
HAMR: An AADL Multi-platform Code
Generation Toolset

John Hatcliff1(B), Jason Belt1, Robby1(B), and Todd Carpenter2

1 Kansas State University, Manhattan, KS 66506, USA
{hatcliff,belt,robby}@ksu.edu

2 Adventium Labs, Minneapolis, MN 55401, USA
Todd.Carpenter@adventiumlabs.com

Abstract. This paper describes the High-Assurance Model-based Rapid
engineering for embedded systems (HAMR) tool-kit that generates high-
assurance software from standards-based system architecture models
for embedded cyber-physical systems. HAMR’s computational model is
based on standardized run-time services and communication models that
together provide an abstract platform-independent realization which can
be instantiated by back-end translations for different platforms. HAMR
currently targets multiple platforms, including rapid prototyping targets
such as Java Virtual Machines, Linux, as well as the formally verified seL4
space partitioned micro-kernel.

HAMR bridges the gap between architecture models and the system
implementation by generating high assurance infrastructure components
that satisfy the requirements specified in the model and preserving rigor-
ous execution semantics. Based on the architecture model, including the
components, their interfaces, run-time performance properties, and inter-
component connections, the HAMR-generated code creates Application
Programming Interfaces that provide developer-centric ease-of-use, as well
as support automated verification.

HAMR currently interprets architecture models captured in the Archi-
tecture Analysis and Design Language (AADL). AADL is a rigorous stan-
dardized modeling language that has proven useful in the development of
high assurance embedded systems. We describe using HAMR for build-
ing applications from safety and security-critical domains such as medical
devices and avionics mission-systems.

1 Introduction

Advances in model-based engineering (MBE) have improved the development of
Cyber-Physical Systems (CPS). A 2009 NASA study documented that nearly
80% of CPS’s capability is implemented using software [15], and the trend is
increasing. As system and software complexity increases, software integration
risk has become a key limiting factor in the development of complex CPSs. A
study by the SAVI initiative determined that while 70% of errors are introduced

Work supported in part by the US DARPA, US Air Force Research Lab, US Army,
and the Software Engineering Institute.

c© Springer Nature Switzerland AG 2021
T. Margaria and B. Steffen (Eds.): ISoLA 2021, LNCS 13036, pp. 274–295, 2021.
https://doi.org/10.1007/978-3-030-89159-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89159-6_18&domain=pdf
https://doi.org/10.1007/978-3-030-89159-6_18


HAMR: An AADL Multi-platform Code Generation Toolset 275

at the design phase, most are not found and fixed until integration and test [2].
The study identified that fixing those errors late in the process costs orders of
magnitude more than if they had been fixed earlier. This directly impacts system
capability due to requirements being cut to keep on schedule or other systems not
being built to address budget overruns. In their 2009 study, NASA recommended
that the best way to address this is to focus on the system architecture at the
design phase, both for new systems as well as system upgrades.

The SAE-standard Architecture, Analysis, and Design Language (AADL) [8]
is an system architecture modeling and analysis approach that has obtained a
fair amount of traction in the research and aerospace communities. For exam-
ple, on the System Architecture Virtual Integration (SAVI) effort [3], aircraft
manufacturers together with subcontractors used AADL to define a precise sys-
tem architecture using an “integrate then build” design approach. Working with
AADL models, important interactions are specified, interfaces are designed, and
integration is verified before components are implemented in code. Once the inte-
gration strategy and mechanism are established, subcontractors provide imple-
mentations that comply with the architecture requirements. Prime contractors
then integrate these components into a system. The integration effort, particu-
larly schedule and risk uncertainty, is reduced due to the previous model-based
planning and verification. Due in part to the NASA and SAVI studies, since 2012
the US Army has been investing in developing, maturing, and testing MBE and
other engineering capabilities for the system development of the Future Vertical
Lift (FVL), a top Army priority to modernize the vertical lift fleet.

One of the challenges inherent with modeling and analysis is maintaining
consistency between the model-as-analyzed and the system-as-implemented. Any
deviation can lead to inaccuracies in the predictions provided by the models,
which can impact system performance against requirements. An example of this
is if an implementation decision violates system partitioning requirements.

Another challenge is that many modeling approaches are design-time doc-
umentation exercises that are rapidly outdated as the system is implemented,
deployed, and maintained throughout the life-cycle. If the models are merely
documentation and not maintained and understood by developers, any system
updates (e.g., bug fixes, new features) might violate the system-level concepts
and requirements.

Yet another challenge is that some generic modeling approaches permit dif-
ferent interpretations of information contained in the models. One example of
this is when modelers capture significant model information in comments. This
makes it difficult to make system-level decisions based on the integration of
components provided by different vendors.

To address these issues, we have developed a tightly integrated modeling and
programming paradigm, called HAMR, to shift development to earlier in the
design cycle, and thereby eliminate issues earlier, when they are less expensive to
address. To accomplish this, HAMR encodes the system-level execution semantics,
as specified in standardized models with clear and unambiguous specifications,
into infrastructure code suitable for the given target platform. These execution
semantics include component interfaces, threading semantics, inter-component



276 J. Hatcliff et al.

communication semantics, standard system phases, scheduling, and application
behavioral and non-functional performance properties.

Benefits of this approach include:

Extensible code-generation architecture capable of easily targeting
new platforms: Complex industrial systems often include multiple platforms
(e.g., in system-of-system architectures), and long-lived systems often need to
be migrated to new architectures to support technology refresh.

Support for incremental development, from rapid prototyping to full
deployment: Organizations can perform rapid prototyping and integration in
spirals, moving in successive spirals (with different code generation back-ends)
from simpler functional mockups of component behaviors and interface interac-
tions to more realistic implementations on test bench boards, to final deploy-
ments on platform hardware.

Standard Development Environments. HAMR runs on widely-used plat-
forms, leveraging development environments that are already familiar to stu-
dents, graduate researchers, and entry-level industrial engineers. This helps
reduce workforce training costs.

Direct support for formally-proven partitioning architectures: Industry
teams are increasingly using micro-kernels, separation kernels, and virtualization
architectures to isolate critical system components. Strong isolation provides a
foundation for building safe and secure systems. It also enables incorporation of
legacy components into a system (e.g., running legacy code on virtual machines
within a partition of a micro-kernel). HAMR includes a back-end to directly tar-
get the seL4 micro-kernel whose implementation, including spatial partitioning,
is formally proven correct using theorem-proving technology.

This paper describes HAMR, with specific contributions including:

– HAMR provides code generation for the SAE AS5506 Standard AADL. The
code generated by HAMR conforms to the AADL standard’s Run-Time Ser-
vices, and further refines it towards a more precise semantics for safety-critical
embedded systems.

– HAMR leverages Slang, a safety/security-critical subset of Scala. We define a
Slang-based reference implementation of the above AADL Run-Time Services.

– Using the Slang AADL RTS, we define a Slang/Scala-based AADL code-
generation, component development approach, and JVM run-time execution
environment that can be used for JVM-based AADL system deployments or
system simulations before further refinement to an embedded (e.g., C-based)
deployment.

– We define a multi-platform translation architecture code AADL code genera-
tion by using the Slang AADL RTS reference implementation as an abstrac-
tion layer through which multiple back-ends can be supported.

– We implement C-based back-ends for the translation architecture targeting
Linux OS and for the seL4 micro-kernel [13].

– We validate the translation framework using industrial-scale examples from
multiple CPS domains including medical devices and military mission control
systems.



HAMR: An AADL Multi-platform Code Generation Toolset 277

The HAMR framework is being used by multiple industry partners in projects
funded by the US Army, US Air Force Research Lab, US Defense Advanced
Research Projects Agency (DARPA), and the US Department of Homeland
Security (DHS). The HAMR implementation and examples described in this
paper are available under an open-source license1.

2 AADL

SAE International standard AS5506C [10] defines the AADL core language for
expressing the structure of embedded, real-time systems via definitions of com-
ponents, their interfaces, and their communication. In contrast to the general-
purpose modeling diagrams in UML, AADL provides a precise, tool-independent,
and standardized modeling vocabulary of common embedded software and hard-
ware elements. Software components include data, subprogram, subprogram
group, thread, thread group, and process. Hardware components include pro-
cessor, virtual processor, memory, bus, virtual bus, and device. Devices are used
to model sensors, actuators, or custom hardware. An AADL system component
represents an assembly of interacting application software and execution plat-
form components. Each component category has a different, well-defined stan-
dard interpretation when processed by AADL model analyses. Each category
also has a distinct set of standardized properties associated with it that can be
used to configure the specific component’s semantics.

A feature specifies how a component interfaces with other components in the
system. ports are features that can be classified as an event port (e.g., to model
interrupt signals or other notification-oriented messages without payloads), a data
port (e.g. modeling shared memory between components or distributed memory
services where an update to a distributed memory cell is automatically propagated
to other components that declare access to the cell), or an event data port (e.g., to
model asynchronous messages with payloads, such as in publish-subscribe frame-
works). Inputs to event and event data ports are buffered. The buffer sizes and
overflow policies can be configured per port using standardizes AADL properties.
Inputs to data ports are not buffered; newly arriving data overwrites the previous
value.

Fig. 1. Temperature control example (excerpts) – AADL graphical view

1 Source code and supporting documentation available at https://github.com/
santoslab/isola21-hamr-case-studies.

https://github.com/santoslab/isola21-hamr-case-studies
https://github.com/santoslab/isola21-hamr-case-studies


278 J. Hatcliff et al.

Figure 1 presents a portion of the AADL standard graphical view for a sim-
ple temperature controller that maintains a temperature according to a set point
structure containing high and low bounds for the target temperature. The peri-
odic tempSensor thread measures the current temperature and transmits the
reading on its currentTemp data port (represented by a solid triangle icon). It
also sends a notification on its tempChanged event port (represented by an arrow
head) if it detects the temperature has changed since the last reading. When the
sporadic (event-driven) tempControl thread receives a tempChanged event, it
will read the value on its currentTemp data port and compare it the most recent
set points. If the current temperature exceeds the high set point, it will send
FanCmd.On fan thread via its fanCmd event data port (represented by a filled
triangle within an arrow head) to cool the temperature. Similar logic will result
in FanCmd.Off being sent if the current temperature is below the low set point.
In either case, fan acknowledges whether it was able to fulfill the command by
sending FanAck.Ok or FanAck.Error on its fanAck event data port.

AADL provides a textual view to accompany the graphical view. AADL edi-
tors such as the Eclipse-based Open Source AADL Tool Environment (OSATE)
synchronize the two. The listing below illustrates the component type declaration
for the TempControl thread for the example above. The textual view illustrates
that data and event data ports can have types for the data transmitted on the
ports. In addition, properties such as Dispatch Protocol and Period configure
the tasking semantics of the thread.
� �

thread TempControl
features
currentTemp: in data port TempSensor::Temperature.i;
tempChanged: in event port;
fanAck: in event data port CoolingFan::FanAck;
setPoint: in event data port SetPoint.i;
fanCmd: out event data port CoolingFan::FanCmd;

properties
Dispatch_Protocol => Sporadic;
Period => .5 sec; -- the min sep between incoming msgs

end TempControl;

thread implementation TempControl.i
end TempControl.i;

� �

The bottom of the listing declares an implementation named
TempControl.i of the TempControl component type. Typically, when using
HAMR, AADL thread component implementations such as TempControl.i have
no information in their bodies, which corresponds to the fact that there is no fur-
ther architecture model information for the component (the thread is a leaf node
in the architecture model, and further details about the thread’s implementation
will be found in the source code, not the model). Using information in the asso-
ciated thread type, HAMR code generation will generate platform-independent
infrastructure, thread code skeletons, and port APIs specific for the thread, and
a developer codes the thread’s application logic in the target programming lan-
guage. The generated thread-specific APIs serve two purposes: (1) the APIs limit
the kinds of communications that the thread can make, thus help ensuring compli-
ance with respect to the architecture, and (2) the APIs hide the implementation
details of how the communications are realized by the underlying platform.



HAMR: An AADL Multi-platform Code Generation Toolset 279

The listing below illustrates how architectural hierarchy is realized as an
integration of subcomponents. The body of TempControlProcess type has no
declared features because the component does not interact with its context in
this simplified example. However, the body of the implementation has subcom-
ponents (named component instances), and the subcomponents are “integrated”
by declaring connections between subcomponent ports.
� �

process TempControlProcess
-- no features; no interaction with context

end TempControlProcess;

process implementation TempControlProcess.i
subcomponents
tempSensor : thread TempSensor::TempSensor.i;
fan : thread CoolingFan::Fan.i;
tempControl: thread TempControl.i;
operatorInterface: thread OperatorInterface.i;

connections
c1:port tempSensor.currentTemp -> tempControl.currentTemp;
c2:port tempSensor.tempChanged -> tempControl.tempChanged;
c3:port tempControl.fanCmd -> fan.fanCmd;
c4:port fan.fanAck -> tempControl.fanAck;
end TempControlProcess.i;

� �

AADL editors check for type compatibility between connected ports. HAMR
supports data types declared using AADL’s standardized Data Model Annex
[1]. For example, the data type declarations associated with the temperature
data structure are illustrated below.
� �

data Temperature
properties
Data_Model::Data_Representation => Struct;

end Temperature;

data implementation Temperature.i
subcomponents
degrees: data Base_Types::Float_32;
unit: data TempUnit;

data TempUnit
properties
Data_Model::Data_Representation => Enum;
Data_Model::Enumerators=>("Fahrenheit" ,"Celsius" ,"Kelvin");
end TempUnit;

� �

A standard property indicates that the Temperature type is defined as a
struct and the struct fields and associated types are listed in the data imple-
mentation. The degrees field has a type drawn from AADL’s standardized base
type library. The unit field has an application-defined enumerated type.

AADL omits concepts associated with requirements capture and user inter-
actions such as UML use cases, sequence diagrams, as well as class-oriented
software units that are more appropriate when modeling general purpose object-
oriented software. AADL is closer in spirit to SysML, although AADL elements
are more precisely defined to enable analyzeability and tool interoperability. In
industry applications of AADL, SysML may be used earlier in the development
process to initially capture interactions between and the system and environ-
ment as well as rough architecture. AADL is then used to more precisely specify
architecture and to support architecture analysis. Though having a workflow



280 J. Hatcliff et al.

with multiple modeling languages is not ideal, the SysML + AADL approach
utilizes the capabilities currently available to industry engineers that want to
use AADL. In the broader vision of “programming: what’s next?”, AADL seems
to be tracking the right course by more deeply integrating programming and
modeling, but there is even more opportunity to integrate, in a single model-
ing framework, early design concepts that have both stronger semantics and
traceability to eventually developed code-level artifacts.

AADL provides many standard properties, and allows definition of new prop-
erties. Examples of standard properties include thread properties (e.g., dis-
patch protocols such as periodic, aperiodic, sporadic, etc., and various properties
regarding scheduling), communication properties (e.g., queuing policies on par-
ticular ports, communication latencies between components, rates on periodic
communication, etc.), memory properties (e.g., sizes of queues and shared mem-
ory, latencies on memory access, etc.). User-specified property sets enable one
to define labels for implementation choices available on underlying platforms
(e.g., choice of middleware realization of communication channels, configuration
of middleware policies, etc.).

The Eclipse-based OSATE tool provides an environment for editing AADL
and has a plug-in mechanism that supports different AADL analysis tools. Con-
trols for HAMR code generation are implemented as an OSATE plug-in.

3 Architecture

Since it is a code-generation framework, HAMR focuses on AADL software com-
ponents – especially thread components and port-based communication between
threads. The HAMR code-generation backend includes libraries for threading
and communication infrastructure that help realize the semantics of AADL on
the target platform.

Fig. 2. HAMR code generation concepts



HAMR: An AADL Multi-platform Code Generation Toolset 281

Figure 2 illustrates the main concepts of HAMR code generation. For each
thread component, HAMR generates code that provides an execution context for
a real-time task. This includes: (a) infrastructure code for linking application code
to the platform’s underlying scheduling framework, for implementing the storage
associated with ports, and for realizing the buffering and notification semantics
associatedwith event and event data ports, and (b) developer-facing code including
thread code skeletons in which the developer will write application code, and port
APIs that the application code uses to send and receive messages over ports. For
each port connection, HAMR generates infrastructure code for the communication
pathway between the source and target ports. On platforms such as seL4, path-
ways may utilize memory blocks shared between the components (seL4’s capabil-
ity mechanism can ensure that only the source/destination components can access
the shared memory and that the information flow is one-way). On other platforms,
middleware or underlying OS primitives are used. E.g., for Linux, HAMR uses Sys-
tem V interprocess communication primitives.

Fig. 3. Code generation factored through AADL RTS

Semantic consistency across platforms – that is, identical behavior of HAMR-
generated code regardless of the target platform – is a fundamental HAMR goal.
Semantic consistency is supported by carrying out the code-generation in stages.
In particular, code is generated first for a platform-independent reference imple-
mentation of the AADL run-time services (RTS) (run-time libraries providing key
aspects of threading and communication behavior) as illustrated in Fig. 3. These
services are currently described informally in the AADL standard via textual
descriptions of APIs for thread dispatching and port communication. HAMR spec-
ifies the APIs and platform-independent aspects of the AADL RTS functionality



282 J. Hatcliff et al.

in Slang – a subset of Scala designed for high-assurance embedded system develop-
ment. The HAMR-provided realization of these services is a “reference implemen-
tation” in the sense that (a) the highly-readable Slang APIs and service implemen-
tations can be directly traced to descriptions in the AADL standard and (b) the
subsequent implementations on different platforms are derived from these Slang
artifacts. For example, Slang can be compiled to Java Virtual Machine (JVM)
bytecode and to efficient embedded C without incurring runtime garbage collec-
tion Slang’s extension facility enables Slang programs to interface with full Scala
and Java when compiling to the JVM and C when compiling to C.

Figure 3 illustrates that the HAMR translation architecture utilizes Slang to
code platform-independent aspects of the AADL run-time and then uses Slang
extensions in Scala and C to implement platform-dependent aspects. For exam-
ple, for the JVM platform, a Slang AADL RTS Reference Implementation is used
for most of infrastructure implementation with a few customizations (denoted
by the circled “+”) written in Scala. For the C-based (xNix) platforms, some
of the Slang Reference Implementation is inherited but customizations define
memory layouts to be used in C (still written in Slang to support eventual ver-
ification). Then the Slang-based infrastructure is compiled to C. This provides
a sizable code base that is shared across Linux and seL4 with some further C
customization for each platform.

The Slang-to-C compilation also enables developers to code component appli-
cation logic in Slang when targeting the JVM or C-based platforms (including
Linux and seL4 described in this paper) or C alone for C-based platforms. While
this architecture does not currently include formal proofs of conformance of the
generated code to Slang reference implementation and associated semantics, it
is architected to prepare for such assurance in future work.

4 HAMR Backends

In this section, we describe three HAMR backend targets: (1) JVM, (2) Linux
(native), and (3) seL4. The JVM target is provided to quickly implement compo-
nent and system functionality on a widely-available platform that can be easily
utilized without having to set up a RTOS target. This is effective for teach-
ing AADL model-based development principles, and the HAMR JVM platform
architecture is set up to eventually support distributed and cloud-based appli-
cations via industry-standard publish-subscribe frameworks like JMS, DDS, and
MQTT. In two ongoing US DoD funded projects, a contract-based verification
framework is being developed that supports integrated AADL and Slang-level
contracts with automated SMT-based verification support. In a recently com-
pleted industrial project milestone, the JVM platform was used by industry
engineers to quickly mock-up and test component functionality and simulate the
overall system behavior, including being able to test specific component sched-
ule orderings. If Slang is used to implement component behaviors, such imple-
mentations can also be compiled to C along with the Slang-based AADL RTS
middleware that HAMR generates specific for the system. The overall system
can then be run natively on Linux (as well as on macOS and Windows/Cygwin,



HAMR: An AADL Multi-platform Code Generation Toolset 283

with some environment setups). By leveraging Slang extension language facil-
ity, developers can opt to implement component behaviors partly/fully in C, for
example, to leverage existing libraries, to access hardware, or to integrate legacy
components. The seL4 verified micro-kernel backend supports on embedded sys-
tem boards such as ODROID-C2/XU4. HAMR also generates deployments for
seL4 on the QEMU simulation framework, which can be used for testing before
deploying to actual hardware. As part of the DARPA CASE project, we provide
a Vagrant file to automatically provision a VirtualBox Linux Virtual Machine
(VM) with HAMR and its dependencies configured, including OSATE, compiler
toolchains, and seL4; it is available at [18]. We continually update the Vagrant
definition as we refine HAMR, as well as integrating new or enhanced seL4 fea-
tures. HAMR has early support for additional targets such as FreeRTos, Minix3,
and STM32, but these are less mature than the above.

Below we introduce the key concepts of code architecture using Slang, and
then subsequent sections (relying on code examples in the appendix) illustrate
the C-based coding.

4.1 Slang on JVM Platform

An AADL thread with sporadic dispatch mode is dispatched upon the arrival
of messages on its input event or event data ports. To tailor the application
code structure of a sporadic thread Compute Entry Point to the event-driven
character, HAMR generates a message handler method skeleton for each input
event and event data port. To program the application logic of the component,
the developer completes the implementation of these method handlers.
For example, for the sporadic TempControl thread, HAMR generates the follow-
ing Slang skeletons for entry points (excerpts).

� �

1 @msig trait TempControl_i {
2 // reference to APIs to support port communication
3 def api : TempControl_i_Bridge.Api
4
5 // == Skeleton for Initialize Entry Point ==
6 def initialise(): Unit = {}
7
8 // == Skeletons for Compute Entry Point ==
9 // handler for the ‘tempChanged ‘ input event port

10 def handletempChanged(): Unit = {
11 // auto -generated default implementation simply logs
12 // messages
13 api.logInfo("received tempChanged")
14 api.logInfo("default tempChanged implementation")
15 }
16
17 // handler for the ‘fanAck ‘ input event data port
18 def handlefanAck(value:TempControl.FanAck.Type):Unit={
19 api.logInfo(s"received ${value}")
20 api.logInfo("default fanAck implementation")
21 }
22
23 // handler for the ‘setPoint ‘ input event data port is
24 // similar to above and omitted.
25
26 // == Skeleton for Finalize Entry Point ==
27 def finalise(): Unit = {}
28 }

� �



284 J. Hatcliff et al.

To complete the Initialise Entry Point, the developer codes any initialization
of component local variables that persist between activations of the thread, e.g.,
the variable caching the most recent set point structure is initialized. The initial
values for all output data ports must also be set (not applicable in this case,
because the component has no output data ports), and optionally, messages
may be sent on output event and event data ports. The Finalise Entry Point is
also coded to perform any clean up steps (omitted).

� �

1 var setPoint: SetPoint_i = Defs.initialSetPoint
2
3 override def initialise(): Unit = {
4 // The Initialize Entry Point must initialize all
5 // component local state and all output data ports.
6
7 // initialize component local state
8 setPoint = Defs.initialSetPoint
9

10 // initialize output data ports
11 // (no output data ports to initialize)
12 }

� �

The primary application logic of the TempControl is coded by filling in the
auto-generated skeletons for the message handler methods. The completed han-
dler for tempChange port is given below. The code illustrates the use of auto-
generated api methods to send and receive information on ports. These provide
a uniform abstraction of the AADL communication semantics and allows HAMR
to generate different implementations when deploying on different platforms.

� �

1 override def handletempChanged(): Unit = {
2 // get current temp from currentTemp data port
3 // using auto -generated APIs for AADL RTS
4 val temp = api.getcurrentTemp().get
5 // convert current temp to Fahrenheit
6 val tempInF = Util.toFahrenheit(temp)
7 // convert stored setpoint values to Fahrenheit
8 val setPointLowInF = Util.toFahrenheit(setPoint.low)
9 val setPointHighInF = Util.toFahrenheit(setPoint.high)

10
11 val cmdOpt: Option[FanCmd.Type] =
12 if (tempInF.degrees > setPointHighInF.degrees)
13 Some(FanCmd.On)
14 else if (tempInF.degrees < setPointLowInF.degrees)
15 Some(FanCmd.Off)
16 // if current temp is between low and high set point
17 // don’t produce a command (None)
18 else None[FanCmd.Type]()
19
20 cmdOpt match {
21 // if a command was produced , send it
22 // using auto -generated API for AADL RTS
23 case Some(cmd) =>
24 api.sendfanCmd(cmd)
25 case _ =>
26 // temperature OK
27 }
28 }

� �

TempSensor is a periodic thread, and so instead of generating event handlers
for the Compute Entry Point, HAMR generates a single TimeTriggered method.



HAMR: An AADL Multi-platform Code Generation Toolset 285

� �

1 object TempSensor_i_p_tempSensor {
2
3 def initialise(api:TempSensor_i_Initialization_Api):Unit={
4 // initialize outgoing data port
5 val temp = TempSensorNative.currentTempGet()
6 api.setcurrentTemp(temp)
7 }
8
9 def timeTriggered(api:TempSensor_i_Operational_Api):Unit={

10 val temp = TempSensorNative.currentTempGet()
11 api.setcurrentTemp(temp)
12 api.sendtempChanged()
13 }
14 }
15 // extension interface to step outside the Slang
16 // language subset
17 @ext object TempSensorNative {
18 def currentTempGet(): Temperature_i = $
19 }

� �

This example illustrates the use of the Slang extension mechanism that is
used to interface to code outside of the Slang language subset. On the JVM
platform, this typically involves interfacing to classes in full Scala or Java, e.g.,
to implement GUIs, simulation of sensors and actuators, or JNI interfaces to
access GPIO facilities on a development board. In this example, a Slang exten-
sion interface is declared to pull a temperature value from the sensor. Multiple
implementations of an extension interface may be set up to switch between, e.g.,
a simulated sensor and interfacing to an actual hardware sensor. The listing
below illustrates a simple Scala-implemented sensor simulation that generates
randomized values directed by the current state of extension simulation for the
Fan hardware.

� �

1 object TempSensorNative_Ext {
2 var lastTemperature
3 = Temperature_i(68f, TempUnit.Fahrenheit)
4 var rand = new java.util.Random
5
6 def currentTempGet(): Temperature_i = {
7 lastTemperature = if (rand.nextBoolean()) {
8 val delta =
9 F32((rand.nextGaussian() * 3).abs.min(2).toFloat

10 * (if (FanNative_Ext.isOn) -1 else 1))
11 lastTemperature(degrees
12 = lastTemperature.degrees + delta)
13 } else lastTemperature
14 return lastTemperature
15 }
16 }

� �

Corresponding to the gray areas of Fig. 2, HAMR generates code for each
component infrastructure that links the developer-code application logic above
to the threading/scheduling mechanisms of the underlying platform. The listing
illustrates the pattern of an auto-generated Compute Entry Point for a sporadic
thread, which processes messages on incoming event/event-data ports (using
the AADL RTS (Art) dispatchStatus and receiveInput) and then calls cor-
responding developer-written message handlers. After handlers complete, the
AADL RTS sendOutput is called to propagate data on output ports to connected



286 J. Hatcliff et al.

consumers. During an execution, the compute method of each thread is called
by an executive that follows a selected scheduling strategy.

This code illustrates some fundamental properties of the AADL computa-
tional model – namely, its input/work/output structure of task activations. First,
similar to other real-time models designed for analyzeability (e.g., [5]), a task’s
interactions with its context are cleanly factored into inputs and outputs. At
each task activation, inputs are “frozen” for the duration of the task’s activity
(which runs to complete within a WCET bound). The AADL RTS receiveInput
freezes input by moving values from the communication infrastructure into the
user thread’s space (dequeuing event and event data port entries as necessary).
During the task work, user code can read the frozen values using the getXXX APIs
and can prepare outputs using setXXX. After the task’s work is completed (e.g.,
event handler completes), the prepared outputs are released to the infrastucture
using the sendOutput RTS.2

� �

1 def compute(): Unit = {
2 // get ids of ports that have pending messages.
3 val EventTriggered(portIds)
4 = Art.dispatchStatus(TempControl_i_BridgeId)
5 // "freeze" data ports -- move data port values
6 // from infrastructure to application space
7 Art.receiveInput(portIds , dataInPortIds)
8 // --- invoking application code (event handlers) ---
9 // for each arrived event , call corresponding handler

10 for (portId <- portIds) {
11 // if an event arrived on the ‘fanAck ‘ port
12 if (portId == fanAck_Id){
13 // get payload , call fanAck handler
14 // with the message payload as parameter
15 val Some(BuildingControl.FanAck_Payload(value))
16 = Art.getValue(fanAck_Id)
17 component.handlefanAck(value)
18 } else if(portId == setPoint_Id){
19 val Some(BuildingControl.SetPoint_Payload(value))
20 = Art.getValue(setPoint_Id)
21 component.handlesetPoint(value)
22 } else if(portId == tempChanged_Id) {
23 // ‘tempChanged ‘ port is event (not event data)
24 // so there is no payload to pass to handler
25 component.handletempChanged()
26 }
27 }
28 // after all handlers run , propagate to consumers
29 // the values that they wrote to output ports
30 Art.sendOutput(eventOutPortIds , dataOutPortIds)
31 }

� �

The overall system is run by launching a HAMR-generated JVM applica-
tion of the system. Once launched, the application infrastructure initializes the
AADL RTS middleware (e.g., allocate objects representing communication chan-
nels) calls the initialize entry point of each component. Then the executive
infrastructure is called which repeatly invokes compute methods according to

2 The compute code shown above deviates from the AADL standard description
slightly in that the for loop processes one queued message on each incoming event
port. An alternate implementation aligned with the standard is available that only
processes a single event and then releases its output and yields.



HAMR: An AADL Multi-platform Code Generation Toolset 287

the scheduling strategy. During a shut down phase, each component’s finalise
entry point is called.

HAMR auto-generates unit test harnesses for each component with helper
methods for loading values into input ports, invoking the various entry points,
and checking values on output ports. Also included is a run-time monitoring
framework where, e.g., all send/receive actions on ports are logged on a Redis
server which can be filtered in a variety of ways using a HAMR-generated
framework that utilizes Akka and ReactiveX stream processing and filtering.
This framework is used to generate multiple visualizations of the system execu-
tion (including dynamic generation of message sequence charts reflecting inter-
component communication.

4.2 Linux

HAMR supports Linux natively by translating the Slang-based AADL RTS
implementations to C. Slang has a memory model that enables memory to be
statically allocated when translated to C, and it supports highly-controlled data
type representations and other constructs that enable effective embedded code
to be generated. The high-level infrastructure APIs, coordinating procedures of
the Slang-based AADL RTS reference implementation, and Slang-based platform
customizations for Linux constitute the infrastructure code that is translated to
C. Using the Slang extension mechanism, only around 100 SLOC of C code are
linked into the infrastructure to provide the lowest level aspects of the inter-
component communication using Unix System V shared memory interprocess
communication. Everything else is written in Slang, which lays the groundwork
for future formal verification of the infrastructure code and makes it easy to
establish traceability to the Slang-based AADL RTS reference model.

In the current organization of the generated infrastructure code, each thread
component runs as a separate Linux process due to industrial project empha-
sis on separation. In the upcoming phases of projects, we will be investigating
alternate approaches that allow multiple AADL threads to be grouped in the
same AADL and Linux process. For implementing component application logic,
two different workflows are supported: (1) a thread’s behavior can be coded in
Slang as in the previous section and compiled to C, or (2) C-level entry point
APIs can be generated and coded/debugged in a C development environment.

4.3 seL4 Verified Microkernel

One of the goals of DARPA CASE program is help DoD industry teams harden
systems to make them more resilient to cyber-attacks. The seL4 micro-kernel
(formally verified using automated theorem-proving techniques) is a central part
of the CASE approach. seL4 provides a capability mechanism that can be used to
precisely configure which memory addresses, function interactions, and platform
resources each thread can access. Similar to the concept of separation kernels
long used to provide foundations for security [14], the precise formally-proven
partitioning and information flow control that seL4 provides make it easier to



288 J. Hatcliff et al.

include components of mixed criticality, to “sandbox” untrusted components,
and to update portions of the system while ensuring that other parts can never
be impacted by the changes. Building on the seL4 foundation, HAMR on CASE
supports model-driven development for refactoring systems to achieve greater
cyber-resiliency including automated wrapping of legacy components in virtual
machines (VM) and automated insertion of high-assurance components such as
message filters, network guards, and security health monitors.

In CASE, AADL is used to model system architecture which is automatically
analyzed for cyber-resiliency properties and to capture architecture transforma-
tions that insert high-assurance components and VMs. HAMR translates an
AADL architecture to produce configurations of the seL4 micro-kernel (espe-
cially the capability protection specifications), Specifically, HAMR translates
AADL system architectures to seL4 architecture description language, called
CAmkES [11], along with some C glue code to interface HAMR C AADL RTS
with CAmkES. CAmkES is designed to make it easier to configure seL4 capa-
bilities to align with component structures, and is rather agnostic to the par-
ticular computational model. The CAmkES framework has its own mechanism
to generate low-level C kernel code as well as the seL4 “capDL” (Capability
Distribution Language) file. These artifacts together with the kernel itself and
CAmkES component code are used create a binary image which can be loaded
onto an appropriate processor.

Leveraging the CAmkES code generation, HAMR generates CAmkES decla-
rations to align with AADL, which, via the CAmkES code generation, configures
seL4 so that AADL intercomponent information flow pathways are enforced by
the microkernel. HAMR also generates additional code that adapts CAmkES
threading and communication APIs to align with the AADL RTS and computa-
tional model. This includes generating infrastructure code that uses, e.g., seL4
protected shared memory to realize event buffering and dispatch logic of AADL
RTS as implemented in the HAMR reference implementation. This is crucial for
enabling AADL-level analysis and verification to be sound with respect to gener-
ated seL4 deployments. Leveraging the HAMR translation factored through the
Slang reference model, the developer-facing C communication APIs and thread
skeletons are identical to those generated for Linux (as described in the pre-
vious section). We are working with Data61 engineers to implement dedicated
CAmkES connectors that realize the AADL semantics – thus, eliminating the
need for a layer of adapter code used in the current code generation process.

HAMR also generates virtual machine configurations for CAmkES compo-
nents that are used to host Linux VMs, e.g., for sandboxing legacy or less trusted
code. This ensures that communication across VM boundaries also aligns with
AADL communication semantics.

5 Applications

We have applied HAMR to several examples on multiple industrial research
projects sponsored by US Department of Homeland Security (DHS), US Air



HAMR: An AADL Multi-platform Code Generation Toolset 289

Force Research Labs, US Army, and US Defense Advanced Research Project
Agency (DARPA). Below are two examples chosen for their scale, complexity,
their coverage of different platforms, and the use of different programming lan-
guage for code application logic.

5.1 PCA Pump – JVM Platform

The DHS-sponsored ISOSCELES project provides an open-source reference
architecture for building medical devices [6]. The project supports device man-
ufacturers and regulatory science by providing freely available resources that
incorporate best-practices in MBE as well as architectures designed for safety
and security. To validate the ISOSCELES reference architecture, the project uti-
lized example medical device development artifacts from the Open PCA Pump
Project (see [9] for an overview of the project and [19] for the project web-site
that provides the open-source artifacts). PCA pumps are bedside devices used
to infuse opioids into the IV line of a patient. Though the use of PCA pumps
is wide-spread, they suffer from safety and security problems. In collaboration
with engineers from the US Food and Drug Administration, the Open PCA
Pump project developed a collection of realistic open-source development arti-
facts including an AADL model-based-development implementation of a pump.

The Open PCA Pump AADL model is one of the most complex publicly
available AADL models. Just considering thread components and their interac-
tions (excluding other component types not related to code generation), there
are 12 thread components, 186 thread component ports, and 101 connections
between thread ports. We used HAMR to develop a Slang-based JVM imple-
mentation of the pump software along with Slang, Scala, and Java-based simula-
tions of several hardware elements of the pump, including the pump mechanism,
fluid flow rate sensors, and operator interface. The resulting system has 14223
non-comment/space source lines of Slang/Scala code (NCSLOC) in the auto-
generated infrastructure code and 1220 NCSLOC for the application logic.

5.2 UAV System – seL4 Platform

This example from the DARPA CASE program demonstrates HAMR’s abil-
ity to support mission systems on a complex high-assurance partitioning plat-
form. The CASE example is intended to demonstrate how CASE technology
can harden legacy mission control software for unmanned air vehicles against
cyber-attacks. AFRL’s open-source UxAS framework, written in C++ using a
publish/subscribe communication infrastructure, was used as the existing system
to be hardened. A ground station communicates with a surveillance UAV. Before
the UAV is launched, map information including operating regions and no-flys
zones are loaded into the system. During the course of the mission, the UAV
comes into contact with multiple ground stations who receive status information
from the UAV and may send updated mission objectives. Mission objectives are
processed by a flight planner module to produce collections of waypoints that
are fed to the flight computer.



290 J. Hatcliff et al.

In the first step of the cyber-resilience hardening, the UxAS was broken into
pieces to isolate different portions of the system to protect against intrusions
and contain the effects of possible Trojan attacks. In this process, the commu-
nication stack on board the UAV was migrated into a Linux virtual machine in
an seL4 partition. Similarly, the mission planner subsystem (which takes mis-
sion commands and map information and computes sets of waypoints for the
flight controller) was also migrated to a Linux VM. Both of these are modeled
as AADL processes (representing the spatially isolated functionality) bound to
an AADL virtual process (representing a virtual machine). AADL properties
on these components provide further configuration information. Next, various
cyber-resiliency components auto-generated from high-level CASE formal speci-
fications were inserted to filter messages coming from the untrusted legacy com-
ponents and to monitor (and recover from) sequences of events from the legacy
components that suggest that they have been compromised. These components,
written in C or CakeML, each run on “bare metal” within their own seL4 parti-
tions. The UxAS Waypoint Manager (which takes a collection of waypoints and
feeds individual waypoints to the flight controller as the flight progresses) was
considered to be trusted. Its existing C++ implementation was migrated to a
bare metal seL4 partition with some hand-written C adapters at the boundaries
to align the code with HAMR-generated C port APIs.

During the early phases of this effort, HAMR was first used by the industry
team to build a JVM-based prototype of the system where component behav-
iors were first mocked up in Slang. Once interface design, data types, and other
integration issues were solved, HAMR was used to generate a Linux prototype
of the system which was refined to include more of the C-based implementa-
tions of the system components. Next HAMR was used to generate a fully func-
tional seL4-based deployment (including VMs) for the QEMU simulation envi-
ronment. Finally, HAMR was used to generate a deployment for seL4 running
on an ODroid embedded platform. Thus, even though the initial CASE program
goals did not seek to leverage the “multi-platform” nature of HAMR, the ability
to quickly build Slang/Scala/Java JVM-based prototypes ended up being quite
valuable. Industrial engineers are interested in continuing this approach in future
phases of the program. Due to restrictions and proprietary information, we are
unable to give precise metrics on the models and code base. The application
code size is significantly greater than the other examples.

6 Related Work

The most closely related works to this paper are other AADL code generation
frameworks.

Ocarina: Ocarina, led by Hugues [12], is the oldest AADL code generation
project. Written in Ada and supported by a plug-in to OSATE, Ocarina pro-
vides backends for Ada and C code generation primarily using PolyORB-HI
[16]. PolyORB-HI is a lightweight middleware designed for high-integrity sys-
tems. Ocarina generates real-time tasking and communication infrastructure for



HAMR: An AADL Multi-platform Code Generation Toolset 291

C-based RT-POSIX threading, the Xenomai framework that provides real-time
support on top of Linux, and the open source RTOS RTEMS. The PolyORB-HI
Ada implementation is used with the GNAT compiler to support full Ada on
native platforms (e.g., Linux, Windows) and the Ravenscar Ada subset pro-
file to guarantee schedulability and safety properties. It also has a backend
for POK, a partitioned operating system compliant with the ARINC653 stan-
dard, along with configuration file generation for ARINC653-compliant DeOS
and VxWorks653 real-time operating systems (RTOS).

Ocarina has been used in several European defense industry projects over the
last 12–15 years. Whereas the industry focus for Ocarina has primarily been for
RTOSs, We have focused HAMR’s on the seL4 microkernel for cyber-resiliency
and information assurance. While Ocarina and HAMR both support multiple
backends, Ocarina emphasizes targeting the common structure of the C and
Ada PolyORB-HI implementations, while HAMR emphasizes factoring backends
through language-independent standardized run-time services. AADL RTS is
currently supported, but the system is modular so others can be supported.

Ocarina currently has a focus in integrating code generation for RTOS with
integrated schedulability analysis. HAMR currently has an industrial research
focus to move from the JVM-based framework for prototyping, visualization,
and coding in a clean modern language subset (Slang) that can be compiled to
C and from there to industry platform deployments. HAMR’s current industrial
research projects (e.g., DARPA CASE) are prioritizing the use of the machine
verified seL4 micro-kernel. HAMR is being used in conjunction with Adventium
Labs FASTAR AADL temporal analysis and schedule-generation tools.

RAMSES: The code generation approach of Refinement of AADL Models for
Synthesis of Embedded Systems (RAMSES) [4] emphasizes successive automated
AADL model refinement. The refinement steps are driven by developer-specified
features for the target system, by capabilities and resources of the target plat-
form, and by model-level analyses that assess system properties against require-
ments and platform capabilities. Such analyses include schedulability, timing
properties, and resource analysis. By gradually exposing more implementation
details in the model, those details can be considered in the analysis. The incre-
mental transformations also form the basis of a correctness methodology in which
the correctness of each transformation is considered. Once model transformations
yield a sufficiently detailed implementation model, RAMSES generates C com-
ponent infrastructure that when combined with developer-written component
application C code can be deployed on Linux (with POSIX-compliant threading),
nxtOSEK (open-source platform for LEGO Mindstorms), and POK. RAMSES
has been used to develop systems for the avionics, railway, and robotics domains.

The differences in emphasis between HAMR’s target application areas and
RAMSES roughly correspond to the HAMR/Ocarina differences above. In addi-
tion, HAMR supports multiple languages and distinct platforms. RAMSES
emphasizes model transformations as a basis for correctness arguments whereas
Ocarina and HAMR emphasize factoring through abstract architecture lay-
ers. Like Ocarina, RAMSES focuses more on RTOS applications compared to



292 J. Hatcliff et al.

HAMR’s current focus on micro-kernel-based information assurance and multi-
platform support. Compared to HAMR, one challenge of the RAMSES approach
is that the refinement steps produce multiple versions of AADL models. Multi-
ple versions require additional work to maintain traceability and correspondence
between the model-level contracts and information flow requirements and the
source-code level contracts.

Trusted Build: HAMR can be seen as a successor to the Trusted Build (TB)
concept prototype [7] developed in the DARPA High Assurance Cyber Military
Systems (HACMS) Program by Collins Aerospace, University of Minnesota, and
Data61. Like HAMR, TB generated component skeletons for seL4 from AADL
using the Data61 CAmkES seL4 component modeling language. TB was the
first AADL-to-seL4 translation framework. It was used in DARPA HACMS to
construct several systems of roughly the same complexity as the UAV system
described in Sect. 5.2.

HAMR provides significant functionality beyond TB. HAMR’s port-based
inter-component communication strategy now provides true one-way communi-
cation from the sender to the receiver on an AADL connection. With TB it was
possible to have some back-flow of control and data information, which is unde-
sirable from an information assurance perspective. The TB CAmkES patterns
also had unnecessary complexity that require more complex information assur-
ance arguments. In addition, the TB port-based communication structure intro-
duced an extra thread for each connection, dramatically increasing the number
of CAmkES components and associated support threads of the generated sys-
tem, which vastly increases overhead. For example, if one considers deploying
the small PCA Pump (Sect. 5.1) to seL4, the TB approach would generate 101
additional CAmkES components and threads compared to HAMR.

The TB generated structures also did not support standard AADL semantics
for ports, so standard model-analysis results did not apply to the implementa-
tion. HAMR confirms to the standard, and handles additional AADL features
including dispatching strategies (e.g., port urgency, explicit indication of ports
that trigger dispatch) and port value freezing. HAMR also supports automated
VM building, which reduces both manual labor and the potential for defects.
HAMR also adds enhanced support for QEMU-based emulation and dramati-
cally reduces the effort needed to create a working development environment by
using a Vagrant set up framework.

7 Conclusion

HAMR is a new open-source multi-platform framework for model-driven devel-
opment of cyber-physical systems using AADL. The framework has been vetted
on a number of government/industry projects in both the medical device and
mission control domains. HAMR complements existing AADL code generation
tools like Ocarina and RAMSES by supporting additional industry-relevant plat-
forms, and by providing an architecture designed for extensibility. The HAMR



HAMR: An AADL Multi-platform Code Generation Toolset 293

theme of supporting industry workflows through a progression of rapid proto-
typing to deployments on successively realistic platforms is also a new emphasis.
HAMR significantly improves on the previous Trusted Build work and compared
to other AADL code generation frameworks it provides a distinct area of empha-
sis: code generation for micro-kernels. Not only does this expand the opportunity
to support rigorous CPS development, the experience with additional platforms
and code generation architecture are providing inputs to the AADL standards
committee for a re-design of the AADL run-time services and code generation
annex in the upcoming major version of AADL (the organizations of the authors
of this paper have a record of strong and extended participation in the AADL
standards committee).

The HAMR approach is not intrinsically tied to AADL. Instead, it is linked
to the paradigm of real-time tasking in communication in AADL – a paradigm
based to real-time tasking models presented in classic textbooks on analyzeable
real-time systems [5] and on communication approaches used in avionics buses
like ARINC653. Thus, it is possible to replace the AADL front-end with other
modeling frameworks that can be aligned with or instantiated to the computa-
tional paradigm of AADL. Our current Army SBIR Phase II research project
is prototyping a SysML front-end for HAMR, based on the idea of defining a
AADL-aligned profile for SysML. This can ease adoption of HAMR for compa-
nies that have significant investments in SysML tooling and find it challenging
to integrate a different modeling language (AADL) and associated editors.

On a more foundational front, we are leveraging the layered design of HAMR
to support the generation of evidence that generated code conforms to the AADL
architecture. Aligning with the information assurance emphasis of some of our
industrial and defense-related research projects, we are first tackling providing
evidence of preservation of model-level information flow and spacial separation,
e.g., as visualized in the Awas AADL information flow visualization tool [17].
We are also investigating framework for establishing stronger behavioral corre-
spondence between lower-level generated code and the HAMR reference imple-
mentation abstraction layer in Slang.

Regarding the track theme Programming: What’s Next?, HAMR empha-
sizes an approach where a modeling language (AADL) and a programming lan-
guage (Slang, C, etc.) work hand-in-glove to provide the system implementation.
The programming language is not used to code all of the system. Instead the
model provides a high-level specification of inter-component communication and
threading structure. Generative techniques are then used to generate a large
amount of code. This is similar to other framework approaches like Spring that
include high-level specifications of (a) building blocks (abstractions) from which
code is derived for common services (b) integration of functionality specified
with conventional source code.

What is different for HAMR is the is use of this type of framework for real-
time and embedded systems, and in particular the use of building blocks that can
be given a formal semantics. As a consequence, reasoning about the correctness
of the system is done by reasoning about application source code together with



294 J. Hatcliff et al.

the semantics of the integration abstractions. Given that the code generation
is correct with respect to the semantics of the abstractions, the developer nor
the verification tools need to be concerned with the details of the infrastructure
code. Rather the can rely on the semantic properties of the abstractions.

Slang is not essential for the approach. One can also take this approach with
C, for example. However, the use of Slang eases the verification of the application
code. Moreover, since the infrastructure code and code generators are written
in Slang, HAMR provides the convenience of a single verification framework to
establishes the correctness of code generation for abstractions (done once) and
the application code (done for each system).

From a bottom-up perspective, HAMR provides a significant contribution
by layering application-oriented abstractions on top of the formally verified seL4
micro-kernel – thus providing the foundation for eventually scaling up the for-
mally correctness proofs from the kernel to applications/systems programmed
on top of the kernel.

In general, we believe that use of model/code frameworks based on formally-
verified domain-specific abstractions with integrated semantics is important
direction for engineering critical systems.

Acknowledgement. The authors wish to thank other DARPA CASE team members
from Collins Aerospace, Adventium Labs, and Data61 for their work on applications
of HAMR and their inputs on HAMR design.

References

1. SAE Architecture Analysis and Design Language (AADL) Annex Volume 2: Annex
B: Data Modeling AnnexAnnex D: Behavior Model AnnexAnnex F: ARINC653
Annex

2. Aerospace Vehicle Systems Institute: motivation for advancing the system archi-
tecture virtual integration program (2020). https://savi.avsi.aero/about-savi/savi-
motivation/

3. AVSI: System Architecture Virtual Integration (SAVI) Initiative (2012)
4. Borde, E., Rahmoun, S., Cadoret, F., Pautet, L., Singhoff, F., Dissaux, P.: Archi-

tecture models refinement for fine grain timing analysis of embedded systems. In:
2014 25nd IEEE International Symposium on Rapid System Prototyping, pp. 44–
50 (2014)

5. Burns, A., Wellings, A.: Analysable Real-Time Systems: Programmed in Ada. Cre-
ateSpace (2016)

6. Carpenter, T., Hatcliff, J., Vasserman, E.Y.: A reference separation architecture for
mixed-criticality medical and IOT devices. In: Proceedings of the ACM Workshop
on the Internet of Safe Things (SafeThings). ACM, November 2017

7. Cofer, D., et al.: A formal approach to constructing secure air vehicle software.
Computer 51, 14–23 (2018). https://doi.org/10.1109/MC.2018.2876051

8. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley, New York
(2013)

https://savi.avsi.aero/about-savi/savi-motivation/
https://savi.avsi.aero/about-savi/savi-motivation/
https://doi.org/10.1109/MC.2018.2876051


HAMR: An AADL Multi-platform Code Generation Toolset 295

9. Hatcliff, J., Larson, B., Carpenter, T., Jones, P., Zhang, Y., Jorgens, J.: The open
PCA pump project: an exemplar open source medical device as a community
resource. SIGBED Rev. 16(2), 8–13 (2019)

10. International, S.: SAE AS5506 Rev. C Architecture Analysis and Design Language
(AADL). SAE International (2017)

11. Kuz, I., Liu, Y., Gorton, I., Heiser, G.: CAmkES: a component model for secure
microkernel-based embedded systems. J. Syst. Softw. 80(5), 687–699 (2007)

12. Lasnier, G., Zalila, B., Pautet, L., Hugues, J.: Ocarina: an environment for AADL
models analysis and automatic code generation for high integrity applications. In:
Kordon, F., Kermarrec, Y. (eds.) Ada-Europe 2009. LNCS, vol. 5570, pp. 237–250.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01924-1 17

13. NICTA, Dynamics, G.: sel4 microkernel (2015). sel4.systems
14. Rushby, J.: The design and verification of secure systems. In: 8th ACM Symposium

on Operating Systems Principles, vol. 15(5), pp. 12–21 (1981)
15. West, A.: Nasa study on flight software complexity, March 2009. https://www.

nasa.gov/pdf/418878main FSWC Final Report.pdf
16. Zalila, B., Pautet, L., Hugues, J.: Towards automatic middleware generation. In:

11th IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC 2008), pp. 221–228 (2008)

17. Sireum Awas website. https://awas.sireum.org
18. DARPA CASE Vagrant. https://github.com/loonwerks/CASE/tree/master/TA5/

case-env
19. Open PCA Pump Project website (2018). http://openpcapump.santoslab.org

https://doi.org/10.1007/978-3-642-01924-1_17
http://sel4.systems
https://www.nasa.gov/pdf/418878main_FSWC_Final_Report.pdf
https://www.nasa.gov/pdf/418878main_FSWC_Final_Report.pdf
https://awas.sireum.org
https://github.com/loonwerks/CASE/tree/master/TA5/case-env
https://github.com/loonwerks/CASE/tree/master/TA5/case-env
http://openpcapump.santoslab.org

	HAMR: An AADL Multi-platform Code Generation Toolset
	1 Introduction
	2 AADL
	3 Architecture
	4 HAMR Backends
	4.1 Slang on JVM Platform
	4.2 Linux
	4.3 seL4 Verified Microkernel

	5 Applications
	5.1 PCA Pump – JVM Platform
	5.2 UAV System – seL4 Platform

	6 Related Work
	7 Conclusion
	References




