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Abstract. The fourth industrial revolution is driven by Software-
enabled automation. To fully realize the potential of this digital transfor-
mation in a way that is beneficial to society, automation needs to become
programmable by domain experts—the vision being a Software-assisted
increase in productivity instead of replacing workers with Software.
While domain experts, e.g., workers in production, typically have exten-
sive experience with processes and workflows involving cyber-physical
systems, e.g., production machines, they have little to no knowledge of
programming and formal logic. In this paper, we present a framework
for expressing executable rules in the context of a cyber-physical sys-
tem at the conceptual level, akin to human reasoning, in almost nat-
ural sentences (e.g., if a person is within 1m of the machine then the
light will turn red). These requirements are automatically transformed
by our framework into formal logic and can be executed and evaluated
by a rule engine without additional input by domain experts. The frame-
work is designed in a modular way that enables domain engineering, i.e.,
the development of new languages for individual application domains,
with minimal effort. Only domain-specific entities and predicates (e.g.,
is within) need to be defined and implemented for a new domain. We
demonstrate our framework in a logistics scenario on a shop floor that
requires human-machine collaboration.

Keywords: Domain-specific languages · Logistics · Language
programming · Language model transformation · Runtime monitoring

1 Introduction

Digitization by software automation is growing significantly in many organi-
zations. In many companies with no particular background in Software (e.g.,
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in the industrial and manufacturing sector), Software crept into processes and
products—first slowly but then with an ever-increasing pace and scope, culmi-
nating in the mantra that “every company needs to become a software company”.
This mantra comes with an inherently increasing demand for skilled software-
engineers. Universities and colleges are unable to satisfy this demand adequately.

In many instances, Software is merely a means of automation, and we have
to put the power of controlling automation into the hands of domain experts and
the general public to bring digital transformation to its full potential in a way
that is beneficial to society. Moreover, rules in automated systems need to be
understandable at the conceptual level of human reasoning to be amenable, e.g.,
to ethical and legal considerations. Putting it bluntly, we need frameworks that
enable “programming the real world”, e.g., specifying the behavior of objects on
a shop floor using observable events, conditions, and actions.

Classical systems engineering approaches fall short as in these approaches
requirements on system behavior are decomposed to subsystems and refined to
the level of signals, making the originally expressed intention hard to reconstruct
(cf. [1,2] for examples). New or changed requirements need to be decomposed
and translated from scratch, requiring expensive manual effort, involving domain
experts and system developers.

We propose an alternative approach that uses domain-specific languages to
bridge the gap between the conceptual level of human reasoning about the
world and concrete signals and conditions in complex logistical systems enabling
domain experts to write requirements like “if a person carrying a box is within
1m of the designated storage location then the light will turn green”. Such require-
ments have a well-defined meaning in a system through domain-specific abstrac-
tions, computing the value of predicates like “within 1m of” in a concrete cyber-
physical system. System-wide relations and emergent behavior within cyber-
physical systems can be evaluated in the form of natural predicates at runtime
by preserving the meaning of requirements in domain-specific abstractions.

In this paper, we report on the results of an exploratory design effort, in
which we have developed the generic architecture, languages, and abstractions
of a framework that enables domain experts to program the behavior of cyber-
physical systems (CPS) in the logistics domain. We present the development of
a framework with domain-specific languages that allow to express executable
rules about moving things in the real world at an abstract level, akin to human
reasoning, e.g., the light should turn green if a person carrying a box is within
1m of the designated storage location.

The resulting framework relies on three individual connected languages: (1)
a language for the definition of requirements, (2) a language defining domain-
specific objects, functions, and predicates as well as their interpretations in terms
of concrete system signals and data, and (3) an extended first-order logic using
arbitrary predicates for monitoring and controlling CPS at runtime.

We demonstrate our approach in a case study from the logistics domain: a
scenario on a shop floor that requires human-machine collaboration.
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Outline. The paper is organized as follows: Sect. 2 introduces logistics as our
problem domain and related work. Section 3 presents our case study with our
logistics research lab. Section 4 outlines our framework for the independent spec-
ification of domain and requirements. Section 5 describe the monitoring of the
requirements at runtime and reports on results from our case study. Section 6
discusses the development of our framework and the results from our case study.
Section 7 concludes the paper.

2 Related Work

Logistics is the science of moving things in the real world in a reasonable and effi-
cient manner. Logistics applications permeate throughout the human inhabited
world and exist in a plethora of different shapes and forms. Logistics systems
scale from simple packaging stations to planetary-wide interdependent supply-
chain networks. Although there are almost as many types of logistics systems as
there are industries, they all share the same basic primitives of movement.

In order to sustain the pace of digital transformation, these logistics systems
need to become programmable by domain experts. Moreover, rules in automated
systems need to be understandable at the abstract level of human reasoning in
order to be amenable to ethical and legal considerations.

Logistics automation is an engineering discipline with a disposition towards
algorithms that use numeric methods for optimizing highly context-specific
parameters. As such, it is a very different style of reasoning compared to what
the shop floor workers are doing. Typical programming languages of field-level
automated systems (i.e. Programmable Logic Controllers (PLCs)) are not usable
by domain experts as they are rooted in control engineering. High-level require-
ments have to be related to the domain of these systems for execution in the real
world and monitoring and controlling CPS at runtime. Entities, i.e., objects and
predicates, which are used in high-level requirements have to be defined over the
available signals and system data.

For this reason, No Code or Low Code platforms, e.g. DIME [3], Mendix1,
Creatio2, Pega3, among others, have become more and more popular in indus-
try [4]. These platforms aim to facilitate the programming of mobile, Internet of
Things (IoT), and are applications by non-technical employees based on domain-
specific languages (DSL) [5] and models [6]. However, most solutions predom-
inately target business process automation and user applications but are not
suited for the programming of technical systems, e.g., robots.

In Academia, various languages and tools have been developed to address
the definition of requirement and the automated processing. ASSERT [7] pro-
vides the constrained natural language SADL for formalizing domain ontologies
and the requirements language SRL to express requirements as conditions over
controlled system variables. FRET [8,9] provides the language FRETISH for
1 https://www.mendix.com/.
2 https://www.creatio.com.
3 https://www.pega.com/.

https://www.mendix.com/
https://www.creatio.com
https://www.pega.com/
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specifying the requirements and transforming them into temporal logic formulas.
However, these tools still utilize mathematical conditions over system variables
in their requirements.

Academia has developed several controlled natural languages, e.g. Process-
able English (PENG) [10], Controlled English to Logic Translation (CELT) [11],
Computer Processable Language (CPL) [12], which are close to natural lan-
guages but allow for knowledge representation and reasoning about the textual
content. A good overview and classification of controlled languages are given in
[13]. Attempto Controlled English (ACE) [14,15] provides a large subset of the
English language to specify requirements which can be transformed unambigu-
ously into a first-order logic [10]. However, ACE aims at knowledge representa-
tion and reasoning and does not provide a mechanism for the interpretation of
text entities on system data for runtime monitoring and evaluation.

Other solutions for the requirements engineering in natural language aim
at transforming natural language into machine-processable formats using fuzzy
matching domain-based parsing techniques [16] or natural language processing
(NLP) [17]. The problem with these tools is that their interpretation of the
requirements within a real-world domain is undefined.

As the authors of [18], we see the importance for integrating multiple mod-
els wit specialized focus. We explicitly see the importance for the definition of
domain entities and predicates over data of the CPS independent of the specifi-
cation of requirements. We, therefore, have developed a framework which allows
the specification of domain entities and predicates based on system data and
their usage in requirements and first-order logic for the runtime monitoring and
control.

The following Sect. 3 describe our use case. An overview of our framework
with the engineering of the domain and the specification of monitorable require-
ments is given in Sect. 4.

3 Case Study: Warehouse Logistics

Our case study for the application of our framework has been implemented in
a special purpose logistics research lab. This lab is designed as a highly flexible
testbed environment for CPS and features a central experimentation area that
is free of permanently installed equipment at ground-level. This central area is
22 m long and 15 m wide. It is surrounded by 40 infrared cameras that are part
of a Motion Capturing System (MoCap). Additionally, eight laser projectors are
installed on the ceiling that can project colored vector graphics on the floor. The
graphic shapes can be changed with a very high frame rate and low latency.

Figure 1 shows the framework of the lab. Physical objects are tracked by
the MoCap system via uniquely identifiable collections of retro-reflective mark-
ers. The generated data streams are sent to the simulation environment. The
simulation environment mirrors the perceived objects into a virtual representa-
tion of the physical space. The simulation controls the laser projection system
and displays virtual objects via a mapping to vector graphics directly in the
experimentation area.
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Fig. 1. Framework of the research lab

For the purpose of the application example, Message Queuing Telemetry
Transport (MQTT) has been used as interface to allow the rule engine to gener-
ate virtual objects for laser projection to the floor. The incoming data stream of
object positions could be either received by a subscription to the MoCap topic
on the MQTT server or from the simulation environment. The latter option was
used while developing the monitoring framework, as it allowed for faster testing
of newly written code.

Our concrete scenario is the manual transports of assembly pieces between
workstations, as it can be found in warehouses and plants. Assembly pieces are
manually carried in a container between the workstations. The scenario consists
of a worker carrying a container KLT 2 for small assembly parts between two
workstations AS 1 and AS 3 (cf. Figure 5). Positions of container and work-
stations are continuously tracked by a Motion Capturing System (MoCap) (cf.
position tracking in Fig. 2). The tracking data is sent to a broker using the MQTT
protocol [19] from where it is distributed to our rule engine.

The numerical data streams containing the objects’ positions are transformed
for the rule engine into abstract interpretations constituting logical constants,
properties, and predicates (cf. position abstraction in Fig. 2). The abstract inter-
pretations are used by the rule engine to reason about the relative positioning
of container KLT 2 and workstations AS 1 and AS 3.

Based on the evaluation of formulas by the rule engine, actions within these
formulas are executed to visualize relative positions of container KLT 2 and
workstations AS 1 and AS 3. The rule engine emits the active actions within
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Fig. 2. Data flow at runtime

these formulas. These abstract actions are transformed into concrete visualiza-
tion objects for the laser projectors of the testbed (cf. visualization abstraction
in Fig. 2).

The following Sect. 4 gives an overview about our framework and presents
the specification of domain and requirements in our case study.

4 Separation of Domain and Requirements

The behavior of logistics systems can become very complex, as these systems con-
sist of many components with reactive behavior. The specification of emerging
behavior in requirements solely based on internal signals and data can be diffi-
cult, if not impossible. Our vision is to bridge the gap between natural require-
ments and monitors or rules on the actual system through code generation and
execution.

We want to enable domain experts to specify requirements for logistics sys-
tems akin to human reasoning, while directly monitoring and verifying these
requirements at runtime. Domain experts do not need any knowledge about
programming, language engineering, and formal methods. Otherwise, domain
experts would be more concerned with technical or formal details, e.g., the syn-
tax of first-order logic, than specifying the expected system behavior as require-
ments.

We hold domain experts away from the technical details of the domain and
the logistics system by separating the requirements specification in into two main
tasks - domain engineering and requirements specification:

1. The domain engineering defines the objects, properties, and predicates within
the application domain and interprets these for the data of the CPS, and
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2. the requirements specification define the requirements about the CPS using
these domain objects, properties, and predicates.

MReq

MDom

MLogTransformation

Rule Engine
Instrumentation

Rule Engine

framework provided

manual user input

framework generated

conforms-to

imports

generates

Fig. 3. Overview over the language framework

The separation in domain engineering and requirements specification (cf.
Figure 4) is also represented by the models M in framework. Our framework
incorporates three different domain-specific languages for specifying require-
ments akin to the reasoning of domain experts and executing these requirements
at runtime to monitor and control these systems (cf. Figure 3):

1. Domain MDom describes the domain and its specific terminology which are
used in the requirements MReq, the first-order logic MLog, and the rule
engine.

2. Requirements MReq enables specifying requirements akin to human reason-
ing.

3. Extended first-order logic MLog provides the unambiguous syntax and seman-
tics for monitoring and executing requirements at runtime.
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Fig. 4. Development workflow

As shown in Fig. 4, each task - domain engineering and requirements
specification- requires a different skill sets. We, therefore, distinguish the roles
domain engineer and domain expert :
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– The domain engineer possesses sufficient knowledge about the application
domain as well as programming and language engineering with domain-
specific languages for comprehensively representing the application domain.
From this domain specification, the rule engine is instrumented to interpret
the entities and predicates in requirements for data from the monitored CPS.

– The domain expert has deep knowledge about the investigated CPS to exhaus-
tively specify requirements about the system and its behavior akin to their
natural reasoning. The natural requirements are automatically transformed
into first-order logic for evaluation by the rule engine at runtime.

The domain engineering for warehouse logistics is described in Sect. 4.1, while
the specification of requirements and their monitoring for the manual transport
of goods in our logistics research lab are presented in Sect. 4.2.

4.1 Engineering the Warehouse Logistics Domain

The development in our use case commences with the definition of the domain
MDom for Warehouse Logistics. The domain MDom is the central component
in our solution and ensures that requirements MReq and formulas MLog reason
about the identical application domain.

As shown in Fig. 3, respective interpretations within the domain MDom are
imported into requirements MReq and formulas MLog. The data interpretation
of objects and predicates are used by the rule engine at runtime to evaluate
domain objects and predicates for the current state of the CPS and process a
verdict for requirements MReq and in formulas MLog at runtime e (cf. our case
study in Sect. 5).

Domain MDom defines the domain’s objects and predicates as they are used
in our case study within our logistics research lab and associates these entities to
the data in our logistics research lab. The domain MDom defines the item con-
tainer KLT 2, workstations AS 1 and AS 3, and predicates about the geometric
relationship between objects, i.e., besides. An excerpt of the domain is shown in
Listing 1.1.

Listing 1.1. Defintion of domain MDom

1 def KLT_2 : Object {

2 Requirement: KLT_2

3 Logic: KLT_2

4 Data: positionObjects[name==KLT_2]

5 }

7 def AS_1 : Object {

8 Requirement: AS_1

9 Logic: AS_1

10 Data: positionObjects[name==AS_1]

11 }

13 def beside : Predicate {
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14 Requirement: beside dist:Float of

15 Logic: beside(Con1:Constant ,Con2:Constant ,dist:Float)

16 Data: ABS(positionObjects[name==Con2]->positon -

positionObjects[name==Con1]) < dist

17 }

The objects KTL 2 and AS 1 both have the type Object and are identically
expressed in the requirements MReq and first-order logic MLog (cf. keywords
Requirement and Logic in Listing 1.1). The predicate beside is defined in MReq

by the word within and an arbitrary distance dist (cf. keyword Requirement in
Listing 1.1). The objects which are compared by the predicate beside are deter-
mined by the sentence in which the predicate is used. For the first-order logic
MLog, the predicate is defined with three parameters; the first two parameters
take constants Con1 and Con2 as inputs while the third parameter takes a float
value dist for the distance (cf. keyword Logic in Listing 1.1).

At runtime, predicate beside is interpreted and evaluated for the incoming
streams of position data from the MoCap System. The data from the MoCap sys-
tem is provided to the rule engine via the MQTT broker as JSON data [20,21]. The
interpretation of the system data is defined by the data function (cf. keyword Data
in Listing 1.1); predicate beside will be evaluated as satisfied if the absolute amount
of the distance between the position of object Con1 and the position of constant
Con2 is below the given distance dist. Objects Con1 and Con2 are filtered in the
list of objects positionObjects in the MQTT data based on their names and their
common attribute position is assessed for the position values. These data inter-
pretations are used in the abstraction of the numerical position data to abstract
representations in first-order logic (cf. position abstraction in Fig. 2).

For our demonstration, we defined five additional predicates for evaluating
the relative position of container and workstations. All six predicates are shown
in Table 1.

In addition to the six predicates about the relative position of container and
workstations, actions draw rectangle and draw circle are defined in the domain
MDom (cf. Table 1). Action draw circle will result in a circle as laser visualization
while action draw rectangle yields to the projection of a rectangle by the laser
projectors. Both actions have parameters for position, color, size, duration,
and animation of the projected rectangle resp. circle. Positions of the laser
visualizations can be defined either as fixed positions in world coordinates or
the visualizations can be attached to the positions of objects. Attachments to
objects provide the advantages that the visualizations will change their positions
according to the movement of these objects.

The following Sect. 4.2 describes how the requirements MReq are defined for
our logistics case study using the definitions in domain MDom.

4.2 Specification of Requirements

Requirements MReq are specified by domain experts using an almost natural
but domain-specific language. Requirements MReq have the basic clause
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Table 1. Overview of predicates in the domain MDom.

Predicate Requirements First-Order Logic

inside [Obj] is inside [Box] inside(Obj,Box)

rest on [Obj] is on [Box] reston(Obj,Box)

rest under [Obj] is under [Box] restunder(Obj,Box)

above [Obj] is above [Box] above(Obj,Box)

below [Obj] is below [Box] below(Obj,Box)

beside [Obj] is within X m of
[Box]

besides(Obj,Box,X)

draw circle draw circle with position x in color y . . .
circle (position, color, . . . )

draw rectangle draw rectangle with position x in color y . . .
rectangle (position, color, . . . )

if 〈conditions〉 then 〈actions〉
where 〈conditions〉 and 〈actions〉 can be conjunctions of multiple conditions
resp. actions, e.g., if a package is available in one of the loading areas, then an
idling robot has to move to the leading area and pick up the package. Require-
ments MReq import the specific interpretations of domain-specific entities, i.e.,
item container KLT 2, workstations AS 1 and AS 3, and predicates about the
geometric relationship between objects, from domain MDom (cf. Section 4.1).

Listing 1.2. Initial definition of requirements.

1 Req Req1: If KTL_2 is within 4m of AS_1 and KTL_2 resides

within 4m to AS_3 then show a rectangle with scale 6.0

at position {1.0 ,0.0 ,0.0} with magenta color.

2 Req Req2: If KTL_2 is within 3m of AS_1 then print a

rectangle over AS_1 in yellow color with scale 2.0.

3 Req Req3: If KTL_2 is within 3m of AS_3 then print a

rectangle over AS_1 in yellow color with scale 2.0.

In our demonstration, we defined three requirements about the position of
the container KTL 2 in relation to the workstations AS 1 and AS 3 in the
requirements MReq using the definition of the domain MDom. The requirements
are shown in Listing 1.2. Requirement Req1 will result in the drawing of a
magenta rectangle with 6 m edges at the global position {1.0, 0.0, 0.0} if the
container KLT 2 is within 4 m of both workstations AS 1 and AS 3. The second
requirement Req2 will result in a yellow rectangle drawn around the workstation
AS 1 with edge of 2 m if the distance between container KLT 2 and workstation
AS 1 is less than 3 m. Requirement Req3 is identical to requirement Req2 with
workstation AS 1 replaced by workstation AS 3.

The following Sect. 5 describe how the requirements MReq are transformed
into first-order formulas MLog and monitor in our shop floor scenario in our
logistics research lab.
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5 Runtime Monitoring and System Control

Requirements MReq are automatically transformed by our framework into for-
mulas MLog in first-order logic for monitoring and controlling the CPS at run-
time. Our framework uses classic first-order logic extended by operators for
equality == and the implication | > between conditions and actions.

Similar to the requirements MReq, the specific interpretations of entities in
domain MDom, i.e., item container KLT 2, workstations AS 1 and AS 3, and
predicates about the geometric relationship between objects, are imported into
the formulas MLog. The semantics of formulas MLog are given by the interpre-
tation of these domain-specific entities for the data of CPS.

As shown in Listing 1.3, three formulas MLog are generated in first-order logic
from the three requirements in Listing 1.2. The requirement Req1 in Listing 1.2
is transformed to formula Req1 in Listing 1.3.

Listing 1.3. Formulas MLog for the running example

1 Req1: beside(KLT_2 ,AS_1 ,4) AND beside (KLT_2 ,AS_3 ,4) |>

rectangle (Req1_1 , {-1.0,0.0,0.0},1, magenta ,4,6,6,none)

;

2 Req2: beside(KLT_2 ,AS_1 ,3) |> rectangle (AS_1 , 1,yellow

,4,2,2,none);

3 Req3: beside(KLT_2 ,AS_3 ,3) |> rectangle (AS_3 ,1,yellow

,4,2,2,none);

The container KTL 2 and workstations AS 1 and AS 3 are equally used
in requirements MReq as well as formulas MLog. Therefore, representations of
these objects in requirements MReq are directly transformed into corresponding
representations in formulas MLog using the definitions in domain MDom. The
predicate within in MReq maps to the predicate beside in formulas MLog. The
container KTL 2, workstation AS 1 resp. AS 3, and constraint 4m are assigned
to the parameters Con1, Con1, and dist respectively. The preceding verbs is and
resides for the predicate within in requirements MReq are syntactic sugar and
are not considered for the transformation of predicate within into the formulas
MLog.

The action in the action part of requirements Req1 in Listing 1.2 is trans-
formed in the predicate rectangle in MLog with its parameters derived from the
additional constraints in the action part, e.g., at position {−1.0,0.0,0.0} and
in magenta color. Requirements Req2 and Req3 are transformed into formu-
las similar to the transformation of requirement Req1. The semantics of these
three formulas in Listing 1.3 is consistent with the semantics of their original
requirements in Listing 1.2.

Results from runtime evaluation of the three formulas in Listing 1.3 for the
manual transport of container KLT 2 between the two workstations AS 1 and
AS 3 are shown in Fig. 5. The rule engine for this demonstration has been instru-
mented for evaluating the three formulas in Listing 1.3 at runtime using the
definition of the domain in Listing 1.1.
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(a) Visualization for container KLT 2
at workstation AS 3.

(b) Visualization for container KTL 2
at workstation AS 1.

Fig. 5. Demonstration of logistics scenario.

In Fig. 5a, the container KLT 2 is at the workstation AS 3. The formulas
Req1 and Req3 are satisfied in this situation while requirement Req2 fails due
to the large distance to workstation AS 1. As result, a large magenta rectangle
and a small yellow rectangle around workstation AS 3 are drawn according to
the satisfied formulas Req1 and Req3 (cf. Listing 1.2).

After carrying the container KLT 2 over to the workstation AS 1, the yel-
low rectangle around workstation AS 3 disappears while a new yellow rectangle
appears around workstation AS 1. This behavior is consistent with formulas
Req2 and Req3 (cf. Listing 1.2) because the predicate beside in formula Req3 is
now invalid while it is now true for formula Req2. Formula Req1 is satisfied in
both situations. Therefore, the large magenta rectangle is drawn throughout the
complete transition of container KLT 2 from workstation AS 3 to workstation
AS 1.

Our lessons from the development and application of our framework are pre-
sented in the following section.

6 Discussion

The work presented in this paper is highly explorative. We have aimed for a first
technical prove-of-concept.

While the current implementation of our framework is a prototype, we can
draw some initial conclusions from its development, the conducted application.

Remark 1: Separation of languages seems to support the distribution and reuse
in system development.

Our case study has provided first indications that the separation of domain
engineering and requirements specification has a positive impact in the devel-
opment of logistical CPS. Requirements MReq and domain MDom seem to be
reusable in another context independent of each other. Requirements can be
used for CPS in other domains by just redefining the objects and predicates in
requirements for the new domain. The development of new systems, may reuse
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an existing domain MDom in its new requirements MReq of the new system.
There is no need to adapt the objects and predicates in the domain MDom to
the new system.

Requirements and domain seem to be easily developed independent of each
other, providing organizations with the opportunity to efficiently employ domain
engineers within the development of these systems. As critical resource due to
their technical knowledge, domain engineers may concentrate on the definition of
domain MDom while domain expert with limited technical knowledge can define
the relevant requirements akin to their natural reasoning. This approach enables
organization to introduce more non-technical domain experts to the development
of these technical systems.

Remark 2: Designing a domain-specific language for natural requirements, akin
to human reasoning, is expensive.

The specification of requirements has to feel as natural as possible for domain
experts—akin to their usual reasoning of these logistical systems—in order for
domain experts to adapt languages and tools into their work. Otherwise, domain
expert are more occupied with the expression of requirements in a specific lan-
guage grammar than comprehensively representing the systems in their require-
ments.

English and other natural language provide various clauses that allow for
different sentence structures with identical semantic meaning in requirements.
Replicating this grammatical flexibility in domain-specific languages is difficult
and expensive. The majority of clauses from the natural base language have
to be defined in the requirements language to suggest grammatical flexibility.
Furthermore, all these clauses have to be mapped to expressions in the first-
order logic for the evaluation at runtime. However, clauses often contain similar
sentence structure which can cause problems for parser generators, i.e., ANTLR
[22]. Clauses with similar sentence structure hinder the parser to associate corre-
sponding parts of requirements deterministically to a single clause for building an
abstract syntax tree. As a result, the grammar of the requirements language has
to be carefully specified for these parser generators to work correctly. There exist
some controlled natural languages, e.g., Attempto Controlled English (ACE)
[14,15], Processable English (PENG) [10], and Computer Processable Language
(CPL) [12] among others, which provide the grammatical flexibility of English,
but these languages miss the mapping of objects and predicates to real system
data.

Remark 3: Temporal Constraints are an essential part of today’s technical
requirements in logistics.

Within our case study, we have recognized that many technical requirements
in logistics are time-dependent, but our requirements and logic are currently not
able to express such temporal expressions. We neglected temporal constraint
in our framework because we focused on the architectural combination of the
three models, i.e., requirements, domain, and logic, to enable the specification
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of monitorable requirements at runtime. It is essential that we address temporal
expression in our requirements and extend the logic by temporal operators as
they are used in, e.g., metric first-order temporal logic [23], in future work.

Remark 4: System data has to be provided in sufficient quantity and quality.

An important part for monitoring requirements at runtime is the data provided
by the CPS. This system data defines the scope of domain and requirements,
which can be evaluated by the rule engine at runtime. The CPS has to pro-
vide data in the appropriate form, quantity, and quality to sufficiently represent
the real application domain in domain MDom. Objects and predicates without
any processable data function in domain MDom could be potentially used in
requirements MReq to form syntactic correct requirements, but these require-
ments cannot be interpreted by the rule engine at runtime. There exist two
possibilities for evaluating an object or predicate for the data from the CPS, if
(1) the provided data contains a corresponding data item or (2) the object and
predicate can be calculated from the available data items. For example, the rule
engine will evaluate the velocity of a robot, only if the provided data from the
robot does include a data item about the robot’s velocity or the remaining data
items allow to calculate the velocity.

7 Conclusion

We have presented a framework for the development of domain-specific languages
that express executable rules about CPS in logistics at the conceptual level, akin
to the reasoning of domain experts. The framework defines three individual lan-
guages: (1) the domain language allows to specify the application domain with
its entities, and predicates over these entities, (2) the requirements language pro-
vides the grammatical flexibility to define requirements akin to human reasoning,
(3) the first-order logic provides clear syntax and semantics for monitoring and
controlling CPS at runtime. We have demonstrated our framework in a logis-
tics scenario with human-machine collaboration. The case study shows that the
control and monitoring of CPS in logistics is viable and beneficial under the
separation of requirements and domain specification. The separate definition of
domain entities, i.e., objects, their proprieties, and predicates, over the system
data is essential for specifying requirements akin to human reasoning. However,
the development of our framework has also shown that the design of an almost
natural language for the requirements specification is very costly and difficult.

One point to consider for the future is the consideration of existing and
proven controlled natural languages, e.g. ACE or PENG, for the specification of
requirements. Additional future improvements for our framework to consider: (1)
temporal expressions in our requirements language and formal logic, (2) different
languages than standard English, and (3) the integration of our framework in a
requirements engineering workflow. We also envisage a potential of our work in
other domain than logistics and want to harden the expressive power within our
framework through application in more diverse domains.
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