
Analysis of Software Defined WSN and Related
Network Re-orchestration Down-Time

Indrajit S. Acharyya(B) and Adnan Al-Anbuky

Sensor Network and Smart Environment Research Centre, Auckland University of Technology,
Auckland, New Zealand
iarchary@aut.ac.nz

Abstract. Re-orchestration is a crucial operational requirement secured by
Software-Defined Wireless Sensor Networks (SDWSN). Herein, WSN flexibil-
ity involves functional identification, definition, modularization, and virtualiza-
tion. These components support sensor network software-control and allow for
dynamically redefining the network topology and operational behavior. This paper
reflects the core ideology behind the proposed cloud-based cyber-physical organi-
zational structure. This utilizes the virtualization and testing of the functionalities
that edge towards desired re-orchestrations. The physical implementation of re-
orchestration process, however, may cause network operational disruption for a
brief period of time. This research work reflects the parameters involved in net-
work re-orchestration process. Analysis of an example performance indicator that
influences the downtime in SDWSN during re-orchestration is offered. Clarity of
these involvements can offer significant help in supporting planning for reducing
this ‘down time’.

Keyword: SDWSN · Network virtualization · Re-orchestration latency

1 Introduction

Re-orchestration of wireless sensor network organizations tends is a key requirement
for reflexive adaptation towards dynamic service demands [1–6]. A system solution
involving operation of a ‘Software-defined wireless sensor network’ (SDWSN) under
the aegis of a Cyber-Physical System (CPS) organization serves as a viable approach
towards offering support for suchoperational flexibility in adynamicmanner [1–4, 7–15].
One of the approaches for software redefinition is that of ‘Reconfigurability’. Here, the
physical devices could be re-configured to certain roles or possibly even assume mul-
tiple functional roles simultaneously [3, 4]. The presence of requisite ‘logical software
modules’ residing within the code with which they were initially configured allows for
assuming multiple configurable status. This approach requires the ‘program’ or ‘code’
(with which the devices are configured) to comprise of requisite conditional statements
as well as ‘well-defined’, ‘logical’ modules that could be assumed (in accordance with
conditional execution within the program) during run-time. Prior to embarking upon
establishment of such a ‘modular’ software defined sensor network, it is deemed imper-
ative to reflect certain essential pre-requisites that could arguably be entailed by such

© Springer Nature Switzerland AG 2021
C. Klein et al. (Eds.): SMARTGREENS 2020/VEHITS 2020, CCIS 1475, pp. 102–119, 2021.
https://doi.org/10.1007/978-3-030-89170-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89170-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-89170-1_6

Analysis of Software Defined WSN and Related Network 103

organizations from a formalization standpoint. These pre-requisites pertain to identifica-
tion and definition of the integral functional components associated with any sensor net-
work formation, modularization of the functions so identified (based on their definitions)
and subsequently paving the way for their virtualization [3, 4].

It is deemed conceivable to assert that any sensor network is composed of the three
generic functions viz., ‘Gateway’, ‘Leaf’ and ‘Routing’ [3, 4]. By means of including
certain examples of possible topological orientations that a sensor network could resort
to (by virtue of SDWSN re-orchestration), a specific portion of the preceding work [4]
brings to the fore the integrity of the elementary functionalities in regard to any sensor
network organization. The motive behind ensuing upon modularizing and virtualizing
of the three key functionalities (so identified and defined) is to render them as re-usable
virtual modules that could be subjected to soft-trials within the cloud-hosted virtual-
ization environment. Such virtualization-abetted ‘re-orchestration planning’ could lend
itself towards significant expedition of the re-orchestration implementation process. The
scope of the re-orchestration implementation process, however, may yet entail a certain
amount of latency that could prove to be detrimental to its ongoing processes [3, 4].

The researchwork documentedwithin the previouswork [4] highlighted the ideolog-
ical basis (along the lines of Industry 4.0) leading to the proposed modular architectural
organization for software-defined sensor network. Furthermore (by means of certain
example cases of network re-orchestration), it also highlighted the efficacy of a vir-
tual environment towards ‘planning’ the desired re-orchestrations as well as gaining
an insight into the key performance measure of the ‘downtime’ or latency experienced
by the network whilst undergoing re-orchestration. In furtherance to the research work
documented within [4], this paper vies to put forth the pseudo codes for each of the core
WSN functions, outlining the operational activities associated with each, and thereby
attempting to explore how ‘software manipulation’ of certain of these key network
parameters viz., MAC protocol employed, data communication rate, etc. could influ-
ence network ‘re-orchestration downtime’. Besides, certain research work pertaining to
network downtime has also been included as part of the literature review herein.

In furtherance to the state-of-the-art pertaining to SDN-facilitated topological re-
orchestration of WSNs documented within [4], literature review revolving around the
time elapsed as a result of a network undergoing re-orchestration has been considered
within this paper. Zhou et al. [16] seek to undertake an approach directed towards effec-
tively eliminating any re-orchestration-induced downtime via partitioning the network
into multiple subsets and allowing for each of them to undergo re-orchestration sequen-
tially i.e. one subset at a time. For this purpose, the authors ensue upon formulating
the problem of partitioning the sensor network in subsets and proving the same to be
‘Non-deterministic polynomial time. Subsequently, heuristics pertaining to downtime
free system migration are presented and compared.

Szczodrak et al. [17] propose a ‘Fennec Fox’, a framework that allows for flexi-
ble WSN reconfiguration via offering supporting for different applications that could
be dynamically switched to, at different time instants (based on the network service
requirements). Each such application is based on separate MAC and network protocol
specifications. Network re-orchestrations are brought about by means of broadcasting
of ‘control messages’ amongst the (relevant) nodes in a sort of peer-to-peer fashion. The

104 I. S. Acharyya and A. Al-Anbuky

authors utilize the ‘Finite State Model’ computation model in a bid to model such re-
orchestrations undergone by the network. Based on experimentation conducted, authors
mention that adoption of such an approach results in a reconfiguration delay of the
order of milliseconds and that it (reconfiguration delay) is dependent on factors such
as distance between the nodes, radio-duty cycling, etc. and that as the reconfiguration
delay decreases, so does the percentage of the number of nodes that successfully get
configured.

2 Main WSN Functional Modules

As alluded to within the earlier section, the three key functions that enable a WSN to
perform its tasks satisfactorily pertain to sensing and data acquisition (Sensing function),
routing (Router function) and escalation of data aggregated by a sink node (Gateway
function) [3, 4]. The core and auxiliary activities associated with each of these three core
functions is depicted in Fig. 1 [3, 4].

Fig. 1. Core and non-core activities associated with the main WSN functional modules (a) Leaf
node function (b) Router node function and (c) IoT-based WSN Gateway node function [3, 4].

Such clear segregation of the main WSN functions on the basis of the unique core
activities associated with each of them paves the way for rendering them as reusable
modules [3, 4]. Such independent functional modules could be assumed one at a time
or simultaneously (provided the hardware employed is able to encompass and execute
multiple tasks at the same time. Modern day SoCs-based wireless sensor transceivers
are capable of accommodating for edge-computing-based tasks.). These (definition and

Analysis of Software Defined WSN and Related Network 105

modularization) pave the way for enhanced flexibility from the node-operational stand-
point. Such node-level flexibility may implicate on the flow of data within the network,
in some cases altering the topology of a given network (network-level flexibility). In
this regard, consider Fig. 2 wherein certain different possible (typical) network topolog-
ical arrangements are presented [4]. Herein, the CC538 Evaluation Module (EM), along
with the Raspberry Pi that have been utilized for implementation purposes within this
research have been depicted. Most of the CC2538 EMs have been configured to play the
role of leaf nodes whereas a few have been configured to execute the role of routers. The
gateway function, however, has been realized by means of employing the Raspberry Pi
which acts as protocol converter and escalates the sensed data over to the cloud [3, 4].

Fig. 2. Typical WSN Topological arrangements [3, 4].

Contiki software (IDE) has been employed for developing and compiling of codes as
well as configuration of the physical hardware nodes (using the codes so developed and
compiled). By virtue of its network simulator platform of Cooja, Contiki also provisions
for network virtualization (since the same codes utilized for hardware nodes can be
used to create and/or configure virtual nodes), typically within the cloud server. Besides
monitoring of the underlying physicalWSN, such a virtualization platform can be availed
for soft trialing of numerous re-orchestration scenarios, prior to implementation on the
physical network.

3 SDWSN Proposed Architecture

Based on the ideology prescribed by the Industry 4.0 paradigm, the architectural propo-
sition herein consists of two layers viz., ‘Operational Technology (i.e. OT)’ layer and
‘Information Technology (i.e. IT)’ layers, as depicted in Fig. 3. The upper layer of
IT hosts the three main components of the ‘Virtualization unit’, ‘Data and Knowledge

106 I. S. Acharyya and A. Al-Anbuky

Repository’ and the requisite ‘Operational software’ that act as facilitators for trialing
and figuring out the necessary re-orchestrations to be applied to the lower layer of OT
which hosts the physical hardware nodes [3, 4].

Fig. 3. Architectural proposition for software-defined sensor network based on the ideology of
the Industry 4.0 paradigm [3, 4].

3.1 IT Layer

Besides monitoring, the component of virtualization unit facilitates plays a key role
towards planning of the suitable re-orchestration scenarios that could be assumed by the
underlying physical layer. Such suitable re-orchestrations are attained through running
soft trial of re-orchestration scenarios and observing the implications on the network per-
formance for the same. Besides cutting costs, such hardware-independent testing reduces
the time required for working out the ‘customized’ or ‘most pertinent’ re-orchestrations,
allowing for the system to better copewith the real-time re-orchestration service demands
[3, 4].

The virtualization unit however, requires interaction with both the OT layer (to
fetch the necessary parametric information required for the ‘planning’ of the ‘re-
orchestrations) as well as with the ‘Data and Knowledge Repository’ present within
the IT layer.

In a bid to assist the process of figuring out of the most suitable re-orchestrations
via both augmenting the options of flexibilities available for incorporation as well as
storing of re-orchestration solution applied for previous service demands, it was deemed
reasonable to establish a single repository consisting of reusable virtual softwaremodules
and capable of evolving with historical experiences. Such a repository that could be

Analysis of Software Defined WSN and Related Network 107

readily accessed by the virtualization unit whenever required could lend itself towards
tackling re-orchestration demands in a time-efficient manner [3, 4].

The ‘operational software’ unit refers to the requisite tools that allow for the devel-
opment of the necessary codes pertaining to the network functionalities, as well as the
necessary re-orchestration service specific knowledge components. Contiki IDE, for
instance has been employed for the purposes of development, compilation, and configu-
ration of codes for both virtual and physical nodes. Besides, software tools as MATLAB
that allow for data analytics, data processing, data computation, etc. could also prove to
be of vital assistance during the ‘Re-orchestration planning’ phase [3, 4].

3.2 OT Layer

The ‘Operational Technology’ (i.e. OT) layer comprises of the physical wireless nodes
deployed across the monitored area for capturing real-world data and escalate it to
IT layer over the internet [3, 4]. The wireless network formed by these sensor nodes
could either be clustered or non-clustered based on the application or ‘service requisites.
Furthermore, each cluster (or the non-clustered physical WSN as a whole) could be
centralized or decentralized. Centralized constituent clusters could be arranged in accor-
dance with star, tree, or mesh topological frameworks (depending upon the application
and/or operational requirements) whereas decentralized networks would be arranged in
accordance with the mesh topological framework. Depending upon their capability and
resourcefulness, codes for (certain advanced) modern day wireless transceivers (such
as the Texas Instruments CC2538 SoC) could be written in such a way that they could
dynamically configured to switch form their existing role of say, a leaf node to that of
a router node (or vice-versa) via directing them to do so by means of an external com-
mand (as part of a re-orchestration process). Such modern SoCs could also be similarly
re-configured to execute edge-computing based tasks.

4 Example WSN Re-orchestration Scenarios

4.1 WSN Topological Manipulation

An example case of network topological manipulation involving reconfiguring the indi-
vidual node’s functional level so to alter overall network behavior in terms of flow of
data within the network [4] has been depicted within this sub-section. Consider Fig. 4a
wherein a virtual three-node multi-hop network has been implemented within Cooja.
Herein, the data transmitted by the node configured to act as the leaf node. In this case,
node 1 reaches node 3 (the Gateway node) via the intermediate node 2 (the router node).
The ‘network window’ and ‘mote output’ screenshots for the same are depicted within
Figs. 5a and 5b respectively.

By means of directing (the intermediate) node acting as a router i.e. node 2 to
assume leaf node function and by manipulation of the MAC protocol so as to enable
the network to operate as per TDMA scheme, the same three-node network undergoes
re-orchestration from the network i.e. topological standpoint and operates as a star topol-
ogy based network. The ‘network window’ and ‘mote output’ screenshots for this star

108 I. S. Acharyya and A. Al-Anbuky

(a)

(b)

Fig. 4. (a) Screenshot of the ‘Network window’ depicting a 3-node multi-hop network (in oper-
ation) within Cooja; (b) Screenshot of the ‘Mote output window’ obtained from Cooja for the
multi-hop network [4].

topological behavior exhibited by the re-orchestrated virtual network are depicted within
figures _a and b respectively.

This example case of network re-orchestration performed at the virtual level demon-
strates the implications of subjecting a single node within a network, on the overall
dataflow or topology of the network in some cases. Such re-orchestrations could prove
to be handy towards resolving network fragmentations caused by departure of mobile
node beyond the communication range of the gateway. It also aptly implies the efficacy
of adopting a software-defined approach (i.e. one involving separation of data plane from

Analysis of Software Defined WSN and Related Network 109

(a)

(b)

Fig. 5. (a) Screenshot of the ‘Network window’ depicting the re-orchestrated 3-node star network
(in operation) within Cooja; (b) Screenshot of the re-orchestrated ‘Mote output window’ obtained
from Cooja for the re-orchestrated star network [4].

the control plane) for conduction of soft-trials within a virtualization environment prior
to ensuing upon complex network re-orchestrations at the physical level.

4.2 Further Complexity in WSN Re-orchestration Scenarios

WSNs is required to be capable of re-assuming their behavior through re-orchestrating
the network through both node functional behavior and network-topological standpoints
in order to cope with the dynamic ‘service’ or ‘re-orchestration’ demands in a satisfac-
tory way. Software-defined network re-orchestrations could pave the way for a host of
topological adaptations, as illustrated within Fig. 6. These examples reflect the possible
formations through the manipulation of the core functions outlined in our work [4].

110 I. S. Acharyya and A. Al-Anbuky

(a) (b) (c) (d)

Fig. 6. Typical example network topological adaptations for a given WSN as a result of SD
re-orchestration (a) Star Topological arrangement; (b) Tree Topological arrangement, (c) Mesh
Topological arrangement and (d) Multi-hop Topological arrangement respectively [4].

As a means to determine the improvement in the performance of a network upon
undergoing network re-orchestration, consider a scenario wherein a network, initially
configured to operate as a multi-hop network (as depicted in Fig. 6d) is re-orchestrated
via software control to operate as a star network (as depicted in Fig. 6a) within the
virtual (Cooja-based) network [4]. By means of considering ‘packet loss’ as a perfor-
mancemeasure and varying the transmission rate, the performance of the two topological
arrangements are compared. Results of the simulation experiment are presented within
Table 1.

Table 1. Effect of variation of packet communication rate on packets lost for multi-hop and star
topology cases (for the same network [4]).

Packet
communication
rate

Packets dropped

Star Topology
(TDMA)

Star Topology
(CSMA)

Multi-hop Topology

1 PPS 0 Packets 0 Packets 0 Packets

5 PPS 0 Packets 0 Packets 3 Packets

10 PPS 0 Packets 0 Packets 5 Packets

15 PPS 0 Packets 0 Packets 8 Packets

From Table 1, it can be seen that as the transmission rate is increased, network
tends to lose far fewer packets when operating as ‘star’ network as opposed to when
operating as a multi-hop network. Moreover, implementation of TDMA scheme for the
re-orchestrated star network results in no packet losses (at least up to ‘25’ samples per
second) whereas four packets are lost for the same when operating under the CSMA
scheme.

This simple example too, highlights the significance of conduction of soft trials
within the virtual environment to foresee the implications of network re-orchestrations

Analysis of Software Defined WSN and Related Network 111

prior to implementation onto the actual hardware nodes present in the physical (OT)
layer.

5 WSN Re-orchestration Downtime

The process of sensor network re-orchestration can largely be said to encompass the three
separate stages of ‘Data Analysis’ and ‘Event Identification’, ‘Planning’ and finally the
‘Implementation or ‘Execution’. The latency of the re-orchestration process as well
as the actual downtime suffered by the network when undergoing re-orchestration are
identified to be important performance measures that necessitate requisite analyses via
experimentation [4].

For this purpose, an example case of network fragmentation caused due to departure
of a router node was elaborately detailed within [4] and has been briefly discussed here.
The virtual representation of the network is as shown in Fig. 7.

Fig. 7. Virtual representation of a 6-node network due to undergo network re-orchestration (owing
to fragmentation caused by departure of router node i.e. node 5) [4].

Based on a dedicated knowledge component set apart for constantly monitoring
the ‘radio signal strength’ between the gateway node and the router node, a trigger is
raised during the initial stage of ‘DataAnalysis’ and ‘Event Identification’. This results in
initiation of the second stage of the re-orchestration process i.e. ‘Planning’ stage wherein
another dedicated knowledge component (as per a suitable fitness model), gathers the
requisite information form the underlying layer and determines the most suitable leaf
node among all the participant leaf nodes (the ones capable of assuming the functional
role of a router and act as a cluster-head for the all remaining leaf nodes). Finally, the
‘execution’ stage involves the implementation of the ‘re-orchestrations’ foreseen within
the ‘planning’ stage.

Figure 8 below presents the various messages that are exchanged between the nodes
for all the three stages of re-orchestration [4].

Based on the results obtained within Cooja, it was found that the actual ‘downtime’
suffered by the network as a result of the re-orchestration process was equal to that
entailed by ‘six messages’, although the overall re-orchestration process entailed much

112 I. S. Acharyya and A. Al-Anbuky

Fig. 8. Messages exchanged among the various constituent nodes of the network during the three
stages of network re-orchestration [4].

higher latency. As mentioned in [4], such results tend to be highly relative in nature. For
a more accurate estimate of the downtime caused due to re-orchestration, factors such
as the MAC protocol implemented, influence of the dynamics of the physical world on
the communication amongst the constituent nodes, etc. need to be considered.

6 Example Network Functions Implementation

As a means to offer better elucidation on the three core WSN functionalities of Gateway
function, Leaf function and router functions, this section puts forth the pseudo code asso-
ciated with each of them. These (Contiki-pertinent) Pseudo codes (written specifically in
regard to configuration of the Texas Instruments CC2538 microcontroller) outline sam-
ple operational activities encompassed by each of the functionalities in a logical way,
thereby laying the ground for the functional execution of each, as a whole. While each
of the operational activities specified within the three pseudo codes expressed within
the subsequent sub-sections can be tweaked as desired via ‘Contiki-software’ control,
certain of them viz., MAC protocol, ‘sampling’ rate, etc. have been accessed and manip-
ulated via Contiki software for performance evaluation purposes (in regard to the above
network re-orchestration scenario i.e. to observe the implications of doing so on network
re-orchestration latency) presented within the latter sub-sections.

Analysis of Software Defined WSN and Related Network 113

- Selection of requisite sensor(s): Select one or more sensor variables (e.g. RSSI, temperature,
light, etc. via Contiki)

light=adc_sensor.value(ADC_SENSOR_ALS);
temperature = adc_sensor.value(ADC_SENSOR_TEMP);
rssi=packetbuf_attr(PACKETBUF_ATTR_RSSI);

- Buffering: Storing the data sensed within an array say, ‘k’ before transmission

k[0]=Node_ID_number;
k[1]=light;
k[2]=temperature;
k[3]=rssi;

- Communication Addressing type:
Activating one of the three communication addressing types viz., Broadcast, Multicast or Unicast.

- Channel Allocation:
#ifndef CC2538_RF_CONF_CHANNEL
#define CC2538_RF_CONF_CHANNEL <Any channel value from ‘11’ to ‘26’>

- Communication scheme:
Enabling any of the communication protocols viz., TDMA, CSMA, etc.

-Radio Frequency (Output) Transmission Power:
Set the desired (hexadecimal) value within the requisite ‘cc2538_rf_power_set’ function via contiki

cc2538_rf_power_set(uint8_t new_power)
{

REG(RFCORE_XREG_TXPOWER) = new_power;
return (REG(RFCORE_XREG_TXPOWER) & <hex_value>);

}

- Setting the Transmission rate: Set the desired value (say,) ‘r’ within the ‘etimer’ i.e. ‘event timer
function’ via Contiki

etimer_set(&et, CLOCK_SECOND*r);

- Transmission (of sensed data): Transmission of the array to requisite node acting as a ‘sink’
node.

packetbuf_copyfrom(&<array_name>, sizeof(<array_name>);
broadcast_send(&bc);

-Radio Duty Cycling: Manipulation of the low power mode (i.e. ‘LPM’ function within Contiki) to
configure the Contiki- ported CC2538 to run on one of the following four power modes viz., ‘PM0’,
‘PM1’, ‘PM2’ and ‘PM3’.

}

Fig. 9. Pseudo code for ‘Leaf function’.

114 I. S. Acharyya and A. Al-Anbuky

6.1 Leaf Function Pseudo Code

The pseudo code expressed for the leaf function in Fig. 9 highlights the execution of its
core intrinsic operational activities pertaining to ‘sensing’, ‘data acquisition’, buffering,
data communication, etc. in a logicalway. It commenceswith the flexible select-ability of
one or more sensors (e.g. ‘ambient light’, ‘temperature’, or ‘RSSI’) available at disposal
by means of retaining the requisite ‘sensing function’ within the code (and disregarding
the ones not needed). The various sensing functions have been specified corresponding
to the ‘ambient light’, ‘temperature’, or ‘RSSI variables have been specified within the
pseudo code. ‘Buffering’ of the single or multiple sensor variables so sensed involves
declaration of an array of certain size, say ‘k’, depending upon the quantity of the sensed
variables to be stored. Prior to data communication of the sensed variables stored within
the array so declared, parameters such as ‘the communication addressing type’, ‘channel
allocation’, ‘communication scheme’ as well as the ‘output radio transmission power’
must be configured. Herein, firstly, one of the three communication addressing types
viz., ‘broadcast’, ‘multicast’ or ‘unicast’ is selected and activated. This is followed by
selecting one of the channels (15 in total for the TI CC2538 SoC transceivers) available to
be accessed (via specifying the number corresponding to the ‘macro’ specifiedwithin the
pseudo code). The communication scheme could then be realized by means of requisite
conditional statements followed by configuration of the ‘output transmission’ power (via
specifying the hexadecimal value corresponding to one of the 13 ‘power output values’
available for selection. Finally, the desired rate of transmission could be specified within
the ‘etimer_set’ function as a numerical value prior to transmitting it in accordance
with the ‘communication addressing type’ (e.g. ‘packetbuf_copyfrom’ function along
with ‘broadcast_send(&bc)’ function, when employing the ‘broadcast’ ‘communication
addressing’ type).

6.2 Router Function Pseudo Code

As outlinedwithin the pseudo code for the ‘router function’ shown in Fig. 10, declaration
and initialization of requisite arrays of certain sizes, (say ‘n’,) to accommodate for the
incoming data emanating from the group of ‘leaf’ nodes governed by it forms the first part
of the router node program. By virtue of the ‘broadcast_recv’ function, the data reported
by ‘x’ nodes within its cluster are accumulated within the respective arrays within the
router node. Another array ‘d’ (of size equal to the number of values to be transmitted)
is declared firstly for aggregation of the data received by the leaf nodes as well as
transmission over to the Gateway, router or sink node. As stated within the Subsect. 6.1,
certain parameters viz., the type of ‘communication addressing’, ‘channel’, ‘scheme of
communication’ as well as the ‘power of output transmission’ can be configured through
software control (as explained in Subsect. 6.1). Subsequently, the transmission rate can
be easily adjusted by specifying the value in the ‘etimer_set function’ before utilizing
the ‘packetbuf_copyfrom function’, together with the ‘broadcast_send(&bc)’ function),
to transmit the array consisting of values to be transmitted (i.e. ‘d’ in this case) whilst
employing ‘broadcast mode’ of communication (Fig. 10).

Analysis of Software Defined WSN and Related Network 115

Initialization of Arrays:
Declaring and initialization of arrays of size say, ‘n’ so as to accommodate for incoming sensed
data from 'n' nodes

light_v[n] ={01,02,….0n};
temperature_v[n] ={01,02,….0n};
rssi_v[n] ={01,02,….0n};

Reception of incoming sensed variables:

-Reception and storage of sensed data

int16_t *datapointer_tem;
datapointer_tem= (int16_t *)packetbuf_datapointer();
x =datapointer_tem[0];
light_v[x] =datapointer_tem[1];
temperature_v[x] =datapointer_tem[2];
rssi_v[x] =datapointer_tem[3];

- Aggregation of received sensed data within an array 'd'

d[0]= node_ID_number;
d[1]= light_v;
d[2]= temperature_v;
d[3]= rssi_v;

- Communication Addressing type:
Activating one of the three communication addressing types
- Broadcast
- Multicast
- Unicast

- Setting the MAC Protocol:
-CSMA
-TDMA

FORWARDING OF RECEIVED DATA:

Setting the Transmission rate: Set the desired value (say,) ‘r’ within the ‘etimer’ i.e. ‘event
timer function’ via Contiki

etimer_set(&et, CLOCK_SECOND*r);

- Transmission (of sensed data): Transmission of the array to requisite node acting as a
‘sink’ node.

packetbuf_copyfrom(&<array_name>, sizeof(<array_name>);
broadcast_send(&bc);
}

Fig. 10. Pseudo code for ‘Router function’.

116 I. S. Acharyya and A. Al-Anbuky

6.3 Gateway Function Pseudo Code

The code for the gateway function too commences with both ‘declaration’ and ‘initial-
ization’ of the arrays to receive and store the incoming sensed data, as present with the
pseudo code for the same (shown in Fig. 11). Upon reception, the data values are firstly
assigned within another array (declared along with the reception arrays) prior to being
subjected to ‘protocol-conversion’ (e.g. 802.15.4 or Zigbee to an IP-based protocol) [].
This enables the gateway to ‘escalate’ the sensed data received by it over to a (remote)
server over internet. Besides, the gateway also ensues upon ‘management’ (processing,
edge-computing, filtering, compression, etc.) of the ‘upstream’ data or exercising some
form of control over the ‘downstream’ commands [18, 19].

Initialization of Arrays:
Declaring and initialization of arrays of size say, ‘n’ so as to accommodate for incoming sensed da-

ta from 'n' nodes

light_v[n] ={01,02,….0n};
temperature_v[n] ={01,02,….0n};
rssi_v[n] ={01,02,….0n};

Reception of incoming sensed variables:

-Reception and and storage of sensed data

int16_t *datapointer_tem;
datapointer_tem= (int16_t *)packetbuf_datapointer();
x =datapointer_tem[0];
light_v[x] =datapointer_tem[1];
temperature_v[x] =datapointer_tem[2];
rssi_v[x] =datapointer_tem[3];

- Aggregation of received sensed data within an array 'd'

d[0]= node_ID_number;
d[1]= light_v;
d[2]= temperature_v;
d[3]= rssi_v;

Conversion of Protocol:
- From 'Zigbee' to 'TCP/IP' &
- From 'HTTP' to 'CoAP' proxy

Management of 'dataflow' and 'commands':
-management of flow of 'data'
-Processing of the 'downstream' commands

Fig. 11. Pseudo code for ‘Gateway function’.

6.4 Factors Influencing Network Re-orchestration Latency

Parameters such as the ‘data communication rate’, ‘total number of nodes’, total numbers
of messages exchanged amongst the various (requisite) nodes, MAC communication
scheme employed, duration of the time slot (if TDMA scheme has been implemented

Analysis of Software Defined WSN and Related Network 117

for the network), contributes to the overall latency. In a bid to gain an estimate the ‘extent’
towhich such parameters tend to influence network re-orchestration latency, experiments
could be conducted within the virtual platform of Cooja. One such experiment involving
variation of data communication rate has been outlined within the sub-section below.

This experiment has been conducted in furtherance the re-orchestration example
case considered in [4] (briefly described within Sect. 5) wherein a network of 6 nodes
suffers fragmentation owing to the departure of the router node (node 5) as depicted in
Fig. 7.

6.5 Effect of ‘Data Communication Rate’ on ‘Re-orchestration Latency’

As a means to determine the effect of variation of the ‘Data communication rate’ of
the constituent nodes on the overall network re-orchestration latency, certain factors
viz., network topology, number of nodes, communication scheme (TDMA, CSMA,
etc.) were kept constant (This experimental scenario however was trialed for both the
communication schemes (i.e. TDMA and CSMA independently).

Table 2. Effect of varying sampling rate on Overall Re-orchestration Latency.

Data communication rate
(Packets Per Second i.e. PPS)

Overall Re-orchestration Latency (Star
Topology)

CSMA
(Seconds)

TDMA
(Seconds)

10 0.1 0.398

8 0.125 0.497

5 0.2 0.798

4 0.25 0.997

2 0.5 2

1 1 4

0.75 1.33 5.329

0.5 2 8

0.25 4 15.997

0.2 5 19.998

Table 2 clearly indicates that increase in transmission rate results in decrease in the
overall re-orchestration latency and vice versa, for both TDMA and CSMA cases. For
lower values of data communication rates, overall re-orchestration latency tends to be
significantly higher when TDMA scheme is implemented for the network (as opposed
when CSMA is adopted for the same).

118 I. S. Acharyya and A. Al-Anbuky

7 Conclusion

A cyber-physical architectural framework (consisting of reusable modular functional-
ities) that allows for virtualization and testing of the underlying physical sensor net-
work is deemed viable towards realizing the objective of SDWSN. The approach per-
taining to ‘conditional execution’ of the functional modules (pre-defined within the
code with which the constituent resource-rich physical transceivers are configured) by
means of requisite external radio signal messages is one of the ways to achieve flexible
re-orchestration and has been adopted for this work. Several other approaches, most
notably, OTAP-based approaches or fuzzy logic-based approaches, could be adopted to
attain the objective of SDWSN in a more effective manner. Re-orchestrations occurring
within such SDWSNs tend to be accompanied by some amount of ‘network downtime’
that may prove to be partially or massively detrimental to its ongoing operational pro-
cesses. Such ‘downtime’ tends to be dependent on certain network parameters like ‘data
communication rate’, ‘number of nodes, etc. within the tree structure of the SDWSN.

References

1. Acharyya, I., Al-Anbuky, A.: Towards wireless sensor network softwarization. In: IEEE
NetSoft Conference and Workshops NetSoft, Seoul, Korea Republic, pp. 378–383 (2016)

2. Ezdiani, S., Acharyya, I., Sivakumar, S., Al-Anbuky, A.: Wireless sensor network soft-
warization: towards wsn adaptive QoS. In IEEE Internet of Things Journal 4(5), 1517–1527
(2017)

3. Acharyya, I., Al-Anbuky, A., Sivakumar, S.: Software-Defined Sensor Networks: Towards
Flexible Architecture Supported by Virtualization. In: Global IoT Summit GIoTS, Aarhus,
Denmark, pp. 1–4 (2019)

4. Acharyya, I., Al-Anbuky, A.: Software-defined wireless sensor network: WSN virtualization
and network re-orchestration. In: Proceedings of the 9th International Conference on Smart
Cities and Green ICT Systems SMARTGREENS 2020, LNCS, vol. 1, pp. 79–90 (2020)

5. Krasteva, Y., Portilla, J., De la Torre, E., Riesgo, T.: Embedded Runtime Reconfigurable
Nodes forWireless SensorNetworksApplications. In IEEESensors Journal 11(9), 1800–1810
(2011)

6. Eronu, E., Misra, S., Aibinu, M.: Reconfiguration approaches in wireless sensor network:
issues and challenges. In: IEEE International Conference on Emerging and Sustainable Tech-
nologies for Power and ICT in a Developing Society NIGERCON 2013, Owerri, pp. 143–142
(2013)

7. Aslam,M., Hu, X.,Wang, F.: SACFIR: SDN-Based Application-Aware Centralized Adaptive
Flow Iterative Reconfiguring Routing Protocol for WSNs. Sensors 17, 2893 (2017)

8. Huang, M., Yu, B.: Towards general software-defined wireless sensor networks. In: Proceed-
ings of the 4th IEEE International Conference onComputer andCommunications ICCC2018,
Chengdu, China, pp. 923–927 (2018)

9. Oliveira, B., Margi, C.: Distributed control plane architecture for software-defined Wireless
Sensor Networks. In: IEEE International Symposium on Consumer Electronics ISCE 2016,
Sao Paulo, pp. 85–86 (2016)

10. Kobo, H., Abu-Mahfouz, A., Hancke, G.: A Survey on Software-Defined Wireless Sensor
Networks: Challenges and Design Requirements. In IEEE Access 5, 1872–1899 (2017)

11. Kobo, H., Hancke, G., Abu-Mahfouz, A.: Towards a distributed control system for software
defined Wireless Sensor Networks. In: In 43rd Annual Conference of the IEEE Industrial
Electronics Society IECON 2017, Beijing, pp. 6125–6130(2017)

Analysis of Software Defined WSN and Related Network 119

12. Kgogo, T., Isong, B., Abu-Mahfouz, A.: Software defined wireless sensor networks security
challenges. In: IEEE AFRICON 2017, Cape Town, pp. 1508–1513 (2017)

13. Jian, D., Chunxiu, X., Muqing, W., Wenxing, L.: Design and implementation of a novel
software-defined wireless sensor network. In: In 3rd IEEE International Conference on
Computer and Communications ICCC 2017, Chengdu, pp. 729–733 (2017)

14. Ezdiani, S., Acharyya, I., Sivakumar S., Al-Anbuky, A.: An IoT environment for wsn adaptive
QoS. In: IEEE International Conference on Data Science and Data Intensive Systems 2015,
Sydney, NSW, Australia, pp. 586–593 (2015)

15. Ezdiani, S., Acharyya, I., Sivakumar S., Al-Anbuky, A.: An Architectural Concept for Sensor
Cloud QoSaaS Testbed. In: Proceedings of the 6th ACM Workshop on Real World Wireless
Sensor Networks RealWSN 2015, pp. 15–18 (2015)

16. Zhou, Y., Lyu, M.R., Liu. J.: On sensor network reconfiguration for downtime-free system
migrations. In: Proceedings of the 5th International ICST Conference on Heterogeneous Net-
working for Quality, Reliability, Security and Robustness QShine 2008. Brussels, Belgium,
Article 24, pp. 1–7 (2008)

17. Szczodrak, M., Gnawali, O., Carloni, L.: Dynamic configuration of wireless sensor networks
to support heterogeneous applications. In: IEEE International Conference on Distributed
Computing in Sensor Systems Cambridge, MA, pp. 52–61 (2013)

18. Baghyalakshmi, D., Kothari, S., Ebenezer, J., SatyaMurty, S.: Ethernet gateway for wireless
sensor networks. In: Twelfth International Conference on Wireless and Optical Communica-
tions Networks (WOCN), Bangalore, pp. 1–5 (2015)

19. Yuan, Z., Cheng, J.: The Design and Realization of Wireless Sensor Network Gateway Node.
Adv. Mater. Res. 760, 462–466 (2013)

	Analysis of Software Defined WSN and Related Network Re-orchestration Down-Time
	1 Introduction
	2 Main WSN Functional Modules
	3 SDWSN Proposed Architecture
	3.1 IT Layer
	3.2 OT Layer

	4 Example WSN Re-orchestration Scenarios
	4.1 WSN Topological Manipulation
	4.2 Further Complexity in WSN Re-orchestration Scenarios

	5 WSN Re-orchestration Downtime
	6 Example Network Functions Implementation
	6.1 Leaf Function Pseudo Code
	6.2 Router Function Pseudo Code
	6.3 Gateway Function Pseudo Code
	6.4 Factors Influencing Network Re-orchestration Latency
	6.5 Effect of ‘Data Communication Rate’ on ‘Re-orchestration Latency’

	7 Conclusion
	References

