

In the simulated experimental setup the test environment is assumed to be a
forked rectangular field with numerous parallel rows which have equally spaced
nodes or way points that the pickers pass through in the course of their picking
action. Based on data from [3], the length of each row is assumed to be 120 m,
the node to node distance in the field is assumed as 5 m, thus creating 24 nodes
in each row. There is a variable called ’picker time’ that is used to indicate the
time taken by a picker to go from one node to another, i.e. the time he spends
picking at each node. This value is set at 2450 s. The robot is assumed to move
at a speed of 1 m/s. This would imply that the robot takes 5 s to move from
one node to another. As per the experiment the picker calls for the robot after
having observed his collecting tray to be full. The rate at which he calls for the
robot would differ based on how the yield of the crop/fruit is at every node.
Based on the results and data observed in the experiments of [3], it is calculated
that the picker approximately calls for the robot once every 7.7 nodes. So for
this experiment, it is assumed that every picker calls for the robot once for
every 8 nodes he traverses. All of the experimental results discussed below were
aggregated over 20 randomised trials.
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Comparison of Ranking Techniques by Varying the Number of Rows.
The first experiment conducted is that of varying the width of the field by
changing the number of rows (from 5 to 50) and holding the number of pickers
on the field as constant (number of pickers = 3). The performance of the different
ranking strategies are shown in comparison to one another through the graphs in
Fig. 3. The two evaluation metrics observed are Global Task Completion Time,
which is the total time taken for the task to complete. This is an indicator or the
task completion efficiency. Another is the Robot Travel Time which is the Total
Time for which the Robot has been in motion, this is an indicator of resource
conservation.

Fig. 3. Comparison of Performance of different ranking techniques by varying the num-
ber of rows from 5 to 50 and observing changes in (a) Robot Travel Time and (b) Global
Task Completion Time

Comparison of Ranking Techniques by Varying the Number of Pick-
ers. The next experiment conducted is that of varying the number of pickers
(from 3 to 15) with a constant number of rows (number of rows = 100) and the
same picking speed as before. The performance of different ranking strategies
for picker count variation are shown in comparison to one another through the
graphs in Fig. 4.
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Fig. 4. Comparison of Performance of different ranking techniques by varying the num-
ber of pickers from 3 to 15 and observing changes in (a) Robot Travel Time and (b)
Global Task Completion Time

Impact of Differences in Picking Time Amongst Pickers. The impact of
differences in Picking Time amongst the Pickers is studied through this exper-
iment. While assuming the number of Pickers to be 3 and varying the number
of rows in the field, the performance of Cumulative Ranking is compared with
that of Preferential Cumulative Ranking. It is thought that by giving a bias to
faster pickers efficiency can be improved. Figure 5 represents results from the
experiment studying effects of change in speed of picking amongst pickers.

5 Discussions and Conclusion

It can be observed from Fig. 3, that in the experiment of comparing the rank-
ing techniques through varying the number of rows, that the performance of
the different ranking methods are proportional with respect to the two evalua-
tion metrics. As expected, all remaining ranking strategies out perform Random
Ranking, confirming the positive impact caused by intelligent planing of parking
spaces. The best performer here is Cumulative Ranking, followed by Distance
based Ranking and then Middle Row Ranking.
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Fig. 5. Comparison of Performance of Cumulative and Preferential Cumulative Rank-
ing techniques by varying the speed of picking amongst pickers and observing changes
in (a) Robot Travel Time and (b) Global Task Completion Time

In Fig. 4, showing the results of comparison of ranking techniques through
varying the number of pickers, similar to the previous case the performance of the
different ranking methods are proportional with respect to the two evaluation
metrics. Here, it can be seen that with increase in the number of pickers for a fixed
field size, Distance Based Ranking encounters a deterioration in performance
only managing to be narrowly better than Random Ranking. This is because
with the rise in number of pickers, the chances of a population skew of pickers
over to one side of the field decreases, which was one of the main areas combated
by the Distance Ranking methods. It can also be seen that Cumulative Ranking
too begins to deteriorate with increase in the number of pickers, since the almost
even distributions of the picker population might marginally favour one row over
the other in case of multiple equally desired row priorities. This is why Middle
Row Ranking works best with a High Pickers to Rows ratio, since there would
most likely be equal demand for the robot from all areas of the field that would
be best tackled by Middle Row Ranking.

In Fig. 5 that represents results from the experiment studying effects of
change in speed of picking amongst pickers, the results are different from what
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was hypothesised. The unbiased Cumulative Ranking out performs the speed
based Preferential Cumulative ranking. This has been observed to be due to
the following reason: though the robot might initially access the faster pickers
quicker, when the demand for robot arises in the slower picker, the robot might
have to for travel longer to reach this slow picker, this in turn increases the
subsequent wait time of the faster pickers, slowing down the task. The results
might however be different if in addition to the slowness, there is a reduction in
demand from the slower pickers for access to the robots. Though this theoret-
ically makes sense, it is highly unlikely that the changes in abilities and robot
requirements of pickers working in the same field in a standard operation such
as picking would produce such a case. Mathematically, it can be said that the
constant of variation [8] in the picking speed and robot requirements of the pick-
ers would not be high enough to trigger an impact due to them. Figure 5 shows
the results from these experiments.

From the results obtained, it is noteworthy to observe that there is approxi-
mately a 20% decrease in the Global Task Completion time and a 30%
decrease in robot usage when switching from a Randomised parking space
allocation technique to adapting the Cumulative Ranking strategy. This proves
the improvement to efficiency given by intelligent parking space allocation.

The results from the experiments performed on the inclusion of intelligence
in parking space allocation for the waiting period of an autonomous agricultural
robot show a positive impact on mechanical conservation in the use of robot due
to reduced operational time and also a reduction in the global task completion
time due to lower waiting periods by the pickers. Though all of the experiments
shown in this paper demonstrate the case of a single robot, the methodologies
can be easily extended to a system of multiple robots. There also lies interesting
possibilities for the extension of these ideas to suit various field setups and farm
shapes. These aspects of this research shall be addressed through continued work
in the future.

References

1. Auat Cheein, F.A., Carelli, R.: Agricultural robotics: unmanned robotic service
units in agricultural tasks. IEEE Ind. Electron. Mag. 7(3), 48–58 (2013). https://
doi.org/10.1109/MIE.2013.2252957

2. Bogue, R.: Fruit picking robots: has their time come? Ind. Robot 47, 141–145 (2020)
3. Das, G.P., Cielniak, G., From, P.J., Hanheide, M.: Discrete event simulations for

scalability analysis of robotic in-field logistics in agriculture - a case study. In: ICRA
2018 Workshop on Robotic Vision and Action in Agriculture, Brisbane (2018)

4. Duckett, T., et al.: Agricultural robotics: the future of robotic agriculture. arXiv
Prepr. arXiv1806.06762 (2018)

5. From, P.J., Grimstad, L., Hanheide, M., Pearson, S., Cielniak, G.: Rasberry-robotic
and autonomous systems for berry production. Mech. Eng. 140(06), S14–S18 (2018)

6. Gerkey, B.P., Mataric, M.J.: Multi-robot task allocation: analyzing the complex-
ity and optimality of key architectures. In: 2003 IEEE International Conference
on Robotics and Automation (Cat. No.03CH37422), vol. 3, pp. 3862–3868 (2003).
https://doi.org/10.1109/ROBOT.2003.1242189

https://doi.org/10.1109/MIE.2013.2252957
https://doi.org/10.1109/MIE.2013.2252957
https://doi.org/10.1109/ROBOT.2003.1242189


348 R. Ravikanna et al.

7. Khan, M.W., Das, G.P., Hanheide, M., Cielniak, G.: Incorporating spatial con-
straints into a Bayesian tracking framework for improved localisation in agricul-
tural environments. In: IEEE International Conference on Intelligent Robots and
Systems, pp. 2440–2445 (2020). https://doi.org/10.1109/IROS45743.2020.9341013
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Abstract. This paper addresses the multi-robot barrier coverage prob-
lem. It presents a group of memory-less robots that encircle a group of
herd agents, by moving along a polygonal barrier. The results, produced
from simulations in CoppeliaSim, demonstrate high retention of herd
agents, and robust performance across a range of simulated scenarios.

Keywords: Coverage · Multi-robot system · Swarm robotics

1 Introduction

This study addresses multi-robot barrier coverage, an extensively studied prob-
lem [5–8] with a variety of potential applications in defence, and beyond, such
as developing robots as alternatives to sheepdogs [7,8], mine sweeping [5], as
well as in understanding swarming behaviours in sheep and other organisms
[7]. For large-scale applications, such as oil spill clean-ups [9], solutions with
low hardware requirements could improve feasibility. Here, the computation-free
swarming paradigm [1] is used in controlling a group of barrier coverage robots.

2 Methods

A herd of n simulated terrestrial agents is to be contained within a 2-D polygonal
region, delineated by p vertices, represented by non-collidable green discs on the
ground. A minimalist solution is realised using m simple, memory-less, identical
barrier coverage robots (BCRs) whose aim is to minimise the number of herd
agents (HAs) crossing the boundary. Simulations are carried out in CoppeliaSim
Edu 4.1.0. The default setup comprises a regular polygon where p = 20 and side
length is 1 m, n = 10 homogeneous HAs, and m = 4 BCRs. The HAs [BCRs]
start from random positions and orientations within the polygonal region, less
[more] than 1 m away from its centre. The robot controllers are updated at 2 Hz.

Barrier Coverage Robot Design: BCRs are simulated using the Pioneer
P3-DX (see Fig. 1(a)), a differential wheeled robot weighing ∼ 9 kg. In this
c© Springer Nature Switzerland AG 2021
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(a) (b) (c)

Fig. 1. (a) The barrier coverage robot (BCR), a Pioneer P3-DX. (b) BCR sensors
(not to scale). The range of ‘far’ and ‘wide’ equals d, the distance between opposing
boundary vertices. Range of ‘near’ is d/2. (c) Irregular polygonal barrier used in SC3.

study, the motor velocities can take continuous values in a range equivalent to
[−0.80, 0.80] m/s. Each BCR has three discrete-state, pyramidal sensors mounted
in the forward-facing direction, detecting objects that are near, far, or in a
wide range, respectively (see Fig. 1(b)). They take values Snear ∈ {0, G,BC,H},
Sfar ∈ {0, G}, and Swide ∈ {0, BC}, where 0, G,BC, and H, respectively repre-
sent no object, green disc, other BCR, and HA detection. The BCR has hence
4 · 2 · 2 = 16 sensing states. Let v̄l, v̄r ∈ [−1, 1] represent the normalised left
and right BCR wheel velocities, respectively, where a wheel velocity value of -1
[1] corresponds to the wheel turning backwards [forwards] at maximum veloc-
ity. The controller maps the sensor readings Snear, Sfar, Swide onto the wheel
velocities v̄l, v̄r: {0, 1, 2, 3} × {0, 1} × {0, 1} → [−1, 1]32. It outputs a tuple,
x = (v̄l0, v̄r0, ..., v̄l31, v̄r31) ∈ [−1, 1]32, where v̄li and v̄ri

are respectively the
left and right wheel velocities for the ith sensing state. The output represents
one of four actions (see Table 1): spin clockwise (CW), move forward, turn left
while moving forward, and turn left while very slowly moving forward. This
allows the BCRs to establish a distributed formation in which they traverse the
boundary counter-clockwise, while avoiding collisions.

Herd Agent Design: HAs are simulated using e-pucks [2], which are miniature,
differential wheeled robots of mass ∼ 150 g. For HA i, potential fields [4] are

Table 1. BCR controller lookup (‘*’ = ‘whichever state that sensor takes’)

Snear Sfar Swide v̄l, v̄r Belief of Situation and Intended Behaviour

H * * 0.2, −0.2 Spins CW to avoid collision with HA in path

BC * * 0.2,−0.2 Spins CW to avoid collision with other BCR in path

G * BC 0.2,−0.2 Spins CW to avoid potential collision with BCR in wide range

G * 0 1,1 Detects green disc and no obstacles in wide range, moves

forward at max speed

0 G * 0.2,−0.2 Inside the boundary but not facing a short exit path, spins CW

to find a closer green disc

0 0 BC 0.05,1 While orbiting detects BCR in wide range, turns left while very

slowly moving forward until other BCR moves out of detection

range

0 0 0 0.5,1 Outside the boundary, turns left & forward until a green disc is

detected
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Fig. 2. (a) Histogram of HAs remaining after 90 s in SC1 and SC2, (b) Average escapes
over time in SC1 and SC2 (20 trials each). Effect of maximum HA speed (2c, SC4) and
number of BCRs (2d, SC5) on total HAs remaining after 90 s (10 trials per setting).

generated by other HAs within 1 m radius, BCRs within 3 m radius, and a
random attraction point, unique per HA, and sampled every 15 s from a 20 m×
20 m region in the centre. Let xhj

be the position vector of HA j, xbck
be the

position vector of BCR k, and xrand be the position vector of the random point,
and thus for HA i, define rhj

= xhj
− xhi

, rbck
= xbck

− xhi
, and rrand =

xrand − xhi
. Thus, for HA i, defining distances rhj

= |rhj
|, rbck = |rbck

|, and
rrand = |rrand |, the field due to repulsion from other HAs is Uh = kh

∑
j �=i

1
rhj

,

the field due to repulsion from BCRs is Ubc = kbc

∑
k

1
rbck

, and the field due to
the random point of attraction is Urand = krandrrand, where kh, kbc, and krand

are the weights for HA repulsion, BCR repulsion, and random motion, set to
1.5, 3, and 1.5, respectively in the default scenario. HA i is thus subject to force
F equal to the negative gradient w.r.t. xhi

of the total potential field (adapted
from [4]):

F = −∇(Uh + Ubc + Urand) = −
⎛

⎝kh

∑

j �=i

rhj

r3hj

+ kbc

∑

k

rbck

r3bck

− krand
rrand

rrand

⎞

⎠

The velocity at time step t, vt , is computed as vt = F −νvt−1

m Δt + vt−1, where

ν = 0.01 is viscous friction, vt−1 is the previous velocity, initialised to
[
0 0

]T ,
m is the e-puck mass, and Δt is the simulation time step. The velocity of each
HA is clipped to [−M,M ], where M is the maximum speed in m/s.

3 Results and Discussions

Five scenarios are considered, referred to as SC1 to SC5, respectively (for a
representative selection of video clips, see [3]).

SC1 analyses HA retention under the default setup with M ≈ 0.27 m/s. SC2
differs from SC1 only in that no BCRs are present. This comparison provides
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a baseline for the efficacy of the design. Figure 2(a) shows a marked separation
in the distributions. An average of 2.55 (σ = 1.32) HAs are retained after 90 s
in SC2 versus 8.40 (σ = 1.19) retained in SC1. Figure 2(b) shows the impact of
the BCRs on the rate of HA escapes: no escapes occur before ∼ 20 s in either
scenario (the approximate time for HAs to reach the boundary), and a distinct
plateau after ∼ 25 s for SC1 (presumably, at that moment the BCRs achieved
formation).

SC3 tests the robustness with respect to irregular barrier polygons. The
selected polygon (Fig. 1(c)) has the most complex shape for which the design
proved effective given the local nature of the sensing strategy. The area of the
polygon is kept approximately equal to that of SC1 (i.e. 31.57 m2). A mean of
7.50 (σ = 1.70) HAs are retained over 20 trials. This is similar to the perfor-
mance seen in SC1, with an expected slight decrease in retained HAs possibly
due to the increased initial proximity of HAs to some sections of the barrier.

In SC4, the maximum HA speed is varied through M ∈ [0, 0.80] m/s in 18
discrete steps, under otherwise the default setup. Figure 2(c) shows that once a
speed of M ≈ 0.31 m/s is surpassed, HA retention falls below the 8.40 of SC1.
Furthermore, at M ≈ 0.48 m/s, more than 70% of the HAs escape, linearly
increasing to ∼ 100% at M ≈ 0.80 m/s, rendering the design ineffective. The
performance could be improved by increasing BCR speed, thus more promptly
establishing a barrier, however this could result in erratic behaviour as BCR
reaction time becomes a restricting factor.

In SC5, the number of BCRs, m, is varied from 0 to 10. As shown in Fig. 2(d),
increasing m from 0 to 7 yields improved performance, but with diminishing
returns: significant improvements occur for m = 1 → 4 (∇ > 1 HA/BCR), with
only marginal improvements (∇ < 1 HA/BCR) for m = 5 → 7. The proposed
design (m = 4) therefore offers a good trade-off between cost and performance.
Beyond m = 7, HA retention decreases, as long chains of slowly moving, closely
packed BCRs temporarily result in large gaps in barrier coverage.

This paper proposed a simple solution to multi-robot barrier coverage, which
does not require the barrier coverage robots to communicate, or store information
during run-time. The solution was shown to perform robustly in a range of
simulation scenarios. Future work will test more realistic conditions including
environments with obstacles and porting the solutions to real robots.
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Abstract. We present a work-in-progress approach to scheduling multi-
robot missions comprising tasks that need to be performed by multiple
robots. Our approach (1) supports the scheduling of such missions for
heterogeneous robots, (2) can take into account dependability, perfor-
mance and other nonfunctional requirements, and (3) guarantees com-
pliance with mission requirements by using a combination of formal tech-
niques to allocate the mission tasks to individual robots, and to plan the
order in which each robot will execute its allocated tasks. We show the
effectiveness of our approach by applying it to the scheduling of a multi-
robot mission in a hospital-support application.

Keywords: Multi-robot systems · Task allocation and planning ·
Constraint solving · Probabilistic model checking

1 Introduction

Multi-robots systems (MRS) have the potential to perform missions that humans
find too dangerous, tedious or costly. Examples of such missions include search
and rescue [10], hospital and care-home support [1,3], and inspection of criti-
cal infrastructure [13]. However, scheduling MRS missions is very challenging
due to the complexity of their constraints and requirements. These missions
must achieve strict dependability, performance and other nonfunctional require-
ments, and may need to be carried out by teams of heterogeneous robots. No
existing MRS-mission scheduling solution [11] can support them together. The
use of probabilistic model checkers as planners is specially useful to provide
behavioural, performance and safety guarantees [4,8,14]; as well as capturing,
for example: the probability of succeeding with a task [9], spatial distribution of
the tasks [2], multiple decompositions of tasks [12], and partial knowledge of the
environment [5]. Most studies simultaneously solve the allocation of tasks and
planning problems. However, they do not consider complex task dependencies
that we capture (via separating these two problems), such as tasks that require
more than one robot to be completed, ordered and consecutive tasks.

Our paper introduces a work-in-progress approach for the scheduling of het-
erogeneous-robot MRS missions comprising ordered and joint tasks, where these
c© Springer Nature Switzerland AG 2021
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missions need to satisfy nonfunctional requirements such as cost minimisation.
Our approach supports the high-level scheduling of MRS missions, i.e., we assume
that the robots can navigate through their environment, avoid obstacles, etc.,
and we use (a) constraint solving to allocate tasks (e.g., ‘R1 cleans hospital room
A’ and ‘R3 disinfects room C’) to individual robots; and (b) probabilistic model
checking to decide the execution order for these tasks (e.g., ‘robot R1 cleans
room A, then rearranges the furniture in room D together with robot R5’).

2 MRS Mission Scheduling Approach

As shown in Fig. 1, our MRS mission scheduling approach takes four inputs.
First, domain experts provide a task specification that defines the types of tasks
for the application domain/organisation using the MRS. This includes atomic
tasks with their properties (mean execution time, number of robots needed,
etc.), and compound tasks, i.e., lists of atomic and/or other compound (sub)tasks
that may need to be executed in order and/or consecutively. Next, an “MRS
team” of engineers provides: (i) a world model defining the physical layout of
the environment where the MRS missions will be performed, and (ii) a robot
specification describing the capabilities, initial location and other characteristics
of every available robot. Each capability of a robot indicates a type of task which
that robot can execute, and provides details about the performance, reliability,
energy use, etc. with which the robot would execute the task. Finally, the MRS
users provide a mission specification defining the combination of tasks that need
to be performed by the available robots, at specific locations and with given
timing/cost/etc. constraints and optimisation objectives.

Given these inputs, we use a two-stage approach to generate individual robot
plans whose execution ensures the correct completion of the specified mission.
Stage 1 of the approach uses a constraint solver such as the Alloy analyzer [6] to
distribute the tasks of the mission among the available robots, such that all the
constraints from the task specification and the mission specification are satisfied.
This involves using a constraint problem generator to encode these constraints in
a format that the constraint solver can use to generate feasible task allocations.

Stage 2 of the approach optimises the order in which each robot will exe-
cute its tasks. Optimal robot plans are produced for each feasible task allocation
from Stage 1, and the best combination of plans across all task allocations is
adopted. To generate the optimal robot plans, we use a Markov decision pro-
cess (MDP) generator to encode the task-order optimisation as an MDP policy
synthesis problem that we then solve using a probabilistic model checker such
as PRISM [7]. For increased efficiency, a separate, small MDP is generated for
each subset of robots that were allocated interdependent tasks, e.g., joint tasks,
or tasks of a compound task with an order or sequence (https://git.io/JGLRZ).

https://git.io/JGLRZ
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Fig. 1. Two-stage MRS mission scheduling approach

3 Implementation and Case Study Summary

We developed a first version of our MRS mission scheduler using the Alloy anal-
yser [6] for the task allocation, and the model checker PRISM [7] for the robot
plan generation. Figure 2 shows the use of our solution to schedule an MRS
mission in a hospital scenario. The mission is carried out in an area compris-
ing four rooms (A to D), and consists of four tasks (t1 to t4): cleaning empty
rooms A and B (t1 and t2); moving medical equipment within room D (t3); and
cleaning patient room C (t4). Room cleaning is a compound task (ct2) requiring
patient permission (at4) (unless the room is empty – ct1), floor cleaning (at1),
and sanitizing (at2). To move medical equipment (at3), two robots are needed.
Four robots are available, two cleaner robots (r1, r2) and two pick-and-place
robots (r3, r4). This information is encoded in XML (Fig. 2a) and supplied to
our task allocator, which uses the Alloy Analyser as a constraint solver to cre-
ate 672 feasible task allocation models. These allocation models (Fig. 2b) fulfil
a set of constrains, called facts in Alloy language. For example: a) every atomic
task is linked to a specific capability, and b) every atomic task states how many
(different) robots needs to be completed.

Each of the allocations are passed to the Task Scheduler which applies tran-
sitive closure to divide each allocation into independent robot groups (groups of
robots that do not have tasks in common and do not share constrained tasks),
and generates their corresponding MDP encodings (Fig. 2c). Finally, correct-by-
construction robot plans are obtained through optimal MDP policy synthesis
(Fig. 2d). The optimisation objective used in our hospital case study (specified
as a PRISM reward property at the bottom of Fig. 2c) is the minimisation of
the overall robot travelling cost. We provide a detailed description of the case
study, and the specifications, models, intermediate results and robot plans from
Fig. 2 in our project’s GitHub repository https://git.io/Js1Yj.

https://git.io/Js1Yj
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Fig. 2. Application of our MRS mission scheduling approach to a hospital case study,
showing: (a) the problem specification (world model, tasks, robots and mission); (b) the
Alloy-generated task allocations (the robots are shown in red at the bottom and the
mission tasks in grey at the top); (c) the MDP models for each subset of robots allocated
interdependent tasks; and (d) the robot plans obtained through MDP policy synthesis

4 Conclusions and Discussion

We introduced a new approach for the scheduling of multi-robot missions com-
prising joint, ordered and consecutive tasks that need to be executed by teams
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of heterogeneous robots. By using a combination of constraint solving and MDP
policy synthesis, our approach generates correct-by-construction robot plans. In
future work, we will leverage the capabilities of probabilistic model checkers
to expand the range of optimisation objectives supported by our MRS mission
scheduling so that they include minimising mission cost and robot-team size,
maximising mission reliability, etc. Additionally, we will improve the scalability
of the Alloy task allocation by (a) adding constraints that preclude the gen-
eration of permutations of the same task allocation, (b) combining it with AI
techniques for a faster identification of optimal or nearly optimal task alloca-
tions, and (c) optimising the allocation of tasks considering, for instance, the
spatial distance between tasks (e.g., group the tasks by capabilities in a certain
area and assign them to a single robot, similar to [2]).

Understanding the computational complexity of our approach is another area
of future work for the project. Analysing the complexity of the approach is non-
trivial, as it depends on the configuration of the Alloy Analyser’s SAT solver
(MiniSat, SAT4J, ZChaff, etc.), and of the PRISM engine (MTBDD, sparse,
hybrid, explicit). The time to find an optimal solution depends on these con-
figurations, and on the size of the MDP model; which in turn depends on the
number of robots, number of tasks and task dependencies. As mentioned on our
GitHub page, most task dependencies are modelled within the MDP in a way
that reduces the state space. In addition, the evaluation comparing the system to
related solutions (e.g., [2,12]) is planned for the full-paper version of this work.
Finally, we will extend our approach to support adaptation of the robot plans
as they are executed, so that robot failures, mission changes, etc. are supported.
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Abstract. This work proposes a novel solution to the problem of cover-
ing a bounded grid world using a swarm of robotic agents. The controller
requires no run-time memory and only few, discrete sensory inputs. Two
variants of the solution to the problem are studied, one effectively mod-
ulating the sensing range based on the agent’s context. It is found that
during the dispersion, the controller with sensing range modulation out-
performs the default controller in terms of speed and evenness of the dis-
persion. Due to its simplicity, the solution could be realised on swarms
of agents with ultra-low power and computational requirements, making
it potentially relevant for large-scale swarm applications.

Keywords: Area coverage · Multi-robot system · Swarm robotics

1 Introduction

The problem of area coverage concerns a group of robots, or mobile sensing units,
that operate in a bounded environment, seeking to maximise the area that their
sensors collectively monitor at any given time. Assuming simple, range-limited
sensors and that all parts of the area to be monitored are of equal importance,
one strategy for the group is to spread as uniformly as possible. In general, the
types of sensors and computational resources can affect both the cost and per-
formance of multi-robot coverage solutions. In some practical applications (e.g.
search & rescue or monitoring pollution), cost-effective solutions for covering
vast areas in limited time are desirable, prompting related research in the field
of swarm robotics. Numerous distributed controller solutions have been pro-
posed to the area coverage problem, which are relevant for swarms of robots.
One of these employs the potential field method [3], which requires each robot
to estimate the relative positions of other robots in its neighbourhood. A similar
approach [4] requires each robot to move away from its k closest neighbours.
Ramaithitima et al. [7] propose an approach that requires the robots to obtain
only contact and bearing estimates. Recently, Özdemir [6] proposed a coverage
controller that, when tested on a swarm of e-puck robots, outperformed a ran-
dom walk controller. The approach was based on the “computation-free” control
paradigm introduced in [2]. This paradigm assumes no run-time memory. The
c© Springer Nature Switzerland AG 2021
C. Fox et al. (Eds.): TAROS 2021, LNAI 13054, pp. 360–364, 2021.
https://doi.org/10.1007/978-3-030-89177-0_37
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)b()a(

Fig. 1. Distributed area coverage solution: (a) The agent (in centre) has four contact
sensors (not shown) and four optical sensors, with the respective field of view indicated
(bi-coloured cells are within the range of multiple sensors). Here the range of the optical
sensors is of length three. (b) Flowchart for the memoryless coverage controller.

robots simply map a discrete sensory input to the output, which was used to set
the continuous velocities of the e-puck robot’s wheels.

The present work considers the problem of covering a bounded, 2-D grid
world using a swarm of robotic agents. It presents a computation-free controller
which to the best of the authors knowledge is currently the only memoryless
solution to the multi-robot area coverage problem in grid environments.

2 Design

The environment is a bounded 2-D grid world comprised of square cells. Time
is discrete, and one robot is updated at a time. The robots are updated in the
same order during the run, but this order is randomised between runs.

The robots are modelled as squares the size of a cell in the grid, and are based
off the MIT modular re-configurable robot M-Blocks [8]. Each time step, a robot
either moves to an empty neighbouring cell in its von Neumann neighbourhood,
or remains in place. Each robot is assumed to have activated an LED light
that can be seen from all directions. On each face, it has an optical (light)
sensor and a contact sensor. The light sensor detects any other robot within its
respective range (see Fig. 1(a)). The environment boundary cannot be detected,
but restricts movement. The overall setup is similar to the setup in [5].

All robots execute an identical controller (see Fig. 1(b)). The basic idea is that
the robot moves into a direction where no robot is currently detected (i.e. no
direct neighbour and no light) and that is opposite to a direction in which a robot
is currently detected (i.e. direct neighbour or light). If no such direction exists,
the robot remains in its current cell. As an alternative solution, a mechanism
for sensing range modulation is explored. In this case, the robot first checks
whether it is in contact with another robot on any face. If this is the case, it
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Fig. 2. Swarm dispersion after 0, 1, 6, 10 and 30 cycles with sensing range modulation
off (first row) vs on (second row) vs random walk (third row). Each coloured square
represents a robot.

does not probe its optical sensors. This modulates the sensing range between the
full optical range (when the robot has no contact neighbours) and the contact
range.

3 Results

Each robot is said to cover all of the cells within its sensing range, as well as the
cell it resides in. Area coverage is defined as the number of cells covered by all
the robots collectively at a given time.

A square environment of 25 × 25 cells is considered. It contains 25 robots,
each with a sensing range of 4. Figure 2 (first and second rows) shows two typical
runs, one with the default controller, the other with sensing range modulation
activated. For the swarm without sensing range modulation, it can be seen that
the outermost robots in the swarm disperse relatively evenly, but the inner robots
in the swarm do not disperse well. The initial square configuration of the robots
achieved a coverage of 27.0%. The mean amount of coverage in the 10th time-
step over 10 runs of this simulation was 82.8%. For the swarm with sensing range
modulation, it can be seen that the robots disperse more evenly. The mean
amount of coverage in the 10th time-step over 10 runs of this simulation was
89.9%. Comparatively, in the same situation a uniform random walk achieved a
mean of 52.5% coverage over 10 runs. Figure 2 (third row) shows a typical run
using this random walk.
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Fig. 3. Comparison of the time taken for different levels of coverage to be achieved
with sensing range modulation on vs off. Runs for different levels of coverage are inde-
pendent. Error bars indicate the range.

Using 25 robots with a sensor range of 5 in a 35 × 35 cells environment,
the swarm without sensing range modulation takes longer to disperse than the
swarm with sensing range modulation (see Fig. 3). However, when the desired
level of coverage is low, both swarms perform equally well, presumably as at
the start of the run they spread out at the same rate. After initial dispersion,
the swarm with sensing range modulation spreads out at a faster rate. At the
start, when the robots are still in contact, the different behaviour as a result of
the sensing range modulation may put the swarm in a better configuration to
spread out faster later. When increasing the environment size further, without
increasing either the number of robots or their sensing range, the robots disperse
until out of range of one another, possibly resulting in uneven distributions [1].

4 Conclusions

This work proposed a novel solution to the problem of covering a bounded grid
world using a swarm of robotic agents. To the best of our knowledge, it is the sim-
plest solution to this problem so far. The controller requires no run-time memory
and only few, discrete sensory inputs. The agents lack global information, and
do not communicate. Two variants of the solution were studied, one effectively
modulating the sensing range based on the context. It was found that dur-
ing the dispersion, the controller with sensing range modulation outperformed
the default controller. In particular, the sensing range modulation increases the
speed and evenness of the dispersion. Due to its simplicity, the coverage solution
could be realised on swarms of agents with ultra-low power and computational
requirements, making it potentially relevant for large-scale swarm applications.
In the future, the solution could be implemented on a physical platform such as
the M-Blocks robots [8], and tested in more realistic scenarios.
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Abstract. Simultaneous localisation and mapping (SLAM) relies on
low-cost on-board sensors such as cameras and inertial measurement
units. It is crucial that the surroundings are visible to the cameras to
maximise the accuracy of the system. An estimation strategy is proposed
to augment ORB-SLAM2 that considers feature extraction capability,
distribution of the extracted features in the image frame, and the ability
of the algorithm to track features over time. The method is tested on
challenging datasets, and the output is evaluated against different visi-
bility conditions. The proposed method is shown to react appropriately
and consistently to ‘less visible’ conditions such as fog, sunlight, and
rapid motion in real time, with minimal computational load.

Keywords: Simultaneous localisation and mapping · Visibility

1 Introduction

In the field of robotic navigation, simultaneous localisation and mapping (SLAM)
uses low-cost, on-board sensors to build up a three-dimensional representation
of the local surroundings and localise the robot relative to points in this map.

Semi- and fully-autonomous systems are on the rise. Between 2011 and 2017
the number of patents relating to automated driving that were filed at the Euro-
pean Patent Office rose by 330% [2]. In vehicles employing these systems, the
role of action and reaction is assumed by on-board sensors and actuators inter-
facing with decision making systems to control the vehicle. If a system using
SLAM with visible-light cameras can ‘understand’ how visible the scene is to
those cameras, it could adapt - re-orienting the cameras, or adjusting how many
features should be extracted from the incoming image stream.
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2 Related Work

2.1 SLAM

ORB-SLAM2 [5] is an indirect visual SLAM technique, meaning features are
extracted from preprocessed images and tracked between frames. The features
are described using binary descriptors and used to perform global bundle adjust-
ments and loop closures that allows for a consistent position estimation.

VINS-Mono [8] is a popular and sophisticated visual-inertial algorithm that
has consistent and accurate tracking of sensor pose. The authors note that
whilst their technique may operate in poor visibility, improvements to inves-
tigate observability properties of the online camera data would be beneficial.

2.2 Scene Visibility Estimation

The authors of [6] present a model that accounts for the multiple scattering of
light in the atmosphere due to conditions such as fog and rain. This is based
on the glow surrounding light sources in inclement weather. It is one of several
attempts to estimate dynamic visibility distance based on the presence of fog.

In [7], the authors develop a technique that uses the observed contrast of
road markings. The system is tested for a variety of conditions - e.g. when
sunrise causes glare in the image, which interestingly resulted in a lower visibility
estimate than the more frequently studied case of fog. The method is shown to
be robust to a range of conditions, but relies on the presence of known features.

3 Methodology

The ORB-SLAM2 code was modified to use information about extracted fea-
tures in each frame to calculate the visibility estimation metric components (see
Table 1). Additional processes, such as ones to save the outputs, were also added.

Fig. 1. Example frames of (left to right) partially occluded, foggy, and featureless
scenes from the Midair [3] and InteriorNet [4] datasets
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Table 1. Three ORB-SLAM2 SVE calculated components.

Equation Description

a Sa = NF
NF,max

Sa is defined as the ratio of the number of extracted
features (NF ) to the target, defined by the user (NF,max).
This is how well the camera can ‘see’ the scene

b Sb = 1 − χ2

χ2
w

χ2 =
∑NB

i=0

(Obi
−Ebi

)2

Ebi

Ebi = NF
NB

Each frame is divided into NB ‘bins’, each containing some
number (Obi) of the extracted features. A chi-square value
(χ2) of this binned distribution is calculated, where Ebi is
the ‘expected’ number of features in each bin bi if the
distribution of features was homogeneous. Sb is defined as
the complement to the chi-squared value when normalised
against a ‘worst-case’ value (χ2

w), representing the
condition of all extracted features being positioned
exclusively in 1/8th of the frame. This evaluates the
homogeneity of the distribution

c Sc = NT
NLv

Sc is defined as the number of features that are tracked
(NT ) as a fraction of the number of features that are
theoretically located within the frustum of the camera
(NLv ). For more dynamic visibility, features may be lost
even whilst they remain within the cameras line of sight

4 Results and Discussion

Table 2. The mean values of S (S = 0.2Sa + 0.4Sb + 0.4Sc) and of the percentage
of the trajectory that was successfully tracked by ORB-SLAM2 over 15 tests of three
conditions in a trajectory from the MidAir dataset.

Trajectory Condition Mean S Mean % tracked

VO test 0 Sunny 0.737 96.92%

Sunset 0.723 94.76%

Foggy −0.324 2.59%

With ORB-SLAM2 augmented to become ORB-SLAM2 SVE (ORB-SLAM2
with Scene Visibility Estimation), tests were performed using the MidAir [3],
InteriorNet [4], and Malaga [1] datasets. The set of visibility impairments that
could be tested were fog (Fig. 1b), partial lens soiling (Fig. 1a), direct sunlight
(Fig. 2c), rapid motion, featureless scenery (Fig. 3c), and planar scenery. Tracking
sustainability and visibility for some of the MidAir data are shown in Table 2
with a sample visibility output from ORB-SLAM2 SVE in Fig. 2a.
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An assessment of the execution time using a tool developed by the authors
of ORB-SLAM3 revealed that the additional components had minimal impact
on the computational load, and that the implementation was efficient allowing
the algorithm to perform a high accuracy estimation.

Fig. 2. (a) shows the visibility outputs from ORB-SLAM2 SVE for trajectory 15 of
the Malaga dataset (b) shows the image frame with the highest associated Sb (t ≈ 0.4
s) (c) shows the frame with the lowest associated Sb (t ≈ 22.3 s)

Fig. 3. (a) shows the visibility outputs from ORB-SLAM2 SVE for trajectory ‘origi-
nal 3 3’ in the ‘3FO4K7I2Q0PG’ subset of the InteriorNet dataset. (b) shows the image
frame with the highest associated visibility (t ≈ 4 s) (c) shows the frame with the lowest
associated visibility (t ≈ 9, 19 s)
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5 Conclusions

Refinement is still required. Across all tests, the strategy responded appropri-
ately in real time to qualitatively less visible frames as a result of factors including
fog, direct sunlight, and featureless scenery, improving on existing methods that
account for single factors. Sb proved the most intuitive metric, but no direct
correlation between Sb and tracking accuracy was observed. However, using the
ORB-SLAM2 visualiser, it was recognised that a poor distribution of tracked
features - rather than extracted features - in the frame led to a worsened pose
estimate. A detailed assessment was not completed. Additionally, Sb did not
always show adequate sensitivity in conditions such as partial lens soiling (see
Fig. 1a), and this could indicate the need for tuneable parameters.

Sc should have been useful - as the number of tracked features decreases,
tracking accuracy should worsen. The expectation was that before tracking is
lost, Sc should start decreasing, though this was not always observed. The value
was also highly variable between frames, and trends were hard to decipher -
applying this calculation to keyframes rather than all frames may be a solution.

After these problems have been addressed, the visibility information could be
fed to the system to adapt performance or re-orient the hardware, as discussed
in Sect. 1.
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Abstract. SILVER2 is an underwater legged robot designed with the
aim of collecting litter on the seabed and sample the sediment to assess
the presence of micro-plastics. Besides the original application, SILVER2
can also be a valuable tool for all underwater operations which require to
interact with objects directly on the seabed. The advancement presented
in this paper is to model SILVER2 as a Gough-Stewart platform, and
therefore to enhance its ability to interact with the environment. Since
the robot is equipped with six segmented legs with three actuated joints,
it is able to make arbitrary movements in the six degrees of freedom. The
robot’s performance has been analysed from both kinematics and statics
points of view. The goal of this work is providing a strategy to harness
the redundancy of SILVER2 by finding the optimal posture to maximize
forces/torques that it can resist along/around constrained directions.
Simulation results have been reported to show the advantages of the
proposed method.

Keywords: Legged robot · Parallel robot · Statics · Manipulability

1 Introduction

Mobile robots, with their ability of moving in space, represent the possibility of
extending the work-space of robotics and opened the way to explorations and
interventions in areas which are normally inaccessible to humans [1]. Besides
the more established categories such as wheeled robots [2], aerial drones [3],
underwater vehicles [4], several mobile bio-inspired robots have been recently
presented [5] with the promise of augmented exploration capabilities. Legged
robotics is probably the most studied category of bio-inspired mobile robots
due to their potential of adapting to irregular terrains, negotiate obstacles and
interact gently with surroundings [6].

When a mobile robot is equipped with a manipulator we speak of mobile
manipulation. This allows to harness the locomotion ability of mobile robots to
extend the work-space of the manipulator and perform manipulation tasks in
previously inaccessible locations. Depending on the category of mobile robot on
which the manipulator is mounted on, different challenges arise [7]. On ground-
based mobile manipulation, either implemented on wheeled/tracked [8] or legged
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vehicle [9,10], the mobile robot is capable of providing sufficient reaction force at
the base of the manipulator while holding its position. Moreover, the redundancy
provided by multiple articulated legs allows to implement different strategies for
manipulation: on one hand the same linkage can be used for both locomotion
and manipulation, as presented in [11], and on the other when the robot is in
a fixed position, legs can be used to change the position and orientation of the
base of the manipulator as proposed in [12,13].

In the underwater environment, robots are used for a wide set of manip-
ulation tasks which range from opening and closing valves to collecting bio-
logical samples. Despite its inherent complexity, the field of floating manipula-
tion has made remarkable progresses and the development of propeller-driven
autonomous intervention robots (Intervention AUV, or I-AUV) is currently
among the most interesting research topics in robotics [14]. However, some intrin-
sic limitations still exists such as raising debris with the perturbation introduced
by the thrusters, introducing significant acoustic noise, and counteracting high
forces at the manipulator without the reaction force provided by the ground.
For this reason, the novel category of underwater legged robots, of which SIL-
VER2 [14] is one representative, may be an effective solution to manipulation
tasks when operations are carried out directly on the seabed. In a previous work
[15] SILVER2 demonstrated the ability to collect different objects using a soft
manipulator and its maximum lifting force was experimentally assessed.

To improve adaptability to different tasks and environments, Reconfigurable
Parallel Platform (RPP) [16,17] are gaining more attention, such as Free-Hex
[18]. SILVER2 is an hexapedal robot with 3-dofs legs, and could be considered a
RPP since it has not a base anchored to the ground, but movable. The articulated
legs improve the workspace with respect to its linear counterpart [19].

In this work, we modelled SILVER2 as a Gough-Stewart (GS) platform, a
classic parallel robot consisting of a platform actuated by six linear pistons. This
allowed us to solve the inverse kinematic problem and compute the joint angles to
set a desired position and attitude of SILVER2 body. The performance obtained
in [20] could be further improved by distributing the forces more efficiently and
adapting the positioning of the legs to specific manipulation task. On top of this,
following the results presented in [21], we derived the manipulability ellipsoids
of SILVER2 and set up an optimization problem to find the legs configuration
which maximizes the forces/torques that the robot can resist along a preferred
direction. Since the derivations presented in this work pertain to the statics of
the robots, hydrodynamic contributions do not hold and the results obtained
are valid also for terrestrial hexapedal robots.

2 Materials and Methods

SILVER2 is modeled as a parallel manipulator and its Inverse Kinematics (IK)
and Differential Kinematics (DK) are presented. Force ellipsoids are introduced
to compute its Statics, and an optimization algorithm is set to find the legs
configuration which maximizes forces and torques along/around arbitrary axes.
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Table 1. Summary of most common used symbols. Subscripts omitted when considered
wrt world reference frame.

Symbol Format Description

t �3×1 Translation of the body from the ground

Rxy �3×3 Rotation matrix of {y} wrt {x}
ωx �3×1 Angular velocities of the body in {x}
lx �3×1 Feet position wrt {x}
qi �3×1 i-th leg joints angles

Jl(qi) �3×3 i-th leg Jacobian matrix

JPT , JRT �18×3 Linear/Angular SILVER2 Jacobian matrix

vi �3×1 i-th ellipsoid’s axis vector

λi � i-th ellipsoid’s semi-axis length

Fig. 1. Inverse Kinematics of the Stewart platform adapted to SILVER2

2.1 Kinematics of the GS Platform

To solve the IK of the platform, we take into account the world {s}, the robot’s
body {b} and the legs base {l} reference frames. We choose Rsb = Rsl. By taking
as a reference Fig. 1, the feet position in the leg reference frames is:

ll = Rbs(f − t) − ab (1)

The length of the leg is the vector norm of Eq. (1): ‖ll‖ =
√

lTl ll.
In the case of the Gough-Stewart platform, the DK has already been analysed

[22], and it accounts just for six linear actuators. By extension to our case, both
members of Eq. (1) can be multiplied by Rsb. For the i -th leg:

Rsbll,i = fi − t − Rsbab (2)

By differentiation with respect to time:

[ω]Rsbll,i + Rsb l̇l,i = ḟi − ṫ − [ω]Rsbab − Rsbȧb (3)

where [ω] is the skew-symmetric matrix of of the angular velocity ω, and the
notation ẋ is the time derivative of x. The linear velocity of the feet on {s} is
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null ḟi = 0, since they are supposed to be fixed. Moreover, the distance of the
leg anchor point to the center of geometry of the body will not change, since the
body is rigid, thus ȧb = 0. Consequently, the Eq. (3) can be simplified to

l̇l,i = −(Rbsṫ + Rbs[ω]Rsb(ab + ll,i)) = −(ṫb + [ωb](ab + ll,i)) (4)

Eq. (4) strictly relates the moving platform to the leg in the velocity space: both
linear and angular speed of the body are affected by the leg change-over.

2.2 Kinematics Adapted to SILVER2

SILVER2 has six segmented legs instead of linear actuators: to inherit the IK
solution of the GS platform [23], the length vectors of the linear legs of the GS
platform are used as input to the IK of the SILVER2’s segmented legs. When
SILVER2 contacts the ground with all legs, it creates 5 closed chains (by pairing
two consecutive legs together); then, they generate 5 × 6 = 30 constraints. The
tip of the leg is able to omnidirectionally rotate on the ground, thus we consider
it as a passive spherical joint. Each leg has 6 DoFs (three of them come from
the actuated joints, while the others from the spherical joint), with a total of
6 × 6 = 36 DoFs. Consequently, there will be 36 − 30 = 6 independent DoFs,
that coincide with position and orientation of the robot’s body.

The velocity of the feet with respect to the leg anchor point comes from the
discussion of its DK; indeed, it is a function of the joint angular velocities, that
can be substituted in Eq.(4).

Jl(qi)q̇i = −(ṫb + [ωb](ab + ll,i)) (5)

where Jl(qi) is the analytical Jacobian of the i -th leg and qi is the respective
joint angles vector. Jl(qi) is assumed to be invertible, and it happens whenever
the legs are not in a singular configuration (the IK of the leg always admits only
one solution because of mechanical constraints [24]). Moreover, the cross-product
property of the skew-symmetric matrix is exploited.

q̇i = −J−1
l (qi)ṫb − J−1

l (qi)[ωb](ab + ll,i) (6)

Considering a generic matrix A ∈ �3×3 and two vectors b, c ∈ �3×1, it holds
that A(b × c) = −(AT × c)T b. The cross product between A and c is a matrix
whose columns are the cross product between the respective column of A and c.
Therefore, Eq. (6) can be simplified to

q̇i = −J−1
l (qi)ṫb + (J−T

l (qi) × (ab + ll,i))Tωb = J−1
Pi

[
ṫb
ωb

]

J−1
Pi

= [−J−1
l (qi), (J−T

l (qi) × (ab + ll,i))T ]
(7)

Starting from the inverse kinematics of the Stewart Platform, the inverse Jaco-
bian J−1

Pi
∈ �3×6 has been computed. J−1

Pi
is the contribute of the i -th leg to the
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parallel robot’s inverse Jacobian. In the case that only linear velocities are con-
sidered (ω = 0), the forward Jacobian can be obtained via the Jacobian matrix
pseudo-inverse:

⎡
⎢⎣

q̇1
...
q̇6

⎤
⎥⎦ =

⎡
⎢⎣

−J−1
L (q1)
...

−J−1
L (q6)

⎤
⎥⎦ ˙̄t → Q̇ = J−1

PT
(Q)ṫ (8)

JPT
(Q)Q̇ = ṫ, JPT

(Q) = (J−T
PT

(Q)J−1
PT

(Q))−1J−T
PT

(Q) (9)

The same procedure can be applied in the case ṫ = 0, when only angular velocities
are considered.

JPR
(Q)Q̇ = ω (10)

The kinematic features of the hexapod are necessary to assess its statics. In
particular, the manipulability of SILVER2 will be exploited in the next sections.

2.3 Manipulability of Parallel Manipulators

At a kinematic singularity, a robot’s end-effector loses the ability to translate or
rotate in one or more directions. The manipulability ellipsoid EM = (JJT )−1

allows one to geometrically visualize the directions in which the end-effector
moves with least or greatest effort. It corresponds to the end-effector velocities
for joint rates q̇ satisfying ||q̇|| = 1. Like for manipulability ellipsoids, the force
ellipsoid EF = JJT can be found for joint torques τ satisfying ||τ || = 1. It holds
that EFEM = I, so the two ellipsoids are orthogonal and their product is a unit
sphere in the three-dimensional space.

The equivalent to manipulability and force ellipsoids can be constructed even
with respect to angular velocities and torques, by taking as a reference the
Jacobian matrix of the parallel robot related to angular motions expressed in
Eq. (10).

If the ellipsoid is not rotated with respect to the frame axes, it is represented
by the quadratic curve

x2

ρ21
+

y2

ρ22
+

z2

ρ23
= 1 (11)

where ρi is the length of the i -th semi-axis. An ellipsoid is uniquely defined by its
axes of symmetry vi and the length of respective semi-axes ρi, which correspond
to the eigenvectors and eigenvalues of the matrix E ∈ �3×3. A custom ellipsoid
is computed via the Eq. (12), where vi · vj = 0, i �= j.

E =

⎡
⎣

| | |
v1 v2 v3
| | |

⎤
⎦

⎡
⎣

‖λ1‖ 0 0
0 ‖λ2‖ 0
0 0 ‖λ3‖

⎤
⎦

⎡
⎣

| | |
v1 v2 v3
| | |

⎤
⎦

−1

(12)

From Eqs. (11)–(12) it holds that the length of the manipulability ellipsoid’s
i -th semi-axis is ρi = 1/

√‖λi‖, where λi is the i -th eigenvalue. The greater ρi is,
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the more easily the end-effector can move in the vi direction. The force ellipsoid
is obtained from the manipulability ellipsoid simply by stretching it along vi by
a factor 1/‖λi‖.

In order to define how close the robot is to a singular configuration, we
resorted to condition number μ [25], defined as the ratio between the highest
and the lowest eigenvalues of E. If μ = 1, the ellipsoid is spherical and the end-
effector is able to move towards any direction with the same ability; when the
robot approaches a singularity, then μ → +∞.

μ =
λmax

λmin
≥ 1 (13)

Another common measure is the manipulability index [26], that is proportional to
the volume of the ellipsoid. If the structure tends to a singularity, then MI → 0.

MI =
√

‖det JJT ‖ =
√

‖λ1λ2λ3‖ ≥ 0 (14)

2.4 Statics Optimization

Manipulation tasks with SILVER2 may require high forces along certain axes.
Exploiting force ellipsoids, the longest semi-axis should be parallel to the direc-
tion in which the highest force needs to be exerted. The same concept can be
applied to the rotational case: the axis of symmetry should be parallel to the
direction around which the highest torque has to be applied. By keeping the
body in a fixed pose, the goal is to identify a new admissible legs configuration
that achieves the aforementioned objectives.

A non-linear optimization problem is constructed. The optimization variables
qi, i = 1, · · · , 18 coincide with the leg joint angles. The position of feet and
knees with respect to the anchorage points of the legs are identified via their
forward kinematics. In addition, the force ellipsoid of the parallel robot can be
constructed as previously discussed.

The objective function exploits the largest projection of the force ellipsoid’s
axes along a given direction Ḡ ∈ �3×1. Consequently, the optimal solution coin-
cides with the legs configuration which maximize the projection of the force
ellipsoid along Ḡ.

max
q

max
i

[
vi√
λi

· Ḡ

]
, i = 1, 2, 3 (15)

The admissibility of a solution is assessed by satisfying the following con-
straints [i ∈ {1, 2, 3}, j ∈ {1, · · · , 6}].

(a) Joints can rotate in limited ranges.

qmin,i ≤ qi ≤ qmax,i (16)

(b) Feet have to lie at zero height and the central legs has to be positioned
among the lateral ones in the y-direction.

lz,j = 0 ly,3 ≤ ly,2 ≤ ly,1 ly,6 ≤ ly,5 ≤ ly,4 (17)
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Moreover, central legs’ feet will never be under the body for stability reasons.

lx,2 ≥ body width/2 lx,5 ≤ −body width/2 (18)

(c) Constraints on knees are similar to those on feet. The height of the knee must
always be greater than zero, since the legs cannot penetrate the ground.

kz,j ≥ 0 ky,3 ≤ ky,2 ≤ ky,1 ky,6 ≤ ky,5 ≤ ky,4 (19)

The algorithm needs an initial guess to find the optimal solution: since the
initial pose of the body is fixed and known, the IK of the hexapod is computed
and used as starting solution. The optimal solution is an admissible configuration
of SILVER2, and its force ellipsoid has the highest projection along the given
direction with respect to other admissible configurations. In any case, the robot
will tend to take on a configuration closer and closer to one of its singularities.

3 Results

Results come from simulations, which find and show the optimal solutions to the
respective problems. The optimizer is based on the fmincon function with the sqp
algorithm, from the Matlab Optimization Toolbox; it looks for the minimum of a
constrained nonlinear multivariable function. Bounds to variables and non-linear
inequalities have been considered.

The optimization strategy of the SILVER2 Statics is tested against chosen
directions, which coincide with the standard basis of the three-dimensional space.

Ḡx = [1, 0, 0]T Ḡy = [0, 1, 0]T Ḡz = [0, 0, 1]T (20)

Fig. 2. Leg tips are placed on the vertexes of the regular hexagon. The choice of r
affects the initial guess of the problem.

The initial guess of the optimization problem is chosen by arbitrarily setting
the side length r of the regular hexagon on whose vertexes the feet are placed,
and the quote of the body. The body and the ground are considered to be
coplanar in the following simulations. The optimization problem has been solved
six times: Figs. 3a–3b–3c are referred to linear forces along the axes in Eq. (20),
while Figs. 3d–3e–3f concern torques.
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Table 2. Numerical results of reported cases.

MI μ ρx ρy ρz

(a) 6.92e-5 9.95e4 154.17 172.00 0.55

(b) 1.15e-4 2.74e5 154.17 172.00 0.33

(c) 8.02e-6 14.03 25.35 51.78 94.95

(d) 0.03 1.41e6 0.27 8.93e-5 0.03

(e) 4.14e-10 1.13e15 6.61 1.11e8 3.29

(f) 181.13 5.50 0.16 0.12 0.28

(a) All the legs reach their own kinematic singularities. The ellipsoid converges
to an ellipse almost in the X-Y plane: it means that the structure is much
more able to reject forces along those directions with respect to vertical.

(b) The current SILVER2 configuration is very similar to case (a) since it pre-
vents movements in the X-Y plane.

(c) The pose of the robot permits to maximize the length of the ellipsoid along
the Z-axis. Consequently, the hexapod can sustain larger forces on the ver-
tical direction than on others.

(d) SILVER2 assumes this configuration to prevent rotations around the X-axis;
this is the reason why the torque ellipsoid is maximised along the X direction.

(e) The current configuration can be explained as the case (d), but along the
Y-axis. The ellipse collapses on a straight line, consequently the parallel
structure is near to a singular configuration.

(f) Rotations around the vertical axis are limited, but admitted. The current
legs configuration limits the twist of the body around Z.

Fig. 3. Optimal solutions to the SILVER2 Statics. The ellipsoids have been normalised
with respect to the longest semi-axis.
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In a previous work [15], a soft continuum arm was installed on the hexapod.
Among other tests, the amount of force exerted by the action of the legs alone
was measured, being 44 N on the vertical direction. By simulating the same
experimental conditions, the ellipsoid semi-axis along the Z direction is 47.36,
which increases to 50 following the proposed optimization procedure. Even if
this experimental condition was already close to the maximum value, in other
directions (see Fig. 3) the stance will be not trivial and may significantly diverge
from initial guesses.

4 Discussion

The hexapod robot SILVER2 has been modeled as a Stewart platform. The main
difference among the two robots consists in the fact that the serial actuators of
the parallel manipulator have a fixed position on the ground, whereas SILVER2 is
capable of independently positioning its feet within the work-space of its 3 DOFs
segmented legs. This difference leads to two major consequences, on one hand,
when SILVER2 stands with all its feet on the ground it presents a wider work-
space with respect to its counterpart. On the other hand, the feet of SILVER2
may slip on the seabed, with the consequent lost of the static configuration. In
addition to that, when operating SILVER2 underwater, external disturbances
such as currents may occur. In this work feet slipping and currents have been
neglected. The former assumption is justified by the possibility of developing
high friction feet, for example through the use of micro-spines [27], or operating
on high friction surfaces. The latter assumption is justified by the possibility
of operating SILVER2 in low current environment, as commonly done for other
underwater vehicles or by exploiting poses which result in low hydrodynamic
disturbances (e.g. low stance).

In particular in this work, force/moment ellipsoids have been introduced as
a tool to characterize the statics of the hexapod. They are helpful to understand
how much force/moment the robot can resist along/around a certain direction
with respect to others: the longer the distance between the center of the ellip-
soid and its surface along a given direction, the greater will be the maximum
force/moment that the robot can resist along/around it.

This way of thinking may be very helpful in case of manipulation tasks. It
may happen that the robot is not able to resist enough force along the required
direction. Consequently, moving the legs in order to obtain the force ellipsoid
with the largest projection towards the desired direction may solve the problem.
The same reasoning could be done in the case of torque ellipsoids.

Several optimal solutions have been reported in Fig. 3. Once the pose of
the body is chosen, the best configuration of the legs is computed via an opti-
mization procedure. We have reported the results relative to forces and torques
along/around the three axes of the world frame, however any arbitrary direction
can be chosen by the user according to the task to fulfill.

The reason why the optimizer gives the reported solution as output can be
better explained via the manipulability ellipsoid. Indeed, since manipulability
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and force ellipsoid are inversely proportional, a higher manipulability along the
shortest force ellipsoid’s axes is observed; it means that along those axes, the
robot is able to move much more easily. For instance, Fig. 3a represents the
configuration which optimizes the forces exerted along the X-axis; in this case,
the robot is much more able to move on the Z-axis direction instead of the X- and
Y-axes because of the straight legs. A similar reasoning can be done in the case of
rotations and moments as shown in Fig. 3d. The configuration prevents rotations
with respect to the X-axis, but allows movements around Y- and Z-axes.

The mathematical tool proposed in this work may be helpful to optimize
the static configuration of legged robots, while interacting with the external
environment. The pose of the body could be chosen accordingly to the task to
be completed, and further developments could involve the increase of the degrees
of freedom during the optimization process (e.g. the position of the body in the
case of required rotation, or vice versa). Moreover, the presented optimization
procedure can be generalized to include, along with static loads, dynamic ones.
Further developments may include the realization of a physical simulator and an
actual experimental setup, to support simulation results and validate the model.
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Abstract. Here we present the design for a compliant actuator than makes use
of agonistic-antagonistic tendons. Its novelty lies in its use of worm-gear motor
drive and industrial EtherCAT control. We first describe a test rig to investigate
variable-stiffness tendon drive for a single link and the construction of a corre-
sponding EtherCAT controller. The tendon drivewas based on the shoulder joint in
the GummiArm and made use of tendons that exhibit a non-linear extension char-
acteristic, so co-contraction increases joint stiffness. To ensures power was only
needed when the arm is moving, low-cost worm-drive DC motors were used. An
LQR observed-based controller was designed to realize angular position control
of the link. The link controller was implemented using the custom-build EtherCAT
panel. We present preliminary results of moving the joint link between angular
target positions.

Keywords: Tendons · Worm drive · Variable stiffness · Real-time EtherCAT

1 Introduction

Fruit harvesting for the agriculture industry will soon become a major application area
for robotic technology. It is desirable for robot actuation to be compliant, to avoid damage
arising from collisions that may occur in the working environment, and also to maximize
the safety of human co-workers operating in close proximity to robotic platforms. The
development of suitable actuators that exhibit compliance is an active field of research
[1, 2]. Tendon driven mechanisms provide one approach to build such actuators [3] and
the use of agonistic-antagonist elastic tendons with a non-linear extension characteristic
enables compliance to be modulated using co-contraction [4, 5].
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2 Motors

One major component of robotic arms are their actuators, which often make use of
electric motors. Several motor types are currently available. Stepper motors are low
cost, robust and can directly generate high output torques without the need for gearing.
However, they are relatively heavy for their torque output compared to gearedDCmotors
and require continuous drive current to maintain stationary position. High torque DC
brushless motors are becoming increasingly popular in robotics applications, due to their
high performance stemming from the availability of powerful magnets, and out-runner
designs are capable of directly generating very large torques. However, they also require
drive current to maintain a stationary position under load. DC brushed motors are also
popular and are straightforward to model [6] and to control [7].

Brushed worm-drive DC motors are another good choice for constructing powerful
servo drive system, since they are amass-produced low-cost item and deliver high-torque
[8]. Their non-back-drivability is advantageous in our application since maintenance of
static posture then requires no power. In a variable-stiffness design, such an arm can
also maintain postures at a fixed level of passive compliance. In mobile applications
this is highly advantageous, since it would reduce the drain on limited battery power
resources, whilst compliance enables the arm to absorb unforeseen impacts due to its
own movement, or that of other agents. Therefore, we consider actuator design that
makes use of worm-gear motors.

Fig. 1. Schematic of the two-tendon drive based on the design of the GummiArm.

3 Passive Compliance

Active compliance in a robot arm can be achieved by means of force sensing and feed-
back. However, this cannot protect against the shock arising from hard impacts, like a
hammer blow, since the bandwidth limitations of a typical controller makes it unable
to react fast enough to compensate such impulsive disturbances. In contrast, passive
compliance achieved using a series elastic element in the mechanical drive, can protect
the arm and actuator mechanism against impacts, since the load is transferred to the
actuator via a physical spring. However, high compliance is not always desirable and
stiff operation can be advantageous when dealing with unstable loads. Also, in machin-
ing operations, stiff industrial robots are ideal. Various methods have been proposed to
modulate stiffness [9, 10], which allows the effective spring constant to change to better
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fit a given task. Here, we follow the approach taken in the GummiArm, which is a soft
robotic arm that makes use of the co-contraction of non-linear tendon drive to achieve
variable stiffness [11]. We match the dimensions of the drive and link pulleys used in
the GummiArm shoulder. In the original design, research-grade Dynamixels were used
for actuation. Here we extend the design using low-cost worm-gear motors to drive the
tendons. A schematic of the tendons, drive and output pulley mechanisms used here
is shown in Fig. 1. The tendons wrap-around the pulleys and are firmly attached and
therefore do not just rely of friction to transfer force.

4 Motor Test Rig

A Motor test rig was developed to provide a testbed for experimental investigations of
compliant actuation and corresponding control algorithms. In order to support position
control of the robotic link driven by compliant tendons, it was necessary to compensate
for tendon deformation. The necessitated the measurements of drive and output angles
pulleys. This was achieved using incremental encoders mounted on the pulleys. We used
GummiArm tendons supplied by Fieldwork Robotics Ltd. which exhibited a non-linear
spring constant that increased with extension.

Fig. 2. Test rig and controller. Panel A: Tendon worm-drive link test rig on stand. Panel B: DIN
rail Beckhoff EtherCAT panel.

The rig was comprised of several 3D printed parts, mounted on 20mm aluminum
profile that forms its structural support. The custom components were designed using
AutoCADFusion360. SubsequentlySTL format fileswere generated and themechanical
parts were manufactured in PLA using a LutzBot TAZ6 3D printer. All parts were
attached to the aluminum profile sections with T-nuts, so they could be easily adjusted.
The motor tendon-drive test rig is shown in Fig. 2A. The test rig could be mounted
in two orientations due to its square cross-section. When the link was orientated in a
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horizontal orientation. gravity has no effect on its motion. This provides a means to
investigate control when movement was only resisted by link moment of inertia and
viscous friction. When re-orientated by 90°, the effect gravity on the link could be
investigated.

5 Beckhoff EtherCAT Control Panel

To control the 2-tendon link, we designed and built a DIN panel based on the industrial
Beckhoff EtherCAT platform (Beckhoff Automation GmbH, Verl, Germany). This is
widely used for production line automation and ideally suited to the task. Many Beck-
hoff EtherCAT system components are available, streamlining the implementation of
automation and control systems. We implemented the EtherCAT framework using an
embedded PC running the real-time Beckhoff TwinCAT3 software which is integrated
into the Microsoft Visual Studio development environment. This supports the develop-
ment of controllers, and interfaces with all the necessary signal I/O and motor drivers.
I/O modules consist of electronic terminal block ‘slices’, which can be slid into the
FieldBus system to add functionality in an elegant fashion with no messy wiring. The
platform realizes a precise frame rate (typically 1kHz) for signal acquisition and control.
In our panel we made use of the following Beckhoff components, although other slices
were installed on the FieldBus:

• CX5130 Embedded PC with Intel Atom® processor
• EL5152 Incremental encoder interface (24 V HTL, 100 kHz)
• EL7342 2-channel DC motor terminal (48 V DC, 3.5 A without fan)

The hardware was built into a Rittal GmbH (Herborn, Germany) AE1076.500 Com-
pact AE enclosure (600 × 760 × 210 mm). We used industrial DIN rail assembly
technology, so Beckhoff components could be quickly and securely attached, providing
an elegant and tidy means of panel construction. The DIN standard supports a wide
range of off-the-shelf components, including AD/DC switching power supplies. Panel
wiring was routed in cable ducts to maintain a neat layout and connection wires were
all terminated appropriately using ferrules. The control panel could be programmed and
operated via a single Ethernet cable connection. The panel (Fig. 2B) was mounted on
a custom-built stand that also supports the tendon test rig on its rear side. The panel
could can easily be expanded to control a multi-joint robotic arm by adding additional
I/O slice.
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6 Transfer Function and Response of Tendon Mechanism

A full analysis of the worm gear motor actuated tendon system and derivation of the
state space model and controller are described in [12]. Here we first note the state space
equations for the linearized tendon drive (without motor) is given by the equation:

d
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Where θo is the output pulley angle. Although component and model parameters (see
Table 1) are sometimes available fromdatasheets and componentmeasurements, it is also
useful to have a means to validate, or even estimate them, though simple observations of
system behavior such as the open-loop system step response. To analytically compute
the step response of the tendon-link system, we first derive the transfer function for the
system for θtarget given a constant extension θstretch value. Setting the latter to zero, leads
to the expression
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Taking Laplace transforms with zero initial conditions
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The transfer function of output to input angle is then given by
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Equating the transfer function to canonical form
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Comparing terms yields the natural frequency ωn and damping ratio ξ of the system
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(6)

2ξωn ⇔ μ
I ⇒ ξ = μ

2Iωn
(7)

We note that Eqs. (6) and (7) provides a simple way to estimate system parameters
from measurements of natural frequency ωn and the damping ratio ξ . The latter can
be estimated by pulling the link away from equilibrizing, suddenly releasing it, and
quantifying the response. This of course changes as a function of tendon co-contraction.



386 I. S. Howard and M. F. Stoelen

7 State Space Model of System

The A and B matrices of the motor-tendon system, after [12], are given by:

A =
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B =
[
0 − 1

L 0 0 1
L 0 0 0

0 1
2L 0 0 1

2L 0 0 0

]T
(9)

Table 1. List of all parameters for agonist-antagonist compliant drive system

Link and tendon Worm-drive motor

I Link mechanism’s inertia L Motor inductance

mg Link gravity force R Motor resistance

μ Link viscous friction coefficient J Motor inertia

Kr Effective tendon spring constant b Motor viscous friction

rin Drive pulley radius Ge Worm gearing ratio

ro Output pulley radius Ke Motor generator constant

l Link length Kt Motor torque constant

The C matrix is used by the Luenberger observer. It extracts system output that can
be measured from the full state (here only the joint angles) and is used to correct the
state estimate.

C =
⎡
⎣0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎤
⎦ (10)

8 Pseudocode and EtherCAT Implementation

The signal flow graph for the controller is illustrated in Fig. 3. The A, B and C matrices
(Eqs. 8, 9, 10) were evaluated in MATLAB. The controller gain vector K and observer
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gain vector L were designed using the MATLAB lqr command following the derivation
described in [12]. Pre-scaling factor nbar was computed in MATLAB as

nbar = −inv[Cinv(A − BK)B] (11)

The observed-based state feedback controller design was tested using a Simulink
implementation, as illustrated in Fig. 4 and using sub-systems shown in Fig. 5. The target
angle and link output from the simulation are shown in Fig. 6. The output followed the
input target angle without overshoot or ringing.

We note the mixing matrix M, shown in Eq. (12), is needed in a physical implemen-
tation, since the control inputs need to be transformed from target and stretch angles to
the corresponding left and right motor inputs:

M =
[−1 0.5

1 0.5

]
(12)

We implemented open-loop control, P-control (where error is just the scaled difference
between target and output) and an observer-based real-time controller on the Beckhoff
EtherCAT platform using structured text. To do so, we first linked variables to the hard-
ware slices, providing access to input sensors and connecting output variable to the
motor controllers. This framework provided an update function called repetitively at
the selected system frame rate of 1 kHz. Within the update frame, we implemented the
control of the motors as follows:

• We accessed the encoder slice variables to read the angular orientation of the two
drive and output pulleys.

• In the case of open-loop and P-control, the motor drive voltage controls were either
set directly or as the proportional error respectively.

• In the case of state feedback control, we estimated the full state of the motor-tendon
systemusing aLuenberger observer. The state estimatewas corrected by the prediction
error between measured and predicted pulley angles. We calculate the state feedback
control signal using the full estimated state and the reference input angle vector scaled
by nbar. We used trapezoid integration to update the estimated system state, since it
is more robust than Euler integration.

• The output control signals, (drive voltages to the twoworm drive motors) were written
to the motor slices, which drove the motors appropriately.

9 Results

We tested the tendons at a single level of co-contraction. A video of open loop operation
of the EtherCAT controller driving the 2-tendon arm is shown in this link: https://youtu.
be/1L07mjgcbNI. Part1 shows driving the link between target angles as desired, part2
shows tensioning single tendons at a time (which affect joint angle) and part3 shows
tensioning followed by moving between targets. A plot of another set of point-to-point
angular movements is shown in Fig. 7. It can be seen that despite open-loop operation,
there is only a slight overshoot of the link after reaching the target angle.

https://youtu.be/1L07mjgcbNI
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Fig. 3. State feedback control of motor driven tendon link hardware. The reference input is first
weighted by a feedforward compensation gain nbar to achieve unity system DC gain. The input
error is linearly transformed by matrix M to generate left and right motor drive. A Luenberger
observer is used to estimate the full state of the motor driven tendon link and multiplied with gain
K to generate feedback.

Fig. 4. Simulink simulation top level schematic. nt. Bus creator and selector blocks are used to
appropriately combine and separate signals. Sub-systems, shown in Fig. 5, are used to implement
a model of the plant and the Luenberger observer.

10 Discussion

We constructed a test rig to examine the operation of variable-stiffness tendon drive with
non-back-drivable worm-gear motor actuation.We suggested a simplemethod of system
identification, using step response. We simulated observer-based state feedback control
with Simulink and showed our controller design was capably of controlling the link
using only measurements of motor and output angles. To control a real link, we built an
EtherCAT controller panel. We presented preliminary results of the panel driving the test
link making point-to-point movements. Clearly extensive testing of the system is now
required, including a rigorous comparison between open-loop. P-control and observer-
based state feedback control, which was unfortunately outside the scope of the current
work. Finally, we note that from a hardware perspective, our EtherCAT panel design
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Fig. 5. Simulink sub-systems. Panel A: Motor-tendons controller schematic. State space models
for the motors and tendon are shown as sub-systems. Panel B: State space model sub-system
schematic. Panel C: Luenberger observer sub-system schematic.

is fully expandable and will support the testing of others joint configurations and full
robotic arms, including those which are biologically inspired.

Fig. 6. Simulink simulation of the responses of the motor-tendon system under observer-based
state feedback control. Dotted line is square-wave input target angle and solid line is output link
angle. Note the link follows the target angle and reaches it without overshoot.
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Fig. 7. Open-loop response of the real physical motor-tendon system during point-to-point
movements. Note the slight overshoot of the link after reaching the target angle.
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Abstract. The direct relationship between early-stage breast cancer detection
and survival rates has created the need for a simple, fast and cheap method to
detect breast cancer at its earliest stages. Endoscopic evaluation of the mammary
ducts known as ductoscopy has great potential to detect early breast cancers.
Unfortunately, there are technical limitations, most notably lack of steerability
and high tissue damage, limiting its practicality. A promising alternative to rigid
endoscopy tools is the use of soft robots.

This paper presents the computational multidomain model for the MAM-
MOBOT soft growing prototype. The prototype is using pressurised saline solu-
tion to achieve elongation in the breast’s ductal tree, a tendon driven catheter for
steering, and an active channel for soft material storage. The derivation of the
model is based on plant cell expansion, and physical modelling of the actuation
and hydraulic systems.

Themodel is validated in 1D using experimental data from theMAMMOBOT
prototype. All unknownmodel variables were identified during a parameter inves-
tigation using Latin Hypercube Sampling. The developed hydraulic model pre-
dicted the measured elongation with a 1.7 mm RMSE error, 3.5% of the total
robot length, while the combined actuation and hydraulic models predicted the
elongation with 2.5 mm RMSE, 5% of total length.

The results presented here is the first attempt to implement the growing robot
concepts in small scales and demonstrate their accuracy. The developed model
will be used to improve the closed loop control of the growing robot, improving
steerability and positional accuracy, enhancing the cancer detection process.

Keywords: Soft robotics · Hydraulic actuation · Robot control

1 Introduction

Breast cancer is the most common type of cancer in the UK with more than 55 thousand
cases diagnosed every year [1] and with a 5-year mortality rate of 15%. For years,
doctors and investigators have searched for ways of decreasing mortality through early
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detection. When diagnosed in its early stages 98% of people will survive breast cancer
for 5 years or more against a 26% survival rate with a late-stage diagnosis [1]. These
statistics highlight the importance of a procedure that will diagnose breast cancer in its
earliest stages.

In its earliest form (stage 0) cancer is known as Ductal Carcinoma in Situ (DCIS).
The detection of DCIS could increase the chances of survival of the patient and could
even avoid the need for chemotherapy or surgical intervention. Current methods have
numerous limitations such as being expensive, time-consuming or have reduced sensitiv-
ity and specificity [2]. For example, mammography screening is relatively inefficient in
detecting DCIS as it only detects those tumours associated with calcifications which are
less than 50% of all DCIS cases [3]. Considering 80–90% of breast cancers start devel-
oping as DCIS, a high number of cases go undetected or present as invasive cancers
downstream.

Ductoscopy facilitates early diagnosis through the use of an endoscope which
accesses the mammary ducts via the nipple in order to have a visual of the tumour
[4]. Rigid endoscopes, however, are difficult to manipulate and cause significant strain
on the surrounding tissue. This inflexibility means that the ductoscopy procedure is not
yet widely used. Most MI tools currently have steerable tips but their length stops them
from achieving optimal dexterity and stability when they reach the surgical site [5]. A
good solution to overcome these challenges is the use of soft robotics as endoscopic
tools since they can exploit their high flexibility to reach the target [6].

Robotic surgery has been a reality in the medical field for some time, but it is only
relatively recently that soft robots have been adopted for use in surgical procedures. In
1997 Frazer [7] patented a worm-like robot to be used as a colonoscopy tool. Since then,
many doctors and surgeons have realised the advantages that come with the use of a
precise, manoeuvrable, and flexible tool in MI procedures. A technique that has shown
great potential for catheter use is that of concentric tube robots [8]. This technology
overcomes the difficulty in steering by the use of concentric pre-curved super elastic
tubes which can form complex 3D shapes.

Another promising soft robotic technology that has shownpotential is that of growing
robots [9]. Their use has been investigated inmany applications such as search and rescue,
exploration of coral reefs [10] or archaeological sites [11], as well as medical procedures
[12]. These robots are inspired by plant growth and elongate through eversion using air
pressure inside a thin membrane. The MAMMOBOT project [13] explores using a
growing robot as a ductoscopy tool, with the key novelty being the significant reduction
of size allowing it to flexibly navigate the mammary duct system.

One of the common complexities for this class of robots is the modelling descrip-
tion of their behaviour to ensure safe and reliable control. The preferred methods of
modelling come from nature given the similarities between robots and plants. One pro-
posed approach is to use plant growth-inspired models for motion generation [14] while
another is to draw inspiration from biological models of apical extension andmechanical
models of compliant Bowden cable actuation [15].

The work presented here is building on existing apical models, extending them to
match the structure and characteristics of the MAMMOBOT robot. The proposed model
incorporates the unique features of the robot and offersmodelling of the actuation system
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and the impact on robot growth and control. The final result is a step towards accurate
operation of miniature growing robots.

Fig. 1. Simulink multidomain model of MAMMOBOT. Green is the (generic) torque source
model (dashed insert: stepper motor), yellow is the mechanical model of the syringe pump, blue
is the hydraulic elements of the pressure tank, and purple is the growing element model. (Color
figure online)

2 Methods

There are three key methodical aspects in this study, firstly the development of the
proposedmodel consisting of the actuation system, the hydraulic system and the growing
robot element. Secondly, the data analysis metric for comparison of experimental and
compuational results, and thirdly the parameter investigation for the unknown model
parameters.

2.1 Actuation and Hydraulics Model

The actuation and hydraulics model is following the physical MAMMOBOT prototype
developed by Berthet-Rayne et al. [13] and presented in green, yellow and blue in
Fig. 1. It consists of a syringe pump (mechanical domain model) powered by a motor
(electrical domain model) and a custom pressurized tank (hydraulic domain model) that
supplies pressure to the growing robot. To simplify the actuation model the physical
implementation of the catheter and the active channel were not included in this work.

Motor Model. Two different models for the motor were created to allow investigation
of different model aspects. In the first instance the motor is modelled as an ideal torque
source ensuring a direct control of the applied pressure. This model allows for the
evaluation of different motors and relies on pressure sensing. This model is presented
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with green in Fig. 1 and is connected to the rest of the model. The demanded pressure
(Pd) is provided as an input and the equivalent torque is calculated by the characteristics
of the pressure source, the syringe in this case:

Td = Pd × llead × Asyringe

2π
(1)

where llead is the lead of the syringe pump lead screw, Td the torque, and Asyringe the
cross-sectional area of the syringe plunger.

This model is a forward dynamic model and is used with experimental pressure
measurements for model validation. To maintain the desired pressure, a closed loop PID
controller is implemented and the feedback loop from the tank pressure can be seen in
Fig. 1. The PID controller is tuned manually as (KP = 80, KI = 25 and KD = 0.5).

The second version of the motor model was based on the stepper motor used in
the MAMMOBOT prototype. In this case the existing Simscape stepper motor model
and driver was used [16]. This is an inverse kinematic model with which the desired
growing robot length is an input and the motor achieves the desired pressure required
to obtain that length. This is done in two steps, from the desired length of the robot to
syringe displacement and then to stepper motor steps. The conversion from the length
of the robot to syringe displacement assumes there are no fluid losses and the fluid is
incompressible thus the relationship between syringe and robot pressures and volumes:

Lsyringe
Lrobot

= Asyringe

Arobot
(2)

where, Lsyringe is the displacement of the syringe pump plunger, Lrobot is the desired
length of the robot and Arobot is the cross-section area. For the conversion from the
length to the steps for the motor the dimensions of the lead screw for the plunger are
used.

Syringe Pump Model. The pump subsystem is formed by available Simscape elements
that can be seen in yellow in Fig. 1. Themotors are driving lead screwswhich are coupled
via a carrier platformwith the syringe plungers The syringes were modelled using single
acting cylinder blocks as they have the same functions and underlying equations. The
function of this subsystem is to generate fluidic pressure which will be transmitted to
the pressurized tank.

Pressurized Tank Model. The pressurization tank used in the MAMMOBOT proto-
type is custom made and an approximation has to be made as seen with blue in Fig. 1.
A hydraulic pipeline with a non-circular cross-section was used. The tank has two top
nozzles, one for pressure sensing and another for hydraulic pressurisation connected to
the syringe pump. Hydraulic pressure is applied from the syringes to the tank through
flexible hydraulic pipelines and an orifice. The flexible hydraulic pipelines in the model
represent the silicone tubes that connect the syringe and the tank. The flexible property
will cause some pressure absorption. The tank ends in a nozzle to which one end of the
growing robot membrane is attached; this was modelled through the use of a gradual
area change block. The nozzle outputs fluid into the growing robot with a pressure sensor
measuring at this point.
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The hydraulic fluid used in theMAMMOBOT robot is 0.9%NaCl salinewater, which
is the most common solution in medical applications. The differences in the mechanical
properties of saline solution and water are negligible and therefore the system was
modelled using pure water.

The detailed Simscape model and image of the experimental setup can be found at
Robot model github page.

2.2 Growing Robot Model

The growing robot modelling is based on the apical model described by Blumenschein
et al. [15] and gives the pressure force (PA) of the robot as:

PA =
[
YA+

(
1

φ
v

) 1
n

A

]
+

[
μsωL+ C

μcLi
Ri

e

]
(3)

where, Y is the yield pressure below which no growth happens,
(
1
φ
v
) 1

n
A is a velocity

term due to the material’s resistance to elongation, μsωL is a friction term from outside

contacts of the robot and C
μcLi
Ri

e is a term due to the curvature of the robot. The first
two terms are path independent and the latter two are path dependent and relate to the
environment.

Equation 3 must be adapted for the MAMMOBOT robot. The introduction of a
catheter tool through the centre of the growing robot will cause a friction force. The
friction term in (3) can be substituted by the friction between the catheter and the growing
robot. Assuming that the catheter moves forward relative to the growing robot this will
result in a forward friction force (Ffr) in the growing robot which will accelerate its
growth:

Ffr = PA× 2π × ri × Lc × μrc (4)

where ri is the radius of the catheter, Lc is the length of the catheter in contact with
the robot and μrc is the coefficient of friction between the catheter and the robot. The
dependence on length makes the force a path-dependent term.

TheMAMMOBOT design introduces the use of an active channel that has the ability
to exert a force (FAC) on the growing robot in order to better control the elongation
behaviour and is thus path-independent. As a result of this and (4), (3) becomes:

PA =
[
YA+

(
1

φ
v

) 1
n

A+ FAC

]
+

[
−Ffr + C

μcLi
Ri

e

]
(5)

It must be noted that no friction term has been added for the interaction of the
growing robot with the walls of the ducts (lumen). As explained above, one of the main
advantages of the growing robot technique is its ability to elongate without relative
movement between the body and its environment. The friction between the growing
robot and the lumen can therefore be neglected.

https://github.com/IGeorgilas/MAMMOBOT_UoB_Public
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Since (5) is written in terms of forces it was concluded that an ideal single-acting
cylinder could be used to model the robot in the Simulink environment. The underlying
equations which govern the single-acting cylinder are:

Fcyl = ApisPin and q = Apisv (6)

where Fcyl is the force developed by the cylinder, Apis is the piston area and Pin is the
pressure at the cylinder inlet. The term q represents flow rate and v represents velocity.

The forces from (5) can be substituted into (6) to calculate the force into the single-
acting cylinder. In this study, the growing robot is analysed in straight paths only, while
the velocity can be substituted from (6). The resulting force equation is:

Fcyl =
[
YA+

(
q

φA

) 1
n

A+ FAC

]
+ [−Ffr

]
(7)

This force is modelled in Simulink as an ideal force source to the single-acting
cylinder, acting against elongation as it is a resistive force. The length data for the
friction force from (4) is obtained from experimental catheter displacement data as the
model created has not simulated catheter behaviour. The force from the active channel
will remain zero for this work as it was not used to apply force during the experiment.

In order to ensure safety a pressure limit is introduced to prevent yield failure of
the growing robot membrane. To make a stress analysis of the robot, the growing robot
element is considered as a thin pressure vessel. Due to the low ratio of thickness to radius,
an approximation can be made to assume that the membrane experiences negligible
radial stress when pressurized and only experience longitudinal (σ L) and circumferential
(σθ ) stress will be considered.. Failure due to yielding in the robot membrane will be
caused when the circumferential stress reaches the yield stress (σ y) [17]. The maximum
permitted pressure is therefore described by:

Pmax = 2tσy
ro

(8)

The membrane material in this case is LDPE with a yield stress value of 40 MPa.
The growing element has a thickness (t) of 35 µm with an outer radius (ro) of 1.5 mm
and an inner radius of (ri) of 0.45 mm. With a safety factor of 5 the maximum pressure
was calculated to be 373.3 kPa. This limit was added as a simulation stop limit in the
model.

The initial resistance of the growing robot to elongation due to the Yield Pressure
wasmodelled hydraulicly as a check valve after the pressure tank and before the growing
element. This approach is useful for setting a pressure limit below which no flow occurs
and acts as a static pressure resistance. Because this approach will prevent unidirectional
flow, a three-way directional valve is used to override the check valve when the flow
changes direction. The valve is controlled based on the flow direction as detected through
the use of a flow rate sensor. After the initial pressure is overcome the Yield Pressure
term is added via the single-acting cylinder and (7).
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2.3 Data Analysis

The evaluation of the model was performed by comparing model predicted results for
robot elongation, flow and pressure with experimental observations as collected via the
work by Berthet-Rayne et al. [13]. The comparison was performed using the Root Mean
Square Error (RMSE).

2.4 Parameter Investigation

Equation 7 has three main unknown parameters that have to be found empirically: yield
pressure, extensibility and n term. The values were found using the computational model
and the experimental data available, through a parameter investigation. This was done
by determining the set of values that will give a model response most closely approx-
imates the experimental data. Through the use of Latin Hypercube Sampling (LHS) a
distribution of 500 parameter sets were obtained. The different combinations of values
are then inputted into the system and the RMSE value is calculated to identify which
parameter combination gives a result that simulates the behaviour of the experimental
data most closely. The ideal torque source version of the model was used to perform this
analysis.

3 Results and Discussion

The model developed above was validated with the single run data from the work by
Berthet-Rayne et al. [13] to evaluate accuracy but more repeats are needed for evaluating
repeatability. Both versions of the motor model were tested, i.e. the model using the
ideal torque source to drive the leadscrew and the model using the stepper motor. Prior to
validation tests the parameter investigation was done to identify the unknown parameters
of the system and based on those validate the models.

3.1 Parameter Investigation

Figure 2 presents the results from the parameter investigation for the three parameters
identified in (7). The 3D graph shows all 500 points generated using LHS. The ranges for
the random generation were selected following an initial manual sampling investigation
of the wider parameter space and observing the range that would most affect RMSE.
Parameter n is a scaling power term close to unity and therefore a range of 0.9 to 1.1
was selected. A Yield Pressure, i.e. before growth can commence, range of 5 kPa–15
kPa was selected while an extensibility, i.e. the ability of the robot to extent, range of
4000–10000 Pa−nm/s was selected. The table in Fig. 2 gives the values achieving the
minimum RMSE which will be used for the validation tests.

The parameter with the most significant effect on RMSE is yield pressure since the
RMSE value greatly changes along that axis. It can be observed that the optimal yield
pressure value is around 8 kPa. This is expected as a change in the resistive force acting
against elongation would affect the rate of growth of the robot. On the other hand, for
extensibility and n term it can be observed that there is no clear correlation between
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either of them and the RMSE value. Considering that extensibility and n term are part
of the velocity term in (7), a high value in the extensibility term will greatly reduce the
effect of this force on the growing robot which will also mean that the n term effect will
be reduced as well.

3.2 Model Validation

For the validation two assumptions are made, first, the model takes into account the
movement of the robot in 1D only i.e., extension, ignoring curvature. Therefore, only
experimental data of extension are being used. The second assumption has to do with
the application of the pressure experimentally. As explained in [13], no pressure control
was performed but a “duty cycle controller” was used of no pressure-pressure.

Fig. 2. Parameter Investigation Results. The 500 points generated with the LHS are presented,
with the color scale being the RMSE value. On the right the identified values are given.

Growing Robot Validation. In the validation of the growing robot model with the
ideal torque model, the duty cycle pressure demand for the Growing Cycle, thus a pulse
pressure signal of 0 to 150 kPa, is the demand to the model and the elongation of the
robot was observed and compared to the experimental results as shown in Fig. 3. The
pressure was controlled via the closed-loop PID controller.

In this experiment it can be observed that the robot length is shown to follow the same
behaviour as the experimental length data, Fig. 3. The overall rate of growth for both
is similar, reaching a length of 50mm in 10 s. An RMSE value of 1.7 mm corresponds
to a total error of 3.4% of the final length of the growing robot. This is a promising
result, for surgical robotic applications aim for a 1–2 mm accuracy [18]. Analysing both
elongation signals, it can be observed that the experimental data has bigger peaks than
the model data. The biggest variation occurs in the positive gradient of the peak sections,
the experimental data has a higher rate of growth. Contrastingly the retracting section
of the peak is larger and less steep than in the model. The lower negative gradient could
be attributed to a pulling force from the active channel that is not included in the model
currently. It must also be noted that there is no experimental pressure data available
to confirm the actual pressure applied to the robot. This uncertainty surrounding the
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experimental pressure could mean the input pressure was representative, causing the
differences in gradients. The catheter movement (not modelled) could also have had
an unexpected effect on the growing robot behaviour causing some material to fold or
buckle.

Actuation System Validation. The validation of the actuation system was done by
using as stepper motor demand the desired growing robot length using Eq. (2) and the
length-to-stepper motor steps conversion. The pressure generated was recorded as well
as the model predicted vs the desired growing robot length, Fig. 4.

The actuation system model is overall less accurate. However, the length response
can still be seen to follow a similar pattern to the experimental observations. The pressure
response to the length inputs has a faster triangular frequency which can be attributed
to the stepper motor as it actuates the syringe pump. Nonetheless, the predicted robot
length produced from this pressure is smoother than the observed length and the error
is still low, and the overall rate of growth is similar reaching a length of 50 mm in 10 s.

Fig. 3. Growing robot model validation. a) Demand and response of the actuating pressure b)
Growing robot length data model predicted and experimental.

Fig. 4. Actuation model validation a) Pressure response to the demanded length. b) Growing
robot length response compared to the desired length.

An RMSE of 2.5 mm means that there is a 5% error compared to the final length of
the robot. It must be noted that there is no pressure feedback loop to correct for losses and
variations caused by the system. It can still be observed that there are advancements and
retraction by the robot at approximately the same rate as the observed behaviour. There
is a time lag in between demand and response which can be associated with viscous
frictional losses across the actuation system.
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4 Conclusion

This work introduces a computational model for theMAMMOBOT robot, a novel grow-
ing robot for early breast cancer detection which aims to serve as an endoscopy tool
entering the ductal network via the nipple. The multidomain model was created and
validated using experimental observations and the results showed that the prediction of
growth behaviour was accurate for both an ideal torque actuator and the stepper motor
used in the experiments. The former resulted in an RMSE error of 1.7 mm while the
latter of 2.5 mm, at 3.5% and 5% of the total length of the robot.

In this work the basis for an accurate analytical model to describe the behaviour of
the MAMMOBOT device was created, however, more repeatability assessment of the
result is needed. More investigation is needed on the effect of curvature in the robot
when expanding the model from 1D to 2D and 3D. Moreover, in its current form the
model ignores the active channel and the guiding catheter but from initial observations
a detailed analysis of their impact needs to be conducted. Finally, investigations should
also look into how the addition of sensing instrumentation such as multiple pressure and
flow sensors will complement the model for control.

The successful development of the MAMMOBOT device could be incredibly valu-
able in the field of breast cancer diagnosis. The successful computational model of the
first prototype which was presented in this paper will aid in achieving a precise motion
and control of the robot increasing detection accuracy.
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MAMMOBOT – A flexible robot for early breast cancer diagnosis grant.
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Abstract. This short paper presents a preliminary investigation into the imple-
mentation of a controllable variable stiffening mechanism, which is achieved
through the twisting of tendons around the central axis of a soft actuator. The
gradual stiffening effect is realised through the increase in friction between the
tendons as those are twisted against each other. This enables an easy to control vari-
able stiffness actuator which is driven through the rotation of a DC motor driving
the tendon twisting. The proposed mechanism was integrated within the core of a
soft pneumatic actuator based on the STIFF-FLOP design, in order to characterise
the increase in stiffness per twist angle for three different tendon materials. The
initial experimental results presented here demonstrated that a controllable stiff-
ening effect can be achieved using this technique, which shows dependency on the
choice of tendon material. The results also highlighted the impact of braiding the
softer tendons to potentially enhance stiffening, although further experimentation
is necessary to characterise this behaviour in more detail.

Keywords: Soft robotics · Soft actuators · Variable stiffness

1 Introduction

The field of soft robotics aims to address the challenges faced by traditional rigid robots
in less structured and dynamic environments which require more adaptive interactions.
Taking inspiration from biological organisms’ such as octopus tentacles and elephant
trunks, soft robots commonly use elastic materials and novel actuationmethods tomimic
the continuous deformation of their mostly soft bodies [1]. Flexible Fluid Actuators
(FFAs) are one approach to soft robotic actuation thatmakes use of elastomeric chambers
patterned specifically to induce asymmetries when a fluid is forced (or removed) through
them [2]. While conventional robotic manipulators, such as those used in the DaVinci
surgical robot, offer high precision forminimally invasive surgeries, the capability of soft
manipulators to provide a greater degree of flexibility and inherently safe interactions
shows great promise that motivates further study. Nevertheless, introducing softness
consequently opens new challenges in achieving accurate positional control, stability
and sufficient force generation to meet application requirements.
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One of the approaches in addressing those challenges can be achieved through vary-
ing the stiffness of a soft actuator when more stability or higher force output is required
[3, 4]. A common approach is achieved through granular material jamming, which can
be simply demonstrated by placing fine granules into a malleable chamber and applying
a negative pressure to increase the friction effect between particles causing a “phase
change” [5]. The STIFF-FLOP successfully demonstrated the benefits of variable stiff-
ening in the context of minimally invasive surgery by combining material jamming with
flexible fluid actuation (FFA) techniques to produce a highly flexible soft arm inspired
by the variable stiffness achieved by octopus tentacles [6].

Effective scaling down of soft manipulators utilising granular jamming is often chal-
lenging as the granular jamming encounters issues at tighter channel volumes due to
material packing, which blocks the vacuum being applied to the rest of the channel.
Additionally, as the stiffening channel diameter is reduced, the stiffness effect becomes
much weaker due to a reduction in overall surface friction between the fewer parti-
cles present. This has motivated the investigation of other jamming techniques such as
layer jamming approaches [7, 8], or jamming through interlocking structures [5]. In this
paper, the feasibility of a controlled stiffening mechanism based on tendon-twisting is
investigated, which draws inspiration from textile applications in which the modelling
of structure and mechanical parameters of ropes used in yarns is of interest [9]. Recent
work has also demonstrated the potential of twisting individual tendons along their axis
to achieve a controlled stiffening effect [10]. The proposed tendon-twisting approach is
an alternative stiffening mechanism for soft actuators that can be potentially scaled up
or down as needed based on the number and diameter of tendons, material properties,
and the arrangements, while offering simple means of controlling a gradual increase in
stiffening during operation.

2 Design and Fabrication

The design of the soft fluidic actuator used in this work was based on the STIFF-
FLOP surgical manipulator [6]. The actuator retains the three pneumatic chambers of
the STIFF-FLOP module, while replacing the granular jamming in the middle core with
4 flexible tendons of equal width (Fig. 1-a), which are secured in place with a plate at
the actuator tip (Fig. 1-b) and connected to a Nema 17 stepper motor (rated at 3.7 Nm of
holding torque) at its base (Fig. 1-c). This motor is responsible for driving the rotation
of the tendons at the base end of the actuator causing the tendons to twist against each
other, which creates the desired stiffening effect due to friction between the tendons.
The stiffening is hence a function of the degree of rotation, so can be changed gradually
to achieve desired stiffness, unlike other stiffening methods that switch between stiff or
relaxed states.

A custom enclosing mould was designed and 3D printed to facilitate moulding the
proposed tendon-twisting soft actuator from Ecoflex-50 and following the dimensions
on the Soft Robotics Toolkit1. Three off-the-shelf tendons of varying degree of flexi-
bility were compared here which are: Ninjaflex, polypropene rope, and steel wire. The

1 More information can be found at www.softroboticstoolkit.com.

http://www.softroboticstoolkit.com
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Fig. 1. Actuator construction from left to right: (a) Actuator design showing internal core, (b)
braided polypropylene rope with end cap, (c) stepper motor twisting the tendons in the core.

choice was made based on the ease of availability and to cover a wide range of mate-
rial flexibility to assess the feasibility of achieving the desired stiffening effect through
twisting. Furthermore, the tendons were tested in two arrangements; straight and braided
(Fig. 1-b) - to evaluate the impact of braiding the tendons on the stiffening range.

3 Experimental Characterisation of Stiffening

The experimental setup shown in Fig. 2 was used to assess the range of stiffness achieved
when testing the tendon-twisting soft actuator using each of the three tendon materials
at both braided and straight cases. An Arduino Uno board controls two stepper motors
through amotor driver circuit to control the z-axis displacement of the actuator on the test
rig and the twisting angle of the tendons inside the actuator core. For each experiment, the
actuator is gradually driven downwards along the z-axis against a 3D printed rectangular
object mounted on top of a sensitive force-torque sensor (ATI mini45), then reset to the
initial location. This is repeated automatically four times for each test. Tendons are
twisted by rotating the torsion control motor clockwise by 2/5 of a full rotation between
iterations until the fixed end starts slipping or the actuators becomes too stiff to twist
any further. A Matlab Simulink model simultaneously records time-series force data
from the force-torque sensor and image feeds from a camera to monitor the actuator
deformation during testing.
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Fig. 2. From left to right: (a) components of the experimental setup, with the z-axis acting
vertically, (b) simplified model of experiment procedure.

4 Results

The preliminary results of the experiment are summarised in Fig. 3 which compares the
three tendon materials used for each of the braided and unbraided cases. Overall, the
results in both graphs show a proportional increase in stiffness as the tendon twisting is
increased, although the response is not always linear as it is the case for the Ninjaflex
tendons. This is likely due to the non-linear material behavior and slippage between
tendons particularly when braided. Additionally, the results indicate that when using
straight (unbraided) tendons (Fig. 3-a), the stiffer tendons exhibit a higher percentage
increase in force, reaching amaximumof around 268% for the steelwirewithin the tested
twisting range. The percentage change in force was calculated along the z-axis direction
(Fz) by comparing the first value recorded without tendon twisting (relaxed state) and
the final Fz value achieved at maximum possible degree of rotation (stiff state). However,
using very soft and flexible tendons, like the polypropylene rope, causes a negligible
change in Fz. On the other hand, when tendons are braided (as in Fig. 3-b) the stiffening
effect is potentially enhanced for the flexible tendons, with Ninjaflex tendons achieving
a maximum overall increase in Fz of nearly 332%. At the same time, the percentage
increase in Fz for the steel rod actually reduces upon braiding due to a significant increase
in the actuator’s initial stiffness, which results in double the initial forces recorded before
any twisting (relaxed state), while the final achieved force atmaximum twisting remained
nearly the same. This has also limited the maximum possible twisting angle as the motor
reached its torque limit.
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Fig. 3. Z-axis force-torque data plotted until second peak from left to right: (a) unbraided tendon
configuration, (b) braided tendon configuration.

5 Conclusions and Future Work

The results of this feasibility study highlighted the potential of achieving controlled
variable stiffness in a soft cylindrical actuator based on the proposed idea of flexible
tendon twisting. The method offers an easy to control stiffening method using stepper
motor rotation, which can be scaled up or down based on the number and diameter
of the tendons used. The results generally suggest that the choice of materials plays a
critical role, although would require further study to characterise and model the impact
of specific material properties such as elasticity and surface roughness in more details.
Among the tested threematerials, therewas a correlation betweenmaterial flexibility and
an increase in stiffness upon twisting. If the tendon is too soft and flexible (such as the
case of polypropylene rope) it does not generate a noticeable increase in stiffness, while a
significant increase in stiffness can be achieved using the stiffer steel wires. Furthermore,
preliminary tests showed that braiding the tendons rather than inserting those as straight
can potentially enhance the stiffening effect for those flexible filaments, yet decreased
the stiffening for stainless-steel wire. This is due to the increase of the initial stiffness of
the actuator before any twisting, so the range of generated forces becomes narrower and
hence reduces the desired variable stiffening behaviour. Further work will investigate the
effect of specificmaterial properties on enhancing the stiffening effect via modelling and
further experimental validation to identify the optimum choice of materials properties
to maximise the stiffening range. This would be desired in various applications where
a soft touch as well as forceful interactions could be simultaneously required, as it is
the case with non-invasive surgeries. Furthermore, varying the number of tendons and
types of braiding patterns using thinner tendons will be further investigated as a way
to enhance the range of force generation while retaining the compactness and desired
initial softness of the actuator before stiffening.
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Abstract. We present WhiskEye, a visual tactile robot supporting a
neurorobotic investigation of spatial memory as a multisensory recon-
structive process. This article outlines the motivation for building Whisk-
Eye; the technical details of the physical robot, and the publicly avail-
able simulated platform via the NeuroRobotics Platform (NRP) from the
Human Brain Project; and the biomimetic control architecture. The mul-
tisensory reconstruction model of place recognition based on deep pre-
dictive coding network is presented and datasets collected from the NRP
are used to train and test the network. We demonstrate that the joint
latent representations inferred by this system are positively correlated
to displacements in pose space suggesting it is an advantageous sensory
processing front-end for our neuro-plausible model of spatial memory.

Keywords: Neurorobotics · Neural networks · Multisensory inference

1 Introduction

As we move through the world we see, touch, smell, taste and hear the envi-
ronment around us. We use this sensory information to navigate safely and to
plan routes to previously visited locations. How this multisensory information
is represented, stored and recalled by the brain to aid in navigation is not fully
understood. In the 19th century Heinrich von Helmholtz proposed that the brain
was not a passive observer of the environment through the senses, rather it was
actively engaged in predicting how the world behaves [8]. This conceptual shift
in understanding has become increasingly popular in contemporary neuroscience
research with many works advocating and demonstrating the role of prediction in
describing physiology and behaviour [2,6,18]. Models for how the neocortex may
implement this learning have also been proposed [19] which in turn has resulted
in neural network models that can be constructed and implemented using the
readily available machine learning toolboxes [3]. Deep predictive coding neural
networks differ from conventional deep learning neural networks in that the error
correction step applied to the weight array is computed locally in each training
c© Springer Nature Switzerland AG 2021
C. Fox et al. (Eds.): TAROS 2021, LNAI 13054, pp. 408–418, 2021.
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epoch in parallel across the network, i.e., the global derivative and back prop-
agation of error is not required. Instead each layer in the network attempts to
predict the output of the previous layer, refining its predictions by comparing
them to the actual output. In other words, higher layers are trained to recon-
struct the activity of lower layers but using an increasingly smaller dimensional
representation space to do so. This enables a hierarchical learning of represen-
tations but with the benefit of priors that can anticipate familiar sensory inputs
by generating predictions that are tested against incoming evidence.

In this paper we describe how such a network has been integrated into the
processing architecture of a biomimetic multisensory robot called WhiskEye.
WhiskEye has an array of active tactile whiskers and cameras for eyes that
explores its environment in an ethologically plausible way. Using a model of
tactile attention, it gathers visual and tactile impressions from its environment
which are used to train a multimodal predictive coding implementation called
MultiPredNet. The representations generated by this network show a strong
correlation to pose space, and thus are useful for place recognition.

The main contributions of this paper are:

1. Overview of a novel multisensory biomimetic robot platform
2. Introduction of a publicly available simulation platform of the WhiskEye
3. A neuroplausible multimodal deep predictive coding network model that can

combine vision and tactile sensory information
4. A demonstration that the network model can generate representations that

are beneficial to place recognition.

2 Related Work

The brain is renowned for its ability to combine different modalities to solve
problems, in artificial systems we refer to this ability as sensor fusion [10]. Model
free approaches to sensor fusion include Variational AutoEncoders (VAEs) which
have proven successful by being able to create joint latent spaces that encode
the regularities between multiple modalities [11]. Predictive coding systems take
this a step further by using bio-plausible learning rules and generating repre-
sentations at each layer, whilst also showing the ability to extract disentangled
latent variables [13]. To the best of our knowledge this approach has not been
applied specifically to place recognition.

RatSLAM [14] is a successful Simultaneous Localisation and Mapping
(SLAM) approach inspired, like WhiskEye, by rat behaviour. Unlike RatSLAM,
this paper does not purport to solve the full SLAM problem, instead focusing
on representation learning for place recognition. This is equivalent to the sen-
sory front-end of RatSLAM, processing raw sensor data into a form suitable
for a future downstream mapping system. The use of whisker-based touch has
been successfully incorporated into a SLAM system before [5] and is promising
in terms of the redundancy and robustness it offers. WhiskEye builds on prior
works using whisker based tactile sensing for mobile robots [16,17] by introduc-
ing the head-mounted cameras to coarsely approximate rat vision and allowing
us to capture rich multisensory datasets during mobile exploration.
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3 Materials and Methods

3.1 WhiskEye Platform

Fig. 1. Both incarnations of WhiskEye. Note the differences in whisker shape and
simplified structure of the simulated model, with extraneous detail like wires and the
onboard display omitted.

Hardware. The main physical components of WhiskEye are the head, neck and
body. The body is a RobotinoTM chassis from Festo Didactic, with an onboard
Intel computer running the robot control software, including ROS. This com-
puter communicates to a head mounted master SPI bus that controls much of
the robot’s behaviour. Within the RobotinoTM is an ARM microcomputer that
itself runs ROS, interacting as a ROS device with the onboard computer. Logs
and data are sent via wi-fi to a remote desktop. Three omni-wheels allow for
arbitrary motion in x, y and θ (Fig. 1).

The neck is custom-built, attaching to the front of the Robotino chassis with
a USB connection to the onboard computer. This USB is set up as a ROS device,
allowing for data to be read from sensors and commands to be sent to neck and
head actuators.

The head is also custom-built, mounting the aforementioned head SPI master.
This controls the 6 whisker arrays and neck via 7 slave SPIs. Each whisker array
consists of 4 whisker complexes, each with its own motor, ARM processor, a 2-
axis Hall Effect sensor and the whisker proper; a flexible, tapering plastic rod that
mimics small mammal whiskers. Each ARM processor coordinates its whiskers
to generate ‘whisks’ of synchronised movement across the array, but allows each
to respond individually to impingement for whisker-specific retraction.
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Neurorobotics Platform. The NeuroRobotics Platform (NRP) [4] is a web
based robotics and neuroscience research tool for neuroscience based robotics
experiments, particularly through time sensitive coupling between Gazebo and
spiking neural network simulators such as NEST. For very large network models
it also provides an API to deploy on the SpiNNaker neuromorphic supercomputer
[7]. A CAD model of WhiskEye has been instantiated into the NRP with a
Gazebo-ROS plugin deployed to mirror the interface of the physical platform
described above. To accommodate the flexible whiskers within Gazebo’s rigid
body physics, whisker collisions were disabled; instead, surface penetration depth
was used to calculate the corresponding force experienced at the base of each
whisker in the 2 orthogonal planes (xwhisk, ywhisk). Crucially, the NRP hosts the
same ROS control architectures as the physical robot, ensuring parity between
simulated and physical behaviour.

Control Architecture. WhiskEye’s movements are initiated and coordinated
through a model of whisker based tactile attention derived from prior work [15].
It is composed of an interconnected network of functional models of mid brain
structures of the rat that have been modelled using Python and compatible with
ROS. Each module encapsulates a specific set of functions necessary for control,
with many modules implementing neuro-plausible functional models.

Fig. 2. Cascading view of control functions. Each function is called sequentially and
contributes to the final, salience-guided foveation, sampling the environment in an etho-
logically plausible way. ROStopics of cameras and whiskers are published, permitting
collection of datasets for MultiPredNet training (Sect. 3.2)
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Figure 2 shows WhiskEye’s cascade of controller functions that each con-
tribute to the final behaviour of the robot:-

– Platform - creates publishers for all relevant ROStopics that can be subscribed
to both internally (such as whisker inputs for tactile attention) and externally
(for monitoring and data collection).

– Sensory - preprocesses incoming sensory data, reshaping and removing reaf-
ferent noise with a high-pass filter, preserving deflections caused by impinge-
ment; loosely analogous to a proposed cerebellar role for re-afferent sensory
prediction [1].

– Spatial - manages a Superior Colliculus-inspired salience map fed by tactile
data. This determines where the robot will orient to. Local space is mapped
as head-centric (xh, yh, zh) and the most salient location identified. If its
salience exceeds a threshold, the coordinates pass to the Action module. If
not, structured noise is applied that raises salience around the fovea until a
candidate location is found.

– Action - inspired by the Basal Ganglia - deciding how to act, and how much
- the desired position in head space is transformed into world space (xw,
yw, zw). The difference between the current and desired position forms the
movement vector describing the orient required.

– Reflex - responds via callbacks to any potential collisions that a movement can
cause; since obstacles can be interesting features themselves, this is a common
occurrence. Proportional retraction ensures collisions are minimised.

– World - logs visited locations, implementing Inhibition of Return (IoR) by
temporarily masking their coordinates in the salience map. This avoids inces-
sant exploration of a single location, encouraging orienting to novel areas.

– Motor - translates the Action module transformations to motor commands.
Orienting is head-led, only moving the neck and body if head movement alone
cannot reach the destination. Once the salient location is reached, a whisking
bout is induced, repeating the cycle.

3.2 Multisensory Integration and Reconstruction Using Multimodal
Predictive Coding Network

To generate multisensory inferences, a MultiPredNet architecture is used1. Based
on principles of predictive coding [2,6,19] and building on prior work [3], this net-
work flips the conventional Deep Learning information flow on its head. Rather
than being led by the sensory data filtering through weight matrices, the Mul-
tiPredNet instead leads by predictions. Hypothesised ‘causes’, high-level predic-
tions of what the world contains, are passed in a top-down fashion and compared
with the sensory input at each level. The remainder of the signal - that not pre-
dicted by the causes - will continue to propagate upwards.

1 Code and data can be found at:
https://github.com/TomKnowles1994/MultiPredNet/releases/tag/1.3.2.

https://github.com/TomKnowles1994/MultiPredNet/releases/tag/1.3.2
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Fig. 3. The MultiPredNet architecture. Each layer contains a filter of learned weights
(Wx) and receives top-down, hypothesised causes (cx) of the input at the preceding
(l − 1) layer. Causes pass through these weights, generating predictions of lower layer
cause values. Discrepancy between predictions and causes propagate to higher layers
as error gradients. The topmost layer integrates both modalities, learning a single set
of causes that, filtered through modality-specific weights, reconstruct each unimodal
data input.

The MultiPredNet begins with randomly initialised weights and arbitrary
cause values (0.1 by default). Each layer of causes (y(l)) is updated in parallel
with a Hebbian-like learning rule:

Δy(l) = ηy

(
Wl(l−1)φ′(ŷ(l−1))

((
y(l−1) − ŷ(l−1)

)
+

(
y(l) − ŷ(l)

)))
(1)

where ηy is the learning rate and φ′ is the derivative of the activation func-
tion. Error component (y(l−1) − ŷ(l−1)) is the bottom-up error, comparing the
prediction derived from the upper cause to the actual value of the causes. This
penalises causes that cause poor predictions of lower layer causes. Error compo-
nent (y(l)− ŷ(l)) is the top-down error, comparing the current value of the cause
to what it was predicted to be by y(l+1). This penalises causes that are difficult
to predict by higher layers. Note that y(l+1) is not a component of this learning
rule, as its own value is not required to update y(l), only its prediction (ŷ(l)).
Note that for the uppermost layer, there is no higher layer to predict causes, and
thus top-down error is treated as 0.

Each layer has a threshold defines the margin of error (10−3 to 10−4) between
a cause (or data item) and its prediction. Once all layers are within their error
criteria (or after a maximum number of iterations), inference stops and the final
causes values compared to the predictions. Further discrepancy between final
causes and predictions leads to a weight update as per:

ΔWl(l−1) = ηwy(l)φ′(ŷ(l−1))
(
y(l−1) − ŷ(l−1)

)T

(2)
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with ηw being the learning rate for the weights. This iterative adjustment of
causes occurs both during training and when generating inferences. Inferences
do not invoke weight updates - the filters are ‘fixed’ - and rely on adjustment
of causes to match predictions to the data presented. These predictions should
therefore not be considered a direct window into the latent representations of the
network, nor a decoded reconstruction of such, instead being a live hypothesis
of the network as to the causes of the l0x sensory impingement.

4 Results

Datasets were collected from WhiskEye exploring a virtual ovoid arena popu-
lated with coloured cubes and cylinders. Visual data consisted of 3-channel RGB
images from the left camera, downsized to 80 × 45 × 3 pixels and flattened into
a 1-D array of 10,800 elements. Tactile data consisted of 24 whisker protractions
(θwhisk) and 24 × 2 values of deflection data (xwhisk and ywhisk) concatenated
into a 1-D, 72 element array. Sampling was driven by the rat-inspired whisking
behaviour described in Sect. 3.1, with ‘views’ in both modalities captured at the
moment of whisker peak protraction; whether the whiskers reached their desired
theta angle or not (due to obstacles and/or IOR).

Note the relationship between visual and tactile data (Fig. 4); a visual scene
displaying largely wall implies proximity to the wall (f ), and thus many whiskers
colliding with the surface. The tactile data reflects this, with greater and more
numerous deflections (d) in comparison to a clear visual scene (c, e). Relation-
ships like these can be learned by MultiPredNet’s multisensory layer, inferring
that denser tactile input implies a more occluded visual scene and vice-versa.

The MultiPredNet was initialised with random filter weights and causes set
to 0.1; two visual layers of 1000 (L1

vis) and 300 (L2
vis) neurons; two tactile layers

of 50 (L1
tac) and 20 (L2

tac) neurons; and a single Lmsi layer of 100. Causes were
allowed to infer for 50 cause epochs before weight updates took place. 1900
samples of training data were divided into minibatches of 10 and the network
trained for 200 training epochs. During some inferences, modalities were masked
to test robustness to sensory dropout.

Figure 5 shows sample inferences generated from testsets 1 and 4 as per
Sect. 3.2. Representational Similarity Analysis [12] was used to compare the dis-
tances between samples within each space. Assuming the robot can only rotate
its head around the z-axis and is bound to a flat plane, its position and ori-
entation is represented completely by a pose vector (xpose, ypose, θpose); a high
quality reference representation useful for localisation. Therefore, if dissimilarity
within pose space correlates well with that of MultiPredNet inference space, the
inference will be of good quality proportional to that correlation. Results from
all test sets under all conditions show a mean correlation well above significance,
thus the representations generated are useful for localisation.
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Fig. 4. A sample of MultiPredNet data from testsets 1 and 4. a and b: Quiver plot
of poses (xwhisk, ywhisk, θwhisk) c and d : Sample instances of whisker θwhisk angle
alongside the resulting magnitude of whisker deflection in xwhisk and ywhisk axes. e
and f : Sample instances of camera visual input.
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Fig. 5. RDM plots and Spearman’s rank correlation coefficient scores for inferences on
100 samples from test sets 1 and 2 with visual, tactile, or both inputs unmasked. The
top row of heatmaps show Euclidean distance between visited locations in pose space
(xpose, ypose, θpose). The bottom rows of heatmaps show the 1-Pearson correlation
distance between samples in MultiPredNet inference space; [12] shows this to be a
more suitable metric for high-dimensional representation spaces. Below the heatmaps
are boxplots of the correlation between spaces, with dotted line R marking correlation
with a uniform random RDM, and dashed line α showing the threshold for significance
(0.167). Significance is determined by p < 0.05 for N = 100 samples.

5 Discussion

In this paper we have described a novel multisensory robot which investigates
salient environmental features in an ethological manner. The datasets from these
investigations have then been used to train a multisensory predictive coding
network that can generate inferences useful for place recognition. Furthermore,
generated inferences remain useful even when modalities are obscured, a trait
useful for real-world situations where vision is poor or whiskers are damaged.

Though fit for purpose, the datasets gathered have several areas of improve-
ment. A prominent feature in every camera frame is the whisker array itself; with
no benefit to localisation, this is an irrelevant feature that will be removed in
future work to allow the network to learn more about the external environment,
rather than itself. The unused right camera feed (with its own whisker array
portion removed) can be used to make up the difference without altering the
input shape of the network; important both for comparing results and re-using
trained weights.

The results show a clear correlation between inference space and pose space,
showing that something useful for place recognition is captured by the network,
and the correlation with pose specifically suggests that the MultiPredNet’s is
able to extract latent features relating to the observer; namely position and
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orientation. However, unlike in some other generative models such as β-VAEs
[9], these latent features are highly entangled and not human-legible; there are
no explicit ‘xpose’, ‘ypose’ or ‘θpose’ variables in the representation, and to the
extent these are represented, it is as a high-dimensional mix of other variables.
In a similar vein, MultiPredNet current stores representations as single, dis-
crete numbers, rather than as a distribution (as VAEs in general do); as VAE
disentanglement factors e.g. Kullbach-Leiber Divergence require distributed rep-
resentations, this makes disentangling MultiPredNet’s representations by these
methods intractable in their current form.

To address both these issues, future work will look towards creating a ‘Vari-
ational MultiPredNet’ to learn disentangled representations at each layer. We
will then use this as the sensory front end of a full localisation system, using
the multimodal inferences produced by the MultiPredNet as a prediction of the
current pose. This inferred pose will then be used to correct for inherent drift
in internal representations of self motion modelled as spiking neural networks
inspired by mammalian spatial cells, a task made easier by the NRP’s integration
with both SpiNNaker and NEST.
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Abstract. Industries move toward the replacement of labours engaged in dan-
gerous tasks with fully automated systems. The sixth sense technology aims at
achieving that by integrating different technologies in such away that enablesmon-
itoring of industrial plants and predicting any faults that could happen. One impor-
tant module of the sixth sense technology is inspection robots. This paper aims
at providing the inspection robots with equipment-detection capability, resem-
bling the human inspectors performing the customised inspection for a variety of
equipment. The types of equipment, used in this study, are reactor, boiler, pump,
isolated pipes, meter gauge, and valves. Given the complexity of the industrial
environment, we propose a real-time deep-learning-based equipment detection
model. The results show that the mean average precision is above 90%, which
ensure the significant performance of the proposed solution. This work validates
the practicality of our equipment-detection model and shows its potential to be
employed on our inspection robot.

Keywords: Industrial inspection · Inspection robot · Equipment detection

1 Introduction

Industry 4.0 is transforming industrial processes into complex, smart cyber-physical
systems that require intelligent methods to support safer operations. Under these con-
ditions, it is extremely difficult to manage all available information, infer the desired
conditions of the plant and take timely decisions to handle abnormal operations [1].
Thus, a technology that could help in preventing human error and stop chain reactions
that can transform small incidents into catastrophic failure is required. The sixth sense,
6S technology aims to achieve that need by analysing the present data and generating a
vision of the future.

Inspection is the practice of examining the condition of equipment to find out if it
operates as intended. The implementation of routine inspection is an essential measure
to ensure a safe and efficient production process. For the inspection tasks, checkpoints
which mainly include key equipment, pipelines, key valves, gauges, and control points
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are defined for the inspector. A leak of gas or liquid is searched by sight and smell.
Valves and gauges are examined to understand the operating status of the equipment.
For equipment such as pumps, human inspectors need to listen to the sound of their
operation or use specific instruments to detect vibration anomalies.

Although these tasks are repetitive and time-consuming, and some of these environ-
ments may be hazardous, humans are still relied on for doing these tasks. Long-time
close exposure to such environment may cause diseases or even kill in anomalies such
as toxic gas leaks and explosions which are not infrequent. Therefore, there is a strong
motivation to replace manual inspectors with robots and free them up to perform more
complex tasks. On the other hand, manual inspection or operation can be error-prone
since human errors are key causes of accidents [2].

Inspector robots can be considered the logical human replacement for doing these
tasks. The current robots’ capabilities enable these tasks to be carried out efficiently.
Examples of these capabilities are autonomous navigation, exploring dangerous or inac-
cessible sites, a variety of sensors that can be equipped on the robot, quick analysis of
sensors data, and relatively lower cost and less time for executing tasks. As the mod-
ern plants become larger and more complex, qualified professional’s capabilities are
required more creative tasks than routine inspections.

In inspecting any site human inspectors are familiar with the equipment and tools
that are available on this site, in addition to, equipment history. The 6S framework could
provide robots with the required information and history of available equipment. For the
inspection tasks, robots need a very basic skill for human inspectors which is detection
and identification of available equipment in the environment. The main contribution
of this paper can be described as follows: a deep-learning-based equipment-detection
method for inspection robots in industrial sites within the vision of industry 4.0 and the
6S technology.

The rest of this paper is structured as follows. Section 2 reviews the previous works
in robotic inspection systems. Section 3 explains the 6S technology and the robot inspec-
tion strategy. Section 4 shows the deep-learning-based equipment-detection method
development and evaluation. Section 5 presents conclusions and future works of this
work.

2 Robotic Inspection Literature

In the last decade, there was a growing interest in employing robots for inspection tasks
in process plants, due to the compatibility of robots for these tasks. The potential of
applying robots for these tasks has been proven [3]. Some projects were funded in this
direction such as RoboGasInspector [4], MAINBOT [5], and PETROBOT [6]. The main
target for these projects was to develop robotic inspection systems for different industrial
environments. In the recent past, Total company organized the ARGOS challenge of cre-
ating the first autonomous robot for oil and gas sites [7]. This competition was organized
in three rounds. Through these rounds, the robot is required to work autonomously for
surveillance tasks. During these rounds, the robot should inspect various visual check-
points like pressure gauges and valves, and monitor the plant for thermal hot spots, gas
leaks and sound signals.
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In [8], the authors developed an inspection system to inspect substation equipment.
They used a four-wheel robot equipped with a magnetic sensor, RFID reader, pan-tilt
camera, lidar sensor, Infrared thermal camera, and directional microphone. The robot
followsmagneticmarkers as checkpoints for the inspection tasks. For this system, check-
points are needed to be defined for the robot to execute the inspection tasks using the right
sensors. We aim at advancing our inspector with a higher perception advantage which is
the equipment identification. The importance of that has been demonstrated in [9]. As a
result, the inspector robot will not need checkpoints to be defined. The human inspectors
can identify equipment types and based on that decide inspection tasks for this type of
equipment. For instance, upon detecting a boiler, the inspector ensures that there is no
leakage and checks the upper valve state. If a pipe is detected, he checks the pipe visually,
especially, the connections and uses the thermal camera to detect the temperature of this
pipe. The 6S technology framework keeps track of the history of available equipment
and will provide the inspector robots with such information to facilitate inspection tasks.
Likewise, the inspector robot will send routine equipment inspection information to the
main system, and if a new piece of equipment is detected.

3 System Overview

3.1 The Industrial 6S

The 6S technology is an intelligent monitoring and control framework for industrial
processes, which takes advantage of technological advances such as wireless sensor net-
works, 5G communication, cooperative control, intelligent decision-making framework,
and robotics to ensure stable process operation. The general framework of 6S technol-
ogy is shown in Fig. 1. Six main modules constitute the structure of this framework.
These modules are the holistic system models and cooperative control, massive connec-
tivity resilient network communication, machine learning fault detection and prediction,
intelligent adaptive decision-making, virtual reality system, and autonomous inspector
robots.

The 6S architecture divides into physical and cyber layers. The physical layer where
the industrial process itself, wireless sensors and actuators, physical controllers, and
inspector robots are available. In the cyber layer, the wireless communication network,
data and models centre, fault detection and prediction algorithms, and decision-making
framework are located.

The architecture is designed as a modular architecture.Within the 6S technology, the
decision-making framework shouldmake recommendations about the process state to the
humanoperator.Also, it defines the tasks for the inspector robots, normal inspection tasks
or othermore specific tasks based on the current situation. Themain task for the inspector
robot is to patrol around the plant to detect abnormal situations (routine inspection)within
the vision of 6S technology. The application of the proposed architecture is investigated
on a pilot plant that is available at University of Surrey, United Kingdom. Photos of
this pilot plant are shown in Fig. 2. These photos show the complex tanged environment
where the robots work.
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Fig. 1. The 6S technology framework

Fig. 2. The pilot plant photos on the left and the inspector robot for industrial sites on the right.

3.2 The Inspection Strategy

Our inspector robot is a small four-wheel Pioneer 3-AT mobile robot equipped with an
RGBD camera, 2D laser range finder, infrared camera, acoustic & gas sensors board as
shown in (Fig. 2). These sensors were selected based on their suitability for inspection
tasks in this environment. The robot size is chosen to be suitable for the inspection
application in small andmedium industrial processes, as the robot may need tomaneuver
around equipment and pipes which are, usually, available in this environment.
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In the current state of periodic inspection tasks of industrial sites, the human inspec-
tors could perform these tasks with a degree of efficiency, but these tasks are repetitive,
the environment itself could be hazardous, and in the end, errors still could happen.
Therefore, the need for inspector robots became clear. The current robots’ systems able
to fill human inspector duties efficiently.

In inspecting any site, human inspectors are familiar with the equipment and tools
available on this site in addition to the history behind each piece of equipment. The 6S
framework could do this role and provide the robots with information and history about
available equipment. One skill still the robots need to be equipped with to be able to do
inspection tasks is the identification of the available equipment in the environment.

As a general system is targeted, solely defining the equipment positions is not suf-
ficient for the robot to do the inspection tasks. Also, these sites are, usually, dynamic
environments and a lot of equipment could be added or removed from the site. Thus, the
inspector robots need to be equippedwith this capability to execute these tasks efficiently.
Moreover, the inspector robots may need to interact and integrate with other human
inspectors if they are available. Consequently, they need to have the same philosophy of
doing the inspection tasks which make the interaction much easier.

For our inspection strategy hierarchy, the first task is the detection of equipment
type. Six types of equipment are investigated in this study and these pieces of equipment
are available in our pilot plant environment where our robot will be tested. Based on
the equipment type, the robot decides the required inspection task list to be carried out.
Each type of equipment requires different sensors to be used and different inspection
checklists to be executed. These types of equipment are reactor, boiler, pump, isolated
pipes, meter gauge, and valves.

Table 1 summarizes the inspection checklist for each equipment type. Inspired by
the human inspector, the robot will begin any inspection task by collecting information
history of this piece of equipment from the 6S main system. The 6S framework supplies
the robot with information about the equipment previous status, maintenance history,
and normal working condition. This information will differ from one to another and will
support the robots in proceeding with their tasks and detecting anomalous conditions.
Later, the robots will forward their inspection data to the main 6S framework for records.

4 Equipment Detection

4.1 Development

For an equipment-detection based robotic inspection system, a real-time solution is
needed to fulfil task necessity. The object detection process includes the classification
and localization of objects in the image. Single-shot object detectors which take one
shot to detect objects that are presented in the image are considered appropriate in the
context. These algorithms are fast and high-accurate object detection algorithms. From
these algorithms, we selected the You Only Look Once, YOLO algorithm [10].

YOLO is considered the state of art object detection, single-shot algorithm. It is a real-
time object detection that is developed for object detection of camera images. It consists
of a single convolutional network that simultaneously predicts multiple objects with
class probabilities for those objects. YOLO trains on full images and, directly optimises
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Table 1. Equipment inspection checklist.

Equipment Checklist

Reactor - Get history information from the 6S main system
- Check the pipes and the pump that are usually attached
- Check the body with the IR camera

Boiler - Get history information from the 6S main system
- Check the pipes and the valve that are usually attached
- Check the body with the IR camera

Isolated pipe - Get history information from the 6S main system
- Check the pipe with IR camera especially the connections

Pump - Get history information from the 6S main system
- Check the body with the IR camera
- Check the sound with the acoustic sensor

Meter gauge - Get history information from the 6S main system
- Read the gauge measurement value

Valve - Get history information from the 6S main system
- Detect the valve state (Open or Closed)

detection performance. The YOLO algorithm detects, classifies, and identifies objects
in the image frame and draw a rectangular bounding box around it. Through this work,
the darknet YOLO v3 framework has been used. The darknet is an open-source neural
network framework written in C and CUDA [11].

The development work was conducted in three stages, dataset collection, training,
and validation. The dataset collection has two purposes: a collection and annotation
of the equipment image dataset at University of Surrey pilot plant. After human visual
inspection of images and confirmation of their correctness and quality, these imageswere
annotatedmanually. The datasetwas split into training and validation datasets. Thewhole
dataset was 1267 images, the training dataset was 80% of the original dataset, and the
validation dataset was the remaining 20%. Visual inspection of the resulting datasets
reveals multiple challenges associated such as blurring, scale variation, occlusion, and
background clutter.

To accelerate the training process, we used partial pre-trained weights as the initial
training model [12]. The training process was carried out using GPU (GeForce GTX
1050) and Intel Core i7 2.8 GHz CPU. During the training process, loss function was
monitored all the time. YOLO uses the sum-squared error between predictions and
ground truth to calculate the loss value. The loss function composes of classification
loss, localization loss (errors between predicted boundary box and ground truth), and
confidence loss. The final loss value is the sum of these values.

The validation process takes place, using the validation dataset, periodically during
the training process. The trained model should achieve an appropriate accuracy for the
intended task, and so the PASCAL VOC evaluation metrics are used, to evaluate the
classification and localization performance of the equipment detection model [13]. The
first of these metrics is detection precision, which is calculated as the ratio between the



Equipment Detection Based Inspection Robot for Industrial Plants 425

number of positive samples correctly classified to the total number of samples classified
as positive (either correctly or incorrectly). The precisionmeasures themodel’s accuracy
in classifying a sample as positive. Second, the detection recall, which is calculated as the
ratio between the number of positive samples correctly classified as positive to the total
number of positive samples. The recall measures the model’s ability to detect positive
samples. Third, the intersection-over-union (IoU), which represents the intersection over
the union of objects and detections for a certain detection confidence threshold.

Average precision (AP) is another popular evaluation metric in measuring the accu-
racy of object detectors. AP can be defined as the average of maximum precision at
different recalls. Mean average precision (mAP), which is used to evaluate the vali-
dation process, is defined as the average of APs over all classes. Another evaluation
metric that is investigated in this work F1score. The F1score is another measure of model
accuracy, it considers both precision and recall of the model to compute the score. It
represents the harmonic mean of the precision and recall, where an F1score reaches its
best value at 1 (perfect precision and recall) and worst at 0.

F1score = (Precision ∗ Recall)

(Precision + Recall)
(1)

4.2 Evaluation

To validate and monitor detector performance, mAP was periodically calculated using
the validation dataset during the training process. This helps ensure that the detector
maintains global performance during training without overfitting or underfitting prob-
lems. Overfitting is where a model learns the training dataset too well, performing well
on the training dataset but does not perform well on a holdout sample. On the opposite,
underfitting is where a model fails to sufficiently learn the problem and performs poorly
even on a training dataset.

The threshold of object bounding boxes confidence is an important parameter to
tune for better object detection. The confidence threshold is defined as IoU between the
predicted box and the ground truth. a confidence threshold of 50% means that we will
accept proposals that believe their bounding boxes have more than 50% overlap with a
real object. The increased confidence threshold leads to fewer bounding box proposals
for each image. The decrease in the confidence threshold results inmore bounding boxes.

Figure 3 shows the training loss value and validation mAP percentage over 12000
iterations. The validation mAP was computed over periods of training iterations. The
minimal variation in loss during training as well as steady convergence to a small number
(0.0875) shows that the optimiser was able to find the global minimum of the loss
function. The validation of this model shows accurate detection with (91.6%) mAP.
Also, from Fig. 3, we can observe that the use of a partial pre-trained initial model
helped the neural network to converge very quickly.

Table 2 summarizes the evaluation details for each class and the whole model in
general. The general model evaluations have been done on Confidence = 0.50. The
evaluation results show 0.96 precision which shows the recognisable consistency of our
model. The 0.86 recall result shows that our model can mostly return the relevant results.
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Fig. 3. The training loss and validation mAP of the equipment detection model.

The F1score combines the precision and recall of the model. The result F1score = 0.91
reflects the robustness of the detector overall performance. The predicted bounding boxes
overlapping with the ground truth is shown with IoU = 78.09%, which means that that
the predicted and ground truth bounding boxes almost overlap. The evaluation metrics
show the accuracy of our model for detecting equipment in the industrial environment.

Table 2. Equipment detection evaluations.

Equipment AP True positive False positive

Reactor 81.08% 27 3

Boiler 93.48% 62 3

Isolated pipe 86.35% 170 11

Pump 99.43% 119 2

Meter gauge 99.74% 121 2

Valve 89.53% 230 8

General model evaluation (confidence = 0.50)

Precision = 0.96 Recall = 0.86 F1score = 0.91 IoU = 78.09%

The resulting evaluation of the model shows a promising accuracy in detecting dif-
ferent types of equipment in this difficult environment. The relatively low performance
in the reactor and isolated pipes cases is due to the following reasons. The reactor case
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Fig. 4. Qualitative results of the equipment detection for robotic industrial inspection
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had the least amount of training data, so it needs more training data under various con-
ditions. On the other side, although the case of the isolated pipes has the second-highest
training data, it represents a very complex model to be learned as the isolated pipes can
have different sizes and shapes. Also, various other objects, which are usually available
in the industrial environment, could easily be misclassified as isolated pipes.

Figure 4 Shows the model qualitative results. These results show the accuracy and
generalization of our model. Despite the equipment having different sizes, scales, and
tangled together, our model could correctly detect the equipment available in the input
images. We have tested the model for real-time equipment detection operation at the
pilot plant. The recorded video shows the equipment detection capability of the model,
and it could achieve more than 10 frames per second. Videos of the Industrial Robotic
Inspector and the real-time equipment detection model testing is available1.

5 Conclusions

A deep-learning-based solution for real-time equipment-detection-based inspection
robotic system has been proposed for industrial plants within the vision of industry
4.0. The robotic inspection module is part of the sixth sense technology framework,
which aims at monitoring the industrial plants to ensure their safety.

The development phase of the proposed solution has involved dataset collection
and annotation and then training, validation, and testing of the model. This study has
proposed an equipment-detection model based on the Darknet YOLO framework. The
model has been carefully developed to consider the accuracy and real-time operational
requirements. The trained model has evaluated, and its capabilities have been shown.
The quantitative and qualitative results of the model evaluation have shown the accuracy
of the equipment-detection model.

In the future, more types of equipment will be incorporated into our model using
transfer learning techniques. Also, the sub-inspection tasks include valve state detec-
tion (video of visual valve state detection is available2), meter gauge reading, acoustic
sensing, gas sensing, and thermal sensing are going to be accomplished subsequently.
Eventually, we can test our inspection robot for undertaking the routine inspection at
our pilot plant.
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Abstract. Current robotic systems often lack a deeper understanding
of their surroundings, even if they are equipped with visual sensors like
RGB-D cameras. Knowledge of the mechanical properties of the objects
in their immediate surroundings, however, could bring huge benefits to
applications such as path planning, obstacle avoidance & removal or esti-
mating object compliance.

In this paper, we present a novel approach to inferring mechanical
properties of dynamic objects with the help of active perception and fre-
quency analysis of objects’ stimulus responses. We perform FFT on a
buffer of image flow maps to identify the spectral signature of objects
and from that their eigenfrequency. Combining this with 3D depth infor-
mation allows us to infer an object’s mass without having to weigh it.

We perform experiments on a demonstrator with variable mass and
stiffness to test our approach and provide an analysis on the influence
of individual properties on the result. By simply applying a controlled
amount of force to a system, we were able to infer mechanical proper-
ties of systems with an eigenfrequency of around 4.5 Hz in about 2 s.
This lab-based feasibility study opens new exciting robotic applications
targeting realistic, non-rigid objects such as plants, crops or fabric.

Keywords: Active perception · Image flow · Frequency analysis

1 Introduction

When exploring unknown scenes, current state-of-the-art (SOTA) robots typi-
cally use RGB & depth (RGB-D) or RGB-only cameras to record, analyse and
possibly reconstruct a model of their surroundings. This, however, provides only
shape and geometry information but no internal mechanical properties. Human
explorers on the other hand would either rely on previous experience or when
encountering unknown objects would interact with them, observe the reactions
haptically and visually and infer mechanical properties of objects therefrom.

This way of interactively exploring scenes is commonly referred to as “active
perception”. While it offers a lot of benefits for scene understanding, it also poses
many, potentially yet unsolved, challenges, which is why most robots currently do
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not employ it. However, like humans, robots benefit from a deeper understanding
of mechanical properties of objects. This knowledge can be incorporated when
performing path planning, when interacting with soft materials such as cloth or
flexible objects like plants, or generally in order to understand the compliance of
nearby objects. In industrial settings, a lot of time and money could be saved by
being able to infer the mass of fruits and crops or the stiffness of sheet materials
without having to conventionally measure any of those properties.

Active perception has already been a prominent area of research in the past,
however contributions are typically very application specific [1,10]. In this paper
we present an easy and widely applicable way to infer mechanical properties of
objects with help of an RGB-D camera through simple, direct interaction like
controlled pushing. The contributions we present include:

– a novel vision-based approach for inferring mechanical properties of dynamic
objects through direct interaction;

– an algorithm for 3D-vision-based motion segmentation;
– a feasibility study based on an adjustable spring-mass demonstrator which

confirms the applicability of our approach in real world scenarios.

2 Previous Work

Prior to the ascent of machine learning algorithms, active perception was being
investigated to improve object detection and recognition results [10], but inter-
est in it faded again once neural networks significantly improved performance in
these areas. The approach was also studied in relation to the reconstruction of
3D models [1], but in recent years mostly pure learning-based algorithms have
dominated this area of interest as well. Nevertheless, as highlighted by recent
advancements in object throwing robots [14], the combination of analytical and
learning-based approaches, as in learning to estimate a “delta” correcting sys-
tematic errors, similar to residual networks [7], can bring significant improve-
ments. A machine vision solution with the capabilities to not only control per-
ception but also action could similarly learn to remove systematic errors.

As highlighted more recently, advances in object detection, object recognition
and 3D-reconstruction depend on the capabilities of the robot to control its per-
ception. Bajcsy et al. state that “an agent is an active perceiver if it knows why
it wishes to sense, and then chooses what to perceive, and determines how, when
and where to achieve that perception” [2]. This implies a situational awareness
as well as physical capabilities of interacting with the scene. In the past, this
has typically been achieved by changing the viewpoint and actively adjusting
the pose of the camera. Novel approaches rather aim for interaction with objects
themselves through pushing, for example [12]. Similarly, our algorithm entails
applying a controlled amount of force to an object and observing the reaction.

In robotic applications active perception is enabled by kinematic elements
of the robot interacting with objects of interest and monitoring the reactions
with the vision system. Mavrakis et al. [12] explore this by inferring mechanical
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properties from pushing objects on a flat surface, however they rely on surface
friction for their calculations, restricting applicability of their approach.

Nevertheless, using those properties a novel representation of the world can
be created using a voxel map similar to the one presented by Macenski et al. [11].
This representation may contain long- as well as short-term dynamic and mate-
rial specific properties like eigenfrequency [3], maximum displacement under a
certain stimulus or the degree of damping present for movable objects. From this,
secondary properties can be obtained, like overall compliance of objects in the
scene, which is highly beneficial for trajectory planning and scene understanding.

All this could be used to improve path-planning by aiming for obstacle-
separation or -removal instead of -avoidance like in [13]. Furthermore, recon-
struction of static parts of a scene with a separate reconstruction of movable
objects as in [9] could benefit from this approach as it enables a robot to identify
movable objects more easily and thus to remove them from static reconstruction.

Overall, the ideas proposed in this paper open up possibilities to obtain
deeper insights into mechanical properties of objects without having to rely on
conventional measurement methods.

3 Methods

This section provides an overview of our algorithm and uses images of the demon-
strator we created for our experiments. A more detailed setup explanation with
images follows in Sect. 4.1.

We aim to use a minimal amount of hardware additional to the typical equip-
ment of a robot for interacting with and monitoring the behaviour of objects.
We assume a way to apply a controlled amount of external force, like a robotic
manipulator, and an RGB-D camera as a baseline for our system. Using this, we
try to infer the eigenfrequency as well as secondary properties of objects, such
as mass or stiffness, by exciting them and monitoring their frequency response.

Basic workflow of our algorithm, illustrated in Fig. 1, starts with excitation of
the oscillating object of interest using a controlled amount of force. We record the
reaction with an RGB-D camera and calculate image flow for every new image,
storing results in a buffer. Once full, we perform pixelwise fast Fourier transform
(FFT) on the buffer and extract the dominant frequency for each pixel. Finally,
we cluster pixels by similarity in frequency response to achieve segmentation. A
detailed explanation of the individual steps is provided hereinafter.

Fig. 1. Flowchart illustrating the basic workflow of our algorithm.
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3.1 Eigenfrequency

The eigenfrequency ω is the frequency at which an excited system capable of
oscillation moves around its idle point if no external forces are acting upon it.
For a simple, undamped spring-mass model the eigenfrequency ω is given as

ω =

√
k

m
, (1)

where k represents the spring constant of the system and m its mass.
If the system is excited by an external force F , we can monitor the maximum

displacement x from the system’s idle position to deduce the spring constant
according to Hooke’s law given in Eq. 2.

k =
F

x
(2)

We assume a known force of excitation F , since we typically control the
robot exciting the system. Using the RGB-D camera we track objects of interest
and determine the maximum deflection x. These two parameters allow us to
calculate a system’s spring constant k. By furthermore monitoring the system’s
frequency response we can obtain its eigenfrequency ω as described in more detail
hereinafter. Knowing ω and k allows us to infer the mass of objects of interest.

3.2 Image Flow

In order to monitor the system’s frequency response after excitation, we calculate
the image flow for each new image obtained by the camera relative to the last
one, using the Farnebäck optical flow method [5]. This method uses polynomial
expansion to estimate the motion of objects between two subsequent images,
providing an estimate for motion direction as well as magnitude of interest points
in the images. An image illustrating this concept, depicting the magnitude of
image flow at each individual pixel as a gray scale value, is given in Fig. 2b.

Subsequently, we store each new image flow map in a circular buffer of a
predefined size N . Once that buffer is full, we extract w ·h, i. e. the dimensions of
the input images, vectors of length N from the buffer, thus one vector containing
change in magnitude of image flow over time for each pixel location. We use these
vectors for inferring dynamic properties of objects, as explained in Sect. 3.3.

3.3 Inferring Dynamic Properties of Objects

By exciting an oscillator system such as described in Sect. 3.1 using a known
force, we cause the mass to oscillate at the system’s eigenfrequency, allowing us
to monitor the process with an RGB-D camera. We use the methods described in
Sect. 3.2 to obtain w ·h vectors of length N containing the variation in image flow
magnitude over time. Next, we perform FFT using FFTW3 [6] on each of these
vectors to obtain the spectral signature for each pixel location. We disregard the
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Fig. 2. Process flow of our algorithm to cluster objects by their spectral response. We
use a stream of RGB images (a), calculate the image flow for each new image relative
to the previous one (b), store the image flow maps in a buffer and perform pixelwise
FFT on it. We then analyse the spectral response for each pixel (c) and cluster pixels
by similarity in their spectral signature (d).

phase information obtained from FFT since it is insignificant to our analysis.
The resulting vectors containing the signatures thus have the length N

2 − 1 with
the buffer size N as before. By multiplying the indices of the vector with FPS

N ,
wherein the numerator is the frames per second (FPS) of the RGB camera, we
receive the frequency in 1

s , with the value at a certain index corresponding to
the number of samples matching each specific frequency. By summing up the
individual spectral signatures we receive the spectral signature for the entire
image. This could look like the example provided in Fig. 2c.

In this image we see three peaks with the highest peak at roughly 4.5 Hz being
the eigenfrequency of the monitored system and two subsequent peaks 9 Hz and
13.5 Hz, being the 2nd and 3rd harmonic. By extracting the index of maximum
value present in the result of the sum of FFTs, we obtain the eigenfrequency at
4.5 Hz by calculating it from the index as described above. The presence of the
harmonics as additional peaks can have various reasons, one of them being the
non-linearity of the spring-mass-system [4], but deeper investigation is required.
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Using the buffer once more, we can extract the maximum value of image flow
Vmax at the center of each cluster. Interpreting this value as object speed allows
us to calculate an estimate of the maximum object displacement xmax:

xmax ≈ Vmax

4 · ω̂
(3)

In this equation, we use ω̂ for the previously calculated value of the eigenfre-
quency, furthermore we divide by 4 since maximum deflection happens at a
quarter of one full oscillation. This approach, chosen for its simplicity, yields
only an estimation, e.g. because only the 2D components of movement parallel
to the image plane are used.

Knowing the excitation force F and having obtained the maximum displace-
ment xmax as well as the eigenfrequency ω, we deduce the spring constant k of
the oscillator system as per Eq. 2 and from this the mass m using Eq. 1. This
allows us to deduce the mass of objects without actually weighing them.

We can then furthermore use the vectors containing the results of the FFT
for each individual pixel to extract the maximum frequency present for each
pixel and segment the image by frequency values thus obtained. An example of a
segmentation map showing the clusters obtained for a video of our demonstrator,
using only pixels with the single dominant (eigen-)frequency, is given in Fig. 2d.

4 Results and Analysis

In this section, we describe and evaluate the experiments performed, as well as
the results obtained and the influence of system parameters on the outcome.

4.1 Experiment Scenario

We evaluate our approach and the system parameters on a demonstrator con-
sisting of an exchangeable spring and a variable mass (see Fig. 3).

4.2 Mass Estimation

We experiment with a varying amount of weights and springs, comparing the mea-
sured eigenfrequency with the mass of the oscillator. Using these parameters to
calculate a value for the spring constant k = ω2 · m according to Eq. 1 and com-
paring them allows us to conclude how well our estimation of the eigenfrequency
actually performed. This is inverse to the intended mode of use in practice, but it
allows us to evaluate performance in a lab setting. We use a buffer size N of 256,
requiring about 8 s of measurement at 30 FPS and excite the system manually.
Since we know the weights of the system a priori, knowledge of excitation force is
not necessary in this case. The results are shown in Table 1.

We can see the calculated value of the spring constant has a maximum devi-
ation from the mean of about ±12% and ±15% respectively. We can therefore
assume the estimation of the eigenfrequency worked reasonably well, given that
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Fig. 3. Demonstrator consisting of a 3D-printed frame, an exchangeable steel spring
and a variable amount of hex nuts for varying the mass.

Table 1. Eigenfrequencies obtained for varying masses and springs using the demon-
strator from Fig. 3.

Spring # Mass m [g] Eigenfrequency
ω [Hz]

Spring constant
k [N/m]

Mean k
[N/m]

Deviation
from mean
k [%]

1 2.12 4.5 0.043 0.041 4.9

3.13 3.8 0.045 9.8

4.04 3.0 0.036 12.2

2 2.12 10.0 0.212 0.189 12.2

3.13 7.9 0.195 3.2

4.04 6.3 0.160 15.3

it is a very rudimentary setup with many possible error sources. Furthermore,
an error of 15% in the calculated spring constant corresponds to an error of only√

15%, i. e. roughly 3.9%, in the deduced eigenfrequency, since ω =
√

k
m .

4.3 Parameter Analysis

The default buffer size used in our experiments was chosen as N = 256, which
limits the applicability of our approach since at a frame rate of 30 FPS, as
provided by many industrial cameras, we would need to record roughly 8.5 s
long samples to perform a single analysis. We therefore explore the influence a
varying buffer size has on the quality of the results. This is illustrated in Fig. 4.

We can see the quality of the results directly correlates with buffer size, i. e.
smaller buffer size leads to poorer results. For the sample we investigated with an
eigenfrequency of about 4.5 Hz a minimum of 64 samples is necessary to achieve
usable results. However, a lower buffer size also leads to a larger granularity of
the frequency results causing more inaccurate results as well. This, as well as the
largest and smallest frequency of interest, needs to be taken into consideration
when choosing a buffer size. Furthermore, as mentioned above, a larger buffer
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Fig. 4. Influence of the buffer size on the results of the FFT.

Fig. 5. Spectral signature and maximum amplitude of oscillation in relation to the
time passed since initial excitation of the system.

size corresponds to a longer period of recording necessary for each sample. This
means that, at a frame rate of 30 FPS and assuming the smallest buffer size
N = 64, the time required to collect sufficient data for a single analysis is still
roughly 2 s.

Next, we analyse the change in spectral signature during a period of ring-
down after initial excitation. We collect samples for 3 s, 6 s and 9 s after excitation
and compare the results to samples collected directly after excitation. This is
shown in Fig. 5.

We can see a correlation between the absolute height of the peaks and
time passed since excitation, i. e. the maximum amplitude of oscillation which
decreases over time. However, further research is needed to establish the exact
relationship between amplitude and results of the FFT.
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5 Conclusions and Future Work

As we have shown in this paper, inference of dynamic properties from active
perception and spectral analysis is an interesting and feasible approach, offering
many benefits like allowing us to obtain the weight of an object without having
to weigh it. We can obtain the spectral signature of objects, cluster images by
eigenfrequency of objects and monitor the ring-down of an oscillator system.
Nevertheless, many improvements are conceivable.

Using only RGB-based optical flow algorithms, an issue is shadows of objects
being clustered in the same category as the actual object, since they move at
the same frequency. This can be overcome by using depth based 3D optical flow
as described in [8] and [15]. Furthermore, we have presented the spectral sig-
nature containing the eigenfrequency as well as the 2nd and 3rd harmonic in
Fig. 2c, however we only consider the eigenfrequency itself for clustering, some-
times leading to poorer results since a lot of valid pixels are filtered out. By
incorporating pixels with harmonics as dominant frequency, which are likely due
to non-linearities present in the system, we could account for the 2D-mapping
of a 3D-oscillator system. Currently, we consider only 2D-oscillator systems, so
our approach could fail for objects not oscillating parallel to the image plane. In
future work, 3D-oscillations should also be considered, for example by mapping
them to a 2D-plane so they can be estimated by a 2D-system. An additional
limitation is the minimum recording time needed to perform a single analysis
which is limited by buffer size and frame rate provided by the camera. A possible
solution to this problem could be the use of a camera offering more FPS.

Further improvements to the system could include a different mode of exci-
tation, e.g. by exciting objects with a stream of air to avoid direct contact.
An analysis of the damping coefficient, deductible from the ring-down analy-
ses shown in Fig. 5, can be performed to obtain further system understanding.
Finally, creating a similarity score and transferring learned information to simi-
lar objects in the scene would allow for obtaining the properties of many objects
by interacting with only one. This could subsequently be used to create a full
3D-compliance map of the scene incorporating all dynamic properties obtained.

Concluding, we have demonstrated in this paper the feasibility of using active
perception to infer mechanical properties of dynamic objects. This requires min-
imal contact with the object and yields promising initial results. We have shown
the possibility of inferring eigenfrequency, spring constant and mass of a system
using nothing but a known force for excitation of the system and an RGB-D
camera. Using these parameters, we were able to segment image pixels by simi-
lar mechanic properties. Many approaches for future work have been suggested,
and there is large potential for further developments in this area.
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5. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion.
In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X 50

6. Frigo, M., Johnson, S.: The design and implementation of FFTW3. Proc. IEEE
93(2), 216–231 (2005). https://doi.org/10.1109/JPROC.2004.840301

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition
(2015)

8. Hornácek, M., Fitzgibbon, A., Rother, C.: SphereFlow: 6 DoF scene flow from
RGB-D pairs. In: 2014 IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 3526–3533 (2014). https://doi.org/10.1109/CVPR.2014.451

9. Jiang, C., Paudel, D., Fougerolle, Y., Fofi, D., Demonceaux, C.: Static-map and
dynamic object reconstruction in outdoor scenes using 3-D motion segmenta-
tion. IEEE Robot. Autom. Lett. 1, 1 (2016). https://doi.org/10.1109/LRA.2016.
2517207

10. Le, Q.V., Saxena, A., Ng, A.Y.: Active perception: interactive manipulation for
improving object detection (2010)

11. Macenski, S., Tsai, D., Feinberg, M.: Spatio-temporal voxel layer: a view on robot
perception for the dynamic world. Int. J. Adv. Robot. Syst. 17, 172988142091053
(2020). https://doi.org/10.1177/1729881420910530

12. Mavrakis, N., Ghalamzan E., A.M., Stolkin, R.: Estimating an object’s inertial
parameters by robotic pushing: a data-driven approach. In: 2020 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 9537–9544
(2020). https://doi.org/10.1109/IROS45743.2020.9341112

13. Xiong, Y., Ge, Y., From, P.J.: Push and drag: an active obstacle separation method
for fruit harvesting robots (2020)

14. Zeng, A., Song, S., Lee, J., Rodriguez, A., Funkhouser, T.: TossingBot: learning to
throw arbitrary objects with residual physics (2020)

15. Zhang, T., Zhang, H., Li, Y., Nakamura, Y., Zhang, L.: FlowFusion: dynamic dense
RGB-D slam based on optical flow (2020)

https://doi.org/10.1007/s10514-017-9615-3
https://doi.org/10.1016/j.jsv.2015.01.024
https://doi.org/10.1016/j.jsv.2015.01.024
https://www.sciencedirect.com/science/article/pii/S0022460X1500070X
https://doi.org/10.1117/12.2179894
https://doi.org/10.1117/12.2179894
https://doi.org/10.1007/3-540-45103-X_50
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1109/CVPR.2014.451
https://doi.org/10.1109/LRA.2016.2517207
https://doi.org/10.1109/LRA.2016.2517207
https://doi.org/10.1177/1729881420910530
https://doi.org/10.1109/IROS45743.2020.9341112


Author Index

Adams, Guy 193
Aitken, Jonathan M. 188, 365
Albini, Alessandro 238
Alouache, Ali 158
Alsayed, Ahmad 326
Anderson, Sean 56, 188
Araiza-Illan, Gloria 198
Arvin, Farshad 112, 126, 326
Ateş, Gizem 88

Bancroft, Ben 116
Başkent, Deniz 198
Bennett, Chris 147
Bergeles, Christos 391
Berthet-Rayne, Pierre 391
Bullock, Seth 147

Calinescu, Radu 354
Calisti, Marcello 370
Cámara, Javier 354
Campanaro, Luigi 25
Cielniak, Grzegorz 36, 168, 430
Cooper, Andrew I. 304
Coppola, Claudio 46
Cormack, Jordan 193
Crivellari, Marta 260
Cuayáhuitl, Heriberto 3

Das, Gautham 66, 337
De Martini, Daniele 25
Dhesi, Arjan 360
Dimri, Sagar 315
Djoudi, Sara 249
Donato, Enrico 370
Duckett, Tom 36

Edan, Yael 136
Edwards, Sarah 188
Elgeneidy, Khaled 402
Esfahani, Amir Ghalamzan 260, 284
Evans, M. H. 56

Fakhruldeen, Hatem 304
Fallah, Saber 76, 203
Fotouhi, Mohammad 193
Frampton, Jack M. 249

Gangapurwala, Siddhant 25
Gao, Yang 203, 419
Gaudrain, Etienne 198
Georgilas, Ioannis 391
Giagkos, Alexandros 116
Green, Thomas 349
Groß, Roderich 349, 360
Guo, Yu 178

Haggart, Rory 365
Hanheide, Marc 168, 284, 337
Havoutis, Ioannis 25
He, Liang 238
Heiwolt, Karoline 36
Heselden, James R. 66
Heshmat, Mohamed 419
Hota, Sikha 315
Howard, Ian S. 228, 294, 381
Hroob, Ibrahim 168
Hu, Junyan 112

Jamone, Lorenzo 46
Jansen, Chipp 217
Ji, Ze 14, 100, 249
Johnson, Philip 402

Kamel, Kevin 349
King, William 402
Knowles, Thomas C. 408
Kuutti, Sampo 203
Kyrkjebø, Erik 88, 273

Lai, Yu-Kun 14
Larrea, Carmen 391
Lawry, Jonathan 147
Leff, Daniel Richard 391
Lennox, Barry 112, 126
Li, Siyuan 349



Lin, Feiqiang 100
Liu, Zheyu 126

Maiolino, Perla 238
Mandill, Willow 284
Markfeld, Noa 136
Marquez-Gamez, David 304
Merkt, Wolfgang 25
Meyer, Luke 198
Mihaylova, Lyudmila 56, 188
Mohta, Vibhakar 315
Mohtasib, Abdalkarim 3
Molina, Sergi 168
Murphy, Angelina 249

Nabawy, Mostafa R. A. 326
Nazari, Kiyanoush 284
Neumann, Gerhard 3
Niu, Hanlin 100

Olatunji, Samuel 136

Pearson, Martin J. 408
Picardi, Giacomo 370
Pipe, Tony 193
Polvara, Riccardo 168
Pooley, Luke 402
Powell, Roger 203

Quinn, Mark K. 326

Rachman, Laura 198
Ravichandran, Hariharan 315
Ravikanna, Roopika 337

Sadati, S. M. Hadi 391
Sanni, Oluwatoyin 260
Scammell, Thomas 249

Schäle, Daniel 273
Shafipour, Elnaz 76
Shan, Taotao 178
Shinn, Christopher 349
Shorthose, Oliver 238
Siddiqui, Muhammad Sami 46
Sklar, Elizabeth 217
Solak, Gokhan 46
Stentiford, Rachael 408
Stoelen, Martin F. 273, 294, 381

Toscano, Paolo 349
Turgut, Ali Emre 126

Vázquez, Gricel 354
Visca, Marco 203

Wagner, Nikolaus 430
Wang, Xintong 349
Wei, Changyun 100
Wilmot, Alfred 228
Wilson, Myra S. 116
Worley, R. 56
Wright, Toby 249
Wu, Jing 14
Wu, Qinghe 158

Yang, Xintong 14
Ye, Yuchen 349
Yunusa-Kaltungo, Akilu 326

Zanchettin, Andrea 260
Zhang, Chaokun 178
Zhang, R. 56
Zhou, Bolin 178
Zhu, Zuyuan 337

442 Author Index


	Preface
	Organization
	Contents
	Algorithms
	A Study on Dense and Sparse (Visual) Rewards in Robot Policy Learning
	1 Introduction
	2 Related Work
	3 Research Methods
	3.1 Problem Formulation
	3.2 Rewards
	3.3 Task Success Classifiers
	3.4 Training Methodology

	4 Experiments and Results
	4.1 Training Tasks
	4.2 Success Classifiers Results
	4.3 Experimental Results of the DRL Agents

	5 Conclusion and Future Work
	References

	An Open-Source Multi-goal Reinforcement Learning Environment for Robotic Manipulation with Pybullet
	1 Introduction
	2 Environment
	2.1 Single-Step Tasks
	2.2 Multi-step Tasks
	2.3 APIs and Programming Style

	3 Benchmark and Discussion
	3.1 Reproducing Hindsight Experience Replay on Single-Step Tasks
	3.2 Benchmarking Multi-step Tasks
	3.3 Challenges and Opportunities

	4 Conclusion
	References

	CPG-Actor: Reinforcement Learning for Central Pattern Generators
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Methodology
	2.1 Differentiable Central Pattern Generators

	3 Evaluation
	3.1 Experimental Setup

	4 Results
	4.1 CPG-Actor and Previous Baselines, Comparison
	4.2 Evaluation of Progressive Task Achievement

	5 Discussion and Future Work
	References

	Deep Semantic Segmentation of 3D Plant Point Clouds
	1 Introduction
	2 Related Work
	2.1 3D Plant Segmentation
	2.2 Deep Learning for 3D Plant Segmentation
	2.3 PointNet++

	3 Methodology
	3.1 Data Set
	3.2 Network Architecture
	3.3 Performance Metrics
	3.4 Network Training

	4 Evaluation
	4.1 Quantitative Performance Evaluation
	4.2 Qualitative Performance Evaluation

	5 Conclusions and Future Work
	References

	Discovering Stable Robot Grasps for Unknown Objects in Presence of Uncertainty Using Bayesian Models
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Object Extraction from Point Cloud
	3.2 Grasp Metric Calculation
	3.3 Probabilistic Modelling

	4 Implementation
	4.1 Configuration
	4.2 Protocol

	5 Results
	6 Conclusion
	References

	Improving SLAM in Pipe Networks by Leveraging Cylindrical Regularity
	1 Introduction
	2 Related Work
	3 System Overview
	4 Cylinder Detection
	4.1 Cylinder Representation and Estimation
	4.2 Cylinder Detection

	5 Bundle Adjustment with Cylindrical Regularity
	6 Performance Validation and Evaluation
	6.1 Synthetic Data
	6.2 Real Data
	6.3 Discussion

	7 Conclusion
	References

	CRH*: A Deadlock Free Framework for Scalable Prioritised Path Planning in Multi-robot Systems
	1 Introduction
	2 Related Works
	2.1 Heuristics
	2.2 Rescheduling
	2.3 Path Finding

	3 Design and Development
	3.1 Overview
	3.2 A* Adaptations
	3.3 Framework Facilities

	4 Experiments
	4.1 Evaluation of CRH*
	4.2 Evaluation of Optimisation Improvements

	5 Conclusion
	References

	Task-Based Ad-hoc Teamwork with Adversary
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Ad-Hoc Teamwork with Adversaries
	3.2 On-Line Estimators for Ad-hoc Task Allocation with Adversary
	3.3 OEATA-A Fundamentals
	3.4 Sets of Estimators
	3.5 Process of Estimation

	4 Experiments
	4.1 Level-Based Foraging Domain
	4.2 Results

	5 Conclusion
	References

	Human-Robot Cooperative Lifting Using IMUs and Human Gestures
	1 Introduction
	2 Human-Robot Cooperative Lifting Using IMUs and Gestures
	2.1 Posture and Gesture Estimation
	2.2 Cooperation Roles and States in Cooperative Lifting
	2.3 Human-Robot Cooperative Lifting of a Table

	3 Experimental Setup and Results
	3.1 Setup
	3.2 Calibration
	3.3 Results

	4 Discussion and Future Work
	5 Conclusions
	References

	Reinforcement Learning-Based Mapless Navigation with Fail-Safe Localisation
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 System Description
	3.2 Localisation Algorithm
	3.3 Reinforcement Learning Agent

	4 Experiments and Results
	4.1 Experiment Setup
	4.2 Results

	5 Conclusion
	References

	Collaborative Coverage for a Network of Vacuum Cleaner Robots
	1 Introduction
	2 Method
	3 Results
	4 Conclusion
	References

	Network-Aware Genetic Algorithms for the Coordination of MALE UAV Networks
	1 Introduction
	2 Problem Description
	3 Power-Aware Genetic Algorithms
	4 Network-Aware Genetic Algorithms
	4.1 Integration with a Network Simulator
	4.2 Network Topology Evaluation Model

	5 Experimental Methodology
	6 Results
	7 Conclusions
	References

	Self-organised Flocking of Robotic Swarm in Cluttered Environments
	1 Introduction
	2 Flocking Method
	2.1 Active Elastic Sheet Model
	2.2 Extended AES Model
	2.3 Metrics
	2.4 Experimental Setup

	3 Results and Discussion
	4 Conclusion
	References

	Evaluating Feedback Modalities in a Mobile Robot for Telecare
	1 Introduction
	2 Materials and Methods
	2.1 The Experimental System
	2.2 Task
	2.3 Research Hypotheses
	2.4 Experimental Design
	2.5 Dependent Measures
	2.6 Participants
	2.7 Procedure
	2.8 Analysis

	3 Results
	3.1 Efficiency
	3.2 Understanding
	3.3 Effectiveness
	3.4 User Perception

	4 Discussion
	4.1 Impact of Feedback Modality
	4.2 Impact of Secondary Task Location

	5 Conclusions and Future Work
	References

	Demonstrating the Differential Impact of Flock Heterogeneity on Multi-agent Herding
	1 Introduction
	1.1 Motivation
	1.2 Related Work

	2 Model
	2.1 Experimental Setup
	2.2 Sheep Agent Model
	2.3 Dog Agent Model

	3 Results
	4 Conclusions
	References

	Evaluation of an OpenCV Implementation of Structure from Motion on Open Source Data
	1 Introduction
	2 Algorithmic Description
	3 Implementation and Experimental Results
	4 Comparison
	5 Conclusions
	References

	Benchmark of Visual and 3D Lidar SLAM Systems in Simulation Environment for Vineyards
	1 Introduction
	2 Related Work
	3 SLAM Algorithms
	3.1 RTAB-Map
	3.2 ORB-SLAM2
	3.3 LIO-SAM
	3.4 StaticMapping

	4 Evaluation
	4.1 Environment
	4.2 Testing Scenarios
	4.3 SLAM Algorithms Configurations
	4.4 Metrics
	4.5 Results

	5 Conclusion
	References

	Lidar-Only Localization with 3D Pose-Feature Map
	1 Introduction
	2 Related Work
	3 Framework Architecture and Background
	3.1 Framework Architecture
	3.2 Lidar-Only Odometry Background

	4 Pose-Feature Map Localization
	4.1 Pose-Feature Map
	4.2 Adaptive Local-Map Matching
	4.3 Integrating Localization

	5 Experiments
	5.1 Hardware, Datasets and Parameter Setting
	5.2 Localization Performance

	6 Conclusion
	References

	Toward Robust Visual Odometry Using Prior 2D Map Information and Multiple Hypothesis Particle Filtering
	1 Introduction
	2 Methods
	3 Results
	4 Conclusions
	References

	Comparison of Concentrated and Distributed Compliant Elements in a 3D Printed Gripper
	1 Introduction
	2 Compliant Gripper Simulation
	3 3D Printed Grippers
	4 Conclusion
	References

	Perception of a Humanoid Robot as an Interface for Auditory Testing
	1 Introduction
	2 Experimental Design
	2.1 Voice Cue Sensitivity
	2.2 Gender Categorization
	2.3 Emotion Identification
	2.4 Speech-on-Speech Perception
	2.5 Video Analysis

	3 Further Work
	References

	Deep Learning Traversability Estimator for Mobile Robots in Unstructured Environments
	1 Introduction
	2 Traversability Prediction Model
	2.1 Input Features
	2.2 Network Architecture
	2.3 Robot Model and Failure Events

	3 Dataset Generation
	3.1 OpenSimplex Synthetic Maps Generation
	3.2 Dataset Collection and Training

	4 Results
	4.1 Prediction Performance - Synthetic Dataset
	4.2 Prediction Performance - Planetary Mission Use Case

	5 Conclusion and Future Work
	References

	Systems
	Predicting Artist Drawing Activity via Multi-camera Inputs for Co-creative Drawing
	1 Introduction
	2 Background
	3 Research Set-Up
	4 Drawing Data Gathering Study
	5 Visual Based Models
	6 Experiments and Results
	7 Discussion and Limitations
	8 Summary and Future Work
	References

	3D Printed Mechanically Modular Two-Degree-Of-Freedom Robotic Segment Utilizing Variable-Stiffness Actuators
	1 Introduction
	2 Design Considerations
	3 Segment Design
	4 Control Electronics
	5 Mechanical Construction
	6 Position Sensing and Torque Estimation
	7 Characterizing VSA Dynamics
	8 Control and Simulation Using ROS
	9 MATLAB Simulations and Demo
	10 Discussion
	References

	Design of a Multimaterial 3D-Printed Soft Actuator with Bi-directional Variable Stiffness
	1 Introduction
	2 Design and Fabrication of the Actuator
	3 Control Setup
	4 Testing
	5 Conclusion
	References

	Designing a Multi-locomotion Modular Snake Robot
	1 Introduction
	2 Proposed Design
	2.1 Locomotion
	2.2 Housing
	2.3 Smart Servos
	2.4 Biomimetic Snakeskin

	3 Experiments and Discussion
	3.1 Prototype 1 - Snakeskin Testing
	3.2 Prototype 2 - Housing and Smart Servos

	4 Conclusion
	References

	Deep Robot Path Planning from Demonstrations for Breast Cancer Examination
	1 Introduction
	2 Methodology
	2.1 Data-Set Acquisition
	2.2 Deep-Model

	3 Results
	4 Conclusion
	References

	Priors Inspired by Speed-Accuracy Trade-Offs for Incremental Learning of Probabilistic Movement Primitives
	1 Introduction
	2 Probabilistic Movement Primitives
	3 Prior Parameters Inspired by Speed-Accuracy Trade-Off
	4 Experimental Evaluation: Comparison of Prior Parameters in Incremental Learning
	5 Discussion and Conclusion
	6 Future Work
	References

	Tactile Dynamic Behaviour Prediction Based on Robot Action
	1 Introduction and Related Works
	2 Methodology
	2.1 Problem Statement
	2.2 Tactile Data Dimensionality Reduction
	2.3 Deep Recurrent Model for Prediction

	3 Experiments
	4 Results
	5 Conclusion
	References

	State Space Analysis of Variable-Stiffness Tendon Drive with Non-back-Drivable Worm-Gear Motor Actuation
	1 Introduction
	2 Tendon Drive System
	3 State Space Analysis of DC Motor
	4 Analysis of Two-Tendon Rotary Series Elastic Actuator
	4.1 Modeling Tendon Extension
	4.2 Modeling to 2-tendon Actuator Dynamics
	4.3 State Space Model of 2-tendon Drive Dynamics
	4.4 Tendon Extension and Output Actuation

	5 State Space Model for Motor Driven 2-tendon Drive
	6 Observer-Based State Feedback Control of Link Angle
	7 Results and Conclusions
	References

	Development of a ROS Driver and Support Stack for the KMR iiwa Mobile Manipulator
	1 Introduction
	2 KMR iiwa Robot
	2.1 Platform Description
	2.2 Operation and Safety
	2.3 Interfacing with ROS

	3 KMR iiwa ROS Stack
	3.1 KMR isiwa Driver Design
	3.2 Support ROS Packages
	3.3 Robot Safety

	4 System Testing and Applications
	4.1 Manipulation, Navigation and Simulation with ROS
	4.2 Example Robotic Application in a Chemistry Laboratory

	5 Conclusion
	References

	Collision Avoidance with Optimal Path Replanning for Mobile Robots
	1 Introduction
	2 Problem Formulation
	3 Collision Detection and Avoidance
	4 Path Re-planning
	5 Simulation and Analysis
	5.1 Implementation and Trajectory Visualization
	5.2 Monte Carlo Simulation

	6 Conclusion and Future Work
	References

	An Autonomous Mapping Approach for Confined Spaces Using Flying Robots
	1 Introduction
	2 Method
	2.1 Drone Localisation and 3D Map Generation
	2.2 Indoor Navigation
	2.3 Surface Generation and Volume Estimation

	3 Simulation Setup
	3.1 Simulation Environment
	3.2 Robotic Platform
	3.3 Simulations

	4 Results
	5 Conclusion and Future Work
	References

	Maximising Availability of Transportation Robots Through Intelligent Allocation of Parking Spaces
	1 Introduction
	2 Background and Related Work
	3 Methodology
	3.1 Parking Space Allocation Algorithms

	4 Experimental Evaluation and Results
	4.1 Experimental Setup

	5 Discussions and Conclusion
	References

	A Minimalist Solution to the Multi-robot Barrier Coverage Problem
	1 Introduction
	2 Methods
	3 Results and Discussions
	References

	Scheduling Multi-robot Missions with Joint Tasks and Heterogeneous Robot Teams
	1 Introduction
	2 MRS Mission Scheduling Approach 
	3 Implementation and Case Study Summary
	4 Conclusions and Discussion
	References

	Area Coverage in Two-Dimensional Grid Worlds Using Computation-Free Agents
	1 Introduction
	2 Design
	3 Results
	4 Conclusions
	References

	Online Scene Visibility Estimation as a Complement to SLAM in UAVs
	1 Introduction
	2 Related Work
	2.1 SLAM
	2.2 Scene Visibility Estimation

	3 Methodology
	4 Results and Discussion
	5 Conclusions
	References

	Statics Optimization of a Hexapedal Robot Modelled as a Stewart Platform
	1 Introduction
	2 Materials and Methods
	2.1 Kinematics of the GS Platform
	2.2 Kinematics Adapted to SILVER2
	2.3 Manipulability of Parallel Manipulators
	2.4 Statics Optimization

	3 Results
	4 Discussion
	References

	EtherCAT Implementation of a Variable-Stiffness Tendon Drive with Non-back-Drivable Worm-Gear Motor Actuation
	1 Introduction
	2 Motors
	3 Passive Compliance
	4 Motor Test Rig
	5 Beckhoff EtherCAT Control Panel
	6 Transfer Function and Response of Tendon Mechanism
	7 State Space Model of System
	8 Pseudocode and EtherCAT Implementation
	9 Results
	10 Discussion
	References

	Growing Robotic Endoscope for Early Breast Cancer Detection: Robot Motion Control
	1 Introduction
	2 Methods
	2.1 Actuation and Hydraulics Model
	2.2 Growing Robot Model
	2.3 Data Analysis
	2.4 Parameter Investigation

	3 Results and Discussion
	3.1 Parameter Investigation
	3.2 Model Validation

	4 Conclusion
	References

	Design and Characterisation of a Variable Stiffness Soft Actuator Based on Tendon Twisting
	1 Introduction
	2 Design and Fabrication
	3 Experimental Characterisation of Stiffening
	4 Results
	5 Conclusions and Future Work
	References

	WhiskEye: A Biomimetic Model of Multisensory Spatial Memory Based on Sensory Reconstruction
	1 Introduction
	2 Related Work
	3 Materials and Methods
	3.1 WhiskEye Platform
	3.2 Multisensory Integration and Reconstruction Using Multimodal Predictive Coding Network

	4 Results
	5 Discussion
	References

	Equipment Detection Based Inspection Robot for Industrial Plants
	1 Introduction
	2 Robotic Inspection Literature
	3 System Overview
	3.1 The Industrial 6S
	3.2 The Inspection Strategy

	4 Equipment Detection
	4.1 Development
	4.2 Evaluation

	5 Conclusions
	References

	Inference of Mechanical Properties of Dynamic Objects Through Active Perception
	1 Introduction
	2 Previous Work
	3 Methods
	3.1 Eigenfrequency
	3.2 Image Flow
	3.3 Inferring Dynamic Properties of Objects

	4 Results and Analysis
	4.1 Experiment Scenario
	4.2 Mass Estimation
	4.3 Parameter Analysis

	5 Conclusions and Future Work
	References

	Author Index

